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§2: Et kütt wie et kütt.
§3: Et hät noch immer jot jejange.
§4: Wat fott es, es fott.
§5: Et bliev nix, wie et wor.
§6: Kenne mer nit, bruche mer nit, fott domet.
§7: Wat wellste maache?
§8: Maach et jot, ävver nit ze of.
§9: Wat sull dä Quatsch?
§10: Dringste eine met?
§11: Do laachs dich kapott.

– Et kölsche Jrundjesetz,
which coincidentally spotlights characteristics of
many regulatory processes in biology:
§1: observational evidence
§2: stochasticity
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§4: drift
§5: dynamics
§6: selection
§7: determinism
§8: efficiency
§9: complexity
§10: cooperativity
§11: ingenuity





Abstract

Although virtually all cells in an organism share the same genome, regulatory mecha-
nisms give rise to hundreds of different, highly specialized cell types. Understanding
these mechanisms has been in the limelight of epigenomic research. It is now evident
that cellular identity is inscribed in the epigenome of each individual cell. Nonetheless,
the precisemechanisms bywhich different epigenomicmarks are involved in regulating
gene expression are just beginning to be unraveled. Furthermore, epigenomic patterns
are highly dynamic and subject to environmental influences. Any given cell type is de-
fined by cell populations exhibiting epigenetic heterogeneity at different levels. Char-
acterizing this heterogeneity is paramount in understanding the regulatory role of the
epigenome.
Different epigenomic marks can be profiled using high-throughput sequencing,

and global initiatives have started to provide a comprehensive picture of the human
epigenome by assaying a multitude of marks across a broad panel of cell types and
conditions. In particular, DNA methylation has been extensively studied for its gene-
regulatory role in health and disease.
This thesis describes computational methods and pipelines for the analysis of DNA

methylation data. It provides concepts for addressing bioinformatic challenges such
as the processing of large, epigenome-wide datasets and integrating multiple levels of
information in an interpretablemanner. We developedRnBeads, an R package that facil-
itates comprehensive, interpretable analysis of large-scale DNAmethylation datasets at
the level of single CpGs or genomic regions of interest. With the epiRepeatR pipeline, we
introduced additional tools for studying global patterns of epigenomic marks in trans-
posons and other repetitive regions of the genome.
Blood-cell differentiation represents a useful model for studying trajectories of cel-

lular differentiation. We developed and applied bioinformatic methods to dissect the
DNA methylation landscape of the hematopoietic system. Here, we provide a broad
outline of cell-type-specific DNA methylation signatures and phenotypic diversity re-
flected in the epigenomes of human mature blood cells. We also describe the DNA
methylation dynamics in the process of immune memory formation in T helper cells.
Moreover, we portrayed epigenetic fingerprints of defined progenitor cell types and de-
rived computational models that were capable of accurately inferring cell identity. We
used these models in order to characterize heterogeneity in progenitor cell populations,
to identify DNAmethylation signatures of hematopoietic differentiation and to infer the
epigenomic similarities of blood cell types.
Finally, by interpreting DNA methylation patterns in leukemia and derived pluripo-

tent cells, we started to discern how epigenomic patterns are altered in disease and ex-
plored how reprogramming of these patterns could potentially be used to restore a non-
malignant state.
In summary, this work showcases novel methods and computational tools for the

identification and interpretation of epigenetic signatures of cell identity. It provides
a detailed view on the epigenomic landscape spanned by DNA methylation patterns
in hematopoietic cells that enhances our understanding of epigenetic regulation in cell
differentiation and disease.
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Kurzfassung

Obwohl praktisch alle Zellen eines Organismus dieselbe Genomsequenz besitzen,
führen diverse regulatorische Mechanismen dazu, dass sich hunderte verschiedene,
hochspezialisierte Zelltypen entwickeln können. Diese Mechanismen zu verstehen ist
Kernziel der Epigenomforschung. Das Epigenom einer Zelle spiegelt ihren Phänotyp
und somit ihre Identität wider. Die genauen Mechanismen, die durch die verschiede-
nen epigenomischenMerkmale einer Zelle gesteuert werden, sind jedoch bisher weitest-
gehend unbekannt. Außerdem sind die zugrundeliegenden epigenomischen Muster
dynamisch und können sich abhängig von ihrer Umgebung verändern. Verschiedene
Zelltypen bestehen zudem aus heterogenen Populationen einzelner Zellen. Um die reg-
ulatorische Rolle des Epigenoms zu verstehen ist daher eine genaue Charakterisierung
dieser Heterogenität unabdingbar.
Epigenomische Profile können mithilfe moderner Technologien, wie etwa der

Hochdurchsatzsequenzierung der DNS, erzeugt werden. Globale Initiativen unter-
suchen inzwischen eine Vielzahl epigenomischer Modifikationen in einer breiten
Spanne verschiedener Zelltypen und legen damit den Grundstein für ein umfassendes
Bild des dynamischen humanen Epigenoms. Insbesondere stellt die Methylierung der
DNS, welche mit der Genregulation in gesunden sowie erkrankten Zellen assoziiert ist,
eines der am besten beschriebenen epigenomischen Merkmale dar.
Diese Arbeit beschreibt computergestützte Verfahren und Software-Pipelines für die

Analyse von DNS-Methylierungsdaten. Herangehensweisen für bioinformatische Her-
ausforderungen, wie etwa dem Umgang mit großen, heterogenen, epigenomweiten
Datensätzen und der Datenintegration aus verschiedenen Informationsebenen, werden
vorgestellt. Unsere RnBeads Software ermöglicht eine umfassendeAnalyse großerDNS-
Methylierungsdatensätze auf Basis einzelner CpGs oder genomischer Regionen und
stellt die Resultate in interpretierbarer Form dar. Des Weiteren stellt die epiRepeatR
Pipeline Werkzeuge für die Untersuchung globaler epigenomischer Muster in Trans-
posons und anderen repetitiven Abschnitten des Genoms bereit.
Das blutbildende System stellt ein nützliches Modell für die Beschreibung und

Erforschung von Zelldifferenzierungsprozessen dar. Hier beschreiben wir die
epigenomische Landschaft, die durch DNS-Methylierungsmuster in hämatopoetischen
Zellen aufgespannt wird. Bioinformatische Methoden zur Analyse epigenomischer
Muster in den Differenzierungsprozessen wurden erarbeitet und angewandt. Mithilfe
dieser Methoden wurden zelltypspezifische Methylierungsprofile ausdifferenzierter
Blutzellen identifiziert, welche die phänotypische Diversität der Zellen widerspiegeln.
In einer vertiefenden Analyse wurde die Methylierungsdynamik während der Ausbil-
dung des Immungedächtnisses in menschlichen T-Zellen offengelegt. Darüber hinaus
konnten epigenetische Fingerabdrücke von Blutvorläuferzellen identifiziert und statis-
tische Verfahren entwickelt werden, mit deren Hilfe Zellidentität abgeleitet werden
kann. Diese Verfahren ermöglichen die Charakterisierung von Zellheterogenität in Pop-
ulationen von Vorläuferzellen, die Herausstellung von Methylierungssignaturen der
Zelldifferenzierung und dieQuantifizierung der epigenomischenÄhnlichkeit zwischen
Zelltypen.
Schließlich beschäftigt sich diese Arbeit mit der Beschreibung epigenomischer

Muster, die in Krebszellen abnormal verändert sind und die sich durch Zellreprogram-
mierung einen pluripotenten, potenziell gutartigen Zustand zurückversetzen lassen.
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Zu diesem Zweck wurden die Methylierungsprofile leukämischer Zellen und deren re-
programmierter Gegenstücken mit den entwickelten bioinformatischen Methoden aus-
gewertet.
Zusammenfassend beschreibt diese Dissertation neuartige Methoden und Soft-

warewerkzeuge zur Identifizierung und Interpretation epigenetischer Signaturen
der Zellidentität. Sie zeichnet ein Bild der DNS-Methylierungslandschaft in
menschlichen Blutzellen, welches zum Verständnis von epigenetischen Regulation-
sprozessen während Zelldifferenzierung und Krankheitsbildung beitragen kann.
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1
Introduction

A single fertilized oocyte can give rise to an entire human organism consisting of ap-
proximately 30 to 40 trillion cells which differ greatly in their morphology and behav-
ior [Sender et al. 2016; Bianconi et al. 2013]. Embryogenesis constitutes a prime example
for the differentiation processes that lead to this diversity. During this process individ-
ual tissues develop from three germ layers: neural tissues such as brain and spinal cord
develop from the ectoderm, the endoderm gives rise to organs such as liver and kidney,
and blood and muscle are derived from the mesoderm [Gilbert 2014]. It is therefore
useful to categorize cells based on tissue localization, developmental state and function.
The number of distinct cell types in healthy human tissues is projected to be around
200 [Alberts et al. 2008]. Additionally, other factors, such as disease and environmental
influences, determine the state of a cell and cells of the same lineage can exhibit con-
siderable heterogeneity. The term “cell type” is therefore typically defined in a context-
specific manner rather than universally. Importantly, despite their differences in ap-
pearance, virtually all cells of an individual share the same genomic DNA sequence.
How this genome is differentially packaged and interpreted is largely determined by
the epigenome.
Goldberg et al. [2007] define epigenetics as “the study of any potentially stable and,

ideally, heritable change in gene expression or cellular phenotype that occurs without
changes in Watson-Crick base-pairing of DNA”. Historically, the term has been coined
byConradWaddington (1905-1975) [Waddington 1942]. He also proposed themetaphor
of the “epigenetic landscape” [Waddington 1957]. In this concept, a differentiating cell
traverses a landscape spanned by molecular factors (Figure 1.1). High grounds in this
landscape represent pluripotent cell states. As cells differentiate, they follow downhill
paths through several valleys in the landscape. These paths are interjected by numerous
bifurcations which symbolize commitment to specific cell lineages. The topology of the
epigenetic landscape is determined bymolecular factorswhich regulate gene expression
on many different levels. These factors are highly dynamic as cells change their state
and position in the landscape. Significant progress has been made in unraveling their
role of in gene regulation (cf. Section 2.1). Particularly, the packaging of the DNA and
its modification play an essential role in providing or denying access for the cellular
machinery reading the molecular blueprint inscribed in the DNA. This thesis focuses
on analyzing and interpreting patterns of DNA methylation, which represents one of
the most widely studied epigenomic features involved in gene regulation.
It has been shown that cells can be manipulated to change the position in the land-

scape corresponding to their current cell state: mammalian cells can be reprogrammed
to a pluripotent cell state by means of nuclear transfer, cell fusion or the introduction
of exogenous transcription factors (cf. Yamanaka and Blau [2010]). In Waddington’s
epigenetic landscape this corresponds to a change in position, moving from a valley
to high ground. In particular, Induced Pluripotent Stem Cells (iPSCs), which can be



2 1 INTRODUCTION

Figure 1.1: The epigenetic landscape of cell differentiation. Adapted from [Waddington
1957]. Differentiation paths are indicated by orange arrows. The dashed red ar-
row depicts induction of pluripotency via reprogramming, the dashed purple
arrow transdifferentiation from one cell type to another.

obtained via overexpression of a defined set of transcription factors [Takahashi and Ya-
manaka 2006; Takahashi et al. 2007], have become a popular model for pluripotency and
an important tool in molecular biology. Their expression and DNA methylation pat-
terns have been extensively characterized and reprogrammed cells resemble the state
of Embryonic Stem Cells (ESCs) [Mikkelsen et al. 2008; Guenther et al. 2010]. However,
some traces of “epigenetic memory” persist, which manifest themselves in epigenetic
and transcriptional patterns that resemble the cells of origin [Chin et al. 2009; Doi et al.
2009; Kim et al. 2010; Bock et al. 2011]. Furthermore, iPSCs bear great promise for re-
generative medicine, provided that their carcinogenic potential can be overcome and
optimized differentiation protocols become available. Cells of one type of tissue can
also be stimulated to transdifferentiate to cells of another type in natural and artificial con-
texts. For instance, murine fibroblasts have successfully been transdifferentiated into
neurons [Vierbuchen et al. 2010] and cardiomyocytes [Qian et al. 2012; Song et al. 2012].
Inheritance of epigenetic regulation has been observed mitotically as well as meioti-

cally. While it is evident that epigenetic patterns can be stably maintained across cell
divisions, transgenerational epigenetic inheritance is less well characterized in mam-
mals. Most patterns are reset during germ cell development as well as at the stage of
embryonic pre-implantation and they are only reestablished later during embryonic de-
velopment [Heard and Martienssen 2014]. How the epigenetic signal can be transmit-
ted across generations is therefore currently an open question in the scientific commu-
nity. Nonetheless, studies have described the effect of environmental influences on de-
scendant generations in mammals in the contexts of metabolism, longevity, response to
stress as well as predisposition for diseases like diabetes and imprinting disorders [Wei
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et al. 2015; Heard and Martienssen 2014; Grossniklaus et al. 2013]. For instance, individ-
uals prenatally exposed to malnutrition during the Dutch famine of 1944–1945 exhib-
ited lower birth weights and an increased risk of diabetes and cardiovascular disease
than unexposed individuals and these effects could potentially be propagated to their
offspring [Painter et al. 2008; Veenendaal et al. 2013]. Studies investigating the associa-
tion of food abundance and mortality due to diabetes and cardiovascular disease in the
Swedish population of Överkalix provide further evidence for sex-specific, epigenetic
inheritance that is transmitted through the male germline [Kaati et al. 2002; Pembrey
et al. 2006]. However, it is important to note that evidence for effects that span more
than two generations and thus would be indicative of germ-cell-based inheritance has
been scarce so far [Heard andMartienssen 2014; Grossniklaus et al. 2013]. Themolecular
background of transgenerational epigenetic inheritance is just beginning to be investi-
gated. For instance, DNA methylation patterns associated with prenatal malnutrition
have been identified in the Dutch famine cohort [Heijmans et al. 2008; Tobi et al. 2014].
Molecular mechanisms likely to play a role include genomic imprinting and regulation of
repetitive elements in the genome [Grossniklaus et al. 2013].

Thesis Scope and Outline

This thesis spotlights epigenomic1 patterns that are characteristic of cell identity. The
hematopoietic system has proven particularly suitable and relevant for studying these pat-
terns, since it comprises a large variety of cell types and corresponding epigenomes. It
thus provides a widely studied framework for cell differentiation, that is also employed
by many research initiatives. This work focuses on the analysis of DNA methylation
profiles (methylomes) in various blood-related cells. We explore how DNA methylation
signatures can be used to infer relations between the epigenomes of different cell popu-
lations. To this end, we developed, implemented and applied computational methods
for the detailed analysis of DNA methylation data. Software tools for the comprehen-
sive characterization of methylomes in relation to one another are an integral part of
this work. Our models shed light on the DNA methylation dynamics in differentiating
cells and in disease and contribute to our understanding of the factors responsible for
the topography of the epigenetic landscape. The remainder of this thesis is structured
as follows:
Chapter 2 establishes a background of regulatory concepts and epigenetic mech-

anisms involved in health and disease. It provides a general overview of the dif-
ferent levels of epigenetic gene regulation and outlines technology used to generate
epigenome maps. It also introduces large, global efforts in mapping more than a thou-
sand epigenomes. Because the algorithms and statistical methods described in this the-
sis are highly diverse, this work does not contain a dedicated background chapter on
computational methods. Instead, these methods are introduced in the respective sec-
tions in later chapters.
Chapter 3 presents computational tools and pipelines that we developed for data pre-

processing and high-level analysis of genome-wide DNA methylation data: a pipeline
for quantifying methylation levels from reads obtained from bisulfite sequencing exper-
iments is described in Section 3.1. Section 3.2 introduces RnBeads, a software package

1 In this thesis, the term “epigenetic” describes (sets of) individual or specific characteristics, changes,
mechanisms or processes while “epigenomic” has a more global notion and refers to the collective of all
epigenetic events in a given entity (such as a single cell, cell type or organism).
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for the comprehensive, start-to-finish analysis of genome-wide DNA methylation data
at the resolution of single CpGs and genomic regions. Furthermore, we developed the
epiRepeatR pipeline for quantifying DNA methylation and other epigenomic marks in
subfamilies of repetitive DNA and applied it to characterize epigenetic regulation of
repetitive elements in human blood cells (Section 3.3).
Chapter 4 dissects the in vivo DNAmethylation dynamics during human hematopoi-

etic differentiation, employing the methods described in Chapter 3. Section 4.1 pro-
vides biological background on the human blood system and on its epigenetic regula-
tion. In order to obtain a global characterization of the epigenomic landscape involved
in hematopoiesis, we analyzed the methylomes of a large panel of differentiated blood
cell types and delineated lineage specific patterns (Section 4.2). Section 4.3 focuses on
the part of the hematopoietic hierarchy that pertains to T helper cells and describes
DNA methylation changes indicative of a linear progression during T cell memory for-
mation. Section 4.4 constitutes the main part of Chapter 4 and is devoted to a detailed
account of lineage-specific methylation signatures in hematopoietic stem cells and early
progenitors of blood. Using genome-wide data from low-input DNAmethylation profil-
ing, we derive statistical models for inferring lineage propensities. Application of these
models facilitate insights into within-cell-type heterogeneity and data-driven lineage
reconstruction.
In order to provide a perspective on hematopoietic diseases, Chapter 5 focuses on in

vitro changes inDNAmethylation associatedwith inducing a pluripotent cell state in hu-
man leukemia cells by means of cellular reprogramming. We show that reprogrammed
leukemia cells exhibit reduced oncogenic signatures and resemble a epigenomic cell
state reminiscent of ESCs.
Finally, Chapter 6 summarizes this work and puts it into the perspective of a model-

driven interpretation of Waddington’s epigenetic landscape.



2
Biological Background

This chapter introduces biological aspects of epigenetic regulation in health and dis-
ease. Section 2.1 provides a general introduction to epigenetic regulatory mechanisms
and Section 2.2 outlines how epigenetic patterns are perturbed in human disease. Meth-
ods for epigenome profiling are presented in Section 2.3 and Section 2.4. Section 2.5
concludes this chapter with an introduction of national and international epigenome
mapping consortia that employ these methods in order to chart the epigenomes of hun-
dreds of cell types, tissues and individuals.

2.1 The Regulatory Role of the Epigenome

In the metaphase of the cell cycle, the 2 × 3.2 × 109 basepairs (bp) of human DNA1,
which, if expanded, would correspond to a string of 2 meters in length, are compacted
by a factor of approximately 10,000 to fit into the nucleus of a cell [Allis et al. 2007]. At
any given point in time, only parts of the genome are accessible to the transcription ma-
chinery. The dynamic and specific selection of these parts requires an efficient indexing
strategy in which the epigenome plays a central role. Epigenetic cues are involved in sig-
naling the opening and compaction of the DNA’s scaffold as well as in the recruitment
of the cellular machinery responsible for reading the genome. Protein complexes which
sometimes consist of more than 100 units are required to act in in a highly regulated
fashion in order to facilitate the transcription of DNA to Messenger RNA (mRNA). It is
therefore not surprising that a large fraction of the genome is comprised of regulatory
elements whose purpose is to orchestrate the processes of transcriptional activation and
repression: the ENCODE consortium assigned functional and regulatory roles to 80.4 %
of the human genome [ENCODE Project Consortium 2012]. In contrast, it is estimated
that less than 2 % of the mammalian genome are protein-coding.

2.1.1 Chromatin Organization

The entirety of DNA and associated proteins is called chromatin. Chromatin is orga-
nized in hierarchical structures (Figure 2.1). The nucleosome constitutes the lowest level
in this hierarchy. It comprises 147 bp of DNA wrapped around a core particle in 1.7
turns [Luger et al. 1997], fixated by hydrogen bonds, hydrophobic interactions and salt
bridges (Figure 2.2). The core particle is an octamer consisting of two units of each of the
histone proteins H3, H4, H2A and H2B. Nucleosomes interlocked by the linker histone
H1 arrange in a “beads-on-a-string” structure which is further compacted to fibers at a
rate of 50 fold or more [Bell et al. 2011] (Figure 2.1). The fibers are organized into chro-
mosomal domains involving loop structures. These Topological Associated Domains

1 The factor of 2 corresponds to the diploid nature of the mammalian genome
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(TADs) have recently been characterized by charting genome-wide chromatin interac-
tions (reviewed in [Sexton and Cavalli 2015]) and have been shown to occupy distinct
regions in the nucleosome. On an even coarser level, the chromosome is composed of
tissue-specific compartments of two types as determined by Eigenvalue analysis of chro-
matin interaction maps [Lieberman-Aiden et al. 2009; Dekker et al. 2013]. Historically,
the term “chromatin” refers to the staining properties of DNA. Highly compacted DNA
appears darker in staining experiments and is referred to as heterochromatin. In contrast,
euchromatin designates open, accessible chromatin and is associated with lighter stain-
ing. Telomeric and centromeric chromosomal regions are generally highly heterochro-
matic across cell types. Gene-poor regions in the periphery of the nucleus, so-called
Lamina-Associated Domains (LADs), are also associated with a closed chromatin signa-
ture. In other genomic regions, DNA accessibility is highly dynamic and varies in time
and between cell types. Different epigenomic marks, such as DNA methylation and his-
tonemodifications, are associatedwith accessible and compacted chromatin (Figure 2.3).
The following sections outline these associations. Chromatin remodeling complexes be-
longing to the ISWI and SWI/SNF families can rearrange nucleosomes along the DNA
in an ATP dependent fashion and thus facilitate the transition from euchromatin to het-
erochromatin and vice versa [Allis et al. 2007]. Additionally, histone octamers can be
incorporated or removed entirely or the core histone proteins may be exchanged by hi-
stone variants which affect nucleosome remodeling and chromatin accessibility.

2.1.2 Histone Modifications

The N-terminal domains of the histone proteins are structurally disordered and are
therefore called “tails” (Figure 2.2). They are subject to a plethora of post-translational
modifications (reviewed in [Kouzarides 2007]). Different histone modifications are as-
sociated with accessible and compacted chromatin (see Figure 2.3). Various enzymes
specifically catalyze the dynamic deposition and removal of these marks. Modifications
to entire chromatin regions can be placed and removed within minutes in response to
certain cell stimuli.
Acetyl groups can be attached and detached to lysine residues byHistoneAcetyltrans-

ferases (HATs) and Histone Deacetylases (HDACs) respectively. Acetylation leads to a
reduction in the positive charge of the histone and thus to a weakened contact with
the negatively charged DNA backbone. Therefore, it is generally associated with open
chromatin. Furthermore, arginines and lysines in the histone tails are subject tomethyla-
tion, which is introduced by Histone Methyltransferases (HMTs) and is removed by Hi-
stone Demethylases (HDMs). Here, one, two or three methyl-groups can be covalently
bound to the same residue and the corresponding states are referred to as mono-, di-
and trimethylation respectively. Lysine methylation is one of the most widely-studied
epigenomic marks and is associated with different regulatory roles depending on the
residue’s position and degree of methylation. For instance, trimethylation of the lysine
(K) residues located at the fourth position from theN-terminal tail of histoneH3 (termed
H3K4me3 according to nomenclature) is generally associated with initiation of gene
transcription, and occurs in the vicinity of Transcription Start Sites (TSSs) [Mikkelsen
et al. 2007]. On the other hand, trimethylation of H3 histone proteins at the lysine 27
residue (H3K27me3; a modification that is catalyzed by the Polycomb repressive com-
plex 2 (PRC2) involving Polycomb Group (PcG) protein units) across a gene region is
generally associated with repressed transcription [Mikkelsen et al. 2007]. Interestingly,
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Figure 2.1: Levels of chromatin organization. Adapted from [Alberts et al. 2008].
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Figure 2.2: Crystal structure of the nucleosome. 147 basepairs ofDNA (blue)wrap around
a core octamer. Different histone proteins are colored in different shades of
green and turquoise. DNAmethylation is schematically indicated bymagenta
spheres. The image was rendered from Protein Data Bank structure 1kx5.
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Figure 2.3: Epigenomic marks associated with euchromatin and heterochromatin.
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in Embryonic Stem Cells (ESCs) both marks can co-occur within the same genomic re-
gion [Bernstein et al. 2006]. These bivalent domains frequently associate with with the
promoters of transcription factors which are involved in embryonic development and
which are typically expressed at low levels in ESCs. They represent a poised chromatin
state subject to rapid activation or inactivation upon differentiation. Further examples of
informative histone modifications include H3K36me3, which is attributed with a role in
transcriptional elongation, andH3K9me3, which is thought to be involved in stable gene
silencing and the formation of pericentric heterochromatin [Kouzarides 2007]. Modifi-
cations such asH3K9me3 andH3K27me3 occur across large domains in the genome and
are thus referred to as “broad” histone marks whereas other modifications, including
H3K4me3 exhibit a more localized or “narrow” distribution.
With the exception of acetylation, histone modifications generally do not influence

chromatin accessibility directly through physiochemical properties, but various regu-
latory roles have been ascribed to certain histone modifications that facilitate the re-
cruitment of non-histone protein complexes to chromatin. These complexes incorporate
domains responsible for reading designated chromatin patterns. For instance, protein
domains termed chromo, tudor and PHD are capable of recognizing different degrees
of lysine methylation with varying specificity. Lysine acetylation is typically read by
proteins carrying a bromodomain. The plethora of different marks in different contexts
suggests that the simple black-and-white picture of histone marks with activating or
repressing effects requires further refinement. The dynamic interplay between modifi-
cations and their readers and writers leads to the concept of a “histone code” [Jenuwein
and Allis 2001] involved in transcriptional regulation. Signatures of co-occurring his-
tone modifications have been summarized into “chromatin states” and have been asso-
ciated with regulatory elements (cf. Section 2.1.5). They can be identified on a whole-
genome scale using computational approaches implementing Hidden Markov Models
(HMMs) [Ernst and Kellis 2010; Ernst et al. 2011; Hoffman et al. 2012; Mammana and
H.-R. Chung 2015]. Recently, the application of statistical learning techniques to pre-
dict the presence of epigenomic marks from DNA sequence motifs indicates a strong
interrelation of histone modifications and DNA methylation with the underlying se-
quence [Whitaker et al. 2015].

2.1.3 DNA Methylation

In many eukaryotes, cytosine bases in the DNA are frequently modified by the addi-
tion of a methyl groups to the carbon 5 atoms (5mC). In 1975, a regulatory role of this
modification as a heritable, epigenetic mark has been proposed [Holliday and Pugh
1975; Riggs 1975]. In mammals, methylation of cytosines occurs predominantly in the
context of CpG dinucleotides [Bird 2002; Jones 2012]. CpGmethylation is typically sym-
metric, i.e. both cytosines on the two complementary strands are methylated. While
non-CpG methylation is common in plants, it only occurs at low levels in certain mam-
malian cell types such as ESCs and neuronal cells [Lister et al. 2009; Lister et al. 2013;
Ziller et al. 2011]. Methylated cytosines exhibit increased deamination rates compared
to unmethylated bases and are thus frequently mutated. Therefore, CpG dinucleotides
have been progressively lost during the course of evolution and are depleted relative to
other sequence contexts. For instance, the human genome contains only approximately
28 million CpGs compared to roughly 400 million CpAs [Lander et al. 2001; Venter et
al. 2001]. Mammalian DNA also contains stretches of DNA with a particularly high
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frequency of CpG dinucleotides and with a low abundance of DNA methylation. Ap-
proximately 29,000 of these CpG Islands (CGIs) are present in the human genome [Bird
1986; Gardiner-Garden and Frommer 1987]. They span regions ranging in size from
200 bp up to a few kilobases and contain highly conserved sequences. They also coin-
cidewith the promoters of about half of all human genes. In contrast to these canonically
unmethylated regions, the vast majority of CpGs in the mammalian genome (70 % to
80 %) are methylated [Bird 1986; Schübeler 2015]. DNA sequence poses an important
determinant of DNA methylation of surrounding genomic regions, as has been shown
by statistical inference [Whitaker et al. 2015; Bock et al. 2006] as well as by experimental
assays [Lienert et al. 2011].
Employing a gene-centric view, the level of CGI methylation in the vicinity of

TSSs is generally anti-correlated with the expression level of the corresponding gene
while methylation in the gene body s positively associated with transcriptional elon-
gation [Jones 2012; Schübeler 2015]. Furthermore, DNAmethylation is implicated with
roles in stabilizing the genome bymeans of silencing transposable elements [Jones 2012]
(cf. Section 3.3).
DNA methylation patterns are established by DNA Methyltransferases (DNMTs)

(reviewed in [Bestor 2000]) and can be stably maintained throughout the cell cycle.
The maintenance methyltransferase DNMT1 preferentially methylates hemimethylated
DNA and is therefore responsible for propagating DNA methylation across cell divi-
sions. De novo DNA methylation is catalyzed by the DNMT3A and DNMT3B methyl-
transferases. The related DNA methyltransferase 3-Like (DNMT3L) does not contain
a catalytic domains, forms complexes with DNMT3A and is associated with roles in
embryonic development. Both methylated and unmethylated CpGs can be read by re-
spective DNA binding proteins. Proteins containing a Methyl-CpG Binding Domain
(MBD) specifically bind methylated DNA and are believed to be involved in repressing
transcription [Schübeler 2015]. In contrast, stretches of DNA containing unmethylated
CpGs can be recognized by proteins such as those containing CXXC domains and vari-
ous histone demethylases.
DNA methylation patterns are highly dynamic in differentiating cells. During

early embryonic and germ cell development, the mammalian genome becomes glob-
ally demethylated — with the exception of a few selected imprinted genes and trans-
posons [Z. D. Smith andMeissner 2013]. The high rate at which this loss of methylation
occurs suggests a mechanism for active DNA demethylation that complements passive de-
pletion that is due to incomplete maintenance of methylation during replication [Kohli
and Zhang 2013; Schübeler 2015]. Active demethylation can be catalyzed by enzymes
of the ten-eleven translocation (TET) family which convert 5-Methylcytosine (5mC) to
5-Hydroxymethylcytosine (5hmC) and subsequently to 5-Formylcytosine (5fC) and 5-
Carboxylcytosine (5caC). The resulting bases can be excised via thymine-DNA glycosy-
lase (TDG) enzymes and are re-substituted by unmethylated cytosines. As tissues de-
velop in the early embryo, DNA methylation patterns are reestablished subsequent to
demethylation in a highly coordinated fashion involving the de novo methyltransferases.
It has been shown that DNMT1, DNMT3A and DNMT3B are indispensable for normal
development [E. Li et al. 1992; Okano et al. 1999], which underlines the essential role of
DNA methylation in the process.
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2.1.4 Non-Coding RNA

Eukaryotic cells harbor an extraordinary diversity of Non-Coding RNAs (ncRNAs) of
which new classes are constantly discovered. It is difficult to assign distinct roles and
definitions to these RNA classes, since they are involved in similar regulatory functions,
participate in overlapping regulatory pathways and, in part, employ the samemolecular
machinery. Therefore, ncRNAs are often classified according to their length.
Small RNAs are involved in RNA Interference (RNAi) pathways that can downreg-

ulate gene expression on the transcriptional or post-transcriptional level [Morris and
Mattick 2014]. Small Interfering RNAs (siRNAs), which have primarily been studied
in plants and fungi, are around 21-22 nucleotides (nt) in length in their processed
form. Theirmaturation involves processing of double-strandedRNAviaDicer enzymes,
loading into Argonaute complexes and transport to the cytoplasm. They can act in
a post-translational manner by binding to target mRNA by perfect base complemen-
tarity which triggers its degradation. Similar pathways of maturation apply to Micro
RNAs (miRNAs), which, in contrast to siRNAs, recognize mRNA by imperfect base-
pairing and therefore can target multiple mRNA sequences. Rather than degrading
mRNA directly, miRNAs are involved in inhibiting translation or destabilizing their tar-
get through shortening of its Poly(A) tail. They also play a role in transcriptional gene
silencing involving other epigenetic mechanisms [Morris and Mattick 2014]. A third
class of small RNA involved in RNAi are piRNAs (26-31 nt in length), which are named
according to their interaction with PIWI protein domains. They have been associated
with silencing transposable elements in the germ cell lineage.
Our genome also encodesmore than 9,200 different ncRNAs longer than 200 ntwhose

genes are located in intronic, intergenic regions or on the antisense strand of protein-
coding genes [Derrien et al. 2012; Morris and Mattick 2014]. The genes for these Long
Non-Coding RNAs (lncRNAs) often span several kilobases in the genome and contain
introns themselves. lncRNAs have been implicated in an extraordinary number of reg-
ulatory processes. They have been shown to interact with epigenetic modifiers such as
PRC2, trithorax complexes (which catalyzemethylation of H3K4) as well as DNMTs and
can also act as scaffolds for the assembly of molecular components. Examples hinting
at their crucial role in development include the XIST lncRNA which coats the inactive
X chromosome in females and recruits epigenetic silencing via PRC2 [Allis et al. 2007].
Furthermore, various lncRNAs involved in genomic imprinting have been described.
In addition, transcribed RNA itself has been attributed with a regulatory role, even

when it is not translated: RNA elements could potentially compete for miRNA binding
and thus regulate each other if they carry specific patterns of similar miRNA response
elements [Salmena et al. 2011]. It has been hypothesized that these Competing Endoge-
nous RNAs (ceRNAs) could act as decoys or “sponges” in order to regulate miRNA
targeting of other transcripts. The recently discovered Circular RNAs (circRNAs) con-
stitute one class of these sponges [Memczak et al. 2013; Hansen et al. 2013].

2.1.5 Transcription Factors and Gene Regulatory Elements

In order to assemble and initiate the transcriptional machinery at the promoter region
of a gene, hundreds of individual proteins and subunits must act in concert. It is es-
timated that approximately eight percent of mammalian proteins are involved in tran-
scriptional regulation [Alberts et al. 2008]. DNA binding proteins termed Transcription
Factors (TFs) are key players in the recruitment and stabilization of the RNApolymerase
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(RNA Polymerase II (RNAPII)). They establish accessibility of DNA by recruiting pro-
teins responsible for the decompaction of chromatin [Spitz and Furlong 2012]. However,
TFs can also negatively influence the rate of transcription. Their importance in cellular
development is elucidated by the fact that the expression of only four TFs is necessary to
induce a state of pluripotency from differentiated cells [Takahashi and Yamanaka 2006;
Takahashi et al. 2007].
TFs contain different DNA-interacting domains and typically bind motifs comprising

6 to 12 nt of DNAwith varying degrees of specificity [Spitz and Furlong 2012]. Only few
TFs can bind to a closed chromatin structure. In addition to nucleotide sequence and
chromatin state, the affinity of TFs to their respective Transcription Factor Binding Sites
(TFBSs) is influenced by DNA methylation. While it is generally assumed that DNA
methylation inhibits transcription factor binding, several factors capable of binding to
methylated DNA in CpG-poor regions have been identified [Schübeler 2015]. Events
responsible for the initiation of transcription are not restricted to promoter regions but
also occur at distal regulatory elements tens of kilobases upstream or downstream of
genes [Ong and V. G. Corces 2011]. Distal regulatory elements containing clusters of
TFBSs, responsible for increased transcription are termed enhancers. Stabilized by the
mediator complex and cohesin, they physically contact the promoter regions via loop
structures [Gilbert 2014] (Figure 2.4). Active enhancers are characterized by the pres-
ence of the histone modifications H3K4me1, H3K4me2, H3K27ac as well as DNaseI hy-
persensitivity and occupancy of p300 proteins [Ong and V. G. Corces 2011]. They as-
sociate with nucleosome-poor regions and histone variants H2A.Z and H3.3 [Ong and
V. G. Corces 2011]. Distal regulatory elements frequently coincidewith Low-Methylated
Regions (LMRs) in mouse ESCs and are closely linked to TF occupancy [Stadler et al.
2011]. Furthermore, enhancers themselves can also be transcribed into Enhancer RNA
(eRNA) whose expression correlates with mRNA expression of nearby genes [Ong and
V. G. Corces 2011]. In general, there is no clear one-to-one relationship between pro-
moters and enhancers: multiple enhancers can physically contact the same promoter in
a context-specific manner and an enhancer can be associated with multiple promoters.
Multiple promoters and enhancers can co-localize in nuclear subcompartments associ-
ated with open chromatin and high transcriptional activity, so-called transcription facto-
ries [Ong and V. G. Corces 2011].
Other distal gene regulatory elements termed silencers are responsible reduced tran-

scriptional activity. Insulators are generally marked by CTCF occupancy and represent
barriers for chromatin interactions, preventing the spreading of epigenomicmarks from
one genomic region to another.
The interplay of these diverse regulatory elements is tightly regulated in time and

space. It is therefore not surprising that our understanding of the precise regulatory
mechanisms of these complex interactions is still limited.

2.2 The Epigenome of Human Disease

Epigenome dysregulation has been linked to imprinting disorders, neurodegenerative
conditions such as Alzheimer’s disease, inflammatory and autoimmune disorders (e.g.
rheumatoid arthritis and systemic lupus erythematosus) andmetabolic diseases like dia-
betes [Heyn and Esteller 2012]. Notably, epigenomic aberrations associated with cancer
have been intensively studied in recent years and have the potential of contributing to
the understanding of carcinogenesis as well as clinical detection, diagnosis and progno-
sis.
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Figure 2.4: Epigenetic regulation of active gene expression. RNAPII is recruited to the
promoter region of a gene. Active promoters frequently carry the H3K4me3
histone modification as well as low levels of DNA methylation and are associ-
ated with Nucleosome-Depleted Regions (NDRs). Transcriptional elongation
is associatedwithH3K36me3 andDNAmethylation in gene bodies. Active en-
hancers (marked by histone acetylation and H3K4me1) can be located dozens
of kilobases upstream or downstream of a gene and contact promoter regions
via loop structures. TFs can localize in promoter regions or distal elements in
order to regulate the assembly of the transcriptional machinery.

Many cancer-associated mutations occur in the context of enzymes involved in mod-
ifying epigenome patterns. For instance, DNMT3A is frequently mutated in Acute
Myeloid Leukemia (AML) [Baylin and Jones 2011; Schübeler 2015]. TET2, IDH1, IDH2
are often mutated in leukemia and glioma. These mutation events correlate with in-
creased DNA methylation at specific loci. Changes in DNA methylation patterns rep-
resent well-characterized epigenomic aberrations in cancer. During transformation to-
wards amalignant cell state, specific, CpG-rich regions become hypermethylated, i.e. they
exhibit highermethylation levels in cancer cells compared to normal cells. These regions
often coincide with promoters of genes associated with tumor suppressor activity and
cell signaling [Bergman and Cedar 2013; Baylin and Jones 2011; Jones 2012]. CpG is-
land hypermethylation events in glioma, colorectal cancer and other tumor types have
also been described as CpG Island Methylator Phenotype (CIMP) and have been linked
to DNA mutations and clinical outcome [Baylin and Jones 2011]. Many cancer-related
DNA methylation changes occur in putative regulatory regions, such as enhancers and
silencers. This is in accordance with recent studies focusing on chromatin accessibil-
ity that described the heterogeneity between cells in acute myeloid leukemia [M. R.
Corces et al. 2016] and that characterized disease subtypes in chronic lymphocytic
leukemia [Rendeiro et al. 2016]. Furthermore, aberrant DNA methylation in cancer is
also associatedwith the silencing ofmiRNAs and other ncRNAs [Baylin and Jones 2011].
Importantly, it has been shown that DNA domains hypermethylated in the context of
colorectal cancer and other tumor types are frequently bound by PcG protein complexes
and their associated marks (H3K27me3 and bivalent domains) in ESCs [Ohm et al. 2007;
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Schlesinger et al. 2007; Widschwendter et al. 2007]. It has therefore been postulated that
DNA methylation in these regions is responsible for permanently establishing a stem-
cell-like state of self-renewal in tumor cells [Baylin and Jones 2011]. Globally, large ge-
nomic domains exhibit lower methylation in cancer than in normal cells. The role of
these hypomethylation events is currently not well understood. However, they frequently
occur in lamin-bound and late-replicating regions [Berman et al. 2012]. Furthermore,
the activation of retrotransposons by global demethylation could contribute to genome
destabilization by increasing the rate at which mutations and structural variations oc-
cur [Sharma et al. 2010]. Hypomethylation can also lead to loss of imprinting and thus
to the aberrant expression of genes associated with cell expansion and growth [Sharma
et al. 2010].
Interestingly, Polycomb-related hypermethylation events have also been linked to ag-

ing [Teschendorff et al. 2010]. Recent studies have also identified variability in DNA
methylation when comparing newborns and centenarians [Heyn et al. 2012]. Further-
more, “epigenetic clocks” that can accurately predict human age were derived from
DNA methylation signatures of a few hundred CpGs [Horvath 2013]. Notably, when
applied to tumor cells these clocks indicated the presence of DNA methylation signa-
tures associated with accelerated aging.
In the context of clinical detection, diagnosis and prognosis of disease, epigenetic

biomarkers are becoming increasingly important [Baylin and Jones 2011; Bock and
Lengauer 2012; Bock, Halbritter, et al. 2016]. The cell material used for screening for
these biomarkers can be obtained from biopsies from affected tissue, or alternatively
from accessible body fluids in a non-invasive fashion. For instance, DNA methylation
levels of tumor suppressor genes can be detected from blood serum and saliva [Heyn
and Esteller 2012]. However, due to the low specificity of the applied assays and con-
founding factors, only few reproducible markers have been discovered so far. One ex-
ample is the hypermethylation of the MGMT gene promoter which can be used for de-
tecting gliomas as well as head and neck cancers [Heyn and Esteller 2012]. MGMT pro-
moter methylation measured in glioblastoma biopsies is also capable of accurately pre-
dicting the tumor’s response to therapies, which are based on alkylating agents [Hegi
et al. 2005; Mikeska et al. 2007; Heyn and Esteller 2012]. Recently, the identification of
epigenetic biomarkers has also been facilitated by Epigenome-Wide Association Stud-
ies (EWAS) [Rakyan et al. 2011] which pinpoint the genomic location of disease-related,
epigenetic variability using large patient cohorts. High-throughput assays such as the
Illumina Infinium HumanMethylation450 BeadChip (450K) (cf. Section 2.4) and meth-
ods based on bisulfite sequencing (cf. Section 2.3) are particularly suited for these types
of studies. Assays for biomarker validation are becoming increasingly standardized and
are approaching clinical application [Bock, Halbritter, et al. 2016].
In principle, epigenetic modifications are reversible. Therefore, therapies based on

reverting to a “normal” epigenetic state bear great clinical promise. For instance, chro-
matin remodeling factors that are frequently mutated in cancer pose potential drug tar-
gets [Heyn and Esteller 2012]. More specifically, drugs currently approved by the US
Food and Drug Administration (FDA) for cancer therapy include DNMT and HDAC
inhibitors. As cancer therapies increasingly take pharmacogenomic properties into ac-
count, selecting an appropriate combination therapy for treatment based on the patients
and the tumor’s characteristic will be increasingly important. Computational methods
are already applied in clinical treatment of Human Immunodeficiency Virus (HIV) and
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similar methods could be applicable to cancer [Bock and Lengauer 2012]. In these ap-
proaches, epigenetic signatures of the tumor and healthy patient tissue clearly represent
important markers to gauge tumor resistance and treatment selection.

2.3 Sequencing Technology and Computational Methods for Epigenome
Profiling

With the advent of novel sequencing technologies, coined Next Generation Sequenc-
ing (NGS) [Metzker 2010], in the middle of the last decade, sequencing costs have de-
creased dramatically and sequencing entiremammalian genomes is now affordable. For
instance, sequencing an entire human genome in a matter of only a few days only costs
slightly more than 1,000 US dollars [National Human Genome Research Institute 2016]
(although clinical genome sequencing is still substantially more expensive due to high
quality requirements and the need for data interpretation). In the last years, technical in-
novations and developments in experimental protocols have led to the establishment of
sequencing as a versatile tool with applications far beyond the sequencing of genomes.
In particular, protocols for epigenome mapping have undergone rapid development
(Figure 2.5). All of these protocols implement the following basic steps. Initially, an epi-
genetic signal is translated into DNA sequence. This step can involve chemically alter-
ing theDNA sequence itself or enriching for sequence fragmentswith certain properties.
Next, sequencing libraries are constructed from the resulting fragments which are then
subjected to NGS. Illumina’s sequencing platforms (“HiSeq” and previously “Genome-
Analyzer”) are most widely applied and millions to billions of short sequencing reads
are typically produced in a single run. Finally, the sequencing readout is translated into
profiles of epigenomic marks. In species whose genome has already been sequenced
and assembled, this typically involves mapping the sequencing reads to the reference
genome and deriving a measure of epigenetic signal strength at each genomic locus.
Recent advantages in technology and protocols allow for the profiling of single cells

rather than bulk cell populations. Deep characterization of the heterogeneity of individ-
ual cells as well as the profiling of small and rare cell populations become feasible using
these assays [Shapiro et al. 2013].

2.3.1 Quantifying the Expression of Large and Small RNAs

In order to quantify the expression of large and small RNAs, different RNA-Sequencing
(RNA-seq) protocols are employed. In these protocols, the reverse transcriptase enzyme
is used to convert RNA into cDNA fromwhich the sequencing libraries are constructed.
Different protocols have been established in order to extract RNA from specific cell com-
partments. Typically, RNA is extracted from the nucleus, the cytosol or from the entire
cell (total RNA). The different species of RNA can be separated using size selection. A
typical threshold for segregating large from small RNAs is 200 nt. Protocols involving
polyA selection specifically enrich for mRNA. Processing the sequencing data involves
mapping the reads to the reference genome, identifying expressed genes and isoforms
and the quantification of their expression levels based on the number of reads assigned
to a given entity [Garber et al. 2011]. In downstream analyses, differential expression
between groups of samples can be quantified. A plethora of tools and pipelines have
been developed for these steps. A selection of these tools is highlighted in [Garber et al.
2011].
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Figure 2.5: Sequencing technology for profiling epigenomic features. The same schematic
as in Figure 2.4 is shown. Colors indicate different epigenomic features and a
selection of corresponding sequencing technologies that can be used to quan-
tify them.

Recently, it has become possible to profile single cells using RNA-seq, allowing for the
characterization of cell heterogeneity and the roles of small cell populations in develop-
ment [Shapiro et al. 2013], but also introducing new challenges in data analysis [Stegle
et al. 2015].

2.3.2 Determining the Localization of Transcription Factors and Histone Modifications

In order to determine the genomic positions of Transcription Factors or histones car-
rying specific modifications, Chromatin Immunoprecipitation-Sequencing (ChIP-seq)
can be used [P. J. Park 2009]. Here, the presence of DNA binding factors is estimated
from the abundance of DNA fragments to which they are bound. To this end, using
formaldehyde, all binding factors are cross-linked to the DNA at the position where
they associate. Subsequently, the DNA is fragmented and DNA-protein complexes are
selectively enriched by immunoprecipitation using factor-specific antibodies. Finally,
the cross-linking is undone and the resulting purified DNA is subjected to standard-
ized sequencing library construction. In practice, antibodies can vary in terms of bind-
ing strength and cross-reactivity to other factors. However, due to efforts in validating
antibody sensitivity and specificity, protocols have become reasonably well standard-
ized and adequate quality control measures have been established [Landt et al. 2012] —
particularly for the immunoprecipitation of histone modifications. Recent adaptations



2.3 Sequencing Technology and Computational Methods for Epigenome Profiling 17

of the protocol require only very low amounts of input material and thus enable the
profiling of rare cell populations [Lara-Astiaso et al. 2014; Schmidl et al. 2015].
The resulting sequencing reads can be aligned to the reference genome assembly us-

ing standard genome alignment methods. Counting the number of reads mapping to a
given genomic position results in an enrichment signal for the respective factor. This sig-
nal is typically normalized to the so-called input signal2, which is derived from an analo-
gous sequencing experiment using the same cell material, but omitting the immunopre-
cipitation step. This results in a quantitativemeasure for the relative abundance of a spe-
cific factor at each genomic position. Genomic regions which are particularly enriched
can be identified using peak-calling algorithms. These algorithms vary in their distribu-
tional assumptions and employed statistical models [Koohy et al. 2014]. Guidelines and
standards for data quality control and processing pipelines are now emerging [Landt
et al. 2012].

2.3.3 Charting DNA Methylation

Sequencing-based methods for profiling DNA methylation can be broadly categorized
into protocols based on selective enrichment, specific cleavage by restriction enzymes or
treatment with sodium bisulfite. Furthermore, array-basedmethods are widely applied
(cf. Section 2.4). Benchmarking studies show that there is generally high agreement
between the various protocols [Bock et al. 2010; R. A. Harris et al. 2010]. However, they
differ greatly in the number of assayed cytosines, the amount of sequencing required
and therefore also in their experimental costs.
In addition to profiling DNA binding factors, methods based on immunoprecipita-

tion have also been successfully applied for genome-wide profiling of DNA methyla-
tion. Here, methylated DNA is selectively enriched by an antibody specific to methy-
lated DNA, as applied in Methylated DNA Immunoprecipitation Sequencing (MeDIP-
seq). Alternatively, protocols involving methyl-binding proteins (MBD-seq, MethylCap-
seq, etc.) can be employed [Plongthongkum et al. 2014; Laird 2010]. Enrichment of
methylated DNA is then quantified in a similar fashion as in ChIP-seq experiments.
Other methods such as Methylation-Sensitive Restriction Enzyme Sequencing (MRE-
seq) are based on the methylation-sensitive or insensitive digestion of DNA by endonu-
cleases [Laird 2010]. A drawback of protocols based on selective enrichment or endonu-
clease cleavage is that the resulting data is of low genomic resolution and provides a
notion of relative enrichment rather than an absolute quantification CpG methylation.
However, bioinformatic algorithms have been devised that can infer single-CpG resolu-
tion methylation levels from these assays [Laird 2010; Stevens et al. 2013].
Methods based on the treatment of DNA with sodium bisulfite represent the current

gold standard for quantifying DNAmethylation. This chemical leads to the conversion
of unmethylated cytosines to uracil while methylated cytosines remain intact. It can
therefore be used to translate the methylation status into base sequence: after bisulfite-
treatment, DNA fragmentation and subsequent Polymerase Chain Reaction (PCR) am-
plification, methylated cytosines are read as C (cytosine) while unmethylated cytosines
are read as T (thymine) when they are sequenced. Given a mapping to a corresponding
reference, the methylation information for each cytosine in each sequencing read can
be inferred from the sequence context. For previously unsequenced genomes, bioinfor-
matic methods such as ReFreeDMA can be used, which assemble relevant parts of the
reference genome directly from sequencing reads [Klughammer et al. 2015].
2 sometimes also referred to as Whole-Cell Extract (WCE)
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A variety of protocols employing this principle have emerged. Of these, Whole
Genome Bisulfite Sequencing (WGBS) is the most comprehensive method and assays
the methylation status of nearly all 28 million CpGs in the human genome [Lister et al.
2009; Lister et al. 2011; Ziller et al. 2013]. Ideally, several hundred million short reads
are sequenced in order to obtain an average depth of 30 reads per CpG. Reduced Rep-
resentation Bisulfite Sequencing (RRBS) offers a more cost-efficient alternative. Here,
restriction enzymes are used for DNA fragmentation. Typically, enzymes are selected
in such a way that they enrich genomic regions with high CpG content [Meissner et al.
2008; Z. D. Smith et al. 2009; Gu et al. 2010]. For instance, MspI with its CCGG restriction
site is most commonly used. Thereby, 2-3 million CpGs can be profiled by sequencing
only approximately 1 % of the human genome.
Due to the damaging effects of treating DNA with sodium bisulfite, large quanti-

ties of input material are lost during the corresponding step of library preparation.
Nonetheless, contemporary protocols have significantly reduced the amount of input
material required for sequencing and therefore allow for epigenome-wide profiling at
single-cytosine resolution from only a few or even single cells. Certain low-input pro-
tocols apply a strategy in which bisulfite treatment is applied before the adapter liga-
tion step [Miura et al. 2012] and they have recently been employed for the generation of
genome-wide DNA methylation data [Farlik et al. 2015; Smallwood et al. 2014]. In the
case of RRBS, the amount of required input material has also been greatly reduced [Guo
et al. 2013; Z. D. Smith et al. 2014] and high-throughput protocols allow for the simulta-
neous profiling of large sample numbers. It is important to note that 5hmC is indistin-
guishable from 5mC when using bisulfite-based protocols. However, derived protocols
employing different chemical treatments or enrichment methods can be used to quan-
tify oxidized forms of methylcytosine (5hmC, 5fC and 5caC) [Booth et al. 2012; Plongth-
ongkum et al. 2014].
Bisulfite-incurred base conversions lead to imperfect matching to the reference. Fur-

thermore, because the bulk of cytosines in the genome are converted and thymines are
thus overrepresented, resulting reads exhibit reduced sequencing complexity. There-
fore, aligning sequencing reads from bisulfite experiments is challenging (cf. Section 3.1
for details).
In the methylation calling step, methylation levels for each cytosine in the genome are

extracted (cf. Section 3.1). Typically, the fraction ofmethylated read-cytosines among all
reads covering a particular cytosine is quantified. Current methods aim at improving
accuracy by employing additional steps such as local realignment and estimating allelic
distributions. They can also take into account genetic variation and infer genotype calls
for non-cytosine nucleotides [Liu et al. 2012].
Furthermore, contiguous regions with different methylation levels can be identified

using segmentation algorithms and thresholding [Burger et al. 2013]. The resulting Un-
methylated Regions (UMRs) and Low-Methylated Regions (LMRs) are characterized by
near absence of methylation and low methylation levels, respectively. Partially Methy-
lated Domains (PMDs) display disordered methylation patterns resulting in slightly
lower average methylation levels than the typically highly methylated genome-wide
background.
A plethora of algorithms and implementations for the identification of differentially

methylated CpGs and regions between groups of samples exists. A table of selected
methods and software tools for this purpose can be found in Appendix B. They vary
greatly in their applied (statistical) methodology and in their output. Some methods
quantify differential methylation only on the level of individual cytosines while other
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methods identify Differentially Methylated Regions (DMRs). Finding DMRs can be
based either on predefined genomic regions of interest or on heuristic definitions that
rely on locally consistent methylation differences. Segmentation approaches can also be
used for their de novo detection. Statisticalmethods for determining differentialmethyla-
tion frequently employ t-tests,Wilcoxon rank-sum tests, Fisher’s Exact Tests, hierarchical
linear modeling, mixture modeling or beta-binomial models.

2.3.4 Assessing Accessible Chromatin

Gene regulation requires access to sequence elements such as promoters, enhancers and
insulators. Identifying regions in the DNA which are located in accessible chromatin
is therefore crucial for the characterization of transcription factor binding events and
other regulatory processes on the genome-scale. Preferential cleavage by nuclease en-
zymes in accessible DNA compared to condensed chromatin has inspired sequencing-
based protocols for profiling accessible chromatin: library preparation for DNaseI-seq
and MNase-seq involves the digestion of DNA with the respective nuclease (DNaseI or
MNase) [Zentner and Henikoff 2014]. Quantifying the number of aligned sequencing
reads allows for the accurate, high-resolution profiling of nucleosomes and non-histone,
DNA-bound proteins by MNase-seq and the aligned read count provides a direct esti-
mate of DNA accessibility by DNaseI-seq. From the latter signal, DNaseI hypersensitive
sites are typically identified by similar peak-calling algorithms as employed in ChIP-seq.
Recently, it has been shown that regions of open chromatin can be pinpointed using
a transposase that preferentially cuts in accessible chromatin (Assay for Transposase-
Accessible Chromatin using Sequencing (ATAC-seq)) [Buenrostro et al. 2013]. In these
protocols, transposase is used for DNA fragmentation and adapter ligation. No addi-
tional digestion step is required which results in a simplified procedure for sequencing
library preparation compared to DNaseI-seq. Furthermore, the amount of input mate-
rial required by ATAC-seq is also reduced and current implementations of the protocol
allow for the profiling of single cells [Buenrostro et al. 2015; Cusanovich et al. 2015]. In a
different method, termedNucleosomeOccupancy andMethylome-Sequencing (NOMe-
seq), input DNA is treated with the M.CviPI methylase that specifically methylates
cytosines in GpC context in regions of accessible chromatin [Kelly et al. 2012]. Using
bisulfite-sequencing and steps analogous to those ofWGBS, open chromatin can be iden-
tified at single GpC resolution in a quantitative manner. In this way, NOMe-seq enables
simultaneous assessment of chromatin accessibility and DNAmethylation levels for cy-
tosines out of GpC context at the experimental cost of WGBS.
As regions of open chromatin frequently coincidewith transcription factor occupancy,

one of the goals for downstream analysis is the identification of TF footprints. They are
characterized by small “dips” in regions with high DNaseI signal or local drops in GpC
methylation in the case of NOMe-seq and enable the identification transcription factors
likely to bind these regions via their sequence motifs.

2.3.5 Mapping Chromatin Interactions and Higher Order Architecture

Physical contacts between genomic regions can be profiled using Chromosome Confor-
mationCapture (3C) and its derived protocols (reviewed in [Dekker et al. 2013]). In these
assays, nuclear DNA is first cross-linked to its scaffold of structural molecules using
formaldehyde and the accessible chromatin is subsequently digested. DNA fragments
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which are in close proximity are cross-linked to the same molecules and therefore asso-
ciate preferentially compared to fragments located at further distances. In a ligation step,
the fragments are joined together to form hybrid molecules which represent sequences
that are not necessarily adjacent in the one-dimensional genome sequence. By identify-
ing the genomic positions of the fragments that form such hybrids and quantifying the
relative frequency of ligation events from resulting sequencing data, spatial proximity
can be deduced. There are different strategies that can be employed for this task: in clas-
sical 3C, interactions of individual loci are assessed using PCR. In Circularized Chromo-
some Conformation Capture (4C), inverse PCR is applied to amplify fragments ligated
to an individual anchor region, thereby generating genome-wide interaction profiles for
that anchor. Carbon-Copy Chromosome Conformation Capture (5C) employs a many-
by-many strategy in order to determine the interactions between two potentially large
sets of loci using a multiplexed variation of PCR termed “multiplex ligation-mediated
amplification” and sequencing. Hi-C [Lieberman-Aiden et al. 2009] offers an unbiased
approach generating truly genome-wide interaction maps. Here, sequencing libraries
are prepared from the ligated and biotin-labeled fragments and interactions are quan-
tified via the bioinformatic identification of sequence junctions. However, as Hi-C is
dependent on sequencing depth in order to capture all possible interactions (i.e. the
number of reads required is quadratic in the size of the genome), high-resolution maps
can be quite costly to obtain. Therefore, protocols based on sequence capturing have
been developed that increase resolution by focusing on select interactions [Mifsud et
al. 2015]. Chromatin Interaction Analysis by Paired-End Tag Sequencing (ChIA-PET)
combines fragment ligation with an immunoprecipitation step for a protein of interest
(e.g. a transcription factor), followed by sequencing and thus identifies genome-wide,
protein-associated interactions [Fullwood and Ruan 2009].

2.4 Array-Based Methods for Quantifying DNA Methylation

Microarrays facilitate standardized, high-throughput DNA methylation profiling of
large sample cohorts at relatively low experimental costs and therefore represent im-
portant tools in EWAS. This section describes the Illumina Infinium assay series, which
constitutes the most widely used microarray-based assay for DNA methylation analy-
sis. These arrays are spotted with stretches of DNA (probes) which represent defined
genomic regions. Fragmented and bisulfite-converted genomic DNA is hybridized to
these probes. Signal intensities representative of the binding frequencies can be mea-
sured for each probe from the fluorescence emitted during the extension of the probe
sequences using labeled nucleotides. These intensities, which are indicative of either
methylated or unmethylated cytosines, are used to quantify DNAmethylation levels as
β-values (or M-values).
Currently, most available datasets employ the Illumina Infinium HumanMethyla-

tion450 BeadChip (450K), which covers 482,421 CpGs in the human genome [Bibikova
et al. 2011]. In comparison, its predecessor, the Illumina Infinium HumanMethyla-
tion27 BeadChip (27K), assayed slightly more than 27,000 CpGs [Bibikova et al. 2009].
The 450K also contains 3091 non-CpG, 65 Single-Nucleotide Variation (SNV) probes as
well as sets of probes designed for quality control purposes. The selection of the CpG
probes is biased towards genomic regions associated with high CpG content and anno-
tated genes [Bibikova et al. 2011; Sandoval et al. 2011]. The Illumina Infinium Methyla-
tionEPIC BeadChip (EPIC) [Moran et al. 2015], the most recent release of the platform,
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covers 853,307 CpGs and particularly increases the coverage in regulatory regions of the
genome. On the 450K and the EPIC arrays, two probe-designs exist: type I probes em-
ploy two different sequences for each cytosine, that exhibit basepair complementarity to
either the bisulfite-converted or the unconverted case in order to measure the unmethy-
lated and methylated signal, respectively. Type II probes harness a single-probe design
which incorporates degenerate bases for cytosines and different fluorescence dyes for
nucleotides complementary to the converted and unconverted cytosines.
Data processing involves normalization of methylation levels, which corrects for dif-

ferent probe types and locations within a single array as well as for between-array vari-
ation [Bock 2012]. Further experimental biases and batch effects are identified and cor-
rected for in computational pipelines [Bock 2012] (cf. Section 3.2). As in the case of
sequencing-basedmethods, pinpointing differentially methylated sites and regions con-
stitutes an important type of analysis (cf. Appendix B for applicable methods).

2.5 Global Efforts for Epigenome Mapping

Since the publication of the first draft sequence of the human genome in 2001 [Lander et
al. 2001; Venter et al. 2001], the scientific community’s interest in the genome-wide map-
ping of gene regulatory elements and epigenomic marks has grown steadily. Several
large-scale endeavors have been launched with this task in mind.
The first of these projects, termed Encyclopedia of DNA Elements (ENCODE) [EN-

CODE Project Consortium 2012], was initiated by the National Human Genome Re-
search Institute (NHGRI). It launched its pilot phase in 2003, initially mapping func-
tional elements in approximately 1 % of the human genome [ENCODE Project Consor-
tium 2004]. The ensuing scale-up phase (2007 to 2012) encompassed the genome-wide
identification of regulatory and functional elements in 147 cell types, mainly bymeans of
charting epigenomic marks and transcription factors using NGS technology [ENCODE
Project Consortium2012]. Assayed cell typesmostly comprised in vitro cultured pluripo-
tent, fetal and adult cell lines, but also a few samples derived from primary tissues. Ex-
pression profiles were generated using RNA-seq and resulted in a catalog of transcribed
and protein-coding regions. ChIP-seq was employed to map the distribution of tran-
scription factors and histone modifications. Genome-scale DNA methylation was mea-
sured usingmainly the RRBS protocol. Finally, regions of open chromatin, TF footprints
and chromatin interaction maps were generated harnessing methods such as DNaseI-
seq, ChIA-PET, 3C and 5C. In an effort for data integration, functional roles have been
attributed to 80.4 % of the human genome in one cell line or another [ENCODE Project
Consortium 2012]. Due to the large number of cell types and assays, it is not surprising
that the resulting “data matrix” still contains gaps to be filled. The project currently
focuses on developing and applying methods for integrative data analysis for annotat-
ing functional elements in the genome from the available data. In 2007, the project has
been expanded to other model organisms such as the worm Caenorhabditis elegans and
the fruit fly (Drosophila melanogaster) in the modENCODE project [Celniker et al. 2009].
The NIH Roadmap Epigenomics Mapping Consortium (REMC) [Roadmap Epige-

nomics Consortium et al. 2015] started in 2008. Features charted in this project include
DNA methylation (assayed by WGBS, RRBS, MeDIP-seq and MRE-seq), histone modi-
fications (ChIP-seq), open chromatin (DNaseI-seq) and RNA expression (RNA-seq). As
the project reached completion, 111 reference maps derived from cell types of various
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tissues and organs have been characterized and published [Roadmap Epigenomics Con-
sortium et al. 2015]. Epigenomic, cell-type-dependent variability was described, specific
regulatory elements were identified and links to genetic variation were established. Us-
ing statistical learning methods, entire datasets were reliably imputed at high resolu-
tion [Ernst and Kellis 2015] thereby filling the gaps in the project’s data matrix.
The EU-funded BLUEPRINT project [Adams et al. 2012] aimed at charting the

epigenomes of more than 100 different blood-related samples in health and disease.
Launched in 2011 and terminating in 2016, a large number of epigenomic reference
maps have been generated using RNA-seq, histone modification ChIP-seq, DNaseI-seq
andWGBS. Project goals included the identification of epigenetic mechanisms involved
in hematopoietic differentiation as well as diseases like leukemia and diabetes. Fur-
thermore, relations of the epigenome and the genome were established in large patient
cohorts and novel experimental technologies were developed in collaboration with in-
dustry partners.
The German contribution to generating epigenomic reference maps is called DEEP

(“Deutsches Epigenom Programm”)3 and has a strong focus on human metabolic, im-
mune and inflammatory diseases. During the course of this 5-year project which was
started in 2012, approximately 90 epigenomes comprising DNA methylation, histone
modification, open chromatin and expression of long and short RNAswill be generated.
DEEP’s objective is to characterize cell types such as adipocytes, hepatocytes, fibroblasts,
epithelial cells, macrophages, monocytes and T cells in healthy individuals as well as
in the context of inflammatory bowel diseases, rheumatoid arthritis, liver steatosis and
adipogenesis.
The ENCODE, REMC, BLUEPRINT and DEEP projects as well as consortia from

Canada (Canadian Epigenetics, Environment and Health Research Consortium), South
Korea (Korea National Institute of Health), Japan (“Core Research for Evolutional Sci-
ence and Technology” program), Singapore (The Genome Institute of Singapore) and
Hong Kong (Hong Kong University of Science and Technology) comprise the Interna-
tional Human Epigenome Consortium (IHEC) [Stunnenberg et al. 2016]. Launched
in 2010, this global umbrella project aims at generating more than 1,000 reference
epigenomes, each comprising expression quantification by RNA-seq, ChIP-seq profiles
for at least six well-studied histone modifications (H3K4me1, H3K4me3, H3K9me3,
H3K27me3, H3K27ac and H3K36me3), chromatin accessible regions and DNA methy-
lation patterns profiled by WGBS.
Ultimately, these projects represent key players in contributing to the standardization

of assays and methods and have greatly helped in paving the way in establishing com-
mon practices in epigenome analysis and scientific communication in general.

3 http://www.deutsches-epigenom-programm.de

http://www.deutsches-epigenom-programm.de


3
Pipelines for Comprehensive DNA Methylome

Analysis

This chapter introduces software tools for DNA methylation analysis. I de-
veloped the biseqMethCalling tool for the quantification of methylation
levels from aligned bisulfite sequencing reads. It was incorporated into a
pipeline which I co-developed with Natalie Jäger and Christoph Bock for the
initial processing of bisulfite sequencing data. This epigenome processing
pipeline was used for validating the RRBSMAP alignment software [Xi et
al. 2012] and employed in various data analysis settings (e.g. [Ziller et al.
2011; Ziller et al. 2013]).
Together with Yassen Assenov and Pavlo Lutsik, I developed the RnBeads
software package [Assenov et al. 2014] (equal contributions). The project
was supervised by Jörn Walter, Thomas Lengauer and Christoph Bock. Cor-
responding text and figures in this chapter have been adapted from the pub-
lication. I had a leading role in the overall software design of the package
as well as in writing the manuscript, the package vignette and in designing
corresponding figures. During package development, I was mainly respon-
sible for implementing the analysis of bisulfite sequencing data, methods for
exploratory data analysis, data export, methods for covariate inference, ad-
justing for confounding factors and detecting differential methylation. Fur-
thermore, I conducted a performance benchmarking study and applied the
package to large-scale, publicly available datasets, generating a methylome
resource. Using RnBeads we contributed DNA methylation analyses to
the studies of Sandoval et al. [2013], Planello et al. [2014], Wallner et al.
[2016] and Amabile et al. [2015].
A software suite I developed for characterizing DNA methylation in consen-
sus sequences of repetitive elements was applied and contributed analyses to
Bock et al. [2010], Tobi et al. [2014] and Deplus et al. [2014]. A redesigned
production version of the software is currently under active development.

As outlined in the previous chapter, DNA methylation constitutes an important epige-
nomic mark involved in regulating chromatin structure and RNA expression. Compu-
tational pipelines for the processing of bisulfite sequencing data typically involve align-
ing the sequencing reads to a reference genome and identifying methylation levels at
individual cytosines. Downstream analysis such as identifying domains with consis-
tent methylation patterns, characterizing within-sample and between-sample variabil-
ity and determining differential methylation between groups of samples represent typi-
cal tasks inmany studies focusing onDNAmethylation. Various software tools for these
individual tasks exist (reviewed in [Krueger et al. 2012] and [Bock 2012]).
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This chapter focuses on software development for key steps in the analysis of genome-
wide DNA methylation data: Section 3.1 discusses analysis steps involved in pro-
cessing reads originating from bisulfite sequencing experiments and introduces the
biseqMethCalling tool for quantifying methylation levels at individual cytosines. Sec-
tion 3.2 describes the RnBeads software package that we developed for the comprehen-
sive analysis of DNA methylation data from various assays. Finally, Section 3.3 high-
lights the importance of epigenetic regulation of repetitive genomic elements and out-
lines a pipeline implementing methods that exploit sequencing data to estimate global
profiles of epigenomic marks in subfamilies of these elements.

3.1 Quantifying DNA Methylation Using Bisulfite Sequencing

Asdescribed inChapter 2.3, bisulfite sequencing provides quantitative readouts ofDNA
methylation levels for each assayed CpG. Here, we outline the processing steps involved
in analyzing this type of data and present a tool that we developed for quantifying DNA
methylation levels from aligned sequencing reads.

3.1.1 Processing of Bisulfite Sequencing Data

Before DNAmethylation signatures can be interpreted, a series of bioinformatic prepro-
cessing steps is required in order to derive methylation levels from the raw sequencing
reads. These steps involve:

1. Read preprocessing
2. Alignment
3. Methylation calling
4. Quality Control (QC)
Segments of reads that exhibit low per-base quality scores or low sequence complex-

ity as well as sequences pertaining to adapters used for library preparation could in-
troduce false measurements. Therefore, they are removed during read preprocessing.
Several tools that can identify and trim such segments from sequencing reads are avail-
able [Krueger et al. 2012]. Moreover, tools exist that provide a general overview on se-
quencing data quality. They can helpwith the identification of biases and artifacts in the
sequence and quality composition of the sequencing readout. For instance, the FastQC
toolkit1 enables data analysts to inspect sequencing reads for enriched sequence mo-
tifs as well as overall sequence complexity and generates reports summarizing per-base
quality scores.
Correct alignment of bisulfite-converted reads to the reference genome is not straight-

forward: first, due to the induced nucleotide substitution, reads do not map to the ref-
erence by perfect base complementarity. Second, bisulfite conversion reduces the se-
quence complexity of resulting reads (due to the relative depletion of cytosines). This
can lead to their incorrect placement in the genome. Third, cytosine methylation re-
sults in an asymmetry between the two reference strands of the genome and therefore
increase the complexity of the alignment task. Specifically, four different orientations
are possible in which sequencing reads can align to the reference sequence (Figure 3.1).
Additionally, bisulfite conversion is not always 100 percent efficient: typically, less than
two percent of all unmethylated cytosines remain cytosines and unspecific effects might

1 http://www.bioinformatics.babraham.ac.uk/projects/fastqc/

http://www.bioinformatics.babraham.ac.uk/projects/fastqc/
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m m m m- - - - -
GGCCTACGCTAGCAGAT...AGTACGGAGCCTAGGCC

m m mm- - - -- -

CCGGATGCGATCGTCTA...TCATGCCTCGGATCCGG

GCCTACGCTAACAAAT...AATACAAAGCCTAAGC
CGGATGCGATTGTTTA...TTATGTTTCGGATTCG

GCTTATGCTAGTAGAT...AGTATGGAGCTTAGGC
CGAATACGATCATCTA...TCATACCTCGAATCCG

fragment

converted forward strand

complement of converted forward strand

complement of converted reverse strand

converted reverse strand

fragmentation + bisul�te conversion + PCR ampli�cation

read 1 read 2

reverse strand
forward strand

Figure 3.1: Orientations of reads in bisulfite sequencing experiments. Methylated cy-
tosines (orange background) are unaffected by bisulfite conversion while un-
methylated cytosines (grey background) are converted to uracils, which re-
sults in a thymine readout after subsequent PCR amplification. Colors denote
read mates in paired-end sequencing. For single-end sequencing only reads
labeled “read 1” are applicable. In paired-end sequencing mate reads are se-
quenced from the start and end positions of the same template strand. In di-
rectional bisulfite libraries, only the four depicted read orientations are valid
for the individual mate reads (“read 1” and “read 2”). Green, dashed zig-zag
lines indicate the digestion sites of the MspI endonuclease frequently applied
in RRBS protocols.

lead to the conversion of methylated cytosines after bisulfite treatment. However, these
under- and over-conversion events are relatively rare and experimental quality can be
assessed by measuring methylation levels in spike-in control sequences, which origi-
nate from phage DNA and are assayed along with the target DNA. Other challenges
which are inherent to the general problem of short-sequence alignment also need to
be addressed. These include repetitive sequences in the genome, sequencing errors as
well as genotypes that deviate from the reference. Despite or because of the complex-
ity of bisulfite alignment, an abundance of mapping programs is available [Krueger et
al. 2012; Bock 2012; Kunde-Ramamoorthy et al. 2014]. They implement two alternative
paradigms for dealing with the above challenges: Wild-card aligners do not penalize C
to T mismatches during read mapping. Available implementations include BSMAP [Xi
and W. Li 2009], its derivative RRBSMAP2 [Xi et al. 2012], GSNAP [Wu and Nacu 2010],
Last [Frith et al. 2012], Pash [Coarfa et al. 2010], RMAP [A. D. Smith et al. 2009] and
segemehl [Otto et al. 2012]. In contrast, three-letter aligners, such as Bismark [Krueger
andAndrews 2011], methylCtools [Hovestadt et al. 2014], BRAT [E. Y. Harris et al. 2010],
BS-Seeker [P.-Y. Chen et al. 2010], BatMeth [Lim et al. 2012] and MethylCoder [Peder-
sen et al. 2011], convert all cytosines in the sequencing reads as well as the forward and
reverse strand of the reference genome to thymines and employ standardmapping algo-
rithms on this reduced base-space. In a post-alignment step, duplicate reads, i.e. reads
with the same sequence, mapping to identical genomic positions are usually marked in
the resulting data files. Such reads are likely to represent PCR amplification artifacts.
They can be identified using tools such as picard3.

2 RRBSMAP has now been integrated into the BSMAP software
3 http://broadinstitute.github.io/picard/

http://broadinstitute.github.io/picard/
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From the aligned reads, methylation levels, i.e. the fraction of methylated cytosines
among all reads covering a particular reference cytosine can be extracted. In essence,
this is a counting exercise. Nonetheless, additional read and sequence information such
as duplicate reads, read orientation, sequence complexity, mapping and base qualities
need to be taken into account. In this work, biseqMethCalling, a software tool that ad-
dresses these challenges, is presented. Other available software for methylation calling
includes Bismark [Krueger and Andrews 2011] and Bis-SNP [Liu et al. 2012]. Bismark
implements an integrated framework for bisulfite alignment and methylation calling.
Bis-SNP is a tool for the quantification of methylation levels from aligned reads using
Bayesian inference. It incorporates base quality recalibration steps and infers genomic
variation from the reads (excluding C to T mutations), reporting genotype information
additionally to methylation levels. In addition to these programs for the processing
of genome-wide bisulfite data, software tools for the start-to-finish analysis of locus-
specific bisulfite data exist. For instance, the BiQ Analyzer tool provides an all-in-one
software solution for read preprocessing, alignment, methylation calling and data visu-
alization [Bock et al. 2005; Lutsik et al. 2011].
Finally, during all steps of the outlined process, quality control is a critical component.

With a few exceptions (such as FastQC) standardized tools for this task are not readily
available. Therefore, best practices include the manual inspection of quality statistics,
custom plots and data exploration in tools like genome browsers.

3.1.2 A Pipeline for Quantifying DNA Methylation from Bisulfite Sequencing Reads

We developed the biseqMethCalling tool for the quantification of DNA methylation
from aligned bisulfite sequencing reads. The tool offers extensive summary statistics
and other outputs that facilitate quality control and genome-browser-based visualiza-
tion of the results. Through various processing options it is possible to flexibly account
for a variety of special cases and intricacies of methylation calling. For instance, several
read filtering criteria can be applied and various features specific to the RRBS protocol
are implemented.

Implementation Details

biseqMethCalling was implemented using the Python programming language and
comprises approximately 4,000 lines of code. Aligned reads in the SAM/BAMformat [H.
Li et al. 2009] constitute the input to biseqMethCalling. The software is typically applied
to output data from the MAQ [H. Li et al. 2008] or (RR)BSMAP [Xi and W. Li 2009; Xi
et al. 2012] tools, but can be adapted to the output of any bisulfite aligner. The program
iterates over all input reads and identifies valid base calls for each cytosine contained
in the reference sequence. Here, a position is considered valid if the base-quality of
the cytosine and other bases in the respective motif exceed a parameter-defined thresh-
old. Reads are discarded if they do not pass certain user-defined criteria: reads can
be filtered based on the number of alignment mismatches, whether a read is marked
as PCR duplicate, overall base-quality and sequence complexity (i.e. reads with un-
reasonably long stretches of the same nucleotide in their sequence can be excluded).
If properly annotated, domains of reads pertaining to sequencing adapters can be ex-
cluded from the analysis. When considering paired-end data from directional sequenc-
ing protocols, only two read orientations are considered valid for each read mate (see
Figure 3.1). biseqMethCalling can identify and discard reads that do not fit one of
these configurations. Furthermore, improperly paired reads, i.e. mate reads mapping
to different chromosomes ormapping further apart than the expected fragment size can
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be excluded. Optionally, only the mate in a pair with better alignment quality can be
retained for analysis. If mate reads overlap due to short fragment lengths, only informa-
tion for the mate with higher alignment quality is retained for methylation calling in the
overlap. Additional features pertain specifically to the RRBS protocol. In these proto-
cols, sequencing adapters and the nucleotides used for filling in the restriction site typi-
cally employ methylated cytosines. This artificially introduced methylation is excluded
by biseqMethCalling when quantifying DNA methylation. For WGBS and RRBS data,
methylation information for the genomic forward and reverse strand can be considered
separately or can be combined. By default, processing is restricted to CpGdinucleotides,
but reporting of methylation in non-CpG contexts can optionally be enabled.
The output of biseqMethCalling consists of methylation information that is summa-

rized across individual cytosines, sequencing reads and fragments (Figure 3.2). A cus-
tom BED format [Kent et al. 2010] is used to store genomic locations along with their
annotation and facilitates data sharing and visualization in genome browsers. For each
cytosine in the considered CpG or non-CpG context, the tool counts the numbers of con-
version and non-conversion events. All sequencing reads that pass the filtering criteria
are reported along with relevant cytosine positions andmethylation levels. When reads
originate from paired-end sequencing or are aligned to an in silico digested genome (in
case of RRBS protocols), the genomic segments resulting from DNA fragmentation and
size selection during sequencing library preparation can be identified. Mean methy-
lation levels of individual reads and fragments are reported. Additionally, extensive
statistics, which can be used for quality control, are provided for both genomic strands
and cytosine contexts individually as well as in a combined manner. These statistics
include counts of retained reads and reads discarded due to the filtering criteria. Addi-
tionally, methylation levels (mean and quantile values) inside and outside of considered
sequence motif (CpG, CpA, etc.) as well as summaries of base and alignment quality
are reported. The overall methylation levels outside of CpG context can be used as an
estimate for the rate of overall bisulfite conversion. If provided with the sequence of
spike-in controls, methylation levels in these sequences are quantified and serve as ded-
icated measures for the conversion rate.
The tool offers several convenience options. Multiple alignment input files can be

specified which are then merged during runtime according to user-provided grouping
criteria. For instance, alignment files originating frommultiple sequencing lanes for the
same sample can be merged. Furthermore, analyses can be restricted to predefined ge-
nomic regions of interest. This feature has proven particularly useful for more targeted
sequencing libraries, computational parallelization or software testing. Processing can
conveniently be restarted from certain savepoints in case of a failed analysis run. To
improve the wallclock runtime, biseqMethCalling can be configured to be executed
distributed across nodes of a scientific compute cluster and thus allows for the high-
throughput analysis of whole-genome bisulfite sequencing data.

Availability

Although there is currently no stand-alone version of the tool, biseqMethCalling has
been customized to be routinely employed by a number of laboratories. An adaptation
of the source code is part of the supplementary data of [Ziller et al. 2013] and is available
from GitHub4.

4 https://github.com/epigen/biseqMethCalling

https://github.com/epigen/biseqMethCalling
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Figure 3.2: Genome browser view of fragments, reads and CpGs. The data was generated
using RRBS in a human colon cancer sample. The browser view shows the
SOX17 promoter locus. RRBS restriction fragments, single CpGs and sequenc-
ing reads are shown as separate tracks. Mean methylation levels are labeled
in percent values and are indicated by corresponding color scales. Read cover-
age for each CpG is displayed in square brackets. The data has been visualized
using the UCSC Genome Browser [Kent et al. 2002].

3.1.3 Discussion

We have developed one of the first pipelines for quantifying DNA methylation levels
from genome-wide bisulfite sequencing experiments. It has been established at the
Meissner lab at the Department for Stem Cell and Regenerative Biology at Harvard
University and the Broad Institute, but has also successfully been adapted for use in
other laboratories. At the time of development, no software package for genome-wide
methylation calling was publicly available and this pipeline represented one of the first
tools for the processing of RRBS and WGBS data. Since the pipeline was first em-
ployed, other tools for methylation calling, such as Bismark [Krueger and Andrews
2011] and Bis-SNP [Liu et al. 2012], have emerged. Compared to these alternatives,
biseqMethCalling provides extensive summary statistics and other outputs that facil-
itate quality control and genome-browser-based visualization of the results. The soft-
ware was used to process human and murine methylation data for a number of studies
(e.g. [Ziller et al. 2011; Ziller et al. 2013]), thus proving its utility for the standardized
high-throughput processing of bisulfite sequencing data.

3.2 Comprehensive Analysis of DNA Methylation Data with RnBeads

High-throughput assays for DNA methylation profiling have enabled large-scale
Epigenome-Wide Association Study (EWAS) and epigenome mapping projects. The
number of assayed samples and methylation sites in these studies is steadily increas-
ing, while access to bioinformatics support for many biomedical researchers in this area
is still limited. Guidelines and good practices for DNA methylation analysis are now
emerging [Bock 2012; Michels et al. 2013] and a plethora of bioinformatic tools, which
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implement them, have been developed. However, the vast majority of these tools is
dedicated to a particular task in methylation analysis or is only applicable to a specific
experimental platform. Particularly the identification of differentially methylated re-
gions has motivated various software developments (cf. Appendix B). We evaluated
the features of 22 related software tools (supplementary information in [Assenov et al.
2014]) and concluded the demand for a pipeline that facilitates start-to-finish analysis
of DNA methylation data and that can be employed by users with potentially little or
no bioinformatics expertise.
With this goal in mind, we developed the RnBeads software package [Assenov et al.

2014] which establishes a user-friendly workflow for the analysis and interpretation of
large-scale DNA methylation data that complies with emerging standards. RnBeads
builds upon extensive prior research on bioinformatic and statistical methods for DNA
methylation analysis. Based on our assessment of existing algorithms and software, we
defined the following key features of RnBeads:

• support for all genome-scale and genome-wide DNAmethylation assays that pro-
vide single-cytosine resolution

• extensive functionality for high-level DNA methylation analysis, including data
visualization, quality control, exploratory analysis, handling of batch effects, cor-
recting for tissue heterogeneity and differential methylation analysis

• analysis of DNAmethylation at the level of individual CpGs as well as predefined
genomic regions

• generation of interactive reports that allow users to select results and adjust pa-
rameters without having to rerun the analysis

• implementation of a standardized pipeline mode that is essentially self-
configuring, with the option to adapt the workflow using custom parameter set-
tings or custom scripts

• flexibility to run RnBeads on a personal computer, on a high-performance comput-
ing infrastructure, via a web-based service or in a cloud-computing environment,
depending on the scale of the analysis

• usability without the need extensive programming knowledge
• sufficient performance to process the largest DNA methylation datasets that are
currently available on a suitable scientific computing cluster (hundreds of RRBS
or WGBS profiles or thousands of 450K profiles)

• reproducibility and sharing of results through automatic documentation of pa-
rameters and analysis methods in the RnBeads reports

The core workflow of RnBeads comprises data import, quality control, preprocessing
and filtering, generation of genome browser tracks and data tables, optional inference of
(confounding) covariates, exploratory analysis and differential DNA methylation anal-
ysis (Figure 3.3).
RnBeads supports any experimental protocol that provides single-basepair CpG

methylation measurements. This includes array-based platforms such as Illumina’s
450K, 27K and EPIC arrays as well as bisulfite-sequencing protocols (RRBS, WGBS,
etc.). Notably, data obtained from enrichment-based methods can also be analyzed,
provided that the data has been preprocessed with corresponding bioinformatic algo-
rithms [Laird 2010; Stevens et al. 2013].
RnBeads is implemented using the R programming language and follows a modular

design that supports automated pipeline workflows as well as flexible interactive analy-
ses. The default RnBeads workflow is executed by invoking rnb.run.analysis(...),
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either in an interactive R session or via R’s support for scripted analyses. Optionally,
an XML configuration file can be provided in order to execute analyses with predefined
parameter sets.
When used with default options on small- to medium-scale data sets, RnBeads is es-

sentially self-configuring: it parses a user-provided sample annotation table and, us-
ing this annotation, executes the modules as shown in Figure 3.3. RnBeads workflows
can also be fine-tuned using global configuration parameters, which are specified using
the rnb.options(...) command. During the execution of an analysis, each step is
tracked by extensive logging functionality. Upon successful module completion, an in-
teractive analysis report is generated that comprises method descriptions, publication-
quality diagrams and links to data tables. These reports use client-side scripting and
the dynamic features of XHTML to enable interactive data exploration of precalculated
results. RnBeads can also save analysis options and data objects, whichmakes it straight-
forward to rerun an analysiswith the sameparameters and to complywith the paradigm
of reproducible research [R. C. Gentleman 2005]. Customworkflows can be designed by
running analysis modules individually or by using R functions that operate directly on
serialized RnBSet objects (these objects are instances of an R S4 class and constitute the
RnBeads representation of all DNA methylation and metadata within a given dataset).
The following sections provide a detailed overview on RnBeads’ analysis modules,

implementation details and a use-case. The tool has also been extensively used for char-
acterizing the DNA methylation datasets described in Chapters 4 and 5.

3.2.1 Analysis Modules in Detail

Data Import

First, the data import module of RnBeads parses a sample annotation table and uses the
contained information to configure the analysis. This user-provided annotation should
be in a tabular format that contains a row for each sample and columns describing sam-
ple characteristics. A column containing the file names for each sample’s methylation
data is required. Other columns may contain categorical information which are then
parsed and used as sample annotation in later analysis steps. For instance, the color
coding in the exploratory analysis and the grouping for differential methylation analy-
sis is determined by these columns. Via RnBeads’ analysis options the user can specify
which of the columns are used in the analysis or RnBeads can automatically identify
columns with categorical sample annotation. Second, the methylation information for

Figure 3.3 : (On the next page) RnBeads workflow for analyzing DNA methylation data.
The workflow consists of seven modules (i-vii) and is essentially self-
configuring on the basis of a sample annotation table provided by the user.
Each module generates part of the RnBeads hypertext report, which includes
method descriptions, diagrams and links to data tables. RnBSet objects store
methylation and QC data and sample annotation in order to facilitate custom
analysis workflows in R. Methylation data is exported for visualization using
genome browsers and follow-up analyses using third-party software tools. In-
put data types include signal intensities (IDAT), Illumina GenomeStudio (GS),
tab-delimited files (TAB), Gene Expression Omnibus (GEO) datasets and var-
ious BED-like formats.
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each sample is parsed. A broad range of input formats is supported. For array-based
analysis using the Infinium platforms, signal intensity data files (IDAT) can be read by
RnBeads, which extracts methylation information from the signal intensities and per-
forms data normalization. Alternatively, RnBeads can load precomputed data from Il-
lumina GenomeStudio report files, directly from the Gene Expression Omnibus (GEO)
database or import data from tabular formats. When IDATfiles are loaded into RnBeads,
the methylumi Bioconductor package is used for performing low-level data processing.
For sequencing-based methods, data preparation requires steps that are highly

protocol-dependent, including sequence alignment and DNA methylation calling for
single CpGs (cf. Section 3.1). These steps need to be executed using dedicated tools
before loading the data into RnBeads. An RnBeads analysis starts with importing BED
files or data tables that provide the number of methylated and unmethylated obser-
vations for each covered CpG. For example, the outputs of Bismark [Krueger and An-
drews 2011] and Bis-SNP [Liu et al. 2012] as well as methylation calls obtained from the
pipeline described in Section 3.1.2 can directly serve as inputs to RnBeads. Enrichment-
based and restriction-enzyme-based assays require specialized algorithms for inferring
DNA methylation levels at single-base-pair resolution. For these experiments, soft-
ware tools such as MEDIPS [Chavez et al. 2010], MEDUSA [Wilson et al. 2012] and
methylCRF [Stevens et al. 2013] generate DNA methylation tables that can be imported
into RnBeads as BED files or in one of several other data file formats.
After the DNA methylation data has been loaded, RnBeads combines the data of all

samples into a single RnBSet object that constitutes the basis for all further analysis
steps. RnBSet objects store DNA methylation levels as β-values which are defined as

β =
max (M, 0)

max (M, 0) +max (U, 0) + ϵ

for Illumina’s array platforms. Here, M andU correspond to the measured, continuous-
valued methylated and unmethylated intensity signal respectively and ϵ is a constant
(typically set to 100). Bisulfite-sequencing-based methylation levels are simply de-
scribed by the fraction of methylated cytosines compared to the number of reads cover-
ing a CpG. RnBeads can also derive M-values from β-values or methylation levels using
the logit transformation:

M = log2
β

1− β

In addition to storing methylation measurements for each CpG, these objects also
contain aggregate methylation levels for predefined genomic regions which are com-
puted by averaging over CpG methylation levels contained in a region. By default,
these region definitions include promoters (defined as 1500 bp upstream and 500 bp
downstream of the TSS), whole genes (transcription start to transcription end site), CpG
islands and genomic tiling regions. In addition, custom region annotation can be sup-
plied by the user (e.g. via BED files). Since data matrices become large when per-
forming genome-wide analyses on large numbers of samples, RnBeads provides the
option of maintaining these matrices on hard disk in order to reduce the demand on
main memory. For this purpose, the efficient memory mapping procedures imple-
mented in the ff package5 are employed. RnBeads currently supports several human,
mouse and rat genome assemblies via its auxiliary annotation packages RnBeads.hg19,

5 http://cran.r-project.org/web/packages/ff/index.html

http://cran.r-project.org/web/packages/ff/index.html
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RnBeads.hg38, RnBeads.mm9, RnBeads.mm10 and RnBeads.rn5. A supplemental pack-
age, named RnBeadsAnnotationCreator can be used to generate RnBeads annotation
packages for additional genomes.

Quality Control

RnBeads also can also assist the user in the identification of technical and biological
biases that are common in large-scale DNAmethylation datasets. These include techni-
cal assay failures, sample mix-ups and batch effects. Quality issues are highlighted in
the resulting reports, but it is ultimately left to the user to handle them appropriately,
for example by excluding samples with low quality, by resolving sample mix-ups us-
ing genotyping data or by correcting for batch effects using statistical methods. The
detection of technical failures is assay-specific and differs between sequencing-based
and microarray-based analyses. For Infinium array data, RnBeads generates summary
plots for the microarray quality-control probes to monitor technical parameters such
as bisulfite conversion efficiency and unspecific probe hybridization. For sequencing-
based data sets, the quality assessment focuses on sequencing coverage, given that is-
sues in bisulfite conversion and clonal read rates are typically already identified during
the alignment andmethylation calling steps. RnBeads also addresses the relatively com-
mon problem of sample mix-ups by graphical representation and clustering based on
signal intensities of the genotyping probes that are present on the Infinium microar-
ray. Samples with matching genotypes can thus be identified and checked for consis-
tency with annotation records. In addition, RnBeads uses DNA methylation data to
predictwhich sampleswere derived frommale and female donors on the basis of their X-
inactivation status and the presence or absence of measurements on the Y chromosome.
This classifier highlights discrepancies between gender information from the sample an-
notation table and the biological sex of the analyzed samples, which are often indicative
of sample mix-ups.

Preprocessing

Tominimize the risk of measurement biases affecting the analysis, RnBeads implements
a framework for rule-based filtering of samples, CpG sites and DNA methylation mea-
surements. Filtering is performed in two steps to provide flexibility and to avoid bias-
ing the normalization procedure of Infinium analyses with problematic samples. First,
RnBeads removes low-quality data that could bias an analysis by discarding samples
and CpGs that contain a substantial fraction of measurements with low technical qual-
ity (for example, a large detection p-value for Infinium data or low sequencing coverage
in the case of bisulfite sequencing data) as well as CpGs and measurements that may
be unreliable for other reasons. For example, RnBeads can remove Infinium probes
overlapping Single-Nucleotide Polymorphisms (SNPs) that pose a high risk of influenc-
ing DNA methylation measurements. In a second filtering step that follows data nor-
malization RnBeads discards those samples and CpGs that should be included in the
normalization, since they contribute to the overall distributions of signal intensities and
methylation levels, but that should not be included in subsequent analysis steps6. Exam-
ples include CpGswith toomanymissing values across samples or with zero variability
in their methylation values. Furthermore, users can configure additional filtering rules

6 Normalization is only applied to Infinium data. In case no normalization is performed, the order of
filtering steps is irrelevant.
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and define custom blacklists of CpGs that should always be excluded and/or whitelists
of CpGs that should always be retained. The default filtering criteria were chosen rela-
tively conservativelywith the goal of reducing the risk of spurious ormisleading results.
For Infinium data, RnBeads offers several alternative options for signal intensity-

based normalization, which is an important step for reducing probe biases that could
interfere with the analysis. RnBeads’ default normalization method for Infinium data is
SWAN [Maksimovic et al. 2012], which is implemented in the minfi package [Aryee et al.
2014] and provides a good balance of accuracy, robustness and run-time performance.
Alternatively, RnBeads supports Illumina’s standard normalization procedure as imple-
mented in methylumi, the BMIQnormalizationmethod [Teschendorff et al. 2013], and all
modular normalization algorithms that are available in the wateRmelon package [Pid-
sley et al. 2013]. RnBeads also supports the background-correction techniques imple-
mented in methylumi [Triche et al. 2013], which can be combined with normalization.
All filtering and normalization steps are tracked in the RnBeads report and plots visu-

alize any changes in the global distribution of DNA methylation levels before and after
preprocessing.

Tracks and Tables

RnBeads is able to export the preprocessed data in several formats that facilitate data
visualization and ancillary analyses using third-party software. RnBeads can be config-
ured to export methylation tracks in BIGBED and BIGWIG format and to summarize
them into track hubs that can be loaded into various genome browsers, thus providing
a common reference point for exploring the generated data tracks. Moreover, the soft-
ware aggregates the preprocessed data in CSV and BED files that can be loaded and
analyzed with custom scripts and web-based tools. In addition, sample-wise statistics,
including the number of assayed CpGs and genomic regions, the number of assayed
CpGs per region type, and the average read coverage (for sequencing data), are summa-
rized in dedicated tables.

Exploratory Analysis

Global changes in DNA methylation can often be identified by visual inspection of nor-
malized and quality-controlled DNA methylation data before in-depth analysis of dif-
ferential DNA methylation. To facilitate this type of exploratory analysis, RnBeads vi-
sualizes sample-specific DNA methylation profiles at the single-CpG level and for ge-
nomic regions of interest. The global distribution of DNA methylation levels is sum-
marized in density plots, which help identify samples and sample groups that devi-
ate from the characteristic bimodal distribution of methylation levels with its clear-cut
distinction between highly methylated loci and essentially unmethylated loci (for ex-
ample, due to global gain or loss of DNA methylation). RnBeads also visualizes DNA
methylation variation within and across sample groups, which facilitates the detection
of hypervariable samples (for example, due to technical issues or biological effects such
as high tissue heterogeneity). DNA methylation profiles are computed on the basis of
single CpG measurements as well as using values aggregated in sets of predefined ge-
nomic regions, such as gene promoters or CpG islands. Furthermore, if the annotation
includes information on biological or technical replicates, RnBeads calculates pairwise
agreement between replicates and visualizes them as scatterplots, thereby providing a
global assessment of reproducibility of experiments.
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Hierarchically clustered heatmaps help to assess the presence of sample subgroups
in the data set. This analysis is quantitatively supported by various distance metrics,
by the calculation of silhouette statistics to identify the best fitting number of clusters
as well as by systematic association testing between the obtained clusters and the user-
provided sample annotation. Dimension reduction employing Principal Component
Analysis (PCA) and Multidimensional Scaling (MDS) is also available. In combination
with interactive sample coloring, this functionality provides a powerful way of visu-
alizing associations between sample annotations and genome-wide DNA methylation
profiles. The analysis of such patterns is also helpful for detecting batch effects, which
can arise from technical confounders such as date and duration of sample processing,
the person running the assay and sample origin. Batch effects are common in large-
scale DNAmethylation datasets, in particular among those generated with microarrays
or with enrichment sequencing protocols such as MeDIP and MBD-seq. To systemat-
ically detect batch effects, RnBeads runs tests for significant association between user-
provided sample annotation and the directions of largest variance identified in a PCA
of the DNAmethylation data. Statistical testing is also performed to identify significant
associations among the sample annotations and with quality-control indicators such as
bisulfite conversion rates and nonspecific binding (for Infinium data). In these compar-
isons, the appropriate statistical test is automatically selected based on the type of an-
notation data. Specifically, the selected tests are: Fisher’s Exact Test for categorical data,
Wilcoxon rank-sum test for continuous values in two sample groups, Kruskal-Wallis
one-way analysis of variance for continuous values in multiple groups and Pearson cor-
relation coupledwith a permutation test for comparing continous values. All results are
visualized in the RnBeads report, thus enabling a systematic assessment of associations
between DNA methylation levels and sample annotations.
In addition, composite plots of DNA methylation levels around genes and other ge-

nomic regions are generated. These plots can help detect global changes in DNAmethy-
lation that affect gene promoters differently compared to intra- or intergenic regions.
Finally, if provided with a list of custom genomic regions or genes of interest, genome
browser views can be generated with RnBeads using functionality of the Gviz pack-
age [Hahne et al. 2012].

Differential DNA Methylation

After evaluating multiple approaches and their implementations for the identification
of differential methylation (cf. Appendix B), we implemented the following strategy in
RnBeads: different measures of differential methylation can be aggregated into com-
bined ranks and differences can be analyzed at the level of individual CpGs (Algo-
rithm 3.1) as well as by combining measurements across larger genomic regions (Algo-
rithm 3.2). The latter approach increases statistical power and can result in interpretable
sets of differentially methylated regions [Bock 2012]. Moreover, it reduces the suscepti-
bility to differential coverage of individual CpGs between samples. The following para-
graphs provide details on the computed differential methylation measures and their
combination.
In each comparison defined by the sample annotation table, RnBeads computes p-

values for all covered CpGs (πis in Algorithm 3.1). By default, hierarchical linear
models, implemented in the limma package [Smyth 2004] are employed for this task
(limmaP (. . .) in Algorithm 3.1). limma was originally developed for identifying dif-
ferential gene expression and employs the following linear relationship to model gene
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expression levels based on sample features and corresponding coefficients:

E(yg) = Xβg

Here, yg denotes the vector of observed log-expression levels for gene g in n samples:
yg = (yg1, . . . , ygn)T. X denotes an n× p design matrix that encodes sample annotation
for p covariates. This annotation includes the groupmembership of each sample for the
target comparison (as binary variable) and can optionally contain other covariates to be
included in the model. βg denotes a vector of feature coefficients and is estimated by
least squares:

β̂g = (XTW gX)−1XTW gyg

where W g is a diagonal matrix of known feature weights. In order to derive a p-value
for differential expression, the null hypothesis that the coefficient for gene g and target
comparison j does not deviate from zero is tested:

H0 : βgj = 0

In ordinary linear models this can be facilitated by the t-statistic:

tgj =
β̂gj

sg
√vgj

where s2
g = (yg − X β̂g)

T(yg − X β̂g)/dg denotes the residual sample variance (with dg
residual degrees of freedom; usually dg = n− p) and vgj is the jth diagonal element of
(XTW gX)−1. Instead of the ordinary t-statistic, limma defines a moderated t-statistic:

t̃gj =
β̂gj

s̃g
√vgj

where

s̃2
g =

d0s2
0 + dgs2

g

d0 + dg

Here, s2
0 and d0 denote prior estimates for variance and degrees of freedom. They rep-

resent hyperparameters shared by all genes and can be derived from the data using
empirical Bayes methods (cf. [Smyth 2004] for details). The resulting hierarchical mod-
els7 have been shown to lead to robust estimates of differential expression, even when
the number of samples per group is small [Phipson et al. 2016]. Notably, the problem
that the number of parameters to be estimated is much larger than the number of train-
ing samples is addressed by this mode of parameter sharing. In RnBeads, the limma
approach is directly applied to DNA methylation data by replacing log-expression (yg)
with methylation M-values. They are derived from the fractional methylation levels yci
(or β-values) of eachCpG c and sample i by the logit function Mci = log2

yci
1−yci

and reflect
distributional properties of log-expression values considered in the model more closely
than fractional methylation levels. We specifically selected the limma method due to
its sound statistical model, robustness to relatively small sample sizes, ease-of-use and
computational performance. Alternatively, p-values can also be calculated using an or-
dinary two-sided t-test comparing the distributions of methylation levels between the
7 Here, the term hierarchical refers to the fact that themodels are composed of parameters shared between
all genes and parameters pertaining to individual genes.
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Algorithm 3.1: Site-level quantification of differential methylation between two groups of
samples

Input:
Sample groups G1, G2 with n1 := |G1|, n2 := |G2|, n := n1 + n2
pS ∈N methylation sites
Methylation level matrix Y ∈ [0, 1]pS×n

Output:
µ1, µ2 ∈ [0, 1]pS , vectors of group mean methylation levels for each site
δ ∈ [−1, 1]pS , a vector of methylation level differences
θ ∈ RpS , a vector of methylation ratio differences
π ∈ [0, 1]pS , a vector of differential methylation p-values
ρ ∈ [1, pS]

pS , a vector of combined ranking scores for each site

for i ∈ {1, . . . , pS} do
µ1,i ←mean (Yi,G1)
µ2,i ←mean (Yi,G2)
δi ← µ1,i − µ2,i
θi ← µ1,i

µ2,i

πi ← limmaP
(
Ỹ , G1, G2, i

)
▷ using the limma package on the matrix of M-values

end for
ρδ ← rank (|δ|)
ρθ← rank (|log (θ) |)
ρπ ← rank (−π)
for i ∈ {1, . . . , pS} do

ρi ←max ({ρδ,i, ρθ,i, ρπ,i})
end for

two groups of samples or optionally the RefFreeEWAS method, which can be used to
account for cell-type heterogeneity [Houseman et al. 2014] (see details below). In addi-
tion to the default, unpaired analysis, RnBeads also supports paired-sample analysis,
which can substantially increase statistical power when analyzing matched pairs such
as tumor versus normal tissue from the same individual or disease-discordant twins.
The CpG-level p-values are adjusted for multiple testing using the False Discovery Rate
(FDR) method [Benjamini and Hochberg 1995].
Furthermore, aggregate p-values are computed for predefined genomic regions.

Here, the uncorrected, CpG-specific p-values within a given region are combined using
an extension of Fisher’s method that accounts for correlated p-values [Makambi 2003]
(combineP (. . .) in Algorithm 3.2). Specifically, Fisher’s method combines p-values
p1, . . . , pm by computing the statistic

MF = −2
m

∑
i=1

ln(pi)

When all the null hypothesis underlying the individual pi are true, the resulting MF fol-
lows a chi-square distribution with 2m degrees of freedom and the combined p-value
can be obtained by testing its significance. However, Fisher’s method does not account
for dependencies in the p-values that are the result of correlated test statistics. The
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Algorithm 3.2: Region-level quantification of differentialmethylation between two groups
of samples

Input:
Sample groups G1, G2 with n1 := |G1|, n2 := |G2|, n := n1 + n2
pS, pR ∈N the number of sites and regions respectively
ϕ : {1, . . . , pR} → 2{1,...,pS}, a mapping of sites to each region
µ1, µ2 ∈ [0, 1]pS , group mean methylation levels for each site
π ∈ [−1, 1]pS , a vector of differential methylation p-values for each site

Output:
M1, M2, vectors of group mean methylation levels for each region
∆ ∈ [−1, 1]pR , a vector of methylation differences for each region
Θ ∈ RpR , a vector of methylation ratio differences for each region
Π ∈ [0, 1]pR , a vector of differential methylation p-values for each region
P ∈ [1, pR]

pR , a vector of combined ranking scores for each region

for j ∈ {1, . . . , pR} do
M1,j ←mean

(
µ1,ϕ(j)

)
M2,j ←mean

(
µ2,ϕ(j)

)
∆j ←M1,j −M2,j

Θj ←
M1,j
M2,j

Πj ← combineP
(

πϕ(j)

)
▷method for combining p-values

end for
P∆ ← rank (|∆|)
PΘ ← rank (|log (Θ) |)
PΠ ← rank (−Π)
for j ∈ {1, . . . , pR} do

Pj ←max
({

P∆,j, PΘ,j, PΠ,j
})

end for

method introduced by Makambi [2003] therefore employs alternative distributional as-
sumptions and use a weighted version of the test statistic:

MF,m = −2
m

∑
i=1

ln(pi)ωi

where the ωi are weights for individual p-values and sum to 1. Under the assumption
of correlated p-values the statistic ν

MF,m
E(MF,m)

follows a chi-square distribution with ν de-
grees of freedom, which can be used to derive an aggregate p-value. Provided with an
estimate for the pairwise correlations of p-values, ν can be computed from the given p-
values and weights (cf. [Makambi 2003] for details). For combining p-values, RnBeads
uses a estimated correlation coefficient of 0.8, which was empirically determined from
methylation data, and uniformweightsωi =

1
m . Subsequently, these aggregate p-values

are subjected to multiple-testing correction using the FDR method.
In order to address the problem that minimal, but consistent differences tend to re-

ceive low p-values that reflect statistical but not biological significance, RnBeads ranks
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the differentially methylated regions according to the combination of statistical signifi-
cance and the degree of differential methylation. In Algorithms 3.1 and 3.2, the com-
puted ranks are denoted by ρi and Pj for CpGs and predefined genomic regions, respec-
tively. The degree of differential methylation is estimated as (i) the absolute difference in
DNAmethylation (δi and ∆j) and (ii) the relative ratio of mean DNAmethylation levels
between sample groups (θi and Θj). These two measurements differ in their relevance
for regions with low versus high DNA methylation levels and thus complement each
other. In regions of the genome that exhibit DNAmethylation values near 0 %, the DNA
methylation ratio between sample groups tends to overestimate the effect size, and the
absolute DNA methylation difference is a more appropriate measure. The opposite is
true for high DNA methylation values near 100 %, where the relative ratio is the more
stringent and appropriate measure of effect size.
In summary, RnBeads combines statistical testing with a priority ranking scheme that

is based on the absolute and relative effect size of the differences between sample groups.
It assigns a combined rank score for differential DNAmethylation to each analyzedCpG
site and genomic region (ρi and Pj in Algorithms 3.1 and 3.2). This combined rank is de-
fined as themaximum (i.e. worst) of three individual rankings: (i) by absolute difference
in mean DNA methylation levels (ρδ,i and P∆,j), (ii) by the relative difference in mean
DNA methylation levels, which is calculated as the absolute value of the logarithm of
the quotient ofmeanDNAmethylation levels (ρθ,i andPΘ,j) and (iii) by theCpG-based or
region-based p-value (ρπ,i and PΠ,j; calculated as described above). The priority-ranked
lists can be used directly for downstream analysis, such as manual inspection of the
top-ranking regions in a genome browser or for web-based analysis using tools such
as Galaxy [Giardine et al. 2005], GeneTrail2 [Stöckel et al. 2016] and EpiExplorer [Ha-
lachev et al. 2012]. In addition to the ranking of differential DNAmethylation, RnBeads
visualizes the observed differences using scatterplots and volcano plots, and it performs
enrichment analysis for GeneOntology (GO) terms associatedwith differentiallymethy-
lated regions.

Covariate Inference

Even well-designed studies performed with accurate DNA methylation assays can in-
clude confounders and potential sources of batch effects. For example, the samples
in an epigenome-wide association study may be collected in different countries, using
different preprocessing steps or may stem from genetically distinct populations. Fur-
thermore, many large cohort studies are currently conducted on whole blood, which is
characterized by significant cellular heterogeneity. RnBeads implements a number of
methods that can be used to mitigate such biases.
Batch effects arise from variation in the sample origin or sample handling [Leek et

al. 2010] and their influence on the measurements can obscure biologically relevant
differences. As long as the experimental design is chosen in such a way that the con-
founders exhibit an acceptable distribution across the phenotypes of interest in the
dataset, RnBeads can correct for the resulting biases employing established statistical
tools. To that end, known sources of potential batch effects should be documented in
dedicated columns of the sample annotation table. These columns can then be specified
as known confounders when performing the limma-based analysis of differential DNA
methylation. RnBeads also integrates the Surrogate Variable Analysis (SVA) method
implemented in the sva package [Leek et al. 2012] as an optional step of the workflow.
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In SVA, so-called surrogate variables are identified from the singular value decomposi-
tion of the residual methylation matrix that results from regressing out known covari-
ates [Leek and Storey 2007]. To be more precise, let Y an m× n matrix with methylation
levels for m sites and in n samples. Then SVA models the methylation level for site
i = 1, . . . , m in sample j = 1, . . . , n as

Yij = fi(xj) + ϵij

where fi(xj) denotes a general function over the annotated sample information xj. Pa-
rameters for fi(xj) are typically estimated by linear regression methods. The term ϵij
denotes unmeasured sources of methylation variation. SVA performs singular value de-
composition on the residual matrix R, whose entries are defined by Rij = Yij − fi(xj):
R = UDV T. As a result, this decomposition captures the influence of unobserved fac-
tors on methylation variation in terms of an orthogonal basis of singular vectors. By
means of statistical testing, singular vectors that are significantly associated with varia-
tion are identified and they are used for the construction of a set of significant surrogate
variables (cf. [Leek and Storey 2007] for further details). The rationale behind this ap-
proach is that these surrogate variables estimate effects of unknown factors and they
can be accounted for by controlling for them in differential methylation analysis. The
latter can be accomplished by including the surrogate variables as additional covariates
in the models used for the computation of p-values for differential methylation.
Other methods for batch-effect detection and correction have not yet been imple-

mented in RnBeads, but can applied to RnBSet objects as part of custom workflows.
For instance, similar to SVA, the ISVA method [Teschendorff et al. 2011] identifies sur-
rogate variables, but employs independent component analysis for matrix decomposi-
tion and estimates the number of components by random matrix theory. Furthermore,
ComBat [Johnson et al. 2007] provides an empirical Bayesian framework for correcting
for known batch covariates.
DNAmethylation differences between heterogeneous samples (such as blood, tumor

tissue and most other types of tissue biopsies) can arise not only from cell-intrinsic dif-
ferences in DNA methylation but also from differences in the cell-type composition be-
tween samples [Jaffe and Irizarry 2014; Teschendorff 2015]. RnBeads supports three
alternative methods for handling cell-type heterogeneity in the context of analyzing dif-
ferential DNA methylation.
First, for certain sample types such as whole blood, it is possible to purify reference

populations of themost prevalent cell types contributing to sample heterogeneity. DNA
methylation patterns from these references can then be used to quantify the cell compo-
sition of a heterogeneous sample [Houseman et al. 2012]. The resulting cell composition
estimates can then be included as covariates in the limma-based analysis of differen-
tial DNA methylation. This method is most commonly used for EWAS performed on
patient cohorts for which only whole-blood samples are available [Michels et al. 2013].
Suitable reference maps for sorted cells of the blood system have been generated for the
450K (e.g. [Reinius et al. 2012]). The model behind the method proposed in [Houseman
et al. 2012] describes the following linear relationship between CpGmethylation, sample
phenotypes and cell type composition:

Y = BXT + MΩT + E (3.1)

Here, Y ∈ [0, 1]m×n is a matrix of methylation values for m CpGs and n samples. X
is an n × d design matrix that contains sample annotation such as information on the
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phenotype and known, potential confounders. B contains m× d regression coefficients
representing direct effects of known covariates on methylation. The composition of k
cell types for each sample is represented by the n× k matrix Ω (k is fixed in advance).
M ∈ [0, 1]m×k contains methylation levels for the k cell types and is derived from the
average methylation levels of purified samples for the given reference cell types. E is
an m × n matrix of error terms. Ω itself is assumed to be dependent on the sample
covariates:

Ω = XΓ + Ξ (3.2)

where Γ contains coefficients describing the linear relationship between cell composition
and sample covariates and Ξ is an error matrix. The goal of referenced-based estima-
tion of cell-type heterogeneity is to estimate the unknown cell-type compositions Ω. In
theory this problem can be solved using least squares estimation. However, Houseman
et al. [2012] impose natural constraints on Ω, i.e. the composition values are in the inter-
val [0, 1] and their sum is less than one for each sample, and solve the problem using a
quadratic programming approach. In RnBeads the estimated contributions for the ref-
erence cell types are added to the sample annotation and they can be used as covariates
in differential methylation analysis. Furthermore, they also provide useful annotation
to be considered in exploratory analyses.
Second, a number of methods have been proposed for accounting for cell-type hetero-

geneity without the need for reference profiling [Houseman et al. 2014; Zou et al. 2014]
and we have integrated them into the RnBeads pipeline. Extending their model for
reference-based estimation, Houseman et al. [2014] propose the RefFreeEWAS method.
In detail, substituting Equation 3.2 in Equation 3.1 yields

Y = (B + MΓT)︸ ︷︷ ︸
B∗

XT + MΞT + E︸ ︷︷ ︸
E∗

RefFreeEWAS first estimates the coefficients B∗ and residuals E∗ of the unadjusted
model and subsequently applies a singular value decomposition to the concatenation of
the coefficient and residual matrices R̂ = [B̂∗, Ê∗] (which is in contrast to standard SVA
that computes singular values for the residuals only). It associates the k largest singular
values with cell-composition. They can be corrected for when computing association
with a phenotype of interest. In RnBeads, the RefFreeEWAS method can be enabled
as an alternative method for inferring p-values in the differential methylation analysis
module.
Third, the FaST-LMM-EWASher software provides an alternative, reference-free ap-

proach for associating DNA methylation with a phenotype of interest and correcting
methylation heterogeneity that is due to confounders [Zou et al. 2014]. It is based on
linear mixed models which incorporate variation in the data explained by the first prin-
cipal components:

x = βYjyj + ZT βZj +
L

∑
l=1

Alλlvl +
1√
m

ỸTu + ϵj (3.3)

Here, x specifies the vector containing the phenotype of interest for each of n samples
and yj contains methylation levels at CpG j with βYj as the corresponding coefficient to
be estimated. Z is amatrix with column vectors of d′ known covariates with correspond-
ing coefficients βZj. Ỹ is a matrix of methylation values for all m CpGs and n samples
and has been standardized to have mean 0 and unit variance for each row (CpG). u is
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a vector of random effects and accounts for confounding factors in the methylation ma-
trix. These effects are assumed to be identically and independently distributed, sampled
from aGaussianwith variance σ2

u . ϵj is a vector of Gaussian random noise with variance
σ2

ej. In [Zou et al. 2014], the authors show that standard linear mixed models only inad-
equately capture confounding when the sample size is large. Therefore, a key aspect
of the model is to augment the standard linear mixed model with a term that explicitly
accounts for confounding by modeling the variation along the first L principal compo-
nents of the data (sum term in Equation 3.3). In this term, λl denotes the lth eigenvector
of the data covariance matrix ỸỸT with corresponding principal component Al . The ef-
fect corresponding to the lth principal component is captured by the coefficient vl to be
estimated. The sum term then corresponds to a low-rank approximation of confound-
ing effects in the data: ∑L

l=1 Alλlvl ≈ 1√
m ỸTu. The number of top principal components

L is estimated by an iterative approach. Due to software licensing issues, we could not
implement the FaST-LMM-EWASher directly into RnBeads. Instead, RnBeads can ex-
port preprocessed DNA methylation data in a format that can be directly loaded into
FaST-LMM-EWASher. It is important to note that these reference-free methods model
cell-mediated associations without explicitly knowing the concept of a cell type. Fur-
thermore, they entail strong linearity assumptions. It is therefore hard to determine to
what extent they capture actual cell-type contributions in contrast to other sources of
variation and the results from the above analysis methods should be carefully checked
for statistical as well as biological plausibility.
Furthermore, the process of aging is associated with characteristic DNA methyla-

tion signatures [Horvath 2013]. RnBeads can predict a sample’s biological age using
an elastic-net predictor that was inferred from a large panel of datasets [Scherer 2016].
The predicted age can be correlated with the annotated age (if available). Deviation
from the annotated age can indicate potential sample mix-ups or a biologically relevant
phenotype. For instance, methylation patterns indicative of accelerated aging have been
associated with cancer [Horvath 2013]. Furthermore, the inferred age can be used as a
covariate in exploratory and differential analyses in order to identify and adjust for sys-
tematic methylation that is due to aging. Optionally, a dataset-specific predictor can be
trained and validated from the available data. The predictors have been extensively val-
idated for 450K data and we have extended their applicability to genome-scale bisulfite
sequencing data [Scherer 2016] (unpublished work together with Michael Scherer).

3.2.2 Implementation Details and Package Design

RnBeads and its companion data packages currently comprise a base of approximately
32,000 lines of R code, including more than 200 exported functions, classes and meth-
ods. To structure all functionality in a flexible and easily understandable way, RnBeads
utilizes elements of object-oriented programming available in R. Specifically, all DNA
methylation data is organized in an S4 class hierarchy. Each analysis module is imple-
mented as an independent unit operating on an RnBSet object. Module results are writ-
ten to hypertext reports that employ XHTML and JavaScript to enable self-contained
interactivity. The RnBeads reports include figures, which are collections of related
plots spanning relevant parts of the parameter space. This setup enables users to dy-
namically explore the parameter space of each figure without the need to rerun the
analysis. Dedicated R packages such as ggplot2 [Wickham 2009] are used to generate
publication-grade plots, which are incorporated in the reports as bitmaps for quick vi-
sualization and as vector graphics for high-resolution printing and further processing.
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All exported functions are documented and examples are provided. Detailed tutorials
and executable examples can be found on the package website8.

3.2.3 Scalability and Performance

RnBeads was designed to scale with large sample sizes. Parallel computation is imple-
mented using the foreach and doParallel packages. Moreover, large R objects can
be maintained directly on hard disk using the ff package. Small-scale analyses can be
completed on a standard personal computer, whereas analyses of large datasets are rec-
ommended to be executed on a scientific computing cluster or on adequately powered
cloud computing infrastructure. RnBeads implements convenience functionality to di-
rectly distribute analysis tasks to nodes of a scientific computing cluster. For users who
prefer aweb-basedworkfloworwho lack access to a suitable infrastructure, aweb server
supporting analyses with up to 24 samples is available.
RnBeads has been tested successfully on Infinium data sets comprising thousands of

samples and on RRBS andWGBS data sets with hundreds of samples. Table 3.1 lists run-
time measurements of RnBeads for several large datasets. Although this benchmarking
has been performedwith an earlier version of RnBeads (version 0.99.15) and correspond-
ing analyses complete much faster using a current version of the package (due to code
optimization and maintenance that has been performed in the meantime) the numbers
provide a good indication on how the runtime depends on analysis parameters such
as the number of CpGs analyzed or the number of sample annotations provided. Not
unexpectedly, increasing the number of categorical columns in the sample annotation
table used for differential and exploratory analysis increases the number of compar-
isons and the number function calls and hence leads to an overall increase in runtime.
Notably, this increase is more drastic than the increase incurred by higher numbers of
CpGs. Time-critical steps that are not essential to every RnBeads analysis (e.g. plot-
ting variability distributions or composite plots) can be disabled using package options
resulting in significantly reduced running times. For instance, disabling site-specific
exploratory and differential analyses and using a current version of RnBeads (version
1.5.0) a dataset of 478 WGBS profiles (cf. Chapter 4.4) could be processed in less than
three days on the same computing cluster.

3.2.4 Methylome Resource

A methylome resource was established by applying RnBeads to some of the largest
public datasets that are currently available for WGBS, for RRBS and for the 450K assay.
This resource provides a reference for large-scale DNAmethylation analyses that can be
used in various ways. For example, researchers can browse through the reports online,
explore biological hypotheses, and investigate relevant aspects of the data visually or
through custom data analysis with R or other software tools. Furthermore, researchers
can download the data and configuration files of the Methylome Resource, add their
own DNAmethylation data and then run RnBeads in order to analyze their data in the
context of high-qualitymethylome data sets that span a broad set of tissue types. For the
450K assay, we downloaded raw intensity files for 4,034 primary tumor and normal con-
trol sampleswhich have been collected by the The Cancer GenomeAtlas (TCGA) consor-
tium [Weisenberger 2014]. Additionally, we obtained RRBS DNA methylation profiles
for 216 samples with coverage of 2,295,083 CpGs from the ENCODE project [ENCODE
8 http://rnbeads.mpi-inf.mpg.de
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Table 3.1: Performance benchmark for large DNA methylation analyses with RnBeads
Data typea No. of No. of No. of No. of Runtime Runtime

samplesb CpGsc annotationsd comparisonse (node)f (cluster)g

450k 100 482,421 2 2 7h 5m 2h 24m
450k 500 482,421 6 6 1d 8h 14m 12h 2m
450k 1000 482,421 10 10 3d 2h 49m 1d 6h 23m
450k 4034h 482,421 4 18 25d 11h 3m 8d 23h 22m
RRBS 10 1,742,404 2 2 7h 47m 2h 11m
RRBS 50 2,162,686 6 6 1d 1h 52m 6h 56m
RRBS 100 2,221,889 10 10 1d 23h 9m 12h 17m
RRBS 216h 2,295,083 7 11 2d 15h 26m 22h 46m
WGBS 5 28,133,531 2 2 10d 4h 16m 2d 11h 53m
WGBS 10 28,150,019 6 6 32d 13h 26m 8d 6h 13m
WGBS 20 28,153,044 10 10 55d 14h 42m 13d 21h 33m
WGBS 41h 28,158,385 4 6 31d 21h 22m 7d 19h 35m

Data as of May 2014. RnBeads version 0.99.15 was used.

a Data from the following sources were included in the analysis: TCGA (450k), ENCODE (RRBS), Ziller
et al. [2013] (WGBS)

b Subsets of the full datasets were generated by random sampling in order to assess the effect of sample
size on runtime

c Number of sites represented in at least one sample
d Adding more columns to the sample annotation table increases the complexity and runtime of an anal-
ysis

e Including more pairwise comparisons for differential analysis of sample groups in the analysis strongly
increases runtime but can be parallelized effectively

f Serial runtimemeasured on a computing cluster (16 nodes), summing up the runtime of all contributing
nodes

g Parallel runtime/time to completion on a computing cluster (16 nodes)
h Full dataset available from the RnBeads methylome resource website
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Project Consortium 2012], which comprises cell lines and primary samples of various
normal and cancerous tissue types [Varley et al. 2013]. The resource also encompasses a
dataset of 41 samples across a broad range of human cell types, sequenced usingWGBS
with total coverage of more than 28 million CpGs [Ziller et al. 2013]. Finally, 81 blood-
related cell types were characterized using RnBeads in the context of the BLUEPRINT
project and a detailed analysis of this dataset is provided in Section 4.2. All data was
processed according to a standardized RnBeads workflow that could be completed in a
few days on a scientific computing cluster (Table 3.1).
These types of resources are particularly valuable for researchers who have gener-

ated specialized DNA methylation datasets and want to assess data quality and/or bi-
ological relevance in context of a broad range of reference methylomes. The concept of
preconfigured and rerunnable analyses of reference epigenome data also provides the
means formaking data from large-scale epigenomemapping projectsmore accessible to
smaller-scale and mechanism-centered studies, thereby contributing to reproducibility,
data sharing and the broader relevance of large-scale epigenome mapping projects.

3.2.5 Availability

RnBeads is available under the GPLv3 open source license and is part of
Bioconductor [R. C. Gentleman et al. 2004]. The package vignette documents and tuto-
rial sessions provide a detailed introduction into RnBeads and its modules and describe
example analysis on basic as well as advanced levels. The RnBeads website9 contains
supplementary information, the package vignettes, tutorials, a web service for smaller-
scale RnBeads analysis, an FAQ section, example analysis reports as well as the methy-
lome resource of reports.

3.2.6 Use Case: Analysis of DNA Methylation During Adult Stem Cell Differentiation

To illustrate the practical use of RnBeads, we applied the software to datasets for which
the underlying biology is relatively well understood. The example described here fo-
cuses on an RRBS dataset assessing the DNA methylation dynamics of blood and skin
stem cell differentiation in mice [Bock et al. 2012]. This dataset comprises 13 blood and
6 skin cell populations at various stages of adult stem cell differentiation. DNA methy-
lation of approximately two million CpGs in each sample was measured in biological
replicates. The global distribution of DNA methylation is characteristically bimodal
(Figure 3.4a). Discrete peaks at 33 %, 50 % and 67 % DNA methylation disappear after
removing CpGs with low sequencing coverage in the preprocessing step. Exploratory
analysis confirms that the difference between blood and skin cell types dominates the
analysis (Figure 3.4b). DNA methylation levels are generally higher in blood cells than
in skin cells when computing regional averages over all annotated genes, particular in
genomic regions representing gene bodies (Figure 3.4c). Hierarchical clustering per-
fectly discriminates between blood and skin cell types (Figure 3.4d), confirming that
DNA methylation patterns tend to be associated more strongly with cell lineage than
with other properties such as cellular proliferation or differentiation state.
RnBeads also identifies DMRs that are statistically significant and exhibit pronounced

DNA methylation differences between the two lineages. This analysis has been per-
formed for single CpGs and also for sets of predefined genomic regions such as CpG
islands, genes, promoters and genome-wide tiling regions. Such DMR analyses, which
9 http://rnbeads.mpi-inf.mpg.de

http://rnbeads.mpi-inf.mpg.de
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are based on regions of interest, provide an effective way of increasing the statistical
power to detect differential DNAmethylation, and they also increases the interpretabil-
ity of identified DMRs [Bock 2012]. RnBeads’ priority-ranked list of DMRs between
blood and skin cell types contains many genes with established roles in blood and skin
tissues, such as members of the homeobox and keratin gene families. Scatterplots illus-
trate the overall frequency of DMRs for a region type of interest (Figure 3.4e shows data
for gene loci as regions of interest) and volcano plots provide a convenient way of visu-
alizing the relationship between effect size and significance of the DMRs (Figure 3.4f).
The HOXB3 gene is highlighted as an example of blood-specific DNA methylation and
Figure 3.4g illustrates how the rnb.plot.locus.profile(...) function of RnBeads
can be employed to produce locus-based views of methylation. It thus provides an ex-
ample of how RnBeads’ utility functions and RnBSet objects, which are produced by
the standard pipeline, can be used in custom R scripts for further data exploration.

3.2.7 Discussion

RnBeads provides an integrated framework for comprehensive DNA methylation anal-
ysis that is in accordance with the principle of reproducible research. Due to its modu-
larized design and versatile analysis options, the package offers extensibility and flex-
ibility for both first-time users and experienced researchers. The generated hypertext
reports provide a convenient way of obtaining a general overview of any DNAmethyla-
tion dataset on the basis of single CpGs or genomic regions of interest. Moreover, they
facilitate browsing, sharing and archiving individual analyses and thus make RnBeads
a suitable tool to be used by bioinformatics core facilities. Notable applications of the
software include scenarios in which large datasets are common, such as the analysis of

Figure 3.4 : (On the next page) Analysis of DNA methylation during adult stem cell dif-
ferentiation. RnBeads was used to reanalyze RRBS data comprising 19 cell
types of the blood and skin lineages [Bock et al. 2012]. All plots have been
generated with RnBeads, but have been reformatted. (a) Global distribution
of DNA methylation levels among retained and removed CpGs after the pre-
processing step. (b) Relative similarity and differences of DNA methylation
profiles between cell types. Two maximally informative dimensions were cal-
culated using MDS based on the matrix of average methylation levels in 5-kb
tiling regions. (c) Composite plot of DNA methylation levels in blood and
skin cell types averaged across all genes. Each genewas covered by six equally
sized bins and by two flanking regions of the same size. Smoothing was done
using cubic splines. (d)Heatmap and hierarchical clustering of DNAmethyla-
tion levels among lineage marker genes that are specifically expressed in the
blood lineage. Clustering employed average linkage and Manhattan distance.
(e) Scatterplot of groupwise mean DNAmethylation levels across genes. The
1,000 highest-ranking differentially methylated genes are highlighted in red.
Point density is indicated by blue shading. (f) Volcano plot illustrating effect
size and statistical significance across genes. Coloring as in (e). (g) DNA
methylation profile of the HOXB3 gene locus on chromosome 11 (triangle).
Heatmaps showDNAmethylation levels of single CpGs according to the color
scheme in (d). Smoothing of DNA methylation levels (bottom) was done us-
ing cubic splines.
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EWAS and epigenetic biomarker discovery in cancer cohorts. Finally, RnBeads is well-
accepted by the scientific community: at the time of writing this thesis, the package is
downloaded 500 to 600 times by approximately 200 to 300 unique users every month.
According to Google Scholar, the corresponding article [Assenov et al. 2014] has been
cited 73 times since its publication (status: November 2016).

3.3 Global Analysis of Epigenomic Marks in Repetitive Elements

Repetitive elements are an integral part of the human genome [Lander et al. 2001]. In
the past, they have been referred to as “junk DNA”. However, recent evidence suggests
that these elements play a vital role in structuring the genome and contribute to shaping
genome architecture in the course of evolution. They are not only subject to epigenetic
regulation, but are also themselves functionally involved in the epigenetic regulation of
gene expression— a discovery that was acknowledged in 1983 when the Nobel Prize in
Physiology or Medicine was awarded to Barbara McClintock for her seminal work on
transposons and their role in phenotype regulation in maize plants [McClintock 1950].
In order to decipher the genome-wide regulatory patterns in repetitive elements we

have devised computational methods for quantifying and analyzing epigenetic marks
corresponding to the sequences of repeat subfamilies. These methods have been imple-
mented in epiRepeatR, one of the first software packages for this type of analysis.

3.3.1 Repetitive Elements and Epigenetic Regulation

Repetitive elements in the human genome can be broadly grouped into transposons,
pseudogenes and simple repeats [Jurka et al. 2011] (Figure 3.5). Transposons or Trans-
posable Elements (TEs) are estimated to constitute approximately 50 % of the human
genome [Lander et al. 2001; Mandal and Kazazian 2008]. A more recent study estimates
that up to 69 % of our DNA could originate from repeats [Koning et al. 2011]. A large
fraction of today’s knowledge on TEs has been derived from plant studies [Fedoroff
2012]. However, this thesis focuses on repetitive elements in mammalian genomes. TEs
possess the ability of changing their positions in the genome. When these insertions
occur in the germline, TEs gradually amass copies of themselves during the course of
evolution and have therefore have been described as “selfish DNA”. The entirety of TEs
in the genome has been referred to as the “mobilome” [Cowley and Oakey 2013; Burns
and Boeke 2012]. Due to mutations and mechanisms of epigenetic silencing most of
these elements have become degenerate and inactive in human. However, certain types
of transposons are still mobile.
TEs can be classified by their structure andmode of transposition [Cowley and Oakey

2013; Z. Wang and Kunze 2015; Goodier and Kazazian 2008]. They are typically catego-
rized into families and subfamilies based on their sequence [Jurka et al. 2005; Jurka et al.
2011]. DNA transposons change their position in the genome by a cut-and-paste mecha-
nism and make up approximately three percent of human DNA. Their sequence length
is typically in the range of one to several kilobases. There is currently no type of DNA
transposon known to be active in the human genome. In contrast, retrotransposons are
believed to be of retroviral origin and employ a copy-and-pastemechanism to replicate via
an RNA intermediate and to reinsert DNA in a different locus. Thus, during the course
of evolution they accumulated a plethora of copies in the genome. 42 % to 45 % of hu-
manDNA is estimated to be of this origin [Lander et al. 2001; Mandal andKazazian 2008;
Burns and Boeke 2012] (Figure 3.5). They can be further classified into Long Terminal
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HERV-K SVA-A to SVA-FAluYL1, L1HSActive subfamilies

# specfic insertions 73 ~2,000 ~7,000 ~1,000
Frequency of
inserstion per birth

1/200 to
1/20

1/20 1/900

1,558
13.29 %

SINE

2.76
0.15 %

SVA

868
20.42 %

LINEERV

443
8.29 %

LTR Non-LTR

1,090
10.6 %

Alu

516
16.89 %

L1

8
0.31 %

ERV-K

315
3.22 %

L2

294
2.84 %

DNA transposon

Transposable
element Pseudogene Tandem (“simple“)

repeat

Centromeric
satellite

Micro-/
Minisatellite

Telomeric
repeat

N/A
42-45 %

Retrotransposon

N/A
>50 %

Repetitive
element

Figure 3.5: Hierarchy of repetitive elements in the human genome. Grey boxes specify the
abundance of repeat categories in terms of number of copies (in thousands)
and percent of the human genome covered. Dashed branches are not referred
to in the main text and are truncated. The table at the bottom shows active
transposon subfamilies along with their numbers of insertions specific to the
human genome and frequency of germline insertions. The numberswere com-
piled from [Mandal and Kazazian 2008; Lander et al. 2001; Burns and Boeke
2012; Beck et al. 2011; Mills et al. 2007; Jurka et al. 2011].
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Repeat (LTR) transposons and non-LTR transposons. The basis for this classification
is the presence or absence of stretches of characteristic, repetitive DNA of 300 to 1,200
basepairs at the terminal ends of their sequences [Cowley and Oakey 2013]. The group
of LTR transposons consists of Endogenous Retroviruses (ERVs). These elements orig-
inate from ancient viral germline infections. Their sequences are typically seven to nine
kilobases in length and they contain gene loci typical for viruses, such as Gag, Pol and
Env. LTR transposons can occur in full length or as fragments (“solo” LTRs) and LTR-
derived sequences account for about 8.3 % of the human genome. Recent transposition
events have only been described for human ERV (HERV) subfamilies, in particular the
HERV-K subfamily, while other LTR transposons are inactive in human. Notably, it has
been reported that particularly those elements become active in the germline that exhibit
high copy numbers throughout the genome [Thompson et al. 2016]. Long Interspersed
Nuclear Elements (LINEs) are a group of non-LTR transposons. Their sequence (6 kb)
contains two Open Reading Frames (ORFs) coding for the machinery required for their
transposition and they are therefore considered autonomous elements. 868,000 LINE
copies make up approximately 20.4 % of the human genome. While several LINE sub-
families exist, only members of the L1 subfamily are known to be active in human and
germline insertions are found in 0.5 to 5%of births [Beck et al. 2011]. With almost 1.6mil-
lion copies, Short Interspersed Nuclear Elements (SINEs) are the most numerous class
of repeats in the human genome, covering approximately 13.3 % of it. They are also the
most active: there is approximately one germline insertion of an Alu element in every
20 births. Alus, the most prominent members of the SINE class, are short in sequence
(~300 bp) anddo not encode any proteins. For retrotransposition they use themachinery
supplied by L1 elements and are therefore termed non-autonomous. LINEs and SINEs
probably integrated into our ancestor’s genome about 150 to 80million years ago [Burns
and Boeke 2012]. Furthermore, sequences of SVA elements constitute another class of
non-LTR transposons. They are 700 bp to 4 kb in length and their acronym derives from
the fact that these elements are composed of stretches of DNA originating from SINEs,
a variable number of tandem repeats and Alus. SVA elements are non-autonomous and
utilize the L1 transposition machinery. Only a few thousand copies are present in the
human genome. Nonetheless, there is about one insertion in every 900 births [Beck et al.
2011].
The group of Pseudogenes is characterized by sequence similarity to other genes in

the genome. However, pseudogenes are often non-functional due to accumulation of
mutations during the course of evolution. They can arise from gene duplication events.
Complementary DNA (cDNA) copied frommRNA (and in some cases ncRNA) can also
be incorporated into the L1 machinery and leads to the formation of processed pseudo-
genes [Beck et al. 2011; Z. Wang and Kunze 2015].
In contrast to transposons, simple repeats are short tandem repeats and typically do

not possess the ability of translocation. Many such satellite repeats are located in the
pericentromeric, heterochromatic regions of the genomewhere they exist in tens of thou-
sands of copies and play a role in centromere assembly [Z. D. Smith andMeissner 2013].
Similarly, telomeric repeats can be found at the chromosomal ends and their length,
which is maintained by telomerase enzymes, is an indicator for cellular age. Further-
more, short tandemly repeated stretches of one to six or 15 or more basepairs are can be
found throughout the genome. They are referred to as microsatellites and minisatel-
lites, respectively [Jurka et al. 2011].
In human, only 35 to 40 subfamilies of L1, Alu, SVA and potentially HERV elements

are actively transposing [Mills et al. 2007]. Elements that only have been introduced into
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our ancestors’ genomes only recently and that are specific to the human species are par-
ticularly active [Burns and Boeke 2012]. It has been estimated that there are about 2,000
L1 insertions, 7,000Alu insertions, 1,000 SVA insertions and 73 LTR insertions specific to
human [Burns and Boeke 2012; Beck et al. 2011] (Figure 3.5). Comparative genomics ap-
proaches have identified several thousand polymorphic transposition events in human
populations [Beck et al. 2011; Mills et al. 2007] and transposition has been associatedwith
multiple diseases, such as hemophilia and cancer [Lee et al. 2012; Beck et al. 2011; Hancks
and Kazazian 2012]. Somatic insertions under normal conditions have been reported in
ESCs and neural progenitor cells [Goodier and Kazazian 2008].
While transposons have been primarily considered parasitic elements in the past, it

is now assumed that they play a substantial role in driving genome evolution by exap-
tation [Bourque 2009; Fedoroff 2012; Xie et al. 2013]. Transposition can have structural
and gene-regulatory effects: large-scale genome rearrangements, duplications and dele-
tions can be the consequence of recombination events that can occur when homologous
sequences, such as TE loci are in close spatial proximity (non-allelic homologous recom-
bination) [Goodier and Kazazian 2008]. TE insertions can disrupt the ORFs of genes,
introduce novel exons and lead to alternative splicing [Cowley and Oakey 2013; Good-
ier and Kazazian 2008; Beck et al. 2011]. Many transposition events also result in target
site alterations, e.g. via deletion or insertion of short stretches of DNA [Goodier and
Kazazian 2008; Beck et al. 2011; Z. Wang and Kunze 2015], and the machinery responsi-
ble for transposition of L1 and SVA elements can transduce genomic sequences flanking
the locus of origin [Beck et al. 2011]. Furthermore, regulatory elements such as promot-
ers and polyadenylation signals can be introduced into novel genomic contexts. Addi-
tionally, TEs frequently associate with DNase hypersensitive sites and TFBSs [Jacques et
al. 2013]. Nearly a third of all binding sites for the ESR1, p53, OCT4, SOX2 andCTCF tran-
scription factors are embedded in TE sequences [Bourque et al. 2008; T. Wang et al. 2007].
Particularly LTR elements contain regulatory elements such as TFBSs and can function
as alternative promoters [Thompson et al. 2016]. It has been hypothesized that these
transposons could be involved in the formation of tissue-specific enhancers. Finally, it
has also been proposed that transcribed RNA pertaining to pseudogenes and other ele-
ments can regulate gene expression by competitive binding of miRNAs [Salmena et al.
2011].
Considering the potential consequences of transposition mentioned above, it is not

surprising that TEs are subject to tight epigenetic regulation. In general DNA methy-
lation and histone modifications indicative of closed chromatin have been associated
with the silencing of these elements. In mammals, the majority of repetitive DNA is
highly methylated and transposons are subject to de novo DNAmethylation by DNMT3
enzymes in germline and in the early embryo [Yoder et al. 1997; Z. D. Smith and Meiss-
ner 2013]. If DNAmethylation is depleted in ESCs derived from Dnmt1 knockout mice,
Intracisternal A-particle (IAP) transposons become transcriptionally active [Burns and
Boeke 2012], indicating epigenetic silencing. Particularly, satellite repeats in the mam-
malian pericentric heterochromatin exhibit high levels of DNAmethylation and methy-
lation ofH3K9 [Z. D. Smith andMeissner 2013] and thesemodifications presumably pre-
vent expression of these elements. RNAi represents another important mechanism for
keeping transposition at bay. First discovered in Drosophila, but also observed in mam-
mals, PIWI-Interacting RNAs (piRNAs) can direct de novo DNA methylation to TEs in
order to silence them [Burns and Boeke 2012]. Still, in sperm cells and, to a lesser extent,
also in ESCs blocks of CpG-dense DNA located in ERV, LINE, SINE and SVA elements
exhibit low methylation levels [Molaro et al. 2011]. Particularly evolutionarily young
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elements and full-length elements with high sequence similarity to the consensus se-
quence of the respective subfamily tend to have lower methylation levels, potentially
indicating silencing escapees. Patterns of dynamic chromatin organization have also
been found in ESCs, where LTR transposons are subject to trimethylation of H3 histone
proteins, particularly H3K9me3 [Thompson et al. 2016]. These elements exhibit tissue
specific expression and become active during embryonic pre-implantation and in the
placenta. Similarly to their genic counterparts, epigenetic patterns of activation, such
as H3K4me3 and chromatin accessibility, can be found in these elements. In addition,
they are frequently associated with the transcription of lncRNAs. Epigenomic patterns
can become deregulated in disease and hypomethylation in transposons has been asso-
ciated with cancer onset and progression [Cowley and Oakey 2013; Sharma et al. 2010].
Here, derepression of transposition may contribute to altered genotypes in cancer cells
which could result in tumor growth and malignancy.
Fedoroff [2012] argues that epigenetic silencing mechanisms might have contributed

significantly to the expansion of TEs in eukaryotic genomes. Since certain repeti-
tive elements have been shown to escape the global demethylation that occurs during
epigenomic reprogramming in germline development, it has also been speculated that
these elements can act as messenger vessels for trans-generational epigenetic inheri-
tance [Cowley and Oakey 2013].

3.3.2 Computational Methods for the Analysis of Repeat Epigenomes

Despite the regulatory importance of epigenomic patterns in repeats only few compu-
tational methods exist for their analysis. In this work, we present one of the first bioin-
formatic approaches for quantifying DNAmethylation levels and histone modifications
in repetitive elements [Bock et al. 2010]. Since our initial implementation, a number of
alternative approaches employing similar strategies to characterize repeat epigenomes
have emerged.
Rosenfeld et al. [2009] mapped ChIP-seq reads to consensus sequences of centromeric

and telomeric repeats. Histone modifications associated with heterochromatin, such
as H3K20me3 and H3K9me3 were found to be prevalent in centromeric repeats and
are presumably preventing gene expression in these regions. It is also speculated that
certain histone modifications in centromeric regions could be associated with chromo-
somal replication. In contrast, the activating marks H2BK5me1 and H3K4me3 were
associated with telomeric repeats and were consistent with findings of active transcrip-
tion in telomeres. Day et al. [2010] also aggregated repetitive elements into consensus
sequences. They quantified enrichment of histone modifications in repetitive elements
by aligning ChIP-seq reads to these references. By also including flanking sequences
of repeat instances, the number of aligned sequencing reads could be significantly in-
creased, because reads mapping to the boundary regions could be mapped more accu-
rately. They further employed a phylogenetic approach to combine repeat types into
hierarchically organized groups. Using this approach more reads could be uniquely as-
signed to individual groups and histone mark enrichment could be quantified on the
aggregate level rather than on the level of individual repeat types. They applied their
approach to published histonemodification data frommouse ESCs and found an enrich-
ment of H3K9me3 and H4K20me3 marks in the ERV-K and ERV1 transposon subfam-
ilies while ERV-L repeats enrich for H3K27me3. These repeat groups contain actively
transposing elements inmouse and the authors explain these differences in histonemod-
ification patterns by alternate silencing mechanisms associated with these marks. Find-
ings from their repeat-focused reanalysis of ChIP-seq in human CD4+ T cells include an
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enrichment of H3K4me1 in Alu repeats as well as H4K20me1 and H2BK5me1 in SVA
elements. The co-localization of these elements with CG-rich regions of the genome
could explain these patterns which are generally associated with active chromatin. Fur-
thermore, consistent with Rosenfeld et al. [2009], the repressive marks H3K20me3 and
H3K9me3 were found enriched in different satellite repeats. Xie et al. [2013] employed
a similar, consensus-based strategy: a reference of the repetitive portion of the genome
along with sequences flanking the instances of repeats was constructed. Reads which
mapped to multiple positions in the genomewere assigned to subfamilies of TEs if their
bestmapped positions only correspond tomembers of one subfamily. The authors quan-
tified DNA methylation by MeDIP-seq and MRE-seq in 11 different human cell types.
They identified tissue-specific hypomethylation in LTR elements and more specifically
in ERV transposons. These elements co-localizedwith geneswith cell-type specific func-
tions and tissue-specific enhancer signatures such as H3K4me1 and p300 occupancy.
Other approaches focus on the alignment problem itself and employ Gibbs sampling [J.
Wang et al. 2010] or an iterative reweighting algorithm [D. Chung et al. 2011] in order to
resolve mapping ambiguities induced by repetitive DNA.
However, to the best of our knowledge no integrated software framework exists that

can readily be applied to large epigenome datasets originating frombisulfite sequencing
as well as enrichment-based methods, such as ChIP-seq. We therefore decided to build
on our initial analysis efforts and developed the epiRepeatR software package, which is
described in the following sections.

3.3.3 A Pipeline for the Analysis of Epigenomic Marks in Repetitive Element Subfamilies

In order to obtain a global perspective of epigenetic patterns in the repetitive portion
of the genome, we devised a computational pipeline that aggregates measurements
obtained by bisulfite-sequencing as well as enrichment-based sequencing assays (e.g.
ChIP-seq, MeDIP-seq, etc.) in repeat subfamilies (Figure 3.6). It provides methods
for inspecting epigenetic variation across subfamilies and for comparing theses pat-
terns between different groups of samples. The pipeline has been implemented in the
epiRepeatR software package which implements an easy-to-use workflow for analyzing
epigenetic patterns in repetitive elements across samples.
epiRepeatR employs one of two alternative approaches to quantify the signal for each

epigenomic mark in each subfamily (details are provided below). Subsequently, the
pipeline employs steps for quality control based on the coverage of repetitive elements.
Heatmap plots visualizing DNAmethylation levels and enrichment scores facilitate the
exploration of epigenetic dynamics across repeat subfamilies and samples. Provided
with corresponding annotation, differences in the epigenetic patterns between groups
of samples in different repeat subfamilies can be visually inspected. Furthermore, unsu-
pervised learning techniques, such as dimension reduction and sample clustering, pro-
vide themeans of exploring inter-sample relationships based on the epigenomic profiles
of repeats.

Quantification of Epigenomic Marks in Repeat Subfamilies

We implemented two alternative approaches for quantifying epigenomicmarks in repet-
itive elements:
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Figure 3.6: A pipeline for the analysis of epigenomic marks in subfamilies of repetitive
elements. Each subfamily represents multiple repeat instances in the genome.
Two alternative approaches are employed to quantify epigenetic marks in each
subfamily. The schema illustrates hypothetical, constructed examples of three
repeat subfamilies (left to right) assayed with bisulfite-sequencing and ChIP-
seq for two different epigenetic marks. Quantitative measurements for methy-
lation levels and ChIP-seq enrichment of the two marks are color coded and
shown at the bottom of the figure. Top and bottom rows for each mark denote
two epigenomes (Samples A and B).
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(i) Mapping to a reference of consensus sequences: Sequencing reads are aligned to a
reference of consensus sequences for subfamilies of repetitive elements. The epi-
genetic signal is quantified based on a single consensus sequence for each sub-
family. Using bisulfite sequencing reads, methylation levels for each CpG in the
reference are quantified and averaged for each subfamily. For enrichment-based
data, log-odds scores are computed from the relative number of reads aligning to
the consensus sequence.

(ii) Aggregation across genome-wide instances of repetitive elements: The epigenetic signal
for each repeat subfamily is quantified from genome-wide alignment data. Us-
ing an annotation of repeat instances across a given reference genome, signals
in individual instances are aggregated in order to obtain a single score for each
subfamily. In the case of DNA methylation, the input to the pipeline consists of
genome-wide methylation calls and the methylation levels for each subfamily is
quantified by averaging across all CpGs in all repeat instances of that subfamily.
For enrichment-based data, read counts for each subfamily are obtained by sum-
ming up the numbers of reads aligned to individual instances and a combined
log-odds score is computed.

The approaches employ two opposing model assumptions. In approach (i) we assume
that repeat instances are derived from ancestral sequences. For accurate signal quan-
tification, individual repeat instances should share high sequence conservation within
each subfamily. In contrast, approach (ii) requires sequences that have diverged from
the consensus and allows for sequence variability across instances. If the instances of a
subfamily exhibit high sequence similarity, it is likely that reads cannot be uniquely as-
signed to a specific instance, resulting in potential coverage biases between subfamilies.
The consensus-based approach (i) is highly dependent on a reference of consensus

sequences that adequately represent each repeat subfamily. In epiRepeatR, sequencing
reads are aligned to a reference obtained from the Repbase Update database [Jurka et al.
2005]. The BSMAP [Xi andW. Li 2009] and BWA [H. Li andDurbin 2009]mappers can be
used for the alignment of bisulfite-sequencing and enrichment-sequencing data respec-
tively. Other mapping software can be integrated into the pipeline with just a few lines
of code. In contrast, the aggregation-based approach (ii) requires a reference genome
along with a detailed annotation of repeat instances. epiRepeatR uses the annotation
provided in the RepeatMasker10 tracks of the UCSC database [Kent et al. 2002]. Meta-
data for repeat subfamilies, such as the repeat family and species specificity, is obtained
from the Repbase Update database by matching of repeat names.
In both approaches, methylation levels and log-odds for enrichment are computed

for each repeat subfamily. For bisulfite-sequencing assays, CpG methylation levels are
averaged to obtain aggregate levels for each subfamily. Computing the log-odds for
enrichment-based sequencing methods requires reads originating from both, the en-
richment experiment (ChIP, MeDIP, etc.) and a genome-wide library (Input/WCE). A
log-odds score is used to quantify the relative number of reads aligning to a given sub-
family relative to the relative number of input reads. Taking the logarithm results in
numerical stability compared to the ratio. We define the log-odds score as

logOdds (r) = log2
sr/S
br/B

≈ log2
srB + ϵ

brS + ϵ

Where sr and br denote the number of signal and background reads aligning to repeat
subfamily r. The total number of aligned signal and background reads is denoted by
10 http://www.repeatmasker.org

http://www.repeatmasker.org
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S and B respectively. ϵ is a small constant to avoid division by 0. The input signal can
either be specific to each sample or a shared background is used to normalize the signal
for all samples. In an optional step, epiRepeatR aggregates reads from multiple input
read files into a shared background.

Implementation Details

Provided with a tabular sample annotation file that contains file names, file types and
sample metadata, analyses can be started using a single command in R or a shell script.
For consensus-based quantification, the input to epiRepeatR consists of BAMfiles of pre-
processed sequencing reads to bemapped and the annotation table. For the aggregation-
based approach, sequencing reads which have been aligned to a corresponding refer-
ence genome and CpGmethylation calls are used for computing enrichment scores and
methylation levels respectively. Due to its modular software design, individual steps
in the downstream analysis can be executed based on the binary object output of the
preceding steps, thus providing flexibility to rerun parts of the pipeline in case of in-
complete analyses or parameter changes. epiRepeatR can run in a multi-process envi-
ronment or can be distributed across multiple nodes of a computing cluster, thereby
enabling parallel processing of large datasets.

Availability

epiRepeatR is currently in an advanced development state and we are evaluating the
software in the context of the DEEP and BLUEPRINT projects. The code is available
from GitHub11 under the GPL-3 license.

3.3.4 Applications

A prototype of the pipeline was previously developed in the Python and R pro-
gramming languages and only supported consensus-based quantification (approach (i)
above). It constituted one of the first approaches for the characterization of epigenomic
patterns in repeats and was applied in a number of studies. In [Bock et al. 2010], we
compared different sequencing-based methods for the genome-wide quantification of
DNAmethylation. Overall, DNAmethylation profiles were similar across different tech-
nologies and we observed that CpG-rich repeat sequences that are highly abundant in
the human genome were highly methylated compared to varying methylation levels in
CpG poor and sparse elements.
Tobi et al. [2014] analyzed the effect of prenatal famine exposure on the DNA methy-

lome in whole blood using RRBS and also used our prototype pipeline in oder to char-
acterize DNA methylation in repetitive elements. Differentially methylated regions
between exposed and unexposed individuals globally co-occurred with repetitive ele-
ments as quantified by an EpiGRAPH [Bock et al. 2009] analysis. However, we observed
no interpretable famine-associated changes of DNAmethylation on the level of individ-
ual repeat subfamilies.
Deplus et al. [2014] analyzed DNA methylation in the context of phosphorylation of

de novo DNA methyltransferases. The article shows that the CK2 enzyme phosphory-
lates Dnmt3a and that inhibited phosphorylation results in reduced methylation activ-
ity in a mouse model. Moreover, genome-wide DNA methylation was quantified by
11 https://github.com/MPIIComputationalEpigenetics/epiRepeatR

https://github.com/MPIIComputationalEpigenetics/epiRepeatR
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MeDIP-seq in human U2OS osteosarcoma cells with (i) normal expression of CK2 and
with (ii) RNAi-reduced expression of CK2. While genome-wide methylation patterns
were highly correlated between the two conditions in the non-repetitive portion of the
genome, significant differences were observed in repetitive element using our repeat
pipeline. LINE, LTR and satellite elements were hypomethylated in CK2-depleted cells
compared to the control and SINEs, most notablyAlus, exhibited increasedmethylation.
Hypermethylation in Alus was confirmed experimentally by locus-specific bisulfite se-
quencing. Further immunofluorescence experiments showed that Dnmt3awas predom-
inantly localized in the heterochromatic portion of the genome while this localization
shifted when phosphorylation was inhibited. Taken together, the results indicate that
CK2-mediated phosphorylation of Dnmt3a prevents DNA methylation in euchromatic
regions of the genome and associated SINEs while heterochromatic regions are main-
tained in a methylated state.

3.3.5 Use Case: Epigenomic Signatures of Repetitive Elements in Human Blood Cells

Here, we provide a global perspective on the epigenomics of repetitive elements by ap-
plying epiRepeatR to the epigenomes of various human blood cell types. Our dataset
comprises 11 samples derived from biological replicates of monocytes, macrophages
and three CD4+ T cell populations involved in immune memory formation [Wallner et
al. 2016; Durek et al. 2016]. For each sample, epigenome profiles were generated by the
DEEP consortium and include DNA methylomes assayed by WGBS and histone modi-
fication maps for six marks, profiled by ChIP-seq.
epiRepeatR was applied using both implemented quantification approaches. We first

present the results of the aggregation-based approach and compare it to the consensus-
based approach later in the section. ChIP-seq reads and genome-wide DNA methyla-
tion calls were obtained for three replicates of monocytes (Mono) and two replicates
of macrophages (Mf), Central Memory T cells (TCMs), Effector Memory T cells (TEMs)
andNaive T cells (TNs) andwere used as input to epiRepeatR. The hg19 human genome
assembly was used throughout the analysis. For each repeat subfamily, the mean DNA
methylation level across all CpGs that were covered by at least five sequencing reads
was computed. Enrichment over a joint background signal of ChIP-seq input libraries12
was quantified. The analyses shown in this section are based on a filtered set of 331 re-
peat subfamilies that contained at least 50 CpGs across all instances in the genome, that
contained a CpG covered by at least 50 sequencing reads in bisulfite experiments and
that were covered by at least 200 reads in all ChIP-seq experiments and the joint input.
Cell types could be distinguished based on their epigenomic profiles in repetitive ele-

ments in unsupervised analyses (Figure 3.7). DNAmethylation patterns were character-
istic of blood cell types and in particular of different stages of T cell memory formation
(Figure 3.7a). Interestingly, asmonocytes andmacrophages constitute highly related cell
types, genetic differences due to donor origin dominate cell-type-specific differences in
the biological replicates. Monocytes and macrophages could be distinguished from T
cells based on histone modifications, such as H3K27ac (Figure 3.7b), but characteristic
patterns within the T cell group were less pronounced. All samples were obtained in
the context of DEEP and have been processed using standardized pipelines. However,
it is important to note that the two groups of cells (monocytes and macrophages vs.
T cells) were obtained from different sample providers and corresponding sequencing
12 The input library of one sample (51_Hf03_BlTN_Ct) was excluded since it failed sequencing quality
checks.
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Figure 3.7: Principal component analysis based on the epigenetic signatures of repetitive
elements in human blood cells. PCA based on (a) DNA methylation levels
and (b)H3K27ac log-odds scores in 331 repeat subfamilies are shown for all 11
samples. Point colors indicate cell types and shapes denote donors. Numbers
in parentheses indicate the percentage of variance explained by the first two
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experiments have been conducted at different institutes. Furthermore, monocytes and
macrophageswere obtained from the blood ofmale donorswhile T cell profiles were de-
rived from pools of female donors. We therefore cannot exclude the possibility that the
observed differences between the two groups could be the result of technical variability
and confounding rather than true biological variability.
epiRepeatR enables exploratory analysis by providing hierarchical heatmap views of

the epigenetic patterns in repeat families and subfamilies across all groups of samples in
a dataset (Figure 3.8). Repeat subfamilies can be grouped hierarchically by annotating
the rows of the heatmap with dendrograms. These dendrograms can be constructed
based on hierarchical clustering or based on a preannotated subfamilies hierarchy of
repetitive elements. In human blood cells we observe consistently high DNA methyla-
tion levels across all repeat subfamilies but also a certain degree of variability between
different repeats and cell types. For instance, Alu elements, which are highly abundant
in the genome, appear particularly highly methylated compared to other repeats. Fur-
thermore, the memory states of T cells exhibit lower DNAmethylation levels compared
to the naive state across subfamilies. Consistent with previous studies, the repressive
H3K9me3 was particularly enriched in subfamilies of satellite repeats and also present
in ERVs. We also observe high levels of H3K9me3 in the primate-specific L1PA subfam-
ilies of LINE elements, which have been shown to escape repression by DNA methyla-
tion during the preimplantation stage of human embryos [Z. D. Smith et al. 2014]. Alu
elements show a similar pattern: AluY elements which are evolutionarily young and ac-
tively transposing in the human genome contain higher levels of H3K9me3 than other
Alus. In contrast, DNA transposons are relatively depleted in H3K9me3. Furthermore,
the repressivemarkH3K27me3 is found in themajority of ERV elements. Histonemarks
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characteristic of enhancers (H3K4me1 and H3K27ac) are generally absent in LINE ele-
ments, but frequently occur in Alu repeats — a finding which is also in accordance with
the results of Day et al. [2010]. H3K4me3, which is typically found in active promoter re-
gions, exhibits a similar, but less pronounced pattern. H3K36me3 is strongly depleted
in satellite repeats and to a lesser extent in LINE and ERV elements. In contrast, Alu
elements and certain DNA transposons are generally enriched for this histone mark,
which is frequently located in gene bodies and has been associated with transcriptional
elongation.
We further characterized the association of epigenomic marks with attributes of re-

peat subfamilies (Table 3.2). These attributes include measures of genomic abundance,
species-specificity and sequence features. DNA methylation levels vary across the tax-
onomy levels with which individual repeat subfamilies are annotated and which pro-
vide an indicator of how specific a repeat subfamily is to the human species (Figure 3.9a).
Generally, DNAmethylation levels in repeat subfamilies tend to increase with increased
genomic abundance and CpG content of the repeats (Figure 3.9b, 3.9d and Table 3.2). In
contrast, the number of thymines in repeat instances exhibits the inverse behavior (Fig-
ure 3.9c).
In addition to the aggregation-based approach (approach (ii)), we also quantified re-

peat epigenomes using the consensus-based approach (approach (i)). Amedian of 6.2 %
of bisulfite reads aligned to the Repbase Update consensus sequences. ChIP-seq align-
ment rates range from amedian of 4.5% forH3K4me3 to 8.7% forH3K9me3. Compared
to the aggregation-based approach, the consensus-based approach resulted in a higher
dynamic range of DNAmethylation levels across repeat subfamilies (Figure 3.10a). Evo-
lutionarily young and highly abundant elements such as active L1, AluY and SVA ele-
ments generally were highly methylated while older, lowly abundant elements such as
DNA transposons, AluJ and inactive L1 were unmethylated (data not shown). ERVs
exhibited variable methylation patterns. In contrast, the repeat epigenomes quantified
by the two approaches were concordant when considering histone modifications such
as H3K9me3 (Figure 3.10b). In order to elucidate the apparent disagreement in DNA
methylation levels between the two approaches, we characterized the sequence com-
position of the RepeatMasker instances and the Repbase Update consensus sequences
(Figure 3.11). Repbase Update consensus sequences generally contain more cytosines
and CpG dinucleotides. In agreement with this observation, it is important to note that
the authors of Repbase Update employ special adjustments for the preservation of CpGs
in the assembly of consensus sequences [Bao et al. 2015] (and personal communication).

Figure 3.8 : (On the next page) Epigenetic signatures of repetitive elements in blood cells.
The average epigenetic signals for three replicates of monocytes and two repli-
cates of macrophages, TCMs, TEMs and TNs are shown (columns in each
block of the heatmap). Blocks in the heatmap denote different epigenomic
marks. Group mean DNA methylation levels and log-odds scores are de-
picted according to corresponding color scales. The 331 filtered repeat sub-
families are shown. Selected portions of the heatmap are shown in detail on
the right. Each subfamily (row) is annotated with genomic abundance (filled
circles), which is quantified as the mean relative number of sequencing reads
aligning to all instances. Subfamilies are named according to RepeatMasker
annotation. The dendrogram on the left corresponds to a preannotated hier-
archy of repetitive elements.
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Figure 3.9: Association of DNA methylation with features of repeat subfamilies. Mean
DNA methylation levels across all samples in the dataset are shown. (a) Box-
plot showing the distribution of DNAmethylation levels across annotated tax-
onomy levels. Numbers in parentheses indicate numbers of subfamilies anno-
tated with a given species level. (b), (c), (d) Scatterplots of DNA methylation
levels compared to the logarithm of the number of basepairs covered, median
relative number of thymines andmedian CpG observed/expected ratio across
all RepeatMasker instances of a given repeat subfamily. Lines depict linear
regression estimates. Corresponding correlation coefficients can be found in
Table 3.2.



62 3 PIPELINES FOR COMPREHENSIVE DNAMETHYLOME ANALYSIS

Table 3.2: Correlation of repeat subfamily features and epigenomic marks
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Association is quantified by Pearson correlation coefficients of the features and DNAmethylation levels or
ChIP-seq log-odds scores. Features for each subfamily include the logarithmof the number of instances and
the number of basepairs covered as well as median counts of nucleotides and dinucleotides normalized by
instance length. The CpG observed/expected ratio was quantified based on median instance length, base
and CpG dinucleotide counts. Instances were defined according to RepeatMasker annotation.

Moreover, the difference in DNAmethylation levels between the two approaches is cor-
related with differences in sequence composition: we observe larger methylation differ-
ences in repeat subfamilies which exhibit fewer cytosines and CpGs in RepeatMasker
compared to Repbase Update (Figure 3.11). These findings are consistent with the hy-
pothesis that the Repbase Update consensus sequences are representative of ancestral
sequences from which the RepeatMasker instances derive. During the course of evolu-
tion, repeat instances degenerate due to deamination and other mutations and thus are
depleted in cytosines and CpGs. Alignment of bisulfite reads does not discriminate be-
tween cytosines and thymines. Consequently, the methylation patterns of reads aligned
to the consensusmight not actually reflect themethylation state of specific instances, but
rather the degree to which they diverge from the consensus. This sequence bias is par-
ticularly pronounced for older repeats. Sequences of evolutionarily young elements ex-
hibit a higher similarity to the consensus and theirmethylation levels are thereforemore
consistent between the two approaches. This reasoning raises the question whether the
CpGs in the Repbase Update consensus sequences represent suitable reference loci for
bisulfite-based quantification of all instances of a given repeat subfamily.

3.3.6 Discussion

Sequencing technology and processing pipelines have improved significantly in recent
years, the high sequence similarity of instances of repetitive elements still pose a chal-
lenge to the processing of high-throughput sequencing data. Although overall read
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Figure 3.10: Comparison of epigenetic signals in aggregation and consensus-based ap-
proaches. Scatterplots show (a) DNA methylation levels and (b) log-odds
for H3K9me3 according to the consensus (Repbase Update) and aggregation-
based (RepeatMasker) approaches.

alignment rates are high, repeats can accumulate a large percentage of reads that can-
not be uniquely assigned to a single position in the genome. Processing pipelines typi-
cally employ one of two strategies to deal with thesemulti-mapped reads: (i) ambiguously
mapping reads are discarded from further processing, leading to potential coverage bi-
ases and discarding potentially useful sequence information or (ii) they are randomly
assigned to one of the possible genomic positions, leading to lower mapping qualities
and diluting the information content at the respective coordinates. The effects are par-
ticularly strong for short sequencing read strategies. Our pipeline addresses the issue
of multi-mapped reads by adopting a genome-wide view on repetitive elements: rather
than requiring accurate, unique alignments to individual repeat instances, our approach
aggregates instances of repeats into subfamilies and provides an increased robustness
when instances are highly similar. However, it should be noted that this type of analysis
does not focus on individual insertion loci of repetitive elements. It is therefore possible
that the identified epigenomic patterns of a particular repeat subfamily are only based
on a few instances in the genome. Additionally, between-instance variability is currently
not taken into account.
The application of our pipeline to a dataset of human blood cells results in observa-

tions that argue for epigenetic regulation of repetitive elements. Particularly Alu ele-
ments seem to co-localize with regulatory regions such as promoters and enhancers,
which are marked by distinct epigenetic patterns. It remains to be investigated whether
the distinct epigenetic marks are merely placed into these elements due to the co-
localization orwhether the elements themselves exert or are subject to epigenetic regula-
tion. Furthermore, evolutionarily young elements (e.g. AluY and L1PA) appear methy-
lated and marked by H3K9 methylation. These elements are particularly rich in CpG,
since they represent relatively novel additions to our genomes and therefore did not di-
verge from the consensus. Notably, in contrast to other CpG-rich regions in the genome,
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Figure 3.11: Deviations in sequence composition explain DNAmethylation differences be-
tween the aggregation and consensus-based approaches. Scatterplots com-
pare the relative difference in sequence composition between RepeatMasker
(RM) instances and the Repbase Update (RU) consensus against the differ-
ence in methylation levels between the consensus-based and aggregation-
based approaches. The difference in sequence composition is quantified
as the logarithm of the ratio of the median relative sequence content
across RepeatMasker instances and the relative sequence content of the
Repbase Update consensus. The sequence content is shown for the relative
number of (a) cytosines and (b) CpG dinucleotides.

DNAmethylation is high in these elements. Epigenetic downregulation potentially pro-
vides an important mechanism for keeping these elements at bay, protecting structural
genomic integrity.
Interestingly, DNA methylation patterns discriminate between different populations

of human T cells, with memory T cells exhibiting globally demethylated repeats com-
pared to naive T cells. These findings are further discussed in Section 4.3which provides
a characterization of genome-wide DNA methylation during T cell memory formation.
The apparent disagreement of the two outlined approaches for quantifying DNA

methylation levels raises the questionwhether the Repbase Update consensus sequences
provide a suitable reference for bisulfite-based analyses. CpGs in the consensus se-
quences could reflect ancestral or even artificial states rather than corresponding to ac-
tual CpGs in repeat instances. Therefore, the analysis of repetitive elements in [Bock
et al. 2010] and [Tobi et al. 2014] should be interpreted with caution. Furthermore, in our
use case, only a median of 6.2 % of bisulfite reads aligned to consensus sequences, al-
though repetitive elements have been postulated to cover more than half of the human
genome. It remains to be evaluated whether a more suitable reference of consensus
sequences for bisulfite sequencing can be derived. Subdividing repeat subfamilies or
including flanking sequences could provide more granularity [Day et al. 2010; Xie et al.
2013], but might also lead to a signal that is diluted across many reference sequences.
Other directions of future development include the analysis of expression data quanti-
fied by RNA-seq as well as enabling quantitative differential and comparative analysis
of repeat epigenomes between groups of samples.
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In summary, the described pipeline facilitates the characterization of epigenomic pat-
terns in repetitive elements. Future applications in the context of embryonic develop-
ment and diseases like cancer could shed light on the patterns that regulate the expres-
sion of repetitive DNA elements and could contribute to elucidating how repeats them-
selves represent regulatory elements.





4
Charting the Epigenomic Landscape of

Hematopoiesis

The work described in this chapter contributed to the BLUEPRINT [Adams
et al. 2012] and DEEP projects.
The first analytic part of the chapter consists of a descriptive analy-
sis of methylome data of differentiated hematopoietic cell types from the
BLUEPRINT project, employing RnBeads. Cells were obtained by multi-
ple collaboration partners in the project and sequencing library preparation
as well as primary data processing was performed by the group of Simon
Heath at the Centro Nacional de Análisis Genómico (Barcelona, Spain).
Second, epigenome maps for human T helper cells during the process
of immune memory formation have been generated in the context of
DEEP [Durek et al. 2016]. The study was led by Pawel Durek, Karl Nord-
ström, Gilles Gasparoni, Jörn Walter, Alf Hamann and Julia Polansky. I
contributed descriptive analyses and methods for the processing of DNA
methylation data.
Third, within the context of BLUEPRINT, we analyzed methylomes of
hematopoietic progenitor cells and a corresponding article has been pub-
lished recently [Farlik et al. 2016]. Data analysis was performed in collabo-
ration with Matthias Farlik, Florian Halbritter, Peter Ebert and Johanna
Klughammer. Bisulfite sequencing libraries were prepared by Matthias
Farlik. Elisa Laurenti, Thomas Lengauer, Mattia Frontini and Christoph
Bock supervised the project (cf. [Farlik et al. 2016] for a details on au-
thor contributions). I conducted analyses comprising data preprocessing,
the general characterization of the dataset and also derived and interpreted
statistical learning classifiers for cell type prediction. Furthermore, I had
a leading role in the planning of the analysis, method development, writ-
ing the manuscript and designing figures and supplementary material.
Corresponding text and figures in Section 4.4 has been adapted from the
manuscript.

Approximately one trillion (1012) blood cells are formed in the human bone marrow ev-
ery day in a process called hematopoiesis [Doulatov et al. 2012]. Blood cells and their
progenitors are organized in a differentiation hierarchy that is tightly regulated by
epigenetic mechanisms (Figure 4.1). Employing the methods described in Chapter 3,
this chapter presents detailed analyses of DNA methylomes at different levels in the
hematopoietic hierarchy (cf. color coding in Figure 4.1). Section 4.1 provides the biolog-
ical background for the remainder of the chapter. It introduces relevant blood cell types
and discusses current models for hematopoietic differentiation. Furthermore, known
epigenetic cues regulating blood-cell differentiation are outlined. Section 4.2 takes on
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a broad perspective on the hierarchy and focuses on the terminal cell types. It con-
tains a descriptive analysis of DNA methylation in differentiated cells assayed by the
BLUEPRINT project. For clarity, the dataset analyzed in this section will be referred to
as BPDIFF. Rather than providing an in-depth characterization of hematopoiesis, this in-
troductory section aims at providing a birds-eye view on between-cell-type heterogene-
ity in human blood. Section 4.3 focuses on one branch of the hierarchy and spotlights
the DNAmethylation dynamics in human T cell memory formation (TMEM dataset). It
highlights the relationship between epigenetic patterns and immunity-related cell func-
tion. Finally, the stem of the hierarchy is explored in Section 4.4 which constitutes the
core of the chapter and contains a detailed characterization of hematopoietic progeni-
tor cell types and their paths of differentiation. Within the context of BLUEPRINT, a
whole-genome DNA methylation dataset (HEMPROG) was generated using low-input
bisulfite sequencing. We provide a detailed analysis of this dataset and exploit statis-
tical methods for modeling the in vivo DNA methylation landscape of blood stem cell
differentiation.

4.1 Epigenetic Regulation of Hematopoiesis

Themain constituents of blood are red blood cells (erythrocytes), which are responsible
for the transport of oxygen. Leukocytes or white blood cells are cells of the immune sys-
tem that defend the organism against pathogens and clear dysfunctional cells. Platelets,
sometimes referred to as thrombocytes, contribute to the repair of blood vessels and
blood clotting. Organs important for hematopoiesis include the bone marrow, where
the bulk of blood cells are formed, and the lymphoid system and its associated tissues
such as lymph nodes, spleen and thymus, where many immune cells mature. Many
immune cells eventually reside in peripheral tissues as well as in blood.
The blood is one of the best characterized developmental systems inmammals [Doula-

tov et al. 2012]. Human hematopoietic cells are typically obtained fromperipheral blood,
which is widely available, or from bone marrow, whose acquisition employs more in-
vasive methods. A multitude of different blood cell types exist, which arise during
hematopoiesis from proliferating progenitor cells that become increasingly restricted
in their potential to give rise to different cell lineages in a stepwise fashion. Dozens
of hematopoietic cell types have been defined based on morphology, pluripotency and

Figure 4.1 : (On the next page) Hierarchy of the hematopoietic system. Based on literature
review, the differentiation trajectories in the hematopoietic system are shown.
Solid lines represent the canonical model of hematopoiesis. MLPs which are
attributed with myelo-lymphoid differentiation have been incorporated into
the tree using dashed lines [Doulatov et al. 2012]. In addition, a possible direct
branching of megakaryocytes from HSCs or MPPs has been proposed [Notta
et al. 2016; Woolthuis and C. Y. Park 2016] and is also depicted using dashed
lines. Alternative models of T cell memory formation are indicated in dashed
and dotted arrows and are further explained in Section 4.3. Orange and blue
background colors indicate the myeloid and lymphoid branches of the hierar-
chy, respectively. The color coding of cell pictograms indicates the availabil-
ity of methylation data in the BLUEPRINT and/or DEEP projects and corre-
sponds to the respective dataset described in this chapter.
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the presence of surface markers. Differentiation steps are triggered by distinct signal-
ing molecules called cytokines and are subject to tight epigenetic regulation. Figure 4.1
depicts the canonical view of differentiation events based on current literature and high-
lights selected aspects that are currently debated (dashed arrows).

Hematopoietic Stem Cells (HSCs) are placed at the apex of the hematopoietic hier-
archy. They are defined based on the property to be able to give rise to all constituent
cell types of blood and are capable of long-term self-renewal. HSCs are a very rare cell
type, represented by only one in about 10,000 cells in the bone barrow [Alberts et al.
2008]. They can either divide symmetrically producing further HSCs or asymmetrically
spawning a progeny of Multipotent Progenitors (MPPs). MPPs can still give rise to all
hematopoietic cell types but are shorter-lived than HSCs and restricted in their poten-
tial to self-renew. This observation is reflected in the classical model of hematopoiesis in
which the loss of capability of self-renewal precedes lineage commitment [Doulatov et
al. 2012]. A number of more lineage-committed progenitor cell populations derive from
MPPs. They typically undergo a limited number of cell divisions, thereby amplifying
through a cascade of differentiating progeny cells that become increasingly restricted
in their differentiation potential. According to the classical model, the differentiation
path of MPPs bifurcates into the two common progenitor cell types of the myeloid and
lymphoid lineages.

Common Myeloid Progenitors (CMPs) can give rise to all myeloid cells. These are
primarily associated with the innate immune response, which represents an organism’s
first line of defense against pathogens. Cells involved in this defense include cells de-
rived from Granulocyte Macrophage Progenitors (GMPs): granulocytes, which com-
prise basophils, eosinophils and neutrophils, utilize lysosomes and other vesicles in
their cytosol to neutralize pathogens. In basophils and eosinophils these vesicles con-
tain toxins that can be released for killing pathogens of external origin. Neutrophils
ingest pathogens, which are subsequently destroyed using the vesicles’ contents. Mono-
cytes differentiate into macrophages which are capable of disabling invaders through
phagocytosis and of eliciting inflammatory immune responses through the secretion of
cytokines. CMPs have also been attributed the potential to differentiate into progenitors
of megakaryocytes and the erythroid lineage (Megakaryocyte Erythrocyte Progenitors
(MEPs)). Megakaryocytes are large cells which can become highly polyploidic during
maturation when they lose their ability to divide. They finally give rise to platelets.
There are approximately 2× 1012 lymphocytes in the human body [Alberts et al. 2008].

According to the canonical model of hematopoiesis all of them derive from Common
Lymphoid Progenitors (CLPs). However, recently, the existence of Immature Lym-
phoid Progenitors (MLPs) populations has been postulated. These cells represent hu-
man lymphoid progenitors that potentially also differentiate into myeloid cells, but are
incapable of giving rise to erythroid cells or megakaryocytes (dashed arrows in Fig-
ure 4.1) [Doulatov et al. 2012]. In mouse, Lymphoid-primed Multipotent Progenitors
(LMPPs) have been attributed with a similar role. Undergoing further steps of lineage
restriction, CLPs and MLPs eventually differentiate into lymphocytes, including Natu-
ral Killer cells (NK cells), B cells and T cells. NK cells are part of the innate immune
systemandkill tumor and infected cells by secreting cytokines capable of inducing apop-
tosis or lysis. B cells and T cells form the basis of the adaptive immune system, which is
only found in vertebrates. They originally exist in a naive state and upon exposure to a
pathogen become clonally activated, proliferate and enter an effector state responsible
for a specific immune response. A subset of cells also enters a memory state in which,
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upon subsequent exposure to the same antigen, they can rapidly generate further ef-
fector and memory cells specific to the antigen and produce an increased amount of
cytokines or antibodies for immune signaling [Alberts et al. 2008]. B lymphocytes carry
out their immune function by producing and secreting antibodies specific to the encoun-
tered pathogen, which can render pathogens such as viruses inactive or mark them for
destruction. T cells exert different immune functions: cytotoxic T cells (CD8+ T cells)
kill infected cells via recognition of antigens presented on the cell surfacewhileT helper
cells (CD4+ T cells) are capable of activating other immune cells such as macrophages,
granulocytes, dendritic cells, B cells and cytotoxic T cells. Regulatory T cells (Tregs)
provide cues for the inhibition of other T cells and dendritic cells and thus arrange for a
controlled immune response. Notably, their control is frequently brought out of balance
in autoimmune diseases. Dendritic cells can derive from a myeloid or lymphoid origin.
They activate other adaptive immune cells by presenting antigens which they acquire
by ingesting foreign particles [DeFranco et al. 2007].
Our current knowledge of hematopoiesis is largely based on functional studies in

mice combined with fewer, more limited studies in human cells [Doulatov et al. 2012].
Nonetheless, focused functional assays have succeeded in characterizing certain aspects
of human hematopoiesis and represent the main contributions to our current under-
standing of the blood-cell-type-hierarchy (Figure 4.1). In vitro, colony formation assays
are employed that can characterize the outgrowth of cell populations from selected
clones. In vivo, selected murine and human hematopoietic cell populations can be
(xeno)transplanted in order to gauge their capability of repopulating the blood system
of mice, whose native blood-forming cells have been destroyed by irradiation [Doulatov
et al. 2012].
While the depicted canonicalmodel of differentiation has proven useful for our under-

standing of hematopoiesis, several of its aspects remain controversial. Recently, it has
been postulated that megakaryocytes could be derived from multipotent progenitors
rather than share common originwithmyeloid cells (dashed arrows in Figure 4.1) [Notta
et al. 2016; Paul et al. 2015; Woolthuis and C. Y. Park 2016]. Direct derivation of lym-
phoid and myeloid progenitors from HSC and MPP populations that are more lineage-
restricted thanCMPs andCLPs has also been proposed [Perié et al. 2015; Notta et al. 2016;
Cabezas-Wallscheid et al. 2014]. The existence of MLPs in human and LMPPs in mice
represents a further deviation from a strictly tree-like model. Moreover, it is important
to note that the definition of many hematopoietic cell types is mainly based on the ex-
pression of surface markers which can be used for separating cells using Fluorescence-
Activated Cell Sorting (FACS). This particularly holds true for progenitor cell popula-
tions. However, it is currently debated to what extent surface marker expression corre-
sponds to molecular function and heterogeneity within the cell population [Notta et al.
2016]: a pool of sorted cells expressing an identical set of surface markers might still
contain distinct classes of cells that possess heterogeneous functional potential. Con-
cretely, CMPsmight represent a heterogeneous population of cells that containmultiple
lineage-restricted progenitor cells rather than a homogeneous population of universal
myeloid-erythroid-megakaryocyte progenitors [Paul et al. 2015; Perié et al. 2015; Notta
et al. 2016]. Further examples are provided by MPPs which exhibit different potentials
for proliferation and repopulation [Cabezas-Wallscheid et al. 2014] and by the possible
existence of HSC subpopulations primed for myeloid, lymphoid and megakaryocyte
development [Muller-Sieburg et al. 2012; Woolthuis and C. Y. Park 2016].
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Single-cell protocols provide the means for a more accurate definition of cell type
and differentiation potential by enabling an in-depth molecular characterization of pop-
ulation heterogeneity. Paul et al. [2015] profiled the transcriptomes of myeloid progeni-
tors in mouse using single-cell RNA-seq. They identified clusters of cell subpopulations
that partially deviated in their expression of surface markers from commonly employed
gating strategies in FACS. Lineage-specific TF-mediated regulation was linked to these
clusters.
The process of hematopoiesis can be steered by a relatively small set of transcription

factors [Doulatov et al. 2012; Álvarez-Errico et al. 2015; Novershtern et al. 2011; Rosen-
bauer and Tenen 2007] which are in turn regulated by epigenetic signatures. Using
defined transcription factors, it is possible to transdifferentiate between cell types of dif-
ferent blood lineages [Álvarez-Errico et al. 2015; Orkin and Zon 2008]. Moreover, epige-
nomic dysregulation is linked to disease. Mutations in proteins catalyzing epigenetic
changes are associated with malignancies [Shih et al. 2012; Álvarez-Errico et al. 2015].
For instance, TET2, an important component responsible for DNA demethylation, is
mutated in several myeloid malignancies [Álvarez-Errico et al. 2015] and TF dysregu-
lation in the myeloid lineage could contribute to the onset and progression of myeloid
leukemia [Rosenbauer and Tenen 2007].
Distinct DNAmethylation patterns resemble hallmarks of hematopoietic cell identity:

Ji et al. [2010] profiledDNAmethylation inmurine blood progenitors using amicroarray-
based approach. They found DNA methylation patterns which are markedly different
between lymphoid and myeloid lineages, with myeloid cells generally exhibiting lower
methylation levels in specific regulatory regions. They concluded that lymphoid de-
velopment depends on suppressing myeloerythroid regulators via DNA methylation.
This is in line with findings which show that mice with reduced activity of Dnmt1 ex-
hibit differentiation skewed towards the myeloid lineage [Bröske et al. 2009] and that ac-
tive demethylation plays a key role in myeloid development [Álvarez-Errico et al. 2015].
Along with evidence that the lymphoid cells emerged later in evolution, these findings
indicate that myeloid differentiation could constitute a default hematopoietic pathway
and that lymphoid development represents a superimposed alternative [Álvarez-Errico
et al. 2015]. Bock et al. [2012] employed RRBS and expressionmicroarrays to dissect stem
cell differentiation in the blood and skin of mice. They identified loss of methylation in
lineage-specific regulatory elements and gain in regulatory elements of other lineages
during differentiation towards the myeloid or lymphoid lineage. In particular promot-
ers of myeloid TFs gainedmethylation during differentiation towards lymphoid lineage.
Moreover, a hierarchy of cell differentiationwas inferred using an approach that assigns
ranks of differentiation and proliferation and uses this ordering to connect cell types in a
two-dimensional space inferred from averaging methylation and expression-based dis-
tances between samples. Cabezas-Wallscheid et al. [2014] provided an integrative view
on the proteome, transcriptome andmethylome ofmurineHSCs andMPPs populations.
In their study, different MPP subpopulations exhibited different rates of proliferation
and repopulation functionality.
Chromatin-based regulation represents another avenue of steering blood formation

and chromatin-modifying enzymes are attributed with central roles in myeloid differ-
entiation and immune cell activation [Álvarez-Errico et al. 2015]. The dynamics of chro-
matin marks characteristic of enhancers have been profiled by Lara-Astiaso et al. [2014]
using ChIP-seq. The authors concluded that some enhancers are already active in HSCs
and are maintained only in the respective lineage while others are initially inactive and
only gain active enhancer marks in certain lineages.
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A number of(epi)genome-scale datasets describing human hematopoiesis have been
published, but only a few of them include hematopoietic stem and progenitor cells.
Novershtern et al. [2011] have profiled transcription during human hematopoiesis and
discovered that the degree of differential expression between hematopoietic cell types
is on a scale comparable to that of the overall heterogeneity across human tissues. Fur-
thermore, they determined modules of coexpressed genes and TFs likely to be involved
in the regulation of hematopoietic differentiation. Another recent study described cell-
type-specific expression and splicing events in human progenitors and twomyeloid pre-
cursor cell types [L. Chen et al. 2014]. M. R. Corces et al. [2016] generated maps of chro-
matin accessibility in hematopoitic progenitors and mature cell types using ATAC-seq.
Moreover, they identified regulatory signatures in these cell types which were able to
characterize cell type contributions in leukemia cells. WGBS has been employed to pro-
file DNAmethylation in HSCs, neutrophils and in B cells [Hodges et al. 2011; Kulis et al.
2015]. The latter study revealed a gradual loss of methylation during B cell differentia-
tion that primarily occurs in enhancer regions in the early stages of differentiation.
International initiatives provide essential contributions to the quest for uncovering

the epigenetic basis of hematopoietic regulation. The BLUEPRINT project is specif-
ically dedicated to characterizing epigenomes of the hematopoietic system in health
and malignancy. The DEEP consortium places a particular focus on inflammatory and
metabolic diseases and charts epigenome maps of important immune cell types.

4.2 DNA Methylation BLUEPRINTs of Differentiated Hematopoietic Cells

In order to dissect the epigenomic landscape of the human blood system in breadth, we
analyzed whole-genome DNA methylation data of 81 blood-related cell types profiled
by the BLUEPRINT consortium. This rich resource encompasses a broad spectrum of
differentiated blood cells (Figures 4.1, 4.2). Here, we provide a general characterization
of inter-cell-type variability within the hematopoietic system and, focusing on the com-
parison between monocytes and neutrophils, investigate cell-type-specific DNAmethy-
lation patterns. This section also highlights the utility of the RnBeads pipeline, which
was employed throughout for the assessment of data quality and for a global characteri-
zation of the dataset. The results presented here suggest that hematopoietic cell identity
is reflected in DNA methylation signatures. In particular, methylation patterns in reg-
ulatory elements such as enhancers and promoters can differentiate between cell types
and could be associated with roles in regulating cell-type-specific gene expression.

4.2.1 Methods

Cell Isolation and Whole Genome Bisulfite Sequencing

Blood cell populations were collected and sorted by the BLUEPRINT consortium. De-
tailed experimental and bioinformatic protocols can be found on the project’s data co-
ordination website1. WGBS library preparation and primary data processing was per-
formed by the group of Simon Heath at the Centro Nacional de Análisis Genómico
(Barcelona, Spain). Primary analysis steps included mapping of bisulfite reads to the
genomeusing theGEM3 aligner and calling ofmethylation levels at individual cytosines
using an in-house pipeline [Kulis et al. 2015].

1 http://dcc.blueprint-epigenome.eu/#/md/methods

http://dcc.blueprint-epigenome.eu/#/md/methods
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B cell (10)

Dendritic cell (2)

Macrophage (19)

NK cell (2)

T cell (13)

Myeloid leukemia (10)

Erythroblast (2)
Granulocyte (7)

Megakaryocyte (1)
Monocyte (8)

Endothelial (4)
Plasma cell (2)
Progenitor (1)

Figure 4.2: Cell types included in the BPDIFF dataset. Sample numbers for each cell type
are denoted in parentheses. The dataset contains 81 samples in total.

Description of the Dataset

The initial dataset comprised the 82 methylomes that were part of the seventh
BLUEPRINT data release (September 2015). One B cell sample covered a significantly
lower number of CpGs and was removed from subsequent analyses. Therefore, the
BPDIFF dataset analyzed here contains 81 blood-related samples (Figure 4.2).
The dataset contains a heterogeneous panel of blood-related cell types extracted and

sorted from different tissues2 (Figure 4.2). Myeloid cells isolated from cord or periph-
eral blood of healthy individuals constitute a large portion of the dataset: monocytes
and derivedmacrophages of three different activation states contribute 27 samples. The
group of granulocytes comprises one eosinophil and six neutrophil samples. Lympho-
cytes in the dataset includemultiple stages of B cell differentiation [Kulis et al. 2015] and
T cell types. Concretely, populations of pre-B cells, naive B cells, memory B cells and
plasma cells were isolated from either bone marrow, cord blood or peripheral blood.
Germinal center B cells were extracted from tonsil. CD4+ and CD8+ T cells were sorted
fromperipheral blood, with the exception of two sampleswhichwere derived from cord
blood. One sample of CD4+ regulatory T cells, twoNK cell populations and two conven-
tional dendritic cell samples were also obtained. In addition, the dataset includes one
hematopoietic progenitor cell sample. Notably, four endothelial samples from umbili-
cal vein are also included. Finally, ten acute myeloid or promyeloid leukemia samples
from bone marrow and peripheral blood represent myeloid malignancy in the dataset.
Four of these were subject to treatment with specific drug compounds.

Data Processing and Analysis

The human genome assembly version GRCh38 was used throughout the analysis.
RnBeads analysis reports were created using RnBeads version 1.1.8 (Section 3.2) and
further plots were generated using custom R scripts. Methylation levels were computed
based an individual CpGs. In addition average methylation levels were computed for
gene promotors, putative regulatory regions and genome-tiling regions of size 5 kb. Pro-
moterswere defined as regions ranging from -1,500 bp to +500 bp around the TSS ofGen-
code22 annotated genes [Harrow et al. 2012]. Putative regulatory regions were obtained

2 For the sake of simplicity, the term “tissue” is used here to refer to solid tissues as well as body fluids, in
particular blood of different origins.
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from the BLUEPRINT edition of the Ensembl regulatory build [Zerbino et al. 2015] (sev-
enth data release3; September 2015).

Data Availability

Bisulfite sequencing data are available as part of the seventh BLUEPRINT data release
(September 2015). Links to the corresponding data repositories are provided on the
BLUEPRINT website4. Full RnBeads analysis reports are available from the RnBeads
methylome resource website5.

4.2.2 Results

Quality Control and Filtering of CpGs

The dataset contains DNA methylation levels for a total of 28,571,135 CpGs annotated
in the human genome. Individual samples covered between 23 and 28 million CpGs
at different read depths (Figure 4.3), with a median of 31 reads covering a CpG. It is
important to note that monocyte and neutrophil samples that were sequenced relatively
early in the project generally had higher read coverages than other samples and that
two monocyte samples were sequenced at significantly higher read depths. Running
the RnBeads pipeline removed CpGs which (i) overlapped with annotated SNPs in the
genome, which (ii) were covered by less than five sequencing reads in more than 40
samples (50% of the dataset), (iii) represented high-coverage outliers exceeding 50 times
the 95th percentile of read coverage or (iv) were located on sex chromosomes. This
filtering procedure resulted in 23,607,313 CpGs that were used in subsequent analysis
steps.

Characterization of Hematopoietic Methylomes

Unsupervised statistical learning methods were employed in order to explore between-
cell-type heterogeneity. Reducing the high-dimensional space of methylation levels to
two dimensions using PCA orMDS revealed patterns of inter-sample relationships (Fig-
ure 4.4a). We characterized the dataset in terms of meanmethylation levels in candidate
regulatory regions which were defined based on a consensus chromatin state segmen-
tations and include putative enhancers and transcriptionally active regions [Zerbino et
al. 2015]. Overall, patterning in DNA methylation pertaining to different cell types is
clearly visible and dominates other effects and biases incurred by factors such as donor
sex and tissue origin. Myeloid cells are more similar to each other than to other blood
cells and form a relatively tight cluster while lymphoid cells appear more diverse. Par-
ticularly, B cells contribute to the between-sample differences on which the dimension
reduction is based. Not surprisingly, myeloid leukemia cells also exhibit highly het-
erogeneous DNA methylation patterns. These observations are also confirmed by hier-
archical clustering analysis (Figure 4.4b). Most of the regulatory regions with highest
DNA methylation variability across the entire dataset are markedly hypomethylated in
myeloid cells compared to other cell types. Interestingly, the groups B and T lympho-
cytes are each divided into two subgroups (Figure 4.4b): one cluster contained predom-
inantly naive B and T cells while effector and memory cells were exclusivity assigned to
3 ftp://ftp.ebi.ac.uk/pub/databases/blueprint/
4 http://www.blueprint-epigenome.eu
5 http://rnbeads.mpi-inf.mpg.de/methylomes.php

ftp://ftp.ebi.ac.uk/pub/databases/blueprint/
http://www.blueprint-epigenome.eu
http://rnbeads.mpi-inf.mpg.de/methylomes.php
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Figure 4.3: CpG read coverage distribution in the BPDIFF dataset. The number of covered
CpGs and median coverages are shown for each sample. Vertical bars depict
inter-quartile ranges.

the other cluster. Notably, the naive cluster exhibited higher similarity with the myeloid
samples than with the effector lymphoid cluster. The four endothelial samples and ery-
throblasts group together with effector lymphocytes in their respective own, smaller
subclusters. Leukemia samples form a single cluster with heterogeneous patterns of
DNA methylation.

Differential Methylation between Monocytes and Neutrophils

Monocytes and neutrophils represent two of the most common nucleated myeloid cell
types in mammalian blood. Neutrophils, which contribute 50 % to 60 % of leukocytes,
are especially abundant. Both cell types derive from common progenitors and carry
out important effector functions in innate immunity. They play essential roles as first-
line defenders against foreign pathogens: both are phagocytic cell types and can trigger
or repress inflammatory responses, yet they differ in their morphology and capacity
to release inflammatory cytokines [Dale et al. 2008]. Neutrophils are recruited to the
site of infection in order to neutralize pathogens by ingesting them or releasing cytotox-
ins. They are short-lived, while active monocytes can proliferate and differentiate into
macrophages or dendritic cells and thus also play a role in adaptive immunity.
Here, differences in DNA methylation signatures between monocytes and neu-

trophils are elucidated. The methylomes of eight monocytes (six extracted from adult
peripheral blood and two from cord blood of newborns) and six neutrophils (four pe-
ripheral blood and two cord blood) were compared. Differentially Methylated Regions
(DMRs)were identified using the rank-based approach employed by RnBeads (cf. Chap-
ter 3.2), adjusting for donor sex and tissue origin in the computation of p-values for dif-
ferential methylation. On the genome-wide level, DMRs tend to be hypomethylated
in neutrophils as compared to monocytes (Figure 4.5a). Furthermore, a more gene-
centric view revealed a set of promoters with lower methylation levels in neutrophils
(Figure 4.5b). Enrichment analyses for GO terms of the genes associated with these
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Figure 4.4: Unsupervised analysis of the BPDIFF dataset. (a) MDS plot of the dataset. (b)
Heatmap and hierarchical clustering (using Ward’s linkage method; as imple-
mented by the method parameter ward.D in the hclust function of the stats
R package). In both cases Euclidean distances have been computed frommean
methylation levels in putative regulatory regions. Colors and point shapes de-
note cell types and tissues of origin. Red/orange and blue/green colors denote
cells of the myeloid and lymphoid lineages, respectively.

promoters confirmed neutrophil-specific activity to be highly represented (Table 4.1).
A large portion of significantly enriched terms were associated with immune response
and epigenetic regulation.
The promoter region of the DEFA4 gene was found among the highest-ranking differ-

entially methylated promoters (Figure 4.5b). DEFA4 belongs to the defensin family of
cytotoxic peptides which is involved in antimicrobial defense. Inspection of basepair-
resolution DNAmethylation levels revealed reduced methylation across the gene locus
and almost complete loss around the TSS in neutrophils (Figure 4.6), indicating epige-
netic regulation of gene expression.

4.2.3 Discussion

We analyzed of one of the largest collections of whole-methylome data for blood
cells. The respective dataset spans the breadth of the hematopoietic hierarchy and cap-
tures epigenetic variability across differentiated cell types. Our analysis shows that
hematopoietic cell identity is inscribed in DNA methylation signatures. We observed
DNA methylation variability which were characteristic of cell type in putative regula-
tory regions. Methylation variability in cells of the lymphoid lineage was higher when
compared to myeloid cells, which could be indicative of an increased regulatory plas-
ticity in cells involved in the adaptive immune response. Furthermore, most variably
methylated regulatory regions exhibited marked hypomethylation in myeloid cells, po-
tentially indicating a default differentiation trajectory of hematopoietic progenitors to-
wards the myeloid lineage, that is suppressed by DNA methylation in the lymphoid
lineage [Ji et al. 2010; Bröske et al. 2009]. DNA methylation in regulatory regions was
also indicative of the activation state of lymphoid cells. Section 4.3, which characterizes
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Table 4.1: GO terms enriched in promoters hypomethylated in neutrophils compared to
monocytes

GO ID P-value Odds-ratio GO term
GO:0050832 0 122.248 defense response to fungus
GO:0051707 0 13.6664 response to other organism
GO:0009607 0 13.0245 response to biotic stimulus
GO:0045087 0 10.7557 innate immune response
GO:0006954 0 12.9736 inflammatory response
GO:0016045 2.00E-04 127.425 detection of bacterium
GO:0098581 3.00E-04 90.9821 detection of external biotic stimulus
GO:0002376 4.00E-04 5.8884 immune system process
GO:0031640 5.00E-04 70.7361 killing of cells of other organism
GO:0019731 6.00E-04 65.8491 antibacterial humoral response
GO:0010043 9.00E-04 53.0208 response to zinc ion
GO:0051716 0.0011 5.4018 cellular response to stimulus
GO:0009605 0.0011 5.3563 response to external stimulus
GO:0010963 0.0012 NaN regulation of L-arginine import
GO:0044356 0.0012 NaN clearance of foreign intracellular DNA by conversion of DNA cytidine to uridine
GO:0035872 0.0014 41.4674 nucleotide-binding domain, leucine rich repeat receptor signaling pathway
GO:0070301 0.0017 37.3897 cellular response to hydrogen peroxide
GO:0070988 0.0021 34.0402 demethylation
GO:0070488 0.0023 900.2941 neutrophil aggregation
GO:0071557 0.0023 900.2941 histone H3-K27 demethylation
GO:0050830 0.0025 30.7339 defense response to Gram-positive bacterium
GO:0001816 0.0033 7.7384 cytokine production
GO:0090467 0.0035 450.1176 arginine import
GO:1902023 0.0035 450.1176 L-arginine transport
GO:0031349 0.0043 10.5789 positive regulation of defense response
GO:0035821 0.0045 22.6518 modification of morphology or physiology of other organism
GO:0032827 0.0047 300.0588 negative regulation of natural killer cell differentiation involved in immune response
GO:0070269 0.0047 300.0588 pyroptosis
GO:0006919 0.0047 22.1221 activation of cysteine-type endopeptidase activity involved in apoptotic process
GO:0006950 0.0047 4.0482 response to stress
GO:1901565 0.0054 9.739 organonitrogen compound catabolic process
GO:0042742 0.0058 20.0517 defense response to bacterium
GO:0010269 0.0059 225.0294 response to selenium ion
GO:0070383 0.0059 225.0294 DNA cytosine deamination
GO:0030307 0.0069 18.0964 positive regulation of cell growth
GO:0032815 0.007 180.0118 negative regulation of natural killer cell activation
GO:0031638 0.008 16.6579 zymogen activation
GO:0009253 0.0082 150 peptidoglycan catabolic process
GO:0051092 0.0083 16.3685 positive regulation of NF-kappaB transcription factor activity
GO:2001056 0.0093 15.4299 positive regulation of cysteine-type endopeptidase activity
GO:0009635 0.0094 128.563 response to herbicide
GO:0032119 0.0094 128.563 sequestering of zinc ion
GO:0051597 0.0094 128.563 response to methylmercury

Enrichment in biological process ontology terms was computed for the 100 promoters most hypomethy-
lated in neutrophils as compared to monocytes according to the combined rank. Terms with a p-value less
than 0.01 are shown.
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Figure 4.5: Differential DNA methylation between monocytes and neutrophils. Scatter-
plots show the mean DNA methylation levels in monocytes and neutrophils
for (a) 5-kb tilingwindows and (b) promoters. Point density is denoted by blue
shading and the 100 highest ranking differentially methylated regions have
been highlighted in red in each panel. The DEFA4 promoter is marked by a
triangle and Figure 4.6 shows a detailed view of DNAmethylation patterns in
that locus.

the DNA methylation dynamics during T cell memory formation, explores this issue
further.
In addition to genome-wide variability in regulatory elements, we also find charac-

teristic changes in promoter methylation of genes with cell-type-specific functions. We
compared monocytes and neutrophils as two commonmyeloid cell types and observed
high agreement in their genome-wide DNA methylation profiles. However, we also
found neutrophil-specific activity of genes whose promoters were hypomethylated in
neutrophils, indicating epigenetic gene regulation and providing an example of specific
immune function reflected in DNA methylation.
Our descriptive analyses provide a starting point for a more detailed characterization

of the DNAmethylation dynamics in blood. Following up on our findings in differenti-
ated blood cells, in Section 4.4, we take on a progenitor-focused view on the hematopoi-
etic system and employ computational modeling of cellular identity using DNAmethy-
lation signatures in regulatory elements.
Importantly, our analyses were facilitated by the RnBeads software (Chapter 3.2), il-

lustrating the utility of analysis pipelines that provide an integrated view on large-scale
datasets and also enable the user to address specific questions in-depth. The RnBeads
analysis reports are part of the BLUEPRINT secondary data release and provide a re-
source for further integrative data analysis projects. The reference methylome maps
analyzed here capture variability across blood cell types and could therefore be used as
a point of reference for methylation-based cell-type deconvolution on the genome-scale.
Furthermore, DNAmethylation profiles obtained from samples ofmalignant cells could
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Figure 4.6: Neutrophils are hypomethylated compared to monocytes at the DEFA4 gene
locus. The DEFA4 gene model (exons interspersed by introns) is annotated in
orange. The heatmap shows DNA methylation levels at individual covered
CpGs (columns of the heatmap). Each row represents a monocyte or neutro-
hil sample in the dataset. Local Regression (LOESS) [Cleveland 1979] on the
methylation levels was employed in order to obtain smoothed estimates for
monocytes and neutrophils respectively (bottom).
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be compared to the reference data in order to dissect tumor heterogeneity based the
epigenomic resemblance to healthy cells.
In summary, our observations are consistent with a role of DNAmethylation patterns

located in enhancers and other regulatory elements as key contributors to cell identity.
Here, we provide a mostly descriptive analysis that entails implications for the involve-
ment of DNAmethylation dynamics in regulating cell identity in the immune-response,
hematopoietic differentiation and blood-related malignancies.

4.3 Epigenome Reprogramming in Human T Cells

T cells represent a key component of adaptive immunity and are therefore considered
critical players in disease. So far, research focused on vaccine development has been
directed at eliciting immune memory by antibody formation in the B cell lineage. How-
ever, T cell memory also plays an important role in the organism’s arsenal of defense.
Both, CD4+ T helper cells and CD8+ cytotoxic T lymphocytes derive from double posi-
tive cells (CD4+, CD8+) located in the thymus (Figure 4.1) but carry out different effector
functions: while CD8+ T cells are capable of killing infected cells and clearing pathogens,
CD4+ T lymphocytes play a stimulatory role by activating other immune cells. When an
organism is exposed to a pathogen, Naive T cells (TNs) become activated and special-
ize when they recognize antigens presented on the surface of other cells by the major
histocompatibility complex (MHC) via their T-cell receptor (TCR) for the first time. This
specialization occurs for each cell individually and cells specifically adapt to a given anti-
gen. Upon encountering a pathogen, the majority of cells become effector cells, but a
subset of cells enters a stage of immunememory in which they are capable of rapidly re-
sponding to subsequent exposure to the same pathogen. During the adaptive immune
response, the specialized T cells rapidly expand until the pathogen is cleared. A contrac-
tion phase follows in which up to 90 % of effector cells undergo apoptosis. However,
a pool of memory T cells persists [Kaech and Cui 2012]. Memory T cells are the most
abundant lymphoid cell type in the adult human body [Farber et al. 2014]. They are char-
acterized by a significantly lowered activation threshold and enhanced cytokine produc-
tion upon a subsequent re-encounter of a pathogen. Memory T cell clones can persist
for years to decades in human [Farber et al. 2014] and are mostly quiescent or exhibit
intermittent proliferative activity [Pepper and Jenkins 2011]. Several subpopulations of
memory T cells have been identified and they differ in their surface marker expression,
response to and production of cytokines as well as tissue localization. Central Memory
T cells (TCMs) show the closest resemblance to the naive phenotype. They are located
in lymphoid tissues, but also circulate through blood and possess an increased prolif-
erative capacity [Farber et al. 2014]. In contrast, Effector Memory T cells (TEMs) pref-
erentially locate in peripheral tissue and exhibit only limited proliferation. They carry
out certain effector functions such as the production of cytotoxins [Pepper and Jenkins
2011; Farber et al. 2014]. Furthermore, CD45RA+ Memory T cells (TEMRAs) have re-
cently been characterized [Henson et al. 2012]. They also possess reduced proliferative
capacity, carry out effector functions and play a role in chronic inflammation.
Despite intensive research in the area, the precise ontogeny of human T cell memory

formation is still under debate and several alternative models for the relationships be-
tween effector and memory cell populations exist [Ahmed et al. 2009; Kaech and Cui
2012; Restifo and Gattinoni 2013; Pepper and Jenkins 2011; Farber et al. 2014]. The first
model states that during pathogen exposure, TEMs emerge directly from effector cell
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populations and give rise to TCMs as a generalized, long-lived pool for immune mem-
ory (dotted arrows in the T cell branches in Figure 4.1). According to another model,
TCMs and TEMs are both derived directly from TNs (dashed arrows in Figure 4.1). In
contrast, a progressive differentiation model more closely resembles the process of fate
determination in stem cell (solid arrows in Figure 4.1). In this model, TNs resemble the
most general state and upon activation can give rise to TCMs which are still long-lived
and capable of self-renewal. Populations of memory stem cells represent potential in-
termediate precursors in this line of differentiation [Farber et al. 2014]. TCMs in turn are
direct ancestors to TEMs which already exert effector functions. Effector T cells as the
most differentiated and short-lived state emerge from them.
Given the distinct identities of memory T cell populations, it is logical to assume that

their epigenomes play a vital role in regulating immune memory formation. So far,
studies investigating T cell epigenetics during human memory formation on a genome
scale have been lacking. Related efforts include the work by Russ et al. [2014] who pro-
filedH3K4me3 andH3K27me3 histonemodifications in CD8 positive naive, effector and
memory T cells of mice that had been exposed to an influenza virus strain. Crompton
et al. [2015] assayed the same histone marks in naive cells, T memory stem cells, central
memory cells and effector memory cells. Hashimoto et al. [2013] used a methylation-
sensitive restriction approach to assay DNA methylation at a subset of murine CpGs in
CD4+ T memory cells. Another study describes differential DNA methylation between
humanCD4+ naive andmemory T cells in selected CpGs in using locus-specific bisulfite
sequencing and correlated those patterns to gene expression [Komori et al. 2015]. Kulis
et al. [2015] investigated the DNA methylation dynamics during human B cell matura-
tion using WGBS and 450K and their dataset also included different memory stages.
We sought to identify and characterize DNA methylation signatures that contribute

to human CD4+ T cell memory formation. In an effort of the DEEP consortium,
epigenomes of TN, TCM, TEM and TEMRA cells were profiled. Utilizing this resource
and the computational pipelines established in DEEP, we explore the genome-wide
DNA methylation patterns at various stages of memory formation and relate their dy-
namics to hypothesized differentiation pathways. Our results reveal stepwise losses of
DNA methylation at the genome scale and provide further evidence for a progressive
model of human T cell differentiation.

4.3.1 Methods

Cell Isolation and Sequencing Library Preparation

Genome-wide DNAmethylation in human CD4+ TN, TCM, TEM and TEMRA cells was
assessed within the context of DEEP. TN, TCM and TEM were obtained from periph-
eral blood by the groups of Alf Hamann and Julia Polansky at the Deutsches Rheuma-
Forschungszentrum (Berlin, Germany). TEMRA cells were sorted in the group of Birgit
Sawitzki at the Institute of Medical Immunology (Charité University Medicin, Berlin,
Germany). Samples from 3 to 10 female donors were pooled to obtain sufficient ma-
terial for sequencing and to mitigate inter-individual sample variance. Sequencing li-
braries for WGBS and NOMe-seq were prepared for two replicate pools of TN, TCM
and TEM cells. The dataset contains only one pool of TEMRA cells which was assayed
by NOMe-seq. Detailed methods for cell isolation and sequencing library preparation
can be found in [Durek et al. 2016].
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Processing of Bisulfite Sequencing Reads

DNA methylation data obtained from WGBS and NOMe-seq was processed using uni-
form processing pipelines established in the DEEP project. Primary data processing
was performed by project partners at the Deutsches Krebsforschungszentrum (DKFZ;
Heidelberg, Germany). In brief, the SeqPrep tool6 was used to trim adapter sequences
and readsweremapped to an in silico bisulfite converted version of the human reference
genome (hg19/GRCh37d5 assembly) usingMethylCtools [Hovestadt et al. 2014]. BWA
(version 0.6.2-tpx) was employed using default parameters with the exception of setting
the quality trimming threshold (-q) to 20 and disabling Smith-Waterman alignment for
the unmapped mate read (-s). Duplicate reads were removed using Picard7 and reads
with an alignment score of less than one were discarded.
A standardized pipeline for determining DNAmethylation levels at individual CpGs

was developed in collaborationwith Karl Nordström (SaarlandUniversity, Saarbrücken,
Germany). The pipeline is based on the Bis-SNP tool [Liu et al. 2012] and also employs
Picard, samtools [H. Li et al. 2009], BamUtil8 and UCSC tools [Kent et al. 2010]. In
the quantification of CpG methylation from NOMe-seq data, only methylation levels
for cytosines in HCG contexts (where H represents any base other than guanine) were
retained in order to avoid confounding by the artificial methylation step. TheDEEP data
analysis center provides detailed process descriptions9 of the employed computational
pipelines in a standardized XML format [Ebert et al. 2015].
Analysis reports were created using RnBeads version 1.1.4 and further plots were

generated using custom R scripts. In addition to the default regions of RnBeads, methy-
lation levels were averaged in genomic tiling windows of size 1 kb and putative regula-
tory regions (BLUEPRINT edition of the Ensembl regulatory build [Zerbino et al. 2015]).
RnBeads filtering steps removed CpGs that overlapped with SNPs or that were covered
by fewer than five sequencing reads in more than seven samples (60 % of the dataset).
Employing these criteria, 26,117,504 CpGs were retained for further analysis. Differ-
ential methylation between different cell types was quantified using RnBeads’ ranking
approach (cf. Chapter 3.2). Enrichment analysis in regions of interest were conducted
using LOLA [Sheffield and Bock 2016] with its core and extended databases of genomic
and epigenomic features (using the November 2015 version).

Data Availability

Sequencing read data have been deposited to European Genome-phenome Archive
(EGA) under accession number EGAS00001001624. Full RnBeads analysis reports are
available from the RnBeads methylome resource website10.

4.3.2 Results

In order to provide a global perspective on inter-sample variability of DNA methyla-
tion, unsupervised statistical learning methods were employed. Projecting single-CpG-
resolutionmethylation levels onto the first twoprincipal components revealed thatDNA
methylation patterns are characteristic of the samples’ cell types (Figure 4.7). These
6 http://github.com/jstjohn/SeqPrep
7 http://broadinstitute.github.io/picard/
8 http://genome.sph.umich.edu/wiki/BamUtil
9 http://doi.org/10.17617/1.2W
10 http://rnbeads.mpi-inf.mpg.de/methylomes.php

http://github.com/jstjohn/SeqPrep
http://broadinstitute.github.io/picard/
http://genome.sph.umich.edu/wiki/BamUtil
http://doi.org/10.17617/1.2W
http://rnbeads.mpi-inf.mpg.de/methylomes.php
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Figure 4.7: Stages of T cell memory formation are distinguishable by their DNAmethyla-
tion signatures. PCA was used to project T cell samples onto two dimensions
from DNA methylation measured at individual CpGs. Percentages annotate
the variance explained by the first and second principal component. Point col-
ors and shapes denote cell types and donor pools. Outlined and plain points
represent WGBS and NOMe-seq experiments respectively.

cell-type-specific differences dominate variability introduced by other sources such as
donor pool and experimental protocol. Although not statistically significant due to the
relatively small sample size, particularly the first principal component, which explained
57.9 % of the dataset variance, is visibly associated with a sample’s annotated cell type
(p-value < 0.12, Kruskal-Wallis test; Figure 4.7). Hierarchical clustering of samples con-
firmed the presence of cell-type-specific DNA methylation signatures (Figure 4.8). The
memory cell states (TCMs and TEMs) exhibitedmore similar DNAmethylation patterns
to each other than to naive T cells.
Genome-wide inspection of DNA methylation levels exposed global hypomethyla-

tion in the memory cell stages when compared to the naive stage (Figure 4.8). To ob-
tain an overview of methylation dynamics across cell types, genome-wide tiling regions
were grouped according to their methylation patterns using k-means clustering (Fig-
ure 4.9). Evaluating different numbers of clusters by visual inspection, we selected
k = 5. Fewer clusters did not fully capture all modes of cell-type-dependent differ-
ences and increasing k led to multiple clusters containing highly similar patterns (data
not shown). The five resulting region clusters represent modes of cell-type-associated
changes. Two of these clusters represent regions exhibiting consistently low and high
methylation levels across the dataset (clusters 1 and 4 in Figure 4.9 respectively). The
regions in the remaining three clusters are characterized by intermediate to high methy-
lation levels in TNs, hypomethylation in TCMs and TEMs and a further decrease in
TEMRAs. Generally, TCMs more closely resemble TNs than TEMs in terms of genome-
wide DNA methylation levels. Taken together, in their most simple interpretation,
these findings argue for a stage-wise decrease in DNA methylation levels in the order
TN→TCM→TEM→TEMRA and are in line with the progressive differentiation model
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Figure 4.8: T cells become increasingly hypomethylated during memory formation. The
heatmap shows the 1,000 most variable tiling regions (size: 1 kb). Hierarchical
clustering employingManhattan distance and complete linkage has been used
to group samples. The same shape and color coding as in Figure 4.7 is applied
for sample annotation.
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of T cell memory formation. This is also reflected in the two-dimensional view of prin-
cipal components depicted in Figure 4.7. Differences linked to memory formation were
most pronounced in cluster 3 which is characterized by intermediate methylation levels
in naive T cells. This is consistent with previous observations stating that widespread
changes in DNA methylation occur in Partially Methylated Domains (PMDs) [Lister et
al. 2009; Berman et al. 2012; Hon et al. 2012]. These PMDs frequently overlap with en-
hancers and other regulatory elements.
Focusing on the comparison of TCMs to TNs, RnBeads’ rank-based method was em-

ployed in order to identify genomic regions differentially methylated during memory
formation. The highest-ranking differentially methylated promoters comprise multiple
genes related to immunity, cell signaling and hematopoiesis such as the chemokine re-
ceptor CCR5 (Figure 4.10). Putative regulatory regions were generally hypomethylated
in TCMs compared to TNs (Figure 4.11a). Enrichment analysis for genomic and epige-
nomic features revealed associationswithDNase hypersensitive regions that are specific
to blood-related cells (Figure 4.11b). Moreover, ChIP-seq peaks in lymphoblastoid cell
lines for transcription factors involved in the regulation of hematopoiesis such as BATF,
RUNX3, IRF4 andNF-κB significantly overlap with differentially methylated regulatory
regions.
In the dataset analyzed here, CpG methylation was quantified by WGBS and NOMe-

seq. NOMe-seq samples were generally sequenced at a lower sequencing depth com-
pared to WGBS (approximately 10 to 50 % fewer reads per sample). Additionally, CpGs
that could potentially be biased by the artificial methylation step (CpGs in GCG con-
text) were discarded. This protocol resulted in a median of 19,345,622 assayed CpGs
per NOMe-seq sample compared to 25,838,238.5 in case of WGBS. The median number
of sequencing reads covering a CpG was 13 and 23.5 respectively. Despite these differ-
ences in read coverage (as exemplified by white gaps in Figure 4.8), overall, the quanti-
fied methylation levels are consistent between these two bisulfite sequencing protocols:
Pearson correlations coefficients between 0.91 and 0.95 were observed when compar-
ing CpGmethylation between technical replicates of the same cell-type and donor-pool
combination while biological replicates comparing the two donor pools in the same cell
type usingWGBS yielded coefficients ranging from 0.93 to 0.96. Furthermore, the unsu-
pervised learning approaches discussed above (Figures 4.7, 4.8) confirmed that technical
variation is clearly dominated by biological, cell-type dependent variation.

4.3.3 Discussion

Genome-wide DNA methylation patterns are capable of distinguishing between
different naive and memory T cell types. The observed differences in DNA
methylation support the hypothesis of a stepwise loss of methylation along the
TN→TCM→TEM→TEMRA axis and are thus consistent with the progressive differ-
entiation model of T cell memory formation. These results are further substantiated
by experimental evidence on decreasing telomere lengths and differentiation potential
along this axis [Restifo andGattinoni 2013; Farber et al. 2014]. Additional datasets, poten-
tially on the level of single cells, could help to shed further light on the precise dynamics
during memory formation.
Dynamic DNAmethylation is preferentially located in genomic regions with interme-

diate to high levels of methylation in naive T cells (PMDs). These regions overlap with
regulatory elements that exhibit epigenomic marks indicative of open chromatin and
TFBSs associated with hematopoiesis. Furthermore, PMDs have been linked to LADs
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Figure 4.9: Clusters of genomic regions exhibit varying degrees of hypomethylation dur-
ing memory formation. Violin and boxplots show the distribution of DNA
methylation levels in five clusters of 1-kb genomic tiling regions. These clus-
ters were obtained from a k-means clustering (k = 5) based on mean methyla-
tion levels in those regions. Cluster mean methylation levels are denoted by
dots that are connected by lines. Numbers in the lower right corners denote
the number of regions in each cluster. The sample annotation uses the same
shape and color coding as in Figure 4.7.
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Figure 4.10: The CCR5 gene locus is hypomethylated during memory formation. The
heatmap shows DNA methylation levels at individual CpGs (columns of the
heatmap). Each row represents a sample in the dataset. LOESS on the methy-
lation levels was employed in order to obtain smoothed estimates for each
cell type (bottom). The same color and shape encoding as in Figure 4.7 was
used.

and regions of late replication timing in the context of cell proliferation [Aran et al. 2011;
Berman et al. 2012]. This raises the hypothesis that DNA methylation could reflect a
cell’s proliferative history: according to the progressive differentiation model of T cell
formation, memory cells rapidly divide after encountering an antigen, giving rise to a
pool of TCMs, which are mostly resting. Upon reactivation, TCMs reenter a prolifera-
tive stage and give rise to TEMs, characterized by low proliferative activity. Along this
path of differentiation, DNA methylation is lost in a stepwise manner.
Interestingly, inspecting genes that lose DNA methylation along this path revealed

that methylation changes frequently occurred in loci representing Small Nucleolar
RNAs (snoRNAs). snoRNAs have previously been attributed with roles in mRNA
splicing and miRNA regulation [Williams and Farzaneh 2012]. It remains to be tested
whether they are indeed regulated by DNA methylation or whether the observations
represent spurious associations due to the fact that snoRNAs are primarily derived from
body regions of coding genes which could overlap with other regulatory elements.
In addition to DNAmethylation, the DEEP consortium has profiled chromatin acces-

sibility, six different histone modifications as well as regulatory and messenger RNA
in the discussed cell populations, thereby producing full epigenomes according to the
IHEC definition. Durek et al. [2016] provide a more detailed discussion on these marks.
In brief, the progressive differentiation model is also supported by other data types,
particularly by expression patterns of ncRNA, which are consistent with DNA methy-
lation changes. Further integrative analyses revealed that changes in DNAmethylation
in regions of accessible chromatin are associated with changes in gene expression and
confirm the enrichment of potential transcription factor binding events in differentially
methylated regions.
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Figure 4.11: Regulatory regions are hypomethylated in TCMs compared to TNs. (a) Scat-
terplot showing the mean DNA methylation levels of putatitive regulatory
regions in TCMs and TN. Point density is denoted by blue shading and the
500 highest ranking differentially methylated regions have been highlighted
in red. (b) p-values for selected terms obtained from a LOLA enrichment
analysis of the 500 highest ranking differentially methylated regulatory re-
gions. These terms include ChIP-seq peak regions identified in the ENCODE
and CODEX projects and DNaseI-seq experiments and are contained in the
LOLA database. GM12878 denotes a lymphoblastoid cell line profiled in the
ENCODE project.
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Little is currently known about the role of TEMRA cells. The methylation data pre-
sented here suggests a placement of TEMRA downstream of TEMs in the trajectory of
memory formation. However, with only one TEMRA sample at hand, it was not pos-
sible to reach robust conclusions and DEEP is currently generating further profiles for
this interesting cell type. In addition, this study focuses on T helper cells (CD4+) in hu-
man. It remains to be investigated to what extent the presented findings generalize to
memory formation in CD8+ cytotoxic T cells and to other vertebrates.
In summary, T cell memory formation plays an important role in adaptive immunity.

Our results suggest that the differentiation stage of memory cells is reflected in their
DNA methylation signatures. These signatures might therefore provide useful tools
and indicators in the context of immunity-related diseases, allergies as well as vaccine
development. Understanding the (epigenomic) identity of immune cells could also re-
sult valuable for the design and application of future cell therapies.

4.4 DNA Methylation Dynamics of Human Hematopoietic Stem Cell
Differentiation

The base of the hematopoietic system consists of stem and progenitor cells that can give
rise to all blood cell types (Figure 4.1). Epigenome remodeling plays a crucial part in the
process of lineage commitment. However, while differentiated blood cells are readily
available for sampling and epigenomic profiling, only small amounts of cell material
can be obtained from hematopoietic stem and progenitor cells. It is therefore not sur-
prising that the epigenomes of the early stages of hematopoietic differentiation on the
genome-scale in human have been poorly characterized, so far. Within the context of
BLUEPRINT, we applied protocols for low-input and single-cell whole genome bisulfite
sequencing (µWGBS) to human HSCs, MPPs and to various lineage-committed progen-
itor cell types purified by FACS (Figure 4.1; Table 4.2). The resulting dataset constitutes
a valuable resource for reassessing current models of human hematopoiesis from an
epigenomic perspective.
Here, we provide a detailed account on the DNA methylation dynamics during

hematopoietic stem and progenitor cell differentiation in regulatory regions of the
genome. We found notable differences in the methylation patterns between stem cells,
myeloid progenitors and cells of the lymphoid lineage. Lineage-specific changes inDNA
methylation appear to be linked to cell-type-specific chromatin accessibility. Moreover,
statistical learningmodelswere able to accurately infer cell types fromDNAmethylation
signatures and could be used for data-driven reconstruction of the human hematopoi-
etic system. Our observations illustrate the power of DNA methylation analysis for the
in vivo dissection of differentiation landscapes as a complementary approach to lineage
tracing and in vitro differentiation assays.

4.4.1 Methods

Cell Purification and Sequencing Library Preparation

Suitable sorting schemes were devised for different hematopoietic stem and progenitor
cell types (Table 4.2). HSCs and MPPs were sorted from peripheral blood, fetal liver,
cord blood and bone marrow. Eight additional progenitor cell types were sorted from
peripheral blood. For each of these cell types low-input bisulfite libraries were prepared
using the µWGBS protocol [Farlik et al. 2015], which were sequenced by the Biomedical
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Table 4.2: Surface markers used for sorting progenitor cell types by FACS
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Cell type colors were selected such that early progenitors are represented by purple colors, lymphoid pro-
genitors are depicted in orange, red or yellow and lymphoid cell types are assigned shades of blue and
green. By courtesy of Matthias Farlik.

Sequencing Facility at the CeMM Research Center for Molecular Medicine of the Aus-
trian Academy of Sciences (Vienna, Austria) using a 2×75 bp paired-end setup on the
Illumina HiSeq 3000/4000 platform. In order to avoid high PCR duplication rates, li-
braries were sequenced at a relatively low coverage. In total, 639 bisulfite sequencing
libraries passed quality control, and 3.1 terabases of sequencing data were produced.
Among the profiled cell types were four populations of MLPs which exhibited dis-

tinct differentiation capabilities and DNA methylation patterns (MLP0 to MLP3). Ad-
ditionally, seven mature blood cell types were profiled (Figure 4.1). Each cell type was
obtained from three healthy donors to account for inter-individual heterogeneity. Pro-
genitor cells were profiled using a pooling strategy comprising different nominal cell
numbers. Specifically, for each cell type and donor, eight pools of ten cells, two pools of
50 cells and one pool of 1,000 cells were processed individually. Detailed methods for
sample collection, cell isolation, cell culture and sequencing library preparation can be
found in [Farlik et al. 2016].

DNA Methylation Sequencing Data Processing

Adapter sequences were trimmed using Trimmomatic version 0.32 [Bolger et al. 2014],
and the trimmed reads were aligned using Bismark version 0.12.2 employing Bowtie2
version 2.2.4 [Krueger and Andrews 2011; Langmead and Salzberg 2012] with param-
eters --minins 0 --maxins 6000 --bowtie2. The GRCh38 assembly of the human
reference genome was used throughout the study. Duplicate reads mapping to identi-
cal genomic coordinates were removed as potential PCR artifacts. Reads with a bisulfite
conversion rate below 90 % or with fewer than three cytosines outside a CpG context
were discarded as potential post-bisulfite contamination. The Bismark methylation ex-
tractor was used to estimate CpG methylation levels. Replicates of different nominal
cell numbers which belonged to the same donor and cell type were merged by sum-
ming up the total number of methylated and unmethylated reads per CpG across all
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replicates. Merged and unmerged datasets were further processed using RnBeads ver-
sion 1.5 [Assenov et al. 2014]. This generated standard reports for data exploration and
quality control. DNA methylation values of individual CpGs were aggregated based
on predefined genomic regions such as genomic tiling regions (5 kb) and regulatory re-
gions annotated by the BLUEPRINT edition of the Ensembl regulatory build [Zerbino
et al. 2015] (August 2015 data release). The aggregate values produced by RnBeads were
used for further data analysis using custom R scripts.

Integration of DNA Methylation and Chromatin Accessibility Data

We downloaded publicly available peak regions and fragment count data from ATAC-
seq experiments [M. R. Corces et al. 2016] (GEO accession GSE74912) and transformed
the peak coordinates to genome assembly GRCh38 using the UCSC liftOver tool11.
Mean DNA methylation levels for all merged samples were computed in all ATAC-seq
peaks. We used a one-sided Wilcoxon test to identify cell-type-specific regions of open
chromatin. Specifically, for each cell type in the ATAC-seq dataset we selected those
peak regions in which samples of that cell type exhibited a significantly higher ATAC-
seq fragment count than samples not belonging to that cell types (FDR-adjusted p-value
less than 0.05).

DNA-Methylation-Based Prediction of Cell Types

Regularized general linear models, as implemented in the glmnet R package [Friedman
et al. 2010; Krishnapuram et al. 2005], were used to classify samples into ten progenitor
cell types based on their DNAmethylation profiles across regulatory regions. The anno-
tation of regulatory regions was obtained from the BLUEPRINT edition of the Ensembl
regulatory build [Zerbino et al. 2015]. The classifiers were trained on the DNA methy-
lation levels in a total of 319 10-cell, 50-cell, and 1,000-cell replicates. In order to avoid
biases incurred by the different tissue origins of samples, models were trained exclu-
sively on DNA methylation data from peripheral blood samples. Due to the relatively
low sequencing coverage the replicates contained an average of 56 % missing values
of all covered CpGs. These were imputed with the impute R package12 using 5-nearest
neighbor averaging on the entire dataset of replicates (including non-peripheral-blood
samples and differentiated cell types). Elastic net regularization was applied to multi-
nomial logistic regression classifiers. Concretely, these models infer model parameters
by employing methods for coordinate descent in order to maximize the penalized log-
likelihood:

max
β0l ,βl

[
1
N

N

∑
i=1

(
K

∑
l=1

yil

(
β0l + xT

i βl

)
− log

(
K

∑
l=1

eβ0l+xT
i βl

))
︸ ︷︷ ︸

multinomial logistic regression log-likelihood

− λ

(
(1− α)||β||2F/2 + α

p

∑
j=1
||β j·||2

)
︸ ︷︷ ︸

elastic-net penalty

]

with N observations (here: samples) in the training set and measurements (methyla-
tion levels) xi ∈ Rp for p features (regions) that are classified to one of K classes (cell
11 https://genome.ucsc.edu/cgi-bin/hgLiftOver
12 https://bioconductor.org/packages/release/bioc/html/impute.html

https://genome.ucsc.edu/cgi-bin/hgLiftOver
https://bioconductor.org/packages/release/bioc/html/impute.html
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types). yil ∈ {0, 1} indicates whether observation i of the training set belongs to class
l. The index 0 denotes parameters for the intercept. The result of the coordinate de-
scent algorithm is a p×K parameter matrix β with column vectors βl ∈ Rp that contain
parameter values for each class (cell type) and row vectors β j·. The penalty term en-
sures that model parameters are regularized consistently across classes [Friedman et al.
2010]. It is described by a linear combination of the Frobenius matrix norm for regu-
larizing all coefficients across all features and classes (penalty as in ridge regression:
||β||2F = ∑K

l=1 ∑
p
j=1 |βl j|2) and the Euclidean norm for each individual feature across all

classes (penalty as in grouped-lasso regression). In this study, the regularization pa-
rameter λ was obtained by nested 10-fold cross-validation as the value resulting in the
most regularized model whose error is still within one standard error of the minimum.
α was set to 0.5 to reflect equal mixing of the ridge and lasso penalty terms.
Class importance was defined in terms of model parameters as the Euclidean norm

aggregate of per-class coefficients in the model (βj· =
√

∑K
l=1 β2

l j). We defined signature
regions which were able to discriminate between cell types as those regions whose class
importance value was non-zero (βj· ̸= 0) in a model trained on the entire dataset of 319
replicates.
Class probabilities were defined as fitted probabilities from the logistic regression

model: given a feature vector x, the probability of class l is defined by

Pr (G = l|x) = eβ0l+xT βl

∑K
k=1 eβ0k+xT βk

For assessing model quality, 10-fold cross validation was performed and misclassifica-
tion rates (per class and overall) were averaged in the cross-validation test sets. Receiver
Operating Characteristic curves (ROC curves) and Area Under the Curve (AUC) values
were obtained by evaluating the class probabilities in the one-vs-all setting for each class.
In brief, the score resulting from the difference of the class probability of the assigned
class and the largest class probability excluding that class was computed for each sam-
ple. ROC curves are then defined by applying all possible thresholds on this score by
computing false positive and true positive rates for every threshold value and AUC val-
ues were derived.
For assigning cross-class probabilities of individual progenitor cell types, the samples

of one class were excluded from the model, the model was trained based on the data
for all other classes and applied to cross-predict the data points of the class that was
excluded from training (leave-one-class-out classifiers).

Inference of Cell-Type-Similarity Graph

In the cell-type-similarity graph (Figure 4.23), nodes represent cell types and directed
edges represent the probabilities of predicting one cell type to another according to the
corresponding leave-one-class-out classifier. Specifically, for each pair of source and
target cell type, the edgeweight corresponds to the average class probability assigned by
the leave-one-class-out classifier for the target cell type to all peripheral blood samples
of the source cell type. The graph in Figure 4.23 shows the directed edge pairs for each
pair of nodes as trapezoids inwhich thewidths at the target and source node correspond
to weights of the directed edges (e.g. the predictor which did not include HSC samples
assigned a higher probability to classify HSC samples as MPP than the probabilities the
predictor which did not include MPP samples assigned to predicting MPP samples as
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HSC). Differentiated cell types (circles) were predicted based on the classifier trained on
all 319 stem/progenitor samples from peripheral blood. Only edges which correspond
to an average prediction probability exceeding 0.1 are shown.

Genomic Region Enrichment Analysis

We used LOLA [Sheffield and Bock 2016] to identify significant overlaps (adjusted p-
value < 0.05) with genomic region sets associated with transcription factor binding.
These regions were previously defined from ChIP-seq experiments by ENCODE [Har-
row et al. 2012] and from the data contained in the CODEX database [Sánchez-Castillo
et al. 2015]. In brief, provided with genomic regions of interest and a background set
of genomic regions (universe), LOLA quantifies the overlap of the regions of interest
with predefined sets of genomic regions. For each of these sets, a p-value is calculated
using Fisher’s Exact Test, which is adjusted for multiple testing by controlling of the
FDR [Benjamini and Yekutieli 2001]. Additionally, log-odds scores and the number of
overlapping regions are computed. To facilitate visualization and interpretation, we
manually curated the LOLA database annotations to group the cell types on which the
region sets in the database are based into broader categories. Plots showing the en-
richment of TFBSs that were significant in at least one comparison (Figure 4.20b) were
generated using custom R scripts provided by Johanna Klughammer.

Data Availability and Supplementary Website

A supplemental website with genome browser tracks, diagrams and tables as well as
direct links to the data sources is available13. The website also contains the code for the
DNA-methylation-based prediction of cell types. Processed methylation calls can be ob-
tained from GEO under accession number GSE87197 and raw sequencing data are de-
posited in EGA under controlled access (study accession number EGAS00001002070).
The dataset is included in the epigenome registry14 of IHEC (accession numbers
IHECRE00002734 to IHECRE00002810) and track data is also accessible through the
IHEC data portal15 and the DeepBlue Epigenomic Data Server [Albrecht et al. 2016].

4.4.2 Results

DNA Methylation Maps of Human Hematopoietic Stem and Progenitor Cells

We generated reference methylomemaps for ten different hematopoietic progenitor cell
types and seven differentiated cell types obtained from peripheral blood of healthy
donors (Figure 4.1; Table 4.2). Additionally, HSCs and MPPs sorted from fetal liver,
cord blood and bone marrow were profiled. However, in order to not be confounded
by the tissue of origin, we focus on analysis of DNA methylation in peripheral blood
cells in this section. Progenitor cells were profiled in replicate pools of different nom-
inal cell numbers (cf. Section 4.4.1). For most analysis steps, we pursued a composite
approach to methylation mapping by combining the bisulfite sequencing reads from
these replicates for the same individual and cell type. Combining these profiles results
in high-resolution methylome maps that intrinsically account for epigenetic variability
within and between cell types.
13 http://blueprint-methylomes.computational-epigenetics.org
14 http://www.ebi.ac.uk/vg/epirr
15 http://epigenomesportal.ca/ihec/

http://blueprint-methylomes.computational-epigenetics.org
http://www.ebi.ac.uk/vg/epirr
http://epigenomesportal.ca/ihec/
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Globally, DNA methylation levels were similarly high across progenitor cell types
(Figure 4.12a). We observed slightly decreased genome-wide methylation levels in dif-
ferentiated cells of the myeloid lineage. The distribution of DNA methylation across
the genome followed the expected patterns: DNA methylation in CpG islands and pro-
moter regions was reduced and exhibited a bimodal distribution and the vast majority
of 5-kb tiling regionswere highlymethylated (Figure 4.12b). Putative enhancer elements
exhibited more variable, intermediate to high levels of DNA methylation. To provide
a robust and biologically meaningful basis for analyzing DNA methylation differences
between cell types, we aggregated DNA methylation levels across genomic regions de-
fined by the BLUEPRINT version of the Ensembl regulatory build [Zerbino et al. 2015]
which integrates epigenome data across many cell types into a catalog of six types of pu-
tative regulatory regions. In our dataset, these regions exhibited broadly varying DNA
methylation levels (Figure 4.12c).
Figure 4.13 shows selected examples of DNA methylation variation in regulatory re-

gions. At the KCNH2 gene locus (a key factor for erythroid development), two CTCF
sites and a distal element showed decreased DNA methylation in the myeloid lineage
and also increased expression in CMP and GMP cells (data not shown). A putative
enhancer of the myeloid-linked TREML1 gene displays decreased DNA methylation in
HSCs, MPPs and myeloid progenitors. In contrast, CTCF sites in the lymphoid-linked
SUSD3 gene exhibit lower DNA methylation in lymphoid progenitors. Furthermore,
promoter-associated regulatory regions in the EXOC6 locus displayed lower methyla-
tion levels in HSCs and MPPs that were not linked to changes in gene expression (data
not shown).
DNA methylation levels in regulatory elements could also be used to discriminate

between lineage in unsupervised analyses based on individual replicates. Dimension
reduction usingMDS revealed two compact clusters comprising lymphoid andmyeloid
cells, while HSC and MPP profiles were more dispersed (Figure 4.14). This lineage-
specific clustering indicates that neither technical biases arising from the different cell
numbers in the replicates nor inter-individual variation between donors had a strong
influence on our investigation of cell-type-specific DNA methylation patterns.

Robustness Analysis

We obtained DNA methylation profiles from replicates with relatively low cell num-
bers and coverage. In order to confirm that our observations are not merely the result
of technical variation due to differences in nominal cell numbers or sequencing depth,
we quantified the similarities between replicates of different pool sizes in putative reg-
ulatory regions (Figure 4.15). We observed moderate correlation coefficients between
individual 10-cell and 50-cell replicates. The agreement was higher when 50-cell repli-
cates were compared to 1,000-cell replicates. We also aggregated the methylation calls
of five 10-cell replicates into virtual 50-cell replicates in silico. The correlation coeffi-
cients obtained for comparisons between physical 50-cell replicates and these virtual
50-cell replicates closely reflected those of physical 50-cell replicates among each other.
Furthermore, lineage-specific differences in DNA methylation patterns outweigh vari-
ation due to pool sizes in unsupervised analyses (Figure 4.14). Together, these results
argue against the presence of strong biases induced by technical differences between
replicates of different cell numbers and therefore confirm the evaluation of the µWGBS
protocol conducted by Farlik et al. [2015]. However, we also observed only moderate
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Figure 4.12: Distribution ofmethylation levels in hematopoietic cells. Violin and box plots
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blood.
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Figure 4.13: DNA methylation levels in regulatory regions in four gene loci. Black bars
denote the positions of regulatory regions according to the BLUEPRINT En-
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Figure 4.15: Correlation in DNA methylation profiles in replicates of different pool sizes.
(a) Box plots summarizing the Pearson correlation coefficients of DNAmethy-
lation levels in putative regulatory regions between pairs of 10-cell replicates,
mixed pairs of one 10-cell and one 50-cell replicates, pairs of 50-cell samples
and mixed pairs of 50-cell samples with virtual 50-cell samples, which were
derived bymerging five 10-cell samples. The analysis was performed for each
cell type separately and only datasets from the same donor were compared to
exclude effects of variability between donors. (b) Density scatterplots of aver-
age DNA methylation levels showing the agreement of one 50-cell replicate
(MLP3_50_D1_2) with selected physical 10-cell, 50-cell and 1000-cell samples
of the same cell type and donor (top two rows). The bottom row shows the
agreement of the 50-cell replicate with four selected virtual combinations of
five 10-cell samples. r denotes Pearson correlation coefficients for each com-
parison. By courtesy of Florian Halbritter.

overall correlation between replicates of low cell numbers, which is likely due to the
low sequencing coverage of individual replicates.
In order to overcome these limitations of relatively low sequencing coverage we em-

ployed a composite approach in which we combined methylation levels of all 10-cell,
50-cell, and 1,000-cell replicates for each cell type, tissue source and donor. We verified
that these composite methylomes robustly captured biological variation. To this end,
we employed different clustering methods and parameter settings to DNAmethylation
data in putative regulatory regions and quantified the agreement of cluster assignments
(Figure 4.16). We chose different numbers of clusters k in this evaluation. For each clus-
ter in each method and parameter setting, we determined the cell type associated with
that cluster (Figure 4.16a). Across several parameter settings, theHSC andMPP samples
were assigned separately to different clusters of size 1 and thus dominate the clustering
results for small values of k. This observation is consistent with the previously observed
heterogeneity in early progenitors. As we increased k, the clustering and associated cell
types indicated differences betweenmyeloid and lymphoid samples and heterogeneous



4.4 DNA Methylation Dynamics of Human Hematopoietic Stem Cell Differentiation 99

HSC/MPP samples (Figures 4.16a, 4.16c). This observation was stable across clustering
methods and parameter settings which were in agreement when similar values for k
were employed (Figure 4.16b). We therefore conclude that the biological variation in
DNAmethylation levels is robustly captured across all applied clustering methods and
parameter settings.

DNA Methylation in Cell-Type-Specific Regions of Open Chromatin

We characterized DNA methylation in regions of accessible chromatin (Figure 4.17).
To that end, we took advantage of publicly available ATAC-seq data [M. R. Corces et
al. 2016] and identified regions that exhibited open chromatin specifically in different
hematopoietic cell types (cf. Section 4.4.1). We observed variable DNAmethylation pat-
terns across regions and cell types. Regions specifically accessible in HSCs generally ex-
hibited low overall methylation levels across all cell types. Regionswith open chromatin
in differentiated blood cells were highly methylated in most progenitors and lost methy-
lation only in the respective differentiated cell types. Strikingly, regions with accessible
chromatin in myeloid and lymphoid progenitor cell types were markedly hypomethy-
lated in differentiated cells of the respective lineage. In contrast to regions which are
accessible in lymphoid progenitors, peaks specifically open in CMPs already exhibit re-
duced methylation at the level of myeloid progenitor cells. These results could indicate
that lineage-specific opening of chromatin precedes demethylation in hematopoiesis.

Figure 4.16 : (On the next page) Agreement of cluster assignments by selected clustering
methods. (a) Cluster and cell type assignments by selected clustering meth-
ods and parameter settings. Rows in the heatmap correspond tomethylation
profiles in putative regulatory regions in progenitor samples fromperipheral
blood and columns correspond to different clustering methods and param-
eter settings. Points of different colors and shapes denote assignments to
different clusters for each method. Colored boxes indicate the cell type most
associated with each cluster, i.e. the cell type that had the maximum Jaccard
Index with the respective cluster. The annotated cell types of all samples
are shown on the left. The applied clustering methods include k-means clus-
tering, hierarchical clustering with different parameter settings for the em-
ployed distance method (Euclidean distance and 1-correlation) and linkage
method (average linkage andWard’s linkage), Partitioning AroundMedoids
(PAM) and spectral clustering. For eachmethod the number of clusters k was
varied (k ∈ {3, 5, 10, 20}). (b) Heatmap of pairwise agreement between clus-
teringmethods. The adjustedRand index [Hubert andArabie 1985]was used
to assess the agreement of clusterings among each other and with the anno-
tated cell type. Thismeasure quantifies the number of agreements in relation
to the number of disagreements between clusters and additionally accounts
for agreements due to chance. (c) Dendrogram for hierarchical clustering us-
ing 1-Pearson correlation as distance metric and Ward’s linkage method (as
implemented by the method parameter ward.D in the hclust function of
the stats R package). Colors denote annotated cell types.
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Figure 4.17: DNA methylation in cell-type-specific regions of open chromatin. The
heatmap on the left shows average DNA methylation levels in cell-type-
specific regions of open chromatin (rows) across hematopoietic progenitors
and differentiated blood cell types (columns). Numbers in parentheses de-
note the number of accessible regions specific for a cell type. The label “All
peaks” refers to all regions of open chromatin in the dataset. The violin and
box plots in the middle show the distributions of DNA methylation levels
for cell type-specific open-chromatin regions in selected hematopoietic cell
types. The composite plots on the right show DNAmethylation levels locally
averaged across regions. In these plots, CpGs in the neighborhood of the
ATAC-seq peak regions were annotated with coordinates relative to the start
and end of the regions (x-axis). CpGs with a relative coordinate of 0 and 1 are
located at the start and end of a peak and coordinates -1 and 2 correspond to
one peak length upstream and downstream of the peak. The curves represent
cubic spline smoothers of DNA methylation levels for each cell type.
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Figure 4.18: Overview of the statistical learning approach for cell type prediction. After
statistical validation, the described models were used to infer the cell type
based on DNAmethylation levels in regulatory regions, to identify and char-
acterize signature regions and to infer similarities between cell types based
on prediction probabilities.

Statistical Modeling Identifies Epigenetic Signatures Distinctive of Cell Lineage

Given that DNA methylation patterns could discriminate between myeloid, lymphoid,
and multipotent cells in unsupervised analyses, we investigated whether DNA methy-
lation maps could also identify individual stem/progenitor cell types in a supervised
learning setting. For this purpose, we inferred classifiers that were able to accurately
predict cell types based on DNA methylation signatures of regulatory regions of the
genome (Figure 4.18).
Specifically, we trained and evaluated elastic net-regularized general linear mod-

els [Friedman et al. 2010; Krishnapuram et al. 2005] for predicting the cell type of each
sample. These classifierswere trained on theDNAmethylation levels of all BLUEPRINT
Regulatory Build regions in each of the 319 10-cell, 50-cell, and 1,000-cell replicates from
peripheral blood. Model performance was assessed based on test set results in a 10-
fold cross-validation setting (Table 4.3). Misclassifications occurred most frequently be-
tween cells of the same lineage in the hematopoietic hierarchy (myeloid, lymphoid and
HSC/MPP) indicating high similarity in the DNAmethylation profiles. Overall, we ob-
served high prediction accuracy for all cell types with mean area under the ROC curve
(AUC) values between 0.85 and 1.0 (Figure 4.19). The highest accuracy was observed for
myeloid progenitor cell types (GMP, CMP, MEP) and for the MLP0 population. Con-
sistent with high similarity in methylation profiles, lymphoid progenitors (CLP, MLP1,
MLP2, MLP3) were generally more difficult to distinguish, but still received high AUC
values. Lower AUC values indicative of higher variation in DNA methylation patterns
were observed for the HSC andMLP2 cell populations, which were frequently confused
with MPPs and CLPs, respectively (Table 4.3). In order to assess the robustness of the
statistical learning method approach, we also employed alternative models using Sup-
port VectorMachines (SVMs) with a linear kernel [Cortes and Vapnik 1995] and random
forests [Breiman 2001]. These models achieved comparable predictive performances
(data not shown).
Additionally, we employed our classifier to single-cellmethylomedata of six cell types

(HSC, MPP, CMP, GMP, CLP and MLP0) obtained using the same µWGBS protocol.
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Figure 4.19: Performance of methylation-based classifiers for cell type prediction. ROC
curves and mean AUC values corresponding to 10-fold cross-validation are
shown separately for each cell type. Prediction was based on DNA methyla-
tion levels at regulatory regions. The ROC curves show the prediction perfor-
mance in a one-vs-all setting for each class, i.e. by sliding a threshold along
a value calculated as the difference of the class probability and the largest
class probability excluding that class. Vertical bars denote standard devia-
tions across 10-fold cross-validation folds. Diagonal dashed lines correspond
to the expected performance of random guessing (AUC = 0.5).
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Table 4.3: Confusion matrix for progenitor cell classification
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The table is based on 10-fold cross-validation of the cell type classifiers trained and evaluated on 10-cell,
50-cell, and 1,000-cell replicates sorted from peripheral blood.

Due to the low amounts of input material and sequencing coverage, a large portion of
regions contained missing values that were computationally imputed before prediction
and the resulting predictive performance was low: all replicates were classified as HSC,
which corresponds to the cell type that had overall the lowest sequencing coverage and
thus also contained the largest fraction of imputed values in our training dataset. To
mitigate these coverage-related artifacts, we trained an additional classifier on an alter-
native feature set of aggregatemethylation values for sets of genomic regions. These val-
ues were obtained by averaging the region methylation values for different categories
defined in the LOLA core database [Sheffield and Bock 2016]. This aggregation method
has previously been shown to result in robust results in the evaluation of the µWGBS
assay [Farlik et al. 2015]. Overall, the resulting classifier assigned classes corresponding
to the lineage of the annotated myeloid and lymphoid cell type (Table 4.4). A number of
cells labeled as CMP and MLP0 were classified as HSC or MPP, potentially indicating
epigenetic memory of differentiation in these cells. In contrast, a considerable fraction
HSCs and MPPs were assigned classes corresponding to myeloid or lymphoid progeni-
tors. In particular, MPPs exhibited similarity toMLP2s. These results could be reflective
of lineage-primed cell states in early progenitors.
Having established, that the classifiers were able to accurately infer cell types, we

took advantage of the regularization employed by our elastic net models. Using the
built-in feature selection, we identified 1,234 regulatory regions whose DNA methyla-
tion levels collectively distinguished hematopoietic cell types with high accuracy and
robustness (Figure 4.20a). Although we found select regions that were hypomethylated
in specific cell types of the myeloid or lymphoid lineage, cell-type-specific methylation
was not directly apparent for the majority of signature regions. These results suggest
that the inferred classifier captures more complex signatures of methylation variability
which are indicative of cell type. LOLA enrichment analysis on the 1,234 signature re-
gions identified transcription factors involved in myeloid and lymphoid differentiation,
such asGATA1, TAL1 andMYB (Figure 4.20b). Furthermore, the signature regions were
able to discriminate cell lineages in unsupervised analyses (Figure 4.21). Myeloid and
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Table 4.4: Confusion matrix for single-cell progenitor cell classification

0

2

0

1

1

0

0

0

0

0

6

5

4

4

3

4

1

1

6

7MLP0

CLP

10

0

3

0

3

5

3

0

0

0

4

1

0

0

4

1

2

0

5

18

0

0

0

0

0

0

0

2

1

3

0

0

2

10

0

0

0

0

0

0GMP

CMP

MPP

HSC

H
SC

M
PP

C
M

P
M

EP
G

M
P

C
LP

M
LP

0
M

LP
1

M
LP

2
M

LP
3

Predicted class

An
no

ta
te

d 
ce

ll 
ty

pe

The table is based on predicting the cell type of single cells using a classifier trained on 10-cell, 50-cell, and
1,000-cell replicates sorted from peripheral blood, using aggregate methylation values across region sets
contained in the LOLA core database [Sheffield and Bock 2016].

lymphoid progenitor samples separated in the first principal component but no clear
clustering within each group was apparent. Differentiated cell types of the myeloid
and lymphoid lineage formed separate clusters in the vicinity of their corresponding
progenitors. HSCs and MPPs were more dispersed due to their heterogeneity in DNA
methylation patterns.
Finally, we inferred a data-drivenmodel of human hematopoiesis from our classifiers.

To that end, we derived separate classifiers that were trained on all peripheral blood
progenitor replicates, excluding one cell type (leave-one-class-out models). These mod-
els were then used to classify replicates of the excluded cell type into the remaining
classes. We used the class probabilities assigned by the respective classifiers to derive a
network reflecting similarities between the cell types. Here, the predicted class probabil-
ities (Figure 4.22) served as a measure of cell type similarity. The resulting network (Fig-
ure 4.23) showed high intra-lineage similarity between cell types and captured cell type
relationships that were in accordancewith the currentmodels of hematopoietic differen-
tiation. For instance, HSCs were predicted as MPP with high probability and vice versa.
MPPs possessed moderate probabilities to be classified as cells from the myeloid and
lymphoid lineage, possibly indicating primed samples in our dataset. Cells within the
myeloid and lymphoid lineages exhibited high similarity and cross-prediction patterns
appear nearly symmetric. Notably, MEPs exhibited a limited tendency to be classified
as MLP0, which is in line with a possible myeloid potential of MLPs. Mature cell types
were frequently classified within their respective lineage. Interestingly, T cells and NK
cells also exhibited limited probabilities to be placed into myeloid classes.

4.4.3 Discussion

The epigenetic basis of regulatory mechanisms that direct hematopoietic differenti-
ation are just beginning to be understood. While many epigenetic signatures have
been charted genome-wide across the hematopoietic hierarchy in mice [Paul et al. 2015;
Cabezas-Wallscheid et al. 2014; Lara-Astiaso et al. 2014; Bock et al. 2012] comprehen-
sive profiling of epigenomic marks in human blood progenitor cells has been limited
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Figure 4.20: Characterization of progenitor cell type signature regions. (a)Heatmap show-
ing average DNA methylation levels of merged replicates (one column for
each cell type and donor) for the 1,234 signature regions extracted from the
trained classifier. Regions (rows) were arranged using hierarchical clustering
with Euclidean distance and complete linkage. (b) LOLA enrichment analy-
sis [Sheffield and Bock 2016] of selected TFBS in regulatory regions associated
with the signature regions. Colored dots represent ChIP-seq experiments in
the indicated cell type or lineage. The size of the dots represents log-odds
ratios computed using Fisher’s exact test. Panel (b) by courtesy of Johanna
Klughammer.

to RNA expression [Novershtern et al. 2011; L. Chen et al. 2014] and maps of chromatin
accessibility [M. R. Corces et al. 2016]. Here, we complement this view by establishing
genome-wide profiles of DNAmethylation dynamics in human hematopoietic differen-
tiation. The generatedmethylomemaps provide a comprehensive resource for studying
epigenetic regulation of cell differentiation and blood-related diseases.
A key result of our study is the identification ofDNAmethylation signatures thatwere

not only definitive of cell lineage, but that could also discriminate between individual
cell types. In our approach, we specifically selected elastic net-regularized general linear
models due to their high predictive performance and interpretability through build-in
feature weighting and regularization. After ascertaining that predictive performance
was high in our models, we exploited the interpretability of derived model parame-
ters. We used feature selection by regularization to identify epigenetic signatures that
were characteristic of cell type and could be partially explained by lineage-specific tran-
scription factor binding. The majority of individual signature regions exhibited only
small DNA methylation differences between cell types, but collectively these regions
supported highly accurate cell type prediction. We showed that prediction based on
DNA methylation in regulatory regions was able to place individual cell populations
into their developmental context. Using epigenome-based cell type prediction as a quan-
titative measure of relatedness between cell types, we inferred a data-driven model of
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Figure 4.21: Principal component analysis of hematopoietic samples based on DNA
methylation levels in signature regions. The first two principal components
are shown and the numbers in parentheses indicate the percent variance ex-
plained. Point colors indicate cell types of merged samples (one point for
each cell type and donor). Progenitor cell types are shown with a solid fill
and differentiated cell types have no fill.

human hematopoiesis directly from the DNA methylation maps. Our predictive mod-
eling approach thereby provides an avenue that can lead to a robust, quantitative def-
inition of cell type which is complementary to methods relying purely on cell surface
marker expression. States of individual replicates or even single-cells can be defined
based on their similarity to reference cell types which can be derived from prediction
probabilities.
In addition to peripheral blood samples, we also profiled DNA methylation in HSCs

andMPPs from bone marrow, cord blood and fetal liver and observed differences in the
methylation patterns between different tissue sources [Farlik et al. 2016]. In particular,
we identified regulatory regions that exhibited markedly lower DNA methylation lev-
els in peripheral blood HSCs compared to other sources and that were associated with
binding sites of the CTCF insulator and cohesine complex proteins. These hypomethyla-
tion events could reflect changes in chromatin architecture and three-dimensional struc-
ture that ultimately control gene expression. Peripheral blood is readily accessible and
therefore highly relevant for clinical diagnosis, while bonemarrow, cord blood and fetal
liver are also commonly used in basic research. Understanding these epigenetic differ-
ences and related changes in gene regulation in hematopoietic cells of different sources
is therefore of high importance for reproducible and transferable research.
A large portion of the variation in our dataset originates from differential methyla-

tion between the myeloid and lymphoid lineage. In [Farlik et al. 2016], we investigated
these differences in detail and observed an asymmetric pattern: while regulatory re-
gions showing low methylation levels in myeloid cells and high methylation levels in
lymphoid cells were enriched for binding sites of transcription factors associated with
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Figure 4.22: Distributions of cross-class probability for progenitor cell types. Violin plots
and boxplots show the distribution of class probabilities across all samples
of a given cell type according to the leave-one-class-out classifiers (cf. Sec-
tion 4.4.1).
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hematopoietic differentiation, lymphoid malignancy and myeloid differentiation, re-
gions that were hypermethylated in the myeloid lineage compared to the lymphoid
lineage did not exhibit such characteristic transcription factor binding. Related studies
have found similar patterns in murine hematopoiesis [Bock et al. 2012]. Together with
experiments that showed only limited lymphoid differentiation when DNA methyla-
tion levels were reduced by knocking out methyltransferases in mice [Bröske et al. 2009],
the data support the view that myeloid lineage commitment might represent a default
differentiation pathway which is suppressed by DNA methylation in the lymphoid lin-
eage.
In order to dissect early lymphoid differentiation, four different populations of MLP

were characterized. Using in vitro assays, we observed multi-lineage differentiation po-
tential of early lymphoid progenitors [Farlik et al. 2016]. MLP0 cells exhibited the highest
potential to give rise to cell colonies of lymphoid as well myeloid cells in these assays.
This trait was in accordance with distinctive DNA methylation patterns in sets of re-
gions which were defined based on transcription factor binding profiles. These patterns
could be reflective of cellular plasticity and could help to shed light on the regulatory
basis of multi-lineage potential that has recently been discussed [Notta et al. 2016; Paul
et al. 2015].
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Additionally, we supplemented our dataset with RNA-expression profiles for
hematopoietic progenitor cell types. However, when we related differential gene ex-
pression between cells of the myeloid and lymphoid lineages to differential methyla-
tion, we observed only moderate association between expression and DNA methyla-
tion in promoter regions and only found a small number of myeloid and lymphoid
regulators with concordant differences [Farlik et al. 2016]. In contrast, integration of
our methylation data with profiles of chromatin accessibility, which were published
recently [M. R. Corces et al. 2016], revealed myeloid-specific and lymphoid-specific re-
gions of open chromatin in progenitors that exhibit lowmethylation levels inmature cell
types of the corresponding lineage. Lineage-specific opening of chromatin seems to pre-
cede DNA demethylation events in mature cell types. Chromatin opening could thus
prime regulatory regions for stable activation through loss of methylation in a cell-type-
specific manner. Together these results support the view that epigenetic regulation of
hematopoietic differentiation involves mechanisms that go far beyond promoter-driven
regulation. For instance, the involvement of distal elements such as enhancers and in-
sulators and associated epigenetic marks remains to be elucidated.
A key technical challenge of our analysis derives from the relatively low sequencing

coverage obtained for replicates with low cell numbers. We addressed this issue by as-
sessing the reproducibility of DNAmethylation profiles in individual replicates and em-
ployed a composite approach in which we merged the methylation levels of all 10-cell,
50-cell and 1,000-cell replicates for each cell type, tissue source and donor. We also eval-
uated a panel of unsupervised analysis methods with different parameter settings and
concluded that the biological variation in the data could be captured across methods.
Rather than studying DNA methylation on the level of single CpGs, in which coverage
artifacts are extensive, we focused our analyses on the aggregate methylation profiles
in genomic regions, such as putative regulatory elements. This approach not only miti-
gated biases due to coverage but also reduced the statistical complexity inherent to large
feature numbers. When analyzing single-cell methylomes (data shown in [Farlik et al.
2016]), further aggregation across a panel of several hundred sets of such regions is ad-
visable and has proven highly effective in low-input DNA methylation profiling [Farlik
et al. 2015].
In summary, we identified signatures of human hematopoietic differentiation in-

scribed in DNA methylation. Understanding these signatures is not only important for
understanding and tackling diseases such as leukemia and immune defects, but also
as a model of how complex and dynamic tissues are formed and maintained by stem
cell differentiation and lineage commitment. The described approach (low-input DNA
methylation sequencing combined with predictive modeling) is directly transferable to
dissecting the in vivodynamics of other tissues such as the gut, skin and brain. Moreover,
given the increasing interest and technical feasibility of DNA methylation biomarkers
in clinical applications [Bock, Halbritter, et al. 2016], unraveling patterns of methyla-
tion involved in immunity-related and cardiovascular diseases, blood-cell malignancy
as well as vaccine development could represent an important step for advancing preci-
sion medicine.



5
Analyzing and Manipulating DNA Methylation

Patterns in Leukemia

The work described in this chapter has been conducted in collaboration
with Giovanni Amabile and Annalisa Di Ruscio and has been published
in [Amabile et al. 2015]. In the project, I was responsible for the bioinfor-
matic analysis of DNA methylation data obtained by Reduced Represen-
tation Bisulfite Sequencing (RRBS) and designed corresponding figures.
The benchwork was conducted by Giovanni Amabile, Annalisa Di Ruscio,
Robert S. Welner, Alexander K. Ebralidze, Hong Zhang, Lihua Qi, Michelle
M. Le Beau and Elena Levantini. The manuscript was written by Giovanni
Amabile, Annalisa Di Ruscio, Christoph Bock and Daniel G. Tennen. Fig-
ures in this chapter have been adapted from the publication.

This chapter expands on the characterization of the DNA methylation landscape in hu-
man hematopoiesis by providing a perspective on the methylation dynamics that occur
in malignant blood cells. We investigated how DNA methylation patterns are altered
in models for human leukemia and how these patterns can be reverted using cellular
reprogramming.
Chronic Myeloid Leukemia (CML) is characterized by a genetic translocation of the

q34.1 region of chromosome 9 to the q11.2 region of chromosome 22 which gives rise
to the BCR-ABL fusion gene and the so-called Philadelphia chromosome. Through its
tyrosine kinase activity, the protein product of BCR-ABL can facilitate the increased
proliferation of hematopoietic stem and progenitor cells [Machova Polakova et al. 2013].
Therefore, kinase inhibitors such as imatinib represent frequent treatment options for
CML patients. Furthermore, aberrant DNA methylation in human leukemia is func-
tionally involved in the onset and progression of cancer [Feinberg et al. 2006; Baylin
and Jones 2011; Jones 2012]. In CML, aberrant methylation patterns in regulator genes
have been implicated in cell proliferation and potential resistance to kinase inhibitor
treatment. These findings are indicative of a complex interplay between genetic and
epigenetic aberrations during leukemia progression. Using cellular reprogramming, it is
possible to erase most tissue-specific epigenetic patterns and to establish a pluripotent
cell state that resembles that of embryonic stem cells [Mikkelsen et al. 2008]. Induced
Pluripotent Stem Cells (iPSCs) can be generated from a number of cell types, including
malignant cells [Carette et al. 2010; Miyoshi et al. 2010; Kumano et al. 2012; Stricker et al.
2013]. Therefore, reprogramming represents a suitable tool for unraveling the relation-
ships between epigenetic markup, proliferative activity, pluripotency and malignancy.
Employing the methods and pipelines described in Chapter 3, we characterized DNA

methylation profiles in human leukemia cells and iPSC clones derived from these cells.
We show that cellular reprogramming is able to reset cancer-related DNA methylation
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signatures to those typical for pluripotent cells. Moreover, when transplanted into im-
munocompromised mice, reprogrammed leukemia cells exhibited reduced oncogenic
potential. Finally, we describe aberrant methylation patterns that were induced when
BCR-ABL was activated in transgenic mouse models.

5.1 Methods

Cell Cultures and Transgenic Mouse Models

K562 and KBM7 human leukemia cell lines, which harbor the BCR-ABL fusion gene,
were cultured as described in [Amabile et al. 2015]. Primary CML cells were obtained
from the bone marrow of two donors. Additionally, CD34+ blood progenitor cells were
profiled in the study. All cell types were reprogrammed using retroviral vectors carry-
ing the transcription factor genesOCT4, SOX2,KLF4 and c-MYC andwere cultured as de-
scribed in [Amabile et al. 2015]. Two iPSC clones reprogrammed from each of the K562,
KBM7 cell lines and fromprimaryCML cellswere picked for further analysis. One clone
was picked from the reprogrammed CD34+ cell populations. For primary CML, iPSCs
were generated from a single donor. In the following, iPSC lines derived from leukemic
cells are referred to as Leukemia Induced Pluripotent StemCell (LiPSC). KBM7 cells and
derived LiPSCs were provided by the Brummelkamp laboratory [Carette et al. 2010].
Furthermore, hematopoietic progenitor cell populations (Lin-, Sca1+, Kit+ (LSK)),

were selected from bone marrow mononuclear cells extracted from a transgenic mouse
model in which the expression of BCR-ABL is subject to the control of an enhancer of
the Scl (Stem Cell Leukemia) gene, thus allowing for the mostly specific expression of
BCR-ABL in progenitor cells. This expression can be conditionally induced in the cells
by withdrawal of tetracycline from the drinking water of the mice [Koschmieder et al.
2005] and can be reversed (rescued)when the drinkingwater is re-substitutedwith tetra-
cycline.

Generation and Analysis of RRBS Data

RRBS was conducted on genomic DNA isolated from K562, KBM7 and primary CML
cells as well as their reprogrammed counterparts and CD34+-iPSCs, as described in
[Amabile et al. 2015]. Sequencing libraries were prepared from two replicates cor-
responding to different passage numbers for K562, KBM7 and LiPSCs and in tripli-
cate for CD34+-iPSCs. Sequencing was performed on two libraries containing size-
selected fractions of 40-120 bp and 120-220 bp respectively, using an Illumina GA IIx
machine with a read length of 36 bp and an Illumina HiSeq with read length of 76 bp
(CD34+-iPSCs). Analogously, RRBS profiles were generated for two replicates of the
non-induced (control), induced (leukemic) and rescued state of bone marrow cells from
the transgenic mouse model. Sequencing, primary read processing and alignment was
conducted at the Cancer Science Institute (National University of Singapore) and, for
CD34+-iPSCs, at the CeMM Research Center for Molecular Medicine of the Austrian
Academy of Sciences (Vienna, Austria). Sequencing reads were mapped to the human
genome assembly NCBI37/hg19 and mm9 for human and mouse data, respectively, us-
ing RRBSMAP [Xi et al. 2012], allowing for two mismatches. CD34+-iPSC reads were
mapped using BSMAP [Xi andW. Li 2009]. RRBS alignment data for humanH1ESC line
passage 37 and 38 andmethylation call data for CD34+ cells were obtained from theNIH
Roadmap Epigenomics Mapping Consortium [Roadmap Epigenomics Consortium et al.
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2015]. Methylation levels were called using the Bis-SNP software [Liu et al. 2012]. Fur-
ther, integrative processing of methylation data was performed using RnBeads version
0.99.17 [Assenov et al. 2014] (cf. Section 3.2). After filtering of CpGs with low coverage
across more than 50 % of the samples and of CpGs on the sex chromosomes, the integra-
tive analysis was based on 1,009,592 CpGs. Promoter methylation was defined as the
mean methylation level for CpGs within a window of 1,500 bp to 500 bp of the TSS of
Ensembl-annotated genes. Differentially methylated sites and regions were identified
using the ranking-based approach described in Section 3.2.

Data Availability

Sequencing reads and DNAmethylation level data have been deposited to the GEO un-
der accession number GSE50456. Full RnBeads analysis reports, including tables char-
acterizing differential methylation, can be accessed from the supplementary website1.

5.2 Results

In order to dissect theDNAmethylation dynamics during the reprogramming of human
leukemia cells to a pluripotent state, LiPSC lines were generated from K562 and KBM7
CML cell lines as well as from primary bone marrow cells from a BCR-ABL positive
donor and CD34+ hematopoietic progenitor cells. Analysis of genotyping data assayed
by SNP arrays confirmed that the reprogrammed clones contained the samemutational
patterns as their parental cells [Amabile et al. 2015]. We obtained high-resolution DNA
methylation profiles for leukemia cells and all iPSCs using RRBS. Additionally, RRBS
data for human ESCs (H1 cell line) and CD34+ assayed by the REMC were included in
the analysis.

Leukemia-Specific Methylation Patterns are Reprogrammed During Induction of
Pluripotency

Cellular reprogramming of leukemia cells led to widespread changes in methylation
profiles. Globally, LiPSCs exhibited genome-wide hypomethylation compared to their
leukemic counterparts. The effect was more pronounced during the reprogramming
of cell lines than in the primary CML samples, when considering variation across all
samples (Figure 5.1). Although the overall methylation patterns of reprogrammed cells
were highly similar to those of ESCs, hierarchical clustering generally grouped repro-
grammed cells along with the cells from which they were derived, thereby indicating
the retention of epigeneticmemoryduring the generation of iPSCs [Kim et al. 2010; Lister
et al. 2011; Doi et al. 2009; Bock et al. 2011]. Notably, K562 cells and their derived LiPSCs
exhibited marked hypermethylation in the promoters that varied most in the dataset
(Figure 5.1). These patterns clearly distinguished them from other cells included in the
analysis and thus represent cell-line-specific methylation signatures.
Focusing on regions differentially methylated between leukemia cells and LiPSCs,

reprogramming-induced hypomethylation was observed in CpG islands, promoters
and most common types of repetitive genomic elements (Figure 5.2). This effect was
most pronounced in K562 andKBM7 cell lines, but was also observable in primary CML
cells. Notably, differences between CD34+ progenitor cells and their reprogrammed

1 http://reprogramming-leukemia.computational-epigenetics.org

http://reprogramming-leukemia.computational-epigenetics.org
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Figure 5.1: DNAmethylation patterns in promoters are reprogrammed during the gener-
ation of iPSC. The heatmap shows mean methylation levels in the 402 (2 %)
most variable promoters (rows) across all samples (columns). The dendro-
gram above shows the result of hierarchical clustering according to all sur-
veyed CpGs using Manhattan distance and average linkage. The sample col-
oring below indicates state of reprogramming and pluripotency.
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counterparts were low in those regions compared to the changes associated with repro-
gramming cancer cells. Examples of gene promoters hypomethylated in reprogrammed
leukemia cells include developmental and pluripotency-associated transcription factors
such as SALL4 andHOXA5 as well as candidate tumor suppressor genes such as BRCA1
(Figure 5.3).
Employing the RnBeads’ ranking-based approach, we identified those promoters that

exhibitedmost evidence for differential methylation between all replicates of LiPSC and
their parental leukemia cells (Figure 5.4). The majority of differentially methylated pro-
moters lostmethylation in LiPSCs. These differenceswere associatedwith development,
differentiation and cell signaling when conducting a GO enrichment analysis on the bio-
logical process ontology (Figure 5.4b). In contrast, the promoters exhibiting higherDNA
methylation in the parental, leukemic cellswere enriched for hematopoiesis-related cate-
gories such as lymphocyte activation and immune response. To obtain a more unbiased
view on genome-wide changes in methylation during the reprogramming of leukemia
cells, we also characterized the most differentially methylated genome-wide tiling re-
gions using EpiExplorer [Halachev et al. 2012] (Figure 5.5). We qualitatively identified
enrichment of differential methylation in regulatory regions associated with CpG is-
lands, promoters, enhancers as well as PcG protein repression. The latter is consistent
with previous studies which associated hypermethylation in cancer with Polycomb tar-
geting in ESCs [Ohm et al. 2007; Schlesinger et al. 2007; Widschwendter et al. 2007]. More-
over, in line with previous findings on aberrant methylation in cancer [Hon et al. 2012;
Berman et al. 2012], we also observed differential methylation in putative enhancer re-
gions (marked by H3K4me1 and H3K27ac and respective chromatin states).
Taken together, our results suggest the erasure of cancer-associated DNAmethylation

patterns during reprogramming. Pluripotency and developmental pathways become
activated due to the demethylation of respective promoters and regulatory elements
while a comparatively small number of hematopoiesis-associated genes are inactivated
through targeted hypermethylation.

DNA Methylation Patterns in a BCR-ABL Inducible Mouse Model

In addition to the methylomes of human cell lines, single-CpG resolution DNA methy-
lation maps of hematopoietic progenitor cells obtained from a CMLmouse model were
generated. In this model, the expression of BCR-ABL can be induced by the withdrawal
of tetracycline from the drinking water thereby leading to a chronic myoproliferative
disorder closely resembling CML. This expression can be reverted when tetracycline is
re-added. We used RRBS to profile methylation in (i) control mice, (ii) mice in which
BCR-ABL was induced and (iii) mice in which the expression was reduced following
induction (rescued). However these validation experiments were limited in terms of
genome-wide coverage and sample replicates: after filtering for CpGs located on the
sex chromosomes and CpGs with low read coverage, DNA methylation measurements
for 788,407 sites were retained. Additionally, only two replicates were available for each
condition. Therefore, we were only able make qualitative statements and our conclu-
sions need to be subjected to more rigorous validation. Globally, due to the low number
of replicates per condition, we detected modest, statistically insignificant differences in
DNA methylation patterns between conditions. Nonetheless, we observed patterns of
aberrantmethylation upon BCR-ABL expression, when focusing our analysis on regions
gaining methylation in induced mice compared to control mice (Figure 5.6). Compared
to control mice, leukemic mice exhibited a moderate, global increase in methylation
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Figure 5.2: Reprogramming erases aberrant DNA methylation patterns in LiPSCs.
Heatmaps visualize average DNA methylation levels in (a) selected region
types and (b) selected families of repetitive elements. For each region type,
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according to a ranking score in differential analysis comparing the group of
K562, KBM7 and primary CML samples to the group including all derived iPS
cell lines are shown. The dendrograms above show the result of hierarchical
clustering according to all surveyed CpGs using Manhattan distance and av-
erage linkage. Methylation levels for replicates and for the two primary CML
donors are averaged.



5.2 Results 117

K562
LiPS K562 s1
LiPS K562 s2

KBM7
LiPS KBM7 s1
LiPS KBM7 s2

CML primary
LiPS CML s1
LiPS CML s2

hES H1
iPS CD34

CD34

SALL4
CpG islands

chr20
50.4 Mb 50.405 Mb 50.41 Mb 50.415 Mb 50.42 Mb

K562
LiPS K562 s1
LiPS K562 s2

KBM7
LiPS KBM7 s1
LiPS KBM7 s2

CML primary
LiPS CML s1
LiPS CML s2

hES H1
iPS CD34

CD34

HOXA5
CpG islands

chr7
27.181 Mb 27.182 Mb 27.183 Mb

K562
LiPS K562 s1
LiPS K562 s2

KBM7
LiPS KBM7 s1
LiPS KBM7 s2

CML primary
LiPS CML s1
LiPS CML s2

hES H1
iPS CD34

CD34

BRCA1
CpG islands

chr17
41.2 Mb 41.21 Mb 41.22 Mb 41.23 Mb 41.24 Mb 41.25 Mb 41.26 Mb 41.27 Mb

a

b

c

1.00.0 0.5

DNA methylation Leukemia cell
LiPSC
ESC

Figure 5.3: Leukemia-specific methylation patterns are reset in regulatory gene loci. The
(a) SALL4, (b) HOXA5 and (c) BRCA1 loci are shown. Coordinates for Ensembl
genes and CpG islands are represented by yellow and green bars respectively.
A heatmap in which each column depicts the methylation levels of a single
CpG, averaged across replicates is shown below.



118 5 DNAMETHYLATION PATTERNS IN LEUKEMIA

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

0.00

0.25

0.50

0.75

1.00

0.00 0.25 0.50 0.75 1.00
Mean promoter methylation (LiPSC)

M
ea

n 
pr

om
ot

er
 m

et
hy

la
tio

n 
(C

M
L)

a b

8.81×10-3

9.3×10-4

8.64×10-4

4.91×10-4

2.62×10-4

5.59×10-5

lymphocyte
differentiation

defense response

lymphocyte
aggregation

regulation of T cell
differentiation

homeostasis
of number of cells

leukocyte cell−cell
adhesion

0 1 2 3 4
-log10(p−value)

Hypermethylated

2.27 × 10-4

2.9 × 10-4

5.13 × 10-4

1.12 × 10-3

1.35 × 10-3

7.3 × 10-3GPCR signaling
pathway

neuron
differentiation

organ
morphogenesis

tissue development

multicellular organ
development

developmental
process

0 1 2 3
-log10(p−value)

Hypomethylated

Figure 5.4: Differentially methylated promoters in LiPSCs are associated with pluripo-
tency and hematopoiesis. (a) Scatterplot showing mean promoter methyla-
tion levels of LiPSCs and leukemia cells. The 500 promoters with the highest
extent of differential methylation (according to the ranking-based approach
described in Section 3.2) are plotted in red. Point density is shown as blue
shading. (b) p-values for selected GO terms enriched in the 500 most hyper-
methylated and hypomethylated promoters in LiPSCs compared to leukemia
cells, respectively. p-values were computed using RnBeads and the GOstats
R package [Falcon and R. Gentleman 2007].
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Figure 5.5: Differentially methylated regions in LiPSCs are associated with regulatory re-
gions in the genome. Bars plots indicate overlaps with genomic and epige-
nomic features obtained by an EpiExplorer analysis [Halachev et al. 2012]. The
500 highest-ranking differentially methylated tiling regions (blue) are com-
paredwith a background of 72,469 of 5-kb tiling regions covered in the dataset
(red). Features include ChIP-seq peaks and chromatin state segmentations ob-
tained from the ENCODE project [ENCODE Project Consortium 2012] and an-
notations obtained from the UCSC Genome Browser [Kent et al. 2002]. Over-
laps of at least 1 bp are shown as percentage of all annotated regions.
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Figure 5.6: BCR-ABL expression induces aberrant methylation in mouse hematopoietic
progenitor cells. Heatmaps show the average methylation levels in genes (a),
promoters (b) and CpG islands (c), which exhibit evidence of hypermethyla-
tion in BCR-ABL induced mice compared to control mice (difference in mean
methylation levels > 0.2). Methylation levels of the two replicates are averaged
for each condition.

levels associated with CpG islands and promoters. Upon BCR-ABL induction, we ob-
served hypermethylation events at select gene promoters linked to development, such
as Hoxb1 (data not shown). Globally, the rescued state appeared to be more similar to
control state than to the induced state. It remains to be elucidated how these altered
DNA methylation patterns are mechanistically linked to the expression of BCR-ABL.

5.3 Experimental Evidence and Discussion

Using experimental methods, we also tried to answer the question of whether DNA
methylation changes inherent to induced pluripotency result in resetting the cells to
a “normal” epigenomic state associated with reduced malignancy. Experimental evi-
dence in [Amabile et al. 2015] indeed confirmed that reprogramming leads to a reduced
oncogenic potential inmousemodels: LiPSC-derived cells fromprimary CML andK562
could be differentiated towardsmyeloid and erythroid lineages (as measured by surface
marker expression) in spite of the genetic alteration of BCR-ABL. In contrast, leukemic
cells appeared to be locked in an undifferentiated cell state. Interestingly, when DNA
methylation was depleted by treating leukemic cells with the demethylating agent 5-
Azacytidine (AZA) they exhibited differentiation potential towards cells of the myeloid
lineage, indicating that aberrant DNA methylation could disrupt differentiation. More-
over, transplantation of leukemia cells into immunocompromised mice led to a malig-
nant phenotype indicated by infiltration of the spleen by these cells and lower survival
rates. In contrast, mice transplanted with LiPSCs-derived cells showed no evidence of
disease onset.
Furthermore, mice in which the expression of BCR-ABL was induced developed

leukemia and had low survival rates. In contrast, mice in which either the genetic cause
of leukemiawas inhibited by blocking BCR-ABL using the tyrosine kinase inhibitor ima-
tinib or in which DNA methylation patterns were reverted by use of AZA exhibited a
relatively normal phenotype. In addition, survival of immunocompromised mice trans-
planted with BCR-ABL-induced leukemic bone marrow was significantly reduced com-
pared to survival ofmice transplantedwith imatinib orAZA-treated, BCR-ABL-induced
bone marrow. These results suggest that malignancy is associated with widespread
changes in DNA methylation linked to BCR-ABL expression. When these changes are
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artificially reverted through AZA treatment or through blocking of BCR-ABL via ima-
tinib, a relatively normal phenotype can be re-established.
In contrast to the reduced oncogenic potential we observe in LiPSCs, a related study

reported that neural progenitor cells derived from reprogrammed glioblastoma cells
retained their malignancy [Stricker et al. 2013]. This indicates that different tumor types
are differentially driven by genetic and epigenetic events. In leukemia, genetic lesions
and epigenetic aberrations seem to contribute to disease development in concert while
glioblastoma are apparently more driven by alterations in DNA sequence.
In conclusion, our results emphasize the close interconnection of genetic and epige-

netic contributions to cancer development. In CML, the induction of BCR-ABL can trig-
ger substantial changes in DNA methylation patterns. However, the molecular mech-
anisms by which the genetic lesions are responsible for these characteristic methyla-
tion signatures are not yet well understood. Importantly, the changes in DNA methy-
lation can, to a certain extent, be reset by means of cellular reprogramming. Finally,
our findings lend further support to the relevance of studying the potential of DNA-
demethylating drugs for anti-cancer therapy.



6
Perspective

More than 200 canonical cell types of the human body have been labeled [Alberts et
al. 2008]. These cells carry largely identical DNA sequences and yet they fulfill many
different functions and exhibit markedly different phenotypes and varying degrees of
specialization. These attributes are governed by regulatory mechanisms and their in-
herent epigenetic profiles. Furthermore, cells of the same canonical type can display
a high degree of heterogeneity, indicating the need for more detailed descriptions of
cell state. This thesis provides a detailed account on the analysis of DNA methylation
signatures of cell identity. Methods and computational tools for the identification, char-
acterization and comparison of these signatures have been developed in the context of
this work. This chapter concludes the thesis by summarizing its key developments and
results and provides a broad perspective on their role in the interpretation of epigenome
maps.

6.1 Conclusion

Amultitude of software packages for processing of epigenome data are available in pub-
lic repositories such as GitHub1, SourceForge2 and Bioconductor [R. C. Gentleman et
al. 2004]. These packages provide access to established methods in the field as well as
to novel approaches for specific tasks and thus represent the building blocks for com-
putational pipelines. Emerging guidelines and standards in DNAmethylation analysis
have recently been outlined [Bock 2012] and are starting to be standardized as the result
of expert discussions [Michels et al. 2013]. Chapter 3 presents software tools such as
RnBeads and epiRepeatR which implement these standards that are now widely used
in epigenome analysis. Furthermore, we developed a pipeline for the quantification of
DNA methylation levels from aligned bisulfite sequencing reads that has been applied
and validated in two large-scale methylome studies [Ziller et al. 2011; Ziller et al. 2013]
and continues to be employed. In recent years, the development of user-friendly soft-
ware tools that can be generally applied when interpreting epigenome data has shifted
into focus. Prime examples include Galaxy [Giardine et al. 2005] and EpiExplorer [Ha-
lachev et al. 2012]. The availability of such tools enables researchers with little back-
ground in computer science or bioinformatics to conduct basic (epi)genome-wide anal-
yses. In line with this development, we have implemented RnBeads, a pipeline for the
comprehensive analysis of DNAmethylation in large datasets. RnBeads supports virtu-
ally all experimental platforms providing single-base-resolution DNAmethylationmea-
surements. The tool facilitates start-to-finish analysis by specifying only a few lines of R
code, while its modular design enables highly configurable workflows at the same time.
With 200 to 300 unique downloads from the Bioconductor repository monthly (status:

1 https://github.com
2 https://sourceforge.net

https://github.com
https://sourceforge.net
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November 2016), the tool is well-accepted by the epigenomics community. Quantify-
ing differential patterns between cell populations is important for identifying and un-
derstanding development- and disease-related changes in epigenetic regulation. In the
DNAmethylation field, a plethora of methods and implementations is available for this
task (cf. Appendix B). In this work, we devised a robust and interpretable approach
that quantifies differential methylation based on predefined genomic regions using a
ranking-based method that takes statistical significance into account in addition to ab-
solute and relative differences in methylation.
Although repetitive DNA elements are highly abundant and subject to epigenetic reg-

ulation in the human genome, only limited software tools exists for the analysis of epige-
nomic marks in repeats on the genome scale. We therefore developed epiRepeatR, a
pipeline for the global epigenomic characterization of repeat subfamilies across sam-
ples in large datasets originating from bisulfite and enrichment-based sequencing. Ap-
plying our pipeline to a dataset of human blood cells we confirmed, that particularly
young, CpG rich elements are marked by epigenomic signatures which are character-
istic of repressed chromatin, such as DNA methylation, H3K27me3 and H3K9me3. In
contrast, some Alu elements co-localize with epigenomic marks indicative of enhancers
and promoters which potentially indicates a gene-regulatory role of repetitive element
sequences.
Chapter 4, we dissected the in vivo DNA methylation dynamics in the human

hematopoietic system, using the tools described in Chapter 3. We identified epige-
netic signatures characteristic of cell state and explored how these signatures are altered
during cell differentiation, immune memory formation, cellular reprogramming and in
leukemia. The epigenome-wide analysis of one of the largest methylome datasets avail-
able revealed characteristic variability across blood cell types. Overall, related cell types
exhibited highly similar signatures and methylation patterns closely resembled their re-
spective cell lineage. Dynamic patterns were found in regulatory regions of the genome
that were previously annotatedwith cell-type-specific immune activity. Focusing on im-
mune memory formation in T helper cells, we discovered genome-wide, gradual loss of
methylation in regions that showed overall intermediate to high levels of DNAmethyla-
tion. The identified changes could reflect the cells’ respective proliferative history and
support a model of progressive differentiation during memory formation.
With the goal to provide a better understanding and characterization of epigenetic

changes in the early steps of the formation of blood cell identity, we obtained low-input,
whole-methylome data for hematopoietic stem and progenitor cells. Statistical mod-
eling identified signature regions indicative of cell lineage which coincided with cell-
type-specific regulatory patterns. These signatures are in agreement with a model of
hematopoietic differentiation in which a cell type is defined by a population of cells
exhibiting common epigenetic signatures, but also cell-to-cell heterogeneity (see next
section). In line with this model, we explored variation of DNAmethylation in putative
regulatory regions of the genome, identifiedDNAmethylation signatures of hematopoi-
etic differentiation and established relationships in the epigenomic patterns of different
blood cell types.
Perturbations of epigenetic signatures and their interaction with regulators that cat-

alyze transcriptional and epigenetic changes are frequently associated with disease.
Identifying and understanding disease-linked epigenomic changes is fundamental for
the discovery of biomarkers and the development of drugs that alter epigenetic signa-
tures. They could thus serve as important diagnostic tools and therapy instruments in
precisionmedicine [Bock and Lengauer 2012]. Furthermore, epigenetic regulation plays
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a role in the adaptation of immune cells to a pathogen. The methods and software pack-
ages described in this work provide versatile tools for characterizing disease-associated
changes in DNA methylation patterns. Specifically, our RnBeads software can be effi-
ciently employed for the interpretation of EWAS data and it is particularly useful for the
discovery of DNA methylation biomarkers. Methods for validating and testing these
biomarkers have recently been evaluated [Bock, Halbritter, et al. 2016] and their clinical
implementation could have considerable impact on diagnostics and the development of
personalized therapies.
Furthermore, the study described in Chapter 5 analyzes characteristic changes in

DNAmethylation induced by the reprogramming of leukemia cells to a pluripotent state
and thus provides another perspective on cancer treatment. Although some epigenetic
memory of the cell of origin was retained upon the induction of pluripotency, repro-
grammed cells lost DNA methylation patterns indicative of leukemia and were highly
reminiscent of embryonic stem cells. Ourmousemodels suggest that genetic lesions can
lead to genome-wide changes in DNAmethylation and that the resetting of epigenome
state induced by reprogramming of leukemia cells is associatedwith reduced oncogenic
potential. Therefore, assessing the efficacy of epigenome-altering drugs could be of rel-
evance for future anti-cancer therapies.

6.2 Probabilistic Interpretation of the Epigenomic Landscape

The inscription of a cell’s identity in its epigenetic signatures and the consequent lo-
calization in the epigenomic landscape relative to other cells are recurring themes in
this thesis. Huang [2012] interpreted Waddington’s epigenetic landscape [Waddington
1957] from a gene regulatory network perspective. He introduced the concept of an
“epigenetic, quasi-potential landscape” which is shaped by regulatory interactions of
genes. Gene interactions determine the stability of a cell’s state, which is characterized
by its gene expression levels. Stable cell states are described as attractors in the quasi-
potential landscape and give rise to developmental trajectories and distinct phenotypes.
The interactions, in turn, are determined by (epi-)genetic factors and are assumed to
be hard-wired for a given genome. Figure 6.1 outlines a complementary interpretation
of the epigenetic landscape that extends this view and emphasizes the regulatory role
of epigenomic factors. In this probabilistic perspective, each cell can be observed in a
state whose description comprises the entirety of DNA sequence, RNA expression, pro-
tein and metabolite levels, the structural organization of the DNA inside the nucleus
as well as regulatory parameters imprinted in patterns of DNA methylation, histone
modifications and other epigenomic marks. Thus, a cell can be placed in a hypothetical,
high-dimensional probability space and a corresponding probability distribution cap-
tures the likelihood of observing a cell in a given configuration. Due to its extremely
high dimension, describing this probability space in its entirety is unrealistic and mod-
eling approaches resort to characterizing subspaces of it. Importantly, as outlined in
Section 2.1, epigenetic factors greatly influence genomic architecture and gene expres-
sion. It is therefore crucial to include these factors in the parametrization of the prob-
ability space. The (unknown) probability distribution itself is determined by the phys-
ical and chemical properties of the factors that contribute to the cell state as well as
their interactions. Spatio-temporal factors, in particular the environment in which the
cell is placed, influence these properties. Figure 6.1 shows a two-dimensional abstrac-
tion of the high-dimensional probability space. Cell configurations profiled by various
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“omics”-techniques are sampled from the probability distribution and represent phe-
notypically distinct cell types, as for instance defined by the expression of cell surface
markers (colored dots in Figure 6.1). This sampling approximates the local maxima of
the probability distribution (triangles in Figure 6.1). The probability (or height in the
landscape) corresponds to the prevalence of cell states in an organism and therefore in-
fluences sampling. Moreover, the variance within each cell type can be attributed to
cell-to-cell heterogeneity that is due to cell-intrinsic factors (e.g. the stage in the cell cy-
cle), but partly results from stochastic variation. Additionally, depending on the profil-
ing techniques employed, this variance also includes contributions due tomeasurement
errors. Certain cell types can be relatively well defined (e.g. the light blue cell type in
Figure 6.1) or exhibit high variability (e.g. the turquoise cell type). High variability leads
to potentially ambiguous definitions of phenotypically-defined cell types. For instance,
in practice, different sorting criteria are employed by different research groups in order
to define highly similar canonical cell types. Models that describe cell types on a multi-
dimensional, continuous scale could therefore complement the discrete definition based
on surface markers and lead to more statistical notion of cell type. These models can be
used to place cells into the epigenomic landscape based on their respective representa-
tion and allow for assessing similarities and differences between cells. They could thus
be particularly useful for characterizing populations of malignant cells which exhibit
high heterogeneity.
Furthermore, currently available epigenome data are measured on the basis of cell

populations which can result in a reduced signal-to-noise ratio depending on the het-
erogeneity of the population. Particularly in the context of DNAmethylation analyses in
EWAS settings, accounting for intra-sample heterogeneity is of major importance [Jaffe
and Irizarry 2014] and computational methods have been devised for dealing with mul-
tiple cell types represented in a sample [Houseman et al. 2012; Houseman et al. 2014; Zou
et al. 2014]. As can be seen from the illustration above, cell-to-cell variability is present
even in populations that were subject to rigorous cell-sorting procedures. Emerging
single-cell technologieswill continue to provide increasing amounts of data and combin-
ing the information frommultiple levels of of “omics” data will likely result in valuable
insights into themolecular basis of this variability [Bock, Farlik, et al. 2016]. Devising cor-
responding models constitutes an important challenge in computational epigenomics.
Additionally, as stated above, the environment contributes to shaping the topology of
the epigenomic landscape and therefore also intra- and inter-cell-type heterogeneity.
Currently, environmental and temporal covariates are just beginning to be understood
and are only infrequently incorporated into respective models.
Biological processes such as cell differentiation during development and cellular re-

programming entail transitions between cell states. In the probabilistic view outlined
here, these transitions exhibit different degrees of stochasticity and can be interpreted as
directed random walks from one mode to another and they are guided by the topology
of the underlying probability distribution (dashed lines in Figure 6.1). Employing a ge-
ographical metaphor, this corresponds to traversing descending and ascending slopes
from one summit in the landscape to another. If these slopes are fairly broad, the walk
can take several alternative routes at random and multiple paths may be equally likely
whereas the path is more or less predetermined when following a narrow ridge.
In the classical view of the epigenetic landscape, elevation is associated with differ-

entiation potential and its quantification poses an important aspect in understanding
cellular plasticity. For instance, Banerji et al. [2013] proposed a measure of network
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Figure 6.1: Probabilistic interpretation of the epigenomic landscape. The two coordinates
depicted represent a simplified, high-dimensional epigenomic space that is
defined by cell characteristics that can be quantified by various experimental
procedures (e.g. DNA sequence, RNA expression levels, genome-wide DNA
methylation levels, histone modifications, etc.). The out-of-the-plain axis rep-
resents the probability of observing a cell in a given epigenomic configuration,
and the local probability density is indicated by contour lines. Triangles de-
note local maxima of the underlying probability distribution. Phenotypically-
defined cell types are illustrated by different colors. Dashed lines show paths
of reprogramming during cell differentiation (red) as well as cellular repro-
gramming to pluripotency and transdifferentiation (blue). The figure is based
on hypothetical data.
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entropy, which was quantified by integrating gene expression levels over a protein in-
teraction network, as a surrogate for the energy potential (elevation) in the differentia-
tion landscape. However, different interpretations for the property of cellular plasticity
exist and it is unlikely that it can be reduced to a single quantity. Pluripotent progeni-
tor cells generally constitute relatively rare populations in an organisms. In the proba-
bilistic landscape interpretation, they are therefore represented by less prevalent states,
which exhibit lower altitude and are more dispersed compared to differentiated states
(exemplified by the pink and turquoise cell types in Figure 6.1). Notably, computational
methods have been devised in order to gauge the differentiation potentials of a variety of
populations of pluripotent cells [Bock et al. 2011]. Interestingly, this study also showed
that cells often retain signatures characteristic of their differentiation history, which is
reflected by their proximity in the epigenomic landscape.
Obviously, the dimensionality and parametrization of the complete probability space

is too large and complex to be exhaustively captured by current modeling techniques.
Therefore, models resort to parsimonious representations of cell state, in which impor-
tant aspects of the overall distribution are conserved and which thus provide an ad-
equate approximation of the epigenomic landscape3. Multiple “omics” technologies
provide the means of characterizing subspaces of the cell-state space. Each of these
subspaces is high-dimensional in itself and parametrized by up to millions of features.
Further reducing the number of features can mitigate common statistical issues associ-
ated with high-dimensional data such as model complexity and resultant overtraining
and biases incurred by multiple-testing.
This work employs DNA-methylation-based representations of the cell-state space

that focus on predefined genomic regions such as promoters, repetitive genomic ele-
ments or putative regulatory regions. Considering whole-epigenome data from mul-
tiple blood-related cell states we started to chart the territories in the methylation
landscape occupied by distinct cell types. We employed computational models in or-
der to quantify similarities and differences between cell populations associated with
hematopoietic development and malignancy. The resulting descriptions complement
the phenotypically-defined notion of cell type and can be used to characterize cell-to-
cell heterogeneity.

6.3 Outlook

This work describes a comprehensive ensemble of methods and tools for interpreting
DNAmethylation patterns. Nevertheless, models integrating multiple layers of the reg-
ulatory code become increasingly important in order to capture the complex interplay of
regulatory factors. Two approaches are generally employed: (i) derive separate models
for different feature types and assess the congruency of those models, or (ii) incorporate
interactions of factors in a joint model. Typically, the first approach results in relatively
interpretable models for single feature types, and complexity through data integration
is introduced by the quantification of agreement across the different layers. The integra-
tive analysis parts in this work generally employ this approach. Models derived from
the latter approach are generally more complex, more susceptible to overtraining and

3 This problem is well-known in the statistical learning field and addressed by dimension reduction tech-
niques. Notably, the dimension can always be reduced to the number of observed cell states without
loss of information.
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harder to interpret, but have the potential to directly or indirectly capture the interac-
tions involved in epigenetic regulation. They thus represent promising directions of
expanding the methylation-focused view of this thesis. An interesting question to be
asked here is what sets of epigenetic features are required to address specific problems
and how much information can be gained by incorporating additional features. Sta-
tistical models for assessing the associations between different epigenomic marks on a
genome-wide scale are still underrepresented in the literature. However, the focus of
computational epigenomics is increasingly shifting towards integrative analyses. For in-
stance, various predictive approaches model the associations between DNA sequence,
epigenomic marks and gene expression: epigenomic profiles could be inferred from
DNA sequence [Whitaker et al. 2015] or from other epigenomic patterns profiled in sim-
ilar cell types [Ernst andKellis 2015], and epigenomicmarkswere shown to be predictive
of gene expression [Karlić et al. 2010]. Other prime examples include the identification
of chromatin states [Ernst and Kellis 2010; Ernst et al. 2011] and the quantification of
co-occurrence of chromatin marks and their modifiers by means of partial correlation
coefficients [Lasserre et al. 2013; Perner et al. 2014]. The remodeling potential of epige-
nomic marks can be assessed through profiles of transcription factor binding [Ziller et al.
2015] and TF binding can be predicted from open chromatin data [Schmidt et al. 2016].
In the concrete case of DNAmethylation and its association with other regulatory fac-

tors, the mindset has shifted from a promoter-centric view assuming that DNA methy-
lation levels are strictly anti-correlated with gene expression to a more regulatory per-
spective in which the binding of transcription factors, potentially at distal sites, can be
governed by complex patterns of methylation that act in concert with other epigenetic
signals [Schübeler 2015]. Changes in DNA methylation associated with development
and disease occur genome-wide, in particular in regions exhibiting intermediate to high
overall methylation levels and putative enhancers [Lister et al. 2009; Berman et al. 2012;
Hon et al. 2012; Stadler et al. 2011]. However, many interesting questions remain: Exactly
how does DNA methylation affect transcription factor binding, transcription initiation
and elongation? What roles does the interaction with other epigenomic marks play in
the definition of enhancers and insulators? How are the epigenetic patterns in turn reg-
ulated by signaling and DNA-binding factors? Do epigenetic signatures and associated
enhancer activities affect different subpopulations of cells in different ways?
On the genome-scale, regulatory associations are attributed mostly on the basis of

correlative analyses and only few exceptions exist (e.g. [Yu et al. 2008]). Although by-
stander patterns can be exploited for an in-depth description of cell state, identifying
signatures that are causally associated with a given phenotype represents a major chal-
lenge of epigenomic data analysis. Dependencies in epigenetic profiles could potentially
be exploited in graphical models like Bayesian networks and structural equation mod-
els [Bollen 1989] in order to infer a statistical notion of causality [Pearl 2009]. Nonethe-
less, true causality is unlikely to be derivable from observational data alone and pertur-
bation experiments are needed. Therefore, the formation of testable hypothesis from
genome-wide data is of high importance. Such hypotheses could be derived from the
interpretable models described in this work. Experimental tools are rapidly advancing
and technologies like high-throughput RNAi screening and CRISPR/Cas9 editing (re-
viewed in [Sander and Joung 2014]) enable highly specific targeting of regulators as well
as the deposition of epigenetic marks. These methods could thus hold the key to inter-
ventional validation of model-derived hypotheses. Those validation experiments could
in turn provide the basis for refined computational models and new hypotheses.
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The resolution of the epigenome atlas increases as more and more datasets become
available. Large-scale mapping efforts undertaken by national and international re-
search consortia such as ENCODE, REMC, BLUEPRINT and DEEP are the main con-
tributors to globally characterizing the landscape spanned by the human epigenome.
The umbrella IHEC project aims at charting more than 1,000 complete epigenomes by
the year 2020 and the generated referencemaps cover a plethora of cell phenotypes. Dis-
eases like neurological, inflammatory and metabolic disorders as well as cancer are in
the focus of associated research projects and the efforts are complemented by numer-
ous EWAS and global initiatives focusing on malignancy, such as the International Can-
cer Genome Consortium (ICGC) and TCGA. The sheer data deluge thus produced by
these efforts calls for efficient algorithms and computational solutions. These consor-
tia also further the establishment of good standard practices and comparable metrics
for quality control as well as the documentation of experimental procedures and em-
ployed computational pipelines, which are essential to reproducible research [Ebert et
al. 2015] and are actively discussed by the scientific community. Providing standard-
ized access to the enormous amounts of generated data is of prime importance for the
efficient use of the generated reference maps — an issue that is starting to be addressed
by tools like the ENCODEdata portal4 andDeepBlue [Albrecht et al. 2016]. Furthermore,
novel technologies are established and thus enable the mapping of novel subspaces of
the epigenomic landscape. Examples of these emerging methods include charting the
three-dimensional structure of the DNA inside a cell’s nucleus and characterizing cell-
to-cell heterogeneity by mapping the epigenomes of single cells.
In conclusion, these are exciting times in which a deluge of epigenome-wide data

becomes available and the regulatory roles of the epigenome and its influence on cell
identity are just beginning to be unraveled.

4 https://www.encodeproject.org

https://www.encodeproject.org
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List of Abbreviations

27K Illumina Infinium HumanMethylation27 BeadChip
3C Chromosome Conformation Capture
450K Illumina Infinium HumanMethylation450

BeadChip
4C Circularized Chromosome Conformation Capture
5C Carbon-Copy Chromosome Conformation Capture
5caC 5-Carboxylcytosine
5fC 5-Formylcytosine
5hmC 5-Hydroxymethylcytosine
5mC 5-Methylcytosine

AML Acute Myeloid Leukemia
ATAC-seq Assay for Transposase-Accessible Chromatin using

Sequencing
AUC Area Under the Curve
AZA 5-Azacytidine

bp Basepair

cDNA Complementary DNA
ceRNA Competing Endogenous RNA
CGI CpG Island
ChIA-PET Chromatin Interaction Analysis by Paired-End Tag

Sequencing
ChIP-seq Chromatin Immunoprecipitation-Sequencing
chr Chromosome
CIMP CpG Island Methylator Phenotype
circRNA Circular RNA
CLP Common Lymphoid Progenitor
CML Chronic Myeloid Leukemia
CMP Common Myeloid Progenitor

DEEP Deutsches Epigenom Programm
DMR Differentially Methylated Region
DNaseI-seq DNaseI-Sequencing
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DNMT DNAMethyltransferase

EGA European Genome-phenome Archive
ENCODE Encyclopedia of DNA Elements
EPIC Illumina Infinium MethylationEPIC BeadChip
eRNA Enhancer RNA
ERV Endogenous Retrovirus
ESC Embryonic Stem Cell
EWAS Epigenome-Wide Association Study

FACS Fluorescence-Activated Cell Sorting
FDA US Food and Drug Administration
FDR False Discovery Rate

GEO Gene Expression Omnibus
GMP Granulocyte Macrophage Progenitor
GO Gene Ontology

HAT Histone Acetyltransferase
HDAC Histone Deacetylase
HDM Histone Demethylase
HIV Human Immunodeficiency Virus
HMM Hidden Markov Model
HMT Histone Methyltransferase
HSC Hematopoietic Stem Cell

IAP Intracisternal A-particle
ICGC International Cancer Genome Consortium
IHEC International Human Epigenome Consortium
iPSC Induced Pluripotent Stem Cell

LAD Lamina-Associated Domain
LINE Long Interspersed Nuclear Element
LiPSC Leukemia Induced Pluripotent Stem Cell
LMPP Lymphoid-primed Multipotent Progenitor
LMR Low-Methylated Region
lncRNA Long Non-Coding RNA
LOESS Local Regression
LTR Long Terminal Repeat

MBD Methyl-CpG Binding Domain
MDS Multidimensional Scaling
MeDIP-seq Methylated DNA Immunoprecipitation Sequencing
MEP Megakaryocyte Erythrocyte Progenitor
miRNA Micro RNA
MLP Immature Lymphoid Progenitor
MNase-seq MNase-Sequencing
MPP Multipotent Progenitor
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MRE-seq Methylation-Sensitive Restriction Enzyme
Sequencing

mRNA Messenger RNA
µWGBS Low-input Whole Genome Bisulfite Sequencing

ncRNA Non-Coding RNA
NDR Nucleosome-Depleted Region
NGS Next Generation Sequencing
NK cell Natural Killer cell
NOMe-seq Nucleosome Occupancy and

Methylome-Sequencing
nt Nucleotide

ORF Open Reading Frame

PAM Partitioning Around Medoids
PBMC Peripheral Blood Mononuclear Cell
PCA Principal Component Analysis
PcG Polycomb Group
PCR Polymerase Chain Reaction
piRNA PIWI-Interacting RNA
PMD Partially Methylated Domain

QC Quality Control

REMC NIH Roadmap Epigenomics Mapping Consortium
RNA-seq RNA-Sequencing
RNAi RNA Interference
ROC curve Receiver Operating Characteristic curve
RRBS Reduced Representation Bisulfite Sequencing

scWGBS Single-Cell Whole Genome Bisulfite Sequencing
SINE Short Interspersed Nuclear Element
siRNA Small Interfering RNA
snoRNA Small Nucleolar RNA
SNP Single-Nucleotide Polymorphism
SNV Single-Nucleotide Variation
SVA Surrogate Variable Analysis
SVA element SINE/Variable number tandem repeat/Alu element
SVM Support Vector Machine

TAD Topological Associated Domain
TCGA The Cancer Genome Atlas
TCM Central Memory T cell
TE Transposable Element
TEM Effector Memory T cell
TEMRA CD45RA+ Memory T cell
TF Transcription Factor
TFBS Transcription Factor Binding Site
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TN Naive T cell
Treg Regulatory T cell
TrxG Trithorax Group
TSS Transcription Start Site

UMR Unmethylated Region

WCE Whole-Cell Extract
WGBS Whole Genome Bisulfite Sequencing
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List of Genes, Transcripts, Proteins and Complexes

ABL Abelson murine leukemia viral oncogene homolog 1

BATF basic leucine zipper transcription factor, ATF-like
BCR breakpoint cluster region protein
BRCA1 breast cancer 1, early onset

c-MYC MYC
CCR5 C-C chemokine receptor type 5
CD4 cluster of differentiation 4
CD8 cluster of differentiation 8
CD10 cluster of differentiation 10
CK2 casein kinase 2
CTCF CCCTC-binding factor

DEFA4 defensin alpha 4
DNMT1 DNA methyltransferase 1
DNMT3A DNAmethyltransferase 3α
DNMT3B DNA methyltransferase 3β
DNMT3L DNA methyltransferase 3-Like

Env envelope (viral origin)
ESR1 estrogen receptor 1
EXOC6 exocyst complex component 6
EZH2 enhancer of zeste homolog 2

Gag group-specific antigen (viral origin)
GATA1 GATA binding protein 1

H1 histone H1 (linker histone)
H2A histone H2A
H2A.Z histone H2A.Z
H2B histone H2B
H3 histone H3
H3.3 histone H3.3
H4 histone H4
HOXA5 homeobox A5
HOXB3 homeobox B3

IDH1 isocitrate dehydrogenase 1
IDH2 isocitrate dehydrogenase 2
IRF4 interferon regulatory factor 4
ISWI ISWI chromatin remodeling complex

KCNH2 potassium voltage-gated channel subfamily H mem-
ber 2

KDM4A lysine-specific demethylase 4A
KLF4 Kruppel-like factor 4
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MGMT O(6)-methylguanine-DNA methyltransferase
MHC major histocompatibility complex
MYB Myb proto-oncogene

NF-κB nuclear factor kappa-light-chain-enhancer of acti-
vated B cells

OCT4 octamer-binding transcription factor 4

p300 p300 coactivator
p53 tumor protein p53
PIWI P-element induced wimpy testis
Pol DNA polymerase (viral origin)
PRC2 Polycomb repressive complex 2

RNAPII RNA Polymerase II
RUNX3 Runt-related transcription factor 3

SALL4 Spalt-like transcription factor 4
SOX2 SRY-related high mobility group box 2
SOX17 SRY-related high mobility group box 17
SUSD3 sushi domain containing 3
SWI/SNF Iswitch/sucrose nonfermentable chromatin remod-

eling complex

TAL1 T-cell acute lymphocytic leukemia protein 1
TCR T-cell receptor
TDG thymine-DNA glycosylase
TET ten-eleven translocation
TET2 ten-eleven translocation 2
TREML1 trem-like transcript 1

XIST X-inactive specific transcript
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active DNA demethylation
Demethylation of cytosines involving the conversion of 5mC to 5hmC and to its
derivates 5fC and 5caC (catalyzed by enzymes of the TET family). Subsequently,
an unmethylated state is the result of either passive dilution via DNA replication
or active restoration by means of base excision involving TDG enzymes and re-
pair [Kohli and Zhang 2013].

adaptive immunity
Pathogen-specific defense mechanism facilitated by specialized cells of the lym-
phoid lineage. After an initial exposure to a given pathogen an immune memory
is formed that is specific to that pathogen and can trigger a highly accelerated
response upon subsequent exposures. Adaptive immunity is exclusive to verte-
brates.

batch effect
Source of variation in biological data due to study design, sample handling or tech-
nical artifacts. Examples include the manufacturing batch of chips and reagents,
the scientist conducting the experiments, the date on which the experiment was
run or imbalanced distribution of biological traits across groups of phenotypes.
Computational methods for correcting for batch effects include empirical Bayes
methods [Johnson et al. 2007], SVA and considering corresponding features in dif-
ferential analysis [Leek et al. 2010].

β-value
An estimate for themethylation level of a given cytosine. For Illuminamethylation
arrays it is defined as β = max(M,0)

max(M,0)+max(U,0)+ϵ
, where M and U correspond to

the methylated and unmethylated intensity signal respectively and ϵ is a constant
(typically set to 100).

biomarker
Measurable (molecular) indicator for a given (disease) condition or state.

bivalent (chromatin) domain
Region of chromatin marked by methylation of both lysine 4 and lysine 27 on his-
tone H3 [Bernstein et al. 2006].

cellular reprogramming
Inducing a pluripotent cell state by nuclear transfer, cell fusion or the introduction
of exogenous transcription factors [Yamanaka and Blau 2010].

chromatin
Macromolecule complex consisting of DNA (and RNA) and packaging proteins
(histones).

CpG
DNA dinucleotide consisting of cytosine followed by guanine, linked by phos-
phate.

CpG island
A genomic region particularly rich in CpG dinucleotides. Multiple alternative def-
initions and algorithms for defining them exist. The most widely-used definition
was introduced by Gardiner-Garden and Frommer [1987].
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cytokine
Peptides or small proteins involved in cell signaling. Among other functions, they
direct the immune response and provide differentiation queues to cells of the
hematopoietic system.

DNaseI hypersensitive site
Accessible genomic region frequently cleaved by DNaseI nucleases. Typically in-
dicates open chromatin and low nucleosome occupancy.

enhancer
Region containing TFBSs located distal or proximal to gene promoters involved
in transcriptional activation. Active enhancers are typically characterized by the
presence of H3K4me1, H3K4me2, H3K27ac, DNaseI hypersensitivity and p300 oc-
cupancy [Ong and V. G. Corces 2011].

epigenetic/epigenomic mark
Umbrella term formolecularmanifestations of epigenetic regulation, such asDNA
methylation, histone modifications, etc..

epigenome
The collective of all “potentially stable and, ideally, heritable changes in gene ex-
pression or cellular phenotype that occurs without changes in Watson-Crick base-
pairing of DNA” [Goldberg et al. 2007].

euchromatin
Loosly packed chromatin structure.

exaptation
Shift of function of a genomic unit during the course of evolution.

genomic imprinting
Epigenetically regulated, parent-of-origin dependent expression of genes.

hematopoiesis
Formation of blood cell types from progenitor cells.

heterochromatin
Tightly packed chromatin structure.

hypermethylated
Higher DNA methylation level in a given condition compared to a reference con-
dition.

hypomethylated
Lower DNA methylation level in a given condition compared to a reference con-
dition.

Induced Pluripotent Stem Cell (iPSC)
Cells reprogrammed to a pluripotent state by means of exogenous transcription
factors.

innate immunity
Non-specific immune response representing an organisms first line of defense
against pathogens. Involved mechanisms include biological barriers and special-
ized cell types of the myeloid lineage which can disable pathogens using toxins
and phagocytosis. The innate immune response is typically fast and can also re-
cruit the adaptive immune response.
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insulator
(Distal) gene regulatory element representing a barrier for the spreading of of sig-
nals to other gene regions. Generally marked by CTCF.

Long Non-Coding RNA (lncRNA)
RNA longer than 200 nucleotides, not coding for a protein. lncRNAs are often
polyadenylated and can occur in the nucleus as well as in the cytoplasm.

lymphoid
Arising from progenitor cells of the lymphoid lineage of the hematopoietic system.
Lymphoid cell types include natural killer cells, B cells and T cells.

M-value
An estimate for the methylation level of a given cytosine. For Illumina methyla-
tion arrays it is defined as M = log2

max(M,0)+α
max(U,0)+α

, where M and U correspond to
the methylated and unmethylated intensity signal respectively and α is a constant
(typically set to 1). It corresponds to the logit transformation of the β-value or
methylation level: M = log2

β
1−β

methylation level
For bisulfite sequencing based methods, this is the proportion of methylated read-
cytosines among all reads covering a particular reference cytosine. For methyla-
tion arrays it corresponds to the β-value.

methylome
The collective of all DNAmethylation events in a given entity (such as a single cell,
cell type or organism).

multi-mapped reads
Reads originating from high-throughput sequences that align to multiple posi-
tions in the reference genome.

myeloid
Arising from progenitor cells of the myeloid lineage of the hematopoietic system.
Myeloid cell types include monocytes, macrophages and granulocytes.

Next Generation Sequencing (NGS)
Umbrella term for technologies capable of high-throughput sequencing of mil-
lions of short DNA reads. The most commonly employed NGS technology is
Illumina sequencing using the contemporary HiSeq machine model or the older
Genome Analyzer.

nucleosome
Histone octamer comprising the H3, H4, H2A and H2B units with 147 bp of DNA
wrapped around it.

passive DNA demethylation
Demethylation of cytosines involving dilution via DNA replication.

phagocytosis
Process in which a cell ingests a particle and potentially decomposes it.

Philadelphia chromosome
Chromosomal abnormality associated with the translocation of the q34.1 region
of chromosome 9 to the q11.2 region of chromosome 22 (termed t(9;22)(q34;q11.2))
which gives rise to the BCR-ABL fusion gene in CML.
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promoter
Genomic region located near the TSS to which the transcriptional machinery is
recruited. Typically defined to extend from a few kilobases upstream of the TSS
to a few hundred bases downstream of the TSS.

RNA Interference (RNAi)
Post-transcriptional or transcriptional reduction in mRNA levels mediated by
small, non-coding RNAs.

silencer
Distal gene regulatory element associated with transcriptional silencing.

transcription factory
Nuclear subcompartment containing multiple promoters and enhancers, associ-
ated with open chromatin and high transcriptional activity.

transdifferentiation
Natural or artificial conversion of one cell type to another without going through
a pluripotent cell state.

transposon/Transposable Element (TE)
A stretch of DNA capable of changing its position in the genome by transposition.
Transposons can be further classified by their structure andmode of transposition.
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Supplementary Material

Methods for Identifying Differential DNA Methylation

Table B.1 contains a curated list of publications and methods for the detection of differ-
ential DNA methylation between (groups of) samples. This list is based on the manual
identification of relevant publications from the titles and abstracts of weekly PubMed
search queries for the terms “DNA” and “methylation” or for the combined term “DNA
methylation” between February 2014 and November 2016. Additional references were
added based on customized queries for differential analysis methods.
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Table B.1: Methods for identifying differential DNA methylation

# Author, year

PubMed ID

Supports 450K

Supports BS-seq

DM site
s

DM regions

Region detection

Covariate adjustm
ent

Software
Methods

1 Akalin et al., 2012 23034086 ✓ ✓ ✓ ✓ P ✓ methylKit Logistic regression or Fisher’s Exact Test

2 Akman et al., 2014 24618468 (X) ✓ X ✓ H X BEAT Bayesian, beta-binomial mixture models; pooling of successive CpGs into regions

3 Almeida et al., 2016 27794558 ✓ X ✓ ✓ H (✓) DiMmeR t-test for binary outcomes, regression models for continuous outcomes; empirical p-value
computation; adjustment for cell composition using minfi

4 Aryee et al., 2014 24478339 ✓ X ✓ ✓ ✓ (X) minfi Linear models, F-test, bump hunting; aggregation of DMRs by block finding

5 Assenov et al., 2014 25262207 ✓ ✓ ✓ ✓ P ✓ RnBeads Combined ranking of absolute and relative methylation difference and limma p-values

6 Bacalini et al., 2015 25701668 ✓ (X) ✓ ✓ X ✓ - MANOVA; mixture of single probes and groups of probes

7 Barfield et al., 2012 22451269 ✓ X ✓ X X ✓ CpGassoc ANOVA

8 Baumann et al., 2014 24589664 (X) ✓ ✓ ✓ P X - Fisher’s Exact Test (single sample) or logistic regression (replicates)

9 Butcher et al., 2014 25461817 ✓ (X) ✓ ✓ ✓ (X) ChAMP limma, probe lasso

10 Chen et al., 2012 22368244 ✓ (✓) ✓ X X (✓) - One-sided t-test; combine p-values from different age groups; adjustment for age

11 Chen et al., 2013 23452721 ✓ X X ✓ H ✓ methylPCA Association tests based on linear models using PCA features; region detection based on
covariance

12 Chen et al., 2013 23369576 ✓ (✓) ✓ X X (✓) - Kruskal-Wallis test on different age groups. Then combine p-values; adjustment for age

13 Chen et al., 2014 24884464 ✓ (✓) ✓ X X (✓) - Cuzik test for obtaining a combined p-value for ordinal data; combine p-values from
different age groups; adjustment for age

14 Dolzhenko et al., 2014 24962134 X ✓ ✓ ✓ ✓ ✓ RADMeth Beta-binomial regression; sliding combination of p-values for defining DMRs; Z-test for
region detection

15 Feng et al., 2014 24561809 X ✓ ✓ ✓ H X DSS Bayesian hierarchical model and Wald test for modeling read counts in conditions

16 Gao et al., 2015 26140213 (✓) ✓ X ✓ X X SMAP Pearson’s chi-square test, t-test

17 Hansen et al., 2012 23034175 (X) ✓ ✓ ✓ ✓ X Bsmooth Smoothing, t-test

18 Hebestreit et al., 2013 23658421 (✓) ✓ ✓ ✓ H ✓ BiSeq Smoothing, beta regression, hierarchical testing

https://www.ncbi.nlm.nih.gov/pubmed/23034086
https://www.ncbi.nlm.nih.gov/pubmed/24618468
https://www.ncbi.nlm.nih.gov/pubmed/27794558
https://www.ncbi.nlm.nih.gov/pubmed/24478339
https://www.ncbi.nlm.nih.gov/pubmed/25262207
https://www.ncbi.nlm.nih.gov/pubmed/25701668
https://www.ncbi.nlm.nih.gov/pubmed/22451269
https://www.ncbi.nlm.nih.gov/pubmed/24589664
https://www.ncbi.nlm.nih.gov/pubmed/25461817
https://www.ncbi.nlm.nih.gov/pubmed/22368244
https://www.ncbi.nlm.nih.gov/pubmed/23452721
https://www.ncbi.nlm.nih.gov/pubmed/23369576
https://www.ncbi.nlm.nih.gov/pubmed/24884464
https://www.ncbi.nlm.nih.gov/pubmed/24962134
https://www.ncbi.nlm.nih.gov/pubmed/24561809
https://www.ncbi.nlm.nih.gov/pubmed/26140213
https://www.ncbi.nlm.nih.gov/pubmed/23034175
https://www.ncbi.nlm.nih.gov/pubmed/23658421
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PubMed ID

Supports 450K

Supports BS-seq

DM site
s

DM regions

Region detection

Covariate adjustm
ent

Software
Methods

19 Houseman et al., 2012 22568884 ✓ (X) - - - - - Identification of cell population heterogeneity by surrogate variable analysis, given
reference cell types

20 Houseman et al., 2014 24451622 ✓ (✓) ✓ X X ✓ RefFreeEWAS Reference-free identification of cell population heterogeneity using singular value
decomposition

21 Huang et al., 2013 23497201 ✓ (✓) ✓ X X (✓) - Baumgartner-Weiß-Schindler (BWS) on different age groups; subsequently combine
p-values; adjustment for age

22 Jaffe et al., 2012 22422453 ✓ (✓) ✓ ✓ H ✓ minfi Regression in genomic regions using surrogate variable analysis for batch effect removal
(linear); LOESS smoothing; threshold-based identification of bumps representing
contiguous significant regions; permutation tests and Bayesian model

23 Jühling et al., 2016 26631489 ✓ ✓ X ✓ ✓ X metilene Segmentation; non-parametric 2D Kolmogorov-Smirnoff Test

24 Kilaru et al., 2012 22430798 ✓ X ✓ X X ✓ MethLAB Linear mixed effect model

25 Lea et al., 2015 26599596 X ✓ ✓ X X ✓ MACAU Binomial mixed models inferred by MCMC sampling; takes into account population
structure

26 Li et al., 2013 23735126 (X) ✓ X ✓ H X eDMR Gaussian mixture model; distance-based region identification

27 Liang et al., 2014 24497972 (X) ✓ X ✓ H X WBSA detecting differential methylation between single samples; Wilcoxon test

28 Morris et al., 2013 24336642 ✓ (X) ✓ ✓ ✓ (X) ChAMP limma, probe lasso

29 Park et al., 2014 24836530 X ✓ ✓ ✓ X X methylSig Beta-binomial model; approximation algorithm to estimate parameters; likelihood ratio
test to test for difference in means; can incorporate locality via a kernel to adapt for
proximity of CpGs

30 Park et al., 2016 26819470 X ✓ ✓ X X X DSS Beta-binomial model with arcsine link function; Wald test to obtain p-values

31 Peters et al., 2015 25972926 ✓ (X) ✓ ✓ ✓ ✓ DMRcate Smoothing/kernel density modeling; DMR identification by kernel smoothing

32 Preussner et al., 2015 26628921 ✓ X ✓ ✓ P X ADMIRE Mann-Whitney U test, p-value joining using comb-p

33 Raineri et al., 2014 24824426 X ✓ ✓ X X X diff_methyl detecting differential methylation between single samples; Beta distribution model

34 Rijlaarsdam et al., 2014 26889969 ✓ (✓) X ✓ H X DMRforPairs detecting differential methylation between single samples; thresholding; Wilcoxon and
Kruskal-Wallis test

35 Saito et al., 2014 24423865 (X) ✓ ✓ ✓ ✓ X Bisulfighter detecting differential methylation between single samples; HMM

https://www.ncbi.nlm.nih.gov/pubmed/22568884
https://www.ncbi.nlm.nih.gov/pubmed/24451622
https://www.ncbi.nlm.nih.gov/pubmed/23497201
https://www.ncbi.nlm.nih.gov/pubmed/22422453
https://www.ncbi.nlm.nih.gov/pubmed/26631489
https://www.ncbi.nlm.nih.gov/pubmed/22430798
https://www.ncbi.nlm.nih.gov/pubmed/26599596
https://www.ncbi.nlm.nih.gov/pubmed/23735126
https://www.ncbi.nlm.nih.gov/pubmed/24497972
https://www.ncbi.nlm.nih.gov/pubmed/24336642
https://www.ncbi.nlm.nih.gov/pubmed/24836530
https://www.ncbi.nlm.nih.gov/pubmed/26819470
https://www.ncbi.nlm.nih.gov/pubmed/25972926
https://www.ncbi.nlm.nih.gov/pubmed/26628921
https://www.ncbi.nlm.nih.gov/pubmed/24824426
https://www.ncbi.nlm.nih.gov/pubmed/26889969
https://www.ncbi.nlm.nih.gov/pubmed/24423865
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# Author, year

PubMed ID

Supports 450K

Supports BS-seq

DM site
s

DM regions

Region detection

Covariate adjustm
ent

Software
Methods

36 Smyth et al., 2004 16646809 (✓) (✓) ✓ (✓) X ✓ limma Hierarchical linear models; empirical Bayes

37 Sofer et al., 2013 23990415 ✓ (✓) X ✓ ✓ ✓ Aclust Clustering of adjacent CpGs (Aclust); Generalized Estimating Equation (GEE)

38 Song et al., 2013 24324667 (✓) ✓ X ✓ ✓ X MethPipe detecting differential methylation between single samples; HMM for detecting low
methylation regions

39 Stockwell et al., 2014 24608764 (X) ✓ X ✓ P X DMAP Fisher’s Exact test or ANOVA on regions; DMRs based on windows/RRBS-fragments

40 Su et al., 2012 22941633 X ✓ ✓ ✓ H X CpG_MPs Thresholds on methylation levels or Fishers Exact test; DMR identification based on
threshold extension or sliding windows

41 Sun et al., 2014 24565500 (✓) ✓ ✓ ✓ ✓ X MOABS Hierarchical model (beta binomial) fit by emprirical Bayes; confidence interval on
difference statistic; DMR identification using HMM

42 Sun et al., 2016 26854292 (✓) ✓ ✓ ✓ H X HMM-Fisher Segmentation by HMM followed by Fisher’s Exact Test

43 Teng et al., 2012 22956892 X X ✓ X X X - Empiral Bayes using Gamma distribution assumption

44 Valavanis et al. 24808224 ✓ X ✓ X X X - Control sample based filtering of t-test identified DMPs

45 Wahl et al., 2014 24994026 ✓ (X) ✓ X X ✓ gamlss,mgcv Generalised Additive Models for Location Scale and Shape (GAMLSS)

46 Wang et al., 2011 21818777 ✓ (✓) ✓ X X X - Mixture model of uniform and truncated normal distribution

47 Wang et al., 2012 22253290 ✓ (X) ✓ ✓ X ✓ IMA Wilcoxon rank-sum test, t-test, limma

48 Wang et al., 2015 26176536 X ✓ X ✓ H X swDMR Hypothesis tests and thresholding on sliding windows (t-test,Wilcoxon, Fisher, ANOVA,
Kruskal-Wallis, Chi-Square) and window merging

49 Warden et al., 2013 23598999 ✓ ✓ X ✓ X X COHCAP ANOVA, t-test, Fisher’s Exact Test

50 Wessely et al., 2012 22936948 ✓ (X) ✓ X X X NIMBL Differential methylation scores based single-linkage differences and median difference;
can be combined with statistical tests

51 Wu et al., 2013 24040221 ✓ X ✓ ✓ H (X) FastDMA ANCOVA

52 Wu et al., 2015 26184873 X ✓ ✓ ✓ H X DSS detecting differential methylation between single samples; extend the DSS software to
estimate within-group variance by spatially close CpGs; Smoothing, empirical Bayes

53 Xu et al., 2013 23554163 X ✓ ✓ X X X - Test statistic taking group variances into acount; binomial methylation model

https://www.ncbi.nlm.nih.gov/pubmed/16646809
https://www.ncbi.nlm.nih.gov/pubmed/23990415
https://www.ncbi.nlm.nih.gov/pubmed/24324667
https://www.ncbi.nlm.nih.gov/pubmed/24608764
https://www.ncbi.nlm.nih.gov/pubmed/22941633
https://www.ncbi.nlm.nih.gov/pubmed/24565500
https://www.ncbi.nlm.nih.gov/pubmed/26854292
https://www.ncbi.nlm.nih.gov/pubmed/22956892
https://www.ncbi.nlm.nih.gov/pubmed/24808224
https://www.ncbi.nlm.nih.gov/pubmed/24994026
https://www.ncbi.nlm.nih.gov/pubmed/21818777
https://www.ncbi.nlm.nih.gov/pubmed/22253290
https://www.ncbi.nlm.nih.gov/pubmed/26176536
https://www.ncbi.nlm.nih.gov/pubmed/23598999
https://www.ncbi.nlm.nih.gov/pubmed/22936948
https://www.ncbi.nlm.nih.gov/pubmed/24040221
https://www.ncbi.nlm.nih.gov/pubmed/26184873
https://www.ncbi.nlm.nih.gov/pubmed/23554163
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Region detection

Covariate adjustm
ent

Software
Methods

54 Yu et al., 2016 26887041 (X) ✓ X ✓ ✓ X HMM-DM DMR detection by HMM; software available as script

55 Zhang et al., 2013 24283878 ✓ (✓) ✓ X X X - Kullback-Leibler Divergence/Entropy; only applicable to matched samples

56 Zhang et al., 2015 25865601 ✓ (✓) ✓ ✓ H X - Distance discriminant analysis (DDA), integration with expression data; DMR detection
by windowing

57 Zou et al., 2014 24464286 ✓ (✓) ✓ (X) X ✓ FaST-LMM-EWASher Integration of Linear Mixed Models and PCA to estimate cell composition

✓: supported, X: not supported, (✓): not explicitely supported, but potentially extensible, (X): not supported by design, requires major modifications to
be supported, H: region detection by simple heuristics, P: based on predefined genomic regions
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