
RUNTIME-ADAPTIVE GENERALIZED TASK
PARALLELISM

A dissertation submitted towards the degree
Doctor of Engineering (Dr.-Ing.)

of the Faculty of Mathematics and Computer Science
of Saarland University

by

Kevin Streit

Saarbrücken, 2017

http://www.uni-saarland.de/en/campus/faculties/faculties/faculty-6-natural-sciences-and-technology-i.html
http://www.uni-saarland.de/
mailto:streit@cispa.saarland

Day of Colloquium 20 / 10 / 17
Dean of the Faculty Univ.-Prof. Dr. Frank-Olaf Schreyer

Chair of the Committee Prof. Dr. Jan Reineke
Reporters
First reviewer Prof. Dr. Andreas Zeller
Second reviewer Prof. Dr. Sebastian Hack
Third reviewer Prof. Christian Lengauer, Ph.D.
Academic Assistant Dr. María Gómez Lacruz

To my wife Lena and my little ladies Lotta and Ida, who always
showed the patience and understanding to support me in writing

this thesis.

SAARLAND UNIVERSITY

Zusammenfassung
Chair of Software Engineering and Compiler Design Lab

Department of Computer Science — Saarland Informatics Campus

by Kevin Streit

Mehrkernsysteme sind heutzutage allgegenwärtig und finden täglich weitere Verbreitung.

Und während, limitiert durch die Grenzen des physikalisch Machbaren, die Rechenkraft

der einzelnen Kerne bereits seit Jahren stagniert oder gar sinkt, existiert bis heute keine

zufriedenstellende Lösung zur effektiven Ausnutzung der gebotenen Rechenkraft, die mit

der steigenden Anzahl an Kernen einhergeht.

Existierende Ansätze der automatischen Parallelisierung sind häufig hoch spezialisiert

auf die Ausnutzung bestimmter Programm-Muster, und somit auf die Parallelisierung

weniger Programmteile. Hinzu kommt, dass häufig verwendete invasive Laufzeitsysteme die

Kombination mehrerer Parallelisierungs-Ansätze verhindern, was der Praxistauglichkeit

und Reichweite automatischer Ansätze im Wege steht.

In der Ihnen vorliegenden Arbeit zeigen wir, dass die Spezialisierung auf eng definierte

Programmuster nicht notwendig ist, um Parallelität in Programmen verschiedener Domänen

effizient auszunutzen. Wir entwickeln einen generalisierenden Ansatz der Parallelisierung,

der, getrieben von einem mathematischen Optimierungsproblem, in der Lage ist, fundierte

Parallelisierungsentscheidungen unter Berücksichtigung relevanter Kosten zu treffen. In

Kombination mit einem spezialisierenden und adaptiven Laufzeitsystem ist der entwickelte

Ansatz in der Lage, mit den Ergebnissen spezialisierter Ansätze mitzuhalten, oder diese

gar zu übertreffen.

Diese Arbeit ist in englischer Sprache verfasst.

http://www.uni-saarland.de/
http://www.st.cs.uni-saarland.de/
http://www.cdl.uni-saarland.de/
http://www.cs.uni-saarland.de/
mailto:streit@cispa.saarland

SAARLAND UNIVERSITY

Abstract
Chair of Software Engineering and Compiler Design Lab

Department of Computer Science — Saarland Informatics Campus

by Kevin Streit

Multi core systems are ubiquitous nowadays and their number is ever increasing. And while,

limited by physical constraints, the computational power of the individual cores has been

stagnating or even declining for years, a solution to effectively utilize the computational

power that comes with the additional cores is yet to be found.

Existing approaches to automatic parallelization are often highly specialized to exploit the

parallelism of specific program patterns, and thus to parallelize a small subset of programs

only. In addition, frequently used invasive runtime systems prohibit the combination of

different approaches, which impedes the practicality of automatic parallelization.

In the following thesis, we show that specializing to narrowly defined program patterns

is not necessary to efficiently parallelize applications coming from different domains.

We develop a generalizing approach to parallelization, which, driven by an underlying

mathematical optimization problem, is able to make qualified parallelization decisions

taking into account the involved runtime overhead. In combination with a specializing,

adaptive runtime system the approach is able to match and even exceed the performance

results achieved by specialized approaches.

http://www.uni-saarland.de/
http://www.st.cs.uni-saarland.de/
http://www.cdl.uni-saarland.de/
http://www.cs.uni-saarland.de/
mailto:streit@cispa.saarland

Acknowledgements

First and foremost, I want to particularly thank my advisers Andreas and Sebastian for

their time, patience and advice. They never stopped to believe in me and a risky research

idea and provided support and inspiration throughout the years.

While I had the pleasure to meet many interesting and highly valued people that have

influenced and contributed to the work that has been condensed in this very PhD thesis

by endless and fruitful discussions, I have to particularly mention two of my colleagues

with whom I closely collaborated and whom I consider my friends:

The implementation and ideas of the whole Sambamba framework, which is an integral

part of the work presented in this thesis, has been done together with Clemens Hammacher,

whose main topic of research lies in the field of speculative parallelization. He has

been colleague, teammate and a good friend during the whole course of my thesis work.

Consequently, not only the implementation, but also many ideas and solutions presented

on the following pages are in the end the result of our collaboration.

In no way fewer influence on the presented results had Johannes Doerfert, a former Bachelor

and Master student of ours who now conducts his PhD studies in the field of Program

Optimizations based on the Polyhedral Model in the Compiler Design Lab at Saarland

University. He also contributed in the form of code, time and discussions to many parts of

the presented work.

Part of the work presented in this thesis was performed in the context of the Software-

Cluster project EMERGENT (http://www.software-cluster.org). It was funded by the

German Federal Ministry of Education and Research (BMBF) under grant no. “01IC10S01”.

Later work has been supported, also by the German Federal Ministry of Education

and Research (BMBF), through funding for the Center for IT-Security, Privacy and

Accountability (CISPA) under grant no. “16KIS0344”.

mailto:hammacher@cs.uni-saarland.de
mailto:doerfert@cs.uni-saarland.de
www.software-cluster.org

Contents

Zusammenfassung iii

Abstract iv

Acknowledgements v

1 Introduction and Motivation 1
1.1 Contributions of this Thesis . 8
1.2 Publications . 10

2 Background Terminology and Concepts 11

3 State of Parallelization Research 23
3.1 Reduction . 23
3.2 Manual Parallelization . 26
3.3 Static Parallelization . 27
3.4 Runtime-centric Parallelization . 31
3.5 Conclusion and Open Issues . 33

4 Sambamba — A Static/Dynamic Parallelization Framework 35
4.1 Simple Task-based Parallelization — ParAτ 37

4.1.1 Dependence Analysis . 38
4.1.2 Basic-block-wise Parallelization . 48
4.1.3 Parallel Control-flow Graph (ParCFG) 49
4.1.4 Parallel Section Propagation . 52
4.1.5 Load-based Adaptive Dispatch . 55
4.1.6 Lessons learned from ParAτ . 56

4.2 Speculation Support . 56
4.2.1 Software Transactional Memory . 57
4.2.2 K-TLS . 58

4.3 The Dynamic Nature of Sambamba . 60

5 Generalized Task Parallelism — ParAγ 63
5.1 Program Representation . 65

5.1.1 Program Dependence Graph (PDG) 65
5.1.2 Sequentialization of the Program Dependence Graph 67

5.2 Parallelization Enabling Techniques . 71
5.2.1 Generalized Reduction . 72
5.2.2 Privatization . 86

5.2.3 Speculation . 87

6 ILP-based PDG-Scheduling 89
6.1 ILP Formulation . 90

6.1.1 Prerequisites . 90
6.1.2 Constraints . 91

6.2 Alternative ILP Formulations . 96
6.2.1 Whole Function Scheduling . 97
6.2.2 Scheduling with Code Duplication 99

6.3 Scheduling Time . 102

7 Runtime-Adaptive Parallel Execution 105
7.1 Runtime Profiling . 106

7.1.1 Call-site Execution Times . 107
7.1.2 Branch Profiles . 109
7.1.3 On Profiling Overhead . 111

7.2 Candidate Composition . 112
7.2.1 Execution Cost Evaluation . 113

7.3 Dynamic Blocking . 116
7.4 Adaptive Dispatch . 118

7.4.1 Load-based Dispatch (load) . 119
7.4.2 Task Nesting Depth Dispatch (tnd) 120
7.4.3 Tasks In Flight Dispatch (tif) . 126
7.4.4 Combined Dispatch . 128

8 Implementation 131
8.1 The Sambamba Framework . 131

8.1.1 Technical System Overview . 132
8.1.2 Sambamba Modules: Compile-time vs. Runtime 136
8.1.3 Multiple LLVM Modules . 138

8.2 ParAγ—Relevant Implementation Details 140
8.2.1 Block Splitting . 140
8.2.2 Schedule Cache . 142
8.2.3 ILP Cloud . 142

8.3 A Note on Inter-core Communication . 144

9 Evaluation 147
9.1 Setup . 150
9.2 Benchmark Suites . 150
9.3 Results of the Detailed Evaluation . 151
9.4 Results on PolyBench and the Cilk suite 156

10 Extension and Use Case: Semi-Automatic Parallelization 159
10.1 C/C++ Language Extension . 161
10.2 Communicating Analysis Results . 163

10.3 IDE Integration . 164

11 Conclusion and Future Work 167

List of Figures 171

List of Tables 173

Appendix 175

A Irregular Sample Application Written in C 175

B OpenMP-parallelized pairalign Function 179

Bibliography 183

Chapter 1

Introduction and Motivation

The free lunch is over. This frequently cited phrase has been coined by Herb Sutter in his

famous article [1] proposing a necessary reinterpretation of the consequences of Moore’s

Law [2]. Gordon E. Moore predicted in 1965 roughly a biennial doubling of the number

transistors in dense integrated circuits. Surprisingly, this prediction, which was meant to

cover the next ten years, held true for several decades and still does. The consequences

changed, however.

Consider Figure 1.1, which plots the development of transistor counts in Intel processors

from 1970 to 2010 (note the log-scale of the y-axis). For many years, processor manu-

facturers have been able to translate the increased number of transistors directly into

higher clock speeds and increased instruction-level parallelism (ILP); this however changed

dramatically around 2004 when those numbers started to stagnate due to increasing

difficulties with dissipating the additionally produced heat that comes with an increasing

power consumption.

Unfortunately, the increasing clock-speed and exploitable instruction-level parallelism have

been the driving forces of increasing single-thread performance from which most programs

have been able to effortlessly profit—the free lunch. As can be seen in Figure 1.2, the

additional transistors, whose number still grows as predicted by Moore, are put into an

exponentially growing number of compute cores.

2 Chapter 1

Figure 1.1: Development of the number of transistors 1970-2010. Source: Sutter [1].

Now to exploit the power of modern multi-core architectures, the software being executed

on it has to run in parallel. While there are multiple incarnations of parallel execution, like

running multiple applications at the same time or running multiple instances of a program

or heavy computation in parallel, developers inevitably have to face the problem of also

internally parallelizing a specific application. This also applies to legacy applications, i.e.,

applications which are typically not under active development, and, consequently, the

original developer not necessarily available any more. Unfortunately, parallelizing software

and maintaining the parallel code is expensive, error-prone and generally considered hard

by most programmers of which many say about themselves that they are either unable

or unwilling to explicitly deal with parallelization [4, 5]. These difficulties particularly

apply to legacy software, which is oftentimes hard enough to understand and maintain in

a sequential form, let alone in a platform-specific, parallelized form.

Consider the kernel_bicg function shown in Figure 1.3. It is an OpenMP [6, 7] parallelized

version of the code shown in Figure 1.4a, as produced by a state-of-the art polyhedral

Introduction and Motivation 3

Figure 1.2: Development of transistor count, single-core performance, and number of
cores 1970-2015. Source: Rupp [3].

optimization tool. Performance-wise this version is desirable; but due to its complexity

it is not the code developers should need to maintain. Instead it should be the easily

reproducible result of the press of a button in the course of compiling for a new platform

or changing the underlying algorithm as shown in Figure 1.4a.

Due to the increased complexity of producing and maintaining parallel code, automatic

parallelization of sequential code has been a central goal of academic computing research

and the past decades have produced several concepts and parallelization approaches. Each

one is tailored to exploit parallelism found in specific program patterns: Given a suitable

reduction analysis, any DOALL-style loop parallelizer [8] can enable parallel execution of

each of the three loops in Figure 1.4a. Loops which carry dependences do not qualify for

DOALL-style parallelization. They can be dealt with by employing DOACROSS-style loop

parallelization [9] or Software Pipelining1, for instance. The manually tail-call optimized

version of quicksort in Figure 1.4c, is an example for such a dependency-carrying loop.

Recursive tasks, as shown in Figure 1.4b, can be parallelized by classical fork-join style

task parallelism.

The examples mentioned above are a first hint on the diverse appearance of parallelism

on a very high level of abstraction. In fact, the patterns searched for and exploited

by parallelization approaches discussed in modern parallelization research are way more
1sometimes also called DOPIPE

4 Chapter 1

1 static void kernel_bicg(...) {
2 if ((ny >= 1)) {
3 ub1 = floord((nx + -1), 256);
4 #pragma omp parallel for private(c2, c3, c4, c5, c6) firstprivate(ub1)
5 for (c1 = 0; c1 <= ub1; c1++)
6 for (c2 = 0; c2 <= floord((ny + -1), 256); c2++)
7 for (c3 = (8 * c1); c3 <= min(floord((nx + -1), 32), ((8 * c1) + 7)); c3++)
8 for (c4 = (8 * c2); c4 <= min(floord((ny + -1), 32), ((8 * c2) + 7)); c4++)
9 for (c5 = (32 * c4); c5 <= min(((32 * c4) + 31), (ny + -1)); c5++)

10 #pragma ivdep
11 #pragma vector always
12 #pragma simd
13 for (c6 = (32 * c3); c6 <= min(((32 * c3) + 31), (nx + -1)); c6++)
14 q[c6]=q[c6]+A[c6][c5]*p[c5];
15 }
16 if ((nx >= 1)) {
17 ub1 = floord((ny + -1), 256);
18 #pragma omp parallel for private(c2, c3, c4, c5, c6) firstprivate(ub1)
19 for (c1 = 0; c1 <= ub1; c1++)
20 for (c2 = 0; c2 <= floord((nx + -1), 256); c2++)
21 for (c3 = (8 * c1); c3 <= min(floord((ny + -1), 32), ((8 * c1) + 7)); c3++)
22 for (c4 = (8 * c2); c4 <= min(floord((nx + -1), 32), ((8 * c2) + 7)); c4++)
23 for (c5 = (32 * c4); c5 <= min(((32 * c4) + 31), (nx + -1)); c5++)
24 #pragma ivdep
25 #pragma vector always
26 #pragma simd
27 for (c6 = (32 * c3); c6 <= min(((32 * c3) + 31), (ny + -1)); c6++)
28 s[c6]=s[c6]+r[c5]*A[c5][c6];
29 }
30 }

Figure 1.3: An example of complex, but efficient parallelization: parallel BiCG.

specific. The following quotation has been taken from a recent publication [10] on so-called

speculative cross-invocation parallelization of nested loops:

Introduction and Motivation 5

“ A hot loop is a candidate for SpecCross if it satisfies three

conditions:

1. the outermost loop itself cannot be successfully parallelized

by any automatic parallelization technique implemented in

the existing parallelizing compiler infrastructure (including

DOALL, LOCALWRITE, and DSWP);

2. each inner loop can be independently parallelized by a

non-speculative and non-partition based parallelization

technique such as DOALL and LOCALWRITE; and

3. the sequential code between two inner loops can be priva-

tized and duplicated among all worker threads.

”Searching for and exploiting such specific patterns raises the question of applicability to a

broader range of applications. This is not to say that every parallelization approach should

be able to deal with every form of exploitable parallelism or even every application domain.

However, a big challenge of parallelization nowadays are general purpose applications.

In contrast to typically well understood and statically analyzable scientific applications,

such general purpose applications show irregular and input-dependent memory accesses

and dependence patterns and are effectively assembled from a whole set of dynamically

linked and at compile-time unavailable libraries. But most importantly, they are typically

implemented by a diverse set of differently skilled and trained programmers making use of

completely diverse computational patterns in different parts of an application. In contrast

to a typical scientific application, one cannot easily identify the one deep loop nest that

implements the computational kernel and dominates execution time.

All the parallelization approaches mentioned before work well for the specific form of

parallelism they have been developed for; however, they are mostly also restricted to

6 Chapter 1

1 void kernel_bicg(double A[NX][NY], double s[NY], double q[NX],
2 double p[NY], double r[NX]) {
3
4 for (int i = 0; i < NY; i++)
5 s[i] = 0;
6
7 for (int i = 0; i < NX; i++) {
8 q[i] = 0;
9

10 for (int j = 0; j < NY; j++) {
11 s[j] = s[j] + r[i] * A[i][j];
12 q[i] = q[i] + A[i][j] * p[j];
13 }
14 }
15 }

(a) BiCG

1 void fft_twiddle(int i, int i1, COMPLEX *in, COMPLEX *out, COMPLEX *W,
2 int nW, int nWdn, int r, int m) {
3
4 if (i == i1 - 1) {
5 fft_twiddle_gen1(in + i, out + i, W, r, m, nW, nWdn * i, nWdn * m);
6 } else {
7 int i2 = (i + i1) / 2;
8 fft_twiddle(i,i2,in,out,W,nW,nWdn,r,m);
9 fft_twiddle(i2,i1,in,out,W,nW,nWdn,r,m);

10 }
11 }

(b) fft

1 void seqquick(ELM * low, ELM * high) {
2 ELM *p;
3 while (high - low >= 1) {
4 p = seqpart(low, high);
5 seqquick(low, p);
6 low = p + 1;
7 }
8 }

(c) Quicksort

Figure 1.4: Different parallelizable functions: BiCG (A) kernel implementation (taken
from the PolyBench 3.2 suite); and fft (B) and Quicksort (C) implementations (adapted

from the cilksort and fft programs of the Cilk example application suite).

be effective only on these patterns they seek to exploit. We are not aware of a single

approach that efficiently parallelizes all of the three code examples in Figure 1.4, let alone

handling code which embodies complex combinations of loops and recursion across several

functions. Indeed, an integration of these parallelization approaches poses tremendous

practical challenges, as the underlying models and assumptions are vastly different. This

in particular holds true if the parallelization approach relies on a complex runtime system

which is typically designed under the assumption of sole control over the computational

Introduction and Motivation 7

resources of a system. Different parallelized applications running in parallel, or even

differently parallelized parts of a single application violate this assumption.

But even if we could build a compiler that provides all important parallelization approaches

and covers any specific form of parallelism, we still would lack a joint cost model that is

powerful enough to drive the choice between different kinds of parallelism: if a compiler

has to decide for one approach to parallelize a given piece of code, how should it decide?

In particular, being aware of the fact that it should decide for only one system used for

the whole application, as the runtime systems of different approaches are typically not

compatible or at least interfere in unpredictable ways, undermining the fragile cost models

driven by heuristics and platform-specific benchmarks. Furthermore, as the benefits of

parallelization outside of the scientific domain are still hardly predictable, most approaches

rely on the option to fall back to sequential execution if the runtime system deems parallel

execution unbeneficial. But if the one system chosen by the compiler at compile-time falls

back to sequential execution at runtime, the chance for different parallelization approaches

to prove successful is gone.

An integrated approach, however, would be worthwhile to combine the strengths of the

present approaches for parallelization. The need for integration becomes even more obvious

when speculation, privatization, and reduction are taken into account—three techniques

that have been identified frequently as being among the most important techniques for

enabling parallelism. Scientists even go as far as claiming that without such techniques

efficient parallelization of general purpose applications is impossible (e.g., [11] or [12]).

Enabling parallelism naturally increases the range of possibilities for a parallelizer to choose

from. However, it is not automatically implied that such parallelism can be exploited in a

profitable way. Each of those techniques introduces potentially significant overhead. This

overhead needs to be compensated by an at least equally high reduction of execution time.

As a detailed example, reconsider BiCG in Figure 1.4a. Even without considering complex

iteration space transformations as necessary to produce the result shown in Figure 1.3, we

are left with multiple forms of parallel execution to choose from: different opportunities

exist to realize a reduction, for instance, and an automatic parallelizer is left with the

decision of which loop to parallelize. When parallelizing the outer loop of the loop-nest,

8 Chapter 1

the reduction-induced dependence via the array s needs to be broken and handled specially

in the parallel code. This can be done by privatizing the whole array s, techniques

like LOCALWRITE [13], or, for instance, by using atomic operations (or unordered atomic

sections) instead. An alternative would be to parallelize the innermost loop only. In

that case, only one array cell needs to be privatized in order to fix the broken reduction

dependence via the array q. Making a qualified decision on the way to parallelize the code

and fix the broken reduction dependences, or even to speculate on statically unanalyzable

dependences requires to take multiple factors into account, some of which are not known at

compile-time: user input, execution platform, available number of cores. All this calls for

a deep integration of parallelization approaches on a sound theoretical base, implemented

on a stable and powerful platform for compile-time and runtime analysis.

1.1 Contributions of this Thesis

The contribution of this thesis is a unified and generalizing approach of parallelization

including the prototypical implementation of Sambamba, a hybrid compile-time/runtime

parallelization framework based on the LLVM -compiler infrastructure. At the core of the

thesis, we introduce the concept and implementation of generalized task parallelism—a

single unified framework for automated parallelization. The main contributions of the

thesis are as follows:

Static/dynamic Compiler Framework for Program Parallelization We provide the

prototypical implementation of our Sambamba framework based on the LLVM com-

piler infrastructure. Sambamba, which is made available as open-source, can be used

as the technical foundation of further research in hybrid static/dynamic parallelization

approaches.

Uniform Program Representation We present a uniform program representation

based on the program dependence graph (PDG) (Section 5.1). Relevant properties

like profiling information, reduction, privatizability and speculation opportunities

are broken down to the dependence level and correspondingly represented in the

PDG.

Introduction and Motivation 9

Parallelization as Optimization Problem Based on this representation, we reduce the

problem of parallelization to linear optimization to find local parallelization candidates

(Chapter 6). The formulation is independent of any special form of parallelism, and

integrates central aspects of existing approaches without reimplementing them.

Optimization is driven by a cost model derived from static profile estimates and

runtime profiling information. Implementations of this approach do not rely on special

code features. Loop structures, for instance, are completely transparent: existing

loops can be fully (i.e., DOALL-style) or partially (in case of carried dependences)

parallelized, while still allowing for loop-independent task parallelism.

Specializing Parallel Code Generation We show how to effectively generate special-

ized parallel code (or, simply speaking: optimized parallel code) from the found

generalized parallelism. Together with an adaptive runtime system that can continu-

ously reassess parallelization decisions, our parallelizer ParAγ is able to match the

performance of specialized parallelization approaches (Chapter 7).

Evaluation We evaluate the individual parts of our system (Chapter 9) on a set of

programs from various benchmarks suites, showing that generalized task parallelism

1. subsumes and integrates different and independent forms of parallelism;

2. discovers parallelization opportunities similar to those found by experts; and

3. produces efficient parallel code for a broad range of applications.

Semi-automatic Parallelization Finally, we provide the implementation of a semi-

automatic parallelization toolchain based on Sambamba and integrated into the

Eclipse IDE , which is able to not only parallelize parts of the application under

development automatically, but also to verify, improve and finally implement par-

allelization hints and decisions given by the developer in the form of very simple,

OpenMP-style program annotations.

10 Chapter 1

1.2 Publications

This thesis builds on the following publications, listed in descending chronological order.

Thread-Level Speculation with Kernel Support [14]. Clemens Hammacher, Kevin

Streit, Andreas Zeller, and Sebastian Hack. In Proceedings of the 25th International

Conference on Compiler Construction (CC), March 2016.

Generalized Task Parallelism [15]. Kevin Streit, Johannes Doerfert, Clemens Ham-

macher, Andreas Zeller, and Sebastian Hack. In ACM Transactions on Architecture

and Code Optimization (TACO), Volume 12, Number 1, April 2015.

Polly’s Polyhedral Scheduling in the Presence of Reductions [16]. Johannes Do-

erfert, Kevin Streit, Sebastian Hack, and Zino Benaissa. 5th International Workshop

on Polyhedral Compilation Techniques (IMPACT), January 2015.

Sambamba: Runtime Adaptive Parallel Execution [17]. Kevin Streit, Clemens Ham-

macher, Andreas Zeller, and Sebastian Hack. In Proceedings of the 3rd International

Workshop on Adaptive Self-Tuning Computing Systems (ADAPT), January 2013.

SPolly: Speculative Optimizations in the Polyhedral Model [18]. Johannes Do-

erfert, Clemens Hammacher, Kevin Streit, and Sebastian Hack. 3rd International

Workshop on Polyhedral Compilation Techniques (IMPACT), January 2013.

Sambamba: A Runtime System for Online Adaptive Parallelization [19]. Kevin

Streit, Clemens Hammacher, Andreas Zeller, and Sebastian Hack. In Proceedings of

the 21st International Conference on Compiler Construction (CC), March 2012.

Profiling Java Programs for Parallelism [20]. Clemens Hammacher, Kevin Streit,

Sebastian Hack, and Andreas Zeller. In Proceedings of the ICSE Workshop on

Multicore Software Engineering (IWMSE), May 2009.

Chapter 2

Background Terminology and

Concepts

The purpose of this chapter is to introduce important background terminology and concepts

used but not defined within this thesis. Also terminology is added which will be used

throughout this thesis, potentially before it is fully defined. A reader with a background

in compiler construction or parallelization may safely skip this section and use it as a

glossary to return and read about unknown or unclear terminology only. We will keep

definitions on an intuitive level and refer the interested reader to the respective literature

where appropriate.

φ-nodes, or φ-instructions are virtual instructions selecting among a given set of values

based on their dynamic control flow predecessor. They are an essential part of

SSA-based compiler IRs allowing to make def-use relations explicit and fulfill the

single assignment requirement. φ-nodes are virtual in the sense that they usually do

not have a direct correspondence in the finally produced machine code. [see Cytron

et al. [21] for details on SSA and φ-nodes].

Atomic section is a section of code which is executed atomically, i.e., its effects, like

memory effects, are either completely visible to outside observers or not at all. No

intermediate state or subset of effects will be visible at any given point in time.

12 Chapter 2

Atomic sections play a major role in speculation systems, reduction realization, or

generally in concurrent execution as a mechanism of synchronization.

Automatic parallelization refers to the process of parallelization without involving

the developer. It is typically performed statically by an automatically parallelizing

compiler, or dynamically by a parallelizing runtime system. Sections 3.3 and 3.4 give

an overview of research on automatic parallelization relevant in the context of this

thesis.

Basic block is a linear sequence of instructions. The instructions contained in one basic

block are all executed (if the block is entered) or not at all (if the block is not entered).

Basic blocks typically form the vertices of a control flow graph. [see Allen [22] for

more details].

Call instruction (LLVM) is an LLVM instruction calling a function. Call instructions

(and invoke instructions) are interesting parallelization targets as they typically

represent an isolated and encapsulated piece of work (the callee). [see http://

llvm.org/docs/doxygen/html/classllvm_1_1CallInst.html#details for more

details].

Callee refers to the function called through a call or invoke instruction.

Caller refers to the function containing a given call or invoke instruction.

Common subexpression elimination (CSE) is a compiler optimization seeking to

minimize repeated computation of the same expression on any given control flow path.

The computation of the subject expression is placed at a program point dominating

multiple appearances, which in turn are replaced by a usage of the new definition.

Concurrency is the concept of executing multiple processes (or arbitrary pieces of code)

at the same time. Note that this does not necessarily imply that at any given point

in time, multiple processes are executing simultaneously. Concurrency might as well

be implemented by time slicing, i.e., switching between execution of multiple started

but not yet finished processes. Parallelism is another form of concurrency.

Conflict in the context of this thesis refers to the interference of two or more instructions

or pieces of code which execute concurrently. Conflicts can for instance be caused by

http://llvm.org/docs/doxygen/html/classllvm_1_1CallInst.html#details
http://llvm.org/docs/doxygen/html/classllvm_1_1CallInst.html#details

Background Terminology and Concepts 13

concurrent and unprotected accesses to the same memory region involving at least

one write access. Equations 4.1 to 4.6 on page 45 formally define a memory conflict

in our setting.

Control dependence refers to the execution of an instruction (or basic block) B being

dependent on a branching decision made by another instruction A. We say A

contributes to the decision to execute B or not, or B is control-dependent on A.

[see Kennedy and Allen [8] for more details].

Control flow graph (CFG) is a graph representation of a program. Basic blocks typ-

ically form the vertices of the CFG with edges representing transfer of execution.

Paths through the CFG represent a static overapproximation of possible execution

paths. Typically, a program is decomposed into functions with each function having

its own CFG. [see Allen [22] for more details].

Control flow path is a path through the control flow graph representing a potentially

possible path of execution. A control flow path is a static construct. It is not

guaranteed that a program input exists which dynamically triggers execution of this

path. [see Allen [22] for more details].

Critical path in the context of parallel execution refers to the longest path of sequentially

executing processes or tasks. The length of the critical path determines the overall

execution time of a parallel program. The goal of parallelization typically is to

minimize the critical path execution time.

Cross invocation parallelism refers to the parallelization of subsequent dynamic in-

vocations of a loop. This is in contrast to classical approaches which parallelize a

single invocation of a loop, followed by explicit synchronization before proceeding

with the next invocation.

Data dependence is a dependence between two computational units (e.g., instructions,

basic blocks, PDG subgraphs, . . .), in which one unit depends on the data produced

by another unit. In this thesis, we say B depends on A, denoted by B → A1.
1In the literature you will also find the arrow going in the other direction, i.e., A→ B to state that B

depends on A. This denotation resembles the direction of the control flow or the data, while we decided to
use a notation expressing the dependence itself.

14 Chapter 2

Subsection 4.1.1 formally defines our notion of dependence, while Kennedy and

Allen [8] provide further background on the classical notion of dependence.

Data structure analysis (DSA) refers to a scalable, context-sensitive and flow-insensitive

points-to-analysis designed and implemented for the LLVM compiler infrastructure.

DSA is used in this thesis as the foundation of the data dependence analysis. Subsec-

tion 4.1.1 provides a detailed description of DSA and its most important properties

while the full description can be found in Lattner et al. [23].

Decoupled software pipelining (DSWP) is an approach to loop parallelization by

decomposing the loop into multiple pipeline stages executing in parallel. The idea

in short is to split the loop body into stages which can be ordered in such a way

that dependences only go backward in the list of stages, loop-carried dependences

are only allowed within a stage. Each stage then forms a separate loop executing in

parallel to all other stages while dependences are fulfilled be explicit synchronization

and communication of produced values from the producing to the consuming stage.

We shortly describe multiple approaches from the DSWP family on page 29.

def-use relation or data-flow is a relation between instructions, denoted s →̊ t in this

thesis, with the meaning of s defining a value that is used by t. The def-use relation

is used in this thesis to define reduction properties on page 77.

DOACROSS loop is, like DOALL, one of the classical loop parallelization techniques.

It refers to a parallelized loop having loop-carried dependences. Correctness is

guaranteed by introducing explicit synchronization to delay execution of the source

of a data dependence until the target is ready. [see Cytron [9] for more details].

DOALL loop is the classical parallel loop having no loop-carried dependences. All

iterations of the loop can be executed in parallel to each other or in an arbitrary

order. [see Kennedy and Allen [8] for more details].

Dominance is a relation over nodes of the control flow graph. A node A is said to

dominate (or pre-dominate) node B if A is contained in every control flow path

starting from the dedicated entry node of the CFG and ending in B. [see Allen [22]

for more details].

Background Terminology and Concepts 15

Dynamic in the context of this thesis is used as a synonym for “at runtime”, i.e., while

an application is running. This is in contrast to static meaning without requiring

the program to be executed, typically at compile-time. Dynamic program analysis

collects and interprets information during the (possibly artificial) execution of the

target program. Static analysis in contrast deduces information solely from a

representation of the program itself.

General purpose applications are large applications fulfilling multiple purposes by

providing dynamically triggered functionality. They are typically complex, make use

of a diverse set of irregular data structures and show statically hard or impossible to

predict control-flow and memory access patterns (irregular application). Due to these

properties general purpose applications, in contrast to mathematical or scientific

applications, pose a grand challenge to automatic parallelization.

Granularity (parallelization) refers to the size of the dynamic computational units a

parallelizable program (part) is decomposed into. In the context of this thesis we refer

to such a computational unit as task. If parallel tasks are too small (fine-grained),

then the overhead of packing and spawning such a task outweighs the actual work

done in the task, and the dynamic task scheduler gets oversubscribed. If the tasks are

too coarsely defined, i.e., too large, then parallelism suffers and the task scheduler has

not enough freedom to balance parallel execution. Efficient and profitable automatic

parallelization needs to find the right trade-off between parallelism and overhead.

Integrated development environment (IDE) refers to an application integrating

multiple tools important to software development. Such tools typically include a

source code editor, compiler, debugger, source code management, and several analyses

to point the developer to possible errors and flaws. Chapter 10 describes the integra-

tion of our parallelization tools into the Eclipse IDE (http://www.eclipse.org).

Invoke instruction (LLVM) is an LLVM instruction invoking a function which might

throw an exception. In contrast to call instructions, an invoke has two control

flow successors: one representing regular control flow, and one representing the

exceptional control flow. Invoke instructions (and call instructions) are interesting

parallelization targets as they typically represent an isolated and encapsulated piece

http://www.eclipse.org

16 Chapter 2

of work (the callee). [see http://llvm.org/docs/doxygen/html/classllvm_1_

1InvokeInst.html#details for more details].

Intermediate representation (IR) refers to a program representation used internally

by the compiler. A program is typically translated into multiple IRs during compi-

lation from source code to machine code. The program dependence graph and the

parallel control flow graph (see Subsection 4.1.3) are the main IRs used in this thesis;

details on the main IR used by the LLVM compiler infrastructure can be found at

http://llvm.org/docs/LangRef.html.

Irregular applications are applications using irregular data structures and/or employing

irregular, i.e., conditional and possibly input-dependent, control flow and memory

access patterns. Due to their statically unpredictable behavior and properties, irregu-

lar applications pose a grand challenge to automatic parallelization. [see Yelick [24]

for more details].

Irregular data structures are typically pointer-based data structures composed from

dynamically allocated, i.e., non-contiguous, memory connected via pointers. Irregular

data structures include graphs, hashmaps, and unbalanced trees for instance. The

behavior (memory accesses or execution time) of algorithms working with or traversing

irregular data structures is oftentimes input-dependent and hard or impossible

to statically predict, which poses challenges to effective automatic parallelization.

[see Yelick [24] for more details].

Irregular memory access patterns are statically unpredictable memory access pat-

terns typically induced by traversing irregular data structures. This is in contrast to

regular memory access patterns which arise, for instance, from traversing an array.

[see Yelick [24] for more details].

Irregular dependence pattern means a statically unpredictable dependence pattern,

typically of loop-carried dependences, whose existence and dependence distance are not

statically determined. Irregular dependence patterns pose a challenge to automatic

parallelization, for instance when efficiently placing synchronization primitives.

http://llvm.org/docs/doxygen/html/classllvm_1_1InvokeInst.html#details
http://llvm.org/docs/doxygen/html/classllvm_1_1InvokeInst.html#details
http://llvm.org/docs/LangRef.html

Background Terminology and Concepts 17

ILP (Instruction-level parallelism) in this thesis refers to hardware-exploited instruction-

level parallelism as used by modern CPUs through out-of-order execution and pipelin-

ing. Such a CPU is able to execute multiple instructions which are close-by on a

sequential instruction stream in parallel to each other. Instruction-level parallelism

is typically exploited by the hardware or the compiler without any interaction by

the developer.

ILP (Integer linear programming), or integer programming, is a special form of linear

optimization in which some or all variables are restricted to be integer-valued.

In contrast to real-valued linear optimization, which is known to be solvable in

polynomial time, integer programming is provably NP-hard.

Inter-procedural Analysis/Optimization is an analysis/optimization technique prop-

agating analysis results through call or invoke instructions, i.e., from callers to

callees or vice versa. Inter-procedural analyses are typically more powerful than

intra-procedural analyses but also more expensive.

Intra-procedural Analysis/Optimization in contrast to inter-procedural analysis is

limited to working on a single function. Call or invoke instructions are typically

treated conservatively, in the worst case assuming anything can happen when calling

another function.

Linear optimization, or linear programming, is a mathematical optimization method.

The goal of linear optimization is to minimize or maximize a linear objective function

subject to linear inequalities by choosing values for a set of real-valued variables.

LLVM is a modern, SSA-based compiler infrastructure used as a backend by many

modern programming languages and as the basis of many program analyses and

transformations. LLVM is also used as the technical basis of this thesis work. [see

http://www.llvm.org for more details].

LOCALWRITE is a loop parallelization technique based on the owner-computes rule.

In case of a loop writing to a regular data structure, possibly inducing loop-carried

dependences, LOCALWRITE attempts to partition the iteration space in such a

way that parallel threads executing disjoint parts of the iteration space also write to

http://www.llvm.org

18 Chapter 2

disjoint parts of the target array. If this is statically impossible, for instance due

to the target data structure being indirectly addressed, the iteration space is not

completely partitioned, but (partially) replicated among threads. Before writing to

the target data structure, each thread checks the target index is part of its assigned

range, possibly throwing away computed values if this is not the case. [details can

be found in Han and Tseng [13]].

Loop nest refers to multiple nested loops, i.e., loops contained in another.

Loop-carried dependence, or cross-iteration dependence, refers to a data dependence

that spans multiple iterations of the loop. I.e., the source and the target of the

dependence are not contained in the same dynamic loop iteration.

Memory effect refers to the possibly externally observable effect caused by writing to

(write effect) or reading from (read effect) memory.

Non-memory effect refers to any non-memory-induced externally observable effect

caused by executing a program statement. Non-memory effects in the context of

this thesis include termination effects, which terminate the execution of the function

under observation, non-memory read effects (like for instance reading the system

clock), and non-memory write effects (like printing to the screen).

Online adaptive optimization refers to a dynamic program optimization being per-

formed at runtime, taking into account information collected during the ongoing

execution. Online adaptive optimization typically includes just-in-time compilation

capabilities to compile and use the online optimized program parts.

OpenMP (Open Multi-Processing) is a wide-spread scalable and platform-independent

API for shared memory multiprocessing in C, C++, and FORTRAN. It consists of a

set of compiler directives and libraries used by the programmer to explicitly describe

and exploit the parallelism of an application. [see Dagum and Menon [6] and [7] for

more details].

Oversubscription in the context of this thesis refers to the inability of the computational

facilities involved in the execution of parallel tasks (dynamic scheduler and compute-

cores for instance) to process the tasks at least as fast as they are produced. In case

Background Terminology and Concepts 19

of oversubscription there is no use in further spawning (i.e., producing) parallel tasks

further increasing the pressure on an already overloaded system.

Parallelism is a special form of concurrency in which at any given point in time mul-

tiple concurrently running tasks might be simultaneously executing on different

computational facilities, like for instance multiple cores of a CPU.

Parallelization is the process of transforming a sequential application to a parallel

application, typically with the goal to speed-up execution.

ParAγ refers to the generalized task parallelization scheme designed and developed in

this thesis. Chapters 5 to 8 describe different aspects of ParAγ in thorough detail.

ParAτ refers to the simple intra-block parallelization scheme developed on top of

Sambamba. Section 4.1 describes ParAτ in detail.

Polyhedral optimization is a program optimization typically focusing on loop nests.

Intuitively, a loop nest is represented as a multi-dimensional polytope representing

its iteration space, as well as a separate polytope describing dependences between

individual iterations. Linear optimization is used to determine a scheduling function

mapping the original to a transformed iteration space while respecting all dependences.

Typical optimization goals of linear optimization include minimal execution time,

improved data locality, and minimal communication volume. [details on polyhedral

optimization can be found in the seminal work of Feautrier [25, 26] and Lengauer [27]].

Post-order numbering refers to assigning each node of a directed graph a unique integer

number (post-order number or post-order ID) while traversing the graph in a depth-

first-search. The ID of each node is computed, once all successors of the node have

been traversed, as the last assigned ID + 1. In the context of this thesis traversal

starts at the unique entry node (CFG) or root node (PDG); IDs start at 0.

Post-order traversal refers to traversing the nodes of a directed graph (in the context

of this thesis a control flow graph or program dependence graph) in order of their

post-order numbers.

Privatization in the context of this thesis refers to assigning disjoint copies of a variable

or data structure to different and possibly concurrently executing pieces of code to

20 Chapter 2

avoid interference. Privatization is an important parallelization-enabling technique

used to resolve data dependences under certain conditions. Subsection 5.2.2 provides

the definition of privatization used in this thesis.

Profiling refers to a dynamic analysis collecting information on the running application.

In this thesis, profiling is used to collect call-site execution times (see Subsection 7.1.1

for details) and branch profiles (see Subsection 7.1.2 for details). The latter are used

to estimate the frequency in which certain branches in the control flow graph are

taken and how many iterations are executed on average per invocation of a given

loop (loop trip count).

Program dependence graph (PDG) is the union of two sub-graphs sharing the same

nodes: the data dependence subgraph and the control dependence subgraph. Like in

the CFG, basic blocks or instructions form the nodes of the graph. Unlike the CFG,

the PDG represents real dependences and is free from artificial control flow making it

particularly suitable to reason about parallelism. Subsection 5.1.1 describes the form

of PDG used in this thesis in detail, while Ferrante et al. [28] provide the classical

definition and background.

Reduction, like privatization, forms an important parallelization enabling technique. The

term reduction refers to a computational pattern that reduces the dimensionality of

an input using a commutative and associative operation, for instance summing up

all elements of an array of integers. Once such a pattern is recognized, a parallelizing

compiler can make use of the associativity and commutativity properties to transform

the induced dependences and introduce parallelism. Section 3.1 provides an overview

of research work on reduction while Subsection 5.2.1 formally defines the notion of a

reduction as used in this thesis.

Recursion in the context of programming languages and compilers describes a function

being defined in terms of itself. In a program this manifests in a function F directly

(by itself containing a call to F again) or indirectly (by calling another function

which in turn transitively calls F) calling itself. Recursion is used to break down a

problem into smaller sub-problems (for instance sorting arrays being defined based

on sorting sub-arrays) and can be used to emulate loops. Consequently, recursive

Background Terminology and Concepts 21

algorithms/functions are a target of parallelization which is just as interesting as

loops.

Runtime systems are used to observe and control the execution of an application.

Typical tasks of a runtime system include resource management, garbage collection,

scheduling, interpretation, and just-in-time compilation. The main tasks of ParAγ ’s

adaptive runtime system are described in detail in Chapter 7.

Sambamba is a compiler framework for static/dynamic optimization based on the LLVM

compiler infrastructure and one of the contributions of this thesis. Chapter 4 and

Section 8.1 describe Sambamba in detail.

Sampling is a technique used to reduce the overhead of profiling. Instead of incurring

the overhead of profiling in every instance of the profiled behavior (e.g., call-site

execution times), only every n-th instance is profiled or only once every n milliseconds.

Sampling can be used to trade accuracy for reduced overhead.

Sequential execution refers to the non-concurrent in order execution of a list of tasks.

Speculation is a parallelization enabling technique which allows to speculatively ignore

certain conservatively assumed dependences, provided measures are taken to guaran-

tee correct execution in case of a misspeculation. Speculation is used as a possibility

to enable parallelization in this thesis (see Section 4.2 and Subsection 5.2.3). The

implementation of the speculation mechanism is taken from Hammacher [29] where

it is described in thorough detail.

Static single assignment (SSA) form is a property of a compiler IR with the purpose

to make the def-use relation explicit and to simplify many analyses and transfor-

mations performed during compilation. Properties dictated by the definition of

SSA include a single static definition of each value and each usage of a value being

dominated by its definition. [see Cytron et al. [21] for details on SSA and φ-nodes].

Static in the context of this thesis refers to any information about an application won

without executing it, i.e., by only inspecting a representation of the program itself.

This is in contrast to dynamic information gathered during the execution of an

application.

22 Chapter 2

Tail-call optimization refers to an optimization performed to save overhead in case of

the last statement of a function F preceding the return is a call to another function

G whose result will simply be returned by F . The overhead of performing the

bookkeeping involved in an additional regular call can be saved by reusing the stack

frame of the current execution of F and replacing the call by a simple jump (or

unconditional branch). This optimization plays a special role in case the tail-call

is a recursive call (a tail-recursion), when this optimization effectively transforms

recursion into a loop.

Task parallelism generally describes the distribution of different tasks working on possi-

bly disjoint sets of data to different compute resources for parallel execution. This

is in contrast to data parallelism in which the same task is executed in parallel on

disjoint input data. Task parallelism in principle does not pose any restrictions on

the form of the tasks and in particular does not depend on the concept of a loop.

Termination effect refers to the effect of terminating the currently executed function

(Note that this definition also covers the termination of the whole application).

Chapter 3

State of Parallelization

Research

This chapter gives a short overview of the very broad field of parallelization and, because of

its importance to parallelization, reduction research. Due to the size of the field, this study

of related work cannot claim to be complete. Instead it introduces several approaches to

parallelization and reduction which have influenced modern automatic parallelization and,

in many cases, are still cited today. It hints at problems and restrictions which have until

today hindered broad adoption of automatic parallelization and shows open issues which

motivate the work conducted as part of this thesis.

3.1 Reduction

In [30] Midkiff has summarized fundamental compiler techniques used in the context of

automatic parallelization. One very important parallelization enabling technique is the

exploitation of reductions which Midkiff defines according to the frequently used informal

and syntactical formulation: “[...] a compiler essentially looks for statements of the form

’s = s ⊕ expr’. [...] the value of expr must be the same regardless of the loop order it

is evaluated in. [...] the left-hand side s must not be used in other statements.” This

definition, which in one form or another appears frequently in the literature, has two

24 Chapter 3

important restrictions: It is tied to reductions being part of a loop; and it is solely based

on a tight syntactical pattern. Syntactically different but semantically equivalent forms

are not covered by this definition. Furthermore, a syntactical approach needs to run very

early in the compiler toolchain. We will argue in this thesis that parallelization, and with

it also reduction recognition and realization, need to be fully integrated into the compiler

toolchain.

Dynamic approaches like Privateer by Johnson et al. [31] or the frequently cited LRPD-test

by Rauchwerger and Padua [32] avoid reliance on statically analyzable reductions of a

particular syntactic form. These approaches optimistically detect candidates of reduction

operations and parallelize their containing loops. To guarantee correctness, the optimistical

assumptions need to be dynamically validated: Rauchwerger and Padua propose to use

shadow memory to keep track of dynamic accesses performed during the execution of the

optimistically DOALL-parallelized loop. The reduction is validated a posteriori and execu-

tion of the loop completely repeated sequentially (i.e., non-speculatively) upon violation

of the assumptions. The extended reduction statements of Rauchwerger and Padua [32]

share properties with our data-flow based approach to reduction (see Subsection 5.2.1)

but have no notion of the overhead introduced by a realized reduction, in particular of

varying reduction locations.

In their follow-up work on R-LRPD (recursive LRPD) Dang et al. [33] refine the scheme

and allow to re-execute the iterations succeeding the misspeculation again speculatively

upon recovery instead of having to sequentially reexecute the whole loop. This changed

approach is in favor of loops showing low but non-zero misspeculation rates which could

not be profitably parallelized using the original approach. The overhead induced by the

speculative reduction is discussed but not explicitly modeled by the authors. Making

a qualified choice between different reduction and parallelization opportunities as for

instance done by our approach in the BiCG example (Figure 1.4a) is not addressed.

Apart from the a posteriori validation of speculative assumptions on reductions Rauchw-

erger and Padua [32], as well as Dang et al. [33], describe an alternative validation method

based on the inspector/executor principle: In [34] Rauchwerger and Padua describe an

inspector loop which is generated by the compiler preceding the speculatively executed

State of Parallelization Research 25

loop to dynamically validate speculative assumptions on the memory access patterns.

Depending on the outcome of the validation the candidate loop is executed sequentially,

parallelized, or according to a schedule generated by the inspector (see [35] for this ex-

tended approach). The drawback of the inspector approach is obvious: a separate loop

with the same iteration range is generated performing the same memory accesses as the

original loop to determine the legality of the assumptions made. This not only requires all

memory accesses to be loop-invariant (i.e., not altered by executing them twice), but is also

costly. The authors propose to decide on a case-by-case basis if a separate inspector loop

should be generated or if the checks should be performed after speculative execution of the

loop. A semi-automatic selection scheme in the context of speculative reductions has been

proposed a decade later by Yu and Rauchwerger [36]. The selection in this scheme is based

on hardware dependent experiments performed on training data collected in synthetically

generated benchmarks which are specific to a given problem domain.

A restriction which is shared by all approaches in the LRPD domain described above

is their specialization to loop-based reductions performed on arrays. The validation of

assumptions is based on shadow arrays being addressed by the indices of the array accesses

performed during loop execution.

Recent approaches to reduction like the one of Ginsbach and O’Boyle [37] use constraint

solving to improve the reduction detection capabilities abstracting completely from the

syntactic form of a reduction and instead basing the recognition on semantic properties.

Still the approach relies on unnecessarily narrow code features like considering only for-

loops with a loop-invariant iteration range, for instance. Furthermore, it does not take

into account the profitability of a possible exploitation of the identified reduction.

The approach of reduction recognition described in this thesis (see Subsection 5.2.1) is not

as restrictive as the usual definitions. Nevertheless, it is by definition a static approach

and consequently not able to detect all possible reductions.

In this comparison of reduction approaches we left out the excessive body of work on

reduction (or recurrence) detection and realization in the context of scientific codes, as most

approaches require the target code to work on regular data structures with access functions

to be expressible as linear or affine functions. Our approach explicitly targets general

26 Chapter 3

purpose codes with irregular and statically unpredictable, possibly also loop-invariant

memory access patterns. For a summary on approaches to reduction detection, modeling

and optimization in the scientific domain, please refer to Doerfert et al. [16].

3.2 Manual Parallelization

Using manual parallelization domain experts and proficient programmers can achieve

the highest performance benefits in most cases. This in particular holds true for general

purpose or irregular applications (in contrast to scientific or numerical applications),

whose irregular control flow and unpredictable memory access patterns severely hinder

automatic parallelization and necessitate domain knowledge to successfully exploit the

inherent parallelism of an application. Libraries like pThreads [38], Java Threads [39],

Intel TBB [40], language extensions like OpenMP [6, 7] or Cilk [41] and Cilk+ [42] and

language built-in functionality like actors in Erlang [43, 44], Go [45] and Scala [46, 47]

are used for manual parallelization at different levels of abstraction. Domain experts

can make use of highly specialized domain specific languages like the Halide DSL for

image processing of Ragan-Kelley et al. [48], that ships with a parallelizing compiler

which is able to exploit high level features of the DSL to implicitly and explicitly encode

parallel execution schedules. Unfortunately, defining such schedules generally requires

a deep understanding of the performance implications of the algorithm at hand, or the

capabilities of the execution platform. It requires a level of understanding which is beyond

the capabilities of most regular developers: manual parallelization is hard and error-prone

and most developers still say about themselves that they are unable or unwilling to deal

with manual parallelization [4, 5].

One possibility of reducing the complexity of parallelization is to at least automate the

identification of code regions amenable for profitable parallelization while still leaving the

realization of the found parallelism to the developer. This approach was chosen by Mak

and Mycroft [49] (c.f., [50, 51]) in their Embla tool, whose idea it is to observe the dynamic

dependences between instances of method calls and loop iterations. By then employing

a typical critical path analysis the authors are able to pinpoint and propose candidate

regions for parallel execution. As the proposal is based on dependences that manifested

State of Parallelization Research 27

during chosen profiling runs, it may be unsound. Validation, and actual parallelization,

consequently has to be done manually or a potentially costly speculation system has to be

used to guarantee correctness. The principle idea of Embla and Embla2 is similar to our

very own previous work [20]. The ParaMeter tool of Kulkarni et al. [52] similarly identifies

the data parallelism of irregular applications.

The goal of parallelization as described in this thesis is to be generally applicable. It will

in most cases not achieve the performance gains achieved through manual parallelization

done by a domain expert, but it enables a broader range of developers to parallelize

their applications. Even if automatic parallelization is not possible, our approach to

semi-automatic parallelization as described in Chapter 10 provides a helping hand and a

safety net to non-expert programmers who will in turn provide domain-specific knowledge,

which is hard or impossible to automatically deduce, to our parallelizing compiler.

3.3 Static Parallelization

Burke et al. [53] describe the exploitation of nested fork-join parallelism while taking into

account the possibility to resolve (or eliminate) data dependences by using privatization.

Parallelism is greedily introduced in the form of DOALL-loops and COBEGIN. . .COEND

blocks of parallel processes. The approach does not trade parallelism for overhead,

parallelizes everything it can, and uses all opportunities of privatization to increase

parallelism without taking profitability or available computational resources into account.

The model of parallelism in that work, which is described as being “general and simple”,

shares important properties with the model described in this thesis, but is less expressive.

We furthermore do not greedily introduce parallelism but instead take the introduced

overhead into account when statically and dynamically striving for profitable parallel

execution.

In a similar fashion, Sarkar [54] presents a heuristics-based approach to statically parallelize

task trees computed from the program dependence graph of FORTRAN functions. The

approach takes into account the overhead introduced by parallelization as well as profiling

information collected during dedicated executions of the target application to statically

28 Chapter 3

estimate the profitability of the parallelized code. The enforced tree structure, motivated

by the requirement to generate a parallel FORTRAN program with structured parallelism,

limits the flexibility of the approach. The linear-programming-based scheduling of hierar-

chical task graphs for embedded systems by Cordes et al. [55] shares this limitation and

further imposes restrictions on the shape of the generated parallel code regions.

Rugina and Rinard [56] propose a simple method to automatically parallelize divide-

and-conquer algorithms as a use-case to their sophisticated region-based inter-procedural

memory analysis: parallelism is introduced to a C program in the form of a Cilk spawn

instruction preceding every relevant call-site, and a Cilk sync succeeding it. The parallel

region formed this way is then expanded by moving the sync along the control-flow path

until the dependence analysis forbids further propagation because of a potential conflict of

the next statement with the spawned function. While the dependence analysis proposed in

the work by Rugina and Rinard is quite strong, in particular for regular data structures,

the simple parallelization approach is very limited as it is unable to abstract from the

implemented control-flow.

Zhong et al. [57] describe an approach of automatic speculative DOALL parallelization of

loops relying on hardware transactional memory, hardware-based low-cost thread spawning

and low-latency inter-core communication. Mehrara et al. [58] implement a software

transactional memory system to get rid of these hardware requirements. The described

STM is specialized and limited to automatic DOALL parallelization of loops, however.

Kim et al. [59] apply speculative DOALL parallelization to distribute the computation

performed by a loop to a cluster of machines.

Madriles et al. [60] propose Anaphase, a fine-grained speculative parallelization technique

finding regions for parallel execution and scheduling the code using a multi-level graph

partitioning approach. The approach speculatively parallelizes a given sequential applica-

tion at the level of single instructions driven by several heuristics estimating the affinity

of computation nodes. Anaphase relies on hardware support for efficient recovery from

misspeculation.

Suesskraut et al. [61] introduce Prospect, a compiler framework using an approach which

they call predictor/executor, which resembles the master/slave parallelization concept of

State of Parallelization Research 29

Zilles and Sohi [62] by providing a fast but potentially incorrect variant and a slow but

correct variant of the code. Parallelism is introduced by executing the fast variants on

the critical path, and multiple slow variants in parallel to verify the results of the fast

variants. The approach introduces very high overhead: even in the best case, i.e., in case

no roll-backs occur, the slow variants have been occupying more computational resources

than the actual (fast) computation.

To optimize loop nests, in particular for mathematical and scientific applications mostly

based on the usage of regular data structures and control flow, so-called polyhedral loop

nest optimization has been proposed by Feautrier [25] in his seminal work on scheduling in

the polyhedral model for one-dimensional [25] and multi-dimensional [26] time. The focus

of that work has been on efficient scheduling, while parallelization has been described as

one possible use-case. Later work by Lengauer [27] and Feautrier [63] specifically dealt with

parallelization based on polyhedral scheduling. Pluto by Bondhugula et al. [64] is a C source-

to-source compiler which uses polyhedral scheduling to produce a parallelizedOpenMP [6, 7]

program. Pluto is able to achieve extreme performance by far outperforming state-of-the-

art productive compilers, if, and only if, the polyhedral model is applicable at all, which

still is a drawback of polyhedral optimization. The cost of using this very clean and elegant

mathematical model is a limited applicability with respect to irregular applications. A loop,

or more precisely a static control part (SCoP), represented in the model typically needs to

fulfill certain criteria: loop bounds as well as the predicates of conditionals used in the loop

body have to be representable by affine functions in the surrounding loop indices as well as

(provably) loop invariant parameters. Dependences between individual statements are only

allowed via accesses to indexed variables (arrays), whose access functions are affine, also

in the above mentioned parameters. Furthermore, called functions need to be statically

known and provably pure1. These are severe restrictions whose mitigation has been the

goal of excessive research work [65–70], conducted also by ourselves [16, 18] and Doerfert

et al. [71]. Parallelization in the polyhedral domain is related but not addressed by the work

described in this thesis. Its mathematically clean representation and optimization-based

scheduling however have had a strong influence on our work.
1A pure function does not have any observable side-effect, and it computes the same result when called

with the same arguments, i.e., it is independent of any hidden state.

30 Chapter 3

Decoupled Software Pipelining (DSWP) aims at parallelizing sequential loops by forming

patterns of pipelined execution [72]. Loops are decomposed into pipeline stages, possibly

executing in parallel to each other. Each stage communicates produced values to the threads

executing later stages as needed. DSWP has been extended in multiple ways over the years:

Ottoni et al. describe how to automatically perform thread extraction [73]; the work of

Raman et al. allows to distribute a single pipeline stage to multiple threads [74], introducing

further parallelism. The work of Vachharajani et al. describes how to speculatively

parallelize [75], and August et al. enables cross-invocation parallelism among iterations

of different loop instances [76] for loops of a specific shape. Huang et al. [77] generalize

the idea of Raman et al. [74] and enable the parallelization of individual DSWP stages

by manually applying a secondary loop parallelization scheme. The work clearly shows

that different parallelization schemes can be profitably combined. However, the question

on how to automatically select and prioritize different approaches is considered to be a

challenging open research question by the authors. While modern implementations of

DSWP, like Parcae [78] for instance, avoid it, the earlier approaches rely on specialized

hardware for inter-thread communication and recovery from misspeculation. The approach

described in this thesis instead runs on commodity systems.

Vandierendonck et al. [79] (also [80]) describe Paralax, a semi-automatic approach of

parallelization in a DSWP like fashion. Like the approach presented in this thesis the

approach relies on DSA [23] for its dependence analysis, and suffers from the same

imprecision as we do. To address this concern, Vandierendonck et al. [79] motivate a set

of user annotations, which gave partial inspiration to our approach of semi-automatic

parallelization presented in Chapter 10.

In Helix [81], adjacent loop iterations are automatically distributed in a round-robin

fashion to different threads executing on adjacent cores of the same processor. The latency

of inter-core communication necessary to transfer values to fulfill loop-carried dependences

is hidden by exploiting the SMT capabilities of modern multi-core processors: potentially

needed values are continuously pre-fetched to guarantee their availability in the local

L1-cache without latency once they are used by the target core. While the performance

results are impressive, the authors show in their own follow-up work [82] that the approach

does not scale to more than four cores and propose hardware support in the form of

State of Parallelization Research 31

a proactive ring-cache interconnecting all participating compute cores to overcome this

limitation by being able to send values from one core to the next with a delay of one clock

cycle. Both approaches are limited to parallel execution of a single loop on the cores of a

single processor at a time.

3.4 Runtime-centric Parallelization

Kulkarni et al. [83] require the programmer to use the graph data structures and iterators

provided by their Galois system in order to make dependences between graph nodes

explicit. In return, these explicitly stated dependences enable dynamic parallel execution

of graph-based algorithms without the need for conservative assumptions.

Not limited to graph-based algorithms PetaBricks as proposed by Ansel et al. [84] similarly

allows to explicitly express the dependences in the code using a specially designed implicitly

parallel programming language. Like Galois PetaBricks allows to make dependences explicit

and automatically selects among and switches between multiple user-defined alternative

algorithms and tunes user-defined parameters. The experiments presented in [84] show how

platform-specific and input-dependent the performance gains achieved by parallelization

are and support our dynamic approach. While the auto-tuning capabilities of PetaBricks

exceed those of the approach developed in this thesis, it requires the use of a special

language and to have non-negligible domain expertise to be effective.

Out of order Java by Jenista et al. [85] and later improved by Eom et al. [86] provide

a task extension to the Java language allowing the programmer to mark regions of the

code to be considered for parallel execution. The compiler generates lightweight runtime

checks, enabling efficient pre-validation of potential conflicts at runtime before spawning a

parallel task. Both approaches rely on the programmer to rethink and rewrite the subject

application.

Chen and Olukotun [87] implemented a runtime system for Java applications that dy-

namically monitors dependences between loop iterations. To find promising parallelizable

loops, the approach relies on a hardware profiler. DeVuyst et al. [88] and Hertzberg and

Olukotun [89] followed a similar idea. By employing runtime binary translation, their

32 Chapter 3

approaches do not rely on the availability of the application source code. The approach

relies on runtime performance monitoring implemented in hardware to efficiently refrain

from parallel execution in case of non-profitability. Johnson et al. [90] makes heavy use

of thread level speculation supporting hardware to empirically optimize an application

after a profiling run preceding the actual execution. All these approaches rely on special

hardware in contrast to the work presented in this thesis.

To soften the requirement of typical polyhedral optimizations to statically prove func-

tions affine, Jimborean et al. [69] (also [70]) statically speculate on the linearity of loop

bounds and memory accesses and generate corresponding code skeletons using the classical

polyhedral techniques assuming linearity. At runtime the accesses are monitored and

linearity validated. Execution can proceed speculatively and is rolled back upon violation

of the statically made assumptions. The Approach of Jimborean et al. [69] shares many

ideas with ours, in particular statically performing costly analyses to identify and pre-

pare optimization candidates whose instantiation is left to the runtime system. Pradelle

et al. [91] extend VMAD, the approach of Jimborean et al. [69], by parallelizing the binary

at runtime. Baghdadi et al. [68] seek to extend the applicability of the polyhedral model

by dynamically verifying statically made assumptions, which enable to use the polyhedral

model in the first place.

The Parcae system by Raman et al. [78] provides a flexible parallel execution environment

and promises to allow for holistic optimization of a parallel program instead of mere

parameter tuning, as for example done by Karcher and Pankratius [92] in the context of

parallelization. Parcae relies on extensions to the operating system to orchestrate the

parallel execution of different applications.

To further stretch the limits of automatic parallelization without resorting to expensive

speculation mechanisms the authors of Helix [81] make use of a relaxed program semantics

in their Helix-UP-approach [93] (“UP” is for unleashed parallelism). The latest incarnation

of Helix [94] uses speculation in the form of a software transactional memory system. Like

Sambamba’s own STM-based approach to speculation of Hammacher [29], the approach of

Murphy et al. [94] uses TinySTM and confirms that it is crucial to guard only small code

State of Parallelization Research 33

sections (sequential segments in their parlance) to allow profitable parallelization using

STM.

3.5 Conclusion and Open Issues

A tremendous body of research work in parallelization has been created in the last decades,

which is still being extended. The above mentioned approaches can only be understood

as a small excerpt taken from the field. Two families of approaches, however, seem

to stand out, in particular when it comes to parallelizing general purpose applications:

the decoupled software pipelining (DSWP) family of approaches who seek to exploit

a pipelined parallel execution model of loops, which limits the available parallelism to

the number of available pipeline stages. And the Helix family of approaches which

seeks to push the boundaries of DOACROSS style loop parallelism in the presence of

loop-carried dependences, which are sought to be satisfied by extremely lightweight inter-

core communication and synchronization. The scalability limiting factor of Helix is

the communication latency. Both families are, like many others, by design limited to

parallelizing loops only.

Also in line with other researchers, later approaches in both families rely on speculation or

other forms of mitigating the necessity to rely on statically made conservative assumptions

on the existence and manifestation of control and data dependences. Independent of DSWP

or Helix, it is in the context of general purpose applications with irregular data-structures

and dependences commonly agreed upon that conservative static analysis alone cannot

be the driving force of automatic parallelization for modern multicore and manycore

systems. The consequently necessary runtime parallelization, speculation, and similar

measures today require a complex runtime system to orchestrate the parallelism whose

profitability still is nearly as unpredictable statically as is its existence. The oftentimes

assumed hardware support for efficient profiling, speculation and near zero-cost inter-core

communication is not generally available yet, though speculation in particular finds its

way into commodity hardware.

34 Chapter 3

While several approaches of automatic parallelization exist, which work particularly

well for the program patterns they have been specifically designed for, a joint cost-

model is lacking that is able to drive the selection between different approaches

applicable to a given loop or code region. Even worse, most approaches assume

the sole control over the parallel execution of the whole application which raises

the question of compatibility between different approaches, in particular facing the

above mentioned complex runtime systems. Consequently, a joined cost model would

not only be required to select one approach for a given loop, but one approach and

its runtime system for the whole application. Given the oftentimes narrowly defined

target code patterns of the most promising parallelization approaches, a combination,

or, even better, a generalization of different parallelization approaches is a worthy

research target that we address in this thesis.

Chapter 4

Sambamba — A Static/Dynamic

Parallelization Framework

This chapter introduces the general parallelization and optimization framework Sambamba

on a conceptual level. Its conceptualization and implementation are an essential part of this

thesis work and its contribution. Building on top of Sambamba, ParAτ , a simple task-based

parallelization approach is introduced, which forms the conceptual and technical basis

of ParAγ , our final approach to generalized task parallelism. To not distract the reader,

technically interesting but conceptually less important details are left for Chapter 8.1

Sambamba provides a reusable and extensible framework for online adaptive program

optimization with a special focus on parallelization. To avoid being dependent on a

particular programming language or even processor architecture, Sambamba is based on

the LLVM compiler infrastructure [95] and consists of a static part (compiler) and a runtime

system. The framework is organized in a modular way and can be extended by adding

so-called modules. Such modules consist of two parts: compile-time parts handle costly

analyses such as inter-procedural points-to and shape analysis as used by our parallelization

module. These results are fed into the runtime parts—analyses conducted at runtime

which are able to adapt the program to runtime conditions and program inputs. Obviously,
1Design and implementation of the Sambamba framework have been done together with my colleague

Clemens Hammacher. ParAτ , which is the subject of Section 4.1, has been completely conceptualized and
implemented by myself as part of this thesis work.

36 Chapter 4

it is crucial for the runtime analyses to be as lightweight as possible. The main task of the

Sambamba runtime environment is to manage and separate different registered modules

and provide facilities for selective re-compilation of parts of an application. Furthermore,

the framework provides facilities to carry over analysis results from the compile-time parts

of a module to the runtime parts.

[P] Parallelization

[X] (Speculative Execution)[C] Calibration

[S] Specialization

[A] Compile-time Analysis

Figure 4.1: Sambamba execution steps.

The high-level flow of execution in the Sambamba framework is depicted in Figure 4.1:

[A] We use static whole-program analyses to examine the program for potential opti-

mizations and propose a first set of parallelization and specialization candidates that

are deemed beneficial. For long-running programs it might be a viable alternative to

also run these analyses at runtime.

[P] The runtime system provides means for speculatively parallelizing parts of the

program based on the initial static analysis and calibration information.

[X] We detect conflicts caused by speculative executions violating the program’s se-

quential semantics and recover using a speculation system. Two different speculation

systems are implemented in the Sambamba framework.

Sambamba — A Static/Dynamic Parallelization Framework 37

[C] We gather information about the execution profile to calibrate future automatic

optimization steps. Speculative optimization can also gather information on misspec-

ulation rates in this step to guide further decisions.

[S] Sambamba supports generating different function variants based on the results of

the calibration phase. Such variants are specialized for specific environmental

parameters and input profiles. These can then again be individually parallelized in

the next round of adaption.

Section 4.1 and Chapters 5 to 7 explain two parallelization approaches implemented based

on the Sambamba framework in detail.

4.1 Simple Task-based Parallelization — ParAτ

In this section, we describe ParAτ , a first task-based parallelization scheme implemented

on top of the Sambamba framework. This scheme is conceptually simple, but it shares the

technical basis whose further development lead to ParAγ , the approach described in detail

in Sections 5 to 7. Where appropriate, this section is used to introduce these foundational

techniques.

We call ParAτ task-based because it seeks to parallelize generic code regions, independent

from loops. It has been motivated by the work of Rugina and Rinard [56]. The approach

is unable to parallelize loops, but is also not limited to, although certainly well suited

for, parallelizing divide and conquer algorithms. In contrast to many actively developed

and researched parallelization schemes, we neglected loop parallelization at first, and

concentrated on task parallelism instead, which seems to be mostly ignored by modern

research in automatic parallelization.

As a simple example consider the code in Figure 4.2 (The full sources can be found

in Appendix A). The performTask function is doing the main work and will be parallelized

by the approach. performTask first recursively constructs two linked lists (X and Y),

performs some heavy computation (hashList) requiring to traverse the list and touch

each element, and finally recursively frees the elements of both lists before returning the

38 Chapter 4

1 typedef struct list {
2 struct list *Next;
3 int Data;
4 } list;
5
6 /*
7 * Definitions for methods makeList, hashList and freeList
8 * omitted. Please refer to Appendix A for the full sources.
9 */

10
11 long performTask(int size) {
12 list *X = makeList(size);
13 list *Y = makeList(size);
14
15 long hash_X = hashList(X);
16 long hash_Y = hashList(Y);
17
18 freeList(X);
19 freeList(Y);
20
21 return hash_X * hash_Y;
22 }
23
24 struct timeval start, end;
25
26 int main() {
27 while (1) {
28 gettimeofday(&start, 0);
29 long res = performTask(1 << 10);
30 gettimeofday(&end, 0);
31
32 double secs = (end.tv_sec - start.tv_sec) +
33 1e-6 * (end.tv_usec - start.tv_usec);
34
35 printf("result after %5.2f seconds: %ld\n", secs, res);
36 }
37
38 return 0;
39 }
40

Figure 4.2: Simple application containing irregular data structures and recursive
functions.

result. While this is only a toy example, the difficulty for most automatic parallelization

approaches lies in the fact that the application heavily relies on so-called irregular data-

structures (list) and recursive functions (makeList, hashList, freeList), which are both

techniques potentially used in general-purpose applications.

4.1.1 Dependence Analysis

An integral part of each parallelization scheme is the underlying dependence analysis,

as dependences are the one limiting factor of parallel execution: if one computation B

Sambamba — A Static/Dynamic Parallelization Framework 39

depends on the results of a computation A, then (without relying on speculating what the

result will be) it has to wait for the result to be available before starting execution.

Another form of dependence is introduced by externally observable behavior and the

requirement not to violate the sequential semantics of a program: except for the timing

behavior, an application should have the same observable effects before and after paral-

lelization. Parallelization is a very aggressive optimization, but usually it is required not

to change the semantics of an application.

In this work, we base our dependence analysis on the DS-Analysis (or DSA) by Lattner

et al. [23]. DSA has been designed as a scalable points-to-analysis in the LLVM -Framework.

It has several important properties of which we mention the ones which are of particular

importance in the context of this thesis. Furthermore, to improve the precision for our

use-case, we had to rethink a few compromises which the authors of DSA made to improve

scalability. Important properties, as well as necessary changes we made to the DSA are

explained in the following paragraphs.

The first very important property of DSA is its flow-insensitivity. The result of the

analysis is a so-called DS-Graph (DSG[f]) per function f describing the effects of this

very function to local memory objects, which form the nodes (DS-Nodes) of the graph.

This is in contrast to flow-sensitive analyses which deliver for every individual program-

point/instruction the respective effects. This is a trade-off between precision and speed

that we accepted in the name of reasonable scalability.

Second, DSA is context-sensitive, which means that it is able to take calling contexts

into account when analyzing a function. Technically this is implemented by DSA in the last

of three phases: DSA is separated into a local phase, a bottom-up phase, and a top-down

phase. Each phase results in a DS-Graph per function, which contains a node for each

static virtual memory cell (a piece of memory allocated at once, static because DSA does

not distinguish between dynamic instances of an allocation). Furthermore, it contains a

node per virtual register (one could say “variable”) used in the code, linked by an edge to

the memory block the register might refer to during the course of execution. Memory cells

in the DS-Graph are connected to each other to resemble the statically analyzable pointer

structure among the cells.

40 Chapter 4

The local phase of DSA computes the local effects of a function without taking called func-

tions or any calling context into account. It does so by accumulating the effects of individual

instructions. Details are described in the original paper, but one relevant property in this

step worth mentioning is unification:

1 int *min(int *a, int *b) {

2 int *res;

3

4 if (*a < *b)

5 res = a;

6 else

7 res = b;

8

9 return res;

10 }

When DSA encounters a program point at which a virtual

register (or variable) used in the code might point to a

different memory location than assumed so far, the two

memory cells in question are unified in the DS-Graph. From

that point on, those cells and their respective properties

are indistinguishable from DSAs perspective. Consider the

simple min function to the right which takes two pointers

to integers and returns the one that points to the smaller

one. Due to the unification, DSA is unable to distinguish between the cells pointed to by

the variables res, a, and b. After processing line 5, DSA would unify the cells pointed to

by res and a, after processing line 7, it would also join the cell pointed to by parameter b.

This is an important restriction. In particular, this unification of parameters propagates in

the following bottom-up phase to the callers’ respective graphs. We refer to the DS-Graph

of a function f resulting from the computations of the local phase as DSGα[f].

In the second, the bottom-up phase, DSAmerges DS-Graphs of callees into the respective

DS-Graphs of all calling functions. It does so by mapping function parameters and

return values of the callee graph to the corresponding DS-Nodes representing the pointer-

compatible arguments and return value of the function call instruction in the caller graph

and inlining other reachable nodes into the caller graph. This step also leads to unification

of DS-Nodes and consequently potential imprecision of the analysis. Again, this is a

trade-off that we accepted. The bottom-up graph of a function f is referred to as DSG⊥[f].

The last phase is the top-down phase, which works similarly to the bottom-up phase and

is the source of context sensitivity. Results of the caller graphs regarding the arguments

(the context) of call instructions are pushed into callee graphs. The top-down graph of a

function f is referred to as DSG>[f].

Sambamba — A Static/Dynamic Parallelization Framework 41

Context-sensitivity is dropped by DSA for strongly connected components (SCCs) of

the call graph, i.e., recursion-induced cycles in the call relation between functions.

One trade-off which we did not accept for our parallelization is the fact that DSA calculates

a single so-called globals graph which contains DS-Nodes for all global variables of the

whole program. In contrast, DS-Graphs of individual functions do not contain global

variables at all. This decision has been made to not having to replicate effects on globals into

each and every DS-Graph computed. In our context however, this behavior in combination

with unification results in an unacceptable imprecision concerning code working on global

variables. Imagine, somewhere in the whole application, the minimum over two globals

is computed by the function shown above. Those two globals would be indistinguishable

and any two pieces of code working on one of them would be the sources of a mutual

dependence.

Instead of relying on a single globals graph, we adapted the DSA to treat globals just

like any other value. In the bottom-up phase however, DS-Nodes representing globals are

inlined from the callee’s DS-Graphs into the caller’s graphs, risking excessive propagation

of globals among all graphs. This however is necessary to make a DS-graph of a function

as it results from the bottom-up phase represent all possible effects a called function might

(transitively) have, unifying global nodes only where it is dictated by the transitively called

functions.

Figure 4.3 shows DSGα[performTask], the DS-graph as computed by the local phase of

the DSA. It contains an elliptical node per virtual register (%X and %Y corresponding to

the variables X and Y in Figure 4.2), each pointing to a virtual memory cell represented

by a rectangular node with rounded corners, and a rectangular node per function call.

Details on this representation can again be found in [23], but what you can easily see is

that DSA is able to determine that X points to the value returned by makeList, which

is later used as an operand of a call to hashList and freeList respectively. Furthermore,

we see that from analyzing performTask locally, DSA concludes that the memory regions

reachable from X and Y respectively are disjoint and not reachable from each other.

Figure 4.4 shows DSG⊥[performTask], the bottom-up graph of performTask. The calls

have been processed by joining the information of their correspondingly called functions,

42 Chapter 4

%X
call

r | makeList
call

r | hashList |
call

r | freeList |

void : I

%Y
call

r | makeList
call

r | hashList |
call

r | freeList |

void : I

Figure 4.3: Local DS-Graph DSGα[performTask] of the performTask method.

%X

0: %struct.list*, 8: i32 , : HMRE
0

%Y

0: %struct.list*, 8: i32 , : HMRE
0

ID: 0 ID: 1

Figure 4.4: Bottom-up DS-Graph DSG⊥[performTask] of the performTask method.
DSG>[performTask] is equivalent as the context does not add information. Below right

of each memory node you find the DS-Node ID as used by ParAτ internally.

the call nodes are removed from the DS-Graph. DSA is now aware of the fact that values

X and Y point to a list struct, which holds a pointer to another list struct, as well as a

32bit integer (i32) value. We still see that the lists pointed to by X and Y respectively

are disjoint. This graph is equivalent to DSG>[performTask] as the top-down phase does

not yield any additional information.

When parallelizing a function f , ParAτ now uses the information computed by the slightly

modified version of DSA to compute the (abstract) memory effect of every individual

instruction insn in the form of two bitsets Eff r[insn] and Eff w[insn] representing the

read and written memory cells respectively. Memory cells are defined as the DS-Nodes

of DSG>[f], i.e., Eff r[insn] and Eff w[insn] contain as many bits as DSG>[f] contains

Sambamba — A Static/Dynamic Parallelization Framework 43

DS-Nodes. Additionally, one bit is stored per instruction representing observable non-

memory effects (nmer[insn] and nmew[insn] respectively). A non-memory effect is an

externally observable effect, such as printing a log message to the terminal (non-memory

write effect), reading the current system time (non-memory read effect), or asking for user

input (non-memory write and read). Non-memory effects of the C standard library and

known system-calls are hard-coded in our dependence analysis; statically unresolvable

indirect and external calls are conservatively assumed to have non-memory read and write

effects.

Finally, one bit term[insn] represents the termination effect of an instruction. An in-

struction has a termination effect if it might terminate the execution of the containing

function. This naturally holds true for a return instruction, but also for a call to exit() for

instance, or a call to a function which might potentially (transitively) call exit(), effectively

terminating the whole application. Note that ParAτ has to be conservative: any indirect

call which we cannot statically resolve or an external function call of which we do not have

any further information has to be assumed potentially terminating.

Eff r[insn] and Eff w[insn] are computed depending on the semantics of insn, which in

our case is an instruction of the LLVM intermediate representation. If the instruction is

known not to touch any memory or have any side-effects (ReadsNone in LLVM), both

effect sets are empty and the nme and term bits false respectively.

In all other cases, we take DSG>[F] as the basis for the effect computation, where F is

the function containing insn. We take the top-down graph as it represents the effects of

the function to parallelize, taking into account all possible calling contexts. This way, the

parallelized function will also be usable in all possible calling contexts. Note that in case

the function F is externally visible, i.e., has external linkage, DSA has to be conservative

and assume the worst with respect to calling contexts, as it simply does not see all possible

callers. In that case, it has to assume, for instance, that all pointer and type compatible

parameters might alias or be reachable from each other, which would result in unification

of the corresponding DS-Nodes in DSG>[F].

When inspecting an instruction insn ParAτ (and also ParAγ) computes the write (read)

effect by taking the DS-Nodes representing the written (read) LLVM values and all

44 Chapter 4

DS-Nodes reachable from that one node and sets all bits corresponding to those nodes in

Eff w[insn] (Eff r[insn]), if, and only if the DS-Node is marked written (read) or incomplete

in DSG>[F]. We also mark the reachable nodes, as we assume that an instruction that

would change a pointer to a struct, for instance, conflicts with an instruction that writes

to a member value of the referenced struct later on.

Call (and invoke) instructions are treated differently. If we cannot resolve the called

function statically, we have to assume that the call might write and read all memory cells

transitively reachable from the pointer compatible operands of the call, as well as all global

variables. In that case, all corresponding bits are set in both effect sets. If, however we

can resolve the call, we take DSG⊥[F ′], the bottom-up graph of the called function F’

and compute the n-to-m2 callee caller mapping of the pointer compatible operand and

return values within DSG>[F] and the corresponding nodes in DSG⊥[F ′]. The effect sets

of the call instruction are then marked just as described for the generic instructions, but

instead of taking the read/write information from the reachable DS-Nodes in DSG>[F],

we take this information from their mapped nodes in DSG⊥[F ′]. The rationale behind

this approach is to be as precise as possible for call instructions which are a promising

candidate for parallel execution. Taking the bottom-up graph of the called function allows

to take only the specific calling context of the inspected call into account, which we do by

computing the callee-caller mapping. Taking the top-down graph of the called function

would be more conservative, as it takes all possible calling contexts into account, which is

unnecessary, given the specific one we currently observe.

Figure 4.5 shows the effect bits per line of code of the performTask function. The IDs

used to address the bits of Eff r[·] and Eff w[·] correspond to the bits annotated to the

memory nodes in Figure 4.4. We can see that the two calls to makeList, as well as the

respective pairs of calls to hashList and freeList, work on disjoint memory regions and

that the return statement only has a function terminating effect term[·]. Note that the

hash_X and hash_Y values are kept in registers. Using those values does not have any

memory effect.
2An n-to-m mapping might result from unification happening during the independent computation of

the mapped graphs. This is also a detail that we had to add to DSA which assumed a 1-to-n mapping.

Sambamba — A Static/Dynamic Parallelization Framework 45

Eff r[·] Effw[·]

nm
e r

[·]

nm
e w

[·]

te
rm

[·]

1 0 1 0

long performTask(int size) { - - - - - - -

list ∗X = makeList(size); - - - 3 - - -

list ∗Y = makeList(size); - - 3 - - - -

- - - - - - -

long hash_X = hashList(X); - 3 - - - - -

long hash_Y = hashList(Y); 3 - - - - - -

- - - - - - -

freeList (X); - 3 - 3 - - -

freeList (Y); 3 - 3 - - - -

- - - - - - -

return hash_X ∗ hash_Y; - - - - - - 3

} - - - - - - -

Figure 4.5: The effect bits of performTask from Figure 4.2. DS-Node IDs correspond
to those in DSG⊥[performTask] as depicted in Figure 4.4.

An effect set plus the non-memory and termination effects per instruction can typically be

efficiently represented in the form of a single 64bit value. In the following and for the sake

of a readable syntax we treat individual bits (e.g., nmew[. . .], nmer[. . .] and term[. . .]) like

truth values in logical formulas. Union and intersection of bitsets can be safely assumed

to be implemented as bitwise or and and respectively.

A memory conflict conf [i, j] of instructions i and j is now defined as follows:

conf [i, j] := Eff r[i] ∩ Eff w[j] 6= ∅ (4.1)

∨Eff w[i] ∩ Eff r[j] 6= ∅ (4.2)

∨Eff w[i] ∩ Eff w[j] 6= ∅ (4.3)

∨(term[i] ∧ (nmew[j] ∨ Eff w[j] 6= ∅)) (4.4)

∨(term[j] ∧ (nmew[i] ∨ Eff w[i] 6= ∅)) (4.5)

∨i→du j ∨ j →du i (4.6)

Equations 4.1, 4.2, and 4.3, represent accesses of the involved instructions to the same

46 Chapter 4

(abstract) memory cell. Equations 4.4 and 4.5 check for potential function termination,

which prohibits parallel execution of any externally observable effect and therefore causes

a conflict. Finally, equation 4.6 triggers a conflict in case of a def-use relation between

instructions i and j which means that one instruction uses a register value computed by

the other instruction.

Based on the definition of a conflict, a dependence (i→ j) between two instructions i and

j is now defined as follows:

(i→ j) := conf [i, j] ∧ (j �∗ i) (4.7)

The �-relation is defined as a structural dependence or a follows relation. It is dictated

by the program structure and corresponds to succession in the control-flow graph (CFG).

�∗, the transitive closure of �, corresponds to reachability in the CFG. Intuitively this

rules out dependences between two instructions that do not reach each other. Furthermore,

it defines the direction of dependences: if an instruction j (transitively) succeeding an

instruction i (i�∗ j) is in conflict with i (conf [i, j]), we say “j depends on i” ((j → i))

or j has a dependence on i. While this is basically a syntactical issue, we stress this as

the literature does in no way agree on the direction of dependences. Figure 4.6 shows

the CFG of the performTask method with structural dependences depicted as dashed

(blue) arrows. Register or def-use-induced dependences are depicted as solid (gray) arrows.

Memory-induced dependences are not shown.

For further processing, automatic parallelization for instance, the effect information is

stored per instruction (or accumulated per basic block, depending on the granularity of

parallelization). ParAτ never stores actual dependences which are computed on the fly if

and where necessary. This is in favor of being able to restructure/transform the code after

the effects have been computed without the need to update dependence information. Inlin-

ing and code duplication in favor of parallel execution are two examples of transformations

that profit from this design decision.

Sambamba — A Static/Dynamic Parallelization Framework 47

size

call makeList

call makeList

call hashList

call hashList

call freeList mul

call freeList

ret

Figure 4.6: Regular CFG of the performTask method. Dashed arrows depict structural
dependences, i.e., the order of instructions as dictated by the program structure, of

instructions with possible side-effects.

We have chosen the DSA as the basis for ParAτ because we primarily aimed at parallelizing

general-purpose applications which, as described earlier, tend to make use of irregular

data-structures for which the DSA was designed. However, we did so knowing that regular

data-structures (i.e., arrays) are a weak spot of the DSA as it is not able to distinguish

between individual array cells, except if the array size is statically known. Typically, an

array is treated by DSA as a single virtual memory cell. While ParAτ suffers from this

restriction when dealing with code working on regular data structures, the dependence

analysis of ParAγ has been extended to also deal with arrays, yet still irregular data-

structures are also the main target of ParAγ . ParAγ is explained in detail in Chapters 5

48 Chapter 4

to 8.

4.1.2 Basic-block-wise Parallelization

Inspired by the work of Rugina and Rinard [56] and using the dependence information

described in the previous section ParAτ seeks to locally introduce parallelism and extend,

i.e., grow, the code regions covered by parallel execution. It starts by internally parallelizing

individual basic blocks, which consist of a sequence of instructions and do not impose any

difficulties due to complex and potentially irregular control-flow.

ParAτ first uses the dependence analysis to derive a dependence graph of the instructions

of the basic block. Note that this graph is directed and acyclic as the instructions do not

contain any loops. We call this graph the dependence DAG (DepDAG).

The DepDAG is then used to formulate the parallel scheduling of the instructions as

an integer linear optimization problem and uses an ILP solver 3 to come up with an

optimal schedule which minimizes the critical path execution time. Note that optimal

here naturally means optimal with respect to the cost function and the chosen cost model.

This can only be an approximation of real execution time, which in turn is statically

unpredictable and input dependent in general.

A detailed description of the resulting schedules and in particular the ILP formulation

is left for Chapter 6 in which all details are given. While the ILP used by ParAτ is way

simpler than the one used by ParAγ and described in Chapter 6, it shares the same basic

ideas and in fact could be replaced by that version. What is important to note here is that

individual basic blocks are parallelized to form individual sections of parallel execution.

We call those sections parallel sections, or ParSecs. Those sections are then extended by

pulling in surrounding code and uniting them with other parallel sections. This extension,

or ParSec-Propagation, is described in Subsection 4.1.4.

ParSecs are manifested in parallel control-flow graphs (ParCFGs), which are produced

as the result of the compile-time parallelization part of ParAτ within the Sambamba
3We use the IBM Cplex ILP solver in our current implementation. This choice is nevertheless not

important for our approach and the solver can easily be replaced by another implementation.

Sambamba — A Static/Dynamic Parallelization Framework 49

framework. The Parallel Control-flow Graph and its constituents that distinguish it from

a regular CFG are described in the next section.

4.1.3 Parallel Control-flow Graph (ParCFG)

1 #pragma omp parallel for

2 for(int idx = 1; idx < N; ++idx) {

3 norm[idx] = vals[idx] / norm(vals, N);

4 }

Adding parallelism to the compiler IR, and

thus making it explicit to the compiler, is

important to enable optimizations in the

presence of parallelism. Imagine, for in-

stance, the OpenMP parallel for loop to the right. Such a construct is typically trans-

formed by the compiler frontend and completely invisible to the optimizing middle and

backend. Typically, the body of the parallel loop is externalized to a separate function,

and the actual loop replaced by a call to the corresponding runtime system. This is called

early proceduralization and nearly prohibits all important compiler optimizations, like for

instance loop invariant code motion.

But full integration of parallelism is not only a matter of optimizations, and thus perfor-

mance. It is also a matter of correctness. In order to keep the engineering overhead as low

as possible it has been frequently proposed to integrate parallelism via early proceduraliza-

tion, as mentioned above, or by adding meta data or compiler intrinsics to the IR which

marks regions of possible parallel execution, but might be ignored by optimizations not

aware of the semantics of it. The main motivation of such proposals has been to minimize

the necessity to adapt every optimization in order to make it aware of the parallelism,

which would be invasive and error-prone. Unfortunately, parallelism is a very invasive

concept, as can be seen in Figure 4.7.

Figure 4.7a shows a code region with parallel tasks marked by compiler intrinsics par-

allel.task.start(<id>) and parallel.task.end(<id>). Whether we choose intrinsics, meta

data or similar minimally invasive constructs to mark parallelism is of minor technical

importance. Important however is that an optimization like common subexpression elimi-

nation (CSE), unaware of the parallel semantics, is allowed to produce the result shown

in Figure 4.7b. In the example, it is allowed to do so because the standard dominance

information, on which many optimizations rely, is not correct: despite the fact that the

50 Chapter 4

1 parallel.task.start(1)
2
3 some_fun(n/2)
4 parallel.task.end(1)
5 ...
6 parallel.task.start(2)
7 other_fun(n/2)
8 parallel.task.end(2)

(a)

1 parallel.task.start(1)
2 tmp = n/2
3 some_fun(tmp)
4 parallel.task.end(1)
5 ...
6 parallel.task.start(2)
7 other_fun(tmp)
8 parallel.task.end(2)

(b)

Figure 4.7: Illegal transformation due to insufficient integration of parallelism into the
compiler IR.

two program parts which are supposed to run in parallel are necessarily written down

in a sequential order, the implicit parallel semantics dictates that none of both regions

precedes the other. Consequently, none of both regions dominates the other and moving a

commonly used subexpression into either of both regions, as done in Figure 4.7b produces

a wrong result.

The parallel control-flow graph (ParCFG) resembles the structure of the CFG and adds

constructs of parallel execution. This means that we distinguish between sequential and

parallel control flow and corresponding edges. Parallelism is introduced into the ParCFG

by fork instructions, called πs. πs instructions form the entrance to a parallel section

which in turn is terminated by a join instruction πe. A parallel section consists of multiple

parallel tasks, which contain parts of the code that can potentially be executed in parallel.

The control-flow edges originating in a πs represent parallel control-flow and end in the

first basic block, the so-called head, of a parallel task. A πs is typically succeeded by many

parallel tasks of its containing parallel section. It has exactly as many outgoing edges as

the containing section tasks.

Parallel tasks in their basic form are single entry single exit regions (called SESE-Regions

or Hammocks in the literature). They are terminated by the one unique πe instruction of

their containing parallel section. The πe joins, or synchronizes, parallel execution.

Figure 4.8 shows the ParCFG of the performTask method as it is produced by the static

part of ParAτ ’s parallelization.

Sambamba — A Static/Dynamic Parallelization Framework 51

size

πs

call makeList call makeList

call hashList call hashList

call freeList call freeList

πe

mul

ret

Figure 4.8: ParCFG for parallel version P0 of the performTask method as automatically
derived by Sambamba. The outer box depicts a so-called parallel region consisting of
transactions depicted by the inner boxes. Each parallel region is entered via at least one
πs node and left via the one πe, which is unique per region. A πs forks parallel execution

and πe joins again after all contained transactions completed.

Parallel control-flow graphs do form an intermediate representation which makes the static

parallelism of a function explicit. They are independent of the form of execution, being

it parallel or sequential, chosen later on during code generation. Should parallel code be

generated, a πs would result in code which produces the necessary communication and

synchronization primitives at runtime and starts parallel execution. The corresponding πe
would be replaced by some form of barrier or synchronization. A simple and straight forward

possibility would be to produce a cilk [41] (or Cilk+ [42]) style program: each parallel

task t of a parallel section is extracted into a function ft with parameters corresponding

52 Chapter 4

to values used by but not produced within t. The πs is replaced by a number of spawn

instructions potentially spawning all tasks of the section, the πe is replaced by a sync

instruction. It would be as easy to produce an OpenMP [6, 7] or Intel TBB [40] based

parallel version, as is to linearize the tasks to produce a sequential version.

The ParCFG forms an essential building block to the modularity and extensibility of

Sambamba, which provides the infrastructure for final code generation. Parallelization

modules based on Sambamba (like ParAτ and ParAγ) can concentrate on finding the

parallelism inherent in the application and to produce ParCFGs where appropriate.

Sambamba provides the infrastructure to generate the parallel code.

Furthermore, ParAτ only profits from a subset of the features of the ParCFG. As Chapter 5

describes, the simple fork/join based parallelism of the ParCFG is sufficient to encode a

large range of different forms of parallelism, including many loop parallelization schemes.

Recently, and supporting our own efforts, Schardl et al. [96] (also [97]) proposed an

extension of the LLVM IR named TAPIR which is based on three constructs introducing

parallelism into the IR: detach, reattach and sync, which are of a similar expressive power

than the ParCFG parallel sections with their πs and πe constructs. The findings of this

thesis motivated and influenced a group around Johannes Doerfert at Saarland University

who is working together with the authors of TAPIR at MIT to introduce proper parallelism

constructs, including a well-defined parallel semantics, to the LLVM IR. An important

feature of this new IR, which the ParCFG does not fulfill, is the full compatibility to

existing analyses and transformations, while preserving correctness of analyses which are

unaware of the parallel semantics.

4.1.4 Parallel Section Propagation

By applying the scheme described in the previous sections, in particular basic-block-wise

parallelization, ParAτ is able to execute calls, for instance, which are contained in the

same basic block, in parallel to each other and by that to potentially gain some promising

performance improvements. This however seems to be severely restricted and is only

slightly more powerful than the first phase of parallelization as described by Rugina and

Rinard [56], in which all call instructions are marked with a cilk spawn and followed by

Sambamba — A Static/Dynamic Parallelization Framework 53

an immediate cilk sync. It is more powerful in the sense, that this step is already able

to effectively parallelize close-by call instructions and surrounding code sharing the same

control conditions, thus being typically placed in the same basic block. While this is a

severe restriction, it is already sufficient to parallelize the performTask method above or

the benchmarks used in [56].

In order to enable ParAτ to parallelize across basic block boundaries however, we have to

extend formed parallel sections, which ParAτ does by pulling in the surrounding code into

the parallel sections. It effectively extends, or propagates, the parallel sections, similar

to moving the sync statement in [56]. We explain parallel section propagation as it is

important to ParAτ . For ParAγ , the final parallelization approach developed in the course

of this thesis, however it is of minor importance. We therefore keep the description on an

intuitive level.

At first we need a few definitions: effect sets Eff r[t] and Eff w[t] (Eff r[S] and Eff w[S]) as

described earlier in Subsection 4.1.1 are intuitively defined for parallel tasks and parallel

sections of the ParCFG as the union of the respective effect sets of contained instructions.

nmer[S], nmew[S], and term[S] (nmer[t], nmew[t], and term[t]) are similarly defined as

the disjunction of the respective values of contained instructions. Based on these effect

definitions, conf [·, ·] and (· → ·) are also defined for basic blocks, parallel tasks, and

sections.

Furthermore, a statically estimated execution cost (execution time) ‖t‖ is defined for a

task t (similarly ‖B‖ for a basic block B), which for this simple approach is based on the

number of contained instructions (including the instructions contained in transitively called

and statically resolvable functions) each multiplied by a fixed constant for potentially

surrounding loops.

Consider the scenario shown in Figure 4.9a. It shows a parallel section S , containing two

tasks t1 and t2. The section is preceded by a basic block BB which should be pulled into

the section. Figure 4.9b shows the outcome of propagation, which however is only one of

many possibilities:

54 Chapter 4

BB

πs

... ...

πe

S

t1 t2

(a) Before propagation.

πs

BB ...

...

πe

S

t1 t2

(b) After propagation.

Figure 4.9: Parallel section propagation scenario (A) with one possible outcome (B).

BB → t1. If conf [BB, t1]∧¬conf [BB, t2], i.e., BB conflicts with t1 but not with t2 , it is

moved into t1. This is the scenario shown in Figure 4.9b.

BB → t2. Similarly, if ¬conf [BB, t1] ∧ conf [BB, t2] BB is moved into t2.

BB → t1 ∧BB → t2. If conf [BB, t1] ∧ conf [BB, t2] ∧ (Eff w[BB] = ∅) ∧ ¬nmew[BB] ∧

¬term[BB], BB can safely be duplicated in favor of extending the region covered by

parallel execution. Also, duplication is only an option if ‖BB‖ is below a configurable

threshold.

BB → t3. If ¬conf [BB,S], BB is put into a new parallel task t3.

BB 6→ S. In case BB conflicts with more than one task and has itself an observable effect

or is too large, which both prohibits duplication, propagation stops.

The mentioned scenarios exhaustively cover only the simple case of a single block preceding

a parallel section and having itself only a single successor. They should however give a

feeling of what parallel section propagation is and how it partially removes the limitations

of the basic-block-based parallelization of ParAτ . The implemented propagation algorithm

Sambamba — A Static/Dynamic Parallelization Framework 55

covers more complex cases and indeed is also able to propagate along complex control

flow. In theory, it can extend parallel execution to cover whole functions this way. In

practice however, the approach is limited in its capabilities to propagate parallel regions

across blocks with excessive memory or non-memory side effects, because the scheme is

unable to reorder code. For this reason, parallel section propagation as a central aspect

of parallelization is superseded in ParAγ by the simpler and practically more powerful

PDG-based whole function parallelization.

Parallel section propagation however is used as an optimization step after the PDG-based

parallelization of ParAγ . It is able to improve on the results achieved by ParAγ or semi-

automatic parallelization (see Chapter 10) by performing local optimizations, which ParAγ
is unable to do, as it is by definition limited to transformations among nodes sharing the

same control-conditions, and which are typically too fine-granular to be dealt with by a

manually parallelizing programmer.

4.1.5 Load-based Adaptive Dispatch

The ParCFG is used to compile a final parallel version for each parallelizable function of

the program. Those parallel versions are then packed into the binary together with their

sequential counterparts. It is left to the runtime system to decide which version to execute

upon a call to the respective function. ParAτ ’s runtime system decides, or dispatches,

based on the system load: if all resources of the surrounding system are already fully

loaded, then there is no use in further parallel execution, which would do nothing but to

introduce overhead and to over-subscribe the system.

Unfortunately, getting the system load inevitably requires to call to the operating system,

which is expensive and therefore cannot be done upon every single call to a parallelized

function with the sole purpose of deciding if the parallel version should be executed or not.

In order to be able to compensate for the overhead of the dynamic dispatch mechanism

and to increase the profitability even for small parallelized functions it needs to be as

lightweight as possible. The overhead of getting the CPU load each time might very well

outweigh the execution time of the function to call. Therefore, a separate thread polls the

56 Chapter 4

cpu load in a configurable interval, by default once every second, and stores it in globally

shared memory for the dispatch mechanism to read once per call.

Section 7.4.1 gives more details on load based dispatch; Section 7.4 further puts it in

reference to different alternatives implemented in ParAγ .

4.1.6 Lessons learned from ParAτ

The simple basic-block-based parallelization scheme of ParAτ has to be considered a

test-bed and development environment for the techniques and intermediate representations

described in this section: DSA-based memory effect computation, the ParCFG and

adaptive dispatch. All of those are part of ParAγ in a more or less extended and improved

version.

Apart from these purely didactic reasons, ParAτ is a fully working task based parallelization

scheme worth mentioning. In practice, it is limited by its propagation along the more or

less programmer dictated execution path and its inability to propagate “around” blocks

that are not suitable for parallel execution or where the conservative memory analysis has

to assume significant memory effects that prohibit parallel execution.

The knowledge gained during development of ParAτ lead to using the program dependence

graph (PDG) [28] as the main intermediate representation of ParAγ to overcome these

limitations. The PDG by design does not contain any control-flow as it is dictated

more or less arbitrarily by the program order. It is solely based on control and data

dependences, but sufficiently encodes the program semantics to be able to synthesize a

regular control flow graph by sequentializing the PDG [98]. It is the perfect representation

for parallelization as already noted by Sarkar [54].

4.2 Speculation Support

Although ParAτ does not make use of speculation, it is an important technique that enables

automatic parallelization. Recent work of Niall et al. [11] goes as far as claiming that

reasonable parallelization cannot solely rely on static dependence analysis and instead has to

Sambamba — A Static/Dynamic Parallelization Framework 57

use speculation to fully exploit the only dynamically exploitable parallelism. Unfortunately,

existing techniques and speculation mechanisms come at a high price in terms of runtime

overhead, which needs to be reflected in the decisions of an automatic parallelizer. The

problem with speculation is that its overhead inherently depends on the misspeculation

rate, which in turn depends on runtime features: The number of threads/tasks running in

parallel as well as the structure of the input.

Developing a framework for speculative execution is not part of this thesis’ work and

therefore not explained in thorough detail. Instead, an overview is given over the different

options implemented in Sambamba as part of a different PhD thesis [29], as far as it is

useful to put decisions explained in later chapters of this thesis into context.

Two different speculation approaches have been developed and integrated into the Sambamba

framework. One approach is based on Software Transactional Memory and implemented

as an extension of TinySTM [99, 100].

The other approach [14] is based on a concept commonly known as thread-level speculation

(TLS). It has been specifically implemented from the ground up to drive speculative

execution as required by the parallelization framework described in this thesis.

4.2.1 Software Transactional Memory

Transactional memory systems [101] are motivated by the corresponding concept in

database systems and typically guarantee atomicity and isolation. Atomicity refers to the

property that the (memory-)effects of instructions contained within the same transaction

are, from an external point of view, all visible (committed to main memory) at once or

not at all. The system guarantees that the effects of a transaction are never partially

visible only. We further differentiate between strong and weak atomicity, of which the

latter guarantees atomicity only between different transactions; the former also guarantees

atomicity between transactions and the surrounding code outside of the control of the

transactional memory system.

Transactional memory systems implemented in software only (STM) typically guarantee

weak atomicity as they rely on instrumenting the code contained in transactional sections.

58 Chapter 4

Guaranteeing strong atomicity would require the system to instrument the whole code,

including dynamically linked parts, which poses technical issues, but also comes with the

corresponding non-negligible overhead.

Hardware transactional memory systems (HTM) in contrast typically provide strong atom-

icity. The usual implementations, like the Intel Transactional Synchronization Extensions

(TSX) [102], are based on the cache coherence protocol and impose significantly less

runtime overhead in comparison to software only implementations.

One of two speculation systems implemented as part of the Sambamba framework is based

on TinySTM [99, 100] and comes with the typical performance overhead of an STM system.

To make it usable in an automatic parallelization context, where keeping the sequential

semantics of the parallelized application is of importance, the implementation contained in

Sambamba adds a commit order: the order between transactions resulting from automatic

parallelization (for instance as done by ParAγ) is defined by the broken, i.e., speculatively

ignored, dependences. This is an important criterion that heavily influences parallelization

decisions. As a result of this requirement it is illegal to form transactions in Sambamba

whose speculatively ignored dependences impose a circular commit order between the

transactions. Chapter 6 describes in detail how this is guaranteed by ParAγ .

Due to its typically small setup overhead per transaction (in contrast to the above mentioned

high overhead per protected memory operation and commit) STM is particularly well

suited to replace locking primitives protecting comparably small critical parts of big parallel

tasks. It is not, however, a good fit for completely protecting very big speculative parallel

tasks. To cover that use-case, Sambamba additionally provides an alternative speculation

mechanism based on process forking as described in the next section.

4.2.2 K-TLS

K-TLS is in most cases the speculation system of choice in Sambamba. It is a so-called

Thread-level speculation system (TLS) based on process forking to isolate the memory

effects of individual transactions to guarantee atomicity and isolation. In contrast to the

STM implementation described in the previous section, K-TLS and similar systems come

Sambamba — A Static/Dynamic Parallelization Framework 59

with a high initial setup overhead per speculatively spawned task, but nearly no overhead

per protected memory operation within a task. Upon completion of a speculatively parallel

task and a successful conflict check, the memory effects of a transaction are made accessible

to the main process by atomically moving over written memory pages.

The K in K-TLS comes from kernel and hints at the implementation as part of the

operating system kernel. Only this way it can effectively use the hardware based memory

management to keep the overhead as low as possible. Another advantage is that this

way, speculatively ignoring possible system calls is straight forward, even for dynamically

loaded binaries not allowing for instrumentation of the code. All system calls are handled,

and can therefore be intercepted, by the OS kernel. If a system call happens speculatively,

the transaction can be aborted or stalled until completion of transactions preceding the

one executing the system call in the commit order, which K-TLS requires just like the

alternatively usable STM .

The high setup cost of transactions in the K-TLS is a bearable cost given the low overhead of

memory operations, as big transactions are typically the goal of task based parallelization

of general purpose applications. The downside of K-TLS , or more generally systems

exploiting the virtual memory system for conflict detection, is the granularity of conflict

detection, which typically is on the page-level. That means that a conflict is detected,

and consequently the speculative execution rolled back and repeated, if two speculative

tasks write to the same memory page of typically four kilobytes. This granularity might,

depending on the application, lead to a significant amount of so-called false conflicts caused

by two tasks writing to completely disjoint regions of the same memory page.

The STM system of the previous section is instead able to detect conflicts on the word

level which nearly eliminates the risk of false conflicts but comes, due to the necessary

instrumentation of the code, with the limitations and draw-backs, especially performance-

wise, described earlier.

K-TLS+ is a hybrid system that seeks to overcome the limitations induced by the page-level

conflict detection by again relying on instrumentation of speculatively executed code to

resolve potential false conflicts within a page. The granularity, and with it the overhead of

the required instrumentation, is configurable in K-TLS+.

60 Chapter 4

4.3 The Dynamic Nature of Sambamba

Choosing the parts of a program to profitably parallelize, the right speculation system,

the right parameters for a chosen system, or dropping speculatively parallel execution

completely, is a decision that is only reasonably made based on dynamically collected

characteristics of parallel execution, which not only depends on the program itself but also

on user input and the execution environment. The frequency of (false) conflicts cannot

be statically anticipated as it heavily depends on the parallelism available, which in turn

depends on the user input and the number of available computational resources like CPU

cores. The overhead caused by re-execution of failed transactions of course also depends

on the input.

Sambamba therefore provides all the infrastructure to leave the decision on what, where and

how to parallelize to a runtime system. This is what ParAγ makes heavy use of and why

it does exactly that: statically finding promising parallelization candidates based on the

information of earlier runs of the application or static estimates of important parameters

and leaving the final decisions and tuning to the runtime system, also implemented on top

of Sambamba. Just-in-time compilation allows to completely reassess major decisions of

parallelization without overly instrumenting the application to allow for dynamic tuning.

Dynamic dispatch mechanisms, of which two more are described in Section 7.4, allow for

low overhead dynamic tuning of parallel execution and reduction of parallelism-induced

overhead on system oversubscription. Finally, the work-stealing dynamic scheduler of Intel

TBB [40], on which the Sambamba runtime system relies for parallel execution, takes care

for even and cache friendly distribution of parallel work. All mechanisms combined result

in a highly flexible and adaptable form of parallel execution.

In this chapter, you have seen a conceptual overview of the Sambamba framework,

an extensible static/dynamic compilation and runtime environment based on the

LLVM compiler infrastructure.

ParAτ , a first task-based parallelization scheme implemented on top of Sambamba has

been presented and used to introduce important techniques and terminology, which

Sambamba — A Static/Dynamic Parallelization Framework 61

also form the basis of ParAγ , our final approach for generalized task parallelism.

These techniques include in particular a context-sensitive and inter-procedural

memory access analysis, the parallel control flow graph (ParCFG), and runtime

adaptive dispatching based on the current system load.

Chapter 5

Generalized Task Parallelism —

ParAγ

The goal of our parallelizer ParAγ , which this and the following Chapters 6 and 7

will introduce, is to find for each function of an application a set of parallelization

opportunities. From these candidates ParAγ chooses the combination that best fits the

execution environment at runtime. Parallelization opportunities are found in the form of

arbitrary, possibly nested, regions of code amenable for parallel execution.

(Re-) Compile-time Runtime

LLVM
Bitcode

Preparation and
PDG Construction ILP Scheduler

ParAγ

Codegen

JIT
Compiler

Profiler
Privatization Analysis

Reduction Analysis

Figure 5.1: Overview of the ParAγ parallelization system.

64 Chapter 5

ParAγ consists of two parts: a compile-time component, performing most of the time-

consuming program analyses, transformations and scheduling offline; and a runtime

component, building on statically gathered information and continuously collected runtime

profiles to perform online adaptive optimizations.

Figure 5.1 gives an overview of the workflow of ParAγ . The application, in the form of

its compiled LLVM bitcode, is read as input. This enables ParAγ to deal with programs

written in different languages; no syntactic information is required. The resulting control

flow graph of each individual function is then preprocessed and a program dependence

graph (PDG) constructed. Also, reduction and privatization opportunities are identified

and reflected correspondingly in the PDG. A scheduler based on integer linear programming

(ILP) is used to find a set of parallelization candidates per function; it takes into account

statically estimated and, if available, dynamically gathered profiling data and generates

an optimal schedule with respect to the execution cost-model, expressed in its constraints.

The found candidates are called local parallelization candidates and reflect parallelization

opportunities which are statically deemed beneficial; the decision if a local candidate

will be instantiated is left to the runtime system. Note that the set of candidates may

contain, but is in no way limited to, parallel loops. It may well be that the scheduler

decides to execute arbitrary regions of code in parallel to each other. The cost-model

explicitly reflects the cost of exploiting reduction or privatization candidates. It is up to

the scheduler to decide if and where such opportunities are worthwhile to realize with

respect to its optimization function.

At runtime, the statically found parallelization candidates are evaluated, considering the

actual execution environment; one parallel version of each function is generated for the

best combination of its local parallelization candidates. To decide on the quality of a

combination, a modified version of the scheduler cost function is used. Using a just-in-time

compiler, this parallel version is compiled and patched into the running application. A

dynamic dispatch mechanism is installed to decide, upon calls to the function, whether

execution should proceed with the parallel or the sequential version. The application is

continuously monitored by an efficient, sampling based profiler. The empirically gathered

execution time of individual call sites allow ParAγ to react to changing runtime conditions.

Generalized Task Parallelism — ParAγ 65

ParAγ works in a fully automatic way and is used like a regular C/C++ compiler.

Additionally, speculation hints can be given by the programmer to guide parallelization.

Nevertheless, ParAγ in no way relies on the existence of such hints, nor on their accuracy.

In the following, this chapter will lay the foundation of generalized task parallelism by first

introducing ParAγ ’s flavor of the program dependence graph (PDG) as its central program

representation. It will furthermore introduce important parallelization enabling techniques

before the following Chapter 6 will go into the details of scheduling for parallelism. While

Chapters 5 and 6 focus on the static parts of ParAγ , Chapter 7 provides details on the

dynamic capabilities of ParAγ ’s runtime system.

5.1 Program Representation

ParAγ works solely on program dependence graphs (PDG) [28]. At compile-time a PDG is

constructed for each function. Such a PDG is kept during compilation and, if parallelism

has been found, also during application runtime. The following sections explain in detail

how the ParAγ PDG looks like and what form of extended information is stored in it.

5.1.1 Program Dependence Graph (PDG)

As stated by Sarkar [54], the PDG is a perfect representation to express and analyze

parallelism: it abstracts from overly restrictive implementation-dictated execution order and

unveils all available parallelism by ordering instructions solely based on actual dependences.

The challenge is to find the right granularity of parallel execution, as the parallelism

reflected by the PDG is too fine grained in general. Computation nodes need to be

grouped to form coarser parallel tasks, costly enough to outweigh the overhead of packing

and spawning.

In ParAγ , individual PDG nodes represent basic blocks of instructions. Before computing

the PDG, basic blocks are split to isolate instructions of interest and increase the freedom

to schedule them independently. Such instructions are, for example, accesses to reduction

66 Chapter 5

root

while return

true

p = seqpart(. . .) seqquick(. . .) low = p + 1

Figure 5.2: The simplified PDG of seqquick: data dependences are depicted by dashed
arrows, control dependences by solid arrows. Light solid lines depict parent relationship.

Note how loops are represented in the PDG.

and induction variables as well as function calls.1 Details on the splitting of basic blocks

prior to PDG construction are given in Subsection 8.2.1.

ParAγ computes data dependences by an interprocedural, context-sensitive points-to

analysis based on the data structure analysis (DSA) [23] as described in Subsection 4.1.1.

In addition to the analysis described earlier, ParAγ adds an array access analysis based on

the polyhedral toolchain of Polly [103], the polyhedral optimizer of the LLVM framework,

to disambiguate array accesses in loops2. Furthermore, ParAγ allows for user annotations

to give hints to the dependence analysis. Currently, such hints are useful in the presence

of recursive functions, for which DSA severely over-approximates by unifying the effects of

all functions involved in the strongly connected component in the call-graph.

As an example, the PDG of the seqquick function of Figure 1.4c is shown in Figure 5.2.

The PDG contains nodes (N) partitioned into sets of three different types:

• Regular nodes (R), depicted as boxes, represent simple instructions or basic blocks.

• Decision nodes (D), depicted as diamonds, represent basic blocks with more than

one successor in the control flow graph. In the LLVM context these are basic blocks
1Note that the restriction to the basic block level is not a limitation of the approach but instead a mere

technical trade-off between processing time and transformation freedom.
2The array dependence analysis of ParAγ has been implemented by Johannes Doerfert, who also

contributes to Polly.

Generalized Task Parallelism — ParAγ 67

terminated by conditional branches, switches or possibly exception throwing calls

(invokes).

• Finally, group nodes (G), depicted as ovals, group possibly multiple nodes (called

its children) sharing the same control condition. Each group node—except for the

unique root node—is directly control-dependent on exactly one decision node in the

PDG.

Each group node represents a control condition, which is the conjunction of all conditions of

decision nodes on the path from the designated PDG root node to the corresponding group.

Once this condition is fulfilled, all its child nodes are to be scheduled for execution. Only

the data dependences between the subgraphs reachable from the group node’s children

restrict parallel execution. Within one group node, no complex control flow has to be

taken into account: a property that makes the group nodes particularly interesting in the

context of synchronous task parallelization.

In the remainder of this thesis we make frequent use of the following important terminology:

we call the PDG sub-graph without data dependences, i.e., with control-dependences and

parent relationships (induced by group nodes, see Figure 5.2) only the control-dependence

sub-graph of the PDG. Furthermore, by reachable PDG sub-graph, rooted in node n we

mean all PDG nodes, which are (transitively) control-dependent on n.

The purpose of the scheduler as described in Chapter 6 is to find for each group node in the

PDG a schedule of its respective children, representing the whole subgraph reachable from

the particular child node. Note that in this way it is possible, even natural, to generate

nested parallelism. It is up to the runtime component of ParAγ to decide at which group

nodes, and consequently also at which nesting levels, to make use of the parallelization

opportunities provided by the static scheduler.

5.1.2 Sequentialization of the Program Dependence Graph

As stated earlier, the program dependence graph is the perfect representation of parallel

programs. It removes the structurally imposed program execution order and leaves only the

68 Chapter 5

root

A B F

b1 b2

C D E

Figure 5.3: A simple PDG for sequentialization.

strictly necessary control and data dependences which are to be respected to guarantee

preservation of the sequential program semantics. In order to be executed by the machine,

the program’s statements however need to be put in an execution order in the form of

a control flow graph. This process is called sequentialization of the PDG and has been

the subject of extensive research with the goal of solving the issue for different forms of

programs ranging from loop-less programs [104–106] to programs containing only single-

entry loops [107] to irreducible programs containing arbitrary loops [98] respectively. The

more recent work of Zeng et al. [108] has dealt with the efficiency of the code sequentialized

from a PDG with possible interleaving, i.e., circular dependences between disjoint PDG

sub-graphs. The goal to achieve in the optimal sequentialization is minimal duplication of

code, or minimal number of guards3.

As an example consider the simple PDG shown in Figure 5.34, and the two possible

sequentializations in Figures 5.4a and 5.4b, the latter being optimal, while the former

required duplication of node D due to a sub-optimal order of generating code for the

children of group nodes b1 and b2.

Steensgaard [98] shows how to optimally sequentialize PDGs even for irregular code based

on the so-called external edge condition (EEC). Our situation is special, however, and

in fact allows for a simpler solution: the PDG used in Sambamba/ParAγ is computed

from an existing control-flow graph, and mostly used for analysis purposes only. Since

ParAγ does not introduce new dependences into the PDG it is clear that a duplication and
3Sequentialization can always be duplication-free provided enough predicates are inserted into the code

guarding the execution.
4For the sake of a simple example please ignore the fact, that D is not control-dependent on B.

Generalized Task Parallelism — ParAγ 69

A

B

D1 D2

C E

F

(a) Non-optimal with D duplicated.

A

B

C E

D

F

(b) Optimal.

Figure 5.4: Sequentialization of the PDG shown in Figure 5.3.

guard-free sequentialization of the PDG exists: the original CFG. In the general case this is

not always true (see Ball and Horwitz [107]). Furthermore, and more importantly, we can

keep the information on this sequentialization, at least implicitly, by storing for each PDG

node a group-unique ID based on the post-order numbering of the blocks in the control

flow graph with loop closing edges removed. IDs are group-unique, i.e., unique among the

children of each PDG group node, instead of unique for the whole PDG, since group nodes

themselves do not have a correspondence in the CFG, and therefore no corresponding ID.

Instead, group nodes inherit the ID from the decision nodes they belong to. The basic

idea then is that during sequentialization of a PDG group node, the children are ordered

in descending order of their respective IDs, which for a loop-less program results in the

original, duplication-free CFG.

Loops impose a different situation: without loops, the children of the reachable PDG

sub-graph, rooted in node n always have a smaller ID than n itself, following from the

definition of control-dependence, which requires reachability in the CFG, and post-order

numbering, which guarantees that all nodes reachable from n are numbered before n. CFG

loops however result in loops also in the control-dependence sub-graph of the PDG, which

in turn result in nodes with higher IDs being reachable in the PDG. This needs to be

70 Chapter 5

reflected when ordering the children of a group node g with post-order ID poid(g) for

sequentialization by sorting in two steps: first, all children c with poid(c) < poid(g) are

sorted in descending order of their IDs, followed by all children with poid(c) ≥ poid(g),

also in descending order of their IDs. We call all children with poid(c) < poid(g) regular,

and all children with poid(c) ≥ poid(g) loop-back. The boundary between those two groups

is called loop-back boundary, the one child with the smallest ID bigger or equal to that of

its parent is called reentrant as it is the one closing the loop. Figure 5.5 illustrates the

order of children and the terminology introduced above.

am bm−1 cm−2 dm−3 eo+2 fo+1 go

grpn

regular children loop-back childrenloop-back boundary

reentrant node

Figure 5.5: Order of children of a PDG group node grp with poid(grp) = n, and children
a - g with subscripted CFG post-order IDs. m < n and o ≥ n.

A5

B4

C3

E1 D2

(a) A CFG with post-order numbers of
blocks as subscript.

root

A5 C3 E1

g3

D2 B4

(b) A PDG with CFG post-order num-
bers as node IDs.

Figure 5.6: A CFG and its corresponding PDG.

The loop-back boundary has a special meaning during parallelization: a schedule that

executes all regular children of a group node in parallel to all loop-back children typically

results in a DOALL parallelized loop. In cases of loop parallelization requiring realization

Generalized Task Parallelism — ParAγ 71

of a reduction or privatization, for instance, the loop-back boundary is the location to

introduce fix-up code.

As a simple but complete example consider the CFG and its corresponding PDG in

Figure 5.6, in particular the group node labeled g3 with its three children D2, B4, and C3,

which have to be sequentialized in exactly this order to guarantee a minimal CFG. The

root node’s children have to be scheduled in the order A5, B4, C3, E1.

Storing the post-order ID as described above for each PDG node, especially since it has

to be kept throughout the whole compilation process, within the binary as produced by

Sambamba, and at runtime, might seem like a significant overhead. Indeed, for exactly

that reason, we have implemented Steensgaard’s algorithm at first to recompute and store

the relevant ordering only in case it is needed. It turned out however that this particular

information is frequently needed throughout the whole process. Additionally, we have

been surely willing to trade memory for runtime efficiency. Finally, a unique ID per node

is needed anyway for several implementation-related reasons.

5.1.2.1 Sequentialization of Parallelized PDGs

So far we talked about sequentializing a PDG with the goal to get the original, sequential,

CFG without duplication of code or introducing execution guards. In case the children of

a group node are scheduled for parallel execution, however, generating the ParCFG might

require duplication of blocks, not only those directly contained in the parallel region, but

especially those preceding it. Note that relying on the simple node ordering defined above

still results in a minimum of duplicated code. Placing multiple copies of blocks however

requires to select among the cloned values for later use by control-flow successors. This is

being taken care of during ParCFG generation.

5.2 Parallelization Enabling Techniques

As mentioned earlier, parallelism enabling techniques like speculation, privatization and

reduction are frequently considered strictly necessary to effectively exploit the parallelism

72 Chapter 5

of general purpose applications (e.g., [11]). In this section, we will describe how ParAγ
recognizes, models, and uses candidates for the above mentioned techniques in the context

of generalized task parallelism, in particular abstracting from syntactical patterns or special

code features.

5.2.1 Generalized Reduction

Reduction, in different shapes and flavors, has been frequently identified as an important

parallelization enabling technique. Its importance is also reflected by the fact that many

domain specific languages and tools dealing with parallelism contain reduction as a

first-class citizen of the programmer’s toolset. Most automatic parallelization techniques

typically rely on reduction recognition and realization at some point in the toolchain. Often

times this is done prior to the actual parallelization and, in addition to data privatization,

used as a technique to resolve, or remove, data dependences before the actual scheduling

for parallelism takes place. This way the induced cost can only play an indirect role in the

decision for or against parallelization.

In the context of generalized task parallelization, where reduction also plays a major role,

we seek to treat reduction and its realization using one of many possible ways as an integral

part. The non-negligible implied cost of reduction realization that typically comes with

the necessary use of atomic operations, privatization of reduction values or synchronization

techniques as well as indirectly through the necessarily changed memory access patterns

(and cache utilization) of the code, are modeled and taken into account in the choice of

the right parallelization granularity and used techniques.

In the relevant literature, a reduction is typically defined on a syntactical level and

described as code that more or less fits into the pattern x = x ⊗ exp where x does not

appear in exp, and ⊗ is one of a few, typically hard-coded, reduction operations. Starting

from that definition, this section develops and formalizes our notion of reduction and sets

the used terminology. Furthermore, apart from the theoretical properties of a reduction

operation, we define the practically implied costs and describe different ways of realizing

a reduction. Chapter 6 describes in detail how reduction and its realization costs are

modeled as part of the underlying optimization problem.

Generalized Task Parallelism — ParAγ 73

5.2.1.1 Syntactic Approach

Most existing approaches simply define a reduction operation at a syntactical level. The

following basic definition is taken from Rauchwerger et al. [32] (Note that this is only their

basic definition; we will discuss their extended definition in the following section.):

Definition 5.1 (Redstx1). A reduction variable is a variable whose value is used in one

associative and commutative operation of the form x = x⊕ exp, where ⊕ is the associative

and commutative operator and x does not occur in exp or anywhere else in the loop.

In our setting, we see several problems with an approach like that: first and foremost, as it

is syntactically defined, reduction recognition needs to take place in the compiler frontend

and is language specific. ParAγ on the other hand, is dealing with language independent

LLVM Bitcode.

Second, a definition like Redstx1 is very restrictive. There is no reason to reject code like

the one shown in Figure 5.7 in which clearly the syntactical pattern is not met.

1 int x = 0;
2
3 do {
4 x += 23;
5 if (...)
6 x -= 12;
7 if (...)
8 continue;
9 x = x + some_pure_fun();

10 } while (...);
11
12 printf("The result is: %d%n", x);

Figure 5.7: Valid reduction on variable x.

Midkiff [30] goes in the same direction:

Definition 5.2 (Redstx2). Reductions Redstx2 are defined as “operations that reduce the

dimensionality of at least one input operation using a commutative reduction operation,

⊕”. Further, to recognize such operations, “a compiler essentially looks for statements of

the form s = s⊕ expr” where “first, the value of expr must be the same regardless of the

loop order it is evaluated in”, and “second, the left-hand side s must not be used in other

statements”.

74 Chapter 5

The limitations of the definition of Redstx2 are essentially the same as for Redstx1 , further

talking only about reducing the dimensionality of one input operation (vector, array, . . .).

5.2.1.2 Dependence-based Approach

The definition of Kennedy and Allen [8] is more to the point:

Definition 5.3 (Reddep). A reduction has three essential properties:

1. It reduces the elements of some vector or array dimension down to one element.

2. Only the final result of the reduction is used later; use of an intermediate result

voids the reduction.

3. There is no variation inside the intermediate accumulation; that is, the reduction

operates on the vector and nothing else.

Again, the definition of Reddep only talks about vectors and arrays (it was tailored towards

FORTRAN 90 and available hardware reduction operations). Nevertheless, it abstracts

from the syntactical appearance and relies solely on dependences (See Kennedy and

Allen [8] for more details).

Still, a reduction as shown in Figure 5.7 would not be captured by Reddep.

To deal with reduction operations potentially spread over multiple statements (as in

Listing 5.7), Rauchwerger et al. extended their basic definition Redstx1 as follows:

Definition 5.4 (RedERS). Instead of relying on the syntactical form as defined in Redstx1 ,

the concept of expanded reduction statements (ERS) is introduced: an ERS is formed by

following the def-use chains of variables used in the right hand side (RHS) of a potential

reduction statement x = y ⊕ exp. The goal is to verify that the reduction variable (x) is

just passed through those variables (e.g., y) to the reduction statement. The source and

sink of such a reduction chain define the ERS, which can then be validated according to

the criteria in Redstx1 .

Generalized Task Parallelism — ParAγ 75

S = S + A(I)

DO I = 1, N

ENDDO

δlc
flow

δanti

δlc
out

Figure 5.8: Dependences involved in a reduction operation (taken from Kennedy and
Allen [8]). Dashed arrows depict data dependences.

Further they allow multiple reduction statements of the same form (x = x ⊕ exp, or

equivalent ERSs), provided all reductions over the same variable use compatible reduction

operations (additive, multiplicative, . . .). Also, control flow can be taken into account

by allowing reduction variables to flow through γ statements (introduced by bringing

the program into gated static single assignment (GSSA) form) in extended reduction

statements.

In principle, a program as shown in Listing 5.7 would almost be recognized by the extended

definition. Problems arise though with different forms of loops (while vs. do) or early loop

exits (break and continue).

This restriction is mainly of technical nature and probably due to the fact that the original

definition dealt with recognizing DOALL loops in FORTRAN programs only.

Our goal is to define reduction operations independent of the used language and independent

of the loop structure.

5.2.1.3 First Approach of Generalized Reduction Recognition

In the setting of ParAγ it is not possible to rely on program syntax as ParAγ is working

only at the LLVM Bitcode level. Furthermore, we do not want to limit ourselves artificially

to reducing the dimensionality of a vector or array.

Our definition of reduction, Redgen, is a generalization of the definitions of Reddep and

RedERS : consider the dependence graph depicted in Figure 5.8. It shows the basic

dependence pattern that appears in a reduction operation. Dependences δlcflow and δlcout

76 Chapter 5

xin

⊕1

⊕2

. . .

⊕n

xout

exp1

exp2

expn δlc
flowδanti

δlc
out

Figure 5.9: General form of a redChain. Solid arrows depict data flow, dashed arrows
reduction relevant data dependences.

are loop carried and can basically be ignored upon successful recognition of the reduction,

provided corresponding fixup code is added, e.g., after the loop.

Combining the dependence based approach with the concept of an ERS, we get a general

notion of a reduction chain (redChain) as depicted in Figure 5.9.

Intuitively a value x is a reduction value in region R if it enters the region via an input

node of x (xin in the example). Examples for input nodes are load instructions or loop-

carried φ nodes, in case R represents a loop. The value is combined with arbitrarily

many expressions (exp1 . . . expn) using the same number of operators (⊕1 · · · ⊕n). It leaves

the dynamic instance of R through a corresponding output node (xout), for example a

store, a loop carried φ node or any node used outside of R. A chain can split up and

end in multiple output nodes; this for example happens naturally in loops with continue

statements between different accesses to the reduction value. Furthermore, a chain can

branch and join in φ nodes, provided x flows into each of the operators exactly once. No

intermediate value of a chain is allowed to be used outside of R or outside of a valid

reduction chain within R. Multiple independent chains on the same reduction value can

exist in the same region.

Only if these conditions are fulfilled, we can safely “ignore” the loop carried dependences

δlcflow and δlcout, as mentioned earlier, provided we add fixup code if at least one of them

Generalized Task Parallelism — ParAγ 77

might be violated by parallel execution.

Note that, since ParAγ is working on an SSA based intermediate representation, this

definition already includes the concept of following the def-use chains covered by ERSs

as local variables do not appear as loads and stores to different addresses in the chain.

Instead, each intermediate result on the chain may or may not have been assigned to a

local variable at the source level. Both source representations, one assigning intermediate

values to local variables and one not doing so, are normalized to the same form in LLVM’s

IR.

5.2.1.4 Notation

Before we get to the final definitions, we need to introduce some further notation.

The following definitions will be based on SSA based control flow graphs (CFGs). The

nodes N of such a graph G represent instructions (or operations); a CFG further contains

two different sets of edges:

E : N ×N is the set of control flow edges, denoted by a→ b with the meaning that there

exists a path in G on which an operation b ∈ N is executed immediately after an operation

a ∈ N .

E̊ : N ×N is the set of data-flow (or def-use) edges, denoted by s →̊ t meaning that data

produced by an operation s ∈ N is directly consumed by an operation t ∈ N .

a→? z (a →̊? z) denotes the set of all control-flow (def-use) paths from an operation a to

another operation z. It is a subset of the transitive closure of E (E̊).

By ⊕ ∈ p for p ∈ s →̊? t we state that ⊕ is an operation on a def-use path p starting from

s and ending in t.

Further, a→?
R z (a →̊?

R z) denotes the set of paths not leaving a region R, which in turn

is defined in terms of its contained nodes (R ⊆ N):

a→?
R z := {p ∈ a→? z|@n ∈ p.n /∈ R}

78 Chapter 5

and, respectively

a →̊?
R z := {p ∈ a →̊? z|@n ∈ p.n /∈ R}

If A is a set of nodes, then A→?
R z (A →̊?

R z) is the set of all paths from any node in A

to z:

A→?
R z :=

⋃
a∈A

a→?
R z

σ(p) is the source of a path p and τ(p) its target. ops(⊕) denotes the set of operands of ⊕

and uses(⊕) the users of the value computed by ⊕:

∀p ∈ a→? z.σ(p) := a

∀p ∈ a→? z.τ(p) := z

ops(⊕) := {n | n →̊ ⊕ ∈ E̊}

uses(⊕) := {n | ⊕ →̊ n ∈ E̊}

5.2.1.5 Definition

In the following we formally define the notion of a redChain.

Definition 5.5 (RedOps). RedOps denotes the set of all reduction operators; a reduction

operator ⊕ is any associative and commutative operation.

In principle, associativity is enough to relax the involved dependences to allow for limited

parallel execution. In order to be able to “remove” the dependences, as motivated before,

we need commutativity as well.

In our setting, we implemented the recognition and realization of the following reduction

operators: +, *, min, max, and, nand, or and xor. Note that although - and / are

not associative and commutative, they can still be accepted by moving them from the

Generalized Task Parallelism — ParAγ 79

reduction term to the exp term. A + or * operation is virtually introduced in their place

respectively.

Definition 5.6 (Compatible redOp). Two reduction operators (including the pseudo-

RedOps - and /) are compatible to each other if they can be replaced by each other in

the top-level reduction expression. The set of reduction operators compatible to a given

operator ⊕ is denoted as Γ⊕.

Furthermore, we define the set of input nodes, i.e., the nodes via which the reduced value

(x) can flow into a redChain in a code region R:

Definition 5.7 (inR(x)).

inR(x) := loadR(x) ∪ Φlc
R(x) ∪ {x}

inR(x) contains all loads of the value x that appear in region R; if R represents a loop,

then inR(x) also contains the nodes in Φlc
R(x), the set of φ-nodes carrying x along the loop;

finally, it contains x itself, regardless of the fact if x is part of R or not. This last part is

crucial if R does not represent a loop and there is no φ-node and not necessarily a load

involved.

Similarly define outR(x) as the set of nodes via which the reduced variable x can leave an

instance of the region R:

Definition 5.8 (outR(x)).

outR(x) := storeR(x) ∪ lcPhiOpsR(x) ∪ extUsedR(x)

where

lcPhiOpsR(x) := {o | φ ∈ Φlc
R(x) ∧ o ∈ ops(φ) ∧ o ∈ R}

extUsedR(x) := {o | inR(x)→̊?
Ro 6= ∅ ∧ uses(o) \R 6= ∅}

onChainR(x) denotes the set of nodes (operations) being part of at least one def-use path

of x in R:

80 Chapter 5

Definition 5.9 (onChainR(x)).

onChainR(x) := {o | ∃p ∈ inR(x) →̊?
R outR(x).o ∈ p}

Finally, legalInflowR(⊗, x) is a predicate stating that a value of x enters ⊗ via exactly one

operand, or, in case of a φ operator, via all operands.

Definition 5.10 (legalInflowR(⊗, x)).

legalInflowR(⊗, x) :=

| ops(⊗) ∩ onChainR(x) |=


| ops(⊗) |, if ⊗ = φ

1, otherwise



We now define the predicate Redgen(x,⊕, R) meaning that code region R contains a

reduction over variable x using only reduction operation ⊕, or compatible reduction

operations:

Definition 5.11 (Redgen). ForRedgen(x,⊕, R) to be a valid reduction, all of the following

conditions have to be fulfilled:

1. ⊕ ∈ RedOps

2. ∀s ∈ outR(x).inR(x) →̊?
R s 6= ∅

3. ∀p ∈ inR(x) →̊?
R outR(x) . ∀p′ ∈ σ(p)→?

R τ(p).@s ∈
(
p′ ∩ out ′R(x)

)
.s 6= τ(p)

∧ ∀⊗ ∈ p . ⊗ ∈
(
Γ⊕ ∪ {φ}

)
∧ legalInflowR(⊗, x)

where

out ′R(x) := outR(x) \ lcPhiOpsR(x)

The first condition ensures that the used operator ⊕ is indeed a reduction operator.

The second condition ensures that any observable value stored in the same location as x is

computed from an earlier version of x. This basically forbids simple assignments of the

form x := const which would not be commutative.

Generalized Task Parallelism — ParAγ 81

The third condition ensures that no intermediate values are allowed to escape the region

R, that all RedOps on x in R are compatible, and that multiple values of x are allowed to

flow into a path only via φ-nodes.

Please note that while most definitions so far are based on def-use paths, this very last

condition is based on control-flow paths between the source and sink of a reduction chain.

This is crucial, as any out value of x, not necessarily being part of the same reduction

chain, that is computed on any path between the source and sink of a realized reduction

chain qualifies as the exposure of an intermediate value of x. Also, note that this condition

effectively prohibits interleaved reduction chains on the same reduction location.

In the last condition (3), out ′R(x) had to be used instead of outR(x) for quite a subtle

reason. Consider the code in Listing 5.7: due to the conditional continue statement,

there exists a redChain containing multiple nodes observable from outside of one dynamic

instance of the chain. The chain containing all updates to x also contains an operand to

the loop carrying φ, which is part of outR(x); but outR(x) also contains the last update

operation to x on the very same chain.

As we know, by the nature of the loop, that only the last instance of a value that is only

carried by the φ will ever be observable from the outside of the loop, we allow more than

one observable node in that case, provided that τ(p) is the only one not being loop-carried.

The set of reduction chains redChains(x,⊕, R) is then defined as follows:

Definition 5.12 (redChains).

redChains(x,⊕, R) :=


inR(x) →̊?

R outR(x), if Redgen(x,⊕, R).

∅, otherwise.

This completes our basic definition Redgen.

The presented definition generalizes the definitions mentioned in the earlier sections: first

of all, it is not limited to a particular syntactical appearance of the code. Second, it allows

several expressions to flow into the reduction chain; moreover, it allows the reduction code

to be spread all over its region R. Also, note that this definition allows the redChains to

82 Chapter 5

split up (i.e., one load flows into multiple stores), or being joined (multiple paths being

joined by control-flow via φ-nodes), or to spread over multiple disjoint chains.

The region R is crucial to the definition of a reduction. In the literature, R usually

represents a loop. In particular, almost in all cases a loop, that is candidate for DOALL

style parallel execution, once the reduction has been verified. The definition of Redgen in

turn does not require R to represent a loop, although this will be the case in almost all

interesting situations. Nevertheless, reduction recognition in non-loop code can lead to

more parallelization opportunities as well and is covered by the definition for the sake of

completeness.

More details on the consequences of a successfully recognized reduction will be discussed

in Section 5.2.1.7.

5.2.1.6 Variance of a reduction

One important property of a reduction when it comes to profitable realization of the

reduction is the so-called variance. A reduction chain is called varying in its containing

region R if the reduction location is not a simple variable being understood as an identifier

naming a fixed memory cell, but instead can refer to different locations during the course

of execution of one dynamic instance of R. The range in which the reduction location

potentially varies is called the chain’s variance.

Consider the BiCG implementation in Figure 1.4a. The reduction in the s[j] = s[j] + . . .

statement is represented by a varying chain in its containing i-loop as this statement

accesses different locations (s[0] . . . s[NY − 1]) in every iteration of the i-loop. The

q[i] = q[i] + . . . statement in contrast is represented by a non-varying chain in the j-loop.

5.2.1.7 Consequences of Reductions

Once all reduction chains for a reduction location x have been identified for a region R, all

dependences between different dynamic instances of these reduction chains can be relaxed,

Generalized Task Parallelism — ParAγ 83

xin1

⊕1

⊕2

. . .

⊕n

xout1

exp11

exp21

expn1

xin2

⊕1

⊕2

. . .

⊕n

xout2

exp12

exp22

expn2 δanti

δanti

δflow

δlc
flow

Figure 5.10: Multiple chains in redChains(x,⊕, R). Solid arrows depict data flow,
dashed arrows reduction relevant data dependences.

provided corresponding fix-up code is added before and after the region R. To further

generalize the picture of Figure 5.9, take a look at Figure 5.10.

The figure contains two reduction chains for region R; the right chain appears after the left

one in R and relies on the result computed by the left chain. There is a complete chain of

dependences from xin1 to xout2 , effectively linearizing the whole computation. Further,

assuming R represents a loop, the picture shows a loop-closing flow dependence from xin1

to xout2 . In case R does not represent a loop, this last dependence would simply not exist.

The successful recognition of all reduction chains to x allows to relax certain involved

dependences. A special case of such relaxation is the removal of a loop-carried flow-

dependence if R corresponds to a loop. The accesses to x in R which induced the

corresponding dependence are marked in the PDG and the scheduler is allowed to break

those dependences. If it does so, we call the involved reduction chains realized and introduce

fix-up code for those chains during final code generation, i.e., at runtime.

5.2.1.8 Fixup Code

For every realized reduction chain fixup code needs to be added to ensure that code

outside of the region R sees the correct accumulated values. Several approaches exist in

the literature to perform a successful reduction. Which method is applicable depends

84 Chapter 5

mostly on the characteristics of the region R; which ones are profitable depends on several

criteria, in particular on the access patterns to the reduction variable x.

Yu et al. [36] give a short overview of existing reduction algorithms and reference the

corresponding work. We refer the interested reader to their work to find out more about

different algorithms, a qualitative comparison thereof and a dynamic selection scheme.

In this work, we employ the following, universally applicable scheme. For every realized

reduction chain, we modify the code using one of two approaches: privatization based,

or atomic section based. The selection of either scheme depends on the variance of the

reduction location.

To fix non-varying realized reduction chains as well as varying ones whose variance is

fixed prior to entering the region and can thus be evaluated before entering, ParAγ uses

privatization:

1. Right before the parallel section containing the reduction region, code is inserted to

allocate a private copy of the reduction location for each thread of parallel execution.

The necessary size of one private copy depends on the variance and might well require

to privatize whole arrays or complex data structures.

The (maximum) number of private copies depends on the used parallelization scheme

but is typically conservatively bound to the size of the thread pool of the dynamic

scheduler executing the parallel tasks.

The private copies are allocated in cache line5 aligned locations in order to prevent

interference of the individual threads acting on their respective private copies. This

optimization is crucial to get decent performance.

2. Next, code is placed to initialize all private copies to the neutral element of the

respective reduction operation. Depending on the type of the reduction location and

the neutral element this is either a single memset of the whole region to 0, or a loop

individually initializing each private copy.
5A typical cache line size is 64 byte.

Generalized Task Parallelism — ParAγ 85

3. Code performing a load from the respective private reduction location, followed by

the reduction operation and a store to the private copy is inserted immediately after

every node in outR(x), reducing its result (store instructions are replaced).

Note that in the course of runtime code generation and optimization, the individual

loads and stores from and to the private reduction locations are removed and joined

to one load and store respectively if the thread executes multiple reduction operations

consecutively. This in particular holds true for the dynamic blocking of parallelized

loops as described in Section 7.3.

4. Finally fix-up code is placed right after the reduction region. Privatized copies of

the reduction location are joined into one reduction value again. Furthermore, if

necessary, the private copies of the reduction location are freed again.

5. Every user u of a replaced or extended reduction value is rewired to use the constant

neutral reduction element instead (if u ∈ R), or load the reduced result from the

reduction address (if u 6∈ R).

For varying chains with an unknown variance, ParAγ uses atomic operations without the

need for privatization but at the cost of the atomic operations.

1. Every node inR(x) is replaced by the neutral element corresponding to the reduction

operation.

2. Code performing an atomic fetch and reduce operation is inserted immediately

after every node in outR(x), reducing its result (store instructions are replaced).

Depending on the reduction operator and the execution platform this might be a

single instruction (e.g., atomic compare and add), or a region of code involving

a compare and set instruction. In any case note that not the whole chain needs

to be encapsulated in the atomic section. Every user u of a replaced or extended

instruction is caused to use the constant neutral reduction element instead (if u ∈ R),

or load the reduced result from the reduction address (if u 6∈ R).

3. Also, for every instruction in lcPhiOpsR(x) a corresponding atomic fetch and reduce

operation is inserted on the loop back edges corresponding to that instruction.

86 Chapter 5

This last scheme particularly also works if the number of iterations of the loop and even

the number of participating threads is unknown. Such a situation for example occurs in

our implementation if the code to be parallelized arises from an irregular application, and

parallelization is performed via a flexible work stealing task queue mechanism as provided

by Intel TBB [40].

Although the scheme based on atomic operations is quite expensive and therefore mostly

considered unprofitable in classic work, it is quite appealing in our setting due to its

universal applicability. Apart from that, parallelizing the reduction as such is not our

primary goal; instead we aim for executing the instances of the expressions being reduced

in parallel. Assuming that the overhead introduced by the code for the atomic compare

and reduce is less than the execution time of the reduced expressions, this scheme is still

profitable.

Evaluating the implementation of a dynamic selection of the reduction realization scheme

as motivated by Yu et Al. [36] is left for future work. In our experience however, the

expected benefit of such a scheme does not seem worth the overhead in domains in

which the applications typically do not spend a significant fraction of the execution time

performing the reduction computation as such. In the applications we aimed at so far, the

reduction usually plays a minor role combining the results of independent but long-running

computations.

5.2.2 Privatization

Another very important parallelization enabling technique is privatization [79, 109] in

its own terms: within a PDG subgraph R rooted in node n, a memory location x is

privatizable if and only if the following conditions are met:

• On every control-flow path entering R and ending in a possible read access l ∈ R,

there is at least one definitive write access s ∈ R to x, and

• on every control-flow path from any possible write access s ∈ R to any possible read

l’ /∈ R, there is another definitive write to x on that path.

Generalized Task Parallelism — ParAγ 87

Note how a “rooted PDG subgraph” is equivalent to a single entry, single exit region in

the control flow graph. This is an important property for efficient code generation. It

allows to place potentially necessary code allocating private copies at the entrance of the

region, and cleanup code at its exit.

Our definition of privatizability is neither surprising nor new. But, as with reductions, we

do not resolve dependences induced by privatizable accesses prior to scheduling parallel

code. Instead we annotate PDG nodes n that represent a reachable subgraph R with

memory locations x to which all accesses in R are privatizable. Dependences that enter

or leave a dynamic instance of R and are induced by accesses to x are then allowed to

be broken by the scheduler. We call a privation opportunity on a location x in region R

realized, if the scheduler indeed decides to break such a dependence.

The final code generation for a realized privatization opportunity on x in R is straight

forward:

1. Right before R, code is placed to allocate a cache line aligned private copy of x for R.

Note that it is not necessary to initialize the private copy to any value as the legality

conditions for privatizability guarantee that it is overwritten before it may be read.

2. Accesses to x in R are rewired to use the private copy allocated in the previous step.

3. At the exit of R, the private copy is freed again, in case this is necessary.

5.2.3 Speculation

As explained earlier in Chapter 4, Sambamba provides two different speculation systems.

During the course of this work, none of both systems has reached a state in which it has

been able to dynamically provide specific information on misspeculation rates, reasons and

sources. Therefore, the best we can currently do is to penalize the violation of a dependence

proportionally to the probability that it will manifest at runtime: a dependence edge

that the scheduler is allowed to speculatively ignore has a source and a target potentially

accessing the same memory location. The speculation is guaranteed to be successful if

at runtime either the source or the target statement is not executed at all. The static

88 Chapter 5

scheduler accounts for speculation overhead for all dependences marked as speculatively

ignorable, that the scheduler decides to break. It amounts to a value that grows linearly

in the size of the commonly accessed values multiplied by the relative execution frequency

of the source and target statements respectively.

In our evaluation in Chapter 9 we do not rely on speculation.

This chapter laid the groundwork for our generalized task parallelization scheme. In

particular, the used program representation based on the program dependence graph

has been introduced. The PDG completely abstracts the strict program execution

order defined by the control flow graph, leaving only control and data dependences,

which suffice to preserve semantics.

Furthermore, important enabling techniques have been introduced: speculation,

privatization and reduction recognition form the necessary basis of automatic paral-

lelization. The given definition of generalized reduction is agnostic with regard to a

specific syntactic form of the reduction or program structure surrounding it and is

solely based on the flow of the reduction value through an associative and possibly

commutative reduction operation.

Chapter 6

ILP-based PDG-Scheduling

In this chapter, we describe in detail how we translate the problem of finding a schedule

for parallel task execution to the optimization of an integer linear program. Due to its

expressive power, the available toolset (algorithmical and technical), and its extensibility

using a clean and well understood mathematical language we chose to use ILP optimization

at the heart of our generalized task parallelization.

We formulate an integer linear program to compute a local schedule for each individual

group node in the PDG. The intuition behind the following ILP formulation is to map

the children Ig = {g[i] | i ∈ {1..ng}} of a group node g onto a two-dimensional grid. One

dimension in this grid corresponds to time and is subdivided into stages (Sg) of execution;

the other axis corresponds to placement and is subdivided into threads (Tg). |Tg|, the

maximum number of parallel threads that the generated schedule will use, is a constant

parameter to the ILP scheduler. Nodes will possibly execute in parallel at runtime if and

only if they are placed in different threads of the same stage. The optimization goal of

each ILP is to minimize the latency for its corresponding PDG group node.

Figure 6.1 shows a possible result of solving the ILP corresponding to the PDG group

node labeled true in Figure 5.2. Stage 2 is a parallel stage in this schedule, spawning off

the recursive call to seqquick while proceeding with the next iteration of the loop, which

is represented by its PDG node labeled with the while statement in thread 1 of stage 2.

A schedule representing a parallel loop is called a reentrant schedule. This example also

90 Chapter 6

Thread 1 Thread 2

Stage 1 p = seqpart(. . .)

Stage 2 low = p+1
while(. . .) seqquick(. . .)

Figure 6.1: Possible schedule for the group node labeled true of the PDG in Figure 5.2.
This schedule represents partial parallel execution of the loop in seqquick of Figure 1.4a.

shows how the scheduler transparently parallelizes loops without any special treatment1.

A schedule for a DOALL-loop, for instance, would in its simplest form contain one stage

with two threads of which one contains the loop body and the other the computation of

the induction variable (if present).

As described in Section 5.1 dependences between subgraphs can potentially be relaxed by

making use of privatization, reduction or speculation opportunities. Such relaxation allows

the scheduler to execute the source and target of a dependence in parallel to each other,

provided, corresponding fix-up code is added. The potential overhead introduced by such

countermeasures is encoded in the ILP cost-function as described in Subsection 6.1.2.

6.1 ILP Formulation

6.1.1 Prerequisites

In favor of a shorter notation, we assume g ∈ G, r ∈ R, d ∈ D, i, j ∈ {1 . . . |Ig|},

s ∈ {1 . . . |Sg|}, and t ∈ {1 . . . |Tg|} in the following discussion. Before constructing an ILP

for each group g of a PDG, we compute estimates of accumulated execution costs for each

PDG node as follows:

Regular Nodes. The size ‖r‖ of a regular node r is computed by traversing the contained

instructions (remember that a regular node in our case represents a basic block),
1As shown in Section 7.3, the code generation of ParAγ has special treatment of loops to generate

efficient parallel code.

ILP-based PDG-Scheduling 91

and accumulating their individual cost. For this purpose, we statically estimate the

cost of arithmetic instructions; the cost of memory instructions is taken into account

by assessing the size of written, read or copied data if statically possible. Costs of

call instructions (call sites) are taken from dynamic call site profiles of earlier runs

of the application (see Subsection 7.1.1), if such profiles are available, or estimated:

if the called function is statically known, the call graph is traversed and the cost

of transitively called functions accumulated. If the call is indirect, i.e., the called

function is not statically known, we assume high cost for the call. This is in favor of

parallelization and leaves it to the runtime code generation to use call site execution

time profiling to find out if the assumption was beneficial or not.

Decision Nodes. ‖d‖, the execution cost of a decision node d, is defined as the frequency-

weighted sum of the accumulated size of its children:

‖d‖ :=
∑
i

(‖d[i]‖ ∗ freq(di)) + |d|

where freq(di) is the frequency of d selecting child node d[i] for execution, and |d| is

the non-accumulated size of d (which is computed in a similar way to the cost of

regular nodes).

Frequencies are statically estimated or read from profiling information persisted

during earlier runs of the application. ParAγ ’s runtime system is able to collect such

branch profiles (see Section 7.1).

Group Nodes. ‖g‖, the size of a group node g, is defined as the sum of accumulated

sizes of its children:

‖g‖ :=
∑
i

‖g[i]‖

6.1.2 Constraints

For each group node g of the PDG, a directed acyclic graph DAGg := (Ig,∆g) describes

the data dependences and possible conflicts between the children of g. Its nodes are the

92 Chapter 6

Table 6.1: Variables used in the ILP for a group node g.

∀s :

γg[s] ∈ N := critical path length of stage s

ϕg[s] ∈ B := 1 if, and only if stage s is nonempty

∀s ∀t :

σg[s, t] ∈ N := size of thread t in stage s

ϕg[s, t] ∈ B := 1 if, and only if thread t in stage s is filled

∀i∀s ∀t :

σg[i, s, t] ∈ N := size of g[i] in stage s, thread t

χg[i, s, t] ∈ B := 1 if, and only if g[i] is placed in stage s, thread t

∀(i→ j)g ∈ Υg ∪ Ωg ∪Ψg :

parg[i, j] ∈ B := 1 if, and only if g[i] and g[j] execute in parallel

children of g (i.e., Ig); ∆g is the set of edges.

An edge (i→ j)g ∈ ∆g has the meaning of its source g[i] depending on or conflicting with

its target g[j] in g. It has associated communication cost ‖(i→ j)g‖, being an estimate

of data to be communicated if g[i] and g[j] execute in different stages. An edge is called

fulfilled by a schedule if according to the schedule its target is executed before its source.

Υg ⊆ ∆g is the set of edges requiring speculation support in the source and target thread

of the dependence if the scheduler breaks it; Ωg ⊆ ∆g and Ψg ⊆ ∆g are the reduction and

privatization ignorable edges respectively. Note that Υg, Ωg and Ψg are not necessarily

disjoint. One edge might require multiple fix-up mechanisms in order to be breakable.

To reduce the number of constraints, we precompute the set of transitive edges Θg ⊆ ∆g,

thus (Ig,∆g \Θg) is the transitive reduction of DAGg. We call ∆̃g := ∆g \ (Υg ∪ Ωg ∪Ψg)

the set of unbreakable dependences.

Table 6.1 introduces the variables used in the ILP formulation. Note that the number of

variables is quadratic in Ig since |Sg| ≤ |Ig| and |Tg| is a constant.

ILP-based PDG-Scheduling 93

Minimize

∑
s

γg[s] + ϕg[s] ∗ SInitOvhd +
∑
t

(
ϕg[s, t] ∗ TInitOvhd

)+ ComCostg + RelaxPg

where

ComCostg :=
∑

(i→j)g∈∆g

∑
s

∑
t

(
max

(
χg[i, s, t]− χg[j, s, t], 0

)
∗ ‖(i→ j)g‖

)

RelaxPg :=
∑

(i→j)g∈Υg∪Ωg∪Ψg

(
parg[i, j] ∗

(
SpecPg[i, j] + RedPg[i, j] + PrivPg[i, j]

))
SInitOvhd and TInitOvhd are ILP constant estimates of stage and thread initialization overhead

respectively.

subject to the following constraints

Constr. 1 (Dependence Order 1)

∀(i→ j)g ∈ ∆̃g \Θg : SDi,j ∗ |Tg| − TDi,j ≥ 0

Constr. 2 (Dependence Order 2)

∀(i→ j)g ∈ ∆̃g \Θg : SDi,j ∗ |Tg|+ TDi,j ≥ 0

Constr. 3 (Size Placement Connection)

∀i∀s∀t : σg[i, s, t] = χg[i, s, t] ∗ ‖g[i]‖

Constr. 4 (Parallel)

∀(i→ j)g ∈ ∆g : parg[i, j] ∗ |Tg| ≥ abs(TDi,j)− |Tg| ∗ abs(SDi,j)

Constr. 5 (Thread Filling)

∀s∀t :
∑
i

χg[i, s, t] ≤ ϕg[s, t] ∗ |Ig|

Constr. 6 (Unique Placement)

∀i :
∑
s

∑
t

χg[i, s, t] = 1

Constr. 7 (Stage Filling)

∀s :
∑
t

ϕg[s, t] ≤ ϕg[s] ∗ |Tg|

Constr. 8 (Thread Size)

∀s∀t : σg[s, t] =
∑
i

σg[i, s, t]

Constr. 9 (Critical Path)

∀s∀t : γg[s] ≥ σg[s, t]

Constr. 10 (Speculation Order)

∀(i→ j)g ∈ Υg : STDi,j ≥ 0

where

SDi,j :=
∑
s

∑
t

(
s ∗
(
χg[i, s, t]− χg[j, s, t]

))
TDi,j :=

∑
s

∑
t

(
t ∗
(
χg[i, s, t]− χg[j, s, t]

))
STDi,j :=

∑
s

∑
t

((
s ∗ |Tg|+ t

)
∗
(
χg[i, s, t]− χg[j, s, t]

))
Figure 6.2: Objective function and constraints used in the ILP formulation for group

node g.

94 Chapter 6

Figure 6.2 shows the final ILP formulation. The used objective function minimizes the

critical path execution time (
∑
s γg[s]) while penalizing the use of multiple stages and

threads, as well as inter-thread communication. Additionally, broken dependences marked

as resolvable by privatization, reduction and speculation are punished. Each used stage

is modeled to introduce overhead (SInitOvhd), which is motivated by the setup cost

of synchronization mechanisms at runtime. Each used thread causes runtime overhead

(TInitOvhd) due to the cost of setting up and spawning parallel tasks.

ComCost accounts for introduced inter-thread and inter-stage communication by adding

the statically estimated communication cost ‖(i→ j)g‖ per boundary crossing dependence.

This estimate is solely based on the communication volume (i.e., the static size of the

communicated data) in the current implementation. A dependence (i → j)g ∈ ∆g is

considered boundary crossing if, and only if, χg[i, s, t] and χg[j, s, t] differ for any given

pair of s and t in the current solution of the ILP.

The speculation penalty cannot model the actual overhead of speculation statically: the

main cause for overhead are frequent rollbacks and re-executions, which are inherently

input dependent. Instead, the speculation penalty is approximated by an ILP-constant

overhead SpecPg[i, j] per speculatively ignored dependence crossing a thread boundary. It

is computed based on the execution frequencies of the PDG nodes causing the conflict

represented by the dependence. RelaxP accounts for this by adding SpecPg[i, j] for each

speculatively ignored edge (i→ j)g ∈ Υg.

Reduction RedPg[i, j] and privatization PrivPg[i, j] penalties are treated similarly to the

speculation penalties. But the individual penalty per broken dependence differs: in case

of privatization, the penalty grows linearly with the size of the value to be privatized.

Similarly, the reduction penalty grows linearly with the size of the reduction variable. In

case of a varying chain, this size is multiplied by the chain’s variance.

The constraints of the ILP can be partitioned into two groups: The first group is formed

by the Constraints 6, 1, 2 and 10, which are used to model legality constraints to preserve

the semantics of the program:

ILP-based PDG-Scheduling 95

• Constraint 6 ensures that each node is scheduled exactly once. It guarantees unique

placement of nodes.

• Constraints 1 and 2 ensure for each unbreakable dependence (i→ j)g which is not

marked transitive, that execution of g[j] precedes execution of g[i]. This means that

g[j] is executed in an earlier stage than g[i], or in the same stage and thread. Note

that SDi,j denotes the stage-distance between the placement of g[i] and g[j]. The

constraints ensure that SDi,j is non-negative, and if it is zero, then also TDi,j (the

thread-distance) must be zero.

• Constraint 10 ensures that for each speculatively ignorable dependence (i→ j)g, g[j]

is executed in an earlier stage than g[i], or in the same stage, but possibly different

thread with a lower number. The fact that there still are restrictions on speculatively

ignored dependences is due to the conflict detection and recovery mechanism of the

runtime system. It allows for conflict detection only between different threads of the

same stage. Thus, g[j] is not allowed to be placed in a later stage than g[i]. The

requirement that g[j] needs to be in a thread with a lower number t than g[i] is

necessary to guarantee a non-cyclic commit order between the threads.

The second group is formed by the Constraints 4–9, which model execution cost and are

used in the objective function:

• Constraint 4 defines the parg[i, j] variables which are used in the cost function to

penalize dependences broken using speculation, privatization or reduction.

• Constraints 5 and 7 define the ϕg[s, t] and ϕg[s] variables to reflect if a thread or

stage is filled, i.e., contains at least one node.

• Constraint 8 models the size σg[s, t] of a thread as the sum of sizes of contained

nodes.

• Constraint 9 models the critical path length γg[s] of a stage as the size of the largest

contained thread: it is pulled down as it is used in the objective function, but

guaranteed to stay larger than the size of any contained thread.

96 Chapter 6

The remaining Constraint 3 connects both groups of constraints by relating the boolean

variables χg[i, s, t] to the corresponding size variables σg[i, s, t]. Further it defines the size

of node g[i] as being the ILP constant ‖g[i]‖.

Note that no further constraints are required for reduction and privatization resolvable

edges. A dependence which is resolvable by privatization or reduction, can, in terms of

legality, simply be ignored. It only needs to be reflected correspondingly in the cost of the

resulting schedule. This is taken account for in the RelaxP definition of the cost function.

The number of constraints is quadratic in the number of child nodes per group.

Further, remember that Constraint 6 guarantees that each node is uniquely placed, i.e.,

not duplicated among parallel threads. As shown in detail in Subsection 6.2.2, it is possible

to relax this restriction for nodes which are safe to clone: Every node that is guaranteed

not to execute any observable side-effect (program termination, system calls or memory

writes) can be duplicated. However, such relaxation severely increases the complexity of

other constraints whose formulation relies on every node to be placed exactly once.

The ILP solver can be initialized with the sequential schedule: χg[i, s, t] is set to 1 for s = 0

and t = 0, 0 otherwise. Providing an initial solution effectively speeds-up the optimization

process in practice.

6.2 Alternative ILP Formulations

When thinking about the ILP formulation above and the intuitive ideas described in the

previous sections, alternative formulations, or extensions, of the ILP might come to mind.

Two particularly interesting extensions have been implemented2: a global ILP formulation

optimizing the whole function at once; and an extension allowing code without observable

side-effects to be cloned to foster parallelization and reduce the necessary communication

overhead by allowing for re-computation within a parallel task. We shortly describe the
2Note that the implementation of the changed ILP contained in ParAγ does not exactly match the

formulations described in the following, which, for didactic reasons, have been chosen to be as close as
possible to the ILP formulation in Subsection 6.1.2. The actual implementation which is still contained in
ParAγ has not been actively maintained and did not undergo all changes of the final ILP formulation.

ILP-based PDG-Scheduling 97

necessary extensions to the original ILP formulation and explain why both extensions have

not been included in the final approach.

6.2.1 Whole Function Scheduling

The idea is straight forward: instead of determining one local schedule per group node

of a PDG representing the function to parallelize, one can determine a single globally

optimal schedule for the whole function by solving one, of course more complex, ILP. One

possibility to extend the ILP formulation is described in the following. The computation

of the accumulated execution cost of PDG group and decision nodes prior to formulating

the ILP is not necessary anymore and is replaced by sub-ILPs.

6.2.1.1 Required Changes

The cost of a group node g is reflected in the new global ILP by instantiating the complete

local ILPg for g as described in the previous section. ‖g‖ as described in Subsection 6.1.1

is superseded by the cost function of ILPg denoted as ‖g‖ILP . Note that this notation

denotes the cost function itself and not its value:

‖g‖ILP :=
∑
s

γg[s] + ϕg[s] ∗ SInitOvhd +
∑
t

(
ϕg[s, t] ∗ TInitOvhd

)+ ComCostg + RelaxPg

Additionally, the accumulated size of a decision node d is replaced by a linear formula

(again, not its value) computing the weighted sum of its children, all being group nodes by

definition of the PDG:

‖d‖ILP :=
∑
i

(
‖d[i]‖ILP ∗ freq(di)

)
+ |d|

Finally, the cost ‖r‖ILP of a regular node r is equivalent to the previously described

accumulated cost ‖r‖, which in turn is equivalent to the non-accumulated cost |r |, as

regular nodes do not have any children:

‖r‖ILP := ‖r‖

Finally, everything needs to be connected. The first idea would be to replace all usages of

‖d‖ and ‖r‖ of decision and regular nodes in Constraint 3 of the ILP instantiation ILPg

98 Chapter 6

for each group node g by ‖d‖ILP and ‖r‖ILP respectively. Unfortunately, the result would

not be linear due to the multiplication with χg[i, s, t].

Instead Constraint 3 is replaced by the following two constraints:

Constr. 11 (Child Size Sum)

∀i : ‖g[i]‖ILP =
∑
s

∑
t

σg[i, s, t]

accompanied by

Constr. 12 (Unique Placement 2)

∀i∀s∀t : χg[i, s, t] ∗M ≥ σg[i, s, t]

where M is a big numerical constant, guaranteed to be bigger than all σg[i, s, t]. Together

these constraints define exactly one σg[i, s, t] to correspond to ‖g[i]‖, namely the one for

which χg[i, s, t] = 1 holds true.

The optimization goal of the global ILP is to minimize ‖rootPDG‖ILP , the critical path

execution time of the root node of the PDG.

6.2.1.2 Implications

Using one single ILP per function seems appealing and indeed has been our initial attempt.

It is not used in the final implementation of ParAγ as the quality of the resulting parallelism

has been behind that of the local versions with the flexibility they provide at runtime: the

local versions naturally expose more parallelism, and thus more possibilities to choose from

at runtime, as the global version has no reason to expose parallelism in regions/groups not

contributing to the critical path of execution. If the statically determined global schedule

was based on imprecise performance predictions or profiles, however, static assumptions

on which code is on the critical path might deem wrong at runtime.

ILP-based PDG-Scheduling 99

6.2.2 Scheduling with Code Duplication

Equally appealing and indeed a frequently used technique in parallelization is the dupli-

cation of side-effect free code to trade (parallel) re-computation for linear computation

and communication of the computed values. This is reflected as an extension to the ILP

formulation as follows.

6.2.2.1 Required Changes

A child g[i] (basic block or a whole reachable sub-graph) of group node g is considered

safe to clone (stc(g[i])) if, and only if

• it does not write to memory (it may read memory though),

• it does not have any non-memory side-effect,

• it does not possibly terminate the containing function, and

• it is not reentrant within its containing control-dependence group g.

To understand the requirement of non-reentrancy, remember Figure 5.5 showing a node

which is reentrant within its containing group g. Duplicating this node (i.e., the sub-graph

reachable from it, which contains g itself) produces a program containing a loop which,

on every iteration, spawns two instances of itself executing all remaining iterations. This

exponentially exploding behavior is clearly undesirable and useless.

We denote by Σg ⊆ I g the set of children of g for which stc(g[i]) holds.

To reflect the possibility to duplicate g[i], Constraints 6, 4, 1, 2, and 10 need to be adapted

as follows:

Constraint 6 (Unique Placement) is replaced by the following version:

Constr. 13 (Unique Placement)

∀i ∈ Ig \ Σg :
∑
s

∑
t

χg[i, s, t] = 1

100 Chapter 6

augmented by its counterpart for clonable nodes:

Constr. 14 (Guaranteed Placement)

∀i ∈ Σg :
∑
s

∑
t

χg[i, s, t] ≥ 1

Constraint 4 (Parallel) is replaced by the version for dependences from one unclonable

child to another unclonable child:

Constr. 15 (Parallel Unique)

∀(i→ j)g ∈ ∆g :
(
¬stcg(g[i]) ∧ ¬stcg(g[j])

)
→ parg[i, j] ∗ |Tg| ≥ abs(TDi,j)− |Tg| ∗ abs(SDi,j)

augmented by the versions with exactly one clonable child. Note that constraint 4 is

only relevant in the context of relaxable dependences involving reduction, speculation

or privatization. In that context, not both, source and target of the dependence can

be safe to clone, as otherwise no such dependence does exist.

Constr. 16 (Parallel Clonable Source)

∀(i→ j)g ∈ ∆g :
(
stcg(g[i]) ∧ ¬stcg(g[j])

)
→ parg[i, j] =

∑
s

∑
t

min(χg[i, s, t],
∑
t2 6=t

χg[j, s, t2])

Constr. 17 (Parallel Clonable Destination)

∀(i→ j)g ∈ ∆g :
(
¬stcg(g[i]) ∧ stcg(g[j])

)
→ parg[i, j] =

∑
s

∑
t

min(χg[j, s, t],
∑
t2 6=t

χg[i, s, t2])

Note that the implication is not part of the ILP, the notation has been chosen for

reasons of a clearer definition. The premise (in the dashed box) is instead checked

during ILP construction and the corresponding constraint (the consequence in the

implication above) generated.

This new definition of parg[i, j] also requires to change the range of parg[i, j]:

∀(i→ j)g ∈ Υg ∪ Ωg ∪Ψg :

parg[i, j] ∈ N := the number of parallel instances of i and j

ILP-based PDG-Scheduling 101

The usages of parg[i, j] in the ILP do not need to be changed. The new definition

of parg[i, j] is used to introduce a relaxation penalty for every pair of threads with

i and j being scheduled in parallel to each other. Counting instances of parallel

execution of i and j reflects the fact that fixup code needs to be introduced for every

instance.

Constraints 1 and 2 (Dependence Order 1 and 2) have to be replaced due to their

usage of the definitions of SDi,j and TDi,j , which assume unique placement. Con-

straints 1 and 2 need to be replaced by a formulation with increased complexity for

dependences involving at least one clonable node:

Constr. 18 (Unique Dependence Order 1)

∀(i→ j)g ∈ ∆̃g \Θg :
(
¬stcg(g[i]) ∧ ¬stcg(g[j])

)
→ SDi,j ∗ |Tg| − TDi,j ≥ 0

Constr. 19 (Unique Dependence Order 2)

∀(i→ j)g ∈ ∆̃g \Θg :
(
¬stcg(g[i]) ∧ ¬stcg(g[j])

)
→ SDi,j ∗ |Tg|+ TDi,j ≥ 0

Constr. 20 (Clonable Dependence Order)

∀(i→ j)g ∈ ∆̃g \Θg :
(
stcg(g[i]) ∨ stcg(g[j])

)
→ ∀s∀t : χg[i, s, t] ≤ χg[j, s, t]+

∑
s′<s

∑
t′

χ[j, s′, t′]

One important additional constraint needs to be added to guarantee correctness if

the target g[j] of a memory-induced dependence (i→ j)g is clonable. In that case, it

might be possible that g[i] writes to memory that is read by g[j], which introduces a

new dependence (i→ j′)g from g[i] to any clone g[j′] of g[j]. The following constraint

guarantees that no such clone is scheduled in parallel to or after g[i] (or any clone

thereof):

Constr. 21 (Clone Order Soundness)

∀(i→ j)g ∈ ∆̃g\Θg : stcg(g[j])→ ∀s∀t : (1−χg [i, s, t])∗|Sg|∗|Tg| ≥
∑
t2 6=t

χ[j, s, t2]+
∑
s2>s

∑
t3

χ[j, s2, t3]

102 Chapter 6

Constraint 10 (Speculation Order) needs to be adapted similarly due to its usage of

STDi,j , which also assumes unique placement:

Constr. 22 (Unique Speculation Order)

∀(i→ j)g ∈ Υg :
(
¬stcg(g[i]) ∧ ¬stcg(g[j])

)
→ STDi,j ≥ 0

is accompanied by a dedicated version for a clonable source or target:

Constr. 23 (Clonable Speculation Order)

∀(i→ j)g ∈ Υg :
(
¬stcg(g[i]) ∧ ¬stcg(g[j])

)
→ STDi,j ≥ 0

And finally, similarly to constraint 21, an additional constraint is needed to guarantee

soundness in case of a clonable target of a speculative dependence:

Constr. 24 (Speculative Clone Order Soundness)

∀(i→ j)g ∈ ∆̃g\Θg : stcg(g[j])→ ∀s∀t : (1−χg [i, s, t])∗|Sg|∗|Tg| ≥
∑
t2>t

χ[j, s, t2]+
∑
s2>s

∑
t3

χ[j, s2, t3]

Note the subtle difference between constraints 21 and 24: while in the former, no

clone g[j′] is allowed to be scheduled in parallel or after g[i] (or a clone thereof), the

latter allows to execute any g[j′] speculatively in parallel to g[i] (or a clone thereof).

6.2.2.2 Implications

While the possibility of code duplication seems appealing, we have not encountered a case

in which it was critical to enable the desired parallelism. Since the heavily increased ILP

complexity and the additional freedom of the scheduler instead increased the ILP solution

time, code duplication is disabled by default and its activation left as a command line

switch in ParAγ .

6.3 Scheduling Time

As solving integer linear programs is NP-hard in general, our scheduling approach often

takes a considerable amount of computation time. Remember that the described ILP

ILP-based PDG-Scheduling 103

Table 6.2: (Excerpt of Table 9.1) Complexity of the programs used to evaluate ParAγ .

Program SLOC Nmax/avg Emax/avg

alignment 612 93/9.86 128/9.27

cilksort∗ 387 22/8.58 23/7.19

fft 3168 63/8.92 161/10.93

blackscholes 393 24/7.38 30/6.87

BiCG 1586 31/9.15 37/9.50

gesummv 1582 24/7.88 31/8.08

is solved for each group of equally control dependent nodes and its complexity grows

quadratically in the number of nodes (or linearly in the number of dependence edges) in

such a group. This consequently means that the complexity of parallelizing an application

in ParAγ is dominated by its maximum number of equally control dependent nodes, which

does—like the average size of a basic block—not necessarily correlate with the program

size. The latter only linearly influences the complexity. Table 6.2, which is an excerpt

of Table 9.1, provides insights into the maximum and average numbers of equally control

dependent nodes (Nmax/avg) as well as dependences (Emax/avg) of the programs used for

our evaluation in Chapter 9.

Furthermore, although an increasing number of dependence edges does indeed increase the

number of constraints, this does not mean that the solving time dramatically increases.

This is due to the fact that an increasing number of dependences leaves less freedom to

the scheduler. IBM Cplex, the scheduler we use, is able to dramatically reduce the size of

the ILP before actually solving the corresponding LP.

In practice, we found that for the majority of instances (> 80 %) an optimal solution is

found in less than 10 seconds. To counter much longer execution times, we implemented

several means to limit their influence.

As can be seen in Table 6.2, the most complex of the benchmarks is fft. Its highest number

of dependences per group is 161 dependence edges after transitive reduction (324 edges

before). Running the ILP until the optimum is proved, takes 4290 seconds on our machine.

However, the optimal solution is found after 150 seconds, a solution within a 10% range of

the optimal solution after 20 seconds.

104 Chapter 6

In all our benchmarks, the solution could not be significantly improved after three minutes,

so we assume that after a timeout of three minutes the best solution found so far is close

enough to the optimum and interrupt the solver. This timeout is configurable.

Additionally, the generated schedules of each function are written to disk for reuse on

the same machine as described in Subsection 8.2.2. This greatly reduces compilation

time during frequent recompilations on a developer machine—changed dependences (and

consequently PDGs) of the application lead to rescheduling of affected functions only.

Optionally, the schedules can also be cached in a shared schedule cloud (see Subsection 8.2.3).

During idle periods the cloud server can always take partial (i.e., feasible but not optimal)

solutions and improve them towards an optimal one.

Note that the techniques described in this subsection are of purely practical relevance and

are not critical to the approach in general.

This chapter gave an intuition and formally translated the problem of finding

candidate code regions for parallel execution to an integer linear optimization

problem. The mathematically sound and clean representation allows to model

multiple sources of overhead introduced by parallelization and leaves the decision on

if and where to use enabling techniques and introduce the corresponding overhead

to an informed scheduler giving an optimality argument with respect to the chosen

cost function.

Instantiation of the statically found parallelization candidates is left to an adaptive

runtime system, which decides if, how, and when to actually parallelize based on

actual properties of the execution environment.

Chapter 7

Runtime-Adaptive Parallel

Execution

The parallelism as exploited by ParAγ at compile-time has two important properties:

1. It strongly favors parallel over sequential execution: the compile-time cost-function

as minimized by the ILP described in Subsection 6.1.2 takes into account execution

overhead to rule out unpromising parallelization candidates. If it lacks runtime

information, however, the statically assumed default values are selected to favor

parallelism. One example are function call execution times: if no runtime profiling

information is available for a specific call-site, the called function is assumed to run

long enough to outweigh potential parallelization overhead. This rule also applies in

case of indirect function calls. A similar example are loop trip counts: if unavailable,

iteration counts are assumed to be high enough to allow profitable parallel execution.

This behavior is deliberately chosen to not miss an opportunity. It requires however an

efficient runtime system to effectively evaluate and rule out unprofitable candidates.

Information about such candidates is persisted in the filesystem of the executing

machine to minimize the likelihood of the runtime system to repeatedly try and

fail to profitably parallelize the same candidates during future executions of the

application.

106 Chapter 7

Furthermore, the information stored during this runtime-adaptive process is taken

into account, if available, during future recompilation and static re-evaluation of

parallelization candidates.

In this section, we describe how the statically found parallelization candidates are

enriched, combined, evaluated and just-in-time compiled within the ParAγ runtime

system.

2. It is of general nature: statically, ParAγ seeks to exploit the parallelism of an appli-

cation as such. Neither does it take into account, nor fix a specific implementation

of the parallelism at runtime. Consequently, it can only take into account inevitable

cost that is not specific to a particular implementation. In order to exploit the

parallelism in the most profitable way, or profitably at all, the ParAγ runtime system

has to “specialize”, or optimize the parallel code. Just like many other well-known

compiler optimizations do on sequential code, such optimizations working on the

parallel IR need to take into account features of the program and possibly also the

execution platform that support efficient parallel execution. Such features include

a statically known, or, statically unknown, but at least provably loop invariant

iteration range, the variadicity and type of reduction locations, or the recursion

scheme of parallelization candidates, for example.

Loop blocking (Section 7.3) is one very important optimization of the parallel code;

parallel section propagation (see Subsection 4.1.4) is another such optimization.

Runtime adaptive dispatch (Section 7.4) is an important feature of a parallel runtime

system. Loop blocking and runtime adaptive dispatch are described further in this

section.

7.1 Runtime Profiling

The static scheduler of ParAγ decides for parallel execution if in doubt and relies on the

runtime system to take all available information into account to select only the profitable,

or at least drop erroneously selected unprofitable candidates. Consequently, the runtime

Runtime-Adaptive Parallel Execution 107

system needs to collect the relevant information, most importantly profiling data. In

particular, the ParAγ runtime system collects two kinds of profiles:

• Call-site execution times, which is basically a context-sensitive form of average

method execution time.

• Branch profiles, used to estimate the execution cost of decision nodes and to derive

loop trip counts.

7.1.1 Call-site Execution Times

This section describes the details of Sambamba’s call-site profiling capabilities1. As

mentioned earlier, the main purpose of collecting execution time profiling information in

Sambamba is to enable optimizations to estimate the size, i.e., execution time, of certain

pieces of code in order to estimate the profit expected to be achievable by parallelization.

In particular, the parallelization overhead introduced to the critical path of execution needs

to be outweighed by the execution time of code removed from it. A big contribution to the

execution time of a given piece of code, apart from long running loops, typically stems from

called functions. Their execution time depends on many features only available at runtime,

such as input values and size, or system load, and is theoretically impossible to compute

statically. Consequently, we have to resort to collecting runtime profile information. Such

information at least provides insight into previous runs, and, in many practically relevant

cases, allows to make conclusions about future instances, which are precise enough to allow

for qualified parallelization decisions.

To gather information about the execution time of a call instruction, two options exist, which

are both supported by the profiler implementation of Sambamba: either the potentially

called function is instrumented to collect execution time profiles, or the call instruction

itself is instrumented. ParAγ uses the latter option for the following reasons:

• Instrumenting the interesting call-site only instead of the called function is often

times the only viable option, for instance in case of indirect function calls (e.g.,
1The conceptual work of the call-site profiling capabilities of Sambamba has been done by Clemens

Hammacher and myself. The final implementation in C++ has been mostly done by Clemens Hammacher.

108 Chapter 7

calls to dynamically dispatched C++ methods), for which the called function is not

statically known or even varies dynamically. In case of external function calls to a

dynamically linked (binary) library it is the simplest yet most precise approach.

• It keeps the overhead on non-candidate call-sites minimal. Instrumentation of the

called function would introduce the profiling overhead to calls from regions which

are not subject to parallelization. Alternatively, a separate profiling copy of each

function is kept and the candidate call-sites rewired to those copies. Again, this

renders difficult in case of indirect or external function calls.

• The information collected by call-site profiling is more precise in the sense that it

adds context-sensitivity. Imagine a hypothetical sort function sorting arrays of data;

the execution time when being called from within a routine sorting a simple manually

crafted address book might significantly deviate from the time it takes to sort the

data usually involved in bigger problems. Consequently, parallelizing the processing

of a simple address book on a mobile phone might not be profitable, while doing so

in the context of processing large data-sets certainly can be. The context-sensitivity

provided by call-site profiling, in contrast to function profiling, is able to distinguish

both instances.

• Sambamba employs dynamic recompilation, frequent exchange of function versions

in the running system, and flexible parallel/sequential execution (see Section 7.4).

Instrumenting the function instead of the call-site, and in particular keeping an

instrumented and an uninstrumented version of each potentially called function

would significantly increase the complexity and the overhead of instrumentation and

just-in-time compilation.

Functions subject to potential parallelization, i.e., those functions in which the static

parallelizer found promising parallelization candidates, are instrumented at runtime to

collect the average execution times of contained call-sites.

One technical but important detail in the context of execution time profiling in Sambamba

is the necessity to ignore invocations of a function which is lazily just-in-time compiled

Runtime-Adaptive Parallel Execution 109

during that invocation. If at least one function on the call stack below a profiled call-

site is just-in-time compiled during the profiled invocation, the gathered information is

called poisoned and consequently ignored, as it might otherwise significantly influence the

precision of profiling.

7.1.2 Branch Profiles

Apart from the execution time of call-sites, another very important information to enable

the estimation of parallelization profitability is branch profiles (or execution frequencies),

from which also loop trip counts can be derived.

ParAγ uses the PDG (see Subsection 5.1.1) as its central program representation through-

out the analysis and transformation process, also during profitability estimation. What

we are therefore interested in is the execution frequency of the individual PDG nodes

(instructions or basic blocks): if we know how often a specific node is executed, and how

long it takes to execute (its size, see Subsection 6.1.1 and Subsection 7.1.1), we can, by

weighted accumulation, derive the expected average execution time of the whole PDG,

i.e., the function it represents. Furthermore, we can compute the fraction of a function’s

execution time spent executing a specific PDG node or code region, like a loop for instance.

To collect the relevant information at runtime, ParAγ instruments the code during sequen-

tialization (see Subsection 5.1.2) of the PDG. To keep code generation overhead low, and

data management and mapping to the PDG at runtime simple, the program locations

to insert code to increment respective frequency counters are chosen to correspond to

(non-empty) PDG group nodes. From those, the execution frequency of each instance of

the three PDG node types can be derived: group nodes are directly captured, and the

execution frequency of a regular or a decision node corresponds to the sum of the execution

frequencies of its parents in the control-dependence sub-graph of the PDG, which in turn

are group nodes.

Note that the instrumentation locations (and, equivalently, frequency counters) chosen

this way directly correspond to the distinct control conditions of a function. The number

of necessary locations/counters is strictly smaller than for the frequently used practice to

110 Chapter 7

instrument all control-flow successors of branching instructions, and an order of magnitude

smaller than for instrumenting all basic blocks. It nevertheless is not minimal as shown

by Knuth and Stevenson [110] or Ball and Larus [111] who prove a placement based on a

maximum spanning tree of the CFG minimal. The key idea, enabled by Kirchhoff’s first

law2, is to compute certain frequency counters based on other counters they depend on.

We decided not to implement the optimal approach for a few reasons:

• While the edge frequencies of CFGs respect Kirchhoff’s first law, the edge frequencies

of control dependence graphs do not, which makes the approach not directly applicable

to the situation at hand.

• Computing the optimal placement, in particular the spanning tree, significantly

increases the instrumentation time as shown by Ball and Larus [111]. While the

authors argue that the overhead is quickly outweighed by the reduced execution

time and smaller amount of required counters, this is not as relevant in our situation:

the low number of necessary profiling runs (cf., Edler von Koch and Franke [112]

and Subsection 7.1.3) as well as the necessary storage to keep the counter relations

reduce the expected reduction of overhead.

Practically speaking, the sufficiently low overhead of the chosen approach did not justify

the increased complexity of the implementation as well as the instrumentation at runtime.

An important measure to reduce profiling overhead in the context of parallel execution

however is to privatize the frequency counters. Each thread gets assigned a private copy

of each frequency counter, whose allocation is aligned with the cache line size. On a

requested read of the counters for a PDG, which happens for instance on reassessment of

parallelization decisions at runtime, the private counters are collected and accumulated.
2Kirchhoff’s first law, also known as Kirchhoff’s Current Law, originates from the field of electrical

engineering and describes the conservation of electrical charge: at any junction in a circuit, the sum of the
currents arriving at the junction equals the sum of the currents leaving the junction.

Runtime-Adaptive Parallel Execution 111

7.1.3 On Profiling Overhead

In order to minimize the introduced runtime overhead, profiling is only enabled for relevant

code parts: only call-sites contained in statically determined candidate regions of parallel

execution are profiled. Branch profiles are only collected for functions containing at least

one parallelization candidate.

Theoretically, not every single invocation of a target function needs to be profiled. If

enough samples are already available and profiling information is stable, the likelihood

to learn something fundamentally new is low and profiling could be disabled with an

increasing probability. Edler von Koch and Franke [112] have shown that profiles, in

particular data dependence and control flow related ones, stabilize quickly.

The adaptive parallel code generation of ParAγ and Sambamba in its current implemen-

tation nevertheless keeps gathering execution time profile information during the whole

program execution with a fixed, but configurable sampling rate (in profiled invocations

per second). This is done in order to be able to flexibly react to changing profile informa-

tion, for instance after parallelization and exchange of a called function. Branch profiles,

which only in very rare cases are affected by the system load, parallelization or any other

transformation performed by ParAγ do usually not need to be collected any more, once

they have stabilized. They can however be affected by changes in input values and size.

In its current implementation, ParAγ does not automatically decide when to collect branch

profiles and when to stop doing so. Binaries produced with Sambamba and ParAγ , instead

provide a runtime parameter to enable gathering of branch profiles in dedicated profiling

runs of the application. Profiles are collected and persisted for use in the ongoing and

later executions of the application, as well as during future re-compilation.

Furthermore, significant engineering effort went into minimizing the overhead of profiling

to an almost negligible fraction of the relevant functions’ execution time. Functions for

which this does not apply are most likely too short running to be profitably parallelizable.

After observing a configurable amount of very short running invocations, corresponding

function calls are stopped from being profiled, a short execution time is assumed by

relevant cost functions.

112 Chapter 7

7.2 Candidate Composition

Under certain conditions, the runtime parallelizer of ParAγ is triggered to reassess paral-

lelization decisions made earlier during a program run. The most important of such triggers

is a significant change in profiling information. If, for instance, the average execution time

of a call-site contained in a parallelized function F changes significantly after parallelization

of the called function G (or the opposite: switch from parallel to sequential execution of

G), reassessment of the parallelization decisions for F is advisable.

The parallelization decisions of the ParAγ runtime system are based on the statically

identified (local) parallelization candidates (or schedules). Remember that one local

parallelization candidate corresponds to a parallel schedule for a group node, i.e., for a

set of PDG subgraphs executed under the same control-condition, represented by the

respective group node. For each group node, the static parallelizer finds at most one

parallel schedule. That means, a PDG PDGF for a function F containing n non-empty

group nodes can have a set ΓF of up to n associated parallelization candidates γ1 . . . γn,

out of which the runtime system has to select a combination to compile a parallel version

Fπ of F .

To evaluate the expected performance gain for a combination, ParAγ first ranks the

candidates according to their expected individual contribution. This is done by evaluating

the expected execution cost of F (see Subsection 7.2.1) assuming parallel execution of each

individual candidate in turn and comparing it to the expected sequential execution time.

In the following we assume the candidates γ1 . . . γn to be sorted in decreasing order of

their individual contribution, i.e., γ1 is the candidate with the biggest expected individual

saving of execution time, γn the candidate with the lowest expected saving.

We call a local candidate γx realized if it is selected for parallel execution.

We denote by F [∆] with ∆ ⊆ ΓF the global schedule for F with the local parallel schedules

contained in ∆ realized. All local schedules not contained in ∆ are not realized, their

corresponding PDG group nodes are scheduled sequentially. F [γx, γy] denotes the global

schedule for F with γx and γy realized.

Runtime-Adaptive Parallel Execution 113

Note that the evaluation of the expected execution time of F already takes into account the

available and potentially changing profile information and can therefore not be statically

pre-computed.

Based on the ranking of local parallel schedules, the expected execution time saving of all

combinations of the m most promising candidates γ1 . . . γm are evaluated. The number m

of candidates to take into account per function is configurable; it defaults to 3, i.e., for

each function, eight combinations of the three most promising candidates are evaluated.

The best combination is selected to finally generate the best version of F , which might

very well be the sequential one.

Note that the selected combination might contain nested parallelism if one parallelized

group node g2 is reachable in the PDG from another parallelized group node g1. Or,

equivalently, the control condition represented by g2 implies the one represented by g1.

The selected global schedule F [∆] for the containing function F is used during PDG

sequentialization (see Subsection 5.1.2) to compile a ParCFG for F. Also during sequen-

tialization, the necessary code generation for realized reductions (see Subsection 5.2.1) and

privatization (see Subsection 5.2.2) takes place. On the ParCFG level further (optional)

transformations like for instance dynamic blocking (see Section 7.3), parallel section propa-

gation (see Subsection 4.1.4), and other control-flow and parallelism specific optimizations

and transformations are performed before producing the final parallelized control-flow

graph. Before just-in-time compiling this CFG to the binary level and installing it into the

running system it is equipped with the necessary dispatching mechanisms (see Section 7.4).

7.2.1 Execution Cost Evaluation

The expected execution cost of a function F under a global schedule F [∆] is computed

in a post-order traversal of the control dependence sub-graph of its PDG PDGF and

corresponds to the accumulated cost of the PDG’s dedicated root node. Remember that

the accumulated cost, which we are interested in, is not the execution cost of any given

PDG node itself, but instead the cost of the reachable PDG-subgraph.

114 Chapter 7

The execution cost computation at runtime almost directly corresponds to the estimation

at compile-time as described in Subsection 6.1.1. It is computed for each of the three node

types as follows:

Regular Nodes. The accumulated cost ‖r‖dyn of a regular PDG node r is equivalent to

the static version: Assuming PDG nodes represent basic blocks of instructions, the

cost of a node is determined by summing up the estimated cost of the instructions

it contains. Again, the cost of instructions accessing memory, like reads and writes

for instance, depends on the size of the accessed memory region (as far as statically

known); The cost of call or invoke3 instructions is estimated based on available

runtime profiling information as described in this chapter.

Decision Nodes. Also nearly equivalent to the statically computed estimation, the

accumulated size of a decision node d is computed as the frequency-weighted sum of

the accumulated sizes of the PDG nodes which are control-dependent on d:

‖d‖dyn :=
∑
i

(‖d[i]‖dyn ∗ freq(di)) + |d|dyn

where freq(di) is the frequency of d selecting child node d[i] for execution, and |d| is

the non-accumulated size of d, which is computed in a similar way to the cost of

regular nodes (remember that, just like a regular node, a decision node corresponds

to a basic block; the distinguishing feature of a decision node is that in contrast to a

regular node, it has multiple control-flow successors).

Frequencies are statically estimated or read from possibly available profiling infor-

mation collected during the ongoing or earlier runs of the application.

One difference to the static computation of decision node execution time is the

treatment of loop headers. Note that a loop header in the PDG is always a unique

decision node on which the loop body statements are control-dependent. Also, note

that the PDG loop header does not necessarily correspond to the CFG loop header.

Nevertheless, it is also unique, even in the presence of multiple loop exit conditions
3An invoke instruction in LLVM is a call instruction which possibly throws an exception.

Runtime-Adaptive Parallel Execution 115

themselves introducing control-dependences: by definition, there is one loop exit

block on which all others are control-dependent.

The only special case are static endless loops, whose headers have only one successor

in the CFG and can thus by definition not impose any control-dependences (and are

consequently no PDG decision nodes). This corner case is however technically ruled

out by assuming the existence of an artificial additional control-flow successor of the

CFG loop header. As a result, the loop body statements are control-dependent on

the header.

The accumulated execution cost of a PDG loop header is computed at runtime like

for any other decision node, multiplied by the loop-trip-count of the respective loop:

‖d‖dyn := (
∑
i

(‖d[i]‖dyn ∗ freq(di)) + |d|dyn) ∗ ltc(d)

where ltc(d) is the loop-trip-count of the loop with PDG loop header d, or 1 in case

d is no PDG loop header. The average loop trip count is computed based on the

profiled execution frequencies.

Group Nodes. The accumulated execution time computation of a group node g at

runtime is parametrized by a schedule γ, which can be either sequential or parallel:

‖g‖γdyn :=
∑
s∈γ

max
t∈s

∑
i∈t
‖g[i]‖dyn

This computes the sum of accumulated execution times of g’s children on the critical

path of schedule γ. Remember how a parallel schedule is subdivided in stages (s)

and threads (t) as described in Chapter 6 and shown in Figure 6.1.

This definition also covers a sequential schedule which contains only one stage and

one thread in which case the definition of ‖g‖dyn coincides with its static counterpart

‖g‖.

116 Chapter 7

7.3 Dynamic Blocking

Dynamic blocking4, another important feature of the ParAγ runtime system, aims at

increasing the size of parallel tasks, as the overhead of enqueuing parallel tasks can easily

outweigh the actual work to be done by the tasks. This frequently is the case for parallelized

loops doing little work per iteration of the loop body, like for instance in the BiCG example

shown in Figure 1.4a. The reentrant parallel section for such a loop contains exactly one

reentrant task representing the iteration part of the loop, and thus also all loop-carried

dependences. One or several non-reentrant tasks in the same section represent the actual

parallel work to be spawned off for parallel processing in each iteration. If these tasks

only contain a small amount of code, like loading a value from an array and performing a

reduction operation, then the overhead of handling the parallel tasks nullifies the benefit

of parallel execution.

Such a loop should however by far not be discarded from the parallelizer’s perspective.

Plenty of research in automatic parallelization has shown that the parallelism in such loops

can successfully be exploited. Modern instances of Decoupled Software Pipelining [10, 74, 76–

78] and the Helix [81, 82] family of approaches in particular have shown impressive

performance improvements by effectively reducing the overhead of parallelization and the

parallelism enabling necessary synchronization and communication mechanisms. Those

and most other approaches of automatic parallelization however usually seek for program

patterns suitable for the specifically chosen approach of parallelization. Other possibly

parallel but non-fitting program parts are ignored, effectively ruling out parallelization

candidates right away.

ParAγ comes from a different direction: not taking into account profitability and suitability

in the first place, a very wide range of parallelism is found and exposed to the runtime

system by the static parts of ParAγ . The number of parallelization candidates found by
4Dynamic blocking has been excogitated and an early instance implemented by myself. The currently

used, and by far improved, version of it has been devised by Johannes Doerfert and myself. The
implementation has been mostly done by Johannes Doerfert.

Runtime-Adaptive Parallel Execution 117

ParAγ is therefore expected5 to be way higher than for approaches seeking for special

patterns of parallelism only. Candidates are then left for selection and composition as

described in the previous sections to finally compile ParCFGs for relevant parts of the

application. In order to be profitable in the above mentioned case of long-running loops

with minimal work per body instance, ParAγ has to perform further, parallelism specific,

optimizations on the ParCFGs. ParAγ ’s dynamic blocking is one very important example

of such an optimization. It increases the task size of a reentrant parallel section (i.e.,

a parallel loop) by dynamically joining (blocking) a number of parallel tasks, before

enqueuing the whole block as one batch task. This greatly reduces the number of small

tasks doing negligible work and the associated overhead and pressure on the dynamic

scheduler.

Apart from the direct effect of decreasing the overhead
work -ratio of small parallel tasks, it further

allows to join necessary parallelization-specific per-task overhead: any task accessing

privatized data, for instance a privatized reduction location, profiling counters, or simply

privatized data, profits from blocking: the private copy needs to be determined only once

per batch task; for atomic operations involved in reduction, we only need to update the

shared location once.

Equally important is the reduced communication overhead and required storage: instead

of computing a simple iteration variable in the reentrant part of a loop and communicating

its value to all the spawned tasks, it is communicated not more than once per block of

tasks, provided its computation is deterministic and free of side-effects. The computation

code is replicated per block in that case6, communication and stalling of tasks waiting for

input reduced. This technique is not only applied to iteration variables. The results of

side-effect free and deterministic computations of values consumed by a blocked task are

not communicated, but instead recomputed within the consuming block. Loop-invariant

values are communicated only once per block.
5We say “expected” because during the course of our studies none of the most promising approaches

have been made available to us for evaluation, despite the fact that we asked for it multiple times. Reasons
mentioned where the quality of code, ongoing refactorings, and assumptions to a hypothetical hardware
(Helix for instance is simulated because of an assumed but non-existing inter-core ring-cache.).

6Replicating the loop control structure and necessary value computations is also an essential part of
decoupled software pipelining.

118 Chapter 7

Note that all the described measures are not necessary in the well-known and regularly

applied (recursive) range splitting since they are included by design. In contrast to recursive

range splitting, dynamic blocking is however more general and thus wider applicable because

it does not require a statically known, and not even a loop invariant iteration range of the

loop. A downside is that the thread that collects the tasks before spawning them in one

block may become the bottleneck of parallel execution. Therefore, ParAγ applies another

optimization: in case the loop iteration range is loop invariant, i.e., known before entering

the loop, the ParAγ runtime system produces code that immediately distributes the loop

execution equally among available threads, which basically corresponds to a one-level (i.e.,

non-recursive) range splitting.

Finally, the dynamic nature of ParAγ ’s blocking allows to arbitrarily change the block

size at runtime in case the dynamic scheduler (or the executing system) is under- or

oversubscribed. This is not currently done by ParAγ , which instead allows to select the

block size as a parameter to the parallelized binary, or automatically chooses a sensible

default.

7.4 Adaptive Dispatch

After the ParAγ runtime system has selected the best combination of parallelization

candidates in the light of current profiling information and the observed behavior of the

application, parallel code is generated in a parallel intermediate representation. This rep-

resentation is further optimized as described in the previous section; finally, a parallelized

control-flow graph is generated by translation and augmentation of the ParCFG. This

parallelized version is dynamically produced, based on dynamically gathered information;

All parallelization decisions can be reassessed in the future and a fall back to sequential

execution, in case the parallel version is deemed unbeneficial, is always possible. Neverthe-

less, the reassessment process as described above, followed by PDG sequentialization and

parallel code optimization is not as flexible as is necessary for profitable exploitation of par-

allelism. What is needed, apart from flexible parallelization, is flexible parallel execution.

The runtime system needs to be able to switch between parallel and sequential execution

in reaction to the executing system’s changing load, for instance, without immediately

Runtime-Adaptive Parallel Execution 119

dropping all parallelized functions. A temporary peek in the system load, caused by an

independently running application in the same environment, should not cause a complete

fallback to sequential execution, followed by a slow adaptation to parallel execution, once

the system load has dropped again.

ParAγ ’s chosen solution is to introduce a dispatch mechanism, which is able to dynamically

choose between parallel and sequential execution upon each individual invocation of a

function F . By monitoring the execution of the program, as well as important properties

of the execution environment, ParAγ chooses which of the versions to dispatch. Sensible

criteria are based on the current system load (load), the nesting depth of parallel tasks

(tnd), or the utilization of the dynamic task queues (i.e., the number of tasks in flight, tif).

These criteria are described in the following subsections.

7.4.1 Load-based Dispatch (load)

The load based dispatcher is the most straightforward dispatch mechanism and has already

been shortly described in Subsection 4.1.5. As mentioned, querying the system load

inevitably requires a system call. It is therefore in almost no case profitable to query the

system load every single time a decision for or against parallel execution needs to be made.

Instead Sambamba employs a dedicated thread, polling the system load in a configurable

interval defaulting to once every second.

While this mechanism is effective and the application resigns from parallel execution in

phases of high system load, it imposes high overhead and reacts quite slowly due to the

fixed polling interval.

For these reasons, load-based dispatch has been mainly superseded by tnd and tif dispatch,

the latter of which also indirectly reacts to high system load caused by foreign applications,

while imposing significantly lower overhead.

120 Chapter 7

1 void mergesort(Element *A, Element *tmpA, long size) {
2 if (size < 2)
3 return;
4
5 long half = size / 2;
6 Element *B = A + half;
7 Element *tmpB = tmpA + half;
8
9 mergesort(A, tmpA, half);

10 mergesort(B, tmpB, size - half);
11

// execute in parallel

12 merge(A, half, B, size - half, tmpA);
13
14 memcpy(A, tmpA, sizeof(Element) * size);
15 }

Figure 7.1: Simple sequential C -implementation of mergesort.

7.4.2 Task Nesting Depth Dispatch (tnd)

Dispatching based on the nesting depth of parallel execution is of particular importance in

the case of parallelizing recursive functions like for instance the fft-example in Figure 1.4b.

As a motivating example, and for the purpose of a detailed preliminary evaluation of

dynamic dispatching, consider the sequential C -implementation of mergesort shown in

Figure 7.1, in which the recursive calls to mergesort itself should be executed in parallel.

Figure 7.2 illustrates the recursion tree of mergesort. It is a straight-forward, but naive

approach to excessively spawn parallel tasks at each recursion level, since the work done

ta
sk

ne
st

in
g

de
pt

h

0

log2(n)

pr
ob

le
m

si
ze

n

n
2

n
4

. . .

1

profitability boundary

Figure 7.2: Recursion tree of mergesort with a profitability boundary based on problem
size.

Runtime-Adaptive Parallel Execution 121

by each instance of mergesort decreases with every recursion step. Starting from a certain

depth of recursion, once the size of the array to sort is too small, the overhead of parallel

execution outweighs the actual work. Parallel execution of those calls towards the leafs

of the recursion tree is not profitable. As the number of leafs in the mostly balanced

binary recursion tree is half of the number of overall invocations, and parallelization is

unprofitable not only at the leafs, only a small fraction of invocations of the brute-force

parallelized version of mergesort is profitably parallelizable.

While parallelizing manually, this issue is frequently solved by introducing a parallel

execution threshold—an artificial boundary, which strictly speaking has nothing to do with

the algorithm as such, but instead is a mere artifact of the parallel execution environment.

This is problematic for several reasons: the switch-over criterion of the boundary depends

on the problem size and the parallel execution capabilities of the application’s target

execution environment. Determining an optimal value is thus not possible at compile-time

and always has to be conservatively chosen. Furthermore, the boundary-related code

increases the code complexity and reduces maintainability.

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

E
xe
cu
tio
n
tim

e
(s
ec
on
ds
)

Data size (millions)

manual parallelization (boundary 2048)

manual parallelization (brute force)

sequential execution

Figure 7.3: Execution time of mergesort: sequential vs. brute-force parallel vs. manual
boundary at arrays of size 2048 (linear scales).

122 Chapter 7

With respect to the performance of parallel execution, even a conservatively chosen array

size of 2048 elements as switch-over point from parallel to sequential execution significantly

improves the situation as shown in Figure 7.3. The x-axis shows the input size; the y-axis

shows execution time (lower is better). Figure 7.4 shows the same data on a double log

scale, emphasizing smaller input sizes to clearly see important features and the effect of the

switch-over point. All experiments have been run on a quad-core desktop-class machine

with hyperthreading. All parallelized versions are parallelized using Intel TBB [40], and

thus use a state-of-the art work-stealing scheduler at runtime. Sequential and parallel

versions are optimized and use the same (parallelization independent) compiler flags.

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000 100000 1000000 10000000 100000000 1E+09

E
xe
cu
tio
n
tim

e
(m

ic
ro
se
co
nd
s)

Data size

manual parallelization (boundary 2048)

manual parallelization (brute force)

sequential execution

Figure 7.4: Execution time of mergesort: sequential vs. brute-force parallel vs. manual
boundary at arrays of size 2048 (log scales).

Both figures clearly show that brute-force parallel execution is only slightly faster than

sequential execution. For input sizes smaller than circa 30.000 elements it is not profitable

at all and is easily outperformed by the sequential version of mergesort. Again, remember

the log scale in Figure 7.4 showing that for arrays containing less than 1.000 elements the

performance difference spans several orders of magnitude.

The third line shows the performance of the manually TBB-parallelized version ofmergesort

with an artificial boundary of 2048 array elements to switch to sequential execution. It is

Runtime-Adaptive Parallel Execution 123

clearly visible that this version stays sequential for very small inputs and unsurprisingly

matches the sequential performance in the range from 1 to 2047 elements. In the range

from 2048 to 4095 elements we see a two-fold speedup (remember the log-scale) which

stems from the parallelization at the first level of recursion. The performance roughly

doubles again when the second level of recursion is also parallelized in the range of 4096

to 8191 elements. At the third level, we see another big improvement, showing that

hyperthreading can be quite nicely exploited in this case. The fourth level only shows a

small, and last, performance improvement. Parallelization at deeper levels of recursion

comes with no further performance benefits and only introduces overhead and increases

the pressure on the dynamic scheduler.

As discussed earlier, 2048 has certainly been carefully chosen by an expert programmer; this

choice however is based on experience, heuristics and at best measurements on a machine

closely matching the final target machine. There is no reason to believe that this boundary

is the best possible choice on all machines. Quite contrary, as clearly visible in Figures 7.3

and 7.4, on a machine having only 8 cores available for parallel execution there is no use in

parallelizing more than three to four levels of (balanced) recursive execution. By selecting

the switch-over boundary based on the dynamically available compute resources instead of

statically estimated profitability estimates, ParAγ conceptually replaces the profitability

boundary by a resource utilization boundary (Figure 7.5). This increases the task size for

most inputs and effectively reduces the overhead
work -ratio.

The tnd dispatcher of ParAγ switches to sequential execution, once the nesting depth of

parallel tasks exceeds log2(#Cores) + 1. Note that this conservatively assumes a binary

only recursion tree which produces more tasks than compute cores are available on the

execution platform. Both is in favor of parallel execution and added flexibility of the

dynamic scheduler.

In addition to at most one parallel version Fpar of a function F , ParAγ keeps at each point

in time the sequential version Fseq of F which corresponds to the purely sequential version

of F and basically matches a statically compiled, unparallelized version. Fseq will never

try to call anything else but the sequential version Gseq of any possibly called function G.

124 Chapter 7

ta
sk

ne
st

in
g

de
pt

h

0

log2(n)

pr
ob

le
m

si
ze

n

n
2

n
4

. . .

1

profitability boundary

resource utilization boundary

Figure 7.5: Recursion tree of mergesort with a resource utilization boundary based on
the task nesting depth and available compute resources.

Once such a version of a function is called, execution will remain sequential, until this call

returns. Consequently, all overhead of flexible parallel execution is removed.

In the case of the tnd dispatcher switching to sequential execution of F , Fseq is invoked.

This decision is permanent for the deeper nested recursive calls as obviously, the nesting

depth of parallel execution will remain the same and does not need to be reevaluated.

There is no use in introducing the additional overhead.

Figures 7.6 and 7.7 show the effect of dispatching between parallel and sequential execution

based on the nesting-depth of parallel execution in linear and logarithmic scales respectively.

While the former one suggests that tnd dispatching slightly outperforms the version with

a manually selected parallelization boundary for larger input, the latter figure shows

that the tnd dispatched version clearly extends the range in which parallel execution is

beneficial. On our evaluation machine, the boundary of 2048 array elements indeed is

not the best choice. Also, note that the automatically parallelized and tnd dispatched

version of mergesort does not require any parallelization related code to be written by

the programmer. The code used in the experiment matches exactly the one shown in

Figure 7.1 and thus only contains the algorithm-specific code.

As you can see in Figure 7.7, the tnd dispatched version unfortunately, but expectedly,

shows the same bad performance as the brute-force parallel version for input sizes that

Runtime-Adaptive Parallel Execution 125

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

E
xe
cu
tio
n
tim

e
(s
ec
on
ds
)

Data size (millions)

sambamba (tnd dispatch)

manual parallelization (boundary 2048)

manual parallelization (brute force)

sequential execution

Figure 7.6: Execution time of mergesort: sequential vs. brute-force vs. boundary vs.
tnd dispatch (linear scales).

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000 100000 1000000 10000000 100000000 1E+09

E
xe
cu
tio
n
tim

e
(m

ic
ro
se
co
nd
s)

Data size

sambamba (tnd dispatch)

manual parallelization (boundary 2048)

manual parallelization (brute force)

sequential execution

Figure 7.7: Execution time of mergesort: sequential vs. brute-force vs. boundary vs.
tnd dispatch (log scales).

126 Chapter 7

do not reach the nesting depth at which the dispatcher would intercept. Dynamic

recompilation and function exchange based on collected profiling information is able to

improve the situation as Figure 7.8 suggests. This version however is based on manually

tuning relevant parameters of ParAγ based on properties of the mergesort application to

enable the precision of the input range for sequential execution as automatically chosen

by ParAγ . Therefore, the performance numbers shown in Figure 7.8, although achieved

in a fully automatic way by the final tuned implementation, should be understood as a

feasibility study. Automatically tuning those parameters is possible (using the approach of

Karcher and Pankratius [92], for instance) but left for future work.

0.01

0.1

1

10

100

1000

10000

100000

1000000

10000000

100000000

1 10 100 1000 10000 100000 1000000 10000000 100000000 1E+09

E
xe
cu
tio
n
tim

e
(m

ic
ro
se
co
nd
s)

Data size

sambamba (tnd dispatch + profiling)

sambamba (tnd dispatch)

manual parallelization (boundary 2048)

manual parallelization (brute force)

sequential execution

Figure 7.8: Execution time of mergesort: sequential vs. brute-force vs. boundary vs.
tnd dispatch plus adaptive parallelization (log scales).

Apart from the profitability of parallel execution, Figures 7.6 to 7.8 further show the

almost negligible overhead introduced by the dispatcher.

7.4.3 Tasks In Flight Dispatch (tif)

Switching from parallel to sequential execution based on the parallel task nesting depth is

of course only effective in case of recursive or at least nested calls to parallelized functions.

Runtime-Adaptive Parallel Execution 127

As many, in particular general purpose applications do only rarely contain such calls, a

different approach has to be chosen.

Like most modern parallel execution environments, ParAγ ’s runtime system uses a work-

stealing scheduler based on a pool of threads executing tasks taken from multiple thread-

local and one global task queue. We call the tasks put into one of the task queues and

waiting for execution in flight. The tif dispatcher of ParAγ switches from parallel to

sequential execution based on the number of tasks in flight and the compute resources

available in the execution environment: in case the task queues contain a number of tasks

exceeding twice the number of compute cores available in the executing system, ParAγ
assumes the system to be oversubscribed and resorts to sequential execution.

Unlike the task nesting depth, the number of tasks in flight might decrease again for

future calls to parallelized functions. It is therefore not desired to permanently switch to

sequential execution once a high number of tasks in flight has been encountered. In addition

to the parallel version Fpar, and the always sequential version Fseq of each parallelized

function F , ParAγ therefore keeps an additional sequential version Fseq1 called when the

tif dispatcher decides for sequential execution. Fseq1 is a sequential version of F , which for

any possibly contained (potentially recursive) call to a function G (in case of a recursive

call G = F) calls the version of G which at the time of executing the call is currently

installed in the running system. This might be a forced parallel version of G, a sequential

version, or anything in between.

Figure 7.9 compares the performance of the tif dispatched version of mergesort to the

versions discussed earlier. As can be seen, it closely matches the performance of the tnd

dispatched and manually crafted versions. Despite the fact that dispatching based on task

nesting depth is particularly well suited for balanced recursive algorithms like mergesort,

certainly better than based on the number of tasks in flight, the tif dispatcher is a viable

and profitable option. In case of programs containing no nested parallelism, it is the only

effective option.

Note that the dispatcher based on the number of tasks in flight supersedes the expensive

load based dispatcher as the number of tasks in flight indirectly reflects the load of the

128 Chapter 7

0

5

10

15

20

25

30

35

40

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200

E
xe
cu
tio
n
tim

e
(s
ec
on
ds
)

Data size (millions)

sambamba (tif dispatch)

sambamba (tnd dispatch)

manual parallelization (boundary 2048)

manual parallelization (brute force)

sequential execution

Figure 7.9: Execution time of mergesort: sequential vs. brute-force vs. boundary vs.
tnd dispatch vs. tif dispatch (linear scales).

system. This is in contrast to dispatching based on the parallel task nesting depth, which

is completely independent of the system load.

7.4.4 Combined Dispatch

So far the ParAγ runtime system can use one of three dynamic dispatch mechanisms to

switch to the sequential version of a function. These dispatchers switch based on the

following conditions:

• The system is already more than 90% utilized (load),

• more tasks than two times the number of cores available in the system are waiting

for execution in the task queues (tif), or

• the nesting level of parallel execution is higher than log2(#Cores) + 1 (tnd).

A parameter to the parallel binary compiled with Sambamba/ParAγ allows to control the

selection of a specific dispatch mechanism. Leaving the expensive load based dispatcher

Runtime-Adaptive Parallel Execution 129

aside, the user is left with two sensitive choices, but almost certainly no knowledge of the

internal structure of the application, which is needed to make a qualified decision.

A seemingly simple automatic approach would be to analyze the program and to use

tnd dispatch for (transitively) recursive functions and those possibly containing nested

parallelism along at least one path of the call-graph, and tif dispatch for all other cases.

This however is difficult for two main reasons: facing indirect function calls the presence

of nested parallel execution can only hardly be anticipated statically; the ParAγ runtime

system might dynamically exchange the functions, possibly introducing or removing

nested parallel execution, which would invalidate the choice of the dispatch mechanism for

functions not exchanged.

ParAγ chooses a simpler yet effective approach: as the performance numbers shown earlier

suggest a very low overhead of dispatching, using both, tnd and tif dispatch in combination

seems affordable. Left with no manual decision, ParAγ defaults to a combined dispatcher

which first determines the task nesting depth and switches to the always sequential

execution if it exceeds the sensitive boundary. Otherwise it decides based on the number

of tasks in flight. This combined dispatching effectively behaves like the tnd dispatcher

on an under-subscribed system executing nested parallel code, and like the tif dispatcher

otherwise.

This chapter introduced ParAγ ’s capabilities of runtime adaptive parallelization

and parallel execution, which are the key to the efficiency of our generalized task

parallelization.

Call-site execution time and execution frequency profiling form the basis of ParAγ ’s

parallelization candidate composition and instantiation following the same optimiza-

tion goal as the costly integer linear optimization performed at compile-time. Dy-

namic blocking effectively decreases the overhead
work -ratio and allows for efficient parallel

execution of loops with short running bodies. Different methods of runtime adaptive

dispatch take into account environmental properties like the over-subscription of the

system or parallel task nesting to flexibly and quickly react to changing conditions.

Chapter 8

Implementation

In this chapter, we conceptually introduce and explain implementation details and decisions

made in order to provide further insight into the nature of the Sambamba framework and

ParAγ , which is implemented as a module based on Sambamba. The purpose of the

following sections is to foster future reuse and extension of Sambamba, which forms an

essential part of the contribution of this thesis. Sambamba, as well as ParAγ , have been

carefully designed and crafted with modularity and extensibility in mind.

The goal of this chapter is not to introduce technically challenging, but conceptually

uninteresting details. Instead it concentrates on details, that would have distracted the

reader from grasping the main ideas of Sambamba and ParAγ if explained in detail in

earlier Chapters. For real implementation details, we encourage the interested reader to

study the source code as well as the contained documentation, which we are happy to

hand out, together with our testsuite and benchmark data, to every interested researcher.

8.1 The Sambamba Framework

The Sambamba framework has been co-designed and developed with the parallelization

modules ParAτ and ParAγ , as well as the speculation mechanisms described in thorough

detail in [29]. Consequently, many of the design decisions have certainly been made in

that light, which has influenced the selection of functionality provided by Sambamba.

132 Chapter 8

The framework itself has, however, been kept clean from any parallelization artifacts,

which are completely encapsulated in the corresponding Sambamba modules, which form

the foundation of Sambamba’s extensibility. However, choosing automatic parallelization

as the driving force of developing a framework like Sambamba has certainly not been

disadvantageous for the available functionality. Automatic parallelization is one of the

most invasive program transformations that a typical (automatically parallelizing) compiler

would perform. It involves big parts of the tool belt available in a compiler framework.

In this chapter, we give a technical overview of the framework itself, followed by a

description of Sambamba modules as the mechanism to extend Sambamba. Finally, we

explain how Sambamba guarantees, at compile-time as well as at runtime, the isolation

of modifications to the running system as performed by different concurrently running

Sambamba modules.

8.1.1 Technical System Overview

Figure 8.1 provides a technical overview of the Sambamba framework itself. The figure

concentrates mostly on the static parts; The dynamic parts are kept very lightweight

as their behavior and usage heavily depends on the dynamic components of the linked

Sambamba modules.

In principle, Sambamba behaves like a regular compiler/linker toolchain: it takes as input

the application sources and produces an executable binary. Note that while in the figure

we have chosen to start with C/C++ sources as input for the sake of illustrating the

complete toolchain, the real input to Sambamba is the linked LLVM Bitcode module. It

is therefore in principle possible for Sambamba to handle programs compiled from any

of the diverse set of input languages supported by the frontends available in the LLVM

compiler infrastructure [95]. Development and testing has so far been done only with

C/C++ applications, however. Due to the absence (or, for the sake of correctness, the only

explicitly stated presence) of obvious side-effects, it seems natural to try and parallelize a

functional program, for instance one written in the Haskell programming language. This

however imposes severe difficulties of technical nature: the Haskell frontend, for instance,

weaves in and links a very complex runtime system including garbage collection, lazy

Implementation 133

evaluation and the like, before producing the LLVM Bitcode that Sambamba gets to see.

Domain and language specific optimizations, to which also effective parallelization would

belong, have to take place before and are not usefully done afterwards.

134 Chapter 8

bar.c
bar.h

foo.c
foo.h

L
LV

M
Frontend

A
pp

B
itcode

M
odule

sm
bb::M

od1
(Static

P
art)

sm
bb::M

od2
(Static

P
art)

...

A
pp’

B
itcode

M
odule

L
LV

M
L

inker
A

daptive
A

pp
(B

ig
B

inary)

E
xecution

P
ersisted

K
now

ledge

D
ata

1

D
ata

2

...

Static
A

nalysis
R

esults
JIT

C
om

piler
B

itcode

Sam
bam

ba
R

untim
e

B
itcode

sm
bb::M

od1
(D

ynam
ic

P
art)

sm
bb::M

od2
(D

ynam
ic

P
art)

...

MM
1

M
2

M
3

K
now

ledge
R

efinem
ent

R
em

em
b

ering
Inform

ation
Im

m
ediate

F
eedback

C
om

pile-tim
e

R
untim

e

F
igure

8.1:
Technicaloverview

ofthe
flow

ofdata
and

inform
ation

through
the

Sam
bam

ba
fram

ew
ork,independent

ofparallelization.
T
his

figure
com

plem
ents

Figures
4.1

and
5.1

by
providing

a
technicaloverview

ofthe
fram

ew
ork

itself.

Implementation 135

While we emphasize the language agnostic nature of Sambamba, this should not be

understood as the capability to effectively parallelize or even usefully optimize every

output produced by any LLVM compiler frontend.

The application bitcode is processed by a pipeline of regular compiler optimizations, as

well as the static parts of Sambamba modules registered with the system. It is common in

a well-designed compiler framework like LLVM to allow for extensibility by implementing

and registering multiple isolated compiler passes. The difference between a compiler pass

and a Sambamba module is, however, that a Sambamba module consists of a static and

a dynamic part. The static part behaves completely like a regular LLVM compiler pass

and can be registered and hooked into different stages of the static Sambamba compilation

process. The dynamic part, however, is linked into the binary and invoked by the runtime

system to allow for observation and modification of the running application.

After being processed and possibly modified by all registered Sambamba modules, the

application bitcode is linked, together with the dynamic module parts, the Sambamba

runtime system, a just-in-time compiler, and the statically computed analysis information

into an adaptive binary.

At runtime, the dynamic parts of linked Sambamba modules can profit from observing

the running application instead of having to completely rely on static information or

information collected in potentially unrealistic predetermined profiling runs. By reacting

to immediately available feedback while the application is running, the system can be

adapted to changing environmental conditions, like changed system load, or user input,

for instance.

Information collected during earlier executions of the binary is persisted on the executing

system and stored in a permanently refined knowledge database. This is important to

not having to start learning, for instance on the unprofitability of certain (speculative)

parallelization candidates, or optimization parameters, from scratch each time the appli-

cation starts executing. It is expected that, depending on the performed optimizations,

during early executions the system might very well spend large fractions of the execution

adapting to newly observed conditions until it finally stabilizes. The purpose of persisting

136 Chapter 8

the learned information is to lower this fraction with every execution, and with it the

overhead of adaption.

Additionally, the information learned during real (and thus realistic) executions is also

available to the static parts of registered Sambamba modules during later recompilation of

the application on the same system. Technically it is possible, but not done by Sambamba in

its current implementation, to submit learned information to a central online database to be

used by different users and during compilation on a system different from the one executing

the final application. This is similar to submitting the (intermediate) results of the linear

optimization performed by ParAγ during static compilation (see Subsection 8.2.3).

8.1.2 Sambamba Modules: Compile-time vs. Runtime

Sambamba modules consist of two parts: a static part being active at compile-time, and

a dynamic part being active at runtime, while the application executes. Both parts are

optional: it is not required for a Sambamba module to act during compilation. Neither is

it forced to have a dynamic component, although this is certainly the main purpose and

defining feature of a typical Sambamba module.

The static part is invoked during compilation and closely resembles a LLVM ModulePass1.

It can make use of the regular mechanisms provided by LLVM to make dependences

from other passes explicit, influencing the scheduling of the pass during compilation.

Furthermore, the compilation in Sambamba is separated into three phases, in each of which

a Sambamba module can take part:

PRE_OPT is the initial phase in which a registered module gets to see the raw, un-

changed input before any optimizations take place. Most of ParAγ ’s static parts

operate in this phase. The representation of the application in this phase is very

close to the original source and not “obfuscated” by aggressive optimizations. It

is typically well suited for high level optimizations like automatic parallelization.

Furthermore, ParAγ clones and stores an unoptimized version of each function
1http://llvm.org/docs/WritingAnLLVMPass.html#the-modulepass-class

http://llvm.org/docs/WritingAnLLVMPass.html#the-modulepass-class

Implementation 137

containing parallelization candidates, which form the basis of runtime parallelization.

Final optimization is left for the runtime parts as it has to succeed parallelization.

POST_OPT is the phase succeeding the execution of regular LLVM compiler optimiza-

tions, whose selection can be influenced via the typical command line options (e.g.,

“-O1” - “-O3”, or flags triggering individual optimizations).

In this phase ParAγ checks and reacts to severe changes performed by the potentially

aggressive optimizations. One example is changes to the calling convention of

functions, to which ParAγ reacts by adapting the previously cloned parallelization

candidates accordingly.

LINK_TIME is the last phase during compilation right before linking everything to-

gether to form the final adaptive binary.

To transfer analysis results, like the parallelization candidates, for instance, from compile-

time to runtime, Sambamba provides a so-called DataStore in which all serializable infor-

mation can be stored. The content of this data store will be linked into the application

binary and is available at runtime.

To hook into the runtime system, the dynamic component of a module registers an init

as well as a shutdown method with the Sambamba runtime system. Not surprising, the

init function is invoked to initialize the respective module before the actual application

starts executing. During initialization, the module can read and manipulate all (command

line) parameters given to the application. This is particularly useful to read and filter

parameters targeted to the runtime modules themselves.

Typically, a Sambamba module reads the statically gathered analysis results from the

DataStore provided by Sambamba and acts correspondingly. ParAγ for instance reads

the parallelization candidates and, depending on the availability of profiling information

gathered during earlier runs, either immediately installs parallel function versions, or

profiling versions of parallelization candidates into the system. Afterwards it starts a

thread running in parallel to the application reacting to significant changes in the available

profiling information without influencing the application running in another thread.

138 Chapter 8

Before the application terminates, Sambamba will invoke the shutdown method of each

Sambamba module, giving it a chance to persist information for future executions.

8.1.3 Multiple LLVM Modules

One particular technical problem to which Sambamba offers a solution is the isolation of

effects of multiple Sambamba modules running in parallel to each other and to the running

application. Each module is free to create, change and install multiple versions of each

function. Sambamba provides the facilities to easily do so.

One very important mechanism to prevent interference between multiple concurrently

operating Sambamba modules is to keep multiple LLVM Modules. An LLVM Module, of

which during a typical LLVM compilation only one exists, is a collection of global values

and functions. It typically represents a whole application.

The Sambamba runtime in contrast keeps and synchronizes multiple interconnected LLVM

Modules at the same time:

OrigMod is the original, statically compiled module of the application. It contains all

functions in their statically compiled version, without any changes introduced by

dynamic Sambamba modules. This module is read only and may not be changed.

Private Modules are kept for each Sambamba module to operate on. This way, the

effects of the changes performed by each Sambamba module are isolated from the

other Sambamba modules.

RunningMod is the module representing the currently running version of the application.

“Installing a changed version of a function into the running system” actually means

to transfer it from one of the private modules to the RunningMod and trigger just-

in-time compilation. Registering and un-registering different versions fP1 ...fPn of a

function fO contained in the original application is the only way for a Sambamba

module to change the RunningMod. Constructing these function versions has to be

done in the private modules.

Implementation 139

Sambamba orchestrates and synchronizes all accesses to the RunningMod. It takes care to

copy over (or, more precisely, link) all symbols and globals accessed by the functions to

be installed. One particularly important feature is that it is allowed for a call instruction

callP ...(...) in a private module MP to call a function fO in OrigMod, a function fP in

MP itself, or a function fR in RunningMod. The consequences of choosing either variant

are as follows:

callP fO(...) calls the original, unmodified (and unmodifiable) function. In the paral-

lelization context of ParAγ this means, for instance, to always call the sequential

version of f . Sambamba will link a unique copy of fO into RunningMod upon seeing

the first reference to it.

This is the version used by the tnd dispatcher when switching to sequential execution

as described in Subsection 7.4.2.

callP fP (...) calls an individual copy fP of f , privately owned by Sambamba module MP .

Sambamba will link fP into RunningMod upon seeing the first reference to it. Multiple

references to fP will be linked to the same copy in RunningMod. Note that this way

multiple different versions of a function f contained in the original application, but

also completely new functions and globals, are installed into RunningMod.

callP fR(...) calls the function version currently installed into the running system. Note

that “currently” does not mean calling the function that is installed at the time of

installing the calling function into RunningMod. It actually means calling the version

of f that is installed at the time of invoking callP fR(...). Installing new versions

of f into RunningMod in the future will thus potentially influence the behavior of

callP fR(...).

This is the variant used by the tif dispatcher (see Subsection 7.4.3).

Note that in LLVM typically only one LLVM module exists at a time and it is illegal for a

module to contain a reference into a different module. In Sambamba this is perfectly valid

for the private modules only and a mechanism to guarantee isolation while minimizing

the necessity for excessive code duplication and handling. Sambamba provides all means

140 Chapter 8

to keep dealing with multiple modules as convenient and safe as possible. RunningMod,

as well as OrigMod are supposed to be self-contained and thus not allowed to contain

references to different modules. This invariant is protected by the Sambamba runtime

system.

The typical flow of optimization performed by a Sambamba module using the different

LLVM modules is to first request an initially empty private moduleMP from the Sambamba

runtime system. To optimize a function f it then creates a clone fP of fO taken from

OrigMod. In this cloning process, it relinks all references to global values and functions of

fO from OrigMod to RunningMod. fP is then changed in isolation as desired and finally

installed into RunningMod.

8.2 ParAγ—Relevant Implementation Details

Concerning the implementation of ParAγ the following techniques are of particular impor-

tance to understand the results achieved.

8.2.1 Block Splitting

While the principle ideas and techniques used by ParAγ are conceptually not limited to

operating on a basic block level, in the current implementation we chose to do so for reasons

of scalability. This is clearly a trade-off in the light of which the precision and power of

parallelization might suffer, as the scheduler is limited in its freedom to independently

schedule potentially costly instructions contained within the same basic block2.

To counter this limitation in freedom, ParAγ seeks to isolate two kinds of instructions by

extracting them from their containing block:

Potentially costly instructions are isolated to give the scheduler the freedom to sched-

ule them in parallel to each other or the surrounding code. Costly instructions
2Theoretically the size of a basic block is not limited. The average number of instructions per basic

block highly varies with the compiler and the source language for instance. Calder et al. [113] for instance
give numbers of 5 to 8 instructions on average per basic block for C/C++ applications.

Implementation 141

isolated by para include call and invoke instructions, except if the called function is

known to be very short running.

Parallelization hindering instructions are isolated to break chains of dependences

between basic blocks and give the scheduler the freedom to parallelize the code

surrounding the isolated instructions. Examples of such instructions include the

computation of loop iteration variables and reduction operations.

Extracting an instruction from a basic block is however not as simple as splitting the

basic block before and after the respective instruction. Doing so typically introduces a

dependence pattern that would equally likely hinder parallelization. Consider a basic block

as follows:

1 a=b+c

2 d=e+f

3 call h(a)

4 call i(d)

Naively splitting this block to isolate both calls would result in three new blocks:

1 a=b+c

2 d=e+f
1 call h(a) 1 call i(d)

Unfortunately, both blocks containing the isolated calls do have a dependence to the first

block containing the operand computation. The scheduler is now free to execute the calls

in parallel to each other, but only after the argument computation has completed. This is

an unnecessary restriction. The desired result instead is as follows:

1 a=b+c

2 call h(a)

1 d=e+f

2 call i(d)

142 Chapter 8

This configuration does not impose any dependences between basic blocks and gives the

scheduler all freedom to schedule the calls in parallel to each other.

Instead of performing naive splitting, ParAγ isolates complete intra-block dependence

chains originating from a target instruction. In case multiple target instructions with

non-disjoint dependence chains exist within the same basic block, dedicated basic blocks

are created for the overlapping computation in order to maximize scheduling freedom

within the bounds of preserving the sequential program semantics.

8.2.2 Schedule Cache

Upon a typical recompilation of an application after changing a source file, big parts of the

code remain unchanged. ParAγ makes use of this fact to speed up the compilation process

by re-using pre-computed parallel schedules (i.e., parallelization candidates). This way, it

effectively saves the time to re-run the linear optimizer for each unchanged function.

The idea is motivated by ccache [114], which indexes a cache persisted on disk by computing

a hash over the source to compile (after running the preprocessor). ParAγ follows this

example but indexes its schedule cache by computing a deterministic hash over the PDG

structure. This implies two things: the cache is operating on function granularity; and two

functions having the same PDG share the same entry in the cache. As the PDG contains

all memory effects, which is also reflected in the hash computation (in contrast to function

or variable names and other identifiers, which are abstracted away), this is exactly the

desired behavior.

In case ParAγ finds for a given PDG an entry in its schedule cache, the corresponding

schedule is immediately taken and the ILP not even constructed.

8.2.3 ILP Cloud

In case ParAγ does not find a suitable pre-computed parallel schedule for a given PDG in

its cache, it typically constructs multiple integer linear programs to find local parallelization

candidates as described in thorough detail in Chapter 6. As solving those ILPs, some

Implementation 143

of which are of non-negligible complexity, takes most of the compilation time, a second

cache is introduced: the ILP Cloud is indexed by a hash over the ILP structure and stores

feasible solutions for a given ILP.

After constructing the ILP for a given PDG block as described earlier, ParAγ checks the

availability of a feasible solution to the ILP. In case an optimal solution exists, ParAγ
takes it and does not need to run the optimizer. In case a feasible but non-optimal solution

exists, ParAγ can, subject to the given configuration, decide to do two things:

1. Check if the CPU time spent computing this solution (which is also stored in the

ILP cloud) is above its own ILP solving timeout, and if so, take the feasible solution

as is.

2. If the CPU time spent so far to optimize the available solution is below ParAγ ’s own

threshold, the feasible solution can be used as a starting point for the ILP solver,

which in turn spends the difference of time to ParAγ ’s time budget in polishing the

solution further towards an optimum.

3. ParAγ can, independently of the CPU time spent so far to solve the cloud solution,

use its own time budget to polish the solution.

In any case, ParAγ will store a found and potentially improved solution in the ILP cloud

for later reuse. In addition to instances of Sambamba/ParAγ which contribute to the

solutions stored in the ILP cloud, we employed available compute resources to regularly

take feasible but non-optimal solutions from the ILP cloud and further optimize them.

Note that as the ILPs constructed by ParAγ are based on local dependence DAGs which

abstract away identifiers, control flow and program order and contain less than 10 nodes on

average (see Table 9.1) chances are that ILP solutions can be shared between independent

programs.

The implementation of the ILP cloud has been done together with Clemens Hammacher

who implemented in particular the server side part of the cloud, including ILP serialization

and deserialization.

144 Chapter 8

8.3 A Note on Inter-core Communication

Recent successful work on parallelizing irregular applications [74, 81] has shown that,

depending on the form of parallelism, inter-core communication latency is a limiting factor

for successful parallelization. Helix [81, 82], for instance, is able to achieve impressive speed-

ups on irregular applications without even relying on speculation. The approach however

strongly relies on efficient inter-core communication, as loop-carried dependences have to

be communicated between every pair of succeeding loop iterations which are executed on

different cores in a round-robin fashion. By clever scheduling, the communication latency

can be hidden to some degree but the scalability of the approach by design is limited by

the communication latency.

The influence of inter-core communication on the successful parallelization using ParAγ is

limited in several ways. Note that inter-core communication only happens when spawning

a parallel task and only from the spawning to the spawned task. This communication

is minimized in the ILP formulation by including the ComCost in the optimization

function. Furthermore, task-blocking (see Section 7.3) greatly reduces the amount of

necessary communication by executing multiple successive instances of a task, e.g., loop

iterations, on the same core. Recomputable values, like for instance induction variables,

are communicated only once per block instead of once per task instance. Values which are

needed by multiple task instances, e.g., loop-invariant live-in values, are communicated once

per block at most. For the remaining, strictly necessary communication, a work-stealing

task scheduler3 in the spirit of Cilk is employed by the ParAγ runtime to effectively make

use of the cache hierarchy and minimize necessary inter-core communication, in particular

for nested parallelism.

This chapter provided a technical system overview of Sambamba and gave insights

into the implementation of Sambamba and ParAγ . Block splitting is particularly

important to maintain the necessary flexibility while scheduling on the basic block

level for reasons of efficiency. A local schedule cache and a global ILP cloud mitigate

3The ParAγ runtime system relies on the dynamic scheduler of Intel TBB.

Implementation 145

the problem of long running integer linear optimization at compile-time.

Chapter 9

Evaluation

In order to demonstrate the effectiveness and generality of ParAγ as described in the

previous paragraphs we performed a detailed evaluation1 on six selected benchmark

programs originating from different benchmark suites. The programs have been selected

because of their differing characteristics as shown in Table 9.1. For each of the selected

programs, the table lists the following:

Suite, the source benchmark suite. The programs are taken from the Barcelona OpenMP

Task Suite (BOTS) [115], the Cilk [41] suite of sample applications, as well as the

Parsec [116], and the PolyBench [117] benchmark suites.

SLOC, the number of source lines of code, excluding empty lines and comments.

Nmax/avg, the maximum and average number of equally control-dependent nodes, i.e., the

children Ig of a PDG group node g as described in Subsection 6.1.2. This number,

together with the following one, is the dominant factor influencing the complexity of

the ILP to optimize during scheduling.

Emax/avg, the maximum and average number of dependence edges ∆g in DAGg, also as

described in Subsection 6.1.2.
1This chapter is based on the evaluation conducted together with my co-authors Johannes Doerfert and

Clemens Hammacher as part of the paper “Generalized Task Parallelism” [15].

148 Chapter 9

Table 9.1: Characteristics of the programs used to evaluate ParAγ . They cover a broad
range of domains and parallelization schemes. Some of them require privatization or

reduction recognition and handling.

Enabling Applied

Techniques Scheme

Benchmark Suite SLOC Nmax/avg Emax/avg P
riv

R
ed

Lo
op

(f
ul
l)

Lo
op

(p
ar
tia

l)

Ta
sk

alignment BOTS 612 93/9.86 128/9.27 3 3 3

cilksort∗ Cilk 387 22/8.58 23/7.19 3 3

fft Cilk 3168 63/8.92 161/10.93 3 3 3 3

blackscholes Parsec 393 24/7.38 30/6.87 3

BiCG PolyBench 1586 31/9.15 37/9.50 3 3

gesummv PolyBench 1582 24/7.88 31/8.08 3 3

Enabling Techniques, the parallelism enabling techniques used to parallelize the appli-

cation. Enabling techniques used in this evaluation are reduction (Subsection 5.2.1)

and privatization (Subsection 5.2.2). We do not rely on speculation (5.2.3), which

is not part of this thesis.

Applied Scheme, the parallelization scheme. We classify parallelization candidates into

three (simplified) schemes as applied by existing parallelization approaches:

1. Loop (full) corresponds to DOALL-style loop parallelism: all iterations of a loop

without any loop-carried dependences, apart from those induced by induction

variable computation, can be executed in parallel to each other or in any

arbitrary order.

2. Loop (partial) corresponds to loops with loop-carried dependences which do not

prohibit to execute parts of the iterations in parallel to each other. Different

parallelization approaches exist that deal with such loops. Examples include

DOACROSS, DSWP [72–75, 77] or Helix [81, 82, 93].

3. Task represents parallelism independent of loops as can be expressed, for

instance, in the Cilk, Cilk++, or Intel Cilk Plus languages. This form of

Evaluation 149

parallelism is also known as control parallelism. Special forms include fork-join

parallelism.

Again, note that ParAγ does not explicitly exploit the mentioned forms of parallelism.

Also, it does not implement or include a specialized approach for any of the mentioned

parallelization schemes. Parallelization in ParAγ is solely based on dependences and

does not take any particular program structure into account. The resulting parallel code

produced by ParAγ nevertheless may be very similar to the result produced by more

specialized approaches falling into the above mentioned categories. The purpose of this

classification is to show that ParAγ , by abstracting from the program structure, implicitly

exploits such well known patterns of parallelism.

The six programs have been chosen as representatives for their particular style of parallelism

as reflected in their originating benchmark suite. Later in this chapter we additionally

show the results of ParAγ applied to all programs of the PolyBench benchmark suite as

well as most2 applications of the Cilk example suite.

For each of the detailed evaluation subjects we compare ParAγ against an approach which

ships with or is usually evaluated on the respective benchmark suite. To evaluate the

influence of the most important runtime techniques described in Chapter 7 four different

configurations of ParAγ are used: with runtime dispatch (Section 7.4) enabled, with

loop blocking (Section 7.3) enabled, both runtime techniques enabled and none of them

enabled. All configurations, including the latter, make use of runtime profiling information

(Section 7.1) to choose from different parallelization candidates (Section 7.2) and form

one parallel version per function. Without such information, parallelization would be

unguided.

In this evaluation, we particularly assess the following hypotheses:

1. ParAγ identifies and leverages different forms of parallelism;

2. ParAγ effectively makes use of privatization and reduction recognition; and

3. ParAγ creates efficient parallelized code over a broad range of applications.
2A few applications have been excluded due to technical restrictions as will be described later in this

chapter.

150 Chapter 9

9.1 Setup

All experiments were performed on an Intel Core i7 920 quad core CPU with 2.67 GHz,

8 MB cache and Hyper-threading, allowing to execute 8 threads in parallel. The LLVM

based approaches (ParAγ and Polly) as well as the sequential baseline were compiled using

clang 3.4.2, the most recent version at the time of the evaluation; for other approaches, in

particular for the OpenMP versions, gcc 4.9.1 (pre-release) has been used.

Note that, as mentioned earlier, ParAγ makes use of statically estimated as well as dynam-

ically collected profiling information. It does so during static scheduling of parallelization

candidates (see Subsection 6.1.1), as well as at runtime to select between different can-

didates or combinations thereof. For our evaluation, we did not take runtime profiling

information into account during static scheduling, which is solely based on static estimates.

The candidate selection at runtime however averages the profiles collected during the

current and earlier runs of the binary and takes them into account. It is therefore able to

use profiling information on actual inputs.

9.2 Benchmark Suites

PolyBench/C 3.2 by Pouchet [117] contains scientific codes dominated by loop execution.

The programs have been selected due to their eligibility for polyhedral loop optimizations.

We compare the performance of ParAγ against Polly, the polyhedral optimizer of the LLVM

compiler framework. Note that the form of parallelism exploited by typical polyhedral

optimizers is significantly different from the one exploited by ParAγ : big improvements in

terms of execution time are achieved by optimizing for cache locality, a goal that ParAγ
does not explicitly share3. Therefore, we consider the benchmarks chosen from this domain

particularly interesting as they show highly nested loops with very small bodies which do

not justify the overhead of spawning parallel tasks for every instance. In order to efficiently

parallelize these applications, ParAγ has to provide countermeasures to minimize the
overhead

work -ratio.
3ParAγ does take cache locality into account, for instance when allocating privatized storage for

reduction, privatization and the collection of execution profiles. It is not the primary optimization goal
though.

Evaluation 151

The programs taken from the Cilk [41] example suite are compared against optimized

execution in Cilk. For the sequential reference, we compiled the serial elision, which

is the result of deleting all Cilk-specific language constructs (spawn, sync, . . .) from a

Cilk program, using the clang compiler, in order to avoid any overhead induced by the

Cilk runtime system. The BOTS suite of Duran et al. [115] contains one sequential and

multiple manually parallelized program versions annotated using OpenMP pragmas. In

all our experiments, we compare against the best performing individual OpenMP variant.

The Parsec suite [116] contains hand-crafted versions of each program, parallelized using

OpenMP, Intel TBB and native POSIX threads. Again, we compare against the best of

those versions.

9.3 Results of the Detailed Evaluation

Figure 9.1 shows the result of the detailed evaluation. All numbers are normalized against

an optimized sequential program version compiled using clang.

In the evaluated programs, ParAγ is able to detect all program locations that were also

parallelized by the domain experts. In all cases ParAγ is able to significantly decrease

the execution time as compared to sequential execution. We validated the statistical

significance of all reported speedups with a confidence of 99 percent using the Speedup-Test

described by Touati et al. [118]. Our results show both the generality and the effectiveness

of our ParAγ .

Detailed Explanation

In the alignment (9.1a) and blackscholes (9.1b) programs, the efficiency of the ParAγ-

parallelized versions falls behind that of the hand-crafted versions using OpenMP or TBB.

The difference stems from two factors: First, the OpenMP and TBB programs are compiled

with gcc, which in these particular cases is able to create more efficient code. Second, the

ParAγ runtime system introduces overhead for allocating heap space for the parallel tasks

and for privatization and reduction locations. This overhead is significantly higher than

that of the reference systems.

152 Chapter 9

ParAγ ParAγ -dispatch ParAγ -blocked ParAγ -dispatch-blocked Reference

1 2 3 4 5 6 7 8

1×

2×

3×

4×

5×

(a) alignment: ParAγ vs. OpenMP.

1 2 3 4 5 6 7 8

1×

2×

3×

4×

5×

(b) blackscholes: ParAγ vs. TBB.

1 2 3 4 5 6 7 8

1×

2×

3×

4×

5×

(c) BiCG: ParAγ vs. Polly.

1 2 3 4 5 6 7 8

1×

2×

3×

4×

5×

(d) gesummv: ParAγ vs. Polly.

1 2 3 4 5 6 7 8

1×

2×

3×

4×

5×

(e) cilksort∗: ParAγ vs. Cilk.

1 2 3 4 5 6 7 8

1×

2×

3×

4×

5×

(f) fft: ParAγ vs. Cilk.

Figure 9.1: Evaluation of ParAγ on six programs from different domains, containing
different styles of parallelism. The x-axis shows the number of threads; the y-axis compares
speedup over sequential execution. Parallelization in OpenMP, Cilk, and Intel TBB is

done manually by experts; Polly and ParAγ parallelize automatically.

We see that alignment profits from neither of blocking or runtime dispatch. Indeed,

blocking harms performance. This is because the parallelized loop does not have enough

iterations to reach the chosen block size. As a result, blocking effectively sequentializes

the execution. If the choice to enable blocking is left to the ParAγ runtime system,

it therefore disables it based on collected runtime profiling information showing that

the iteration count of the loop is too low for blocking to be possibly profitable. The

performance improvements achieved by ParAγ on the blackscholes benchmark in contrast

heavily benefits from blocking.

The alignment program is particularly interesting, as parallelizing the main loop in the

Evaluation 153

pairalign function requires the privatization of no less than 15 variables at different nesting

levels of the loop nest. This necessity is reflected in the OpenMP annotations of the

handcrafted parallel version4; if one of those annotations is missed by the developer, the

executable will produce incorrect results. ParAγ is able to automatically find variables to

privatize and produces the corresponding code to guarantee correctness without human

guidance. In its semi-automatic mode of operation, ParAγ will present all necessary

privatization locations to the programmer as described in Chapter 10 and offers to

automatically take care for privatization.

In the BiCG (9.1c) and gesummv (9.1d) programs from the PolyBench suite, ParAγ
outperforms Polly, the specialized tool for the kind of programs contained in this suite.

We can see that blocking is the enabling measure of ParAγ ’s performance benefits, whereas

dynamic dispatching does not contribute. It does, however, also not impose any significant

observable overhead. Due to the loop dominated execution of both programs this is not

surprising.

It is, however, surprising that Polly is seemingly even harming the performance of the

applications. In case of BiCG it has mainly two problems:

• Polly works on basic block level and is unable to split blocks on demand. Both

statements of the innermost loop (see Figure 1.4a) share the same basic block which

consequently induces loop-carried dependences over both containing loops.

• Polly is unable to deal with reductions and therefore misses an important opportunity

of parallelization.

The slowdown of Polly in this particular benchmark comes from the fact that it not only

misses the profitable parallelism, but also parallelizes the loop which initializes the s array

to 0, which is not profitable.

In gesummv, Polly finds the right location to parallelize but the generated code based

on OpenMP is unable to profitably exploit the exposed parallelism. The speedup would

improve, if Polly was able to additionally vectorize the generated code, which it is not in

this case.
4Appendix B shows the OpenMP-parallelized version taken from the BOTS suite

154 Chapter 9

Note that after the findings and insights resulting from this particular evaluation, Polly

has been improved to at least partially overcome the above mentioned limitations. In

particular capabilities to detect and exploit reductions have been extended as described in

our own work [16].

The fft (9.1f) and cilksort∗ (9.1e) programs implement Fast Fourier Transform and a

standard mergesort. Note that the version of cilksort as it is contained in the Cilk suite

performs a switch from mergesort to quicksort at a hard coded array size boundary. Cilk

and ParAγ (without runtime dispatch) both profit from this boundary when automatically

parallelizing as it effectively causes execution to switch from parallel to sequential once

the problem size falls below a given size. As for regular targets of a parallelizer such

help cannot be expected, we removed this boundary for our benchmarks (hence the ∗ in

cilksort∗). As demonstrated in Subsection 7.4.2 (see Figure 7.5) ParAγ makes placing such

somewhat artificial boundaries superfluous.

As mentioned earlier, ParAγ is able to make use of dependence annotations placed in the

code by the programmer. Like essentially all applications of the Cilk example suite fft and

cilksort mainly consist of recursive functions. As described in Subsection 5.1.1, ParAγ
profits from user provided annotations in such cases and we manually annotated relevant

parts. The idea is similar to that of Vandierendonck et al. [79]: hints are only used to

improve dependence information while both parallelization and parallel execution stay

fully automatic.

As we can see from the results neither of cilksort∗ and fft profits from blocking as

the dominating parallelism does not stem from parallel loops. fft also does not profit

from runtime dispatch. This is mainly due to a highly specialized and hand-optimized

implementation which switches over to specialized function versions to solve smaller sub-

problems: specialized implementations which are not parallelized. This corresponds, just

like in the original version of cilksort, to an implicit switch from parallel to sequential

execution. Later on in this chapter, we will give further insights into the specialized and

input dependent execution paths through the fft application.

Evaluation 155

2m
m

3m
m ad

i
at

ax
bi

cg
ch

ol
es

ky
co

rr
el

at
io

n
co

va
ri

an
ce

do
it

ge
n

du
rb

in
dy

np
ro

g
fd

td
-2

d
fd

td
-a

pm
l

flo
yd

-w
ar

sh
al

l
ge

m
m

ge
m

ve
r

ge
su

m
m

v
gr

am
sc

hm
id

t
ja

co
bi

-1
d-

im
pe

r
ja

co
bi

-2
d-

im
pe

r lu
lu

dc
m

p
m

vt
re

g-
de

te
ct

se
id

el
-2

d
sy

m
m

sy
r2

k
sy

rk
tr

is
ol

v
tr

m
m

1
2×

1×

2×

4×

ParAγ vs. Clang ParAγ vs. ParAγ seq

(a) PolyBench.

bu
ck

et
ci

lk
so

rt
fft

1
fft

2
fft

3 fib
he

at
kn

ap
sa

ck lu
m

ag
ic

m
at

m
ul pl
u

re
ct

m
ul

sp
ac

em
ul

st
ra

ss
en

ch
ol

es
ky

(b) Cilk suite.

Figure 9.2: Speedups achieved by ParAγ on the PolyBench 3.2 9.2a and Cilk suite 9.2b
with 8 threads on a quad core with Hyper-threading.

cilksort∗ however greatly benefits from runtime dispatching. Indeed, only with runtime

dispatching ParAγ is able to achieve any speed-up. In that case, however, it constantly

outperforms the Cilk version.

Note that a significant slowdown can be observed for ParAγ without dispatching, even

when using only one thread. This is because the overhead of creating and scheduling

parallel tasks is introduced at every level of recursion and for every problem size. As

discussed in detail in 7.4.2 this overhead outweighs the actual productive work, in particular

towards the leaves of the recursion tree. Additionally, task stealing hurts data locality,

leading to the observed slow-downs for multi-threaded execution.

For both Cilk applications ParAγ with runtime dispatch is able to fully match the

parallelization decisions of the manually crafted implementations; performance with

runtime dispatching enabled is comparable to the performance of the Cilk version of both

benchmarks.

156 Chapter 9

9.4 Results on PolyBench and the Cilk suite

In addition to the detailed benchmark evaluation shown in Figure 9.1 we evaluated ParAγ
on all applications of the PolyBench/C 3.2 Suite [117], as well as most of the applications

of the suite of Cilk [41] example applications. The results are shown in Figure 9.2a

and Figure 9.2b5 respectively.

All experiments have been conducted on the same machine as the previous experiments.

Speed-ups are relative to an optimized binary produced by clang and sequential execution

in the ParAγ framework respectively. The purpose of the latter is to demonstrate the

speed-up obtained by parallelization alone. It ignores the overhead introduced by the

Sambamba runtime system, for instance just-in-time compiled execution. Another reason

for differences in the numbers is the potential lack of inter-procedural program optimization

of the parallelized functions. These are not performed in order to be free to exchange any

function at runtime. Function inlining, a prominent inter-procedural optimization, for

instance, would prohibit to flexibly exchange and execute the inlined function independently

at runtime.

In the case of PolyBench, the reported speedups are obtained using the own timing

measurement facilities of the benchmark suite, and using the large input set. The speedup

refers to the main computational kernel of each benchmark and not the whole application.

As explained earlier, for the Cilk applications the serial elision is computed and anno-

tated with dependence hints prior to automatic parallelization. We had to exclude four

applications (ck, game, queens and kalah) from our evaluation as the serial elision of

those programs was not easily computable due to the use of Cilk inlets. Furthermore, we

excluded hello, which is a trivial hello world program, as well as nfib, which is basically

the same as fib. For each of the remaining applications we measured the overall program

speedup as not all applications come with their own measurement of relevant program

parts. While it seems to be the most appropriate way to us to treat all benchmarks of

the suite in the same way, measuring whole program speedup results in lower speed-ups

than one might wish to see on a quad-core machine with Hyper-threading. In most cases
5Earlier results similar to those shown in Figure 9.2b have been reported in our own earlier work [17].

Evaluation 157

this is caused by large parts of the application being inherently sequential: for instance,

allocating and filling large arrays to sort and finally verifying result correctness. For

cilksort, matmul, and spacemul the difference is significant: While their measured kernels

have been accelerated by factors of 4.32, 3.63 and 3.26 respectively, the overall speed-up

presented in this evaluation is significantly lower.

For fft we report three different performance numbers. They represent the same program

run on different inputs, each covering a different characteristical execution path through

the application:

fft -n 10,000,000: fft1 is executed using the argument 10,000,000, which triggers the

general path through the fft benchmark and computes the fast fourier transformation

on an array of 10,000,000 components.

fft -n 33,554,432: fft2 triggers a heavily optimized path through the benchmark which

is tailored to powers of two as input size (33, 554, 432 = 225). In this case, the

performance improvement achieved by Sambamba/ParAγ is not quite as high as for

the general case.

fft -c: fft3 triggers a special checking mode of the benchmark which executes the fft

computation in a loop and checks correctness of the results. In addition to parallelizing

the fft computation itself, para is able to parallelize this outer loop, which results in

the highest speedup achieved by ParAγ among the three different fft inputs.

This particular fft implementation is an example of the input dependent achievable

parallelization speedup. Note though that not the parallelization of any given function

depends on the input, but instead the chosen path of execution (i.e., the executed functions),

and with it the overall speedup of the application. Such behavior in general poses a challenge

to parallelization approaches depending on previously collected profiling information as

the expected benefit heavily depends on the developer to choose the right representative

inputs to collect profile information. ParAγ in contrast is independent of such pre-selection

of inputs. Its runtime system is able to dynamically react to previously unseen execution

paths being taken.

158 Chapter 9

The results of the evaluation presented in this chapter confirm our hypotheses:

1. ParAγ subsumes different parallelization approaches by effectively detecting

and leveraging different forms of parallelism.

2. Parallelization enabling techniques like privatization and reduction recognition

are used where applicable.

3. The runtime is comparable to state-of-the-art parallelization tools, but no

developer guidance is needed.

Chapter 10

Extension and Use Case:

Semi-Automatic Parallelization

Fully automatic parallelization has been the goal of research for multiple decades and

successful approaches arose, at least for certain domains. Nevertheless, and despite the

fact that manual parallelization is considered hard and error-prone by the majority of

programmers (see, e.g., Christmann et al. [4]), automatic parallelization still did not

find its way into main-stream compilers, and with it into the domain of general purpose

applications. Reasons, among others, are:

1. Limited capabilities of static analyses, for instance to precisely compute, or at least

predict parallelization-limiting dependences (cf. Niall et al. [11]).

2. Limited and input-dependent predictability of expected performance.

3. Limited trust of developers in the capabilities and correctness of automatically

parallelizing compilers.

4. Hard debugging of produced binaries involving a complex runtime system.

5. Limited trust of developers in their own comprehension of multicore and manycore

programming [4] and execution environments combined with limited tool support.

160 Chapter 10

Libraries and frameworks like OpenMP [7], or Intel TBB [40], domain-specific languages,

and language extensions like Cilk [41], or Intel Cilkplus [42], and modern languages with

parallelism included like Scala [46, 47], Go [45, 119], or Rust [120, 121] ease some of the

problems and gain thrust. Their parallelization capabilities are, however, still mostly used

and understood by experts only. What those tools have in common, however, is the fact

that they expose parts of parallelization, including the responsibility for correctness and

performance implications, to the programmer while reducing boiler-plate work and the

risk of failure.

OpenMP is a particularly well adopted library for parallelization of C/C++ and FORTRAN

applications and has been widely accepted by programmers as low level enough to leave the

impression of being in control, and high level enough to significantly reduce the necessary

boiler-plate work involved in parallelization. However, it still leaves the programmer alone

with the responsibility of correctness and performance improvements. Appendix B shows

the code of the pairalign function taken from the alignment benchmark of the Barcelona

OpenMP Task Suite (BOTS) [115]. As also explained in Chapter 9, this code requires the

programmer to cause the privatization of 15 variables to guarantee the correctness of the

parallelized code. Only one missed location will leave the programmer with debugging a

non-deterministically behaving parallel application.

Motivated by the acceptance and ease of use of OpenMP and to provide the possibility to

easily guide or focus some of the costly analyses performed by ParAγ , we have extended

Sambamba/ParAγ and embedded it in a workflow of semi-automatic parallelization. An

overview of the extended workflow can be seen in Figure 10.1.

Key difference to the regular flow of parallelization described in the earlier chapters is the

possibility of the programmer to interact with the parallelization process by introducing

OpenMP-like parallelization hints into the code and reacting to hints, warnings and errors

reported by ParAγ . The main difference to manual parallelization using OpenMP is

the added programmer confidence by guaranteeing correctness of the parallelization, and

automization of standard but error-prone parallelization-related tasks like privatization and

reduction. Furthermore, the programmer profits from parallelization-related optimization

Extension and Use Case: Semi-Automatic Parallelization 161

(Re-) Compile-time Runtime

Annotated
C/C++

Sourcecode

LLVM
Bitcode

Program Analysis
and Preparation

Parallelization
Candidate Verif.
and Selection

Execution and
Profiling

Parallelization

Speculation
Support

Figure 10.1: Overview of the ParAγ toolchain of semi-automatic parallelization. Solid
arrows depict the flow of application code, dashed arrows the flow of analysis information.

of the code not usually done by regular compilers. The three key enabling components of

this workflow are described in the remainder of this section.

• C/C++ language extension in the form of pragmas, resembling well-known and

accepted OpenMP directives,

• the capability of ParAγ to communicate analysis results in the programmers termi-

nology, and

• integration into the IDE to enable easy comprehension of the analysis results and

hints.

10.1 C/C++ Language Extension

Exploiting the acceptance and familiarity of OpenMP, we have extended the Clang

C/C++ compiler frontend of the LLVM ecosystem to process three intuitive and easily

comprehensible parallelization directives:

#pragma sambamba parallel section {. . . } delineates a section of parallel execution.

Conceptually this directly maps to a parallel section in the ParCFG. Without further

directives, this section will however contain only one task. It will thus not introduce

any parallelism.

162 Chapter 10

#pragma sambamba parallel loop . . . marks a parallel loop. It precedes a regular

loop construct and consequently comes in three main flavors: as for , while, or

do . . . while loop. Similar to the parallel section directive, this directive does not

itself introduce parallelism, which requires at least one task statement as follows:

#pragma sambamba parallel task {. . . } marks a task to be spawned off for execu-

tion in parallel to the code surrounding it within the same parallel section or loop,

in which a parallel task always has to be contained.

Code surrounding marked parallel tasks in the parallel section containing it is put

into an additional, implicit task; code surrounding the tasks of a parallel loop is put

into the one reentrant task (see Subsection 4.1.3) of the parallel loop.

In contrast to corresponding OpenMP directives, these Sambamba directives do not simply

and unconditionally introduce parallelism at the defined locations. Although the relation

to the ParCFG as the result of automatic parallelization in Sambamba/ParAγ is obvious,

it is a long way from the frontend to the ParCFG generated at runtime.

All desired parallelism exposed using the directives is first verified. Only in case the

static parallelization analysis is able to prove correctness and the absence of possible

race conditions, parallel schedules are generated matching the parallelization decisions

of the programmer. In case static analyses determine possible conflicts, ParAγ offers

to automatically fix them by introducing reduction or privatization code, the standard

parallelism enabling tools, in case this is possible, i.e., the respective preconditions are

fulfilled for the conflict inducing memory locations.

If reduction and privatization are no option to fix potential conflicts, and again assuming

all necessary requirements like the absence of circular task dependences are fulfilled, ParAγ
offers to guard parallel execution using its potentially very costly speculation mechanisms.

As a last resort in case none of the countermeasures is applicable, ParAγ points at the

potential conflict inducing memory locations and marked tasks and asks the programmer to

take responsibility for parallelization. The programmer can then force ParAγ to parallelize

the code in case the warning is the result of the limited capabilities of ParAγ ’s static

analyses or the race condition is desired. To force parallel execution without a guarding

Extension and Use Case: Semi-Automatic Parallelization 163

speculation system and take over the responsibility, ParAγ offers two additional versions

of the parallel section and loop directives respectively: “#pragma sambamba parallel

section_nospec {. . . }” and “#pragma sambamba parallel loop_nospec {. . . }”.

Finally, the programmer has the option to specify to the compiler how the parallelism an-

notations should be treated: the only and maximal parallelism in the compiled application,

or the minimal parallelism to introduce. In the former case, ParAγ tries to automatically

enable parallel execution of the marked program parts. In the latter case ParAγ tries to

extend parallel execution and find more parallelism in the application than is marked by

the programmer. In any case the resulting parallel loops and sections will profit from the

whole range of ParAγ ’s runtime capabilities as described in Chapter 7.

The Sambamba directives should be understood as a way to give the programmer the

desired degree of control over the parallelization process and to provide domain-specific

knowledge about where parallelism is expected by the programmer to ParAγ . The decision

on how the parallelism should be best implemented and if it can possibly be profitably

implemented should be left to the compiler and an accompanying runtime system as

described in this thesis.

10.2 Communicating Analysis Results

A minimum requirement to increase acceptance and to open parallelization to a broader

range of non-expert programmers is the clear and easily comprehensible communication

of parallelization related errors, warnings and questions to the programmer. In semi-

automatic operation ParAγ therefore carries information similar to debug information

through the whole parallelization process. This information in particular contains the

names of relevant variables and line numbers of relevant code regions and parallel tasks.

A difficulty is the fuzziness introduced by the abstraction of the DS-Analysis (see Sub-

section 4.1.1), which potentially unifies the information about memory locations, which

ParAγ consequently cannot distinguish any more during later conflict analyses. In case of

a detected conflict, ParAγ might thus present multiple possibly conflict inducing variables.

The number of candidates can however be reduced by analyzing the set of variables touched

164 Chapter 10

in the conflict inducing tasks, which in many cases leaves a single candidate to be reported

to the programmer.

10.3 IDE Integration

To make the semi-automatic parallelization toolchain presented so far easily accessible,

it has been integrated as a plugin into the widespread Eclipse IDE. Figure 10.2 shows a

screenshot of the main features: two source editors are open showing different parallel

constructs; parallelization related messages and warnings are highlighted in-place and also

presented in the list at the bottom of the screen. A tool-tip gives detailed information on

conflict-inducing variables.

The left excerpt from the code of a simple raytracer contains a parallel loop, which has

been successfully verified by ParAγ . It is highlighted in yellow since multiple memory

locations need to be privatized to guarantee correctness. ParAγ indicates the entailed cost.

Tasks not requiring any parallelism enabling techniques would be highlighted in green.

The right code editor in the screenshot shows an excerpt of the cilkmerge function taken

from the cilksort program of the cilk suite of applications. ParAγ is unable to prove

correctness and offers to enable the speculation system at runtime. The programmer

facing this warning can take a deeper look at the reported conflict inducing variables and

eventually provide the guarantee that no conflicts are possible.

This chapter presented a way to interactively use the automatic parallelization

capabilities of Sambamba/ParAγ . By using the presented C++ language constructs,

the programmer is able to provide domain specific knowledge to the automatic

parallelizer. In exchange ParAγ will free the developer from having to write error-

prone and hard to maintain boiler plate parallelization code and provides safety and

confidence by guaranteeing correctness of parallel execution.

Extension and Use Case: Semi-Automatic Parallelization 165

Figure 10.2: Screenshot of the Sambamba/ParAγ IDE integration showing multiple
features: C/C++ editors with parallel task highlighting showing the result of paralleliza-
tion analysis; error markers, warnings and tool-tips pointing at potentially problematic

memory locations.

Chapter 11

Conclusion and Future Work

Parallelism, explicit or implicit, is here to stay facing the ubiquity of multi-core and

many-core systems in combination with the stagnating or even decreasing single-core

performance nowadays. Nevertheless, no practical solution has been found yet to support

developers in the tedious and error-prone task of writing and maintaining their applications

for such systems.

In this thesis, we presented ParAγ , an approach to naturally unify different forms of

loop parallelization as well as fork-join-style task parallelization, reduction, privatization,

and speculation. We express the freedom to choose from all these alternatives in an

integer linear programming approach to PDG scheduling that considers all parallelization

opportunities at once to statically identify for each function a set of local parallelization

candidates, whose instantiation is left to a flexible runtime system selecting the best

combination with respect to a given cost function.

Facing the diversity and complexity of modern processors, memory systems, runtime

environments, and application inputs, no static approach will ever be able to predict the

profitability of a particular parallel code version. Therefore, the described approach relies

on an adaptive runtime system to continuously recombine and reassess parallelization

decisions and to adapt to changing requirements.

168 Chapter 11

We furthermore presented an integration of the automatic parallelization capabilities

of ParAγ into a modern integrated development environment, allowing the programmer

to comprehend the necessary steps of parallelization and to provide important domain-

specific knowledge to the compiler. Domain-specific knowledge, that no static analysis

will ever be able to derive automatically. The semi-automatic parallelization capabilities

of ParAγ effectively reduce the necessity to write boiler-plate parallelization code and

help to minimize the risk of race conditions caused by dependences missed during manual

parallelization.

We validated experimentally that ParAγ detects and effectively exploits parallelism in a

variety of programs from many different benchmark suites exhibiting different kinds of

parallelism. No single given parallelization approach known to us is able to exploit the

same range of different forms of parallelism that ParAγ does. ParAγ with its adaptive

runtime system is able to consistently achieve speedups at the same level or better than

state-of-the-art parallelizing tools, or manual parallelization.

While we are convinced that the described approach is an important step towards unifying

several important parallelization approaches, much is left to be done: our particular

prototypical implementation of Generalized Task Parallelism has several limitations,

mostly of technical nature. Despite not being a fundamental flaw of the approach, these

limitations keep our implementation from parallelizing code which it could handle in

principle.

In the following we give a short and non-exhaustive list of some relevant technical limitations

and ideas on possibilities to address them in the future. The purpose is to make such

limitations explicit and to foster future improvements of our implementation. They should

not be understood as limitations of Generalized Task Parallelism as such.

Additionally, we mention two particularly interesting future research directions to extend

and improve Sambamba/ParAγ , which we always wanted to address but unfortunately did

not yet find the time to do so.

Flow-insensitivity The fact that the data-structure analysis we use [23] is flow-insensitive

causes imprecision when trying to identify memory regions as disjoint. This behavior

Conclusion and Future Work 169

can of course be avoided by employing a flow-sensitive analysis. The problem is

that flow- and context-sensitive analyses usually do not scale very well. This issue

could be addressed by using a staged approach of dependence analysis as proposed

by Hardekopf and Lin [122], or a client-driven one as for example the one of Guyer

and Lin [123].

Dependence analysis With the goal of parallelizing general-purpose applications we

chose to use DSA, which is a points-to analysis that is particularly well suited for

irregular data-structures. However, this analysis has two major weak-spots relevant

in our situation: it is not able to precisely deal with regular data-structures like

arrays, and it greatly over-approximates the effects of recursive functions.

A student of ours has been working on a new approach combining and extending ideas

of the range analysis by Rugina and Rinard [56], and the runtime parametric memory

access analysis of Rus et al. [124]. The approach has not been fully integrated into

ParAγ yet.

Feedback by the Speculation System As described earlier in this thesis, Sambamba

in its current implementation provides different speculation systems. The implemen-

tation of KTLS+, the most promising of these systems, was however completed only

recently and has thus not been fully integrated into ParAγ . Apart from only using a

speculation system, which ParAγ can do, the static estimation of the speculation

penalty as described in Sections 5.2.3 and 6.1.2 needs to be replaced by real dynamic

feedback from the speculation system. Even more importantly, this also needs to

be reflected in the cost function of the parallelization candidate composition of the

ParAγ ’s runtime system as described in Section 7.2.

Apart from simply deciding for or against speculation or any given speculation

system, it would also be very interesting to select and tune parameters of such a

system as has been frequently described in the relevant research work. Reflecting

such parameters in the process of scheduling and making them an integral part of

the optimization space might be an interesting future research direction.

Parameter Dependent Dynamic Dispatch The different dynamic dispatch mecha-

nisms described in Section 7.4 are able to effectively prevent from the oversubscription

170 Chapter 11

of the executing platform and supersede and even outperform the parallelization

boundaries regularly introduced during manual parallelization. They decide, based on

explicit properties of the execution environment (number of available compute cores,

system load, number of tasks in flight) and implicit properties of the parallelized

application (task nesting depth), when to dynamically switch between the sequential

and a continuously adapted parallel version of a called function. This is in contrast

to the said manually introduced parallelization boundaries, which usually decide

based on properties of the input, like for instance the size of the array to sort.

We have shown in Section 7.4 that relying solely on input properties and ignoring

the availability of idle compute resources is not the best option. Completely ignoring

input properties, however, neither is.

We therefore propose to extend ParAγ ’s dynamic dispatch capabilities by introducing

a new dispatcher being able to derive relevant input properties on which to base

the decision to proceed sequentially or in parallel. In a second step, this could be

extended by making use of the input properties checked before entering a function

to specialize the called parallel version. This implies the possibility to of more than

one parallel version of any given function to exist at a time among which the input

dependent dispatcher is able to dynamically select.

Sambamba, and independently ParAγ , have been designed and implemented with reusability

in mind. And while the quality of the implementation, in particular of those parts whose

development has been driven by deadlines, could certainly be improved, we are convinced

that the concepts, ideas and also big parts of the implementation are a worthy contribution

to the field of parallelization research. We would be happy to see that this particular

thesis helps to show that effectively and efficiently exploiting different shapes of parallelism

using a single, unifying approach is possible. We are convinced that this also holds true

for applications using irregular data structures and memory access patterns, sometimes

referred to as general purpose applications.

List of Figures

1.1 Development of the number of transistors 1970-2010. 2
1.2 Development of transistor count, single-core performance, and number of

cores 1970-2015. 3
1.3 An example of complex, but efficient parallelization. 4
1.4 Different parallelizable functions . 6

4.1 Sambamba execution steps. 36
4.2 Simple application containing irregular data structures and recursion. . . 38
4.3 Local DS-Graph DSGα[performTask] of the performTask method. 42
4.4 Bottom-up DS-Graph DSG⊥[performTask] of the performTask method. . 42
4.5 The effect bits of performTask from Figure 4.2. 45
4.6 Regular CFG of the performTask method. 47
4.7 Illegal transformation due to insufficient integration of parallelism. 50
4.8 ParCFG for parallel version P0 of the performTask method. 51
4.9 Parallel section propagation scenario with one possible outcome. 54

5.1 Overview of the ParAγ parallelization system. 63
5.2 The simplified PDG of seqquick. 66
5.3 A simple PDG for sequentialization. 68
5.4 Sequentialization of the PDG shown in Figure 5.3 69
5.5 Order of children of a PDG group node. 70
5.6 A CFG and its corresponding PDG. 70
5.7 Valid reduction on variable x. 73
5.8 Dependences involved in a reduction operation. 75
5.9 General form of a redChain. 76
5.10 Multiple chains in redChains(x,⊕, R). 83

6.1 Possible schedule for a group node of the PDG in Figure 5.2. 90
6.2 Objective function and constraints used in the ILP formulation. 93

7.1 Simple sequential C -implementation of mergesort. 120
7.2 Recursion tree of mergesort (profitability boundary). 120
7.3 Execution time of mergesort: manual boundary (linear). 121
7.4 Execution time of mergesort: manual boundary (log). 122
7.5 Recursion tree of mergesort (utilization boundary). 124
7.6 Execution time of mergesort: tnd dispatch (linear). 125
7.7 Execution time of mergesort: tnd dispatch (log). 125
7.8 Execution time of mergesort: tnd dispatch+dynamic recompilation (log). 126
7.9 Execution time of mergesort: tif dispatch (linear). 128

171

172 List of Figures

8.1 ParCFG for parallel version P0 of the performTask method. 134

9.1 Evaluation of ParAγ on six programs from different domains. 152
9.2 Speedups achieved by ParAγ on PolyBench and Cilk suite 155

10.1 Overview of the ParAγ toolchain of semi-automatic parallelization. 161
10.2 Screenshot of the Sambamba/ParAγ IDE integration. 165

List of Tables

6.1 Variables used in the ILP for a group node g. 92
6.2 Complexity of the programs used to evaluate ParAγ 103

9.1 Characteristics of the programs used to evaluate ParAγ 148

173

Appendix A

Irregular Sample Application

Written in C

1 /* Linked List Hash (ll_hash)

2 *

3 * ll_hash is a demo application that demonstrates some of the parallelization capabilities of

4 * the sambamba framework for runtime adaptive parallelization (http://www.sambamba.org).

5 *

6 * It constructs two singly linked lists of lengths chosen by the user. Each element of the

7 * list contains an integer, also chosen by the user (each element contains the same value).

8 * A hash value is then computed for the whole list by combining the hash values of the nodes.

9 *

10 * The integer value in the nodes controls the runtime of the hash computation for a single node,

11 * which grows exponentially in the given value. */

12

13 #include <stdio.h>

14 #include <stdlib.h>

15 #include <sys/time.h>

16 #include <math.h>

17

18 typedef struct list {

19 struct list *next;

20 int data;

21 } list;

22

23 list* makeList(int elemSize, int num) {

24 list *newNode = malloc(sizeof(list));

25 newNode->next = num ? makeList(elemSize, num-1) : 0;

176 Appendix A

26 newNode->data = elemSize;

27 return newNode;

28 }

29

30 void freeList(list *x) {

31 if (!x) return;

32 x->data = 0;

33 list *tmp = x->next;

34 free(x);

35 freeList(tmp);

36 }

37

38 long hashElem(list *elem) {

39 long n = (1 << elem->data);

40 long res = 0;

41 while (--n) res = 31 * res + n;

42 return res;

43 }

44

45 long hashList(list *x) {

46 if (!x) return 0;

47 return hashElem(x) + 31 * hashList(x->next);

48 }

49

50 long performTask(int elemSize, int listSize) {

51 list *x = makeList(elemSize, listSize);

52 list *y = makeList(elemSize, listSize);

53

54 long hashX = hashList(x);

55 long hashY = hashList(y);

56

57 freeList(x);

58 freeList(y);

59

60 return hashX * hashY;

61 }

62

63 struct timeval start, end;

64 int main(int argc, const char **argv) {

65 unsigned int iterations, wpn, size;

66 char lineBuf[128];

67

68 printf("Please specify: <iterations> <work per node> <length of list>\n");

69 do {

70 printf(" -> ");

Irregular Sample Application Written in C 177

71 if (!fgets(lineBuf, 128, stdin))

72 if (feof(stdin))

73 break;

74 else

75 continue;

76 int read = sscanf(lineBuf, "%u %u %u", &iterations, &wpn, &size);

77 if (read < 1) {

78 printf("!!! You have to specify an iteration count...\n");

79 continue;

80 }

81 if (read < 2) wpn = 21;

82 if (read < 3) size = 10;

83 double secSum = 0.0;

84

85 unsigned int i;

86 for (i = 1; i <= iterations; ++i) {

87 gettimeofday(&start, 0);

88 long result = performTask(wpn, 1 << size);

89 gettimeofday(&end, 0);

90 double secs = (end.tv_sec - start.tv_sec) + 1e-6 * (end.tv_usec - start.tv_usec);

91 secSum += secs;

92 printf(" %2u: result: %ld, took %7.3f s\n", i, result, secs);

93 }

94

95 printf(" ---\n");

96 double avgSecSum = secSum / iterations;

97 printf(" Average of %u iterations: %7.3f s\n", iterations, avgSecSum);

98 printf(" ---\n");

99 } while (1);

100 return 0;

101 }

Appendix B

OpenMP-parallelized pairalign

Function

The following manually OpenMP-parallelized version of the pairalign function is taken as

is from the alignment benchmark. It shows the parallelization related complexity of code

that is still unavoidable despite the fact that OpenMP saves the programmer from a lot

of the parallelization related boiler-plate. Please note the necessary privatization of 15

variables (lines 17 and 31) to guarantee the correctness of the parallelized code.

1 int pairalign()

2 {

3 int i, n, m, si, sj;

4 int len1, len2, maxres;

5 double gg, mm_score;

6 int *mat_xref, *matptr;

7

8 matptr = gon250mt;

9 mat_xref = def_aa_xref;

10 maxres = get_matrix(matptr, mat_xref, 10);

11 if (maxres == 0) return(-1);

12

13 bots_message("Start aligning ");

14

15 #pragma omp parallel

16 {

180 Appendix B

17 #pragma omp single private(i,n,si,sj,len1,m)

18 for (si = 0; si < nseqs; si++) {

19 n = seqlen_array[si+1];

20 for (i = 1, len1 = 0; i <= n; i++) {

21 char c = seq_array[si+1][i];

22 if ((c != gap_pos1) && (c != gap_pos2)) len1++;

23 }

24 for (sj = si + 1; sj < nseqs; sj++)

25 {

26 m = seqlen_array[sj+1];

27 if (n == 0 || m == 0) {

28 bench_output[si*nseqs+sj] = (int) 1.0;

29 } else {

30 #pragma omp task untied \

31 private(i,gg,len2,mm_score) firstprivate(m,n,si,sj,len1) \

32 shared(nseqs, bench_output,seqlen_array,seq_array,gap_pos1,gap_pos2,

33 pw_ge_penalty,pw_go_penalty,mat_avscore)

34 {

35 int se1, se2, sb1, sb2, maxscore, seq1, seq2, g, gh;

36 int displ[2*MAX_ALN_LENGTH+1];

37 int print_ptr, last_print;

38

39 for (i = 1, len2 = 0; i <= m; i++) {

40 char c = seq_array[sj+1][i];

41 if ((c != gap_pos1) && (c != gap_pos2)) len2++;

42 }

43 if (dnaFlag == TRUE) {

44 g = (int) (2 * INT_SCALE * pw_go_penalty * gap_open_scale); // gapOpen

45 gh = (int) (INT_SCALE * pw_ge_penalty * gap_extend_scale); //gapExtend

46 } else {

47 gg = pw_go_penalty + log((double) MIN(n, m)); // temporary value

48 g = (int) ((mat_avscore <= 0) ? (2 * INT_SCALE * gg)

49 : (2 * mat_avscore * gg * gap_open_scale)); // gapOpen

50 gh = (int) (INT_SCALE * pw_ge_penalty); //gapExtend

51 }

52

53 seq1 = si + 1;

54 seq2 = sj + 1;

55

56 forward_pass(&seq_array[seq1][0], &seq_array[seq2][0],

57 n, m, &se1, &se2, &maxscore, g, gh);

58 reverse_pass(&seq_array[seq1][0], &seq_array[seq2][0],

59 se1, se2, &sb1, &sb2, maxscore, g, gh);

60

61 print_ptr = 1;

OpenMP-parallelized pairalign Function 181

62 last_print = 0;

63

64 diff(sb1-1, sb2-1, se1-sb1+1, se2-sb2+1, 0, 0, &print_ptr,

65 &last_print, displ, seq1, seq2, g, gh);

66 mm_score = tracepath(sb1, sb2, &print_ptr, displ, seq1, seq2);

67

68 if (len1 == 0 || len2 == 0) mm_score = 0.0;

69 else mm_score /= (double) MIN(len1,len2);

70

71 bench_output[si*nseqs+sj] = (int) mm_score;

72 } // end task

73 } // end if (n == 0 || m == 0)

74 } // for (j)

75 } // end parallel for (i)

76 } // end parallel

77 bots_message(" completed!\n");

78 return 0;

79 }

Bibliography

[1] Herb Sutter. The Free Lunch Is Over — A Fundamental Turn Toward Concurrency

in Software, original article from 2005, numbers updated 2009. URL http://www.

gotw.ca/publications/concurrency-ddj.htm.

[2] Gordon E. Moore. Cramming More Components onto Integrated Circuits, Reprinted

from Electronics, Volume 38, Number 8, April 19, 1965, pp.114 ff. IEEE Solid-State

Circuits Society Newsletter, 11(5):33–35, Sept 2006.

[3] Karl Rupp. 40 Years of Microprocessor Trend Data, 2015. URL https://www.

karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/.

[4] Constantin Christmann, Erik Hebisch, and Oliver Strauß. Einsatzszenarien für

Multicore-Technologien (Applikations- und Potentialanalyse) (in German), 2011.

URL http://www.mware.fraunhofer.de/.

[5] Prakash Prabhu, Thomas B. Jablin, Arun Raman, Yun Zhang, Jialu Huang, Hanjun

Kim, Nick P. Johnson, Feng Liu, Soumyadeep Ghosh, Stephen Beard, Taewook Oh,

Matthew Zoufaly, David Walker, and David I. August. A Survey of the Practice of

Computational Science. In State of the Practice Reports, SC ’11, pages 19:1–19:12,

New York, NY, USA, 2011. ACM.

[6] Leonardo Dagum and Ramesh Menon. OpenMP: An Industry Standard API for

Shared-memory Programming. Computational Science & Engineering, IEEE, 5(1):

46–55, 1998.

[7] OpenMP Architecture Review Board. OpenMP Application Program Interface Ver-

sion 4.5, November 2015. URL http://www.openmp.org/mp-documents/openmp-4.

5.pdf.

[8] Ken Kennedy and John R. Allen. Optimizing Compilers for Modern Architectures:

A Dependence-based Approach. Morgan Kaufmann Publishers Inc., San Francisco,

CA, USA, 2002.

183

http://www.gotw.ca/publications/concurrency-ddj.htm
http://www.gotw.ca/publications/concurrency-ddj.htm
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
https://www.karlrupp.net/2015/06/40-years-of-microprocessor-trend-data/
http://www.mware.fraunhofer.de/
http://www.openmp.org/mp-documents/openmp-4.5.pdf
http://www.openmp.org/mp-documents/openmp-4.5.pdf

184 Bibliography

[9] Ron Cytron. DOACROSS: Beyond Vectorization for Multiprocessors. In ICPP,

1986.

[10] Jialu Huang, Prakash Prabhu, Thomas B. Jablin, Soumyadeep Ghosh, Sotiris

Apostolakis, Jae W. Lee, and David I. August. Speculatively Exploiting Cross-

Invocation Parallelism. In Proceedings of the 2016 International Conference on

Parallel Architectures and Compilation, PACT ’16, pages 207–221, New York, NY,

USA, 2016. ACM.

[11] Murphy Niall, Timothy Jones, Simone Campanoni, and Robert Mullins. Limits of

Static Dependence Analysis for Automatic Parallelization. In 18th Workshop on

Compilers for Parallel Computing (CPC), 2015.

[12] Anasua Bhowmik and Manoj Franklin. A General Compiler Framework for Specula-

tive Multithreaded Processors. IEEE Trans. Parallel Distrib. Syst., 15(8):713–724,

August 2004.

[13] Hwansoo Han and Chau-Wen Tseng. Improving Compiler and Run-Time Support

for Irregular Reductions Using Local Writes. In Proceedings of the 11th International

Workshop on Languages and Compilers for Parallel Computing, LCPC ’98, pages

181–196, London, UK, UK, 1999. Springer-Verlag.

[14] Clemens Hammacher, Kevin Streit, Andreas Zeller, and Sebastian Hack. Thread-

level Speculation with Kernel Support. In Proceedings of the 25th International

Conference on Compiler Construction, CC 2016, pages 1–11, New York, NY, USA,

2016. ACM.

[15] Kevin Streit, Johannes Doerfert, Clemens Hammacher, Andreas Zeller, and Sebastian

Hack. Generalized Task Parallelism. ACM Trans. Archit. Code Optim., 12(1):8:1–

8:25, April 2015.

[16] Johannes Doerfert, Kevin Streit, Sebastian Hack, and Zino Benaissa. Polly’s Poly-

hedral Scheduling in the Presence of Reductions. In International Workshop on

Polyhedral Compilation Techniques, Amsterdam, Netherlands, Jan 2015.

[17] Kevin Streit, Clemens Hammacher, Andreas Zeller, and Sebastian Hack. Sambamba:

Runtime Adaptive Parallel Execution. In Proceedings of the 3rd International

Bibliography 185

Workshop on Adaptive Self-Tuning Computing Systems, ADAPT ’13, pages 7:1–7:6,

New York, NY, USA, 2013. ACM.

[18] Johannes Doerfert, Clemens Hammacher, Kevin Streit, and Sebastian Hack. SPolly:

Speculative Optimizations in the Polyhedral Model. In International Workshop on

Polyhedral Compilation Techniques, Berlin, Germany, January 2013.

[19] Kevin Streit, Clemens Hammacher, Andreas Zeller, and Sebastian Hack. Sambamba:

A Runtime System for Online Adaptive Parallelization. In CC, pages 240–243, 2012.

URL http://www.sambamba.org.

[20] Clemens Hammacher, Kevin Streit, Sebastian Hack, and Andreas Zeller. Profiling

Java Programs for Parallelism. In Proc. 2nd International Workshop on Multi-Core

Software Engineering (IWMSE), pages 49–55, May 2009.

[21] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth

Zadeck. Efficiently Computing Static Single Assignment Form and the Control

Dependence Graph. ACM Trans. Program. Lang. Syst., 13(4):451–490, October

1991.

[22] Frances E. Allen. Control Flow Analysis. In Proceedings of a Symposium on Compiler

Optimization, pages 1–19, New York, NY, USA, 1970. ACM.

[23] Chris Lattner, Andrew Lenharth, and Vikram Adve. Making Context-sensitive

Points-to Analysis with Heap Cloning Practical for the Real World. In Proceedings

of the 28th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’07, pages 278–289, New York, NY, USA, 2007. ACM.

[24] Katherine A. Yelick. Programming Models for Irregular Applications. SIGPLAN

Not., 28(1):28–31, January 1993.

[25] Paul Feautrier. Some Efficient Solutions to the Affine Scheduling Problem. I. One-

dimensional Time. International Journal of Parallel Programming, 21(5):313–347,

1992.

http://www.sambamba.org

186 Bibliography

[26] Paul Feautrier. Some Efficient Solutions to the Affine Scheduling Problem. part

II. Multidimensional Time. International Journal of Parallel Programming, 21(6):

389–420, 1992.

[27] Christian Lengauer. Loop Parallelization in the Polytope Model. In CONCUR ’93,

4th International Conference on Concurrency Theory, Hildesheim, Germany, August

23-26, 1993, Proceedings, pages 398–416, 1993.

[28] Jeanne Ferrante, Karl J. Ottenstein, and Joe D. Warren. The Program Dependence

Graph and Its Use in Optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349,

July 1987.

[29] Clemens Hammacher. Efficient Runtime Systems for Speculative Parallelization.

PhD thesis, Saarland University, Faculty of Mathematics and Computer Science, 03

2017.

[30] Samuel P. Midkiff. Automatic Parallelization: An Overview of Fundamental Compiler

Techniques. Synthesis Lectures on Computer Architecture. Morgan & Claypool

Publishers, 2012.

[31] Nick P. Johnson, Hanjun Kim, Prakash Prabhu, Ayal Zaks, and David I. August.

Speculative Separation for Privatization and Reductions. In Proceedings of the 33rd

ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’12, pages 359–370, New York, NY, USA, 2012. ACM.

[32] Lawrence Rauchwerger and David Padua. The LRPD Test: Speculative Run-

time Parallelization of Loops with Privatization and Reduction Parallelization. In

Proceedings of the ACM SIGPLAN 1995 Conference on Programming Language

Design and Implementation, PLDI ’95, pages 218–232, New York, NY, USA, 1995.

ACM.

[33] Francis H. Dang, Hao Yu, and Lawrence Rauchwerger. The R-LRPD Test: Specu-

lative Parallelization of Partially Parallel Loops. In Proceedings of the 16th Inter-

national Parallel and Distributed Processing Symposium, IPDPS ’02, pages 318–,

Washington, DC, USA, 2002. IEEE Computer Society.

Bibliography 187

[34] Lawrence Rauchwerger and David Padua. The Privatizing DOALL Test: A Run-time

Technique for DOALL Loop Identification and Array Privatization. In Proceedings

of the 8th International Conference on Supercomputing, ICS ’94, pages 33–43, New

York, NY, USA, 1994. ACM.

[35] Lawrence Rauchwerger, Nancy M. Amato, and David A. Padua. A Scalable Method

for Run-time Loop Parallelization. Int. J. Parallel Program., 23(6):537–576, Decem-

ber 1995.

[36] Hao Yu and L. Rauchwerger. An Adaptive Algorithm Selection Framework for

Reduction Parallelization. Parallel and Distributed Systems, IEEE Transactions on,

17(10):1084–1096, Oct 2006.

[37] Philip Ginsbach and Michael F. P. O’Boyle. Discovery and Exploitation of General

Reductions: A Constraint Based Approach. In Proceedings of the 2017 Interna-

tional Symposium on Code Generation and Optimization, CGO ’17, pages 269–280,

Piscataway, NJ, USA, 2017. IEEE Press.

[38] Bradford Nichols, Dick Buttlar, and Jacqueline Proulx Farrell. Pthreads Programming.

O’Reilly & Associates, Inc., Sebastopol, CA, USA, 1996. ISBN 1-56592-115-1.

[39] Scott Oaks and Henry Wong. Java Threads, Third Edition. O’Reilly Media, Inc., 3

edition, 2004. ISBN 978-0-596-00782-9.

[40] Intel R©. Threading Building Blocks (Intel R©TBB), 2013. URL http://

threadingbuildingblocks.org.

[41] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul, Charles E. Leiserson,

Keith H. Randall, and Yuli Zhou. Cilk: An Efficient Multithreaded Runtime System.

In Proceedings of the Fifth ACM SIGPLAN Symposium on Principles and Practice

of Parallel Programming, PPOPP ’95, pages 207–216, New York, NY, USA, 1995.

ACM.

[42] Intel R©. CilkTMPlus 1.2, 2013. URL https://www.cilkplus.org/sites/default/

files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm.

http://threadingbuildingblocks.org
http://threadingbuildingblocks.org
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm
https://www.cilkplus.org/sites/default/files/open_specifications/Intel_Cilk_plus_lang_spec_1.2.htm

188 Bibliography

[43] Joe Armstrong. Making Reliable Distributed Systems in the Presence of Software

Errors, 2003.

[44] Joe Armstrong. Erlang Programming Language, 2003. URL http://www.erlang.

org/.

[45] Robert Griesemer, Rob Pike, and Ken Thompson. The Go Programming Language,

2009. URL https://golang.org.

[46] Martin Odersky. An Overview of the Scala Programming Language. Technical

Report IC/2004/64, EPFL, Lausanne, Switzerland, 2004.

[47] Martin Odersky. Scala - Object-Oriented Meets Functional, 2004. URL https:

//www.scala-lang.org/.

[48] Jonathan Ragan-Kelley, Connelly Barnes, Andrew Adams, Sylvain Paris, Frédo

Durand, and Saman Amarasinghe. Halide: A Language and Compiler for Optimizing

Parallelism, Locality, and Recomputation in Image Processing Pipelines. In Proceed-

ings of the 34th ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’13, pages 519–530, New York, NY, USA, 2013. ACM.

[49] J. Mak and A. Mycroft. Critical-Path-Guided Interactive Parallelisation. In Parallel

Processing Workshops (ICPPW), 2011 40th International Conference on, pages

427–436, Sept 2011.

[50] Jonathan Mak, Karl-Filip Faxén, Sverker Janson, and Alan Mycroft. Estimating

and Exploiting Potential Parallelism by Source-level Dependence Profiling. In

Proceedings of the 16th International Euro-Par Conference on Parallel Processing:

Part I, EuroPar’10, pages 26–37, Berlin, Heidelberg, 2010. Springer-Verlag.

[51] Karl-Filip Faxén, Konstantin Popov, Sverker Jansson, and Lars Albertsson. Embla -

Data Dependence Profiling for Parallel Programming. In Proceedings of the 2008

International Conference on Complex, Intelligent and Software Intensive Systems,

CISIS ’08, pages 780–785, Washington, DC, USA, 2008. IEEE Computer Society.

[52] Milind Kulkarni, Martin Burtscher, Rajeshkar Inkulu, Keshav Pingali, and Calin

Casçaval. How Much Parallelism is There in Irregular Applications? In Proceedings

http://www.erlang.org/
http://www.erlang.org/
https://golang.org
https://www.scala-lang.org/
https://www.scala-lang.org/

Bibliography 189

of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’09, pages 3–14, New York, NY, USA, 2009. ACM.

[53] Michael Burke, Ron Cytron, Jeanne Ferrante, and Wilson Hsieh. Automatic Genera-

tion of Nested, Fork-join Parallelism. The Journal of Supercomputing, 3(2):71–88,

1989.

[54] V. Sarkar. Automatic Partitioning of a Program Dependence Graph into Parallel

Tasks. IBM J. Res. Dev., 35(5-6):779–804, September 1991.

[55] Daniel Cordes, Peter Marwedel, and Arindam Mallik. Automatic Parallelization

of Embedded Software Using Hierarchical Task Graphs and Integer Linear Pro-

gramming. In Proceedings of the Eighth IEEE/ACM/IFIP International Conference

on Hardware/Software Codesign and System Synthesis, CODES/ISSS ’10, pages

267–276, New York, NY, USA, 2010. ACM.

[56] Radu Rugina and Martin Rinard. Automatic Parallelization of Divide and Conquer

Algorithms. SIGPLAN Not., 34(8):72–83, May 1999.

[57] Hongtao Zhong, M. Mehrara, S. Lieberman, and S. Mahlke. Uncovering Hidden

Loop Level Parallelism in Sequential Applications. In High Performance Computer

Architecture, 2008. HPCA 2008. IEEE 14th International Symposium on, pages

290–301, Feb 2008.

[58] Mojtaba Mehrara, Jeff Hao, Po-Chun Hsu, and Scott Mahlke. Parallelizing Sequential

Applications on Commodity Hardware Using a Low-cost Software Transactional

Memory. In Proceedings of the 30th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’09, pages 166–176, New York, NY,

USA, 2009. ACM.

[59] Hanjun Kim, Nick P. Johnson, Jae W. Lee, Scott A. Mahlke, and David I. August.

Automatic Speculative DOALL for Clusters. In Proceedings of the Tenth International

Symposium on Code Generation and Optimization, CGO ’12, pages 94–103, New

York, NY, USA, 2012. ACM.

[60] Carlos Madriles, Pedro Lopez, Josep Maria Codina, Enric Gibert, Fernando Latorre,

Alejandro Martinez, Raul Martinez, and Antonio Gonzalez. Anaphase: A Fine-Grain

190 Bibliography

Thread Decomposition Scheme for Speculative Multithreading. In Proceedings of

the 2009 18th International Conference on Parallel Architectures and Compilation

Techniques, PACT ’09, pages 15–25, Washington, DC, USA, 2009. IEEE Computer

Society.

[61] Martin Suesskraut, Thomas Knauth, Stefan Weigert, Ute Schiffel, Martin Meinhold,

and Christof Fetzer. Prospect: A Compiler Framework for Speculative Parallelization.

In Proceedings of the 8th Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO ’10, pages 131–140, New York, NY, USA, 2010.

ACM.

[62] Craig Zilles and Gurindar Sohi. Master/Slave Speculative Parallelization. In Proceed-

ings of the 35th Annual ACM/IEEE International Symposium on Microarchitecture,

MICRO 35, pages 85–96, Los Alamitos, CA, USA, 2002. IEEE Computer Society

Press.

[63] Paul Feautrier. Automatic Parallelization in the Polytope Model. In The Data Paral-

lel Programming Model: Foundations, HPF Realization, and Scientific Applications,

pages 79–103, 1996.

[64] Uday Bondhugula, Albert Hartono, J. Ramanujam, and P. Sadayappan. A Practical

Automatic Polyhedral Parallelizer and Locality Optimizer. In Proceedings of the 29th

ACM SIGPLAN Conference on Programming Language Design and Implementation,

PLDI ’08, pages 101–113, New York, NY, USA, 2008. ACM.

[65] Martin Griebl, Paul Feautrier, and Christian Lengauer. On Index Set Splitting.

In Proceedings of the 1999 International Conference on Parallel Architectures and

Compilation Techniques, Newport Beach, California, USA, October 12-16, 1999,

pages 274–282, 1999.

[66] Martin Griebl, Paul Feautrier, and Christian Lengauer. Index Set Splitting. Inter-

national Journal of Parallel Programming, 28(6):607–631, 2000.

[67] Mohamed-Walid Benabderrahmane, Louis-Noël Pouchet, Albert Cohen, and Cédric

Bastoul. The Polyhedral Model is More Widely Applicable Than You Think. In

Proceedings of the 19th Joint European Conference on Theory and Practice of

Bibliography 191

Software, International Conference on Compiler Construction, CC’10/ETAPS’10,

pages 283–303, Berlin, Heidelberg, 2010. Springer-Verlag.

[68] Riyadh Baghdadi, Albert Cohen, Cédric Bastoul, Louis-Noël Pouchet, and Lawrence

Rauchwerger. The Potential of Synergistic Static, Dynamic and Speculative Loop

Nest Optimizations for Automatic Parallelization. In Wei Liu, Scott Mahlke, and

Tin fook Ngai, editors, Pespma 2010 - Workshop on Parallel Execution of Sequential

Programs on Multi-core Architecture, Saint Malo, France, June 2010. URL https:

//hal.inria.fr/inria-00494305.

[69] Alexandra Jimborean, Philippe Clauss, Benoît Pradelle, Luis Mastrangelo, and

Vincent Loechner. Adapting the Polyhedral Model as a Framework for Efficient

Speculative Parallelization. In Proceedings of the 17th ACM SIGPLAN Symposium

on Principles and Practice of Parallel Programming, PPOPP 2012, New Orleans,

LA, USA, February 25-29, 2012, pages 295–296, 2012.

[70] Alexandra Jimborean, Philippe Clauss, Jean-François Dollinger, Vincent Loechner,

and Juan Manuel Martinez Caamaño. Dynamic and Speculative Polyhedral Paral-

lelization Using Compiler-Generated Skeletons. International Journal of Parallel

Programming, 42(4):529–545, 2014.

[71] Johannes Doerfert, Tobias Grosser, and Sebastian Hack. Optimistic Loop Optimiza-

tion. In Proceedings of the 2017 International Symposium on Code Generation and

Optimization, CGO ’17, pages 292–304, Piscataway, NJ, USA, 2017. IEEE Press.

[72] Ram Rangan, Neil Vachharajani, Manish Vachharajani, and David I. August. De-

coupled Software Pipelining with the Synchronization Array. In Proceedings of the

13th International Conference on Parallel Architectures and Compilation Techniques,

PACT ’04, pages 177–188, Washington, DC, USA, 2004. IEEE Computer Society.

[73] Guilherme Ottoni, Ram Rangan, Adam Stoler, and David I. August. Automatic

Thread Extraction with Decoupled Software Pipelining. In Proceedings of the 38th

Annual IEEE/ACM International Symposium on Microarchitecture, MICRO 38,

pages 105–118, Washington, DC, USA, 2005. IEEE Computer Society.

https://hal.inria.fr/inria-00494305
https://hal.inria.fr/inria-00494305

192 Bibliography

[74] Easwaran Raman, Guilherme Ottoni, Arun Raman, Matthew J. Bridges, and David I.

August. Parallel-stage Decoupled Software Pipelining. In Proceedings of the 6th

Annual IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’08, pages 114–123, New York, NY, USA, 2008. ACM.

[75] Neil Vachharajani, Ram Rangan, Easwaran Raman, Matthew J. Bridges, Guilherme

Ottoni, and David I. August. Speculative Decoupled Software Pipelining. In Proceed-

ings of the 16th International Conference on Parallel Architecture and Compilation

Techniques, PACT ’07, pages 49–59, Washington, DC, USA, 2007. IEEE Computer

Society.

[76] David I. August, Jialu Huang, Stephen R. Beard, Nick P. Johnson, and Thomas B.

Jablin. Automatically Exploiting Cross-invocation Parallelism Using Runtime Infor-

mation. In Proceedings of the 2013 IEEE/ACM International Symposium on Code

Generation and Optimization (CGO), CGO ’13, pages 1–11, Washington, DC, USA,

2013. IEEE Computer Society.

[77] Jialu Huang, Arun Raman, Thomas B. Jablin, Yun Zhang, Tzu-Han Hung, and

David I. August. Decoupled Software Pipelining Creates Parallelization Opportunities.

In Proceedings of the 8th Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO ’10, pages 121–130, New York, NY, USA, 2010.

ACM.

[78] Arun Raman, Ayal Zaks, Jae W. Lee, and David I. August. Parcae: A System for

Flexible Parallel Execution. In Proceedings of the 33rd ACM SIGPLAN Conference

on Programming Language Design and Implementation, PLDI ’12, pages 133–144,

New York, NY, USA, 2012. ACM.

[79] Hans Vandierendonck, Sean Rul, and Koen De Bosschere. The Paralax Infrastruc-

ture: Automatic Parallelization with a Helping Hand. In Proceedings of the 19th

International Conference on Parallel Architectures and Compilation Techniques,

PACT ’10, pages 389–400, New York, NY, USA, 2010. ACM.

[80] Hans Vandierendonck and Koen De Bosschere. Automatic Parallelization in the

Paralax Compiler. In SCOPES ’11 : Proceedings of the 14th International Workshop

Bibliography 193

on Software and Compilers for Embedded Systems, pages 56–63. Association for

Computing Machinery (ACM), 2011.

[81] Simone Campanoni, Timothy Jones, Glenn Holloway, Vijay Janapa Reddi, Gu-Yeon

Wei, and David Brooks. HELIX: Automatic Parallelization of Irregular Programs

for Chip Multiprocessing. In Proceedings of the Tenth International Symposium on

Code Generation and Optimization, CGO ’12, pages 84–93, New York, NY, USA,

2012. ACM.

[82] Simone Campanoni, Kevin Brownell, Svilen Kanev, Timothy M. Jones, Gu-Yeon Wei,

and David Brooks. HELIX-RC: An Architecture-compiler Co-design for Automatic

Parallelization of Irregular Programs. In Proceeding of the 41st Annual International

Symposium on Computer Architecture, ISCA ’14, pages 217–228, Piscataway, NJ,

USA, 2014. IEEE Press.

[83] Milind Kulkarni, Keshav Pingali, Bruce Walter, Ganesh Ramanarayanan, Kavita

Bala, and L. Paul Chew. Optimistic Parallelism Requires Abstractions. In Proceedings

of the 2007 ACM SIGPLAN Conference on Programming Language Design and

Implementation, PLDI ’07, pages 211–222, New York, NY, USA, 2007. ACM.

[84] Jason Ansel, Cy Chan, Yee Lok Wong, Marek Olszewski, Qin Zhao, Alan Edelman,

and Saman Amarasinghe. PetaBricks: A Language and Compiler for Algorithmic

Choice. In Proceedings of the 30th ACM SIGPLAN Conference on Programming

Language Design and Implementation, PLDI ’09, pages 38–49, New York, NY, USA,

2009. ACM.

[85] James Christopher Jenista, Yong hun Eom, and Brian Charles Demsky. OoOJava:

Software Out-of-order Execution. In Proceedings of the 16th ACM Symposium on

Principles and Practice of Parallel Programming, PPoPP ’11, pages 57–68, New

York, NY, USA, 2011. ACM.

[86] Yong hun Eom, Stephen Yang, James C. Jenista, and Brian Demsky. DOJ: Dy-

namically Parallelizing Object-oriented Programs. In Proceedings of the 17th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP

’12, pages 85–96, New York, NY, USA, 2012. ACM.

194 Bibliography

[87] Michael K. Chen and Kunle Olukotun. The Jrpm System for Dynamically Paralleliz-

ing Java Programs. In Proceedings of the 30th Annual International Symposium on

Computer Architecture, ISCA ’03, pages 434–446, New York, NY, USA, 2003. ACM.

[88] Matthew DeVuyst, Dean M. Tullsen, and Seon Wook Kim. Runtime Parallelization

of Legacy Code on a Transactional Memory System. In Proceedings of the 6th

International Conference on High Performance and Embedded Architectures and

Compilers, HiPEAC ’11, pages 127–136, New York, NY, USA, 2011. ACM.

[89] Ben Hertzberg and Kunle Olukotun. Runtime Automatic Speculative Parallelization.

In Proceedings of the 9th Annual IEEE/ACM International Symposium on Code

Generation and Optimization, CGO ’11, pages 64–73, Washington, DC, USA, 2011.

IEEE Computer Society.

[90] Troy A. Johnson, Rudolf Eigenmann, and T. N. Vijaykumar. Speculative Thread

Decomposition Through Empirical Optimization. In Proceedings of the 12th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP

’07, pages 205–214, New York, NY, USA, 2007. ACM.

[91] Benoit Pradelle, Alain Ketterlin, and Philippe Clauss. Polyhedral Parallelization of

Binary Code. ACM Trans. Archit. Code Optim., 8(4):39:1–39:21, January 2012.

[92] Thomas Karcher and Victor Pankratius. Run-time Automatic Performance Tuning

for Multicore Applications. In Emmanuel Jeannot, Raymond Namyst, and Jean

Roman, editors, Euro-Par 2011 Parallel Processing, volume 6852 of Lecture Notes

in Computer Science, pages 3–14. Springer Berlin Heidelberg, 2011.

[93] Simone Campanoni, Glenn Holloway, Gu-Yeon Wei, and David Brooks. HELIX-UP:

Relaxing Program Semantics to Unleash Parallelization. In Proceedings of the 13th

Annual IEEE/ACM International Symposium on Code Generation and Optimization,

CGO ’15, pages 235–245, Washington, DC, USA, 2015. IEEE Computer Society.

[94] Niall Murphy, Timothy Jones, Robert Mullins, and Simone Campanoni. Perfor-

mance Implications of Transient Loop-carried Data Dependences in Automatically

Parallelized Loops. In Proceedings of the 25th International Conference on Compiler

Construction, CC 2016, pages 23–33, New York, NY, USA, 2016. ACM.

Bibliography 195

[95] Chris Lattner and Vikram Adve. LLVM: A Compilation Framework for Lifelong

Program Analysis & Transformation. In Proceedings of the International Symposium

on Code Generation and Optimization: Feedback-directed and Runtime Optimization,

CGO ’04, pages 75–, Washington, DC, USA, 2004. IEEE Computer Society.

[96] Tao B. Schardl, William S. Moses, and Charles E. Leiserson. Tapir: Embedding

Fork-Join Parallelism into LLVM’s Intermediate Representation. In Proceedings

of the 22Nd ACM SIGPLAN Symposium on Principles and Practice of Parallel

Programming, PPoPP ’17, pages 249–265, New York, NY, USA, 2017. ACM.

[97] WilliamMoses, Tao Schardl, and Charles Leiserson. Embedding Fork-Join Parallelism

into LLVM IR. In 19th Workshop on Compilers for Parallel Computing (CPC),

2016.

[98] Bjarne Steensgaard. Sequentializing Program Dependence Graphs for Irreducible

Programs. Technical report, Microsoft Research, October 1993.

[99] Pascal Felber, Christof Fetzer, and Torvald Riegel. Dynamic Performance Tuning

of Word-based Software Transactional Memory. In Proceedings of the 13th ACM

SIGPLAN Symposium on Principles and Practice of Parallel Programming, PPoPP

’08, pages 237–246, New York, NY, USA, 2008. ACM.

[100] P. Felber, C. Fetzer, P. Marlier, and T. Riegel. Time-Based Software Transactional

Memory. Parallel and Distributed Systems, IEEE Transactions on, 21(12):1793–1807,

Dec 2010.

[101] Maurice Herlihy and J. Eliot B. Moss. Transactional Memory: Architectural Support

for Lock-free Data Structures. SIGARCH Comput. Archit. News, 21(2):289–300,

May 1993.

[102] Intel R©. Transactional Synchronization in Haswell, 2012.

URL https://software.intel.com/en-us/blogs/2012/02/07/

transactional-synchronization-in-haswell/.

[103] Tobias Grosser, Armin Groesslinger, and Christian Lengauer. Polly — Performing

Polyhedral Optimizations on a Low-level Intermediate Representations. Parallel

Processing Letters, 22(04):1250010, 2012.

https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/
https://software.intel.com/en-us/blogs/2012/02/07/transactional-synchronization-in-haswell/

196 Bibliography

[104] Jeanne Ferrante and Mary Mace. On Linearizing Parallel Code. In Proceedings

of the 12th ACM SIGACT-SIGPLAN Symposium on Principles of Programming

Languages, POPL ’85, pages 179–190, New York, NY, USA, 1985. ACM.

[105] J. Ferrante, M. Mace, and B. Simons. Generating Sequential Code from Parallel

Code. In Proceedings of the 2Nd International Conference on Supercomputing, ICS

’88, pages 582–592, New York, NY, USA, 1988. ACM.

[106] B. Simons, D. Alpern, and J. Ferrante. A Foundation for Sequentializing Parallel

Code. In Proceedings of the Second Annual ACM Symposium on Parallel Algorithms

and Architectures, SPAA ’90, pages 350–359, New York, NY, USA, 1990. ACM.

[107] Thomas Ball and Susan Horwitz. Constructing Control Flow from Control Depen-

dence. Technical report, University of Wisconsin — Madison, 1992.

[108] Jia Zeng, Cristian Soviani, and Stephen A. Edwards. Generating Fast Code from

Concurrent Program Dependence Graphs. In Proceedings of the 2004 ACM SIG-

PLAN/SIGBED Conference on Languages, Compilers, and Tools for Embedded

Systems, LCTES ’04, pages 175–181, New York, NY, USA, 2004. ACM.

[109] Peng Tu and David A. Padua. Automatic Array Privatization. In Proceedings of the

6th International Workshop on Languages and Compilers for Parallel Computing,

pages 500–521, London, UK, UK, 1994. Springer-Verlag.

[110] Donald E. Knuth and Francis R. Stevenson. Optimal Measurement Points for

Program Frequency Counts. BIT Numerical Mathematics, 13(3):313–322, 1973.

[111] Thomas Ball and James R. Larus. Optimally Profiling and Tracing Programs. ACM

Trans. Program. Lang. Syst., 16(4):1319–1360, July 1994. ISSN 0164-0925.

[112] T.J.K. Edler von Koch and B. Franke. Variability of Data Dependences and Control

Flow. In Performance Analysis of Systems and Software (ISPASS), 2014 IEEE

International Symposium on, pages 180–189, March 2014.

[113] Brad Calder, Dirk Grunwald, and Benjamin Zorn. Quantifying Behavioral Differences

Between C and C++ Programs. Journal of Programming Languages, 2:313–351,

1995.

Bibliography 197

[114] Andrew Tridgell and Joel Rosdahl. ccache — A Fast C/C++ Compiler Cache, 2016.

URL https://ccache.samba.org/.

[115] Alejandro Duran, Xavier Teruel, Roger Ferrer, Xavier Martorell, and Eduard

Ayguade. Barcelona OpenMP Tasks Suite: A Set of Benchmarks Targeting the Ex-

ploitation of Task Parallelism in OpenMP. In Proceedings of the 2009 International

Conference on Parallel Processing, ICPP ’09, pages 124–131, Washington, DC, USA,

2009. IEEE Computer Society.

[116] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh, and Kai Li. The PARSEC

Benchmark Suite: Characterization and Architectural Implications. In Proceedings

of the 17th International Conference on Parallel Architectures and Compilation

Techniques, PACT ’08, pages 72–81, New York, NY, USA, 2008. ACM.

[117] Louis-Noël Pouchet. PolyBench/C: The Polyhedral Benchmark Suite, 2012. URL

http://www.cs.ucla.edu/~pouchet/software/polybench/.

[118] Sid Ahmed Ali Touati, Julien Worms, and Sébastien Briais. The Speedup-Test:

a Statistical Methodology for Programme Speedup Analysis and Computation.

Concurrency and Computation: Practice and Experience, 25(10):1410–1426, 2013.

[119] Alan A.A. Donovan and Brian W. Kernighan. The Go Programming Language.

Addison-Wesley Professional, 1st edition, 2015. ISBN 0134190440, 9780134190440.

[120] Nicholas D. Matsakis and Felix S. Klock, II. The Rust Language. In Proceedings of

the 2014 ACM SIGAda Annual Conference on High Integrity Language Technology,

HILT ’14, pages 103–104, New York, NY, USA, 2014. ACM.

[121] The Rust Community. The Rust Language (Website), 2014. URL https://www.

rust-lang.org.

[122] Ben Hardekopf and Calvin Lin. Flow-sensitive Pointer Analysis for Millions of Lines

of Code. In Proceedings of the 9th Annual IEEE/ACM International Symposium

on Code Generation and Optimization, CGO ’11, pages 289–298, Washington, DC,

USA, 2011. IEEE Computer Society.

https://ccache.samba.org/
http://www.cs.ucla.edu/~pouchet/software/polybench/
https://www.rust-lang.org
https://www.rust-lang.org

198 Bibliography

[123] Samuel Z. Guyer and Calvin Lin. Error Checking with Client-driven Pointer Analysis.

Sci. Comput. Program., 58(1-2):83–114, October 2005.

[124] Silvius Rus, Lawrence Rauchwerger, and Jay Hoeflinger. Hybrid Analysis: Static

& Dynamic Memory Reference Analysis. Int. J. Parallel Program., 31(4):251–283,

August 2003.

Multi core systems are ubiquitous nowadays and their number is ever increasing. And while,

limited by physical constraints, the computational power of the individual cores has been

stagnating or even declining for years, a solution to effectively utilize the computational power

that comes with the additional cores is yet to be found.

Existing approaches to automatic parallelization are often highly specialized to exploit the

parallelism of specific program patterns, and thus to parallelize a small subset of programs

only. In addition, frequently used invasive runtime systems prohibit the combination of different

approaches, which impedes the practicality of automatic parallelization.

In this thesis, we show that specializing to narrowly defined program patterns is not necessary

to efficiently parallelize applications coming from different domains. We develop a generalizing

approach to parallelization, which, driven by an underlying mathematical optimization problem,

is able to make qualified parallelization decisions taking into account the involved runtime

overhead. In combination with a specializing, adaptive runtime system the approach is able to

match and even exceed the performance results achieved by specialized approaches.

	Zusammenfassung
	Abstract
	Acknowledgements
	1 Introduction and Motivation
	1.1 Contributions of this Thesis
	1.2 Publications

	2 Background Terminology and Concepts
	3 State of Parallelization Research
	3.1 Reduction
	3.2 Manual Parallelization
	3.3 Static Parallelization
	3.4 Runtime-centric Parallelization
	3.5 Conclusion and Open Issues

	4 Sambamba — A Static/Dynamic Parallelization Framework
	4.1 Simple Task-based Parallelization — ParA
	4.1.1 Dependence Analysis
	4.1.2 Basic-block-wise Parallelization
	4.1.3 Parallel Control-flow Graph (ParCFG)
	4.1.4 Parallel Section Propagation
	4.1.5 Load-based Adaptive Dispatch
	4.1.6 Lessons learned from ParA

	4.2 Speculation Support
	4.2.1 Software Transactional Memory
	4.2.2 K-TLS

	4.3 The Dynamic Nature of Sambamba

	5 Generalized Task Parallelism — ParA
	5.1 Program Representation
	5.1.1 Program Dependence Graph (PDG)
	5.1.2 Sequentialization of the Program Dependence Graph

	5.2 Parallelization Enabling Techniques
	5.2.1 Generalized Reduction
	5.2.2 Privatization
	5.2.3 Speculation

	6 ILP-based PDG-Scheduling
	6.1 ILP Formulation
	6.1.1 Prerequisites
	6.1.2 Constraints

	6.2 Alternative ILP Formulations
	6.2.1 Whole Function Scheduling
	6.2.2 Scheduling with Code Duplication

	6.3 Scheduling Time

	7 Runtime-Adaptive Parallel Execution
	7.1 Runtime Profiling
	7.1.1 Call-site Execution Times
	7.1.2 Branch Profiles
	7.1.3 On Profiling Overhead

	7.2 Candidate Composition
	7.2.1 Execution Cost Evaluation

	7.3 Dynamic Blocking
	7.4 Adaptive Dispatch
	7.4.1 Load-based Dispatch (load)
	7.4.2 Task Nesting Depth Dispatch (tnd)
	7.4.3 Tasks In Flight Dispatch (tif)
	7.4.4 Combined Dispatch

	8 Implementation
	8.1 The Sambamba Framework
	8.1.1 Technical System Overview
	8.1.2 Sambamba Modules: Compile-time vs. Runtime
	8.1.3 Multiple LLVM Modules

	8.2 ParA—Relevant Implementation Details
	8.2.1 Block Splitting
	8.2.2 Schedule Cache
	8.2.3 ILP Cloud

	8.3 A Note on Inter-core Communication

	9 Evaluation
	9.1 Setup
	9.2 Benchmark Suites
	9.3 Results of the Detailed Evaluation
	9.4 Results on PolyBench and the Cilk suite

	10 Extension and Use Case: Semi-Automatic Parallelization
	10.1 C/C++ Language Extension
	10.2 Communicating Analysis Results
	10.3 IDE Integration

	11 Conclusion and Future Work
	List of Figures
	List of Tables
	Appendix
	A Irregular Sample Application Written in C
	B OpenMP-parallelized pairalign Function
	Bibliography

