
Logics for Rule-Based
Configuration Systems

A dissertation submitted towards the degree
Doctor of Engineering (Dr.-Ing.)

of the Faculty of Mathematics and Computer Science of
Saarland University

Ching Hoo Tang

Saarbrücken
February 2017



ii



iii

Date of the colloquium: 16 August 2017
Dean: Prof. Dr. Frank-Olaf Schreyer
Examiners: Prof. Dr. Christoph Weidenbach

Prof. Dr. Andreas Herzig
Chair: Prof. Dr. Jörg Hoffmann
Academic assistant: Dr. Andreas Nonnengart



iv



v

Abstract

Rule-based configuration systems are being successfully used in industry, such as DOP-
LER at Siemens. Those systems make complex domain knowledge available to users and
let them derive valid, customized products out of large sets of components. However,
maintenance of such systems remains a challenge. Formal models are a prerequisite for
the use of automated methods of analysis. This thesis deals with the formalization of
rule-based configuration. We develop two logics whose transition semantics are suited
for expressing the way systems like DOPLER operate. This is due to the existence of
two types of transitions, namely user and rule transitions, and a fixpoint mechanism
that determines their dynamic relationship. The first logic, PIDL, models propositional
systems, while the second logic, PIDL+, additionally considers arithmetic constraints.
They allow the formulation and automated verification of relevant properties of rule-
based configuration systems.

Zusammenfassung

Regelbasierte Konfigurationssysteme werden erfolgreich in der Industrie benutzt, wie et-
wa DOPLER bei Siemens. Diese Systeme machen komplexes Domänewissen Anwendern
verfügbar und erlaubt es ihnen, gültige, angepasste Produkte aus großen Mengen von
Teilen zu erstellen. Allerdings bleibt die Wartung solcher Systeme eine Herausforderung.
Formale Modelle sind Voraussetzung für den Einsatz automatisierter Analysemethoden.
Diese Arbeit beschäftigt sich mit der Formalisierung von regelbasierter Konfiguration.
Wir entwickeln zwei Logiken, dessen Transitionssemantiken dafür geeignet sind, die Art
und Weise, auf der Systeme wie DOPLER operieren, abzubilden. Dies ist möglich durch
die Existenz von zwei Typen von Transitionen, nämlich User- und Regeltransitionen, und
eines Fixpunktmechanismus, der ihre dynamische Beziehung bestimmt. Die erste Logik,
PIDL, modelliert propositionale Systeme, während die zweite Logik, PIDL+, zusätzlich
arithmetische Constraints betrachtet. Sie erlauben die Formulierung und automatische
Verifikation relevanter Eigenschaften regelbasierter Konfigurationssysteme.
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Chapter 1

Introduction

Rule-based configuration systems have their roots in classical expert systems (Jackson,
1999), one of the most prominent manifestations of the work connected to artificial intel-
ligence. The purpose of these systems is to represent knowledge about a certain domain
and then do reasoning with this knowledge in order to help humans with decision making
in that domain. The automation and precision delivered by these systems is supposed
to lead to a substantial reduction in human effort and errors when performing tasks
involving large and complex amounts of data. Rule-based systems derive decisions by
executing rules of the form if <condition> then <action>. A famous, early exam-
ple is the R1/XCON system from the 1970s by Bachant and McDermott (McDermott
and Bachant, 1984), which was used for the configuration of computer systems at DEC,
saving the company considerable amounts of money. Product configuration is about fin-
ding the right combination of a predefined set of parts to get a product that satisfy the
constraints of the respective domain and at the same time the preferences stated by the
user. Under the notion of mass customization (Davis, 1989; Pine, 1993), the goal is to
allow variability of products to meet the individual needs of customers while having fast
production cycles using fixed sets of product components. Today, many configuration
systems are in use. The most visible examples include configurators for cars and compu-
ters on the consumer side, but systems based on the same principle are also successfully
being employed in industry. Rule-based configuration allows the encoding of constraints
as rules in an easy and intuitive way. Examples of industrial rule-based configuration
systems can be found at Siemens, where the DOPLER system (Dhungana and Grün-
bacher, 2008; Dhungana et al., 2011) is used, in particular in the domain of steelworks
configuration, and LEEGOO (Struck, 2012), in the context of gas-turbine production.

Configuration systems such as DOPLER are interactive in nature, and the configu-
ration flow of a product derivation is typically composed of the following steps: First, a
user chooses an option with respect to a variable of the system by assigning one of the
allowed values to it. This assignment is then matched with the condition parts of the
rules. If a condition of a certain rule is satisfied by the current assignment state of the
variables, the rule is fired. A fired rule can set further variables as defined in its action
part. This potentially causes other rules to be executed. If all the activated rules have
been applied and no changes due to rules can happen any more, where we also say that
a fixpoint is reached, the user can set the next variable.

The drawback of those systems is that, due to interdependences between rules, with
increasing size they become more difficult to maintain, with possible effects on the con-
sistency of the rule bases. For example, one would not typically want to have rules that
contradict each other during execution, or that the resulting product depends on the
order in which the rules are executed, that is, the system is not confluent. The complex-
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ity is given by the size and the combinatorics that arise with it, making monitoring and
correcting those systems manually infeasible.

The solution is to automate the verification process, where the first step is having a
clear semantics of the configuration system one wants to examine. Configuration systems
are typically restricted to technical domains, which makes them amenable to translating
them into formal logics. Expressing the systems formally enables the verification of
important properties such as consistency and confluence. However, the use of formal
descriptions that cover the operational semantics is still something that is rarely found
among rule-based configuration systems.

This thesis presents work aimed at providing a formal framework for rule-based con-
figuration. Motivated by DOPLER and LEEGOO, we have developed logics to express
and formalize such systems in a more comprehensive way, while preserving decidability
in order to have practicability.

The first logic is PIDL (Propositional Interactive Dynamic Logic) (Dhungana et al.,
2013) for configuration systems whose variables are of type Boolean. The design of
PIDL is inspired by a superposition framework sketched by Martin Suda, which des-
cribes change of states represented by sets of propositional literals (Suda, 2011). The
framework’s calculus of labeled clauses built on superposition (Bachmair and Ganzinger,
1994, 2001) contains a rule that corresponds to the change of worlds by virtue of tran-
sitions. PIDL adapts and extends those concepts in a way so that the resulting system
can be used for the representation of rule-based configuration systems.

We can represent the relevant elements of a particular instance of a configuration
system with a PIDL specification. The possible-worlds semantics of the logic has state
transition systems as interpretations of specifications. Starting with the initial state, all
states are considered that can be reached from it through transitions. States in PIDL
contain propositional literals, describing facts that hold in the states, and correspond to
states in the configuration process. Transitions between PIDL states embody changes
happening during a product derivation. They consist of a condition part and an update
part. If the condition part is entailed by a state S, there is a transition from S to a
state S′, where S′ is created by updating S with the update part of the transition. The
update mechanism allows new facts to replace old facts completely, giving flexibility in
the modeling of configuration instances. In PIDL, we distinguish between two types
of transitions: User transitions represent actions by the user, rule transitions express
actions caused by rules. The semantics only allow a user transition from a state S to
another if the state in question is rule terminal, that is, if no more rule transitions whose
actions change S can be applied to S. This unique feature of PIDL allows us to faithfully
represent the usage dynamics of interactive configuration systems as described above,
including the fixpoints of the product derivations.

Within PIDL we can then express properties relevant to the consistency of configura-
tion systems. For example, properties specific to the domain are written as propositional
formulas in a set of constraints, which must be satisfiable in any state. With decision
procedures exploring the structure given by the interpretations, further properties such
as confluence or cyclicity can be verified.

We also give a sound and complete calculus based on superposition that shows how
partial interpretations can be computed out of a specification. To test our approach, we
made a first implementation containing the interpretation construction and procedures
to check graph-based properties like the presence of cycles. We ran the implementation
on a small DOPLER instance and a number of randomly generated examples, which in
principle showed that PIDL offers a possible useful way to formalize and verify configu-
ration systems.
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The second logic is PIDL+ (Tang and Weidenbach, 2016), which is an extension
to PIDL by including arithmetic constraints. This makes it possible to also model
configuration systems dealing with arithmetic variables, such as LEEGOO. The base
logic for the formulation of states and transitions is propositional logic plus a fragment
of the theory of reals, consisting of expressions of the form x ◦ t, where x is a variable,
◦ is one of the usual comparison operators, and t is a term containing integers and the
known mathematical operators. However, we consider admissible specifications of PIDL+
in which all variables that are relevant to the transition flow, that is, they appear in the
transition conditions and updates, are interpreted as bounded integers. This enables the
logic to have a finite number of possible states and thus maintain decidability. Bounded
variables are also typical in real-world configuration systems. Variables that do not
affect transitions may be unbounded and of type real, functioning as result holders for
the states they are in.

The presence of numerical decisions necessitates a different semantics. A direct way
would be a view in which each variable mentioned in a state has a value, and whether
transitions can be applied to the state depends on these values and the propositional
literals of the state. However, this small-steps semantics does not lend itself well to
computations as the number of possible states becomes the product of all the variables
ranges. Instead, we consider a big-steps semantics where bounds in states represent a
range of variable instantiations. For example, a state having the bounds x ≥ 2 and
x ≤ 49 stands for all the worlds in which the variable x has an integer value between
2 and 49. This kind of aggregation offers a more compact representation of the up to
exponentially many states in the small-steps semantics.

PIDL+ also associates each state with a set of user variables, which is a set that
contains the variables that have been set by the user. It can change during product
derivation, because domain constraints might require previous user decisions to be over-
written under certain circumstances. The transition semantics is based on one quantifier
alternation with respect to the variables: For a transition to be applied, there must exist
one instance of the user variables so that for all instances of the other variables, which
are set by the system’s rules, the condition of the transition is satisfied. We partition the
set of instances represented by the bounds of a state into selections so that a selection
entail certain transition conditions, and those transitions are then executed with respect
to the respective selections. In particular, the concept of rule termination is adjusted
to selections: A user transition can only be applied to a state if the state has a rule-
terminal selection with respect to that user transition. Selections always exists because
the application of transitions only depend on bounded integers. We also provide a sound
and complete algorithm to derive a partial interpretation of an admissible PIDL+ speci-
fication, and a procedure to determine the rule-terminal selections needed to apply user
transitions.

The thesis is structured in the following way. Chapter 2 is a brief introduction of
rule-based configuration in general and the DOPLER system in particular. Chapter 3
contains basic definitions and notions that we use in this thesis. The two logics PIDL
and PIDL+ are then presented in Chapter 4 and 5 respectively. Chapter 6 forms the
conclusions of the thesis.

Related Work

Configuration has been the subject of research in various ways, where different appro-
aches and techniques have been used. There exist also logics that can be associated
with the analysis of configuration systems. The methods can be roughly divided into
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two classes. The first class has a static view on configuration. It focuses on describing
the components and constraints in a declarative way, possibly stressing the hierarchical
organization of products and their features. The usual question to ask then is that given
a user preference, does it make a valid configuration possible? The second class consi-
ders the dynamic aspects of configuration. There, one is interested in how configuration
states can change during the product derivation process. This is in particular true of
rule-based configuration, where the focus is on how systems behave under the execution
of rules.

One common static approach is constraint satisfaction (Tsang, 1993), where confi-
guration tasks, that is, the goal of finding a valid configuration satisfying constraints
and user choices, are seen as constraint satisfaction problems (CSP) (Mailharro, 1998;
Fleischanderl et al., 1998). A CSP features a set V of variables, where each variable
has a finite domain of possible values, and a set C of constraints over the variables that
have to be satisfied by an assignment of the variables. Constraint satisfaction offers a
way to describe product artifacts and their dependencies in an intuitive way and comes
with a semantics readily available to represent the task of finding valid configurations.
Then, in the basic form, variables of the configuration system to be modeled are typically
contained in V , while user requirements and constraints are elements of C. Solutions to
the CSP, for which many search algorithms exist (Russell and Norvig, 2010), are thus
the wanted configurations. Verification of configuration models based on constraint sa-
tisfaction, and other static approaches mentioned below, can be done by incrementally
computing inconsistent subsets of the constraint sets, of which Felfernig et al. give an
overview (Felfernig et al., 2014). Many other solutions based on CSPs in particular check
the current configuration after each input by the user, making sure the user is guided
to a valid configuration (Amilhastre et al., 2002; Rosa et al., 2009; Behjati and Nejati,
2014).

Answer set programming (ASP) (Marek and Truszczyński, 1999; Niemelä et al., 1999)
has also been used to express configuration data and constraints in a declarative way.
There, knowledge is encoded in programs consisting of sets of rules of logic programming.
Those programs are then first grounded, that is, substituting component constants for
variables, and then given to ASP solvers, which are typically based on methods for the
Boolean satisfiability problem (SAT) and search for configurations satisfying the defined
constraints. Soininen and Niemelä identified configuration as one of the first applications
of ASP (Soininen and Niemelä, 1999).

Another popular concept are feature models (Kang et al., 1990), whose use as re-
presentations of configuration systems have been analyzed, for example, by Czarnecki
(Czarnecki and Wasowski, 2007; Czarnecki and Pietroszek, 2006). A feature model is a
graphical model in which the variability of a product is expressed as features and orga-
nized in a tree that highlights the hierarchical relationships between the features of the
product. Such relationships can be “mandatory” or “optional”, and determine which child
features a parent feature include as well. Additionally, there can be further relationship
constraints, in which features can “require” or “exclude” other features without having a
direct parental link in the feature tree. The semantics and verification of feature models
can be based on CSPs (Benavides et al., 2010), SAT (Mendonça et al., 2009), binary
decision diagrams (Zhang et al., 2008), and atomic sets (Segura, 2008).

Description logics (DL) are a class of logics used for knowledge representation in
general, and in particular are well known for their application in the area of the Semantic
Web. In DL, individuals are grouped into concepts and roles describe relationships
between them. Felfernig et al. discussed using DL to express configuration (Felfernig
et al., 2003). In this context, representation again concentrates on the hierarchical
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structure of products. McGuinness considered applying DL for on-the-fly verification,
where each user input is verified during the configuration process (McGuinness, 2003).

DL subsume the Unified Modeling Language (UML) (Booch et al., 2005), a standard
to describe software systems in a visual way, whose widespread use has inspired its adap-
tation also in the area of configuration (Felfernig et al., 2000). UML diagrams display
the components of a product in hierarchies, depicting generalizations and multiplicities.
Constraints can be formulated as elements of the diagrams or as external requirements.
Aspects of the semantics of UML diagrams can be formalized as a decidable subset of
first-order logic (Felfernig, 2007).

While the above approaches manage to formalize product configuration to a certain
degree, they take a rather static perspective. They can mainly express the structural
configuration data and the requirements, but lack the inherent ability to describe things
that happen during entire configuration processes, which is an essential goal of the work
of this thesis. Thus, logics are of interest with which one can tackle change within
systems.

Logics generally exist that deal with dynamic aspects of systems. They can be
primarily found in the family ofmodal logics and its dialects. These logics extend classical
propositional logic with modal operators to express notions of change. Temporal logics
(Pnueli, 1977; Clarke and Emerson, 1982) are classic examples, upon which the technique
of model checking (Clarke et al., 1999) is built. Model checking was used, for example,
by Lauenroth et al. to verify whether combinations of product components fulfill certain
properties (Lauenroth et al., 2009), and Classen et al. to check properties of product
line families (Classen et al., 2010).

Another branch of modal logic that formalizes change and that is of particular interest
is Propositional Dynamic Logic (PDL), with the initial purpose of describing the behavior
of programs (Fischer and Ladner, 1979). The logic considers constructs that are based
on programs and the usual logical statements. The semantics involves Kripke structures
that express the evolution of states during program execution. Balbiani et al. discussed
a variant in which the programs are only based on Boolean assignments (Balbiani et al.,
2013). Sinz proposed the use this special kind of PDL to formalize the rules and variables
of a configuration system (Sinz, 2004). The models obtained are then further translated
into propositional logic, where SAT solving can be used to verify properties of the system,
including the confluence of rules. The main difference to our approach is that user
preferences come as a priori assignments, which are then processed by the formalism,
instead of considering the configuration process from the beginning as an interplay of
user input and rule effects. Additionally, the rules are not allowed to have a cyclic
behavior, and rule actions are restricted to Boolean assignments.

In PIDL and PIDL+, the distinction between user and rules resembles a system of
two entities or agents bringing about change over variables of a given system. Numerous
modal logics deal with statements about agents and the effects of their behaviors. For ex-
ample, Coalition Logic of Propositional Control (CL-PC) (van der Hoek and Wooldridge,
2005) allows to express that a coalition of agents has the ability to make a certain goal
formula true by setting the propositional variables they control accordingly, provided the
variables set by the other agents remain unchanged. Herzig et al. showed how PDL with
Boolean assignments can embed CL-PC (Herzig et al., 2011). Alternating-time Temporal
Logic (ATL) combines temporal logic with action modality of agents, where one can talk
about agents being able to achieve a goal, expressed as a temporal-logic formula, no
matter how the other agents act (Alur et al., 2002). Belardinelli and Herzig analyzed
the relationship between CL-PC and ATL, showing that CL-PC resembles the semantic
structure of ATL (Belardinelli and Herzig, 2016). Playing a prominent role in particular
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in the analysis of multi-agent systems, these logics are rather less suitable for the type
of operational semantics given by the configuration rule bases we consider.

A framework that does show a certain similarity to one aspect of PIDL+ are Boolean
games (Harrenstein et al., 2001; Bonzon et al., 2006), which model contexts arising in
game theory (Osborne and Rubinstein, 1994). Basically, in a Boolean game players
control disjoint sets of propositional variables. Each player i has an associated formula
φi over the entire set of variables. The goal of each player i is to set the variables
they control so that their formula φi becomes true. A variable assignment of player i is
called winning strategy if φi becomes true irrespective of the assignments of the other
players. In PIDL+, selections are defined in Definition 5.8 as integer intervals whose
values, contained in the substitution σ, fulfill the condition

∀~y(S|U ∧ (S \ S|U ∪ C→ Λ ∧ F ))σ is valid,

where the existence of selections determines whether a transition with the condition
Λ ∧ F can be applied. The abstract form of the condition,

∃~xu∀~yφ

can be seen as a Boolean game with two players: The user controls the variables given
by ~xu and the system controls the variables ~y, with the user trying to make φ true. This
is possible because the relevant variables of admissible specifications are over bounded
integers, which means we can consider the corresponding assignments as propositions.
Then, the quantifier alternation in the condition implies that the existence of a transition
is connected to the existence of a winning strategy for the user. Despite this similarity,
the focus of Boolean games is different from that of the analysis of rule-based configura-
tion, as they rather lay emphasis on game-theoretical concepts such as equilibria between
players.

The update of propositional knowledge has been discussed in the literature (Herzig
et al., 2013). Our logics define an update scheme of the transitions that essentially can
be seen as a special case of the update used by Winslett (Winslett, 1990), with the
involved original and action formulas just being conjunctions of literals.

All in all, the methods and logics mentioned above differ from PIDL and PIDL+ in-
sofar as they lack direct language support for modeling configuration systems and their
whole dynamics as discussed in this thesis. Rather than treating partial aspects of sys-
tems, our logics can comprehensively represent the user-rules interactivity by having user
and rule transitions, and using the concept of rule terminal states. The update schemes
of the transitions also allows modifying facts by replacing complementary literals. In
PIDL+, arithmetic constraints are additionally incorporated in the system with the help
of selections.

Main Contributions

In this thesis, we formulate the logics PIDL and PIDL+ for formalizing rule-based confi-
guration systems. The main contributions connected with those logics can be described
as follows.

1. The semantics of PIDL and PIDL+ represent the dynamic behavior of rule-based
configuration systems: The interaction process of user and system is modeled on
the basis of two different types of transitions, which are user transitions and rule
transitions. A user transition can only happen at a state if the state is rule ter-
minal, that is, all rule transitions that can be applied to the state do not change
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the state, or, in other words, the state is a fixpoint with respect to rule tran-
sition applications (Definitions 4.11 and 5.28). This is motivated by rule-based
configuration in practice, in particular as used by Siemens. PIDL models systems
containing propositional constraints (Definition 4.1), while PIDL+ is an extension
that incorporates arithmetic constraints (Definition 5.1).

2. PIDL+ has a compact representation of arithmetic decisions: Bounds on variables
aggregate up to exponentially many instances of variable assignments by the user
(Section 5.2.1). Selections group decisions according to transitions they entail and
are an integral part of the transition updates, making sure previous decisions are
correctly preserved (Definition 5.8).

3. Calculus and algorithms: We provide a sound and complete superposition-based
calculus for basically constructing the state graph of a PIDL model (Section 4.3),
and we give sound and complete algorithms for computing the state graph of a
PIDL+ model and for computing the rule-terminal subselections needed for ap-
plying user transitions (Section 5.3).

4. Important properties of rule-based configuration systems are expressible: Proper-
ties concerning the consistency of modeled configuration systems can be formulated
as properties of PIDL and PIDL+ specifications (Sections 4.4 and 5.4). The pro-
perties considered in the thesis are in particular

• soundness, which is about satisfying the constraints of the domain of the
corresponding configuration system,

• completeness, which is about valid configurations being actually configurable
within the system,

• cyclicity, which is about cyclic behavior of the rule base during execution, and

• confluence, which is about configuration results being independent of the order
of decisions taken and rules applied.

5. The properties are decidable: All the mentioned properties can be decided because
they can be based on the finite state graphs of the PIDL and PIDL+ models
representing the systems (Theorems 4.40 and 5.44).
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Chapter 2

Motivation

Given a set of predefined components, product configuration is concerned with identifying
the combinations of the components to build a product that satisfies the preferences of
the end user and a number of back-end constraints, which are determined by factors like
technical restrictions or sales/marketing aspects. The use of configuration systems is a
success story and has made it possible to reconcile individualization with competitive
production and pricing, following the notion of mass customization. In the design process
of a configuration system, the domain knowledge about the products are translated into
a configuration model, or variability model. Based on that model, tools that make up the
final configuration system are developed that are eventually made available to the user
for individual configuration. The use of a configuration system to derive a product is
called a configuration process or product derivation. We overload the term “configuration”
by using it to refer to the final product as well as the process to get to that product.

In this thesis, we focus on rule-based configuration, that is, systems that use if-then
rules to reflect the domain constraints. We first establish the general context of rule-
based configuration systems that we work with in Section 2.1. Then, we look at an
example of such systems, the DOPLER configuration system, in Section 2.2.

2.1 Rule-Based Configuration

One of the earliest examples of configuration systems are rule-based expert systems
such as R1/XCON (McDermott and Bachant, 1984), whose development started in the
late 1970s. Since then, different approaches to model configuration have been used,
with feature models being the most prominent one. Rule-based systems such as DOP-
LER (Dhungana and Grünbacher, 2008; Dhungana et al., 2011), which is described in
the next section, emphasize the perspective of the user and their interaction with the sy-
stem. Figure 2.1 is a high-level illustration of the structure of a rule-based configuration
system.

A system as shown in the figure accepts user input, which are assignments to variables
of the system. Whenever a user sets the value of a variable, the condition parts of the
rules are evaluated. If the condition of a rule evaluates to true due to the current variables
assignments, the rule can be fired, where it can carry out further variable assignments
as defined in its action part. The components that are included in the final product are
determined by the final values of the variables.

Operational semantics of rules. There are different ways in which rule bases can
operate. In particular, the question arises as to which rules to execute if more than one
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Variables

Rules
if <condition>
then <action>

Product

Figure 2.1: A rule-based configuration system in use.

is satisfied by the current variable state. In general, conflict resolution strategies deal
with this issue by selecting rule executions according to certain heuristics. In this thesis,
we consider systems that have the following operational rule semantics: After the user
has entered their input, all entailed rules are executed. In addition, a rule’s action can
entail other executions of other rules. This loop of rule applications continues until all
rules that are directly and indirectly implied by the user action have been fired. After
that the user can assign the next variable. One consequence of this semantics is that
it is usually wanted that the order of rule executions does not affect the result. This is
called the confluence property and is discussed later in more detail.

2.2 The DOPLER Configuration System

Originating from the Johannes Kepler University Linz, DOPLER is a rule-based configu-
ration system developed and used at Siemens. It is applied successfully in the steel-plant
production domain, but has proven its versatility in various areas (Dhungana et al.,
2011). DOPLER is also the system that we use as a starting point for our investigations.
In this section, we give a compact description of the DOPLER system by using a small
example of a DOPLER configuration instance. This is done on a reasonably abstract le-
vel, and we focus on the elements that are relevant to our work, which is the formulation
of a logic for the configuration system, enabling automated analysis and verification. For
example, we are more interested in aspects that are responsible for the functioning of
the configuration process or for errors that might occur, and we are less interested in
elements that have only informative character, such as messages to be displayed to the
user. We refer to the original sources for more details (Dhungana and Grünbacher, 2008;
Dhungana et al., 2011). At the end of this chapter, we highlight typical inconsistency
problems that can occur in configuration models, again with the help of the DOPLER
model example.

2.2.1 The Structure of DOPLER

Figure 2.2 shows a small example of a DOPLER configuration instance. The following
core elements are used in the DOPLER modeling language:

• Decisions, which are the variables of the instance,

• rules, which describe the effects of variables assignments, and

• assets, which are the product components.
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stainlessSteel

molder

gapChecker

casterType
 (slab, bloom, beam)

taperUnit

sprayHeader dynamicJet

hydraulicCylinder

stainlessSteel
→ molder=true

stainlessSteel 
→ gapChecker = true

molder 
→ setValue(casterType, bloom)

stainlessSteel && gapChecker 
→ setValue(casterType, slab)

gapChecker → setValue(casterType, slab)

containsOnly(casterType, slab) 
→ gapChecker = false

! gapChecker → taperUnit = true

sprayHeader && 
!isTaken(dynamicJet) 
→ molder = true

dynamicJet 
→ setValue(casterType, slab)

(1)Domain inconsistency

(2) Violation of metaproperties: 
stainlessSteel expects values for casterType and hydraulicCylinder

(3) Cyclicity

(4) Confluence

baleAdapter

pCalib-
thermometer

calibrator

hController

includes

excludes

includedIF: 
containsOnly(casterType, slab)

includedIF:
taperUnit

includedIF:
 hydraulicCylinder

Decisions Assets

(1) Domain 
inconsistency

visibleIF: containsOnly(casterType, slab) && !taperUnit

taperUnit → gapChecker= true

Figure 2.2: A DOPLER instance with decisions, assets and dependencies among them
(rules, visibility conditions and asset inclusion conditions).

Configuration variables are called decisions in DOPLER, and the act of setting the
value of a variable is also referred to as taking a decision, an expression that we also use
to mean the assignment of configuration variables in general. There are different types
of decisions, each of them indicating the range of possible values that can be assigned to
the respective variable. In our example, we have two types of decisions:

• Boolean decisions are decisions that can have one of the values true or false. For
example, stainlessSteel or molder are Boolean decisions in the configuration
model of Figure 2.2.

• Enumeration decisions are decisions that have a fixed range of predefined values,
offering a number of selectable options. For example, casterType is an enume-
ration decision that can take the values slab, bloom, or beam. Decisions of this
type usually have a cardinality attached to it, which states the minimum and the
maximum number of values that can be assigned to the decision at the same time.
casterType has a cardinality of 1:1, that is, only one value can be selected.

Sometimes it is necessary to prevent a user from taking a decision, depending on the
current assignments of the decisions taken so far. Each decision therefore has a visibility
property, which is an indicator of whether a decision is visible to the user. A user can
only take decisions that are visible. The visibility condition of a decision is an expression
that evaluates to a Boolean value and that tells the system if the decision is visible or
not. In the model, the decision hydraulicCylinder is visible if the condition

containsOnly(casterType, slab) && !taperUnit
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is true, that is, if casterType has only the value slab and taperUnit is false. If
that is not the case, it is not wanted that the user can decide on hydraulicCylinder,
which determines the inclusion of the asset hController, hence hydraulicCylinder
is not visible with the condition being false. The inclusion of assets, that is, product
components, is described later below. A decision can also be visible by default. Then,
its visibility condition is equivalent to true. This holds for the rest of the decisions in
the variability model depicted in Figure 2.2.

DOPLER uses language constructs in a Java-style fashion to create Boolean expressi-
ons that form the elements important to the configuration process, such as the visibility
condition mentioned above. containsOnly is an example of a function that can be part
of those expressions. The set of functions include:

• containsOnly(decision d, option o)

Boolean function that returns true if option o, and nothing else, is selected for
enumeration decision d, else false is returned.

• containsAny(Decision d, option o1, option o2, ..., option on)

Boolean function that returns true if at least one of the options o1, o2, ..., on is
selected for enumeration decision d, else false is returned.

• containsAll(Decision d, option o1, option o2, ..., option on)

Boolean function that returns true if all of the options o1, o2, ..., on are selected
for enumeration decision d, else false is returned.

• isTaken(Decision d)

Boolean function that returns true if decision d has been taken (that is, it has a
value), else false is returned.

• setValue(Decision d, option o1, option o2, ..., option on)

Void function that causes options o1, o2, ..., on to be selected for d.

The arrows between the decisions in Figure 2.2 represent rules in the variability
model. They come in the form

if <condition> then <action>.

The condition part of a rule is a Boolean expression over the decisions, and the action
part contains statements that assign values to decisions. If the condition part is satisfied
by the current decisions, the rule is fired and the instructions contained in the action
part are executed. For example, we look at two of the rules:

• sprayHeader && !isTaken(dynamicJet) → molder = true

If sprayHeader has the value true and dynamicJet has not been set yet, assign
true to molder.

• stainlessSteel && gapChecker → setValue(casterType, slab)

If stainlessSteel and gapChecker are both true, select the value slab for casterType.

Assets represent the artifacts which products are composed of. In the example model,
the components are baleAdapter, pCalibthermometer, calibrator, and hController.
Whether an asset is part of the final product depends on its inclusion condition. Like in
the case of rule conditions, it is a Boolean expression over the decisions, and the asset is
included in the product if its inclusion condition evaluates to true. For example,
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• the inclusion condition of baleAdapter is

containsOnly(casterType, slab),

which means baleAdapter is included if only slab is selected for casterType, and

• the inclusion condition of calibrator is

taperUnit,

which means calibrator is included if taperUnit is true.

If an asset is supposed to be contained in the final product in any case, its inclusion
condition is just true.

There are two kinds of dependencies between assets. An asset a can include anot-
her asset b. As a result, b is always included in the final product when a is included.
The other relationship is exclusion. If a excludes b, b cannot be part of the final pro-
duct whenever a is part of it. In the variability model example, baleAdapter includes
pCalibthermometer while calibrator excludes pCalibthermometer.

DOPLER uses decisions to communicate the variability of the corresponding domains
to the user. By taking decisions, the user makes their preferences known to the system,
while the rules and visibility of decisions guide the user through the configuration process
to make sure domain constraints are respected.

2.2.2 Types of Inconsistencies

Despite the means provided by DOPLER to encode domain knowledge and constraints
to enable valid configuration processes, errors can be made during the the development of
variability models. With increasing size of the models it gets difficult to ensure that rule
executions do not actually break the constraints or lead to inconsistent behavior. The
example model in Figure 2.2 contains some types of such inconsistencies for illustration,
which we describe in the following.

1. Domain inconsistency. This error occurs when domain constraints are violated
at some point in the configuration process. For example, the rules states that
the action given by stainlessSteel = true leads to the assignments molder =
true and gapChecker = true. Setting molder to true has the rule effect that
bloom is selected for the enumeration decision casterType, while gapChecker =
true results in slab being selected for casterType. However, the cardinality of
casterType requires that only one value can be active for casterType.

Another instance of domain inconsistency can be found among the assets. The
asset baleAdapter includes the asset pCalibthermometer, but this can lead to
a conflict once calibrator is included in the product as well, since calibrator
excludes pCalibthermometer.

2. Violation of metaproperties. There can be a predefined set of properties that are
not necessarily directly connected to the domain constraints but one nonetheless
wants to see satisfied by a configuration system. In the example, a metaproperty
is defined according to which it is expected that the variables casterType and
hydraulicCylinder are set once the decision stainlessSteel is taken. This ho-
wever is not the case in the model, because there are no rules that guarantee a
value is assigned to hydraulicCylinder after stainlessSteel is taken.
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3. Cyclicity. The rules in the rule base of the configuration system can induce a
cyclic behavior. Considering the operational rule semantics as explained above,
this means an endless loop in the rule executions. In the variability model, there is
a cycle involving the decisions casterType, gapChecker, and taperUnit. Applying
the rules attached to them in the model can result in the value of gapChecker
alternating between true and false on a cyclic sequence of rule executions.

4. Violation of confluence. In our context, it is not wanted that the order in which
decisions are taken matters with respect to the resulting configuration. This pro-
perty is called confluence, and it is violated in the example because depending on
whether dynamicJet or sprayHeader is taken first, the decision casterType will
look differently.

In the next chapters, we show the logics we have developed to formalize configuration
systems like DOPLER and to enable formal verification of such systems.
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Chapter 3

Preliminaries

In the logic PIDL, which we present in the next chapter, we use propositional logic to
express every basic part of a configuration-system specification and the states of the
semantics. This logic is then later extended to PIDL+ by using arithmetic terms. As
a base logic for these two frameworks, we consider a fragment of first-order logic, the
theory of reals. The symbols of a first-order theory are determined by its signature. We
specify the kinds of symbols we consider in PIDL+ by fixing the order-sorted signature

Σ := ({R,Z},Z ∪ {+,−, ·, <,≤, >,≥,≈, 6≈})

with

• sorts R and Z, where Z is a subsort of R, Z ⊂ R,

• constants Z, where the sort of each c ∈ Z is Z, written as sort(c) = Z,

• function symbols +,−, and ·, where it holds that

sort(�) = R×R → R, � ∈ {+,−, ·},

• predicate symbols <,≤, >,≥,≈, and 6≈, where it holds that

sort(◦) = R×R, ◦ ∈ {<,≤, >,≥,≈, 6≈}.

A set of variables X is Σ-sorted if the sort of every variable of X is one of the sorts of
Σ: sort(x) ∈ {R,Z} for all x ∈ X. We call the variables of X arithmetic variables. The
sorts R and Z are to be interpreted as reals R and integers Z, respectively. The explicit
inclusion of Z in the signature is needed when we define a certain kind of PIDL+ spe-
cifications later. In those admissible specifications (Definition 5.4), we require variables
that are relevant to the transition dynamics to be of sort Z, which helps us to achieve
decidability. The signature Σ induces the usual terms from the theory of reals using the
known constants, functions and relational symbols.

A term t over the signature Σ and a Σ-sorted variable set X, called Σ-term, is
constructed according to the following grammar:

t ::= x , x ∈ X
c , c ∈ Z
t1 � t2 , � ∈ {+,−, ·}

TΣ(X) denotes the set of all terms over the signature Σ and the variable set X.
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Example 3.1. Let X = {x, y}. Valid Σ-terms include x, y, 83, −34, x+900 or (9−x)·y.

We define arithmetic atoms with respect to Σ. Besides the usual definition of an
atom, we also define certain classes of atoms that are heavily used in PIDL+, namely
simple atoms and simple bounds. We also say atom for arithmetic atom for simplicity.

Definition 3.2. Let t, t′ ∈ TΣ(X), x ∈ X, c ∈ Z and ◦ ∈ {<,≤, >,≥,≈, 6≈}. An
arithmetic atom over Σ or Σ-atom is a term of the form

t ◦ t′.

A simple atom over Σ or simple Σ-atom is an atom of the form

x ◦ t,

and a simple bound over Σ or simple Σ-bound is a simple atom of the form

x ◦ c.

A formula over Σ, also called Σ-formula, over a Σ-sorted variable set X and a set of
propositional variables Π is constructed according to the following grammar:

F ::= ⊥ (falsum)
| > (verum)
| P P ∈ Π
| α α is a Σ-atom
| ¬F (negation)
| F1 ∧ F2 (conjunction)
| F1 ∨ F2 (disjunction)
| F1 → F2 (implication)
| F1 ↔ F2 (equivalence)
| ∀xF (universal quantification)
| ∃xF (existential quantification)

FΣ(X,Π) denotes the set of all formulas over Σ, X and Π. We can write Qx1x2 . . . xnF
for Qx1Qx2 . . . QxnF , where Q ∈ {∀,∃} and F ∈ FΣ(X,Π).

An atom is a propositional variable or an arithmetic atom. A literal is an atom A or
its negation ¬A. The complement L of a literal L is is defined as

A := ¬A and ¬A := A.

A clause is a disjunction of literals. A formula is in conjunctive normal form (cnf) if it
is a conjunction of disjunction of literals.

As is usually done in the literature, we write vars(F ) to denote the set of variables
that occur in a formula F , while vars(N) denotes the set of variables that occur in a
set N of formulas. In our framework, terms of the form x ◦ t play a prominent role.
Therefore, we are also interested in directly identifying the left-hand-side variables x in
those atoms:

Definition 3.3. Let x ◦ t be a simple atom over Σ. We write varsl(x ◦ t) to denote the
variable that is the left operand of the atom x ◦ t,

varsl(x ◦ t) := x.

If N is a set containing simple atoms, then varsl(N) denotes the set of variables that
are the left operands of the simple atoms in N ,

varsl(N) := {x|x ◦ t ∈ N}.
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FΠ denotes the set of all propositional formulas over Π:

FΠ = {F ∈ FΣ(X,Π)|vars(F ) = ∅}.

Substitutions in general are mappings on arithmetic variables, in which a variable is
mapped to a term. In our context, we only consider substitutions

σ : X → Z

that map arithmetic variables to integers. We write substitutions as

σ = {x1 7→ v1, . . . , xn 7→ vn},

where the variables xi are pairwise distinct, and the result of applying substitutions is
then defined by

xσ = x{x1 7→ v1, . . . , xn 7→ vn} :=

{
vi , if x = xi

x , else
.

In this thesis, we do not consider substitutions applied to formulas that contain the
quantifiers ∀ and ∃. Thus, the application of a substitution σ to terms and quantifier-free
formulas is defined inductively in the usual way as follows:

cσ := c,

(t1 � t2)σ := t1σ � t2σ,
⊥σ := ⊥,
>σ := >,
Pσ := P,

(t1 ◦ t2)σ := t1σ ◦ t2σ,
¬Fσ := ¬(Fσ),

(F1 ∗ F2)σ := F1σ ∗ F2σ,

where

• c ∈ Z,

• � ∈ {+,−, ·},

• P ∈ Π,

• t1, t2 ∈ TΣ(X),

• ◦ ∈ {<,≤, >,≥,≈, 6≈},

• F, F1, F2 ∈ FΠ(X,Π), and

• ∗ ∈ {∧,∨,→,↔}.

Often it is necessary to restrict sets that contain formulas from FΣ(X,Π). Note the
focus on the left-hand-side variables of the arithmetic atoms.

Definition 3.4. The restriction N |M of a set N of formulas from FΣ(X,Π) to a set M
of variables is defined as

N |M := {F ∈ N |varsl(F ) ∩ vars(M) 6= ∅}.
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Example 3.5. {x ≥ w + 4, y ≈ 23, z < y,C}|{x,z} = {x ≥ w + 4, z < y}

We can extend restrictions analogously to substitutions. For example,

{x 7→ 32, y 7→ 1, z 7→ 90}|{y,z} = {y 7→ 1, z 7→ 90}.

Facts about single states in the represented configuration process are expressed
with formulas of FΣ(X,Π) in the semantics of PIDL+. The semantics with respect
to FΣ(X,Π) is given by the Σ-interpretation, which interprets the elements of the sig-
nature Σ in the usual way of the theory of arithmetic over the reals, and valuations of
propositional and arithmetic variables. We give a detailed definition in the following.

The Σ-interpretation IΣ maps every object o of Σ to its meaning oIΣ as follows:

• The sorts R and Z are mapped to the sets of reals and integers, respectively,

RIΣ := R,
ZIΣ := Z,

• the function symbols are mapped to the operations over the reals of the same
symbols,

+IΣ := (v, w) 7→ v +R w,

−IΣ := (v, w) 7→ v −R w,

·IΣ := (v, w) 7→ v ·R w,

• the constants c ∈ Z are mapped to integers of the same symbols,

cIΣ := cZ,

• the predicates are mapped to the comparison operators over the reals of the same
symbols,

≤IΣ := {(v, w)|v less than or equal to w},
≥IΣ := {(v, w)|v greater than or equal to w},
<IΣ := {(v, w)|v less than w},
>IΣ := {(v, w)|v greater than w},
≈IΣ := {(v, w)|v equal to w},
6≈IΣ := {(v, w)|v not equal to w},

An arithmetic assignment or valuation over the set X of arithmetic variables is a
mapping β that maps variables of sort R to reals and variables of sort Z to integers,

β : X → R, where β(x) ∈ Z for all x ∈ X with sort(x) = Z.

The value of a term t ∈ TΣ(X) with respect to a a valuation β is written as β(t),
and defined inductively as follows:

β(t1 � t2) := β(t1) �IΣ β(t2),

where t1, t2 ∈ TΣ(X), � ∈ {+,−, ·}.
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Furthermore, we need modified assignments to define the interpretation of quantifiers
later below. If β is an assignment, then the modified assignment β[x 7→ v] is defined as

β[x 7→ v](y) =

{
v if x = y

β(y) otherwise.

A propositional assignment or valuation IΠ over the set Π of propositional variables
is a mapping

IΠ : Π→ {0, 1}

which assigns the truth values 0 (false) or 1 (true) to the variables of Π.
Given an arithmetic assignment β and a propositional assignment IΠ, we write IΠ(β)

to denote the combination assignment consisting of β and IΠ. We simply call IΠ(β) an
assignment.

The truth value of a formula F ∈ FΣ(X,Π) under an assignment IΠ(β) is defined
inductively in the usual way as follows:

IΠ(β)(⊥) := 0,

IΠ(β)(>) := 1,

IΠ(β)(P ) := IΠ(P ),

IΠ(β)(t1 ◦ t2) := (β(t1), β(t2)) ∈ ◦IΣ ,
IΠ(β)(¬F ) := 1− IΠ(β)(F ),

IΠ(β)(F1 ∧ F2) := min{IΠ(β)(F1), IΠ(β)(F2)},
IΠ(β)(F1 ∨ F2) := max{IΠ(β)(F1), IΠ(β)(F2)},
IΠ(β)(F1 → F2) := max{1− IΠ(β)(F1), IΠ(β)(F2)},
IΠ(β)(F1 ↔ F2) := if IΠ(β)(F1) = IΠ(β)(F2) then 1 else 0,

IΠ(β)(∀xF ) := min
v∈sort(x)IΣ

{IΠ(β[x 7→ v])(F )},

IΠ(β)(∃xF ) := max
v∈sort(x)IΣ

{IΠ(β[x 7→ v])(F )},

where

• P ∈ Π,

• t1, t2 ∈ TΣ(X),

• ◦ ∈ {<,≤, >,≥,≈, 6≈}, and

• F, F1, F2 ∈ FΠ(X,Π).

An assignment IΠ(β) satisfies a Σ-formula F , written as IΠ(β) |= F , if IΣ(β)(F ) = 1.
Furthermore, the following holds with respect to F :

• F is satisfiable if there is a an assignment IΠ(β) with IΠ(β) |= F ,

• F is valid if IΠ(β) |= F for all assignments IΠ(β),

• F entails a Σ-formula F ′, written as F |= F ′, if the following holds: If IΠ(β) is an
assignment and IΠ(β) |= F , then also IΠ(β) |= F ′, and

• a set N of Σ-formulas entails a Σ-formula F ′, written as N |= F ′, if the following
holds: If IΠ(β) is an assignment and IΠ(β) |= F for each F ∈ N , then also
IΠ(β) |= F ′.
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If a formula F contains only propositional variables, that is, vars(F ) = ∅, we can just
write IΠ |= F instead of IΠ(β) |= F in the above since only the propositional assignment
matters then.

We also consider tuples of intervals over Z, which appear in the semantics of PIDL+.
We are interested in the following operations involving two such tuples of the same
length:

Definition 3.6. Let t = (I1, . . . , In) and t′ = (I ′1, . . . , I
′
n) be tuples containing the same

number of integer intervals.

• The intersection of t with t′ is naturally defined component-wise:

t ∩ t′ := (I1 ∩ I ′1, . . . , In ∩ I ′n).

The intersection is empty, written as t ∩ t′ = ∅, if Ii ∩ I ′i = ∅ for some i. In that
case, we also say that t and t′ are disjoint to each other. Moreover, we say that a
tuple t is disjoint to a set N of tuples if t is disjoint to each t′ ∈ N .

• The union of t and t′ is defined as

t ∪ t′ := (I1 ∪ I ′1, . . . , In ∪ I ′n).

• The difference of t and t′ is defined as

t \ t′ := (I1 \ I ′1, . . . , In \ I ′n).

Furthermore, the atomic representation with respect to an integer interval and a
variable is the set of simple bounds representing the interval:

Definition 3.7. Let I = [v1, v2] be an integer interval and x a variable. The atomic
representation at(I, x) with respect to I and x is defined as

at(I, x) := {x ≥ v1, x ≤ v2}.

We also use an extension operator :: on general tuples, which adds a new element to
a tuple.

Definition 3.8. Let i1, i2, . . . , in and i be some objects. Then

(i1, i2, . . . , in) :: i := (i1, i2, . . . , in, i).

Example 3.9. Consider the following tuples of integers:

• τ1 = (8, 3, 1, 7, 2), and

• τ2 = ().

Then,

• τ1 :: 19 = (8, 3, 1, 7, 2, 19), and

• τ2 :: 4 = (4).

The length of a tuple τ , denoted by |τ |, is the number of elements it contains.

Example 3.10. In example 3.9,

• |τ1| = 5,

• |τ2| = 0.

The tuple () has no elements and is called the empty tuple.
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Chapter 4

PIDL

Chapter 2 showed what rule-based configurations systems are: Tools that help humans
to configure valid products made up by a possibly very large number of components.
Successful examples such as the DOPLER system at Siemens are testament to the wide
applicability of those systems in the real world. However, problems pertaining to the
consistency of those systems exist. Systems that are inconsistent may exhibit behavior
that interferes with the functionality of the configuration system, such as rule effects
that ultimately lead to the derivation of invalid products. The larger the system gets,
the more difficult it becomes to keep the rule base in a state so that no undesired effects
can appear. Formal methods of verification can do this in a systematic and automatic
way. They are not widespread though, because the systems still often lack appropriate
formalizations.

This chapter presents PIDL (Propositional Interactive Dynamic Logic), a logic to
formalize rule-based configuration systems. PIDL’s possible-worlds semantics is defined
with the aim to capture every possible configuration process for such a system, therefore
enabling formal verification of important consistency properties. In particular, the ope-
rational semantics of rule-based configuration systems is reflected by having two types
of transitions in PIDL, user and rule transitions, interact with each other in a fixpoint
fashion.

We present the syntax of PIDL in Section 4.1, the semantics is given in Section 4.2.
A sound and complete calculus is provided in Section 4.3. In Section 4.4, we formu-
late properties of PIDL specifications, which can be linked to important properties of
represented configuration systems. We show how DOPLER configuration systems can
be translated to our framework in Section 4.5. Experiments indicate that our approach
is in principle suited for the comprehensive formalization and verification of rule-based
configuration systems, which is described in Section 4.6.

4.1 Syntax

Given an instance of a configuration system, PIDL represents it with a syntactic structure
called specification. It is defined as follows:

Definition 4.1. A PIDL specification S is a tuple

S = (Π, SI ,C, TU , TR),

where

• Π is a finite set of propositional variables,
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• SI is a satisfiable set of literals over Π, called the initial state,

• C is a finite set of propositional formulas over Π, called constraints,

• TU is a finite set of pairs χi  Ei, called user transitions, where χi is a propositional
formula over Π, called the condition of the transition, and Ei is a satisfiable set of
literals over Π, called the update set of the transition,

• TR is a finite set of pairs χj  Ej , called rule transitions, where χj is a propositional
formula over Π, called the condition of the transition, and Ej is a satisfiable set of
literals over Π, called the update set of the transition.

All the transitions in TU and TR have different indices i and j.

The transitions are indexed so that each transition can be identified in a compact
way, in particular in the semantics (Section 4.2). However, we can occasionally relax the
notation:

Convention 4.2. We may omit the index i when writing a transition χi  Ei ∈ TU∪TR
if the exact transition does not matter. In examples, we usually rather write χ  i E
instead of χi  Ei when concrete instances of χ and E are used. We may also write
ui and ri instead of just i as an index in order to identify user and rule transitions,
respectively.

The propositional variables Π are used for identifying variability decisions of the
configuration system. For example, in a car configuration, a variable manual could
mean that manual transmission is selected, and automatic could mean that automatic
transmission is selected. States in PIDL reflect states in the configuration process of
the modeled system, and the initial state SI is part of the specification. It describes
the starting state of the configuration system before any configuration step has taken
place. The domain of the configuration system typically has specific requirements and
constraints which has to be followed in any state of the configuration process. We
formulate these constraints as propositional formulas in the set C. A possible example is
the constraint ¬(manual ∧ automatic), stating that manual and automatic transmission
cannot be selected at the same time in any configuration state. We use transitions
χ  E to describe changes during a configuration process. Two types of transitions
exist. User transitions represent actions by the user, rule transitions represent actions
by the system’s rules. This distinction of the transitions is a characteristic feature of
PIDL and makes sure the dynamics of a configuration process is sufficiently modeled in
the semantics of PIDL. A transition χ E consists of a condition part χ and an update
part E. If a condition of a transition is satisfied by the current state in some way, the
transition can be applied to the current state. The result is a new state, which is the
result of updating the current state with the set E. We define the concepts connected
to the expressions “satisfied by the current state” and “updating the current state” later
in the next section.

4.2 Semantics

Given a PIDL specification S as a syntactic representation of a configuration system, a
corresponding semantics tells us how to interpret the specification. From our perspective,
the semantics should cover and express the relevant elements of what happens in an
interaction with the configuration system encoded in S. More concretely, the semantics
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should express the following sequence of events: A user takes a decision by setting
the value of a variable, then certain rules are possibly triggered, which sets further
variables and can activate further rules. If all the rules have been fired, the user can take
another decision. We want our semantics to represent exactly this sequence of events and
consider all interactions and rule actions that are possible according to the specification.
We design it as a possible-worlds semantics, which sees a model of a specification as
constraint-satisfying states reachable from the initial state via the transitions.

4.2.1 States and Transitions

We first define states in PIDL. They represent the states that appear during a product
derivation with a configuration system.

Definition 4.3. A PIDL state is a finite set of propositional literals.

As already mentioned, a PIDL state S is a description of a state in the configuration
flow. The propositional literals contained in S indicate how the current situation of the
configuration looks like and may represent statements such as “manual transmission is
selected” or “this variable is visible to the user”. States change during a configuration
process, either by user input or by rule effects. PIDL models this by user transitions and
rule transitions. The effects of both transition types are stated in the update set E of a
transition χ E. The update of a state is then determined by the update operator :

Definition 4.4. The update operator / takes a state S and an update set E, and returns
a state S′, defined by

S / E := S′,

where

S′ := {L|L literal over Π, L ∈ S,L 6∈ E}∪
{L|L literal over Π, L ∈ E}.

A literal L in the state S whose complement L does not appear in the update set E
is carried over in the new set S′. Literals of E are contained in S′, possibly replacing
every literal in S that is of the same variable. This corresponds to the intuition that the
literals in the update set E can represent new facts that are introduced to S, overwriting
old and no longer valid facts. This also implicitly means a literal L in S whose variable
does not occur in E at all is not affected by the update and is preserved: Facts in the
current state that are not mentioned in the update set are untouched and therefore are
also facts in the new state.

Example 4.5. Let S = {A,B,¬C} be a state and E = {¬B,¬C,D} be an update set.
Then

S / E = {A,B,¬C} / {¬B,¬C,D}
= {A,¬B,¬C,D}

We go through the literals of the updated set and explain why they are included. The
first literal A is a literal of the state S, and since the update set E does not have it, it is
just preserved by the update operation. Next comes variable B which appears in both
sets S and E. The occurrence in E takes precedence, so the literal B of S is replaced
by its complement B = ¬B of E, and the resulting state contains ¬B. The literal ¬C
occurs in S and E, so it is just preserved. The last variable to consider is D, which
occurs in E but not in S. This means D is added to the new state.
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We can now give the formal definition of rule transitions, which represent the rules
of configuration systems.

Definition 4.6. A rule transition from a state S to a state S′ with respect to a rule
transition pair χi  Ei ∈ TR is a triple

S →i S
′,

where

(i) S ∪ C 6|= ⊥,

(ii) S ∪ C |= χi, and

(iii) S′ = S / Ei.

We also say that the rule transition χi  Ei is applied to the state S.

The definition states criteria for applying a rule transition. Requirement (i) is our
general state consistency criterion saying that the state S and the constraints C must be
consistent in the classical propositional sense. Thus, no transition can be applied to a
state if it is inconsistent by (i). Criterion (ii) is about transition entailment and intuitive
to understand: The condition χi of the transition must be entailed by the current state
S and the constraints C for the transition to exist. Finally, the third point is less of a
“real criterion” and rather a description of how the new state S′ looks like, which is the
result of applying the update operator / with respect to S and Ei.

Convention 4.7. The index i in the triple S →i S
′ is used to identify the corresponding

transition with respect to a transition tuple χi  Ei. In some contexts, we may drop
the index if the exact transition does not matter.

Example 4.8. We assume the following state, constraints, and rule transitions pairs:

S = {A,¬C,¬G}

C = {¬C → B}

TR= {C  1 {F},

A ∧B  2 {G,¬H}}
Note that we make use of Convention 4.2 to index the transitions in the example. We
examine if we can apply the rule transitions given in TR to the state S according to
Definition 4.6. First, we observe that the state is consistent, that is, it holds that
S ∪ C 6|= ⊥, so criterion (i) is satisfied. The other criterion (ii) is transition entailment.
It holds that

S ∪ C 6|= χ1

⇔ {A,¬C,¬G} ∪ {¬C → B} 6|= C.

Thus, transition 1 cannot be applied to S. The situation is different with transition 2:

S ∪ C |= χ2

⇔ {A,¬C,¬G} ∪ {¬C → B} |= A ∧B.
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The conditions are met with respect to rule transition 2. It follows that we have a
transition S →2 S

′ with

S′ = S / E2

= {A,¬C,¬G} / {G,¬H}
= {A,¬C,G,¬H}

as the result of the update using E2 according to Definition 4.4.

The other type of transitions in PIDL is user transitions. They represent input by
a user. Before we give the definition, we have to deal with an important prerequisite.
As seen earlier, interaction with the configuration systems we consider is a sequence
of alternations of user input and rule actions. Once a user has assigned a value to a
variable of the system, they must wait until all the rules that are triggered have been
executed before they can set the next variable. We need a notion in PIDL that covers
this essential aspect of rule-based configuration in order to have a faithful and useful
representation. We do this by introducing the concept of rule-terminal states. These
are states that cannot be changed by any application of rule transitions anymore. Rule-
terminal states are thus fixpoints with respect to rule transitions, and user transitions
can only be applied to those states.

Definition 4.9. We say that a state S is rule terminal if there is no rule transition pair
χi  Ei ∈ TR such that there is a rule transition S →i S

′ with S′ 6= S.

Example 4.10. Assume the following constraints and rule transition pairs:

C = {¬(C ∧G),

K → H}

TR= {D  1 {A,¬C},

¬G ∧H  2 {B},

¬B  3 {A}}
We consider four different states:

• S1 = {¬B,D,E},

• S2 = {C,K},

• S3 = {A,¬C,D}, and

• S4 = {A,¬F}.

We check if these states are rule terminal, that is, we try to find rule transitions that
can be applied to the states and whose updates yield states that differ from the original
ones. All states are consistent with the constraints. For state S1, we can see that rule
transition 3 can be applied to it:

S1 ∪ C |= χ3

⇔ {¬B,D,E} ∪ {¬(C ∧G),K → H} |= ¬B.

We apply the update operator to see how the new state looks like:

S′1 = S1 / E3

= {¬B,D,E} / {A}
= {¬B,D,E,A}.
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It follows that S′1 6= S1, so we conclude that S1 is not rule terminal.
State S2 entails the condition of transition 2:

S2 ∪ C |= χ2

⇔ {C,K} ∪ {¬(C ∧G),K → H} |= ¬G ∧H.

We check the update:

S′2 = S2 / E2

= {C,K} / {B}
= {C,K,B}.

Again, the update changes S2, S′2 6= S2, and thus S2 is not rule terminal.
State S3 satisfies the condition of transition 1:

S3 ∪ C |= χ1

⇔ {A,¬C,D} ∪ {¬(C ∧G),K → H} |= D.

We apply the update operator to S3:

S′3 = S3 / E1

= {A,¬C,D} / {A,¬C}
= {A,¬C,D}.

The update results in the same state, S′3 = S3. Since there are no other transitions
entailed by S3, this means S3 is rule terminal.

Lastly, we consider state S4. After inspection of the rule transition conditions, we
can see that S4 does not entail any of the rule transitions given in TR. By Definition 4.9,
S4 is also rule terminal.

The definition of user transitions is very similar to that of rule transitions. It has the
additional requirement that the original state must be rule terminal.

Definition 4.11. A user transition from a state S to a state S′ with respect to a user
transition pair χi  Ei ∈ TU is a triple

S →i S
′,

where

(i) S ∪ C 6|= ⊥,

(ii) S is rule terminal,

(iii) S ∪ C |= χi, and

(iv) S′ := S / Ei.

We also say that the user transition χi  Ei is applied to the state S.

Example 4.12. Recall Example 4.10, where we have
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C = {¬(C ∧G),

K → H}

TR= {D  r1 {A,¬C},

¬G ∧H  r2 {B},

¬B  r3 {A}}
and the states

• S1 = {¬B,D,E},

• S2 = {C,K},

• S3 = {A,¬C,D}, and

• S4 = {A,¬F}.

Now assume the following user transitions:

TU= {K  u1 {¬D},

H ∨ ¬F  u2 {D,F}}
We check whether the user transitions can be applied to any of the above states. In
Example 4.10, we established that S1 and S2 are not rule terminal, so no user transitions
can be done with respect to these states. In particular, note that S2 actually entails the
condition of user transition u1, but we cannot apply u1 to S2 since S2 is not rule terminal.
The remaining states are S3 and S4, which are rule terminal, as seen in Example 4.10.
The state S3 does not entail any of the user transitions, but S4 does with respect to
transition u2:

S4 ∪ C |= χu2

⇔ {A,¬F} ∪ {¬(C ∧G),K → H} |= H ∨ ¬F.

Thus, a user transition S4 →u2 S
′
4 is possible, with S′4 being

S′4 = S4 / Eu2

= {A,¬F} / {D,F}
= {A,D,F}.

The notions defined so far are sufficient to essentially express rule-based configura-
tion systems and their dynamics. A description of a configuration system is encoded
in a PIDL specification. Its user transitions and rule transitions represent manual and
automatic steps in the configuration process. The criteria formulated in the definitions
of the transitions correspond to the way change happens in a configuration system. In
particular, the notion of rule-terminal states makes sure that user transition applicati-
ons in PIDL really correspond to user input in the configuration system. We can now
use what we have developed for states and transitions to talk about models of PIDL
specifications.

4.2.2 Interpretations and Models

A specification induces a set of states that are the results of applying user and rule
transitions, starting with the initial state. We get a graph structure that represents
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every product derivation that is possible with the modeled configuration system. This
forms the backbone of what we consider to be interpretations and models of PIDL
specifications.

Paths are a central notion to the semantics of PIDL. They allow us to see which user
transitions and rule transitions are responsible for arriving at a state S′, starting from a
state S.

Definition 4.13. A path from a state S to a state S′ is a tuple

(i1, i2, . . . , in−1, in),

n ≥ 0, such that S0 →i1 S1 →i2 · · · →in−1 Sn−1 →in Sn is a sequence of user and rule
transitions, where χij  Eij ∈ (TU ∪TR) for all j ∈ {1, . . . , n} and S0 = S and Sn = S′.
If n = 0, then the path is called empty and is denoted by ().

For the sake of convenience, we use the term “path” to also refer to the sequence of
transitions S0 →i1 S1 →i2 · · · →in−1 Sn−1 →in Sn that is described by the corresponding
tuple (i1, i2, . . . , in−1, in).

Definition 4.14. The length |τ | of a path τ = (i1, i2, . . . , in−1, in) is the number of
elements the tuple (i1, i2, . . . , in−1, in) contains: |τ | := n.

A well-known term used in the context of verification of state transition systems is
reachability. It deals with the question of whether two states can be connected through
a series of transitions.

Definition 4.15. We say that a state S′ is reachable from a state S if there is a path
from S to S′. A state is reachable from itself via the empty path (). We also simply say
that a state is reachable if it is reachable from the initial state.

If we combine the states that are reachable from the initial state, the transitions that
can be applied to them and the propositional interpretations that satisfy each state, we
get an interpretation of a specification. It represents all the possible interaction and
rule-effect steps that can be done with the corresponding configuration system.

Definition 4.16. An interpretation of a specification S = (Π, SI ,C, TU , TR) is a tuple

(VS, TS, IS)

with

• the state space VS := {S|S reachable from SI},

• the transition space

TS := {(S, i, S′)|S, S′ ∈ VS, S →i S
′, χi  Ei ∈ (TU ∪ TR)}, and

• the state interpretations IS := {(S, IΠ)|S ∈ VS, IΠ assignment over Π, IΠ |= S}.

We also refer to VS and TS as the state graph of the specification.

Definition 4.17. Let S be a specification. The state graph GS is a pair consisting of
the state space VS and transition space TS:

GS := (VS, TS).
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As we see later in Theorem 4.33(i), each specification has at least one interpretation.
Models of specifications are interpretations whose state interpretations also satisfy

the constraints of the specifications.

Definition 4.18. Let S be a specification and (VS, TS, IS) be an interpretation of S.
We say that (VS, TS, IS) is a model of S if IΠ |= C for each (S, IΠ) ∈ IS.

The semantics of PIDL is now completely defined. It is a representation of the
possible configuration states in the form of interpretations. Models are interpretations
that represent a configuration system in which the user cannot get to a state that is
inconsistent with respect to the domain constraints. The next step is to describe how
computations based on the semantics can be done.

4.3 The Inference System W

The semantics of PIDL tells us how to interpret PIDL specifications and how it reflects
the operational dynamics of configuration systems that are modeled according to PIDL.
In practice, we would also want to know how to get the semantical structure of a given
specification, that is, the PIDL representation of runs of the configuration system at
hand. We give the calculus system W, a set of rules on how to compute exactly that.
It is is based on the well-known superposition calculus (Bachmair and Ganzinger, 1994,
2001) and works with objects called labeled clauses that carry the relevant semantical
information: Which worlds can be reached, how can they be reached, and what properties
hold in them? This section starts with a detailed introduction on those clauses.

4.3.1 Labeled Clauses

A propositional clause is a disjunction of propositional literals. Decision procedures for
propositional logic are typically based on formulas expressed as sets of clauses. In the
calculus we present, we use annotated propositional clauses which we call labeled clauses.
Such a clause contains, in addition to the literals, a path and a “clause-type” symbol.

Definition 4.19. A labeled clause takes the form

(S, τ, p ||C) ,

where S is a state, τ is a path, p ∈ ({∗} ∪ N), and C is

• a propositional clause over Π, that is, a disjunction of literals over Π, or

• a special start variable.

The part consisting of S, τ, p is called label, the part consisting of C is called core of the
clause. Clauses with start as their cores are also called start clauses.

A labeled clause (S, τ, p ||C) means that we have a clause C that is associated with
the state S reachable from the initial state SI of the specification via path τ . The
variable p determines the type of the clause C: Either p = ∗, which means that C is a
clause that can be derived — using the inference rules we are about to define — from
the state S and the constraints C, or p is a natural number i, indicating the clause is
derived from the condition of a specific transition χi  Ei. We give special names to
these two types of labeled clauses:

Definition 4.20. A labeled clause (S, τ, p ||C) is called
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• state clause if p = ∗, and

• transition clause if p ∈ N.

If the context is clear, we may just use the term “clause” instead of “labeled clause”.
The W calculus uses an ordering as is done in many calculi in automated reasoning.

In superposition, an ordering on clauses is the basis for the notion of redundancy and
for restricting the inference space, that is, the set of clauses that can be derived from the
rules of the calculus. W uses an ordering on labeled clauses that is very similar. It takes
the labels and the cores into account when determining which labeled clause is larger.

We first define a total ordering �p on paths as follows: Let τ and τ ′ be two paths.
Then

τ �p τ
′ if and only if

• |τ | > |τ ′|, or

• |τ | = |τ ′| and τ >lex τ
′,

where >lex is the lexicographic extension of the > ordering on natural numbers.

Example 4.21. Let the following paths be given:

• τ1 = (5, 21, 7, 2, 13),

• τ2 = (2, 6, 17),

• τ3 = (5, 21, 20, 1, 6).

Then we have the following relationships: τ1 �p τ2, τ3 �p τ2, and τ3 �p τ1.

Given a specification S, we base our ordering on labeled clauses on a total ordering
� on the propositional variables Π of S. The total ordering �L on literals over Π is
then defined by:

1. ¬P �L P ,

2. Q �L P :⇔ Q � P ,

3. Q �L ¬P :⇔ Q � P ,

4. ¬Q �L P :⇔ Q � P , and

5. ¬Q �L ¬P :⇔ Q � P

for all P,Q ∈ Π.
The total ordering �C on propositional clauses is the multiset extension (�L)mul of

�L, which is defined as follows:
C (�L)mul C

′

if and only if

1. C 6= C ′ and

2. for each literal L′ with occ(C ′, L′) > occ(C,L′) there is a literal L with L �L L′
and occ(C,L) > occ(C ′, L),
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where occ(C,L) denotes the number of occurrences of the literal L in the clause C.
Then, the partial ordering �S on labeled clauses is defined as follows:

(S, τ, p ||C) �S (S′, τ ′, p′ ||C ′)

if and only if

1. τ �p τ
′ or

2. τ = τ ′, p = ∗ or p = p′, and C �C C ′.

Note that �S is well-founded. For convenience, we also write � to refer to �p, �L,
�C and �S if the context is clear.

Example 4.22. Let the following paths be given:

• τ = [4, 2, 9, 7] and

• τ ′ = [3, 1, 5].

Assume an ordering � with D � C � B � A. Then

• (S, τ, ∗ ||A ∨B ∨ ¬C) � (S, τ ′, ∗ ||C ∨D) because τ � τ ′, and

• (S, τ, ∗ ||C ∨ D) � (S, τ, ∗ ||A ∨ B ∨ ¬C) because the paths are the same and
(C ∨D) � (A ∨B ∨ ¬C).

Redundancy of labeled clauses is defined as a labeled clause being entailed by smaller
ones that are labeled with the same state and the same clause type.

Definition 4.23. A labeled clause (S, τ, p ||C) is redundant with respect to a set N
of labeled clauses if there are clauses (S, τ ′, p ||C1), (S, τ ′, p ||C2), . . . , (S, τ ′, p ||Cn) ∈ N
with (S, τ, p ||C) � (S, τ ′, p ||Ci) for 1 ≤ i ≤ n and C1, C2, . . . , Cn |= C.

Example 4.24. We again assume the paths τ and τ ′, and the ordering � given in
Example 4.22. Then, (S, τ, p ||B∨D) is redundant with respect to (S, τ ′, p ||B), because
(S, τ, p ||B ∨D) � (S, τ ′, p ||B) and B |= B ∨D.

4.3.2 Inference Rules

We define the inference system W with respect to a specification S = (Π, SI ,C, TU , TR).
It consists of six rules on how to infer new labeled clauses from existing labeled clauses.
Four rules of W form a subset called w and can be seen as rules for inferences within a
state in VS. The two other rules of W concern inferences that represent the transitions
between the states. We first introduce the inference rules that constitute the subsystem
w.

• Units Creation

IS, τ, ∗ || start
S, τ, ∗ ||L

where L ∈ S.

• Constraints Creation

IS, τ, ∗ || start
S, τ, ∗ ||C

where C ∈ cnf (C).
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A clause of the form (S, τ, ∗ || start) has the role of the “first” clause with respect to a state
S. The first clause with respect to the initial state SI is given by (SI , τ, ∗ || start), the first
clauses of the other states are generated by rules of W that we present later. Given such a
clause as a premise, the conclusions of the Units Creation and Constraints Creation rules
are clauses that represent the state S and the constraints C. Units Creation produces
labeled clauses whose cores are unit clauses derived directly from the literals in S. The
core of a clause generated by Constraints Creation is a clause from the conjunctive
normal form of the set of constraints C.

• User Transition Conditions Creation

IS, τ, ∗ || start
S, τ, i ||C ,

where C ∈ cnf (¬χi), χi  Ei ∈ TU .

• Rule Transition Conditions Creation

IS, τ, ∗ || start
S, τ, i ||C ,

where C ∈ cnf (¬χi), χi  Ei ∈ TR.

The next two rules also have the start clause as premises and are about deriving labe-
led clauses that represent the conditions of the transitions. User Transition Condition
Creation yields labeled clauses with respect to user transitions and Rule Transition Con-
ditions Creation produces labeled clauses with respect to rule transitions. The cores of
those clauses are taken from the conjunctive normal form of the negated condition for-
mulas of the respective transitions. We consider the negated forms because the calculus
makes use of prove by refutation, as is described further below. The index i takes the role
of the p variable to indicate the transition pair χi  Ei the resulting clause corresponds
to.

• Factoring

IS, τ, p ||C ∨ L ∨ L
S, τ, p ||C ∨ L ,

where L is a literal.

• Superposition

IS, τ, p ||C ∨ L S, τ, p′ ||D ∨ L
S, τ, p⊕ p′ ||C ∨D

,

where

– C and D are propositional clauses, L is a literal,

– L and L are maximal in their respective clauses with respect to �,
– p = ∗ or p′ = ∗ or p = p′, and

– the value of p⊕ p′ is defined by

p⊕ p′ :=

{
p′ , if p = ∗,
p , if p′ = ∗ or p = p′

.
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Factoring and Superposition are derived from the rules of classical superposition (Bach-
mair and Ganzinger, 1994, 2001), restricted to the non-equational case, and work in the
same way, adjusted to the context of reasoning within a world in PIDL. We use Factoring
to get simpler clauses in which duplicate literals are removed. Superposition contains
resolution on the cores of two labeled clauses, with a maximality requirement to establish
a redundancy criterion. The values of p and p′ determine whether the inference can be
done with two given clauses: Either at least one of the premise clauses is a state clause
or both premise clauses are transition clauses with respect to the same transition. The
conclusion is a transition clause if at least one transition clause is involved as a premise,
or else it is a state clause. That way we can distinguish inferences restricted to the state
and the constraints, and inferences that additionally involve transition conditions. This
is important because we use refutational completeness of resolution, in which we look
for inferred clauses of the form (S, τ, p||⊥): If p = ∗, then we can say that S ∪ C is
inconsistent, and if p is an index with respect to a transition, then the condition of the
transition is entailed by S ∪C. This works because from the transition creation rules we
get clauses based on the negation ¬χi of the transition conditions, and then we make
use of the fact that the statements S ∪ C |= χi and S ∪ C ∪ {¬χi} |= ⊥ are equivalent.

The inference subsystem w is composed of the rules Units Creation, Constraints
Creation, User Transition Conditions Creation, Rule Transition Conditions Creation,
Factoring, and Superposition.

The rest of the rules of W uses the notion of closure of clause sets of the form
{(S, τ, ∗||start)} under the inference rules. In general, we get the closure by repeatedly
applying inferences on clause sets. Given an abstract inference system A and a set of
clauses N , the closure N∗A of N under A is defined inductively:

NA := {(S, τ, p||C)|(S, τ, p||C) is a conclusion
of an A inference with premises in N}

N0
A := N

N i+1
A := N i

A ∪ (N i
A)A

N∗A :=
⋃
n≥0

N i
A

We say that a set N is saturated with respect to A if NA ⊆ N .
The remaining rules of W are then as follows:

• Forward Rule Transition

I S, τ, i || ⊥
S′, τ :: i, ∗ || start ,

where

– (S, τ, ∗ ||⊥) 6∈ {(S, τ, ∗ || start)}∗w,
– χi  Ei ∈ TR, and
– S′ = S / Ei.

• Forward User Transition

I S, τ, i || ⊥
S′, τ :: i, ∗ || start ,

where
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– (S, τ, ∗ ||⊥) 6∈ {(S, τ, ∗ || start)}∗w,
– S = S / Ej for each (S, τ, j || ⊥) ∈ {(S, τ, ∗ || start)}∗w, χj  Ej ∈ TR,
– χi  Ei ∈ TU , and
– S′ = S / Ei.

Forward Rule Transition corresponds to applying a rule transition to a state. It takes a
clause (S, τ, i || ⊥) as premise, which means that through Superposition bottom has been
derived from the set S∪C∪{¬χi}, and thus the transition condition χi is entailed by the
state and the constraints, as already mentioned above. A number of side conditions has to
be satisfied in order for the inference to take place. These conditions directly correspond
to the requirements stated in the definition of rule transitions (Definition 4.6): First, the
state and the constraints must be consistent, that is, (S, τ, ∗ ||⊥) must not appear in the
inferences with respect to state clauses. Second, the value i is an index with respect to
a rule transition, and lastly, the new state S′ is the result of updating S with Ei. The
conclusion of the inference is a new clause (S′, τ :: i, ∗ || start), where the current path
τ is extended by adding i to it. The new clause serves as the starting point for further
inferences corresponding to the state S′ with w. Forward User Transition works very
similarly, but has an additional condition that incorporates in the calculus the criterion
of rule termination as stated in the definition of user transitions (Definition 4.11): For
every rule transition entailed by the current state, updating the state does not change
the state.

The rules of w together with Forward Rule Transition and Forward User Transition
constitute the inference system W.

Intuitively, the first clause of each state S ∈ VS is (S, τ, ∗ || start), and (SI , (), ∗ || start)
is the start clause with respect to the initial state, and thus typically the first clause of
the whole inference with W.

Remark 4.25. The rules of W dictate that each derivation of any clause that is labeled
with S, τ, p starts with (S, τ, ∗ || start).

We have seen how the semantics of PIDL specifications can be represented as labeled
clauses. We then have presented the rules of the inference system W, which contain
instructions on how to derive those clauses. The closure {(SI , (), ∗ || start)}∗W describes
all the clauses that can be inferred with W, starting from the clause (SI , (), ∗ || start). A
clause from this set has information on a corresponding state and the path that leads to
that state, and therefore how to compute the state space VS and transition space TS,
the elemental parts of a PIDL interpretation. The focus of the next section is to prove
W does this in a correct way.

4.3.3 Soundness and Completeness of W

The correctness of W comes, as usual, twofold: The inference system must be sound,
meaning all clauses that can be inferred with it correspond to states and paths actually
occurring in VS and TS, and complete, meaning every state that is reachable from the
initial state is represented by a clause derived in W. We approach the proof by observing
important properties of the calculus. The first one can be described as local soundness.

Lemma 4.26. Let S = (Π, SI ,C, TU , TR) be a PIDL specification. Then

1. (S, τ, ∗ ||C) ∈ {(SI , (), ∗ || start)}∗W ⇒ S ∪ C |= C,
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2. (S, τ, i ||C) ∈ {(SI , (), ∗ || start)}∗W ⇒ S ∪ C ∪ {¬χi} |= C,
where C 6= start and χi  Ei ∈ TU ∪ TR.

Proof. 1. By induction on the length of the derivation of (S, τ, ∗ ||C) relative to its
corresponding first clause (S, τ, ∗ || start).

• Base case: The base case is defined by Remark 4.25. According to it, the
clause (S, τ, ∗ ||C) is the conclusion of a Units Creation or Constraints Cre-
ation inference, with (S, τ, ∗ || start) being the premise. Then C = L with
L ∈ S or C ∈ cnf (C) respectively. In both cases S ∪ C |= C.

• Induction step:

– (S, τ, ∗ ||C) is the conclusion of a Factoring inference, with the premise
being a clause of the form (S, τ, ∗ ||C ′ ∨ A ∨ A) and C = C ′ ∨ A. By
induction hypothesis, S ∪ C |= C ′ ∨A ∨A. Thus, S ∪ C |= C ′ ∨A.

– (S, τ, ∗ ||C) is the conclusion of a Superposition inference with premises
being two clauses (S, τ, ∗ ||C1∨L) and (S, τ, ∗ ||C2∨L) and C = C1∨C2.
By induction hypothesis, S ∪ C |= C1 ∨ L and S ∪ C |= C2 ∨ L. By
soundness of propositional resolution, it then holds that S∪C |= C1∨C2.

2. By induction on the derivation length of (S, τ, i ||C) relative to (S, τ, ∗ || start).

• Base case: The base case is defined by Remark 4.25. Then (S, τ, i ||C) is
the conclusion of a User or a Rule Transition Conditions Creation, with
(S, τ, ∗ || start) being the premise. In both cases, C ∈ cnf (¬χi) and thus
we have S ∪ C ∪ {¬χi} |= C.

• Induction step:

– (S, τ, i ||C) is the conclusion of a Factoring inference, with a premise of
the form (S, τ, i ||C ′ ∨A ∨A) and C = C ′ ∨A. By induction hypothesis,
we get S ∪ C ∪ {¬χi} |= C ′ ∨A ∨A. Then, S ∪ C ∪ {¬χi} |= C ′ ∨A.

– (S, τ, i ||C) is the conclusion of a Superposition inference with premises
(S, τ, p1 ||C1 ∨L) and (S, τ, p2 ||C2 ∨L), and C = C1 ∨C2. It holds that
p1 = i or p2 = i. Without loss of generality, let p1 = i. By induction
hypothesis, S ∪ C ∪ {¬χi} |= C1 ∨ L. Now we consider two possibilities
for the value of p2: If p2 = i, then also by induction hypothesis it holds
that S ∪ C ∪ {¬χi} |= C2 ∨ L. If p2 = ∗, then we have S ∪ C |= C2 ∨ L
as shown above, and therefore S ∪ C ∪ {¬χi} |= C2 ∨ L. In any case,
S ∪ C ∪ {¬χi} |= C1 ∨ C2 by soundness of propositional resolution.

The above lemma basically expresses the soundness of W with respect to the single
worlds represented by the states occurring in the label of the inferred clauses. This
makes sense since, as mentioned earlier, Factoring and Superposition resemble the re-
solution calculus for propositional logic. Thus, Lemma 4.26 builds on the soundness of
propositional resolution.

After local soundness we also establish local refutational completeness of W. It means
that whenever a state is inconsistent with the constraints, W can derive a state clause
whose core is bottom. In a similar vein, inconsistence of the state, constraints, and the
negation of a transition condition means we can infer a transition clause with respect
to that transition whose core is bottom. Again, this can be justified by refutational
completeness of the propositional resolution calculus.
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Lemma 4.27. Let S = (Π, SI ,C, TU , TR) be a PIDL specification. Furthermore, let
S ∈ VS and (S, τ, ∗ || start) ∈ {(SI , (), ∗ || start)}∗W. Then

1. S ∪ C |= ⊥ ⇒ (S, τ, ∗ ||⊥) ∈ {(SI , (), ∗ || start)}∗W,

2. S ∪ C ∪ {¬χi} |= ⊥ ⇒ (S, τ, i || ⊥) ∈ {(SI , (), ∗ || start)}∗W.

Proof. 1. We can infer clauses whose cores are taken from the state S and the con-
straints C by the assumption (S, τ, ∗ || start) ∈ {(SI , (), ∗ || start)}∗W, and the Units
Creation and Constraints Creation rules. Then, the assumption S ∪ C |= ⊥ and
refutational completeness of resolution imply that (S, τ, ∗ ||⊥) can be inferred with
Factoring and Superposition.

2. User or Rule Transition Condition Creation yields clauses with cores that are de-
rived from ¬χi because of the existence of (S, τ, ∗ || start) by assumption. Ana-
logously to the above case, the assumption S ∪ C ∪ {¬χi} |= ⊥ and refutational
completeness of resolution means that from those clauses we can derive (S, τ, i || ⊥)
using the Factoring and Superposition rules.

With local soundness and local refutational completeness, we can now show general
soundness and completeness of the W calculus.

Theorem 4.28. Let S = (Π, SI ,C, TU , TR) be a specification. There are a state S and
a path τ such that (S, τ, ∗ || start) ∈ {(SI , (), ∗ || start)}∗W if and only if S is reachable
from the initial state SI via path τ .

Proof. (⇒) By induction on the path τ .
Let τ = (). Then (SI , (), ∗ || start) ∈ {(SI , (), ∗ || start)}∗W, and indeed SI ∈ VS via

the empty path ().
Let τ = τ ′ :: i. We have a labeled clause (S, τ ′ :: i, ∗ || start) ∈ {(SI , (), ∗ || start)}∗W.

According to the rules of W, there are two cases in which this clause could have been
derived:

1. By Forward Rule Transition.

I S′, τ ′, i || ⊥
S, τ ′ :: i, ∗ || start ,

where

• (S′, τ ′, ∗ ||⊥) 6∈ {(S′, τ ′, ∗ || start)}∗w,
• χi  Ei ∈ TR, and
• S = S′ / Ei.

From the premises we conclude (S′, τ ′, i || ⊥) ∈ {(SI , (), ∗ || start)}∗W. As observed
in remark 4.25, (S′, τ ′, ∗ || start) ∈ {(SI , (), ∗ || start)}∗W. By induction hypothesis,
we have S′ ∈ VS, reachable via path τ ′. We show that to S′ we can apply the rule
transition χi  Ei according to Definition 4.6.

• The condition (S′, τ ′, ∗ ||⊥) 6∈ {(S′, τ ′, ∗ || start)}∗w first means that we have
(S′, τ ′, ∗ ||⊥) 6∈ {(SI , (), ∗ || start)}∗W, since w is contained in W, and the rules
not in w, which are Forward Rule Transition and Forward User Transiti-
ons, cannot produce a clause whose core is bottom. We already know that
(S′, τ ′, ∗ || start) ∈ {(SI , (), ∗ || start)}∗W from above. It holds that S′ ∪C 6|= ⊥
by Lemma 4.27.
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• As observed above, (S′, τ ′, i || ⊥) ∈ {(SI , (), ∗ || start)}∗W. By Lemma 4.26, we
get S′ ∪ C ∪ {¬χi} |= ⊥ and thus S′ ∪ C |= χi.

• Finally, S = S′ / Ei indeed as required by the inference rule.

The conditions of Definition 4.6 are fulfilled, so we can do a rule transition S′ →i S
using χi  Ei, and thus S ∈ VS via path τ = τ ′ :: i.

2. By Forward User Transition.

I S′, τ ′, i || ⊥
S, τ ′ :: i, ∗ || start ,

where

• (S′, τ ′, ∗ ||⊥) 6∈ {(S′, τ ′, ∗ || start)}∗w,
• S′ = S′ / Ej for each (S′, τ ′, j || ⊥) ∈ {(S′, τ ′, ∗ || start)}∗w, χj  Ej ∈ TR,
• χi  Ei ∈ TU , and
• S = S′ / Ei.

The premise (S′, τ ′, i || ⊥) indicates that (S′, τ ′, i || ⊥) ∈ {(SI , (), ∗ || start)}∗W, and
thus (S′, τ ′, ∗ || start) ∈ {(SI , (), ∗ || start)}∗W by Remark 4.25. By induction hypot-
hesis, S′ ∈ VS. We show that to S′ we can apply the user transition χi  Ei
according to Definition 4.11.

• The condition (S′, τ ′, ∗ ||⊥) 6∈ {(S′, τ ′, ∗ || start)}∗w entails S′ ∪ C 6|= ⊥, which
can be shown in the same way as in the analogous case of Forward Rule
Transition.

• From the condition

S′ = S′ / Ej for each (S′, τ ′, j || ⊥) ∈ {(S′, τ ′, ∗ || start)}∗w, χj  Ej ∈ TR,

we get that each time we have

– (S′, τ ′, j || ⊥) ∈ {(S′, τ ′, ∗ || start)}∗w, which means
– (S′, τ ′, j || ⊥) ∈ {(SI , (), ∗ || start)}∗W analogously to the previous case,

which means
– S′ ∪ C ∪ {¬χj} |= ⊥ by Lemma 4.26, which means
– S′ ∪ C |= χj ,

it holds that S′ = S′ / Ej . Therefore, for all rule transitions χj  Ej that
can be applied to S′, the update does not change S′. We have that S′ is
rule-terminal according to Definition 4.9.

• As in the previous case, the premise (S′, τ ′, i || ⊥) gives us S′ ∪ C |= χi.

• S = S′ / Ei indeed as required by the inference rule.

The requirements in Definition 4.11 are satisfied, and we can have a user transition
S′ →i S by χi  Ei, and thus S ∈ VS via path τ = τ ′ :: i.

(⇐) By induction on the path τ .
τ = (): The path consists of just the initial state SI , and it indeed holds that

(SI , (), ∗ || start) ∈ {(SI , (), ∗ || start)}∗W.
τ = τn :: i: The path has the form SI → S1 → · · · → Sn →i S. By induction

hypothesis, (Sn, τn, ∗ || start) ∈ {(SI , (), ∗ || start)}∗W. There are two cases:
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1. Sn →i S is a rule transition, that is, χi  Ei ∈ TR. By Definition 4.6,

(a) Sn ∪ C 6|= ⊥,
(b) Sn ∪ C |= χi, and

(c) S = Sn / Ei.

Then

(a) ⇒ (Sn, τn, ∗ ||⊥) 6∈ {(SI , (), ∗ || start)}∗W by Lemma 4.26, and

(b) ⇒ Sn ∪ C ∪ {¬χi} |= ⊥
⇒ (Sn, τn, i || ⊥) ∈ {(SI , (), ∗ || start)}∗W (Lemma 4.27)
⇒ (Sn, τn, i || ⊥) ∈ {(Sn, τn, ∗ || start)}∗w (Remark 4.25).

The conditions of Forward Rule Transition are satisfied and we can infer the clause
(S, τ, ∗ || start) with τ = τn :: i.

2. Sn →i S is a user transition, that is, χi  Ei ∈ TU . By Definition 4.11,

(a) Sn ∪ C 6|= ⊥,
(b) Sn is rule terminal,

(c) Sn ∪ C |= χi, and

(d) S := Sn / Ei.

Then

(a) ⇒ (Sn, τn, ∗ ||⊥) 6∈ {(SI , (), ∗ || start)}∗W by Lemma 4.26,

(b) ⇔ Sn ∪ C |= χj ⇒ Sn = Sn / Ej for each χj  Ej ∈ TR
⇒ Sn ∪ C ∪ {¬χj} |= ⊥ ⇒ Sn = Sn / Ej for each χj  Ej ∈ TR
⇒ (Sn, τn, j || ⊥) ∈ {(SI , (), ∗ || start)}∗W ⇒ Sn = Sn / Ej for each rule transi-
tion χj  Ej ∈ TR (Lemma 4.27)
⇒ (Sn, τn, j || ⊥) ∈ {(Sn, τn, ∗ || start)}∗w) ⇒ Sn = Sn / Ej for each rule tran-
sition χj  Ej ∈ TR (Remark 4.25), and

(c) ⇒ Sn ∪ C ∪ {¬χi} |= ⊥
⇒ (Sn, τn, i || ⊥) ∈ {(SI , (), ∗ || start)}∗W (Lemma 4.27)
⇒ (Sn, τn, i || ⊥) ∈ {(Sn, τn, ∗ || start)}∗w (Remark 4.25),

so we can apply Forward User Transition and we get a clause (S, τ, ∗ || start) via path
τ = τn :: i.

From the previous lemmas and theorem we can conclude that the question of whether
a specification has a model or does not can be directly linked to the derivation of a clause
with a bottom core in W.

Corolloray 4.29. Let S be a PIDL specification. Then S has a model if and only if
there are no S and τ such that (S, τ, ∗ ||⊥) ∈ {(SI , (), ∗ || start)}∗W.

From the tight correspondence between classical superposition and W in the single
worlds we can derive the following result, which states that the set of clauses produced
with W is finite, with possibly redundant clauses.

Theorem 4.30. Let S = (Π, SI ,C, TU , TR) be a specification. {(SI , (), ∗ || start)}∗W is
finite up to redundancy.
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Proof. Let N = {(SI , (), ∗ || start)}∗W. We define a subset K ⊆ N as follows:

K := {(S, τ, ∗ || start)|(S, τ, ∗ || start) ∈ N, there is no τ ′

such that τ � τ ′ and (S, τ ′, ∗ || start) ∈ N}.

K is not empty since the initial start clause (SI , (), ∗ || start) is contained in K. We note
that K is finite since it consists of clauses (S, τ, ∗ || start), where

(i) the possibilities for S are finite, because S is a finite set of literals over the finite
set Π of propositional variables, and

(ii) the possibilities for τ are finite, because � is a total order on paths and � is
well-founded.

Furthermore, let M ⊆ N be another subset with

M :=
⋃

(S,τ,∗ || start)∈K

{(S, τ, ∗ || start)}∗w,

that is, M is the set of w inferences on the start clauses of K. Note that M contains K.
The w subcalculus essentially corresponds to propositional resolution, which is known
to be finite up to redundancy. Hence, a set {(S, τ, ∗ || start)}∗w ⊆ M is finite up to
redundancy, and so M is also finite up to redundancy.

Now, assume a clause (S, τ, ∗ ||C) ∈ N that is not in M . That means first that, by
Remark 4.25, (S, τ, ∗ || start) ∈ N and (S, τ, ∗ || start) 6∈M , and thus (S, τ, ∗ || start) 6∈ K.
By assumption and well-foundedness of �, there is a minimal τ ′ with τ � τ ′ such that
(S, τ ′, ∗ || start) ∈ N . It follows from the minimality of τ ′ that (S, τ ′, ∗ || start) ∈ K,
which leads to (S, τ ′, ∗ ||C) ∈M , since the rules of w infer the same cores when the state
is the same. It follows that (S, τ, ∗ ||C) is redundant with respect to M .

4.3.4 Standard Interpretation

We present one way to construct an interpretation for a given satisfiable specification S
that is called the standard interpretation of the specification. Bachmair and Ganzinger
described a method to incrementally construct an interpretation for a given set of pro-
positional clauses in their proof of refutational completeness of propositional resolution,
using an ordering on those clauses (Bachmair and Ganzinger, 2001). From this we derive
an analogous approach based on an ordering on labeled clauses. The resulting interpre-
tation can then be seen as the state interpretations IS of a specification interpretation
(VS, TS, IS), where the other components VS and TS are determined by the specification
S. This standard interpretation is then a model for the specification if no labeled clause
with bottom as its core is inferred, as shown in Theorem 4.33.

Let N be a set of labeled clauses and let NS,τ be a subset of N that contains all
the clauses of N labeled with S, τ , and ∗: NS,τ := {(S, τ, ∗ ||C)|(S, τ, ∗ ||C) ∈ N}.
Furthermore, let � be an ordering on labeled clauses as defined in Section 4.3.1. The
state clause interpretation INS,τ for NS,τ is constructed as follows:

• I(S,τ,∗ ||C) :=
⋃

(S,τ,∗ ||C)�(S,τ,∗ ||D)

δ(S,τ,∗ ||D)

• δ(S,τ,∗ ||C) :=


{A} , if (S, τ, ∗ ||C) ∈ NS,τ , C = C ′ ∨A,A � C ′, I(S,τ,∗ ||C) 6|= C

∅ , else
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• INS,τ :=
⋃

(S,τ,∗ ||C)∈NS,τ
δ(S,τ,∗ ||C)

The method corresponds directly to the construction as described by Bachmair and
Ganzinger if we consider the clauses of the same label as representing a single propositi-
onal world. That is why we only work with state clauses, that is, clauses that are labeled
with the type ∗. Having fixed the label, the relevant part for the construction are only
the cores of the clauses, resembling the purely propositional case. Iterating through the
clauses by the ordering, literals are added to the partial interpretation to make the cores
they are in true. The state clause interpretation we get is a Herbrand interpretation,
where variables contained in the set are considered to be true and variables not contained
are considered to be false. The properties of the propositional model construction and
their details can be found in the aforementioned work by Bachmair and Ganzinger (Ba-
chmair and Ganzinger, 2001). State clause interpretations have one important property
that can be seen easily from the semantics of PIDL: Two interpretations that refer to the
same state are identical if we consider the closure set of clauses resulting from inferences
of W starting with (SI , (), ∗ || start).

Lemma 4.31. Let S be a specification and N = {(SI , (), ∗ || start)}∗A. If (S, τ, ∗ ||C)
and (S, τ ′, ∗ ||D) are clauses in N , and INS,τ and INS,τ ′ are the respective state clause
interpretations, then INS,τ = INS,τ ′ .

Proof. By assumption, there are clauses (S, τ, ∗ ||C) and (S, τ ′, ∗ ||D) in N . According
to Remark 4.25, it holds that (S, τ, ∗ || start) ∈ N and (S, τ ′, ∗ || start) ∈ N . All state
clauses are the result of inferences starting with these two start clauses. Both refer to
the same state S, which means the rules of W make the cores of the inferred clauses
identical in both cases: {C|(S, τ, ∗ ||C) ∈ NS,τ} = {D|(S, τ ′, ∗ ||D) ∈ NS,τ ′}. Since the
interpretation construction actually works only with the cores of the clauses in NS,τ and
NS,τ ′ , we have that INS,τ = INS,τ ′ .

As a consequence of Lemma 4.31, we drop the path in the index of state clause
interpretations, and we write INS to denote one of the interpretations INS,τ .

We now repeat the refutational-completeness result of resolution in our context of
the W calculus and labeled clauses.

Lemma 4.32. Let S be a specification and N = {(SI , (), ∗ || start)}∗W. If N does not
contain a clause of the form (S′, τ ′, ∗ ||⊥), then INS |= C for all (S, τ, ∗ ||C) ∈ N .

Proof. Suppose the contrary, that is, there is a minimal clause (S, τ, ∗ ||C) ∈ N labeled
with S such that IN,S 6|= C. It holds that C 6= ⊥ by assumption, so C has a maximal
literal L. We can distinguish between the following cases:

• L is positive, L = P :

– First assume (S, τ, ∗ ||C) = (S, τ, ∗ ||C ′ ∨ P ∨ P ). Then there must be an
inference using Factoring, yielding the clause (S, τ, ∗ ||C ′ ∨ P ) whose core is
still false under INS and also smaller than (S, τ, ∗ ||C), a contradiction.

– The other possibility is that (S, τ, ∗ ||C) = (S, τ, ∗ ||C ′ ∨ P ) with P being
strictly maximal. In addition, we have I(S,τ,∗ ||C) 6|= C ′ ∨ P in the interpreta-
tion construction of INS . Consequently, δ(S,τ,∗ ||C) = {P} and INS |= C ′ ∨ P ,
making C actually true under INS , again a contradiction.
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• L is negative, so L = ¬P and (S, τ, ∗ ||C) = (S, τ, ∗ ||C ′ ∨ ¬P ). Since it holds
that IN,S 6|= C ′ ∨ ¬P , there must be the case that P ∈ INS . Therefore, there
is a clause (S, τ, ∗ ||D ∨ P ) with δ(S,τ,∗ ||D∨P ) = {P} and (S, τ, ∗ ||C ′ ∨ ¬P ) �
(S, τ, ∗ ||D∨P ). We can apply superposition with premises (S, τ, ∗ ||C ′ ∨¬P ) and
(S, τ, ∗ ||D ∨ P ). This yields (S, τ, ∗ ||C ′ ∨D). We have that INS 6|= C ′ ∨D. This
and (S, τ, ∗ ||C ′ ∨ ¬P ) � (S, τ, ∗ ||C ′ ∨D) contradict the assumption.

Lemma 4.32 says that for each clause that can be derived with W, we can construct
a corresponding state clause interpretation that satisfies the propositional cores of the
clauses, barring the existence of a clause with bottom as its core. We now define the stan-
dard interpretation of a specification, which consists of the state clause interpretations.
Let S be a specification and N := {(SI , (), ∗ || start)}∗W. The standard interpretation is
(VS, TS, IN ) with IN being defined as

IN := {(S, INS )|S ∈ VS}.

The following theorem states that (VS, TS, IN ) is a correctly defined interpretation ac-
cording to Definition 4.16 and possibly a model according to Definition 4.18.

Theorem 4.33. Let S = (Π, SI ,C, TU , TR) be a specification. Furthermore, we set
N := {(SI , (), ∗ || start)}∗W. Then the following holds:

(i) (VS, TS, IN ) is an interpretation of S.

(ii) If N does not contain a clause of the form (S, τ, ∗ ||⊥), then (VS, TS, IN ) is a model
of S.

Proof. Let S ∈ VS. There is a clause (S, τ, ∗ || start) ∈ N by Theorem 4.28. By the
Units and Constraints Creation rules of W we have

• (S, τ, ∗ ||L) ∈ N for each L ∈ S, and

• (S, τ, ∗ ||C) ∈ N for each C ∈ cnf (C).

By assumption and Lemma 4.32, it first holds that

INS |= L for each L ∈ S,

which means that (VS, TS, IN ) is indeed an interpretation of S. Moreover,

INS |= C for each C ∈ cnf (C),

which means that INS |= C, and (VS, TS, IN ) is thus a model of S.

4.4 Properties of PIDL Specifications

As we have seen in Chapter 2, the correctness of configuration systems is embodied by a
number of properties, some of which are domain specific and some are domain agnostic.
In the following, we show how such properties of configuration systems can be seen as
properties of their corresponding PIDL specifications. Once expressed in the language
of our logic, verification of these properties can be done to enable us to draw conclusi-
ons about the modeled configuration systems. We discuss how to formulate properties
in PIDL, assuming a specification S with respect to a configuration system. All of
the following properties are decidable because of the finiteness of PIDL interpretations
(Theorem 4.40).
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Soundness. We call a specification PIDL S sound if it has a model. According to
Definition 4.18, this means that there are propositional assignments that satisfy the
states in VS as well as the constraints C, that is, each S of VS is consistent with C. This
corresponds to domain consistency of configuration systems, which is about consistency
properties that are specific to the domain of the the systems, such as compatibility of
parts or decision cardinalities. We can encode those properties into the constraints C
as propositional formulas. The essential question to ask is if there is a state S that is
reachable from the initial state SI , and S ∪C |= ⊥, in which case the specification is not
sound. If no such state can be reached, the specification is sound. This can be answered
by constructing and inspecting the state graph GS, which is finite. From the point of
view of the W calculus, this means whether we can derive a clause (S, τ, ∗ ||⊥) from the
initial start clause (SI , (), ∗ || start) (Corollary 4.29).

Example 4.34. Assume the following parts of a specification S:

SI = {A,B}

C = {A→ ¬E}

TR= {A 1 {C},

C ∧B  2 {E}}
We construct the state graph GS out of the given information. First, it holds that rule
transition 1 can be applied to the initial state SI . We get the rule transition

SI →1 S1

with
S1 = SI / E1 = {A,B} / {C} = {A,B,C}.

according to the definitions of rule transitions (Definition 4.6) and updates (Defini-
tion 4.4). From S1, there is a rule transition using transition 2 with the following
outcome:

S1 →2 S2

with
S2 = S1 / E2 = {A,B,C} / {E} = {A,B,C,E}.

However, state S2 is inconsistent with the constraints C, that is,

S2 ∪ C = {A,B,C,E} ∪ {A→ ¬E} |= ⊥.

We can say that S is not sound, because an inconsistent world, represented by S2, can
be reached from the initial state.

Specification Completeness. Given a configuration system, one would want to be
able to configure all the products that satisfy the constraints with that system. Such a
system is then called complete. We can establish a corresponding notion of completeness
for PIDL specifications. A specification is complete with respect to a set Π′ ⊆ Π of
propositional variables if for every set M of propositional literals with

• vars(M) = vars(Π′), and

• M ∪ C 6|= ⊥,

there exists a state S ∈ VS such that
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• M ⊆ S,

• S ∪ C 6|= ⊥, and

• S is rule terminal.

Thus, completeness with respect to a set Π′ of propositional variables means that for
each literal set formed from Π′ and consistent with the constraints, a consistent state can
be reached in which the literals are contained. In other words, a valid configuration of
the variables can be found in the reachable states. Since we only consider completeness
with regard to states that corresponds to states visible to the user in the configuration
process, the states have to be rule terminal.

Example 4.35. Assume the following parts of a specification S:

SI = {¬A}

C = {B ↔ D}

TU= {¬A→u1 {A,B},

¬A→u2 {A,C}}

TR= {B  r1 {D},

C  r2 {¬B,¬D}}
The initial state SI is rule terminal, and both user transitions u1 and u2 can be applied
to it. With u1, we get

SI →u1 S1

where
S1 = SI / Eu1 = {¬A} / {A,B} = {A,B}.

From S1, a rule transition using r1 is possible, leading to

S1 →r1 S2

with
S2 = S1 / Er1 = {A,B} / {D} = {A,B,D}.

Applying u2 to SI gives
SI →u2 S3

where
S3 = SI / Eu2 = {¬A} / {A,C} = {A,C}.

Finally, rule transition r2 can be applied to S3:

S3 →r2 S4

with
S4 = S3 / Er2 = {A,C} / {¬B,¬D} = {A,¬B,C,¬D}.

The corresponding paths are
SI →u1 S1 →r1 S2

and
SI →u2 S3 →r2 S4.
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The rule-terminal states are SI , S2, and S4. The specification is complete with respect to,
for example, the set {B,D} of propositional variables, because all the literal combinations
of the two variables that are consistent with the constraint B ↔ D can be reached at
rule-terminal states: B and D in state S2, and ¬B and ¬D in state S4. On the other
hand, the specification is not complete with respect to the set {B,C}. For example, B
and C is a valid combination, that is, the set {B,C} is consistent with the constraints,
but does not occur in any rule-terminal state.

Metaproperties. A configuration system can have desired metaproperties. For ex-
ample, one such property could state that if decision d is set then decision d’ must
be set as well. We can model scenarios like this with a special kind of reachability,
where metaproperties are translated into appropriate propositional formulas φ, and then
S ∪ C |= φ is checked for all S ∈ VS with S being rule terminal. The state S has to
be rule terminal because the states that are not correspond to the intermediate states
between user decisions and within rule executions in the configuration systems, that is,
states that are not visible to the user. Therefore, it is typically not meaningful to take
those states into consideration when talking about metaproperties.

Example 4.36. Assume the following parts of a specification S:

SI = {C}

C = {¬(A ∧ E)}

TR= {C  1 {¬B},

¬B  2 {A,D}}
Moreover, consider the following metaproperty:

φ = A→ F.

There is a rule transition
SI →1 S1

with
S1 = SI / E1 = {C} / {¬B} = {¬B,C}.

Then, rule transition 2 can be applied to S1,

S1 →2 S2

with
S2 = S1 / E2 = {¬B,C} / {A,D} = {A,¬B,C,D}.

We observe that S2 is rule terminal, which means it is a state that is to be checked for
the metaproperty φ. Since

S2 ∪ C = {A,¬B,C,D} ∪ {¬(A ∧ E)} 6|= A→ F = φ,

the specification does not satisfy the metaproperty. Note that the constraints C are
consistent with all the states appearing in this example, while the rule-terminal state S2

fails to entail the metaproperty.



4.4. Properties of PIDL Specifications 45

Cyclicity. The existence of a cyclic behavior within a configuration run corresponds
to the existence of a simple cycle of length greater than one in the state graph GS. This
means in GS we have

(i) a sequence of transitions
S0 → S1 → · · · → Sn

with n ≥ 2, S1, . . . , Sn being distinct, and

(ii) S0 = Sn.

We require the length of the cycle to be greater than one to filter out the the cycles
containing just one state, which are not interesting in terms of the consistency of the
configuration system modeled. Note that such cycles are dealt with when checking for
rule-terminal states. The cyclicity property can be checked by running a cycle-detection
algorithm on the state graph GS.

Example 4.37. Assume the following parts of a specification S:

SI = {A,¬B,¬C,E}

C = ∅

TU= {A u1 {B}}

TR= {B  r1 {C},

C ∧ E  r2 {¬B,¬C}}
The initial state is rule terminal, so we can apply user transition u1 to it. We get

SI →u1 S1

with
S1 = SI / Eu1 = {A,¬B,¬C,E} / {B} = {A,B,¬C,E}.

From state S1, there is a rule transition using r1.

S1 →r1 S2

where
S2 = S1 / Er1 = {A,B,¬C,E} / {C} = {A,B,C,E}.

S2 entails the condition of rule transition r2, hence

S2 →r2 S3

with
S3 = S2 / Er2 = {A,B,C,E} / {¬B,¬C} = {A,¬B,¬C,E}.

As we can see, S3 = SI , which means we have a cycle consisting of the path

SI →u1 S1 →r1 S2 →r2 SI .

The example shows a cycle that involves user and rule transitions. The occurrence of
user transitions means that in the corresponding configuration system the user can take
a decision that eventually leads back to the state at which the user took the decision. It
depends on the graph context which the cycle is in and the intentions of those who use
the verification to draw further conclusions. We briefly discuss the possible cases and
give examples of possible interpretations, considering a cycle of the above form, that is,
a cycle containing user and rule transitions:

S0 → S1 → · · · → Sn, n ≥ 2, S1, . . . , Sn distinct, S0 = Sn.
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• There is a state Si with i ∈ {1, . . . , n} such that Si is rule terminal and there is a
user transition Si → S that is not part of the cycle.

This represents the case in which the user can avoid the cycle by taking a different
decision. The resulting PIDL transition would lead away from the cycle. One
could then interpret the cycle as reflecting a wanted mechanism to let the user
enter their input a second time after they have selected an option that is not
considered appropriate or correct at that state of the configuration.

• There is a state Si with i ∈ {1, . . . , n} such that Si is not rule terminal and there
is a rule transition Si → S that is not part of the cycle.

We can observe two possible subcases.

(i) The rule transition leads to another rule-terminal state that is outside the
cycle. This would violate the property of rule confluence, which is explained
further below. Violation of rule confluence basically means that a different
order of rule executions results in different rule-terminal states. This is usually
seen as an inconsistency in the configuration system.

(ii) The rule transition leads to another cycle consisting of rule transitions only
if (i) is not the case. Because of the finiteness of the state graph of the
specification (Theorem 4.40), the path starting from Si with the rule transition
must eventually lead to a cyclic path where we only encounter states that
are not rule terminal if we do not reach a rule-terminal state at all. Cycles
consisting of only rule transitions are typically seen as an inconsistency in the
corresponding configuration system.

• There is no state as specified in the above two cases. This means there is no way
to exit the cycle. As in all cases, it is left to the engineers of the configuration
systems to interpret and evaluate such scenarios.

We give an example of a cycle in which only rule transitions are involved. Such cycles re-
present a cyclic behavior in the configuration system’s rule base and are usually regarded
as inconsistencies.

Example 4.38. Consider the following parts of a specification S:

SI = {¬A,¬B}

C = ∅

TU= {¬A u1 {A,C}}

TR= {C  r1 {B},

A ∧B  r2 {¬C}}

A ∧ ¬C  r3 {¬B,C}
The initial state is rule terminal and implies the user transition u1.

SI →u1 S1

where
S1 = SI / Eu1 = {¬A,¬B} /u1 {A,C} = {A,¬B,C}.

Rule transition r1 can be applied to S1:

S1 →r1 S2
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with
S2 = S1 / Er1 = {A,¬B,C} / {B} = {A,B,C}.

There is a rule transition from S2 to S3 using r2:

S2 →r2 S3

where
S3 = S2 / Er2 = {A,B,C} / {¬C} = {A,B,¬C}.

Applying rule transition r3 to S3 gives us

S3 →r3 S4

with
S4 = S3 / Er3 = {A,B,¬C} / {¬B,C} = {A,¬B,C}.

With S4 = S1, we have a cycle consisting of the path

S1 →r1 S2 →r2 S3 →r3 S1.

Confluence. Again, confluence properties of the configuration system are expressed
as properties of the state graph GS of the corresponding specification S, which can be
identified by graph-based algorithms. We distinguish between two kinds of confluence.
The state graph GS is

• rule confluent if for each state S ∈ VS the next rule-terminal state S′ ∈ VS that
can be reached via a sequence of rule transitions and that is not S itself is unique,

• user confluent if for for each pair of rule-terminal states S, S′ ∈ VS it holds that if S
and S′ are reachable from the initial state SI using the same set of user transitions,
then S = S′.

Example 4.39. We show small examples of specifications that are confluent and speci-
fications that violate the confluence property.

• Consider the following parts of a rule-confluent specification S1:

SI = {A,C}

C = ∅

TR= {C  1 {B,E},

A ∧ C  2 {F}}
We begin with a rule transition using transition 1 on the initial state:

SI →1 S1,

where
S1 = SI / E1 = {A,C} / {B,E} = {A,B,C,E}.

Then, there is a rule transition using transition 2,

S1 →2 S2,

with the resulting state

S2 = S1 / E2 = {A,B,C,E} / {F} = {A,B,C,E, F},
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which is rule terminal.

In the initial state, there is also the possibility of applying rule transition 2, giving
us

SI →2 S3,

with
S3 = SI / E2 = {A,C} / {F} = {A,C, F}.

State S3 entails transition 1, where the updated state is again S2:

S3 →1 S2,

with
S2 = S3 / E1 = {A,C, F} / {B,E} = {A,B,C,E, F}.

This means from the initial state SI , all possible applications of rule transitions
lead to the same rule-terminal state S2:

SI →1 S1 →2 S2, and

SI →2 S3 →1 S2.

Thus, the above specification S1 is rule confluent.

• The following specification S2 violates rule confluence and its relevant components
are:

SI = {A,¬B}

C = ∅

TR= {¬B  1 {C,¬F},

A 2 {B}}
There is a rule transition using transition 1 from the initial state:

SI →1 S1

with
S1 = SI / E1 = {A,¬B} / {C,¬F} = {A,¬B,C,¬F}.

This is followed by applying transition 2 on S1:

S1 →2 S2

where
S2 = S1 / E2 = {A,¬B,C,¬F} / {B} = {A,B,C,¬F}.

S2 is rule terminal. At the same time, transition 2 can be applied to the initial
state as well:

SI →2 S3

where
S3 = SI / E2 = {A,¬B} / {B} = {A,B},

also a rule-terminal state. Consequently, we have two possible and different rule-
terminal states that can be reached from the initial state by an exhaustive appli-
cation of the rule transitions:

SI →1 S1 →2 S2, and

SI →2 S3.

This means the specification S2 is not rule confluent.
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• Consider the following specification S3, which is user confluent:

SI = {¬A,¬C}

C = ∅

TU= {¬A u1 {A},

¬C  u2 {C}}

TR= {A ∧ C  r1 {B}}
There is a transition using u1 to the initial state,

SI →u1 S1

with
S1 = SI / Eu1 = {¬A,¬C} / {A} = {A,¬C}.

From there, we can apply user transition u2:

S1 →u2 S2

with
S2 = S1 / Eu2 = {A,¬C} / {C} = {A,C}.

S2 entails rule transition r1:
S2 →r1 S3

where
S3 = S2 / Er1 = {A,C} / {B} = {A,B,C}.

If user transition u2 is applied to the initial state, we get

SI →u2 S4

with
S4 = SI / Eu2 = {¬A,¬C} / {C} = {¬A,C}.

S4 is rule terminal, and user transition u1 can be applied to it, which leads to the
known state S2:

S4 →u1 S2

with
S2 = S4 / Eu1 = {¬A,C} / {A} = {A,C}.

As can be seen above, the rule-terminal state S3 can be reached from S2 with
transition r1.

We observe that the rule-terminal state S3 is reachable from the initial state SI via
two possible paths, both involving the user transitions u1 and u2. In one path, u1

is executed before u2, while the reverse takes place in the other path. The paths
show that it does not matter in which order the user transitions are applied. In
both cases, the same rule-terminal state S3 is reached:

SI →u1 S1 →u2 S2 →r1 S3, and

SI →u2 S4 →u1 S2 →r1 S3.

It follows that specification S3 is user confluent.
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• We can make the previous example break user confluence by introducing a slight
change. Assume the following specification S4:

SI = {¬A,¬C}

C = ∅

TU= {¬A u1 {A},

¬C  u2 {C}}

TR= {A ∧ ¬C  r1 {B}}
The difference to S3 is that rule transition r1 has condition A ∧ ¬C.

We apply user transition u1 to SI :

SI →u1 S1,

where
S1 = SI / Eu1 = {¬A,¬C} / {A} = {A,¬C}.

Applying r1 to S1 yields
S1 →r1 S2

with
S2 = S1 / Er1 = {A,¬C} / {B} = {A,B,¬C}.

S2 is rule terminal. There is a user transition from S2, using u2:

S2 →u2 S3

with
S3 = S2 / Eu2 = {A,B,¬C} / {C} = {A,B,C}.

This is the same rule-terminal state that is reached in the example of S3. The
following shows that this time we eventually get a different rule-terminal state
when we apply user transition u2 to the initial state:

SI →u2 S4

where
S4 = SI / Eu2 = {¬A,¬C} / {C} = {¬A,C}.

S4 is rule terminal, user transition u1 can be applied:

S4 →u1 S5

with
S5 = S4 / Eu1 = {¬A,C} / {A} = {A,C}.

State S5 is rule terminal. We see that it is different from the other rule-terminal
state S3. The paths are the following:

SI →u1 S1 →r1 S2 →u2 S3, and

SI →u2 S4 →u1 S5.

Both paths have the user transitions u1 and u2, but the order in which they are
applied is different, which leads to two distinct rule-terminal states. Therefore, S4

is not user confluent.
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The properties mentioned in this section are decidable for PIDL, which follows from
the finiteness of the semantics of a PIDL specification:

Theorem 4.40. The components VS and TS of a PIDL interpretation are finite.

Proof. A PIDL state S is a finite set of propositional literals by Definition 4.3. This is
not changed by the updates in the transitions since the update sets are also finite sets
of literals. The number of possible states is bounded because the set of propositional
variables Π is finite. Hence, the state space VS is a finite set. This and the finite number
of transitions TR and TU mean that the transition space TS is finite as well.

Theorem 4.41. Let S = (Π, SI ,C, TU , TR) be a PIDL specification. The state space
VS has worst-case space complexity O(3|Π|).

Proof. There are three possibilities for a propositional variable P of Π with respect to its
presence in a state of VS: As a literal P , as a literal ¬P , and not present at all. Hence,
there are O(3|Π|) possibilities a state can be constructed.

4.5 Translating DOPLER

Before automated verification of a configuration system with PIDL can happen, one
needs to determine the relevant components of the system and then express them with
the syntactical means we have presented earlier in this chapter. In this section, we
demonstrate how we can use PIDL to represent a DOPLER configuration instance. We
again work with the example of a DOPLER model shown in Figure 2.2 in Chapter 2
and go through its elements and the domain constraints, and explain how to formulate
these in the language of PIDL, which means deriving a PIDL specification S from the
DOPLER model.

Considering what we learnt about the DOPLER system in Chapter 2, we identify
the following aspects that should be the subject of the modeling with PIDL:

• Decisions,

• assets,

• DOPLER functions,

• visibility,

• rules,

• user interaction,

• the initial state, and

• properties.

Decisions in DOPLER take the form of variables and are the basic unit to influence how
the products should look like. Assets are the parts that can be used to construct the final
product. Their inclusion in the product usually depends on the decisions. DOPLER uses
a number of functions such as containsAny in its expressions to formulate statements
about decisions in the rule and visibility conditions. Decision variables can be set by
the user, but only if the variables are visible to the user. Sometimes it is useful to hide
variables, so DOPLER offers visibility as a means to control which decisions can be taken
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by the user and which cannot. Rules of the system enforce domain-specific restrictions
by automatically setting decisions depending on the current values of other decision
variables. Besides rules, as already mentioned, users can take decisions according to
their preferences. We also have to somehow express what the initial configuration state
is, which is the state before any user interaction and rule execution. Each of the above
item is considered in the modeling of a DOPLER instance in PIDL. In the following,
we show how the DOPLER elements are translated into PIDL and give short examples
referring to the DOPLER model described in Chapter 2.

Decisions. There are two types of decisions in DOPLER, Boolean decisions and enu-
meration decisions. For each Boolean decision d, we introduce two propositional variables
in Π of the specification S.

DOPLER PIDL
Boolean decision d d_Yes, d_No ∈ Π

stainlessSteel stainlessSteel_Yes, stainlessSteel_No ∈ Π

We create two propositional variables by adding the suffixes Yes and No to the
decision variable name, where d_Yes means that the value of d is true, and d_No
means that the value is false. One might argue that since d is a Boolean variable, one
propositional variable might be sufficient to model it in PIDL. The reason we choose to
have two variables is that we can express the fact that a certain decision has not been
set yet that way. For example, some transition might require that certain decisions have
no value, which can be expressed with ¬d_Yes ∧¬d_No. This is not possible by having
only one variable representing the decision in PIDL.

With two variables explicitly expressing the two possible values of a DOPLER Bool-
ean decision d, it is necessary to take the fact that d cannot be simultaneously true and
false into account in PIDL. We do this by encoding this mutual-exclusivity property into
the states and transitions, that is, we make sure that this property is not violated in the
initial state and it is not violated by the transition updates. This is discussed in more
detail when we explain the translation of user and rule actions. An alternative would be
to include ¬(d_Yes ∧ d_No) in the constraints C. However, if combined with relaxing
the above requirements on the states and transitions, we effectively disallow the changing
of Boolean decisions: If a state has d_Yes(d_No), a transition with just d_No(d_Yes)
in its update will lead to an inconsistent state.

Note that, in general, any identifier can be used for the propositional variables. For
our purposes, we choose to use names that are derived from the objects in the DOPLER
model they represent and that indicate their purpose intuitively.

Enumeration decisions in DOPLER can have multiple values to choose from. For
each option o of an enumeration decision d, we introduce a propositional variable d_o
in PIDL. The variable d_o means option o of decision d is selected.

DOPLER PIDL
Enumeration decision d with options o1, o2, ..., on d_o1, d_o2, . . . , d_on ∈ Π

casterType with options slab, bloom, beam casterType_slab,
casterType_bloom,

casterType_beam ∈ Π

The cardinalities of enumeration decisions, that is, the number of options that can be
selected, can be expressed as constraints as shown later when we talk about translating
inconsistencies of DOPLER models.
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Assets. Each asset a in DOPLER is represented by a propositional variable a in PIDL.
The presence of such a variable a then means that asset a is included in the final product.
An asset inclusion condition A of an asset a is translated to a logical formula φ, and
the formula φ → a is added to the constraints C. This way, it becomes clear what
components are part of the current configuration at each state. Finally, inclusion and
exclusion relationships between assets are modeled with implications, also contained in
the constraints C: A formula of the kind a→ b is to be interpreted as asset a including
asset b, and a formula a→ ¬b means a excludes b.

DOPLER PIDL
Asset a a ∈ Π

baleAdapter baleAdapter ∈ Π

Inclusion condition A of a φ→ a ∈ C

φ ∈ FΠ, logical translation of A
containsOnly(casterType, slab) (casterType_slab∧

¬casterType_bloom∧
¬casterType_beam →

baleAdapter) ∈ C

a includes b a→ b ∈ C
a excludes b a→ ¬b ∈ C

baleAdapter includes pCalibthermometer baleAdapter → pCalibthermometer ∈ C
calibrator excludes pCalibthermometer calibrator → ¬pCalibthermometer ∈ C

DOPLER functions. The DOPLER functions are Boolean functions that check which
values are currently assigned to certain decisions. We translate each such function into
its corresponding logical formula. The resulting formulas are usually contained in the
condition part of transitions, and in the constraints to express asset inclusion and rela-
tionships.
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DOPLER PIDL
containsOnly(d, oi) ¬d_o1 ∧ ¬d_o2 ∧ · · · ∧ d_oi ∧ · · · ∧ ¬d_on

enumeration decision d with options
o1, o2, ..., on
containsOnly(casterType, beam) ¬casterType_slab∧

¬casterType_bloom∧
casterType_beam

containsAny(d, oi1, oi2, ..., oim) d_oi1 ∨ d_oi2 ∨ · · · ∨ d_oim
containsAny(casterType, slab, beam) casterType_slab ∨ casterType_beam

containsAll(d, oi1, oi2, ..., oim) d_oi1 ∧ d_oi2 ∧ · · · ∧ d_oim
containsAll(casterType, slab, beam) casterType_slab ∧ casterType_beam

isTaken(d) d_Yes ∨ d_No
Boolean decision d

isTaken(stainlessSteel) stainlessSteel_Yes ∨ stainlessSteel_No

isTaken(d) d_o1 ∨ d_o2 ∨ · · · ∨ d_on
enumeration decision d with options
o1, o2, ..., on

isTaken(casterType) casterType_slab∨
casterType_bloom∨
casterType_beam

There is one more function that is used in DOPLER models, namely the setValue
function. It assigns values to decision variables in the action part of the system rules.
We provide the translation of this function further below when we talk about how to
deal with rule actions in PIDL.

Visibility. We express the visibility of decisions by introducing a propositional visibi-
lity variable visible_d for each decision d, for the fact that d is visible. Moreover, we
introduce a formula φ → visible_d in the constraints C to model the visibility mecha-
nism of DOPLER, where the subformula φ is a propositional formula and, possibly using
the logical translations of DOPLER functions as shown above, represents the visibility
condition of decisions: If the condition φ is true, then the decision is visible.

DOPLER PIDL
Decision d visible_d ∈ Π

hydraulicCylinder visible_hydraulicCylinder ∈ Π

Visibility condition C of d φ→ visible_d ∈ C

φ ∈ FΠ, logical translation of C
containsOnly(casterType, (casterType_slab∧

slab) && !taperUnit ¬casterType_bloom∧
¬casterType_beam∧
taperUnit_No →

visible_hydraulicCylinder) ∈ C

Rules. We transform a DOPLER rule if <condition> then <action> into a rule
transition in TR. The <condition> part of the rule is translated into a formula over
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Π, which is the condition χ of the transition. Occurrences of DOPLER functions are
translated according to the above list.

The <action> part assigns values to decisions. These assignments are mapped to
propositional literals in the update set E of the transition, where a distinction has to be
made in terms of the type of the decisions involved. If the decision d is Boolean, then
the action expression is d = v, where v is true or false. As for the translation,this means
that either d_Yes and ¬d_No, or ¬d_Yes and d_No are added to E. The former case
says that d has been assigned the value true, while the latter means d has value false. In
both cases, we need two literals to express the assignments, which is necessary because
of the mutual exclusivity of Boolean values, as mentioned earlier. If the decision d is an
enumeration decision, the action is of the form setValue(d, oi1, ..., oin), where oi1,
..., oin are valid options of the decision. Here, we include the corresponding literals
d_oi1 , . . . , d_oin in E. The resulting transition χ E then becomes an element of the
rule transitions TR.

DOPLER PIDL
<condition> χ ∈ FΠ, logical translation of <condition>

d = true in <action> d_Yes,¬d_No ∈ E
d = false in <action> ¬d_Yes, d_No ∈ E

setValue(d, oi1, ..., oin) d_oi1 , . . . , d_oin ∈ E
if <condition> then <action> χ E ∈ TR

!gapChecker then gapChecker_No  
taperUnit = true {taperUnit_Yes,¬taperUnit_No} ∈ TR

if molder then molder_Yes  {casterType_bloom} ∈ TR
setValue(casterType, bloom)

User interaction. Decision making that is caused by the user is represented by user
transitions χ E in PIDL. The χ part is a formula expressing what condition must be
fulfilled so that the user can set a variable. In our framework, χ is always the following
statement: The decision is visible and it has not been taken yet. The update set E then
contains the literals that represent a possible variable assignment, as done in the rule
transitions. That means that, depending on the type of the decision, from a decision
we derive several user transitions to cover each possible case in which the user assigns
certain values to the decision.

DOPLER PIDL
Boolean decision d χ = visible_d ∧ ¬d_Yes ∧ ¬d_No

E = {d_Yes,¬d_No}
E′ = {¬d_Yes, d_No}

χ E ∈ TU , χ E′ ∈ TU
stainlessSteel χ = visible_stainlessSteel∧

¬stainlessSteel_Yes∧
¬stainlessSteel_No

E = {stainlessSteel_Yes,¬stainlessSteel_No}
E′ = {¬stainlessSteel_Yes, stainlessSteel_No}

χ E ∈ TU , χ E′ ∈ TU
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In the case of a Boolean decision d, we get two user transitions. One transition
represents the user setting d = true by d_Yes, the other transition represents the user
decision d = false by d_No in the update sets. Note that by also including ¬d_No
and ¬d_Yes in the respective update sets we make sure the invariance that Boolean
decisions can only have one value at the same time is preserved after an update.

Translations of enumeration decisions work in the same way except that the update
sets have to correspond to the cardinality of the decisions.

The initial state. The initial state SI of literals represents the initial configuration
state. Any combination of literals is possible as the initial state as long as the mutual
exclusivity of Boolean decisions is not violated. One obvious possibility is to include
the negations of all variables representing the decisions in the initial state, to express a
situation in which nothing has been selected yet.

Inconsistencies. We showed some types of inconsistencies with the help of an example
DOPLER model in Section 2.2.2. We now discuss how they can be expressed and dealt
with in the context of PIDL.

• Domain consistency : We consider two prominent cases of domain consistency of
DOPLER models. First, there are cardinality restrictions on enumeration decisi-
ons, stating how many options can be selected. We would typically translate these
restrictions as propositional formulas over Π involving the corresponding variables
representing the decisions and include the formulas in the set of constraints C. For
example, with

¬(casterType_slab ∧ casterType_bloom ∧ casterType_beam) ∈ C

we express that not all three options of the decision casterType can be selected
at the same time. In fact, the cardinality of that decision, which states that only
one option may be selected, necessitates three more such formulas, to forbid the
selection of two options:

¬(casterType_slab ∧ casterType_bloom) ∈ C,

¬(casterType_slab ∧ casterType_beam) ∈ C, and

¬(casterType_bloom ∧ casterType_beam) ∈ C.

The second type of domain-specific constraints we mention here are asset compati-
bilities. There can be assets whose inclusion imply further inclusion of other assets,
and there can also be exclusions of assets by the inclusion of some assets. We have
already shown above how to translate these relationship properties of assets as
formulas in the set of constraints C.

• Metaproperties: As an example of a metaproperty, the DOPLER instance from
Chapter 2 requires that if the decision stainlessSteel has been taken, it is ex-
pected that the values of both of the decisions casterType and hydraulicCylinder
are assigned as a consequence. We write this as the following propositional formula:

stainlessSteel_Yes ∨ stainlessSteel_No
→

(casterType_slab ∨ casterType_bloom ∨ casterType_beam)∧
(hydraulicCylinder_Yes ∨ hydraulicCylinder_No).
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Table 4.1: Properties in the DOPLER model example.
Number of States

Total 99
Decision Cardinalities 12

Asset Inclusion Conflicts 12
Violation of Metaproperties 7

Cycle *detected*

Then it can be checked for each rule-terminal state in the state graph if the above
formula is entailed by the state.

• Cyclicity : The state graph obtained from the specification of the DOPLER model
allows the treatment of the cyclicity property just as described in Section 4.4.

• Confluence: Likewise, we can check confluence of a DOPLER instance by exami-
ning confluence of the state graph of its corresponding specification as described
in Section 4.4.

4.6 Experiments

The previous sections expound the foundations of PIDL as a logic for representing rule-
based configuration systems. As a first step in gaining practical experience, we have im-
plemented a prototype program that, with the exception of confluence, verifies DOPLER
models with respect to the mentioned properties, and that is based on the theoretical
framework provided by PIDL. Given a DOPLER configuration instance, the program
derives a PIDL specification S and constructs the major part of the corresponding in-
terpretation, that is, the state graph GS. Its reasoning procedure to compute the states
is based on the W calculus. We then did experiments on the DOPLER example model
described in Chapter 2 and a set of randomly generated configuration problems, the
results of which we present in this section.

The example DOPLER instance as depicted in Chapter 2 contains a representative
range of properties that are generally interesting with respect to the correctness of con-
figuration systems. In the instance, there are certain errors that one would typically like
to identify by verification and that are explained in Section 2.2.2: Violation of decision
cardinalities, conflicting asset inclusions, cycles in the rule base, and metaproperties. We
translated the configuration instance into a format readable for our implementation and
then let the tool create the corresponding specification and its state graph. The con-
struction of the states effectively resembles a SAT problem for each state, based on the
rules of W. Domain-specific inconsistencies, that is, states with incorrect cardinalities,
asset inclusions, and violation of metaproperties, are found during the computation of
the states. Inconsistency concerning the presence of a cycle is dealt with by a standard
approach based on depth-first search that examines the state graph for cycles. We ran
the instance on a machine with an Intel Xeon E5-4640 at 2.4 GHz and 512 GB of RAM,
which took 0.037 seconds. The results are recorded in Table 4.1. Out of the 99 generated
states, decision cardinality and asset inclusion conflicts can both be found in 12 states
each. Violation of metaproperties occurs in 7 states. The built-in cycle in the DOPLER
model is detected by the program.

Running the prototype on the DOPLER instance illustrates how the PIDL approach
can verify important properties of the system automatically. Because the size of this
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example problem with 8 decisions and 10 rules is rather limited, we additionally carried
out experiments on problems that are generated randomly. Those problems are divided
into three groups in which problems consist of 20, 60, and 100 Boolean decisions re-
spectively. Each group contains 20 single randomly generated problems. The properties
that are checked here are domain consistency and cycles. In each problem instance, we
have rules of the following format:

if (d || [!]e && [!]f) then g = [true/false],

where d, e, f, and g are pairwise distinct Boolean decisions. The expression in the
condition part contains a disjunction and a conjunction. There can be negation signs
before e and f, and in the action part g is assigned one of the Boolean values. We set
a 1:1.5 ratio of variables to rules. At most half of the variables are visible, and visible
variables do not appear in the action part of the rules in order to have a minimum degree
of involvement of rule transitions in the generation of states. This means the number of
visible variables, that is, variables that can be set by user transitions, vary from instance
to instance. Moreover, we simulated domain-consistency properties by including random
formulas of the type

([!]d || [!]e || [!]f)

in the constraints C of the respective specifications. The ratio of variables to constraints
is 1:1.

The results of the experiments on random DOPLER models are shown in Table 4.2.
A run is aborted with the result “inconsistent” if it detects a state in which the constraints
are broken. If an instance turns out to have no domain inconsistency, it is given how
many states the state graph has and whether a cycle is in the model. For example,
the result 1079/Y of the instance rnd_2 means that there were 1079 states in total and
a cycle was found in the instance. Only the group of problems with 20 variables had
instances that are domain consistent. The runs of those problems mostly took less than
1 second. If we look at the category of 60 variables, the experiments noticeably started
to have longer runtimes between a couple of seconds and as much as over 7 minutes.
Every instance in that group is inconsistent. The group of 100 variables shows a similar
picture, except for 4 runs that did not finish before a timeout of 12 minutes.

We see that some randomly generated problems can be difficult for the prototype
to solve. More refined techniques on the implementation side, in particular those which
identify and exploit the structure of the problems might help to reduce the search space,
which potentially has 3v+a states, where v is the number of visible decisions and a is the
number of decisions in the action part of the rules. However, the experiments indicate
that PIDL can in principle be a useful basis for the automated verification of rule-based
configuration systems.
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Table 4.2: Generated random DOPLER models.
20 variables, 30 rules

Name Visible Variables Time Results
rnd_1 5 0m0.05s inconsistent
rnd_2 3 0m1.00s 1079/Y
rnd_3 6 0m1.45s inconsistent
rnd_4 4 0m0.07s inconsistent
rnd_5 4 0m0.05s inconsistent
rnd_6 6 0m0.04s inconsistent
rnd_7 3 0m0.03s inconsistent
rnd_8 2 0m0.05s inconsistent
rnd_9 3 0m0.09s inconsistent
rnd_10 2 0m0.26s 211/N
rnd_11 3 0m0.04s inconsistent
rnd_12 2 0m0.04s 9/N
rnd_13 5 0m0.20s inconsistent
rnd_14 7 0m0.06s inconsistent
rnd_15 3 0m0.02s inconsistent
rnd_16 5 0m1.11s inconsistent
rnd_17 3 0m0.11s inconsistent
rnd_18 4 0m0.24s inconsistent
rnd_19 3 0m0.61s 558/Y
rnd_20 4 0m0.43s inconsistent

60 variables, 90 rules
Name Visible Variables Time Results
rnd_21 16 0m0.47s inconsistent
rnd_22 10 0m0.61s inconsistent
rnd_23 11 0m4.38s inconsistent
rnd_24 12 0m2.84s inconsistent
rnd_25 13 7m44.81s inconsistent
rnd_26 14 4m51.23s inconsistent
rnd_27 14 0m0.38s inconsistent
rnd_28 13 0m0.39s inconsistent
rnd_29 15 0m0.51s inconsistent
rnd_30 15 0m0.77s inconsistent
rnd_31 15 0m0.70s inconsistent
rnd_32 14 0m0.30s inconsistent
rnd_33 11 0m1.01s inconsistent
rnd_34 15 0m0.65s inconsistent
rnd_35 12 0m36.00s inconsistent
rnd_36 16 0m0.50s inconsistent
rnd_37 9 0m2.00s inconsistent
rnd_38 14 0m0.40s inconsistent
rnd_39 11 2m13.94s inconsistent
rnd_40 10 0m44.69s inconsistent

100 variables, 150 rules
Name Visible Variables Time Results
rnd_41 24 0m1.55s inconsistent
rnd_42 24 >12m -
rnd_43 25 0m2.42s inconsistent
rnd_44 22 >12m -
rnd_45 18 5m59.85s inconsistent
rnd_46 29 0m0.81s inconsistent
rnd_47 20 0m1.51s inconsistent
rnd_48 22 0m2.84s inconsistent
rnd_49 23 7m15.73s inconsistent
rnd_50 19 0m42.68s inconsistent
rnd_51 26 >12m -
rnd_52 28 0m16.12s inconsistent
rnd_53 21 0m1.28s inconsistent
rnd_54 17 0m0.73s inconsistent
rnd_55 18 0m1.48s inconsistent
rnd_56 25 0m2.18s inconsistent
rnd_57 20 0m1.34s inconsistent
rnd_58 21 >12m -
rnd_59 21 0m1.13s inconsistent
rnd_60 23 0m1.56s inconsistent
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Chapter 5

PIDL+

PIDL formalizes interactive rule-based configuration systems that feature Boolean deci-
sions. In practice, there are also configuration systems that do not only handle Boolean
variables but also work with numbers, depending on the domain, such as the amount
of a certain liquid in liters, the length of a required steel beam, or the number of ex-
pected users of the product. We call variables that are in arithmetic expressions and
that take numerical values arithmetic variables, corresponding to the set X mentioned
in Chapter 3.

In this chapter, we present an extended version of PIDL, called PIDL+, which still
features propositional variables but also additionally contains an arithmetic component.
More precisely, we allow expressions that come from the first-order theory of the reals.
Increasing expressiveness has serious implications for the semantics of the logic. In parti-
cular, we have to define how decisions with respect to numeric variables are represented
while preserving decidability. We do this by a priori bounding the variables relevant to
the configuration flow and considering intervals for arithmetic variables instead of single
values. With PIDL+, configuration systems containing arithmetic constraints can be
represented as admissible specifications. Selections, expressed as simple bounds in the
states, allows to split up the range of user decisions into more compact representati-
ons. Admissible PIDL+ specifications have finite models that, as in PIDL, cover all the
configuration steps that are possible with the given configuration systems, featuring the
same transition principle with user transitions, rule transitions, and rule termination
as seen in PIDL. We discuss the syntax in Section 5.1 and semantics in Section 5.2.
Then, we give a sound and complete algorithm that computes partial models of con-
sistent PIDL+ specifications in Section 5.3, serving as the basis for further verification
procedures with respect to the modeled configuration systems. Properties of admissible
PIDL+ specifications are listed in Section 5.4.

5.1 Syntax

Analogously to PIDL, we encode the relevant elements of a configuration system in a
PIDL+ specification. We first give the formal definition and then provide motivations
to each part of a specification. More detailed explanations are given in the semantics
section, as the meaning of the specification design is best understood in connection with
the semantics of PIDL+. The logic is in particular based on elements from the theory
with respect to the signature Σ as defined in the preliminaries in Chapter 3, which
contains the definitions of the corresponding concepts used in the following definition.



62 5. PIDL+

Definition 5.1. A PIDL+ specification is a seven-tuple S+ = (Π, X, SI , UI ,C, TU , TR),
where

• Π is a finite set of propositional variables,

• X is a finite set of Σ-sorted variables,

• (SI , UI) is called the initial state, where

– UI ⊆ X,

– SI is a finite set of

∗ simple bounds x ◦ c in FΣ(X,Π) and
∗ propositional literals over Π,

• C is a finite set of quantifier-free Σ-formulas in FΣ(X,Π), called the constraints,

• TU is a finite set of tuples Λi ∧ Fi  Ei called user transitions, where

– Λi is a conjunction of simple atoms x◦t over Σ, called the arithmetic condition
of the transition,

– Fi is a conjunction of literals over Π, called the propositional condition of the
transition, and

– Ei is a finite, satisfiable set of simple bounds x ◦ c over Σ and propositional
literals over Π, called the update set of the transition,

• TR is a finite set of tuples Λj ∧ Fj  Ej called rule transitions, where

– Λj is a conjunction of simple atoms x◦t over Σ, called the arithmetic condition
of the transition,

– Fj is a conjunction of literals over Π, called the propositional condition of the
transition, and

– Ej is a finite, satisfiable set of simple atoms x ◦ t over Σ and propositional
literals over Π, called the update set of the transition.

All the transitions in TU and TR have different indices i and j.

Analogously to PIDL, we allow certain relaxations of the way transitions are written:

Convention 5.2. We may omit the index i when writing a transition Λi ∧ Fi  Ei ∈
TU ∪ TR if the exact transition does not matter. In examples, we usually rather write
Λ ∧ F  i E instead of Λi ∧ Fi  Ei when concrete instances of Λ, F , and E are used.
We may also write ui and ri instead of just i as an index in order to identify user and
rule transitions, respectively.

Boolean statements are made with propositional variables from the set Π as previ-
ously done in PIDL. We now additionally have a set X of variables to cover numerical
decisions, which can be over reals and integers. However, further restrictions on the va-
riables’ ranges are made in the kind of specifications we eventually work with, as shown
later in Definition 5.4. Like PIDL, the PIDL+ semantics has states to represent the
states in the configuration process. The difference is that PIDL+ states also contain
arithmetic atoms and a set of variables that is a subset of X. This set contains the
variables that the user has decided on so far. The initial state (SI , UI) is part of the
specification. The set C holds the constraints as usual, which must not be violated by
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any state for the specification to be consistent. We again have two types of transitions,
the user transitions TU and rule transitions TR. If a state satisfies the condition part
Λ ∧ F of a transition tuple, a transition to a new state is done by updating the old
state with the update set E. We have a clear separation between an arithmetic part
Λ and a propositional F part in the conditions. Notice the difference between TU and
TR: In user transitions, the update sets are only allowed to have simple bounds x ◦ c
as occurring atoms, whereas in rule transitions the update sets can have simple atoms
x◦ t, which are more general. This correspondents to the situation we have in real-world
configuration systems: Users can set individual values of variables, but rules can also
assign more complex expressions to variables as their actions.

PIDL+ specifications as defined above describe configuration systems with arithme-
tic. However, to achieve the important property of decidability, it is necessary to restrict
ourselves to a certain class of specifications. We define this class, which we call admissi-
ble specifications, in the following. For this we need to first identify those variables of the
specification that occur in the transitions and can thus have an effect on the transition
dynamics.

Definition 5.3. The transition variables XT of a specification S+ are the set

XT := {x|x ∈ vars(Λ ∧ F  E),Λ ∧ F  E ∈ (TU ∪ TR)}.

Definition 5.4. A specification S+ is admissible if the following holds.

(i) For each x ∈ XT , sort(x) = Z .

(ii) The constraints set C has the following form:

C =

 ∧
xi∈XT

xi ≥ ci ∧ xi ≤ di

 ∪
 ∧
xj∈X′

xj ≈ tj

 ∪ {Φ} ,
where

• ci, di ∈ Z, ci ≤ di, for all xi ∈ XT ,

• tj ∈ TΣ(XT ) for all xj ∈ X ′, where X ′ ⊆ X \XT , and

• Φ is a propositional formula over Π.

(iii) For each Λ ∧ F  E ∈ (TU ∪ TR), it holds that if x ◦ t ∈ E, then x 6∈ vars(t).

Admissible specifications require that variables appearing in transitions are over inte-
gers and bounded by integer constants. The purpose of this is to get finiteness and thus
decidability of the system. We do not allow arithmetic expressions in the constraints
other than the bounds except for equalities xj ≈ tj , where xj is a variable not occurring
in the transitions and tj is a term over the transition variables XT . Each xj has at most
one such equation. These equalities represent calculations of output parameters in the
configuration system that otherwise do not affect the configuration flow. In fact, the
constants occurring in the terms tj may be numbers that go beyond integers, without
influencing the transitions. Propositional constraints are expressed in the formula Φ as
done in the case of PIDL.
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5.2 Semantics

The PIDL+ semantics is similar to that of PIDL in the sense that it is a possible-
worlds semantics with models consisting of states and transitions, with the states being
reachable from the initial state of the specification at hand. The inclusion of arithmetic
makes certain changes necessary. One concerns the structure of states. On top of the
propositional literals known in PIDL, we add simple atoms x ◦ t to express arithmetic
decisions in the configuration system. We understand certain simple bounds x ◦ c as a
compact representation of a number of actual assignments of the variables by the user.
We need to know for each state which variables have been decided by the user. This is
why each state in PIDL+ also has an associated set of variables, called the user variables.
Because of the new structure of states, new definitions of transitions between states are
required. Essentially, the question is what part of the user choices represented by the
current state entails which transitions. This leads to the notion of selections.

We first motivate and then give the definition of states in PIDL+. While doing so, we
lay emphasis on giving intuition rather than being formally strict before we present the
exact definitions. After that we explain and define transitions between states in PIDL+
in the same manner, followed by the definition of interpretations and models of PIDL+
specifications.

5.2.1 States and Transitions

In PIDL, we use propositional literals to make statements about a single state. It can
then be updated by the literals of an update set of a transition. However, the involvement
of arithmetic variables makes some distinct changes to the previous framework necessary.
We start by reviewing a typical situation in the purely Boolean context of PIDL, shown
in Figure 5.1. In a configuration system, a user can assign two values to a Boolean
variable d, which are true or false. As seen in Chapter 4, we model this by using a
propositional variable for each of the two possible decisions, d_Yes and d_No. From
the perspective of the original state, there are two possible successor states with either
d_Yes or d_No in them. This way we cover the full range of possible user input with
respect to the Boolean decision variable d.

Figure 5.1: User decision of a Boolean variable.

What is the situation when dealing with arithmetic user decisions? For a given
arithmetic variable, a user can, in principle, input any integer within the given bounds
of the system. Figure 5.2 depicts the next example, in which x is an arithmetic variable
whose value has been set by a user, that is, we talk about how the successor states of
a user transition in PIDL+ should look like. Assume the user can choose a value for x
that is between 0 and 100. One could represent all the possible user input with respect
to x by assignment atoms x ≈ 0, x ≈ 1, x ≈ 2, . . . , x ≈ 100, one for each successor state.
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This semantics of the user decisions is what we would call a small-steps semantics, in
which each instance x ≈ c of the user decisions manifests itself in a state.

Small-Steps Semantics

The small-steps semantics uses assignments x ≈ t instead of bounds x ◦ t, where
◦ ∈ {<,≤, >,≥}, to represent arithmetic decisions. We sketch the central notions
concerning states and transitions, and show what the adjustments are.

States. In addition to propositional variables, states consist of simple atoms of
the form x ≈ t, where x is an arithmetic variable and t is a Σ-term.

Transitions. The criteria for applying a transition Λ∧S  E to a state S are as
usual: The state has to be consistent, that is,

S ∪ C 6|= ⊥,

and the state has to entail the transition’s condition, that is,

S ∪ C |= Λ ∧ F.

The additional requirement of rule termination for user transitions is defined analo-
gously to the PIDL case, as shown below.

Updates. Assuming a state S and an update set E, the update operator is defined
as

S′ := S / E,

with

S′ := {L|L literal over Π, L ∈ S,L 6∈ E}∪
{L|L literal over Π, L ∈ E}∪
{x ≈ t|x ≈ t ∈ S, x 6∈ varsl(E)}∪
{x ≈ t|x ≈ t ∈ E}.

This means that the update follows the same spirit of Definition 4.4: Propositional
literals are updated exactly as in the PIDL case, and simple atoms from E replace
atoms in S with the same left-hand-side variable x, while atoms from E with fresh
left-hand-side variables are added to the resulting set.

Rule termination. Again, this follows Definition 4.9 of PIDL. A state S is rule
terminal if there is no rule transition Λi ∧ Fi  Ei such that S →i S

′ with S′ 6= S.

The small-steps semantics is a straightforward continuation of the PIDL semantics.
However, the explicit enumeration of user decisions with respect to the arithmetic vari-
ables is not very practical with regard to decision procedures in particular. This is why
we use the big-steps semantics for PIDL+, which offers a more compact representation.
In it, we make use of simple bounds x ◦ c rather than explicit assignment statements. In
the above example, user input with respect to a variable x is expressed with assignments
x ≈ 0, x ≈ 1, x ≈ 2, . . . , x ≈ 100. Instead of dealing with 101 successor states, we define
bounds like x ≥ 0, x < 40 and x ≥ 40, x ≤ 100 as the results of the user decision, yielding
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two successor states (Figure 5.2). We would have two corresponding user transitions, one
having an update set containing x ≥ 0, x < 40 and one having an update set containing
x ≥ 40, x ≤ 100. This informal view is made precise later in Definition 5.28. These two

...

...

...

...

Figure 5.2: Modeling arithmetic user decisions. (1) Explicit representation as assign-
ments. (2) Symbolic representation as bounds.

states then symbolically represent all the instances of x that would occur if assignment
statements were employed. They express the range of all possible decisions that a user
could make in that situation. Figure 5.3 illustrates the difference in representing states
in the two kinds of semantics.

... ...

Figure 5.3: Representation of decisions in the small-steps semantics (dashed) and in the
big-steps semantics (solid).

As before, the transition effects are written in the update set of a transition tuple.
Translating the above example into our framework, the update set E of one user tran-
sition would contain the atoms x ≥ 0, x < 40 and the update set E′ of another user
transition would contain the atoms x ≥ 40, x ≤ 100. On the other hand, the inclusion
of assignment atoms x ≈ c in the update set of a user transition is also possible, as this
is subsumed by the more general case x ◦ c. The resulting updated state would then
represent just one state in the configuration, namely the one in which x = c.
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In PIDL+, the additional information on which variables occurring in a state have
been set by a user and which ones have been set by a rule is of central importance, since
the transition criteria (Definition 5.22 and 5.28) depend on such a distinction: First, for
all assignments of the user variables there exists an assignment of the rest of the variables
such that the state and the constraints are consistent. Second, there is an assignment of
the user variables such that for all assignments of the rest of the variables the condition
of some transition is entailed by the current state and the constraints, as stated in the
definition of selections (Definition 5.8).

A state is thus not a single set of literals any more but a tuple (S,U) with the first
component S being a set of propositional literals and simple atoms, and the second
component being a subset U of the variable set X, indicating the set of variables in S
that have been decided by the user.

Definition 5.5. A PIDL+ state is a pair (S,U) consisting of

• a finite set S of simple atoms x ◦ t over Σ and propositional literals over Π, and

• a set U ⊆ X of user variables.

We also use the term “state" to just refer to the set S of a PIDL+ state (S,U). States
are the result of transition applications using the updates of the user transitions TU and
rule transitions TR. By definition, atoms occurring in the update sets of TU are simple
bounds x ◦ c, as are the atoms contained in the initial state (SI , UI). As a consequence,
the subset S|U is always a set of simple bounds over Σ.

We use the following convention. We write ~xu to refer to the variables of U and ~y to
refer to the variables in X \ U . The set of user variables U always refers to the current
state being considered.

The above examples already hint at how we imagine transitions and updates in
PIDL+. The next subsections give a more detailed view on these elements of the seman-
tics.

We now discuss transition in PIDL+. Before a transition can be applied to a state
in PIDL, the state has to meet certain criteria. First, the state has to be consistent.
Second, the state must entail the condition of the transition. If these points are satisfied,
a transition to a new state can be done by updating the old state with the update set
of the transition. This principle is used in the new logic as well. However, the presence
of arithmetic atoms in conjunction with the nature of the difference between user and
rule decisions requires different transition criteria in PIDL+. We look at PIDL’s criteria
of state consistency and transition entailment again, and develop the respective versions
for PIDL+.

State consistency. In PIDL, we demand that no transition is applied to a state S if
S and the constraints C together are inconsistent. This is written as the criterion

S ∪ C 6|= ⊥.

We cannot use the same criterion in the new logic, which is illustrated by Figure 5.4.
In this example, we assume a state (S,U) with the atom x > 0 that comes from a

user decision. We have a constraint set consisting of the only formula x > 5. S ∪C 6|= ⊥
clearly holds in this case. However, the states represented by S include those in which
x is assigned numbers less than 5, and these states are inconsistent with respect to the
constraint x > 5. Put more generally, we want to deem a state inconsistent when the
bounds given by user decisions represent instances s such that s ∪ C |= ⊥: The user
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...

...

Figure 5.4: The state S and a selection of states represented by it. Among them are
states violating the constraint x > 5 (bold).

can take a decision that conflicts with the constraints. In the following, we list some
apparently possible formulations of consistency criteria together with counterexamples
illustrating why we do not use them. Recall that C does not contain any quantifiers.

(i) ∀~xu∃~y (S ∪ C) is satisfiable.

Satisfiability of S ∪ C alone proves to be not enough, because for us, bounds in S
set by a user can represent inconsistent states while being logically consistent with
the rest of S and C, as seen in the previous example. To identify these inconsistent
instances we could add the above requirement using universal quantification of the
user variables to make sure all user input is considered. The other variables are
existentially quantified because we follow the intuitive idea of consistency: In each
instance of the user variables, S and C are satisfiable.

Counterexample: S = {x ≥ 0}, C = ∅, U = {x}. Then, ∀~xu∃~y (S ∪ C) is obviously
not satisfiable, since there are assignments that do not satisfy the set of formulas
S ∪ C. One example is β(x) = −1, which gives us

IΠ(β)(x ≥ 0) = −1 ≥ 0 = 0.

However, we want to see (S,U) as perfectly consistent, since there are no con-
straints in C that could be violated, and S itself is a consistent set.

(ii) S |= C.

(i) involves all possible instances over the user variables. As it turns out, this range
is too broad since it can also contain valuations of the user variables that violate
bounds in the state literal set S. This results in a contradiction to our intuitive
notion of consistency. We therefore try restricting the range of user instances to
those that satisfy S.

Counterexample: S = {A}, C = {B}. This state does not produce any logical
conflicts, yet it fails to meet the criterion as clearly {A} 6|= {B}. That is, the
criterion does not work properly with respect to the purely propositional part of
the logic.
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(iii) ∀~xu∃~y (S → C) is satisfiable.

This statement removes the problem encountered with (ii). It does not require
the propositional literals of the state to imply the propositional formulas of the
constraints, while the requirement for arithmetic variables is taken account of by
the quantifiers: Following the same rationale of (i), for all instances of the user
input there must be a consistent world.

Counterexample: S = {y > 0}, C = {y < 0}, U = ∅. We get the instance
∀~xu∃y (y > 0 → y < 0) which is satisfiable but we obviously do not want this
state to be called consistent. Another flaw in this criterion becomes apparent if
there are no arithmetic expressions in S and C, and thus no arithmetic variables.
The criterion then reduces to the satisfiability of S → C, which is trivially the case
when assuming the satisfiability of C.

The problem of (iii) is that the atoms with variables not decided by the user are
contained in the left-hand side of the implication S → C. There can be cases where
one can always find assignments for variables of ~y that make the implication and thus
the whole statement true due to the existential quantification. From this observation we
deduce that we need a further refinement. The final step is to move the atoms y ◦ t with
y 6∈ U to the right-hand side of the implication. The criterion we want to use now is
therefore

∀~xu∃~y S|U → (S \ S|U ) ∪ C is satisfiable. (5.1)

This statement corresponds to the semantics that we want: Consistency of a state is
considered as the usual satisfiability of the propositional formulas and the atoms not set
by the user with respect to all the reasonable user input within the bounds given in S|U .

Transition entailment. In PIDL, a transition can only be applied to a consistent state
S if the condition χ of a transition tuple χ E is entailed by S and the constraints C:
The criterion is

S ∪ C |= χ.

The transitions we consider now are of the form Λ∧F  E as specified in Definition 5.1.
If we translate the PIDL case in a naive way, the criterion could look like

S ∪ C |= Λ ∧ F.

Unfortunately, this does not fit the intended meanings behind the new interval represen-
tation by arithmetic atoms. The entailment |= demands essentially that all instances of
the user variables satisfying the bounds in S, together with the constraints C, imply the
transition condition Λ ∧ F . For example, consider S = {x < 10}, U = {x}, C = ∅, and
Λ∧F = x < 5. It clearly holds that S ∪C 6|= Λ∧F because there are user instances that
satisfy the bound x < 10 of the state but not x < 5 of the condition, for example with
and β(x) = 8. However, x < 10 also includes a range of possible variable assignments
that actually imply the condition, namely those in which x is assigned a value less than
5, as shown in Figure 5.5. According to our intuition, this should indeed support a
transition application.

We see that it makes sense to not rule a transition out when there are suitable variable
assignments represented by the bounds in the state, resulting from user decisions. An
improvement would be to use quantifiers and say that the transition can be done if there
exists user input that satisfies the transition condition, as expressed in the following
statement:
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Figure 5.5: Instances of S in which x < 5 (bold) satisfy the transition condition.

∃~xu∀~y (S ∪ C)→ (Λ ∧ F ) is valid.

However, there is a counterexample to this. Take S = {x > 0}, U = {x}, C = ∅ and
Λ ∧ F = y > 7. Then, the above statement is true with an assignment of the form
β(x) = −1, but according to our understanding, the state with S containing only x > 0
should obviously not entail a transition with the condition Λ∧F containing only y > 7.

It follows from the example that we have to limit the range of user instances that
are considered to a meaningful subset. We do this in a fashion similar to the state
consistency criterion. The only instances of interest are those which satisfy the state
atoms. We get the criterion

∃~xu∀~y S|U ∧ (S \ S|U ∪ C→ Λ ∧ F ) is valid. (5.2)

If there is an instance from all the arithmetic user decisions represented by the bounds
of S that makes the condition of a transition be implied by the arithmetic decisions
taken by the system and propositional decisions, then the transition can be applied to
the state.

Criterion 5.2 is sufficient to determine when a transition is applicable to a state.
However, we need one more refinement step due to another peculiarity of PIDL+. This
peculiarity consists in the way state updates are done. Basically, it is important that the
representation of updated states considers under what user instances transitions happen.

First, we look at an example where we assume an update operator /P for PIDL+
that is “naively” derived from PIDL: The update replaces every occurrence of atoms x◦ t
in S with atoms x ◦ t′ of E that have the same left-hand-side variable, and adds atoms
x′ ◦ t′ of E whose left-hand-side variables are not contained in S. Propositional literals
are updated in the usual way.

Example 5.6. Let
(S,U) = ({x > 3, y < 92, C}, {x})

and
E = {y ≈ 32, z ≥ 10,¬D}.

Then,
(S′, U ′) = (S,U) /P E
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with
(S′, U ′) = ({x > 3, y ≈ 32, z ≥ 10, C,¬D}, {x}).

The update set E contains y ≈ 32 which replaces y < 92 of S. The variable z does not
occur in S, so the atom z ≥ 10 is included in the new set S′. The variable x is not
mentioned in E and x > 3 thus stays in the set after the update.

The deficiencies of this adopted update method become apparent in the next example,
where we have a sequence of transitions.

Example 5.7. Consider the following specification.

S = {x ≥ 40, x ≤ 90}

U = {x}

C = {x ≥ 0, x ≤ 100}

TR= {x ≤ 50 r1 {B},

x > 70 r2 {C}}
The state (S,U) fulfills the transition condition of r1 according to Criterion 5.2, that is,

∃x {x ≥ 40, x ≤ 90} ∧ ({x ≥ 0, x ≤ 100} → x ≤ 50) is valid.

We update to state (S′, U ′):

(S′, U ′) = (S,U) /P Er1

= (x ≥ 40, x ≤ 90, {x}) /P {B}
= ({x ≥ 40, x ≤ 90, B}, {x}).

From this new state, it is perfectly fine to see that another rule transition can be done
with r2, that is,

∃x {x ≥ 40, x ≤ 90} ∧ ({B} ∪ {x ≥ 0, x ≤ 100} → x > 70) is valid.

We get the state

(S′′, U ′′) = (S′, U ′) /P Er2

= (x ≥ 40, x ≤ 90, B, {x}) /P {C}
= ({x ≥ 40, x ≤ 90, B,C}, {x}).

Recall that (S,U) represents all instances of x in which x has a value between 40 and
90. Transition r1 is possible because among these instances there are those that fulfill
Criterion 5.2, namely all instances of x between 40 and 50. They satisfy the condition
x ≤ 50 of r1 (Figure 5.6). This information is lost in the new state (S′, U ′), which is the
result of the naive update operation. From the perspective of (S′, U ′), it represents all
the user instances of x between 40 and 90, just like the original state (S,U). Considering
the meaning of states discussed at the beginning of Section 5.2.1, it would make much
more sense if (S′, U ′) represented the instances of x between 40 and 50 because (S′, U ′)
is the result of a transition that is based on these instances. This would also make
the application of transition r2 to (S′, U ′) impossible, since r2 requires user instances
in which x > 70. Thus, the transition from (S′, U ′) to (S′′, U ′′) using r2 is actually
unwanted in our intended context.
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Figure 5.6: In Example 5.7, the state (S,U) entails transition r1 for instances where
x ≥ 40 and x ≤ 50.

States representing the “wrong” user instances can lead to unwanted transitions that
are at odds with the semantics of the configuration systems we want to model. To solve
this issue, we have to incorporate information about user instances into the update pro-
cess so that a new state represents the correct instances with respect to transitions. We
do this by partitioning the user instances of a state into appropriate selections. A se-
lection consists of integer intervals for each of the user variables. These intervals contain
the values of the variables under which a transition can be applied. The selections are
taken into account by the updates, making sure that user decisions are not “forgotten”
during several transitions but accumulated in the simple bounds representing the selecti-
ons. Thus, each state holds information about which user instances of the previous state
are responsible for the transition that leads to it. We first give a formal definition.

Definition 5.8. Let (S,U) be a state. Furthermore, let Λ ∧ F  E ∈ (TU ∪ TR) be
a transition. Then, a selection γ with respect to (S,U) and Λ ∧ F  E is defined as
follows:

(i) If U is a non-empty set and U = {x1, . . . , xn}, then γ is a tuple of interval integers
(I1, . . . , In), where

∀~y(S|U ∧ (S \ S|U ∪ C→ Λ ∧ F ))σ

is valid for all σ = {x1 7→ v1, . . . , xn 7→ vn} with vi ∈ Ii and i = 1, . . . , n, and

(ii) if U = ∅, then γ is the empty tuple (), and ∀~y S ∪ C→ Λ ∧ F is valid.

Given a state and a transition tuple, a selection basically describes the subset of user
instances of the state that entail the transition. Its intervals contain the values that, by
substituting them for the user variables, satisfy Criterion 5.2. The above definition also
explicitly considers the case when a state has no user variables, that is, U = ∅. The
corresponding selection is then always the empty tuple () and the criterion, since S|U
becomes empty, reduces to the validity of ∀~y S ∪ C→ Λ ∧ F .

Example 5.9. Looking at Example 5.7, selections with respect to the state (S,U) and
the transition r1 include ([40, 50]), ([40, 44]), ([43, 43]), ([48, 50]), ... In general, all
tuples with intervals that are non-empty subsets of the interval [40, 50] are selections
according to Definition 5.8.
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The next remark follows directly from Definition 5.8 because a selection is a collection
of user instances under which the corresponding transition is entailed.

Remark 5.10. Let (S,U) be a state and Λ ∧ F  E ∈ (TU ∪ TR) be a transition. A
selection γ with respect to (S,U) and Λ ∧ F  E always exists if

∃~xu∀~y S|U ∧ (S \ S|U ∪ C→ Λ ∧ F ) is valid.

Selections give us the ability to keep track of and express the correct user instances
of states in a sequence of transitions. The idea is to make selections an essential part
of PIDL+ transition applications. A transition from one state to another should always
be with respect to a selection, and that selection is carried over in the next state. Note
that each tuple of intervals having the properties of Definition 5.8 is a valid selection
corresponding to a state and a transition. Therefore, there can be more than one possible
selection with respect to a state and a transition, as seen in Example 5.9. For our
semantics, we restrict the range of possible selections to be considered in transitions to
those which are “maximal” in some sense. We express this property with the help of the
subselection relationship between selections.

Definition 5.11. Let γ and γ′ be two selections of the same length n. We say that γ′

is a subselection of γ, written as γ′ ⊆ γ, if γ′(i) ⊆ γ(i) for all i = 1, . . . , n. We say that
γ′ is a proper subselection of γ, written as γ′ ⊂ γ, if γ′ ⊆ γ and γ′(i) ⊂ γ(i) for at least
one i ∈ {1, . . . , n}.

Example 5.12. Let

• γ1 = ([32, 89]),

• γ2 = ([0, 100]),

• γ3 = ([23, 50], [3, 50], [11, 43]),

• γ4 = ([20, 60], [3, 50], [5, 63]) and

• γ5 = ([17, 99], [37, 62], [0, 80])

be selections. Then γ1 ⊂ γ2, γ3 ⊂ γ4, but γ3 6⊂ γ5 and γ4 6⊂ γ5.

Selections are maximal if they are not proper subselections of other selections with
respect to the same states and transitions. Later, we use maximal selections to define
transition between states in PIDL+.

Definition 5.13. A selection γ with respect to a state (S,U) and a transition Λ∧F  E
ismaximal if either γ = () or there is no selection γ′ with respect to (S,U) and Λ∧F  E
such that γ ⊂ γ′.

Example 5.14. We look at two example cases of maximal selections.

• In Example 5.9, the selection γ = ([40, 50]) with respect to (S,U) and r1 is maxi-
mal.

• Assume the following state and constraints:
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S= {x1 ≥ −100, x1 ≤ 100,

x2 > 5, x2 ≤ 98,

y1 = x2
1 + 2},

U= {x1, x2},

C= {x1 ≥ −100, x1 ≤ 100,

x2 ≥ 0, x2 ≤ 100,

y1 ≥ 0, y1 ≤ 100}.
Also, assume a rule transition y1 > 8  r {A}. Note that the presence of the
atom y1 = x2

1 + 2 is consistent with the definition of admissible specifications
(Definition 5.4), since it is the state that the atom is contained in.

The set U tells us that the atoms x1 ≥ −100, x1 ≤ 100 and x2 > 5, x2 ≤ 98 can
be considered as having been set by user transitions, while the atom y1 = x2

1 + 2
is the product of a rule transition. Corresponding selections with respect to state
(S,U) and transition r contain user instances of the variables in U such that

∀y1 S|U ∧ (S \ S|U → y1 > 8)

is valid under those instances. There are two maximal selections that have this
property:

γ1 = ([3, 100]︸ ︷︷ ︸
x1

, [6, 98]︸ ︷︷ ︸
x2

)

and
γ2 = ([−100,−3]︸ ︷︷ ︸

x1

, [6, 98]︸ ︷︷ ︸
x2

).

In other words, the state entails the transition if either the user variable x1 is
assigned a value between 3 and 100 and the user variable x2 is assigned a value
between 6 and 98, or x1 is assigned a value between −100 and −3 and x2 is assigned
a value between 6 and 98.

If there is a transition from a state S to a state S′ with respect to a selection, we have
to express the selection within the state S′, otherwise this important piece of information
is lost. To do this, we define the atomic representation at(γ) of a selection γ with respect
to the original state and the transition. It is the union of the atomic representations
at(γ(i), xi), as defined in Definition 3.7 of Chapter 3, of the intervals in γ. The simple
bounds in at(γ) are then contained in the new state S′.

Definition 5.15. Let γ be a selection with respect to a state (S,U) and a transition.
The atomic representation at(γ) of γ is defined as follows:

(i) If U = {x1, . . . , xn}, then

at(γ) :=
⋃

i=1,...,n

at(γ(i), xi),

and

(ii) if U = ∅, then at(γ) := ∅.
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Example 5.16. We look at the atomic representations of the previous examples. The
atomic representation of the selection γ mentioned in Example 5.14 is

at(γ) = at([40, 50], x) = {x ≥ 40, x ≤ 50}.

The atomic representation of γ1 is

at(γ1) = at(([3, 100], [6, 98]))

= at([3, 100], x1) ∪ at([6, 98], x2)

= {x1 ≥ 3, x1 ≤ 100, x2 ≥ 6, x2 ≤ 98},

and in the case of γ2 we get

at(γ2) = at(([−100,−3], [6, 98]))

= at([−100,−3], x1) ∪ at([6, 98], x2)

= {x1 ≥ −100, x1 ≤ −3, x2 ≥ 6, x2 ≤ 98}.

It is also useful to consider base selections of a state (S,U), which represent ex-
actly the instances expressed by the user bounds in the state. Those selections are not
associated with any transitions. Before we define them, we need a syntactical tool:

Definition 5.17. Let N and N ′ be sets of simple bounds. Then N ∼= N ′ if and only if
N has the exact same bounds as N ′ modulo strict inequalities.

Definition 5.17 means that two sets containing simple bounds are actually the same
if they can be made equal by turning strict inequalities occurring in the bounds to weak
inequalities.

Example 5.18. It holds that

{x > 3, y ≤ 5} ∼= {x ≥ 4, y ≤ 5}

and
{x > 9, x < 21} ∼= {x ≥ 10, x ≤ 20}

Definition 5.19. Let (S,U) be a state with U = {x1, . . . , xn}. The base selection γS
of (S,U) is a tuple of integer intervals of length n such that at(γS(i), xi) ∼= S|xi for all
i = 1, . . . , n If U = ∅, then γS = ().

Example 5.20. Let

(S1, U1) = ({x1 ≥ 23, x1 ≤ 110, y1 > 0, C}, {x1})

and

(S2, U2) = ({x1 > 1, x1 < 90, x2 ≥ 40, x2 < 78, y1 > 50, y1 ≤ 200}, {x1, x2})

be states. Then the base selections γS1 of (S1, U1) and γS2 of (S2, U2) are

γS1 = ([23, 110])

and
γS2 = ([2, 89], [40, 77]).
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Atomic representations enable us to integrate selections in PIDL+ updates, which we
are now ready to define. Unlike PIDL, where we only have one type of update, we define
two update operators in PIDL+, rule updates and user updates. The reason for this is
the presence of user variables, which play a crucial role for PIDL+ states (Definition 5.5)
and selections (Definition 5.8). In PIDL+, we allow a rule transition to replace atoms
in the old state with atoms occurring in its update set E, analogously to the update of
propositional literals in PIDL. We understand this as an overwriting of user decisions,
hence the state’s set U of user variables has to be updated accordingly too. In the
case of rule transitions, U can be decreased, while in the case of user transitions, U
can be increased, corresponding to the user taking additional decisions with respect to
additional variables. We first define rule updates in PIDL+. User updates are defined
later in this section in Definition 5.27.

Definition 5.21. The rule update operator /R takes a state (S,U), and a pair (E, γ) as
arguments, where

(i) E is an update set, and

(ii) γ is a selection with respect to (S,U) and a rule transition Λ ∧ F  E ∈ TR.

It is defined as (S,U) /R (E, γ) := (S′, U ′), where

• U ′ := U \ varsl(E),
• S′ := {L|L literal over Π, L ∈ S,L 6∈ E}∪

{L|L literal over Π, L ∈ E}∪
{x ◦ t|x ◦ t ∈ S, x ∈ X \ U, x 6∈ varsl(E)}∪
{x ◦ t|x ◦ t ∈ at(γ), x ∈ U, x 6∈ varsl(E)}∪
{x ◦ t|x ◦ t ∈ E}.

The rule update operator is a relatively natural extension of the PIDL update ope-
rator. The purely propositional part of a state is updated exactly as before. In terms of
arithmetic atoms, we have three different cases. First, an atom x◦ t where x is not a user
variable is preserved in the updated state if x does not occur as a left-hand-side variable
of an atom in the update set E. Second, an atom x ◦ t of the atomic representation
at(γ) of the selection γ, where x is a user variable, is contained in the updated state if
x is not a left-hand-side variable of an atom in E. Third, atoms x ◦ t occurring in E are
included in the updated state, effectively replacing all atoms x ◦ t′ that have the same
variable x on the left sides in the old state S. With /R being embedded in the definition
of rule transitions below, we in particular preserve information about the selection that
makes the transition possible by including the atoms corresponding to the selection in
the new state. However, these are not included if they are overwritten by E as described
above. In that case, the update set takes higher precedence. This also means that in
the new state, the set of user variables U ′ can be smaller than the previous U because
user decisions are overwritten by rule decisions, hence U ′ = U \ varsl(E). It is necessary
to update the set of user variables in this way since transition applications depend on
instances of a state’s user variables, so we must know for the updated state which user
variables to consider. The rule update operator is the last component needed to define
rule transitions in PIDL+.

Definition 5.22. A rule transition from a state (S,U) to a state (S′, U ′) with respect
to a rule transition tuple Λi ∧ Fi  Ei ∈ TR and a selection γ is written as

(S,U)→(i,γ) (S′, U ′),
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where

(i) ∀~xu∃~y S|U → (S \ S|U ) ∪ C is satisfiable,

(ii) γ is a maximal selection with respect to (S,U) and Λi ∧ Fi  Ei, and

(iii) (S′, U ′) = (S,U) /R (Ei, γ).

The definition is structured in the same way as the one of rule transitions in PIDL:
state consistency, transition entailment and update. A rule transition can be applied to
a state only if the state is consistent according to (5.1), and there is a maximal selection
with respect to the state and the transition. The new state is then the old state updated
by /R.

Given a state (S,U), rule updates can change the set of user variables by reducing
it. Analogously, we expect updates from user transitions, expressed by a user update
operator /U , to be able to change the set U of user variables by increasing it. This is
because a user can set new variables, introducing them to the current U . Otherwise /U
should update the set S of literals and atoms just like /R.

Before we can give the definitions of the user update operator /U and user transitions,
we need to address one issue that is of central importance: rule termination. The concept
of rule-terminal states known from PIDL again plays a major role in PIDL+. We first
give an example highlighting what the situation is like in PIDL+ and how we derive a
suitable notion of rule termination for it. For the purposes of the example, we assume
a user update operator /U which just behaves like the rule update operator /R without
taking rule termination into account.

Example 5.23. Consider the following specification.

S = {x ≥ 0, x ≤ 100}

U = {x}

C = {x ≥ 0, x ≤ 100}

TR= {x < 30 r1 {A},

x ≤ 20 ∧B  r2 {C}}

TU= {x ≤ 50 u1 {B}}
We do not care about rule termination and assume that user transitions work in the
same way as rule transitions. We see that user transition u1 can be applied to (S,U)
since there is a maximal selection γ1 = ([0, 50]) with respect to the state (S,U) and user
transition u1. Thus,

(S,U)→(u1,γ1) (S′, U ′)

with

(S′, U ′) = (S,U) /U (Eu1 , γ1)

= ({x ≥ 0, x ≤ 100}, {x}) /U ({B}, ([0, 50]))

= ({x ≥ 0, x ≤ 50, B}, {x}).

The new state (S′, U ′) warrants a rule transition using r2 with the corresponding selection
γ2 = ([0, 20]). We get

(S′, U ′)→(r2,γ2) (S′′, U ′′)



78 5. PIDL+

with

(S′′, U ′′) = (S′, U ′) /R (Er2 , γ2)

= ({x ≥ 0, x ≤ 50, B}, {x}) /R ({C}, ([0, 20]))

= ({x ≥ 0, x ≤ 20, B,C}, {x}).

The last transition reveals the problematic nature of the semantics used in the ex-
ample. According to our understanding so far, it is the user instances of x between 0
and 20 for the state (S′, U ′) that make the application of transition r2 possible. This
conflicts with the user instances involved in the transition (S,U)→(u1,γ1) (S′, U ′). Since
the instances in which x ≥ 0 and x < 30 can indeed be changed by transition r1, it is
the instances x ≥ 30 and x ≤ 50 which are rule terminal in the small-steps semantics.
This means (S′, U ′) should actually represent those instances rather than the ones ex-
pressed by γ1. Then, transition (S′, U ′) →(u1,γ2) (S′′, U ′′) should not be possible. It is
a situation similar to Example 5.7, where we have an unwanted transition contradicting
the intended semantics. Figure 5.7 illustrates the situation.
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Figure 5.7: Given user transition u and rule transition r1, the instances of (S,U) repre-
sented by selection γ1 entail user transition u1, but only the instances represented by
subselection γ3 are rule terminal.

Example 5.23 shows that the application of user transitions in PIDL+ again has to
rely on rule termination. We now transfer the notion of rule-terminal states known from
PIDL to PIDL+. In PIDL, user transitions are allowed to be applied only to states
that are rule terminal, that is, there are no rule transitions whose updates would change
those states. The same principle applies here. However, this time selections have to be
taken into account to determine whether a state is rule terminal. We approach the new
situation by again considering the fact that states (S,U) in PIDL+ are representations
of instances with respect to the arithmetic atoms in S|U . Each of those instances is
a state in the small-steps semantics as depicted at the beginning of Section 5.2.1. If
we look at those states, we observe that we can declare such states as rule terminal if
they are rule terminal in the sense of PIDL. This is reasonable because each assignment
statement x ≈ c in the small-steps semantics can be seen as a propositional statement.
The application of PIDL’s concept of rule-terminal states is thus natural. Given a state
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(S,U), a user transition u and a maximal selection γ with respect to (S,U) and u, some
of the instances represented by γ can be rule terminal and some can be not. We are
then interested in those which are rule terminal in the PIDL fashion. Those instances
form a subselection γ′ of γ under which (S,U) is rule terminal in PIDL+. As a result,
the update of the user transition u should not be based on the selection γ but on γ′.
Before we define rule-terminal subselections in general, it is useful to introduce a term
that describes selections that lead to rule transitions changing a state.

Definition 5.24. Let (S,U) be a state. A selection γ is a change-admitting selection
with respect to (S,U) if

(i) γ is a maximal selection with respect to (S,U) and a rule transition Λi ∧ Fi  
Ei ∈ TR, and

(ii) (S,U) 6= (S,U) /R (Ei, γ).

Definition 5.25. Let γ be a maximal selection with respect to a state (S,U) and a user
transition Λ ∧ F  E ∈ TU .

(i) If γ 6= (), then we call a selection γ′ with γ′ ⊆ γ a rule-terminal subselection of γ,
or a rule-terminal selection with respect to (S,U) and Λ∧F  E, if the following
holds:

(a) There is no change-admitting selection γ∗ with respect to (S,U) such that
γ∗ ∩ γ′ 6= ∅, and

(b) there is no other selection γ# that fulfills (a) and γ′ ⊂ γ#.

(ii) If γ = (), then we call γ a rule-terminal selection with respect to (S,U) and
Λ ∧ F  E, if () is not a change-admitting selection with respect to (S,U).

In the respective cases, we also say that (S,U) is rule terminal with respect to γ′ or ()
and to Λ ∧ F  E.

According to the definition, we first look at a maximal selection γ with respect to
a state and a user transition. As we know already, the selection represents the user
instances of the state that entail the user transition. If there is a subselection γ′ ⊆ γ
such that γ′ is disjoint to any other change-admitting selection with respect to the
state, it means that γ′ represents only instances that are rule terminal in the small-
steps semantics. This is a reasonable requirement for calling a selection rule terminal in
PIDL+. It also needs to be maximal, that is, the selection is not a proper subselection of
another one having the same property. If the selection is (), then the set of user variables
is empty by definition and the notion of rule termination carries over analogously from
PIDL.

From the base selection of a state, we can derive a subselection thereof that can be
considered as rule terminal in general, that is, its rule termination is not restricted to a
certain user transition.

Definition 5.26. Let (S,U) be a state and γS its base selection. A selection γ ⊆ γS is
the rule-terminal base of (S,U) if

(a) there is no change-admitting selection γ∗ with respect to (S,U) such that γ∩γ∗ 6= ∅,
and

(b) there is no other selection γ# with γ ⊂ γ# and that fulfills (a).
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The user update operator /U is defined almost like the rule update operator /R of
Definition 5.21 except that, as mentioned earlier, the set of user variables of a state can
be increased after an update, corresponding to the user taking additional decisions with
respect to variables not in the user variables U of the current state. The updates of the
propositional literals and arithmetic atoms stay the same.

Definition 5.27. The user update operator /U takes a state (S,U), and a pair (E, γ)
such that

(i) E is an update set,

(ii) γ is a rule-terminal selection with respect to (S,U) and a user transition Λ∧F  
E ∈ TU ,

and is defined as (S,U) /U (E, γ) := (S′, U ′), where U ′ := U ∪ varsl(E) and S′ is defined
in the exact same way as in the case for the rule update operator /R.

User transitions differ from rule transitions as follows: To apply a user transition to a
state, the state must be rule terminal with respect to an appropriate selection according
to Definition 5.25 and the user transition, and the state is updated using the user update
operator.

Definition 5.28. A user transition from a state (S,U) to a state (S′, U ′) with respect
to a user transition Λi ∧ Fi  Ei ∈ TU and a selection γ is written as

(S,U)→(i,γ) (S′, U ′),

where

(i) ∀~xu∃~y S|U → (S \ S|U ) ∪ C is satisfiable,

(ii) (S,U) is rule terminal with respect to γ and Λi ∧ Fi  Ei, and

(iii) (S′, U ′) = (S,U) /U (Ei, γ).

5.2.2 Interpretations and Models

With states and transitions defined in the previous subsections, we can talk about in-
terpretations and models of PIDL+ specifications. Starting from the initial state, we
consider successive applications of transitions, corresponding to the stages of a confi-
guration process. This induces a set of states that are reachable from the initial state
through paths identifying which user and rule transitions lead to a certain state.

Definition 5.29. A path from a state (S,U) to a state (S′, U ′) is a tuple

((i1, γ1), (i2, γ2), . . . , (in−1, γn−1), (in, γn)),

n ≥ 0, such that

(S0, U0)→(i1,γ1) (S1, U1)→(i2,γ2) · · · →(in−1,γn−1) (Sn−1, Un−1)→(in,γn) (Sn, Un)

is a sequence of transitions, where for all j = 1, . . . , n it holds that

• γj is a maximal selection with respect to (Si−1, Ui−1) and a Λij ∧ Fij  Eij ∈ TR,
or
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• (Si−1, Ui−1) is rule terminal with respect to γj and a Λij ∧ Fij  Eij ∈ TU ,

and (S0, U0) = (S,U) and (Sn, Un) = (S′, U ′). If n = 0, then the path is called empty
and is denoted by ().

For the sake of convenience, we use the term “path” to also refer to the sequence of
transitions

(S0, U0)→(i1,γ1) (S1, U1)→(i2,γ2) · · · →(in−1,γn−1) (Sn−1, Un−1)→(in,γn) (Sn, Un)

that is described by the corresponding tuple

((i1, γ1), (i2, γ2), . . . , (in−1, γn−1), (in, γn)).

Definition 5.30. The length |τ | of a path τ = ((i1, γ1), (i2, γ2), . . . , (in−1, γn−1), (in, γn))
is the number of elements the tuple ((i1, γ1), (i2, γ2), . . . , (in−1, γn−1), (in, γn)) contains:
|τ | := n.

Definition 5.31. A state (S′, U ′) is reachable from a state (S,U) if there is a path from
(S,U) to (S′, U ′). A state (S,U) is always reachable from itself via the empty path ().
We also simply say that a state is reachable if it is reachable from the initial state.

The states that are reachable from the initial state, the transitions that can be applied
to the states and a set of assignments for each of the states form an interpretation of an
admissible PIDL+ specification S+.

Definition 5.32. An interpretation of an admissible specification S+ is a tuple

(VS+, TS+, IS+)

with

• the state space VS+ := {(S,U)|(S,U) reachable from (SI , UI)},

• the transition space
TS+ := {((S,U), i, γ, (S′, U ′))|(S,U), (S′, U ′) ∈ VS+,

(S,U)→(i,γ) (S′, U ′),Λi ∧ Fi  Ei ∈ (TU ∪ TR)},

• the state interpretations
IS+ := {((S,U), IΠ(β))|(S,U) ∈ VS+, IΠ(β) assignment, IΠ(β) |= S}.

The components VS+ and TS+ also called the state graph of the specification.

Definition 5.33. Let S+ be an admissible specification. The state graph GS+ is a pair
consisting of the state space VS+ and the transition space TS+:

GS+ := (VS+, TS+).

An interpretation of an admissible specification is a model if its assignments satisfy
the constraints. Because of the structure of admissible specifications, this in particular
means that the propositional constraints and the bounds on the transition variables XT

are satisfied.

Definition 5.34. An interpretation (VS+, TS+, IS+) is a model of a an admissible spe-
cification S+ if IΠ(β) |= C for each ((S,U), IΠ(β)) ∈ IS+.
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5.3 Algorithms

In this section, we present the algorithm buildInterpretation (Algorithm 1), which
constructs a partial interpretation of an admissible specification S+ by computing the
state space VS+ and transition space TS+, that is, the state graph. Starting from the
initial state of the specification, the algorithm successively applies transitions to sta-
tes and generates states according to the updates of the transitions. The output can
then be the basis for other decision procedures to analyze properties of the state graph
and thus of the configuration system modeled by the specification. To determine rule
termination and thus user transitions, buildInterpretation makes use of the algo-
rithm reduceSelection (Algorithm 2) which identifies the rule-terminal subselections
of maximal selections. Both buildInterpretation and reduceSelection are sound
and complete.

A central element are the maximal selections, which are needed for the transition
applications that occur during the computation of the state graph. Since the relevant
variables are over bounded integers in admissible specifications, finding those selections
is a decidable subtask. This can happen by naive enumeration or by more efficient
techniques such as interval arithmetic (Fränzle et al., 2007). For our purposes, we just
assume the existence of appropriate selections that we can work with and denote those
as maxSelectionsS+ :

Definition 5.35. Let (S,U) be a state, and Λ ∧ F  E ∈ (TU ∪ TR) be a transition.
Then maxSelectionsS+(S,U,Λ ∧ F  E) is the set of all maximal selections γ with
respect to (S,U) and Λ ∧ F  E.

The input of buildInterpretation is an admissible specification S+. The algo-
rithm outputs the state space VS+ and transition space TS+ of a model of the specifica-
tion if it exists.

The variables V and T correspond to VS+ and TS+ respectively, while N is a set
containing the states to be processed and H is a set containing the states that have
occurred so far. The first state that is processed is the initial state (SI , UI) of the
specification. Computations last as long as there are states to be processed (line 5). In
each iteration of the while loop, a state is taken from N and it is checked whether it is
consistent (line 7). This can be done by using a solver that can handle nonlinear integer
arithmetic as they may appear in our formulas, for example Z3 (de Moura and Bjørner,
2008). If a state is not consistent, it is just removed from N . If it is consistent, we
consider all rule transitions (line 9). For each maximal selection γ with respect to the
current state and the current rule transition tuple (line 10), a new state is computed
according to the update operator /R (line 11) and the transition application is added to
T (line 12). If the new state differs from the current one (line 13), we add the current
selection γ to the set Y that contains all the change-admitting selections with respect to
the current state (line 14). Y is later used for determining rule-terminal subselections
when checking user transition applications. The new state is also registered in V , H and
N if we have not seen it before (lines 15–18). After iterating through the rule transitions,
buildInterpretation continues if Y is not a singleton containing the empty selection
(). Otherwise, () is a maximal selection under which there is a rule transition with an
update that changes the current state, which means the state is not rule terminal in any
way by Definition 5.25, and there is thus no need to look at user transitions. If Y 6= {()},
we check the user transitions almost in the same way as done for the rule transitions.
The difference is that each selection γ of the current maxSelectionsS+ is reduced to a set
of subselections of γ with reduceSelection (line 22). These subselections have the
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Algorithm 1: buildInterpretation(S+)

1 N := {(SI , UI)}
2 H := {(SI , UI)}
3 V := {(SI , UI)}
4 T := ∅
5 while N 6= ∅ do
6 let (S,U) ∈ N
7 if ∀~xu∃~yS|U → (S \ S|U ) ∪ C is satisfiable then
8 Y := ∅
9 for each Λi ∧ Fi  Ei ∈ TR do

10 for each γ ∈ maxSelectionsS+(S,U,Λi ∧ Fi  Ei) do
11 (S′, U ′) := (S,U) /R (Ei, γ)
12 T := T ∪ {((S,U), i, γ, (S′, U ′))}
13 if (S′, U ′) 6= (S,U) then
14 Y := Y ∪ {γ}
15 if (S′, U ′) 6∈ H then
16 V := V ∪ {(S′, U ′)}
17 H := H ∪ {(S′, U ′)}
18 N := N ∪ {(S′, U ′)}
19 if Y 6= {()} then
20 for each Λi ∧ Fi  Ei ∈ TU do
21 for each γ ∈ maxSelectionsS+(S,U,Λi ∧ Fi  Ei) do
22 for each δ ∈ reduceSelection(γ,Y) do
23 if δ(j) 6= ∅ for all j or δ = () then
24 (S′, U ′) := (S,U) /U (Ei, δ)
25 T := T ∪ {((S,U), i, δ, (S′, U ′))}
26 if (S′, U ′) 6= (S,U) then
27 if (S′, U ′) 6∈ H then
28 V := V ∪ {(S′, U ′)}
29 H := H ∪ {(S′, U ′)}
30 N := N ∪ {(S′, U ′)}
31 N := N \ {(S,U)}
32 return (V, T )
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property that they can be rule-terminal subselections, which is important for applying
the current user transition to the current state. If such a subselection δ has at least
one empty component, then it is not a selection with respect to the current state and
the user transition by Definition 5.8 — the user instances with respect to at least one
variable have been reduced to “nothing”. If this is not the case, or δ is just the empty
selection () (line 23), which means that no user variables are involved and the selection
is rule terminal, buildInterpretation proceeds exactly as in the case of the loop for
rule transitions by creating a new state and register it accordingly (lines 26–30). At the
end of each iteration, the current state is removed from the set of states to be processed
(line 31). When this set is finally empty, the state graph with respect to S+ is returned
in the form of (V, T ) (line 32).

Algorithm 2: reduceSelection(γ, Y)

1 if Y = ∅ then
2 return {γ}
3 let ρ ∈ Y
4 Y′ := Y \ {ρ}
5 while Y′ 6= ∅ and γ ∩ ρ = ∅ do
6 let ρ ∈ Y′

7 Y′ := Y′ \ {ρ}
8 if γ ∩ ρ = ∅ then
9 return {γ}

10 R := ∅
11 for i = 1 to |γ| do
12 s := γ(i) \ ρ(i)
13 if s = I1 ∪ I2, I1, I2 intervals and I1 ∩ I2 = ∅ then
14 R := R ∪ reduceSelection(γ[i/I1],Y′) ∪ reduceSelection(γ[i/I2],Y′)

15 else
16 R := R ∪ reduceSelection(γ[i/s],Y′)

17 return R

buildInterpretation uses reduceSelection to determine the rule-terminal sub-
selections needed for user transitions. reduceSelection takes as arguments a selection
γ and a set Y of selections. It returns a set of subselections of γ that have empty in-
tersections with all the selections in Y. Since buildInterpretation calls reduceSe-
lection with γ being a maximal selection with respect to the current state and the
current user transition, and Y being the set containing all the change-admitting selecti-
ons with respect to the current state, the output is a set of candidates for rule-terminal
subselections of γ because the maximality property stated in Definition 5.25 is preserved
by buildInterpretation.

The first thing reduceSelection does is to check if Y is empty. There is nothing
to be done if this is the case, and a singleton containing γ is returned (lines 1–2). Next,
we iterate through Y by removing its elements until we have found a selection ρ that is
not disjoint to γ or until Y has become empty (lines 3–7). This means we discard the
selections of Y having an empty intersection with γ up to the point of line 8 because
those selections are not critical to the rule termination of γ: They represent instances
of the current state that entail rule transitions changing the state, but γ does not share
any instances with them. After the while loop, Y can be empty and the last selection ρ
visited can thus have an empty intersection with γ. In this case, we again just return
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{γ} (lines 8 and 9). Beyond this point, we have a selection ρ from Y that is not disjoint
to γ, that is, for each position i, γ(i) ∩ ρ(i) 6= ∅. This means that γ also represents
instances of the current state, namely some of those contained in ρ, that entail rule
transitions whose updates change the state, so γ cannot be seen as rule terminal, given
the relationship to ρ alone. The next steps of the algorithm are therefore supposed to
eliminate this relationship by reducing γ to subselections that do not share any instances
with ρ anymore. The variable R holds the results of those reductions (line 10). The
reduction can be done by choosing a position i of γ and then doing a set difference
γ(i) \ ρ(i) at this position. This is because for a selection to have an empty selection
with another one, it suffices that they do not share any instances at one position. Thus, if
we subtract ρ from γ at one position, the resulting selection does not share any instances
with ρ and it is still a selection with respect to the current state and user transition.
To cover all the possibilities, we do the difference operation (line 12) for each position
of γ (line 11). Note that γ and ρ have the same length because all selections appearing
in this algorithm are with respect to the same state (S,U) in buildInterpretation
and therefore the same set of user variables U , which determines the length of the
corresponding selections. When doing the set difference, there is a case distinction. If
the result of the difference are two intervals I1 and I2 that are not connected (line 13),
which is the case when min(γ(i)) < min(ρ(i)) ≤ max(ρ(i)) < max(γ(i)), we have to
have two recursive calls of reduceSelection covering these two possibilities: One
with an argument γ whose i-th component is replaced by the reduced I1 and one with
an argument γ whose i-th component is replaced by the reduced I2 (line 14). If the result
of the difference is just a single interval, we have one recursive call of reduceSelection
with an argument γ whose i-th element is replaced by the set difference s (line 16). The
results are collected in the variable R which is returned in the end (line 17). After that, R
contains all the possible subselections of the input γ that only have empty intersections
with the selections in Y and are therefore candidates for rule-terminal subselections.
Elements of R are not rule-terminal subselections if they have an empty component, as
mentioned earlier: They represent no instances at all that can entail user transitions.
This is checked in line 23 of buildInterpretation. Those selections of R which have no
empty components are indeed rule-terminal subselections of γ, as they are also maximal
because reduceSelection only reduces the subselections of γ in a way that they just
about have empty intersections with the selections of Y by applying set difference.

We formalize what we have said above and prove the correctness of the algorithms.
The following theorem prepares the correctness of reduceSelection.

Theorem 5.36. The set returned by reduceSelection(γ,Y) contains all the selecti-
ons δ ⊆ γ with the following properties:

(i) δ is disjoint to Y, and

(ii) there is no selection ω ⊆ γ such that ω is disjoint to Y and δ ⊂ ω.

Proof. By induction on the size of Y.
Let |Y| = 0. It holds that Y = ∅. Then, {γ} is returned by reduceSelection. We

see that γ is trivially disjoint to Y, and there is no other selection ω ⊆ γ that is disjoint
to Y and γ ⊂ ω. The result {γ} also contains the only selection that satisfies the points
(i) and (ii) of the theorem.

Let |Y| = n. There are two cases.

(a) After the while loop, Y = ∅ and γ is disjoint to the “last” element ρ of Y (line 8).
The algorithm returns {γ}, and the loop shows that it is disjoint to Y. Like in the
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base case, there is no selection ω ⊆ γ that is disjoint to Y and γ ⊂ ω, and, again,
{γ} is the only possible result in this case.

(b) After the while loop, we have a selection ρ ∈ Y with γ∩ρ 6= ∅. The for loop iterates
through the positions of γ. We look at the recursive calls of reduceSelection
inside the for loop with respect to a position i. Consider the case where the set
difference s = γ(i)\ρ(i) is not connected (line 13). We then have two recursive calls
of reduceSelection with the selections γ[i/I1] and γ[i/I2], and the reduced set
Y′ as the respective arguments. We observe the following with respect to γ[i/I1]:

γ[i/I1] is disjoint to ρ, and
there is no other selection ω ⊆ γ that is disjoint to ρ and γ[i/I1] ⊂ ω. (5.3)

This is because the set difference removes just enough elements from γ to make it
disjoint to ρ. The same holds for the other reduced selection γ[i/I2] and the case
γ[i/s], when s is a single connected interval. By iterating through all positions of
γ as is done in the for loop, and taking connectedness of the intervals into account
when doing the set difference, we exhaust all the possibilities of subselections of γ
that are disjoint to ρ and that are not proper subselections of any other selections
ω ⊆ γ with the same property.

By induction hypothesis, reduceSelection(γ[i/I1],Y′) returns the set of all se-
lections δ ⊆ γ[i/I1], where δ is disjoint to Y′, and there is no selection ω ⊆ γ[i/I1]
with ω disjoint to Y′ and δ ⊂ ω.
Consider such a selection δ ∈ reduceSelection(γ[i/I1],Y′). Since δ ⊆ γ[i/I1]
and γ[i/I1] is disjoint to ρ, it holds that δ is also disjoint to ρ. Note that ρ is the
first selection of Y found in the while loop that is not disjoint to γ. The other
selections removed from Y in the while loop are disjoint to γ. Therefore, we can
also say that δ is disjoint to Y.

Now the question is whether there is a selection ω ⊆ γ such that ω is disjoint to
Y and δ ⊂ ω. Assume that there is such an ω. With δ ⊂ ω and ω ⊆ γ, it holds
that ω ⊆ γ[i/I1], because else γ[i/I1] ⊂ ω with ω being disjoint to ρ, which is a
contradiction to (5.3). Since ω is disjoint to Y, it is also disjoint to Y’. This means
that ω contradicts the role of δ given by the induction hypothesis.

We get that, with respect to γ[i/I1], the call reduceSelection(γ[i/I1],Y′) re-
turns the set of all selections δ ⊆ γ that are disjoint to Y, and there is no selection
ω ⊆ γ such that ω is disjoint to Y and δ ⊂ ω. Since the for loop determines the
recursive calls of reduceSelection with respect to the subselections of γ and the
selection ρ exhaustively, as described above, the union R of all the recursive calls
indeed is by induction hypothesis the set of all selections δ satisfying the points (i)
and (ii) of the theorem.

Corolloray 5.37. Let γ be a maximal selection with respect to a state (S,U) and a user
transition Λ∧F  E ∈ TU . A selection δ with δ ⊆ γ and δ(i) 6= ∅ for all i ∈ {1, . . . , |δ|}
is a rule-terminal subselection of γ if and only if δ ∈ reduceSelection(γ,Y), where Y
is the set of all change-admitting selections with respect to (S,U).

Theorem 5.38. Let S+ = (Π, X, SI , UI ,C, TU , TR) be an admissible specification and
buildInterpretation(S+) = (V, T ). A state (S,U) is reachable from the initial state
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(SI , UI) via a path τ if and only if (S,U) ∈ V and we have a sequence

((S0, U0), i1, γ1, (S1, U1)), . . . , ((Sn−1, Un−1), in, γn, (Sn, Un)),

where ((Sj−1, Uj−1), ij , γj , (Sj , Uj)) ∈ T and τ(j) = (ij , γj) for all j = 1, . . . , n, |τ | = n,
(S0, U0) = (SI , UI), (Sn, Un) = (S,U).

Proof. (⇒) By induction on the path τ .
Let τ = (). We only have to consider the initial state (SI , UI), which is reachable

from itself with the empty path (). In buildInterpretation, V is initialized with
{(SI , UI)}, and because τ is empty, we do not have to look at T . Since V is never
reduced in the algorithm, (SI , UI) ∈ V indeed after a run of the algorithm.

Let τ = τ ′ :: (i, γ). The last transition represented by the path has the form

(Sn, Un)→(i,γ) (S,U). (5.4)

We have two cases:

• The transition is done with γ being a maximal selection with respect to (Sn, Un)
and a rule transition Λi ∧ Fi  Ei ∈ TR. By induction hypothesis, (Sn, Un) ∈ V
and there is a sequence

((SI , UI), i1, γ1, (S1, U1)), . . . , ((Sn−1, Un−1), in, γn, (Sn, Un)) ∈ T

with τ ′(j) = (ij , γj) for all j = 1, . . . , n. We have to show that the last transition
using (i, γ) in τ is also present in the algorithm’s output.

Since the state (Sn, Un) is in V , it must be in N at some point. Consider the
point when (Sn, Un) is the current state as chosen in line 6 in the algorithm. The
existence of the last transition (i, γ) above (5.4) implies that the state (Sn, Un) is
consistent, that is,

∀~xu∃~y Sn|Un → (Sn \ Sn|Un) ∪ C is satisfiable

by Definition 5.22. This means the consistency check in line 7 is positive and build-
Interpretation advances to the for loops iterating through the rule transitions
and respective selections (lines 9 and 10). By the definition of maxSelectionsS+

(Definition 5.35), the rule transition Λi ∧ Fi  Ei and the corresponding se-
lection γ are eventually identified by the loops. We get the state (S,U) as usual
by virtue of the rule update operator (line 11). The state-transition-state tuple
((Sn, Un), i, γ, (S,U)) is added to T (line 12) and the state (S,U) is added to
V (line 16) if (S,U) differs from (Sn, Un). If (S,U) is equal to (Sn, Un), then
(S,U) is not added to V , but is already in V because it must have been added
to V at some point before the current iteration, since it is taken from N . In any
case, since nothing is ever removed from S and T , we have that (S,U) ∈ V and
((Sn, Un), i, γ, (S,U)) ∈ T .

• The transition is done with γ being a maximal selection with respect to (Sn, Un)
and a user transition Λi ∧ Fi  Ei ∈ TU . By induction hypothesis, (Sn, Un) ∈ V
and there is a sequence

((SI , UI), i1, γ1, (S1, U1)), . . . , ((Sn−1, Un−1), in, γn, (Sn, Un)) ∈ T

with τ ′(j) = (ij , γj) for all j = 1, . . . , n. Analogously to the first case, we have to
show that the last transition using (i, γ) in τ is has corresponding elements in V
and T produced by the algorithm.
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The proof is very similar to that of the rule transition case. We therefore mainly
describe the differences that are due to the inherent properties of user transitions.

The state (Sn, Un) must have been in N at a certain point. We look at the iteration
in which it is the current state taken from N . After the loop examining the rule
transitions, it is checked if Y = {()} (line 19). This cannot be the case, or else
() would be a maximal selection with respect to (Sn, Un) and a rule transition,
which would contradict this case’s assumption that in (5.4) a user transition can
be applied to (Sn, Un). So indeed Y 6= {()} and we enter the loops iterating through
the user transitions and their respective selections. At one point the user transition
Λi∧Fi  Ei is found. BecausemaxSelectionsS+ contains all the maximal selections
with respect to (Sn, Un) and Λi ∧ Fi  Ei, and reduceSelection contains all
the rule-terminal subselections of those selections by Corollary 5.37, we eventually
arrive at the selection γi responsible for the user transition in (5.4). The steps
afterward correspond exactly to the first case of a rule transition in this proof.
Thus, we get (S,U) ∈ V and ((Sn, Un), i, γ, (S,U)) ∈ T .

(⇐) The state-transition-state tuples in T describe paths τ as defined in Defini-
tion 5.29. We prove this direction by induction on those paths.

Let τ = (). This corresponds to the case when the state in question is (SI , UI) ∈ V .
This state is obviously reachable from itself by the empty path.

Let τ = τ ′ :: (i, γ). We have (S,U) ∈ V and a sequence

((SI , UI), i1, γ1, (S1, U1)), . . . , ((Sn−1, Un−1), in, γn, (Sn, Un)), ((Sn, Un), i, γ, (S,U)) ∈ T,

with τ ′(j) = (ij , γj) for all j = 1, . . . , n.
There are two cases:

• The last tuple ((Sn, Un), i, γ, (S,U)) in the sequence is with respect to a rule tran-
sition Λi ∧ Fi  Ei ∈ TR.

By induction hypothesis, (Sn, Un) is reachable from the initial state via path τ ′. We
have to show that there is a transition (Sn, Un) →(i,γ) (S,U). The state (Sn, Un)
is contained in N and thus processed at some point. There, the consistency check
in line 7 is positive, meaning that

∀~xu∃~y Sn|Un → (Sn \ Sn|Un) ∪ C is satisfiable.

The completeness of maxSelectionsS+ gives us the correct selection γ, and the
following update as usual by Definition 5.21 yields the correct state (S,U). All in
all, we indeed get a transition (Sn, Un)→(i,γ) (S,U) as required by Definition 5.22.

• The last tuple ((Sn, Un), i, γ, (S,U)) in the sequence is with respect to a user tran-
sition Λi ∧ Fi  Ei ∈ TU .

By induction hypothesis, (Sn, Un) is reachable from the initial state via path τ ′.
Again, we need to show that there is a transition (Sn, Un)→(i,γ) (S,U). The steps
and reasoning needed are mostly the same as in the proof for rule transitions. The
only thing to consider is that by the completeness of maxSelectionsS+ and redu-
ceSelection (Corollary 5.37) we get the correct rule-terminal selection γ. Then,
it also holds in this case that (Sn, Un)→(i,γ) (S,U) according to Definition 5.28.
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5.4 Properties of Admissible PIDL+ Specifications

Analogously to PIDL, we show how certain properties of configuration systems can be
expressed within the PIDL+ framework. Some concepts can be carried over straightfor-
wardly, some other have to be adapted because of the big-steps semantics of the states
in PIDL+. As with the case of PIDL, all properties can be decided and computed by
analyzing the finite state graph of the corresponding specification (Theorem 5.44).

Soundness. An admissible specification S+ is sound if it has a model according to
Definition 5.34. As in PIDL, consistency properties given by the corresponding domain
of the configuration system modeled are expressed as formulas in the set C of constraints
as usual. However, these formulas must follow the restrictions stated in the definition
of admissible specifications (Definition 5.4), that is, they must be purely propositional
formulas over Π. Then, the specification is sound if there is no state (S,U) reachable
from the initial state (SI , UI) with

∀~xu∃~y S|U → (S \ S|U ) ∪ C not satisfiable.

The property can be checked while constructing the state graph GS+.

Example 5.39. Consider the following admissible specification S+:

SI = {A}

UI = ∅

C = {x ≥ 0, x ≤ 100,

y ≥ 0, y ≤ 10}

TU= {A u1 {x > 0, x < 20}}

TR= {x > 0 ∧ x ≤ 10 r1 {y ≈ 19}}
The initial state (SI , UI) does not have any user variables and is rule terminal. There is
a user transition with u1 and selection γ1 = (),

(SI , UI)→(u1,γ1) (S1, U1)

where

(S1, U1) = (SI , UI) /R (Eu1 , γ1)

= ({A}, ∅) /R ({x > 0, x < 20}, ())
= ({A, x > 0, x < 20}, {x}).

From (S1, U1), we can apply rule transition r1 with selection γ2 = ([1, 10]):

(S1, U1)→(r1,γ2) (S2, U2)

with

(S2, U2) = (S1, U1) /R (Er1 , γ2)

= ({A, x > 0, x < 20}, {x}) /R ({y ≈ 19}, [(1, 10)])

= ({A, x ≥ 1, x ≤ 10, y ≈ 19}, {x}).

(S2, U2) is inconsistent because the rule-set value of y violates the bounds y ≥ 0, y ≤ 10
defined in C, that is,

∀~xu∃~y S2|U2 → (S2 \ S2|U2) ∪ C is not satisfiable.

S+ is therefore not sound.
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Specification Completeness. Completeness of an admissible specification with re-
spect to a set X ′ of arithmetic variables means the following: Every valuation of the
variables in X ′ meeting the bounds in the constraints can be found in one of the rule-
terminal states that is reachable from the initial state of the specification. This notion
of completeness aims at expressing that all products represented by a valid valuation
of variables according to the constraint bounds in C are buildable. The propositional
part of the completeness definition corresponds to the case in PIDL (Section 4.4). Only
states that are fixpoints with respect to rule transitions can represent products, hence
the rule-termination requirement.

An admissible PIDL+ specification S+ is complete with respect to a set Π′ ⊆ Π of
propositional variables and a set X ′ ⊆ X of arithmetic variables if for every pair (M,σ),
where

• M is a set of propositional literals with vars(M) = vars(Π′) and M ∪ C 6|= ⊥, and

• σ is a substitution σ : X ′ → Z with Cσ being satisfiable,

there is a state (S,U) ∈ VS+ such that the following holds:

(i) M ⊆ S.

(ii) vars(X ′) ⊆ varsl(S).

(iii) (S ∪ C)σ is satisfiable.

(iv) If U 6= ∅ and

(a) X ′ ∩ U 6= ∅, then there is no change-admitting selection γ with respect to
(S,U) such that

vj ∈ γ(j) for all xj 7→ vj ∈ σ|U .

(b) X ′∩U = ∅, then there is a a subselection γ′S of the base selection γS of (S,U)
such that

• γ′S(k) 6= ∅ for all k = 1, . . . , |U |, and
• there is no change-admitting selection γ with respect to (S,U) with γ′S ∩
γ 6= ∅.

(v) If U = ∅, then () is not a change-admitting selection with respect to (S,U).

Given a specification S+, a literal set M , and a substitution σ that maps variables in
X ′ to integers, completeness implies that there is a reachable state (S,U) that is rule
terminal in a certain sense, contains the literals M and represents the instances in σ.
Here, rule termination can occur in three different possibilities. In (iv)(a), the set of
variables X ′ has a non-empty intersection with the user variables U . This means some
of the variables in X ′ are also user variables. The valuation of those variables represented
by σ is not contained in any selection that causes a rule transition that changes the state.
In other words, the user assignments contained in σ are not part of a selection that is
not rule terminal with respect to the state. In requirement (iv)(b), X ′ does not contain
any user variables. Therefore, rule termination is decided by whether there exists a
subselection of the base selection that does not share any instances with selections that
break rule termination. Finally, (v) considers the scenario where the state has no user
variables, which means that we simply check rule termination with respect to the empty
selection ().
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Example 5.40. In the following admissible specification A, we consider completeness
with respect to criterion (iv)(a):

SI = {A}

UI = ∅

C = {x ≥ 0, x ≤ 30,

y ≥ 0, y ≤ 5}

TU= {A u1 {B, x ≥ 0, x ≤ 20},

A u2 {¬B, x ≥ 21, x ≤ 30}}

TR= {x ≥ 10 ∧ x ≤ 15 r1 {C},

¬B  r2 {y ≈ 4}}
From SI there is a user transition using u1 and γ1 = (), which gives

(SI , UI)→(u1,γ1) (S1, U1)

with

(S1, U1) = (SI , UI) /U (Eu1 , γ1)

= ({A}, ∅) /U ({B, x ≥ 0, x ≤ 20}, ())
= ({A,B, x ≥ 0, x ≤ 20}, {x}).

Then, rule transition r1 with γ2 = ([10, 15]) can be applied to (S1, U1),

(S1, U1)→(r1,γ2) (S2, U2)

where

(S2, U2) = (S1, U1) /R (Er1 , γ2)

= ({A,B, x ≥ 0, x ≤ 20}, {x}) /R ({C}, ([10, 15]))

= ({A,B,C, x ≥ 10, x ≤ 15}, {x}).

Going back, applying user transition u2 with γ3 = () to (SI , UI) yields

(SI , UI)→(u2,γ3) (S3, U3)

where

(S3, U3) = (SI , UI) /U (Eu2 , γ3)

= ({A}, ∅) /U ({¬B, x ≥ 21, x ≤ 30}, ())
= ({A,¬B, x ≥ 21, x ≤ 30}, {x}).

We apply rule transition r2 with γ4 = ([21, 30]) to (S3, U3) and get

(S3, U3)→(r2,γ4) (S4, U4)

with

(S4, U4) = (S3, U3) /R (Er2 , γ4)

= ({A,¬B, x ≥ 21, x ≤ 30}, {x}) /R ({y ≈ 4}, ([21, 30]))

= ({A,¬B, x ≥ 21, x ≤ 30, y ≈ 4}, {x}).



92 5. PIDL+

The paths are
(SI , UI)→(u1,γ1) (S1, U1)→(r1,γ2) (S2, U2)

and
(SI , UI)→(u2,γ3) (S3, U3)→(r2,γ4) (S4, U4).

For example, the specification is complete with respect to {x}, where rule termination
is determined according to requirement (iv)(a):

• In (S1, U1), (iv)(a) is fulfilled for substitutions x 7→ 0, . . . , x 7→ 9 and for substitu-
tions x 7→ 16, . . . , x 7→ 20,

• in (S2, U2), (iv)(a) is fulfilled for substitutions x 7→ 10, . . . , x 7→ 15, and

• in (S4, U4), (iv)(a) is fulfilled for substitutions x 7→ 21, . . . , x 7→ 30.

As a result, all valid instances of x can be reached from (SI , UI).
If we look at {y}, we see that the specification is not complete with respect to it:

There are no states in which instances of y different from 4 can be reached.
The second admissible specification B in this example deals with completeness with

respect to criterion (iv)(b) and (v):

SI = {A}

UI = ∅

C = {x ≥ 0, x ≤ 20,

y ≥ 20, y ≤ 90}

TU= {A u1 {¬A, x ≥ 0, x ≤ 10}}

TR= {x ≥ 0 ∧ x ≤ 5 ∧A r1 {B, y ≥ 20, y ≤ 90},

B  r2 {C, x ≈ 0},

C  r3 {D}}
We can apply user transition u1 with γ1 = () to (SI , UI),

(SI , UI)→(u1,γ1) (S1, U1)

where

(S1, U1) = (SI , UI) /U (Eu1 , γ1)

= ({A}, ∅) /U ({¬A, x ≥ 0, x ≤ 10}, ())
= ({¬A, x ≥ 0, x ≤ 10}, {x}).

Rule transition r1 with γ2 = ([0, 5]) applied to (S1, U1) gives

(S1, U1)→(r1,γ2) (S2, U2)

with

(S2, U2) = (S1, U1) /R (Er1 , γ2)

= ({¬A, x ≥ 0, x ≤ 10}, {x}) /R ({B, y ≥ 20, y ≤ 90}, ([0, 5]))

= ({¬A,B, x ≥ 0, x ≤ 5, y ≥ 20, y ≤ 90}, {x}).
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Then, we apply rule transition r2 with γ3 = ([0, 5]) to (S2, U2), which leads to

(S2, U2)→(r2,γ3) (S3, U3)

where

(S3, U3) = (S2, U2) /R (Er2 , γ3)

= ({¬A,B, x ≥ 0, x ≤ 5, y ≥ 20, y ≤ 90}, {x}) /R ({C, x ≈ 0}, ([0, 5]))

= ({¬A,B,C, x ≈ 0, y ≥ 20, y ≤ 90}, ∅).

Finally, there is a rule transition from (S3, U3) using r3 and γ4 = ():

(S3, U3)→(r3,γ4) (S4, U4)

where

(S4, U4) = (S3, U3) /R (Er3 , γ4)

= ({¬A,B,C, x ≈ 0, y ≥ 20, y ≤ 90}) /R ({D}, ())
= ({¬A,B,C,D, x ≈ 0, y ≥ 20, y ≤ 90}, ∅).

The corresponding path is

(SI , UI)→(u1,γ1) (S1, U1)→(r1,γ2) (S2, U2)→(r2,γ3) (S3, U3)→(r3,γ4) (S4, U4).

The specification is complete with respect to {y}. The relevant reachable state in this
case is (S4, U4), where U4 = ∅, since it contains all the instances of y between 20 and 90
and is rule terminal according to (v). The other states in which y occurs cannot be used
as justification for completeness, because

• in (S2, U2), where {y} ∩ U2 = ∅, there is no subselection γ′S2
of the base selection

γS2 as specified in (iv)(b), as γS2 itself is change-admitting with respect to (S2, U2),
and

• in (S3, U3), where U3 = ∅, () is actually a change-admitting selection with respect
to (S3, U3).

Metaproperties. This case is handled in a similar way as done for PIDL. First, we
express the metaproperty as a quantifier-free formula φ. We then consider states (S,U) ∈
VS+ and their user instances that do not contain any instances that entail rule transitions
altering the state by their updates. If such a state entails φ modulo those rule-terminal
instances, the metaproperty is satisfied. To state it formally, for each state (S,U) ∈ VS+

the following properties holds:

(i) If U 6= ∅ and there is a subselection γ of the base selection of (S,U), where there is
no change-admitting selection γ′ with respect to (S,U) and γ ∩ γ′ 6= ∅, then there
is a substitution σ : U → Z with

xiσ ∈ γ(i) for all x1, . . . , xn ∈ U, and

(S ∪ C)σ satisfiable and (S ∪ C)σ |= φσ.

(ii) If U = ∅ and () is not a change-admitting selection with respect to (S,U), then

S ∪ C |= φ.
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Example 5.41. Consider the following admissible specification S+:

SI = {A,¬B}

UI = ∅

C = {x ≥ 0, x ≤ 100}

TU= {A u1 {x ≥ 30, x ≤ 80}}

TR= {x ≤ 50 r1 {¬A,B}}
Moreover, let the metaproperty

φ = B → x ≤ 20

be given.
The initial state (SI , UI) does not have user variables, and () is not a change-

admitting selection with respect to it. It holds that

S ∪ C = {A,¬B} |= B → x ≤ 20 = φ,

so the metaproperty is satisfied by this state. (SI , UI) is rule terminal with respect to
γ1 = () and user transition u1:

(SI , UI)→(u1,γ1) (S1, U1)

where

(S1, U1) = (SI , UI) /U (Eu1 , γ1)

= ({A,¬B}, ∅) /U ({A,¬B, x ≥ 30, x ≤ 80}, ())
= ({A,¬B, x ≥ 30, x ≤ 80}, {x}).

We look at the rule-terminal instances of (S1, U1). They are represented by the selection
γ2 = ([51, 80]). We can see that

(S ∪ C)σ = {A,¬B, x ≥ 30, x ≤ 80}σ is satisfiable

for all substitutions σ with
xσ ∈ γ2,

and
(S ∪ C)σ = {A,¬B, x ≥ 30, x ≤ 80})σ |= (B → x ≤ 20)σ = φσ.

Hence, the metaproperty also holds in (S1, U1) with respect to γ2. We apply the rule
transition r1 to (S1, U1) using the selection γ3 = ([30, 50]) to get

(S1, U1)→(r1,γ3) (S2, U2)

with

(S2, U2) = (S1, U1) /R (Er1 , γ3)

= ({A,¬B, x ≥ 30, x ≤ 80}, {x}) /R ({¬A,B}, ([30, 50]))

= ({¬A,B, x ≥ 30, x ≤ 50}, {x}).

The base selection γS2 = ([30, 50]) of (S2, U2) already fulfills the requirements of the
above definition, that is, there are no change-admitting selections with respect to (S2, U2)
that are not disjoint to γS2 . Moreover, there is no substitution σ for which

(S ∪ C)σ = {¬A,B, x ≥ 30, x ≤ 50}σ is satisfiable
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and
(S ∪ C)σ = {¬A,B, x ≥ 30, x ≤ 50}σ |= (B → x ≤ 20)σ.

We conclude that (S2, U2) does not satisfy the metaproperty φ. Therefore, the specifi-
cation does not satisfy the metaproperty φ.

Cyclicity. The formulation of cyclicity in PIDL+ has to take account of the fact that
states in PIDL+ are aggregations of instances of the user variables appearing in the
states. Therefore, cycles in PIDL+ are formulated modulo the instances represented by
the states’ bounds. What we are looking for are instantiations of paths that corresponds
to simple cycles as defined for the case of PIDL. In a PIDL+ specification, there is a
cycle if

(i) there is a sequence of transitions

(S0, U0)→(t1,γ1) (S1, U1)→(t2,γ2) · · · →(tn−1,γn−1) (Sn−1, Un−1)→(tn,γn) (Sn, Un)

with n ≥ 2 and Λti ∧ Fti  Eti ∈ (TU ∪ TR) for i = 1, . . . , n, and

(ii) there is a sequence of substitutions σ0, . . . , σn with σi : Ui → Z for i = 0, . . . , n,
and

(a) (Si ∪ C)σi is satisfiable for i = 0, . . . , n,

(b) for all i = 0, . . . , n− 1 it holds that if Ui = {x1, . . . , xm}, then xjσi ∈ γi+1(j)
for all j = 1, . . . ,m,

(c) xσi = xσi+1 if x 6∈ varsl(Eti+1) for all i = 0, . . . , n− 1,

(d) Siσi are distinct for i = 1, . . . , n, and

(e) S0σ0 = Snσn.

As explained in the PIDL case, we only consider paths whose lengths are at least greater
than one, that is, we ignore self-loop cycles. Condition (b) requires the substitutions
to represent exactly those user instances that entail the transitions, that is, they must
come from the respective selections annotating the transitions. The substitutions must
also satisfy condition (c), which becomes clear from the perspective of the small-steps
semantics (Section 5.2.1): As long as an instance of a user variable assignment that
entails a transition is not replaced by the transition’s update, it stays exactly the same
in the following updated state. This is to preserve correct instances in the small-steps
semantics. For example, assume the following state and transition, where we leave the
parts out that are not relevant to illustrating the concept:

(S,U) = ({A, x ≥ 0, x ≤ 20}, {x})

t = A {y > 6}
The state entails the transition given by t, and we have

(S,U)→(t,γ) (S′, U ′)

with

(S′, U ′) = (S,U) / (Et, γ)

= ({A, x ≥ 0, x ≤ 20}, {x}) / ({y > 6}, [(0, 20)])

= ({A, x ≥ 0, x ≤ 20, y > 6}, {x})



96 5. PIDL+

where the types of the transition t and update operator / do not matter for our purposes
and are therefore left unspecified. In particular, the way the literal set S is updated
is equal for user and rule transitions by Definition 5.27, so we only need to show the
updated S here.

We look at an instance of x with respect to the state S and that entails the transition
t, for example x ≈ 5. The update set Et of t does not mention the variable x, hence,
if we look at what the transition means with respect to the instance, x ≈ 5 should be
present in the updated state S′.

We now give a full example of a cyclic behavior of a PIDL+ specification.

Example 5.42. Consider the following admissible specification S+:

SI = {A}

UI = ∅

C = {x ≥ 0, x ≤ 100,

y ≥ 0, x ≤ 100}

TU= {A u1 {x ≥ 0, x ≤ 100}}

TR= {x ≥ 0 ∧ x ≤ 60 r1 {B, y > 30, y < 50},

x ≥ 20 ∧ x ≤ 50 ∧B  r2 {¬A}

x ≥ 30 r3 {A}}
The initial state (SI , UI) is rule terminal, so we can apply user transition u1 with γ1 = ().

(SI , UI)→(u1,γ1) (S1, U1)

where

(S1, U1) = (SI , UI) /U (Eu1 , γ1)

= ({A}, ∅) /U ({x ≥ 0, x ≤ 100}, ())
= ({A, x ≥ 0, x ≤ 100}, {x}).

The rule transitions given in the specification can be applied to state (S1, U1). We show
the transitions resulting from applying r1, r2, and r3 in that order. First, rule transition
r1 with γ1 = ([0, 60]) gives us

(S1, U1)→(r1,γ2) (S2, U2)

where

(S2, U2) = (S1, U1) /R (Er1 , γ2)

= ({A, x ≥ 0, x ≤ 100}, {x}) /R ({B, y > 30, y < 50}, ([0, 60]))

= ({A,B, x ≥ 0, x ≤ 60, y > 30, y < 50}, {x}).

Applying r2 with γ3 = ([20, 50]) to (S2, U2) yields

(S2, U2)→(r2,γ3) (S3, U3)

with

(S3, U3) = (S2, U2) /R (Er2 , γ3)

= ({A,B, x ≥ 0, x ≤ 60, y > 30, y < 50}, {x}) /R ({¬A}, ([20, 50]))

= ({¬A,B, x ≥ 20, x ≤ 50, y > 30, y < 50}, {x}).
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Finally, rule transition r3 with γ4 = ([30, 50]) can be applied to (S3, U4):

(S3, U3)→(r3,γ4) (S4, U4)

where

(S4, U4) = (S3, U3) /R (Er3 , γ4)

= ({¬A,B, x ≥ 20, x ≤ 50, y > 30, y < 50}, {x}) /R ({A}, ([30, 50]))

= ({A,B, x ≥ 30, x ≤ 50, y > 30, y < 50}, {x}).

The path resulting from the transitions represents the sequence

(SI , UI)→(u1,γ1) (S1, U1)→(r1,γ2) (S2, U2)→(r2,γ3) (S3, U3)→(r3,γ4) (S4, U4).

We can find an instantiation of the states so that a cycle is established. One example is:

σ2 = σ3 = σ4 = {x 7→ 36},

with respect to the states S2, S3, and S4. Indeed, applying the substitution to the states
gives us the cyclic segment

S2σ2 → S3σ3 → S4σ4 =

{A,B, x ≈ 36, y > 30, y < 50} → {¬A,B, x ≈ 36, y > 30, y < 50} →

{A,B, x ≈ 36, y > 30, y < 50},

satisfying the requirements for cyclicity stated above.

The observations made about possible types of cycles for PIDL in Section 4.4 can
be carried over in the case of PIDL+: A cycle can consist of user and rule transitions.
A user “reset scheme” may possibly be in place if there is a user transition from the
cycle leading to a path away from the cycle, and a rule transition exiting the cycle may
lead to another rule-terminal selection or to another cycle. Cycles that only have rule
transitions usually indicate inconsistency in the corresponding configuration systems.

Confluence. Like cycles, the notion of confluence in PIDL+ needs a more involved
adaptation of what has been defined as confluence in PIDL. Confluence of PIDL+ spe-
cifications is determined by the user instances of the affected states. Again, we consider
two kinds of confluence.

An admissible PIDL+ specificationS+ is rule confluent if for each state (S,U) ∈ VS+

and for each substitution σ : U → Z with (S ∪ C)σ being satisfiable the following holds:
If there is a sequence of rule transitions

(S0, U0)→(r1,γ1) (S1, U1)→(r2,γ2) · · · →(rn−1,γn−1) (Sn−1, Un−1)→(rn,γn) (Sn, Un)

and a sequence
σ0, σ1, . . . , σn−1, σn

of substitutions σi : Ui → Z for i = 0, . . . , n where

(i) (S0, U0) = (S,U),

(ii) σ0 = σ,

(iii) (Si ∪ C)σi is satisfiable for i = 0, . . . , n,
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(iv) for all i = 0, . . . , n − 1 it holds that if Ui = {x1, . . . , xm}, then xjσi ∈ γi+1(j) for
all j = 1, . . . ,m,

(v) xσi = xσi+1 if x 6∈ varsl(Eri+1) for all i = 0, . . . , n− 1, and

(vi) if Un = {x1, . . . , xl}, then xjσn ∈ γ(j) for all j = 1, . . . , l, where γ is the rule-
terminal base of (Sn, Un), or if Un = ∅, then () is the rule-terminal base of (Sn, Un),

then the state (Sn, Un) is unique.
Intuitively, we have rule confluence if from any user instance of any state we can

reach only reach one rule-terminal user instance by using only rule transitions. We go
through the points of the definition. The first two, (i) and (ii), simply state that the
sequence of rule transitions starts with the state (S,U) and the substitution sequence
starts with σ. Point (iii) makes sure the substitutions of the sequence are allowed ones
that do not break the bounds given by the state and the constraints. Requirements (iv)
and (v) are known from the definition of cyclicity in PIDL+. They say that instances
must be in the corresponding selections entailing the transitions, and instances do not
change if not overwritten by rule transition updates. Point (vi) finally states that the
path mentioned above must end in a state with a rule-terminal base. There must not
be another state with such properties that can be reached from the instance represented
by σ and (S,U), otherwise the specification is not rule confluent.

In order to define user confluence for PIDL+ specifications, we need the notion of
user update instances. Let a sequence of transitions

(S0, U0)→(t1,γ1) (S1, U1)→(t2,γ2) · · · →(tn−1,γn−1) (Sn−1, Un−1)→(tn,γn) (Sn, Un)

and associated with it a sequence of substitutions

σ0, σ1, . . . , σn−1, σn

with (Si ∪ C)σi being satisfiable for i = 0, . . . , n be given. The user update instances
MU is a set of pairs

(ui, σi|varsl(Eti ))

where such a pair is contained in MU whenever (Si−1, Ui−1)→(ui,γi) (Si, Ui) and σi are
a user transition and a substitution contained in the above sequences. The substitution
σi|varsl(Eti ) tells us which instance of the user variables in the user transition’s update
is contained in the substitution σi. This is needed to identify the instances of user
transitions out of the aggregating states, and thus express user confluence in the context
of PIDL+.

An admissible PIDL+ specification S+ is user confluent if for each substitution
σ : UI → Z with (SI ∪ C)σ satisfiable and for each sequence of transitions

(S0, U0)→(t1,γ1) (S1, U1)→(t2,γ2) · · · →(tn−1,γn−1) (Sn−1, Un−1)→(tn,γn) (Sn, Un)

and each sequence
σ0, σ1, . . . , σn−1, σn

of substitutions σi : Ui → Z for i = 0, . . . , n, where

(i) (S0, U0) = (SI , UI),

(ii) σ0 = σ,
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(iii) (Si ∪ C)σi is satisfiable for i = 0, . . . , n,

(iv) for all i = 0, . . . , n − 1 it holds that if Ui = {x1, . . . , xm}, then xjσi ∈ γi+1(j) for
all j = 1, . . . ,m,

(v) xσi = xσi+1 if x 6∈ varsl(Eti+1) for all i = 0, . . . , n− 1, and

(vi) if Un = {x1, . . . , xl}, then xjσn ∈ γ(j) for all j = 1, . . . , l, where γ is the rule-
terminal base of (Sn, Un), or if Un = ∅, then () is the rule-terminal base of (Sn, Un),

the following holds: If there is another state (S′, U ′) with a rule-terminal base reachable
from (SI , UI) and σ in the same way as above using the same set of user transitions and
the same set of user update instances occurring in the above sequence, then (S′, U ′) =
(S,U).

Points (i) to (vi) are analogous to rule confluence, except that we now consider rule
and user transitions. The core statement that defines user confluence is that if the same
user transitions are applied on different paths starting from the initial state and a certain
instance of it, we end up with the same state that has a rule-terminal base.

Example 5.43. We show small examples illustrating specifications that satisfy and
violate confluence.

Consider the following admissible specification A, which is rule-confluent:

SI = {A}

UI = ∅

C = {x ≥ 0, x ≤ 100}

TU= {A u1 {x ≥ 0, x ≤ 100}}

TR= {x ≥ 0 ∧ x ≤ 50 ∧A r1 {B},

x ≥ 51 ∧ x ≤ 100 ∧A r2 {C}}
We observe the following user transition from the initial state, with u1 and γ1 = ():

(SI , UI)→(u1,γ1) (S1, U1)

where

(S1, U1) = (SI , UI) /U (Eu1 , γ1)

= ({A}, ∅) /U ({x ≥ 0, x ≤ 100}, ())
= ({A, x ≥ 0, x ≤ 100}, {x}).

Rule transition r1 can be applied to (S1, U1) with γ2 = ([0, 50]):

(S1, U1)→(r1,γ2) (S2, U2)

with

(S2, U2) = (S1, U1) /R (Er1 , γ2)

= ({A, x ≥ 0, x ≤ 100}, {x}) /R ({B}, ([0, 50]))

= ({A,B, x ≥ 0, x ≤ 50}, {x}).
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It is also possible to apply rule transition r2 to (S1, U1) with γ3 = ([51, 100]):

(S1, U1)→(r2,γ3) (S3, U3)

where

(S3, U3) = (S1, U1) /R (Er2 , γ3)

= ({A, x ≥ 0, x ≤ 100}, {x}) /R ({C}, ([51, 100]))

= ({A,C, x ≥ 51, x ≤ 100}, {x}).

There are no more transitions. The paths so far are

(SI , UI)→(u1,γ1) (S1, U1)→(r1,γ2) (S2, U2)

and
(SI , UI)→(u1,γ1) (S1, U1)→(r2,γ3) (S3, U3).

Thus, from the initial state paths lead to two different states with rule-terminal bases.
However, from each user instance represented by (S1, U1), the first state in which user
variables appear, there is only one rule-terminal state reachable by applying rule tran-
sitions. Each instance of x that is less than or equal to 50 leads to one instance in S2,
and each instance of x greater than or equal to 51 leads to exactly one instance in S3,
making A rule confluent.

We continue with the admissible specification B:

SI = {A,¬B}

UI = ∅

C = {x ≥ 0, x ≤ 100}

TU= {A u1 {x ≥ 20, x ≤ 80}}

TR= {x ≥ 20 ∧ x ≤ 30 ∧A r1 {B},

x ≥ 25 ∧ ¬B  r2 {C, y ≈ 75}}
The state (SI , UI) is rule terminal with respect to the selection γ1 = () and user transition
u1,

(SI , UI)→(u1,γ1) (S1, U1)

with

(S1, U1) = (SI , UI) /U (Eu1 , γ1)

= ({A,¬B}, ∅) /U ({x ≥ 20, x ≤ 80}, ())
= ({A,¬B, x ≥ 20, x ≤ 80}, {x}).

There is a rule transition from (S1, U1) using r1 and γ2 = ([20, 30]),

(S1, U1)→(r1,γ2) (S2, U2)

where

(S2, U2) = (S1, U1) /R (Er1 , γ2)

= ({A,¬B, x ≥ 20, x ≤ 80}, {x}) /R ({B}, ([20, 30]))

= ({A,B, x ≥ 20, x ≤ 30}, {x}).
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We can also apply rule transition r2 to (S1, U1) with γ3 = ([25, 80]),

(S1, U1)→(r2,γ3) (S3, U3)

with

(S3, U3) = (S1, U1) /R (Er2 , γ3)

= ({A,¬B, x ≥ 20, x ≤ 80}, {x}) /R ({C, y ≈ 75}, ([25, 80]))

= ({A,¬B,C, x ≥ 25, x ≤ 80, y ≈ 75}, {x}).

The resulting state (S3, U3) is followed by a rule transition to (S4, U4) by using r1 and
γ4 = ([25, 30]),

(S2, U2)→(r1,γ4) (S3, U3)

with

(S4, U4) = (S3, U3) /R (Er1 , γ4)

= ({A,¬B, x ≥ 20, x ≤ 80}, {x}) /R ({B}, ([25, 30]))

= ({A,B,C, x ≥ 25, x ≤ 30, y ≈ 75}, {x}).

The paths from (SI , UI) so far are

(SI , UI)→(u1,γ1) (S1, U1)→(r1,γ2) (S2, U2)

and
(SI , UI)→(u1,γ1) (S1, U1)→(r2,γ3) (S3, U3)→(r1,γ4) (S4, U4),

with two states with rule-terminal bases emerging, (S2, U2) and (S4, U4). Consider the
substitution

σ1 = {x 7→ 25}
with respect to (S1, U1). With more substitutions σ2, σ3, σ4, where

σ2 = σ3 = σ4 = σ1,

we can construct two paths starting from S1σ1 and ending in two different rule-terminal
instances S2σ2 and S4σ4 according to the above definition:

S1σ1 → S2σ2

and
S1σ1 → S3σ3 → S4σ4,

where
S2 6= S4.

Hence, B is not rule-confluent.
We now demonstrate the concept of user confluence. Assume the admissible specifi-

cation C:

SI = {¬A,¬B}

UI = ∅

C = {x1 ≥ 0, x1 ≤ 100,

x2 ≥ 0, x2 ≤ 100}

TU= {¬B  u1 {x1 ≥ 0, x1 ≤ 30},

¬A u2 {x2 ≥ 40, x2 ≤ 60}}

TR= {x1 ≥ 0 ∧ x2 ≤ 70 r1 {A,B}}
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From (SI , UI), user transition u1 to (S1, U1) is possible with γ1 = (),

(SI , UI)→(u1,γ1) (S1, U1)

where

(S1, U1) = (SI , UI) /U (Eu1 , γ1)

= ({¬A,¬B}, ∅) /U ({x1 ≥ 0, x1 ≤ 30}, ())
= ({¬A,¬B, x1 ≥ 0, x1 ≤ 30}, {x1}).

There is another user transition from (S1, U1) to (S2, U2) with u2 and γ2 = ([0, 30]),

(S1, U1)→(u2,γ2) (S2, U2)

where

(S2, U2) = (S1, U1) /U (Eu2 , γ2)

= ({¬A,¬B, x1 ≥ 0, x1 ≤ 30}, {x1}) /U ({x2 ≥ 40, x2 ≤ 60}, ([0, 30]))

= ({¬A,¬B, x1 ≥ 0, x1 ≤ 30, x2 ≥ 40, x2 ≤ 60}, {x1, x2}).

We can apply rule transition r1 to (S2, U2) with γ3 = ([0, 30], [40, 60]),

(S2, U2)→(r1,γ3) (S3, U3)

with

(S3, U3) = (S2, U2) /R (Er1 , γ3)

= ({¬A,¬B, x1 ≥ 0, x1 ≤ 30, x2 ≥ 40, x2 ≤ 60}, {x1, x2})/R
({A,B}, ([0, 30], [40, 60]))

= ({A,B, x1 ≥ 0, x1 ≤ 30, x2 ≥ 40, x2 ≤ 60}, {x1, x2}).

Going back to the initial state, we see that user transition u2 with γ4 = () is possible
from this state, yielding

(SI , UI)→(u2,γ4) (S4, U4)

with

(S4, U4) = (SI , UI) /U (Eu2 , γ4)

= ({¬A,¬B}, ∅) /U ({x2 ≥ 40, x2 ≤ 60}, ())
= ({¬A,¬B, x2 ≥ 40, x2 ≤ 60}, {x2}).

If we apply user transition u1 with γ5 = ([40, 60]) to (S4, U4), the successor state is the
existing (S3, U3):

(S4, U4)→(u1,γ5) (S3, U3)

with

(S3, U3) = (S4, U4) /U (Eu1 , γ5)

= ({¬A,¬B, x2 ≥ 40, x2 ≤ 60}, {x2}) /U ({x1 ≥ 0, x1 ≤ 30}, ([40, 60]))

= ({¬A,¬B, x1 ≥ 0, x1 ≤ 30, x2 ≥ 40, x2 ≤ 60}, {x1, x2}).

The resulting picture from the transitions is given by the paths

(SI , UI)→(u1,γ1) (S1, U1)→(u2,γ2) (S2, U2)→(r1,γ3) (S3, U3),
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and
(SI , UI)→(u2,γ4) (S4, U4)→(u1,γ5) (S3, U3).

Inspecting the paths makes it clear that every path of user instances containing the same
transitions u1 and u2 and the same user update instances leads to a unique state that
has a rule-terminal base. The specification C is therefore user confluent.

The last example specification D is given by

SI = {¬A,¬B}

UI = ∅

C = {x1 ≥ 0, x1 ≤ 100,

x2 ≥ 0, x2 ≤ 100}

TU= {¬A u1 {A, x1 ≥ 0, x1 ≤ 45},

¬B  u2 {B, x2 ≥ 58, x2 ≤ 90}}

TR= {x1 ≤ 30 ∧ ¬B  r1 {C}}
There is a user transition from the initial state using u1 and γ1 = (),

(SI , UI)→(u1,γ1) (S1, U1)

with

(S1, U1) = (SI , UI) /U (Eu1 , γ1)

= ({¬A,¬B}, ∅) /U ({A, x1 ≥ 0, x1 ≤ 45}, ())
= ({A,¬B, x1 ≥ 0, x1 ≤ 45}, {x1}).

We can apply rule transition r1 to (S1, U1) with γ2 = ([0, 30]),

(S1, U1)→(r1,γ2) (S2, U2)

where

(S2, U2) = (S1, U1) /R (Er1 , γ2)

= ({A,¬B, x1 ≥ 0, x1 ≤ 45}, {x1}) /R ({C}, ([0, 30]))

= ({A,¬B,C, x1 ≥ 0, x1 ≤ 30}, {x1}).

The state (S2, U2) entails user transition u2 with selection γ3 = ([0, 30]), thus

(S2, U2)→(u2,γ3) (S3, U3)

with

(S3, U3) = (S2, U2) /U (Eu2 , γ3)

= ({A,¬B,C, x1 ≥ 0, x1 ≤ 30}, {x1}) /U ({B, x2 ≥ 58, x2 ≤ 90}, ([0, 30]))

= ({A,B,C, x1 ≥ 0, x1 ≤ 30, x2 ≥ 58, x2 ≤ 90}, {x1, x2}).

There is a user transition from the initial state using u2 and γ4 = (),

(SI , UI)→(u2,γ4) (S4, U4)
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where

(S4, U4) = (SI , UI) /U (Eu2 , γ4)

= ({¬A,¬B}, ∅) /U ({B, x2 ≥ 58, x2 ≤ 90}, ())
= ({¬A,B, x2 ≥ 58, x2 ≤ 90}, {x2}).

From (S4, U4), user transition u1 is possible with γ5 = ([58, 90]),

(S4, U4)→(u1,γ5) (S5, U5)

with

(S5, U5) = (S4, U4) /U (Eu1 , γ5)

= ({¬A,B, x2 ≥ 58, x2 ≤ 90}, {x2}) /U ({A, x1 ≥ 0, x1 ≤ 45}, ([58, 90]))

= ({A,B, x1 ≥ 0, x1 ≤ 45, x2 ≥ 58, x2 ≤ 90}, {x1, x2}).

We have the following paths:

(SI , UI)→(u1,γ1) (S1, U1)→(r1,γ2) (S2, U2)→(u2,γ3) (S3, U3),

and
(SI , UI)→(u2,γ4) (S4, U4)→(u1,γ5) (S5, U5).

Consider now the following user update instances:

(u1, {x1 7→ 23}), (u2, {x2 7→ 60}).

From the initial state, we can reach (S3, U3) with the sequence of substitutions

σ, σ1, σ2, σ3

and their applications
SIσ →u1 S1σ1 → S2σ2 →u2 S3σ3,

where σ is the empty substitution,

σ1 = σ2 = {x1 7→ 23}, and σ3 = {x1 7→ 23, x2 7→ 60}.

The same user transitions and user update instances can be used to have another path,

SIσ →u2 S4σ4 →u1 S5σ3,

where
σ4 = {x2 7→ 60}.

(S3, U3) and (S5, U5) both have rule-terminal bases as required in the definition. Since
they differ from each other, the order in which user transitions happen has an effect on
the result, which means D is not user confluent.

Theorem 5.44. The state space VS+ and transition space TS+ of each interpretation
of an admissible specification S+ are finite sets.

Proof. The states in PIDL+ satisfy the subterm property, as can be seen in the following.
A state consists of propositional literals and arithmetic atoms. The propositional literals
that can occur in a state are based on the finite set Π given by the specification. Hence,
the number of possible propositional literals is finite. Arithmetic atoms appearing in a
state can come from
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(i) an update set, or

(ii) an atomic representation of a selection.

Update sets are finite and there are finitely many of them, since they are part of user
and rule transitions, both finite sets. The set of all possible selections occurring in states
is finite because the relevant variables are bounded integers via the constraints C in
admissible specifications. All in all, we have that there are only finitely many ways to
write a state that can be induced given an admissible specification, so VS+ is finite. Due
to the finiteness of VS+, of the possible selections and of the sets of transitions, TS+ is
finite as well.

Theorem 5.45. Let S+ = (Π, X, SI , UI ,C, TU , TR) be an admissible PIDL+ specifica-
tion. Let b be the length of the largest integer interval that is represented by the bounds
with respect to a transition variable,

b := max{dx − cx + 1|x ≥ cx ∧ x ≤ dx appears in C}.

The state space VS+ has worst-case space complexity

O(3|Π| · (1 + |TU |+ |TR|+ (
b2 + b

2
))|X| · 2|X|).

Proof. A PIDL+ state has the form (S,U), where S is a set of propositional literals and
simple atoms, and U is a subset of the set X of arithmetic variables.

In S, a propositional variable P can be present as P , ¬P , or not not be present at
all. Hence, there are 3|Π| configurations of propositional literals with respect to S.

Simple atoms x◦t occurring in S can be associated with their left-hand-side variables
x. There are three cases with respect to the appearance of simple atoms x ◦ t in S:

(i) There are no simple atoms x ◦ t in S.

(ii) There are simple atoms x ◦ t in S, where the atoms come from the update sets of
the transitions in TU and TR. There are at most |TU |+ |TR| such update sets with
respect to x.

(iii) There are simple atoms x ◦ t in S, where the atoms are elements from the ato-
mic representations at(γ), with γ being the selection that is used in an update
operation. This means that the update set of the corresponding transition do not
contain atoms with x as a left-hand-side variable, otherwise the update set would
take precedence, as defined for the update operators (Definition 5.21 and 5.27) and
as is the case in (ii).

Since x is involved in a transition, it is bounded in the constraints by virtue of
atoms x ≥ cx and x ≤ dx, represented by the integer interval Ix := [cx, dx]. Every
set of simple atoms x◦t from at(γ) represents a subinterval I ⊆ Ix by Definition 5.8.
Assume that the size of Ix is n. If the size of I is 1, then there are n ways I could
look like. If the size of I is 2, then there are n − 1 ways I could look like. This
can be continued up to a size of n of I, in which case there is 1 way to form I. To
sum up, there are

Σn
i=1i =

n2 + n

2
possibilities to have subintervals of Ix. If we take b, the length of the largest interval
represented by the bounds in the constraints, we have at most

b2 + b

2
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possibilities to have simple atoms in S that come from selections.

Finally, there are 2|X| possibilities for the user variables U , which is a subset of X.
All in all, the number of PIDL+ states in VS+ is bounded by

O(3|Π| · (1 + (|TU |+ |TR|) + (
b2 + b

2
))|X| · 2|X|).

The results make it possible for PIDL+ to, in principle, embed configuration systems
such as LEEGOO, which also consider arithmetic constraints. Non-arithmetic parame-
ters and constraints are modeled in the same way as done in PIDL, since propositional
variables and formulas stay an essential part of PIDL+. The arithmetic terms and their
integration in PIDL+ specifications have been chosen and done in such a way that the
arithmetic part of LEEGOO is sufficiently represented, paving the way for the formal
verification of properties of LEEGOO models.



107

Chapter 6

Conclusions

We have presented PIDL and PIDL+, two decidable logics that have been developed
to formalize rule-based configuration systems in a comprehensive way. The semantics
is defined so that the whole configuration process can be represented, forming a basis
for useful verification of important properties. Rule-terminal states correspond to the
fixpoint behavior of configuration systems such as DOPLER (Dhungana and Grünba-
cher, 2008; Dhungana et al., 2011) and LEEGOO (Struck, 2012), and the transition
update scheme of replaceable literals in states gives flexibility in the modeling of those
systems. While PIDL deals with purely propositional configuration, PIDL+ integrates
arithmetic in the framework, with a compact representation of instances by using bounds
and selections. For both logics, we have provided calculi and algorithms to show they
are amenable to decision procedures connected to investigating important consistency
properties.

With this thesis demonstrating first experiments in the case of PIDL, it would be
desirable to be able to have more real-world configuration data that can be used for furt-
her experimentation. Corresponding further arrangements would likely have to be made
with partners in industry. Furthermore, there is always room for extensions to expres-
sivity and features covered by the logics. The present work is motivated by DOPLER
and LEEGOO and refers to a particular state of the systems. It would be interesting to
see whether additional developments in the area of configuration systems in general that
have happened since can be represented by modifying and extending the logics accor-
dingly. Nevertheless, PIDL and PIDL+ show how a formalization of relevant elements
of interactive product configuration can look like and how it opens up possibilities for
the automated verification of those systems.
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