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ABSTRACT

The recent popularity of Online Social Media sites (OSM) like Facebook and Twitter have

led to a renewed discussion about user privacy. In fact, numerous recent news reports and

research studies on user privacy stress the OSM users’ urgent need for better privacy control

mechanisms. Thus, today, a key research question is: how do we provide improved privacy

protection to OSM users for their social content? In this thesis, we propose a systematic

approach to address this question.

We start with the access control model, the dominant privacy model in OSMs today.

We show that, while useful, the access control model does not capture many theoretical and

practical aspects of privacy. Thus, we propose a new model, which we term the exposure

control model. We define exposure for a piece of content as the set of people who actually

view the content. We demonstrate that our model is a significant improvement over access

control to capture users’ privacy requirements. Next, we investigate the effectiveness of

our model to protect users’ privacy in three real world scenarios: (1) Understanding and

controlling exposure using social access control lists (SACLs) (2) Controlling exposure by

limiting large-scale social data aggregators and (3) Understanding and controlling longitu-

dinal exposure in OSMs, i.e., how users control exposure of their old OSM content. We

show that, in each of these cases, the exposure control-based approach helps us to design

improved privacy control mechanisms.
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KURZDARSTELLUNG

Die Popularität von sozialen Netzwerken (SN), wie Facebook, haben zu einer erneuten

Diskussion über die Privatsphäre geführt. Wissenschaftliche Publikationen untersuchen die

Privatsphäre und zeigen wie dringend SN Benutzer besseren Datenschutz benoötigen. Eine

zentrale Herausforderung für in diesem Bereich ist: Wie kann der Schutz der Privatsphäre

von SN Benutzern und ihren Inhalten garantiert werden? Diese Doktorarbeit schlägt Ansätze

vor, die diese Frage beantworten.

Wir untersuchen das Privatsphäremodel, das Access Control Modell, in SN. Wir zeigen

auf, dass das Access Control Modell theoretische und praktische Aspekte der Privatsphäre

nicht erfasst. Deshalb schlagen wir das Expositionssteuerunsgmodell vor und definieren

Exposition für einen Inhalt als die Menge der Personen, die einen Beitrag ansieht. Unser

Modell stellt eine bedeutende Verbesserung zu dem Access Control Modell dar. Wir unter-

suchen die Effektivität unseres Modells, indem wir den Datenschutz der Benutzer in drei

realen Szenarien schützen: (1) Verständnis und Steuerung der Exposition von Inhalten mit

Sozialen Access Control Listen (SACLs), (2) Steuerung der Exposition durch Begrenzung

der umfassenden sozialen Datenaggregation und (3) Verständnis und Steuerung von Langzei-

texposition in SN, z.B. wie Benutzer Exposition alter Inhalte begrenzen. In diesen Fällen

fürt Expositionssteuerungsmethoden zu einem verbesserten Privatsphäresteuerungsmecha-

nismus.
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Civilization is the progress toward a society of privacy. The savage’s whole

existence is public, ruled by the laws of his tribe. Civilization is the process of

setting man free from men.

—Ayn Rand, The Fountainhead



CHAPTER 1

Introduction

1.1 The fundamental shift in content sharing due to On-

line Social Media sites (OSM)

Online social media sites (OSM) are systems like Facebook or Twitter where users share

their personal content (e.g., photos, status updates, and social contacts). These systems

have become hugely popular in the last few years. In fact, these OSMs have become the

de facto portal to access the internet for millions of users. According to a recent Nielson

survey [142], an average 35 to 49 years old OSM user visits these sites 7 hours a week and a

heavy user visits these OSMs 3 hours per day.

Since OSMs have made it easy for any user to create, publish, distribute and consume

content, the amount of data shared on OSMs has also grown massively since the inception

of OSMs. For instance, Facebook users uploaded 4.75 billion pieces of content daily (on

average) in May 2013 [54]. Much of the personal user generated content shared in OSMs—

which we call social content in this thesis—is intended to have a limited audience. For

example, a user’s vacation photos uploaded on Facebook are often intended to be viewed

primarily by family and close friends.

However, the huge popularity of these sites (which facilitate the sharing of social

content) has also resulted in a fundamental shift in the patterns of content exchange in the

online world. Previously, a small number of organizations (e.g., newspapers, companies,



governments or universities) published content on the web and in general users were

content consumers. The content was mostly public, with open sharing and universal access

permissions. In contrast, in OSMs, today, social content is created and shared by end

users. The result of this fundamental shift is that, instead of just being content consumers,

individual end users are now required to be content managers. Thus, in addition to creating

and uploading social content, OSM users are also expected to manage the privacy of content

themselves. Consequently, today OSM users are facing a privacy management crisis.

1.2 Privacy management crisis in OSMs

Today for every piece of data shared in OSMs—every photo, status update, friend request

and video—a user must decide which of her friends, group members, and other Facebook

users should be able to access the data. Given the per-Facebook-user average of 130 friends

and 80 groups in recent years [103]—compounded with the average 90 pieces of content

uploaded per Facebook user per month—it is unsurprising that OSM users are in the midst

of a privacy management crisis, wherein the task of simply managing access to their content

has become a significant mental burden for many users [103].

The privacy management crisis is illustrated by user privacy concerns and anecdotal

privacy horror stories covered in numerous popular media and well as in research studies [35,

38, 87, 106]. Researchers have even tried to measure the extent of the privacy management

crisis in OSM users. Liu et al. [103] conducted a user survey with 200 users to check the

degree to which a user’s intended privacy settings match the actual privacy settings of the

uploaded content. In the survey, for each user, Liu et al. presented ten random photos the

user previously posted on Facebook; then for each photo they ask—“who, ideally, would

you like to be able to view and comment on the photo?” The responses from users constitute

the intended privacy setting for each photo. Finally, Liu et al. checked the actual privacy

settings (programmatically collected using the Facebook API) of those pictures and compare

2



the actual privacy settings with the users’ intended privacy settings (as revealed by the

survey). They found that the actual and intended privacy settings match for only 37% of

photos in their survey, and when there is a mismatch, the actual privacy settings almost

always (in 77% of cases) reveal content to more users than intended. Their survey results

further suggested that while poor privacy defaults cause photos to be shared with more users

than expected, users who are cognizant enough to modify their default privacy settings still

have significant difficulty ensuring their actual privacy settings match their intended privacy

settings.

In summary, these results demonstrate that the privacy management crisis is an acute

problem for OSM users today, emphasized by the widespread mismatch of user’s actual and

intended privacy settings [103]. This crisis is further aggravated by the tremendous increase

in the user base of OSMs, as well as the continuous increase in the amount of content shared

on these sites. Thus, there is a dire need to address this privacy management crisis.

1.3 Challenge: Providing better privacy controls to users

An obvious way to alleviate the privacy management burden for OSM users is to provide

them better privacy controls. However, managing privacy is a complex issue and OSM users

have different privacy management requirements depending on the threat model, i.e., from

whom she is protecting privacy of her content. More specifically, the privacy management

requirements of users can be divided into two broad categories based on the threat model:

1. Managing privacy of social content from OSM operators and their associates: OSM

users need to manage data privacy from OSM operators themselves or their associates (e.g.,

advertisers in OSMs who leverage OSM’s infrastructure to serve personalized ads). Prior

research investigated multiple dimensions of this requirement: Guha et al. [82] and Baden

et al. [23] consider hiding content from OSM operators themselves via encryption. Meng et

al. [113] investigated privacy leak for OSM users via mobile in-app advertisements. Goga et

3



al. [78] even considered privacy leaks via cross correlation of data from multiple OSMs. In

other words, this privacy management requirement is an active research topic pursued by

other researchers and their research is complementary to the goal of this thesis.

2. Managing privacy of social content from other users: When an OSM user uploads a

piece of content, she needs to manage privacy of the uploaded social content from other

users in OSM. Failure to do so (e.g., due to setting wrong access permissions) leads to

privacy violations. For example, a privacy violation happens when office colleagues of a

user view and react to a rant about the workplace (actually intended for close friends) or

even when an inappropriate but harmless post from a user is viewed and misinterpreted

by strangers and consequently causes serious damage to the user as retribution [139]. In

addition to the cases where users wrongly set privacy of their content, failure in managing

privacy of social content can happen for multiple other reasons, e.g., strangers digging up a

user’s old content, automatic aggregation of content from OSMs or even system provided

features like Facebook News Feed or Facebook timeline.

In this thesis, we are particularly interested in addressing this privacy management

requirement—how to improve the current privacy management mechanisms in OSMs which

aim to control the privacy of social content from other OSM users. These mechanisms

can be leveraged either by OSM users or can be deployed proactively by OSM operators

themselves. Note that it is very unlikely that the current privacy management crisis will

be solved automatically by the privacy management mechanisms deployed today (which

have been in place for years now). Thus the key research challenge in this space is: How do

we provide improved privacy controls to OSM users for managing privacy of their social

content from other users?

4



1.4 Thesis research: Understanding & controlling user pri-

vacy in OSMs via exposure

The high-level goal of this thesis research is to improve privacy controls in OSMs by

developing a systematic, expressive and practical framework. First, we review privacy

violations systematically in order to come up with a broad model which can then be used

for investigating and improving privacy control. We accomplish this goal by introducing

exposure control, a model to capture privacy violations in OSMs and in the general online

world. Second, we show that our model is expressive enough to capture multiple important

privacy violation scenarios from real-world OSMs. We review theoretical privacy definitions

as well as anecdotal privacy violation examples from the real world to show that exposure

control significantly extends access control, the dominant privacy model in OSMs, in two

ways—(i) Exposure control captures more facets of existing theoretical privacy definitions

than access control and (ii) Exposure control captures more privacy violations from the real

world compared to exposure control. Finally, our model is practical: it is feasible to use

exposure control to design and deploy privacy management mechanisms for controlling

exposure. We demonstrate the practicality of exposure control in this thesis by investigating

three important privacy management scenarios from the real world and proposing improved

privacy management mechanisms to better control exposure for each of these scenarios.

In the rest of this chapter, first, we will briefly review the related work in this space and

then give a high-level overview of the specific contributions of this thesis.

1.5 Related work

A rapidly growing number of reports in both academia and the popular press emphasizes the

problem of managing privacy in popular OSMs. As we mentioned earlier, the reported cases

include examples of users wrongly setting the privacy of their content, people digging up
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old content, automatic aggregation of content from OSMs and even privacy concerns with

system-provided features like the Facebook News Feed or the Facebook timeline. However

many of these incidents are anecdotal and from a technical standpoint we need to first define

what is privacy and how is privacy enforced in OSMs today.

1.5.1 What is privacy?

Privacy is a complex concept which has multiple dimensions. There are extensive discus-

sions, especially in the legal, social and psychology research community, for defining exactly

what is privacy. We briefly state the major definitions below; we will expand on each of

these definitions in Chapter 2.1.

Warren and Brandeis [168], presented one of the very first definition of privacy in their

1890 law review article. They defined privacy as “right to be let alone” for individuals.

However, their definition captures only a basic aspect of privacy and more modern definitions

aimed to capture more complicated aspects. Westin’s theory of privacy [169], proposed

in 1967, captures how people protect their privacy by “temporarily limiting access of

others to themselves”. Westin defined privacy as “the claim of individuals, groups, or

institutions to determine for themselves when, how, and to what extent information about

them is communicated to others.” Westin viewed privacy from a legal aspect and other

researchers further tried to capture the aspects of privacy from the sociological point of

view. Specifically, Altman, a social and an environmental psychologist, presented his

definition of privacy [12, 13, 14] using social interactions. According to Altman privacy

is a process of boundary control to ensure “the selective control of access to the self”.

Moreover, he identified that privacy is dialectic and dynamic. In recent times, with the

advent of digital media and the networked world, researchers tried to extend Altman’s theory.

Specifically, around 2002-2003, Petronio (in her CPM theory [128]) viewed privacy as a

rule-based mechanism for managing boundaries and Palen and Dourish [127] extended

Altman’s theory as a tension between three specific boundaries in the networked world.
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More recently, Solove presented a data-centric view of privacy and presented a taxonomy

of privacy violations [146, 147]. Finally, one of the most recent definition came from

Nissenbaum [24, 124]. She presented privacy as the preservation of “contextual integrity”.

All of these privacy theories are aimed at understanding what privacy is. A subsequent

step is to design privacy preserving mechanisms in data sharing systems like OSMs in order

to enforce privacy. Currently, the dominant model for privacy management in OSMs is the

access control model.

1.5.2 How is privacy enforced in OSMs today?

The aforementioned privacy definitions are intended to systematically define the theory of

what privacy is. However, definitions are not enough; a subsequent step is to actually design

privacy control mechanisms for OSMs. Today, privacy is primarily enforced by access

control mechanisms provided by OSM operators. When users upload content, they a priori

specify who should be allowed to access their content. Options for allowing access can vary

from allowing all of the internet users to access a piece of content (e.g., the “public” privacy

setting in Facebook) to allowing no one but the uploading user to view the piece of content.

We will discuss in detail in Chapter 2.2.1 how access control captures different facets of the

theoretical privacy definitions.

Intuitively, OSM users feel that privacy is violated when some unexpected entity actually

views a particular content. Today, the access control model requires an OSM user to specify

the entities who can view their content. The OSM operator can commonly view all the

content. Thus, the access control model captures privacy violation scenarios in which an

entity from outside the list of specified entities accesses the content.

Recent work [93, 20, 32] argues through anecdotal examples that access control is

insufficient to meet the definition of privacy. boyd et al. [32] presented an example where

Facebook users felt their privacy was violated when Facebook launched their News Feed

feature. However, the News Feed did not violate any access control policy, but users still
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perceived a privacy violation since more people are actually viewing their content due

to the News Feed. Facebook quickly reacted [101] after the surfacing of user concerns

with News Feed, providing more fine-grained access control mechanisms on Facebook.

However, researchers have shown that in spite of the availability of granular access control

mechanisms, Facebook users still severely underestimate the number of users who actually

view their content [27, 103]. Other work [20] discussed privacy violations in the context of

data aggregators, showing that these aggregators were collecting only public data and were

not violating any access control. However, these data aggregators violate user privacy. Thus,

even though access control is an important and necessary component of privacy management

mechanisms, it is not sufficient. To fill this gap, in Chapter 2 we propose and formalize a

new privacy model which captures the aforementioned privacy violation scenarios as well

as the ones captured by the access control model. We call our model exposure control.

1.6 An overview of thesis contributions

In the paragraphs below, we provide a brief overview of our thesis contributions. Our

contributions can be divided into two broad parts, First, we propose exposure control, an

improved and more inclusive privacy model to better capture users’ privacy needs.

Then, We investigate three important real-world scenarios where either the users or the

OSM operators try to manage privacy of the user generated content. Specifically, in this thesis

we investigate controlling exposure using Social Access Control Lists (SACLs), controlling

exposure from large scale third party data aggregators and controlling longitudinal exposure.

We acknowledge that there might be other venues where exposure control is quite important,

e.g., limiting the exposure of content in the face of search in OSMs. We leave investigating

how to control exposure in those scenarios for future work.

We start with a brief overview of our exposure control model.
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1.6.1 Exposure control: A new privacy model

We start with the observation that access control is the most widely used method by OSM

users to ensure the privacy of their content from other users. However, access control cannot

capture many of the privacy violations in real-world OSMs as pointed out by the Facebook

News Feed example earlier.

We argue that the main reason is in the real world, OSM users often care more about

who actually accesses (i.e., views) content, as opposed to just who can access the content.

Thus, a user might feel their privacy is violated even when a publicly shared rant is viewed

by her boss. We define the exposure set (or simply exposure) of a piece of content as the set

of users who eventually view the piece of content.

Intuitively, mechanisms like the Facebook News Feed increase the exposure of content

(more people actually viewing uploaded content) and hence users feel their privacy is

violated. Thus, in this work we note that one should actually control exposure to manage

privacy. Furthermore, we show that exposure control captures more facets of the theoretical

definitions of privacy compared to access control—thus establishing that exposure control is

an improvement over access control. Our model enables us to investigate scenarios in the

real world where privacy management is important. However, exposure control mechanisms

should be designed differently than access control. Particularly, the designs should be based

on privacy requirements in different real-world scenarios. We individually investigate three

such scenarios to design better exposure control mechanisms.

1.6.2 Understanding and controlling exposure using SACLs

Today, a common way for users to control the exposure of posted content is by specifying

social access control lists (social ACLs, or SACLs) and allowing only a subset of their social

contacts to access a content. The majority of OSM operators today provide fine-grained

mechanisms for specifying SACLs, allowing users to restrict their sensitive content to a
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select subset of their friends. However, it remains unclear how these SACL mechanisms

are used today. In order to design better privacy management tools for users, we need

to first understand the usage and complexity of SACLs specified by users. To do so, we

conducted the first large-scale study of fine grained privacy preferences of over 1,000 users

on Facebook, providing us with the first ground-truth information on how users specify

SACLs on an OSM. Overall, we find that a surprisingly large fraction (17.6%) of content is

shared with SACLs. However, we also find that the SACL membership (whether a social

contact belongs to a SACL) shows little correlation with either profile information or social

network structure; as a result, it is difficult to predict the subset of a user’s friends likely to

appear in a SACL and automate the SACL creation process. On the flip side, we find that

SACLs are often reused, suggesting that simply making recent SACLs available to users is

likely to significantly reduce the burden of privacy management on users.

1.6.3 Controlling exposure by limiting large-scale social data aggrega-

tors

We argue that when a user uploads her social content in OSM, she most likely does not

intend her content to be viewed by certain users. A prime example of such unwanted views

are the ones coming from large-scale third party data aggregators like Spokeo. In this case,

the OSM operators might proactively want to control exposure of user generated content

by limiting the large-scale third party data aggregators. In this work, we propose Genie, a

system that can be deployed by OSMs operators to defend against large-scale social data

aggregators (or crawlers) in OSMs.

Genie identifies crawlers by exploiting the fact that the browsing patterns of honest

users (i.e., non-crawler users) and crawlers are very different: even a crawler with access to

many accounts needs to make many more profile views per account than an honest user, and

the crawler needs to view the profiles of users that are more distant in the social network.

Genie works by deriving a credit network [50, 75] from the social network (created using
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friendship relations in OSM). In brief, credit is associated with links in the social graph, and

a viewer must “pay” credits to the viewee, along paths in the social graph, when viewing a

profile. Experiments using real-world data gathered from Renren (a Chinese OSM) show

that Genie frustrates large-scale crawling while rarely impacting honest users; the few honest

users who are affected can recover easily by adding a few friend links.

1.6.4 Understanding and controlling longitudinal exposure in OSMs

We note that the exposure set of a piece of content, i.e., the users who actually view the

content, increases with passing time. Thus, controlling longitudinal exposure becomes more

challenging with the passage of time. In fact, users’ privacy preferences for sharing content

are known to evolve over time [25]. There can be many reasons for such temporal changes

in privacy preferences—e.g., the sensitivity or relevance of shared content changes with

time; the biographical status of users (e.g., married) and their friend relationships change

over time. The challenge of managing longitudinal privacy for a user refers to the difficulty

in controlling the exposure of the user’s socially shared data over time. This challenge

becomes more complex over time as the set of content shared in the past grows larger and

new technologies like archival (timeline-based) searches make it easier to access historical

content shared under outdated privacy preferences. Our study, using data from Twitter,

finds that a significant fraction of users withdraw a surprisingly large percentage of old

publicly shared data—more than 28% of six-year old public posts (tweets) on Twitter are

not accessible today. The inaccessible tweets are either selectively deleted by users or

withdrawn by users when they delete or make their accounts private.

We also found a significant problem with the current exposure control mechanisms—

even when a user deletes her tweets or her account, the current mechanisms leave traces

of residual activity, i.e., tweets from other users sent as replies to those deleted tweets or

accounts still remain accessible. We show that using these residual activities one can recover

significant information about the withdrawn tweets or even characteristics of the deleted
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accounts. To make users more aware of the flaws in the existing exposure control mech-

anisms, we designed a Twitter app, deployed at http://twitter-app.mpi-sws.

org/footprint/, where anyone can login with their Twitter account and check the

residual activities around their posts.

We further found that the difficulty of improving longitudinal exposure control mech-

anisms arises from the fact that there are multiple parties (aside from the user who posts

the content) who are affected by longitudinal exposure control mechanisms. For example, a

user who reports hate speech posted by some other user might not like to see the hate speech

withdrawn since in that way the user who posted the hate speech might evade accountability.

We investigate this phenomenon in depth by performing a survey of deletion ecosystem of

OSMs. We identify the longitudinal exposure control mechanisms, as well as the actors

involved in this ecosystem. Laying the groundwork in this manner, we identify concrete

research questions for assessing and improving longitudinal exposure control mechanisms.

Finally, we propose and evaluate three longitudinal exposure control mechanisms to augment

and improve Twitter’s deletion ecosystem.

1.7 Organization

The rest of the thesis is organized as follows:

In Chapter 2, we present the model of exposure control and analyze the merit of exposure

control relative to existing privacy theories.

In Chapter 3, we present how users today control exposure by specifying Social Access

Control Lists (SACLs) and how we can help these users.

In Chapter 4, we present Genie, a system to control data exposure by limiting large-scale

third party data aggregators in OSMs.

In Chapter 5, we present an investigation of longitudinal exposure, i.e, how users

control exposure for their old content. We point out one very important challenge towards
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improving longitudinal exposure control mechanisms is to understand the nuanced notion of

“ownership of content in OSMs” in the deletion ecosystem of OSMs.

In Chapter 6, we present a systematic analysis of the deletion ecosystem, which involves

actors other than just the content creator. This systematization lays the groundwork for

assessing and improving longitudinal exposure control mechanisms in OSMs. Furthermore,

we propose improved longitudinal exposure control mechanisms for Twitter and evaluate

their merits and drawbacks.

In Chapter 7, we conclude by summarizing our approach for controlling privacy via

exposure control in OSMs and describe directions for future work in this space.
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CHAPTER 2

Exposure control: A new privacy model

In order to provide OSM users better privacy management mechanisms for protecting their

data from other users, we first need to understand what does privacy mean in OSMs. We

already hinted at answers to this question in Chapter 1.5.1 by briefly describing seven privacy

theories. In this section we will further expand on different aspects of privacy as pointed out

by these theories. However this theories present an understanding of “what” privacy is. A

subsequent step is to actually build mechanisms for preserving privacy. Thus in this section

we review the dominant model for privacy management in OSMs—the access control model.

We investigate the aspects of privacy definitions captured by the access control model and

point out that while effective, the access control model still does not capture certain crucial

aspects of privacy. To that end, we introduce our model of exposure control and examine

the usefulness of our model to manage privacy in OSMs. We start this chapter by exploring

what we mean by privacy in OSMs.

2.1 What do we mean by privacy in OSM?

Privacy in general is acknowledged to be a complex issue which might vary in different

scenarios or even from one individual to another. In fact, the word “privacy” is an example of

an untranslatable lexeme [17] and many languages do not have a specific word for “privacy”

(e.g., Russian). In spite of this complexity (or perhaps encouraged by the complexity), for a

long time legal and philosophical scholars have tried to systematically understand and define



privacy. These privacy definitions date back long before the advent of OSMs—Warren and

Brandeis were one of the first to systematically define privacy in their influential 1890 law

review article “The Right to Privacy” [168] as the “right to be let alone”. However, definitions

of privacy have evolved over the years and even now researchers are still attempting to

understand all the dimensions of privacy and are still presenting new definitions. Thus, we

start with a chronological review of the prominent definitions in our context: understanding

privacy in OSMs. Note that the goal of our review is not to compare different privacy

definitions and theories, but rather to understand the different aspects of privacy captured by

these theories.

2.1.1 Privacy as right to be let alone

The first publication in the United states to advocate a right to privacy appeared as an

article in Havard law review [168] by Warren and Brandeis in 1890. They argue that

the contemporary adaptation of instantaneous photography in society and the widespread

circulation of newspapers violated a basic right which was not captured by the law at that

time. They pointed out that this unaddressed right of an individual is his “right to privacy”.

Warren and Brandeis reviewed the contemporary existing legal rights of individual and

checked if they sufficiently captured the right to privacy. They found that the law of slander

and libel (forms of defamation) did not capture the right to privacy since those laws “deal

only with damage to reputation.” In their view, even when some personal information of a

person is widely circulated (e.g., via gossip columns in newspapers), defamation law only

protects an individual when the individual suffers a direct effect in his or her interaction

with other people. They mentioned that “however painful the mental effects upon another of

an act, though purely wanton or even malicious, yet if the act itself is otherwise lawful, the

suffering inflicted is damnum absque injuria.”1 They also reviewed intellectual property laws

and concluded that “the protection afforded to thoughts, sentiments, and emotions, expressed

1a loss or harm from something other than a wrongful act and which occasions no legal remedy.
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through the medium of writing or of the arts, so far as it consists in preventing publication,

is merely an instance of the enforcement of the more general right of the individual to be let

alone”. Warren and Brandeis further elaborated their idea of the right to privacy as: “where

protection has been afforded against wrongful publication, the jurisdiction has been asserted,

not on the ground of property, or at least not wholly on that ground, but upon the ground of

an alleged breach of an implied contract or of a trust or confidence”.

In the case of OSM content sharing, the definition by Warren and Brandeis captures a

basic aspect of privacy requirement of the OSM user. Namely, an OSM user should have

the right (and ways) to enforce who can (or cannot) see their content (i.e., letting them be

alone). This definition, albeit the first of its kind, is from a different era and does not capture

many aspects of privacy which are very important in OSMs. For example, the authors

explicitly mentioned that “the right to privacy does not prohibit any publication of matter

which is of public or general interest”. However, even when information in OSMs (e.g., a

Facebook profile picture) is accessible to the public (and needs to be publicly available, e.g.,

for finding the Facebook profile of a specific user), an OSM user might feel that her privacy

is violated if her public profile picture is posted and discussed in an online forum like Reddit.

These feelings of privacy violation may specifically arise if the picture is discussed out of

context and viewed by people she did not imagine would see/distribute her picture while

uploading the picture. Furthermore, according to this definition, the right to privacy ceases

upon the publication of the information by the individual. However, as the example above

shows (public Facebook profile picture posted in Reddit), even when users post their content

publicly, they have an expectation of privacy. Over the past century, scholars have thus

subsequently refined the definition of privacy.

2.1.2 Westin’s definition of privacy

Alan Westin’s theory of privacy [169], proposed in 1967, captures how people protect their

privacy by temporarily limiting access to themselves by others. Westin noted that privacy,
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in addition to other needs, enables people to adjust emotionally to their daily interactions

with others. For Westin privacy is (i) a dynamic process, i.e., people regulate privacy to

fulfill their momentary needs and requirements and (ii) a non-monotonic function, since

people can have too little, sufficient or too much privacy. Notably, according to Westin’s

theory, privacy is neither self-sufficient nor an end in itself, but it helps people achieve their

overarching end of self-realization.

Specifically, Westin defined privacy as: “the claim of individuals, groups, or institutions

to determine for themselves when, how, and to what extent information about them is

communicated to others. [Moreover] ... privacy is the voluntary and temporary withdrawal

of a person from the general society through physical or psychological means”.

In his theory, Westin proposed four functions or purposes of privacy. These functions

essentially try to address the why of privacy: Personal autonomy is the desire for an

individual to avoid manipulation, domination, or being exposed by others. Emotional

release is the release of an individual from the tensions of social life, e.g., role demands, the

management of losses, etc. In other words, privacy (alone or with other means) provides

“time out” to an individual from social demands and hence enables emotional release. Self-

evaluation is the function which concerns integrating experience into meaningful patterns

and exerting individuality on events. Examples of such situations are processing information

and supporting the planning process (e.g., the timing of disclosures). The final function,

Limited and protected communication, has two aspects: interpersonal boundaries are created

by limiting communication; protected communication fulfillls the desire for sharing personal

information with specific trusted individuals.

According to Westin, these four functions are achieved by four key states of privacy.

These four states necessarily provide the how of privacy in Westin’s theory.

1. Solitude: refers to the state of being free from observation by others.

2. Intimacy: refers to the state of limiting communication within a small group to achieve

a close, relaxed and frank relationship.
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3. Anonymity: refers to the freedom from identification and from surveillance in public.

4. Reserve: refers to the desire to limit information disclosure to others and others

recognizing and respecting that desire.

Specifically, Westin’s theory suggests that in OSMs, privacy management mechanisms

should try to enable OSM users to achieve these key states. Westin further viewed privacy

in individual, group, and organizational levels. The privacy states and functions presented in

Westin’s definition have inspired further research [110]. These investigations into Westin’s

theory support (to varying degrees) the validity of Westin’s definition of privacy (i.e., states

and functions) to the current day.

However, Westin’s theory did not clearly identify the inter-dependency within his

four functions and did not discuss whether those functions are fundamental or some key

dimensions of privacy underlie these functions. To that end, some researchers have tried

to understand privacy from a different angle—they explored interpersonal communication

patterns to understand privacy.

2.1.3 Altman’s privacy theory

Altman offered [12, 13, 14] another point of view on the characteristics of privacy, which is

different from Westin’s theory. Altman is a social and an environmental psychologist and

social interaction is at the heart of his theory. According to Altman, privacy is neither static,

nor it is a withdrawal process for the individual. Altman presented privacy as the “selective

control of access to self” regulated as dialectic and dynamic processes. There are boundaries

between privacy and publicity and these boundaries are constantly changing based on an

individual’s social interactions (thus dialectic processes). Due to these interactions, an

individual’s boundaries also change over time (thus dynamic processes).

More concretely, Altman pointed out five properties of privacy: (i) privacy involves

a dynamic process of interpersonal boundary control. (ii) Altman pointed out that an
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individual’s desired and actual levels of privacy differ. (iii) privacy is a non-monotonic

function; there is an optimal level of privacy (desired level = actual level). However, there

can be too much privacy (desired < actual) or too little privacy (desired > actual). (iv)

privacy is bi-directional, involving inputs from others (e.g., via a social conversation) and

outputs to others (e.g., by sharing a privacy concern with friends). (v) finally, privacy

operates at both the individual and group level.

Altman pointed out that there are multiple behavioral mechanisms for regulating privacy

(e.g., cultural norms), and those mechanisms operate as a coherent system. Note that Altman

viewed privacy as a social process. Thus, his theory pointed that properly understanding

privacy will require understanding the interplay of people, the social interactions, the

physical environment and also understanding the temporal nature of social phenomena. In

fact, he pointed out, privacy has a cultural context, specifically, the psychological aspects of

privacy are culture specific.

Altman’s theory is one of the prominent theories of privacy today and it provides a fairly

general understanding of privacy as social processes. However, a central issue with Altman’s

theory is that it is not clear if the interpersonal boundary in Altman’s theory is a metaphor or

a theoretical construct. This issue becomes even more important when researchers want to

apply Altman’s theory to concrete real-world systems like OSMs. Thus, some recent efforts

to understand privacy explore the specific boundaries and their regulations in the real world

in order to extend Altman’s theory.

2.1.4 Petronio’s Communication Privacy Management (CPM) theory

Petronio attempted to extend Altman’s dialectical and dynamic conception of privacy (as

tensions between opening and closing boundaries) to the realm of digital communications.

To that end, she presented her Communication Privacy Management (CPM) theory [128].

CPM theory suggests that individuals regulate their privacy by regulating privacy boundaries

that can range from complete openness to complete closeness. An open boundary means
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an individual is willing to grant permission to access private information. On the other

hand, a closed boundary signifies an individual’s desire to conceal private information.

The relationships between these boundaries are dialectical (as in Altman’s theory), since

individuals constantly adapt their level of privacy and disclosure to internal and external state.

Moreover, Petronio’s theory postulates that individuals achieve their desired levels of privacy

via the use of privacy rules. That is, if an individual wishes to change her privacy boundaries,

she users a rule-based privacy management system that regulates the degree of boundary

permeability (how much information is shared). This rule-based management system allows

CPM theory to consider how decisions are made about revealing and concealing private

information.

Five propositions underpin the CPM theory. They are stated below:

1. Privacy in CPM theory is defined in terms of ownership; thus, when people believe

some information belongs to them, they consider that information private.

2. Since individuals believe that they own their private information, they also believe

that they also have the right to control the distribution of that information.

3. People develop and use privacy management rules to control the distribution of

information. These privacy rules are influenced by people’s cultural backgrounds,

their gender, the context of the communication (e.g., telling personal details while

asking for help after an accident), motivation (e.g., by reciprocity of information

sharing) and based on the assessed risk-benefit trade-off of disclosing information.

4. Once an individual shares private information, a collective privacy boundary is formed

and others receiving that information becomes co-owners of that information. From the

point of view of the original owner, co-owners share fiduciary responsibilities to jointly

control this private information in a way that is consistent with the original owner’s

rule. Privacy rule co-ordination between the original owner and co-owners revolves

20



around permeability, co-ownership responsibilities, and linkage rules. Furthermore,

these privacy rules also change over time.

5. Finally, when the privacy rules are not coordinated between the original owner and

co-owners, there is a possibility of boundary turbulence, which can lead to privacy vio-

lation. In other words, boundary turbulence occurs when co-owners fail to effectively

manage the flow of information to honor the desire of the other owner.

To summarize, Petronio extends Altman’s original proposal of privacy regulation via her

CPM theory by concretely pointing out rule-based processes of boundary regulation. This

extension can be realized in OSMs by giving users the ability to specify who should be able

to access their data. However, other researchers have contested this rule-based depiction of

privacy and pointed out that privacy as a concept is too complicated to capture via a set of

rules. To that end, they proposed another extension of Altman’s theory.

2.1.5 Palen and Dourish’s extension of Altman’s theory to the net-

worked world

Palen and Dourish [127] contested the extension of Altman’s theory by Petronio. They

pointed out that “Privacy management is not about setting rules and enforcing them; rather, it

is the continual management of boundaries between different spheres of action and degrees

of disclosure within those spheres. Boundaries move dynamically as the context changes.

These boundaries reflect tensions between conflicting goals; boundaries occur at points of

balance and resolution”. Palen and Dourish specifically extended Altman’s theory to the

modern day networked world, where new types of communication technology (e.g., OSMs)

are revolutionizing the way people interact and consequently changing our understanding of

privacy.

Specifically, Palen and Dourish pointed out that a world driven by information tech-

nology brings forth key changes in communication: “The significance of information
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technology in this view lies in its ability to disrupt or destabilize the regulation of boundaries.

Information technology plays multiple roles. It can form part of the context in which the

process of boundary maintenance is conducted; transform the boundaries; be a means of

managing boundaries; mediate representations of action across boundaries; and so forth”.

To that end Palen and Dourish pointed out three boundaries which lie at the core of their

theory.

1. The Disclosure Boundary: Privacy and Publicity This boundary captures the ten-

sion of control of individuals over their information: individuals selectively disclose

information to maintain a balance between openness and closeness. Thus, privacy

does not only consist of making all information secret, but rather it requires the ability

to control which information is disclosed to the public and which is not. For example,

academics maintain their public web page to disclose information about their research.

However, these same academics might like to keep the details of their personal life out

of public view. However, the disclosure boundary is not totally under an individual’s

control. For example, a friend might post a picture of a recent wild party without the

subject’s knowledge, or a Google search might reveal an individual’s past activities

(e.g., Usenet posts), which do not represent how the individual has changed over the

years. Thus, aside from disclosure boundary Palen and Dourish identified two more

privacy boundaries to address these cases.

2. The Identity Boundary: Self and Other The identity boundary captures the social

nature of privacy regulation and identifies tensions not in an individual’s total control.

In any information exchange, there are originators of information and recipients.

Thus, the tension at the identity boundary arises from the fact that in a networked

world, information can be easily interpreted without context (e.g., via viral sharing

of a picture). Consequently, if the recipients interpret a piece of information quite

differently than what the original uploader had in mind, the uploader’s privacy might

be violated.
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3. Temporal Boundaries: Past, Present and Future Lastly the temporal boundary

represents the dynamic nature of privacy. A piece of information disclosed in the

past by an individual might wrongly represent the current state of the individual.

Thus, Palen and Dourish presented temporal boundaries as—“while past and future

interpretations of information disclosure are out of our control, the way in which

current privacy management is oriented towards events in the past or future is a matter

of active control and management. Our response to situations of disclosure, or our

interpretation of information we encounter, is framed and interpreted according to

these other events and expectations. We negotiate boundary locations as we act in the

world.” Hence temporal privacy control in a networked world involves revisiting old

content and determining their disclosure boundaries.

Note that both Petronio’s CPM theory and Palen and Dourish’s theory are extensions

of Altman’s theory of privacy. However, with the advent of social media and in general

novel communication platforms like the internet, other aspects of privacy are also starting to

become important. One such example is how to maintain the balance between an individual’s

privacy and societal necessities like surveillance in public places. Another example would

be the case of a Facebook user. Although she is ok with her Facebook profile picture being

public, she might not be comfortable with publishing this picture on the first page of the New

York times. To address these issues two more recent privacy theories have been proposed.

2.1.6 Solove’s taxonomy of privacy

Solove [146, 147] pointed out the broadness and complexity of the idea of privacy and

some of the struggles people face while defining and approaching privacy as a legal and

social construct. Solove’s idea of privacy is data-centric—it revolves around data collection,

processing, dissemination and invasion. He uses Wittgenstein’s concept of ‘family resem-

blances’ as a way to capture the notion of privacy people have in their mind. Solove pointed

out that privacy has many meanings; however, just like family resemblances, they are all
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related. Solove provided a rich taxonomy of privacy [146] as the core of his theory. He

noted different disruptions in each phase (data collection, processing, dissemination and

invasion), which are important when identifying privacy violations. The basic structure of

his taxonomy is:

1. Information collection: surveillance (the watching, listening to, or recording of an

individual’s activities), interrogation (pressuring of individuals to divulge informa-

tion).

2. Information Processing: aggregation (gathering together information about a per-

son), identification (connecting information to an individual), insecurity (problems

caused by the way information is handled and protected), secondary use (use of data

for purposes unrelated to the purposes for which the data was initially collected with-

out the data subject’s consent), exclusion (failure to provide individuals with notice

and input about their records).

3. Information Dissemination: breach of confidentiality (breaking a promise to keep

a person’s information confidential), disclosure (revealing true information about a

person to others), exposure (revealing another’s nudity, grief, or bodily functions),

increased accessibility (amplifying the accessibility of information), blackmail (threat

to disclose personal information), appropriation (use of the data subject’s identity

to serve the aims and interests of another), distortion (the dissemination of false

information about a person).

4. Invasion: intrusion (invasive acts that disturb one’s tranquility or solitude), decisional

interference (the government’s incursion into the data subject’s decisions regarding

her private affairs).

Solove uses his taxonomy to explain the reason for privacy violations in different

scenarios, e.g., during surveillance. Note that Solove’s taxonomy covers the privacy concerns

24



not only in the context of OSMs, but captures the broader privacy concerns in our data-driven

world. However, Solove’s taxonomy categories do not explicitly identify the dynamic nature

of privacy and the social norms that control privacy.

2.1.7 Nissenbaum’s “privacy as contextual integrity”

Contextual integrity (CI) is a theory of privacy developed by Nissenbaum in [24, 124]. CI

provides a normative model of privacy, i.e., CI points out what are the normal behaviors that

preserve privacy. CI comprises four descriptive claims:

1. Privacy is preserved by appropriate flow of information.

2. Appropriate flow of information conforms to contextual information norms.

3. Each contextual information norm consists of five independent parameters: data

subject, sender, recipient, information type, and transmission principle.

4. Conceptions of privacy are based on dynamic ethical concerns that evolve over time.

CI provides a framework to argue about violation/preservation of privacy and allows for

the evolution as well as alteration of informational norms, often due to novel socio-technical

systems like OSMs. The CI framework states that for any given social context (offline

or online), there are informational norms defining appropriate flows for various types of

information. Privacy violations result when these norms are broken. A prime example of the

effectiveness of CI is to explain the phenomenon of “privacy in public”. OSM users might

upload personal content which is accessible to everyone in the internet (e.g., a Facebook

profile picture). However, those users feel their privacy is violated when a third party

crawler collects this “public” information and puts it in a torrent [83]. According to CI, the

contextual integrity is violated in this case, since it does not conform to the transmission

principles (the user did not consent for it to be collected and put in a third party database).
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Thus, even if a piece of information is shared with the public, there is some notion of privacy

of that information.

2.1.8 Summary

In this chapter, we reviewed seven privacy definitions, proposed at different points in time

and capturing different dimensions of privacy. We note that one key aspect of privacy

captured in these definitions is the user’s expectation/desire of who would see their content

and how the content is further re-used. This expectation is personified by Palen and

Dourish’s “identity boundary” and Nissenbaum’s “informational norms.” However, all of

these definitions and theories are designed to understand what is privacy; a subsequent step

is to make these definitions actionable by incorporating privacy by design into the systems.

Next, we investigate access control, the dominant privacy model in current OSMs, and we

discuss the extent to which access control captures elements from different definitions of

privacy.

2.2 Current model for controlling privacy in OSMs:

Access control

In OSMs and in general in computing systems, privacy has typically been accomplished

via access control, which requires enumerating the users, groups, or roles who are or are

not able to access information. The popularity of OSMs has led to a renewed discussion

about whether access control is a satisfactory model for user privacy. To that end, first let us

rebiew what aspects of privacy are indeed captured by the access control model.
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2.2.1 Capturing privacy definitions via the access control model

We reviewed definitions and theories in Chapter 2.1, which deals with understanding different

aspects of privacy. Now, we check which elements of those theories, i.e., which dimensions

of privacy, are captured by access control and which elements are not captured.

Our application scenario is simple: an OSM user (or uploader) is uploading her content

to a social media site.2 In our scenario, a user is concerned about privacy of her own content

and consequently about her privacy. In the access control model, she manages privacy by

allowing or denying access to others via including/excluding users in access control lists.

She can also change the access control of her uploaded content at any point of time in the

future. Note that the privacy theories we mentioned earlier are generic; not all of their

characterizations of privacy conform to our scope (e.g., violating privacy by interrogating a

user). We identify the relevant elements (in our application scenario) of privacy from each

theory and review the effectiveness of access control in capturing those elements of privacy.

We summarize our review in Table 2.1.

Aspects of Warren and Brandeis’s theory [168] captured (and not captured) by access

control: Warren and Brandeis defined privacy as the right to be let alone. Given that while

uploading a piece of content, users can enumerate other users, groups, or roles who are

or are not able to access this information, these uploaders can exercise their right to be let

alone. For example, if an OSM user does not want her office colleagues to be able to see her

vacation pictures, she can enforce privacy by simply denying her office colleagues access

to her vacation pictures. However as we mentioned in Chapter 2.1.1, this theory is the first

of many theories and it captures only a basic requirement of OSM privacy management

mechanisms. Other more recent theories better capture the complex nature of privacy. Hence,

we next focus on those theories.

2Note that in this thesis, we are interested in how users can better protect the privacy of their own uploaded
content. Thus, investigating how content uploaded by user A violates the privacy of user B (e.g., when user A
unwittingly publishes a picture of a homosexual party night and tags user B, who is a local school teacher) is
out of the scope of this thesis.
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Aspects of Westin’s definition of privacy [169] captured (and not captured) by access

control: Recall from Chapter 2.1.2 that Westin provided four key states of privacy: solitude

(the state of being free from observation by others), intimacy (limiting communication

within a small group to achieve a close, relaxed and frank relationship), anonymity (freedom

from identification and from surveillance in public) and reserve (desire to limit information

disclosure to others, and others recognizing and respecting that desire). An ideal privacy

management model should enable users to achieve these key states. Out of these states,

anonymity is out of our scope of discussion because anonymity deals with the relationship

between user identity and content, whereas we are mainly interested in the privacy of the

content itself. Out of the other three states, the access control model captures two: (i)

solitude—a user can exclude specific people from accessing their content. (ii) intimacy—

when the user wants an intimate interaction, she can allow access to her content for only a

small group.

Unfortunately, access control does not enforce reserve. For example, even if a user

uploads a photo to Facebook and makes it accessible to everybody in the internet, her desire

might be that this content is only meant for identifying her Facebook profile. However, web

crawlers who mechanically aggregate and mine public data can just collect this picture and

add it to their database of profiles for future background checks by hiring managers. Thus

the desire of users of how to use her content cannot be captured and enforced by access

control.

Aspects of Altman’s privacy theory [12, 13, 14] captured (and not captured) by access

control: Altman defined privacy to be “the selective control of access to the self”. Chap-

ter 2.1.3 pointed out that according to Altman there are five properties of privacy. Out

of these properties, access control captures three properties: (i) Access control enables

OSM users to control the dynamic process of interpersonal boundary control, since a user

can allow or deny access to her content and can change those access control lists over

time. (ii) Users can also maintain the bi-directionality of privacy by changing the access
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control settings based on her social interactions. (iii) Finally users can enforce privacy at the

individual or group level by allowing or denying users based on individual preference (e.g.,

show birth date to only close friends) or as a group (e.g., share office party pictures with all

office colleagues).

However, access control does not capture the frequent scenario [103] that the access-

control settings a user chooses does not match the user’s intentions (i.e., the desired privacy)

due to the inherent usability difficulties of specifying access-control policies. Moreover,

Altman stated that privacy is a ‘dynamic’ process, whereas access control is static. Because

temporal changes in privacy have been observed frequently [25], the access control model

does not sufficiently capture this dynamic nature.

Aspects of Petronio’s Communication privacy management (CPM) theory [128] cap-

tured (and not captured) by access control: Petronio’s theory is based on five propositions

(Chapter 2.1.4). Out of these propositions the access control model addresses the first three:

(i) the access control model acknowledges the ownership of the original uploader since only

she (barring the OSM operator) can allow or deny access (ii) Users can specify who can

access their content, thus capturing the right to control the distribution of content. (iii) The

access control model enables users to specify access control lists for OSM content (i.e., lists

of people who are allowed/denies to access the content), thus capturing privacy management

rules.

The two remaining propositions, however are not captured by the access control model.

First, the access control model does not properly address co-ownership of OSM content,

i.e., the access control model enforces that everybody that has access to the content are

co-owners of that information. However, intuitively, the user might only desire to have only

a small subset as co-owners, specifically the people she intends the content for, e.g., a user

might only want her Facebook public profile picture to be seen by a few friends; she may not

want stalkers to collect her pictures. Second, this loose idea of co-ownership in the access

control model can result in boundary turbulence (while not violating access control), when
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some non-intended people view the user’s content and consequently the flow of information

deviates from the user’s expectation. In other words, the access control model does not

concretely capture the user’s desired audience.

Aspects of Palen and Dourish’s extension of Altman’s theory to the networked world [127]

captured (and not captured) by access control: Palen and Dourish discuss three bound-

aries related to privacy as part of their theory (Chapter 2.1.5). Access control captures two

out of these three boundaries: (i) The access control model captures disclosure boundary,

since access control enables users to pick and choose the people and disclose the content

only to them. (ii) Furthermore access control partially enables users to control tension

at the temporal boundary. Conceptually, diligent users could manage the tension at the

temporal boundary by revisiting access control settings regularly, but this requires a huge

time investment from users and is ripe for mistakes.

However, the access control model does not capture the identity boundary. Intuitively,

tension at the identity boundary occurs when some of the audience of OSM content mis-

interpret the content (e.g., reading a post on political opinion out of context). We stress

that it is extremely hard for a user to anticipate such misinterpretation. However, she might

be relatively certain that her intended audience for a particular content are not going to

misinterpret that content. Access control forces uploaders to specify the right audience a

priori which might not always be possible.

Aspects of Solove’s taxonomy of privacy [146, 147] captured (and not captured) by

access control: Solove provided a taxonomy of privacy violations in data flow which can

be used in real-world data-driven systems like OSMs. However, he considered a generic

data-driven system, so not all privacy violations Solove mentioned are applicable to OSMs.

Recall that there are four broad categories of data flow pointed out by Solove (Chapter 2.1.6):

information collection, information processing, information dissemination and invasion. Out

of them invasion of an individual in OSMs (e.g., by forcing a user to divulge her Facebook

password) is again out of the scope of our discussion. Out of the other three categories the
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access control model concretely captures only information collection; the access control

model enforces that only the people a user explicitly allowed can access a piece of OSM

content.

Information processing can result in privacy violations that are not captured by access

control. For example, access control does not stop user data aggregation or inferences based

on that data. Third-party crawlers like Spokeo cause this violation through their use of

public OSM data. The access control model also does not address the dangers of information

dissemination. In fact, it does not capture the scenarios when privacy violations are caused

by increased accessibility of data. However, Facebook faced privacy violation accusations

due to their timeline feature, which makes digging up a user’s historical content extremely

easy (thus increasing accessibility).

Aspects of Nissenbaum’s “privacy as contextual integrity” [24, 124] captured (and not

captured) by access control: Nissenbaum’s contextual integrity (CI) model (Chapter 2.1.7)

of privacy postulates that privacy is preserved by maintaining only appropriate flows of

information that conform to contextual information norms. A privacy violation occurs when

the contextual informational norms are violated. Access control captures a very basic idea

of contextual integrity for a piece of content: access control ensures privacy only when the

informational norms are very concretely specified by users via access control lists (list of

users who are allowed/denied to access the OSM content).

However, contextual integrity takes much more nuanced forms than captured by access

control. For example, earlier work [126] pointed out that many OSM users do not concretely

understand what are the correct informational norms, often due to the novelty of these

OSMs. However, the same work revealed that people still have an implicit idea about how

contextual integrity should be preserved (e.g., a user’s location, although publicly posted

in OSM, should only be revealed to the people who are close to the user). One prime

example of this scenario is the “privacy in public” scenario. CI pointed out that there are

implicit informational norms and hence appropriate information flows associated with even
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public information. However, the access control model assumes that public information

is accessible to anybody and thus access control does not enforce any constraints on who

should see the information or how they should use it.

Summary: Our review of access control in light of privacy theories revealed that access

control does capture many aspects of privacy in OSMs. However, the access control model

still misses some important dimensions of privacy. Specifically, an important aspect of

privacy mentioned in the modern privacy theories is “user desire”, which is not captured by

access control. Users desire/expectation is captured by reserve in Westin’s theory, identity

boundaries in Palen and Dourish’s theory, desired level of privacy in Petronio’s theory or the

informational norms in Nissenbaum’s theory. However, access control does not sufficiently

capture user desire for a number of reasons. First, with access control, users must a priori

specify precisely who can or cannot access information by enumerating users, groups, or

roles—a task that is difficult to get right. Second, access control fails to separate who

can access information from who actually does, because it ignores the difficulty of finding

information. Third, access control does not capture if and how a person who has access to

some information redistributes that information. We summarized the dimensions of privacy

encapsulated in the modern theories of privacy, distinguishing among those that are captured

by the access control model and those that are not, in Table 2.1. However, since access

control is quite useful in designing privacy preserving mechanisms in OSMs as well as

generic online systems, we ask: are there cases of privacy violations in OSM in the real

world that concretely point out the shortcomings of access control?

2.2.2 Case studies of real-world privacy violations not captured by the

access control model

OSMs provide privacy controls based on access control and require users to allow or deny

access to their content by specific users or groups. Recently, there have been a number of
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Privacy definition / theory Aspect(s) captured by access
control

Aspect(s) NOT captured by ac-
cess control

Warren and Brandeis’s the-
ory [168]—privacy as the
right to be let alone.

The right to be let alone, given
OSM users know a priori the ex-
act set of people with whom they
want to share content.

-

Westin’s definition of pri-
vacy [169]

Solitude (being free from observa-
tion by others) and intimacy (small
group seclusion for members to
achieve a close, relaxed, frank re-
lationship).

Reserve (desire to limit disclo-
sures to others).

Altman’s privacy theory
(“the selective control of ac-
cess to the self”) [12, 13, 14]

Dynamic interpersonal boundary
control (e.g., changing access con-
trol over time), bi-directionality,
individual/group level.

The difference between desired
and actual levels of privacy and
consequently the notion of opti-
mal privacy (i.e., when desired =
actual).

Petronio’s Communication
privacy management (CPM)
theory [128]

Ownership of information and pri-
vacy rules created by users.

The boundary turbulence due to
mismatch of privacy rules by
owner and co-owners (in effect,
mismatch between desired privacy
and actual audience).

Palen and Dourish’s exten-
sion of Altman’s theory to the
networked world [127]

Tension at disclosure boundary
(selective disclosure of personal
information) and temporal bound-
ary (via change of access control
over time).

Tension at identity boundary (how
would recipients interpret a piece
of information).

Solove’s taxonomy of pri-
vacy [146, 147]

Information collection methods
like surveillance (the watching, lis-
tening to, or recording of an indi-
vidual’s activities).

Information processing (e.g.,
aggregation—gathering together
of information about a person)
and information dissemination
(e.g., increased accessibility—
amplifying the accessibility of
information).

Nissenbaum’s privacy as con-
textual integrity [24, 124]

Informational norms which are ex-
plicitly specified by users via ac-
cess control lists.

Situations like “privacy in public”
i.e., implicit informational norms.

Table 2.1: The aspects of different privacy definitions which are captured by access control
and the aspects which are not captured by access control.
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incidents that call into question whether access control is the right mechanism with which to

implement privacy. We list a few here; this list is by no means exhaustive.

1. When Facebook introduced the News Feed—a feature that automatically presents updates

from friends when a user logs in, as opposed to requiring the user to visit the friends’ pages—

users objected strongly and accused Facebook of privacy violations. Strictly speaking, News

Feed did not change the access control policy; all users who viewed content through the

News Feed had access to the content before. However the change from a pull mechanism to

a push mechanism resulted in users feeling that their privacy had been violated.

2. There was a similar outcry of privacy violations when Facebook introduced Timeline, a

feature that indexes a user’s content by date of upload and allows users to quickly browse

content by upload date. As with the News Feed, Timeline did not change the access control

policy of any content. Instead, Timeline made accessing old (and potentially embarrassing)

content significantly easier.

3. Google’s Street View project—providing photos of houses and other property taken from

public street—has also been accused of violating the privacy of users. In the U.S., there is

no legal expectation of privacy on a public street (i.e., Street View photos can legally be

posted publicly), but many users feel uncomfortable that Street View has made information

easily and widely accessible that previously was visible only to those physically present.

4. Data aggregator Spokeo links together public information from different services (e.g.,

government databases, sites like LinkedIn, etc). While each individual piece of content

that Spokeo aggregates is publicly available, users have complained that their privacy is

violated when this information is linked together. For example, Spokeo cross-references

users’ addresses with property records, allowing others to quickly estimate someone’s wealth

using public information.

While perceptions of privacy and what constitutes a privacy violation are subjective,

most people would likely agree that each of the incidents above affect someone’s privacy.
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However, the take-away from all of these incidents and others is that none of them involved

a violation of access control. As a result, we argue that privacy is not adequately captured

by access control alone, and the research community should re-consider how to improve the

access control model and reason about user privacy.

2.2.3 Goal: A more inclusive privacy model

In this thesis, we carefully reconsider the issue of privacy in the age of the web and social

media. We propose a model of privacy based on exposure, where the exposure of a piece of

information is defined as the set of principals (people) who are expected to eventually know

it.3 Users implicitly reason about the exposure of various pieces of information; a violation

of exposure occurs when the set of users who become aware of a piece of information

is much different from what the user expected. In fact, recent work [27] by Facebook

researchers have shown that such exposure violations are commonplace; e.g., many users

significantly underestimate the number of users who actually view their content.

For example, consider the case of a user’s public Facebook page being linked to from

a high-profile web site such as the New York Times. Strictly speaking, there is no access

control violation; the user’s profile was previously publicly visible. However, a significant

change of exposure occurs as the set of people expected to see the page increases from a

small set of users likely to visit the user’s page to the much larger set of New York Times

readers. We argue that exposure naturally captures the privacy change of such an incident,

and makes clear why access control alone is insufficient. Note that our model of exposure

control (i.e., controlling the entities who actually view the content) can be interpreted as a

simple improvement over access control (controlling the entities who can access the content).

We will compare access control and exposure control in more detail later in this chapter.

3Note that our definition of the term exposure is quite different from the term exposure in Solove’s taxonomy
(Chapter 2.1.6). Solove defined exposure as revealing one’s nudity, grief, or bodily functions. However, in this
thesis, we define exposure to refer to the set of entities who actually view content.
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We discuss mechanisms that could increase user’s control over privacy by moving from

access control towards exposure control, and describe how these mechanisms could be built

into today’s content sharing systems.

The remainder of this chapter is organized as follows. In Chapter 2.3, we provide a

more formal definition of exposure and compare the exposure control model with more

traditional access control. In Chapter 2.4, we describe approaches that could provide users

with improved privacy via exposure controls. We expand upon our proposal to control

exposure via prediction in Chapter 2.5 and explore the feasibility of controlling exposure

via prediction. Finally, we summarize our findings in Chapter 2.6.

2.3 Defining exposure

In this chapter, we propose a simple model for exposure control.

Let I be an item of information (e.g., Alice’s date of birth is Jan 1, 1980). Informally,

I’s exposure is the set of principals we expect to eventually learn I . The exposure set

includes principals who learn I directly from Alice or indirectly from a third person with

knowledge of I , and those who infer I from other knowledge available to them.

More precisely, we define the prominence PI(t) as the set of principals who are aware of

I at time t.4 I’s exposure EI = lim
t→∞

PI(t). Note that EI is always finite, because the set of

principals (i.e., the world’s population) is finite. However, the exposure of most information

items, even if they are publicly accessible, is much smaller than the world’s population,

because they are of interest to only a small community.

Normally, PI(t) is unknown for t > currentT ime. Future values of PI(t) must be

estimated using a probabilistic model, which captures how information spreads among

principals; the exposure is given by the expected steady-state prominence predicted by the

model. An example of such a model is discussed in Chapter 2.5.

4Prominence is assumed to be a monotonically non-decreasing function of time. That is, we ignore that
people forget or misplace information.
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2.3.1 Aspects of exposure

The exposure of an item I is influenced by two factors:

1. The set of principals NI that meet the preconditions required to learn I . (Preconditions

include the expertise, access to the tools, and knowledge of initial leads required to discover

or infer I .)

2. The subset of principals in NI that is sufficiently motivated to actually learn I .

For instance, if learning I requires correlating several pieces of related information, traveling

to a particular location or performing a measurement, then it is likely to be learned only

by principals with the necessary resources and a strong interest. If, on the other hand, I

is online and indexed by a search engine, then it can be learned by anyone with access to

the Internet, the expertise to use a search engine, knowledge of appropriate keywords, and

sufficient interest to actively issue a search query. Lastly, if I is posted on the front page of

the New York Times, then all principals who visit the site on a daily basis will likely learn I

serendipitously, even if they are only mildly interested.

The exposure of an item of information may change over time. For instance, when a

little-known website is listed on Slashdot, the set of users likely to discover the information

contained in it increases dramatically and unexpectedly. Such events cause a discontinuity

in the prominence function PI(t), and thus a potential change of exposure.

2.3.2 Privacy violations covered by exposure

Whether the release of information about a person is considered a privacy violation by that

person is subjective and deeply rooted in the person’s culture, history, situation, the nature

of the information, and the specific set of people who learned the information.

In general, however, a person is more likely to feel violated if she is surprised by the

fact that certain people have learned the information. There are two relevant cases. A person
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learn I eventually.

Figure 2.1: Access control and exposure of an information item I shown as a Venn diagram.

typically has some expectation about (a) the set of people who know or are likely to learn

an item of information, and (b) a specific set of people they expect should not and will not

learn the information. A person tends to feel their privacy is violated if the actual exposure

of an item includes many more people than the expected exposure [46], or if people in the

second set learn the information.

An example of the former case would be if Alice finds out that a picture showing her

dancing wildly at a party has been seen by all of her friends, family and colleagues, when

she expected that it would become known only to the people who had attended the party.

An example of the latter case would be if Alice’s work colleagues find out that she is gay

(even though she shares this information freely with her friends and family, and she makes

no attempt to hide it from people she encounters in her life outside of work).

Exposure captures these concerns because it reflects the set of people likely to find

out the information. In general, the exposure control model captures the privacy violation

scenarios where the expected exposure of users deviated from actual exposure.

2.3.3 Comparison with access control

Figure 2.1 contrasts access control and exposure using a Venn diagram. In the access control

model, the set of principals is partitioned into those who are able to access I and those
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who are not. Access control does not capture how many principals with access permissions

actually access the information, nor does it account for principals without permission who

nevertheless learn the information, either by inferring it from other information they can

access, or from another principal with access.

We want to highlight two specific aspects of exposure control. First, although our general

notion of exposure captures the privacy violation due to inference/re-sharing, measuring

extent of such inferences is a hard problem and designing OSMs to protect against such

attacks is even harder. So we will limit ourselves in this thesis to exploration of exposure

control when there is no inference/re-sharing attack. Our assumption essentially makes the

exposure set a subset of users who can access information I . Other researchers [117, 34]

investigated inference/re-sharing attacks in OSMs and their work is complementary to ours.

Second, exposure control is an extension of access control (since exposure is a subset

of who can access I by our simplified assumption above). Thus in practice, we envision

exposure control augmenting access control in order to provide better privacy management

mechanisms to OSM users. Specifically, a user can (ideally) control the exposure of a piece

of content by including only the set of people who would actually view the content in the

access control list of the content (e.g., very close friends). However, setting such perfect

access control lists at the time of content creation might be difficult of even impossible for

the user (exemplified by a plethora of OSM content shared publicly today). To that end, we

review the additional aspects of privacy that our exposure control model captures which are

not captured by access control alone.

2.3.3.1 Aspects of privacy definitions additionally captured by exposure control

Earlier, we reviewed which aspects of privacy are captured and not captured by access

control (Table 2.1). Here we describe the additional notions of privacy that we can capture

with exposure control. We summarize our findings in Table 2.2:
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Aspects of Warren and Brandeis’s theory [168] additionally captured by exposure

control: Warren and Brandeis theory of privacy as the right to be let alone. As we mentioned,

this early theory captures only a basic requirement of privacy, and the access control model

already captures this basic requirement.

Aspects of Westin’s definition of privacy [169] additionally captured by exposure con-

trol: Exposure control additionally captures the state of “reserve” (desire to limit information

disclosure to others and others recognizing and respecting that desire), which is not captured

by access control. This is because the exposure control model integrates users’ intentions,

not just the reality of their access control setting, as part of the expected exposure set. Thus,

even if an OSM user uploads a photo to an OSM and sets the access control to the public

setting (all of the internet), she might expect the exposure set of the photo to contain only

her close friends and family. Her expected set likely does not include web crawlers.

Aspects of Altman’s privacy theory [12, 13, 14] additionally captured by exposure

control: Unlike access control, exposure control captures the difference between desired and

actual levels of privacy using the notion that privacy violations might occur when expected

exposure deviates from actual exposure. Thus exposure control indeed distinguishes between

desired and actual levels of privacy. Moreover, just like Altman’s theory, exposure control

also strives to keep the actual exposure the same as the expected exposure, thus allowing a

notion of “optimal level of privacy” (when actual exposure = expected exposure).

Aspects of Petronio’s Communication privacy management (CPM) theory [128] addi-

tionally captured by exposure control: Our exposure control model captures two proposi-

tions of Petronio’s theory which were not captured by the access control model. First, when

an OSM user uploads her content, her expected exposure set consists of only the people who

are expected to view the content. Thus, via this expectation, users are restricting the set of

co-owners to the expected exposure set and not all people who just can access the content.

Thus, the co-owners in the exposure control model are much more restricted and closer to
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user expectations. Second, exposure control captures the idea of having an optimal set of

co-owners (i.e., expected exposure set = actual exposure set in exposure control) helps to

maintain less tension while ensuring the desired flow of information for the content owner.

Aspects of Palen and Dourish’s extension of Altman’s theory to the networked world [127]

additionally captured by exposure control: Recall that the access control model does not

capture tension at the identity boundary (when some of the audience of OSM content

misinterpret the content) in Palen and Dourish’s theory. Exposure control helps to capture

this boundary because the aim of the exposure control model is to help users align their

actual exposure with the exposure they expect. We argue that users originally expected their

content to be actually viewed by people in their expected exposure set. Thus, there is lower

risk of tensions at identity boundaries when exposure control is in place along with access

control.

Aspects of Solove’s taxonomy of privacy [146, 147] additionally captured by exposure

control: Exposure control captures some privacy violations in the information processing

and dissemination phase that are not captured by access control. For example, access control

does not recognize the danger of aggregating and mining public data or even the privacy

risks of easy accessibility (e.g., advanced search functionality) of data. However, exposure

control argues that aggregation or increased accessibility potentially increases the actual

exposure of content—since these mechanisms make content easier to learn. Hence, exposure

control captures these additional privacy violations that are not captured by access control.

We note that even our exposure control model does not capture some privacy violations

pointed out by Solove. Examples include insecurity, secondary use, exclusion, disclosure,

appropriation, distortion and decisional interference. Capturing these privacy violations in

OSMs is part of our future research directions.

Aspects of Nissenbaum’s “privacy as contextual integrity” [24, 124] additionally cap-

tured by exposure control: Exposure control catches the more nuanced idea of contextual
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informational norms compared to the access control model, thus better capturing the notion

of privacy as contextual integrity (CI). The reason is that the exposure control model argues

for controlling actual exposure, so that it is the same as user’s expected exposure. Thus

expected exposure partially captures the past experience of users (which plays a role in

following the expectation). For example, exposure control captures the idea of “privacy in

public”: CI pointed out that there are implicit informational norms and hence appropriate

information flows associated with even public information. The exposure control model

points out that even for public content (anybody can access the content), the user will still

have an expected exposure of how many people will actually view the content. Thus, she

still has some notions of expected exposure even for public content.

However some aspects of CI are not captured by exposure control. Since the exposure

control model relies on the user’s expected exposure, if the user has no prior expectation

of what exposure her content should have, then the exposure control model can not help

them. However, CI captures possible violations even in this case, since the contextual

informational norms can be set by society at large and ethical concerns even without that

particular user’s expectation.

Summary: From these discussions, we note that our exposure control model considerably

extends access control by capturing a key aspect of privacy—a user’s expectation or desire

about who views her content. We explicitly capture the notion of this user intention

mentioned in privacy theories (e.g., reserve in Westin’s definition, identity boundary in

Palen and Dourish’s theory, desired level of privacy in Petronio’s CPM theory or some

implicit informational norms in Nissenbaum’s theory). We summarize our findings on the

additional aspects of privacy captured by exposure control in Table 2.2. These aspects were

not captured by the access control model alone. This table clearly demonstrates the benefit

of designing OSM systems with mechanisms for controlling exposure. Let us now revisit

the real-world privacy violations from Chapter 2.2.2 to further check the effectiveness of

exposure control.
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Privacy definition / theory Additional aspect(s) captured by exposure control
Warren and Brandeis’s the-
ory [168]—privacy as the
right to be let alone.

-

Westin’s definition of pri-
vacy [169]

Reserve (desire to limit disclosures to others), since exposure con-
siders the user’s expected exposure while controlling exposure.

Altman’s privacy theory
(“the selective control of ac-
cess to the self”) [12, 13, 14]

The difference between desired and actual levels of privacy and
consequently the notion of optimal privacy (i.e., when desired =
actual). This is because actually the people who saw a content is
the actual privacy and expected exposure is the desired privacy.

Petronio’s Communication
privacy management (CPM)
theory [128]

The boundary turbulence due to mismatch of privacy rules by
owner and co-owners. Since exposure control model captures, in
effect, the tension between desired exposure (from the owners)
and actual exposure (affected by co-owners).

Palen and Dourish’s exten-
sion of Altman’s theory to the
networked world [127]

Tension at identity boundary. Since the people in expected expo-
sure set will possibly interpret a piece of information as the user
intended.

Solove’s taxonomy of pri-
vacy [146, 147]

Information processing (e.g., aggregation—gathering together of
information about a person increases actual exposure of content
and violate privacy without violating access control) and infor-
mation dissemination (e.g., increased accessibility—amplifying
the accessibility of information also increases actual exposure by
making the content easier to find).

Nissenbaum’s “pri-
vacy as contextual in-
tegrity” [24, 124]

Situations like “privacy in public”,i.e., some implicit informa-
tional norms. Since the implicit informational norms can be
partially captured by the expected exposure of a content.

Table 2.2: Additional aspects of different privacy definitions captured by exposure control.
The aspects of privacy captured by access control (in Table 2.1) and exposure con-
trol in aggregate captures most aspects of existing privacy theories.
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privacy violations we discussed in Chapter 2.2.2. Recall that these violations are not captured

by the access control model alone.

1. Exposure captures the changes caused by the introduction of the Facebook News Feed:

Prior to its introduction, the exposure of an item I on Alice’s profile was the number of

unique users who visit Alice’s Facebook page during I’s lifetime, which could be much

smaller than the set of users NI with permission to access I , particularly if Alice chose to

make I public. With the News Feed, in contrast, I’s exposure includes all of Alice’s friends

plus any user in NI who Facebook deems potentially interested in I . I is pushed to these

users, who will learn I serendipitously the next time they log into Facebook.

2. Similarly, the introduction of Facebook’s Timeline pushes selected information about

a person’s history to a set of principles in NI that Facebook deems interested. Previously,

finding such information would have required a user in NI to visit Alice’s profile and scroll

potentially deep down into her historic News Feed.

3. Google Street View has made available online, in an aggregated and searchable fashion,

public information that was previously available only to principals who were physically

present at a particular geographic location. Exposure reflects this fact.

4. Spokeo aggregates people’s personal information like name, address, data of birth, income,

property value and family tree, which is available from different online sources, and makes

it available and searchable under the person’s name and place of residence. By making it far

easier to learn this information, its exposure is increased.

Thus, in short, exposure control captures real-world privacy violations that the access

control model does not capture. However, exposure control still has its own set of limitations.

2.3.4 Limitations of exposure control

Our model of exposure has a number of limitations. First, it focuses on an individual item

of information. When considering a collection of personal information about a person, for
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instance, additional aspects of privacy like the credibility or authenticity of the information

come into play, which are not captured in our model. Second, there are aspects of privacy

theories which are still not captured by exposure control; these cases include some aspects

of Solove’s privacy taxonomy (insecurity, secondary use, exclusion etc.) as well as the

implicit contextual norms that are deep-rooted in social processes. For example, suppose an

OSM user is not aware that she is being stalked by ex girlfriends/boyfriends/strangers (and

thus include the stalker in her expected exposure set). However stalking is still violating

current social norms and thus constitutes a violation of contextual integrity.

2.4 Managing privacy via exposure

In this part, we discuss how the concept of exposure can be leveraged in practical systems to

enable users to better manage their online privacy. We mention three strategies to control

exposure below. In this section, we will expand upon one of these strategies. We will

systematically investigate the rest of the strategies in details later in this thesis (Chapters 3,

4, 5 and 6).

2.4.1 Controlling exposure via setting conservative access control

OSM users can naturally control exposure by meticulously choosing a subset of their friends

who they expected to view the content and only including that subset in their access control

list. We refer to these subsets of users who are able to access a particular piece of content as

social access control lists (social ACLs, or SACLs); by definition, a SACL is a proper subset

of a userâĂŹs friends who are selected by the user to access a piece of content. Note that

this solution is not perfect, since entities outside of SACL can often infer a particular piece

of information from other available information. However, the ubiquity of access control

mechanisms in OSMs makes this approach readily available to users. To that end, our work

sheds light on how users are deploying conservative SACLs in the real world, allowing only
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a subset of their social connections to access a particular piece of content. Furthermore,

based on our understanding we propose mechanisms to help users specify their SACLs and

control exposure. We present this work in Chapter 3.

2.4.2 Controlling longitudinal exposure

Earlier we mentioned the temporal dimension of exposure, in which a piece of content can

be seen by more and more people as time passes. This longitudinal exposure may be quite

concerning to OSM users, especially if they think that others may view and interpret some

past content totally out of context. To that end, a natural way to control longitudinal exposure

for users is to simply withdraw their past content. We further investigate the withdrawal

of past content in OSMs and how we can improve longitudinal exposure in Chapter 5 and

Chapter 6.

2.4.3 Controlling exposure via prediction

The former two strategies of exposure control are primarily user-driven, e.g., users them-

selves set SACLs or users control their longitudinal exposure by withdrawing historical

content. However OSM operators can be more proactive in designing their systems to

control exposure, e.g., by predicting the expected exposure of a content while creation using

past history and minimize deviation of actual exposure from that prediction. In Section 2.5,

we develop a general methodology of controlling exposure via prediction. In Chapter 4 we

will thoroughly investigate one simple case of such exposure control—controlling exposure

by limiting large-scale social data aggregators.

2.5 Generic framework to control exposure via prediction

There are two important notes to make before we discuss exposure control via prediction.

First, our goal is to propose a general methodology that could be broadly applied to control
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(a) Niche video with total 471 views (b) Popular video with total 6,101,294 views

Figure 2.2: Popularity growth patterns of two Youtube videos. The popularity of the niche
video stabilize and becomes predictable within a year, but the popularity of the
popular video exhibits an uprise and shows steady growth.

exposure of users’ information in a variety of online systems. Thus, our discussion is

not specific to any one system. Second, there are several interesting research questions

that remain to be investigated through a concrete implementation and deployment of our

proposal. However, such a full-blown deployment-based study is beyond the scope of this

thesis and we view the deployment challenges of our generic framework as specific future

research directions.

2.5.1 Predicting exposure

Modeling and predicting the growth in popularity of information on social Web sites like

Facebook photos, Twitter posts or YouTube videos [100, 86, 154] has received significant

research attention recently. These studies use empirical data of how information became

popular in the past to build models for information propagation that can predict the future

popularity of similar information. Popularity growth models are relevant because they can

predict he cardinality of exposure. The prediction models vary from very simple models that

extrapolate from the historical growth in popularity of a single piece of information; to more

complex models that take into account various factors including attributes of the information

(e.g., quality, type, and length of a video), historical data about the spread of other similar

pieces of information, and the effectiveness of different information dissemination channels

47



(e.g., social links between users or personalized recommendations or search results). More

sophisticated models with higher prediction accuracy have been developed over time. While

a detailed discussion of these models is beyond the scope of this work, we make two general

observations that are relevant to our discussion:

1. Prediction accuracies are higher for less popular (niche) information than they are for

more popular information. For example, it is easier to predict the future popularity of

YouTube videos with a few hundred views after 1 year than those with few million views

after 1 month [154]. As shown in Figure 2.2(a), the dissemination of niche videos tends to

stabilize to a predictable rate sooner than those of popular videos.

2. Most models cannot anticipate the occasional sharp, disruptive jumps in popularity that

arise due to unanticipated events, such as when a piece of information goes viral or when

it is featured on a prominent site [136]. Figure 2.2(b) shows an example YouTube video

whose number of views experienced a sharp jump on day 60 due to coverage on popular

media and blogs.

2.5.2 Making the predictions transparent

We argue that system operators (e.g., Facebook or YouTube administrators) should make both

past popularity data and predictions for the (cardinality of) exposure of users’ information

transparent to the user. Currently, some systems provide users with a limited view of the

popularity of the information they upload. For example, Facebook and YouTube allows

users to check the number of views or “Likes" for their posts. However, no site today

explicitly provides estimates of the future popularity of a piece of information. For example,

neither Facebook nor YouTube offer guidance on how many and which people might see a

photo over the next week. We see this as a missed opportunity because (i) the site operators

are often in the best position to make such predictions as they have the best access to

all the empirical data on how information disseminates through their sites and (ii) such
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estimates would enable users to (re)calibrate their expectations for the future exposure of

their information and check for potential privacy violations.

When providing estimates for the exposure of a piece of information, it would also be

useful to estimate the likely exposure through different dissemination channels separately.

For example, Facebook might choose to provide estimates of views a user’s photo might

achieve through updates on personalized news feeds versus graph search versus profile

browsing [70]. Doing so would enable users to understand the predicted exposure of their

content, and to modify the sharing settings if it does not match their expectations.

2.5.3 Controlling exposure

Providing users with more accurate exposure estimates for their information does not by

itself eliminate the risk of privacy violations. System designs need to enable users to tune

(i.e., increase or decrease) the exposure to the values they desire. Further, systems should

be designed to also prevent the actual prominence from deviating significantly from the

predictions (after they are tuned to desired values). Below we propose mechanisms to

achieve the above two goals.

Tuning exposure: When a user finds that the predicted exposure of her information is

different from what she desires, there need to be mechanisms that would allow her to tune

the exposure. A user could do this in several ways: first, she could enable or disable one or

more dissemination channels. For example, on Facebook, one could opt-in/-out of being part

of “directory or graph search.” Such opt-in/-outs from one or more dissemination channels

could help users manipulate their exposure to desired levels.

Second, users can resort to more expansive or restrictive access controls (i.e., who

is allowed to see or not see a piece of information) to change the exposure of a piece

of information. For example, to increase exposure of a piece of information originally

shared with her 1-hop friends, a Facebook user might choose to make it available to 2-hop

friends (i.e., friends of friends). To decrease exposure, the user might choose to make it
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available to only a subset of 1-hop friends (e.g., friends with whom the user shares a common

university affiliation). By changing access controls, the user can expand or contract the list

of potential viewers and thereby, change the list of predicted viewers. Thus, we envision

access control being used in conjunction with exposure control to more closely match the

user’s expectations.

Limiting divergence from predictions: Even after a user tunes the exposure to match her

expectations, unanticipated events (e.g., the information goes viral and is featured on the

front page of a popular site) might cause the actual exposure to deviate significantly from the

predictions and consequently, the desired exposure. As mentioned earlier in Chapter 2.5.1,

no model can accurately predict such occasional disruptive changes to the prominence of a

piece of information.

To contain privacy violations in such scenarios, we propose that systems adopt tripwires

that automatically make a piece of information inaccessible whenever the actual exposure of

a piece of information deviates significantly from the predicted exposure and notify the user

of the unanticipated divergence. Upon notification, users can explicitly choose to keep the

information inaccessible or re-enable access to the information (and readjust the tripwires).

Alternately, systems can allow users to specify tripwires that upper-bound the views (e.g.,

no more than 10 views per day or 50 views in total) to a piece of information.

We believe that tripwire mechanisms can be easily enabled in current systems like

YouTube or Facebook. In fact, YouTube already allows users to limit the total number of

views to their videos to a preset value of 50 (effectively providing a limited form of exposure

control) [176].

2.5.4 Feasibility of controlling exposure via prediction

There are a number of interesting research questions that need to be studied through a

concrete implementation and deployment of our proposal of managing privacy via exposure.

Such a detailed study is the subject of our future work and beyond the scope of this work.
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Figure 2.3: Prediction of number of people accessing a content in three scenarios: scenarios 1,
2 and 3 corresponds to prediction of public YouTube video views, Facebook group
post views and photo likes on personal Facebook photos respectively. The relative
error of prediction decreased from scenario 1 to 3.

However, we discuss two important concerns that one might have about the feasibility of a

practical deployment of our proposal: (i) our ability to accurately predict the future exposure

of a piece of information and (ii) the overheads associated with fine-tuning exposure.

2.5.4.1 Accuracy of exposure predictions

There is ongoing research on predicting information propagation and dissemination in online

systems. These works leverage the ability of sites to gather and analyze detailed historical

information about the exposure of billions of pieces of information posted by hundreds

of millions of users to make accurate predictions. For example, in a recent study [27],

Facebook researchers were able to predict the audience size of a new post by a user within

an 8% error margin, using data such as the number of friends and the likes and comments

the post received. To illustrate the ability to make such predictions in different scenarios, we

conducted a small-scale study in three different real-world scenarios, each using different

access control policies—(i) public posts on sites like YouTube, (ii) posts limited to members

of Facebook groups and (iii) personal posts limited to one’s Facebook friends.

In each of these scenarios, we used linear regression [102] for predicting the future

popularity using past information and then measure the relative error of our prediction.

Relative error is defined as
∣∣1− Predicted value

Actual value

∣∣. The lower the relative error, the more accurate

the predictions. In each of the scenarios, we show how system operators can use different
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types of past information to predict the future popularity of a content with low error, i.e,

high accuracy.

Scenario 1: Predicting future popularity of public YouTube posts. We analyzed the past

number of daily view for publicly posted YouTube videos to predict their future popularity.

Specifically, we collected data about the number of daily views that 50 randomly chosen

YouTube videos obtained in their first 6 months. We used this historical data to predict how

many views the videos will get the immediate next day.

Scenario 2: Predicting future popularity for new posts in Facebook groups. Next, we tried

to predict the number of views for a new post in an open Facebook group [61] using the

popularity of older posts in the same group [55]. We collected popularity data for the posts

of 50 open Facebook groups and predicted the number of views for the latest post in each of

these groups using the popularity of older posts.

Scenario 3: Predicting future popularity of personal posts limited to one’s Facebook friends.

We collected data about the pictures shared by 50 Facebook users (randomly selected users

of a Facebook application [71] created by authors) with their friends along with the number

of “Likes” on those pictures. Using this data, we predicted the number of “Likes” a user

would get on a future photo shared with the same access control policy. We performed this

prediction for the latest photo of each user.

We present the distribution of relative errors in predictions for each of these scenarios in

Figure 2.3. Note that, intuitively the set of people who can learn about the content decreases

from scenario 1 to scenario 3. Figure 2.3 shows that consequently the relative error decreases

from scenario 1 to scenario 3. However, even in the case of scenario 1, where the videos

are public and the information can spread through multiple possibly unknown channels, for

75% of the videos the relative error is less than 0.1 (i.e. actual value is within ±10% of the

predicted value).

Our study, while conducted at a very small scale, hints at the potential for accurately

predicting the future popularity in different real-world scenarios. We plan to conduct larger-
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scale studies in the future. Furthermore, there is significant ongoing research on predicting

information propagation and dissemination in online systems and new techniques are being

proposed [31, 70, 86, 27]. As the field advances, we expect the accuracy of predictions to

improve as well.

2.5.4.2 Overheads associated with fine-tuning exposure

At first glance, it would appear that supporting exposure control would require users to

check and fine-tune the exposure for every single piece of their information separately,

which raises usability concerns. In practice, users might want to organize all their pieces of

information into a small number of groups, each with a different level of desired exposure.

So when a new piece of information is uploaded, they can easily set its exposure to the

desired level by choosing the appropriate exposure group. The overheads involved here

would be no greater, if not lower, than the overheads involved with configuring privacy

settings of uploaded content in social media sites today.

2.5.5 A special case: Controlling exposure by limiting large-scale so-

cial data aggregators

We note that a OSM operators can deny access proactively to entities who they can predict to

most likely not be in the expected exposure set of a user. Of course the prediction overhead

is minimal in this special case for the OSM operators. A practical manifestation of this

situation occurs when third party large scale data aggregators, i.e. crawlers (e.g., Spokeo)

aims to collect public user data from OSMs. Although the data is public, the OSM operator

can (with high confidence) predict that a crawler is not in the expected exposure set of a

piece of public user generated content and take steps to limit access of the crawler and

fine-tune the exposure. Today OSM operators control exposure to crawlers by putting rate

limits on number of views from particular IP addresses or particular accounts. However

their technique cannot stop crawlers who leverage fake (Sybil) or compromised accounts.
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We will revisit this scenario in Chapter 4 to propose a system for OSM operators to control

exposure from large scale third party data aggregators.

2.6 Discussion

We argue that access control, the traditional model for managing privacy, is inadequate in

today’s online world. In this work, we propose a model for information privacy based on

exposure to fill the gaps left by access control. A key difference compared to access control

is that exposure captures the principals who actually learn a piece of information rather than

who can directly access a piece of information. We believe exposure is an intuitive measure

that captures the privacy implications of publishing information and strengthens privacy

management in OSMs.

We discussed how the concept of exposure can be leveraged in practical systems to

enable users to manage their online privacy better. We propose three strategies from the real

world—(i) controlling exposure via SACLs, i.e., social access control lists (ii) Controlling

exposure via prediction, a special case of which is controlling exposure from large scale

third part crawlers (ii) controlling longitudinal exposure. We will investigate each of these

scenarios to demonstrate the effectiveness of exposure control in the next chapters, starting

with exploring how exposure can be controlled using SACLs.
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CHAPTER 3

Understanding and controlling
exposure using SACLs

OSM users can naturally control exposure by meticulously choosing the subset of their

friends who they expected to view the content and only including that subset in their access

control list. Today, while much OSM content is shared with default settings (e.g., visible

to all of a user’s friends or even to everybody on internet), certain sensitive content is

indeed often shared with subsets of friends. For example, on Facebook, users may explicitly

enumerate friends to allow or deny the ability to view a photo, or create friendlists for the

same purpose. We refer to these resulting sets of users who are able to access content as

social access control lists (social ACLs, or SACLs); by definition, a SACL is a proper subset

of a user’s friends who are selected by the user to access a piece of content. Due to the

privacy-sensitive nature of the content the SACLs protect, one of the hardest parts of using

today’s OSM privacy management tools is defining appropriate SACLs for different pieces

of content. Thus for effective exposure control the OSM operators needs to simplify the

SACL specifications for the OSM users.

Many prior studies have examined the privacy concerns that arise when users share

content on Facebook, such as the problem of “over-sharing” content with default settings that

make the content visible to everyone in the network [103]. As a solution, researchers have

proposed grouping friends into subgroups based on their relationship type (e.g., high school

friends, work colleagues, family) or community structure in the one-hop network of the user,



and sharing content with specific subgroups [59]. However, most of these approaches rely on

small scale user studies where they conduct a survey to understand the privacy preferences

of users to evaluate their technique. None of these approaches have been evaluated on

how well they capture real privacy preferences specified using SACLs. Given that content

shared with SACLs is likely to be the most privacy sensitive (and therefore, likely the most

important), having an understanding of the SACLs in-use is crucial to designing improved

privacy mechanisms for OSM users.

In this work, we make three contributions: First, we conduct the first large-scale

measurement study of use of SACLs in OSMs. Using a popular Facebook application

installed by over 1,000 users, we collect a total of 7,602 unique SACLs specified by users.1

We find that over 67% of users are sharing at least some of their uploaded content using

SACLs, and that 17.6% of all content is shared with a SACL; these observations underscore

the important and unstudied role that SACLs play in users’ privacy management.

Second, we focus on understanding the membership of SACLs (i.e., how are the friends

who are allowed to view a piece of content similar to each other, but different from other

friends?). Examining the in-use SACLs that we collected, we find that for less than 10%

of SACLs all the members of the SACL share a common profile attribute. Moreover, we

find that only 20% of SACLs show strong community structure in the links between their

members. Taken together, these results suggest that SACLs are likely to be difficult to detect

automatically. This result is surprising given the existing work on automatically grouping

friends based on network structure or attributes for better privacy management [112, 59];

We suspect that this difference occurs because these prior studies did not evaluate their

techniques against ground-truth data about fine-grained content sharing in OSMs.

Third, we explore the difficulty faced by users in specifying SACLs today. Overall, we

find that the complexity of SACLs (as defined by the number of terms2 a user must select

1Our study was conducted under Northeastern University Institutional Review Board protocol #14-01-09.
2When creating a SACL, a user can specify either individual friends or pre-created lists of friends; we refer

to both of these as terms.
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when creating a SACL) is quite high for a non negligible fraction of our users: over 18% of

users specify more than 5 terms per SACL on average. We observe that there is significant

room for improvement in reducing the burden of specifying SACLs, and we find that simply

allowing users to re-use previously used SACLs reduces much of the user overhead: for

the vast majority (> 80%) of users, 90% of their content is shared with fewer than 5 unique

SACLs.

The remainder of the chapter is organized as follows. Chapter 3.1 presents background

and related work on SACLs and OSM privacy. Chapter 3.2 describes how we obtained our

SACL data set, and Chapter 3.3 provides some high-level statistics on SACLs. Chapter 3.4

explores the relationship between SACL members, while Chapter 3.5 investigates the user

overhead in specifying SACLs today. Finally, Chapter 3.6 present a discussion of our

findings and future directions.

3.1 Background and related work

In this chapter, we first provide some background on how OSMs have evolved in help-

ing users to manage their data privacy today. Our focus is on the fine-grained privacy

management tools that enable the sharing of privacy sensitive content on OSMs.

In this work, we focus on the largest OSM as of March 2014—Facebook. Up until

2005, Facebook split users on the site into different regional networks (based on geography,

workplace or educational institution). By default, each user would share all of her content

with everyone in the regional network and the service lacked any concrete privacy controls

for sensitive data. By 2009, Facebook had 300 million [58] users and some regional

networks grew too large (e.g., in India and China) to be used for privacy settings. There

were widespread demands for better privacy management mechanisms for users [33], and

by the end of 2009, Facebook rolled out more fine-grained privacy controls.

57



3.1.1 Mechanisms for privacy management

In December 2009, Facebook made an important change which allowed users to set access

control policies for content they publish on a per-post basis [68]. For example, a user can

share a particular photo with only family members and close friends. This change allowed

users to customize their privacy settings on a per-content basis, instead of simply adopting

the default privacy setting offered by Facebook, which allows access to “everyone” (all users

on Facebook) [64].

Facebook introduced an additional mechanism called friend lists [73] to complement

their existing fine-grained privacy controls. Users can create friend lists and add a subset of

their friends to each of these lists. For example, a user can create a list called “co-workers”

and manually add all of her friends who are co-workers into that list. This allows the user

to group her friends into different lists that might be meaningful to her in terms of sharing

content. Now, instead of handpicking individual friends for specifying a privacy setting for

each content, users can use their pre-created friend lists for specifying privacy settings (e.g.,

share this photo with “soccer buddies” list). Friend lists are private to the user who creates

them.

By October 2010, Facebook observed that only a small percentage (5%) of Facebook

users had ever created friend lists [74]. This could be due to the manual effort required

of the users to create and maintain friend lists. To help users further, Facebook started

automatically creating friend lists for the user and populated the lists with a specific subset

of the user’s friends [57]; these lists are called smart lists. This automation is done by

leveraging the profile attributes of the user and the user’s friends, e.g., employer, location,

family and education information provided by users. An example would be a list called

“Family” that automatically groups all the friends of the user who have marked the user as

a family member. In addition, Facebook also creates two empty smart lists for the user,

“Close Friends” and “Acquaintances”. However, instead of auto-populating these two lists,
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Facebook only shows friend recommendations to the users based on the interaction between

the user and her friends. In this work, we will refer to all of these Facebook-created smart

lists as Facebook lists. Moreover, when using the term lists we are referring to both the

user-created friend lists as well as Facebook lists.

So far, we observed that there are different ways in which a user can specify which

friends have access to a piece of content on Facebook today. In the rest of the work, we

will use the term social access control lists (social ACLs or SACLs) to refer to such privacy

policy specifications. A more precise definition is below.

Social access control lists (SACLs): A SACL is a privacy policy specification attached

to a piece of content containing a proper subset of the user’s friends; friends specified in

the SACL have access to view and perform other actions on the content (e.g, liking or

commenting). SACLs can be specified using different mechanisms provided by Facebook:

allowing or denying access to individual friends one by one, specifying friend lists, using

Facebook lists, or using a combination of handpicked friends and lists.3

It is important to note that SACLs only encompass custom settings by users and do not

include the Facebook pre-defined access permissions: “everyone" or “public" (share with all

Facebook users), “regional network" (share with everyone in a regional network, deprecated

in 2009), “all friends-of-friends" (share with all friends-of-friends), “all friends" (share with

all friends), and “only me” (only visible to the user who uploaded the content).

3.1.2 Related work

Now that we understand the background of this work, we discuss related work along three

directions.

3Facebook also allows users who are tagged in a specific post to see the content [67, 69]. However, since
users did not specify tagged friends explicitly through the privacy management interface, we do not consider
them to be the part of SACLs. We leave exploring privacy expressed through tags to future work.

59



Understanding privacy awareness of users Researchers have studied the privacy aware-

ness of OSM users [48, 152, 92]. These studies examine the profile information sharing

behavior of users over a long period of time (e.g., 7 years) to understand if users’ attitude

towards their data privacy changes over time. Dey et al. [48] and Stutzman et al. [152] have

shown quantitative evidence that Facebook users are sharing fewer profile attributes (such as

hometown, birthdate and contact information) publicly over time. Social media discussions

about Facebook privacy [52, 141, 140, 153, 39] and Facebook regularly rolling out new fine

grained privacy management features [66] for the last few years have caught users’ attention

and potentially increased their concerns about available privacy controls.

How effective are users in managing their privacy settings? Recent studies have ex-

plored how effective users are in managing their privacy settings. Studies have shown that

there exists a mismatch between desired and actual privacy settings when users share content

on Facebook [103, 85, 107, 29, 27]. Liu et al. [103] conducted a user survey about privacy

preferences for photos uploaded by users on Facebook. They found that privacy settings

match users’ expectations only 37% of the time, and when wrong, users are exposing their

content to a much wider audience (e.g., all friends, friends-of-friends or even everyone

on Facebook) than they intended. While the exact reason for incorrect privacy settings is

hard to infer, it could be due to poor privacy management user interfaces or the significant

cognitive burden required to manage privacy of their sensitive content.

Techniques for better privacy management Several techniques have been proposed to

reduce the burden on users when managing their privacy settings. We can organize work in

this space into two high level categories: (1) The first approach is to assist in automatically

pre-defining grouping of friends that might be meaningful to the user for sharing sensitive

content later. Facebook allows the user to pre-define such friend groupings using the friend

list feature. But friend lists on Facebook have to be manually specified by the user today

and this user overhead could be reduced by these approaches. (2) The second approach is

to help the user on the fly to specify SACLs while sharing content. They predict SACL
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specifications with some input from the user. For example, if the user gives the name of a

few friends that he wants to share content with, these approaches can automatically predict

the remaining members of the SACL or provide recommendations of other possible SACL

members. Now we will explain different proposals that fall in the above two categories.

PViz [112] is a proposal from first category that can automatically detect friend lists for

a Facebook user and use it for better privacy policy visualization for the user. It leverages

the network structure of the subgraph (where friendship relations are represented as edges

and OSM users as nodes) induced by the user’s friends (i.e., the user’s “one-hop subgraph”)

to detect friend lists using a modularity-based community detection algorithm. Using

information extracted from friends’ profile, it can also automatically assign a label to

each detected list. This helps the user to understand the composition of a list. Based on

these predefined lists, PViz points out to users which of her friends from a list can view a

particular content. PViz presents a user study based on 20 users, who find PViz useful for

understanding their existing privacy settings better.

However, many previous works [15, 174, 59] fall in the second category. They focus on

recommending friends on the fly to the users as the user starts sharing a piece of content and

selects a few intended friends. Privacy Wizard [59] is one example of such a tool. Privacy

Wizard leverages network structure and profile attributes (like gender, age, education, work,

etc) to recommend friends for inclusion in a privacy setting. The process starts as the user

tags a few of her friends as “allowed” or “denied” for a content. It then uses a machine

learning algorithm to classify the remaining untagged friends into an allow or denied

category. The authors designed a survey experiment with 45 Facebook users and 64 profile

data items to evaluate the accuracy of their tool. They observed that on average if a user tags

25 of her friends, the wizard configures her privacy setting with high accuracy. However

in their experiments they did not look into the ground truth data on how a user actually

specifies SACLs while sharing sensitive content.
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We conduct a large scale study comprising of 1,165 users and all their uploaded content

to focus on the privacy settings used by users. Most prior work tries to approximate ground

truth privacy preference data by asking user privacy preferences explicitly, most of the time

via surveys or via a combination of surveys and profile data collection using apps [92].

However, none of these studies looked into the “ground truth” data on SACLs (i.e., how a

normal user would share their content using SACLs without any external intervention). To

the best of our knowledge, we are the first ones to look into ground-truth data on users’ usage

of SACLs to propose insights on how to assist users to reduce the overhead of specifying

SACLs.

3.1.3 Key questions

While fine-grained privacy controls put users in better control of their data privacy, it is not

clear how users are using these privacy mechanisms. In this work, we take a first look at

SACLs specified by 790 Facebook users (users who created at least one SACL) for 212,753

pieces of uploaded content. Our analysis focuses on the following key questions:

• How are users using SACLs today? We analyze how often SACLs are specified by

users and how different types of content are shared using SACLs.

• Is SACL membership predictable? We analyze characteristics of SACL members to

understand if they have something in common that other friends of the user do not.

Our analysis explores whether members have similar profile attributes, exhibit strong

social network connectivity with each other, or share similar activity levels. If we

are able to separate out SACL members from among all friends, we may be able to

automatically create SACLs for users.

• What is the user overhead in specifying SACLs? We examine the overhead that users

spend specifying SACLs today. The intuition is that, the more work required to create

SACLs, the less usable the privacy mechanisms are.
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• What is the potential for reducing user overhead? Based on our insights gained

from analyzing SACL membership, we quantify the potential for further reducing the

complexity of SACL specifications. Our findings serve as guidelines for designing

better privacy management tools in the future.

3.2 Dataset

Now we describe the dataset we have collected about in-use SACLs on OSMs today.

3.2.1 Collecting data about SACLs in Facebook

Obtaining data at scale about user privacy specifications is quite challenging. In Chap-

ter 3.1.2, we observed that most previous work used small-scale data about user privacy

preferences. There are two main challenges in collecting large-scale data: First, we need

permission to view the user SACLs. This is challenging as private settings on Facebook are

private to the user; they cannot be obtained by crawling publicly visible user profiles. To

address this challenge, we use the Facebook API [62], which offers methods to collect data

about in-use privacy settings (provided the user gives us permission to do so). We therefore

developed a Facebook application that helps users to better manage their privacy settings,

and recruited users for the application. The Facebook application requests consent from

the user to collect data about their SACL specifications for our research study. The data

collection was performed under an approved Northeastern University Institutional Review

Board protocol.

The second challenge is recruiting large number of users for the study who can provide

consent to access their private SACL information. The traditional approach for recruiting

users rely on personal communication (e.g., via email) or through an open call posted on a

public bulletin board at a university or research lab. In such cases, the number of users that

could potentially be recruited is usually limited to a few tens or hundreds. Another approach
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is to use online crowdsourcing platforms like Amazon Mechanical Turk (AMT) [111].

However, using a Facebook application violates the AMT policy that workers should not be

required to download and install an application [16].4 Instead, to recruit a variety of users at

scale, we leverage the Facebook advertising platform.

3.2.1.1 Facebook application: Friendlist Manager

We developed the Facebook app “Friendlist Manager" (or FLM) [72, 105] that helps the

user to automatically create and update friend lists that could be used for specifying SACLs.

This application reduces the user burden of manually creating friend lists. FLM automates

list creation by leveraging the network structure in the “one-hop subgraph” of the user. It

uses network community detection algorithms [30, 117] to find overlapping communities in

the one-hop subgraph. We found that users found FLM to be helpful; 480 (41%) of our users

allowed FLM to update at least one of their lists. It is important to note that for the analysis

in this work, we only consider the content users shared and members of friend lists users

had before installing FLM; this ensures that usage of our app does not impact the results.

When installing FLM, we request permission to access the following types of user data:

basic user profile details including workplace, education, current city and family; privacy

settings (including SACLs) used for all uploaded content (photos, videos, statuses, notes,

music, questions, Shockwave Flash Player (SWF) movies, and checkins); and the friends,

friend lists, and Facebook lists of the user. Should the user choose to not grant us access to

their content, they are still allowed to use the application.

3.2.1.2 Recruiting users

To recruit users, we set up an advertisement for FLM on the Facebook advertising platform.

The Facebook advertising platform allows us to reach out to the large Facebook population

and target users with specific demographics. Our ad included the following text:

4Our data collection methodology requires users to install a Facebook application.
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Need help to better organize your list of friends? Give FLM a try!

Starting from June 20th 2012, we ran five ad campaigns for 10 days targeting 10

countries where English is an official language: USA, UK, Australia, New Zealand, Canada,

India, Pakistan, Singapore, South Africa, and Philippines. In total, 232 users installed

our app during this period. After this initial push, our app received a steady stream of

new users through August 2013; in total, we observed 1,007 additional users after the

advertising campaign ended. We believe FLM also spread “virally", with users “liking" or

recommending the app to their friends. While it is hard to trace the source of these new

1,007 users, we found that 59 of them were friends of users who installed FLM through

ads. The remaining users likely found FLM through search tools (e.g., Google Search) or

through word-of-mouth based propagation.

Overall, a total of 1,239 users installed our application. For the purpose of this study,

we only focus on the 1,165 users (94%) who gave us permission to access all the data we

required for our research study.
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Figure 3.1: (a) Cumulative distribution of number of pieces of content uploaded by users using
SACLs. A significant fraction (67.8%) of users in our dataset upload at least one
content using SACLs. (b) Cumulative distribution of percentage of content per
user shared using SACLs. More than 200 users in our dataset uploaded more
than 30% of their content using SACLs. (c) Cumulative distribution of number
of unique SACLs specified by each user who upload at least one content using
SACLs.

3.2.1.3 User bias

One potential issue with user studies is a bias in the user population. In our case, it is

challenging to obtain a random set of Facebook users. This is a fundamental issue with most
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user studies, and the common methodology is to carefully characterize the users under study

to understand how diverse the users are in terms of demographics. Our user population is

by no means random, and we report the demographics and behavior of users below. We

believe that the users who installed FLM are those who are interested in creating friend lists

to better manage their privacy settings. It is known that Facebook has been promoting friend

lists as a way to more efficiently specify privacy preferences [57]. Thus, our user sample is

most likely biased towards privacy-aware Facebook users. Additionally, ads can only be

shown to users when they are logged in to Facebook; we are therefore likely to get users

who are active on Facebook.

3.2.1.4 Ethical considerations

The data we collected in FLM is highly privacy sensitive, and we took great care to respect

users’ privacy. First, we conducted our study under Institutional Review Board approval.

Second, we only report aggregate statistics here, and in any future works. Third, we will

never release any non-aggregated data to third parties. All of these steps were also included

as part of FLM’s Privacy Policy (provided to users when installing FLM).

3.2.2 FLM user demographics

We now examine the demographics of users who installed FLM and allowed us to collect

their data. Users usually self-report their location, age, gender and education on their profile.

We examine the “current location” attribute to estimate the location of users at a country

level and find that 952 (82%) users have provided location information. According to this

information, users are from 75 countries covering six continents. There were 19.2% users

from North America, 18.1% from Europe and 35.5% from Asia. The top five countries were

United States (20%), Pakistan (14%), India (7%), Brazil (7%), and Philippines (6%). Thus,

we have users from a diverse set of geographic locations.
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Next, we examine the age of users. Our users ranged between 18 and 65 and older,

with the median age being 29; this distribution is in-line with the overall U.S. Facebook

population [125]. Only 1.2% of users did not specify their gender and for the rest, we

observed a strong male bias with 76% of our users being male; this differs from the overall

U.S. Facebook breakdown of 47% male [125]. Finally, for the education level (reported

by 73.8% of users), 67.8% of users have been to college, while 5.9% of them have been to

graduate school. All these statistics demonstrate that we have a diverse set of users in our

dataset.

As our users are recruited from a social network, one additional concern is that the users

might be a “close-knit" group of friends (in terms of friendship), and not a more general

sample of the user population. To evaluate whether this is the case, we check how closely

related our users are by examining the number of users who are friends on Facebook, and

the number of user pairs with at least one common friend. Out of the 678,030 possible

pairs of users [
(
1,165
2

)
], 44 (0.01%) were direct friends and 1,266 (0.19%) were not direct

friends but had at least one friend in common. Thus, while our population does show some

correlation with the social network (unsurprising, given the viral spreading we observed

before), the user population is not strongly biased towards one small region of the entire

Facebook social network.

Finally, we examine the activity of users in terms of uploaded content. Overall, our

1,165 users have an average of 518 friends (median 332), and uploaded on average 1,040

pieces of content (median 506). 1,003 (84%) users have uploaded more than 100 pieces of

content. Only 39 (3.3%) users have uploaded fewer than 10 pieces of content while 3 (0.2%)

of them have uploaded none. When we look at activity of users over time, we observe that

the activities of our users spanned over 8 years from 2005 to 2013. We further find that

90% of users have been active for more than 20% of weeks since they joined Facebook.

Our analysis of users suggests that we have a fairly diverse population most of whom are

actively uploading content on Facebook.
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3.3 SACL usage

We begin by examining the usage of SACLs by OSM users. Specifically, we investigate how

often and for what types of content users specify SACLs.

1. How widely are SACLs used? We first examine how often different users share content

with SACLs, using the FLM user set described in the previous chapter. Figure 3.1(a) presents

the cumulative distribution (CDF) of the number of content shared using SACLs per user.

We observe that a majority of our users are using SACLs for content sharing: 790 (67.8%)

users out of 1,165 shared at least one piece of content using a SACL. In total, these 790

users uploaded 212,753 pieces of content using SACLs; this content accounts for 17.6% of

all content uploaded by all 1,165 users. In the remainder of the work, we focus only on these

790 users and the content they uploaded using SACLs. We note that the fraction of users

using SACLs in our dataset is comparable to that reported for Google+ [94], where 74.8% of

the users used SACLs. However, these Google+ users shared significantly more (67.8%) of

their content with SACLs. This difference in the percentage of shared contents in Facebook

and Google+ is likely due to the differences in user interface between the platforms. We

leave a full exploration of the comparative use of SACLs across online social media sites to

future work.

Next, we observe that users use SACLs to different extents. In particular, we examine

the percentage of content that each user shares with SACLs in Figure 3.1(b) (i.e., for each

user, what fraction of their content is shared with a SACL?). We observe a biased distribution

across users, but a significant fraction of users select SACLs for much of their content: 20%

of users share more than 30% of all their content using SACLs.

Thus, we observe that SACLs are widely used by our users for sharing content, which

encourages us to further explore the composition of SACLs and complexity of SACL

specification in the following chapters.
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Total Number Percent
Content type content shared with shared with

items SACLs SACLs
Status 786,800 139,112 17.7%
Photo 264,714 45,308 17.1%
Video 111,676 20,880 18.7%
Album 26,527 4,415 16.6%
SWF 9,794 1,554 15.9%
Note 8,500 883 10.4%
Checkin 3,224 548 17.0%
Question 374 25 6.7%
Music 355 27 7.6%
Offer 9 1 11.1%
Total 1,211,973 212,753 17.6%

Table 3.1: Distribution of the number and percentage of content shared with SACLs across
different types of content.

2. How many SACLs do users need to create? Having observed that SACLs are widely

used, we now investigate how many different SACLs users create from amongst their friends.

Figure 3.1(c) shows the cumulative distribution of the number of unique SACLs specified by

each user. A large fraction (75%) of the users use less than 10 SACLs, and 20% of the users

use only a single SACL. However, there are 5 heavy SACL users, who have used more than

100 unique SACLs. We find that these are heavy users of privacy settings and use different

combination of a small number of lists and a set of handpicked friends to specify multiple

SACLs for multiple pieces of content. Overall, most users only require a limited number of

SACLs to share sensitive content; we leverage this finding later in Chapter 3.5 to reduce the

user overhead in specifying SACLs.

3. Does SACL usage vary with content types? Facebook allows users to upload a variety

of content types. Table 3.1 presents a breakdown of the total number of content items of

different types, and the fraction of those items shared with SACLs. We are interested in

understanding if users are biased towards a few types of content when using SACLs. The

third and fourth columns of Table 3.1 show the number and fraction of each type of content

shared using SACLs. We observe that SACLs are used across all nine different types of
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SACL created using
only only both lists
lists friends and friends

Number of Users 593 555 213
Percent of users
using SACLs 75.9% 71.1% 27.3%
Percent of SACLs 33.5% 44.3% 22.2%
Percent of content
shared with SACLs 61.4% 27% 11.6%

Table 3.2: Distribution of the number of users using different mechanisms to create SACLs
while sharing contents.

content. In fact, 10-20% of almost all types of content are shared with SACLs. Questions

and music are shared least often with SACLs; we suspect that these types of content tend to

be more public and are usually not privacy sensitive. This widespread use of SACLs across

all types of content further justifies looking deeper into SACL membership and complexity,

with the goal of increasing the usability of SACLs.

4. How are SACLs created? Facebook users can construct their SACLs in different ways.

As mentioned in Chapter 3.1.1, while creating a SACL the user may allow or deny access to

individual friends, or lists, or use a combination of friends and lists. Table 3.2 shows the

distribution of number of users using different mechanisms to create SACLs. We observe

that more than 70% of users are creating at least one SACL by individually selecting their

friends and more than 44% of SACLs fall in this category; this is surprising, as selecting

friends individually is a somewhat tedious task. Interestingly, only 27% of SACL content

is shared with such SACLs; users share the majority of their content with SACLs created

using lists.

5. How many users are in SACLs? Next, we examine the size of SACLs (i.e., how many

of a user’s friends are in different SACLs). Figure 3.2 presents a CDF of fraction of the

SACL owner’s friends that the SACLs contain. We observe that the distribution exhibits

three distinct regions, described below:
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1. Include only few friends: The first region is highlighted in gray on the left side of

the graph; this region contains SACLs with between 0% and 5% of the user’s friends.

This region contains 25% of all SACLs. In the remainder of the work, we refer to

these as include few SACLs.

2. Exclude only few friends: The next region is highlighted in gray on the right side

of the graph; this region contains SACLs with between 95% and 100% of the user’s

friends. This region contains 26% of all SACLs. In the remainder of the work, we

refer to these as exclude few SACLs.

3. Include subset of friends: The final region is in the middle of the graph; this region

contains between 5% and 95% of the user’s friends. This region contains the plurality

(49%) of the SACLs. In the remainder of the work, we refer to these as include

subset SACLs.

As we suggest below, the distribution of SACL sizes is very likely influenced by the interface

for SACL specification. We use our categorization in the rest of the chapter when we try

to characterize the SACL members across different features. However, for exclude few

SACLs we also want to see whether we can characterize the excluded friends; for these,

we also examine the excluded members of exclude few SACLs. The plurality of include

subset SACLs shows that our users are not simply including or excluding a handful of their
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friends, but are often including large subsets of their friends. This result further motivates

the need to understand how these subsets are selected.

Overall, our observations suggest SACLs are being widely used today by a majority

of our users to control access to a non-trivial fraction of their content. SACLs are used at

different rates by different users, but they do appear to be used to share many different types

of content. Finally, SACLs show wildly different sizes, with many SACLs containing few or

almost all of a user’s friends. With this understanding, we turn to examine the membership

of SACLs in the following chapter.

3.4 SACL membership

We now take a closer look at the membership of SACLs. In other words, are the members

of a given SACL distinguishable from the SACL creator’s other friends? (e.g., do the

members share a profile attribute?) This question is interesting to examine, as any automatic

detection of SACL membership would only work if the SACL members were distinguishable.

Moreover, existing work [59, 112, 174] hypothesizes that profile attributes, network structure,

and user activity can help us to automatically detect clusters corresponding to SACLs; we

aim to see if this is true using our dataset of real-world fine-grained privacy settings.

3.4.1 Methodology

Our analysis in this section explores the possibility of characterizing SACL members as

a group across three features: (i) profile attributes, (ii) social network structure, and (iii)

activity. In other words, we would like to see whether the SACL members form a distinct

cluster among the friends of the user. To do so, we form clusters based on these three

features and then examine how closely the SACLs of the user match our cluster (e.g., we

form a cluster of all user’s friends who attended the same high school and then look to see if
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this cluster matches any SACL). To compare our automatically detected clusters and the

user’s SACLs, we address three separate questions:

1. Do the automatically detected clusters match SACLs? Once we have the clusters of

friends for a given feature, for each SACL, we try to find the best matching cluster. To

compute the “goodness" of a match, we use the F-score metric [109] which provides a

measure of detection accuracy. It is computed as the harmonic mean of precision and recall;

F-score varies from 0 to 1, with 1 representing a perfect match.

Unfortunately, a low F-score does not necessarily imply that SACLs are not correlated

with automatically detected groups. For example, the members of a SACL could be split

between two automatically detected groups; in this case, the F-score for both groups would

be quite low, but the F-score of the union of the groups would be quite high. Looking deeper

into this issue takes us to our next question.

2. How distributed are the SACLs across clusters? In order to check how widely the

SACL members are spread across the clusters we use the metric entropy[43]. For a given

SACL and a cluster c from a set of automatically detected clusters C, we can compute p(c),

the probability of a SACL member belonging to c. Then we measure the entropy of the

SACL as

−
∑
c∈C

p(c) log2 p(c)

A higher value of entropy signifies more diversity within the SACL members (i.e., they are

spread across more clusters).

To be able to compare across the SACLs which belong to different users (with different

numbers of clusters and friends per cluster), we normalize the entropy using maximum

possible entropy per SACL. A SACL will have maximum entropy when its members are

uniformly distributed across all clusters [43]; in this case the entropy will be log2 |C|, where
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|C| is the number of clusters in C. We therefore calculate normalized entropy as

−
∑

c∈C p(c) log2 p(c)

log2 |C|

Normalized entropy for a SACL ranges from 0 to 1. A normalized entropy close to 1

indicates that a SACL is uniformly spread across the maximum number of clusters and a

normalized entropy close to 0 indicates that all or most of the SACL members are part of

one cluster.

3. How are SACLs different from random groups? One outstanding issue remains:

We are examining the entropy of SACLs, but we would really like to measure what’s the

likelihood of selecting the members of a SACL by pure chance. For example, suppose all of

a user’s friends attended the same high school; in this case, the “high school" cluster (all

friends in a single cluster) would perfectly match any large SACL.

To measure the uniqueness of SACLs relative to random groups, we use the Adjusted

Rand Index (ARI) [134] to determine the similarity between SACL and automatically

detected clusters. ARI is a similarity metric normalized against chance and varies from -1 to

1. An ARI of 0 indicates no better similarity than a random group, a negative ARI implies

worse similarity than a random group, and an ARI of 1 indicates exact similarity. For each

SACL, we calculate at the ARI provided by the most similar cluster. If most of the SACLs

have ARI close to 0, then the automatically detected clusters are no better in detecting the

SACLs than simply using random groups.
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Figure 3.3: Correspondence between the attribute-based clusters and SACLs, with the cumulative
distributions of (a) F-score, (b) Normalized entropy, and (c) ARI. Figure 3.3(a) shows
only 15% of the automatically generated attribute-based communities have a F-score of
more than 0.6, indicating low number of SACLs showing high match. Figure 3.3(b) shows
that larger SACLs are spread across multiple such clusters and have higher normalized
entropy. The reverse is true for include few SACLs and excluded members of exclude
few SACLs. However, Figure 3.3(c) confirms that more than 40% of these SACLs show
better similarity with attribute-based clusters than random groups.
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Figure 3.4: Correspondence between the network communities and SACLs. Figure 3.4(a) shows
21% of network communities have a F-score of more than 0.6, indicating a relatively
poor match between network communities and SACLs. Figure 3.4(b) and Figure 3.4(c)
confirms that though the larger SACLs have higher entropy (i.e., they are distributed
across multiple communities), more than 90% of these SACLs show better similarity with
network-based clusters compare to random groups.
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Figure 3.5: Correspondence between the activity-based clusters and SACLs. Figure 3.5(a) shows 47%
of the automatic attribute clusters shows a F-score of more than 0.6, indicating compar-
atively strong match between activity communities and SACLs. However, Figure 3.5(b)
shows that the larger SACLs have higher entropy, and Figure 3.5(c) shows that only 4%
have ARI more than 0.3. As a result, random groupings of friends the same size as SACLs
would likely show a degree of similar matching.
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3.4.2 SACLs and user attributes

We first explore whether SACL membership is correlated with a common profile attribute.

To do so, we leverage the profile attributes provided by Facebook users, focusing on four

attributes: workplace, education, current city, and family. We choose these attributes

as they have been shown be most strongly correlated with groupings of users in social

networks [117]. Using these attributes, we group the friends of a user into clusters who

share a common attribute. We report results for all attribute groups in aggregate for brevity;

the results are similar when considering each attribute type alone.

We begin by using the F-score metric to check how many of the SACLs exactly match

the attribute-based clusters. We present the cumulative distribution of F-scores across all

SACLs in Figure 3.3(a). The figure shows that only 15% of all SACLs have a F-score of

more than 0.6, indicating a good match for a small subset of SACLs. The result is even

worse for very small SACLs (include few or the excluded members of exclude few), with

only 10% of such SACLs having a F-score more than 0.6.

We explore the reason for the low F-scores by analyzing the normalized entropy of

these SACLs in Figure 3.3(b). The figure shows that the small SACLs have a low entropy

(with 20% of include few SACLs with entropy 0) indicating they are mostly part of single

attribute-based clusters (this is unsurprising, given that these SACLs are small). On the other

hand, the larger SACLs show a high entropy with 35% of exclude few SACLs having an

entropy of more than 0.8. These results suggest that our attribute clusters are overestimating

the smaller SACLs (indicated by low entropy and low F-score) and underestimating the

larger SACLs (indicated by high entropy and low F-score).

Finally, we examine whether SACLs match attribute clusters better than random groups

using ARI. As mentioned in Section 3.4.1, an ARI of 0 indicates similarity no better than

random groups. Figure 3.3(c) presents the cumulative distribution of ARI across all SACLs;
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we observe that 68% of all SACLs have ARI larger than 0, indicating they have more

similarity with attribute-based clusters than a purely random set of friends.

Overall, our results suggest that only a small number of attribute clusters serve as a

close match for SACLs. However, the SACLs do show some correlation with attribute

groups when compared to random subsets of the user’s friends. Next, we look into the

correlation between SACLs and the social network to see if network-based clusters more

closely approximate the SACLs.

3.4.3 SACLs and network structure

In order to explore whether the SACLs correspond to the network structure, we first identity

clusters of the user’s friends that are tightly connected in the social network (these clusters are

often called network communities). Specifically, we extract all of the friendship connections

between the user’s friends, and then use a community detection algorithm that has been

shown to work well in grouping a user’s friends into a small set of clusters [105]. This

algorithm is a combination of a global community detection algorithm [30] and a local

community detection algorithm [117] to detect overlapping communities.5. Our results were

similar with these algorithms, and so we omit the results for brevity.

We begin by examining how many of the SACLs exactly match one of the social

network-based clusters. Figure 3.4(a) presents the cumulative distribution of F-scores

across all SACLs. The figure shows that 21% of all SACLs have a F-score of more than

0.6, indicating a good match for 21% of SACLs. This is significantly higher than the

attribute-based clusters in the prior section, but still does not show a strong correlation.

We next analyze the normalized entropy of these SACLs in Figure 3.4(b). Similar to the

attribute-based clusters, the network communities tend to overestimate smaller SACLs and

5We note that there are a large variety of community detection techniques in the literature. To make sure
our choice of algorithm did not bias the results of our analysis, we performed the same analysis with two
additional community detection algorithms [40, 130] similar to ones used in earlier work on unsupervised
detection of privacy settings [112, 59]
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underestimate larger SACLs, but at a much lower rate. We verify these findings using ARI

in Figure 3.4(c). We can observe that 98% of all SACLs have ARI more than 0, indicating

almost all of the SACLs have more similarity with community based clusters than a purely

random set of friends.

Overall, the network communities show better match with SACLs compared to the

attribute clusters. However, still only a small fraction of SACLs have strong correlation

with network communities, making it unlikely that network communications could be

used to infer SACLs for sharing content. Next we will look into the correlation between

activity-based clusters and SACLs.

3.4.4 SACLs and user activity

For our final user feature, we examine whether the membership of SACLs is correlated with

the strength of the link between the user and their friends. As a proxy for link strength, we

use activity; this is a common way to estimate how closely connected two users are [19].

For each user, we collected data about four different types of interaction between the user

and their friends: (i) posting on the user’s wall, (ii) liking the user’s posts, (iii) commenting

on the user’s posts, and (iv) being tagged in the user’s status and photos. We observe that

94% of the users who used SACLs have at least one such interaction with their friends.

Using this data, we cluster each user’s friends by activity (i.e., frequency of interaction)

and see whether the activity-based clusters matched the SACLs. We use the same algorithm

as prior work [19] to find the activity clusters. The algorithm is essentially a k-means

algorithm modified to automatically find the optimal number of clusters. As a result, all

friends with a similar number of interactions will be put in one cluster. After running the

algorithm, we find that the median number of clusters across all users is four.6

6Interestingly, this observation matches Dunbar’s sociological study [51, 84] where the number of Dunbar’s
circles, the number of activity-based clusters in people’s offline network is also four.
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As before, we begin by examining the cumulative distribution of the F-score in Fig-

ure 3.5(a); we observe that 47% all SACLs have a F-score of greater than 0.6. This is even

better than network-based communities. The larger SACLs (e.g., exclude few SACLs) show

an even stronger match with high F-scores, but the match is considerably worse for smaller

SACLs (e.g., include few SACLs), with only 3% of such SACLs having a F-score more

than 0.6. Closely examining the activity-based clusters, we hypothesize that our method of

creating activity communities often results in creating a large cluster containing all friends

with low levels of interaction with the user. As a result, this single, large community alone

overlaps with the large SACLs considerably, making their F-score quite high.

To confirm this hypothesis, we also calculate the cumulative distribution of normalized

entropy (Figure 3.5(b)) and ARI (Figure 3.5(c)). We find a poor match between SACLs and

activity-based clusters using both pieces of analysis; the ARI values for the SACLs are very

close to 0 for almost all activity-based clusters (e.g., only 8% of the SACLs have ARI more

than 0.3). This finding confirms that any random groups of the size of larger SACLs will

show the same level of similarity with the activity-based clusters, thus making the clusters a

poor mechanism for approximating SACL membership.

3.4.5 Summary

In this section, we examined the membership of SACLs by trying to correlate SACL

members with attribute, network structure, and activity-based clusters. Our results show

that very few of these clusters show a significant correlation with SACLs, suggesting that

automatically detected SACLs-based on these features are unlikely to be very accurate. This

finding is in opposition to the results from prior work [59, 112, 174], which suggest that it is

possible to use automatically detected clusters to create SACLs. We believe this difference

is due to the fact that these prior works were not able to evaluate their proposals against

ground-truth SACLs. In fact, others have also found [97] that users are able to group their

friends in meaningful groups, but find it difficult to choose the right group to share content
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Figure 3.6: Facebook’s interface for specifying SACLs.

with. Consequently, we explore alternative approaches to increase the usability of SACLs in

the next section.

3.5 SACL specification

We have observed that SACLs appear to be quite difficult to infer automatically. We

now examine the “overhead" (i.e., the amount of work that users must perform) in order

to specify SACLs today. Then, we explore how we can increase the usability of these

SACLs by reducing the user overhead and making SACLs easier to use. If successful, these

approaches would make privacy easier for users to manage, thereby increasing the usability

of OSMs in general.

3.5.1 SACL specification overhead

The act of specifying a SACL—choosing which friends to share content with—induces

cognitive overhead on the user. While there may be multiple dimensions of this overhead

(e.g., deciding whether to include a specific user, using the interface, etc), many of these are

quite challenging to measure. As a first step, we define the SACL specification overhead to
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Figure 3.7: Cumulative distribution of overhead for specifying SACLs. Shown are the dis-
tributions of measured SACLs (Original), measured SACLs taking into account
Facebook’s last-used setting (Last-used setting), the optimal overhead for mea-
sured SACLs (Optimal), and the overhead of our proposed mechanism of present-
ing the user with the last 5 SACLs (Past history). Our proposed mechanism shows
a substantial reduction in user overhead.

be the number of terms used to specify a SACL. Our reasons for doing so is that Facebook

allows users to specify SACLs using an allow/deny interface, where users can select friends

or lists to allow or deny access (a screenshot of Facebook’s interface is shown in Figure 3.6).

Thus, the amount of work the user has to do is proportional to the number of friends/lists that

the user selects to allow or deny. Of course, we recognize there are dimensions of overhead

that this measure fails to capture; we leave the task of characterizing those dimensions of

user overhead to future work.

As an example, consider the screenshot shown in Figure 3.6. In this example, the

user is choosing to allow friends Bob, Carol, the list Football Friends, and the Facebook

list Family. The user is also choosing to deny the list Drinking Buddies. As a result, the

SACL specification overhead for this SACL is five (A total of five terms appear in the allow

and deny settings.) It is important to note that the size of the SACL is different from its

specification overhead: Consider the case of a user only denying access to a single friend.

In this case, the specification overhead is low, but the SACL has many users in it.

We define the average user overhead as the average of all SACL specification overheads

for content shared by a given user. Formally, if a user specifies access to her content
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{c1, c2, ...cn} with privacy settings {p1, p2, ...pn}, the average user overhead for this user is

∑
i |pi|
n

where |pi| denotes the SACL specification overhead of setting pi. Note that the pi settings

are not necessarily distinct, as multiple pieces of content may be shared with the same SACL.

The best-possible average user overhead is 1, meaning the user only used the SACLs with a

single term when sharing her content.

We present cumulative distribution of the average user overhead in Figure 3.7 with

the line “Original". We observe that users do have significant overhead when specifying

SACLs: 86% of users have an overhead more than 1, and there are more than 150 users

with overhead more than 5. This suggests there is significant potential to reduce the SACL

specification overhead for users, making SACLs more usable.

3.5.2 Last-used setting

Facebook’s default privacy setting for content is set to select the last-used privacy setting [65].

So, if a user selects a SACL for a newly uploaded piece of content, all future pieces of

content will be shared with the same SACL until the user chooses a different privacy setting.

We therefore modify our definition of average user overhead to capture this behavior; if a user

selects the same SACL as the previous piece of content, we define this SACL specification

overhead to be 0. As a result, a user’s average user overhead may be less than one.

We present the cumulative distribution of the average user overhead, taking into account

the last-used setting, in Figure 3.7 with the line “Last-used setting". We immediately observe

a significant reduction in the measured overhead, which we believe more accurately captures

the work a user must do. The figure shows that this simple technique of using last setting as

the default can significantly reduce the user overhead: this technique lowers the overhead by

more than 50% for almost half (48%) of the users. Thus, Facebook’s choice to enable default
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last-used settings is useful in reducing user overhead. For the remainder of our analysis, we

use average user overhead, taking into account the last-used setting, as our baseline.

3.5.3 Optimal overhead

It is important to note that there may be multiple ways of specifying a given SACL: For

example, a user could specify the SACL by only allowing the friends in the SACL. Or, the

user could use an existing list, and exclude the users not allowed to access the content. Or,

the user could allow all friends, and then deny only the friends who should not be able to

access the content. We now examine how close the user’s chosen specifications are to the

optimal specification, in terms of the SACL specification with the minimum overhead.

To do so, for each SACL we observe, we determine the optimal specification overhead.7

We then present the cumulative distribution of average user overhead in the optimal case

in Figure 3.7 with the line “Optimal setting". We observe that there is still room for

improvement from using the last-used setting alone; many users could express their SACLs

in a manner than involves fewer terms.

3.5.4 Using past history

In this section, we explore a generalization of the last-used setting, with the goal of further

reducing the average user overhead. The results in Section 3.3 suggested that there are

certain SACLs that users select to share content with a significant fraction of the time.

Figure 3.8 plots the cumulative distribution of the percentage of content shared with the

top k most frequently used SACLs for each user. For example we can see that if we allow

each user to use their top 5 SACLs, this would cover over 80% of the content for the vast

majority (90%) of users.

7Note that computing the optimal overhead of a setting is a modified version of the NP-hard set cover
problem [96] where the setting is the universe and lists and individual friends are subsets of the universe. We
use a brute force solution to the problem, which is feasible due to small number of subsets in this case.
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Figure 3.8: Cumulative distribution of percentage of content covered by the top k SACLs.
Even if we set k=5, most of the content for the majority of users are covered.

This observation means that we may be able to significantly reduce the average user

overhead by allowing users to choose from their k most used SACLs, rather than just the

last-used SACL. To do so, we calculate the average user overhead, assuming one would

have made it possible for the user to directly use the top 5 most frequently used settings

while sharing content (Should the user re-use these settings, we calculate the overhead as

0). A cumulative distribution of the resulting overhead is shown in Figure 3.7 with the line

“Past history". We immediately observe a dramatic reduction in user overhead (In fact, the

overhead is lowered for 86% of users).

In summary, this approach of leveraging past history has the potential to significantly

reduce the user overhead in specifying SACLs. An OSM operator can create these SACLs

based on user’s past history, and provide them as options to select from, when the user

uploads a new piece of content. Should the user select one of the previously-used SACLs, it

will reduce their overhead and make privacy specification more usable.

3.6 Discussion

OSMs are increasingly popular and users are sharing ever more content on these services.

In this work, we focused on the most privacy-sensitive of these content: the content with

hand-crafted privacy settings selected by the users to effectively control exposure of the

content. We found that these SACLs are surprisingly common (over 17.6% of all content
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is shared with SACLs), but that the membership of these SACLs shows relatively little

correlation with the profile attributes, the social network structure, or the activity level of the

members. As a result, there appears to be little hope of automatically detecting more than a

few of these SACLs. We also found that the act of specifying SACLs is often complicated

for users, but a simple technique like remembering a few of the most frequently used SACLs

is likely to significantly reduce this burden in practice.

However, much work remains to be done. In the remainder of this section, we discuss a

few of the limitations of our study, as well as future directions for exploration.

Understanding motivation for SACLs Our study explores the use of SACLs, but does

not reveal why users create SACLs or how they choose the content to share with SACLs.

Possible reasons include dissatisfaction with the default privacy settings, the sharing of

highly privacy sensitive content, or using SACLs as a mechanism to choose the audience for

a particular content.

Moving target We quantified the way users create in-use SACLs today, but Facebook is

known for changing their privacy interface over time [63]; these changes are likely to impact

the usage of SACLs for individual users. We aim to repeat our analysis as Facebook makes

these changes, hoping to capture resulting changes in user behavior.

SACL accuracy It remains an unexplored question as to which of the friends users would

ideally want to share their content with (i.e., who does the user want to be in a SACL, regard-

less of who is actually in the SACL). Prior work has shown that users often misunderstand

other Facebook privacy settings [103], and we suspect that this would likely hold true for

SACLs as well.

SACL overhead In our calculation of overhead, we took into consideration the number of

terms specified by users explicitly while specifying SACLs, where a term can be a friend list

or an individual friend. However, this quantification does not directly account for the mental

effort required for a user when creating SACLs (e.g., certain SACLs may be easier or harder

to create, even if they have the same number of terms). We leave a full exploration of this
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effect (possibly via detailed debriefing interviews of a small sample of Facebook users) to

future work.

After, exploring how users can control exposure of their content using SACLs and

devising a way to simplify the SACL specifications using simple caching, we now move into

another mechanism to control exposure. In the next chapter, we check how OSM designers

can help OSM users to control exposure by limiting large scale social data aggregators like

Spokeo.
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CHAPTER 4

Controlling exposure by limiting
large-scale social data aggregators

We described a generic framework (in Chapter 2.5) for controlling exposure in OSMs—

predicting future exposure of a content and limiting actual exposure to the expected value.

A simple application of this generic framework is limiting the privacy violation due to third

party crawlers. OSMs allow users to browse the (public) profiles of other users in the OSM,

making it easy for users to connect, communicate, and share content. Unfortunately, this

functionality can be exploited by third-parties to aggregate and extract data about millions

of OSM users. Once collected, the data can be re-published [83], monetized, and mined

in ways that may violate users’ privacy. For instance, it has been shown that private user

attributes like sexual orientation can be inferred from a user’s set of friends and their profile

attributes [83, 117]; a third party with access to aggregated user data could easily apply

these techniques.

These third-party aggregators, which we refer to as crawlers, represent a significant

problem for OSM operators as well. User data provides OSM operators with a revenue

stream (e.g., via targeted advertisements); stopping crawlers is therefore in the OSM op-

erators’ business interests. Additionally, OSM operators cannot ensure that data collected

by a third party is used according to the operator’s privacy policy. Yet, OSM operators are

likely to be held responsible if crawled data is used in ways that violate the policy, at least



in the court of public opinion. For example, Facebook was widely blamed in the popular

press [47] when a single crawler gathered public profiles of over 100 million users [83].

To that end, OSM operators can predict with high confidence that these third party

crawlers are not in the user’s expected set. Thus, OSM operators need to design effective

mechanisms to thwart large-scale crawling of OSMs [148] in order to help users control

exposure of their content.1 Today, OSM operators typically limit the rate at which a single

user account or IP address can view user profiles [150], in order to discourage large-scale

data collection. Unfortunately, crawlers can circumvent these schemes by creating a large

number of fake user accounts [7], by employing botnets [88] or cloud services[36] to gain

access to many IP addresses, or by using the compromised accounts of a large number of

real users [4].

In this work, we propose Genie, a system that OSM operators can deploy to limit

large-scale crawlers and control exposure. Genie leverages the differences in the browsing

patterns of honest users and crawlers to effectively thwart large-scale crawls of user profiles.

Genie’s design is based on the insight that honest users tend to view the profiles of others

who are well connected and close in the social network (i.e. network induced in OSMs

via friendship relations). A crawler, on the other hand, is limited in his ability to form or

control enough links to be close to all users whose profiles he wishes to view. Genie exploits

this fact by enforcing rate limits in a way that is sensitive to the distance and degree of

connectivity between viewer and viewee.

Using profile view data from RenRen, a Facebook-like OSM that is popular in China [138],

we observe that average social network distance between honest users and the profiles they

view tends to be low (1.62 social network hops). We demonstrate that a crawler, on the other

hand, would require a very large number of well-distributed accounts (e.g., controlling 3%

1Not all large-scale crawls are for nefarious purposes. Researchers, for instance, already tend to obtain the
consent of the OSM operator before doing their crawls for research purposes (e.g., [91, 37]); such authorized
crawlers can be whitelisted even if a defense is in place.
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of all existing accounts in OSM) to be able to view the profiles of all users while maintaining

the same low average distance.

Genie works by deriving a credit network [44, 50, 75] from the social network. In

brief, credit is associated with links in the social network, and a viewer must “pay" credits

to the viewee, along a path in the social network, when viewing a profile. Compared to

conventional per-account or per-IP address rate-limiting, credit networks offers two key

advantages. First, in a credit network, the rate limits are associated with social network links

rather than user accounts or addresses. As a result, a crawler gains little by creating many

Sybil accounts or using many IP addresses [91]. Second, the greater the distance between

viewer and viewee in the social network, the stricter the rate limit is imposed by the credit

network on profile views. Consequently, even crawlers with access to a relatively large

number of compromised user accounts are unable to crawl the network quickly.

The contributions of this work are as follows:

• We analyze profile viewing data from the Renren social network and show that the

average distance in the social network between a honest viewer and a viewee is

significantly smaller than that of a crawler. Moreover, a crawler interested in crawling

the entire social network is fundamentally unable to blend in with honest viewers

unless he controls a very large proportion of strategically positioned user accounts.

• We present the design of Genie, which leverages credit networks derived from the

already-existing social network to block large-scale crawling activity, while allowing

honest users’ browsing unhindered.

• We demonstrate the feasibility of deploying Genie with an evaluation using large

partial social network graphs obtained from Renren, Facebook, YouTube, and Flickr,

and a mix of real and synthetically generated profile viewing traces. We demonstrate

that Genie effectively blocks crawlers while the impact on honest users is minimal.

• We show that Genie can scale to networks having millions of nodes by scaling up

credit network operations. Thus, Genie is practical on the large OSMs of today.
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4.1 Related work

In this chapter, we describe relevant prior work on limiting large-scale crawls of OSMs and

leveraging social networks to defend against Sybil attacks.

Limiting large-scale crawlers There exist a number of techniques that aim to prevent

crawls of web services. Two techniques commonly used in practice are robots.txt [8],

and IP-address- or account-based rate limiting [135, 80, 161].

robots.txt is a file stored at the web server that indicates a set of pages that should

not be crawled. Compliance with this policy is voluntary; robots.txt consequently

provides little defense against malicious crawlers.

Large websites like Yahoo! often rely on a simple per-IP-address rate limit to control

access to their web services [135]. Each IP address is allocated a maximum number of

requests, which are replenished in 24 hour intervals. Once a user exceeds this limit, the

operator either stops serving the user or may require that the user solve a CAPTCHA [9].

This approach limits the number of views a crawler can perform from an individual IP

address, but is not effective against botnets that control many IPs. Additionally, dedicated

crawlers can bypass defenses like CAPTCHA using available CAPTCHA-solving service

providers [120], and other schemes exist that can bypass IP-address-based rate-limiting

approaches [36, 77].

Online social media sites like Facebook, Google Plus or Twitter [150, 80, 161] often

use account-based rate limits on requests to view profile pages. Similar to IP-based rate

limits, this approach works well if crawlers control at most a small number of accounts; in

the face of Sybils or compromised accounts, it is not effective.

Wilson et al. proposed SpikeStrip [173], a system designed to discourage OSM crawlers.

SpikeStrip uses cryptography to make information aggregation from OSM websites ineffi-

cient. SpikeStrip rate limits the number of profile views allowed per browsing session and
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prevents different browsing sessions from sharing data. Thus, crawlers cannot aggregate or

correlate data gathered by different sessions.

Despite its elegant design, SpikeStrip restricts the functionality of the OSM. For exam-

ple, SpikeStrip does not allow two OSM users to share website links of a common friend.

Moreover, SpikeStrip would require OSMs like Facebook to change the way they use content

distribution networks like Akamai to serve users’ content. Unlike SpikeStrip, Genie does

not affect the OSM functionality or content distribution. As we will show later, Genie can

be deployed with minimal disruption to the browsing activities of honest users.

Social network-based Sybil defenses Recently there have been proposals to leverage

social networks to defend against Sybil attacks [157, 178, 177, 45, 156, 133, 131, 116].

Sybil defense proposals such as SybilLimit [177] or SybilInfer [45] try to detect Sybils

in the network and then block them from the service. However these Sybil detection

mechanisms are not designed to address compromised accounts. Additionally, recent work

has shown that these Sybil detection schemes suffer from limitations due to assumptions

they make concerning the structure of the social network [167, 118].

The design of Genie borrows credit network [44, 50, 75] techniques from Sybil-

tolerant [165] systems like Ostra [116] and Bazaar [131], and uses Canal [166] to manage

credit network operations. In contrast to Sybil detection schemes, Sybil tolerant systems do

not aim to detect Sybil users; instead they minimize the impact of Sybils on honest users.

Genie differs from existing Sybil tolerant systems in two fundamental ways: First, Genie

considers crawlers that have access to both Sybil and compromised accounts; previous work

considered only Sybil attacks. Second, unlike Ostra and Bazaar (which rely on users

to provide feedback on whether a communication is spam or whether a transaction is

fraudulent), Genie infers whether or not activity is malicious by exploiting differences in the

browsing patterns of crawlers and honest users.
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4.2 System and attack model

4.2.1 System model

OSMs such as Facebook, Renren [138], Google+, and Orkut share a common system model:

Users create accounts, establish friend links with other users, and post content (often of

a personal nature). Users have a “home page" on the OSM that links to all of the user’s

content; we refer to this as the user’s profile. The graph formed by the entire set of friend

links forms a social network. In the OSMs of interest to us, forming a friend link requires

the consent of both users.

Users can typically choose to make their data private (i.e., visible only to the user and

the site operator), public (i.e., visible to every user of the social network), or semi-public

(i.e., visible to subsets of the user’s friends or to friends of user’s friends). In practice, many

users choose to make their profile information public [103], despite the private nature of

some of the information posted. Contributing to this choice may be that sites encourage

public sharing [60], that the default privacy setting is “public” [132], that other privacy

choices are not always intuitive [151], and that many users are not fully aware of the privacy

risks [103]. It is these public profiles (that typically represent a large fraction of all user

profiles [98]) that Genie is concerned with protecting.

4.2.2 Attack model

Today, social networking sites tend to impose a rate limit on the profile views a single user

can request, in order to slow down crawlers. However, there are two ways in which a crawler

can overcome these limits.

A crawler can conduct a Sybil attack by creating multiple user accounts, thereby

overcoming the per-user rate limit. It is important to note that while the crawler can create an

arbitrary number of links between Sybil accounts he controls, we assume that his ability to
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form links between his Sybil accounts and honest users is limited by his ability to convince

honest users to accept a friend link, regardless of how many user accounts he controls. The

significance of this point will become clear in the following chapter, where we describe how

Genie leverages social links to limit crawling activity.

A crawler can also conduct a compromised account attack by taking control (e.g., by

obtaining the password) of existing accounts in the system. The crawler can gain access to

such accounts via phishing attacks, by guessing the user’s password, or by purchasing the

credentials of already compromised accounts on the black market. A compromised account

attack is more powerful than a Sybil attack, because every additional compromised account

increases the number of links to honest users that the crawler has access to. Again, the

significance of having access to such links will become clear in the following chapter.

We assume that a crawler with access to compromised accounts cannot compromise the

accounts of strategically positioned users of his choosing. Defending against a crawler who

can access any account of his choosing would require preventing social engineering attacks,

which are outside Genie’s attack model. Instead, we assume that compromised accounts are

randomly distributed throughout the network. Additionally, we assume that the crawler does

not actively form new links involving compromised accounts, as such activity would likely

alert the actual owner of the account that their account has been compromised.

We are concerned about attacks where the crawler greedily attempts to gather as many

distinct user profiles as possible. We assume that the crawler is agnostic to which users he

crawls. Our crawler model captures both third-party crawlers [6] as well as research-oriented

crawlers (e.g., used in studies of Facebook [91], Flickr [115], and Twitter [37]). However,

our model excludes some crawlers that may be interested in repeatedly crawling the accounts

of a small subset of users over an extended period of time, perhaps to gather their changing

profile information. We make no assumptions about the crawler’s strategy, i.e., whether the

crawler employs random walks or BFS or DFS to fetch user profiles. Consequently, we
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simulate attacks employing the strategy that optimizes for the crawler’s goal of fetching as

many distinct user profiles as possible.

4.3 Workload analysis

In this chapter, we compare profile viewing workloads of honest users and crawlers. In later

chapters, we show how Genie can exploit the differences in the browsing behavior of honest

users and crawlers to rate-limit crawlers, while rarely affecting honest users.

4.3.1 Honest users’ profile viewing workload

We obtained anonymized user profile browsing data [91] from the RenRen social net-

work [138], a Facebook-like social network that is popular in China. The data covers users

in RenRen’s Peking University (RR-PKU) network, and includes the links between PKU

users and all other RenRen users. We pre-processed the social network and browsing trace

to only include the subgraph of the PKU users, and then extracted the largest connected

component (LCC) from the social network. Similar to prior work [116, 166], our analysis

only examines users in the LCC (representing 91.2% of the users and 94.3% of the links

from the pre-processed network). The LCC of the RR-PKU network has 33,294 users and

705,248 undirected links.

The data set also includes a trace of all profiles (both friends and non-friends) that

each user browsed during a two-week period during September, 2009. Unfortunately, the

RenRen trace does not provide timestamps or an ordering for profile views. Therefore, in

experiments where we need the profile views to be ordered, we generate a time series by

assigning each profile view a timestamp chosen uniform randomly within the two-week

period covered by the trace. This time series was used in all analyses conducted in the work.

We highlight our key findings below.
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Figure 4.1: Complementary cumulative distribution of the number of profile view requests
made and received by RR-PKU users during a two-week period.

1. Most users make (receive) few profile views, but a small number of users make

(receive) a large number of views. Figure 4.1 shows the distribution of profile views made

and received by individual users in the RR-PKU network. The plots show a considerable

skew in the distributions: Most (> 90%) users make or receive fewer than 10 views, while a

handful of users (< 0.4%) view 50 or more profiles. In particular, there are three users who

viewed 1,827, 612 and 272 profiles (respectively) over a period of two weeks. These users

show significant crawler-like behavior, and we return to discuss these users in Chapter 4.5.4.

Thus, most users in the social network tend to make or receive views from a small number

of other users in the network.

2. The number of profile views made (received) by users is significantly correlated

with their degree The Pearson correlation coefficients between the rankings of users

ordered based on the number of views they make (receive) and their degree is 0.67 (0.5). The

high correlation coefficient affirms the intuitive hypothesis that users who are more active in

the social network would also have more friends in the network. This finding is consistent

with the profile browsing behavior previously studied in Facebook [22] and Orkut [26].

This observation suggests that the imbalance in user activity, measured as the mag-

nitude of the difference between the number of profile requests made and received by

individual users, divided by their degree would be tightly bounded. Intuitively, this can

be explained as follows: both the number of profile requests made and received by a user

tend to rise or fall with the user’s degree. So, the difference in requests made and received,
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Figure 4.2: Complementary cumulative distribution of the imbalance of RR-PKU users.

divided by the user’s degree would be expected to be small. Figure 4.2 confirms this by

plotting the complementary cumulative distribution of the number of unbalanced views (i.e.,

|Req_made−Req_received|) per friend link for different users. Almost 99.9% users have

an imbalance in viewing activity per friend link lower than 10.

3. Not all profiles views are unique; a small but non-trivial number of views are

repeated. Users tend to repeatedly visit the profiles of others to track updates. In our

two-week trace, we found 17,307 (17.8%) of the profile views to be such repeat views. Our

estimate of the fraction that repeat views represent is likely to be conservative, as we are

restricted to a two-week trace. (One would expect the percent of repeat views to increase

with the length of the workload trace.) However, the implication of the presence of repeat

views is that repeat views decrease the number of distinct profiles viewed by users. For

crawlers, repeat views represent sub-optimal use of resources, as their goal is to view the

profiles of as many distinct users as possible.

Network Users Links Average degree
RR-PKU [91] 33,294 705,262 21.2

Facebook [164] 63,392 816,886 25.7
Youtube [115] 1,134,889 2,987,624 5.2
Flickr [114] 1,624,991 15,476,835 19.0

Table 4.1: Number of users, links, and average user degree in the large-scale social networks
used to evaluate Genie.
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Figure 4.4: Fraction of requested and received views that lie beyond 2 hop-distances for in-
dividual users. For most users, only a small fraction of their views requested or
received lie beyond 2-hop neighborhood.

4. Users tend to make (receive) profile views of others who are within their immediate

(1 or 2-hop) network neighborhood. Figure 4.3 shows the distribution of network distance,

measured in terms of hops, between the viewers and viewees in our RR-PKU trace. We

observe that over 80% of all profile views are between users who are separated by two hops

or less. This observation is consistent with prior studies of the Orkut social network [26], as

well as studies of friendship formation in the Flickr social network [114]. Figure 4.4 shows

the distribution of network distance for profile views made by individual users. For most

users, only a small fraction of profiles they request, as well as a small fraction of users who

request their profiles, lie beyond their 1-hop (direct friends) and 2-hop (friends-of-friends)

neighborhood.

Our analysis considers only a single network, due to the difficulty in obtaining detailed

profile viewing data. However, we note that many of our findings are consistent with prior
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Number of compromised accounts
Network 1 10 100 1000

RR-PKU [91] 26 415 3,638 14,938
Facebook [164] 13 237 2,123 15,970
Youtube [115] 6 26 592 4,129
Flickr [114] 5 613 2,242 16,015

Table 4.2: Strength of crawlers in different social graphs. Each column corresponds to spe-
cific number of random compromised accounts, and the corresponding number of
attack links in different graphs.

studies of other social networks [26, 22, 114, 172], suggesting that our RenRen data is likely

to be representative of other social networks.

4.3.2 Crawlers’ profile viewing workload

We now turn to examining the workload that a crawler would generate when run on the

RenRen network from the previous chapter and three others: the Facebook New Orleans

regional network [164], YouTube [115], and Flickr [114]. Table 4.1 provides more details

on the number of users, links, and average degree in these networks.

We simulate crawlers of varying strength by allowing crawlers to “compromise" 1, 10,

100, and 1,000 randomly chosen users within the network. Table 4.2 shows the number of

links that connect user accounts under the crawlers’ control to honest users in the different

graphs. Note that while a crawler with 1,000 compromised accounts might not seem

particularly strong, it is important to consider the size of the networks. For example, the

crawler controlling 1,000 accounts controls around 0.1% of all users in the YouTube network.

As a point of reference, this would be equivalent to controlling 1,000,000 compromised

accounts in the real-world Facebook network.

To generate the crawling workload, we implement the following strategy for the crawler:

We assume that all crawler’s accounts collude to view profiles of all honest users in the

network. Each honest user is viewed only once, and the crawler’s account nearest to an

honest user will be assigned the task of viewing that user’s profile. This strategy maximizes
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Figure 4.5: Cumulative distribution of the distance of crawler profile views in Flickr with dif-
ferent numbers of compromised accounts. To fully mimic the high locality in hon-
est user views the crawlers have to control more than 1,000 compromised honest
user accounts.
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Figure 4.6: Cumulative distribution of the distance of crawler profile views in Facebook with
different numbers of compromised accounts.

locality in profile views, making the crawler’s workload look as “close" to the honest users’

workload as possible.

We now compare the resulting crawler workload with that of honest users, noting two

important differences.

1. In contrast to honest users’ workload, profile views by crawlers are highly non-

local. Figure 4.5 and Figure 4.6 shows the locality in profile visits by crawlers with different

attacking capacities for the Flickr and Facebook graphs (the other graphs show similar

behavior and are removed for brevity). For large network graphs like the Flickr and YouTube

samples, we observe that even a powerful crawler with 1,000 accounts has only a small frac-

tion (less than 30%) of requested profiles within the 2-hop neighborhood of the users under

his control. For small network graphs like the Facebook and RenRen samples, the crawler

does have a majority of users (around 80-90%) within a 2-hop neighborhood. However, in
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these networks, 1,000 compromised accounts represent 3% of all users; considering that

controlling 3% would require controlling 29 million user accounts in the current complete

Facebook network, this is a very powerful attack indeed.

Overall, the results indicate that to mimic the high locality in profile views for honest

users, crawlers would fundamentally have to control a very large fraction of all accounts.
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Figure 4.7: Complementary cumulative distribution of the imbalance of RR-PKU users views
per link for crawlers in RR-PKU.

2. In contrast to honest users, crawlers request many more profile views than they

receive. We observe that the median imbalance per link in profile views (shown in Figure 4.7)

is 8.3 for a crawler with 100 user accounts, compared to honest users’ median imbalance

of 0.05. Such an imbalance is necessary, as even with 100 accounts, the crawler makes

significantly more profile views that an honest user. In the next chapter, we present a system

design that exploits these observed differences in browsing patterns of honest users and

crawlers.

4.4 Genie design

In this chapter, we present the design of Genie, analyze its security properties, and discuss

how Genie can be used to maliciously deny service to honest users.
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4.4.1 Strawman

To motivate the need for Genie’s more elaborate approach, we briefly consider a simple

distance-based rate-limiting technique as a strawman design, and show that it is ineffective

against Sybil crawlers. We know from Chapter 4.3.1 that honest users rarely view profiles

outside their neighborhood social graph, whereas the crawlers have to view distant profiles.

Our strawman uses distance based rate limiting to leverage this finding.

In the strawman design each user account is allowed to view user profiles at a maximal

rate r, where viewing a profile K hops away counts as viewing K − 1 profiles. (Thus,

viewing a friend’s profile is not subject to rate-limiting.) The scheme discriminates heavily

against crawlers, who tend to view distant profiles. However, just like the existing rate-

limiting schemes discussed in Chapter 4.1, this design is vulnerable to Sybil attacks. A

crawler can simply create more Sybil accounts to overcome the per-account rate limit. The

same would be true for any per-account or per-IP-address rate-limiting approach, no matter

how much it discriminates against workloads typical of crawlers.

To summarize, if the profile viewing privileges are assigned based only on the viewing

user, then a crawler can view more profiles simply by creating additional Sybils. Instead,

Genie attaches the profile viewing privileges with paths in the network, rather than users, as

we describe in the following chapter.

4.4.2 Genie design overview

Now, we present the design of Genie. Genie relies on a credit network [50, 75] to make sure

Genie’s rate limits cannot be circumvented by using more Sybil accounts. Moreover, Genie

uses the credit network to impose rate limits that discriminate against a crawlers’ workload,

in order to slow down powerful crawlers that use many compromised user accounts.

A credit network is a directed graph G = (V,E), where each edge (u, v) ∈ E is labeled

with a scalar credit value cuv ≥ 0. Each node in Genie’s credit network corresponds to an
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OSM user and there is a pair of directed edges (u, v), (v, u) in the credit network iff the users

u, v are friends in the OSM. Genie allows user s to view user t’s profile information iff the

max-flow between s and t in the credit network is at least f(dst), where f is a non-decreasing

cost function, and dst is the length of the shortest path between s and t in the social network.
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Figure 4.8: Example of Genie on a small credit network. (a) UserA wishes to viewD’s profile;
let us assume this costs two credits. No single path has two credits available, so
both A → B → C → D and A → B → D are debited 1 credit. (b) The state
of the credit network afterwards; note that intermediate nodes B and C maintain
the same total credit available, as debiting from one link automatically adds credit
to the opposite link.

Thus Genie computes the amount of credit charged for a profile view based on the

shortest path length between the viewer and viewee users. However, the credits can actually

be exchanged over any set of paths between the viewer and viewee. For example, Figure 4.8

(a) shows an example of Genie in a small network, where user A wishes to view D’s profile.

A is charged based on the shortest-path distance (two hops) to D, but the credits may be

exchanged over a set of longer, different paths.

If the view is allowed, then the credit value on each link (u, v) on each path pi that

comprises the flow is reduced by cpi; the credit on each link (v, u) is correspondingly

increased by cpi , where cpi ≤ f(dst). An example of this credit adjustment is presented

in Figure 4.8 (b). It is worth noting that Genie rejecting a profile view request does not

necessarily mean the operator must block the user making the request; Genie merely flags

individual views as suspicious. How the provider responds is a matter of policy—normally,

the OSM operator provider would deny or delay the view, effectively slowing down the

suspected crawler’s activity, but not block the user permanently.
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The net effect of this transaction should be that the viewer has f(dst) fewer credits

available while the viewee has f(dst) more credits available for future activity. If j is

an intermediate user on one of the paths pi then the total number of credits available to

intermediate user j is unchanged, though the distribution of credit among links adjacent to

j is different. As long as user j is well connected and can reach other users through any

adjacent link, the change in credit distribution is unlikely to impact the user [44]; if j is not

well connected, then attempted views may be flagged due to a lack of liquidity.2

Social networks exhibit a very high degree of connectivity, ensuring good liquidity in

the credit network for most users. New users, inactive users, or small fringe communities

that have not (yet) established strong connections to the rest of the network may have issues

with liquidity. We will consider this issue in more detail in Chapter 4.5.

Genie leverages three key characteristics of honest user activity identified in Chapter 4.3

to thwart large-scale crawlers.

Leveraging unbalanced view ratios We observed in Chapter 4.3 that honest users have a

balanced ratio of views requested to views received, while crawlers issue many more views

than they receive. Genie allows a user to use credits obtained by being viewed to perform

views in the future. This ensures liquidity amongst honest users with balanced activity ratios

while draining credits from crawlers.

Because honest users do not have a perfect balance of views, even honest users run the

risk of eventually exhausting all of their credit. To address this concern, Genie rebalances the

credits on a pair of links (u, v), (v, u) at a fixed rate rb. For example, this can be implemented

by dividing time into intervals, and at the beginning of each interval

cuv ← cuv − rb
2
(cuv − cvu)

cvu ← cvu +
rb
2
(cuv − cvu)

where 0 < rb ≤ 1.

2Liquidity in the context of credit networks is defined as the capacity to route credit payments [44].
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Leveraging different path lengths Honest users tend to view profiles of other users that

are nearby in the social network; crawling a significant fraction of the social network requires

crawlers to view users who are disproportionately far from the crawler in the social network.

Genie discriminates against crawlers by charging more credits to view distant users. The

cost, in credits, to view a user that is distance dst away in the social network is defined by

the simple cost function f(dst) = dst − 1.

Leveraging repeated views Honest users repeatedly view the same subset of profiles in

the network; crawlers eschew repeat views unless they are re-crawling the network to track

changes. Genie does not charge for repeat views that occur within a given time period. If

user s views the profile of user t within T days of when s was last charged for viewing t

then s is not charged for the profile view; if more than T days have elapsed then s is charged

as normal. A typical value of T would be on the order of months.

4.4.3 Security properties

We now describe the security properties provided by Genie.

Let C ∈ V be the set of user accounts controlled by the crawler and H = V \ C be the

set of user accounts not controlled by the crawler (i.e., the honest users). The crawler’s goal

is to view the profiles of all users in H as quickly as possible. (He can trivially obtain the

profiles of users in C.)

We call a link (c, h) in the social network an attack link if c ∈ C and h ∈ H . The cut

separating C and H (i.e., the set of attack links) is called the attack cut.

To determine the rate rc at which a crawler can view profiles in H , we need only

consider the attack cut, because all of the crawler’s views have to cross this cut. Profile

views within H or within C are irrelevant, because they must cross the attack cut an even

number of times, and do not change the credit available along the cut.

The rate rc is determined by the following factors:
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• A, the size of the attack cut (number of attack links): a powerful crawler has a large

attack cut.

• dh, the average OSM distance for honest profile views.

• dc, the average OSM distance between users in H and the corresponding closest user

in C.

• rc, the expected rate of profile views received by users in C from users in H: per our

threat model, the crawler has little control over this rate, and we can conservatively

assume that it is the same as the expected rate of views received by a user in H .

• rb, the rebalancing rate.

• f , the view cost function.

Using f(d) = d− 1, the maximal steady-state crawling rate

rc = A
rb + rc(dh − 1)

dc − 1

The numerator is the crawler’s “income”, the rate at which he can acquire credits. The

denominator is the crawler’s “cost", in credits, per profile view. As we can see, the maximal

crawling rate increases linearly with the number of attack links, at a slope defined by the

second term. A larger rb, rc or dh increases, a larger dc decreases the slope.

The credit network effectively makes the power of a corrupted account attack propor-

tional to the number of acquired attack links.

A crawler can increase the crawling rate by obtaining additional attack links, which

are difficult to obtain in large quantities. Obtaining an attack link requires forming a social

link with a user not already controlled by the crawler, or compromising a user account

that has social links with users not already controlled by the crawler. Creating more user

accounts by itself is ineffective, because it does not yield new attack links. As a result, the

credit network renders Sybil attacks as such ineffective. Additionally, purchasing many

compromised accounts is unlikely to provide the attacker with much additionally crawling
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ability: many accounts available in underground marketplaces have been observed to not be

well connected users, but rather poorly connected users on the fringes of the OSM [121].

4.4.4 Potential for denial-of-service attacks

A key concern with any credit-based network is a credit exhaustion attack, where an attacker

seeks to prevent legitimate transactions among innocent users. In the case of Genie, there are

two questions to consider. First, can an attacker’s attempt to crawl the network prevent good

users from viewing each other’s profiles? Second, can an attacker target specific users and

prevent them from viewing other users’ profiles, or from having their own profile viewed by

other users?

Due to the properties of the credit network, the severity of the attack (i.e., the rate of

failed profile views the attacker can cause) is identical in each case. However, in a targeted

attack, the attacker can choose to selectively inflict pain on a subset of users. In the following,

we consider both types of attacks simultaneously.

First, we note that the cost function f has a cost of zero credits for a 1-hop profile view.

As a result, profile views among friends are never denied, no matter what the state of the

credit network. Next, we consider legitimate profile views among non-friends.

Let us consider any cut of the social network other than the attack cut. This αβ cut

partitions V into Vα and Vβ , C into Cα and Cβ , and N into Nα and Nβ , respectively. We call

the cut between Cα and Nα the α attack cut, and the cut between Cβ and Nβ the β attack

cut, respectively. Likewise, we call the cut between Nα and Nβ the N -αβ cut, and the cut

between Cα and Cβ the C-αβ cut, respectively. See Figure 4.9.

Now, we consider the question to what extent the activity of nodes in C can impair

nodes in N in their ability to view the profiles of users on the other side of the αβ cut.

Observation 0: Without loss of generality, we can ignore views from users in Vα to

users in Vα, and from users in Vβ to users in Vβ . The paths associated with such views must
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Figure 4.9: Illustration of attack and αβ cuts.

cross the αβ cut an even number of times, which means that they do not change the total

amount of credit available on this cut.

Observation 1: Without loss of generality, we can focus our attention on the case

where the nodes in Cα crawl nodes in Nβ, but nodes in Cβ do not crawl nodes in Nα.

This is because the credit imbalance caused by the crawler’s activities along the αβ cut is

maximized in this case.

Observation 2: The nodes in Nβ cannot be impaired, because the crawler’s activity

increases the amount of credit available to them along the αβ cut. However, nodes in Nα

may be impaired, because the crawling of nodes in Nβ by nodes in Cα reduces the credit

available to Nα along the αβ cut.

Observation 3: The crawler’s activities can reduce the maximal viewing rate available

to nodes in Nα by the ratio of the sizes of the α attack cut and the N -αβ cut. If the α attack

cut is larger than the N -αβ cut, then the crawler can render the nodes in Nα unable to view

the profiles of non-friends in Vβ .

Observation 4: Social networks are known to have a very densely connected core, with

smaller communities connected at the edges [115]. This means that cuts through the core of

the network are very large. An attacker would have to be very powerful (i.e., have a very

large attack cut) to be able to significantly impair such cuts, and thus a large number of

users.
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Observation 5: If the attacker is well connected to a small fringe community, it can

exhaust credit along the cut that separates the small community from the core of the network.

However, by definition this would only affect a relatively small number of users in that

community. Moreover, these users can rectify the problem by adding more links to the core

of the network.

To summarize, an attacker would have to be very powerful to be able to have a noticeable

effect on cuts through the core of the network, which would impact larger numbers of

users. A modestly strong attacker can impair users in small fringe communities. However,

such users can respond by forming additional links to the core of the network. (Recall

our assumption that an attacker cannot compromise the accounts of specific users of his

choosing. If an attacker were able to do this, he could target weakly connected users or

small communities very effectively.)

We will further explore the impact of crawlers on legitimate users empirically in

Chapter 4.5.

4.5 Evaluation

In this chapter, we evaluate the performance of Genie over several different social networks.

When evaluating Genie’s performance, we focus on the two primary metrics of interest: (1)

the time required for a crawler to crawl a Genie-protected network and (2) the amount of

honest users’ activity flagged by Genie.

4.5.1 Datasets used

To evaluate the performance of Genie, we need four datasets: (i) a social network graph,

(ii) a time-stamped trace of honest users’ profile views in the form of (X, Y, t) where user

X views user Y ’s profile at time t, (iii) a crawler’s topology (i.e., how the user accounts
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controlled by the crawler are embedded in the network), and (iv) the crawler’s profile

crawling trace.

Social network graphs We evaluate the performance of Genie on social network graphs

taken from four different online social networks: RenRen [91] (RR-PKU), Facebook [164],

YouTube [115] and Flickr [114]), which were introduced in Chapter 4.3.2. Table 4.1 shows

their high-level characteristics.

Gathering and generating workload traces Gathering profile viewing traces for large

social networks is rather difficult, as it requires explicit cooperation from social network

site operators. Unfortunately, many OSM operators are reluctant to share such traces due

to competitive and privacy concerns [123]. Thus, we were able to obtain a profile viewing

trace for the RR-PKU [91] network only.

As a result, we design a workload generator that reproduces the key features of the

original RR-PKU profile viewing trace that we observed in Chapter 4.3. We focus on two

features that capture the correlation between profile view request/receiver user degree, the

number of views per user, and the locality of profile views.

It is difficult to preserve the correlation between both requester and receiver user degrees

and number of interactions while ensuring the locality of interactions because of varying

degree distribution and path length distribution across different networks. Instead, we

generated two synthetic traces: a receiver trace that preserves the correlation between the

receiver user degree and number of received views while ensuring the locality of interaction,

and a requester trace that preserves the correlation corresponding to requester user degree

and number of requests made while ensuring locality of interaction. The high level statistics

of one of the receiver trace workloads is shown in Table 4.3.3

3We note that while the larger graphs have higher number of profile request activities in the trace, the
number of activities do not scale linearly with the number of nodes in the trace. This is to be expected because
larger graphs have a greater fraction of low degree nodes in their network that generate few profile requests, if
any. Our generator faithfully captures the correlation between node degrees and their activity. Other studies of
social networks, such as [164], have observed similar trends.
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Network Users Profile views
RR-PKU [91] 33,294 77,501

Facebook [164] 63,392 98,960
Youtube [115] 1,134,889 984,425
Flickr [114] 1,624,991 1,703,831

Table 4.3: Statistics of synthetic profile view workloads generated for different networks.
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Figure 4.10: Comparison of cumulative distribution of hop distances between different syn-
thetic workloads and the original workload.
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Figure 4.11: Comparison of degree to #views (requested or received) correlation between dif-
ferent synthetic workloads and the original workload.

One concern with our trace generation is that if the social networks are sparse and have

very high average path length, the generated trace may not ensure locality of interaction

while preserving the correlation between user degree and number of interactions. We cross

check whether our traces preserve the intended key features. We do this by testing whether

the newly generated traces preserve the two key features we aim to reproduce: (i) locality

of interactions and (ii) the correlation between user degree and number of profile views

received (or requested). We plot the locality of interactions in Figure 4.10 and the correlation
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between node degree and number of profile views in Figure 4.11 for both the original and

the synthetic workload traces. The curves match quite well for all three social networks

(Facebook, YouTube and Flickr) indicating that the synthetic workload generator retains

the key properties of the original RR-PKU workload. We used 5 synthetic traces generated

using different random seeds for each of the Facebook, Youtube and Flickr networks.

Crawler’s attack topology We model crawlers by simulating the crawler has compromised

the accounts of random users in the social network. We simulate 1, 10, 100 and 1,000

corrupted user accounts in the RR-PKU, Facebook, YouTube and Flickr networks. As the

crawler obtains access to more corrupted accounts in the network, he also acquires many

more attack links to honest users. The varying strength of crawlers on different networks is

discussed in Chapter 4.3.2 and Table 4.2.

Crawler’s profile crawling trace To generate the crawler crawling workload, we follow

the same crawler model discussed in Chapter 4.3.2. This models a crawler that achieves the

lowest average path distance to the crawled profiles, and is the optimal attacker strategy.

Unless otherwise noted, all results are the average across 25 different runs of our simulator

(5 synthetic honest user profile viewing traces, each paired with 5 synthetic crawler traces).

4.5.2 Trace-driven simulation methodology

To evaluate the performance of Genie, first we built a max-flow path based trace driven

simulator. We use the social graph connecting the users to simulate a credit network. For

each profile view in the workload trace, our simulator checks if there exists a set of paths

in the credit network that allow p− 1 units of credits to flow between the viewer and the

viewee, where p denotes the shortest path length separating the viewer and the viewee. To

this end, our simulator computes the max-flow paths [131] between the viewer and the

viewee. If the max-flow is larger than p− 1, then the profile view is allowed and if it is not,
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then the view is flagged. If the profile view is allowed, the credits along the links of the

max-flow paths are updated as described in Chapter 4.4.

A key input to our simulator is the credit refreshment rate, which denotes the rate at

which exhausted credits on the links are replenished. We set the credit refreshment rate in

our simulator by tuning the following two parameters described in Chapter 4.4.2: (i) the

initial credit value, i, assigned to each link in the network at the beginning of the simulation,

and (ii) the credit rebalance rate, rb, which restores some of the exhausted credits on the

links after each time step, say of duration t. We set the parameter rb to 1, which has the

effect of restoring the credit values on all links to i after every refresh time period (2 weeks

in our experiments). So i
t

represents the effective credit refreshment rate, which determines

the number of profile views accepted both for crawlers and honest users. As the value of

credit refreshment rate increases, more profile views will be accepted from both crawlers

and honest users. Thus, the key evaluation challenge that we address using our simulator is:

Does there exist a credit replenishment rate that significantly slows down crawlers, while

flagging few views by honest users?
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Figure 4.12: Complementary cumulative distribution of the imbalance of RR-PKU users
(views are weighted by cost function mentioned in Chapter 4.4). Only 226 (0.7%)
users have an imbalance greater than 12.

For a real-life deployment the OSM operator can estimate initial credits by using past

browsing activity of users. The operator can build a distribution of user activity based on

the imbalance between average number of profile views requested and received (weighted

by the cost function mentioned in Chapter 4.4) made per outgoing link per user. Then the
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operator can pick an initial credit value/link from this distribution so that most (e.g. 99.9%)

users’ activity is allowed, but a few profile views are flagged (probably from super active

users or crawlers). We check this methodology with our current RR-PKU dataset. Our

implicit assumption here is that honest user behavior shows constant trends over time. We

show the weighted imbalance distribution in Figure 4.12. From this figure we can estimate

the number of users affected at a given credit value. For example with a credit value of 12,

our estimate shows that views from 33,068 (99.3%) users will be allowed and 226 users will

have some views flagged. We will see in Chapter 4.5.4 that our estimate is quite good and

indeed 275 users are flagged with this particular credit setting.

Scaling simulations to large graphs While we were able to run our max-flow path based

simulator over the smaller RR-PKU network with 33,000 users, we found it computa-

tionally expensive to scale our simulations to the much larger YouTube and Flickr social

networks with millions of users, links, and profile views. The computational complexity

arises out of three reasons: (i) even a single max-flow computation over a large graph is

expensive, the most efficient algorithms for the maximum flow problem run in O(V 3) [79]

or O(V 2 log(E)) [49] time; (ii) we have to perform millions of such computations, one for

each profile view in the trace, and (iii) worse, the computations cannot be parallelized and

have to be done online and in sequence, as the max-flow computation for a profile view has

to account for credit changes on links in the network due to all prior profile views in the

workload trace.

To allow Genie to be deployed on much larger networks, we leverage the recently

proposed Canal[166] framework. Canal speeds up computations over credit networks and

enables credit operations on very large-scale credit networks (of the order of millions of

users) with low latency (of the order of a few milliseconds or less). Canal uses a novel

landmark routing based technique to pre-compute paths with available credit (between

different users in the network) continuously in the background as new credit operations are

processed. Canal trades off accuracy for speed to achieve this goal. It explores only a subset
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Network Avg. time (ms) 95th percentile
time (ms)

RR-PKU [91] 0.16 0.78
Facebook [164] 0.21 0.86
Youtube [115] 0.46 1.45
Flickr [114] 0.65 1.41

Table 4.4: Average and 95thpercentile time taken by Canal implementation to process one view
request.

of all possible paths between two users to complete a credit network operation between

them. Thus, Canal may not always find sufficient paths with available credit between two

users, even if such credit exists. However, Canal can achieve over 94% accuracy on various

large-scale social networks [166]. Using Canal we were able to use Genie on data from

online social networks including YouTube and Flickr that contain millions of users and

links. We show the latency for processing one profile view with the Canal implementation

of Genie in Table 4.4. Our current Canal implementation runs on a single machine. Results

in [166] shows that, using a single machine with 48 GB RAM and 24 CPU cores, Canal

can support operations on graphs with over 220 million links. Canal could likely be scaled

to networks with a billion links using multiple machines and graph parallel processing

frameworks [81, 108].

Simulating Genie with Canal We implemented Genie using the Canal library. While

processing a profile view, Genie asks Canal for the shortest path length between the viewer

and viewee. It should be noted that Canal can only provide an approximate shortest path

length because it uses a subset of all possible paths between two users. Genie uses this path

length as the basis of charging for the view and then queries Canal again for a set of paths

from viewer to viewee with sufficient credit values. If Canal returns a set of paths then the

view is allowed and Genie deducts credit along the returned set of paths. The view is flagged

otherwise. Canal requires two parameter settings to configure the amount of path data to
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be pre-computed. We use the same settings4 used in the original Canal work [166] (these

settings provided over 94% accuracy when applied to the Bazaar [131] system).

As Canal may fail to find sufficient credit when it exists, but will not find credit that

does not actually exist, deploying Genie with Canal provides an upper bound for the number

of flagged profile views. We now examine how close the Canal estimates are to the true

level of flagged user activity.
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Figure 4.13: Variation of the fraction of user activities flagged with different credit values
in RR-PKU in the presence of a crawler with 10 compromised accounts. We
compare the results obtained using Canal implementation (red solid line) with
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To understand the effect of approximation error introduced by Canal in terms of flagged

honest user activities, we compare the Canal implementation output with the output from the

max-flow path based technique. We use the RR-PKU network for this part of the evaluation

as the relatively smaller size of RR-PKU enabled us to use max-flow path based technique.

Figure 4.13 shows the percentage of flagged honest user activity for the two techniques in

the presence of a crawler with 10 compromised accounts. As the amount of credit available

per refresh period increases, the percentage of flagged activity decreases for both techniques.

On average, the absolute difference in flagged activities between the two techniques is only

0.7% of all user activities, suggesting that Canal provides good accuracy. In the rest of our

evaluation we will present results using our Canal implementation.

420 level-3 landmark universes
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4.5.3 Limiting crawlers vs. flagging activity

We now switch our attention to the core tradeoff that is being made as we select the

appropriate credit refreshment rate: namely, the amount of time it takes the crawler to crawl

the entire graph and the fraction of honest users’ activity that is flagged. We have already

observed that to slow down crawlers effectively we need to replenish credits at a slow rate.

However, a limited rate of credit replenishment opens up the possibility of honest users’

views getting flagged. In this chapter, we explore the extent to which honest users’ activity

is flagged by Genie as it tries to limit crawlers.

We ran our Canal implementation for various different values of available credit per

refresh period. For each replenishment rate, we compute two metrics: (i) the time it would

take for a crawler to finish it’s crawl and (ii) the percentage of honest users’ activity that

is flagged. We compare these two metrics looking for a good tradeoff, where crawlers are

effectively slowed down, while good user activity is rarely flagged. We present the basic

tradeoff for our different social networks in Figure 4.14.

For each social network, we show the results for crawlers of different strengths. On

YouTube and Flickr graphs with more than 1 million users, we considered a crawler con-

trolling up to 1,000 user accounts, while for RR-PKU with only 30,000 user accounts,

we limited the crawler strength to 10 users. While the absolute number of compromised

accounts controlled by the crawler might seem small (< 0.1%), it is worth noting that the

percentage of compromised users in these networks is still substantial as discussed earlier in

Chapter 4.3.2.

The plots show that it is possible to slow-down crawls sufficiently to force a crawler

to spend several months to tens of months to complete a single crawl. At the same time,

the percentage of flagged user activity can be held to less than 5%. In many instances, the

flagged activity can be held lower than 1%. Thus, there are two important take-away from

these results: first, when Genie is employed a certain amount of honest users’ activity will
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Figure 4.14: Trade-off between fraction of user activity flagged and time taken to finish a com-
plete crawl in with crawlers of varying strengths over different social network
graphs. As shown in figure we measure crawler strength by the total number
as well as the percentage (shown in parenthesis) of compromised accounts in the
network under control of crawler. Further, we conservatively allowed crawlers
to exhaust the credits on links before allowing any honest users’ activity.
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unavoidably be flagged. Second, unless the crawler is quite powerful and possesses over

0.1% of the accounts the impact of the crawler on honest users is minimal.

4.5.4 Alternate strategies for flagged users

We observed in the previous chapter that a certain amount of blockage of honest users’

activity is unavoidable. In chapter 4.4.2, we discussed that the OSM operator can make

a choice based on some policy, once the profile view is flagged (or blocked) by Genie.

Normally, the OSM operator would deny or delay the view to slow down the crawler’s

activity.

We now pose a simple question: can users do anything to minimize the amount of their

flagged activity? To answer this question, we first investigate the flagged views in more

detail. We then propose some recourses available to users with flagged activity.

We analyze the set of flagged activities in our extensive RR-PKU simulation, where

we compute max-flow paths to verify if a profile view has to be allowed. We intentionally

focused on max-flow based simulations because of the certainty that profile views flagged

during such simulations are flagged due to lack of credit in the network.

For the analysis in this chapter, we focus on one particular simulation experiment with

credit value 12, where 2.6% (or 2,574 activities) of the user activities are flagged and the

crawler controlling 10 compromised accounts needs 8 months to complete the crawl.

A profile view can be flagged due to one of the three reasons: (i) the profile viewer runs

out of credit on all links connected to itself (i.e., source blocked), (ii) the credit on links

connecting the profile viewee is exhausted (i.e., destination blocked), or (iii) the view is

flagged due to credit exhaustion somewhere in the middle of the network. Strikingly, only

190 out of 2,574 (7%) flagged views (i.e., 0.18% of all views) are flagged due to lack of

credit on links in the middle of the network. The remaining 2,384 (out of which 1,961 views

were blocked at the source) views which includes 93% of the flagged activities is due to

credit exhaustion on links directly next to the viewers or the viewees. On examining the
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Figure 4.15: Comparison of the hop distance distribution of 3 users with too many views in
RR-PKU. Their profile view characteristics deviates considerably from the hon-
est user activities.

degrees of these viewers and viewees who are flagged, we find that 96% of them have degree

1 and 99% of them have degrees 5 or less. That is, most activities flagged near the source or

destination, is due to source or destination users having way too few number of friends and

lying on the fringes of the network graph. Our results support our observation in Chapter 4.4

that social network graphs are sufficiently well connected in their core that most flagged

activity (and credit exhaustion) occurs close to the fringes.

Next, we investigated the amount of flagged activities for individual users. We found

that a small number of users are bearing the brunt of the flagged activities. 1,808 of the

2,574 (or 70%) of the flagged profile views are made by 3 users in the network. These are

the same super-active users mentioned in chapter 4.3.1. Interestingly, all three users issue

two orders of magnitude more views than an average RR-PKU user and they are all flagged

near the source. Further investigation suggests that these top three users exhibit crawler-like

characteristics. Figure 4.15 shows that the three most blocked users issue considerably more

long distance views than normal users. In fact, network locality of their profile requests

resembles that of a crawler than that of a honest user with more than 60% viewed profiles

lying beyond their 2-hop neighborhood. Ignoring these three users, whose view trace bears

strong resemblance to crawlers, the percentage of total flagged activity falls to less than

third of its original value, which is already a low percentage (2.6%) of all activity.

For the remaining users who contribute to only 30% of flagged views, we have already

observed that most (99%) of the users have degree less than five. These are users who got
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flagged because their low number of friend links are insufficient to support the reasonable

number (on average 6 views) of views they issued. However, we argue that there is a simple

and natural recourse available to them: they can simply form more links in the online social

network.
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Figure 4.16: Cumulative distribution of how many extra links flagged RR-PKU users needed
for completing their activities. Evidently majority of them needed just a few more
links.

In order to test this hypothesis, we perform a simple experiment. We re-run the Genie

simulation where each flagged user which consists of 275 users (falling in the low degree

category), establishes a friend link to the destination of the flagged view (i.e requester sends

a link request and the receiver approves it). This immediately leads to the acceptance of that

view. At the end of the simulation, we look at the number of friend links established by each

flagged user so that all the earlier flagged views could now be accepted.

Figure 4.16 shows the distribution of number of friend links established versus the

ranked set of users. A significant majority (269 out of 275 or 97%) of the flagged users can

get their views accepted by only establishing very few links (less than 4). Thus, most of the

activity flagged by Genie would be accepted if the users of the flagged views spent a minimal

effort to establish a small number of friends. In fact, if Genie were to be deployed, it would

naturally incentivize users to form a few more friend links. Given that many OSMs already

explicitly encourage their users to form more friend links, we believe that the overhead from

Genie would be acceptable for a majority of users.
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4.6 Discussion

In this chapter, we address the problem of preventing large-scale crawls in online social

networks, and present Genie, a system that can be deployed by OSM operators to thwart

crawlers and proactively control the exposure of the user generated content. Based on

trace data from the RenRen OSM, we show that the browsing patterns of honest users and

crawlers are very different. While most honest users view the profiles of a modest number

of users who tend to be nearby in the social network, even a strong, strategic crawler must

view profiles of users who are further away. Genie exploits this fact by limiting the rate of

profile views based on the connectivity and social network distance between a profile viewer

and viewee. An experimental evaluation on multiple OSMs shows that Genie frustrates

large-scale crawling while rarely impacting browsing of honest users; the few honest users

who are affected can recover easily by adding a few additional friend links.

In the next two chapters we investigate our last scenario of exposure control: controlling

longitudinal exposure. In other words, we check how users are controlling exposure of their

old content today and what we can do to help them.
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CHAPTER 5

Understanding longitudinal exposure in
OSMs

In this chapter, we focus on understanding longitudinal exposure management of OSM

content—a dimension of user privacy that becomes more challenging to manage with the

passage of time. Users’ privacy preferences for sharing content are known to evolve over

time [21, 25]. There can be many reasons for such temporal changes in privacy preferences

– e.g., the sensitivity or relevance of shared content changes with time; the biographical

status of users and their friend relationships change over time. The challenge of managing

longitudinal privacy for a user refers to the difficulty in controlling the exposure of the

user’s socially shared data over time. This challenge becomes more complex over time

as the set of contents shared in the past grows larger and new technologies like archival

(timeline-based) searches make it easier to access historical content shared under outdated

privacy preferences.

Against this background, this chapter asks and investigates the following two founda-

tional questions related to understanding and controlling longitudinal exposure of user data

in social media sites, respectively:

1. In practice, is there evidence for users changing their privacy preferences for content

shared on social media sites 5 to 10 years in the past? If so, what is the extent of the

change in longitudinal exposure of user data?



2. In practice, how effective are the mechanisms provided by social media sites to enable

users to control the exposure of their shared data over time? Could we improve the

effectiveness of longitudinal exposure control mechanisms?

To address these questions, we have gathered extensive longitudinal data (over 6 years) from

the Twitter social media site. Compared to the Facebook social networking site, the privacy

preferences of users for messages (tweets) posted (tweeted) in Twitter are relatively simple

– each tweet is either publicly visible to everyone, or privately visible only to the user’s

followers, or deleted from the site by the user. However, the simplicity of privacy choices in

Twitter allows us to measure the temporal evolution of their users’ privacy preferences by

simply tracking the public visibility of users’ tweets over time.

Our analysis of Twitter messages1 reveals striking evidence of a significant fraction

(∼35%) of all Twitter users changing their privacy preferences over time. Only a minority

(∼8%) of all Twitter users selectively withdraw (i.e., delete or make them private) a small

(∼10%) fraction of all their public posts. On the other hand, a sizeable fraction (∼27%)

of all Twitter users withdraw all of their public posts older than a few (4-6) years. While

a few recent studies have attempted to understand how user’s privacy preferences might

change with time through user surveys [21, 25], to our knowledge, our work presents the

first large-scale measurement study of how users actually change their privacy preferences

in practice. Since our exploration is data-driven (as opposed to user surveys), we could not

investigate the user intentions behind the changes in privacy preferences. A limitation of our

work lies in the assumption that these changes are driven by users’ privacy concerns.

Our investigation of the effectiveness with which Twitter users control the public

exposure of their tweets reveals a fundamental problem. Even after a user withdraws her

public posts, the past interactions of her friends and other users with those posts (by the

way of comments and replies) leave a trail of residual posts that remain on the site (as the

1This study was conducted respecting the guidelines set by our institute’s ethics board and with their
explicit knowledge and permission.
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residual posts are not authored by the same user, they cannot be withdrawn by her). We

show that these residual activities are in many cases sufficient to recover significant amounts

of information about the withdrawn posts. Our analysis of residual activities highlights this

inherent flaw with the longitudinal exposure controls currently being provided to Twitter

users. To make users more aware of the flaws in the existing exposure control mechanisms,

we also design a Twitter app, deployed at http://twitter-app.mpi-sws.org/

footprint/, where any one can login with their Twitter account and check the residual

activities around their posts.

Having identified the limitations of existing longitudinal exposure controls, we discuss

why devising a perfect solution to control longitudinal exposure is extremely difficult. Then

we identify that, as a first step we need to understand the deletion ecosystem in OSMs in

general and need to understand the ownership on OSM content in particular.

5.1 Related work

In this chapter we explore the related work in this space along three axes.

Are users concerned about privacy of their old data? Understanding and improving

privacy control in online social media sites garnered quite a bit of attention in recent

times [48, 152, 92, 103, 85, 107, 29, 27, 112, 21, 25, 129, 180]. The focus of these studies

range from identifying regrettable / deletable content, to understanding the usage of privacy

management mechanisms for sharing data, to designing better privacy management tools.

However, there has been relatively little research on exploring the longitudinal privacy

management mechanisms. Two recent studies [21, 25] surveyed tens to hundreds of users

to explore how online social media users want to manage their longitudinal privacy for old

content uploaded in the recent past (last week, month, year). The study in [21] performed

a user survey and found that a user’s willingness to share content drops as the content

becomes old. Moreover, willingness of share further decreases with a life-change, e.g.,
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graduating from college or moving to a new town. The other study [25] performed two

surveys and discovered that users want some old posts to become more private over time

and their desired exposure set for the content remained relatively constant over the years.

Both of these studies indicate that users are, in general, concerned about the privacy of their

old content, possibly because these content do not reflect who they are at present (possibly

after a change in life). Hence, these studies provide a strong motivation for us to study at

large scale how users in the real-world behave to address their privacy concerns.

How do users control longitudinal exposure of their old data? One natural way for a

user to protect her longitudinal privacy is to delete her old content. Some recent studies have

focused on content deletion by users. For instance a PEW survey [106] on 802 teenagers

found that 59% of respondents edited or deleted their content in OSMs. Almuhimedi et

al. [11] reported the largest study so far on deleted tweets using real world data, however

they only collected data which are deleted at most one week after posting. Specifically, they

collected 67 million tweets from 292K users posted during a week, and found that 2.4% of

those tweets are deleted within that week. Out of their set of deleted tweets, 89.1% were

deleted on the same day on which they were posted. Moreover 17% of those deleted tweets

were removed by the user due to typos or to rephrase the same tweet. However, note that,

they primarily focused on content posted in the near past (no more than one week old) which

were selectively deleted by the user. We will report later in this study how the exposure

controls are quite different for the content posted in the near and far past, and show that the

study [11] missed a large part of deleted tweets posted in far past (e.g., 6 years back).

A few other studies [104, 90] explored the changing behavior of Twitter users over

time. Out of them, Liu et al. [104] analyzed the collective tweeting behavior over time

including deletion of content. They observed that social media users are either selectively

deleting their tweets or deleting their entire account. However, they did not check if there

are limitations of these mechanisms to control exposure. Neither did they explore the
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relative merits and drawbacks of different exposure control mechanisms. We explore these

unanswered questions in detail.

What are some proposed mechanisms to help users control longitudinal exposure?

Some recent studies mentioned possible mechanisms to improve the usability of longitudinal

privacy mechanisms in OSMs. Bauer et al. [25] observed that users are possibly becoming

more privacy-aware about their longitudinal data. This change in users’ privacy concerns is

further reflected by the advent and popularity of systems like Snapchat [145] which deletes

all users’ posts after a predefined expiry time. Aylan and Toch [21] proposed longitudinal

privacy management mechanisms like allowing users to set expiration dates on content or

having an archive feature for old content. We build upon these studies and explore smart

policies for content withdrawal.

5.2 Understanding longitudinal exposure

In this chapter, we aim to understand how users are presently withdrawing their socially

shared content to control longitudinal exposure. We start by answering the simple question

– what are the longitudinal exposure control mechanisms available today in Twitter, for

withdrawing shared content?

5.2.1 Exposure controls in Twitter

We found three distinct mechanisms of withdrawing socially shared content (tweets) in

Twitter today:

1. Withdrawing tweets via selective deletion: The reasons for such deletion ranges from

regrettable content in the tweets to simply correcting typographical errors or rephrasing [11].

2. Withdrawing tweets via deleting account: All tweets posted by a user can be withdrawn

by deleting her whole account.
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Twitter
error
codes

Corres
ponding
HTTP error
codes

Twitter error message Practical interpretation of
Twitter error codes

179 403 Sorry, you are not autho-
rized to see this status

User account made private

63 403 User has been suspended User account suspended by Twit-
ter

34 404 Sorry, that page does not
exist.

Tweet (or user account) with-
drawn

144 404 No status found with that
ID

Tweet (or user account) with-
drawn

Table 5.1: Error codes and error messages returned by the Twitter API when we try to access
a tweet that has become inaccessible. The last column presents a practical interpre-
tation of each error code.

3. Withdrawing tweets via making account private: In Twitter, user-accounts are either

‘public’ or ‘private’. Tweets posted by a public account are visible to anyone online, but

tweets posted by a private account are visible to only the followers of that account, who must

be approved by the private account owner before they can be a follower. Unlike Facebook,

Twitter does not have sophisticated access control mechanisms whereby a tweet can be made

visible to only a subset of one’s followers. In Twitter, a tweet is either public to all users, or

at least to all followers of the user who posted the tweet. Thus, if a user makes her account

‘private’, all tweets posted from this account are no longer available publicly.

Note that there is another factor that will result in tweets becoming inaccessible – if

Twitter suspends a user’s account for violating their terms of service, all tweets posted

by that account will became inaccessible. However, we do not consider this factor as a

mechanism for exposure control, since suspension is not carried out by the user herself.

To perform this study at scale, we needed to identify a large set of tweets that have

been withdrawn by Twitter users. Additionally, we also needed to ascertain why a tweet

has become inaccessible, so that we can ignore tweets that have become inaccessible due

to Twitter suspending the users, and focus only on tweets that have been withdrawn by the

users themselves. The rest of this chapter describes how we identified such tweets.
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Methodology for identifying tweets withdrawn by users: Our methodology consisted of

taking a large set of tweets posted and archived in the past, and checking which ones have

become inaccessible at the time of this study (October 2015). We observed that if we query

the Twitter API with a tweet-id (a Twitter-generated unique identifier for a tweet) that was

archived in the past when the tweet was public, if the tweet is inaccessible at present, the

Twitter API sends back an error code and an error message as explanation. These error

codes are customized by Twitter and are different from the normal HTTP error codes 404

(resource not found) and 403 (access forbidden) that are also obtained during this querying

process. During our experiments consisting of querying for millions of tweet-ids (details

given later), we noticed four distinct error codes that are shown in Table 5.1, along with

the corresponding HTTP error codes, the corresponding error messages, and the practical

interpretation of the error codes. These practical interpretations are based on the Twitter

error messages and experiments performed using one of the author’s Twitter account (as

described below).

As shown in Table 5.1, the error messages accompanying codes 179 and 63 respectively

identify the cases where the tweet has become inaccessible because the user made her

account private, and where Twitter suspended the account. In this study, we will henceforth

ignore the tweets that returned error code 63, since these tweets became inaccessible not

due to user controlling their exposure, but rather due to Twitter suspending the users.

However, neither the Twitter official documentation2 nor the error messages help to

practically interpret the difference between the error codes 34 and 144. We experimented

using the Twitter account of one of the authors of this work, and observed that, both these

error codes practically correspond to the case where the tweet has been withdrawn. However,

these two error codes do not distinguish between the cases where the user selectively deleted

a tweet and where the user deleted her account as a whole. To distinguish between these

two scenarios, we further queried the Twitter API to check the status of the user account

2https://dev.twitter.com/overview/api/response-codes
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Figure 5.1: Percentage of tweets in our sample of archived tweets that have been withdrawn
as of October 2015. The age of a tweet is the difference between the time when
the tweet was posted and the time of querying the Twitter API with the tweet-ids
(October 2015). The amount of withdrawn tweets is increasing considerably over
time – more than 28% of tweets posted 6 years back have been withdrawn today.
The dotted vertical lines in the figure demarcate the points on the x-axis where the
scale changes (days vs. months vs. years).

that had posted the tweet. The interpretation of codes is much simpler for user accounts (as

compared to those for tweets) – the Twitter API returns HTTP code 200 OK for existing

accounts, and error code 404 for deleted accounts.

Thus, by querying the Twitter API with archived tweet IDs (and the userids of users

who posted the tweets), and observing the error codes returned, we can determine whether a

previously public tweet has been withdrawn.

Limitations of our methodology: We do not know exactly when a tweet became inaccessi-

ble, i.e., how long after posting was it withdrawn. However, this limitation does not have

much effect on the analyses we intend to conduct in the later chapters. As we mentioned in

the introduction, we also do not capture the user intention behind the withdrawal, i.e., we do

not know exactly why a user withdrew her tweet or account. That said, we do view historical

tweet withdrawal as being implicitly motivated by the desire for controlling longitudinal

exposure of prior posts.

5.2.2 Longitudinal exposure of user data

To measure the longitudinal exposure of user data over the last six years from the time of the

experiment (October 2015), we used two sets of archived data – (i) a near-complete crawl of
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Twitter done in September 2009 [37], consisting of 1.7 billion tweets posted by 54.9 million

users, and (ii) a 10% random sample provided by Twitter (Gardenhose sample) collected

from 2011 till the time of this study. Note that all of these archived tweets were publicly

shared when the data was originally collected.3

We fixed twenty-two time periods over the last six years, ranging from 1 day ago (from

the date of our experiment in October 2015) to 6 years ago (see the x-axis in Figure 5.1).

Then we randomly sampled 5,000 tweets from each of those time periods from our archived

data.4 We used the method described in the previous chapter on these tweet samples to

check how many of the tweets from each time period have been withdrawn today due to

exposure control of user data. We repeated the experiment over multiple consecutive days

to make sure that the particular day examined was not an outlier (e.g., a holiday, the day

a privacy news story broke, etc.). Specifically, for each of the time periods earlier than 2

months ago, we sampled 5,000 random tweets per day for a week around that time period

and repeated our experiment.

1. How much of the archived data has been withdrawn? Figure 5.1 shows the variation

in the percentage of tweets that have been withdrawn for each time-period. We show box

and whiskers for time periods that are greater than or equal to 2 months, representing results

from multiple days around those timestamps. We observe that there is little variation among

results from the repeated experiments over multiple consecutive days. Unless otherwise

stated, we will report the median from the values obtained through the repeated experiments.

We discover that a substantial amount of past data has been withdrawn today. As shown

by the solid red curve in Figure 5.1, the percentage of withdrawn tweets increases from 4.3%

of the tweets archived 1 day ago to 28.3% of the tweets archived in 2009. Our observation

suggests that users control the exposure for a significant amount of their past data. Hence

3We observed that Twitter provides a tweet in their random sample nearly instantaneously (within seconds)
after a user posts the tweet. Consequently, there is at most a minimal chance that a user deleted a tweet even
before it could appear in our random sample.

4We only considered original tweets (and not retweets) during sampling since our goal is to understand
how much of the tweets originally posted by users are withdrawn today.
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the natural next question is: how do the different exposure control mechanisms account for

this inaccessibility?

2. What is the relative usage of different control mechanisms for longitudinal expo-

sure? Figure 5.1 further shows the variation of the percentage of tweets withdrawn via the

three longitudinal exposure controls – (i) users selectively deleting tweets (green dashed

curve), (ii) users deleting their account (blue curve), and (iii) users making their account

private (pink curve). Surprisingly, we find that tweets posted from the near to far past have

been withdrawn via very different exposure controls. Tweets posted in the near past (e.g., 1

month ago) have mostly been withdrawn via users selectively deleting some of their tweets.

However the percentage of tweets withdrawn via selective deletion quickly stabilizes over

time. On the other hand, the percentage of tweets withdrawn due to users deleting their

accounts or making their accounts private, ramp up as we go further back in the past. In fact,

these tweets account for the bulk of the older withdrawn tweets (e.g., 6 years back).

Specifically, out of 8.9% withdrawn tweets from September 2015 (1 month back), 5.9%

consists of tweets selectively deleted by users and only 3% is contributed by users who

deleted their account or made it private. Whereas, out of 28.3% withdrawn tweets posted in

2009, as much as 16.2% is contributed by users who deleted their account and only 3.2% by

users who selectively deleted tweets.

It is important to note that prior studies on deleted tweets, e.g., by Almuhimedi et

al. [11] exclusively focused on data from the near past (e.g., 1 week in the past), most of

which are deleted shortly (within a few days) after they are posted. Hence, they ended up

analyzing only the selectively deleted tweets, and missed the significant fraction of tweets

posted in the far past that have been withdrawn due to users deleting their accounts or

making the accounts private.

Summary: We analyzed the longitudinal exposure of socially shared data by measuring the

percentage of tweets posted at different time periods in the past, that have been withdrawn as

of today. We discovered that a surprisingly large fraction of old tweets has been withdrawn.
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Moreover, the exposure controls responsible for this withdrawal are very different for the near

and far past. This global view motivates us to better understand privacy related behaviors

at a user-level, i.e., how are individual users controlling their longitudinal exposure? We

address this question next.

5.2.3 Understanding user behaviors

In this chapter, we assess individual users’ behavior for controlling longitudinal exposure

in the long-term. From the near-complete snapshot of Twitter data collected in September

2009 [37], we randomly selected 100,000 users who posted at least 100 tweets. For each

selected user, we randomly sampled 100 tweets out of all the tweets posted by her (as

obtained from the dataset). To simplify further analysis, we selected only the tweets that are

in English, i.e., tweets in which at least 50% of the words appear in an English dictionary.

Further, we ignored users who were later suspended, and the tweets posted by these users.

We were left with 8,950,942 tweets (more than 89% of all tweets), posted by 97,998 users

(97.9% of the users).

Using the methodology described earlier, we found that 29.1% of all the tweets that we

checked have been withdrawn in the last six years, and these tweets were posted by 34.6%

of our selected users.

5.2.3.1 Longitudinal privacy preferences of users

We start with categorizing our users into 3 distinct categories based on their usage of

longitudinal exposure controls for withdrawing their tweets.

1. Non-withdrawers: users who did not withdraw any of their tweets. 65.4% of the

users in our random sample fall in this class.
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2. Partial withdrawers: users who only selectively withdrew some of their tweets.

8.3% of users in our sample are in this class. They have contributed 9.7% of the tweets that

have been withdrawn.

3. Complete withdrawers: These are the users who have withdrawn all of their old

tweets by either deleting their account or making their account private. As many as 26.3%

of our selected users (25,751 in total) are in this class. Out of these users, 60.4% users have

controlled exposure of their data by deleting their account, while 39.6% have made their

account private. Out of all the withdrawn tweets in our sample, these users have contributed

the bulk – 90.3% of all withdrawn tweets.

Table 5.2 shows the relative presence of each category of users in our dataset. We

also show the breakdown of these users across different countries where only the top few

countries (according to number of users) are shown.5 The percentage of users with the

different privacy preferences remains relatively constant across locations. This observation

gives us some confidence that these privacy preferences are not location-specific, rather they

are more universal.

Country Total Non Partial Complete
users withdrawer withdrawer withdrawer

All 97,998 65.4% 8.3% 26.3%
US 43,412 65.4% 8.6% 26.0%
UK 4,870 69.7% 8.7% 21.6%
Brazil 4,576 60.8% 8.5% 30.7%
Canada 2,818 67.9% 10.7% 21.4%
Japan 1,740 73.2% 3.6% 23.2%
Australia 1,602 67.6% 7.9% 24.5%
Germany 1,439 67.7% 8.6% 23.7%

Table 5.2: A breakdown of all users by their privacy preferences as well as by their coun-
tries. Note that the breakdown of users by privacy preferences remains relatively
consistent across countries.

5We obtained the country of our users by leveraging location data of Twitter users gathered by Kulshrestha
et al. [99]. They used the location and timezone field of the Twitter profile for inferring location of users.
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One concern with our methodology is that, since we randomly sampled 100 tweets per

user, we might potentially undercount the fraction of partial withdrawers. To check how

serious this concern is, we repeated our experiments using all tweets posted by a set of users.

However, due to the presence of some very active users, our sampled users posted more that

60 million tweets in total, and given the rate limitations imposed by the Twitter API, it is

very difficult to obtain the present status of all these tweets. Hence, we analyzed a slightly

less active set of ∼ 97k random Twitter users from 2009, who posted between 10 to 100

tweets each. We repeated the same analysis as above considering all of their 2,622,808

English tweets. We found out that 13.6% of the users in this new random sample are partial

withdrawers, which is only slightly higher than the fraction of partial withdrawers in our

original sample of active Twitter users (8.3%).

We also found that, for a large majority of the users who posted between 10 to 100

tweets, the amount of information available is not sufficient for most of the analyses that we

performed further (as described in the subsequent chapters) due to lesser activity of these

users. Hence, in the rest of our study, we will report results for our original set of 97,998

active users who posted 100 or more tweets each.

5.2.3.2 Correlating privacy preferences with demographics

Having identified users with different privacy preferences, we now check who these users

are, by correlating the longitudinal privacy preferences of the users with their demographics.

Twitter maintains only minimal demographic information for users, which includes only a

profile bio and location. In spite of the absence of user-reported fine grained demographics

information, there has been lot of prior work to infer different demographics characteristics

for Twitter users [122, 144, 99]. We leverage this prior work to infer one important demo-

graphic for users from the available profile information – gender of these users. We focus

on the gender since Tufekci et al. [158] noted a correlation between gender and privacy

preferences of users in online social media.
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category Total #users # users with
inferred
gender

% female
users

Random population 97,998 65,438 50.3
Non-withdrawers 64,073 41,054 44.5
Partial withdrawers 8,174 5,667 55.7
Complete withdrawers 25,751 18,717 61.5

Table 5.3: Percentage of female users among different categories of Twitter users whose gen-
der is inferred. The percentage of female users is higher among the partial and
complete withdrawers than in a random Twitter population.

We infer the gender from the self-reported first names specified in the user profiles

using the methodology developed in [122]. Table 5.3 shows the percentage of female users

among the users with different longitudinal privacy preferences. Interestingly, a majority

of the partial and complete withdrawers are female, whereas the exact opposite is true for

non-withdrawers. As a baseline, we checked that in a random sample of Twitter users, the

percentage of males and females is similar. These results suggest that female users are

controlling exposure of their old data more than male users. This finding is also supported

by an earlier study on Facebook [158] which reported that women are more likely than men

to delete social media content.

Summary: We identify three distinct categories of users based on their individual

use of longitudinal exposure control mechanisms. These privacy preferences of individual

users do not vary significantly across countries. We also find that a majority of the content

withdrawers are female.

After understanding the privacy preferences of different users, and observing the signifi-

cant use of longitudinal exposure controls among them, we investigate our next question –

are there any limitations of the current exposure controls?
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5.3 Limitations of existing longitudinal exposure controls

Across online social media sites, the existing longitudinal exposure control mechanisms

have an inherent limitation in the form of retained residual activities associated with a

withdrawn post (e.g., a deleted tweet) or a withdrawn (deleted or private) account.

In these sites users frequently engage in conversations with other users, spurring inter-

actions linked to their posts or to their accounts themselves (e.g., by mentioning a user in

a tweet or by tagging a user in a Facebook post). Such interactions also include someone

publicly replying to a specific post. When a user selectively deletes her post or withdraws

her whole account, those old interactions (from others) associated with her withdrawn post

or account become residual activities which still points to the withdrawn tweet or account.

We show later in this chapter that, anyone today can collect a number of residual activities

(e.g., residual tweets on Twitter) around both withdrawn tweets and accounts posted as far

as six years back from the time of this study.

We acknowledge that such residual activities might exist even when a user deletes her

recent post or withdraws her account created in recent past. However, intuitively, the amount

of residual activities grows over time as an account stays longer in an online social media

site, and consequently the associated privacy concerns become higher. Thus, we focus our

analysis on the residual tweets around withdrawn tweets and accounts posted long back in

the past (in 2009).

The presence of residual activities raises an immediate privacy concern – do the residual

activities actually breach the longitudinal exposure control mechanisms? In other words,

in the context of Twitter, can one recover information about selectively deleted tweets and

deleted/protected accounts by simply collecting and analyzing the residual tweets associated

with them?
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5.3.1 Recovering information about selectively withdrawn tweets

We first focus on the selectively withdrawn tweets, which are deleted by their account holder

while retaining some other tweets posted from their accounts. Specifically, we ask: what is

the amount of the retained residual activities associated with these withdrawn tweets today,

and what can we learn from them about withdrawn tweets?

5.3.1.1 Residual activities around withdrawn tweets

Data collection: We analyzed all the users who selectively withdrew one or more of their

tweets from our random sample of 97,998 active users from 2009 (the same dataset as

employed in Chapter 5.2.3). We then used Twitter search to collect conversations that

mention any of those user accounts. Among these conversations, replies to a tweet still

contain the tweet id of the tweet. Thus, we also identified the reply posts i.e., residual tweets

involving those selectively withdrawn tweets from our dataset.

Limitation of our data: Modified residual tweets like RT@XTZ:<copiedPartialTweetText>

are easy to (programmatically) assign to withdrawn accounts (@XYZ) but not to particular

withdrawn tweets. Therefore we included such residual tweets in the analysis of withdrawn

accounts in Chapter 5.3.2 but not for the analysis of withdrawn tweets in this chapter. Thus,

the data used in this chapter is effectively a lower bound on the residual activity around

tweets. However, even so, we will show that one can still infer significant information about

withdrawn tweets using this data.

How many residual tweets remain around the selectively withdrawn tweets?: In our

dataset, a total of 8,174 users selectively withdrew their 253,853 tweets. We were able

to collect 12,415 residual tweets posted in response to 9,738 of the withdrawn tweets.

Although only 3.8% of all selectively withdrawn tweets have at least one residual tweet,

these withdrawn tweets with residual activities were selectively withdrawn by a significant

fraction of the users – 29.2% of 8,174 users who controlled longitudinal exposure by
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selective withdrawal. We further analyze the number of residual activities per withdrawn

tweet. Figure 5.2 shows that, although a majority (89.2%) of these 9,738 selectively

withdrawn tweets (with residual activities around them) have only one residual tweet, 3.8%

of those tweets have more than two residual tweets. There is a maximum of 59 residual

tweets around a single selectively withdrawn tweet in our data.
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Figure 5.2: Cumulative distribution function (CDF) for number of residual activities per se-
lectively withdrawn tweet. Each of the withdrawn tweets have non-zero residual
activity around it.

5.3.1.2 Recovering keywords from withdrawn tweets

We start by asking – can we recover meaningful words from the original withdrawn tweets

just from the residual replies? To answer this question, we first removed all stopwords

6(no hashtags were removed in the process) from selectively withdrawn tweets and their

associated residual activities, then stemmed the remaining words. We call the resulting set of

words for a tweet keywords. We then checked what fraction of keywords from a withdrawn

tweet also appears in the keywords from the set of residual tweets around it.

How many keywords can we recover from the withdrawn tweets?: Figure 5.3 shows

the fraction of keywords shared by the withdrawn tweets and the residual tweets, as the

number of residual tweets increases. We report the median values (unless otherwise stated)

in this chapter, and the boxes in Figure 5.3 indicate the 25th and 75th percentiles. Note that

we could recover 16.7% of the keywords when the withdrawn tweets received two or more

6We use a list of English stopwords and a list of Twitter-specific stopwords from [179].
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Figure 5.3: Fraction of keywords that could be extracted for each of the withdrawn tweets
(with at least one residual tweet) with varying number of residual tweets. The
boxes indicate the 25th and 75th percentiles in the fraction, and the whiskers in-
dicate the minimum and maximum values. The recovered keywords from with-
drawn tweets increase with the number of residual tweets.

Original withdrawn tweet #Res-
idual
tweets

Example keywords from
residual tweets

Example residual tweets

Saw The Cove last night. Made
me think about how much ALL
animals need our respect – dol-
phins, cats, pigs, dogs, cows,
chickens...

1 cove, respect, animals,
extend, yeah, sea, recom-
mending, veganfail, eat

“@[username] Yeah,
but too bad "The Cove"
doesn’t extend that respect
by recommending to not
eat any animal from the
sea”

[url] - Is it bad for you to eat un-
baked cookie ? Hope not

3 cookie, eat, dough, batter,
yummy, eveyone

“@[username] Cookie
dough is awesome! Eat
it up.”, “@[username] i
don’t think so. isn’t it like
eating cookie dough? i do
it with cake batter all the
time. it’s yummy”

What happened with Palin? 7 palin, resigining, alaska,
safe, dearly, white, house,
fantastic, definitely

“@[username] she’s
resigning. awww...”,
“@[username] she’s
going to act now....Nat’l
Lampoon: Palin goes to
Hollywood.”

Table 5.4: Examples of withdrawn tweets, example keywords from the residual tweets, and
actual examples of residual tweets. The keywords common in withdrawn tweets is
shown in the bold font. As the number of residual tweets increases, their keywords
give out more context about the withdrawn tweet.

replies. Moreover, as expected, more residual tweets allow recovery of more information –

the fraction of common keywords increases as the number of residual tweets increases.
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Keywords revealed from the residual tweets: Table 5.4 shows some sample withdrawn

tweets along with their residual tweets and the keywords gathered from the residual tweets.

The keywords that also appear in the withdrawn tweets are highlighted using a bold font.

Note that even if all the keywords from residual tweets do not match the ones in the

withdrawn tweet, they offer significant contextual information regarding the withdrawn

tweet. This becomes more evident as the number of residual tweets increases. This

observation motivated us to consider another ambitious idea: to what extent is it possible

for a human observer to guess the meaning of a withdrawn tweet from the residual tweets?

Specifically, we asked human observers to guess a withdrawn tweet from its residual tweets,

and then informally checked whether the meaning of the guessed tweets is qualitatively

similar to the meaning of the original withdrawn tweet.

5.3.1.3 Recovering meaning of withdrawn tweets

Since guessing the meaning of a tweet automatically is a hard problem, we instead took help

of human annotators from Amazon Mechanical Turk (AMT) for a preliminary demonstration.

We used three AMT master workers from the USA for this survey. Each worker was first

shown 5 example tweets and their replies. We first binned all of our selectively withdrawn

tweets into five bins by the number of their residual tweets (i.e., tweets with 1, 2, . . . , 5 or

more residual tweets) and selected ten withdrawn tweets from each bin. For our randomly

sampled 50 withdrawn tweets, all the AMT workers were then shown the residual tweets of

each withdrawn tweet and were simply asked to “Guess the original tweet”. Finally we read

through the guessed tweets and informally checked the (qualitative) resemblance between

the meaning of the original withdrawn tweet and that of the guessed tweets.

Table 5.5 shows a part of the result from our AMT experiment.7 As expected, when

the number of residual tweets is small, the AMT workers were sometimes unsure about the

7For an interested reader to check the resemblance in meaning between the guessed and original tweets,
we put our complete AMT evaluation result at http://twitter-app.mpi-sws.org/soups2016/
amt_guess.html.
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Original withdrawn
tweet

#Resi-
dual
tweets

Guessed tweet from AMT workers

Guess 1 Guess 2 Guess 3
Saw The Cove last night.
Made me think about how
much ALL animals need
our respect – dolphins,
cats, pigs, dogs, cows,
chickens...

1 The Cove has
vowed to not
eat any animals,
good start!

Loved The Cove! I think it’s cool
that the cove
doesn’t eat
animal meat.

[url] - Is it bad for you
to eat unbaked cookies?
Hope not

3 Cook cookies? no
thanks, I’ll just
eat them raw.

Are you sure I
can eat this stuff?
It’s got raw food
in it

I made cookie
dough, but I can’t
seem to actually
bake the cookies
because I can’t
stop eating the
dough!

What happened with
Palin?

7 Sarah Palin
finally stepping
down, good day!

Read Sarah
Palin’s governor-
ship resignation
speech here:
<link>

I wonder why
Palin is resign-
ing??

Table 5.5: Examples of selectively withdrawn tweets and the corresponding tweets guessed by
AMT workers who were shown only the residual tweets for a withdrawn tweets. As
the number of residual tweets increases, the AMT workers guessed the meaning of
the original withdrawn tweet more closely.

meaning of the withdrawn tweet. Nevertheless, as the number of residual tweets increased,

all the human observers guessed the meaning of the withdrawn tweets reasonably well

(as reflected in their guessed tweets). This observation indicates that residual tweets often

give out sufficient information for a human observer to guess the meaning of selectively

withdrawn tweets.

Summary: We demonstrate that it is possible to recover both keywords and meaning from

the withdrawn tweets by collecting and analyzing the available residual tweets associated

with them. This is definitely a bad news for the users who wish to control exposure of their

old post through selective withdrawal.
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5.3.2 Recovering information about withdrawn accounts

Twitter users widely employ two mechanisms towards controlling longitudinal exposure of

their accounts – some prefer to delete their accounts, while others prefer to make accounts

private making their content inaccessible to a public observer. We collectively call these

deleted or protected accounts withdrawn accounts. Here, we study two questions: what

amount of residual activity around a withdrawn account is available, and what information

does this residual activity reveal about the withdrawn accounts?

5.3.2.1 Residual activities around withdrawn accounts
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Figure 5.4: CDF of number of residual activities per withdrawn account. More than 55% of
withdrawn accounts have more than 10 residual tweets.

We collected residual tweets around withdrawn accounts using a similar methodology as

described in Chapter 5.3.1.1. We considered the withdrawn accounts from our random

sample of 97,998 users from 2009 (same dataset from Chapter 5.2.3), and then used Twitter

search to collect posts that mentions any of those user accounts. We limited our search to

the period when the withdrawn accounts were active in our dataset, i.e., from the account

creation date to the date of the last tweet appearing in our data.

How many residual activities remain around withdrawn accounts?: We collected a

total of 1,403,716 residual tweets that mentioned 23,526 withdrawn accounts. In other

words, a substantial fraction (91.4%) of the 25,751 withdrawn accounts have some residual

tweets around them. We analyzed the number of residual activities around each account.

Figure 5.4 shows that a significant amount of residual activities remain even at an individual
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account level – 55.9% of all withdrawn accounts have 10 or more residual tweets. Next,

we ask what information can we recover about these withdrawn accounts, using both the

residual tweets and the existing accounts that posted those residual tweets?

5.3.2.2 Recovering social connections
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Figure 5.5: The accuracy of our social connection inference with the percentage of withdrawn
accounts for which we get this accuracy. For more than 30% of withdrawn ac-
counts, all of their residual tweets came from their social connections.

We expect that two users converse mostly when they are socially connected. Thus, as a

first test, we check if the users who mentioned a withdrawn account were connected to the

withdrawn account by the follower-following relation. Cha et al. [37] had collected all the

followers and followings of all Twitter users in 2009 and our withdrawn accounts are part

of their dataset. Leveraging their collected data, we took all the social connections (both

followers and followings) for each withdrawn account as our ground truth. Then we did a

simple prediction: we predicted that each of the accounts mentioning a withdrawn account

are either followers or followings of the withdrawn account. The accuracy of our inference

for each user was: for what percentage of cases was our prediction correct?

Figure 5.5 shows the accuracy of our inference and for what percent of users we have a

specific accuracy. Significantly, for 33.3% of the withdrawn accounts, the accuracy is 100%,

i.e., all residual activities around these withdrawn accounts were posted by their social

connections. For 48.3% of the withdrawn accounts, accuracy is more than 80%. Therefore,

simply by checking who posted the residual tweets associated with a withdrawn account,

we can recover some social connections for a significant number of withdrawn accounts.
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Figure 5.6: 5.6(a) Accuracy of our location inference leveraging residual activities. We can
infer location with high accuracy and the inference is consistently better than
baseline. 5.6(b) the accuracy for withdrawn accounts from different countries.
First bar for each country is accuracy of our method and second bar is percentage
chance that a random user will belong to that country.

A large number of existing studies pointed out that connected users in online platforms

show homophily, i.e., have similar characteristics [155, 10]. So we next check if we can

recover some of the demographic attributes, like location, for the withdrawn accounts by

leveraging the demographics of the accounts who contributed to the residual posts.

5.3.2.3 Recovering demographics

We here focus on whether we can infer the location of an withdrawn account from the

location of the accounts who contribute to the residual activity around the withdrawn

account. As stated earlier, we obtained the ground truth country-level location for user-

accounts from the study [99]. We then picked the most frequent location among the accounts

which posted the residual tweets, as our predicted location for the corresponding withdrawn

account. Our accuracy was decided by the number of withdrawn accounts for which our

prediction was correct. As a baseline for comparison, we take the accuracy of a trivial

predictor that selects USA as location every time (the most popular country in Twitter

population).

Demographics prediction accuracy: Figure 5.6(a) shows the accuracy of our prediction

with increasing number of user accounts associated with residual tweets. Significantly, when
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a withdrawn account has three or more accounts posting residual tweets around it, just by

leveraging the residual activities we can infer the withdrawn account’s location in 85.8%

cases. This is consistently better than the baseline.

We also analyzed accuracy of our location inference for top five countries for the

withdrawn accounts with some residual activities. The baseline accuracy for each country in

this analysis was the accuracy of a predictor that outputs location based on the chance that a

random Twitter user will belong to that country (computed using the full random sample of

∼98K users from Chapter 5.2.3). Figure 5.6(b) shows the comparison of accuracy for top

five countries. We note that even for countries like Japan, where the chance of a random

user coming from the country is as low as 2.25%, our inference is accurate for more than

87% withdrawn accounts.

5.3.2.4 Recovering topics of interest
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Figure 5.7: The percentage of hashtags revealed by residual tweets that were originally also
used by a withdrawn account. 25% of the withdrawn accounts, who ever used
any hashtag in their tweets, used all of the hashtags revealed from their residual
activities.

To recover potential topics the withdrawn accounts could have been interested in, we

leveraged a special type of keyword – hashtags. Hashtags are words in tweets that starts

with a ’#’ symbol and are included to provide the tweet a specific context. Practically

hashtags are used to group together multiple tweets on the same topic. For example, there

were multiple tweets posted with “#iranelection” in 2009 to identify the topic of the tweet

related to Iran election 2009.
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Using data from [37], we determined that 3,855 accounts in our set of withdrawn

accounts posted at least one tweet with a hashtag. Out of those, for 58.7% accounts (2,263

in total), the residual tweets revealed at least one of their hashtags, and in total 3,625 unique

hashtags were revealed for these withdrawn accounts. This correlation encouraged us to

further check what percentage of the hashtags revealed by the residual tweets were also used

by the withdrawn accounts. Figure 5.7 shows our results: interestingly, in 25% of the cases,

all the hashtags revealed by the residual tweets were also used by the withdrawn account.

User
serial

Topics Hashtags used by withdrawn accounts, that are re-
vealed by residual tweets

1 Politics, Sports, Technology #iranelection, #prisoners, #strike, #frenchopen, #tech
2 Politics #conservativebabesarehot, #teaparty, #tcot, #oba-

macare
3 Sports, LGBTQ issues #daviscup, #samesexsunday, #india, #lgbt, #followfri-

day
4 Sexuality, Entertainment #furgasm, #nsfw, #gay, #shazam, #music
5 LGBTQ issues #housing, #dcmetro, #protest, #gaymarriage
6 Politics #immigrationreform, #iranelection, #peace #lgbt
7 Religion #jesus, #truth, #idol
8 Sports #grandrapids, #nascar
9 Sexuality #hugeboner, #carchat
10 Sports, Entertainment #collegefootball, #seinfeld

Table 5.6: Hashtags revealed by residual tweets for 10 withdrawn accounts. These users them-
selves used each of these hashtags. Also shown are some manually annotated topical
categories these hashtags fall into. These hashtags give us an idea of what might be
the topics of interest of the withdrawn accounts.

We further analyzed the hashtags revealed from residual tweets for some individual

withdrawn accounts, and manually annotated the hashtag topics. Table 5.6 presents some

example hashtags from the residual tweets of 10 users, who had used all of these hashtags in

their now withdrawn tweets. As shown by our manual topical annotation of these hashtags,

these hashtags shed light on the user’s interests partially if not fully. Interestingly, some

of these hashtags like “#iranelection”, “#nsfw” might even be considered sensitive, while

other hashtags such as “#daviscup”, “#tech” or “#nascar” give away specific interests of

the withdrawn accounts. This observation provides evidence that the residual tweets still
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reveal information about what a withdrawn account was interested in, even when the account

become inaccessible.

Twitter app to raise awareness about residual activities: To increase user awareness

about their residual activities, we designed a Twitter app, using which any Twitter user can

check what information about her account and individual tweets can be inferred by simply

analyzing her residual activities on Twitter. We invite readers to use the app by visiting

http://twitter-app.mpi-sws.org/footprint/.

Summary: We found significant evidence that the residual tweets and their associated user-

accounts can be leveraged to at least partially recover the social connections, demographics

(location) and even topical interests of the withdrawn accounts. Hence, the goal of the

withdrawn tweet / account owners to control exposure of their (past) data cannot be achieved

by the existing exposure control mechanisms in Twitter.

5.4 Research challenge: How to better control longitudi-

nal exposure?

Naturally, our findings call for improvements of longitudinal exposure control mechanisms,

which will directly increase the usability of such systems from a privacy perspective. We

note that improving longitudinal exposure control mechanisms is a complex problem, as

this has to take into consideration multiple (and sometimes contradictory) factors, such as

the desire to retain some old content while allowing other content to be completely removed

without a trace. Thus there is little chance of having a silver bullet to solve the problem

to controlling longitudinal exposure. Furthermore, we observe that the complexity arises

partially due to the complex issue of the “ownership of content” in the context of OSM

content deletion. This issue is complicated since, in OSMs, multiple users interact with

the same content (while uploading, sharing, commenting etc.); thus, good longitudinal

exposure control mechanisms should be acceptable to majority of these users. To that end,

147

http://twitter-app.mpi-sws.org/footprint/


the concrete research challenge in this space is: we need to better understand and improve

the deletion ecosystem in OSMs today. We take a first step to address this question in the

next chapter of this thesis. Particularly, we take a deeper look into the longitudinal exposure

control mechanisms today; We point out the key challenges in this space and discuss the

relative merits and demerits of a few exposure control mechanisms in the next chapter.

5.5 Discussion

In this work, we explored longitudinal exposure control, i.e., controlling exposure of past

content. Specifically, using extensive data from the Twitter social media site, we studied

whether online users employ longitudinal exposure control mechanisms in real world to

limit exposure of their old data. We find that a surprisingly large fraction (28%) of tweets

posted in the far past are withdrawn by users today. After exploring the usage of existing

privacy mechanisms by individual users, we find a significant problem with mechanisms to

control data exposure today – social media sites retain residual activities around withdrawn

content, which can be used to recover various important information ranging from social

connections to user interests and even parts of the withdrawn content (and might result

in privacy violation). We identify the need to better understand the deletion ecosystem in

OSMs in order to improve longitudinal exposure control mechanisms. To that end, as a first

step, in the next chapter, we survey the longitudinal exposure control mechanisms that are

being deployed in different online social sites today and present a structured analysis of the

deletion ecosystem, which involves actors other than just the content creator.
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CHAPTER 6

Towards better longitudinal exposure con-
trol mechanisms

Our analyses in the earlier chapter show that a large number of users withdraw their past

social content, but nonetheless often a significant amount of residual information is left

behind, possibly leading to significant information leakage about withdrawn social content.

To prevent such privacy violations, we must design improved longitudinal exposure-control

mechanisms.

As we noted before, improving longitudinal exposure-control mechanisms is a complex

problem, which requires consideration of multiple (and sometimes conflicting) factors, such

as the desire to retain some old content while allowing other content to be completely

removed without a trace [25]. In fact, analyzing the effectiveness of such a mechanism

might require a far richer understanding of many dimensions like incorrectly (not) limiting

the exposure of (non-)desirable content, the potential privacy impact of such false flags, the

ownership of residual activities, and the ease of use and in general understanding the intent

of all the actors involved. Hence, it is very unlikely that there is a silver bullet to solve all

the problems with longitudinal exposure control.

Any longitudinal exposure control method involves modifying the past—via deleting

or editing old uploaded content. However, in the online world and specially in OSMs, the

modification of historical content comes with ethical concerns. These concerns are complex

and often very contextual. On one hand, if an OSM user removes her historical content



containing hate speech, then she is evading any type of accountability for her hate speech.

On the other hand, if an OSM user wants to correct grammatical errors in her earlier post,

she is simply aiming to better express her thoughts. The complexity of ethical concerns

with longitudinal exposure-control mechanisms arises from the multiple ownership of OSM

content—users other than the uploader also interact with OSM content (via replies, shares

or likes) and ethical concerns become more complicated since removing or editing past

content concern multiple parties. For example, people who commented on an opinionated

post might not want the content to be removed, since removing it will affect the context of

their comments. In other words, modifying or deleting past content might cause a boundary

turbulence among the boundaries set by owners (i.e., content creators) and co-owners (i.e,

other users) of the content. Since general boundary turbulence has already been investigated

in past privacy theories, we start with a brief review of the relevant theories.

6.1 Related work

The ownership of OSM content may appear to be a trivial or even inconsequential question,

since whoever uploads OSM content should intuitively be the owner of the content. However,

in OSMs or in general in online platforms the ownership of a piece of content has multiple

dimensions—any user (other than the owner) that interacts with a piece of content (replying

to the content, re-sharing the content etc.) should also have some control over how the

longitudinal exposure of the content is to be handled. In fact, online forums like Reddit

enable moderators to delete content contributed by other users. The dilemma with ownership

is true even for other online platforms as well: For example, on a platform like ArXiv [1]

if a research study is uploaded, cited in subsequent studies, and then at some point in the

future removed for some reason, that might have tremendous negative impact on the studies

that used findings of that paper. To that end, the communication privacy management (CPM)
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theory by Petronio [128] and the theory of privacy in the networked world by Palen and

Dourish [127] generally touched upon the idea of ownership for online content.

Petronio’s CPM theory: Petronio pointed out in her CPM theory (mentioned in detail in

Chapter 2.1.4) that, any user who uploaded the OSM content is the owner of the content.

Furthermore, according to her theory, any other entities who have access to the content after

uploading are the co-owners of the content. Both the owners and co-owners use rule–based

privacy management to control the privacy of the content. CPM theory suggests that when

the rules set by owners do not match with those set by co-owners, there are chances for

privacy violations. However, in the context of longitudinal privacy management in OSMs,

CPM theory neither points out the specific actors (exact owners and co-owners) nor the

expectation of these actors from longitudinal exposure-control mechanisms.

Palen and Dourish’s theory: Similar to CPM theory, Palen and Dourish (mentioned in

detail in Chapter 2.1.5) argued that one of the key privacy boundaries in the online world

is the “identity boundary”, i.e. “self vs. other”. In short, the privacy expectations of the

original owner of content might not match with the privacy expectations of other users who

can access the content. This mismatch creates tension at the identity boundary. Palen and

Dourish further pointed out that the identity boundary is also affected by the content sharing

platform which mediates between the content creator and the content recipients. However,

they did not clearly mention who the “other” is—for example, if a user uploads a public

Facebook profile picture, should the whole population of the internet be counted as “other”?

Thus, we need to investigate the general notion of “others” or “co-owners” in the specific

context of understanding the deletion ecosystem in OSMs. Specifically, in our investigation

we need to (i) identify the roles of specific actors, i.e. co-owners and (ii) identify the

key longitudinal exposure-control mechanisms in OSMs today. We will investigate these

two questions in this chapter. We will further point out the concrete research questions

that needs to be answered for a comparative assessment of longitudinal exposure-control

mechanisms. Finally we will conclude this chapter by presenting three improved exposure
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control mechanisms in the context of Twitter and evaluating the merits and drawbacks of

each of these mechanisms.

6.2 Identifying key actors in the deletion ecosystem

Currently, OSM sites like Twitter enable users to control the exposure of their own content.

However, due to the social nature of OSMs, content from multiple people are often effectively

intertwined. The social nature of OSM content and the resultant effect on longitudinal

exposure control is embodied by “residual activities”, which we investigated in Chapter 5.3.

One easy way to deal with such residual activities is to consider OSM content and residual

activities around them (i.e. replies, likes etc.) as a group and apply longitudinal exposure

control to the group of content as a whole. However, the issue is that each group (a piece

of content and all of its residual activities) are contributed by multiple entities and can be

edited/deleted by multiple parties (e.g., a moderator in Reddit can delete content), including

the original uploader and other OSM users/moderators who interacted with the content.

Note that, in this thesis we try to provide users better privacy management tools for their

own uploaded content. Specifically, in the scope of this thesis, we simply assume that if an

OSM user uploads some content, she owns that content. Below we systematically explore

different actors in the deletion ecosystem and their roles in this content.

Owner: The uploader of the OSM content is the “owner” of a piece of content. The

uploader owns the OSM content and consequently has the direct right to control longitudinal

exposure. Today, in OSMs this right is acknowledged by enabling the uploader to control

the longitudinal exposure of their content (e.g., via deletion).

Direct exposure set: The users who interact with the content are the “co-owners” of the

content. We note that, in a very liberal sense, all the people who are in the access control

list can be considered as co-owning the content. However, as we explained in our exposure

control model, in the context of privacy, the relevant set of users are those who actually

152



viewed the content, not all of those who are simply in the access control list. Thus, the

users who actually viewed the content (i.e., the users in the exposure set of the content)

or, more specifically, interacted with the content (via commenting, sharing etc.) should be

the “co-owners”. To that end, we take the human users1 in the exposure set of a content as

co-owners. Collectively we call these users as the “exposure set”. Specifically we denote

the users whom the owner explicitly points out as co-owners (e.g., via tagging them in the

post) are part of direct exposure set. Note that this notation does not apply transitively. For

example, even if a user in the direct exposure set tags another user in the same content, then

the tagged user is still not in the direct exposure set as the owner herself did not tag him.

Indirect exposure set: We denote the users who were not assigned co-ownership by the

owner, but rather gained co-ownership by interacting with the content (e.g., via commenting

on, replying to or liking the post) as the members of the indirect exposure set. Note that, in

the aforementioned case, where user A in the direct exposure set tagged user B, user B will

be in the indirect exposure set. Intuitively, the members of the direct exposure set should

have more knowledge about any longitudinal exposure mechanism applied to a piece of

content compared to the members of the indirect exposure set. In this thesis, by the generic

term “exposure set” we mean the union of users in the direct and the indirect exposure set.

Redactor: We denote the user who controls the longitudinal exposure of a content (via

deletion or edit) as the “Redactor”. The redactor might be the owner of the content. However,

in certain cases, other users (e.g., a moderator or system administrator) can delete or edit a

particular piece of previously posted content.

Suggester: Someone who flags content due to violation of some standards, potentially

causing a redactor to delete it. A suggester might also act passively, e.g., by writing "You

shouldn’t have said that" in response to a post.

1OSM can discount bots or crawlers who viewed the content, as ideally only human users should not have
ownership.
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Key actors in the deletion ecosystem Description
Owner The user who uploads the content.
Direct Exposure set Users whom the owner explicitly ask to view and

co-own the content, e.g., by tagging.
Indirect Exposure set Users who proactively co-own the content, by lik-

ing, commenting or sharing.
Redactor Users who can edit or delete a content, for example

the owner or a moderator of the OSM or even the
OSM operator.

Suggester Users who suggest editing or deleting a content,
e.g., by flagging the content or by posting a nega-
tive comment about the content.

Impact set Users who can detect an edited or deleted content.
Mediator The OSM operator.

Table 6.1: The key actors in the deletion ecosystem of OSMs.

Impact set: The impact set is the set of users who have the ability to view any longitudinal

mechanism applied to a content. Intuitively, if a site like Facebook maintains a public

“edit history” (i.e., a historical edit log made by an owner) alongside any publicly uploaded

content, then the whole population of Facebook is in the impact set of that content. However,

intuitively, the impact set normally should only include the members in the exposure set of

original content.

Mediator: In the online world, the mediator (i.e., in our case the OSM operator) hosts the

content and delivers the content from the owner to the recipients. Note that mediator is

not in the exposure set, since ideally the content delivery in OSM platform is automatic.

However, the mediators are also in charge of providing users longitudinal exposure-control

mechanisms as well as preserving accountability in OSMs (e.g., by detecting and stopping

hate mongers, cyber bullies etc.). Thus the longitudinal exposure control used in the OSMs

should also concern the mediators as they partially own the content by virtue of hosting it.

We will address these above mentioned entities as actors in this chapter. We point

out the actors and their brief descriptions in Table 6.1. Observe that a single user can take

multiple roles. For example, a moderator in Reddit can be both redactor and be in the
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exposure set. Naturally, in order to avoid ethical concerns, longitudinal exposure-control

mechanisms or in general past content modification mechanisms should respect the intent of

as many actors as possible. Currently, different OSM platforms provide the owner a number

of different content modification mechanisms to control the longitudinal exposure of their

old content which has various side effects on the actors. Next, we review the available

modification mechanisms in current OSMs.

6.3 Taxonomy of historical content modification mecha-

nisms in OSMs

In this section we present a taxonomy of content modification methods in OSMs. We divide

the historical content modification methods from the point of longitudinal exposure into two

broad dimensions—1) the removal of content; and 2) the editing of content. We choose the

top ten OSMs by the number of active users (as of April 2017) whose primary language

is English [119]. These sites are Facebook, Whatsapp, YouTube, Facebook Messenger,

Instagram, Tumblr, Twitter, Snapchat, Skype and Viber. Note that, five of these sites,

Whatsapp, Facebook Messenger, Snapchat, Skype and Viber are primarily instant messaging

services. However, they come under the broad definition of OSM [95]—systems that

leverage Web 2.0 technologies to allow the creation and the exchange of user generated

content (both from one user to another and in groups).

In addition to these ten most popular OSMs, we also choose three other popular OSMs

that exemplify other important retrospective content-management mechanisms: Reddit,

4chan and Whisper. Reddit is a popular forum to post and discuss social content. It had

243 million monthly active users as of April 2016 [149]; interestingly Reddit employs

two interesting longitudinal exposure-control mechanisms (i) not letting users delete their

account (ii) anonymizing posts. 4chan [28] and Whisper [41] are two popular anonymous

OSMs—4chan is an anonymous image board with multiple topic based discussion forums
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OSMs # active users
Facebook [53] 1,968 million
Whatsapp [170] 1,200 million
YouTube [175] 1,000 million
Facebook Messenger [56] 1,000 million
Instagram [89] 600 million
Tumblr [159] 550 million
Twitter [160] 319 million
Snapchat [145] 300 million
Skype [143] 300 million
Viber [163] 260 million
Reddit [137] 243 million
Whisper [171] 30 million
4chan [5] 22 million

Table 6.2: List of most popular OSMs that we surveyed for identifying key longitudinal
exposure-control mechanisms.

(e.g, for politics, music etc.) and Whisper is an anonymous micro blogging service, where

users anonymously post short texts. Both 4chan and Whisper are quite popular; 4chan

had 22 million monthly visitors [3] (as of December 2016) and Whisper had 30 million

monthly active users [18] (as of September 2016). We choose them in order to examine how

longitudinal exposure-control mechanisms work in anonymous OSMs. We present the list

of the OSMs with their monthly active users in Table 6.2.

We surveyed these 13 OSMs and identify the key longitudinal exposure-control mecha-

nisms deployed in these systems. Next, we will investigate the content removal and editing

mechanisms separately.

6.3.1 Historical content removal mechanisms

In this thesis, we consider mechanisms that deal with the removal of historical content

directly (e.g., by choosing a single option in the interface). This conservative definition

of removal allows us to differentiate removal mechanisms from editing mechanisms. For

example, in a hypothetical scenario, if an OSM allows a user to overwrite her historical

content without leaving any edit history, even then overwriting historical content completely
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(a) Deleting individual post (no trace) in Face-
book.

(b) Deleting individual post (with marker)
in Skype.

(c) Deleting only owner’s
copy of content in Viber.

(d) Deleting content from the indirect ex-
posure set in Facebook.

(e) Age-based deletion in
Snapchat.

(f) Inactivity-based deletion in 4chan.

Figure 6.1: Screenshots of different historical content removal mechanisms in different OSMs.
Red boxes in some of the figures highlight the relevant feature in OSM interfaces.
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will be considered by us as an editing mechanism, not as a deletion mechanism. To that

end, we observe a wide spectrum of deletion mechanisms in these OSMs, ranging from

completely deleting individual posts to not letting users delete posts. We summarize the

removal strategies in Table 6.3.

• Deleting individual post: Many OSMs allow the owners to delete their individual

posts from the system without any trace. In our survey we observed that Facebook,

YouTube, Instagram, Twitter, Snapchat, some forums of 4chan and Whisper allow

this type of deletion. In the case of 4chan if the post is not made by moderators then

the post can be deleted. Figure 6.1(a) provides an example of such individual post

deletion in Facebook.

• Deleting individual post from the system (with a marker): OSMs like Skype and

Viber allow the owners to delete their individual post from the system (i.e., delete

their posts from the senders as well as the receivers). However, they keep a “marker”,

i.e., a symbol or a piece of text to indicate that the post is removed. For example,

Figure 6.1(b) shows that in Skype, the system replaces deleted content with a “this

message has been removed” marker.

• Deleting only the owner’s copy: Unlike Skype and Viber, some other OSMs only

allow to delete the copy of the owners. This mechanism is similar to the deletion of

emails. If Alice sends an email to Bob, then even if Alice deletes the email from her

inbox, Bob still retains his copy of the received email. For example Figure 6.1(c)

points out the delete options provided by Viber; The highlighted option (marked

with a red box) clearly mentions that this option will only delete the content for the

owner. Interestingly Viber also provides option for deleting an individual post from

the system with a marker. However, OSMs like Whatsapp, Facebook Messanger or

Tumblr only provide the option of deleting the owner’s copy, and not the recipients’

copies.
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• Deleting whole account: All OSMs we surveyed other than Reddit provide users an

option to delete their entire account and remove any content posted by that account.

We note that out of the OSMs we checked only Reddit does not offer deletion of post

or account out of the box. In Reddit, when a user attempts to remove her content,

Reddit simply removes the user’s identity from the content, but the content itself is

not deleted.

• Deleting activities around content: Some OSMs like Facebook, YouTube, Insta-

gram, Tumblr, Snapchat, and 4chan allow the owners to delete activities around their

content (e.g., comments by others), i.e., content from the indirect exposure set. For

example Figure 6.1(d) shows how Facebook allow an owner to delete the comments

on their posts.

• Age-based deletion: Ephemeral OSMs like Snapchat allow the users to set a timer

on their posts and remove the posts after the time is over. In Figure 6.1(e) we show

an example of a Snapchat post; the timer (bottom left corner) allows the owners to

auto-delete their posts after the preset time.

• Inactivity-based deletion: 4chan employs a type of inactivity-based deletion, where

a discussion thread which does not have any new replies will be eventually deleted.

Figure 6.1(f) shows the 4chan faq which explains this feature. Essentially, at any

given time, 4chan shows only the most active threads, discarding the rest. Thus, a

thread that is inactive for an extended period of time (hours or days as indicated by

4chan administrators in Figure) gets deleted.

• Complete removal of post by redactors other than owners: Many OSMs like

Facebook, YouTube, Instagram, Tumblr, Twitter, Snapchat, Reddit, Whisper, 4chan

allow moderators or system administrators to delete content which violates some

community standards (e.g., hate speeches or spam). An example of this feature is

suspension of user accounts and all of their posts by Twitter.
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• No deletion: We observe that in some cases OSMs do not allow the users to at all

remove any of their historical content. For example, in 4chan, sticky threads (the

threads which are shown at the most prominent places irrespective of activity) which

are made by OSM administrators or moderators cannot be deleted.

Having reviewed content-removal mechanisms, we next investigate content-editing

mechanisms.

6.3.2 Historical content editing mechanisms

In addition to allowing users to delete content, OSMs also allow their users to edit their

historical content, i.e. owners can go back to their content and overwrite their post or modify

data surrounding a post (e.g., picture captions or tags). However, the specific editing options

are specific to different OSMs. We summarize the editing options in Table 6.3.

• Editing post (no trace): OSMs like Tumblr and Snapchat allow the owners to com-

pletely overwrite their old content without an editing log; i.e., in OSMs like Snapchat,

others cannot potentially tell if the content is edited after upload. Figure 6.2(a) shows

an example of such an edit feature for a Tumblr post.

• Editing post (with edit history): OSMs like Facebook store a full edit history of

edited past content, which can be viewed by anybody who has access to the original

content. Figure 6.2(b) shows the example of the Facebook interface for showing the

edit history of a particular post.

• Editing post (with marker): OSMs like Skype or Reddit (specifically for comments

to Reddit posts) do not show the edit history of an edited content. However, they

display a marker (i.e, a symbol) to point out that a particular content is edited. For

example Figure 6.2(c) shows that an edited Skype message has a small pencil icon

next to it as marker.
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(a) Edit post (no trace) in Tumblr. (b) Edited post (with edit history) in Face-
book.

(c) Edited post (with the
small pencil icon as marker)
in Skype.

(d) Editing only captions/tags in Insta-
gram.

(e) Archive in Instagram. (f) Anonymize in Reddit.

Figure 6.2: Screenshots of different historical content edit mechanisms in different OSMs.
Red boxes in some of the figures highlight the relevant feature in OSM interfaces.
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content (photos for Instagram, videos for YouTube). Figure 6.2(d) shows this feature

in the case of Instagram.

• Archive: OSM platforms like Instagram also allow the owner to “archive” their post.

Once a post is archived, only the owner can view the post. They can revive the post at

a later point of time if they wish. Figure 6.2(e) shows Instagram’s archive feature by

showing an archived post.

• Anonymize: Reddit also allows another editing mechanism—anonymizing the post.

Reddit allows uploaders to remove their identity from the post, or in other words

edit the post to detach the content owner’s identity from their posts. Figure 6.2(f)

shows an anonymized post, where the user identity is replaced by the string “deleted”.

We note that there are other possible anonymization mechanisms that OSMs can

employ, e.g., deleting personally identifiable information (PII) from the historical post

or just including a short summary of the user’s bio (but not the precise user identity)

automatically in order to preserve the context of the anonymized post.

• No editing permitted: Finally, we note that multiple OSMs, including Whatsapp,

Facebook Messenger, Twitter, Viber, 4chan, Whisper do not allow any editing of past

posts. An owner can remove their past post, but they cannot edit it. On Reddit, too,

original posts cannot be edited once posted. However, comments on these posts can

be edited as mentioned before.

6.4 Research challenge: Exploring usability of longitudi-

nal exposure-control mechanisms

So far our investigation provides the foundation we need to explore the usability of differ-

ent longitudinal exposure-control mechanisms. Our idea is simple: A good longitudinal
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Historical content removal mechanisms
Mechanism Description Example OSMs that support

this mechanism
Deleting individual post Completely deleting individual post from the

system without a trace
Facebook, YouTube, Insta-
gram, Twitter, Snapchat, some
forums of 4chan, Whisper.

Deleting individual post
from the system (with a
marker)

Remove individual post from the system but
keep a marker (e.g, “the message is deleted”)

Skype, Viber

Deleting only the owner’s
copy

Remove content only from the owner’s (e.g,
in Whatspp a sender cannot delete receiver’s
copy of message)

Whatsapp, Facebook Mes-
sanger, Tumblr, Viber

Deleting whole account Complete removal of individual user account
information as well as all the associated post

Facebook, Whatsapp,
YouTube, Instagram, Tumblr,
Twitter, Snapchat, Skype,
Viber, Whisper

Deleting activities around
content

Removal of activities (e.g., comments by oth-
ers) by owner

Facebook, YouTube, Insta-
gram, Tumblr, Snapchat, 4chan

Age-based deletion Automatic deletion of post (e.g., after preset
time).

Snapchat

Inactivity-based deletion Remove posts after a period of inactivity (e.g.,
no replies in 4chan)

4chan

Complete removal of post
by redactors (other than
owner)

A moderator or the OSM operator removing
a particular content (e.g, spam)

Facebook, YouTube, In-
stagram, Tumblr, Twitter,
Snapchat, Reddit, Whisper,
4chan

No deletion The owner is not allowed to remove a post Some forums of 4chan
Historical content editing mechanisms

Mechanism Description Example OSMs that support
this mechanism

Editing post (no trace) Completely overwrite the old post Tumblr, Snapchat
Editing post (with edit his-
tory)

Overwrite the old post, but all previous ver-
sions of the post are available on demand.

Facebook

Editing post (with marker) Overwrite the old post but a marker (e.g., a
pencil icon) is added to the post

Skype, comments on Reddit
posts

Editing only captions/tags Cannot edit the main content, but can only
edit some surrounding data, e.g, caption of a
picture or video

YouTube, Instagram

Archive Deny access to the post for everybody except
owner

Instagram

Anonymize Anonymize a post (e.g., by removing user
identity)

Reddit

No editing permitted Neither owner nor any other redactors are
allowed to edit a historical post

Whatsapp, Facebook Messen-
ger, Twitter, Viber, 4chan,
Whisper, Reddit

Table 6.3: Summary of the historical content modification techniques in OSMs.
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exposure-control mechanisms should respect the intent of as many actors as possible in a

given context. The intent of an actor is how she thinks a removal/editing operation should

be carried out. We leave the investigation of user intent in different contexts to future work.

However, in this section we provide concrete research questions for our future investigation.

Identifying intent of actors in different context: Different OSMs are created to share

different types of content. For example, in the personal-content-sharing OSMs (like Face-

book and Instagram) the owner’s intent might be considered most important. However, in

other platforms the OSM designer might also decide to put more emphasis on the intent of

mediators and might forbid content removal in order to enforce accountability of owners. A

bulletin-board social-news-sharing system like Reddit might want to emphasize community

discussion on social news (i.e., interaction from users in the exposure set). In practice, Red-

dit indeed puts more emphasis on the intent of the users in the exposure set, consequently

choosing not to allow the owner to remove content.

Investigating if different longitudinal exposure-control mechanisms respect the intent

of different actors: Another important research challenge is to compare existing longi-

tudinal exposure-control mechanisms in light of the actors’ intent. We need to identify

in which context a longitudinal exposure-control mechanisms respects the intent of the

majority of actors and where these mechanisms fail to satisfy the intent of most of the actors.

Furthermore, for a given longitudinal access-control mechanism, we need to determine why

the mechanism fails to satisfy certain actor’s intent.

Designing novel mechanisms like “notifications” to augment current mechanisms: Mech-

anisms like “archiving” might respect the intent of both the owners and the OSM operator.

Nonetheless, archiving still affects all the interactions (from others) around the post. To that

end, proactively sending deletion/edit notifications to the users in the exposure set might

improve such mechanisms to respect the intent of some of the actors (e.g., users in the

exposure set). In fact, notifications about removal/deletion can be proactively pushed to
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the actors in some scenarios and in other scenarios it might be more rational to let actors

pull the notifications (so that an actor will know about the removal/editing only the actor is

curious). For example, in the case of archiving, the users who interacted with the post might

receive a push notification that the post is archived and from then onwards, the actors can

only access a read-only, archived version of the post.

Systematically exploring these research questions is part of our concrete future work.

However, next we propose three exposure control mechanisms to show that we can indeed

respect multiple actor’s intents in specific contexts with different proposals. We take Twitter

as our experimental platform and explore some improved longitudinal exposure control

methods for Twitter from the deletion ecosystem in general.

6.5 Proposal for better longitudinal exposure-control mech-

anisms in Twitter

Twitter primarily provides a simple deletion mechanism to the owners for controlling

longitudinal exposure-control mechanisms for old content and does not allow users to

edit their past content. We start with exploring the existing longitudinal exposure-control

mechanisms in Twitter.

Putting users in charge of controlling their longitudinal exposure: This mechanism is

used in most of the popular online OSMs, including Twitter and Facebook, where the content

owners are expected to control their own longitudinal exposure by withdrawing individual

posts / accounts. On the positive side, this mechanism perfectly captures the user intent of

retainment or withdrawal of specific content.

However, as Chapter 5 demonstrated, even when owners withdraw their posts or ac-

counts, the residual activity surrounding the withdrawn posts (authored by other users)

could leak significant information about the withdrawn content. Thus, simply deleting old

posts still might not satisfy the intent of an owner due to the residual activities in Twitter
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(mentioned in Chapter 5). To that end, we propose several possible improvements and

evaluate those proposals.

6.5.1 Proposal 1: Age-based withdrawal

Ephemeral OSMs such as Snapchat [145] and Cyber Dust [2] offer a potential way out of

the residual activity problem which we can apply in OSMs like Twitter. On ephemeral

OSMs, every message is associated with an expiry time after which the post is automatically

withdrawn and becomes inaccessible to the users. Ayalon et al. [21] have suggested that the

system operators of non-ephemeral OSMs (like Twitter) can offer their users similar timed

expiry option such that the posts will become inaccessible to the public after the expiry time.

Though this mechanism solves the problem of residual activities (since even the residual

activities will be inaccessible over time), it has two limitations.

1. First, the default expiry time used in such mechanisms is generally too small (e.g.,

a few seconds or few minutes), which prevents any meaningful discussion around

any post. Since the most interesting posts also get deleted after the expiry time, such

mechanisms might not be preferred by mediators in sites like Twitter which promote

social discussions. One might argue that this limitation can be overcome by simply

setting the expiry time according to user’s preference. Unfortunately, as noted by

Bauer et al. in [25], users are generally bad at anticipating when a post should be

deleted and thus there is little chance that this simple solution would work.

2. Second, age-based withdrawal or any related longitudinal exposure control methods

have a common shortcoming. They solve the problem of residual activities by deleting

all posts, effectively removing the history of any social activities and destroying the

archive of historical social media posts. However, there is a big problem with such

removal of old posts—no archive of historical social media posts. In other words
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age-based withdrawal completely ignore the intent of actors like users in the exposure

set or the mediators.

Some OSMs enable researchers, as well as social media analytics companies (part of

the indirect exposure set of content), to study a huge volume of user generated data. A

prime example of such an OSM is Twitter. Twitter makes a portion of user-generated

data (i.e. tweets) available to researchers and businesses via their streaming or search

API [162]. Research studies use this Twitter data to solve problems ranging from

understanding human behavior to detecting spam. Many of these studies use historical

Twitter data, i.e., data posted recently or in the past (weeks, months or even earlier)

in their research (e.g., while investigating user sentiment for last five US elections).

Unfortunately, age-based withdrawal (at least the current implementation in platforms

like Snapchat) or similar mechanisms makes any such research efforts impossible.

To that end, next we present two more proposals to improve the longitudinal exposure-

control mechanisms.

6.5.2 Proposal 2: Inactivity-based withdrawal

Our proposal is based on a simple intuition—when a post becomes inactive, i.e., it does not

generate any more interaction or receive any more exposure, the post can be safely withdrawn

(deleted/archived/hidden) from the public domain. 4chan offers similar ephemerality by

deleting inactive discussion threads over time.

Note that ‘interaction’ is a general term that can involve several tasks based on the OSM;

e.g., it can mean sharing the post (e.g., retweeting in Twitter), replying to the post or even

viewing the post by the original posting account or other users. Large social media operators

today log all of these interactions.2 Hence, they can easily check if a post is inactive for

more than T days (for any given definition of inactivity), and then the post can be withdrawn

2https://support.twitter.com/articles/20171990#
https://www.facebook.com/help/437430672945092
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from the public domain. Also note that a user can be given various options for withdrawing

her posts which become inactive; for instance, instead of fully deleting the post, she may

instead decide to limit access to the post to only select friends or may even anonymize the

post by removing any identifiable information. Here we generally consider the withdrawal

of posts from the public domain, and leave the details of the exact access control decisions

to the social media operators. Compared to age-based withdrawal, this mechanism has the

following advantages. First, the users need not be burdened with deciding the expiry times

of their posts. Second, this mechanism allows meaningful discussions around interesting

posts, since the posts are withdrawn only after the discussion around them has died down.

Limitations of inactivity-based withdrawal: However, inactivity-based withdrawal is a

simple improvement over age-based withdrawal. Specifically, even in the case of inactivity-

based withdrawal, all the past posts are eventually deleted. Thus, even in this case there is

no preservation of part of historical content. Moreover this mechanism does not capture

a user’s intent to retain some old content even after it becomes inactive (e.g., because it

had acquired large popularity, or because of some user sentiment around a particular post).

Another limitation of this mechanism is that, if a post is continuing to get interactions

because it is controversial in nature, this mechanism would lead to the post remaining in

the public domain. To address such issues, this mechanism should be coupled with other

exposure control mechanisms such as a user being able to specifically withdraw some posts,

or indicating her desire to retain a post even after it becomes inactive.

Even if a user wishes to adopt our proposed mechanism, a technical question needs to

be addressed—how to select a value for T , the number of days after which a post will be

withdrawn? With a very small value of T (say, 1 day), we may end up losing some valuable

interactions; on the other hand, if T is too high (e.g., six years) users run a significant risk

of someone digging up information about their past lives. Next, we demonstrate how the

system operators can leverage the past interaction history to select an appropriate value of

T .
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Figure 6.3: Percentage of lost retweets if tweets were withdrawn after T days of inactivity, for
different values of T . When T is set to 180 days only 0.4% of the future retweets
will be lost.

Deciding an inactivity threshold: We ask a simple question in this direction: if we set a

threshold of T days of inactivity before withdrawing a post, how much of the interaction

generated by a post is likely to be lost? To that end we perform the following experiment.

We randomly sample 700,000 tweets posted in the first week of November 2011, i.e., more

than four years back. Note that all of these tweets are accessible today. In our experiment

we take “retweets” as a proxy for generated interactions by a tweet. For a given tweet, we

can obtain this interaction information directly from the Twitter API (unlike interactions

like residual activities).

In our dataset, 30,014 tweets received at least one retweet and they received 74,705

retweets in total. We collect information about when each tweet received their retweets

using the Twitter API, and simulate setting our inactivity threshold at T days, i.e. each of

these tweets will become inaccessible after T days of not getting any retweets. We analyze

the number of future retweets we would lose for different values of T .

Figure 6.3 shows that if we set our threshold to be too low, say 1 day, we will lose a

significant 5.5% of all the retweets. However, if we set our threshold at only 180 days (i.e.,

decide that after six months of inactivity a tweet might be withdrawn from the public eye)

then only 0.4% of the future retweets will be lost. Note that the parameter T need not to be

global, and every user may choose her own value. In fact, the system operator can show a

range of values of the threshold and point out the associated percent of stopped activities

based on a user’s past history, and allow the user to make an informed decision.
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Threshold
in days

Inactivity based withdrawal Age based withdrawal

#Retweets
stopped

#Tweets these
retweets came
from

#Retweets
stopped

#Tweets these
retweets came
from

1 4,117 1,584 7,798 1,681
7 1,342 556 2,678 587
30 842 317 947 339
90 609 235 744 243
180 300 181 579 193

Table 6.4: Comparison of age and inactivity-based threshold when both have the same thresh-
old. Retweets of more active tweets are stopped by age-based threshold.

A comparison between the inactivity-based withdrawal and the age-based withdrawal:

To demonstrate advantages of inactivity-based withdrawal over the age-based withdrawal,

we also simulated the age-based withdrawal policy with different thresholds over the same

dataset of 700,000 random tweets and their retweets. Our age-based withdrawal policy

is simple: after T days the tweet is withdrawn and all future retweeting is stopped. We

closely investigated how many retweets would be affected by each of these policies if we

set the same threshold. Table 6.4 shows the absolute number of retweets stopped and the

number of tweets these retweets come from. It demonstrates that for the same threshold T ,

inactivity-based withdrawal stops comparatively fewer retweets than age-based withdrawal.

From our experiments, we make a more interesting observation: age-based withdrawal

also affects tweets which generates a lot of interaction (i.e., retweets) over a longer period of

time, e.g, a tweet from the president of the United States. Let us take an example: Table 6.4

shows that when the threshold is set to 180 days, inactivity-based withdrawal stops 300

retweets from our dataset as it makes 181 tweets inaccessible. For the same threshold,

age-based withdrawal makes 12 more tweets inaccessible (total 193), but stops 279 retweets

from those additional 12 tweets, (i.e., on average 23 retweets per tweet). Notice that, by

generating a lot of activity, popular tweets increase the usefulness of social content sharing

systems, respecting the intent of mediators and users in exposure set. Thus, since age-based
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withdrawal might affect popular tweets, even with a high threshold it might not be suitable

in the real-world adaptation. To demonstrate the effect of this issue, we measured actual

time when a tweet will be withdrawn when we set an inactivity-based threshold of T days

for different values of T .
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Figure 6.4: Actual time when a tweet will be deleted when we set an inactivity-based threshold
of T days.

In Figure 6.4, we plot the withdrawal age of the (inactivity-based) withdrawn tweets,

and rank them in a sorted order based on their age. From the slope of these plots for different

values of T , it is clear that the actual age of most tweets is significantly higher than their

inactive age (or period).

Summary: We consider our inactivity-based withdrawal method to be an improvement

over the age-based withdrawal, as it removes the need for a user to guess when her content

should be withdrawn. Instead, the social site operator can present suggestions to users when

a post becomes inactive, and facilitate the withdrawal. However, the intent of the users in

the exposure set might still not be met by inactivity-based withdrawal, since this mechanism

too deletes all post over time.

Next, we propose anonymization as another effective method of longitudinal exposure

control which preserves part of historical content and better honor the intent of users in the

exposure set (e.g., researchers or users who replied to the content) as well as mediators.
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6.5.3 Proposal 3: Anonymize withdrawn tweets

When an owner withdraws her posts, she explicitly expresses desire for not to be associated

with that content any more. Thus a simple trade-off between respecting the owner’s desire

of withdrawal and still keeping a part of the data would be an anonymizing scheme that

anonymize and unlink a post from the identity of its owner or uploader (the user who

originally uploaded the withdrawn content).

In fact, as we briefly mentioned before, there are multiple systems today that decouple

owner identities from content. Examples include fully anonymous social media systems

like Whisper (http://whisper.sh/) or YikYak (https://www.yikyak.com/

home), which omits the concept of associating user identities with posts altogether. More-

over, another OSM operator, Reddit, already employs a version of anonymization for their

withdrawn content (https://www.reddit.com/wiki/privacypolicy). Reddit

simply removes the user identity in a withdrawn reddit comment and replace it by a “deleted”

string.

Based on these observations, we propose the following idea: OSMs should anonymize

the withdrawn historical content to by unlinking the identities of owners from the content

for withdrawn content, rather than removing both the identity and the content. This strategy

provides a trade-off between the owner’s intent of withdrawal and keeping the archive of

historical content—anonymization removes user identity from posts, detaching an owner

from her withdrawn content and the existence of anonymized version of posts (as opposed to

complete removal) preserved a part of the historical data archive. Again we will use Twitter

as a platform to instantiate our proposal of anonymizing withdrawal social content (tweets

in this case).
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6.5.3.1 Anonymization scheme

We propose a simple anonymization scheme for tweets withdrawn by owners; Twitter can

recommend to just replace the owner identities (e.g., owner id, owner’s user-name) in the

withdrawn tweet with a random string.3 In this way the studies that leverage the tweet

content can still analyze the tweet text including URLs and hashtags. Note that here we

consider tweets withdrawn by their owners. Twitter can choose to keep the tweets that

redactors withdraw (e.g., by suspending accounts) as-is (perhaps with a flag that the user

account who posted this tweet is suspended). After the withdrawn historical tweets are

anonymized, users in the exposure set (e.g., researchers) can still view historical tweet data,

and can obtain the URLs, hashtags and words to continue their analysis. Thus, the impact

on the data quality for content analysis will decrease.

Limitations of anonymization: We acknowledge that our proposal is not a silver bullet.

Specifically our particular scheme does not address two issues: First, since all owner

identities are detached from their tweets, researchers focusing on specific parts from the

population might not be able to collect data from those parts (e.g., collecting data from

all female Twitter users posting about Brexit). However, we believe that this is a trade-off

that a researcher have to make while respecting owner intent of data withdrawal. Second,

personally identifiable information (PII) might still remain in the tweets (e.g. as proper

nouns or even writing styles) and our simple anonymization scheme will not remove them.

Twitter might provide users the option to remove this PII by automatically identifying them.

However, finding the PII is highly context dependent and we leave it to future work for

improving this aspect.

Aside from these two issues with our particular scheme, in general any anonymization

scheme raises a general issue—the loss of context. In general when owners are allowed to

delete posts that users in the direct/indirect exposure set have subsequently referred to the

3We address the question of whether the random strings are unique per post or just unique per user (and the
same across all posts from that user) in Section 6.5.3.2.
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deletion does not respect the intent of users in the exposure set. Even for anonymization

schemes (when the content is partially retained) removing the author’s identify from a post,

can change the appearance of a response to the post and disrespect the intent of the users in

exposure set. For example, take the case where the content owner is a staunch supporter of

ruling party and still vehemently opposes government policies in an OSM post. In this case,

anonymization omits the significance of the post considerably by omitting the context of

owner’s political leaning.

6.5.3.2 Likelihood of de-anonymizing an owner using network structure

There is another technical concern that our scheme needs to address. Twitter is a social

network and people converse about published content (e.g., in the form of replies to tweets).

However, while anonymizing a withdrawn tweet, Twitter cannot simply anonymize these

conversations, too; that will raise a complicated ethical concern — these conversations are

posted by users in the exposure set and not the owner of the withdrawn tweet, so, ideally,

anonymizing the conversations would require the explicit consent of all users participating

in the conversation (i.e., all users in the exposure set). Still, these conversing users are highly

likely to be connected to the original owner in Twitter (by follower/following relations) and

might reveal owner identity thorough the network structure of the social graph. An obvious

question is how likely is it for an analyst to identify the owner of an anonymized tweet by

simply looking at the social connections of the users conversing (e.g., replying) with the

anonymized tweet. Next, we will thoroughly investigate this question using data from the

real world.

We will first describe our dataset of Twitter conversations around withdrawn content.

Then we will consider two possible implementations of our anonymization scheme: (i)

anonymization per withdrawn tweet – each withdrawn tweet is anonymized independently,

i.e., owner identities in each withdrawn tweet is replaced by a unique random string and
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(ii) anonymization per owner – where all withdrawn tweets from the same owner, owner

identity is replaced by same random string.

Note that although anonymization per user better honors the intent of users in the

exposure set and mediators (since all withdrawn tweets from same owner and conversations

around them can be grouped), it also leaks more information about owner’s identity (through

information about multiple people conversing with tweets from same owner).4 We will

investigate the likelihood of deanonymizing owner using network structure in both of these

cases.

Dataset to evaluate anonymization scheme: For our analysis in this part we require a

dataset of withdrawn tweets from a large sample of Twitter users and the conversations

around these tweets. We leverage the same dataset mentioned in Chapter 5.2.3 and Chap-

ter 5.3.1.1. Recall that our dataset contains 8,950,942 historical tweets, posted by 97,998

users. Furthermore 33,925 (34.6%) users withdrawn 2,605,317 (29.1%) tweets from this

collection. Aside from historical tweets, there are 41,618 conversations (tweets posted

as replies) around 36,796 of these withdrawn tweets from 7,964 owners (23.5% of the

owners who withdrew their tweets). Our data also contains the social connections of these

conversing users as well as the tweet owners.

Using this dataset we seek to answer the question: How likely is it that the original

owner of a withdrawn tweet is revealed by simply looking at the social connections of the

conversing users? Or in other words, how likely is it that the original owner of a withdrawn

tweet is the only common neighbor of the conversing users in the Twitter social graph?

Deanonymizing an owner when anonymization is done per withdrawn tweet: Recall

that when each withdrawn tweet is independently anonymized, the user identity in each

withdrawn tweet is replaced by a unique random string. So an analyst can only identify

that conversations around each withdrawn tweet are addressed to a particular owner. In that

scenario, we take each withdrawn tweet and collect the social connections (both followers

4Aside from the case when any single tweet by the owner makes the owner identity obvious.
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and followings) of the users who conversed with that tweet. Then for each withdrawn tweet

we check the number of common social connections for the conversing users.
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Figure 6.5: The number of common social connections between conversing users for with-
drawn tweets with one or more conversations. Only 0.9% of the tweets have
one common neighbor within conversing users. Also 98.6% of the 2,605,317 with-
drawn tweets did not spur any conversation (not included in the figure).

The result is shown in Figure 6.5. We note that only for 0.9% of the withdrawn

tweets with one or more conversation, there is exactly one common connection between the

conversing users, and 96.9% of withdrawn tweets have more than 10. We concentrate on

the withdrawn tweets, where there is only one common connection between the conversing

users. We found that, only for 319 withdrawn tweets, the identities of 168 original owners

are revealed, i.e., those owners are the only common social connection of the conversing

users around those tweets. In other words, 99.5% of the 33,925 tweet owners who withdraw

their tweet cannot be de-anonymized using the social connections of conversing users if

Twitter leverage a simple per withdrawn tweet anonymization scheme.

We investigate further and find the main reason for this low likelihood of deanonymiza-

tion: 98.6% of the 2,605,317 withdrawn tweets did not spur any conversation around them

and 1.3% received only 1 conversation (i.e., only one reply). Thus, for most of the owners,

an analyst does not have enough information from the social connections of the conversing

users for revealing owner identity.

Now we investigate the likelihood of de-anonymization if we replace user identities of

all withdrawn tweets belonging to a particular owner with a random string, i.e., the random

string is not unique for each withdrawn tweet, but for each owner.
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Deanonymizing an owner when anonymization is done per owner: In this case an

analyst can identify and group multiple withdrawn anonymized tweets belonging to a

particular anonymized owner. Moreover, she can also identify that all the conversations

around those withdrawn tweets are addressed towards a particular user. Thus, intuitively, an

analyst has more information available for deanonymizing an owner. We implemented this

scheme and check in how many cases the owner is the common social connection of all the

conversing users around all of the owner’s withdrawn tweets.
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Figure 6.6: The number of common social connections between conversing users for with-
drawing owners with one or more conversations. 23.5% of these owners have
exactly one common connection between conversing users. Note that, 76.5% of
the 33,925 owners with withdrawn tweets did not have any conversation (not in-
cluded in the figure).

We found that 23.5% out of 33,925 owners who withdrew tweets, have one or more

conversation in total around her withdrawn tweets. Figure 6.6 shows the number of common

connections between the conversing users for the owners with one or more conversation

around their withdrawn tweets. We note that for 28.7% of these owners there is one common

connection within the conversing users, and for 50% owners the number of common

connections is more than 10.

We again focus on these owners for whom there is exactly one common connection

between the conversing users around her withdrawn anonymized tweets. We found that

1,784 owners, i.e, 5.3% of the 33,925 owners who withdrew their tweets, can have their

identity de-anonymized using social connections of the conversing users. This fraction is

certainly higher than the case when each withdrawn tweet is independently anonymized, but
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this anonymization scheme still protects identities of 94.7% of the owners who withdrew

their tweets.

6.5.3.3 Improving our anonymization scheme: Future directions

So far, we considered a possible anonymization strategy for Twitter as a longitudinal

exposure-control mechanism which partially retains the quality of historical data. Our

strategy involved simply anonymizing the withdrawn tweets by replacing a user’s iden-

tity with a random string. We found that our strategy provides partial protection against

deanonymization upto certain degree when an attacker leverages the Twitter social graph

and the social connection of users conversing with withdrawn tweets (via replying to tweets).

In fact, in the case of per-withdrawn-tweet anonymization, 99.5% of owners would remain

anonymized against such deanonymization attacks. In the case of per-owner anonymization,

94.7% of owners would remain anonymized against such attacks. The social media operators

can choose which anonymization scheme will be suitable for their service, based on to the

extent to which they want to honor the intent of users in the exposure set. They might

further improve their anonymization schemes; we propose two concrete directions: First,

the OSM operators can just keep a fixed number of residual activities associated with each

withdrawn post (and remove the link to withdrawn tweet for other conversations), so that

de-anonymization is nigh impossible. Second, the OSM operators can further strengthen

anonymization by removing personally identifying information (PII) while anonymizing

withdrawn posts. We leave the exploration of these further schemes as a potential direction of

future work. Finally, an intermediate step before deploying this mechanism in platform like

Twitter would be to give them the choice to either “anonymize” and “delete” old posts. This

step would be useful in measuring the response of different actors regarding anonymization.
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6.6 Discussion

In this chapter, we surveyed popular OSMs to identify the actors in the deletion ecosystem of

these OSMs and the longitudinal exposure-control mechanisms available to these actors. We

concretely identify the key research challenges to systematically explore and improve the us-

ability of the longitudinal exposure-control mechanisms today. We proposed three improved

exposure control mechanisms using real-world data to show that different longitudinal

exposure control methods better respect the intent of some actors. Specifically, we evaluated

the effectiveness of—age-based withdrawal, inactivity-based withdrawal and anonymization.

We point out that inactivity-based withdrawal is an improvement over age-based withdrawal.

However, anonymization provides a good balance between respecting the intent of owner as

well as other actors. In the next chapter, we will conclude this thesis by summarizing the

results of our investigation so far and pointing out the future work in this space.
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CHAPTER 7

Concluding discussion

Today billions of online users use OSM sites like Facebook and Twitter to create and share

hundreds of billions of pieces of content. The popularity of these OSM sites has renewed

a discussion of online privacy. Particularly, OSMs created a fundamental shift in content

sharing—prior to the advent of OSMs in the online world the majority of users were content

consumers, however in OSMs users are content creators as well as managers. Thus, in

addition to uploading content in these OSMs, users are also expected to manage the privacy

of each and every piece of content they upload. Consequently, OSM users are facing a

privacy management crisis today as pointed out by news reports, blog posts and research

studies.

In this thesis, we addressed a key research challenge in this space: How do we provide

improved privacy controls to OSM users for managing privacy of their social content from

other users? We identified that the majority of OSMs today use access control as the

dominant model to provide privacy management tools to their users. However, while useful,

access control model is insufficient to capture many real-world privacy violations as well as

multiple dimensions of privacy pointed out in prior privacy theories. To that end, in order to

extend the current access control mechanisms, we introduce the model of exposure control.

We define the exposure of a content as the set of people who actually view the content.

We showed that exposure control in conjunction with access control effectively captures

majority of the dimensions of privacy pointed out in earlier theories. Furthermore, exposure

control captures privacy violations not captured by access control. Thus we argue that OSM



operators should provide users better tools to control the exposure of their content. To that

end, we investigate how to better control exposure in three different real-world scenarios in

this thesis.

Firstly, we identified that, today an easy and widely available method to better control

exposure in OSMs for users is to specify social access control lists (social ACLs, or SACLs);

SACLs are conservative access control lists which allow only a subset of their social contacts

to access a content. However, so far no study attempted to understand how SACLs are used

in the real world and how to improve their usability. To that end, in this thesis we present the

first large-scale study of real-world in-use SACLS of more than 1,000 Facebook users. We

found that the set of friends included/excluded in SACLs shows little correlation with either

profile information, activity or social network structure—Thus making it hard to predict

SACL membership. Fortunately, we found that SACLs are often reused, thus caching recent

SACLs and making them available to users is likely to improve the usability of exposure

control method via SACLs.

Secondly, we found that when users upload content in OSMs, third party crawlers or

bots are quite possibly not in their expected exposure set. However, these crawlers collect

and hoards the data of hundreds of millions of users and violate the exposure control of

content. To that end, we propose Genie, a system for OSM operators to protect privacy via

controlling exposure from large-scale third party crawlers. Genie is a credit network based

solution which exploits the fact that the browsing patterns of honest users (i.e., non-crawler

users) and crawlers are very different: even a crawler with access to many accounts needs to

make many more profile views per account than an honest user, and view profiles of users

that are more distant in the social network. Our experiments using real-world data gathered

from Renren (a Chinese OSM) show that Genie frustrates large-scale crawling while rarely

impacting honest users. Effectively, Genie provides a way to control the exposure of OSM

users’ content from third party crawlers.
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Finally, we investigated longitudinal exposure control in OSMs. The challenge of

managing longitudinal privacy for a user refers to the difficulty in controlling the exposure of

the user’s socially shared data over time. Our study leveraged real-world data from Twitter

to discover that a significant fraction of users withdraw a surprisingly large percentage of

old publicly shared data—more than 28% of six-year old public posts (tweets) on Twitter

are not accessible today. However, we also discovered that residual tweets (replies to Twitter

posts from other users or posts mentioning a user) pose a severe problem to longitudinal

exposure control mechanisms in Twitter. These residual tweets leak significant information

about the inaccessible tweets and user accounts. We developed and deployed a Twitter

app (available at http://twitter-app.mpi-sws.org/footprint/) for Twitter

users to check the residual activities around their accounts and posts.

We identified a key research challenge while investigating how to improve longitudinal

exposure control mechanisms—In OSMs content from multiple users are effectively inter-

twined (via replies, comments, tags etc.). Thus in order to asses and improve longitudinal

control methods we need to understand the deletion ecosystem in OSMs. To that end, we

identified relevant actors other than the uploading user in the context of old content with-

drawal and present a detailed survey of deletion mechanism in OSMs. We present concrete

research questions in order to asses and improve longitudinal exposure control mechanisms

which are part of deletion ecosystem. We present three proof of concept improvements in

the deletion ecosystem of Twitter to show the potential of our approach.

One venue of future work is to provide a framework to compare and improve the

longitudinal exposure control mechanisms via investigating the intent of all the actors

involved (e.g., via semi structured surveys). Two more general venues of future work,

pointed out by this thesis are (i) to expand the model of exposure control and (ii) to apply

exposure control in other scenarios. Some researchers are already trying to do the first [42]

by providing a probabilistic notion of exposure. A concrete example of the second direction

is to improve search exposure—content retrieval mechanisms like search might increase
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unwanted exposure of old content, e.g, by unearthing decades old usenet posts of a user.

Thus, a concrete venue might be to use the concept of exposure control to argue about privacy

violation via search and design exposure control mechanisms to limit search exposure. A

very recent work tried to tackle search exposure [76].

To conclude, the concept of exposure presented in this thesis provides a novel way to

argue about privacy breaches in OSMs and lays the ground work for improving the privacy

management mechanisms. We strongly believe that, our exposure control model is an

important step towards providing better privacy control to OSM users. In fact, exposure

control provides a generic framework to the OSM operators and privacy researchers to better

understand the privacy requirements of their users and improve upon the existing privacy

management mechanisms.
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