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2 Kurzzusammenfassung

2 Kurzzusammenfassung

Die vorliegende Arbeit untersucht das Wachstum von kleinen bis mittelgroßen Metall- und

Halbleiterclustern. Kandidaten für globale Minima wurden mit einem genetischen Algo-

rithmus optimiert und mit Dichtefunktionalmethoden untersucht. Cadmium Cluster mit

bis zu 60 Atomen bilden unverzerrte, symmetrische Cluster mit einem Strukturmotiv, das

als ”Leary-Tetraeder” bekannt ist. Relative Stabilitäten ergeben sich aus geometrischen

Effekten und dem Schließen von Elektronenschalen. Die Bindungsverhältnisse sind ähn-

lich zum Bulk. Anschließend wurde das Wachstum von Silizium-Germanium Cluster

mit bis zu 30 Atomen untersucht. Relative Stabilitäten der Cluster hängen von deren

Form und Zusammensetzung ab. Die stabilsten Cluster sind länglich und besitzen einen

mittleren Siliziumgehalt von 32 Atom-%. Gemischte Cluster besitzen keine strukturelle

Ähnlichkeit mit reinen Clustern und deren Segregationstyp ist von der Zusammenset-

zung abhängig. Es konnte kein Zusammenhang zwischen strukturellen und elektronischen

Eigenschaften gefunden werden. Zuletzt wurden strukturelle und magnetische Eigen-

schaften von AgRhn−1 und Agn−1Rh Clustern mit einer Größe bis zu 20 Atomen unter-

sucht. In den polyikosaedrischen Clustern Agn−1Rh besetzt ein Rhodiumatom eine Posi-

tion im Clusterinneren. Im umgekehrten Fall migriert das Silberatom an die Oberfläche.

Lokale magnetischen Momente in den Agn−1Rh Clustern sind auf dem Rhodiumatom

lokalisiert und von dessen Koordinationszahl abhängig. In rhodiumreichen Clustern trägt

ein einzelnes Silberatom nicht zum Gesamt-magnetischen Moment bei.
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3 Abstract

3 Abstract

In this work, we have studied the growth of several cluster systems including metallic and

semiconductor clusters with our genetic algorithm coupled to the density functional tight-

binding method followed by a re-optimization with density functional theory methods.

Cadmium clusters with sizes up to 60 atoms form undistorted and symmetric clusters with

a structural motif known as ”Leary-Tetrahedron”. Their stabilities correlate with their

atomic configuration and the closing of electronic shells at certain sizes while their chemical

bonds are quite similar to hcp-cadmium. Afterwards we studied the growth of mixed Si-

Ge clusters with up to 30 atoms. The most stable clusters were found to be prolate with

an average silicon content of 32-atom%. We found no structural similarities between pure

and mixed clusters and the type of segregation depends on their individual composition. A

correlation analysis showed no simple relations between structural features and electronic

properties. At last we studied structural and magnetic properties of mixed AgRhn−1

and Agn−1Rh clusters with up to 20 atoms. Rhodium atoms within the polyicosahedral

clusters were found to occupy positions in the center of the clusters. On the other side a

silver atom migrates to the surface of rhodium-rich clusters. Local magnetic moments in

the Agn−1Rh clusters are mainly localized on the single rhodium atom and depend upon

its coordination number. A single foreign silver atom in rhodium clusters on the other

side does not contribute to the total magnetic moment.
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5 Introduction

4 Preface

The work described in this thesis was published in three articles that can be found in part

III under Results and Discussion. The genetic algorithm for the global optimizations in all

of the three publications was implemented in Python2.6 by S. Kohaut and attached to the

Atomic Simulation Environment (ASE) [1]. Parallelization of the genetic algorithm was

achieved by using the ParallelPython program [2]. All of the used DFTB parametrizations

(Cd, Ag, Rh, Si and Ge) have been created and adapted by S. Kohaut to work with the

Hotbit program [3]. The program (ASAP3) for the calculation of the total energies at

the RGL level was downloaded from [4] and the fits for the potential were created with

the help of several optimization routines as found in python-numpy [5]. Calculation of

the similarity indices were done with a fortran program that was written by P. Thiel.

All numerical basis sets and pseudopotentials for Ag, Rh, Si and Ge were created by S.

Kohaut and tested to work with the Siesta program [6]. Structural analyses with the

bond-angle analyses method were done with the ovito program [7, 8].

5 Introduction

Clusters form are a special field of chemistry and physics in between molecules and crys-

tals. As a consequence of their finite size, their properties are often unpredictable and

completely different to the same material in the bulk size regime. However up to now,

there is no final consensus on the question whether a given material belongs to the class

of the so-called nanomaterials or not. Nanoscience typically deals with materials with

sizes of a few atoms to thousands of atoms with dimensions between 1nm and 100nm,

depending on the material under investigation. They behave not like simple cuts from a

macroscopic crystal but represent a class on their own, where the specific properties show

an explicit dependence upon size, morphology and composition. In a macroscopic crystal

the free Gibbs energy G is defined as the sum of a volume-based energy contribution and

a term that arises due to the presence of the surface.

G = NGV + AγS (1)

with N being the number of atoms, the bulk free energy GV , the surface area A and the

specific surface energy γs. As most of the atoms for a cluster are on the surface, the

contribution of the second term will dominate the total energy and the shapes and mor-

phologies that the cluster adopts for a given size leading to structures that are unknown

or uncommon for crystals (e.g. icosahedral or decahedral structures in metal clusters).
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5 Introduction

Beside the effects caused by the large surface-area-to-volume ratio, the quantum con-

finement effects are the second characteristic feature of nano-sized objects. An impressive

illustration of the effect of a spatial confinement on the optical properties is realized in the

semi-conductor nanoclusters of CdSe and CdTe [9] (also known as quantum dots). When

the size of the quantum dot drops below the natural length of the electron-hole pair (the

exciton bohr radius), the wavefunctions of both, the electron and the hole will be con-

fined due to the walls of the particle. A confinement then induces a quantization in such

a way that the electronic bands from the bulk will be transformed to discrete electronic

states. Electronic excitations in the quantum dot are consequently a function of the size

and noticeably blue-shifted in smaller sized dots. This is qualitatively in agreement with

the results that one obtains from solving the Schrödinger equation for the particle-in-a-

spherical-well example where there is an indirect relation found between the length of

the box and the gaps between the energy levels. The fact that materials can nowadays

be manipulated at the nano scale to get tailor-made properties has lead to an enormous

number of applications of such particles ranging from medicinal [10, 11] to optical [12]

usages, to applications in renewable energy [13] and especially in the field of catalysis [14].

In all these cases it is necessary to study the structures and growth patterns to under-

stand the correlation between morphology, size and the resulting properties. However, it

is often very difficult to obtain exact information about the structures and morphologies

as well as their relation to their size. Especially in case of the prediction of an unknown

structural type, theoretical simulations are an invaluable tool to back up experimental

procedures in which the synthesis, the characterization or a screening for special prop-

erties are too laborious. Therefore, this work focuses on the identification of the growth

patterns in three different cluster systems that were previously unknown. This work is

carried through with the help of a global optimization procedure and various potentials

that have earlier been checked for reliability in the description of the studied systems.

This thesis is organized as follows: Part I deals with the global optimization problem

in cluster science and gives details about the implemented evolutionary based algorithm.

It also includes results of the global optimization of several sizes on the Lennard-Jones

potential energy surface to demonstrate that the implementation works correctly. The sec-

ond part provides an introduction to the theoretical models that have been used during

this work, starting with the density functional theory and followed by two semiempirical

methods, the RGL and the density functional tight-binding method (DFTB). It is ex-

plained how the two semiempirical methods that were used have been parametrized and

fitted to reproduce structural and mechanic properties in various bulk phases (in the case

of the RGL potential) and clusters (for DFTB). The third part presents the obtained

results from the global optimizations and characterizations in different systems including
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5 Introduction

pure and mixed metal clusters (Cd, Rh, Ag and mixed Ag-Rh clusters) and pure and

mixed semiconductor structures (Si, Ge and mixed SiGe clusters).

In the first section, we propose a new growth pattern in small to medium sized cad-

mium clusters with up to 60 atoms and compare it to the former route that was not able

to satisfyingly explain the few experimental results. Earlier studies predicted disordered

clusters of decahedral symmetry to be the putative global minimum energy structures

[15] which however could not explain the abundance spectra in mass spectroscopic mea-

surements. Therefore we parametrized the density functional tight-binding approach and

coupled it to a genetic algorithm to get the putative global minimum energy structures

for a subsequent re-optimization with ab-initio density functional theory methods (DFT).

In addition we also re-optimized those clusters with DFT that were proposed by Doye

et al. from a combination of the semi empirical Gupta potential and the Basin-Hopping

algorithm of Wales and Doye [16]. To analyze structural changes as a function of size we

calculated a similarity index to identify possible similarities between clusters during the

growth and used the bond-angle analysis method from Ackland et al. [17] that classifies

atoms according to structural motifs that are known from the bulk (e.g. fcc, hcp, bcc,..).

We also studied the evolution of the electronic properties during the growth process and

compared the calculated HOMO-LUMO gaps with the so-called Kubo-criterion to check

for a possible metallic behavior of small to medium sized cadmium clusters. Finally we

tried to relate our calculated cluster stabilities to experimental results and results from a

spherical jellium model to explain why clusters of some sizes are more stable than others.

The second section analyses the influence of the composition on the stability and

electronic properties of mixed silicon-germanium clusters. All putative global minimum

energy structures for all compositions SinGem with n+m ≤ 30 have been optimized with

our genetic algorithm in combination with the DFTB method and were later re-optimized

with DFT methods to address several questions that have not been investigated earlier.

For the DFT optimizations we optimized and tested for both elements a pseudopotential in

combination with a polarized pseudo-numerical basis set of double-zeta quality in several

bulk and cluster structures. Earlier it was shown by other authors [18] that for pure

clusters of both elements it gets difficult to identify the correct structural ground state in

an experiment as several clusters are energetically very close and all of them will compete

for the global minimum on the potential energy surface; therefore we used a method

known from polymer chemistry to characterize the shapes of all clusters as it is possible

to measure this attribute by an analysis of the ion-mobilities [19]. We then compare these

shapes and the structural similarities of the mixed clusters with the pure clusters of equal

size to study the influence of the composition and the size on the growth process. These

two properties are of special interest as silicon and germanium do not follow the same
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5 Introduction

growth pattern. While experimental studies proved that silicon clusters become spherical

already at smaller sizes, the same behavior was not reported for germanium clusters which

were essentially prolate up to around 60 atoms. Thus, it also makes sense to study which

element dominates the structural property as this may influence the electronic properties.

Possible demixing effects are analyzed by using two descriptors that will give information

about the type of segregation in mixed silicon-germanium clusters. Based on earlier

studies in mixed clusters with sizes up to 44 atoms that proved a tendency for silicon to

occupy higher coordinated sites we could expect the formation of a core-shell system [20].

However the authors in this study fixed the Si:Ge ratio to 1 which does therefore not allow

for a detailed analysis of the type of segregation in dependence of the composition. The

bond order and the average radial distances of the silicon to the germanium atoms were

then used to do an in-depth analysis of the segregation process for all compositions and

sizes. To look for the most stable and unstable clusters we used two stability criteria and

compared the outcome of both. The first criterion, the excess energy was biased as it traces

the stability of each cluster back to the stability of the pure clusters whereas the second

criterion was unbiased and would give the relative stabilities without any relation to the

bulk or the pure clusters. We then considered mixed clusters highly stable or unstable

if both criteria for stability or instability predicted the same outcome for a given size

and composition. At last we searched for correlations between the electronic properties,

namely the HOMO-LUMO gaps and the energies of the HOMO’s and the LUMO’s to

several structural descriptors including the shape, the effective coordination numbers, the

average bond lengths for the two species and the composition by calculating the Pearson

correlation coefficient from the corresponding covariance matrix.

The third section discusses the effect of a single foreign atom on the structures and

electronic properties of pure silver and rhodium clusters. The two metals show completely

different growth mechanisms and whereas silver tends to form compact structures, often

with an icosahedral shape [21, 22, 23], rhodium clusters were predicted to form simple

cubes up to a size of at least 27 atoms [24, 25, 26, 27, 28]. Both metals are almost

immiscible with a positive heat of formation over the whole composition range [29]. The

Ag-Rh system also behaves differently to the Ag-Pd system, which is well studied and for

which it was found that both elements will readily form alloys [30, 31]. However it is also

known from other silver containing clusters that stable nanoalloys can be formed if there

are other reasons for an enhanced stability of those, e.g. the formation of a core-shell

system with the element with the greater binding energy/atom in the core and the other

element with the lower overall specific surface energy at the surface. The smaller atoms

will also occupy the higher coordinated sites within the core to minimize strain effects,

typical examples are Ag-Ni [32, 33], Ag-Cu [34] and Ag-Co [35]. To study the effects of a
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5 Introduction

single foreign atom on the structures of silver and rhodium clusters we used our genetic

algorithm in combination with the RGL potential and the DFTB method to identify the

global minimum energy structures for the pure clusters and the mixed clusters with a

single rhodium or silver atom as a dopant. To this end, we fitted the RGL potential

to reproduce several structural and elastic properties in hypothetical Ag-Rh alloys in

comparison to ab-inito DFT calculations as there are no experimentally known alloys.

The DFTB method was parametrized to reproduce the structural properties from DFT

calculations that were reported by other authors for small rhodium and silver clusters.

As there were also no pseudopotentials and no numerical basis sets available with the

desired accuracy we optimized them for both elements and tested them to work in the

bulk and for smaller Ag and Rh clusters. All clusters were subsequently re-optimized

with DFT methods and the optimized basis sets after the global optimization process.

To verify the validity of our approach we first analysed the structural properties, the

binding energy/atom and the magnetic moments/atom for every cluster up to a size of

20 atoms and compared the results with available results from experiments and other

theoretical studies [24, 25, 36, 37, 38, 39]. Silver atoms are in general slightly larger than

their rhodium counterparts and in combination with a much larger cohesive energy/atom

in the bulk for fcc rhodium we expect that a core shell system will form for silver clusters

that contain a single rhodium atom. Such an effect was also reported by other authors

in the bulk, where a rhodium atom tends to migrate away from a (111) Ag-surface [40].

We used the simple Lennard-Jones pair potential to predict if the formation of such a

core-shell system can be explained solely on the basis of the different atomic sizes. For

rhodium-rich clusters on the other side we then expected a migration of a silver atom to

the surface of the clusters and we studied if a single silver atom can be incorporated into

a given structural motif (the cube-based rhodium clusters) to replace a rhodium atom.

Cluster stabilities as a function of the composition and the size have been studied using

two approaches that have already been mentioned in the case of mixed Si-Ge clusters.

Doping of silver or rhodium clusters with a single foreign atom of the other kind will

also have an effect on the magnetic properties of each cluster. In other systems it was

shown that silver could do both, a quenching of the total magnetic moment (AgnCo)[41] or

contribute to it (AgnNi) [33]. Thus, we also studied the evolution of the magnetic moment

in singly doped silver and rhodium clusters with their size as the effective coordination

number of the involved atoms may play a role like it was observed in AgnFe [42]. For that

purpose we studied the results of Mulliken population analyses and calculated differences

in the spin densities for electrons with opposing spins for all studied mixed clusters. Both

approaches will then allow it to make predictions on which atoms the magnetic moments

are localized within a given cluster. At last we discuss possible reasons for a ferromagnetic
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5 Introduction

contribution of silver atoms to the total magnetic moment by an analysis of the calculated

density of states and partial density of states.

5.1 Clusters

Since ancient times clusters have been used by humans to create effects in materials that

have otherwise not been possible with other methods during that time. Among the first

methods where nanoclusters played an important role was the coloring of silicate glasses

due to incorporated gold clusters. The typical red-colored glasses are the result of an exci-

tation of a collective oscillation of gold valence electrons (so-called surface plasmons)[43].

Nowadays a large toolbox of methods are known to synthesize clusters in solution and

gas phase, depending on the type of the material. Metal clusters, especially of metals

that are immiscible in bulk (e.g. Ag-Rh or Pd-Rh), are synthesized by co-precipitation

in solution [44] or microwave-based methods [45], whereas mono-metallic clusters can be

obtained from laser evaporation or ion sputtering sources [46, 47]. Analyses of the sizes

and stabilities of the synthesized clusters are typically done with mass spectroscopic meth-

ods. However, these methods do not give structural information for a given size. Optical

spectroscopy or diffraction based methods [23, 48, 49] are coupled to a mass spectrometer

to study the corresponding structures then. For systems with a very flat potential energy

surface (e.g. Si, Ge and mixed Si-Ge clusters that were also studied in this thesis) this may

be not possible, but even then ion mobility measurements could give information about

the shapes of the synthesized clusters [19]. Whenever additional flexibility is needed to

tune the properties of clusters to get a specific effect (e.g. in catalysis) then a second,

different type of atom can be added to a given cluster system. In addition such nanoalloys

may also display behaviors that are unknown from macroscopic alloys e.g. miscibility at

nanosize of two elements that are otherwise immiscible [47].

5.2 Nanoalloys

Addition of a second, different type of atom to an existing mono-elemental cluster adds

additional complexity to the global optimization problem. Homotops are clusters with

the same size, same configuration and same composition, but with different occupations

of the positions within the structure. The number of homotops Pm,n for an AmBn cluster

is given by

Pm,n =
(n+m)!

n!m!
(2)

To tackle the homotop problem, a permutation operator is typically added to the
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5 Introduction

mutation routine in a genetic algorithm. However, especially in the case of a flat potential

energy surface with very small differences in the total energy between different homotops,

it remains difficult to obtain the correct global minimum energy structure. An additional

problem consists in the identification of the correct type of segregation within a given

nanoalloy. Figure 1 shows the different types of segregation that can occur in a nanoalloyed

cluster. The type of segregation depends on several factors and is an interplay between

the specific surface and interface energies, the binding energies in the bulk of the pure

elements, the binding energies and the size-ratio between different types of atoms [50]. In

addition to all other other factors it was shown by Hume-Rothery that a lattice mismatch

of about 15% alone makes it unfavorable for two elements to form an alloy in the bulk,

simply because of geometric considerations. A positive heat of formation and mixing

enthalpy indicates that such an alloy is not formed from the pure clusters. However, if the

size of these alloys is reduced to the nano-size regime, different rules apply and a negative

heat of formation and mixing enthalpy compared to the pure clusters of equal size can be

found. Typical examples for such a behavior occur for silver alloys where negative mixing

enthalpies were predicted for example for the pairs Ag-Ni [32] and Ag-Cu [34]. Whereas

these two first examples are clearly influenced by the different ratios of the atomic sizes

between silver and its alloying partner, it is more complicated for the Ag-Rh case where

there is only a small difference between the size of the atoms. Large differences in the

sizes will lead to a core-shell system where the smaller atoms are found in the center of the

cluster to minimize the geometric strain. A larger cohesive energy in one of the involved

elemental crystals is an additional driving force to form a core-shell system as these atoms

tend to maximize the number of bonds to atoms of the same kind, which is best realized

in the core of the cluster. This will generally lead to a polyicosahedral, decahedral or

cuboctahedral growth and an enhanced stability of the clusters at certain sizes. These so

called magic sizes are related to a beneficial closing of geometrical shells in closed packed

structures and can be found for icosahedral clusters with k concentric shells at sizes N

equal to [51]

N(k) =
10

3
k3 + 5k2 +

11

3
k − 1. (3)

Clusters with non-truncated decahedral motifs are in general less stable compared to the

icosahedral ones as their surface area is much larger. Geometric shell closing in decahedral

clusters are seen for sizes with N atoms at (again, k is an integer)

N(k) =
5

6
k3 +

1

6
k. (4)

However, truncation will make the cluster more spherical and indeed in the case of silver
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5 Introduction

such a truncated decahedron was reported to be the global minimum in silver clusters for

N = 75 [52]. Highly symmetric and closed packed clusters with other symmetry elements

rather than a fivefold axis can be realized in the form of an octahedron with shell closing

at size N at

N(k) =
2

3
k3 +

1

3
k. (5)

This structural motif that can be derived from an fcc-packing of hard spheres does not only

occur in Lennard-Jones clusters [53], but has also been found in several other transition

metal clusters [54].

(a) (b)

(c) (d)

Figure 1: Different types of segregation that can be found in a nanoalloyed cluster. (a)
Janus-like (b) core-shell (c) mixed (d) onion-like.

Enhanced stability can also result from the closing of electronic shells. This effect can

be seen in calculations on the spherical jellium model (=homogeneous positive background

charges from the nuclei plus the core electrons) assuming an infinite deep spherical or

harmonical well as the potential in which the electrons move. Clusters with magic sizes

with greater stability compared to neighbouring sizes are then found for structures with

n = 2, 8, 20, 40, 70, 92, ... electrons. However, the reason for enhanced stability is often

a mixture of both, a beneficial geometric arrangement of the atoms, and the closing of

electronic shells at certain sizes. Which aspect then finally determines the stability and

shape is non-trivial to answer and depends always on the system under investigation.
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Part I

Global Optimization

6 The Global Optimization Problem

6.1 Introduction

The problem of identifying a global extremum on a complicated multidimensional function

space is not trivial and due to the fact that the whole function space is unknown, there

is also no proof that a found extremum is indeed a global minimum or maximum. A

typical issue in chemistry where such problems occur is the identification for the most

stable configuration of a given number and type of atoms in space. The complexity of

the potential energy surface (pes) whose dimensionality grows exponentially with the

number of atoms making it impossible to calculate all points on the pes even with the

most powerful computers available today. Restricting the search space on the pes to

structures that follow certain rules, one may for instance identify 217 structures that

obey the octet rule for the sum formula C6H6 [55]. The hyperspace in such a small system

with twelve atoms has already a dimensionality of 3N-6 = 30 making it a laborious task

to identify the most stable configuration without prior limitation of the search space.

Several algorithms have been proposed to effectively locate isomers on a pes with most

of them mimic principles inherent to processes in nature [56, 57, 58]. Essential to the

success of all these algorithms is their ability to leave local minima and efficiently jump

over barriers to sample the pes and eventually end up in the global minimum of the

function space. Two of the most popular and successful variants are Basin-hopping,

introduced by Wales et al. [16] and the larger class of evolutionary algorithms that were

first proposed by Deaven and Ho [59] to tackle the problem of the C60 pes. In the vast

majority of cases, the pes is calculated by a classical force-field or a semi-empirical method,

although several publications used a first-principles approach like Hartree-Fock or Density

functional theory, for an overview see [60].

6.2 Evolutionary Algorithms

Evolutionary algorithms used in cluster chemistry adopt principles from nature to iden-

tify optimal solutions for unknown cluster structures. As well as in nature, where the

phenotype of each individual is encoded in its genome and consequently determines its

properties, the configuration of the atoms in a cluster has to be translated into some kind
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of genetic information. Deaven and Ho [59] proposed to use the position of each atom

in the 3-dimensional space directly as a genome instead of encoding genetic information

in a binary string. Genetic information between individuals can then be exchanged by a

”cut-and-splice” operation similar to the recombination process known from reproduction

biology. Such a cut can be defined by a random plane that intersects two parts of a cluster

to provide two halves that are available for a following crossover process. The recombina-

tion procedure is done by combining the two pieces in such a way that the atoms of each

part can interact, typically at a distance close to the bond length of the involved atoms

followed by a local relaxation as it can be seen schematically in figure 2.

“Cut and splice”
crossover

Figure 2: The cut-and-splice crossover operation as proposed by Deaven and Ho [59].

This transforms the process of movements on continuous points in the structure space

to discrete jumps between local minima on the pes comparable to the procedure applied in

the Basin hopping algorithm and greatly improves the performance of a genetic algorithm

(= lamarckian approach) [61, 62]. Starting with a small population of clusters that have

been created by placing N atoms randomly in a cubic box, a local relaxation of all popu-

lation members follows. Before being subjected to a crossover process, the clusters have

to go through a certain selection process. Which cluster finally is allowed to mate and

pass at least parts of its genome to the following generation is decided by a fitness value

assigned to each population member. Several schemes have been suggested to determine

a fitness by either using its total energy directly or transformations of this energy to a

function of the total energy [63]. The selection process may not rely on only a simple yes

or no argument which cluster is allowed to form offspring, but should also give structures

with a lower fitness the chance to be chosen for mating after the selection process, thus
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having the chance of being selected proportionally to their fitness. A variable selection

pressure is like in nature crucial to stabilize a population of individuals and whereas a

too small pressure increases the number of generations to find an optimal solution, a too

large one leads to a loss of genetic diversity and ultimately to a premature convergence to

a non-optimal result. Three of the most widely used algorithms for selection are roulette

wheel, rank-based and tournament methods [64]. Roulette wheel selection works by first

summing up the fitness of all N population members to a value S =
N∑
i=1

si. A random num-

ber R from the interval [0,S] is chosen and the fitness s of the population members summed

up until
n≤N∑
i=1

si ≥ R giving a probability of
si
S

for a cluster i to be selected. However,

it is not easily possible to change the selection pressure in fitness proportionate selection

schemes and one therefore may modify the assigned fitness values to avoid that a single

solution with a large fitness starts to dominate the gene pool. An easy way of introducing

variable selection pressures is to use a tournament based method in which all offspring

clusters are put in a selection pool first. Then a tournament is carried out by randomly

choosing n clusters from the pool, comparing their fitness and allowing the cluster with

the best fitness to be parent for the next generation. The selection pressure is then simply

adjusted by varying the size of the tournament. While smaller tournaments allow clusters

with a lower fitness to survive the selection process a larger tournament prefers structures

with a higher fitness while making it more unlikely for clusters with a lower fitness to

be selected. A rank-based selection process on the other hand ignores the relative fitness

of all population members and bases the decision of allowing to cross-breed with other

clusters upon a ranked list of the fitness of all members. This overcomes the problem

in fitness proportionate schemes in which a structure with a fitness value much greater

compared to the other clusters dominates the selection pool and prohibits a selection of

weaker clusters in most of the selection rounds. All population members now obtain a fit-

ness value proportional to their rank, while the selection pressure can be adjusted by using

for example linear or exponential functions for this transformational assignment [65, 66].

These reallocation of fitness values can then be combined with a roulette wheel selection

to receive a pool of clusters that have been chosen for mating. A very small part of each

population finally undergoes a spontaneous mutation that locally modifies small features

of the structural motif or changes the whole structure itself. Principally, every kind of

mutation that introduces new genetic material helps to avoid premature convergence and

keeps the genetic diversity but some of these operations have been found to be of higher

value than others. At this point it is worth the effort to use insights originally achieved

for the Basin-hopping method, as both approaches share the same problems. Wolf and

Landmann [67] introduced several mutation operators beside simple random movements
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in space to improve the efficiency of locating the global minimum energy structure in-

cluding twinning, adding-etching of atoms and seeding operations. Oakley et al. [68]

showed that a symmetrization scheme in which biased movements of atoms in a cluster

towards more symmetrical structures reduced the energy evaluations necessary for a first

visit of the global minimum energy structure in Lennard-Jones (LJ) clusters of various

sizes. Rondina and Da Silva [69] demonstrated that the combination of both local and

non-local operators in a dynamical scheme within the Basin-hopping approach is a univer-

sal tool that can be used in various systems in which interactions between atoms are not

only described by model potentials like the LJ potential or semi-empirical Sutton-Chen

potentials [70], but also simulations with ab-initio methods are feasible. Later however,

it was shown that standard non-deterministic global optimization procedures including

evolutionary algorithms suffer from several problems on complicated potential energy sur-

faces (e.g. multi-funnel landscapes) [71]. To avoid premature or slow convergence several

authors introduced a niching scheme that ensures genetic diversity with an increased per-

formance compared to the standard algorithm that is typically measured as the number of

generations that have to be visited before the global minimum has been found or the num-

ber of times the global minimum was hit within a series of several individual runs (=the

success rate). All these schemes have in common that they use structural information to

lead the algorithm out of regions on the pes that are not promising or that have already

been visited during an optimization run. Hartke proposed a method in which decahedral

and icosahedral motifs that are found for example in LJ clusters were differentiated by

first rotating two clusters into a position in which a plane projection of its atomic positions

were least dense followed by a calculation of this density as the fraction of occupied squares

in a discretization of this plane [72]. It is easy then to differentiate between icosahedral

and decahedral structures as the icosahedral ones have a larger projected density than

their decahedral counterparts. Cheng et al. used a connectivity table (ct) to compare two

clusters for their similarity and they were able to show that the topological information

in their ct is able to differentiate between certain structural motifs [73]. However, the

crucial step within this procedure is to define a proper cutoff criterion to achieve the cor-

rect number of nearest neighbors for every atom. From the nearest neighbor contacts and

the ct, it is then possible to define a distance measure that represents the similarity or

dissimilarity between two clusters. Cheng et al. used this distance measure in LJ clusters

and were able to effectively distinguish between several different motifs in LJ clusters

up to a size of 110 particles including the Leary tetrahedron, Mackay and anti-Mackay

icosahedra, the Mark’s decahedron and closed packed structures. Using these niching

schemes, they reported a huge improvement in the success rate in combination with a

decreased number of local minimizations that were needed to hit the global minimum for
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a given size for the first time. Another approach, described by Rossi and Ferrando, used

the common neighbor analysis (CNA) to categorize the local environment around each

atom into one of the earlier mentioned structural motifs. Originally proposed to identify

phase transitions or to detect structural faults in clusters and bulk structures [74], this

method works by assigning to each atomic pair an integer triple (m,n, k) with m being the

number of nearest neighbors that are common to both atoms with n bonds between them

and k bonds of them forming the longest connected chain of bonded atoms. Rossi and

Ferrando now showed that it is possible to effectively sample the pes of the complicated

multi-funnel cases of LJ38 and LJ75 by keeping track of only three integer triples (5, 5, 5),

(4, 2, 2) and (4, 2, 1). These three triples were sufficient to distinguish between clusters

with icosahedral-, decahedral- and fcc-structures with up to 98 particles. Hartke et al.

later stated that all evolutionary based algorithms benefit from niching schemes and they

introduced another approach that can be set-up in an ad-hoc without special tuning or

supervision during a global optimization run [75]. This scheme analyses the number of

right angles and the longest distances among the atoms that surround a central atom

yielding characteristic numbers for every structural motif that is typically found within

clusters. An algorithm that applies such a niching scheme is able to easily differentiate

between Td, icosahedral, decahedral and closed-packed clusters in LJ clusters and shows

an enhanced performance compared to the standard approach. Beside the introduction of

niching schemes several other authors worked on improvements to the traditional Deaven

and Ho algorithm. Bandow and Hartke et al. [76] and later Shayeghi et al. [77] discarded

the generation-based approach in favor of a highly efficient parallel working pool-based

approach that is universal and showed a better scalability compared to the standard ap-

proach. Instead of using an alternating series of serial and parallel operations that in

general will lead to a highly fluctuating workload balance among the used CPU’s, Hartke

suggested a pool with asynchronous optimizations to perform the global optimizations.

Therein a population of constant size with a certain number of individuals is held by a

master process that also decides with a certain probability which pool members are sub-

jected to crossover and mutation operations. The designated candidates are then send to

designated sub-processes to perform the actual operation. Afterwards, the candidates are

reported back to the master that decides via a niching scheme if a candidate is allowed to

enter the pool by randomly replacing another structure, except for the best one currently

in the pool (=elitism).
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7 Implementation of a genetic algorithm

7 Implementation of a genetic algorithm

Throughout this work a slightly modified version of the traditional Deaven and Ho al-

gorithm [59] was implemented in Python 2.6 and coupled to the atomic simulation envi-

ronment (ASE) [1]. To make the best use of our available computational resources, we

typically used population sizes that could be handled in reasonable times by our compu-

tational cluster without testing if such large populations are necessary to solve the given

global optimization problem. Therefore, the size of a generation was fixed to 10 members

while the number of children and mutants before the selection process is variable and was

adjusted to the system under investigation. In figure 3 a flowchart is shown to highlight

the different routines and the overall process of a typical global optimization run.

initialization of the
first generation

parents

mutation crossover

mutants children

Form new generation
{mutants + chil-
dren + parents}

assign fitness

selection + elitism

converged? stop

no

yes

Figure 3: A simple flowchart of the implemented genetic algorithm.

As the flowchart already suggests, there are several branches that would allow an easy

parallelization as there is no communication necessary between the single steps. Most of

the CPU time is spent in the local optimization routine and therefore it makes perfectly
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sense to distribute the task of all the local relaxations to different sub-processes to do the

local optimizations. At the beginning of each calculation the algorithm creates a job server

with a user-defined number of CPUS that the code is allowed to use. A master process

then handles the distribution of the created structures to the slaves and the subsequent

selection process that determines the candidates for the following generation. In addition,

the master process also keeps track of the number of generations and the number of times

that the same structure was repeatedly found to be the fittest one within a generation.

Either of those values can be used by the master process to define a stopping criterion to

end the global optimization procedure.

7.1 Local relaxations

Each candidate that has been created by any of the routines presented here was relaxed

to its next local minimum with the FIRE algorithm [78] before a structure was considered

for the next step. In contrast to the standard conjugate-gradient method or more sophis-

ticated quasi-newton methods, the FIRE algorithm that is actually based on a molecular

dynamics procedure shows a better performance, especially when the next local minimum

on the pes is far away from the actual atomic configuration before the relaxation. In

contrast to algorithms that used a Darwinistic approach (=no local relaxations), it was

shown that Lamarckian based algorithms (=local relaxations, comparable to an adapta-

tion to the environment known from biology) are superior in terms of the success rate and

ability to efficiently sample the pes).

7.2 Start routine

Except for the cases when seeds were used to explore certain areas of the potential energy

surface, all global optimization runs have been started from randomly created structures.

Taking the AmBn, cluster as an example, the first generation was created by placing the

m+ n atoms randomly within a cubic box of volume Vbox that scaled with the number of

atoms as

Vbox = m · a
3
A

4
+ n · a

3
B

4
. (6)

Thereby, the volume Vbox results from the sum of the volumes that a single atom would

occupy in a given fcc-lattice with aA and aB being the corresponding experimental lattice

constants of the bulk structures of the elements A and B.
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7.3 Crossover routine

The mating process between two structures is one of the methods that effectively intro-

duces new genetic material (=new structural motifs) into the algorithm. A cut-and-splice

procedure as shown in figure 2 was used for the crossover and the creation of offsprings.

In contrast to the original recipe that defined a plane through the center of mass, we used

arbitrarily defined planes that work better in cases when more than a single element is

present within a system, especially if the stoichiometry has to be constrained during a

search. Both halves are then rearranged, randomly rotated and combined in a way that

a minimum distance between the two parts is maintained (typically the bonding distance

of the dimer). The number of offsprings that should be created by the program is left

to the user without a special selection scheme and should be tested in advance to any

production runs. Offspring clusters do not replace any clusters yet and they will be added

to the pool of possible candidates for the next generation.

7.4 Mutation routine

As mentioned for the crossover routine, there was no selection rule used to decide if a

given cluster undergoes a mutation or not. Instead, the user controls the number of times

that all clusters will be subjected to a mutation. The mutants will not replace any clusters

at that step and they will all be added to the pool of possible candidates for the next

generation. Several mutation operations are available during a global optimization run in

the algorithm:

• Random displacements of all atoms with a Gaussian-distributed step-size [79].

• Permutation of two atomic species to explicitly include homotops of the same struc-

tural motif in the search process.

• A twinning mutation in which two halves of a cluster are rotated by a small random

angle in opposite directions [67].

• An etch-add process in which randomly picked atoms are removed and placed next

to other atoms at the typical bond length of the dimer [67].

• The ”Onepar” routine as described by Joswig et al. that interchanges two halves of

a cluster through a randomly defined plane [80].

The algorithm chooses one of the described operations with equal probability, however

it is also possible to change the weights of the mutation operations if it is beneficial for a
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given system (e.g. twinning mutations to explicitly remove stacking faults). In addition,

an energy criterion can be defined which ensures that only mutants are created with a

certain difference in energy compared to the structure with the lowest energy that has

been found so far during a run.

7.5 Selection routine

To decide which clusters are allowed to be passed on to the next generation a selection

scheme was used on a combined pool consisting of the parent clusters, the offspring struc-

tures and the mutants. The selection is done with the total energy as the fitness criterion

but later improvements of the algorithm will also include several arbitrarily defined fitness

definitions that are not based upon the total energy of a cluster. The user can choose

between two methods, a simple tournament or the roulette wheel selection [81]. Through-

out this work a tournament was used as the selection process and therefore we refer the

interested reader to the work of Lipowski et al. for further details [81]. Before the tour-

nament starts, any structural duplicates will be removed by applying a simple criterion

that is based upon the interatomic distances [79]. We consider two clusters A and B to

be structural equivalent if ∆ calculated from

∆ =

∑
i

(dA,{i} − dB,{i})2∑
i

(d2
A,{i} + d2

B,{i})
(7)

with dA,{i} and dB,{i} being a sorted list of interatomic distances in cluster A and cluster

B is smaller than 10−4. For the tournament, the algorithm chooses a predefined number

of individuals (=the tournament size) nSelection from the pool, compares their fitness and

passes the cluster with the best fitness to the next generation. This process is repeated

until the next generation has the same size as the preceding one. The parameter nSelection

can be changed to tune the selection pressure towards convergence of the algorithm. A too

small value of nSelection will make the algorithm work inefficient, as it will not effectively

sample regions with low energy on the potential energy surface, whereas a too large value

will in general lead to premature convergence. Furthermore it is possible to use the elitism

concept to pass the lowest or any other cluster unmodified to the next generation to avoid

a loss of a beneficial genome.

7.6 Convergence

In general, it is not possible to define a simple stopping criterion for any global optimiza-

tion algorithm due to the fact that the whole potential energy surface is unknown. Thus,
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there is also no proof known that an identified candidate for the global minimum is really

the global minimum. However, we define a simple criterion and consider the algorithm

to be converged if there was no fitter candidate found within n consecutive steps. This

parameter should be chosen according to the size of the cluster under investigation and

typically lies between 100 and 300 generations.

8 Testing the implemented genetic algorithm

8.1 The Lennard-Jones Potential

To demonstrate that the implemented genetic algorithm works, we show the results of a

global optimization run for the three cases of Leonard-Jones (LJ) [82] systems with 38,

55 and 75 particles. The Lennard-Jones potential is a pairwise defined function and is

typically used to describe clusters with weakly interacting atoms (e.g. clusters made of

noble gases) [83] or as a test potential for newly proposed global optimization algorithms.

It is of the form

E = 4ε
∑
i<j

[(
σ
rij

)12

−
(
σ
rij

)6]
(8)

where ε is the pair potential well depth, σ is the length scale of the potential function

and rij represents the distance between the two particles i and j. To allow a comparison,

ε and σ are usually set equal to 1 [84]. The two systems LJ38 and LJ75 have been chosen

because of their complicated energetic landscapes that consists of a double-funnel with a

large attractive basin for the icosahedral motif. Both cases offer a high chance that the

algorithm will be trapped within the icosahedral basin having little chance to leave that

part of the hyperspace again. Additionally, it was shown that these multi-funnels are

separated by a liquid-like structure space that every algorithm would have to overcome to

be able to efficiently sample the whole potential energy surface [53]. In figure 4, we show

the result of an exemplary optimization of LJ38 to demonstrate that the implemented

code is able to effectively sample the potential energy surface. The global minimum

energy structure of LJ38 is believed to be a piece of an fcc crystal with point group Oh as

shown in figure 4, whereas the second and third lowest isomer correspond to incomplete

Mackay-icosahedra. The large attraction of the icosahedral basin can immediately be seen

in figure 4, the third lowest isomer is already encountered after a few generations, closely

followed by the second lowest isomer that was first found after about 10 generations. To

locate the actual global minimum, the algorithm had to run for another 250 generations

which illustrates the problem of identifying the correct global minimum energy structure of
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point group (pg) Oh in that system. However, it also demonstrates that the implemented

algorithm is capable of leaving a deep funnel which is one of the main criteria for a global

optimization procedure. LJ55 on the other side has a much simpler pes with a single funnel

only that leads to a highly symmetric icosahedral structure of pg Ih. The implemented

algorithm locates the ideal Mackay icosahedron from unbiased start structures quite fast

after about 15 generations as one can see from figure 5. At last, the same results are shown

for LJ75 in figure 6, a system that was described as being exceptionally complicated [85].
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Figure 4: The change in energy of the fittest population member in a global optimization
search in the LJ38 system. The population size P was set to 10 and we allowed the
three lowest isomers in a generation to form offsprings with all other clusters. Different
mutants were created for three times from all current population members. The resulting
66 candidates were subjected to the selection process (tournament of size 10) to form the
subsequent generation (the remaining fittest cluster was passed unmodified to the next
generation).
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Figure 5: The change in energy of the fittest population member in a global optimization
search in the LJ55 system with the same parameters used that were described in figure 4.

Several other unbiased algorithms including Basin-hopping [16] failed to locate the
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global minimum without the use of seeds or niching schemes. Even some of the more

sophisticated and previously proposed global optimization methods were not able to con-

verge to the correct decahedral global minimum energy structure for the series LJ75−77.

Laykhov et al. used a local order parameter to quantify the local symmetry around every

atom in a cluster together with a clustering method that is based on the fingerprint theory

[86] to keep the structural diversity within a population as large as possible [85]. Without

this additional information and the classification of every structure into one of the main

motifs (fcc, hcp, bcc, sc and ico), the algorithm had to sample many more structures

before it would be able to converge to the decahedral global minimum energy structure.

Rogan et al. also failed to locate the decahedral global minimum with their approach con-

sisting of coupling of an efficient and robust local minimizer [78] with a similarity index as

described by Grigoryan and Springborg et al. [87] to discriminate certain structural motifs

during their optimizations of randomly created seeds [88]. Also other nature-inspired and

newer methods like the artificial bee colony and the Firefly algorithm (based on swarm

intelligence) were incapable to locate the decahedral structures for LJ75−77 [89, 90].
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Figure 6: The change in energy of the fittest population member in a global optimization
search in the LJ75 system with the same parameters used that were described in figure 4.
All clusters shown have been rotated to give a view along the longest chain of atoms to
illustrate the local fivefold symmetries within the clusters.

This chapter showed that a parallel working genetic algorithm has been successfully

implemented as well as tests on several examples of the Lennard-Jones system have been

presented. We also gave an introduction of problematic cases and how they could be

solved in the future by further changes to the code.
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Part II

Total-Energy Methods

9 Theoretical models

The genetic algorithm that was introduced in the last chapter is a universal tool for

global optimization procedures and therefore not restricted to a special kind of potential.

Recently, several authors coupled a genetic algorithm to the ab-initio density functional

theory, but such an approach is typically restricted to smaller systems with only a few

number of atoms due to computational demands [91, 92, 93, 94, 95, 96, 97]. A more feasible

approach that is regularly used consists in coupling a global optimization algorithm to

a semi empirical method that first creates candidates for the global minimum which are

afterwards treated with more accurate ab-initio methods. Depending on the type of

system, several methods have been proposed to efficiently treat not only metals (e.g. the

RGL potential [98], the Sutton-Chen potential [70] or the Embedded-atom method and

its modification of Daw and Baskes [99] and finally the effective medium theory [100]), but

also semiconductors (e.g. the Brenner potential [101] and the Tersoff potential [102]). A

more general approach that is not restricted to a special class of materials and that gives

good results for various properties compared to ab-initio methods is the density functional

tight-binding (DFTB) approximation [103] that was used during this work for most of the

global optimization procedures. All of the potentials that were used and their theoretical

foundations are introduced in the next sections.

10 The Born-Oppenheimer Approximation

Finding appropriate solutions to the Schrödinger equation is the main problem of quantum

chemistry since the beginning of its development. At the early stages of its formulation in

1926, all approaches were based on the complicated calculation of a wavefunction, which

is not observable and therefore not accessible to measurement. In its time-independent

form the Schrödinger equation for a many-body system reads as

ĤΨ = EΨ , (9)

with the general Hamilton operator being the sum of several terms

Ĥ = Tc + Te + Vcc + Vee + Vec , (10)
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where Te and Tc represent the kinetic energy of the electrons and the nuclei respectively

and Vcc, Vee and Vec describe the nucleus-nucleus, electron-electron and electron-nuclei in-

teractions. In both of the two commonly used electronic structure methods, wavefunction

based approaches and the density functional theory (DFT), the Born-Oppenheimer (BO)

approximation is used to greatly simplify the Schrödinger equation as the Hamiltonian Ĥ

of a system can be separated into a sum of two Hamiltonians with the first Hamiltonian

Ĥc being dependent on nucleus-nucleus interactions and the kinetic energies of the nuclei.

The second Hamiltonian Ĥe depends on electron-electron and electron-nuclei interactions

as well as the kinetic energy of the electrons and therefore we can write

Ĥ = Ĥc + Ĥe , (11)

Ĥc = Tc + Vcc , (12)

Ĥe = Te + Vee + Vec . (13)

By using that the nuclei are much heavier than the electrons so that the movements of

the two sets of particles, electrons and nuclei, become decoupled, it is possible to factorize

the wavefunction

Ψ(~r, ~R) = Ψe(~r, ~R)Ψc(~R). (14)

Of the same reasons, the positions of the nuclei may be held fixed (Tc = 0) and therefore

a constant nucleus-nucleus potential Vcc in eq.10 can be assumed, so that the Schrödinger

equation can be written as

(Ĥe + Vcc)Ψe(~r, ~R)Ψc(~R) = EΨe(~r, ~R)Ψc(~R) , (15)

which yields after division with eq.14

ĤeΨe = (E − Vcc)Ψe , (16)

and finally the so-called electronic Schrödinger equation

ĤeΨe(~r, ~R) = Ee(~R)Ψe(~r, ~R) , (17)

in which the eigenvalues Ee = (E − Vcc) depend parametrically on the positions ~R of

the nuclei. For most of the questions in theoretical chemistry, it is sufficient to solve

the electronic Schrödinger equation under the assumption that the BO approximation is

valid for the system under investigation. Certain dynamical problems (e.g. molecular

dynamics), systems in which several potential energy surfaces cross each other, or in cases

27



11 Density functional theory

where a system leaves the electronic ground state after a change in the positions of the

nuclei cannot be treated by the BO approximation and other methods have to be used

which however are beyond the scope of this work.

11 Density functional theory

11.1 The Theorems of Hohenberg and Kohn

Based on the work of Thomas and Fermi, Hohenberg and Kohn demonstrated that the

external potential Vext(~r) and the thereof resulting total electronic energy Ee is a unique

functional of the ground-state electron density ρ(~r) (known as the first Hohenberg-Kohn

theorem) [104]. This energy Ee[ρ] can be written in the following way,

E[ρ(~r)] = F [ρ(~r)] +

∫
Vext(~r)ρ(~r)d~r . (18)

where F [ρ(~r)] is an universal functional of the electron density ρ(~r) of the form

F [ρ(~r)] = T [ρ] + Vc[ρ] , (19)

with the kinetic energy of the electrons T [ρ] and the potential energy due to the electron-

electron interactions Vc[ρ], both as a functional of the electron density ρ(~r). The external

potential Vext(~r) is generated by the nuclei and of Coulomb-type, but may also contain

additional potentials (i.e. external electrostatic potentials). Now the electron density ρ(~r)

should also define the total number of electrons N :

N =

∫
ρ(~r)d~r . (20)

Not only is the electron density accessible through experiments (e.g. X-ray diffraction),

it can also be handled much easier computationally as it depends only on a single space

coordinate ~r = (x, y, z), whereas in wavefunction-based approaches the 3N (4N if spin

is included) coordinates of all interacting particles have to be taken into account. The

second theorem of Hohenberg and Kohn states that for any trial density function ρ
′
(~r)

that satisfies eq.20, the expectation value of Ee[ρ] is equal to or larger than the true

electronic ground-state energy of the system

Ee[ρ
′
(~r)] ≥ Ee[ρ(~r)] , (21)

which is the density functional counterpart to the Rayleigh-Ritz variation principle in

wavefunction based approaches. Unfortunately, the functional of the kinetic energy of the
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electrons T [ρ] and the potential Vee[ρ] of the electron-electron interaction as a functional

of the density are unknown, thus making it impossible to formulate an exact Hamilto-

nian. Long before the theorems of Hohenberg and Kohn, Thomas and Fermi proposed

approximations to both, for the kinetic energy T [ρ] and for Vee[ρ], though their approach

still has several shortcomings if used for calculations in molecules (e.g. the method fails

in the description of the chemical bond) [105, 106].

11.2 The Kohn-Sham equations

Since we know from the second Hohenberg-Kohn theorem that Ee[ρ
′
(~r)] has a minimum

for the true ground state density ρ(~r) eq. (21) we can obtain this minimum by the variation

δEe[ρ] ≡ Ee[ρ+ δρ]− Ee[ρ] = 0, (22)

under the constraint that the total number of electrons is conserved as defined from eq.

(20). By using a Lagrange multiplier (µ) eqs. (22) and (20) can be combined and re-

written as a functional derivative

δ

δρ(~r)

{
Ee[ρ(~r)]− µ[

∫
ρ(~r)]d~r −N

}
= 0 . (23)

However, up to now Ee[ρ(~r)] is still unknown, but contains several terms including the

kinetic energy of the electrons as a functional of the density T [ρ(~r)], the classical Coulomb

interaction energy Vc between the electrons defined from

1

2

∫ ∫
ρ(~r1)ρ(~r2)

|~r1 − ~r2|
d~r1d~r2 =

1

2

∫
Vc(~r)ρ(~r)d~r , (24)

and another term due to the external potential of the nuclei,∫
Vext(~r)ρ(~r)d~r . (25)

In total we have for Ee[ρ(~r) the expression

Ee[ρ(~r)] = T [ρ(~r)] +

∫
Vext(~r)ρ(~r)d~r +

1

2

∫
Vc(~r)ρ(~r)d~r + E

′

xc[ρ(~r)] , (26)

and the term E
′
xc[ρ(~r)] has been introduced to hide all of the other additional complications

that arise due to the many-body effects including exchange and correlation interactions.

After application of eq. (23) we obtain
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δT

δρ
+ Vext(~r) + Vc(~r) +

δE
′
xc

δρ
= µ . (27)

To overcome the problem of having to find an accurate formulation for the kinetic energy

T [ρ(~r)], Kohn and Sham introduced a method that makes use of the orbital concept known

from Hartree-Fock theory. To get a solvable set of equations Kohn and Sham replaced the

unknown T [ρ] in DFT with the kinetic energy that one obtains from a fictitious system of

non-interacting quasi-particles that move in a selected, single-particle external potential

Vref (~r). Vref (~r) is chosen as such, so that the reference system has the same density

and energy as the true electron density. Since the particles in that fictive system are

non-interacting, it is possible to calculate Ee[ρ(~r)] from a much simpler expression,

Ee[ρ(~r)] = T0[ρ(~r)] +

∫
Veff (~r)ρ(~r)d~r . (28)

Analogous to eq. (27) we can calculate

δT0

δρ
+ Veff (~r) = µ (29)

and from a comparison of the eqs. (28) and (27) we can identify the effective potential

Veff (~r) for the fictitious system as

Veff (~r) =
δT

δρ
− δT0

δρ
+ Vext(~r) + Vc(~r) +

δE
′
xc

δρ
. (30)

The Hamiltonian for such a system of non-interacting particles then reads

Ĥref =
N∑
i=1

[
− 1

2
∇2
~ri

+ Veff (~ri)

]
, (31)

and the ground-state density can be obtained from solving the one-electron Schrödinger

equations ĤrefΨ = EΨ where the solutions can be written as a single Slater determinant

Ψ = |φ1, φ2, ..., φN | , (32)

with the single-particle orbitals φN . The ground-state density can then be constructed

from the equation

ρ(~r) =
N∑
i=1

|φi(~r)|2 . (33)
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However, there is still the problem that the exact form of the effective potential Veff (~r)

is not known. The unknown exchange-correlation potential Vxc defined as

Vxc =
δExc
δρ

=
δT

δρ
− δT0

δρ
+
δE

′
xc

δρ
, (34)

must be approximated and there are several approximations that work well for certain

properties while they may fail in the description of others. Originally Kohn and Sham had

the intention to make the contribution of the unknown exchange-correlation energy to the

total energy as small as possible, but it turned out that an accurate description is still

crucial for the description of binding properties in molecules and solids. An introduction

to the exchange-correlation problem is given in the following section.

11.3 The exchange-correlation Problem

11.3.1 The Local Density Approximation LDA

Finding a reliable functional for Exc[ρ] is one of the main problems in DFT. All functionals

currently used are still approximations to the true exchange-correlation functional in DFT

resulting in the fact that no functional is accurate for all systems and all properties. This

fact has been pictorized through the DFT Jacobs ladder to heaven on which every rung

represents a different and more complex approximation, that should have the features of

former rungs with additional wider applicability to new problems [107]. Starting from lo-

cal density approximation functionals (LDA) that are rather useless for calculations with

chemical accuracy due to strong tendency for overbinding to generalized gradient approx-

imations (GGA) that partially correct this fault, to meta-GGAs and hybrid functionals

that are at present the most widely used functionals for molecular DFT calculations. It

should also be kept in mind that functionals do not perform equally well for molecular

systems and crystals with their translational symmetry properties [108]. In general it is

possible to write the exchange correlation functional Exc as

Exc[ρ] =

∫
εxc(~r)ρ(~r)dr , (35)

where εxc often is approximated by the relation

εxc(~r) = εxc[ρ(~r), |∇ρ(~r)|, |∇2ρ(~r)|, ...] . (36)

It is also beneficial to separate the exchange-correlation functional into two parts and to

treat them independently afterwards according to
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11 Density functional theory

Exc[ρ] = Ex[ρ] + Ec[ρ] . (37)

At the lowest level of approximation (the local density approximation LDA) Ex was cal-

culated by Dirac for a homogeneous electron gas [109] yielding the expression

ELDA
x [ρ] = A

∫
ρ(~r)

4
3dr , (38)

with the exchange potential

Vx(~r) =
4

3
Aρ(~r)

1
3 . (39)

Obtaining an analytic expression for the correlation effects in an homogeneous electron

gas is much more difficult and approximations have been formulated only for the cases of

an infinitely weak and infinitely strong correlated electron gas (the so-called high density

and low density limits). The electron correlation effects are typically represented as a

function of the density parameter rs and the relative spin polarization ζ, both defined

from

rs =

(
3

4π(n ↓ +n ↑)

) 1
3

, (40)

ζ =
n ↑ −n ↓
n ↑ +n ↓

. (41)

and where n ↓↑ corresponds to the spin-up n ↑ and spin-down n ↓ electrons. In the case

of the high-density limit (= small rs [110]) the correlation energy εc per electron can be

expanded as

εc(rs, ζ) = c0(ζ) ln(rs)− c1(ζ) + c2(ζ)rs ln(rs)− c3(ζ)rs + ... , (42)

whereas in the case of the low-density limit [110] the expansion reads

εc(rs, ζ) =
−d0(ζ)

rps
+
−d0(ζ)

r
2p−1/2
s

+ ... , (43)

with p being equal to 3
4
. The coefficients for both cases are fitted to reproduce highly

accurate results from quantum Monte Carlo methods (e.g. the VWN correlation functional

of Vosko-Wilk-Nusair [111] and the ones by Ceperley-Alder CA [112] and Perdew-Wang

PW92 [110]. Parameters for the intermediate case are not calculated and are interpolated

between the high- and low-density case. The local functional LDA typically performs well

for the prediction of for example lattice constants in crystals due to their slowly varying
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electron density (e.g. in metals). However, it often fails in inhomogeneous systems that are

present for example in molecular structures, especially in the prediction of their binding

energies. The next rung on the Jacobs DFT ladder would be to include the gradient of the

density at a given point as shown in eq. (36). These GGA’s in general improve most of

the properties for which LDA’s give a poor description including atomization and binding

energies, energy barriers and structural energy differences. In addition they also reduce

the tendency to overbinding and favor density inhomogeneities in comparison to LDA’s

[113].

12 Density functional tight-binding

The density functional tight-binding method was introduced by Porezag et al. [114] and

later improved by Elstner et al. [115] as an approximate semiempirical method to ab-

initio DFT. Originally proposed to treat covalent systems, the method has been proven

to be reliable also for metals [116] and ionic materials [117]. It shares the same strengths

and weaknesses as DFT at only a fraction of the computational cost of full DFT calcula-

tions which makes it not only possible to study large systems (e.g. proteins), also larger

timescales are accessible in molecular dynamic simulations. Likewise as for all semiem-

pirical approaches the performance of DFTB depends critically on its parametrization

process which means that excessive testing is always necessary to ensure maximum trans-

ferability for a given set of parameters. Starting from DFT where the Kohn-Sham energy

for a system of non-interacting electrons as a functional of the density ρ was given as

Ee[ρ] =
∑
a

fi 〈Ψi|
(
− 1

2
∇2 + Vext(~r)

)
|Ψi〉+

1

2

∫ ∫
ρ(~r1)ρ(~r2)

|~r1 − ~r2|
dr1dr2

+ Exc[ρ] + Vcc , (44)

with fi ∈ [0, 2] being a function that accounts for different occupations in the single-

particle state Ψi and usually being taken from the Fermi function

fi = 2[exp(εi − µ)/kBT + 1]−1 (45)

and Vcc being the repulsive ion-ion interaction for all N nuclei with the valence numbers

Zα and Zβ, calculated from

Vcc =
1

2

∑
α 6=β

ZαZβ

| ~Rα − ~Rβ|
. (46)
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The chemical potential µ is chosen so that
∑
fi = N with N being the number of electrons

in the system. Equation 44 is exact and the DFTB method now assumes the following

scenario as an approximation to it: A neutral system with density ρ0 is considered that

is composed of atomic densities with no charge transfer between the atoms. While the

density ρ0 does not minimize 44, it differs only by a small amount δρ(~r)

ρ(~r) = ρ0(~r) + δρ0(~r) (47)

The change in energy for small fluctuations δρ(~r) can then be approximated by an expan-

sion of 44 up to second order in δρ:

Ee[δρ] ≈
∑
i

fi 〈Ψi| −
1

2
∇2 + Vext(~r) + VH [ρ0] + Vxc[ρ0] |Ψi〉

+
1

2

∫ ∫ (
δ2Exc[ρ0]

δρ(~r1)δρ(~r2)
+

1

|~r1 − ~r2|

)
δρ(~r1)δρ(~r2)d~r1d~r2

−
[

1

2

∫
VH [ρ0]ρ0(~r)d~r + Exc[ρ0]−

∫
Vxc[ρ0]ρ0(~r)d~r + Vcc

]
. (48)

Now these terms represent the single particle band structure energy EBS for a small change

in ρ (the first-order term)

EBS[δρ] =
∑
i

fi 〈Ψi| Ĥ0 |Ψi〉 , (49)

the energy that arises due to charge fluctuations between neighboring atoms (the second-

order term)

Ecoulomb[∂ρ] =
1

2

∫ ∫ (
∂2Exc[ρ0]

∂ρ(~r1)∂ρ(~r2)
+

1

|~r1 − ~r2|

)
∂ρ(~r1)∂ρ(~r2)d~r1d~r2 , (50)

and the repulsive energy that is the sum of all the remaining terms including a contribution

due to the ion-ion repulsive interactions Vcc

Erep = −
[

1

2

∫
VH [ρ0]ρ0(~r)d~r + Exc[ρ0]−

∫
Vxc[ρ0]ρ0(~r)d~r + Vcc

]
. (51)

In the so-called non-self consistent charge (non-SCC) approach one neglects the second-

order term in δρ Ecoulomb, which should work in cases where the chemical bonds within

a system are dominated by covalent interactions with almost no charge transfer between

the atoms. Highly ionic systems with polar bonds should be treated by including the

second-order terms because the influence of larger charge transfers between atoms on the

total energies can not be corrected in the parametrization process. The pairwise defined
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repulsive function Erep for an atom pair i, j can be considered as the counterpart of the

complicated exchange-correlation functional from full DFT and is typically fitted to high-

level ab-initio calculations or experimental results as

Erep =
∑
i<j

V ij
rep(~r) . (52)

12.1 The tight-binding approximation

The DFTB method uses a linear combination of atomic orbitals (LCAO) based approach

with the orbitals expanded in terms of a minimal set of atomic-centred, non-orthogonal

basis functions to solve the Kohn-Sham eigenvalue equations for an effective potential

veff . Thus, the ith orbital is written as

Ψi(~r) =
∑
v

cviφv(~r) , (53)

with φν being the ν-th basis function. The band structure energy EBS for an effective

potential is thereby calculated as the sum over the eigenvalues of all occupied orbitals.

Substitution of the Hamiltonian Ĥ = T̂ + Veff with the kinetic energy operator T̂ and

the effective potential Veff into the time independent Schrödinger equation ˆHeffΨi(~r) =

εiΨi(~r) gives in analogy to the DFT method with the single particle energy EBS =
∑

i fiεi

for the total energy the expression

E =
∑
i

fiεi +
∑
i<j

V ij
rep(~r) . (54)

with fi and εi being the occupation and energy of the i-th orbital, respectively. The

minimum of this expression can again be found by using the variational principle with the

undetermined Lagrange multipliers εi, constraining the norm of the wavefunctions

∂

(
E −

∑
i

εi 〈Ψi|Ψi〉
)
, (55)

to finally obtain the eigenvalue equation

∑
v

cavi(Hvi − εaSvi) = 0 , (56)

with

Hvi = 〈φv| Ĥ |φi〉 and Svi = 〈φv|φi〉 , (57)

and the assumption that

35



12 Density functional tight-binding

〈φv|T̂ + Veff |φi〉 =


〈φv|T̂ + Vn|φi〉 forφv, φi both on atomn

〈φv|T̂ + Vn + Vm|φi〉 forφv, φi on atomsn 6= m

0 otherwise.

(58)

The elements Hvi and Svi are pre-calculated as a function of the distance ~r in diatomic

molecules using the Slater-Koster rules [118]. In addition it is also assumed that the

effective potential Veff can be written as a superposition of atomic potentials like

Veff (~r) =
∑
n

Vn(|~r − ~R|) , (59)

with ~Rn being the position of the n-th atom. The potential Vn(r) is the potential of the

free, and isolated n-th atom V 0
n (~r) that is augmented by a short-ranged confining potential

Vconf (r) that leads to a contraction of the orbitals on the n-th atom

Vn(r) = V 0
n (r) + Vconf (r) with Vconf(r) =

(
r

r0

)2

. (60)

for r < r0 and zero otherwise.

12.2 Parametrization of the DFTB method

Calculation of the total energy for a given molecule or crystal requires an optimization

of both, an ideal value for r0 in the confining potential and an appropriate repulsion

potential Vrep(r). The electronic part of DFTB is typically fitted by varying r0 to get

the best agreement between ab-initio calculated bandstructures and the ones obtained by

DFTB (an example of such a fit for hcp-cadmium can be seen in figure 7).

The repulsion potential Vrep(r) can be determined by minimizing the force differences

|FDFT − FDFTB| as proposed by Koskinen and Mäkinen [3]. In the case of highly sym-

metric molecules, clusters or crystal where all bond lengths are equal, the derivative of

the repulsion energy for N bonds can be calculated from

V
′

rep(r) =
E

′
DFT − E

′
BS

N
. (61)

Additionally for local extrema on the potential energy surface it is clear that E
′
DFT = 0

so that

V
′

rep(r) =
−E ′

BS

N
. (62)

In cases when there are different bond lengths for a system at equilibrium it is possible

to construct Vrep from the minimization of
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Figure 7: A comparison between a DFTB obtained band structure (with a value r0=5.4
Bohr) and an ab-initio calculated one (DFT-PBE) for hcp-Cd along the high symmetry
lines in the irreducible part of the first brillouin zone. All bands are shifted to give Ef a
value of zero eV.

min

{∑
i

|E ′

DFT,i − E
′

BS,i − E
′

rep,i|2
}
, (63)

with respect to a and b where V
′
i,rep(r) = a + b(ri − rcut). These additional i points

V
′
i,rep(r) can then be used as well in the fitting of V

′
rep(r). It is assumed, that V

′
rep(r)

changes linearly as a function of the bond lengths, which is valid only for small changes

in the bonding distances. Calculation of all the derivatives is done numerically by first

calculating the energy curves by stretching/compressing all equal bonds with DFT and

DFTB and then use finite differences for the derivatives. The M data points as a function

of r were then used in a fitting process with a standard smoothing spline [3] by minimizing

the quantity

S[Vrep(r)] =
M∑
i=1

(
V

′
rep,i − U(ri)

σi

)2

+ λ

∫ Rcut

U
′′
(r)2dr , (64)

where U(r) is a cubic spline with its smoothness determined by the parameter λ and the

weights for every data point σi. In addition one has to choose an Rcut at which V
′
rep is set
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equal to zero. The final repulsion potential Erep is obtained by numerical integration of

V
′
rep(r) up to Rcut

Vrep(r) = −
∫ Rcut

R

V
′

rep(r)dr , (65)

as it can be seen in figure 8 again for the case of cadmium.
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Figure 8: Calculation of the repulsion potential Vrep(r) by minimizing the force differ-
ences between ab-initio DFT (PBE,Def2TZP basis set) and DFTB calculations for various
cadmium clusters of different sizes (right plot). On the left side the resulting repulsive
potential Vrep(r) is shown. The size of every data point in the right plot i represents its
weight in the fit with σ ∈ [0,1].

13 The RGL potential

The empirical many-body potential introduced by Rosato, Guillope and Legrand [98] was

developed to simulate thermodynamic properties of fcc metals and is based on the second

moment approximation to the tight binding theory. Based on the work of Finnis and

Sinclair [119] who proposed that the total energy of a many body system with N atoms

can be written in the from

Etot = Em + ER , (66)

as the sum of a repulsive pair potential ER and an attractive many-body potential Em

for all atoms N in a system. Em is chosen to be of the form
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Em = −
N∑
i 6=j

√
ρ(rij) , (67)

with the function ρ that depends only on the interatomic distance rij between two atoms

i and j. It is assumed now, that the cohesive energy does not depend on the details of

the density of states, but only on its effective width (= the second moment) [120, 121].

For an atom i with the neighboring atoms j in a lattice αβ the bond energy Em is then

expressed as proposed by Gupta and Tomanek et al. as [122, 123]

Ei
m = −

[∑
j

ξ2
αβe
−2qαβ(rij/r

αβ
0 −1)

]1/2

, (68)

with rij being the distance between atoms i and j, rαβ0 being the first-neighbours dis-

tance in lattice αβ, ξ an effective hopping integral, while q describes its dependency on

the interatomic distance. The second term Ei
R in eq.66 represents a repulsive pairwise

interaction of Born-Mayer type to stabilize the system [98]

Ei
r =

∑
j

Aαβe
−pαβ(rij/r

αβ
0 −1) , (69)

with p being related to the compressibility of the metal and A representing a repulsion.

The summation over i and j in 68 and 69 is restricted to the Z next nearest neighbours

only and then the following relations for pαβ, qαβ, Aαβ and ξαβ hold [120, 121]

ξαβ =
pαβ

pαβ − qαβ
Etot√
Z
, (70)

Aαβ =
pαβ

pαβ − qαβ
Etot
Z

. (71)

The parameters pαβ, qαβ, Aαβ and ξαβ are fitted to reproduce experimental values of

cohesive energies, lattice parameters, bulk moduli and shear elastic constants. Fitting of

these parameters to heteroatomic phases is more complicated as the optimum parameters

are not simple equally weighted averages of the corresponding homoatomic parameters

[124]. In general the RGL parameters are therefore fitted to several phases with different

ratios of the elements (e.g. AB2, AB3) to ensure maximum transferability.

13.1 Parametrization of the RGL parameters

In case of non available experimental data the RGL parameters can also be fitted to ab-

inito derived structural and mechanical properties. The density functional theory together
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with the for solids re-parametrized version of the PBE functional (PBEsol) is a good choice

as it gives in general a good agreement for structural and mechanical properties between

experimental and theoretically predicted results [125]. For the later presented study in the

Ag-Rh system the two C1 (Ag2Rh, AgRh2) and L12 phases (Ag3Rh,AgRh3) and the B2

phase (AgRh) were used during the fitting process. As there are no stable phases known

from experiment because of positive heats of formations and mixing enthalpies over the

whole Ag:Rh ratio all related values had to be extracted from DFT calculations. Accurate

lattice constants for all phases were obtained by fitting the Murnaghan equation [126] to

a plot of the total energy E versus the volume V as

E(V ) = E0 +
B0V

B
′
0

[(
V0

V

)B′
0 1

B
′
0 − 1

+ 1

]
− B0V0

B
′
0 − 1

, (72)

where E0 is the total energy at the equilibrium Volume V0, B0 the bulk modulus at zero

pressure and B
′
0 the derivative of the bulk modulus with respect to pressure. In principle

it is possible to extract the bulk modulus B0 from eq.72. However, there is a better way

that will yield the elastic constants C11, C12, C44 at the same time. The internal energy

of an elastic solid can be expanded in a Taylor series up to the second order about the

unstrained cell for small deformations [127, 128]

E(V, εk) = E0 + V0

(
6∑
i=1

σiεi +
1

2

6∑
i,j=1

Cijεiεj

)
(73)

where {εk} denotes {ε1, ε2, ...ε6}, V0 and E0 are the volume and the energy of the un-

strained cell. Elastic constants are then calculated by taking the second-order partial

derivative of eq.73 for both volumetric and distortional deformations with respect to

strains, evaluated at zero strain:

Cij =
1

V0

[
∂2E

∂εi∂εj

]
{εk}=0

(74)

Three distortion matrices Dortho, Dcubic, Dmonoc are used to distort the unstrained cell

with the basis vectors Rfcc to give the distorted basis vectors R
′

from R→ R
′

dist = RDdist

with

Rfcc =
a
2

0 1 1

1 0 1

1 1 0

 , and
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Dortho =

1 + ε 1 1

1 1− ε 1

0 0 1
1−ε2

 , Dcubic =

1 + ε 1 1

1 1 + ε 1

0 0 1 + ε

 ,

Dmonoc =

1 ε 1

ε 1 1

0 0 1
1−ε2

 .

The change in energy due to the deformations of the cell can be described with the

following equations:

Eortho(V, ε) = E0 + V0

{
(C11 − C12)ε2 +O(ε4)

}
, (75)

Ecubic(V, ε) = E0 + V0ε(σ1 + σ2 + σ3) + V0

{
3

2
(C11 − 2C12)ε2 +O(ε3)

}
, (76)

and

Emonoc(V, ε) = E0 + V0

{
(2C44)ε2 +O(ε4)

}
. (77)

which gives the second-order derivatives of the energy evaluated at zero strain as

d2E

dε2
= 2V0(C11 − C12) = η1 , (78)

d2E

dε2
= 3V0(C11 − 2C12) = η2 , (79)

d2E

dε2
= 4V0C44 . (80)

Equations 75 to 77 were fitted with a polynomial of third order and the numerical second

derivative with respect to zero strain was calculated and afterwards the resulting two

linear equations solved to calculate C11 and C12. The bulk modulus B0 can finally be

calculated from the relation

B0 =
1

3

(
C11 + 2C12

)
. (81)

To get the optimum RGL parameters we now minimize the difference between the DFT

calculated properties and the ones obtained from using the RGL approach for all phases

k described by the following equation with the weights wk, the elastic constants Cij and
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13 The RGL potential

the lattice constants ak:

min

{∑
k

∑
ij

wCij,k
|CDFT

ij,k − CRGL
ij,k |

CDFT
ij,k

+
∑
k

wa,k
|aDFTk − aRGLk |

aDFTk

+
∑
k

wB0k

|BDFT
0,k −BRGL

0,k |
BDFT

0,k

}
. (82)

For the minimization of that equation the simplex algorithm was used starting from RGL

parameters {p, q, A, ξ} that where calculated as fractions from the parameters of the pure

clusters as

RGLstart = xRGLRh + (1− x)RGLAg x ∈ {0.1, 0.2, 0.3, ..., 0.9} . (83)

The set of parameters, that gave the lowest error for all the elastic and structural prop-

erties in comparison to the DFT calculated ones were then used in the first study on the

”Structural, energetic, and magnetic properties of Agn−mRhm and AgmRhn−m clusters

with n ≤ 20 and m = 0, 1”
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[27] Mauŕıcio J. Piotrowski, Paulo Piquini, and Juarez L. F. Da Silva. Density func-

tional theory investigation of 3d, 4d, and 5d 13-atom metal clusters. Phys. Rev. B,

81:155446, Apr 2010.

[28] J P Chou, C R Hsing, C M Wei, C Cheng, and C M Chang. Ab initio random struc-

ture search for 13-atom clusters of fcc elements. J. Phys. Cond. Matt., 25:125305,

2013.

[29] A. Debski, R. Debski, and W. Gasior. New features of entall database: Comparison

of experimental and model formation enthalpies. Arch. Metal. Mater., 59:1337–1343,

2014.

[30] Fabio R. Negreiros, Zdenka Kuntová, Giovanni Barcaro, Giulia Rossi, Riccardo

Ferrando, and Alessandro Fortunelli. Structures of gas-phase Ag-Pd nanoclusters:

A computational study. The Journal of Chemical Physics, 132(23):234703, 2010.

[31] Giulia Rossi, Riccardo Ferrando, Arnaldo Rapallo, Alessandro Fortunelli, Ben-

jamin C. Curley, Lesley D. Lloyd, and Roy L. Johnston. Global optimization of

bimetallic cluster structures. ii. size-matched Ag-Pd, Ag-Au, and Pd-Pt systems.

The Journal of Chemical Physics, 122(19), 2005.

[32] Mohammad Molayem, Valeri G. Grigoryan, and Michael Springborg. Theoretical

determination of the most stable structures of NimAgn bimetallic nanoalloys. The

Journal of Physical Chemistry C, 115(15):7179–7192, 2011.

45



References

[33] M. Harb, F. Rabilloud, and D. Simon. Density Functional Study of Structural and

Electronic Properties of Small Bimetallic Silver-Nickel Clusters. The Journal of

Physical Chemistry A, 111(32):7726–7731, 2007. PMID: 17637046.

[34] Mohammad Molayem, Valeri G. Grigoryan, and Michael Springborg. Global mini-

mum structures and magic clusters of CumAgn nanoalloys. The Journal of Physical

Chemistry C, 115(45):22148–22162, 2011.

[35] Ewald Janssens, Thibaut Van Hoof, Nele Veldeman, Sven Neukermans, Marc Hou,

and Peter Lievens. Mass spectrometric and modeling investigations of bimetallic

Silver-Cobalt clusters. International Journal of Mass Spectrometry, 252(1):38 – 46,

2006.
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Growth patterns and structural motifs of cadmium
clusters with up to 60 atoms: disordered or not?†

Stephan Kohauta and Michael Springborg*ab

Using two different approaches, the structures of Cdn clusters are optimized. At first, parameterized

density-functional calculations using the DFTB method in combination with evolutionary algorithms

provide one set of candidate structures. Second, earlier proposed structures based on the Gupta

potential provide a second set. Subsequently, all structures of each set are re-optimized using

parameter-free density-functional calculations. It turned out that those based on the DFTB calculations

in almost all cases were those of the lowest total energy. By analysing the structural properties as a

function of cluster size information on growth patterns can be extracted. Thereby, the results show a

certain preference that the atoms of the inner parts have surroundings as found in bulk hcp Cd.

Furthermore, for larger size ranges, we could identify a specific growth pattern, implying that most of

these clusters cannot be classified as being disordered. The results show also that the 4d electrons have

only a weak influence on the properties of the clusters that, however, is so strong that a jellium-like

model occasionally becomes inaccurate in describing the properties. In particular, the question at which

size the clusters can be considered to be metallic becomes non-trivial to answer. Further arguments

based on a comparison of the HOMO–LUMO gaps with the Kubo gap, however, suggested the non-metallic

properties in the studied size range.

1 Introduction

Small to medium-sized clusters, especially of metals, are known
to acquire structural motifs that do not only show local ordering
but also have some kind of high overall symmetry. However, for
several elements of the first, second, and third period of the
transition metal groups it has been shown that maximizing the
number of next-nearest neighbours is not always the driving
force behind the formation of a particularly stable structural
motifs. The highly symmetric, undistorted icosahedron with a
size of 13 atoms was found to be the global minimum merely in
clusters of the early transition metals while the later elements
prefer structures that are more open with lower average coordi-
nation numbers.1,2 Zinc and cadmium are both special as they
are found to form distorted and amorphous-like structures with
low symmetry or no symmetry elements at all. Disordered in
this context usually means that such structures have no overall

order except a certain local ordering. In addition, several
structures with small differences in their total energies compete
for the global minimum making it difficult to identify a certain
structural motif as the ground state structure. Interestingly, a
different result was obtained for mercury where an icosahedron
was found to be the most stable structure, a result that was
ascribed to relativistic effects that also play an important role in
the formation of small gold and platinum clusters. Disordered
structures in small to medium-sized Zn and Cd clusters were
reported in several other studies,2–4 but also the experimental
results supported these theoretical findings5–7 despite the fact
that already the bond length in the dimers was a source of some
debate.8–10 Studies on larger disordered Zn and Cd clusters are,
however, rare and are typically based on a combination of a
global optimization procedure and a semi-empirical method to
sample the potential energy surface (pes). Among the used
semi-empirical methods are the RGL potential of Cleri et al.11

for instance coupled to an evolutionary-based algorithm or the
Basin-hopping method. Thus, Michaelian et al. determined
the putative global-minimum-energy structures for zinc and
cadmium clusters with up to 192 atoms. They used the Gupta
potential in combination with a genetic algorithm to sample the
pes and after a re-optimization with density-functional-theory
(DFT) calculations based on a local-density approximation (LDA)
as well as a generalized-gradient approximation (GGA) they
identified magic sizes (i.e., particularly stable clusters) with 12,
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38, 55, 75, and 147 atoms and showed that these clusters were not
based on the usual symmetric structures that would result from a
close packing of the atoms.3 Zhao used a tight-binding approach
in combination with a genetic algorithm in the size range of
2–21 atoms with a following DFT (GGA) re-optimization.12 The
structures reported in that study were different for several sizes
compared to the ones obtained by using the RGL potential,13

but the energy differences for some selected sizes between the
first and the second lowest isomer were found to be vanishingly
small. Such a complicated potential energy surface was also
found in small to medium-sized silicon clusters where the
identification of a unique ground state at elevated temperatures
was not possible.14 In addition, Zhao mentioned that the
ionization potential of small Cd clusters reached the bulk limit
very fast and that clusters larger than 20 atoms might already
show a bulk-like behaviour,12 a result that was also found
earlier by Yonezawa et al. in their simulated-annealing-based
study.15 Besides the n�1/3 dependency of the ionization
potential on the cluster size, n, they concluded that even at
sizes around n = 7 atoms the clusters were essentially metallic.
Doye found putative global minima for zinc and cadmium
clusters by using the Gupta potential in combination with the
Basin-hopping method up to a size of 125 atoms. The vast
majority of the obtained clusters did not show any overall
ordering, but Doye observed that many of the structures were
based on distorted oblate Marks decahedra. In addition, he
concluded that using such potentials is questionable because
of a strong dependency of the results on the actual potential
parametrization.13 Instead, Muñoz et al. used an extended
Lennard-Jones potential to identify candidate structures that
were subsequently treated using ab initio DFT (GGA) calcula-
tions. Thereby, they identified the putative global-minimum-
energy structures for sizes between Cd3 and Cd10.16 Johansson
et al. reported tetrahedral Cdn clusters for n = 4, 10, 20, 35, and
56 and showed that these structures were slightly lower in
energy for Cd4 and Cd10 than the corresponding structures
obtained using the Gupta potential. Larger tetrahedral struc-
tures, however, were slightly higher in energy, although still
accessible at elevated temperatures. They attributed the special
ability of the tetrahedral motifs to arise from many-body effects that
are not treated sufficiently accurately by empirical potentials.17

Other authors undertook studies on small Cd and Zn clusters
and concluded that the bonding within these clusters pre-
dominantly comes from van der Waals interactions with only
minor contributions from covalent bonding.18,19 An interesting
effect that is caused by an unusually large core–shell separation
in zinc clusters of certain sizes was reported by Aguado and
co-workers.20 Photoelectron measurements in combination
with DFT (GGA) calculations were used to demonstrate that
single clusters could possess both metallic and insulating
regions in a Janus-like fashion. As seen from this discussion,
the structures and their origins of smaller to medium-sized Cd
clusters are far from being understood and, moreover, most
results are based on the use of the more phenomenological
Gupta potential. The purpose of the present work is, therefore, to
perform a more accurate study of a large range of Cdn clusters,

2 r n r 60, which, as we shall demonstrate, will allow for a
more thorough and complete understanding of their structural
motifs. In addition, we shall assign structural motifs to the
clusters that have shown to be of high stability in mass spectro-
scopic measurements (the so-called ‘‘magic-sizes’’) by Diederich
and co-workers.21

We shall determine several new candidates for the putative
global-minimum-energy structures using a combination of the
density functional tight-binding (DFTB) approach coupled to an
evolutionary-based algorithm. Finally, the resulting candidate
structures will be re-optimized using a DFT approach. In order to
identify the trends in their structures, various descriptors,
including a bond-angle analysis, will be applied. These tools
allow also the identification of possible growth patterns of the
Cd clusters. Also their electronic properties will be analysed,
including the adiabatic ionization potentials that can be com-
pared with the experimental results. Finally, we shall analyse the
bonding mechanism in these small to medium-sized cadmium
clusters and try to identify the size for the onset of metallic
behaviour.

2 Methods
2.1 The global optimization procedure

An evolutionary algorithm based on the ‘‘cut-and-splice’’ proce-
dure introduced by Deaven and Ho22 together with the density
functional tight-binding theory as implemented in the Hotbit
code23 was used to sample the potential energy of each Cdn cluster.
The algorithm was linked to the atomic simulation environment
(ASE) code of Bahn and Jacobsen.24 In a typical calculation, a
population of 10 members was used with the first generation
consisting of clusters whose atoms were placed randomly within a
cubic box so that a minimum distance of 2.0 Å between two atoms
was ensured. Afterwards the two fittest current population mem-
bers were allowed to form one child with all of the other current
population members through a crossover process. In addition
mutants were created from all population members by applying
operators that have earlier been proposed in the literature includ-
ing random movements of atoms (probability p = 0.5), exchange of
two halves of a cluster through a random plane ( p = 0.3) and
twinning mutations ( p = 0.2).25–27 Mutants were accepted as
candidates in the current generation if their energy was lower, or
in the other case at least 0.1 eV higher than the energy of the fittest
cluster in the current generation whereby it is ensured that the
created mutants efficiently introduce new structural motifs in the
gene pool. For the members of the pool of all parents, children and
mutants, a tournament of size 5 with the purpose of identifying
which clusters should form the next generation of 10 members
was carried through. To avoid a loss of a beneficial genome, we
passed the cluster with the so far lowest total energy without any
modification to the next generation. We assumed that the algo-
rithm was converged if the cluster with the lowest energy did not
change for 100 consecutive steps. In the case of a premature
convergence we monitored the standard deviation of the fitness
function and applied random mutations to keep the value above a
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threshold of at least 0.1 eV. Three unbiased runs were conducted
and the clusters with the overall lowest total energy for every size
were finally treated using parameter-free DFT calculations.

2.2 Parametrization of the DFTB method

Within the DFTB method, the total energy of a given system
relative to that of the non-interacting neutral atoms can be
approximated as a sum of the eigenvalues of all occupied orbitals
minus that of the neutral, non-interacting atoms, EBS, plus a term
that arises from Coulomb interactions, ECoul, and a pairwise
repulsive potential, Urep,28,29

E = EBS + ECoul + Urep. (1)

At the lowest level of approximation (corresponding to the so
called non-SCC DFTB) we neglect interactions that result from
charge fluctuations, i.e., ECoul. Urep is parametrized and can be
determined by fitting to either the experimental or the ab initio
results for some reference system(s).

Using an LCAO approach with the orbitals expanded in
terms of a minimal set of atomic-centered non-orthogonal basis
functions,

cið~rÞ ¼
X
v

cvifvð~r Þ; (2)

one has to solve the Kohn–Sham eigenvalue equations for an
effective potential Veff to determine EBS as the sum over the
eigenvalues of all occupied orbitals,

Ĥci(r) = eici(r), (3)

with

Ĥ = T̂ + Veff. (4)

here, T̂ is the kinetic-energy operator.
Substitution of (2) into (3) gives the eigenvalue equationX

v

cvi Hvi � eiSvið Þ ¼ 0 (5)

with

Hvi = hfv|Ĥ|fii (6)

and

Svi = hfv|fii. (7)

The elements Hvi and Svi are determined from calculations
on diatomic molecules. Thereby it is assumed that the effective
potential can be written as a superposition of atomic potentials

Veffð~r Þ ¼
X
n

Vn ~r� ~Rn

�� ��� �
(8)

with
-

Rn being the position of the nth atom. Moreover, Vn(r) is the
potential of the free, isolated, nth atom, V(0)

n (r), augmented by a
short-ranged confining potential that reproduces the contraction of
the orbitals when passing from the isolated atom to a compound,

VnðrÞ ¼ V ð0Þn ðrÞ þ
r

r0

� �2

: (9)

For r0 we used a value of 5.4 Bohr to get the best agreement
between the DFTB calculated electronic band structures and
the ones derived from ab initio DFT calculations using the PBE
functional.

Subsequently, we assume that

fvh jT̂ þ Veff fij i

¼

fvh jT̂ þ Vn fij i for fv;fi both on atom n

fvh jT̂ þ Vn þ Vm fij i for fv;fi on atoms nam

0 otherwise

8>>><
>>>:

:

(10)

Urep is determined by fitting to the accurate results from
ab initio DFT (PBE) calculations. In the present work we
minimized the force differences |FDFT � FDFTB| in small Cd
clusters taken from Muñoz et al.16 with a smoothing spline as
explained by Koskinen and Mäkinen.23 For the repulsion inter-
action we used a very short cut-off of 3.4 Å, which had the
consequence that our calculations were not able to reproduce the
large experimental bond length of the dimer (4.07 Å,9 3.78 Å10).
However, as we will discuss later, also ab initio DFT methods are
not able to reproduce the experimental bond length in the
cadmium dimer and we do not expect a parameterized, approxi-
mated approach to DFT to perform better in this context. In fact,
as emphasized, e.g., by Flad et al.18 clusters of the group-12
elements are special since their bonding properties change from
weak van der Waals interactions, via covalent bonding, to metallic
bonding when their size is increased. Thus, of all Cdn clusters,
the bonding of the one with n = 2 may be the most difficult one
to treat theoretically.

We checked whether it is possible to keep the 4d states within
the core during the DFTB search which would allow us to reduce
the size of the basis set and, consequently, the computational
requirements. We found that the relative ordering of the isomers
of the smaller clusters changed only little, although for an
accurate description of the electronic properties, other DFTB
parametrizations that explicitly include the 4d orbitals may be
more useful.30 Moreover, it may be relevant to mention that for
an accurate description of the bulk phase using parameter-free
approaches, an explicit treatment of the 4d states is mandatory31

But for the purpose of obtaining accurate relative energies and
structures, keeping the 4d states in the core should not lead to
significant inaccuracies.

2.3 DFT calculations

All subsequent ab initio DFT calculations were performed using the
PBE functional for exchange and correlation in combination with
the Def2-TZVP32,33 basis set and as implemented in the Gaussian09
program.34 Due to the complicated nature of the PES, a tighter
criterion for the geometry relaxation (10�5 Hartree Bohr�1) was
used. For the re-optimization of the candidates for the global
minimum with DFT, the 4d states were treated explicitly in all
calculations. In addition, we considered structures that were
found using Gupta potentials in the description of the intera-
tomic interactions. In this case, the structures were obtained
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from the Cambridge Cluster Database35 and re-optimized with
DFT (PBE) as described above.

At this place it may be relevant to mention that it, in
principle, is possible to include dispersion corrections within
DFT calculations in an ad hoc approach like that of Grimme.36

However, the physical motivations behind doing so in the pre-
sent case are highly questionable. The dispersion interactions
depend on the polarizabilities of the interacting species that,
for metallic systems, diverge, suggesting diverging dispersion
interactions, although the ad hoc corrections are finite. Thus,
for the present systems we will consider the inclusion of such
corrections rather as an empirical correction that may or may
not improve certain results although, as above, it is unclear
what will happen in those cases where no comparison with the
reference results is possible. In the same spirit, one may also
consider using other approximate density functionals but, again,
lacking any reference information it is hardly possible to identify
any optimal density functional.

3 Results

We first analyse the actual obtained clusters regardless of whether
they have been found from DFTB or Gupta based global optimiza-
tion runs and afterwards dedicate a part of this study to critically
discuss differences in the results between DFTB and Gupta based
approaches.

3.1 Structures of the individual Cdn clusters

Our obtained lowest-energy isomers for clusters with up to
16 atoms together with other proposed global-minimum-energy
structures are shown in Fig. 1. As already mentioned, smaller
Cd clusters and especially the dimer is a problem for DFT calcu-
lations due to its complicated bonding mechanism that has
been described as a mixture of van der Waals and covalent
contributions.18,37 Compared to the shortest reported experi-
mental bond length of 3.78 � 0.03 Å our value of 3.509 Å is,
however, in agreement with the other reported results of
DFT calculations.16 Also our calculated binding energy, Eb,
of 0.032 eV per atom is smaller than spectroscopic values
(0.041 per atom eV9,10). The results reported from calculations
with more sophisticated post-HF methods like coupled-cluster
(CCSD(T)) are with values of 3.873 Å for the bond length and
0.040 eV per atom for the binding energy in excellent agree-
ment with the experimental results.19

For Cd3 we found an equilateral triangle of point group (PG)
D3h with a bond length of r = 3.347 Å, a value that is smaller
than the one found by Zhao (r = 3.45 Å)12 but still larger than
the value of Muñoz et al. (3.202 Å).16 The four and five atoms of
Cd4 and Cd5 form a tetrahedron (Td) of bond length r = 3.205 Å
and a trigonal bipyramid of PG D3h with a bond length of
rapical = 3.409 Å and a shorter bond distance of rbasal = 3.157 Å,
respectively. Planar structures as found for the small silver
clusters Ag4 and Ag5

38 had higher energies for Cd4 (+0.25 eV,
rhombus, PG C2v) and Cd5 (+0.27 eV, trapezoid, PG C2v) and
were actually found to be saddle points on the PES with very

small imaginary vibrational modes (Cd4: 10.41i cm�1,
Cd5: 10.58i cm�1, 7.29i cm�1). A pentagonal bi-pyramid with
a missing vertex was the lowest in energy for Cd6, followed by a
pentagonal pyramid (+0.13 eV) and an octahedron (+0.22 eV)
with point group Oh. We did not observe a Jahn–Teller distortion
as otherwise reported by Zhao12 for the highly symmetric octa-
hedron of Cd6 with PG Oh, nor in the pentagonal bi-pyramid
which was found to be slightly higher in energy (+0.06 eV) than
the global minimum at that size.

A summary of the calculated properties of our clusters up to a
size of 16 atoms can be found in Table 1 where we also compare
with the CCSD(T) results of Flad et al.18 This comparison demon-
strates that our calculations are capable of reproducing the
structural motifs of the smallest clusters but that our calculations
predict too large bonding energies and too short bond lengths, as
was already found for the Cd2 dimer to an even higher extent.
Thus, it may be suggested that as the size of the Cdn clusters
increases and the chemical bonding becomes more covalent,
our calculations become increasingly accurate.

Fig. 1 The putative global-minimum-energy structures of Cd3–15 and some
other energetically low-lying isomers.

Paper PCCP

Pu
bl

is
he

d 
on

 1
3 

Se
pt

em
be

r 
20

16
. D

ow
nl

oa
de

d 
by

 U
ni

ve
rs

ita
t d

es
 S

aa
rl

an
de

s 
on

 1
7/

12
/2

01
6 

20
:4

6:
23

. 

View Article Online



28528 | Phys. Chem. Chem. Phys., 2016, 18, 28524--28537 This journal is© the Owner Societies 2016

The global minimum in Cd7, consisting of two corner-
sharing tetrahedra, is almost degenerate in energy (+0.01 eV)
with an isomer 7b that was proposed as the global minimum by
Muñoz et al.16 in which the two tetrahedra are connected via an
interatomic bond.

Also for Cd8, the three energetically lowest isomers were
found within an energy range of only 0.01 eV with a bi-capped
octahedron being the lowest in energy, followed by a bi-face-
capped trigonal prism (o+0.01 eV) and a square-antiprism
(+0.01 eV). The tricapped trigonal prism (TTP) was the lowest
structure for Cd9 in agreement with other studies.12,16 We
re-optimized several other isomers that were found to be stable
within the DFTB method, including a part of an icosahedron
(PG C2v), a face-capped square-antiprism (PG C2v), a tri-capped
octahedron (PG Cs), and two face-sharing octahedra (PG D3h).
None of these proved to be stable during the relaxation process
with all of them leading to the TTP motif.

The TTP motif is found also for clusters with 10 atoms with
an additional atom in a face-capping position above one of the
equilateral triangles. However it is not the global minimum, the
tetrahedral structure proposed by Johansson and Pyykkö17 was
slightly lower in energy (�0.02 eV). At a size of eleven atoms the
lowest-energy isomer was a tri-capped trigonal prism with all of

its faces occupied by Cd atoms. Also the other structures
for Cd11 were based on the TTP motif, one structure with
PG Cs (+0.16 eV) and the other with PG C2v (+0.37 eV).

Up to a size of 11 atoms, all of the possible candidates for the
global minima possess the same structural motifs as found in
zinc clusters of equal size with some few exceptions (e.g. for Zn8).4

Moreover, Zhao et al. predicted that the further growth of a small
Cd cluster should be based upon icosahedral units,12 but our
structures in the size range of 12–15 atoms are more similar to the
corresponding zinc structures of equal size and are based upon
the TTP motif of Cd9, quite similar to the structures of germanium
clusters of the same size.39

The tetra-capped trigonal prism as seen in Fig. 1(11b) has a
higher total energy and the energetically lowest structure for
Cd12 is indeed based upon the TTP unit. On the other hand,
structures based on the tetra-capped trigonal prism (12b and 12c)
are 0.15 eV and 0.18 eV higher in energy, respectively. Our results
suggest that it is unlikely that structures with icosahedral units are
those of the global-total-energy minimum for small Cd clusters.
Thus, for Cd13 the icosahedron was found to be 0.44 eV higher in
energy than the most stable structure, and for Cd14 the face-
capped isomer was found to be 0.43 eV above the global-
minimum-energy structure. A disordered structure for the
global minimum for Cd13 was also reported by others using
molecular-dynamics-based methods1 or simulated-annealing/
Taboo-search methods in combination with DFT calculations.2

As one of the largest clusters for which the most stable
structure contains the TTP motif, our results gave a cluster with
a similar configuration to that found for Ge15

39 as the most
stable one for Cd15 followed by an isomer slightly higher in energy
consisting of two fused tricapped trigonal prisms (+0.05 eV). For
Cd16 the energetically lowest structure is based on two fused units
of the structure 10b in Fig. 1 that share one of the triangular faces
and the atom that forms the tip of the square pyramid. This
structure was also reported to be the global minimum for Ge16 by
several other authors.39–41 Structures that were based on distorted
decahedral features like 16b in Fig. 1 were found to be 0.18 eV
higher in energy.

From the Cd17 cluster the growth pattern changes (Table 2),
since for this size a different structural motif besides the stacking
of TTP units appears. This is similar to the case for zinc clusters,
for which a transition from prolate, low-coordinated and cage-
like structures to spherical clusters with atoms occupying posi-
tions in the center was found for clusters with 17 atoms.4 Doye13

reported that Zn16–Zn21 and Cd16–Cd21 are based on distorted
Marks decahedra where two atoms that were originally isolated in
a face-capping position on one of the square faces form a bond
which simultaneously removes the bonds between the atoms that
were forming the square faces. The two bonded atoms are
displaced slightly inwards, thereby coming closer to the central
atoms which leads to increased coordination numbers of these
inner atoms.

A view along the fivefold symmetry axis in Cd17 with the
atoms marked that were in a face-capping position is shown in
Fig. 2 together with the other putative global-minimum-energy
structures and the structures that were obtained from the DFT

Table 1 Point group symmetries (PGs), cohesive energies Ecoh (eV per atom),
average bond lengths dav (Å), effective coordination numbers (ECNs),
HOMO–LUMO gaps DHL (eV) and adiabatic ionization potentials (aIPs) (eV)
of the lowest energy Cd3–16 clusters

N PG Ecoh dav ECN DHL aIP

3a D3h 0.079 3.35 2.00 3.16 7.37
4a Td 0.151 3.20 3.00 3.09 6.74
5 D3h 0.156 3.32 3.48 2.58 6.42
6a C2v 0.163 3.32 3.71 2.56 6.49
6b C5v 0.141 3.30 3.30 2.07
6c Oh 0.126 3.49 4.00 2.17
7a D3 0.182 3.20 3.42 2.39 6.33
7b D5h 0.175 3.38 4.48 2.57
7c C2v 0.181 3.22 3.63 2.57
8a D2d 0.184 3.28 4.28 1.97 6.07
8b C2v 0.184 3.26 4.12 1.90
8c D4d 0.183 3.25 3.99 1.87
9 D3h 0.226 3.20 4.59 1.62 6.18
10a Td 0.246 3.16 4.53 2.38 6.24
10b C3v 0.245 3.17 4.79 1.77
11a D3h 0.248 3.20 4.90 1.92 5.91
11b C2v 0.214 3.23 4.43 1.19
12a Cs 0.246 3.17 4.42 1.63 5.70
12b C2 0.233 3.24 4.86 1.49
12c C1 0.231 3.24 4.88 1.32
13a Cs 0.251 3.18 4.81 1.63 5.80
13b Cs 0.245 3.24 4.95 1.74
14a C1 0.263 3.17 4.96 1.52 5.94
14b D6d 0.210 3.30 5.08 1.16
15a C2v 0.281 3.16 5.26 1.51 5.51
15a C2v 0.281 3.16 5.26 1.51 5.51
15b D3h 0.278 3.18 5.33 1.41
16a Cs 0.279 3.19 5.32 1.41 5.62
16b Cs 0.267 3.20 5.33 1.34
3a D3h 0.038 3.93
4a Td 0.085 3.46
5a D3h 0.097 3.59
6a C2v 0.104 3.65

a Results from CCSD(T) were taken from Flad and co-workers.18
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re-optimization of the Gupta minima for the Cdn clusters
with n = 17–21.

It is, however, less trivial to identify main structural motifs for
the clusters obtained via the DFTB calculations as is the case for
the Gupta-derived clusters. In the latter case, for example the five-
fold symmetry of the underlying decahedra can easily be identified
in 20b in Fig. 2. Also for some clusters, structural motifs related to
the putative global-minimum-energy structures of smaller clusters
can be identified. This is, e.g., the case for 21b in Fig. 2 where the
structure of Cd15 can be recognized (marked in white).

Next we shall discuss how the structural properties of the
clusters develop when the clusters get larger. To this end, we
shall use various descriptors.

Several methods have been introduced with the aim of identify-
ing local environments of atoms that would correspond to atomic
arrangements that are typically found in the bulk.42 As one of
those, we used the bond-angle-analysis method of Ackland and
Jones43 as implemented in the ovito program44 to assign the fcc,
hcp, bcc, icosahedral or disordered structure type to each atom of a
cluster. The method is based on first calculating a histogram of the
values of cosyijk for each atom, j, and all its neighbouring atoms
i and k. Neighbouring atoms are considered to be within a pre-
determined cut-off distance which is the average distance over all
atoms of their six nearest neighbours. Using heuristic rules, each
of these histograms can give an estimate of the local environment
of each atom.

Further insight into structural motifs of Cdn beyond the
bond angle analysis can be obtained from the average effective
coordination numbers (ECNs) and bond lengths dav using an
approach of Hoppe,45

di
av ¼

Pn
j¼1

dije
1� dij=diavð Þ6
� �

Pn
j¼1

e
1� dij=diavð Þ6
� � : (11)

here, dij is the distance between atoms i and j. It is seen that d i
av

has to be determined iteratively. Thereby, di
av is initially taken

as the shortest bond length for atom i and the final value is
obtained self consistently using a convergence criterion of
10�4 Å. Finally, the effective coordination number ECN of atom
i is given by

ECNðiÞ ¼
Xn
j¼1

e 1� dij=diavð Þ6
� �

: (12)

Table 2 Point group symmetries (PGs), cohesive energies Ecoh (eV per atom),
average bond lengths dav (Å), effective coordination numbers (ECNs),
HOMO–LUMO gaps DHL (eV) and adiabatic ionization potentials (aIPs) (eV)
of the lowest energy Cd17–60 clusters

N PG Ecoh dav ECN DHL aIP

17 D4d 0.284 3.20 5.78 1.029 5.54
18a C1 0.290 3.18 5.86 0.879 5.40
18b C2v 0.277 3.22 5.49 1.011
19a C3v 0.303 3.15 5.66 0.924 5.54
19b C2v 0.284 3.20 5.69 1.029
20a C3v 0.319 3.14 6.03 1.306 5.49
20b C2v 0.288 3.17 5.80 0.696
21a Cs 0.314 3.16 6.00 1.276 5.38
21b C1 0.311 3.17 5.97 1.135
22 Cs 0.311 3.16 5.70 1.193 5.50
23 Cs 0.322 3.15 5.80 1.241 5.52
24 C1 0.329 3.15 5.99 1.008 5.43
25 C3v 0.339 3.15 6.11 1.282 5.56
26 C2v 0.338 3.14 5.94 1.124 5.53
27 Cs 0.347 3.14 6.13 1.125 5.46
28 C2v 0.353 3.15 6.41 0.925 5.38
29 Cs 0.349 3.16 6.38 0.945 5.42
30 Cs 0.357 3.15 6.47 0.880 5.40
31 C3v 0.364 3.15 6.73 0.787 5.41
32 C1 0.362 3.15 6.64 0.790 5.15
33 Cs 0.361 3.18 6.82 0.739 5.30
34 Td 0.372 3.16 6.98 0.647 5.46
35 Cs 0.374 3.12 6.67 0.695 5.16
36 C2v 0.358 3.11 6.34 0.699 5.14
37 C1 0.368 3.12 6.29 0.796 5.03
38 Cs 0.369 3.14 6.66 0.563 4.95
39 Cs 0.374 3.14 6.85 0.746 5.24
40 Cs 0.376 3.11 6.29 0.739 5.05
41 C1 0.383 3.12 6.78 0.707 5.05
42 Cs 0.386 3.12 6.71 0.643 5.07
43 Cs 0.391 3.12 6.80 0.717 5.17
44 C2v 0.389 3.11 6.73 0.611 5.22
45 Cs 0.399 3.10 6.82 0.581 5.23
46 Td 0.411 3.09 6.94 1.130 5.33
47 Cs 0.407 3.10 6.91 1.006 5.11
48 Cs 0.406 3.11 6.92 0.830 5.03
49 Cs 0.408 3.11 7.01 0.853 5.19
50 Cs 0.405 3.10 6.90 0.652 5.00
51 Cs 0.405 3.13 6.99 0.652 5.04
52 C2v 0.407 3.13 7.09 0.654 5.05
53 C1 0.408 3.10 6.99 0.539 4.95
54 C1 0.406 3.12 7.08 0.485 4.87
55 Cs 0.411 3.12 7.11 0.546 5.11
56 Cs 0.415 3.13 7.22 0.524 5.05
57 C1 0.415 3.12 7.25 0.390 4.90
58 C1 0.415 3.13 7.16 0.462 4.92
59 C1 0.418 3.12 7.21 0.343 4.84
60 C1 0.422 3.11 7.23 0.285 4.87

Fig. 2 The putative global-minimum-energy structures of Cd17–Cd21 and
some of the low-energy isomers obtained from the re-optimization of the
structures of Doye13 found with the Gupta potential. Atoms that belong to
a special structural motif are marked in white and are discussed in detail in
the text.
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For each cluster size we calculate ultimately averages of ECN(i)
and di

av. In Fig. 3 we show these averages for all Cdn clusters.
The results of the bond angle analysis show that the central

atom in clusters as small as 16 atoms has a local coordination
similar to what can be found in the bulk bcc or hcp structures.
As has been observed in small silicon clusters, for which a
transition from prolate to spherical shapes is seen for clusters
with more than 21 atoms, we found such a transition in Cdn at
the smaller size of 18 atoms and, accordingly, just one atom
larger than for zinc. However, according to the bond angle
analysis, all atoms in Cd18 are in a disordered surrounding
although the central atom has a coordination number of 12,
similar to the value for the bulk hcp phase of cadmium. At a size
of 22 atoms, the ECN drops to a value around 8.0 and the shape
of the clusters becomes again more prolate as shown in Fig. 4.
None of the clusters with n = 21–25 have atoms with a bulk-like
coordination in the center and they can at best be described as
containing tricapped-trigonal prisms with Cd15 as the building
block. We will show below that the Cd15 unit indeed is parti-
cularly stable.

Further growth around the Cd15 motif continues up to a size
of at least 36 cadmium atoms. Moreover, for Cd26, Cd28, and Cd30

we observed atoms in the core with a bcc-like arrangement and
for Cd27, Cd29, and Cd31–Cd39 with a hcp-like environment. A
maximum of hcp-like atoms in the center of the cluster is then
reached for the highly symmetric tetrahedral (PG Td) cluster Cd34.
Although not being in the core of the cluster, the Cd15 motif itself
can still be recognized in the outer part in some of the clusters
with neighboring sizes (e.g. in Cd39).

However, it was not possible to assign a final structural motif
for the clusters with sizes between 37 and 43 atoms. Instead, it is
useful to study the structural similarity between clusters of

neighbouring sizes. To this end, we calculate a so-called similarity
index S between to structures from

S ¼ 1

1þ
ffiffiffi
q
p

ul

: (13)

here, the quantity q that has to be minimized is defined as

q ¼ 1

2n

Xn
i¼1

d2 ai; b aið Þð Þ þ
Xn
i¼1

d2 bi; a bið Þð Þ
 !

; (14)

where n is the number of atoms in the smaller cluster.
q quantifies the sum of the squares of the distances between
the atoms of one of the clusters and the closest partner of the

Fig. 3 The average and maximum effective coordination number ECN
together with the results from the bond angle analysis (top panel) and the
evolution of the average bond length dav (bottom panel) in small to
medium-sized cadmium clusters as a function of size n.

Fig. 4 The putative global-minimum-energy structures for Cdn clusters
with 22 r n r 48 and their corresponding point group symmetry. The
atoms marked in white are parts of the Cd15 unit.
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other cluster when the two clusters are superposed with the
additional possibility that the structure of one of the two
clusters is scaled by a constant factor. ai is then one of the
atoms of one of the clusters and b(ai) is its closest partner in the
other cluster. Similarly, bi is one of the atoms in the second
cluster and a(bi) its partner in the first cluster. Unfortunately, the
identification of that superposition and that constant scaling
factor that optimizes q is non-trivial and, therefore, we use a
genetic algorithm for this purpose. Then, the optimization of
q involves a genome consisting of several operators including
three translations, three rotations, a scaling, and an inversion.
Typically, a population of 40 members was found to be appro-
priate to identify the optimal q within 3000 generations.

In eqn (13), ul is a length unit, which is arbitrarily chosen to
be the average nearest-neighbour distance in the clusters. Our
experience with this similarity index, S, gives that a value below
0.8 implies that the two objects are not similar (e.g. a square
and a tetrahedron for which S equals 0.7). S values between
0.8 and 0.9 are typically found for cases where one structure is
closely related to a distorted version of the other structure (e.g.
a perfect icosahedron with 13 atoms compared to a decahedron
of similar size giving S = 0.8). Objects that are only scaled
versions of each other (e.g. two octahedra with different bond
lengths) but otherwise closely resemble each other are correctly
identified to be very similar and therefore a value of S = 1.0
is found.

In Fig. 5 we show S for the comparison of the Cdn cluster
with the Cdn+1 cluster as a function of n. The fact that S takes
relatively high values between 22 and 35 confirms the structural
similarity for those sizes, already indicated above. All clusters
between a size of 37 and 43 atoms are disordered, dissimilar
and of low overall symmetry with the exception of Cd38 which
shows some similarities not only in its average ECN and bond
length but also in its atomic arrangement to Cd39.

On the other hand, the bond-angle analysis of Fig. 3 sug-
gests that there is a maximum in the number of atoms with an
hcp-like surrounding for Cd34 that subsequently decreases
up to n around 40 while simultaneously the maximum ECN
increases to 12. It is interesting to notice that although there
are more atoms in the center of Cd38 with a coordination
number greater than 9 compared to Cd34 (we consider atoms
to be in the core if their ECN is above 9 since no atom in the

surface region has a larger value for the ECN), the core is still
more hcp-like in Cd34 than in Cd39 according to the bond angle
analysis.

The Cd44 cluster of PG symmetry C2v forms the core of the
following larger structures up to a size of 54 atoms, with the
exception of Cd53 whose structure is that of a distorted Marks
decahedron which is by 0.18 eV more stable. Continuing the
growth around the Cd44 core would ultimately result in a tetra-
hedral cluster of PG Td at a size of 58 atoms which was,
however, not found to be the structure of the global minimum
for Cd58. Instead, we obtained disordered clusters with low
symmetry for sizes between 55 and 60 atoms which are never-
theless very similar (cf. Fig. 6). While the average ECN grows
very slowly from 6.8 to 7.2 we see a jump of the maximum ECN
from Cd54 to Cd55 and an increase in the number of atoms with
a hcp configuration indicating that the atoms in the core of the
cluster are subjected to a re-organization at that size. In parallel,
the average bond length seems to be converged at sizes around
40 atoms and are close to the value of the average experimental
bond length in bulk hcp cadmium.

The combined results from the bond angle analysis and
from the similarity index allow unfortunately not for a classi-
fication of the obtained structures into any of the common
structures for metallic clusters. However, a general trend is the
existence of a tetrahedron at the center of the clusters for sizes
as small as n = 21. Such tetrahedral clusters were first described by
Leary and Doye as those of local minima for the Lennard-Jones
(LJ) cluster with 98 atoms.46 In order to illustrate the similarity
of our structures with this larger one, we show in Fig. 7 the

Fig. 5 The calculated similarity index S for the comparison of Cdn with
Cdn+1. The red line represents the border at which two neighboring clusters
are considered to be dissimilar, i.e., S drops below a value of 0.8.

Fig. 6 The putative global-minimum-energy structures for Cdn with
sizes between 49 and 60 atoms and their corresponding point group
symmetries.
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LJ98 cluster with its tetrahedral core together with Cdn clusters
of increasing size that were found to have a tetrahedron at
their center.

The coordination sphere around the inner tetrahedron shows
an interesting topology with no atoms in a face-capping position
above the faces of one of the smaller tetrahedra. A larger fraction
of the outer atoms prefer edge-capping positions between two
neighboring atoms of the tetrahedra, and together with the
remaining atoms that are only connected via a single bond to
one of the core atoms they form tricapped-trigonal prisms around
the center of the structure. Based on this and the calculated
similarity index S that showed a structural similarity for clusters
with sizes between 22 and 36 and from 44 to 52 atoms we
conclude that cadmium clusters in that size regime tend to form
a Leary tetrahedral structure.

The clusters Cd37 to Cd43 with the exception of Cd40 and
Cd43 possess a distorted tetrahedron in the core (see Fig. 8)
although their overall atomic arrangements are not very similar
according to the calculated similarity index S shown in Fig. 5.
The two exceptions of Cd40 and Cd43 prefer a trigonal prism or a
pentagonal bi-pyramid in their centres. Larger clusters with
more than 54 atoms (see Fig. 6) that were all similar to each
other (cf. Fig. 5) show a tendency towards maximizing the
number of atoms with a hcp-like environment in their core.
However, for sizes beyond those of the present study, it becomes
difficult to suggest the growth pattern which, for instance, can be
seen from the fact that Cd58 does not possess a Td structure.
Thus, it is possible that the Leary tetrahedral motif is abandoned
in favor of another motif for larger clusters.

We close this subsection by comparing the structures
obtained from the DFTB and the Gupta based samplings of the
potential energy surface. Despite the fact that the Gupta potential

has been fitted to reproduce several bulk properties in hcp-Cd it
performs surprisingly well in providing candidates for putative
global-minimum-energy structures for clusters smaller than
13 atoms. At a size of 14 atoms the differences in the structures
become occasionally significant and the energy difference at
the DFT (PBE) level exceeds even 1 eV (see further below). To get
an impression why the Gupta potential leads to structures with
a larger energy at the DFT level than those based on the DFTB
calculations, we calculated the average and maximum ECN of
all clusters before the ab initio re-optimization and show the
results in Fig. 9.

The Gupta potential yields structures that in general are
more compact with a greater average coordination number per
atom than the ones obtained by using the DFTB method.
Although both methods suffer from over-coordination compared
to the results after re-optimization, the Gupta potential more
frequently produced clusters with significantly larger maximum
coordination numbers than what was found when using the
DFTB method. As a consequence, the DFT optimization proce-
dure then reduced the number of atoms within the coordination
sphere of the central atoms which ultimately leads to compact
structures with low-coordinated atoms on the surface of the
clusters as can be seen for example in Fig. 2 for Cd19b and Cd20b.
However, we add that structures with a distorted decahedral
motif as predicted by the Gupta potential may become important
for sizes greater than or equal to 44 atoms as the difference in
the ab initio energies between the decahedral structures of the

Fig. 7 Lennard-Jones cluster with 98 atoms (Td) and the tetrahedron at
the core of the cluster (top). The middle row shows Cd34 (Td) and the
bottom row Cd44 (Td) both with their corresponding core to the right.
Atoms marked in pink represent the next coordination shell around the
tetrahedron.

Fig. 8 The cores of Cd37 to Cd43. Atoms marked in pink represent the
next coordination shell around the core.
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Gupta potential and the non-decahedral clusters of the DFTB
calculations is either smaller than 0.1 eV (e.g. Cd44, Cd54,
and Cd58) or in the singular case of Cd53, the structure of the
Gupta potential becomes even lower in energy than the DFTB
derived cluster.

3.2 Trends in the energetic properties

At first, we found in all cases, except for Cd53 and Cd21, structures
with a lower energy when using the results from the DFTB searches
compared to those found using the results with the Gupta
potential, as can be seen in Fig. 10. Moreover, the structures of
the Gupta clusters tend to have lower coordination numbers for
the central atoms and, in addition, some of the atoms move
outwards in edge capping positions during the DFT relaxation
(see, e.g., 19b, 20b and 21b in Fig. 2).

In order to identify particularly stable clusters we calculate
the stability function,

D2E(n) = E(Cdn+1) + E(Cdn�1) � 2E(Cdn). (15)

here, E(Cdn) is the total energy of the Cdn cluster. A positive
value corresponds to a cluster with an enhanced stability (a so
called magic number) and often plotting D2E against n is useful
when interpreting abundance patterns from mass spectroscopic
measurements. In Fig. 11 we show D2E(n) as a function of n.

Diederich et al. have reported the mass spectroscopic results
for cadmium clusters that have been produced in ultracold

helium droplets.21 They found magic numbers for sizes with 10,
20, 35, 46, and 69 atoms with total 20, 40 70, 92, and 138
valence electrons, respectively. Thereby, they could explain the
enhanced stability as being due to the closing of electronic
shells as predicted by a spherical jellium model. Our results
allow us to assign structures to the most abundant peaks in the
mass spectra.

In Fig. 11, magic sizes are found for clusters with 10, 15, 20,
34, 46, 52, and 56 atoms which only partially match the closing
of electronic shells according to the spherical jellium model.
The maxima at n = 10, 20, 46, and 56 can be explained from the
spherical jellium model, but in addition we find, e.g., a maxi-
mum for n = 15, a cluster that was found to form the core of
clusters between 22 and 36 atoms. However, no experimental
study has predicted Cd15 to be a magic number. In a theoretical
study, Zhao found Cd15 to be a magic number with an uncom-
pleted double-icosahedron as the structural motif. The stability
of Cd20 can most likely be explained by electronic shell closing
effects as the cluster itself possesses a compact and disordered
motif of PG symmetry C3. The maxima at n = 25, 28, and 31
correspond to fragments of the highly symmetric Cd34 structure
with PG Td and it is remarkable that their greater relative
stability seems to correlate with their larger overall symmetry
compared to their neighbors as seen in Fig. 4. Despite the
possible shell closing for Cd35 with its 70 electrons, we found a
greater stability for Cd34 where the larger geometric symmetry
appears to be the dominating effect. Interestingly, Reimann et al.
showed in their studies on triangular and tetrahedral clusters
that such shapes have a strong shell structure and an enhanced
stability as it would be predicted by DFT and the jellium model.47

As mentioned in the introduction, also Johansson et al. predicted
that tetrahedral, pyramidal-like structures could be possible
candidates for the global-minimum-energy structures.17 In con-
trast to this, we found a perfect tetrahedral structure for Cd34,
which, however, is not of pyramidal shape and Cd35 to be the
structure of Cd34 plus an additional atom. This structure was
found to be lower in energy by 0.31 eV than the one found by
Johansson et al. The large stability of Cd46 predicted in our study
is in agreement with the experimental results21,48 and the result
of a beneficial electronic-shell closing in combination with a high
point-group symmetry (Td) that gives the cluster an overall
spherical shape. For the maxima of D2E for Cd52 and Cd56 the

Fig. 9 A comparison of the average and maximum ECN of potential
candidates before an ab initio re-optimization with DFT (PBE) obtained
from DFTB or Gupta sampling of the Cdn potential energy surface. In
addition, we include the average and maximum ECN after the DFT (PBE)
re-optimization.

Fig. 10 A comparison of the total energies for the putative global mini-
mum energy structures obtained from the DFT (PBE) re-optimization of
the DFTB and Gupta13 structures. The red line corresponds to a threshold
of 0.1 eV in the energy differences.

Fig. 11 The stability function as a function of size n for small to medium-
sized cadmium clusters. The vertical lines correspond to closed electronic
shells according to a spherical jellium model.21
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latter coincides with an electron-shell closing for 112 electrons
according to the spherical jellium model.

The binding energy per atom is shown in Fig. 12. From a
linear fit of those values for clusters with at least 12 atoms a
bulk cohesive energy of 0.67 eV per atom can be identified,
which indeed is very close to the value of DFT (PBE) calcula-
tions for bulk hcp-Cd (0.69 eV per atom31) but still significantly
smaller than the experimental value of 1.16 eV per atom. As
discussed by Gaston et al., this discrepancy is most likely due to
an improper treatment of correlation effects.31

3.3 Trends in the electronic properties

The main electronic properties we shall discuss are the HOMO–
LUMO gap (DHL), the Kubo gap and the ionization potential as
a function of size. All these properties may provide also an
answer to the question at which size a possible nonmetal-to-
metal transition can be observed. Zhao reported such a transi-
tion from a DFT study to occur at a size between 7 and 20 atoms
and also Diederich et al. mentioned that such a transition
should be completed for clusters with 20 atoms.12,21 Fig. 13
shows the calculated HOMO–LUMO gaps for neutral Cd clusters
as a function of the size n. In some cases, our largest HOMO–
LUMO gaps match the sizes for which we find particularly stable
clusters. When approximating the ionization potential and the
electron affinity through the electronic-orbital energies and, in
addition, using a finite-difference approximation, the hardness
can be related to the HOMO–LUMO gap. Then, the relation
between a large HOMO–LUMO gap and an increased stability

can be interpreted as a manifestation of Pearson’s principle of
maximum hardness.49 Moreover, this finding is also in accord
with that of Harbola who showed for small lithium clusters that
the stability that results from electronic rather than geometric
effects can be explained through this principle50 and indeed
some of our magic sizes correspond to the closing of electronic
shells as discussed above.

It may be difficult to identify the size at which the clusters
become metallic from the plot of the HOMO–LUMO gap vs. n
due to the shortcomings of DFT for this property. Nevertheless,
we observe a large decrease of the gap from 3.16 eV for Cd3

to 0.29 eV for Cd60. The calculated HOMO–LUMO gaps can be
further compared to the so-called Kubo gap51 with the aim of
identifying metallicity in the small clusters. Clusters with gaps
smaller then the Kubo Gap EKubo can be considered metallic
whereby EKubo is defined as

EKubo ¼
4EF

3NE
: (16)

here EF is the Fermi energy of bulk hcp-cadmium (EF = 6.45 eV)52

and NE is the number of valence electrons (i.e., 2n when considering
taking only two valence electrons per cadmium atom into account).
In addition to our calculated gaps we added the ones calculated
by Zhao12 for comparison in Fig. 13. Neither our predicted
gaps, nor the ones proposed by Zhao drop below the Kubo gap
as shown in Fig. 13 for any cluster size. The smallest gap was
calculated for the largest considered cluster, i.e., Cd60 (DHL =
0.285 eV) which is still significantly larger than the Kubo gap
predicted for that size (EKubo = 0.072 eV for Cd60). Hence,
according to the Kubo criterion none of the clusters of the
present study shows a metallic behavior.

Ruppel and Rademann reported the ionization potentials for
Cdn up to a size of n = 30 atoms.53 In order to compare their
results with ours we calculated the adiabatic ionization potentials
(aIPs) for all obtained clusters from the total energy difference
between the relaxed neutral and cationic clusters. The results are
compared to those of Ruppel and Rademann in Fig. 14. From this
figure we may extract several pieces of information also relevant
for the identification of a possible metallic behaviour. It is
known that the ionization potential of a spherical metal cluster

Fig. 12 The binding energy of small to medium-sized Cd clusters as a
function of n�1/3. Clusters with less than 12 atoms were omitted in the
linear fit shown in red.

Fig. 13 The Kubo gap (red curve) and the HOMO–LUMO gaps from our
GGA-PBE calculations and from the GGA-PW91 calculations of Zhao12 for
cadmium clusters as a function of size n.

Fig. 14 The calculated adiabatic ionization potentials together with the
results from Ruppel and Rademann53 for small to medium-sized Cd clusters
as a function of size n. The blue line was calculated from eqn (17) with
a = 0.5, W = 4.08 eV, and r0 = 1.72 Å. The red line corresponds to a linear fit
of the calculated adiabatic ionization potentials.
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converges to the work function of a planar metal surface as the
size of the cluster tends to infinity. The size dependency of the
ionization potential can then be calculated from the work func-
tion W plus a positive term that is proportional to the inverse
radius of a given cluster with size n multiplied by a constant a,

aIPðnÞ ¼W þ a
e2

4pe0r0
n�1=3: (17)

In our case, the Wigner–Seitz radius r0 can be calculated from
the experimental lattice constant for hcp-Cd54 and becomes
1.72 Å. The coefficient a that accounts for the size effect was
shown to be exactly 0.5 by Seidl and Perdew55 and any deviation
from this value should be caused by quantum effects. Corrections
to a are typically expressed as:

a ¼ 1

2
þ c: (18)

Later, Seidl and Perdew showed that c is about �0.08 for simple
metals treated within the spherical jellium model and �0.05
for higher-density metals.56 They also mentioned that different
values for c should be possible in noble or transition metals.
However, measurements on small to medium-sized silver clusters,
for example, suggested a value of 0.5 for a in Agn.57 Here, we shall
use our calculated adiabatic ionization potentials to determine
c and W.

From a linear fit to our calculated data, shown in Fig. 14, we
extracted values of a = 0.60 � 0.02 and W = 3.69 � 0.06 eV.
According to eqn (18), then c = +0.1 which indicates large
quantum effects for the Cdn clusters or that eqn (17) is
inaccurate. Indeed, Svanqvist and Hansen showed that the
description of metal clusters by density functional theory in
combination with a jellium model fails and they suggested a
non-trivial relation between aIPs and W based on the analysis of
the experimental results for several metal clusters including
cadmium.58 They reported a = 0.65 � 0.07 and W = 3.54 � 0.27 eV
based on a fit to the data of Ruppel and Rademann. Both values
are in good agreement with our values with a noticeable deviation
for both a and W to the results of the simpler model also shown in
Fig. 14. Accordingly, the fact that the classical calculation does not
provide an accurate description of the results in Fig. 14 implies
that it may be difficult to identify metallic behaviour by compar-
ing calculated adiabatic ionization potentials with the results
from a simple model that obviously cannot handle sufficiently
accurately the more complicated electronic conditions found in
cadmium.

To gain information on the bonding in cadmium clusters we
study the density of states (DOS) and the contribution of each
atomic orbital to the molecular orbitals (shown as partial DOS)
using a Mulliken population analysis. The results for Cd10,
Cd34, and Cd46 as representative examples are shown in Fig. 15.

The 4d and 5s levels are clearly well separated and, therefore,
d–s hybridizations appear to be of little importance. However,
although the hybridization is weak, it cannot be completely
neglected which is why it can be difficult to treat the 4d states
as core states, and may also explain why simpler models based,
for example, on the jellium model fail in the description of

cadmium clusters. The energetically higher-lying orbitals are
dominated by s and p contributions as is the case for bulk
hcp-Cd where the bands around the Fermi level have mixed
s and p character.59

4 Conclusions

Our results allow for suggesting a growth pattern for small and
medium-sized cadmium clusters which is different to the one
proposed through the results from other semi-empirical methods
that appear to have a tendency towards over-coordination. By
using the DFTB method coupled to a genetic-algorithm followed
by an ab initio re-optimization with DFT (PBE) we obtained
several new candidate structures for the global-minimum-
energy structures for sizes up to 60 atoms and we showed that
these are not based upon distorted Marks decahedra as
proposed earlier. Up to a size of around 36 atoms the growth
is dominated by a process in which the atoms are added to a
smaller core based on two fused tricapped-trigonal prisms. The
first shell is complete at the highly symmetrical Cd34 cluster
with point group Td and further addition of atoms leads to
clusters with relatively low symmetry but overall spherical shape.
This growth process also leads to clusters in which the atoms in
the core are arranged similar to what is found in the hcp bulk
structure with a maximum number of bulk-like atoms found in
Cd34. At a size of 44 atoms, the next core is formed but, maybe
surprisingly, the further growth does not proceed so that the
number of atoms with a bulk-like environment is maximized.
We also found that distorted Marks decahedra can become
important with sizes about 53 atoms since at these sizes the
cluster structures that have been proposed by others become
energetically comparable with those obtained in our study. For
sizes greater than 54 atoms we identified clusters with an
overall low symmetry but a tendency to maximize the number
of hcp-like atoms in the core of the clusters as predicted by the
bond-angle analysis. Our candidates for the global minima
were also in good agreement with the results obtained from
mass spectroscopic analysis where the abundance of several

Fig. 15 The density of states (DOS) and partial DOS (calculated from the
corresponding Mulliken population analysis) for Cd10 (top), Cd34 (middle),
and Cd46 (bottom). The curves were obtained by broadening the orbital
eigenvalues with Gaussians with a full width at half-maximum equal to
0.03 eV.
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clusters was explained through electron-shell-closing effects.
By calculating the adiabatic ionization potentials and comparing
these to the results from a spherical jellium model it was not
possible to identify the size at which the cadmium clusters can
be described as being metallic. This analysis showed also that
a simpler model for such systems, based on the spherical
jellium model, hardly is capable of capturing all the electronic
effects of the Cdn clusters. However from a comparison of the
HOMO–LUMO gaps with the Kubo gap we conclude that
cadmium clusters are not metallic up to a size of at least 60 atoms.
Finally we found that the chemical bonding is dominated by
admixing of s and p states already for sizes as small as 10 atoms,
although also the contribution of the 4d orbitals could not be
completely neglected.
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a b s t r a c t

A global optimization method in combination with the density-functional tight-binding approach is used
to determine all putative global minimum energy structures for mixed silicon-germanium clusters
SimGen with nþm 6 30. All obtained structures are re-optimized with first-principles density-
functional calculations and the influence of the composition on the shapes is studied. Several extraordi-
nary stable structures are identified and it is shown that the stability correlates with the ‘prolateness’ of
the cluster. However, it was not possible to relate the electronic properties to a single structural property
like shape, composition, or local atomic environment.

� 2016 Elsevier B.V. All rights reserved.

1. Introduction

Silicon and silicon-based alloys are still the most widely used
semiconductors in our modern electronic-based devices. Not only
direct doping of silicon with other elements has been used to alter
the optoelectronic properties of silicon nanocrystals [1], but also
effects arising from strain are used to optimize the materials prop-
erties [2,3]. However, it is well know that additional complications
arise when the bulk size regime is left and effects of the finite size
of a system are becoming more and more dominating. As the struc-
ture of such finite systems are a priori not predictable from bulk
properties alone one has to use theoretical methods to assist the
experimental findings. However, when searching for the most
stable structures, such theoretical approaches are very demanding
just for systems consisting of only one element and even more
when a second element is added leading to the so called homotops.
This is especially true for combinations of elements that show lar-
ger differences in their atomic sizes or bulk cohesive energies, as
the stability and structure of the resulting mixed clusters then
may become influenced by segregation effects. Despite the compli-
cated potential energy surface of pure silicon and germanium nan-
oclusters, both systems are well studied. Thus, Hellmann et al.
pointed out the difficulties in obtaining an agreement between

experimental and theoretical results for larger silicon clusters [4].
Several structures are energetically close and may all contribute
to the experimental results whereas theory usually will identify
only a single structure. The small energy differences between the
lowest isomers make it also difficult to assign a specific structural
motif for each size except for the smallest clusters, as a change of
the theoretical method used [e.g. from Hartree-Fock theory to DFT
(density-functional theory) or semi-empirical methods to ab initio
methods] also changes the energetical ordering of the isomers. Ear-
lier studies by Raghavachari et al. [5] reported in a Hartree-Fock
based study a tetra-capped octahedron with Td symmetry for
Si10, while Ballone et al. found a tetra-capped trigonal prism of
C3v symmetry in a DFT (LDA) based study [6]. Inclusion of elec-
tronic correlation effects reversed the ordering in the HF study
and the C3v structure was now found to be lower in energy than
the Td structure at the MP4 level. Also for Si11 differences smaller
than 0.1 eV were reported between the first and second isomer
at the CCSD(T) level, with the actual value turned out to depend
critically on the used basis set [7]. Ho et al. reported from uncon-
strained DFT (LDA) calculations based on a combination of a
genetic algorithm and the simulated annealing method that clus-
ters between 12 and 18 atoms are built from tricapped trigonal
prisms (the TTP-motif) and a transition from prolate to more
spherical shapes should occur at a size of 19 atoms. However their
ion-mobility measurements showed that this transition happens at
a slightly larger size [8]. Tekin and Hartke later used several empir-
ical potentials in combination with an unconstrained GA (genetic
algorithms) search and found indications of alternative growth
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mechanisms beside the TTP structural motif. They mentioned that
the results are strongly dependent upon the parameters used
entering the empirical potential [9]. Jackson et al. used a method
that imitates the big bang to gain candidate structures with the
help of a density-functional-based tight-binding approach (DFTB)
that were later re-optimized with ab initio DFT (PBE) in an unbi-
ased way for sizes between 20 and 27 atoms and showed that
these clusters are not based on the TTP-motif. They found excellent
agreement to experimental results based on ion-mobility measure-
ments and concluded that the structural motifs found for medium-
sized clusters are indeed controlled by thermodynamic effects [10].
The work by Lyon et al. gave direct experimental evidence that the
structures of smaller clusters are based on a pentagonal bi-
pyramidal building block with a change to the TTP motif for larger
clusters [11]. Yoo and Zeng added a new structural building unit
into the discussion, the so called ‘six/six’ motif, a sixfold-
puckered hexagonal ring Si6 plus a six-atomic tetragonal bipyra-
mid Si6. The relative stability between these motifs were revealed
to be dependent on the computational approach whereby the CCSD
(T) calculations slightly favored the ‘six/six’ motif over the TTP one
[12]. Later, a fourth structural type, consisting of ‘Y-shaped’ three-
arm structures, where each arm is a small-sized magic cluster (Si6,
Si7, or Si10) were described by the same authors and shown to be
competitive in energy compared to the TTP, the ‘six-six’, and the
spherical motifs [13]. In contrast to the case of silicon clusters,
ion mobility measurements suggested a prolate growth pattern
for germanium clusters with up to 70 atoms [14]. Theoretical cal-
culations supported the experimental finding that prolate struc-
tures are favoured over compact ones for Gen with n up to
around 40 atoms [15,16], while smaller clusters with 12–20 atoms
adopted the TTP motif [17]. An extension of the ‘six-six’ motif was
reported by Yoo and Zeng consisting of a ‘six-nine’ (a puckered-
hexagonal-ring Ge6 attached to a tri-capped trigonal prism Ge9)
and six-ten motif and they suggested that these motifs are present
in most of the energetically low-lying isomers of Gen [15]. Quin
et al. predicted the presence of the ‘Y-shaped’ three-arm structural
motif also in medium to larger germanium clusters with 34–39
atoms. Larger clusters favoured plate-like structures that were
built from smaller magic-sized clusters like Ge9 and Ge10 [18]. Li
et al. recently found that van-der-Waals interactions may have a
strong influence on the bonding strength between the fragments
of the smaller magic-sized Gen clusters and that these fragments
are connected by bulk-like Ge6, Ge9, or Ge10 units via strong cova-
lent bonds [19]. Shvartsburg et al. compared the growth patterns of
silicon and germanium clusters and concluded that both systems
start to form different clusters for sizes as small as 13 atoms, but
both clusters are based on TTP subunits [20]. Lu et al. showed that
the building blocks consisting of 6, 7, and 10 atoms in germanium
clusters can acquire more energy from their corresponding bulk
energy than the ones in the silicon system and, therefore, the tran-
sition from a prolate to a spherical shape happens for smaller sizes
in silicon than in germanium.

Compared to the pure clusters which have been extensively
studied both theoretically and experimentally there are much less
results reported in the literature for binary SiGe cluster. Most of
the investigations were restricted to smaller sizes or specific stoi-
chiometries. Thus, Wang and Chao studied neutral and ionic Sim-
Gen clusters with mþm 6 12 with DFT (B3LYP) and CCSD(T)
methods and reported that the silicon atoms preferred to occupy
higher-coordinated sites than the germanium atoms. They also
found negative mixing energies for all considered sizes for both
neutral and ionic clusters although the cationic clusters proved
to be more stable than the anionic ones [21]. Li et al. reported that
the mixed clusters at smaller sizes followed the structural motifs
known from the pure clusters and predicted Si4Ge6 and Si6Ge4 to
be magic numbers of particularly high stability [22]. Marim et al.

showed that the average inter-atomic distances in small clusters
with up to 7 atoms increased linearly with the germanium content
and that such a behavior can be understood as the clusters ana-
logue of Vegard’s law. ur Rehman et al. used the parametrized
density-functional tight-binding method and studied pure and
mixed clusters of silicon and germanium with up to 44 atoms
[23,24]. They restricted the ratio of silicon to germanium to 1:1
and could show that the silicon atoms occupy the higher coordi-
nated sites and that Si–Si and Si–Ge bonds dominated the cigar-
shaped SiGe clusters. Various similarity indices were calculated
by them to compare the structures of the mixed clusters with
the pure ones of similar size and in the first work [23], they found
that the mixed systems have a greater similarity to the pure silicon
clusters than to their germanium counterparts, whereas the later,
improved definition of a similarity index indicated that the mixed
clusters were equally different from the pure ones of the same size
[24].

In this work we shall address several issues of mixed silicon-
germanium clusters that have not been studied earlier. We shall
begin with a comparison of the structures of pure silicon and ger-
manium clusters and use several geometric descriptors to identify
differences and similarities during the growth of the pure clusters.
To study the influence of different compositions on the shape and
the distribution of silicon and germanium within each cluster we
determine subsequently the putative global minimum energy
structures for all Si:Ge ratios with a density functional tight-
binding/genetic algorithm (DFTB/GA) approach and re-optimized
all structures with the DFT (PBE) method. In order to identify com-
positions of greater stability we shall calculate two criteria for sta-
bility. The excess energy that is defined by comparing with either
the bulk cohesive energies or the total energies of the pure clusters
of similar size and a local stability that compares the stability of
neighboring sizes and compositions without any connections to
the bulk or pure structures. Finally, we shall explore the depen-
dency of the electronic properties, especially of the HOMO-LUMO
gap (HL-gap), on the size and composition of all obtained clusters.

2. Computational methods

2.1. The global optimization procedure

In the present work we used a genetic algorithm (GA) derived
from the ‘cut-and-splice’ procedure introduced by Deaven and
Ho [25] together with the density-functional tight-binding method
as implemented in the Hotbit code [26] to determine the putative
total-energy-minima structures of the Si–Ge clusters. Our own
genetic algorithm was linked to the atomic simulation environ-
ment (ASE) code introduced by Bahn and Jacobsen to benefit from
their large number of useful methods within their central ‘Atoms’
object [27].

For the genetic algorithm we use a population of 10 members
and construct the first generation in each calculation by placing
the atoms randomly within a cubic box of volume V that scales
with the number of atoms as

Vbox ¼ m � a
3
Si

4
þ n � a

3
Ge

4
ð1Þ

with aSi and aGe being the corresponding experimental lattice con-
stants of the diamond structures of Si (a = 5.431 Å) [28] and Ge
(a = 5.658 Å) [29] followed by a local relaxation to the next local
minimum on the potential energy surface (pes). In contrast to tradi-
tional algorithms in which only small parts of a generation are sub-
jected to a crossover, selection and mutation procedure to evolve a
given structure to the global minimum, we allowed all population
members within each generation to form one offspring that is

2 S. Kohaut et al. / Computational and Theoretical Chemistry xxx (2016) xxx–xxx

Please cite this article in press as: S. Kohaut et al., Growth patterns, shapes, and electronic properties of mixed SimGen clusters with nþm 6 30, Comput.
Theoret. Chem. (2016), http://dx.doi.org/10.1016/j.comptc.2016.12.001



constructed as follows: First, each of two parents is cut along a ran-
dom plane. Next, the two parts of the two parent clusters are inter-
changed and subsequently translated in the x-, y-, or z-direction
until no atom from one part is closer than the bond length of the
dimer to an atom of the other part. The offspring clusters are
relaxed to their next local total-energy-minima and added to the
current pool of structures. This step is then followed by a mutation
procedure in which all current parents are mutated by one of the
following operations that all are applied with equal probability:

� Random displacements of all atoms with a Gaussian-distributed
step-size [30].

� Permutation of two atomic species to explicitly include homo-
tops of the same structural motif in the search process.

� A twinning mutation in which two halfparts of a cluster are
rotated relative to each other by a small random angle [31].

� An etch-add process in which a randomly picked atom is
removed and placed next to another atom [31].

All mutation procedures were followed by a local relaxation to
the next local minimum and the mutants were added to the pool of
structures. To prohibit a premature convergence to another local
total-energy minimum than that of the global minimum, we
accepted a newly created mutant only if its energy was lower than
the structure with the lowest energy already contained in the pool
or if its energy was larger than a predefined energy threshold (here
a value of D ¼ 0.1 eV was used) with regard to the structure with
the lowest energy found so far. The size of the pool members
was afterwards reduced to a size of nine members by applying a
simple tournament with five participants while as the last member
we used the unmodified structure with the lowest energy from the
preceding crossover and mutation cycle (correspond to ‘elitism’).
The algorithm used in this study was considered to be converged
if the energy of the putative global minimum energy structure
did not change for 100 consecutive generations and we repeated
every global optimization run for every composition for three
times starting every run from randomly created starting structures.
All acquired clusters that were lowest in energy for every consid-
ered stoichiometry were later used as starting points for DFT
re-optimizations.

2.2. Parametrization of the DFTB method

Within the DFTB method, the total energy relative to that of
non-interacting neutral atoms can be approximated as a sum of
the energies of all occupied orbitals minus that of the neutral,
non-interacting atoms, EBS, plus a term due to Coulomb interac-
tions ECoul and a pairwise repulsive potential Urep [32,33],

E ¼ EBS þ ECoul þ Urep: ð2Þ
At the lowest level of approximation (corresponding to the non-

SCC DFTB) we neglect interactions that result from charge fluctua-
tions and ignore ECoul. Urep can then be parametrized and adjusted
to reproduce either experimental or ab initio results once EBS is
known for a given set of structures.

Using an LCAO approach the orbitals are expanded in a minimal
set of atomic-centered non-orthogonal basis functions,

wiðr
!Þ ¼

X
v
cvi/vðr

!Þ: ð3Þ

The Kohn-Sham eigenvalue equations are solved for an effective
potential Veff to determine EBS as the sum over the eigenvalues of
all occupied orbitals,

ĤwiðrÞ ¼ eiwiðrÞ; ð4Þ

with

Ĥ ¼ T̂ þ Veff : ð5Þ
Here, T̂ is the kinetic-energy operator.

Substitution of (3) into (4) gives the eigenvalue equationX
v
cviðHvi � �iSv iÞ ¼ 0 ð6Þ

with

Hv i ¼ h/v jĤj/ii ð7Þ
and

Svi ¼ h/v j/ii: ð8Þ
The elements of Hvi and Svi are determined from calculations on

diatomic molecules for a whole set of interatomic distances by
using the Slater-Koster rules and stored in a table. Thereby it is
assumed that the effective potential can be written as a superposi-
tion of atomic potentials

Veffðr
!Þ ¼

X
n

Vnðj r
!�R

!
njÞ ð9Þ

with R
!

n being the position of the nth atom. Moreover, VnðrÞ is the
potential of the free, isolated, nth atom, V ð0Þ

n ðrÞ, augmented by a
short-ranged confining potential that leads to the typical contrac-
tion of the orbitals when passing from the isolated atom to a
compound,

VnðrÞ ¼ V ð0Þ
n ðrÞ þ r

r0

� �2

: ð10Þ

For r0 we use for Si 3.57 bohr and for Ge 3.92 bohr to get the best
agreement between the DFTB calculated electronic band structures
and the ones derived from ab initio DFT calculations using the PBE
functional.

Subsequently, we assume that

h/v jT̂ þVeff j/ii ¼
h/v jT̂ þVnj/ii for /v ; /i both on atom n

h/v jT̂ þVn þVmj/ii for /v ; /i on atoms n–m

0 otherwise:

8><
>:

ð11Þ
Urep is determined by fitting to accurate results from ab initio DFT
(PBE) calculations. Specifically, in the present work we minimized
the force differences jFDFT � FDFTBj for the dimers with a smoothing
spline as explained by Koskinen and Mäkinen [26]. The thereby
obtained derivative, U0

rep, was integrated to give the repulsion
potential and tested against results from DFT calculations.

2.3. Ab initio density-functional calculations

All subsequent ab initio DFT calculations for the clusters were
performed using the PBE functional for exchange and correlation
as implemented in the Siesta program [34]. The scalar-relativistic
pseudopotentials for silicon and germanium were created
within the norm-conserving Troullier-Martins scheme for Si

(3s2:03p2:03d0:04f 0:0) and Ge(4s2:04p2:04d0:04f 0:0) valence configura-
tions with cut-off values of 1.75, 1.94, 2.09, and 2.09 bohr for sili-
con and 1.98, 1.98, 2.39 and 2.39 bohr for germanium,
respectively. A basis set of DZP quality together with a soft-
confinement potential was used within a split-valence scheme in
which the first basis function was fixed to a cut-off of 8.5 bohr
and the split-norm rm of the second basis function was optimized
variationally for the bulk structures and for dimers of silicon and
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germanium at the corresponding experimental lattice constants of
Si and Ge [28,29], bond lengths of the dimer from either experi-
ment (Si) [35] or from calculations at the CCSD(T) level (Ge) [36].
Afterwards, we added one p-type polarization function to both
basis sets and fine-tuned their cut-off values for the bulk and dimer
structures. The final values for the basis set are summarized in
Table 1. For the sake of completeness, the results for bulk Si and
Ge and the dimers are shown in Table 2 and compared to other
results reported in the literature.

The candidates for the global minimum were placed in a large
cubic box with a side length of 22.0 Å, and re-optimized with the

optimized DZP basis set using one k
!

point at the C point. A
mesh-cutoff of 500 Ry was used for the real space grid. Atomic
positions in all calculations were optimized to a residual force
smaller than 0.01 eV/Å with the conjugate-gradient algorithm as
implemented in Siesta.

2.4. Quantifying structural similarity

In the present work we shall be particularly interested in iden-
tifying structural similarity, also in order to be able to study
growth patterns and structural motifs. For this purpose, it is very
useful to define a quantitative measure for the similarity of two
objects which we determined as follows.

First, we compare the structures of the pure silicon and germa-
nium clusters one by one and define a similarity index that gives an
information about how similar the two structures are. The calcula-
tion of such indices were carried through with a genetic algorithm
with three translations x; y; z, three rotational angles h;/;q, an
overall scaling factor r and an inversion-flag i as the genome and
the sum of squared nearest-neighbor distances as target function.
Starting with two clusters, A and B, all positions of B are translated
by the vector ðx; y; zÞ. The resulting cluster is then rotated by h
around the z-axis, by / around the resulting x-axis and by q around
the resulting z-axis. Every resulting position vector is then multi-
plied by r (�r) for i ¼ 1 (i ¼ �1). Subsequently, for each atom a
in cluster A the closest atom bðaÞ in cluster B is chosen and the dis-

tance dða; bðaÞÞ is calculated. Similarly, for every atom b in B, the
closest atom aðbÞ in cluster A is identified and the distance
dðb; aðbÞÞ is calculated. The function

q ¼ 1
2n

Xn
i¼1

d2ðai; bðaiÞÞ þ
Xn
i¼1

d2ðbi; aðbiÞÞ
 !

ð12Þ

where n is the number of atoms in the smaller cluster and faig; fbig
are the sequences of atoms in both clusters, ordered by distance to
their closest atoms in the other cluster, is chosen as the target
function.

Once the smallest value of q has been identified, the similarity
index S is defined as

S ¼ 1

1þ
ffiffi
q

p
ul

ð13Þ

where ul is a unit length, which is arbitrarily chosen to be the aver-
age nearest-neighbor distance in cluster A. Two clusters are consid-
ered similar, if S is greater than 0:9 and they are considered
dissimilar if S is smaller than 0:8. Values in between indicate defor-
mational configurations.

In the genetic algorithm an initial population containing differ-
ent values for the above-mentioned eight parameters is randomly
generated and used to produce children. For each child, two par-
ents are chosen randomly whereby the values for each of the seven
parameters are obtained randomly from the two parents. Addition-
ally, a set of mutants is generated, which start from a parent struc-
ture that is modified in random genome entries by a random
number drawn from a Gaussian, uniform or v2 distribution within
appropriate ranges. To construct the next generation, all candi-
dates are placed in a pool and a tournament is run that decides
which genome modification is allowed to be passed to the follow-

Table 1
Details of the DZP basis set used in this study. All values are in bohr.

Si3s Si3p Si3d Ge4s Ge4p Ge4d

rc 8.50 8.50 4.67 8.50 8.50 4.89
rm 4.94 4.92 – 5.15 5.01 –

Table 2
Summary of the performance of the DZP basis set for bulk and dimer structures
(without zpe or BSSE corrections) compared to other reported DFT-PBE, CCSD(T), or
experimental results [37–43]. aX; BX, E

coh
X ; dX�Y , and Ebind

X�Y represent the lattice constant,
bulk modulus and cohesive energy per atom for crystalline X, and the bond length and
the binding energy for the X-Y dimer, respectively.

Property DZP(PBE) PBE Exp.

aSi [Å] 5.507 5.49, 5.466 5.431, 5.416
BSi [GPa] 85.0 89.2, 88.6 99.2

EcohSi [eV] 4.547 4.56 4.681, 4.62 ± 0.08

dSi�Si [Å] (3R
�
g ) 2.308 2.281, 2.30 2.246

EbindSi�Si [eV] 1.78 1.685 1.64, 1.605

aGe [Å] 5.820 5.759, 5.640, 5.658
BGe [GPa] 56.4 59.7 75.8

EcohGe [eV] 3.677 3.73 3.863

dGe�Ge [Å] (3R�
g ) 2.431 2.409 [CCSD(T)] 2.368

EbindGe�Ge [eV] 1.566 1.355 [CCSD(T)] 1.332

dSi�Ge [Å] (3R) 2.371 2.339 [CCSD(T)] -

EbindSi�Ge [eV] [Å] (3R) 1.667 1.433 [CCSD(T)] 1.531

Fig. 1. A comparison of different structural motifs through their calculated
similarity indices, S.
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ing generation. The whole procedure is stopped, when the lowest
value of q has not changed after a predefined number of genera-
tions. In typical runs a population size of 40 was found to be appro-
priate to reach the global minimum within 2000 generations.

To give an impression about the meaning of the calculated
index S, we give the results in Fig. 1 for three different cases, i.e.,
for the comparison of a tetrahedron with a square (completely dif-
ferent structural motif, upper row), followed by a comparison of an
icosahedron (that often is found as structural motif in many clus-
ters with a size of 13 atoms) with a decahedron of the same size
(middle row), and, finally, for the comparison of a perfect octahe-
dron with a octahedron for which all bond lengths were scaled
by a factor of 0.5 (bottom row).

Finally, we add that through the present definition of S it is pos-
sible to identify structural similarities not only between two clus-
ters but also between clusters and parts of a crystal. Moreover, the
present approach shares many similarities with the one introduced
earlier [24] but without the pitfall that the latter may be trapped in
local minima for q.

3. Results

3.1. Pure silicon and germanium clusters

Both in order to demonstrate the reliability of our approach and
for the sake of comparison with the results for the mixed clusters
we start our discussion with an analysis of the obtained structures
for the pure silicon and germanium clusters with up to 30 atoms.

In Fig. 2 we show the calculated similarity indices for the com-
parison of the pure silicon with the pure germanium clusters.
Already for smaller clusters, differences in the structures of the
two cluster sets are recognizable. For Ge8, we find a face-capped
pentagonal-bipyramid in agreement with the findings of other
studies [44], while for Si8 we obtain a bi-face-capped octahedron
of point group (pg) C2h which was also the result of several other
authors including experimental studies [20,45–47].

An icosahedral fragment was found for Ge9 whereas Si9 was
identified to be a bi-face-capped pentagonal bipyramid. The occur-
rence of the icosahedral motif for the Gen clusters is the source of
structural differences (a drop in S) between the Sin and Gen clusters
for n around 12–13. We located, as several other authors, a dis-
torted icosahedron for Ge12 and a face-capped icosahedron for
Ge13 as the structures with the lowest energy, whereas the icosa-
hedral motif could not be identified for Si12 or Si13 [8].

For larger clusters with more than 14 atoms the two types of
pure clusters do not share many structural similarities. The TTP
motif was found to be present in the silicon clusters up to a size
of 14 atoms while larger structures did not follow a clear growth
pattern as can be seen in Fig. 4. We found several structural motifs
including ones that are based on bilayers as is the case for Si16, Si20,
Si22, and Si23, as well as more spherical clusters with highly coor-
dinated silicon atoms in the center like in Si17, Si18, Si19, Si21, Si24
and in clusters larger than Si25.

Our optimized silicon clusters are not always those of the global
minimum-energy found in other studies, which can be related to
inaccuracies in the computational approach, whereby it is hardly
possible to make conclusive statements about which structures
indeed are those of the global total-energy-minima. Thus, Marim
et al. showed in their TB/GA calculations that spherical silicon clus-
ters are competitive in energy compared to more prolate structures
already for sizes as small as n ¼ 14 [48]. This agrees well with our
results where we did not find a sharp transition from prolate to
spherical clusters within the observed size range and instead an
oscillatory behavior between both shapes. Moreover, Yoo et al.
[49] reported the transition to happen between 21 and 25 atoms
which is qualitatively in agreement with our findings as well as
those of other authors who have reported spherical silicon clusters
for sizes below n ¼ 20 [50,8].

The TTP motif was found to be the dominating one in our results
for smaller germanium cluster as it can be seen in Fig. 3. Up to a
size of n ¼ 18 our optimized structures are in agreement with
the other reported putative global minimum energy results men-
tioned in Section 1. For larger clusters, the icosahedral motif
appears besides the TTP one and we find tricapped trigonal prisms
attached to icosahedra in several larger clusters with the TTP motif
disappearing for the largest clusters of the present study. A dis-
torted icosahedron as a building unit was not found by other
authors for the lowest-energy structures and, therefore, we exam-
ined whether this structural motif indeed leads to low-energy
structures by re-optimizing both our optimized structures and
those by Li et al. with DFT (PBE) calculations [19].

Indeed, as can be seen in Fig. 5 our structures with an icosahe-
dron as building unit, are predicted to be slightly higher in energy
than the TTP-based structures proposed by Li et al. although the
differences are small (just some few 0.01 eV/atom) so that both
structural motifs most likely will be observed in experimentally
produced clusters. We add that independent of this difference, all
germanium clusters in the size range of the present study are

Fig. 2. Calculated similarity indices S for the comparison of pure silicon with the pure germanium clusters of the same size. The horizontal red line indicates the value of S
below which two clusters show two completely different structural motifs. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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Fig. 3. The obtained putative global-minimum-energy structures for the pure Gen clusters with their corresponding point-group symmetries.

6 S. Kohaut et al. / Computational and Theoretical Chemistry xxx (2016) xxx–xxx

Please cite this article in press as: S. Kohaut et al., Growth patterns, shapes, and electronic properties of mixed SimGen clusters with nþm 6 30, Comput.
Theoret. Chem. (2016), http://dx.doi.org/10.1016/j.comptc.2016.12.001



Fig. 4. The obtained putative global-minimum-energy structures for the pure Sin clusters with their corresponding point-group symmetries.
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found to be prolate, whereas several earlier studies based on tight-
binding approaches resulted in either spherical and amorphous-
like clusters or clusters that were essentially prolate but did not
show any of the known building units [23,51,24,44]. In order to
obtain further information on the shape, we use methods that
are widely used in the description of the shapes of polymer chains
and are typically based on the calculation of the gyration tensor
[52,53]. The gyration tensor G is defined as

G¼ 1
N

P
iðxi � x0Þ2

P
iðxi � x0Þðyi � y0Þ

P
iðxi � x0Þðzi � z0ÞP

iðxi � x0Þðyi � y0Þ
P

iðyi � y0Þ2
P

iðyi � y0Þðzi � z0ÞP
iðxi � x0Þðzi � z0Þ

P
iðyi � y0Þðzi � z0Þ

P
iðzi � z0Þ2

0
BBB@

1
CCCA

ð14Þ
where ðxi; yi; ziÞ are the coordinates of atom i within a cluster and
ðx0; y0; z0Þ the average of all positions of the cluster. Diagonalizing

Fig. 5. Comparison of our obtained putative global minimum-energy structures for selected Gen clusters (left clusters) with those reported by Li et al. [19] (right clusters).
Also shown are their calculated binding energy/atom (in eV/atom) from the DFT (PBE) calculations.
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G leads to three eigenvalues ðk1; k2; k3Þ that we will sort in descend-

ing order, k1 P k2 P k3. From those, the radius of gyration R2 that
represents the average squared distance from each atom to the cen-
ter of mass (with all masses set to unity) can be determined,

TrðGÞ ¼ k1 þ k2 þ k3 ¼ R2: ð15Þ
Further shape descriptors that also can be obtained from the

eigenvalues of G are the relative shape anisotropy j2 which
describes both the symmetry and dimensionality of a structure,
and lies between 0 (corresponding to the case that all atoms are
arranged spherically symmetric or distributed uniformly on any
platonic solid) and 1 (corresponding to a case in which all atoms
are placed along a straight line) and defined as

j2 ¼ 3
2

TrðGÞ2
½TrðGÞ�2 ¼ 1� 3

k1k2 þ k2k3 þ k3k1

ðk1 þ k2 þ k3Þ2
; ð16Þ

as well as the asphericity parameter b that quantifies the deviation
from sphericity,

b ¼ k1 � 1
2
ðk2 þ k3Þ: ð17Þ

Finally, we can quantify the acylindricity c which is non-
negative, and zero only for k2 ¼ k1

c ¼ k22 � k21: ð18Þ

and analyze the ratio k1
k3
that gives additional information about the

prolateness of an object.
Although the Sin and Gen clusters do not share the same struc-

tural motifs for smaller clusters, they nevertheless are very similar
in their overall shape up to a size of n ¼ 17. For j2, shown in Fig. 6,
we found values close to zero for smaller structures, which indi-
cates that these clusters are close to being spherical. At a size of

Fig. 6. The relative shape anisotropy j2 (top-left panel), asphericity b given in Å2 (top-right panel), acylindricity given in Å4 c (bottom-left panel) and the ratio k1
k3
(bottom-right

panel) for pure Sin and Gen clusters as a function of n.

Fig. 7. The average effective coordination number ECN (top-left panel), the largest ECN (top-right panel) and the average bond length dav (bottom-left panel) calculated from
Hoppe’s approach for pure silicon and germanium clusters as a function of the size n.
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n ¼ 17, the germanium clusters show an increase in j2 while for
the silicon structures, j2 reaches a maximum for Si22 and then
decreases to values below 0.1 with a single exception for Si25.
The difference in the shape for larger clusters is also recognizable
in the asphericity parameter b shown in Fig. 6 as b, like j2,
increases throughout the complete series of germanium clusters
of the present work, whereas, for silicon clusters, we find a behav-
ior very similar as before with a maximum at Si22 and Si25 followed
by a decrease of b to a value of around 2.4 Å. The large difference
for j2 and b for the two elements for the largest sizes indicates a
greater difference in the growth motifs of the larger clusters of sil-
icon and germanium.

To get further information on the deviations from the spherical
symmetry, especially for the germanium clusters, we study the
acylindricity and the ratio k1

k3
, both shown in Fig. 6. Except for

Si10, Ge10, and Ge5, which are the most spherical clusters, we note
that also smaller clusters are not perfectly spherically symmetric
as the ratio k1

k3
is larger than 1 even in those smaller structures.

The acylindricity in germanium decreases while the ratio k1
k3
simul-

taneously increases, which indicates that the germanium clusters
indeed possess a prolate shape, at least for the sizes of the present

study. The shape transition in silicon clusters from prolate to
spherical is not sharp and we observe oscillations in all shape
descriptors. However, we find the most prolate structures for sili-
con for the sizes 22–25 after which a sharp drop to more spherical
shapes occurs which is qualitatively in agreement to the proposed
transition range of Li et al. between 21 and 25 atoms [49].

For a more complete understanding of the structural properties
of the clusters we shall analyze the local environment of each atom
in every cluster which will become particularly important for the
mixed clusters to be discussed later. To calculate the effective coor-
dination number (ECN) and average bond lengths (dav) we use an
approach described by Hoppe et al. [54] and tested for example
by Chou et al. for clusters [55]. According to this, the average bond
length for atom i is defined as

di
av ¼

PN
j¼1 dije½1�ðdij=diavÞ

6 �

PN
j¼1 e

½1�ðdij=diavÞ
6 �

ð19Þ

with N being the total number of atoms in the cluster. It is seen that

di
av has to be determined iteratively. Thereby, di

av is initially taken as
the shortest nearest-neighbor distance for atom i and the final value

Fig. 8. The second stability function (top-left panel), the binding energy Eb (top-right panel) and the HOMO-LUMO gap (bottom-left panel) for pure silicon and germanium
clusters as a function of the size n.

Fig. 9. The similarity index S calculated from the comparison of mixed (SiGe)n/2 with pure silicon or germanium clusters of size n.
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obtained self consistently using a convergence criterion of 10�4 Å.
Subsequently, an effective coordination number ECN of atom i
defined as

ECNðiÞ ¼
XN
j¼1

e½1�ðdij=diavÞ
6 � ð20Þ

can be introduced.

Averages of ECN and di
av for all atoms of a given cluster can then

be obtained. In Fig. 7 we show the average ECN, the largest calcu-
lated ECN and the average bond lengths, respectively, for pure Sin
and Gen clusters. In general we observe a larger mean coordination
number in germanium clusters, although the plot of the largest
ECN shows that some of the silicon atoms in the spherical clusters
can reach very large coordination numbers up to 12. The average
bond length in the silicon clusters is overall about 9% smaller than
in the germanium cluster and in neither of them the average bond
length reaches the bond length found in the bulk.

Finally we shall address the issues of stability and electronic
properties of the pure clusters. Stability can be either understood
in a chemical sense and is usually associated with large gaps
between the highest occupied and the lowest unoccupied molecu-
lar orbital (the so-called chemical hardness) or in relative stabili-
ties between two clusters that are differing in size or structure.
The latter definition typically coincidences with results from mass
spectroscopy and can be calculated for the example of pure clus-
ters from

D2EðnÞ ¼ EðXnþ1Þ þ EðXn�1Þ � 2EðXnÞ ð21Þ
with EðXÞ being the total energy of the system X. This function is
shown in Fig. 8 and demonstrates that there are certain cluster sizes
with increased stability compared to neighboring sizes (the so-
called magic clusters) and that these sizes coincide for n 6 14 for
the two elements but differ for larger cluster sizes.

For Sin we can identify magic sizes for n ¼ 4, 7, 10, 14, 15, 19, 23
and 25 while for Gen we find n ¼ 4, 7, 10, 14, 16, 20, 22, 25 and 26
to be of special stability. These magic numbers correlate with the

Fig. 10. The similarity index S calculated from the comparison of mixed SimGen
with pure silicon or germanium clusters of size ðnþmÞ.

Fig. 11. The asphericity b given in Å2 (top-left panel), the shape anisotropy j2 (top-right panel), the acylindricity c given in Å4 (bottom-left panel), and the prolateness
parameter k1

k3
(bottom-right panel) of mixed (SiGe)n/2 clusters as a function of the number of atoms n.
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occurrence of the Ge10 and Si10 subunit which is of great stability
for both elements like in Ge20 and Ge22 which were predicted to
contain two interconnected Ge10 units. For silicon it is noteworthy
that spherical clusters like Si17, Si18 and, according to the shape
descriptor, the most spherical, larger cluster Si24 are not among
the magic-sized clusters. Alternatively, one may study the binding
energy per atom, Eb, that is also shown in Fig. 8. This figure shows
that any silicon cluster has a higher binding energy than the ger-
manium cluster of the same size but also that each of the curves
has visible maxima at certain values of n, which indicates an
enhanced stability at those sizes. A large HL-gap is not automati-
cally associated with high stability as it can be seen by comparing
the maxima between the HL-gap and the stability function, both
shown in Fig. 8. While there can be maxima seen in both curves
for Si14, Si15, Si23, and Si25 we notice discrepancies for example
for the clusters Si5, Si4, and Si20. Also the spherical clusters Si17,
Si18, Si21, Si24, and Si26 have in general a smaller HL-gap as the pro-
late structures. For germanium we observe that the TTP unit in lar-
ger clusters does not lead to structures with a large HL-gap
compared with their neighboring clusters, see, e.g., Ge20 and Ge22.

3.2. Mixed SiGe clusters

Next, we shall study the properties of mixed SimGen clusters.
Rehman et al. [23] reported a greater similarity of (SiGe)n clusters
with n ¼ 1—22 to silicon clusters of the same size which, however,
was modified in a later study where a more reliably similarity indi-
cator was introduced [24]. Therefore, we start our analysis by cal-
culating the similarity indices for the comparison of our obtained
clusters with pure silicon and germanium clusters of equal size.
As can be seen in Fig. 9, the present study gives a comparable sim-
ilarity between the Si2n and Ge2n clusters on the one hand and the
SinGen clusters on the other hand.

In addition, the abrupt drops found for the smaller pure Si clus-
ters are not recovered for the pure Ge clusters. In fact, when com-
paring the mixed SimGen clusters with the pure Sim+n and the pure
Gem+n clusters (see Fig. 10) there is a smaller tendency for the
mixed clusters to be more similar to the pure Ge clusters than to
the pure Si clusters, at least up to a total size of 23 atoms.

In contrast to this, our results suggest that silicon has a greater
influence than germanium on the overall shape of the 1:1 mixed
clusters as one, for instance, can see from the shape descriptors
shown in Fig. 11. Thus, as the upper panel shows, the mixed clus-
ters are more spherical than their pure germanium counterparts
but similar to the case for the pure silicon clusters. An exception
is found for n ¼ 28 which was identified to be highly prolate. But
also for the other properties in Fig. 11, the (SiGe)n/2 clusters show
shape behaviors much more similar to those of the Sin than to the
Gen clusters.

When considering the shape properties of the complete set of
SimGen clusters of the present study, we obtain the results shown
in Fig. 12. We see that for the asphericity b, the shape anisotropy
j2, the acylindricity c, and the prolateness parameter k1

k3
in general

all are largest for the Ge rich clusters and smallest for the Si rich
clusters and that there is a more or less smooth transition in
between. Thus, Ge rich clusters tend to have less regular shapes
than Si rich clusters.

The plot of the effective coordination numbers (ECN) of either
silicon or germanium in the (SiGe)n/2 clusters in Fig. 13, show the
interesting result that Si in general is higher coordinated than Ge
in the mixed clusters and that the Si coordination then is even lar-
ger than in the pure Sin clusters, whereas that Ge coordination is
larger in the mixed than in the pure clusters. Thus, silicon tends

Fig. 12. The asphericity b in Å2 (top-row), the shape anisotropy j2 (second-row),
the acylindricity c in Å4 (third-row), and the prolateness parameter k1

k3
(bottom-row)

of mixed SimGen clusters as functions of ðm;nÞ.
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to occupy higher-coordinated positions than germanium in the
mixed clusters with equal Si:Ge ratios, a finding that is in agree-
ment with results from other authors who have reported a segre-
gation of germanium to the surface [23,56–58]. This behavior
prevails for all other Si:Ge ratios as can be seen in Fig. 14: the aver-
age effective coordination number of the germanium atoms is
always smaller than for the silicon atoms with the smallest values
found for germanium in silicon-rich clusters. Fig. 14 also shows
that the germanium sites are hardly ever over-coordinated com-
pared to the bulk, while the opposite is true for silicon which occu-
pies positions with average effective coordination numbers
occasionally as large as 9 in the germanium-rich clusters.

Next we shall study the effect of a gradual exchange of silicon
by germanium. For this, Tarus et al. [56] reported a linear growth
of the average bond length within mixed clusters with an increas-
ing content of germanium and explained such a behavior as an
analogue of Vegard’s rule for nanoalloys. As shown in Fig. 15, also
our results are in agreement with having a roughly linear depen-
dence of the average bond length on the germanium content
although the results suggest that this rule should be taken with
some caution. In particular for the smallest clusters the average
bond lengths turn out to be smaller than this simple rule would
suggest (these results are the lowest ones in Fig. 15).

Further information on the energetic properties of the clusters
can be obtained from the excess energy Eexc. This is not uniquely
defined but here we will use the definition

Eexc ¼ EðSimGenÞ � m
nþm

EðSimþnÞ þ n
nþm

EðGemþnÞ
� �

: ð22Þ

Fig. 16 shows Eexc for all the clusters of the present study. In
contrast to the case of the macroscopic solids where complete mis-
cibility for any m=n is known, our results indicate that smaller
mixed clusters do not show such a behavior if the criterion for mis-
cibility is based on a comparison to the stability of the pure clus-
ters of equal size. Unfortunately, this prediction may depend on
the definition of Eexc, so that particularly stable pure clusters may
imply that mixing is not possible for those sizes. Another criterion
for stability compares the second difference in energy for neigh-
boring clusters as a function of the number of atoms. The second

Fig. 13. The average bond length dav (top-left panel), average effective coordination number ECN (top-right panel), average ECN of Si in (SiGe)n/2 (bottom-left panel) and
average ECN of Ge in (SiGe)n/2 (bottom-right) as a function of the number of atoms n.

Fig. 14. The effective coordination number of Si (top) and Ge (bottom) in SimGen as
a function of ðm;nÞ.
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difference in energy is uniquely defined for monoatomic clusters
and is used to compare the stability of those with abundance pat-
terns from mass spectroscopic analysis. However in bimetallic sys-
tems the stability of clusters does not solely depend upon the
number of atoms N but is also a function of the composition

ðm;nÞ and therefore several definitions can be proposed. Based
on all eight neighbors of a cluster with composition ðn;mÞ we
decided to study the following stability function, different from
what we have done in earlier studies [59]

mnD2 ¼ 1
8

X1
p;q¼�1

Eðmþ p;nþ qÞ � Eðm;nÞ½ � ð23Þ

with Eðmþ p; nþ qÞ being the total energy of the Sim+pGen+q cluster.
This function is shown in Fig. 16. Smaller mixed clusters up to a

total size of about 15 atoms show pronounced odd-even oscilla-
tions with a greater stability found for the odd clusters irrespective
of their composition. For larger clusters we do not see such an odd-
even oscillation and the resulting difference in the relative stabili-
ties among certain clusters seem to be a product of several proper-
ties beside their composition. In Tables 3 and 4 we show for every
size the clusters with the most stable and unstable compositions.
Interestingly, for most of the stable compositions we found a coin-
cidence between the two criteria that were used to define the clus-
ter stability. This is surprising as the stability that was calculated
from the excess energy Eexc is typically biased by the stability of
the pure structures.

Unfortunately, it is difficult to perform an extensive statistical
analysis due to the small number of data. However several qual-
itative results can be obtained by analyzing the data shown in
Table 3. We extracted the median of the silicon content from a
plot of the cumulative frequency for both cases and found a smal-
ler value in the stable clusters (0.32) compared to their unstable
counterparts (0.5) as shown in Fig. 17. Clusters with a silicon ratio
in that range were found to be prolate (see Fig. 12) with a greater
average ECN for the silicon atoms (Fig. 14) which would naturally
be associated with a core-shell formation. In the next paragraph
we show through several segregation descriptors that clusters
with a lower silicon content indeed tend to avoid a mixing of
both elements in favor of segregation. In addition, it can be
noticed (see the ball-stick models of all stable compositions in
Fig. 20 and of all the unstable ones in the supporting informa-
tions) that the TTP motif is over-represented among the pool of
the most stable clusters while most of the larger unstable compo-
sitions are spherical and amorphous-like, especially the larger
mixed clusters. Beside the TTP-motif we also found Y-shaped
clusters (Si2Ge26) and structures that belong to the ‘‘six-six” class
of motifs (Si14Ge8; Si9Ge14; Si8Ge16; Si8Ge17; Si12Ge15 and
Si9Ge20). Only three clusters out of all the most stable composi-
tions can be described as being amorphous (Si21Ge9, Si19Ge6 and
Si26Ge2) with all of them having large silicon contents. In Table 4
one can also notice that there are no unstable compositions

Fig. 15. The average bond length in mixed SimGen clusters as a function of m
mþn.

Fig. 16. The excess energy Eexc (top layer) and the local stability mnD2 (bottom layer)
of mixed SimGen clusters as a function of the size up to nþm ¼ 30.
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shown according to the defined stability criteria for some of the
compositions (mþ n = 6, 7, 10 and 14). All of these sizes showed
a negative excess energy Eexc or a positive local stability for all
calculated compositions and therefore we did not consider them
as being unstable.

To check if a segregation (e.g. core-shell structures) exists we
calculate the bond order r for every cluster, defined as

r ¼ NSi—Si þ NGe—Ge � NSi—Ge

NSi—Si þ NGe—Ge þ NSi—Ge
ð24Þ

While a positive value of r indicates segregation, a negative value
would be found for mixed and onion-like distributions of the atoms.
A r close to zero would correspond to disorderly mixed clusters.
The calculated bond order r for all compositions and sizes is shown
in Fig. 18. It demonstrates that for germanium- or silicon-rich clus-
ters a tendency towards segregation exists, whereas the clusters
with approximately equal ratios of silicon and germanium tend to
mix. Further information about a possible trend to form a core-
shell system can be obtained by calculating the ratio of the average
radial distance of both elements to the geometric center within a

Table 3
The most stable compositions ðm;nÞ according to Eqs. (22) and (23) for SimGen clusters within the size range N = n +m 6 30.

N mnD2 Eexc N mnD2 Eexc

4 (2,2) (1,3) 18 (6,12) (7,11)
5 (2,3) 19 (9,10) (9,10)
6 (5,1) (2,4) 20 (2,18) (7,13)
7 (6,1) (2,5) 21 (5,16) (5,16)
8 (1,7) 22 (4,18) (14,8)
9 (1,8) (1,8) 23 (9,14) (9,14)
0 (9,1) (3,7) 24 (8,16) (8,16)
11 (4,7) 5 (19,6) (8,17)
12 (1,11) (1,11) 26 (8,18) (8,18)
13 (2,11) 27 (12,15) (12,15)
14 (4,10) (4,10) 28 (2,26) (26,2)
15 (14,1) (3,12) 29 (9,20)
16 (4,12) (4,12) 30 (21,9)
17 (10,7) (7,10)

Table 4
The most unstable compositions ðm;nÞ according to Eqs. (22) and (23) for SimGen clusters within the size range N = n +m 6 30.

N mnD2 Eexc N mnD2 Eexc

2 (1,1) (1,1) 17 (6,11) (15,2)
3 (1,2) (1,2) 18 (9,9) (17,1)
4 (3,1) 19 (6,13) (17,2)
5 (3,2) (3,2) 20 (12,8) (18,2)
6 21 (18,3) (18,3)
7 22 (10,12) (10,12)
8 (7,1) (7,1) 23 (18,5) (18,5)
9 (3,6) (8,1) 24 (13,11) (13,11)
10 25 (20,5) (1,24)
11 (1,10) 26 (4,22) (22,4)
12 (6,6) (6,6) 27 (2,25) (14,13)
13 (3,10) (11,2) 28 (4,24) (5,23)
14 29 (4,25)
15 (6,9) (13,2) 30 (1,29)
16 (15,1)

Fig. 17. A plot of the cumulative frequency of the silicon content m
nþm for the most stable and unstable compositions. The dashed lines in blue and red represent the median of

the corresponding data sets. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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cluster. At first we calculated the geometric center R0

!
of a cluster

with N atoms from the position of all atoms Ri

!

R0

!
¼ 1

N

XN
i¼1

Ri

!
ð25Þ

and afterwards the radial distance ri for the i-th atom to the geo-

metric center R0

!
as

ri ¼ jR
!
i � R0

!
j: ð26Þ

The ratio rðm;nÞ between the average radial distances of the silicon
and germanium atoms calculated from

rm;n ¼ hrSii
hrGei ð27Þ

now indicates the type of segregation. A ratio being smaller than 1
indicates a SicoreGeshell cluster whereas values larger 1 would imply
that a SishellGecore structure has been formed. Values close to 1 on
the other side suggest that mixing is beneficial or that a multishell
structure is the preferred type of segregation in a given cluster. The
ratio rm;n for all compositions is shown in Fig. 18. Likewise as pre-
dicted by the bond order r, a segregation is visible with a clear pref-
erence for SicoreGeshell for most of the compositions. However, we
also noticed some compositions with ratios rm;n closer to 1, suggest-
ing that also a mixing of both elements is realized in some of the
studied compositions.

As for the pure clusters we studied the HL-gap and, in addition,
the energies of the HOMO and LUMO of the mixed clusters in order
to get some insight into the electronic properties of the clusters.
Despite the fact that our structures differ from those reported by
Rehman et al. [23] we qualitatively found the same behavior in
our study. Thus, the energies of the HOMO and the LUMO of the
1:1 mixed clusters are in general closer to those of the pure germa-
nium clusters than the pure silicon clusters of the same total size
as can be seen in Fig. 19. Furthermore, we observe a reduction in
the HL gap when increasing the cluster size of those mixed clusters
plus an oscillatory behavior of the HOMO/LUMO and HL energies
as function of cluster size, especially for the smaller clusters.

In Fig. 21 we show the HOMO-LUMO gaps for all compositions
and sizes. The reduction of the HL gap with increasing cluster size
as was found for the clusters with a fixed Si:Ge ratio can also be
seen in the results for the other compositions and sizes. In addition,
the calculated gaps are far from converged to the bulk values
for the clusters of the present study, which may not surprise taking
the facts into account that most of the atoms of the clusters are
placed in the closest vicinity to the surfaces and that the structures
do not resemble those of the bulk materials.

Rehman et al. [23] reported that the HOMO and LUMO energies
are not a simple function of the size and composition alone and
therefore we explored whether it was possible to identify possible
correlations between those properties and other properties of the
clusters by calculating the covariance and Pearson correlation coef-

Fig. 18. The calculated bond order r (top panel) and the ratio of the average radial
distance of the Si atoms to that of Ge atoms (bottom panel) for mixed SimGen
clusters as a function of ðm;nÞ.

Fig. 19. The HOMO-LUMO energies (left plot) and the HOMO-LUMO gaps (right plot) of (SiGe)n/2 clusters as a function of the size n.
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ficients between the energies of the HOMO and LUMO and the
resulting HL energy gap on the one side and various other proper-
ties that we have used to describe the shape and structures of the
clusters. The covariance between two properties X and Ywas calcu-
lated from

covðX;YÞ ¼
Pn

i¼1ðxi � �xÞðyi � �yÞ
n

ð28Þ

with xi and yi being the individual values for X and Y, and �x; �y their
averages. Afterwards the Pearson correlation coefficient r can be
obtained from

rX;Y ¼ covðX;YÞ
rXrY

ð29Þ

with r being equal to the standard deviation of X and Y.
However, as can be seen in Table 5 it was not possible to iden-

tify any correlations between the electronic and the structural
properties. Only a weak correlation between the energy of the
HOMO as well as the HL-gap and the asphericity could be identi-
fied. We therefore conclude that the electronic properties are a
result of several aspects and simple explanations based on a
decomposition into size, shape, or composition effects in small to
medium-sized SiGe clusters are not feasible.

4. Conclusions

We have used an evolutionary-based global-optimization pro-
cedure in combination with the parametrized DFTB method to
determine the putative global minimum-energy structures of Sim-
Gen clusters for all stoichiometries up to nþm 6 30. All obtained
structures were re-optimized through DFT (PBE) calculations and
the influence of the composition on the structures and shapes were
discussed. In contrast to the bulk where full solubility for both ele-
ments is known, we showed that the stability correlates with the
shape of the clusters with the most stable structures being found
for prolate clusters with an average content of 32% silicon. In gen-
eral, we also found that the larger clusters are neither similar to the
corresponding pure clusters of silicon nor to the motifs found for
germanium, especially for the mixed clusters with about equal
amounts of silicon and germanium. However, silicon is the element
that dominates the shape in clusters with larger Si contents. The
trend towards the formation of a core-shell system is also visible
if one analyses the average effective coordination numbers and
variable shape descriptors in the mixed structures, especially in
clusters with lower contents of foreign atoms. For clusters with
about equal ratios of both elements we found a preference for dis-
orderly mixed or onion-like structures. In contrast to the bulk
where clear correlations between the composition of mixed SiGe

Fig. 20. The structures of the most stable compositions according to Eqs. (22) and (23) in mixed SimGen clusters. Si atoms are colored in white whereas Ge atoms are shown in
black. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 21. The HOMO-LUMO gap of SimGen clusters as a function of ðm;nÞ.

Table 5
The calculated Pearson correlation coefficients for the electronic properties and various shape and structure descriptors.

XGe % Asphericity b ECN dav ECNSi dSiav ECNGe dGeav

HOMO 0.18 0.40 0.18 0.18 0.18 0.11 0.11 0.17
LUMO 0.32 �0.23 0.06 0.30 0.25 0.34 0.15 0.19
HL-gap 0.11 �0.37 �0.06 0.10 0.06 0.16 0.04 0.03
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and their electronic properties are known [3], we could not find
any evidence that the electronic properties are determined by a
single property alone in our studied mixed Si–Ge clusters.
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Abstract At first, a genetic algorithm in combination with either the parametrized

density-functional tight-binding method or a Gupta-potential is used to determine

the putative global minimum energy structures of mixed Agn�mRhm and AgmRhn�m

clusters with n� 20 and m ¼ 0; 1. Subsequently, the resulting structures are re-

optimized with a first-principles method. The results demonstrate that the exchange

of a single silver atom by rhodium leads to compact core-shell-like structures with

structural motifs well known from the Lennard-Jones system. For the systems of the

present study, AgRhn�1 clusters retain their cube-based structural motif and the

silver atoms typically avoid the corner positions within a cube if possible. Popu-

lation analysis of both cluster systems shows that the total magnetic moment is

mainly due to unpaired electrons on the rhodium atoms with a small ferro-magnetic

contribution of the silver host in Agn�1Rh and virtually no contribution to the total

magnetic moment from the single silver atom in AgRhn�1 clusters.

Keywords AgRh clusters � Structure � Energetics � Magnetism

Introduction

Silver and Rhodium are traditionally known to be two immiscible metals in the

bulk. Already at the beginning of the twentieth century Rossler reported an

extremely small solubility of rhodium in silver and a larger solubility of silver in
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rhodium [1]. The vanishingly small solubility of rhodium in liquid silver was later

confirmed by X-ray diffraction studies of Drier and Walker who also showed the

absence of any intermediate phases between these two elements [2]. Rudnitskii and

Khitinskaya measured mechanic and thermoelectric properties and excluded on the

basis of these results a greater solubility of rhodium in silver up to 800 �C [3]. On

the rhodium-rich side of the phase diagram a greater miscibility of 4.7 at% was

measured that increased with temperature to 19 at% at 1200 �CC [3]. Miedema

et al. explained the immiscibility within their semi-empirical theory as being due to

a large mismatch of the electron density at the border of the Wigner–Seitz cells of

the two atoms [4]. The elimination of such discontinuities of the electron density at

the interface between the different atoms requires energy that ultimately leads to a

positive mixing enthalpy with a maximum at a composition of about 50:50 and a

positive heat of formation for all silver–rhodium alloys [5]. Additionally, there is a

small lattice mismatch as a result of the difference in atomic radii [6], that, however,

is below the well known Hume–Rothery rule of 15 % difference in the lattice

constants which would make it already unfavourable for both elements to form

alloys because of a simple size effect (like, e.g., in the Au–Ni system) [7].

Nevertheless, efforts have been undertaken to synthesize such alloys by co-

reduction in solution [8] or through microwave-based methods [9] because of their

predicted promising catalytic properties for instance in hydrogenation reactions and

hydrogen storage applications [10, 11].

The difference in the electronic structure between silver and rhodium expresses

itself also in different growth paths and structural motifs preferred in sizes below the

bulk domain. Experimental measurements on neutral and charged silver clusters

showed an icosahedral growth pattern [12–14] albeit there is evidence that such

icosahedra are only metastable and subsequently relax to close-packed fcc structures

[15]. The structures and growth paths of rhodium clusters are quite controversial.

Thus, whereas density functional methods on a lower level on Jacob’s ladder of

density functional theory predict cubic motifs as building units [16–20], the global

minimum energy structures predicted by hybrid density functional theory are more

compact [21, 22] and in better agreement with structures proposed from

experimental results [23, 24]. However, inclusion of a portion of exact exchange

increases the magnetic moment of each cluster which then becomes larger than the

experimental values, a result that was also obtained through pure Hartree–Fock

calculations [25, 26].

Most of the published work on doped bimetallic silver clusters deal with dopants

of the first row of the transition-metal series, e.g. the systems Ag–Ni, Ag–Cu, Ag–

Co [27, 28], Ag–Fe [29, 30], Ag–Mn [31] or from the third row like Ag–Au [32] and

the effect of mixing silver with an element from the second row was hardly ever

considered except for the mixable Ag–Pd system [33, 34]. It can be expected that

the effect of alloying of silver with a 4d transition metal will lead to different

bonding mechanisms within the clusters because of an enhanced covalency in the

involved bonds due to the fact that the 4d orbitals are less diffuse than their 3d

counterparts. It was also shown in weakly mixable systems like Ag–Cu or Ag–Ni

[35, 36] that clusters well below the bulk regime can show enhanced mixability

because of an interplay between the specific surface energy and the bulk cohesive
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energy of the elements involved, making it worthwhile to study the effect of doping

of silver clusters with rhodium atoms and vice-versa. Therefore, in this paper we

present results of a global optimization search for mixed Agn�1Rh and AgRhn�1

clusters and compare their properties with pure Agn and Rhn clusters. We have used

a density functional tight-binding approach (DFTB) to sample the potential energy

surface of this systems because quantum mechanic effects seems to be crucial to

describe the smaller clusters, in particular for possible cube-based structures with a

larger rhodium content. Additionally, we compare the results of our DFTB structure

optimizations with results from a RGL-potential [37, 38] function. Subsequently, we

re-optimize all located putative global minimum-energy structures within the

density functional theory as implemented in the Siesta code [39]. In particular, we

discuss the effects on the magnetism arising from a single dopant of rhodium or

silver in small, pure silver and rhodium clusters.

Computational Methods

For the unbiased structure optimization we apply an evolutionary algorithm based

on a cut-and-splice procedure [40, 41] that is combined with the DFTB method [42]

for the determination of the total energy for a given structure as implemented in the

Hotbit code [43]. We use a self-written code in combination with the ASE [44]

collection of python scripts.

An initial population of structures was created from more sets of randomly

placed rhodium and silver atoms inside a cubic box that subsequently were relaxed

to their nearest local total-energy minima. Each cluster is ascribed a simple fitness

value based on its DFTB total-energy after having been relaxed structurally. In each

generation the two fittest clusters are allowed to form offspring clusters with every

other population member by cutting two parent clusters along a randomly defined

plane and reassembling them randomly and simultaneously assuring that the correct

stoichiometry is kept (the so called crossover process). Additionally, we apply

mutation operators to all of the current population members and move all the

structures (the current population members, the offsprings and the mutants) into a

large pool on which a selection process based on a tournament was run to build the

next generation. Several mutation operators have been used in the literature [45] that

all should help in maintaining the genetic diversity in a population of a given size

and prohibit premature convergence to a non-optimal structure. In the present study,

the following operators were used:

– Random displacements of all atoms with a Gaussian-distributed step-size [46]

– Permutation of two atomic species to explicitly include homotops of the same

structural motif in the search process

– A twinning mutation in which two halves of a cluster are rotated by a small

random angle in opposite directions [47]

– An etch-add process in which a randomly picked atom is removed and placed

next to another atom [47].
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As there is no strict stop criterion defined or known in evolutionary algorithms of

this kind, the algorithm was simply stopped after it has not led to clusters with a

lower energy during 150 generations. All simulations used a population size of ten

members and the fittest cluster in each generation is passed to the next generation

immediately (=elitism). After the global minimization, the obtained clusters that are

lowest in energy were subjected to a DFT re-optimization.

DFTB Paramatrization

For details and a rigorous mathematical treatment of the DFTB method we refer to

several published review articles, whereas here we want to focus merely on details

of our parametrization [42, 48]. The total energy relative to that of non-interacting

neutral atoms can be approximated as a sum of the eigenvalues of all occupied

orbitals minus that of the neutral, non-interacting atoms, EBS, plus a term that arises

from Coulomb interactions ECoul and a pairwise repulsive potential Urep.

E ¼ EBS þ ECoul þ Urep ð1Þ

At the lowest level of approximation (corresponding to the non-SCC DFTB) we

neglect interactions that result from charge fluctuations and express the total energy

as the sum of EBS and Urep. Urep can be parametrized and adjusted to reproduce

either experimental or ab-initio results.

Using an LCAO approach with atomic orbitals /v expanded in terms of a

minimal set of atomic-centered non-orthogonal basis functions,

wiðrÞ ¼
X

v

cvi/vðrÞ; ð2Þ

one has to solve the Kohn–Sham eigenvalue equation for an effective potential Veff

to determine EBS as the sum over the eigenvalues of all occupied orbitals,

ĤwiðrÞ ¼ �iwiðrÞ; ð3Þ

with

Ĥ ¼ T̂ þ Veff : ð4Þ

Here, T̂ is the kinetic-energy operator.

Substitution of (2) into (3) gives the eigenvalue equation
X

v

cviðHvi � �iSviÞ ¼ 0 ð5Þ

with

Hvi ¼ h/vjĤj/ii ð6Þ

and

Svi ¼ h/vj/ii: ð7Þ
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The elements of Hvi and Svi are determined from calculations on diatomic molecules

by using the Slater–Koster rules and stored in a table. Thereby it is assumed that the

effective potential can be written as a superposition of atomic potentials

VeffðrÞ ¼
X

n

Vnðjr� RnjÞ ð8Þ

with Rn being the position of the nth atom. Moreover, VnðrÞ is the potential of the

free, isolated, nth atom, V
ð0Þ
n ðrÞ, augmented by a short-ranged confining potential

that gives a contraction of the orbitals when passing from the isolated atom to a

compound,

VnðrÞ ¼ V ð0Þ
n ðrÞ þ r

r0

� �2

: ð9Þ

For r0 we use for Rh 4.56 bohr and for Ag 5.21 bohr.

Subsequently, we assume that

h/vjT̂ þ Veff j/ii ¼
h/vjT̂ þ Vnj/ii for/v; /i both on atom n

h/vjT̂ þ Vn þ Vmj/ii for/v; /i on atoms n 6¼ m

0 otherwise:

8
><

>:
ð10Þ

Urep is determined by fitting to accurate results from ab-initio DFT (PBE) calcu-

lations. Specifically, in the present work we optimized a couple of appropriate

structures (i.e., bulk and small symmetric clusters) with DFT and minimized the

force differences jFDFT � FDFTBj with a smoothing spline as explained by Koskinen

and Mäkinen [43]. The thereby obtained derivative, U0
rep, was integrated to give the

repulsion potential and tested against results from DFT calculations.

To increase the pool of candidates for possible global minimum energy

structures, we additionally made global optimization runs using the well established

RGL-potential [49] for the description of the Ag–Rh potential energy surface. With

the RGL potential, also known as Gupta many-body potential, the energy of a

system of atoms can be expressed as the sum of a repulsive pair potential Er and an

attractive many-body potential Em. Em can be calculated for an atom i interacting

with atom j in the lattice ab from

Ei
m ¼ �

X

j

n2abe
�2qabðrij=rab0 �1Þ

" #1=2

ð11Þ

with rij being the distance between atoms i and j, r
ab
0 being the first-neighbours

distance in lattice ab, n an effective hopping integral, while q describes its

dependency on the inter-atomic distance.

The repulsive potential is described by a Born–Mayer type ion-ion repulsive

potential,

Ei
r ¼

X

j

Aabe
�pabðrij=rab0 �1Þ

ð12Þ
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with p being related to the compressibility of the metal and A representing a

repulsion.

The total cohesive energy can then be calculated from

Ecoh ¼
X

i

ðEi
m þ Ei

rÞ ð13Þ

The parameters A, p, q, r0, and n are most often obtained through fitting in order to

reproduce experimental results (if available) like mechanical, structural and ener-

getic properties. The parameters for the pairwise Rh–Rh and Ag–Ag interactions

were taken unmodified from Cleri and Rosatto [50]. The hetero-atomic interactions

were obtained by minimizing the sum of the relative errors between DFT and Gupta

results for the lattices parameters, elastic constants, the bulk modulus, the cohesive

energy, and the change in enthalpy for the reaction from the corresponding bulk

structures in Ag2Rh, AgRh, AgRh2, AgRh3, and Ag3Rh. DFT results for the lattice

constants and mechanic properties were calculated from spin polarized PBEsol

calculations using the methods described elsewhere [50], while cohesive energies

and changes in enthalpy were obtained from spin polarized PBE calculations.

Table 1 summarizes the results after the fitting process together with the relative

deviations to the results of the DFT calculations (in brackets) whereas Table 2 gives

the values of the Gupta parameters that were determined and subsequently used in

this study.

All subsequent ab-initio DFT calculations for the clusters were performed using

the PBE functional for exchange and correlation as implemented in the Siesta

program. The scalar-relativistic pseudopotentials for silver and rhodium were created

within the norm-conserving Troullier-Martins scheme for Ag(5s1:55p04d9:54f 0) and

Rh(5s15p04d84f 0) valence configurations with cut-off values of 2.28, 2.59, 2.28, and

Table 1 Calculated properties of various crystals together with their relative errors in % using the

modified RGL potential

Property Ag2Rh(C1) AgRh(B2) AgRh2(C1) AgRh3(L12) Ag3Rh (L12)

a [Å] 6.196 (?1.9) 3.144 (?0.7) 6.107 (?3.2) 3.867 (?0.6) 4.003 (?0.5)

B [GPa] 111.78 (-6.1) 179.74 (?0.9) 126.61 (-13.1) 224.47 (-4.5) 145.46 (-1.9)

C11 [GPa] 111.47 (?27.3) 177.63 (?0.4) 105.73 (-4.1) 296.63 (-10.3) 185.48 (?7.9)

C12 [GPa] 111.94 (-16.9) 180.79 (?1.2) 137.04 (-16.2) 188.39 (?0.6)) 125.50 (-8.0)

C44 [GPa] 76.60 (-0.5) 130.79 (?0.9) 103.96 (-10.2) 142.62 (?13.3) 74.89 (0.4)

Ecoh [eV/

atom]

-3.127 (?7.8) -3.904 (?6.8) -3.771 (?4.6) -4.764 (?3.1) -3.360 (8.9)

DEr [eV/

atom]

0.7625 (?11.7) 0.4511 (-1.9) 1.050 (0.6) 0.289 (-1.1) 0.297 (28.1)

Table 2 RGL parameters used in this study for the description of the Ag-Rh interaction

p q A (eV) n (eV) r0 (Å)

Ag-Rh 13.666 2.9744 1.3615 0.10056 2.7604
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2.59 bohr for silver and 2.00, 2.08, and 2.44 bohr for rhodium, respectively.Moreover,

we included non-linear core corrections with small pseudo-core radii of 1.1 bohr for

both elements. A basis set of DZP quality together with a soft-confinement potential

was used within a split-valence scheme in which the first basis function was fixed to a

cut-off of 7.0 bohr and the split-norm rm of the second basis function was optimized

variationally for the bulk structures and for dimers of silver and rhodium. Afterwards,

we added one p-type polarization function in either basis set and fine-tuned their cut-

off values for larger clusters of rhodium and silver (the results are shown in Table 3).

The re-optimization of the DFTB and Gupta results were done using this optimized

DZP basis set and collinear spin-polarization in a large cubic box of 20.0 Å, using one

k point at the C point for molecular systems and a k grid cutoff of 15 Å for all bulk

calculations, respectively. A small Fermi-type smearing of 0.01 eV was applied in all

DFT calculations to improve the convergence behaviour and a mesh-cutoff of 450 Ry

was used for the real space grid. Atomic positions in all calculations were optimized to

a residual force smaller than 0.01 eV/Å with the conjugate-gradient algorithm as

implemented in Siesta.

Results

We start our discussion by comparing our putative global minimum energy

structures for pure Ag and Rh clusters with results reported in the literature in order

to estimate the accuracy of our combined DFTB/Gupta DFT approach. Although

still based on an approximation, we expect the DFTB method to perform better for

pure clusters, especially for small systems, were other semi-empirical potentials (eg.

potentials that are based on a second-moment approximation to the local density of

states like the Gupta potential) tend to maximize the number of contacts between the

atoms leading in general to compact structures that often show similarities with

simpler Lennard–Jones systems [51, 52].

Our optimized structures for the Rh clusters found by using DFTB and re-

optimized with DFT, see Fig. 1, are in good agreement with what has been reported

by several other authors already mentioned in the introduction. In addition, the

calculated magnetic moments and other structural properties, shown in table 4, are

consistent with other reported results [16–20, 52]. To give an impression of the

performance for even larger clusters we add that we observed the cube-based

structural motif at least up to the size of 30 atoms within our DFTB-based search,

Table 3 Details of the DZP

basis set used in this study. All

values are in bohr

rc rm

Ag5s 7.00 5.85

Ag5p 5.60 –

Ag4d 7.00 3.36

Rh5s 7.00 4.16

Rh5p 4.71 –

Rh4d 7.00 3.53
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Fig. 1 The ground state structures of Rhn (left) and Agn (right) obtained in this study (the white spheres
represent the silver atoms while the grey ones correspond to rhodium

Table 4 Point groups, PG,

effective coordination numbers,

ECN, average bond lengths, dav,

total magnetic moments, mt, and

binding energies Eb (without

BSSE correction) of Rhn
clusters calculated with PBE and

a DZP basis set

Rhn PG ECN dav (Å) mt (lB) Eb (eV/atom)

2 C1h 1.00 2.24 4.0 1.49

3 C2v 1.97 2.47 5.0 2.11

4 C2v 2.72 2.53 4.0 2.55

5 C4v 3.17 2.51 5.0 2.84

6 D3h 2.99 2.48 6.0 3.00

7 C2v 3.69 2.53 9.0 3.15

8 Oh 3.01 2.43 12.0 3.38

9 Cs 3.52 2.49 13.0 3.40

10 C2v 3.37 2.46 12.0 3.48

11 Cs 3.44 2.47 11.0 3.52

12 D4h 3.34 2.43 8.0 3.68

13 Cs 3.66 2.47 9.0 3.68

14 Cs 3.56 2.45 8.0 3.73

15 Cs 4.06 2.50 9.0 3.75

16 C2v 3.52 2.45 10.0 3.81

17 C2v 3.76 2.47 7.0 3.84

18 D4h 3.67 2.45 4.0 3.92

19 Cs 3.87 2.48 5.0 3.91

20 C1 3.79 2.46 6.0 3.85
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while Bae et al. [17] reported a transition to more compact structure for sizes greater

than 27 atoms.

From a graphical representation of the binding energy per atom as a function of

n�1=3, cf. Fig. 2, we can estimate the bulk cohesive energy for rhodium to be 5.85 �
0.07 eV/atom which is very close to the cohesive energy, 5.75 eV/atom, reported for

bulk rhodium [53].

To calculate the effective coordination number (ECN) and average bond lengths

(dav) we use an approach described in [54] and tested for example by Chou et al. for

clusters [20]. According to this, the average bond length for atom i is defined as

diav ¼
PN

j¼1 dije
½1�ðdij=diavÞ

6�

PN
j¼1 e

½1�ðdij=diavÞ
6�

ð14Þ

with N being the total number of atoms in the studied cluster. It is seen that dav has

to be determined iteratively. Thereby, diav is initially taken as the shortest bond

length for atom i and the final value obtained self consistently using a convergence

criterion of 10�4 Å. Finally, the effective coordination number ECN of atom i is

given by

ECNðiÞ ¼
XN

j¼1

e½1�ðdij=diavÞ
6�: ð15Þ

Averages of ECN and dav for a given cluster can then be obtained by summing up

each property for each atom and divide this number by the number of atoms of the

cluster.

While our results (see Fig. 1 for the obtained structures and for a summary of all

other calculated properties Table 5) for the structures of smaller silver clusters with up

to seven atoms agree with studies of Gamboa et al., [55] Fournier, [56] and Jin et al.,

[57] we find differences for the larger clusters, especially when comparing with the

structures of the most recent study. For Ag8 we identified the Cs structure with our

Fig. 2 Estimation of the bulk cohesive energy for rhodium (left) and silver (right) from the calculated
binding energies of the clusters
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DFTB/GA search, but a PBE re-optimization of the Td structure confirmed the Td

cluster to be about 0.09 eV lower in energy. The same is true for Ag9–Ag16 where our

structures agree more with those of the works of Gamboa et al. and Fournier, but Jin

et al. demonstrated that the total-energy differences between several larger isomers are

often smaller than 0.05 eV, for instance for Ag9, Ag11, Ag13, and Ag14, indicating a

complicated and floppy potential energy surface and implying that small differences in

the computational approach may have dramatic consequences for the predictions of

the global total-energy-minima structures. Despite this, a linear fit of our calculated

binding energies per atom versus n�1=3, shown in Fig. 2 gives an estimate of 2.82 �
0.04 eV/atom for the bulk cohesive energy of silver, which is in good agreement with

the experimental determined value of 2.95 eV/atom [53].

Structure, Stability, and Magnetism of Agn�1Rh and AgRhn�1 Clusters

According to the PBE calculations for the AgRh dimer, the bond length equals

2.602 Å and the electronic ground-state structure is a triplet (M ¼ 3). The bond is

much longer than the distance calculated for Rh2 (2.242 Å, M ¼ 5) and close to the

bond length for Ag2 (2.625 Å,M ¼ 1). A positive reaction enthalpy of 0.26 eV/atom

for the reaction Ag2 ? Rh2 ! 2 AgRh suggests that it is unlikely that a dimer of

these two elements will be observed in experiment.

For the larger mixed clusters we show in Fig. 3 the ground-state structures and in

Tables 6 and 7 a summary of all calculated properties for each cluster that was

Table 5 Point groups, PG,

effective coordination numbers,

ECN, average bond lengths, dav,

total magnetic moments, mt, and

binding energies Eb (without

BSSE correction) of Agn
clusters calculated with PBE and

a DZP basis set

Agn PG ECN dav (Å) mt (lB) Eb (eV/atom)

2 C1h 1.00 2.62 0.0 0.87

3 D3h 2.00 2.68 1.0 0.84

4 D2h 2.47 2.77 0.0 1.16

5 C2v 2.79 2.77 1.0 1.28

6 D3h 2.98 2.76 0.0 1.46

7 D5h 4.54 2.85 1.0 1.47

8 C2v 4.47 2.84 0.0 1.57

9 C2v 5.02 2.87 1.0 1.53

10 D4d 4.77 2.86 0.0 1.61

11 Cs 4.85 2.86 1.0 1.63

12 Cs 5.10 2.86 0.0 1.68

13 C2v 5.05 2.86 1.0 1.69

14 C2 5.18 2.86 0.0 1.73

15 C2v 5.44 2.86 1.0 1.76

16 C2 5.41 2.86 0.0 1.78

17 C1 6.33 2.89 1.0 1.80

18 C2v 6.16 2.88 0.0 1.84

19 Cs 6.05 2.87 1.0 1.85

20 C3 6.34 2.88 0.0 1.89
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investigated in this work. In contrast to the pure silver clusters, replacing one silver

atom by a rhodium atom leads to three-dimensional structures throughout the

complete series. From the effective coordination numbers and average bond lengths

it can be seen in Fig. 3 that rhodium occupies positions with a larger number of

neighbouring atoms than silver does. This trend was also reported by Christensen

et al. [58] who showed that a single impurity of rhodium has a high tendency to

migrate away from the top-most atomic layer into the surface of Ag(111). Such a

behaviour was also observed for other doped silver clusters, where an impurity

transition metal atom tends to occupy higher-coordinated positions inside the cluster

[30, 59, 60]. For a simple pairwise potential to capture at least the basic features of a

chemical bond, namely repulsive and attractive interactions in dependency of a

bonding distance rij, one can use the well-known Lennard–Jones (LJ) potential,

VijðrÞ ¼ 4�ij
rij
rij

� �12

� rij
rij

� �6
" #

; ð16Þ

where � describes the depth of the potential well and r controls the equilibrium

interatomic distance. By comparing the shape and the effective coordination number

of our calculated Agn�1 Rh1 clusters with results from such a simple LJ potential

with rBB=rAA = 1.185 (which equals the ratio of the atomic radii of Ag and Rh) [6]

Fig. 3 The lowest minimum energy structures of Agn�1Rh (left) and AgRhn�1 (right) obtained in this
study. The white (dark) spheres represent Ag (Rh) atoms
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and �AB=�AA = 1.01 we find a surprisingly similar trend, cf. Fig. 4, and conclude

accordingly that these compact structures result mainly because of a size effect,

although we add that a small stabilization of hetero-atomic versus homo-atomic

interactions is required to get highly-coordinated Rh atoms at this cluster size and

this Ag:Rh ratio.

To get information about the relative stabilities of the clusters the stability

function D2E is a useful quantity. For the pure Agn clusters it is defined as

D2EðnÞ ¼ EðAgnþ1Þ þ EðAgn�1Þ � 2EðAgnÞ ð17Þ

and a similar expression for the pure Rh clusters. Here, EðAgpRhqÞ is the total

energy of the AgpRhq cluster. As reference for the discussion below on the mixed

clusters, we show the stability function for the pure clusters in Fig. 5. In this figure,

we recognize particularly stable clusters [i.e., clusters for which D2EðnÞ has max-

ima] for n ¼ 8, 12, 18, and 19 for Rhn and for n ¼ 6, 8, and 12 for Agn.

For the mixed clusters, the stability function becomes

D2EðnÞ ¼ EðAgnRhÞ þ EðAgn�2RhÞ � 2EðAgn�1RhÞ ð18Þ

Table 6 Point groups, PG, effective coordination numbers, ECN, average bond lengths, dav, and total

magnetic moments, mt , of the lowest energy Agn�1Rh cluster calculated with PBE and a DZP basis set.

For ECN and dav, we consider also the average values for the two types of atoms, separately

n PG ECN dav ECN (Ag) dav (Ag) (Å) ECN (Rh) dav (Rh) (Å) mt (lB)

2 C1h 1.00 2.60 1.00 2.60 1.00 2.60 2.00

3 C2v 1.96 2.69 1.93 2.71 2.00 2.65 1.00

4 C3v 2.81 2.76 2.75 2.80 3.00 2.65 0.00

5 C2v 3.51 2.79 3.39 2.82 3.98 2.71 1.00

6 Cs 3.59 2.78 3.31 2.80 4.99 2.71 0.00

7 C5v 4.49 2.83 4.24 2.85 5.99 2.74 1.00

8 Cs 4.35 2.81 3.98 2.83 6.92 2.73 0.00

9 C2v 4.99 2.84 4.61 2.86 7.97 2.73 1.00

10 C3v 4.86 2.85 4.40 2.87 8.99 2.68 0.00

11 C2v 5.49 2.86 5.04 2.87 9.99 2.75 1.00

12 Cs 5.48 2.87 5.08 2.88 9.89 2.73 0.00

13 Cs 5.89 2.87 5.47 2.88 10.90 2.77 1.00

14 C3v 6.35 2.89 5.92 2.90 11.96 2.79 2.00

15 C2v 6.35 2.89 5.96 2.90 11.70 2.79 1.00

16 Cs 6.43 2.89 6.09 2.90 11.62 2.79 0.00

17 C2 6.51 2.89 6.20 2.90 11.59 2.79 1.00

18 C2v 5.92 2.87 5.64 2.87 10.71 2.81 0.00

19 C5v 6.96 2.91 6.71 2.92 11.48 2.79 1.00

20 Cs 6.94 2.91 6.70 2.91 11.34 2.79 0.00
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for the Agn�1Rh clusters and a similar expression for the AgRhn�1 clusters.

Moreover, we may also define an excess energy, Eex, that compares the total

energy of a given cluster with that of the sum of fractions of the pure clusters of

equal size,

Table 7 Point groups, PG, effective coordination numbers, ECN, average bond lengths, dav, and total

magnetic moments, mt, of the lowest energy AgRhn�1 clusters calculated with PBE and a DZP basis set.

For ECN and dav, we consider also the average values for the two types of atoms, separately

n PG ECN dav (Å) ECN (Ag) dav (Ag) (Å) ECN (Rh) dav (Rh) (Å) mt (lB)

2 C1h 1.00 2.60 1.00 2.60 1.00 2.60 2.00

3 C2v 1.73 2.52 2.00 2.72 1.59 2.42 3.00

4 C3v 2.87 2.69 3.00 2.77 2.82 2.58 4.00

5 C4v 2.86 2.53 4.00 2.79 2.58 2.47 3.00

6 Cs 3.48 2.60 3.00 2.81 3.57 2.55 8.00

7 C2v 3.48 2.57 4.00 2.85 3.39 2.53 9.00

8 C3v 3.62 2.57 3.00 2.81 3.71 2.54 10.00

9 C4v 3.29 2.50 4.00 2.89 3.20 2.45 11.00

10 Cs 3.30 2.50 3.05 2.77 3.33 2.47 12.02

11 Cs 3.65 2.51 3.99 2.84 3.62 2.48 11.00

12 Cs 3.40 2.49 2.99 2.76 3.44 2.47 10.00

13 Cs 3.51 2.48 3.99 2.88 3.47 2.45 7.00

14 Cs 3.90 2.51 4.92 2.89 3.82 2.48 8.00

15 Cs 3.89 2.50 6.00 2.91 3.74 2.47 7.01

16 C1 3.89 2.51 4.04 2.80 3.88 2.49 8.01

17 C2v 3.67 2.49 4.01 2.85 3.65 2.47 9.03

18 Cs 3.63 2.47 3.07 2.72 3.67 2.45 6.00

19 Cs 3.78 2.48 3.98 2.88 3.77 2.46 3.07

20 C1 4.04 2.50 4.94 2.88 3.99 2.48 4.00

Fig. 4 ECN of doped Agn�1Rh1
cluster obtained in this study
compared to results for the LJ
potential (rBB=rAA = 1.185,
�AB=�AA = 1.01)
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Eex ¼ EðAgpRhqÞ �
p

pþ q
EðAgpþqÞ �

q

pþ q
EðRhpþqÞ: ð19Þ

D2EðnÞ for the mixed clusters is shown in Fig. 6. We identify an increased stability

for Ag9Rh and Ag16Rh, and whereas the stability of the former could possibly be

explained by a closed-shell-stability effect (18 electrons), it remains unclear why the

latter is more stable compared to its neighbouring clusters. Also any other combi-

nation of elements in this series leading to a total of 18 valence electrons (or 8 if

only the s-electrons are taken into account) are not particularly stable. The already

mentioned preference of rhodium to form cube-based motifs is not interrupted by

replacing a single rhodium atom by silver. The low coordination number of

approximately 4 that can be seen in Fig. 7 for both elements over the whole series of

clusters indicates (at least at the DFT-GGA level) their preference for non-compact

structural motifs. However, from the plots of the excess energy and the stability

function, Figs. 6 and 8, we see that from an energetic point of view, it is very

beneficial to form a complete cube of rhodium without having a silver atom

Fig. 5 The second stability
function for Agn and Rhn
clusters as a function of the total
number of atoms, n

Fig. 6 The second stability
function for Agn�1Rh and
AgRhn�1 clusters as a function
of the total number of atoms, n
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occupying a corner. The same trend can be observed in the stability function of pure

Rhn. The particularly stable clusters compared with their neighbours in this series

are accordingly AgRh8, AgRh10, AgRh12, and AgRh18. Only for the cases of

undistorted structures we also observe a negative mixing energy that could imply

that such clusters can be observed in experiment.

For the larger Agn�1Rh clusters, Eex is negative for all n, which suggests that for

these clusters, an additional Rh atom added to a pure Ag cluster is energetically

favourable. While there is no tendency towards mixing of Rh and Ag for clusters

with up to a total of 8 atoms, we see a gain in energy compared to the pure clusters

because of mixing for effective coordination numbers greater than 7. Rhodium has a

binding energy per atom in the bulk nearly twice that of silver (5.75 eV/atom vs.

2.95 eV/atom) [53], so a larger coordination number for Rh, that is easiest realized

for a core-shell-like structure, could be the driving force behind the negative mixing

enthalpy in this system. For AgRhn�1 the situation is less clear. However, for

Fig. 7 Effective coordination numbers of Ag and Rh atoms in mixed AgRhn clusters

Fig. 8 The excess energy for
Agn�1Rh and AgRhn�1 clusters
as a function of the total number
of atoms, n
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instance the fact that there is a larger excess energy for n ¼ 12 may also be related

to the fact that the pure Rh cluster of the same size is particularly stable as can be

seen from Fig. 5.

For the total magnetic moment mt of the Agn�1Rh clusters, cf. Fig. 9, we observe

an odd-even oscillation between zero and one lB with an exception for the cluster

with 14 atoms that has a total magnetic moment of 2 lB. It can also be seen that the

local magnetic moment calculated from Mulliken population analysis on Rh

decreases for an increase of its effective coordination number, a effect that was also

observed in AgnFe clusters [30]. In contrast to the AgnFe cluster, systems for which

an anti-ferro or ferro-magnetic behaviour for the silver host depends on the size of

the cluster, we conclude that for the present systems the silver atoms contribute to

the small ferro-magnetism and they carry a small net magnetic moment observable

in the larger clusters. This can also be recognized from the spin densities for spin-up

and spin-down electrons in Ag10Rh and Ag13Rh shown in Fig. 10 and 11 that show

the de-localization of the magnetic moments over both elements in both spin

channels whereas for the dimer in Fig. 12, the spin is largely localized to the

rhodium atom. Janssens et al. [28] reported a quenching of the magnetic moment in

cobalt doped silver clusters resulting in the loss of a net total magnetic moment for

the studied clusters. However Harb et al. [61] observed for small Ag–Ni clusters

Fig. 9 Local magnetic moments and the influence of the effective coordination number on the total
magnetic moment observed in Agn�1Rh clusters

Fig. 10 Spin-up (red, left) and spin-down (blue, middle) densities and their difference (red, right) in
Ag10Rh for an isovalue of 1.0 (left and middle) and 0.012 (right) (Color figure online)
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also a small magnetic moment located on the silver atoms and a larger contribution

of the nickel atom to the calculated total magnetic moments.

In contrast to Agn�1Rh where rhodium contributes most to the total magnetic

moment, a single silver atom in AgRhn�1 carries virtually no local magnetic

moment as predicted by a Mulliken population analysis (cf. Fig. 13). An interesting

case is that of n ¼ 8 for which the pure Rh8 cluster and the mixed AgRh7 cluster

have closely related structures. The substitution of a single rhodium by a silver atom

in Rh8 leads to a degenerate highest occupied molecular orbital (HOMO) resulting

in a distortion of the cube after relaxation without changing its point group

symmetry of C3v. Therefore, we attribute this effect to be an accidental degeneracy

and no Jahn–Teller based distortion of the cluster. Instead, the silver atom is simply

too large to fit into the corner of the cube. A plot of the difference in the spin

densities in AgRh7 (Fig. 14) confirms the results from the Mulliken population

analysis and shows the de-localization of the spin mainly over the rhodium atoms.

Fig. 11 Spin-up (red, left) and spin-down (blue, middle) (left) and their difference (red, right) in Ag13Rh
for an isovalue of 1.0 (left and middle) and 0.012 (right) (Color figure online)

Fig. 12 Difference between
spin-up and spin-down densities
in AgRh for an isovalue of 0.02

Fig. 13 The local magnetic
moment on silver and the total
magnetic moment in the
AgRhn�1 cluster compared with
the total magnetic moment of
the Rhn cluster
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Compared to the pure clusters we do not find any simple relationship between the

observed magnetic moments and neither the position of the silver atom nor their

effective coordination numbers as they are very similar in the pure Rhn and mixed

AgRhn clusters (cf. Fig. 13).

To get a more in-depth view of the influence of the doping of rhodium into a

silver cluster we calculated the Density of States (DOS) and the partial density of

states (PDOS) for the cluster with the largest observed total magnetic moment,

Ag13Rh. Additionally, we replaced the rhodium atom in the center of Ag13Rh by a

silver atom without any further relaxation and calculated the DOS and PDOS to see

the effect of the different atomic sizes on the total magnetic moment. We found that

the non-relaxed cluster Ag14 has a total magnetic moment of 4 lB and that its

magnetic properties do not alter when the structure is relaxed. This is in agreement

with what was reported by Pereiro et al. [62] for the face-capped icosahedral Ag14
cluster. They attributed this enhanced magnetism to a charge transfer from the outer

silver atoms to the inner one resulting in a small loss of the spin-up DOS at the

Fermi-level of the inner atom. This leads to an enhancement of the magnetism of the

outer atoms compared to the central silver atom and an overall increase in the total

magnetic moment. Therefore, we also calculated the charge transfer via a Hirshfeld

population analysis and found a contrary result to this assumption. In Ag14 the

central atom carries almost no additional charge (partial charge: ?0.08) while a

rhodium atom in the core is found to have a partial negative charge of �0:24.

Fig. 14 Difference in the spin-
densities before (left) and after
structural relaxation (right) in
AgRh7 for an isovalue of 0.25

Fig. 15 The calculated density of states (DOS) and partial density of states (PDOS) for the cluster
Ag13Rh
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However the net magnetic moment was found to be smaller in the mixed cluster

than for the pure Ag14 cluster despite a larger charge flow to the atom in the center.

The DOS and PDOS in (cf. Fig. 15) shows that the HOMO is mainly formed from

the 5s silver and the 4d rhodium orbitals with only minor contributions from the 4d

levels of silver. Additionally, one can identify a relative shift of the spin-up and

spin-down DOS in the HOMO and LUMO that results from the charge transfer to

the central atom leading to a HOMO–LUMO spin-splitting that was essentially

formed from the 5s orbitals of silver. This large contribution to the HOMO of the

5s-orbitals from silver is in agreement with the fact that silver contributes to the

overall magnetic moment. However, it does not explain the smaller total magnetic

moment of Ag13Rh compared to Ag14.

Conclusions

In this work, we have studied the structural and magnetic properties of mixed

AgRhn�1 and Agn�1Rh clusters and ompared with those of pure Agn and Rhn
clusters. The theoretical calculations were performed using density functional

theory with the PBE functional for structures that were relaxed after a preceding

global-optimization search using simpler total-energy methods. For the Agn�1Rh

series we found that Rh prefers to occupy higher-coordinated positions inside the

clusters resulting in compact core-shell like structures that possess large similarities

with the structural motifs of Lennard–Jones clusters. For smaller clusters, the

magnetism is mainly localized to the the single rhodium atom and influenced by its

effective coordination number, while in larger clusters, there is some ferro-magnetic

contributions to the total magnetic moment from the silver atoms. In the AgRhn�1

series we found a different behaviour, i.e., the clusters retain their cube-based motif

as it can be seen from the effective coordination numbers, and it is energetically not

beneficial for these systems to incorporate a silver atom into such a cube-like

configuration of atoms. Mulliken population analyses suggest that there is no

significant contribution from the single silver atom to the total magnetic moment in

all of these clusters, even if one forces the atom to sit on the corner of an undistorted

cube. However the relation between the observed total magnetic moments and the

influence of a single silver atom remains unclear as we could not identify a clear

correlation between geometric descriptors and the observed magnetic moment of a

given AgRhn�1 cluster.
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52. F. Aguilera-Granja, J. L. Rodrı́guez-López, K. Michaelian, E. O. Berlanga-Ramı́rez, A. Vega

(2002). Phys. Rev. B 66, 224410.
53. C. Kittel, Introduction to Solid State Physics 8th Edition (Wiley, Hoboken, 2005).

54. R. Hoppe and Z. Kristallogr (1979). 150, 224410.
55. G.U. Gamboa, A.C. Reber, and S.N. Khanna (2013). New J. Chem. 37, 39283935.
56. R. Fournier (2001). J. Chem. Phys. 115, 21652177.
57. Y. Jin, Y. Tian, X. Kuang, C. Zhang, C. Lu, J. Wang, J. Lv, L. Ding, and M. Ju (2015). J. Phys.

Chem. A 119, 6738.
58. A. Christensen, A. V. Ruban, P. Stoltze, K. W. Jacobsen, H. L. Skriver, J. K. Nørskov, and

F. Besenbacher (1997). Phys. Rev. B 56, 5822.
59. E. Janssens, X. J. Hou, M. T. Nguyen, and P. Lievens (2006). J. Chem. Phys. 124(18), 184319

(2006). doi:10.1063/1.2191495.

60. W. Li, and F. Chen (2013). J. Nanopart. Res. 15, 1809.
61. M. Harb, F. Rabilloud, and D. Simon (2007). J. Phys. Chem. A 111(32), 7726. doi:10.1021/

jp072207l. URL http://dx.doi.org/10.1021/jp072207l. PMID: 17637046

62. M. Pereiro, D. Baldomir, and J. E. Arias, Phys. Rev. A 75, 063204. doi:10.1103/PhysRevA.75.
063204. URL http://link.aps.org/doi/10.1103/PhysRevA.75.063204.

Structural, energetic, and magnetic properties 933

123



14 Summary

14 Summary

In this work, we have studied the growth of several cluster systems including monometal-

lic, bimetallic and mixed semiconductor clusters with our genetic algorithm coupled to

the density functional tight-binding method followed by a re-optimization with accurate

density functional theory methods with GGA(PBE) functionals. A new growth pattern

for small to medium sized cadmium clusters with sizes up to 60 atoms was proposed in

our work and we showed that they are not disordered Marks decahedra as earlier as-

sumed by other authors. Up to a size of around 36 atoms the growth was dominated

by a process in which the atoms are added to a smaller core that was built around two

fused tricapped-trigonal prisms. The first atomic shell was observed to be complete at the

highly symmetrical Cd34 cluster with point group Td and further addition of atoms leads

to clusters with relatively low symmetry but overall spherical shape. By analyzing the re-

sults of a bond-angle analysis on all clusters we concluded that the inner atoms in the core

are arranged similarly to what is found in the hcp bulk structure with a maximum number

of bulk-like atoms found in the already mention Cd34 cluster. Although we observed that

the next shell was completed at a size of 44 atoms, we found that further growth does not

proceed in exactly the same way. The shell-like growth continued up to a cluster with 52

atoms and then the earlier proposed distorted Marks decahedra could become important

as candidates for the global total-energy minimum. Clusters with 53 atoms and an over-

all decahedral motif became energetically comparable with those obtained in our study

and it may be difficult to uniquely identify the correct lowest total-energy structure state

in an experiment. For sizes greater than 54 atoms we identified clusters with an oThe

trend towards the formation of a core-shell system could be identified from an analysis of

the average effective coordination numbers and the bond orders in the mixed structures,

especially in almost pure clusters. For clusters with about equal ratios of both elements

we found a preference for disorderly mixed or onion-like structures. Finally, we could not

prove that the electronic properties in small to medium sized mixed Si m Ge n clusters are

the result from a single structural property or the composition alone. Thus, we conclude

that the electronic properties depend in a non-trivial way on the shape, composition and

structural properties (e.g. coordination numbers and bond lengths).verall low symmetry

but a tendency to maximize the number of hcp-like atoms in the core of the clusters as

predicted by the bond-angle analysis. The relative stabilities of the obtained clusters were

compared with experimental abundance patterns from mass spectroscopic measurements

and we concluded that the stability of certain clusters is the result of strong electron shell

closing effects and a beneficial geometric packing that leads to highly symmetric clusters

at certain sizes. The chemical bonds of these clusters as found from an interpretation
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of the partial density of states are dominated by s and p contributions as in bulk hcp

cadmium and d-s hybridization seemed to be of minor importance.

In the second system, mixed SimGen clusters with m + n ≤ 30, we showed that the

stability correlates with the shape of the clusters with the most stable structures being

found for prolate clusters with an average content of 32% silicon. From a comparison of all

obtained clusters with the pure clusters of equal size through a calculation of a similarity

index we found that the larger mixed clusters are neither similar to the corresponding

pure clusters of silicon nor to the motifs found for pure germanium clusters, especially if

the silicon to germanium ratios were close to one. However we could show that silicon

is the shape dominating element in clusters with larger Si contents. The trend towards

the formation of a core-shell system could be identified from an analysis of the average

effective coordination numbers and the bond orders in the mixed structures, especially in

almost pure clusters. For clusters with about equal ratios of both elements we found a

preference for disorderly mixed or onion-like structures. Finally, we could not prove that

the electronic properties in small to medium sized mixed SimGen clusters are the result

from a single structural property or the composition alone. Thus, we conclude that the

electronic properties depend in a non-trivial way on the shape, composition and structural

properties (e.g. coordination numbers and bond lengths).

Singly doped silver and rhodium clusters with up to 20 atoms where the last cluster

systems that were studied in this work. We investigated the structural and magnetic

properties of mixed AgRhn−1 and Agn−1Rh clusters and compared them with those of

pure Agn and Rhn clusters. In clusters of the series Agn−1Rh series we found that Rh

prefers to occupy higher-coordinated positions inside the cores of the clusters resulting

in compact core-shell like structures that possessed large similarities with the structural

motifs known for Lennard-Jones clusters. The size difference between the silver and

rhodium atoms thereby seemed to be the driving force for the formation of icosahedral

core-shell clusters. The net magnetic moments in smaller Agn−1Rh clusters are mainly

localized to the single rhodium atom in the core and it was found that they depend on its

effective coordination number. In larger clusters, however, we proved that there are some

ferro-magnetic contributions to the total net magnetic moment from the silver atoms.

The clusters of the series AgRn−1 showed a different behavior, i.e., the clusters retain

their cube-based motif and it is energetically not beneficial for these systems that a silver

atom sits at a position that was formerly occupied by a rhodium atom. This is mainly due

to strain effects, silver does simply not fit into the rhodium positions and therefore the

silver atoms migrate to the surface of the clusters. Mulliken population analyses suggested

that there is no significant contribution from the single silver atom to the total magnetic

moment in all of these clusters, even if the atom was forced to sit at a rhodium position
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(e.g. on the corner of an undistorted cube). However the relation between the observed

total magnetic moments and the influence of a single silver atom remains unclear and

we were not able to identify any correlations between geometric descriptors and observed

magnetic moments in AgRhn−1 clusters.
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