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Abstract

This thesis is devoted to the characterization of crystalline structures for quantum techno-

logical applications. It is composed of two parts.

In a first project we study the localization transition of one particle in an one-dimensional

artificial quasiperiodic crystal, whose potential depends on the particle position. We

consider an ultracold atom in an optical lattice, embedded in an optical cavity. The

atom strongly couples to the cavity, leading to a second optical potential. The position

of the atom within the cavity affects the cavity field, thus the atomic motion backacts

on the potential it is subjected to. For incommensurate wavelengths, we show that the

competition between the two potentials yields a quasiperiodic potential. We determine

the parameters for which we reproduce the Aubry-André model and discuss the effects of

the backaction on the localization transition.

In the second project we propose a frequency down-conversion scheme to generate

THz radiation using the exciton-phonon coupling in a semiconductor crystal. Our idea is

based on a chain of interactions that are naturally present in a pumped semiconductor

microcavity. We derive the crucial exciton-phonon coupling, starting from the electron-

phonon interaction via the deformation potential and taking into account the crystal

symmetry properties. We identify conditions necessary for THz emission, estimate the

emission power and show that the exciton-phonon interaction provides a second-order

susceptibility.
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Zusammenfassung

Diese Arbeit befasst sich mit der Charakterisierung kristalliner Strukturen für quanten-

technologische Anwendungen. Sie besteht aus zwei Teilen.

Im ersten Teil untersuchen wir den Lokalisierungsübergang eines Teilchens in einem

künstlichen quasiperiodischen Kristall, dessen Potential von der Teilchenposition abhängt.

Wir betrachten ein ultrakaltes Atom, in einem optischen Gitter, innerhalb eines optischen

Resonators. Die Atom-Resonator-Kopplung führt zu einem zweiten optischen Potential.

Die Atomposition beeinflusst das Resonatorfeld. Somit entsteht eine Rückkopplung der

Atombewegung auf das Potential. Für inkommensurable Wellenlängen zeigen wir, dass die

Überlagerung der beiden Potentiale ein quasiperiodisches Potential zur Folge hat. Wir

bestimmen den Parameterbereich, in dem wir das Aubry-André Modell reproduzieren und

diskutieren Effekte der Resonatorrückkopplung auf den Lokalisierungsübergang.

Beim zweiten Projekt handelt es sich um ein Frequenzkonversionsschema zur Erzeu-

gung von THz-Strahlung. Unsere Idee beruht auf einer Reihe von Wechselwirkungen

in einem gepumpten Halbleiterresonator. Wir leiten die entscheidende Exziton-Phonon-

Wechselwirkung, ausgehend von der Elektron-Phonon-Wechselwirkung über das Deforma-

tionspotential her, unter Berücksichtigung der Symmetrie des Halbleiters. Wir identifizieren

die Bedingungen für THz-Emission, berechnen die Emissionsleistung und zeigen, dass die

Exziton-Phonon-Wechselwirkung eine nichtlineare Suszeptibilität zweiter Ordnung liefert.
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Résumé

Ce manuscrit est consacré à la caractérisation de structures cristallines pour des applications

de technologie quantique. Il est composé de deux parties.

Dans un premier projet, nous étudions la transition d’une particule d’un état étendu

à un état localisé dans un cristal artificiel quasipériodique, dont le potentiel dépend de

la position de la particule. Nous considérons un atome ultrafroid, confiné par un réseau

optique et incorporé dans une cavité optique. Le dipôle atomique est en interaction forte

avec le champ électrique dans la cavité, ce qui mène à un deuxième potentiel optique pour

l’atome. La position de l’atome dans la cavité influence notamment le champ intracavité :

le mouvement de l’atome a donc un effet rétroactif sur le potentiel dans lequel il est confiné.

Pour des longueurs d’onde incommensurables, nous montrons que la compétition entre

les deux réseaux optiques donne lieu à un potentiel quasipériodique pour l’atome. Nous

déterminons les paramètres pour lesquels nous reproduisons le modèle Aubry-André et

nous discutons les effets de la rétroaction de la cavité sur la transition de localisation.

Le deuxième projet est une proposition pour générer une radiation THz, en utilisant

le couplage entre excitons et phonons dans un cristal semi-conducteur. Nous proposons

un schéma de conversion de fréquence, basé sur une châıne d’interactions naturellement

présentes dans une cavité semi-conductrice pompée. La partie cruciale du schéma de

conversion de fréquence est l’interaction faible entre des excitons et des phonons transverses

optiques. Nous la dérivons en commençant avec l’interaction électron-phonon via le

potentiel de déformation et en prenant en compte les propriétés de symétrie du cristal.

Nous identifions les conditions nécessaires pour générer une radiation THz, nous estimons

la puissance de l’émission et nous montrons que l’interaction entre excitons et phonons

transverses optiques fournit une susceptibilité non linéaire d’ordre deux.
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Introduction

Crystals are solids whose building blocks are atoms or groups of atoms that are periodically

arranged [1]. As macroscopic objects, crystals seem to be static but many of their properties,

such as thermal or electric conductivity, originate from the dynamics of elementary crystal

excitations like electrons or vibrations. In this thesis we present two projects that deal

with light-matter interaction in different kind of crystals. The projects are based on

two distinct platforms that both involve the strong coupling with the electromagnetic

field of an optical cavity. On the one hand, we consider a single ultracold atom in an

artificial quasiperiodic crystal inside a resonator, in the prospect of quantum simulation

of disordered systems. On the other hand, we employ phonons and their coupling with

excitons in a semiconductor crystal, embedded in a semiconductor microcavity, to generate

THz radiation via a frequency conversion scheme. The two experimental platforms we

are dealing with are different and studied in our work for distinct purposes. However

they share some common features, such as their driven-dissipative character or the strong

coupling with the electromagnetic field of an optical cavity. In both cases we use the

same formalism for open quantum systems, i.e. the Heisenberg-Langevin approach. We

systematically compare the two platforms, once they both have been introduced, at the

end of Chapter 4.

A quantum simulator is a well-known and highly controlled quantum system that

mimics the evolution of another complex system that can not easily be studied itself [2].

The idea of simulating nature using quantum mechanical devices comes from Richard F.

Feynman [3]. A quantum simulator represents a particularly valuable tool for condensed

matter physics, since solid crystals typically consist of many atoms (∼ 1023/ cm3) and

there are many corresponding degrees of freedom, thus it is impossible to deal with all of

them on a classical computer. Neutral ultracold atoms on optical lattices are a well-suited

platform for quantum simulation. They can be considered as artificial crystals of light [4],

in which the atoms, mimicking the electrons, move in a potential landscape, called optical

lattice, that is formed by interfering laser beams. Ultracold atoms in optical lattices
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provide desirable features of a quantum simulator as they are clean (defect free), the lattice

geometries and dimensions are flexible and the interactions between the atoms can be

tuned [2, 4].

A key feature of solid state systems is their electrical conductivity. Thus it is particularly

interesting to study metal-insulator transitions and understand what affects electrical

conductivity in a solid [5]. The workhorse in this field is the Anderson model [6]. It

explains the insulating character of a crystal in spite of the presence of free electrons:

As Anderson pointed out, random disorder leads to the metal-insulator transition due

to the exponential localization of the wave function of the free carrier. The Anderson

model has been realized experimentally using ultracold atoms [7]. One drawback of the

Anderson model is that dimensions larger than two are required to observe a transition

between an Anderson-localized phase (insulator) and an extended phase (metal), while

all the states are localized in one dimension [8]. Furthermore, in condensed matter the

random disorder is difficult to control. In contrast, the Aubry-André model [9] or Harper

model [10] describes the motion of a single particle in an one-dimensional quasiperiodic

lattice and gives rise to a transition from extended to localized already in one dimension.

In the quasiperiodic lattice the minima are not randomly distributed as it is the case for

the Anderson model: the translation invariance is still broken, but the distribution of

the minima follows a rule. The Aubry-André model has been studied experimentally, for

example using ultracold atoms and two superimposed optical lattices with incommensurate

wavelength [11].

In the first project of this work, we investigate the localization transition of a single

particle in a quasiperiodic potential, which dynamically depends on the particle position

within the potential landscape. This configuration is realized by a single ultracold atom,

confined in an optical lattice within a high-finesse optical cavity. The atom strongly

couples to one cavity mode, whose wavelength is incommensurate with the wavelength

of the optical lattice. The quasiperiodic potential arises from the superposition of the

optical lattice and the effective potential originating from the strong atom-cavity coupling.

The cavity field depends on the position of the atom within the resonator [12], thus the

atom backacts on the cavity field and correspondingly influences the potential landscape

in which it is moving. As an effect of the backaction, the resulting quasiperiodic potential

contains higher harmonics than in the usual Aubry-André potential, as we will show in

detail in Part I.

In the second project of this thesis, we consider a semiconductor crystal lattice vibration

and its coupling to excitons as a resource for THz radiation generation via a frequency
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conversion scheme. It is challenging but very desirable to create THz radiation, because THz

sources are needed for many applications, e.g. they could complement scientific and medical

imaging techniques, increase data transfer rates or improve non-destructive detection [13].

In particular there is a quest for a compact, solid-state based THz source operating at

room temperature. Among several existing THz emitting devices, the Quantum Cascade

Laser [14, 15] is especially promising since it provides frequency tunability and improving

maximum operating temperatures; however room temperature operation still remains a

challenge [16].

Alternative strategies for THz radiation emission based on semiconductor microcavities

with an embedded semiconductor slab have been put forward. The cavity is externally

pumped by a laser. In these systems, the intracavity photons strongly interact with

excitons in the semiconductor and form light states dressed with matter [17], the so called

exciton-polaritons. Exciton-polaritons are well known in the context of quantum fluids of

light [17] and allow e.g. to study out-off equilibrium quantum phase transitions [18,19]. In

this work, we are interested in the fact that the typical splitting between upper and lower

exciton-polariton branch amounts to several THz, which makes them natural candidates

for THz generation. However there is no direct dipole transition between upper and

lower exciton-polariton branch. Several strategies have been proposed to bypass this

problem, as e.g. the two-photon excitation of a p exciton state [20] or the use of a

noncentrosymmetric semiconductor with intrinsic second-order susceptibility χ(2) [21], to

name a few. In this work, we suggest a frequency conversion scheme which is based on the

interaction between transverse optical phonons (TO) and excitons. We show in Part II

that this interaction, which is naturally present in the semiconductor, provides an effective

second-order susceptibility χ(2) able to drive visible to THz light conversion.

The thesis is organized as follows: Part I is dedicated to the study of the localization

transition of a single ultracold atom in presence of cavity backaction. For this purpose,

in Chapter 1, we first introduce ultracold atoms in general and then specify their use in

two different environments, namely in an optical lattice or in a high-finesse optical cavity,

which we combine in our work. We then present our modified Aubry-André model in

Chapter 2, starting with the corresponding Bose-Hubbard Hamiltonian. We show that

we reproduce the Aubry-André model in a certain parameter regime. Furthermore we

derive the Bose-Hubbard Hamiltonian from a microscopic model of a single ultracold

atom in an optical lattice that is dispersively coupled to a single mode of a high-finesse

optical cavity. The phase diagrams characterizing the localization transition in presence of

cavity backaction are discussed in Chapter 3, as well as possible realizations using existing

3



experimental setups.

In Part II we discuss the THz radiation emission by phonon-coupled Rabi oscillations of

exciton-polaritons. Our proposal is a frequency conversion scheme, relying on a chain of

interactions that are naturally present in a semiconductor microcavity. In Chapter 4 we

introduce the basics on excitons in semiconductor microcavities and the strong coupling

between excitons and photons in microcavities, which leads to the formation of polaritons.

For our frequency conversion scheme the interaction between transverse optical phonons

and bright excitons is of particular importance. This interaction is derived in Chapter

5, starting from the microscopic structure of the semiconductor of our choice, CdTe. In

Chapter 6 we present our frequency conversion scheme which is based on the previously

derived exciton-phonon interaction.
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Part I.

Localization transition in presence of

cavity backaction
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Cavity quantum electrodynamics (CQED) with cold atoms provides a rich framework

to study the wave-particle duality of light and matter [12,22,23]. In this environment, the

interaction of a single photon with a single atom has been brought to a level of control that

is sensitive to the finite spatial localization of the atom within the cavity mode [24–29].

This property is at the basis of several protocols, which exploit the optomechanical coupling

between atoms and photons in CQED in order to cool the atomic motion [12, 30–32],

to perform high precision measurements [33], and to create novel sources of quantum

light [34–37], to provide some examples.

Cavity backaction, moreover, modifies the dynamics to the extent that photons and

atoms become strongly correlated: Since the photon field depends on the atomic position

within the resonator, the mechanical forces that the atom experiences depend on the

center-of-mass wave function within the cavity mode [38,39]. This nonlinearity is at the

basis of several collective phenomena, such as the formation of spatial patterns [40–42]

and exotic phases of ultracold matter [43–47]. Even at the level of a single particle it can

give rise to peculiar behaviors as we will see in the following.

In this part, we theoretically investigate the regime in which cavity backaction can

induce the transition to localization of the atomic center-of-mass wave function. The

system we consider is illustrated in Fig.2.1 (a): a single atom is tightly confined by an

external optical lattice within a high-finesse cavity, its dipole strongly couples with one

standing-wave mode of the resonator. In the regime in which this coupling is dispersive,

the mechanical effects of the cavity field are described by a second periodic potential, that

we will derive in Section 1.9. We choose the two lattice wavelengths with periods which

are incommensurate with each other. The combination of these two characteristic lengths

gives rise to a quasiperiodic potential.

In the limit where the cavity backaction can be neglected, the system is described by

the Aubry-André model [9] or the Harper model [10] that we will introduce in details

in Section 1.6. It predicts a transition from an extended to a localized phase when the

ratio between the depths of the two potentials exceeds a critical value. This localization

transition has been observed experimentally, as described in Section 1.7, with ultracold

atoms confined by bichromatic optical lattices [11, 48, 49]. The effect of interactions on

the Aubry-André model has been investigated theoretically both in the mean-field weakly

interacting regime [50] as well as for arbitrary interactions at low lattice filling [51, 52].

Quasiperiodic potentials have also been realized with exciton-polaritons in semiconductor

microcavities [53]. The Aubry-André quasiperiodic potential has also been implemented

in photonic crystals, where it provides a confinement mechanism for light resulting in a
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photonic crystal cavity [54].

Differing from these realizations, the strong coupling with the cavity introduces a novel

feature: The depth of the cavity potential is proportional to the number of intracavity

photons, as we will show in Section 1.9, which is a dynamical variable coupling optome-

chanically with the atomic motion. In this setting we will analyze the effect of the cavity

backaction on the localization transition and discuss possible experimental regimes where

it could be observed.

This part of the thesis is organized as follows. In Chapter 1 we present the basics on

ultracold atoms and then specify their use in two different environments, namely in an

optical lattice or in a high-finesse optical cavity, which we combine in our work. We briefly

discuss relevant experiments and relate them with the theory which will be used in this

part. In Chapter 2 we introduce our theoretical model, which encompasses the effect of

the cavity nonlinearity, and show that we can recover the Aubry-André model in the limit

where the cavity effect is negligible. We then demonstrate how our modified Aubry-André

model results from the optomechanical coupling of a single atom with the single mode

of a lossy cavity. In Chapter 3 we analyze the phase diagram for the ground state as a

function of the cavity parameters, discuss experimental realizations in cavity QED setups,

and draw the conclusions to this part.

This part of the thesis is based on the article:

• Katharina Rojan, Rebecca Kraus, Thomás Fogarty, Hessam Habibian, Anna Min-

guzzi, and Giovanna Morigi, Localization transition in presence of cavity backaction,

Physical Review A 94, 013839 (2016).
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Chapter 1

Basics on ultracold atoms

In this part of the thesis we study the localization transition of a single ultracold atom

confined by an one-dimensional optical lattice, within a high-finesse cavity. The atom-cavity

coupling yields an effective secondary lattice potential, whose wavelength is incommensurate

with the periodicity of the optical lattice. This configuration has not yet been realized

experimentally. In this chapter we discuss experiments that motivated our model and we

introduce the necessary theoretical concepts one by one.

We start from ultracold atoms, confined in optical lattices. We review the dynamics

of a single particle in an one-dimensional optical lattice. This leads us to the description

of N interacting atoms in an optical lattice, in presence of an external potential, via the

Bose-Hubbard Hamiltonian in Section 1.5. We then specialize the general Bose-Hubbard

Hamiltonian to the case of a single particle subjected to a quasiperiodic lattice. This leads

us to introduce the Aubry-André model. We briefly present the experimental realization

of this model using noninteracting ultracold atoms in a bichromatic lattice in Section 1.7.

Besides the optical lattice, the second important ingredient for our model is the optical

cavity. Ultracold atoms have also been studied in presence of a cavity [12]. The atom-

photon system is then driven dissipative as it is externally pumped by a laser and couples

to the electromagnetic environment yielding dissipation and noise. In order to describe

these open quantum systems, we choose the Heisenberg-Langevin formalism that we

introduce in Section 1.8. We directly use this formalism in the following section to derive

the Hamiltonian describing the optomechanical coupling between a single cavity mode and

the motion of an ultracold atom. In Section 1.10 we exemplarily sketch an experiment on

ultracold atoms that optomechanically couple to a high-finesse cavity mode.

9



1. Basics on ultracold atoms

1.1. What are ultracold atoms?

In order to create a gas of ultracold atoms, in a first step an atomic vapor is precooled

using laser cooling to temperatures in the mK regime. It can then be confined in a trap

that can be either magnetic or optical and further cooling techniques, typically evaporative

cooling, can be applied to reach temperatures of several hundreds of nK [55, 56]. For

bosonic atoms of mass m the regime of quantum degeneracy (Bose-Einstein condensation)

is reached when the thermal de-Broglie wavelength

λdB = (2π~2/mkBT )1/2 (1.1)

is comparable to the interparticle distance n−1/3. Ultracold gases are very clean and

versatile systems: the two-body interaction can be tuned via Feshbach resonances, thereby

allowing to study many body physics [57]. Various experimental observables are accessible

as the momentum distribution of the atomic cloud after expansion from the trap (time of

flight image) or the atomic density distribution in situ. Fig.1.1 shows the time of flight

image of the first BEC [55]. Furthermore, ultracold gases can be confined in various

Figure 1.1.: Momentum distribution of the atomic cloud. Condensate fraction (in blue and
white) (a) just before the appearance of the condensate, (b) just after the appear-
ance of the condensate and (c) nearly pure condensate. The image is taken from
Ref. [55].

geometries like pancake or cigar shape using magnetic traps. They can also be confined in

more complex geometries as rings [58] and lattices [4] using optical dipole traps. In this

thesis we focus in particular on an one-dimensional optical lattice.
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1.2. Ultracold atoms in optical lattices

1.2. Ultracold atoms in optical lattices

Let us consider an atom as a two-level system with transition frequency ω0 that interacts

with a laser of frequency ω. If the laser is far detuned from the atomic transition, the

interaction, characterized by the Rabi frequency ϑ, can be treated as a perturbation and

leads to an effective level shift, also known as Stark Shift or Light Shift [59]. The energy

shift experienced by the ground state is given by

δE =
~ϑ2

∆
, (1.2)

with ∆ = ω − ω0. The derivation of the Light Shift is shown in more details in Appendix

A. The shift experienced by the excited state has an opposite sign. The shift of the ground

state corresponds to the dipole potential for the two-level atom. If one can assume that

the atom is mainly in the ground state, one can interpret the light shifted ground state as

the potential that determines the motion of the atom [59], as depicted in Fig.1.2.

Figure 1.2.: Left: A two level atom with transition frequency ω0 is driven by a laser with
frequency ω. The laser is red detuned ∆ = ω − ω0 < 0 and shifts the ground
state down and the excited state up. Right: If the light field is spatially varying it
results in a ground-state potential well that traps the atom. This is the basic idea
of an optical lattice. The figure is adapted from Ref. [59].

Now, how can the potential landscape be tailored in a periodical way? For simplicity we

assume that we are in one dimension, along the x axis. Along the y and z axis there exists

a tight harmonic confinement which confines the particles in the transverse ground state.

We neglect the additional harmonic confinement along x due to the Gaussian laser beam
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1. Basics on ultracold atoms

profile. The Rabi frequency ϑ is proportional to the amplitude of the electric field E(x)

ϑ(x) =
−µE(x)

~
, (1.3)

with µ the dipole moment of the considered atomic transition [60]. For a standing wave,

formed by two counterpropagating laser beams of the same polarization, the electric field

amplitude is periodically modulated in space according to

E(x) = E0 cos(k0x), (1.4)

with λ0 = 2π/k0 the wavelength of the electric field. Thus the atom experiences a periodic

potential1

Wext(x) = W0 cos2(k0x), (1.5)

with the potential depth W0 =
µ2E2

0

~∆
and periodicity d0 = λ0/2 = π/k0. The sign of the

potential is determined by the sign of the detuning ∆: For a blue detuned laser, ∆ > 0, the

sign of the potential depth is positive, thus the minima of the potential are at the nodes

and so the atoms are confined where the intensity is zero. In contrast, for a red detuned

laser, ∆ < 0, the sign of the potential depth is negative, the minima of the potential are at

the antinodes and the atoms are confined where the intensity is maximal. The situation is

depicted in Fig.1.3. We will call the possible positions of the atoms, the local minima of

Figure 1.3.: Sketch of the periodic potential Wext(x) for a blue (∆ > 0) and a red (∆ < 0)
detuned laser.

1The actual the potential in three dimensions reads Wext(x, y, z) = W0 cos2(k0x) + 1
2mω

2
⊥(y2 + z2).
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1.3. Dynamics of a single particle in an one-dimensional periodic lattice

the potential, lattice sites. They are situated at

xj =
jπ

k0

= jd0, with j ∈ [−(L− 1)/2; (L− 1)/2]. (1.6)

where L is the total number of lattice sites of the optical lattice that we choose odd. The

length of the lattice is L0 = Ld0. In the following we will consider W0 < 0. Notice that in

the forthcoming Chapter 2 we will consider an atom confined in an optical lattice within a

cavity, where either the atom or the cavity is pumped by an external laser. In this context,

the atomic transition used to create the optical lattice, is not the same as the transition

that is coupled to the cavity mode and pumped by the external laser.

The potential landscapes for ultracold atoms, tailored on the basis of the spatially

inhomogeneous Light shift, can have different forms and dimensionalities. Fig.1.4 shows

different possible lattice geometries: Superimposing one, two or three orthogonal standing

waves as depicted on the left side, leads to an optical lattice consisting of (a) pancakes, (b)

cigars or (c) spheres. A detailed discussion of optical lattices can be found in Ref. [4,59,60].

1.3. Dynamics of a single particle in an

one-dimensional periodic lattice

We consider a single particle of mass m, that is moving in an one-dimensional periodic

lattice with L lattice sites. Its dynamics is governed by the Hamiltonian

Ĥ =
p̂2

2m
+ Ŵext(x̂), (1.7)

where Ŵext(x̂+ d0) = Wext(x̂) isgiven by Eq.(1.5) and d0 = λ0/2 denotes the periodicity of

the lattice. The eigenfunctions are the Bloch functions, which, assuming periodic boundary

conditions [1, 60], read

ψm,k(x) =
eikx√
L0

um,k(x), (1.8)

where k corresponds to the quasi-momentum and m denotes the energy band (m = 1

means eigenfunction with lowest eigenenergy). They build an orthonormal basis, with the

13



1. Basics on ultracold atoms

Figure 1.4.: Superimposing (a) one, (b) two or (c) three orthogonal standing waves yields
optical lattices of different geometries: (a) pancake, (b) cigar shape or (c) spherical.
The figures on the right hand side show the light intensity for the corresponding
lattice geometry. The figure is taken from Ref. [61].
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1.4. Wannier functions

orthogonality relation ∫ L0/2

−L0/2

ψ∗m,k(x)ψm′,k′(x)dx = δm,m′δk,k′ , (1.9)

with L0 = Ld0. The functions um,k(x) are also periodic, with period d0 and normalized

according to ∫ d0/2

−d0/2
u∗m(x)um′(x)dx = d0δm,m′ . (1.10)

They can be expanded in a Fourier series

um,k(x) =
∑

l∈[−L/2;L/2]

c
(m)
l (k)e2ilk0x. (1.11)

Inserting Eq.(1.8) in the stationary Schrödinger equation

Ĥψm,k(x) = E(m)(k)ψm,k(x),

with Ĥ given by Eq.(1.7) leads to the so called central equation [1, 60]

∑
l

ei(2lk0−k)x

[((
2l − k

k0

)2

+
W0

2ER
− E(m)(k)

ER

)
c

(m)
l (k) +

W0

4ER

(
c

(m)
l+1(k) + c

(m)
l−1(k)

)]
= 0, (1.12)

that we expressed in units of the recoil energy ER =
~2k20
2m

. By numerical diagonalization,

one finds the energy bands E(m)(k)/ER as a function of k/k0 within the first Brillouin

zone, as depicted in Fig.1.5 for different lattice depths. For a very small potential strength

of W0 = −1ER the dispersion relation is nearly quadratic and can be obtained from the

one of a free particle after folding the curves within the Brillouin zone (Fig.1.5 (a)). For

increasing potential strengths gaps of increasing width open at the center and the edge of

the first Brillouin zone (Fig.1.5 (b) and (c)).

1.4. Wannier functions

The Bloch functions are delocalized over the whole space. It is sometimes more convenient

and intuitive to use the Fourier transformed basis, called the Wannier basis, which is

15



1. Basics on ultracold atoms

(a) (b)

(c)

Figure 1.5.: Energy bands in units of the recoil energy E(m)(k)/ER as a function of k
k0

, for
bands m = 1, 2, 3, 4 and potential strengths (a) W0 = −1ER, (b) W0 = −15ER
and (c) W0 = −29ER.
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1.4. Wannier functions

composed of functions that are localized at the lattice sites. In the case of a finite lattice

with L sites, the Wannier function of band m, centered at lattice site xj, is defined as [62]

wm,j(x) = wm(x− xj) =
1√
L

k0∑
k=−k0

e−ikxjψm,k(x). (1.13)

Notice that the Wannier function, centered at lattice site xj = jd0, can be obtained by

translating the Wannier function, centered at lattice site j = 0

wm,0(x− jd0) = wm,j(x). (1.14)

The Wannier functions form a basis, with orthogonality relation∫ L0/2

−L0/2

dx w∗m(x− xj)wm′(x− xj′) = δm,m′δj,j′ , (1.15)

where m,m′ are the energy band indices and j, j′ denote the lattice site. Fig.1.6 displays

the Wannier functions w±1(x) and w0(x) for three different values of the potential depth

W0 = −1ER,−5ER,−15ER. Notice that for a deep optical lattice the Wannier functions

are well localized onto a single lattice site.

(a) (b)

(c)

Figure 1.6.: Wannier functions w±1(x) and w0(x) for (a) W0 = −1ER, (b) W0 = −5ER and (c)
W0 = −15ER.
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1. Basics on ultracold atoms

1.5. Bose-Hubbard Hamiltonian for ultracold atoms

Ultracold atoms in optical lattices can be used to simulate lattice models as e.g. the

Bose-Hubbard model that we introduce in this section, following the lines of Ref. [63]. In

Chapter 2 we will use a Bose-Hubbard type of Hamiltonian, specialized to the case of

a single particle, to describe the localization transition in presence of cavity backaction.

Here we first introduce the most general case of N interacting, ultracold bosons of mass

m in an one-dimensional optical lattice with L sites along x. The Hamiltonian reads

Ĥ =
N∑
n=1

p̂2
n

2m
+ Ŵext(x̂n) + V̂pert(x̂n) +

1

2

∑
n6=n′

v̂(x̂n − x̂n′), (1.16)

with Ŵext(xn) the external optical lattice potential that atom n is feeling, given by Eq.(1.5).

V̂pert(xn) corresponds to an additional spatially varying external potential (e.g. additional

harmonic trapping potential in the case of Ref. [63]). We assume that the only interactions

between particles are two-body interactions, described by the contact potential

v̂(xn − xn′) =
4π~2as
m

δ(xn − xn′), (1.17)

where as denotes the s-wave scattering length. In second quantization the Hamiltonian

has the form [63]

Ĥ =

∫ L0/2

−L0/2

dx Ψ̂†(x)

(
− ~2

2m

∂2

∂x2
+ Ŵext(x) + V̂pert(x)

)
Ψ̂(x)

+
2π~2as
m

∫ L0/2

−L0/2

dx Ψ̂†(x)Ψ̂†(x)Ψ̂(x)Ψ̂(x), (1.18)

where L0 = Ld0. We assume that we are in the tight-binding regime, corresponding to

a deep lattice regime. Furthermore we use the single-band approximation: we assume

that the confining potential Ŵext(x) is sufficiently deep that only the lowest Bloch band

is occupied. In this limit, the bosonic field operator Ψ̂(x) can be expanded in Wannier

functions [63] according to

Ψ̂(x) =
L∑
n=1

〈x|n〉b̂n =
L∑
n=1

w(x− xn)b̂n, (1.19)
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1.5. Bose-Hubbard Hamiltonian for ultracold atoms

where |n〉 denotes the Wannier state, centered at lattice site n, and b̂†n and b̂n are the

creation and annihilation operators of a bosonic atom at the site n. They fulfill the

commutation relation

[b̂n, b̂
†
l ] = δnl

[b̂†n, b̂
†
l ] = [b̂n, b̂l] = 0. (1.20)

If we insert the Wannier decomposition in Eq. (1.18), we obtain the Bose-Hubbard

Hamiltonian [63]

Ĥ = −t
∑
〈n,l〉

b̂†nb̂l + b̂†l b̂n +
L∑
n=1

δεnN̂n +
1

2
U

L∑
n=1

N̂n(N̂n − 1), (1.21)

where 〈n, l〉 sums over neighboring sites and N̂n = b̂†nb̂n counts the number of bosonic

atoms at lattice site n. The parameter t is defined as

t = 〈n| p̂
2

2m
+ Ŵext(x̂) |l〉 =

∫ L0/2

−L0/2

dx w∗(x−xn)

(
− ~2

2m

∂2

∂x2
+ Ŵext(x)

)
w(x−xl) (1.22)

and denotes the tunneling matrix element between neighboring sites n, l. In the tight-

binding regime tunneling between more distant lattice sites is completely suppressed [64],

due to the localization of the Wannier functions. Similarly we have defined

U =
4π~2as
m

∫ L0/2

−L0/2

dx |w(x)|4 (1.23)

corresponding to the strength of the onsite interaction. The energy offset of each lattice

site is given by

δεn = 〈n| V̂pert(x̂) |n〉 =

∫ L0/2

−L0/2

dx w∗(x− xn)V̂pert(x)w(x− xn). (1.24)

The competition between the tunneling strength t and the onsite repulsive interaction

U gives rise to a quantum phase transition from superfluid (t � U) to Mott insulator

(t � U), predicted in Ref. [65] and observed with ultracold atoms [66], as sketched in

Fig.1.7. The phase transition can be monitored by the time-of-flight images: in the Mott

insulator state the number of atoms per site is fixed but there is no phase coherence, thus

the momentum distribution shows no interference. In the superfluid state the number
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1. Basics on ultracold atoms

of atoms per site fluctuates but as it is a giant matter wave, it displays an interference

pattern in the momentum distribution due to phase coherence [4].

Figure 1.7.: Sketch of the transition from a (a) superfluid (t � U) to a (b) Mott insulator
(t� U) state with corresponding time-of flight image. The figure is taken from
Ref. [4].

1.6. The Aubry-André model

Ultracold atoms in optical lattices are very convenient quantum simulators for condensed

matter systems, since the atoms play the role of the electrons that move in a periodic

potential. One important feature of solid state systems is their electrical conductivity.

Thus it is particularly interesting to study metal-insulator transitions and understand what

affects electrical conductivity in a solid [5]. As Anderson pointed out, random disorder

leads to a metal-insulator transition due to exponential localization of the wave function of

the electron [6]. A famous model to study the extended to localized transition of a single

particle in an one-dimensional quasidisordered crystal is the Aubry-André model [9] or

Harper model [10] that we present in the following.

The Hamiltonian of the André-Aubry model [9] corresponds to a special case of the

Bose-Hubbard Hamiltonian given in Eq.(1.21). It describes the motion of a single particle
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1.6. The Aubry-André model

in an one-dimensional lattice of L sites [8]

ĤAA[n] = −t
L−1∑
n=1

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|) +
L∑
n=1

δεn |n〉 〈n| , (1.25)

with site dependent onsite energy

δεn = v0 cos(2πβn), (1.26)

where β is the period of the potential and |n〉 denotes the Wannier state, centered at site

n. If β is an irrational number, the site-dependent onsite potential is quasiperiodic [9] and

the model shows a phase transition at the critical disorder strength vAAc = 2t: If v0 < vAAc

the particle’s wavefunction is spatially extended, while for v0 > vAAc the wavefunction

decays exponentially indicating Anderson-like localization [6, 8, 9]. In experiments and

in numerical calculations all numbers are in practice rational and system sizes are finite.

Despite these limitations, it is possible to create an effective quasiperiodic lattice and to

observe the transition from extended to localized: one needs a potential period which

is at least as large as the system size to avoid periodic repetitions [67]. In order to get

a good numerical approximation of a quasiperiodic potential for finite lattice sizes, it is

convenient to choose the golden mean for the period β = (
√

5− 1)/2 and the system size

L as a Fibonacci number Fi, because the period β can be approximated by the rational

series βi = Fi−1/Fi, which tends asymptotically to β for large Fi [5, 8].

There are several ways to identify the critical point vAAc . One way is to numerically

study the inverse participation ratio (IPR) [68]

Px =
L∑
n=1

|〈n|Φ〉|4, (1.27)

where |Φ〉 denotes the state of the particle. The IPR is of the order 1/L if the particle’s

spatial wavefunction is uniform over the lattice, whereas it approaches unity when the

particle is localized on one single lattice site.

Fig.1.8 (a) from Ref. [8] shows the inverse participation ratio Px as a function of the

disorder strength λ which corresponds in our notation to v0/t for different system sizes.

For the potential strength λ < 2 the system is in the extended phase, for λ > 2 it is in the

localized phase. Depending on the sign of the amplitude of the potential, there is either

one global minimum at the center of the lattice or there are two minima symmetric to the
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1. Basics on ultracold atoms

Figure 1.8.: Inverse participation ratio in real (a) and momentum space (b) as a function of
the potential strength λ for system sizes L = 144, 1597, 10946. Note that in our
notation λ corresponds to v0/t. The two plots are mirror images of each other.
This shows the duality of the Aubry-André model. The image is taken from Ref. [8].

lattice center. In the case where there are two minima, the ground state is degenerated

and so one needs to average over the two possible configurations so the maximum value of

Px is 0.5. The curves for the different system sizes all change from Px = 1/L to Px = 0.5

at λ = 2. This indicates that the André-Aubry model shows a sharp transition from an

extended to a localized phase in one dimension [8].

Another, very elegant, way to find the critical point makes use of the duality of the

André-Aubry model. This duality can be seen by transforming ĤAA[n] in momentum space

with the help of new basis states [8]

∣∣k̄〉 =
1√
L

L∑
n=1

exp (i2πk̄βn) |n〉 . (1.28)

The Hamilton in the new basis states reads

ĤAA[k̄] =
v0

2

L∑
k̄=1

∣∣k̄〉 〈k̄ + 1
∣∣+
∣∣k̄ + 1

〉 〈
k̄
∣∣− 2t

L∑
k̄=1

cos(2πβk̄)
∣∣k̄〉 〈k̄∣∣ . (1.29)

The self-dual point (the point where both Hamiltonians ĤAA[n] and ĤAA[k̄] are the same)

is v0 = 2t2 and corresponds to the critical point vAAc . For values of v0 < 2t the state is

extended in real space and localized in the momentum space. The opposite situation

2The sign of t is not relevant. It can be absorbed using a gauge transformation.
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occurs for v0 > 2t, where the state is localized in real space and extended in the momentum

space. This duality is shown in Fig.1.8 (a) and (b), displaying the inverse participation

ratio in real space Px and its analog in momentum space Pk, as defined in Ref. [8]. The

two plots are mirror images of each other.

Another quantity that can be studied to characterize the localization behavior of a state

|Φ〉, is the characteristic exponent γ, also called Lyapunov exponent [9]

γ = − lim
n→∞

log(|〈n|Φ〉|2)

2n
. (1.30)

It measures the exponential decay of the wavefunction in the localized phase and thus

vanishes for an extended state. According to Thouless’ formula [69], in the spatially

localized regime of the Aubry-André model it reads

γ = log

(
v0

vAA
c

)
. (1.31)

1.7. Experiment on ultracold atoms in a

quasiperiodic optical lattice

In this section we describe the experimental realization of the Aubry-André model in the

group of Florence [11,67]. They use a BEC of 39K atoms where interactions can be switched

off using a Feshbach resonance. The localization is studied in a one-dimensional bichromatic

potential arising due to the superposition of an optical lattice, as defined in Eq.(1.5), where

the wavevector is here denoted k1. The main optical lattice is perturbed by a second, weak

lattice with a different wavevector k2, playing the role of Vpert(x) in Eq.(1.16). If the two

wavevectors are incommensurate, i.e. k2/k1 6= i/j, with i, j ∈ N, the superposition of these

two optical lattices constitutes an experimental realization of a quasiperiodic lattice as we

show in Section 2.2. The extended to localized transition is monitored by studying both

spatial and momentum distribution as a function of the disorder strength in units of the

tunneling, here denoted as ∆/J . Changing the heights of primary and secondary optical

lattice allows to control the relevant energies J and ∆ independently in the experiment.

The panels a and b in Fig.1.9 show the spatial distribution of the atomic wave packets

in the extended phase for ∆/J = 1 and in the localized phase for ∆/J = 15. Since the

atoms are further confined by a harmonic trap, the tails of the spatial distribution are

fitted with a function of the form fα(x) ∼ exp(−|(x− x0)/l|α). The fitting parameter α
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is displayed in Fig.1.9 c as a function of the disorder strength. For small values of the

disorder the density distribution is well described by a Gaussian, i.e. α = 2, corresponding

to the ground state of a single particle in a harmonic trap in absence of disorder. As

the disorder increases the value of α changes smoothly to one, indicating exponential

localization in space to a size smaller than the typical harmonic oscillator length. The

Figure 1.9.: Experimental profiles of the spatial distribution and the fitting function fα(x) (red)
for ∆/J = 1 (a) and ∆/J = 15 (b). (c) Dependence of the fitting parameter α
on ∆/J : transition from a Gaussian to an exponential distribution. The image is
taken from Ref. [11]. Note that in our notation ∆/J corresponds to v0/t.

momentum distribution, depicted in Fig.1.10 shows the inverse behavior (from top to

bottom): without disorder, the wave packet is localized in momentum space, with peaks

at k = 0,±2k1, where k1 is the wavevector of the main optical lattice. For small disorder

(∆/J = 1.1) additional momentum peaks, indicating the beating of the two competing

lattices, are visible at ±2(k1 − k2). Increasing the disorder further yields a broadening

of the momentum distribution. Note that the critical disorder strength differs from the

value of vAA
c = ∆/J = 2, theoretically predicted by the Aubry-André model. One possible

reason is the additional harmonic confinement. Furthermore the actual incommensurability

in the experiment is not the maximally irrational value of β = k2/k1 = (
√

5− 1)/2 but

rather β = 1032/862, which leads to a smoothening of the transition [67,70].
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1.8. The Heisenberg-Langevin equation

Figure 1.10.: Experimental and theoretical momentum distributions for ∆/J = 0, 1.1, 7.2, 25
from top to bottom. k1 and k2 are the wavevectors of the main and the perturbing
lattice respectively. The image is taken from Ref. [11]

1.8. The Heisenberg-Langevin equation

In the following we are going to consider driven dissipative systems, namely in Section

1.9 and Chapter 2 an ultracold atom in a high-finesse optical cavity and later in the

thesis exciton polaritons in a semiconductor microcavity (introduced in Chapter 4). Both

systems exchange energy with their environment in two ways: There is an external pump

which is coherently driving the system3. Furthermore they are subjected to dissipation and

noise. In this work we have described these open systems using the Heisenberg-Langevin

equation. This is a quantum stochastic differential equation which successfully describes

many driven-dissipative systems. Noise and dissipation are modelled by a coupling to

a bath of harmonic oscillators4. It is an alternative approach to the description via the

Master equation, as it is based on the use of time dependent operators instead of density

matrices. In this section, which is based on [72,73], we will derive a general form of the

Heisenberg-Langevin equation. We start with the Hamiltonian

Ĥ = Ĥsys + Ĥbath + Ĥint, (1.32)

3We neglect noise arising from fluctuations in the pump laser light.
4In condensed matter physics a similar treatment has been suggested by Caldeira and Legget [71].
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where Ĥsys is the Hamiltonian of a generic system. We assume that the bath Hamiltonian

is a set of harmonic oscillators

Ĥbath =

∫ ∞
−∞

~ωb̂†(ω)b̂(ω) dω (1.33)

with bosonic annihilation and creation operators b̂(ω) and b̂†(ω) that obey the commutation

relation [
b̂(ω), b̂†(ω′)

]
= δ(ω − ω′). (1.34)

We further assume that the system-bath interaction is linear in the bath harmonic oscillator

operators and can be written as

Ĥint =

∫ ∞
−∞

i~κ(ω)
[
b̂†(ω)ĉ− ĉ†b̂(ω)

]
dω, (1.35)

where the κ(ω) is the bath-system coupling and ĉ denotes exemplarily one of the system’s

operator. The form of the interaction Hamiltonian is based on the rotating wave approxi-

mation which can be justified in the following way: Assume that the interaction between

bath and system κ(ω) is small and the time dependence of the operator ĉ is essentially

determined by the system Hamiltonian and given by eiχt, thus the counterrotating terms

b̂†ĉ† and b̂ĉ evolve according to ei(χ+ω)t and e−i(χ+ω)t. These terms are rapidly varying in

comparison to the time dependence of ĉ†b̂ and b̂†ĉ which is e−i(ω−χ)t and ei(ω−χ)t, especially

for χ ≈ ω. So the counterrotating terms can be neglected5. Note that the lower limit of

the ω integration in Eq.(1.33) and (1.35) is extended from the physically meaningful limit

0 to −∞. This extension is required for the definition of a delta correlated quantum white

noise. It is justified if one assumes that only interaction terms close to resonance (ω ≈ χ)

contribute significantly.

The Heisenberg equation of motion for the bath operator is given by

˙̂
b(ω) = − i

~

[
b̂(ω), Ĥ

]
= −iωb̂(ω) + κ(ω)ĉ. (1.36)

5For a more detailed description of the rotating wave approximation see [74].
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The Heisenberg equation of motion for an arbitrary system operator â reads

˙̂a = − i
~

[
â, Ĥ

]
= − i

~

[
â, Ĥsys

]
+

∫ ∞
−∞

κ(ω)
(
b̂†(ω) [â, ĉ]−

[
â, ĉ†

]
b̂(ω)

)
dω. (1.37)

Eq.(1.36) can be solved in terms of initial conditions at a time t0 < t, corresponding to

the input, or in terms of final conditions at a time t1 > t, corresponding to the output [75].

For t0 < t the solution has the form

b̂(ω) = e−iω(t−t0)b̂0(ω) + κ(ω)

∫ t

t0

e−iω(t−t′)ĉ(t′) dt′, (1.38)

where b̂0(ω) is the initial, input condition for b̂(ω) at the time t = t0. For t1 > t the

solution of Eq.(1.36) is

b̂(ω) = e−iω(t−t1)b̂1(ω)− κ(ω)

∫ t1

t

e−iω(t−t′)ĉ(t′) dt′, (1.39)

where b̂1(ω) is the final, output condition for b̂(ω) at the time t = t0. In both cases the

first term on the right-hand side corresponds to the free evolution of the bath operator and

the second term arises from the interaction between bath and system. The substitution of

Eq.(1.38) into Eq.(1.37) leads to

˙̂a = − i
~

[
â, Ĥsys

]
+

∫ ∞
−∞

κ(ω)
(
eiω(t−t0)b̂†0(ω) [â, ĉ]−

[
â, ĉ†

]
e−iω(t−t0)b̂0(ω)

)
dω

+

∫ ∞
−∞

κ(ω)2

∫ t

t0

(
eiω(t−t′)ĉ†(t′) [â, ĉ]−

[
â, ĉ†

]
e−iω(t−t′)ĉ(t′)

)
dt′ dω. (1.40)

Now we assume that the bath-system coupling constant is independent of the frequency

and can be written as

κ(ω) =

√
Γ

2π
, (1.41)

where Γ will be referred to as decay rate. This approximation is known as the Markov

approximation. It allows us to perform the integration over ω in the second integral

in Eq.(1.40), where thanks to the extension of the lower limit to −∞ we are able to

use
∫∞
−∞ e−iω(t−t′) = 2πδ(t− t′). Note that the operators â and ĉ in the commutator in
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Eq.(1.40) depend on t but not on t′ so the time integration can be performed, leading to

the general Heisenberg-Langevin equation for an arbitrary system operator â

˙̂a = − i
~

[
â, Ĥsys

]
+

(√
Γâ†in(t) +

Γ

2
ĉ†
)

[â, ĉ]−
[
â, ĉ†

](Γ

2
ĉ+
√

Γâin(t)

)
, (1.42)

where we defined the input field operator [75]

âin(t) = − 1√
2π

∫ ∞
−∞

e−iω(t−t0)b̂0(ω), (1.43)

satisfying the commutation relation

[âin(t), â†in(t′)] = δ(t− t′). (1.44)

As a result of the Markov approximation the Heisenberg-Langevin equation is a first order

differential equation: the future time evolution of an operator now only depends on the

knowledge of all operators in the present. But the definition of the input field operator

âin(t) depends on the initial state of the bath. It can be interpreted as noise if system

and bath are initially independent and noninteracting, hence the density operator of the

system and bath factorizes at t = t0. Furthermore, for a meaningful noise definition, the

initial state of the bath needs to be incoherent. We assume that the bath is in a thermal

state, which leads to [72]

〈âin(t)〉 = 〈â†in(t)〉 = 0 (1.45)

〈â†in(t)âin(t′)〉 = n̄(ω)δ(t− t′) (1.46)

〈âin(t)â†in(t′)〉 = (n̄(ω) + 1)δ(t− t′), (1.47)

with the frequency dependent occupation of the thermal bath at temperature T

n̄(ω) =
1

e~ω/kBT − 1
. (1.48)

Note that the expectation value of an operator ô(t) is defined as 〈ô(t)〉 = Tr{ρ̂ô(t)}, where

ρ̂ = ρ̂sys ⊗ ρ̂bath denotes the total density operator, which can be written as direct product

of the density operator of the system and the one of the bath at time t = t0.

28



1.9. A single atom in an optical cavity

Analogously to the definition of the input field operator one defines the output field [75]

âout(t) =
1√
2π

∫ ∞
−∞

e−iω(t−t1)b̂1(ω). (1.49)

Input and output fields are related by [75]

âout(t) + âin(t) =
√

Γĉ(t). (1.50)

In the following section we will use the Heisenberg-Langevin equation to derive the

optomechanical coupling between cavity photons and a single atom.

1.9. A single atom in an optical cavity

In this section we introduce the mechanical effect of light on an atom in a cavity. For this

purpose we first consider a single two-level atom of mass m and transition frequency ωa,

coupled to a single mode6 of a high-finesse optical cavity with frequency ωc and wavevector

k as depicted in Fig.1.11. We assume that the atom moves only in one dimension along

the x direction due to a tight confinement in y and z. We neglect the additional harmonic

confinement along x due to the Gaussian laser beam profile. The annihilation and creation

operators of a cavity photon are â and â† with [â, â†] = 1. The atomic ground state and

excited states are denoted by |g〉 and |e〉 respectively and we introduce the lowering and

raising operators σ̂ = |g〉 〈e| and σ̂† = |e〉 〈g|. We consider an external coherent driving

laser of frequency ωp that either pumps the cavity mode at normal incidence with real

coupling strength η or the internal degree of freedom of the atom with Rabi frequency ξ.7

With the rotating wave and dipole approximation [74] the Hamiltonian of the system in

the frame rotating at the frequency of the driving laser ωp reads [12]

Ĥinitial =
p̂2

2m
+ ĤJC + Ĥpump, (1.51)

where the detunings between atom and pump and between cavity and pump are denoted

as ∆a = ωp − ωa and δc = ωp − ωc and with the Jaynes-Cummings Hamiltonian [76] in the

6The single mode approximation is valid for a cavity with large spectral range ∆ω = c/2l, where c is the
speed of light and l the distance between the cavity mirrors.

7In principle it is also possible to pump both atom and cavity at the same time. But in that case we can
not derive an effective potential Veff as desired for our study of localization, see Section 2.3.1.
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1. Basics on ultracold atoms

Figure 1.11.: A single two level atom with transition frequency ωa is coupled to a single mode
of a high-finesse cavity with frequency ωc and wavevector k. The motion of the
atom is only along the x axis. We consider two different pump scenarios: either
the cavity mode is pumped at normal incidence with frequency ωp and pump
strength η or the atom is transversally pumped with frequency ωp and pump
strength ξ. The atom decays into the electromagnetic field outside the cavity with
a decay rate γ⊥ and the cavity mode loses photons via the partially transmitting
mirrors with a loss rate κ.

frame rotating at the frequency of the driving laser ωp

ĤJC = −~∆aσ̂
†σ̂ − ~δcâ†â+ ~g(x̂)(â†σ̂ + σ̂†â). (1.52)

The position-dependent atom-cavity coupling strength is g(x̂) = g0 cos(kx̂), with g0 =√
ωc

2ε0V ~µ the vacuum Rabi frequency, where V is the effective cavity mode volume and

µ the atomic dipole moment along the cavity mode polarization that we choose along

z [12, 74]. In the case of the pumped cavity mode, the pump Hamiltonian is given by

Ĥpump = ~η(â† + â). (1.53)

The Hamiltonian Ĥinitial, with Ĥpump given by Eq. (1.53), corresponds to the one particle

scenario of the Hamiltonian discussed in Ref. [44]. In the case of the pumped atom, the

pump Hamiltonian reads

Ĥpump = ~ξ(σ̂† + σ̂), (1.54)

corresponding to the one particle scenario of Ref. [39, 77].
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The excited state of the atom and the cavity mode both radiatively couple to the

external electromagnetic field. The atom decays spontaneously with a rate γ⊥
8 and the

cavity loses photons due to the finite transmittivity of the mirrors at a rate κ. We use

the Heisenberg-Langevin formalism, introduced in Section 1.8, to describe the driven-

dissipative dynamics: we obtain the Heisenberg-Langevin equation for the cavity field

operator â if we identify â with the operator ĉ in Eq.(1.37) and use the Hamiltonian Ĥinitial,

given by Eq.(1.51) for the system Hamiltonian Ĥsys. In this case, the Heisenberg-Langevin

equation for the cavity field operator â is given by [44]

˙̂a(t) =
i

~
[Ĥinitial, â]− κâ+

√
2κâin,

=

(iδc − κ) â− iη − ig(x̂)σ̂ +
√

2κâin, for the pumped cavity.

(iδc − κ) â− ig(x̂)σ̂ +
√

2κâin, for the pumped atom.
(1.55)

For the Heisenberg-Langevin equation of the atomic lowering operator σ̂ we identify σ̂

with the operator ĉ in Eq.(1.37), use the Hamiltonian Ĥinitial, given by Eq.(1.51) for the

system Hamiltonian Ĥsys and use γ⊥ instead of Γ. The Heisenberg-Langevin equation for

the atomic lowering operator σ̂ reads [44]

˙̂σ(t) =
i

~
[Ĥinitial, σ̂]− γ⊥

2
σ̂ +
√
γ⊥σ̂zfin(t),

=

i∆aσ̂ + ig(x̂)âσ̂z − γ⊥
2
σ̂ +
√
γ⊥σ̂zf̂in(t), for the pumped cavity,

i∆aσ̂ + ig(x̂)âσ̂z + iξσ̂z − γ⊥
2
σ̂ +
√
γ⊥σ̂zf̂in(t), for the pumped atom,

(1.56)

where the input noise operators âin and f̂in obey the relations defined in equations

(1.45)-(1.47). The occupation of the thermal bath n̄(ω) for the cavity or the atomic

frequency (both are typically in the optical range [78]) is negligible at room temperature,

hence the two time correlation functions are only given by 〈âin(t)â†in(t′)〉 = δ(t− t′) and

〈f̂in(t)f̂ †in(t′)〉 = δ(t− t′).

8The spontaneous emission of the atom with rate γ⊥ is directed in the plane transverse to the cavity
axis.
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The dynamics of the external degree of freedom of the atom is governed by

˙̂p(t) =
i

~
[Ĥinitial, p̂]

= ~g0k sin(kx̂)(â†σ̂ + σ̂†â) (1.57)

˙̂x(t) =
i

~
[Ĥinitial, x̂] =

p̂

m
. (1.58)

We assume that the time scale on which the atom reaches its internal state is much

smaller than the time scale of its center of mass motion9, namely |∆a| � k∆p
m

and much

smaller than the dynamics of the cavity mode |∆a| � |δc|, κ [39]. So the changes of

the atomic position or the cavity field are negligible on the time scale of the internal

atomic degree of freedom and we can solve the Heisenberg-Langevin equation for σ̂,

Eq.(1.56), at a fixed value of the atomic position x and of the annihilation operator â [43].

For |∆a| � g0

√
〈â†â〉, ξ � γ⊥/2 the internal structure of the atom is not resolved and

dissipation due to spontaneous decay can be discarded [80]. The atom is always in its

ground state and we can neglect the population of the excited state, hence we can use

〈σ̂z(t)〉 ≈ 1 and ˙̂σ = 0 to obtain the solutions of Eq.(1.56) [12,44]

σ̂ =


g(x̂)â
∆a

, for the pumped cavity.

g(x̂)â+ξ
∆a

, for the pumped atom.
(1.59)

A detailed derivation of these equations for general mode functions in three dimensions

can be found in Ref. [81]. The regime in which the detuning |∆a| is the largest frequency

characterizing the dynamics, is referred to as dispersive limit. The effective Hamiltonian

Ĥelim.at for the cavity field and the external degree of freedom of the atom can be determined

by inserting the expression for σ̂, given in Eq.(1.59), in the Heisenberg-Langevin equation

for the cavity annihilation operator Eq.(1.55) and in the Heisenberg equation for the

momentum operator Eq.(1.57). The effective Hamiltonian can be identified as

Ĥelim.at =
p̂2

2m
+ Ĥopto, (1.60)

where the optomechanical coupling between the cavity mode and the atomic motion is

9Or in other words during the atomic relaxation time the atom travels over a small distance compared
to the cavity wave length [79].
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described by [38,39]

Ĥopto = −~δcâ†â+ ~U0 cos2(βk0x̂)â†â+ ~ζ(x̂)(â† + â) , (1.61)

with the Stark shift due to the atom-cavity mode coupling

U0 =
g2

0

∆a

. (1.62)

The function ζ(x̂) is given by the constant

ζ(x̂) = η, (1.63)

when the pump is set directly on the cavity mirror and by

ζ(x̂) = cos(βk0x̂)ξg0/∆a, (1.64)

when instead the atom is transversally driven by the laser. The Hamiltonian Ĥopto as

defined in Eq.(1.61) shows that the presence of the atom shifts the cavity resonance

frequency in a position dependent, nonlinear way. The strength of this nonlinearity is

controlled by U0. Furthermore the cavity field gives rise to an optical potential

Veff.pot(x̂) = ~U0 cos2(βk0x̂)â†â (1.65)

for the atom [12]. The depth of the potential depends on the photon number and on U0.

If the atom is transversally driven by the laser the coherent photon scattering yields an

effective cavity pump term that depends on the atomic position. It is proportional to the

scattering amplitude ξg0/∆a with which a photon is scattered by the atom between the

laser mode and the cavity mode [77].

1.10. Experiment on ultracold atoms in an optical

cavity

It is possible experimentally to combine cavity QED with the physics of ultracold atoms in

optical lattices. Groups that are doing this are for example the one of Tilmann Esslinger

in Zürich [41,47] and the one of Andreas Hemmerich in Hamburg [46]. In Chapter 2, when

discussing the localization transition of a single ultracold atom in the presence of cavity
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backaction, we will refer respectively to the experiments of both groups.

In this section we present exemplarily one experiment of the group of Tilman Esslinger

in Zürich on ultracold atoms, that optomechanically couple to a mode of an optical cavity,

in order to introduce the context and the setup. In Ref. [41] they discuss the experimental

realization of the Dicke model [82] describing an ensemble of two-level atoms coupled

to a single electromagnetic field mode. The model predicts a superradiant phase with

macroscopic occupation of the field mode. The experimental setup is sketched in Fig.1.12

(a): they use a BEC of 87Rb atoms that is confined within a high-finesse optical cavity

of length of h = 178µm. The cavity consists of two mirrors with a radius of curvature

of 75 mm [83]. The BEC is transversally driven by a far-detuned pump laser. The pump

laser frequency is close to the frequency of one cavity mode. They are in the dispersive

limit we described in the previous section: the cavity frequency depends on the position

of the atoms and the atoms scatter light into the cavity in a position dependent way.

If the atoms are homogeneously distributed the scattered light destructively interferes

and no cavity field builds up. Above a critical external pump strength the atoms self-

organize in a checkerboard pattern and start to constructively scatter into the cavity

mode. This transition can be observed by monitoring the intracavity photon number as a

function of the external pump strength, as depicted in Fig.1.12 (b). The self-organized

(superradiant) phase can also be monitored by the appearance of additional momentum

peaks at (px, pz) = (±~k,±~k) in the time-of-flight images.
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(a) (b)

Figure 1.12.: (a) Experimental setup. A BEC is confined within a high-finesse optical cavity
and transversally driven by a far-detuned pump laser. The pump laser frequency
is close to the frequency of one cavity mode, thus the atoms scatter light into the
cavity in a position dependent way. If the atoms are homogeneously distributed
(top picture) the scattered light destructively interferes and no cavity field builds
up. In the self-organized phase, for a pump strength above the critical pump
power (bottom picture) the atoms scatter light constructively into the cavity mode.
(b) Experimental observables. Bottom picture: The mean intra cavity photon
number is shown for an increasing pump strength. Top picture: The momentum
distribution after ballistic expansion (time-of-flight) is shown for three different
pump strengths. The superradiant (self-organized) phase can be identified by the
sudden build-up of the cavity field. Furthermore the time-of-flight images shows
additional momentum peaks at (px, pz) = (±~k,±~k), with k the wavevector of
the pump. The image is taken from Ref. [41].
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Chapter 2

The Aubry-André model in presence

of cavity backaction

This chapter is devoted to the study of the Aubry-André model in presence of cavity

backaction. We first introduce the general theoretical model at the basis of our analysis,

which is a Bose-Hubbard model for one particle with a site-dependent onsite energy resulting

from a second, incommensurate potential. We then identify the parameters for which one

recovers the Aubry-André [9] or Harper model [10]. We further discuss the conditions

under which the Bose-Hubbard model describes a cold atom which optomechanically

interacts with the mode of a high-finesse optical cavity.

2.1. Bose-Hubbard model for cavity QED with one

cold atom

The model at the basis of our analysis results from the one-dimensional dynamics of

a particle of mass m in two periodic potentials, of which one, denoted by Ŵext(x̂) and

defined in Eq.(1.5), tightly traps the particle at its minima while the second, V̂eff(x̂), is a

perturbation to the first potential, in the spirit of V̂pert that we introduced in Section 1.5.

The Hamiltonian reads

Ĥeff =
p̂2

2m
+ Ŵext(x̂) + V̂eff(x̂), (2.1)

with p̂ and x̂ the canonically-conjugate momentum and position. The cavity and external

potentials are periodic with wavenumbers k and k0, respectively, where k = βk0 and

β is an irrational number. Therefore, the Hamiltonian is quasiperiodic. Specifically

Ŵext(x̂) = Ŵext(x̂+ π/k0), while V̂eff(x̂) = V̂eff(x̂+ π/k). For later convenience we write
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V̂eff(x̂) = v0f(x̂), where v0 has the dimensions of an energy, and f(x̂) = f(x̂+ π/k) is a

dimensionless function. In the limit in which the dynamics can be restricted to the lowest

band of the deep lattice Ŵext(x̂) [84], we can describe it by means of the Bose-Hubbard

Hamiltonian

ĤBH = −t
L−1∑
n=1

(|n〉 〈n+ 1|+ |n+ 1〉 〈n|) +
L∑
n=1

δεn |n〉 〈n| , (2.2)

where |n〉 denotes the state of the particle at site n of the external lattice potential Ŵext,

with n = 1, . . . , L and L the total number of sites. We recall that (see again Section 1.5)

the Bose-Hubbard Hamiltonian is composed of the hopping term, scaled by the tunneling

coefficient t = 〈n| p̂2/(2m) + Ŵext(x̂) |n+ 1〉, and by the diagonal term in the basis {|n〉},
whose coefficients are given by the onsite energy δεn = 〈n| Ĥeff |n〉. The onsite enery is site

dependent since the Hamiltonian is quasiperiodic. After subtracting an arbitrary energy

constant, we can rewrite these coefficients as

δεn = 〈n| V̂eff(x̂) |n〉 = v0

∫ L0/2

−L0/2

dx wn(x)f(x)wn(x) , (2.3)

where wn(x) = 〈x |n〉 = w(x− xn) are the real valued Wannier functions [85], as defined in

Eq.(1.13) which are centered at lattice site n for a given Wannier state |n〉 and L0 = Lπ/k0.

We analyze the localization transition when the incommensurate potential is given by

the function

f(x) = arctan
(
−δ′c + C cos2(βk0x)

)
. (2.4)

The functional form f(x) as given in Eq.(2.4) is reminiscent of the one considered in

Ref. [86] and is typically encountered in optomechanical problems in CQED [43,87–89].

The parameters δ′c and C are real valued and can take both positive and negative values.

The parameter δ′c is responsible for the appearance of nontrivial poles. The parameter C

controls the functional form of the second potential f(x), as illustrated in Fig.2.1 (b) for

δ′c = 0.

We show in Section 2.2, that for |C| � 1 the onsite energy essentially reduces to

Eq.(1.26), with a new amplitude v′0 = |C|v0/[2(δ′2c + 1)], yielding a critical point vcav
c that

is different from the Aubry-André critical point vAA
c .

For |C| ' 1, higher harmonics cos2n kx of the Taylor expansion in C of Eq.(2.4) become

relevant and change the functional form of f(x), as illustrated in Fig.2.1 (b). Differing

from the Aubry-André model, this is the regime where the model is not self-dual. In
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(a)

(b)

Figure 2.1.: (a) A single atom is confined by an optical lattice, sketched as blue line, with
wavenumber k0 = 2π/λ0 and frequency ω0 within a standing-wave resonator. Its
motion optomechanically interacts with a high-finesse mode, shown in red, at
frequency ωc and wavenumber k = 2π/λ, whose wavelength λ is incommensurate
with the optical lattice periodicity λ0/2. The depth of the cavity lattice is deter-
mined by the balance between a pump with frequency ωp, and the losses at rate
κ. We consider two different pump schemes: either the cavity mode is pumped
with a pump strength η or the atom is transversally driven with a pump strength
ξ. We study the localization transition in this setup, where the nonlinearity due
to strong coupling with the cavity (given by the cooperativity C) modifies the
effective incommensurate potential. The optomechanical potential f(x) as defined
in Eq.(2.4) is illustrated in (b) as a function of x for four different values of the
cooperativity C and when the laser is resonant with the cavity (δ′c = 0). The limit
|C| � 1 corresponds to the Aubry-André model.
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2. The Aubry-André model in presence of cavity backaction

Section 2.3 we will derive the potential Eq.(2.4) from a microscopic model describing

an atom in a high-finesse cavity, subjected to an optical lattice, as illustrated in Fig.2.1

(a). By means of this model one can identify C with the cooperativity of CQED, which

measures the strength of cavity backaction on the atom’s scattering properties [90].

We study the transition to spatial localization. We determine numerically the ground

state |Ψ0〉 of Hamiltonian (2.2) with potential (2.4) as a function of C, δ′c, and the ratio

v0/t. We characterize the transition by means of the inverse participation ratio (IPR)

Px [68], as defined in Eq.(1.27) where the state |Φ〉 is given by the ground state |Ψ0〉.
We also monitor the degree of localization by the Lyapunov exponent [9], as defined in

Eq.(1.30). According to Thouless’ formula [69], in the localized regime of the Aubry-André

model it is given by Eq.(1.31), whereas for δεn given by Eq.(2.3) the critical point in the

Thouless formula corresponds to vcav
c from Eq.(2.9). In our calculation we obtain the

Lyapunov exponent γ by fitting the spatial decay of the wavefunction by means of an

exponential function.

2.2. Reproducing the Aubry-André model

In this section we want to identify the regime in which we can reproduce the Aubry-André

model.

For small cooperativities |C| � 1 we can linearize the site-dependent onsite potential

δεn, given by Eq. (2.3), to

δεn = v0

∫ L0/2

−L0/2

dx wn(x)

(
arctan(−δ′c) +

cos2(βk0x)

1 + δ′2c
|C|
)
wn(x). (2.5)

Neglecting the constant energy offset v0 arctan(−δ′c) and with the help of trigonometry

identities we have

δεn =
v0|C|

2(1 + δ′2c )

∫ L0/2

−L0/2

dx wn(x) [1 + cos(2βk0x)]wn(x).

Now we shift x to x+ xn, recalling that wn(x) = w(x− xn), which leads to

δεn =
v0|C|

2(1 + δ′2c )

∫ L0/2−xn

−L0/2−xn
dx w0(x) [1 + cos(2βk0(x+ xn))]w0(x).

We use again trigonometry and neglect the constant energy offset to cast the site-dependent
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onsite potential in the form

δεn =
v0|C|

2(1 + δ′2c )
α cos(2βk0xn), (2.6)

with α(β) =
∫ L0/2−xn
−L0/2−xn dx w0(x) cos(2βk0x)w0(x) . Using k = βk0 and xn = − (L−1)

2
π/k0 +

(n− 1)π/k0, the Hamiltonian reduces to the final form of the Aubry-André Hamiltonian

as defined in Eq.(1.25)

Ĥcav,[n] =− t
L−1∑
n=1

|n〉 〈n+ 1|+ |n+ 1〉 〈n|

− v′0
L∑
n=1

α cos(2βπn+ φ′) |n〉 〈n| , (2.7)

with a new amplitude v′0 = |C|v0/[2(δ′2c + 1)] and φ′ = −βπ(L+ 1) + π.

We determine the critical potential strength for the modified Aubry-André model,

following the method used in the original Aubry-André derivation (see Section 1.6 and

Ref. [9]). For this purpose, it is useful to perform the basis transformation, defined in

Eq.(1.28), which leads to the Hamiltonian in the momentum space

Ĥcav,[k̄] = −v
′
0

2
α

L∑
k̄=1

e−iφ
′ ∣∣k̄〉 〈k̄ + 1

∣∣+ eiφ
′ ∣∣k̄ + 1

〉 〈
k̄
∣∣

− v′0
L∑
k̄=1

2t

v′0
cos(2πβk̄)

∣∣k̄〉 〈k̄∣∣ . (2.8)

The constant phase φ′ can be eliminated by a gauge transformation1. For v′0 = 2t/α the

Hamiltonians (2.7) and (2.8) are identical, thereby identifying the self-dual point, which is

the critical point for the transition from the extended to the localized phase

vcav
c =

4t

α(β)

δ′2c + 1

|C|
. (2.9)

We find that, at difference from the original Aubry-André model, in the cavity case the

critical point depends on the incommensurability parameter β, through the parameter

α(β). For δ′c = 0 and |C| = 1 this corresponds to the result found in Ref. [67], where the

1We can define
∣∣∣k̃〉〈k̃ + 1

∣∣∣ = e−iφ
′ ∣∣k̄〉 〈k̄ + 1

∣∣, which leaves the onsite energy part unchanged
∣∣∣k̃〉〈k̃∣∣∣ =∣∣k̄〉 〈k̄∣∣.
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quasiperiodic lattice is created by superimposing two incommensurate optical lattices.

Fig.2.2 shows the inverse participation ratio Px for the original Aubry-André model,

Eq.(2.2), with δεn as in Eq.(1.26), and for the modified Aubry-André model, as given in

Eq.(2.2), with δεn as in Eq.(2.3), for β = (
√

5 − 1)/2 and β = (
√

5 + 1)/2 respectively,

for δ′c = 0 and C = −0.5 (subplot (a)) and for δ′c = 1 and C = −0.1 (subplot (b)). The

system size is L = 233. The Aubry-Andé transition takes place at v0/t = vAA
c /t = 2 and

is independent of the value of the incommensurability β. The transition of the modified

Auby-André model occurs at vcav
c /t = 9 and vcav

c /t = 14 for δ′c = 0 and C = −0.5 and

β = (
√

5 − 1)/2 and β = (
√

5 + 1)/2 respectively (Fig.2.2 (a)), and at vcav
c /t = 87 and

vcav
c /t = 137 for δ′c = 1 and C = −0.1 and β = (

√
5−1)/2 and β = (

√
5+1)/2 respectively

(Fig.2.2 (b)), thus confirming the prediction of Eq.(2.9). Note that for the parameter choice

of these simulations, we were guided by the values of Ref. [41]. In particular we consider a
87Rb atom and the cooperativity C = U0/κ, with the cavity damping rate κ = 2π×1.3 MHz

and U0 = g2
0/∆a, where g0 = 2π×14.1 MHz is the coupling strength between atomic dipole

and cavity mode. ∆a = ωp − ω0 denotes the tunable detuning between external pump

frequency ωp and atomic transition frequency ω0. The detuning corresponds to δ′c = δc/κ,

where δc = ωp − ωc is the detuning between external pump frequency and cavity mode

frequency ωc. The wavevector of the optical lattice is k0 = 2π/830 nm and the optical

lattice depth is taken W0 = −29Er, where Er = ~2k2
0/2m denotes the recoil energy.

2.3. Self-induced localization in cavity QED

In this section we derive the Bose-Hubbard Hamiltonian of Eq.(2.2) starting from the

optomechanical coupling of a lossy cavity field and a single atom, confined by an optical

lattice, as depicted in Fig.2.1 (a).

The relevant degrees of freedom for the atom are the momentum p̂ along x and the

canonically-conjugated position x̂. The cavity mode degrees of freedom are the photon

annihilation and creation operators â and â†, respectively, with the commutation relation

[â, â†] = 1. We denote by m the atomic mass and by ωc the cavity mode frequency, with

wavelength λ = 2πc/ωc, wavenumber k = βk0 and spatial mode function cos(βk0x).

The system is driven by a laser, which is described by a classical field. The laser

frequency ωp is the reference frequency: the atom transition frequency ωa is given by the

detuning ∆a = ωp − ωa and the cavity mode frequency by the detuning δc = ωp − ωc. In

the dispersive limit, in which |∆a| is the largest frequency characterizing the dynamics, the

atom’s internal degrees of freedom are eliminated as discussed in Section 1.9: In this regime
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2.3. Self-induced localization in cavity QED
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Figure 2.2.: Inverse participation ratio Px as a function of the strength of the quasiperiodic
potential v0 in units of the tunneling t for the original Aubry-André model, Eq.(2.2),
with δεn as in Eq.(1.26), and for the modified Aubry-André model, as given in
Eq.(2.2), with δεn as in Eq.(2.3), for β = (

√
5−1)/2 and β = (

√
5+1)/2 respectively.

In subplot (a) the detuning is δ′c = 0 and C = −0.5, leading to shifted critical point
vcav
c /t = 9 and vcav

c /t = 14. In subplot (b) the detuning corresponds to δ′c = 1
and C = −0.1 and shifted critical points vcav

c /t = 87 and vcav
c /t = 137 as obtained

from Eq.(2.9). The system size is L = 233.
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2. The Aubry-André model in presence of cavity backaction

the atomic dipole behaves as a classical dipole and spontaneous decay is neglected. The

cavity loses photons at a rate κ due to the mirror finite transmittivity. The Hamiltonian

Ĥ is given by

Ĥ =
p̂2

2m
+ Ŵext(x̂) + Ĥopto , (2.10)

where the first term on right-hand side (RHS) is the kinetic energy and the potential

Ŵext(x̂), defined in Eq.(1.5), is periodic with period π/k0 and tightly binds the atom at

its minima. The Hamiltonian Ĥopto is derived in Section 1.9 and given in Eq.(1.61). It

includes the cavity degrees of freedom and their optomechanical coupling with the atomic

motion. We recall that it reads [38,39]

Ĥopto = −~δcâ†â+ ~U0 cos2(βk0x̂)â†â+ ~ζ(x̂)(â† + â) , (2.11)

where frequency U0 scales the dynamical Stark shift due to the coupling between atom

and cavity mode, U0 = g2
0/∆a, with the vacuum Rabi frequency g0, which determines the

strength of the coupling between the dipole and one cavity photon. The frequency U0 can

be either positive or negative depending on the sign of ∆a. The last term on the RHS in

Eq.(2.11) corresponds to the effect induced by an external pump on the cavity mode. The

pump, in particular, can couple either directly to the cavity, by impinging on a mirror, or

via the atom, which coherently scatters photons into the cavity mode, as illustrated in Fig.

2.1 (a). When the pump is set directly on the cavity mirror, the strength of this coupling

is given by a constant value

ζ(x̂) = η. (2.12)

When instead the atom is transversally driven by the laser, then ζ(x̂) takes the form

ζ(x̂) = cos(βk0x̂)ξg0/∆a (2.13)

and is thus weighted by the cavity spatial mode function at the atomic position. Moreover,

it is proportional to the laser Rabi frequency ξ, which determines the strength of the

coupling between the dipole and the laser.

2.3.1. Time-scale separation and effective dynamics

We consider the limit in which there is a time-scale separation between cavity and atomic

motion dynamics and assume that the cavity field follows adiabatically the atomic motion.
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2.3. Self-induced localization in cavity QED

This assumption requires that the cavity relaxes much faster to its steady state than the

density distribution of the atom varies2, which is the case if the cavity linewidth is much

larger than the atom Doppler broadening [39]

|κ+ iδc| �
k∆p

m
, (2.14)

where ∆p =
√
〈p̂2〉 is the variance of the atomic momentum. The kinetic energy of

the atom can be linked to an effective temperature via kBT = ∆p2/(2m), leading to an

alternative condition for the time-scale separation |κ+ iδc| �
√

4ωrkBT
~ , with ωr = ~k2

2m
.

We then identify the coarse-grained time scale δt, which is sufficiently short with respect

to the time scale of the atomic external degrees of freedom and yet sufficiently long that

during δt the cavity field reaches a local steady state

1

|κ+ iδc|
� δt�

√
~

4ωrkBT
. (2.15)

The treatment is best illustrated in the Heisenberg picture and is detailed in Ref. [43,91].

We report here some relevant steps. The equations of motion of the atom and of the cavity

field operator read

˙̂p =2~kU0 cos(kx̂) sin(kx̂)â†â+ 2k0W0 cos(k0x̂) sin(k0x̂), (2.16)

˙̂a =− κâ+ i(δc − U0 cos2(kx̂))â− iη +
√

2κâin , (2.17)

if the cavity is pumped by the laser. When the atom is pumped instead, they read

˙̂p =2~kU0 cos(kx̂) sin(kx̂)â†â+ 2k0W0 cos(k0x̂) sin(k0x̂)

+ ~k
ξg0

∆a

sin(kx̂)(â† + â), (2.18)

˙̂a =− κâ+ i(δc − U0 cos2(kx̂))â− iξg0

∆a

cos(kx̂) +
√

2κâin , (2.19)

where âin(t) is the input noise operator, with 〈âin(t)〉 = 0 and 〈âin(t)â†in(t′)〉 = δ(t− t′) [75].

Within the time step δt, defined by Eq.(2.15), we identify the coarse-grained field operator

2Or in other words during the relaxation time of the cavity the atom travels over a small distance
compared to the cavity wave length [79].
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2. The Aubry-André model in presence of cavity backaction

âst, which is defined by the equation∫ t+δt

t

â(τ)dτ/δt ≈ âst, (2.20)

such that
∫ t+δt
t

˙̂ast(τ)dτ = 0, with ˙̂a given in Eq.(2.17) and in Eq.(2.19) respectively.

Furthermore we can assume that the atomic position doesn’t change on the time scale

δt, hence x̂(t + δt) ≈ x̂(t). With this we can solve the Heisenberg-Langevin equation

for the cavity field, Eq.(2.17) and (2.19) respectively, on the timescale δt and identify

the ”stationary” cavity field as shown in more details in Appendix B: it is a function of

the atomic operators at the same (coarse-grained) time, and in the limit where the time

averaged quantum noise ¯̂ain =
∫ t+δt
t

âin(τ)dτ/δt can be neglected, it takes the form

âst ≈
ζ(x̂)

(δc − U0 cos2(kx̂)) + iκ
. (2.21)

Notice that this expression corresponds both to the case where the cavity is pumped or

the atom is pumped, by using respectively Eq.(2.12) or Eq.(2.13) for ζ(x). A condition

for which this expression is correct, is that 2κ/δt� ζ2 as shown in Appendix B. In this

limit, according to Eq.(1.50), the field at the cavity output reads

〈â†outâout〉 = 2κ〈â†stâst〉 , (2.22)

and allows one to monitor the state of the atoms [75,91,92]. Using Eq. (2.21) for the field

â in Eq. (2.16) and in Eq.(2.18), leads to an equation of motion for the atomic variables

which depends solely on the atomic variables [43]. Claiming

˙̂p = −dWext(x)

dx

∣∣∣∣
x=x̂

− dVeff(x)

dx

∣∣∣∣
x=x̂

, (2.23)

then allows to identify the conservative effective potential V̂eff(x̂) resulting from the

optomechanical coupling between atom and cavity mode. The corresponding effective

Hamiltonian reads

Ĥeff =
p̂2

2m
+W0 cos2(k0x̂) + V̂eff(x̂) , (2.24)

where

V̂eff(x̂) = v0f(x̂). (2.25)
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2.3. Self-induced localization in cavity QED

The function f(x) is given in Eq.(2.4), with now δ′c = δc/κ and C = U0/κ, thereby linking

the parameters of our model to the microscopic theory. The energy v0 takes a different

form depending on whether the atom or the cavity is driven. When the cavity is pumped,

then

v0 =
~
κ
η2 , (2.26)

while when the atom is transversally pumped it takes the form

v0 = ~
ξ2

∆a

δ′c . (2.27)

Varying the value of v0 changes the importance of the perturbing lattice and thus cor-

responds to a change of the quasidisorder strength. Pumping both cavity and atom

simultaneously doesn’t allow to identify a conservative effective potential V̂eff(x̂) due to

additional interference terms.

The Hamiltonian (2.24) is quasiperiodic and contains the nonlinear coupling due to the

cavity field in the functional form f(x). It can be cast in a Bose-Hubbard form using the

single particle Wannier basis {wn} of the optical lattice Ŵext(x̂). Using this change of basis,

in the tight-binding and single-band approximation, one obtains Eq.(2.2) from Eq.(2.24),

where the onsite energy δεn is given by Eq.(2.3), with f(x) as defined in Eq.(2.4). The

tunneling t has the same form as Eq.(1.22), i.e.

t = −
∫ L0/2

−L0/2

dx wn(x)

(
−~2

2m

d2

dx2
+W0 cos2(k0x)

)
wn+1(x) . (2.28)

We have verified that the site-dependent tunneling terms due to the cavity potential,

tn = −
∫ L0/2

−L0/2

dx wn(x)Veff(x)wn+1(x) , (2.29)

are negligible for the parameters we choose and that we will specify in the next chapter.

We remark that, while the resulting dynamics is coherent, its validity relies on a separation

between the typical time scale of the cavity, which is intrinsically lossy, and the one of the

atomic motion.
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Chapter 3

Results

In this chapter we determine the phase diagram for the ground state |Ψ0〉 of Hamiltonian

(2.2), analyze in detail the properties of the localization transition in the framework of

CQED, and then discuss possible realizations with existing experimental setups of CQED

with cold atoms. Finally we draw a conclusion.

3.1. Phase diagrams

We determine the inverse participation ratio (IPR), given in Eq.(1.27), as function of

the strength of the perturbing potential v0 and as a function of the parameter C which

controls the form of the perturbing potential (see Fig.2.1 (b)). We take a lattice with

open boundaries (hard walls) and choose β =
√

5−1
2

. The plots we show are evaluated for

L = 233. We checked that the IPR and the phase diagrams remain substantially unvaried

when scaling up the lattice size L [81]. Furthermore we verify numerically that the effective

potential V̂eff(x̂) is only a perturbation for the main lattice Ŵext(x̂). We also checked that

the single-band approximation is valid1. We further note that, since the confining lattice

has a minimum at x = 0, after adding the perturbing potential of Eq.(2.4) for C < 0 the

total potential exhibits a minimum at the center (see Fig.3.1 (a)). For C > 0 the center is

a local maximum of the perturbing potential (see Fig.3.1(b)). The symmetry by mirror

reflection about the center, thus, gives that for C < 0 the localized state is in the center,

while for C > 0 it is a coherent superposition of two sites equally distant from x = 0, as

illustrated in Fig. 3.1. In order to get an unique localized state for all values of C, for

C > 0 we take

f(x) = arctan
(
−δ′c + C sin2(βk0x)

)
. (3.1)

1Therefor we require ∆E =
√

4ER|W0| � |max |δεj |+v0 arctan(δc/κ)|, where ∆E is the energy difference
between first and second band [77].
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3. Results

This choice allows us to directly compare the localization transition for positive and

negative values of C, thus to analyze the sole effect of the potential minimum, which for

C > 1 is a narrow well while for C < −1 is shallow about x = 0 (see Fig. 2.1(b)).

(a) (b)

Figure 3.1.: Sketch of the effective potential V̂eff, as defined in Eq.(2.25), the main optical lattice
Ŵext and the sum of the two potentials, as a function of x for C < 0 (subplot
(a)) and for C > 0 (subplot (b)). For C < 0 the global minimum of the resulting
quasiperiodic lattice is at x = 0, whereas in the case of C > 0 there are two minima
at equal distance from x = 0. Note that for both subplots |C| � 1.

For all considered values of C and δ′c the IPR as a function of v0, the strength of the

perturbing second lattice, exhibits a sharp transition, as visible in Fig.3.2 (a) for various

values of C. The critical value at which the transition occurs is given in good approximation

by the one in Eq.(2.9) for |C| � 1, while it differs from this value the larger |C| becomes.

This is clearly visible in Fig.3.2 (b), which displays the contour plot of the IPR as a

function of v0/t and C for δ′c = 0. Here, the solid lines correspond to Eq.(2.9), which

predicts the transition value for the corresponding dual model. They are visibly shifted

with respect to the transition we identify between extended (dark region) and localized

state (light region). This is a fingerprint of the backaction which becomes more and more

important for increasing C. It implies that higher harmonics of the Aubry-André potential

become relevant. Furthermore we observe an asymmetry of the transition between positive

and negative values of C. Intuitively it can be explained by the different form of the

potential minima given in Eq.(2.4) and depicted in Fig.2.1: for C < −1 the minima of the
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3.1. Phase diagrams

perturbing lattice are broader than for C > 1 and thus the onset of localization requires a

higher potential strength.

We also analyze the properties at the transition by plotting the probability density

distribution |〈j|Ψ0〉|2 as a function of the lattice site j = xk0
π

, as defined in Eq.(1.6). Here

|j〉 denotes the Wannier state centered at lattice site j and |Ψ0〉 the ground state of the

Hamiltonian (2.2). Typical probability densities are shown in the insets of Fig.3.3 (a) and

(b). We observe that in the localized phase the probability density always exhibits an

exponential decay, although for |C| > 1 we also find that for same parameter regimes at

large distances from the lattice center the density profile shows an extended component

(see inset of Fig.3.3 (b)). We have checked that this uniform background is not a numerical

artifact. It also appears for |C| > 1 as well as for |C| < −1 in the case of nonzero detuning,

as depicted in Fig.3.5. We remark that deviations from a purely exponential profile have

been observed in the localized phase of a Bose-Einstein condensate of weakly interacting

atoms, where the ground state was the superposition of several localized states [93] due

to the effect of interactions. In our case, the observed density profile can be viewed as

the overlap between a localized and an extended state. This behavior is due to the higher

harmonics of the cavity potential, Eq.(2.4): Indeed, we checked that the background

appears already by truncating the Taylor expansion of Eq.(2.4) in |C| to second order (to

third order if δ′c = 0) [81].

Fig.3.3 (a) and (b) display the Lyapunov exponent γ, as defined in Eq.(1.30), as a

function of v0 for C < 0 and C > 0, respectively. The values are extracted by performing

a fit of the central localized region of the density profiles (see insets). This procedure

introduces an uncertainty in the determination of the Lyapunov exponent, which is not

shown here since it is comparable with the size of the markers. The dependence of γ

on C for fixed v0/vc is shown in subplots (c) and (d), where now the error bars give

the uncertainty in the value we fitted. For C < 0 the Lyapunov exponent (and thus

localization) increases with |C| and is larger than the value of Eq.(1.31), to which it tends

for C → 0−.The behavior is qualitatively different for C > 0, as visible in subplot (d): As

C is increased from 0, the Lyapunov exponent decreases monotonically from the value of

Aubry’s model. The curve seems to tend to a nonvanishing asymptotic constant value for

C →∞, which is the limit of a sequence of infinitely narrow wells as shown in Fig.2.1 (b).

We now explore the dependence of γ and of the IPR on the detuning δ′c. We have

checked several values and take δ′c = −2 in order to provide a representative example.

For this value we analyze the IPR (Fig.3.4) and the corresponding dependence of the
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3. Results

(a)

(b)

Figure 3.2.: (a) Inverse participation ratio (IPR), Eq.(1.27), as a function of v0 (in units of t)
for δ′c = 0 and C = −0.5,−2,−4 (see legend). (b) Contour plot of the IPR as a
function of v0 (in units of t) and of C, for δ′c = 0. The red solid lines correspond
to Eq.(2.9). For calculating δεn in Eq.(2.4) we used the Wannier function for a
confining potential of depth W0 = −29Er, with Er = ~2k2

0/(2m) the recoil energy.
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3.1. Phase diagrams
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Figure 3.3.: Lyapunov exponent as a function of v0, in units of the critical depth vc, which
we extract from the numerical behavior of the IPR in Fig.3.2, for δ′c = 0 and for
(a) C = −0.5,−2,−4 (b) C = 0.5, 2, 4. The black dashed line corresponds to the
functional behavior of the Lyapunov exponent in Aubry-André’s model, Eq.(1.31).
The insets display the probability densities as a function of x for the corresponding
values of C of the curves in the onset and for v0/vc = 2. Subplots (c) and (d)
displays the Lyapunov exponent as a function of C for the fixed ratio v0/vc = 1.2,
the horizontal line indicates the value predicted by Eq.(1.31) (vc depends on C, for
each value of C it is extracted from the curves of the IPR as in Fig.3.2 (a)). For
calculating δεn in Eq.(2.4) we used the Wannier function for a confining potential
of depth W0 = −29Er, with Er = ~2k2

0/(2m) the recoil energy.
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Lyapunov exponents on C (Fig.3.5). The contour plot shows that for C < 0 the extended

phase shrinks with respect to the case δ′c = 0 (Fig.3.2 (b)) and we observe an enhanced

asymmetry with respect to the horizontal at C = 0. The smaller critical value vc is found

at about C ∼ −2. Correspondingly, the Lyapunov exponent as a function of C possesses

a minimum at the same value of the cooperativity. This value corresponds to the root of

the function f(x), Eq.(2.4), for cos2(kx) ≈ 1, which is fulfilled when the atom is localized

at the minimum of the total potential. This root is an optomechanical resonance which

maximizes the intracavity photon number when the atom is in a localized state, as we will

show below.

Figure 3.4.: Contour plot of the IPR as a function of v0 (in units of t) and of C, for δ′c = −2.
The red solid lines correspond to Eq.(2.9). The other parameters are the same as
in Fig.3.3.

3.2. Experimental realization

Single atoms and ions have been trapped inside cavities and cooled to very low temperatures

[22, 23], the dispersive coupling with the cavity field as in Eq.(2.24) has been realized [12].

These implementations rely on the existence of an external trapping potential, that is

typically harmonic. This breaks the discrete translational invariance along the direction

of motion and thus drastically changes the properties of the extended state. However, a

sufficiently shallow trap does not affect the transition to localization as long as the size of

the localized state is much smaller than the harmonic oscillator length [11]. Inclusion of
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3.2. Experimental realization

(a)

(b)

Figure 3.5.: Lyapunov exponents as a function of C for v0/vc = 1.2 and δ′c = −2, the black
horizontal dashed line indicates the value predicted by Eq.(1.31). The insets display
probability densities as a function of x for different values of C and for the fixed
ratio v0/vc = 2. The other parameters are the same as in Fig.3.3.
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the harmonic confinement would be a straightforward extension of the present model. We

do not include the harmonic trapping in the present work since under typical experimental

conditions (see eg Ref. [78]) the harmonic oscillator length (aho =
√

~/(mωho) ∼ 5µm for

a trapping frequency of ωho = 25Hz of 87Rb atoms) is larger than the size of the localized

wavefunction. Here we assumed that in the localized state, the density distribution is

given by |〈j|Ψ0〉|2 = e−
|jd0|
l , with l the localization length and d0 = π/k0. Thus the

Lyapunov exponent can be approximated by γ ≈ d0
2l

, which leads to l ∼ 1µm for γ = 0.2

and k0 = 2π/830nm.

Note that in an experiment the optical lattice within the cavity would also be realized

by a cavity mode. In order to get an effective quasiperiodic lattice, one requires the cavity

mode that constitutes the optical lattice and the one that strongly couples to the atom, to

have wavenumbers whose quotient is not an integer (e.g. β = k/k0 = 830/1361 = 0.61).

Furthermore the lattice size needs to be chosen carefully to avoid periodic replicas [67].

The transition to localization with cold atoms can be revealed by means of time-of-flight

measurement, as realized in Ref. [11], or in-situ imaging [94,95]. Another possibility is to

analyze the spectrum of light emitted by the resonator, since this contains the information

about the system excitations and allows one to monitor the dynamics [88,92].

Figures 3.6 (a) and (c) display the phase diagram obtained from the IPR in the case

where the cavity is pumped, here reported as a function of the pump strength η, of the

cooperativity C and of the detuning δc, for the parameters of the setup of Ref. [46, 78].

In particular we consider the cooperativity C = U0/κ, with the cavity damping rate

κ = 2π × 4.45 kHz ≈ ER/~ and U0 = g2
0/∆a, where g0 = 2π × 44.5 kHz is the coupling

strength between atomic dipole and cavity mode. The optical lattice depth is taken

W0 = −15Er, where Er = ~2k2
0/2m denotes the recoil energy. Note that for these

parameters the elimination of the excited state of the atom, we discussed in Section 1.9 is

justified. The conditions for the time scale separation we performed in Section 2.3 and

for the neglect of the noise are fulfilled for a temperature of the atom of T < 1nK and

|δc| > Er/~.

We determine the mean intracavity photon number n̄, according to the equation

n̄ = 〈Ψ0|â†stâst |Ψ0〉

'
L∑

m=1

|〈m|Ψ0〉|2
∫
dx w2

m(x)
ζ2

(δc − U0h(x))2 + κ2
. (3.2)

where h(x) = cos2(kx) for C < 0 and h(x) = sin2(kx) for C > 0. Its form shows that
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for C < 0 the root of Eq.(2.4) and for C > 0 the root of Eq.(3.1) is an optomechanical

resonance in the cavity field [96]. This means that the cavity mode, whose frequency

depends nonlinearly on the atomic position, is pumped resonantly and thus the intracavity

photon number is maximized.

Figures 3.6 (b) and (d) show the intracavity photon number for the parameters of the

phase diagrams in subplots (a) and (c), respectively. In Fig.3.6 (b) we observe that for

C < 0 the intracavity photon number is maximized whereas for C > 0 it is suppressed.

Experimentally tuning the detuning δc is easier than tuning the cooperativity C. Fig.3.6(c)

and (d) show the phase diagram of the IPR and the mean intracavity photon number as a

function of the detuning δc. We see that in principle the photon number can reflect the

onset of localization but the signal is very weak. We conjecture that this problem could

be overcome by increasing the photon number necessary for the localization by using N

atoms. Than the role of interactions, both short and cavity mediated infinite range, needs

to be taken into account.

3.3. Conclusion

In this part of the thesis we have analyzed the localization transition in a modified Aubry-

André model, where the quasiperiodic potential a single ultracold atom is subjected to,

is created by the combination of an external optical lattice and a mode of a high-finesse

cavity with incommensurate wavelengths. Its effective optomechanical potential results

from the sum of all the harmonics of the Aubry-André potential and arises from the

light scattered by the atom which backacts on the atomic position. We have identified

two different regimes: the limit of small cooperativity C � 1, reproduces the Aubry-

André model with a modified critical point vcav
c ; for large cooperativities |C| > 1 higher

harmonics of the Aubry-André potential are relevant. We find that several features of

the Aubry-André model are preserved. Novel features are the shift of the localization in

the phase diagram and the behavior of the Lyapunov exponent, which is a function of

the cooperativity and shows peculiar features close to the parameters where the system

exhibits an optomechanical resonance.

The localization-delocalization transition we predict could be measured with bosonic

gases confined in state of the art setups [41,46,78]. Our study sheds light into the effect

of nonlinearities in the quantum regime and complements the studies on glassiness of

bosons [91], and on static friction [89] in interacting gases induced by cavity backaction in

frustrated geometries.
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3. Results

(a) (b)

(c) (d)

Figure 3.6.: (a) Inverse participation ratio, Eq.(1.27), and (b) mean intra cavity photon number
n̄, Eq.(3.2), as a function of the parameters η and C = U0/κ in the setup where
the resonator is driven and for detuning δc = −5.5κ. Here, η is the strength of the
laser and U0 is the strength of the optomechanical coupling. In (a) and (b) the
potential depth is fixed to W0 = −15Er, where Er is the recoil energy associated
with the D line of 87Rb atoms. Subplots (c) and (d) show the IPR and n̄ as a
function of η and δc (in units of κ) for C = −1 and W0 = −14Er. The other

parameters are the number of sites L = 233 and β =
√

5−1
2 . For the parameters

of Ref. [46, 78], where κ ≈ Er/~ = 2π × 4.45 kHz, the time-scale separation at the
basis of our model and the neglect of the noise is warranted when the detuning,
|δc| > Er/~ and the atoms’ temperature, T < 1nK.
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Part II.

Phonon mediated conversion of

exciton-polaritons Rabi oscillations

into THz radiation
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A room temperature compact solid-state THz source is a highly desirable piece of

equipment, needed in many domains like communication, health or security [13]. Different

semiconductor based techniques already exist, for example based on cascade laser structures

[13,16], but they require rather deep cooling so far.

It turns out that semiconductor microcavities in the strong coupling regime [97] exhibit

the right energy scale for THz electromagnetic radiation. Indeed the normal mode - (Rabi)

splitting, i.e. the energy splitting between the upper and lower exciton-polariton states,

typically ranges from hν = 3.5 meV (i.e. ν = 0.85 THz) in Gallium Arsenide (GaAs)

microcavities, to hundreds of meV (i.e. tens of THz) in large band gap semiconductors

systems. Such a transition cannot be used directly to generate or absorb THz photons as

it is dipole forbidden. Indeed, the exciton that takes part in the upper and lower polariton

states is in both cases a 1s exciton and thus the symmetry is the same.

To circumvent this problem, several strategies have been proposed. In a pioneering

experiment, an in-plane static electric field was used to hybridize excitonic states with

different parities (i.e. s-like and p-like), resulting in a nonzero dipole moment between the

upper and lower polariton branches [98]. More recently, taking advantage of the bosonic

nature of polaritons, it has been proposed to optically excite p-like excitons by two-photons

absorption, and to achieve bright THz emission by stimulated relaxation toward the lower

polariton branch [20, 99]. However, due to ultrafast relaxation of the p-excitons, this

mechanisms has remained elusive so far [100]. Other promising idea have been put forward

like e.g. intersubband polaritons microcavities involving doped asymmetrical quantum

wells [101], or microcavities embedding a χ(2) active material like [111]-oriented GaAs [21].

The common point in these proposals is to modify the microcavity structure, either

by applying an external field, or by engineering the material, in order to build up a χ(2)

optical nonlinearity resonant with the polariton states. In our work, we show that the

transverse optical (TO) phonons, the mechanical vibration mode related to a deformation

of the lattice unit cell, can play exactly this role when the Rabi splitting is brought in

resonance with its frequency. With this mechanism, THz emission should be achievable

without resorting to externally applied field, or new materials.

The most extensively used material to fabricate microcavities in the strong coupling

regime is Gallium Arsenide [17]. In this material, this resonance condition is hard to

meet as the typical achievable Rabi splitting is in general significantly smaller than the

TO phonon energy (~ωTO = 33.3 meV). A CdTe-based microcavity will be considered in

this work, as such microcavities exhibit excellent optical properties and a near perfect

match between the typical microcavity Rabi splitting [102] and the TO phonon energy
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~ωTO = 18 meV, at the expense of a weaker stability at room temperature.

Our proposal relies entirely on a combination of three different mechanisms already

present in current state-of-the art microcavities, namely : (i) the strong coupling regime

between optical cavity photons and excitons yielding exciton-polaritons, (ii) the strong

coupling regime between THz photons and TO phonons yielding phonon-polaritons, and

(iii) the interaction between the excitonic hole states and the TO phonons mediated by the

deformation potential. The latter mechanism can be described by an optomechanical-like

coupling Hamiltonian. It provides the effective χ(2) nonlinearity enabling the conversion

of laser-pumped upper and lower exciton-polariton field into THz photons. A similar

frequency conversion scheme based on an optomechanical coupling is reported in Ref. [103].

This part of the thesis is organized as follows: Chapter 4 is devoted to the basics on

excitons in semiconductor microcavities and the strong coupling between excitons and

photons in microcavities which leads to the formation of polaritons. We briefly discuss

a seminal experiment on exciton-polaritons to introduce the typical setup. Besides we

compare the two experimental platforms we deal with in this thesis, namely exciton-

polaritons in semiconductor microcavities and ultracold atoms in an high-finesse optical

cavity. In Chapter 5 we introduce the key constituent of our frequency conversion scheme,

which is the TO phonon-exciton interaction. For this purpose we first present some

microscopic details of CdTe, which will then enable us to derive the exciton-TO phonon

interaction, starting from the general electron-phonon interaction. Thereby we take into

account that the excitons are also strongly coupled to cavity photons. In Chapter 6 we

discuss the frequency conversion scheme starting from a microscopic model. We calculate

the emission power of THz photons and relate our results to an effective χ(2) description.

This part of the thesis is based on the article:

• Katharina Rojan, Yoan Léger, Giovanna Morigi, Maxime Richard, and Anna Min-

guzzi, Phonon mediated conversion of exciton-polaritons Rabi oscillations into THz

radiation, in preparation.
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Chapter 4

Basics on exciton-polaritons in semi-

conductor microcavities

In this chapter we enter the world of condensed matter physics. First we introduce

excitons, elementary excitations of a semiconductor, that will be the object of our analysis.

In the second section we describe a solid-state based cavity made out of semiconductor

materials. The two concepts of excitons and semiconductor cavity are combined in Section

4.3, where we present the quasiparticles that arise from the strong coupling between

excitons and photons in a semiconductor cavity, the exciton-polaritons. Exciton-polaritons

provide a platform to investigate many-body quantum effects in solid-state systems. In

Section 4.4 we discuss one seminal experiment showing the Bose-Einstein condensation of

exciton-polaritons, in order to introduce the experimental setup. Note that in the following

we are going to exploit the physics of exciton-polaritons to derive a frequency conversion

scheme, that we present in Chapter 6. Finally, we compare the two experimental platforms

we use in this thesis, ultracold atoms in an optical cavity and exciton-polaritons in a

semiconductor microcavity, in Section 4.5.

4.1. What are excitons?

A semiconductor is a solid where in the ground state, at T = 0 K, there is an energy gap EG

between the highest state of the filled valence band and the lowest state of the conduction

band [104, 105]. Typical values of energy gaps are of the order of few eV. There are

direct band gap semiconductors where the top of the valence band is at the same position

k in the Brillouin zone as the bottom of the conduction band, and indirect band gap

semiconductors, where the top of the valence band and the bottom of the conduction band
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4. Basics on exciton-polaritons in semiconductor microcavities

are separated in k space. We restrict our considerations to direct band gap semiconductors.

In particular we will consider CdTe, where the band gap is EG = 1.607 eV at T = 0 K [1].

If one valence electron absorbs a photon with energy ~ω larger than the band gap EG, it

results in a free electron in the conduction band and a free hole in the valence band [1].

Note that a filled band has total wavevector zero [1] and due to the translation invariance

of the crystal, the total momentum (wavevector) is conserved. This imposes selection

rules for absorption and emission processes. Assume one electron at wavevector kh is

missing in the valence band, hence the wavevector of the valence band electrons is −kh.
The missing of an electron is called a hole and it is depicted at kh, see Fig.4.1, but it

is associated with a wavevector −kh. If there is an electron in the conduction band at

ke, the wavevector of the total system is K = ke − kh. Momentum is conserved in the

creation of an electron-hole pair by photon absorption, and the final momentum ~K of

the pair coincides with the photon momentum. Due to the large value of speed of light,

the photon momentum ~|kp| = ~ω/c is negligible and one typically assumes K ≈ 0.

If one valence electron absorbs a photon with a certain energy ~ω smaller than the band

gap EG, an exciton can be created if the photon energy matches the exciton’s energy, that

we will derive below. An exciton is an electron-hole bound state [105] reminiscent of a

hydrogen atom. One distinguishes two different classes of excitons the so-called Frenkel and

Wannier excitons. The Frenkel exciton describes an electron and a hole which are tightly

bound and localized at the same lattice position, i.e. at the same atom or molecule [105,106].

Frenkel excitons are typically encountered in crystals of weakly interacting atoms (large

lattice constants) for example in molecular crystals [105,106]. In the opposite case of weak

electron-hole interaction, the electron is delocalized over the whole crystal and electron and

hole are separated by several lattice constants [105,106]. In this limit one can assume that

electron and hole only interact via the direct, screened Coulomb interaction, neglecting

exchange effects [105]. The corresponding exciton is referred to as Wannier exciton, that

we are going to consider in the following. For simplicity we consider a two-band model

with one valence band and one conduction band and a direct band gap at the center of

the Brillouin zone Γ ≡ k = 0 and follow Ref. [104]. In the effective-mass approximation

the energies of conduction and valence band can be written as

Ec(k) = EG +
~2k2

2me

Ev(k) = −~2k2

2mh

, (4.1)
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4.1. What are excitons?

where me and mh are the effective masses of the electron and the hole1 as depicted in

Fig.4.1.

Figure 4.1.: Sketch of the simplified band structure of a direct band gap semiconductor in an
excited state, where one electron is in the conduction band. Note that in this
simplified picture it is not possible to sketch a correlation between electron and
hole and thus an exciton [104]. The top of the valence band (VB) and and the
bottom of the conduction band (CB) lie at k = 0 in the first Brillouin zone and
are separated by the band gap of energy EG. The electron in the conduction band
moves with a wavevector ke. The hole in the valence band is depicted at kh but it
moves with a wavevector −kh.

The motion of the electron-hole pair can be divided in the center of mass motion and in

the relative motion [104]

Rcom =
1

me +mh

(mhRh +meRe) , (4.2)

r = Re −Rh, (4.3)

where Rh and Re are the coordinates of hole and electron respectively. The center of mass

motion is the one of a free particle with mass M = me +mh, so the wavefunction is given

by a plane wave. The relative motion is hydrogen like, with quantized bound states and

continuum states, where the exciton is ionized into a free electron and a free hole. The

1The effective mass of the hole is assumed to be positive, that’s why there is the negative sign [1].
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4. Basics on exciton-polaritons in semiconductor microcavities

stationary Schrödinger equation, governing the relative motion, is given by(
− ~2

2µ
∇2

r −
e2

ε|r|

)
φnlm(r) = Enφnlm(r), (4.4)

with eigenvalues

En = EG −
R∗

n2
.

In analogy to the hydrogen atom, the Rydberg constant of the exciton2 is defined as

R∗ =
µe4

2~2ε2
=

~2

2µ(a∗B)2
, (4.5)

with e the electron’s charge, ε the dielectric constant of the semiconductor and the reduced

mass of the exciton µ = mhme
me+mh

. The Rydberg constant of the exciton corresponds to its

binding energy for n = 1. Furthermore we introduced the Bohr radius of the exciton

a∗B =
~2ε

µe2
. (4.6)

In the case of the semiconductor CdTe we are going to consider, the Bohr radius of the

excitons is in the order of 70Å and thus almost two orders of magnitude larger than the

Bohr radius of the hydrogen atom. The exciton’s binding energy R∗ is of the order of

11 meV [104], which is very weak in comparison to the binding energy of the hydrogen

R = 13.6 eV. The wavefunction φnlm, describing the relative motion of electron and hole,

is characterized by the principal quantum number n, the angular momentum quantum

number l, and the magnetic quantum number m. The total energy of the exciton is given

by

~ωx(K) =
~2K2

2M
+ En, (4.7)

where K = ke−kh denotes the wavevector of the center of mass motion of the exciton [105].

The energy dispersion of an exciton is sketched in Fig.4.2 for different values of n. Notice

that the analogy to the hydrogen atom has its limits: in the case of an exciton, the ground

state corresponds to the recombination of electron and hole [107].

We introduce the creation and annihilation operators ĉ†α,K and ĉα,K for an exciton with

2In Gaussian/cgs units.
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4.1. What are excitons?

Figure 4.2.: Sketch of the energy states of the Wannier exciton, as given by Eq.(4.7) for the
hydrogenic states with principal quantum numbers n = 1, 2, 3 and the continuum
states. The band gap is here denoted with Eg and the exciton Rydberg constant
R∗ denotes the exciton binding energy for n = 1. The ground state, in which
electron and hole recombine in the valence band, is denoted by |0〉. The image is
taken from Ref. [104].
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4. Basics on exciton-polaritons in semiconductor microcavities

wavevector K and polarization α. The Hamiltonian of the exciton reads [17]

Ĥexc(K) =
∑
α,K

~ωx(K)ĉ†α,K ĉα,K , (4.8)

where the exciton’s energy is given by Eq.(4.7). If the mean distance between two excitons

is much larger than the exciton’s Bohr radius, it can be shown that excitons can be

described as bosons [17, 108], with [ĉα′,K′ , ĉ
†
α,K ] = δα′,αδK′,K . This is the situation we

are going to consider in the following. In order to go beyond the bosonic approximation,

for high excitonic densities, the internal structure of the exciton needs to be taken into

account [109].

We want to construct an exciton in the most general way. For this purpose we will

use the representation of the many body wavefunction of the exciton as suggested in

Ref. [110]: We consider a crystal consisting of N Wigner-Seitz cells and N valence electrons

at positions x1, ...xN . The positions of the Wigner-Seitz cells determine the sites of the

crystal lattice and are denoted with Rj, with j = 1, ...N . We note that the electron and

the hole, that together constitute the exciton, can both be at every lattice site, so the

general wavefunction for an exciton in the hydrogenic state λ with wavevector K reads

Ψλ,K(x1,x2, ...xN) =
1√
N

N∑
m,l=1

eiK·R
m,l
comφλ(Rl)Av,c(m,m+ l). (4.9)

We identify its components: the center of mass motion is described by a plane wave with

wavevector K and Rm,l
com the generalized center of mass coordinate, which is given by the

generalized version of Eq.(4.2)

Rm,l
com =

1

me +mh

(mhRm +meRm+l) = Rm +
me

me +mh

Rl. (4.10)

Rm is the position of the hole. The position of the electron that constitutes the exciton,

is defined as function of the hole’s position according to Rm+l = Rm + Rl, where Rl

is the distance between electron and hole. It corresponds to the generalized version of

the relative coordinate as defined in Eq.(4.3). The indices m and l go over the hole

crystal lattice. Fig.4.3 sketches the positions of electron and hole in the lattice in valence

band v and conduction band c. The function φλ(Rl) denotes the relative motion and

is a solution of Eq.(4.4). λ is an index that unifies the hydrogen-like quantum numbers

{n, l,m}. Av,c(m,m+ l) is the Slater determinant describing the configuration in which a

68



4.1. What are excitons?

Figure 4.3.: Sketch of the positions of electron and hole that we use in the Slater determinant
in Eq.(4.9). For simplicity we depict the crystal lattice, that consists of N sites,
given by the N Wigner-Seitz cells, in one dimension. In the conduction band c
and in the valence band v are thus N sites available. The hole position is denoted
by the lattice site index m while the electron position in the conduction band is
denoted by the lattice site index m+ l.

valence electron at site m is excited from valence band v into the conduction band c at

the m+ lth site. The single-particle wavefunctions in the Slater determinant are given by

Wannier functions [62], that we defined in one dimension in Eq.(1.13). More precisely, the

Slater determinant consists of N single-electron Wannier functions, out of which N − 1

electrons occupy the valence band v and one electron occupies the conduction band c. The

Wannier function for an electron at x1 in the valence band v, centered at lattice site m

is denoted as wv,Rm(x1) = wv(x1 −Rm). The Slater determinant can be also written in

terms of the antisymmetrizing operator Â

Av,c(m,m+ l) =
√
N !Â

(
wv,R1(x1)wv,R2(x2)...wv,Rm−1(xm−1)wc,Rm+l

(xm)...wv,RN
(xN)

)
,

where

Â =
1

(N)!

∑
σ∈SN

(−1)σσ̂, (4.11)

with σ̂ the permutation operator and the sum going over all possible permutations. We

note that Â is Hermitian and Â2 = Â.

For convenience we will define [110]

Uλ,K(Rl) ≡ e
iK· me

me+mh
Rlφλ(Rl), (4.12)

leading to an alternative form of the wavefunction, where the terms depending on the
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relative coordinate Rl are grouped together

Ψλ,K(x1,x2, ...xN) =
1√
N

N∑
m,l=1

eiK·RmUλ,K(Rl)Av,c(m,m+ l). (4.13)

4.2. The semiconductor microcavity

We consider a semiconductor microcavity of Fabry-Pérot type, with the cavity axis along

z as sketched in Fig.4.4. It consists of two planar dielectric mirrors (also called distributed

Bragg reflectors (DBR) or Bragg mirrors), separated by a distance h which is typically in

the order of several µm, therefore the name microcavity. The cavity only accepts modes

with a certain wavelength λc, which is determined by h = j λc
2

, with j a positive integer

that indicates the jth eigenmode. We assume that inside the cavity there is a dielectric

medium with refractive index nc. In many experiments, quantum wells are embedded in

the cavity, but in this thesis we are going to consider a bulk semiconductor slab inside the

cavity.

The Bragg mirrors are made of alternating layers of two materials with different refractive

index n1 and n2. Their advantages, with respect to metallic mirrors, are little losses and

the fact that the reflectivity can be tuned by varying the number of layers or the refractive

index of the layers [108]. The reflectivity of a Bragg mirror depends on the wavelength. In

order to build mirrors for a cavity mode wavelength of λc, the best reflectivity is achieved

for a layer thickness of λc/4 [108]. The dispersions relation of an intracavity photon of

wavevector k is given by

~ωc(k) = ~
c

nc
|k| = ~

c

nc

√
k2
z + |k‖|2, (4.14)

with c the speed of light and |k‖| the absolute value of the in-plane cavity vector k‖ =

(kx, ky)
T . Note that we assume here that the frequency of the cavity photon does not

depend on its polarization. The wavevector along z is quantized according to

kz = j
π

h
, (4.15)

with j a positive integer. The in-plane motion is not confined. Due to the planar mirrors

the microcavity is translational invariant in the cavity plane (x, y) and the corresponding
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4.2. The semiconductor microcavity

Figure 4.4.: Sketch of a semiconductor microcavity: it consists of two planar Bragg mirrors
which are build up by alternating layers of two material with different refractive
indices n1 and n2. The layer thickness is λc/4 in order to get the best reflectivity
for the cavity mode with λc. The cavity has a length of h and is filled with a
dielectric of refractive index nc.

in-plane wavevector k‖ is conserved [17]3. This allows to monitor the in-plane dispersion

as we will see now: assume the cavity is pumped by an external laser with wavevector kp,

where the wavevector encloses an angle θin with the cavity axis z. Its frequency is ωp = c|kp|.
The in-plane component of the wavevector of the pump is given by |kp,‖| = sin θinωp/c.

It matches the in-plane wavevector inside the cavity, due to the translational symmetry

|kp,‖| = |k‖|. Thus, there is a direct link between the incident angle of the pump and the

motion in the cavity plane. Analogously, the external emission at an angle θout can be

connected to the in-plane wavevector of the cavity field according to |k‖| = sin θoutωp/c [17].

This relation between the motion in the cavity plane and the emission angle allows to

experimentally measure the in-plane dispersion in situ. It is an observable which is not

accessible in cavity QED experiments with ultracold atoms as the one presented in Section

1.10, because in the case of curved mirrors there is no translation invariance in the cavity

plane and thus no conservation of the in-plane wavevector.

We consider a bulk semiconductor material with refractive index nc inside the cavity

and |k‖| � kz, which allows to expand the dispersion relation given in Eq.(4.14)

~ωc(k‖) ' ~ω0
c +

~2|k‖|2

2mc

, (4.16)

3This can also be shown by Snell’s law.
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where ~ω0
c = ~ckz/nc and kz fixed by Eq.(4.15). Furthermore we introduced the effective

mass of the cavity photon [17]

mc =
~nckz
c

, (4.17)

which in our case will be in the order of 10−5me,0, with me,0 the electron mass.

The Hamiltonian of the electromagnetic field inside the cavity reads in second quantiza-

tion

Ĥcav(k‖) =
∑
k‖,α

~ωc(k‖)â†αk‖ âα,k‖ , (4.18)

with ~ωc(k‖) given by Eq.(4.16). The operators âα,k‖ and â†α,k‖ denote the bosonic

annihilation and creation operator of a photon with in-plane wavevector k‖ and polarization

α. Their commutator is given by [âα,k‖ , â
†
α′,k′‖

] = δα′,αδk′‖,k‖ . Note that we neglected the

vacuum energy contribution.

4.3. Exciton-polaritons in semiconductor

microcavities

A semiconductor microcavity represents a platform to study light-matter interaction. For

ωc ≈ ωx the system can be in the strong light-matter coupling regime, i.e. the light-matter

coupling is larger than the decay rates of exciton and cavity photon.4 In this regime, the

photon and the matter excitation hybridize and form a new mixed quasiparticle which is

called polariton [17]. In this section we will focus on polaritons where the matter excitation

is an exciton. In Chapter 5, however, we will also deal with phonon-polaritons that are

created by the strong coupling of a photon with a lattice vibration.

Polaritons can be described using a semiclassical or a quantum theory. We will focus on

the quantum description. A discussion of the semiclassical theory, which is based on linear

response theory, can be found in Ref. [111,112].

The exciton-polariton model was originally introduced by Hopfield [113]. He derived

it for a bulk semiconductor, and included various coupling terms between excitons and

free photons. In particular he considered both the rotating and the counterrotating terms.

4Note that with semiconductor microcavities it is also possible to achieve the ultrastrong coupling
regime [17].

72



4.3. Exciton-polaritons in semiconductor microcavities

Here, we take a simplified Hopfield model [17] where only rotating terms are kept within

the rotating wave approximation(RWA)5. Furthermore we describe cavity photons. The

resulting Hamiltonian reads

Ĥexc-cav(k‖) = Ĥexc(k‖) + Ĥcav(k‖) +
∑
k‖,α

~Ω(k‖)(â
†
α,k‖

ĉα,k‖ + ĉ†α,k‖ âα,k‖). (4.19)

where Ĥcav(k‖) is defined in Eq.(4.18). Ĥexc(k‖) is given in Eq.(4.8), where in the notation

the wavevector of the exciton K is replaced by the k‖, indicating the wavevector of

the exciton in the cavity plane. The wavevector component of the exciton along the

cavity axis z is fixed by the strong coupling with the cavity photon, so we don’t write

it explicitly. Note that only transverse excitons, with a polarization α perpendicular to

their wavevector, couple to photons. Furthermore, in the interaction term, a single wave

number and a single polarization can be used because the in-plane momentum is conserved

and different polarizations are not coupled [113]. From now on we will assume that the

wavevector dependence of the exciton can be neglected, due to the heavy mass of the

exciton (M ' 10−1me,0) with respect to the effective mass of the cavity photon [17], so we

consider that the exciton’s frequency has the constant value ωx.

The last term of Eq.(4.19) describes the coherent coupling between an exciton and a

cavity photon. It arises from the interaction of a dipole with the radiation field, which, in

the Coulomb gauge and in cgs units, is characterized by [111,112]6

Hdip =
−e
me,0c

∑
i

pi ·Ai, (4.20)

where the sum runs over all electrons of the crystals and e, me,0 and pi are the charge,

mass and momentum of an electron and Ai the vector potential of the electromagnetic

field. One can obtain the final interaction term linking the electron’s operator to the

polarization field and introducing the second quantized form for the vector potential and

the polarization field [112,113].

The coupling strength describing the exchange of one excitation between the exciton

5For the RWA to hold we need Ω, |ωx(k‖)− ωc(k‖)| � ωx(k‖) + ωc(k‖).
6Note that the coupling of a single dipole, with dipole moment d with the electromagnetic field can be

expressed equivalently as Hdip = −d ·E [74], where E is the electric field.
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and the photon mode Ω(k‖), referred to as Rabi frequency, is given by

Ω(k‖) = ~ωx
(

πβωx
ωc(k‖)ε∞

) 1
2

, (4.21)

where ωc(k‖) denotes the dispersion relation of the cavity photon, given in Eq.(4.16)7. ε∞

is the frequency independent contribution to the total dielectric function ε(ω) due to all

resonances in the crystal other than the exciton [111]. The polarizability is denoted with

β and reads

β =
e2

me,0ω2
x

f

V
(4.22)

where me,0 is the free electron mass and V the volume of the semiconductor crystal that is

confined within the cavity. f denotes here the dimensionless excitonic oscillator strength

and is defined as [111]

f =
2

me,0~ωx
|〈f|e ·

∑
i

pi|〉i|2, (4.23)

for a transition from an initial state |i〉, which is the crystal’s ground state, to a final state

|f〉, which is the exciton’s state, with one electron in the conduction band. e denotes the

polarization vector of the vector potential.

The oscillator strength can also be linked to the dipole matrix element between the

crystals ground state and the exciton state according to [111]

f =
2me,0ωx

~
|〈f|e ·

∑
i

ri|〉i|2, (4.24)

where ri indicates the position of the ith electron with respect to the hole. Due to the

spatial extension of the exciton’s wavefunction over many sites of the crystal, the oscillator

strength of the exciton assembles the oscillator strength of many atoms [108].

The Hopfield Hamiltonian (4.19) has some resemblance with the Jaynes-Cummings

model [76], given in Eq.(1.52), which describes the coupling between a harmonic oscillator

and a two-level system. However, Eq.(4.19) characterizes two coupled harmonic oscillators.

Both the Hopfiel and the Jaynes-Cummings model, describe a single quantum exchange

7Note that here we adapted the definition given in Ref. [111,113] to the case of a bulk semiconductor
inside a cavity.
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between two coupled systems [114] and lead to the formation of dressed states, called

polaritons. In contrast to the Jaynes-Cummings model, where the two-level system

saturates with a single excitation, the Hamiltonian (4.19) describes a situation where

both modes can store an arbitrary amount of quanta [114]. The frequency at which the

excitation is exchanged is called Rabi frequency. In the case of a two-level atom the Rabi

frequency is proportional to the dipole moment of the corresponding atomic transition.

For N two-level systems interacting with a harmonic oscillator, it scales with
√
N [108].

The coupling strength Ω as defined in Eq.(4.21) also arises from the dipole interaction and

is proportional to a dipole moment but the involved states are the ground state of the

crystal and the exciton state. A more detailed discussion of the differences between the

Jaynes-Cummings model and the Hopfield model (4.19), can be found in Ref. [115].

In the following we are going to neglect the dependency of the Rabi frequency on the

wavevector and consider its constant value at k‖ = 0, which we will refer to as Ω.

Hopfield showed that the Hamiltonian in Eq.(4.19) can be diagonalized using the unitary

transformation (
p̂α,k‖
ûα,k‖

)
=

(
−Ck‖ Xk‖

Xk‖ Ck‖

)(
âα,k‖
ĉα,k‖

)
, (4.25)

with X2
k‖

+C2
k‖

= 1. Here p̂α,k‖ and ûα,k‖ are the annihilation operators of an excitation in

the lower and upper exciton-polariton branch respectively. The upper and lower exciton-

polariton branch are the eigenstates (normal modes) of the system and they are linear

superpositions of one exciton and one photon mode. They correspond to the dressed

states. The new quasiparticles, the upper and lower exciton-polariton, are bosons since

they are linear combinations of bosonic operators. Their lifetime is determined by the

nonradiative lifetime of the exciton and the lifetime of the cavity photon. The coefficients

of the transformation read

Xk‖ =

√√
4Ω2 + ∆(k‖)2 + ∆(k‖)

2
√

4Ω2 + ∆(k‖)2
, Ck‖ =

√√
4Ω2 + ∆(k‖)2 −∆(k‖)

2
√

4Ω2 + ∆(k‖)2
, (4.26)

where ∆(k‖) = ωc(k‖)− ωx denotes the detuning between cavity and exciton. We assume

that at k‖ = 0 the cavity and the exciton are at resonance and thus ~ω0
c = ωx. Note that

X2
k‖

and C2
k‖

are called excitonic and photonic fraction, as they describe the portions of

exciton and photon that are contained in the lower exciton-polariton8.

The eigenvalues, corresponding to the dispersion relation of upper (+) and lower (−)

8For the upper exciton-polariton the situation is inverted and C2
k‖

describes the excitonic fraction.
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exciton-polariton, read

ωu(k‖) =
1

2

(
ωc(k‖) + ωx +

√
4Ω2 + ∆(k‖)2

)
, (4.27)

ωp(k‖) =
1

2

(
ωc(k‖) + ωx −

√
4Ω2 + ∆(k‖)2

)
. (4.28)

Fig.4.5 shows a sketch of the dispersion relations of the cavity photon, the exciton and

upper and lower exciton-polariton. At k‖ = 0 both polaritons contain exciton and photon

to equal parts (X2
0 = C2

0 = 0.5). For increasing k‖ the upper polariton becomes more

and more photon like, whereas the lower polariton becomes more exciton like due to an

increasing Xk‖ .

Figure 4.5.: Sketch of the dispersion relations of the cavity photon (ωc, given by Eq.(4.16)), the
exciton (ωx), upper and lower exciton-polariton modes (ωu and ωp, given by the
equations (4.27) and (4.28) respectively) along one in-plane direction, here along
x. The dispersion are isotropic in the cavity plane and thus look the same along y.

What is the relevance of the polariton concept? From a theoretical point of view going

from the exciton-photon picture to the polariton picture consists in a basis change. The

advantage of the polaritons is that they are eigenstates diagonalizing the Hamiltonian

(4.19) and thus stationary. They are also visible in experiments as we will see in the

following section.
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4.4. Experiment on exciton-polaritons in a

semiconductor microcavity

In this section we discuss the seminal work of Ref. [18]. They demonstrate Bose-Einstein

Figure 4.6.: (Top panel) Experimental setup. The semiconductor microcavity consists of two
Bragg mirrors and contains excitons in quantum wells (QW). Cavity photon and
quantum well exciton strongly couple and form exciton-polaritons. The Rabi
frequency is Ω = 26 meV. The dispersion relations of photon, exciton and exciton-
polaritons are shown in the bottom panel. The cavity is externally pumped by
a laser with a uniform excitation spot and an excitation energy far above the
polariton energy. Thus free electrons are created in the quantum well and relax
via phonon or polariton scattering into the ground state of the lower polariton.
Image taken from Ref. [18].

condensation of exciton-polaritons. The experiment is remarkable as it shows Bose-
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Einstein condensation9 in a solid-state system and at temperatures of a few Kelvin that are

accessible using standard cryogenic techniques. The critical temperature for condensation

is thus much higher than in the case of ultracold atoms, where it is in the nano Kelvin

regime [55] (see again Section 1.1). The reason for these different critical temperatures is

that exciton-polaritons are 109 times lighter than for instance Rubidium atoms. Thus the

thermal de-Broglie wavelength, defined in Eq.(1.1), can turn comparable to the interparticle

distance at much higher temperatures.

The setup of the experiment is depicted in the top panel of Fig.4.6. In the experiment,

they use a CdTe-based semiconductor microcavity consisting of two Bragg mirrors, as we

described in Section 4.2. However, in their setup the excitons are additionally confined

along the cavity axis in CdTe quantum wells. The microcavity is in the strong coupling

regime. The in-plane dispersion of exciton, photon and upper and lower exciton-polariton

is shown in the bottom panel of Fig.4.6. A continuous-wave laser excites the microcavity

with a uniform excitation spot, as depicted in the middle panel of Fig.4.6. An important

point is that the excitation energy of the laser is much higher (around 1.768 eV) than the

energy of the ground state of the lower polariton branch (around 1.671 eV). Since the

pump energy is much higher than the exciton levels (see again Fig.4.2), it excites free

electrons/holes in the quantum well, which can relax, via phonon or polariton scattering,

towards the ground state of the lower polariton branch, see bottom panel of Fig.4.6. This

pump scheme thus injects lower exciton-polaritons in an incoherent way. The experimental

control parameter is the excitation power, which corresponds to the polariton density.

As observable, they can measure the far-field photon emission pattern, providing

information about the polariton density distribution along the lower polariton branch in

momentum space [17]. As discussed in Section 4.2, the in-plane wavevector k‖ is conserved

due to the translational invariance of the planar microcavity and thus allows to link the

photon emission angle, here denoted with θ, with the intracavity polariton dispersion

according to k‖ = ω/c sin θ. Furthermore they use real-space imaging and thus have access

to the spatially resolved emission. Note that in contrast to standard experiments with

ultracold atoms, these measurements are done in situ, using all the time the same sample.

A drawback is that, as it is a solid-state based setup, there is always disorder due to

impurities.

In the case of two-dimensional exciton-polaritons, it is not straightforward to define

Bose-Einstein condensation, because instead of having an infinite three dimensional gas of

noninteracting, infinitely living bosons without internal structure, the experiment deals

9Strictly speaking it is not standard BEC as will be discussed below.
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with a finite, two dimensional gas of interacting bosons, that possess an internal structure

and are short lived. However, the experiment shows the main features of Bose-Einstein

condensation and in particular macroscopic occupation of the ground state. In the article,

they present more evidence, for example a measurement indicating the build-up of long-

range spatial coherence across the cloud. The effects of interactions, dimensionality and

internal structure on the transition are discussed in the supplementary material of Ref. [18].

Altogether the experiment revealed questions about the nature of condensation under

conditions that deviate from the ideal Bose gas in three dimensions and thus opened up new

research directions. Some points could be clarified using existing theories, for example the

generalization of a BEC for interacting bosons (in three dimensions and infinitely living)

has been done by Penrose and Onsager [116]. The influence of reduced dimensionality

and confinement on condensation has also been discussed and is reviewed for example in

Ref. [117]. It turns out that, conceptually, the driven-dissipative nature of the system

changes the nature of the condensation transition with respect to the equilibrium case [19].

Thus recently a new theoretical treatment has been suggested by Diehl and coworkers [118],

using methods of out-of-equilibrium physics as the Kardar-Parisi-Zhang equation [119].

Figure 4.7.: Far-field emission at 5 K for three excitation intensities, from left to right: 0.55Pthr,
Pthr, 1.14Pthr, where Pthr is the threshold power for condensation. (Top panel)
Angular distribution of the emission with the emission intensity on the vertical axis.
For an increasing pump intensity a peak at the center (k‖ = 0) arises, indicating
the macroscopic population of the ground state. (Bottom panel) Energy-and angle
resolved emission intensity. The momentum distribution becomes more and more
narrow for higher pump intensity. The main contribution to the emission comes
from the ground state at k‖ = 0. The image is taken from Ref. [18].
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Fig.4.7 shows the far-field emission, measured at a temperature of T = 5 K for three

different pump intensities: one below the condensation threshold Pthr (left panels), one at

the threshold (middle panels) and one above the threshold (right panels). The top panel

of Fig.4.7 displays the angular distribution of the emission, with the emission intensity on

the vertical axis. The bottom panel contains the same data, but energy and angle-resolved.

Below the threshold the emission distribution is smooth around the center k‖ = 0. For

an increasing pump intensity a sharp peak at the center (k‖ = 0) arises (see Fig.4.7 top

panel) which comes along with a shrinking of the momentum distribution (see Fig.4.7

bottom panel). This indicates the macroscopic population of the ground state at k‖ = 0.

4.5. Exciton-polaritons and atoms in an optical

cavity: common concepts and differences

In this final introductory section we open a parenthesis to compare the two experimental

platforms that are at the basis of our theoretical studies in this thesis, namely ultracold

atoms in an optical cavity and exciton-polaritons in a semiconductor cavity.

Both experimental setups are based on the use of an optical Fabry-Pérot cavity. However,

the dimensions and characteristics are very different: A semiconductor microcavity, as

depicted in Fig.4.8 (a) has a typical thickness of several µm, including the Bragg mirrors,

which are planar (radius of curvature ∞) and are several mm long. The finesse is poor

with a typical value around Q = 104 [120]. The lifetime of the cavity photons is in the ps

regime corresponding to a decay rate κ ∼ 1 THz. The frequency of the cavity mode we

are going to use is ~ωc = 1680 meV, corresponding to ωc = 2π × 406 THz, which yields a

wavelength in the optical regime of λc = 740 nm. Thus the mode index (number of nodes)

is small.

The optical cavity used in the group of Tilmann Esslinger [41] is depicted in Fig.4.8 (b).

It has a high finesse of Q = 3.4×105. Its thickness is h = 178µm and the mirrors are curved

with a radius of curvature of R = 75 mm. The cavity decay time is κ = 2π × 1.3 MHz.

The wavelength of the mode they are typically working with is λc = 785 nm.

Furthermore, on both platforms light and matter is in the strong coupling regime, but

the reasons are different: In the case of the semiconductor microcavity the strong coupling

is due to the large electric-dipole moment [123], yielding a large Rabi frequency. In our

calculations we will use ~Ω = 6 meV, which corresponds to Ω = 2π × 1.45 THz.

In the case of ultracold atoms inside the cavity the vacuum Rabi coupling is g0 =
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(a)

(b)

Figure 4.8.: (a) Picture of a semiconductor microcavity used in the Quantum photonics group
of Ataç Imamoglu in Zürich. The figure is taken from Ref. [121]. (b) Picture of the
optical cavity used in the Quantum optics group of Tilmann Esslinger in Zürich.
The figure is taken from Ref. [122].
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2π × 10.6 MHz [41] and thus very small in contrast to the semiconductor case (even if it is

multiplied by the square of the number of atoms). Due to the high finesse of the cavity,

the photon decay rate is nevertheless much smaller than the light-matter coupling.

Note that both platforms operate in very different temperature regimes. The experiments

with ultracold atoms allow to achieve temperatures in the nano Kelvin regime, whereas

the semiconductor microcavity experiments are limited by the minimal temperature of

the cryostat. Furthermore there exist also semiconductors, as GaN and ZnO, which have

exciton-polaritons at room temperature.

82



Chapter 5

Derivation of the exciton-TO-phonon

interaction

In this chapter we derive the interaction between excitons and transverse optical phonons

in a bulk semiconductor, embedded in a semiconductor microcavity. In particular we

generalize the derivation of the electron-phonon interaction as shown in Ref. [105, 124],

taking into account the electron-hole interaction. We then focus our analysis on the case

of the exciton-phonon interaction given in Ref. [125, 126] for the case of TO phonons that

interact with bright excitons in a CdTe semiconductor microcavity.

The chapter is organized as follows: first we introduce microscopic details of the

semiconductor of our choice, such as crystal structure, symmetry, band structure and

lattice vibrations. In Section 5.2 we derive a general form of the electron-phonon interaction

Hamiltonian before we extend our description in Section 5.3 to the case of excitons. The

band structure and symmetry of CdTe will be taken into account in Section 5.4, in order to

estimate the exciton-TO-phonon coupling strength for a 1s exciton, as discussed in Section

5.5. In Section 5.6 we identify the excitons that are visible in the experiment due to their

strong coupling to cavity photons and transform the Hamiltonian in the corresponding

bright exciton basis.

5.1. Microscopic details of CdTe

We consider Cadmium Telluride (CdTe), a semiconductor of type II-VI with zinc-blende

structure [104]. Fig.5.1 (a) shows a zinc-blende (non primitive) unit cell. The length of

the unit cell is the lattice constant a, which amounts to 6.48Å for CdTe. The zinc-blende

structure consists of two face-centered cubic (fcc) lattices that are shifted by one fourth
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(a) (b)

Figure 5.1.: (a) Sketch of one possible unit cell of the crystal structure of CdTe: The zinc-blende
structure consists of two face-centered cubic (fcc) lattices that are shifted by one
fourth of the diagonal. Every atom is surrounded by four atoms of the other
species. They form a tetrahedron which is the primitive cell or Wigner-Seitz cell
of the zinc-blende structure. (b) Sketch of the reciprocal lattice of the fcc lattice
with the first Brillouin zone and special high-symmetry points and high-symmetry
lines. For our purpose, the center of the Brillouin zone, denoted by Γ, will be of
special importance. The images are taken from Ref. [104].

of the diagonal. It does not display inversion symmetry [1]. Each unit cell contains four

Cd and four Te atoms. Every atom is surrounded by four atoms of the other species.

They form a tetrahedron which is the primitive cell or Wigner-Seitz cell of the zinc-blende

structure. The first Brillouin zone is the Wigner-Seitz cell of the reciprocal lattice [1] and

it is depicted in Fig.5.1 (b). The center of the Brillouin zone k = 0 is denoted by Γ. It

will be of special importance for us in the following, since the processes we will describe

will always happen close to the Γ point. We will now introduce some elements of group

theory that will simplify the calculation of matrix elements in the following.

5.1.1. Brief introduction on group theory

This subsection is based on Ref. [104,106]. A detailed discussion of group theory in solid

state physics can also be found in Ref. [124].

Group theory is a mathematical tool for studying the effect of symmetry operations on

an object. It is used in solid-state physics to classify wavefunctions in crystals according

to their transformation properties under symmetry operations [104] or to derive selection

rules. Correspondingly, the first step is to identify the crystal’s structure and the possible

symmetry operation that leave the crystal unchanged. CdTe has zinc-blende structure and
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its space group1 is T 2
d (in Schönflies notation), which is identical to the symmetry group of

tetrahedron, denoted by Td [104]. An alternative notation is F 4̄3m (international notation).

The symmetry group contains 24 symmetry operations: identity (E), eight rotations of

120◦ (C3), three rotations of 180◦ (C2), six rotations of 90◦ followed by reflections (S4),

and six reflections (σ). These symmetry operations can be represented using matrices.

The matrix representation of a symmetry operation is not unique but depends on the

basis choice. The representation of a symmetry group is the group of matrices associated

with the elements of the symmetry group [106]. If two representations can be linked via a

similarity transformation they are equivalent. A representation is called reducible if all

matrices that constitute the representation can be brought to the form of a block-diagonal

matrix by application of a similarity transformation. Correspondingly for an irreducible

representation it is not possible to find a similarity transformation that transforms all

matrices associated with the elements of the group to block-diagonal form [106]. In order

to specify a representation, it is convenient to use its trace, as it is unique, and doesn’t

change under a similarity transformation. The trace of a representation is called character

and is denoted with χ. Equivalent representations have the same character. Even if the

complete matrices, specifying a representation, contain more information, it is sufficient for

many symmetry considerations to determine the number of irreducible representations and

their characters. This information is displayed in a character table, that can be calculated

using several rules that are specified in Ref. [104,106].

The symmetry properties of a crystal are helpful for the derivation of the band structure

because the irreducible representations of the crystal determine how a wavefunction with

wavevector k at a given point in the zone transforms under a symmetry operation. The

center of the Brillouin zone is of special interest. Its irreducible representations are labeled

with Γ and a subscript2. The irreducible representations come along with different possible

basis functions, i.e. functions that transform according to the corresponding irreducible

representation, e.g. a scalar transforms under the symmetry operations of T 2
d according

to Γ1 because it stays invariant under all symmetry operations of T 2
d . Table 5.1 shows

the character table and possible basis functions of the T 2
d group [104]. For our purposes

the most important irreducible representations are Γ1 and Γ4, because in the zinc-blende

structured crystal CdTe we consider, scalar functions transform according to Γ1 and vectors

according to Γ4.

1The group of translational and rotational operations that leave a zinc-blende structure unchanged.
2Note that there are many different notations. We use the notation of Ref. [104]. An overview over

different notations can be found for example in Ref. [127].
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{E} {3C2} {6S4} {6σ} {8C3} Basis functions
Γ1 1 1 1 1 1 constant or xyz
Γ2 1 1 -1 -1 1 x4(y2 − z2) + y4(z2 − x2) + z4(x2 − y2)
Γ3 2 2 0 0 -1 {(x2 − y2), z2 − 1

2
(x2 + y2)}

Γ4 3 -1 -1 1 0 {x, y, z}
Γ5 3 -1 1 -1 0 {x(y2 − z2), y(z2 − x2), z(x2 − y2)}

Table 5.1.: Character table and basis functions of the T 2
d group, without spin, taken from

Ref. [104].

The symmetry properties of a crystal lead to restrictions on matrix elements and thus to

selection rules, that are summarized in the matrix element theorem [104]: Consider a matrix

element M = 〈Ψ2|p |Ψ1〉, between the momentum operator p and two wavefunctions |Ψ1〉
and |Ψ2〉. The matrix element M is always zero, except if the direct product of the

irreducible representations of p and |Ψ1〉 contains the irreducible representation according

to which |Ψ2〉 transforms. Assume for example that |Ψ1〉 and |Ψ2〉 are wavefunctions in

CdTe and both transform like a scalar, according to Γ1. The vector p transforms like Γ4.

The direct product is

Γ4 ⊗ Γ1 = Γ4 (5.1)

and thus doesn’t contain an irreducible representation of |Ψ2〉. The matrix element is zero.

Instead if |Ψ1〉 and |Ψ2〉 both transform like a vector, according to Γ4, the matrix element

is not zero, because

Γ4 ⊗ Γ4 = Γ4 ⊕ Γ5 ⊕ Γ3 ⊕ Γ1. (5.2)

Note that the decomposition of the direct products into sums can be obtained with the

help of the character table, because the number of times the irreducible representation

Dµ is contained in the product between the two irreducible representations Dα and Dν is

given by [106]

c(µ, α, ν) =
1

h

∑
R

χµ(R)χα(R)χν(R). (5.3)

Here h is the number of elements in the symmetry group and the sum goes over all

symmetry operations R. Thus e.g. the number of times the irreducible Γ4 is contained in

86



5.1. Microscopic details of CdTe

Γ4 ⊗ Γ1 for T 2
d is given by

c(Γ4,Γ4,Γ1) =
1

24
(1 · 3 · 3︸ ︷︷ ︸
×1,fromE

+ 1 · (−1) · (−1)︸ ︷︷ ︸
×3,fromC2

+ 1 · (−1) · (−1)︸ ︷︷ ︸
×6,fromS4

+ 1 · (1) · (1)︸ ︷︷ ︸
×6,fromσ

+ 1 · 0 · 0︸ ︷︷ ︸
×8,fromC3

)

= 1. (5.4)

Up to now we didn’t consider the electron’s spin. Adding the spin leads to additional

symmetry operations. Symmetry groups including the spin are called double groups [104]

and we will discuss them briefly in subsection 5.1.2 below.

5.1.2. Band structure of CdTe

This subsection is based on Ref. [104, 127]. We want to understand the band structure of

CdTe. There are different techniques to calculate the band structure of semiconductors [106].

A prominent approach is e.g. the pseudopotential method which assumes that the electrons

in a semiconductor are nearly free and can be described by plane waves. We will follow the

tight-binding or linear combination of atomic orbitals (LCAO) approach to gain an intuition

about the formation principle of a semiconductor band structure. The LCAO approach

assumes that the electrons in a semiconductor are tightly bound to the corresponding

nucleus and that the electronic wavefunctions in a solid are build by combinations of

atomic orbitals.

Figure 5.2.: Atomic s and p orbitals overlap and form bonding and antibonding orbitals. In a
solid the bonding and antibonding orbitals broaden and form bands. The empty
antibonding orbitals lead to the formation of the conduction bands whereas the
filled bonding orbitals yield the valence bands. The highest valence band is p-like
and the lowest conduction band s-like. The image is taken from Ref. [104].
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Let us consider two atoms of different species that build the basis of a semiconductor

of zinc-blende structure3. Their valence electrons occupy the atomic s and p orbitals: in

the case of CdTe, Cd possesses two valence electrons in the 5s shell and Te two valence

electrons in the 5s shell and four in the 5p shell [127]. If the two atoms are brought

together such that their distance is of the order of the lattice constant in solids, their

atomic wavefunctions of the same symmetry overlap and build respectively two new orbitals

that are referred to as bonding orbital and antibonding orbital. As the two atoms are of

different species the electron distribution along the bond is not symmetric. One atoms

’pulls’ stronger than the other. The bond is heteropolar.

The bonding orbitals contain electrons, the antibonding orbitals are empty. Note that

the new orbitals are energetically shifted with respect to the original ones, as depicted

in Fig.5.2: The bonding orbitals have lower energy than the antibonding ones, thus the

bonding orbital, build up by two overlapping p orbitals, has a lower energy than the

antibonding orbital, build up by two overlapping s orbitals. We can generalize the idea of

bonding and antibonding orbitals from the case of two atoms to a crystal, if we assume

that in a crystal only the nearest neighbor’s atom orbitals can overlap. The combination of

all these overlapping atomic orbitals in a solid will form bands, as sketched in Fig.5.2. The

filled bonding orbitals become the valence bands and the empty antibonding orbitals the

conduction bands. The bands of interest are those around the band gap. We see that the

conduction band with the lowest energy comes form overlapping s orbitals. It’s symmetry

is also s-like, which in the language of group theory, means that it transforms according

to the irreducible representation Γ1. In analogy to the atomic orbitals and to provide

an intuition to the symmetry predictions of the group theory, this conduction band is

associated with a pseudo-orbital momentum L = 0. The valence band with the highest

energy comes from overlapping p orbitals. Thus the valence band wavefunctions are p-like,

which corresponds to the irreducible representation Γ4. This valence band is associated

with a pseudo-orbital momentum L = 1. However, the crystal is not spherically symmetric

as it is the case for a single atom. So there are corrections to the purely L = 1-like behavior

of the wavefunctions, as we will see in more details in Section 5.4.

We now want to include the spin of the electron, which is S = 1/24. In the language of

group theory this means that we need to consider double groups [104,106]; in particular

there are new irreducible representations: the irreducible representation describing a scalar

3e.g. Cd and Te, but this treatment also applies to other tetrahedrally bonded semiconductors.
4In the band structure calculation the effect of the spin is included by taking into account the spin-orbit

coupling.
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Figure 5.3.: Sketch of the band structure of a general direct band gap semiconductor with
zinc-blende structure. Without the spin the symmetry of the valence band (VB)
corresponds to the irreducible representation Γ4. It is p-like, i.e. by analogy to
atomic physics, the pseudo-orbital momentum is L = 0. The conduction band
(CB) has Γ1 symmetry and is s-like. Including the spin the symmetry groups are
given by the double groups [104]: Γ1 is replaced by Γ6 and Γ4 by Γ7 and Γ8. The
valence band is split in heavy (hh) and light hole (lh) band and the split-off band
(so). The image is inspired by Ref. [127].
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(or a s-like function) Γ1 is replaced by Γ6. The irreducible representation of a vector Γ4

splits into Γ7 and Γ8, thus including the spin leads to a splitting of the valence band. In

order to better understand the predictions of group theory it is helpful to introduce the

total pseudo-angular momentum J , again in analogy to atomic physics. Thus we keep in

mind that the total pseudo-angular momentum is just an mnemonic and the ’clean’ way is

to use group theory [127].

For an electron of spin S = 1/2 in the conduction band with pseudo-orbital momentum

L = 0 the resulting total pseudo-angular momentum is J = 1/2. The valence band is split

in states with J = 3/2, corresponding to the representation Γ8 and the so-called split-off

band with J = 1/2, which corresponds to the representation Γ7. The states with J = 3/2

split again in heavy hole (hh) and light hole (lh) band: the heavy hole band is the band

with a total angular momentum projection of ±3/2, the light hole band has the total

angular momentum projection of ±1/2. In Section 5.4 we will introduce and discuss the

eigenstates of an electron in the conduction band and of a hole in a valence band.

Fig.5.3 summarizes the symmetry of conduction and valence band states with and

without spin for a general direct band gap semiconductor of zinc-blende structure. The

band structure of CdTe is illustrated in Fig.5.4.

Figure 5.4.: Band structure of CdTe, calculated by the pseudopotential method with spin-orbit
effects included. The image is taken from Ref. [128].

5.1.3. Phonons

A lattice vibration is a displacement of the atoms forming a crystal from their equilibrium

positions. The dimensionality of the crystal and the number of basis atoms determine the
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number of possible normal mode branches of the lattice. The energy of the normal modes

is quantized and can be written as the sum over harmonic oscillators [105,129]

Ĥvib =
∑
q,j

~ωq,j(n̂q,j +
1

2
), (5.5)

with wavevector q and frequency ωq,j, where j denotes the corresponding branch and n̂q,j

is the excitation number operator of the normal mode. The quantized lattice vibrations

are elementary excitations, called phonons [105]. A detailed introduction to phonons can

be found in Ref. [105,129].

As we consider a three dimensional crystal with a basis formed by two atoms (Cd and

Te), there are six phonon branches [129]: three optical and three acoustical branches,

where respectively two branches are transverse and one is longitudinal. In Appendix C we

show the derivation of optical and acoustical branches in one dimension for a crystal with

a basis of two atoms. Fig.5.5 shows exemplarily the phonon dispersion relations for ZnTe,

another II-VI semiconductor of zinc blende structure. Here LO and TO correspond to

the longitudinal and transversal optical phonon branch respectively. LA and TA denote

longitudinal and transversal acoustical branch. At the Γ point the transverse branches

are degenerate. In Section 4.3 we introduced a polariton as a mixed quasiparticle that is

Figure 5.5.: Phonon dispersion relations for ZnTe. The image is taken from Ref. [130].

formed by the strong coupling between a photon and a matter excitation [17]. In the same

way as excitons, transverse optical phonons can strongly couple to photons5 and form

5Note that only optical phonons can couple to light because in contrast to acoustical phonons they have
an oscillating dipole.
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phonon-polaritons [1,131]. In analogy to Hopfield’s Hamiltonian [113], the Hamiltonian

describing the strong photon-TO phonon coupling in the rotating-wave approximation can

be written as

Ĥphon-THz =
∑
q

~ωTOb̂†q,TOb̂q,TO + ~ωir(q)l̂†q l̂q + ~Ωir(b̂
†
q,TO l̂q + l̂†q b̂q,TO), (5.6)

where ωTO is the frequency of the TO phonon and Ωir the Rabi frequency, neglecting the

wavevector dependence. In the case of CdTe we will consider ~ωTO = 18 meV [104,130]

and ~Ωir = 5.575 meV [130]. The THz photon dispersion relation is given by

~ωir(q) = ~cmed,ir|q|, (5.7)

where cmed,ir denotes the speed of light in the semiconductor at infrared frequencies. The

bosonic operators b̂†q,TO and l̂†q create a TO phonon and a THz photon with momentum q

respectively. The Hamiltonian (5.6) can be diagonalized using Hopfield’s transformation

to the TO phonons/THz photons subspace(
ŵq

ẑq

)
=

(
−Nq Tq

Tq Nq

)(
b̂q,TO

l̂q

)
, (5.8)

where ŵ†q and ẑ†q are the bosonic creation operator of lower and upper phonon-polariton

states respectively. Nq and Tq are the Hopfield coefficients, given by

Tq =

√√
4Ω2

ir + ∆p(q)2 −∆p(q)

2
√

4Ω2
ir + ∆p(q)2

, Nq =

√√
4Ω2

ir + ∆p(q)2 + ∆p(q)

2
√

4Ω2
ir + ∆p(q)2

, (5.9)

with the detuning between TO phonon and THz photons ∆p(q) = ωTO − ωir(q) and

T 2
q + N2

q = 1. In analogy to the exciton-polaritons, N2
q and T 2

q are the phononic and

THz photonic fraction, defined with respect to the lower phonon-polariton branch. The

frequencies of upper and lower phonon-polariton branch read

ωz(q) =
1

2

(
ωir(q) + ωTO +

√
4Ω2

ir + ∆p(q)2

)
, (5.10)

ωw(q) =
1

2

(
ωir(q) + ωTO −

√
4Ω2

ir + ∆p(q)2

)
. (5.11)

Fig.5.6 shows a sketch of the dispersion relation of THz photon (ωir), TO phonon (ωTO)
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5.1. Microscopic details of CdTe

and upper and lower phonon-polariton, given by ωz and ωw respectively, as defined in

equations (5.10) and (5.11). Notice that ωTO is in the THz regime (~ωTO = 18 meV →
ωTO = 2π × 4.4 THz), hence both the upper branch at small |q| and the lower branch at

large |q| belong to the sought THz regime.

Figure 5.6.: Sketch of the dispersion relation of THz photon (ωir), TO phonon (ωTO) and
upper and lower phonon-polariton, given by ωz and ωw respectively, as defined in
equations (5.10) and (5.11). For the sake of simplicity the TO-LO splitting is not
shown.

Besides the coupling to photons, phonons can also couple to electrons in the crystal

via a multitude of different coupling mechanisms. A detailed discussion of the different

mechanisms can be found in Ref. [104,124]. For the purpose of our frequency conversion

scheme, we are interested in an interaction between TO phonons and excitons, all other

interactions between lattice vibrations and electrons do not serve our purpose. We will

indirectly take them into account by introducing a decay rate for excitons and TO phonons.

In the following section we will derive the Hamiltonian describing the interaction

between excitons and TO phonons. This interaction occurs via the so-called deformation

potential [104], because TO phonons only influence the bond lengths and angles in a

primitive cell. Thus they change the potential landscape an electron is experiencing and

accordingly deform the electron’s energy bands. The deformation potential interaction

is the only type of interaction between excitons and TO phonons since, in contrast to

acoustical phonons, long-wavelength (small q) optical phonons do not lead to a macroscopic

distortion of the lattice and thus do not create macroscopic strains [104]. Furthermore,
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unlike LO phonons, TO phonons don’t alter the charge density distribution within the

primitive cell and thus do not couple via a Fröhlich type of mechanism, which is based on

Coulomb interactions due to net charge displacement [105].

5.2. Electron-phonon interaction

We consider a crystal consisting of N Wigner-Seitz cells and N valence electrons per

valence band. We denote by Vα(xp−Rn,α) the interaction potential between an electron at

position xp and an ion of type α at position Rn,α = Xn +Rα + unα, with Xn a reference

point in the nth Wigner-Seitz cell and Rα indicating the equilibrium position of each ion

inside the cell, as depicted in Fig.5.7. The semiconductor of our choice is CdTe, thus we

consider a basis with two atoms α = 1, 2.

Figure 5.7.: Sketch of one possible unit cell of the crystal structure of CdTe: The zinc-blende
structure consists of two face-centered cubic (fcc) lattices that are shifted by one
fourth of the diagonal. Every atom is surrounded by four atoms of the other
species. They form a tetrahedron which is the primitive cell or Wigner-Seitz cell
of the zinc-blende structure. Xn is a reference point in the nth Wigner-Seitz cell.
Rα and unα indicate the equilibrium positions and the displacements of each ion
inside the cell. The image is adapted from Ref. [104].

For small ionic displacements unα from their equilibrium positions, the potential the
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5.2. Electron-phonon interaction

electron is feeling can be expanded in powers of the deviation up to first order

Vα(xp −Rn,α) = Vα(xp −Xn −Rα)− un,α ·∇Vα(xp −Xn −Rα). (5.12)

The general Hamiltonian of the electron-phonon interaction has the form [105]

Hel−phon = −
N∑
n=1

2∑
α=1

N∑
p=1

un,α ·∇Vα(xp −Xn −Rα), (5.13)

where p denotes the sum over the electron’s positions.

We introduce the center-of-mass coordinate Cn and the relative coordinate urel,n of one

Wigner-Seitz cell [124]

Cn =
1

M1 +M2

(M1un,1 +M2un,2) (5.14)

urel,n = un,1 − un,2, (5.15)

with M1 and M2 the masses of the two basis atoms. It follows for the Hamiltonian

Hel−phon =−
N∑
n=1

N∑
p=1

Cn · (∇V1(xp −Xn −R1) + ∇V2(xp −Xn −R2))

−
N∑
n=1

N∑
p=1

urel,n

a
· VDP (xp −Xn), (5.16)

where we defined the deformation potential [124]

VDP (xp −Xn) = a

[
M2

M1 +M2

∇V1(xp −Xn −R1)− M1

M1 +M2

∇V2(xp −Xn −R2)

]
(5.17)

and a corresponds to the lattice constant. We want to write the interaction Hamiltonian in

second quantization and thus introduce normal modes for the displacement using periodic

boundary conditions [105]

unα =
6∑
j=1

∑
q

(
~

2NMαωq,j

)1/2

eiq·Xnεα,j(q)
(
b̂†−q,j + b̂q,j

)
, (5.18)

with b̂q,j and b̂†q,j the bosonic creation and annihilation operators of a phonon in branch j,
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with wavevector q

[b̂q,i, b̂
†
−q′,j] = δi,jδq,q′ .

The phonon frequency is ωq,j and the polarization vector of the phonon is given by εα,j(q),

with the normalization

2∑
α=1

∑
m=x,y,z

ε
∗(m)
α,j (q)ε

(m)
α,j′(q) = δj,j′ . (5.19)

For long-wavelength optical phonons the center of mass of the cell is constant and so

the corresponding displacement Cn is zero, because

Cn ∝
1

M1 +M2

(√
M1ε1,j +

√
M2ε2,j

)
(5.20)

and for optical phonons with small q [129]√
M1ε1,O = −

√
M2ε2,O,

as we show in Appendix C. Therefore only the relative displacement of the two sublattices

is important [124]. In addition, for optical phonons, we choose the normalization [132]

ε1,O = εO

(
M2

M1 +M2

)1/2

and ε2,O = −εO

(
M1

M1 +M2

)1/2

, (5.21)

which leads with Eq.(5.19) to |εO|2 = 1. Thus the expression of urel,n using normal

modes can be simplified with the help of 1√
M1
ε1,O − 1√

M2
ε2,O = 1√

µ
εO, with reduced mass

µ = M1M2

M1+M2
. From now on we will consider only one transverse optical phonon branch and

thus the relative displacement reads

urel,n =
∑
q

(
~

2Nµωq,TO

)1/2

eiq·XnεTO(q)
(
b̂†−q,TO + b̂q,TO

)
. (5.22)

Fig.5.8 shows a sketch of a TO phonon in CdTe. The two ion species oscillate with different

phase. The amplitude of the oscillation is perpendicular to the propagation direction.
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Figure 5.8.: Sketch of a TO phonon in CdTe. The two ion species oscillate with a π phase shift
(optical phonon). Furthermore the amplitude of the oscillation is perpendicular to
the propagation direction (transverse phonon). The displacement vectors of the
two ions in Wigner-Seitz cell n are denoted by un,1 and un,2.

5.3. Exciton-phonon interaction

We now specialize the electron-phonon Hamiltonian to the case of electrons weakly bound

to holes to form Wannier excitons. The Hamiltonian of the exciton/TO-phonon interaction

is given by [125,126]

Ĥexc−TO = −
∑

q,K,K′

λ,λ′,
v,v′,c,c′

Gq,TO(λKvc, λ′K ′v′c′)ŝ†λ,K(v, c)ŝλ′,K′(v
′, c′)

(
b̂†−q,TO + b̂q,TO

)
,

(5.23)

with

Gq,TO(λKvc, λ′K ′v′c′) =
N∑
n=1

(
~

2Nµωq,TOa2

)1/2

eiq·XnεTO · 〈λ,K, v, c|VDP |λ′,K ′, v′, c′〉 ,

(5.24)

where ŝ†K,λ(c, v) [ŝK′,λ′(v
′, c′)] creates [annihilates] an exciton with wavevector K [K ′]

of the center-of-mass motion and inner quantum number λ [λ′], where the electron is

in the conduction band c [c′] and the hole in valence band v [v′]. In our treatment we
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neglect the internal structure of the exciton and assume that an exciton is a boson, thus

[ŝK′,λ′(v
′, c′), ŝ†K,λ(v, c)] = δλ,λ′δK,K′δv,v′δc,c′ . In Appendix D we show the derivation of

the Hamiltonian (5.23) in detail starting with the second quantization of the deformation

potential VDP . We recall (see Section 4.1) that in position representation the exciton state

|λ′,K ′, v′, c′〉 is described by the many-body wavefunction [110]

Ψλ′,K′,v′,c′(x1,x2, ...xN) =
1√
N

∑
m′,l′

eiK
′·Rm′,l′

com φλ′,v′,c′(Rl′)Av′,c′(m
′,m′ + l′), (5.25)

which is a generalization of Eq.(4.9) for several possible valence and conduction bands.

Rm,l
com is the center of mass of the electron-hole pair and defined in Eq.(4.10). The relative

distance between electron and hole is denoted with Rl′ = Rm′+l′ − Rm′ . φλ′,v′,c′(Rl′)

describes the relative wavefunction of electron and hole, determined solving the hydrogen-

like Schrödinger equation for the Coulomb interaction given in Eq.(4.4). Av′,c′(m
′,m′ + l′)

is the Slater determinant introduced in Section 4.1, describing the configuration in which

a valence electron at site m′ is excited from valence band v′ into the conduction band c′

at site m′ + l′. The single-particle wavefunctions in the Slater determinant are given by

Wannier functions [62]. For the following, we regroup the terms in the exciton wavefunction

that depend on the relative motion and thus we will work with Uλ′,K′,v′,c′(Rl′) as defined

in Eq.(4.12).

We proceed to evaluate the matrix element Gq,TO(λKvc, λ′K ′v′c′). The deformation

potential is a single-particle operator for the electrons. Using Eq.(5.25), we show in

Appendix D that it couples two excitonic states that differ either in their hole or in their

electron state, according to

〈λ,K, v, c|VDP |λ′,K ′, v′, c′〉

=
1

N

∑
m
l,l′

U∗v,c,λ,K(Rl)Uv′,c′,λ′,K′(Rl′)×

[
−eiK′·(Rm+l+−Rl′ )e−iK·Rmδc,c′

∫
V

w∗v′,Rm+l−l′
(x)VDP (x−Xn)wv,Rm(x) d3x

+ei(K
′−K)·Rmδv,v′

∫
V

w∗c,Rm+l
(x)VDP (x−Xn)wc′,Rm+l′

(x) d3x

]
, (5.26)

with V being the volume of the crystal. We transform the Wannier functions into Bloch
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functions [62]

wc,Rm(x) =
1√
N

∑
k

ψc,k(x)e−ik·Rm , (5.27)

which corresponds to the three dimensional version of Eq.(1.13). The Bloch’s functions

are normalized as
∫
V
ψ∗c′,k′(x)ψc,k(x) d3x = δc,c′δk,k′ . We perform the sum over the hole

position m which leads to

〈λ,K, v, c|VDP |λ′,K ′, v′, c′〉

=
1

N

∑
l,l′,k

U∗v,c,λ,K(Rl)Uv′,c′,λ′,K′(Rl′)×[
−ei(k+K)·(Rl−Rl′ )δc,c′

∫
V

ψ∗v′,k+K−K′(x)VDP (x−Xn)ψv,k(x) d3x

+eik·(Rl−Rl′ )ei(K−K
′)·Rlδv,v′

∫
V

ψ∗c,k+K−K′(x)VDP (x−Xn)ψc′,k(x) d3x

]
.

We now substitute x′ = x−Xn and use the definition of the Bloch functions

ψv,k(x) =
eix·k√
V
uv,k(x), (5.28)

where uv,k(x) is a periodic, dimensionless function with the periodicity of the lattice

uv,k(x+Xn) = uv,k(x), whose symmetries depend on the symmetry group of the crystal

and of the point in the Brillouin zone k. The normalization of the lattice periodic function

has the form ∫
Ω0

u∗c′,k(x)uc,k(x) d3x = Ω0δc,c′ , (5.29)

where Ω0 denotes the volume of the primitive cell and V = NΩ0.

The sum over the ionic position n in Eq.(5.24) can then be explicitly performed, recalling

that
∑N

n=1 e
iXn·(k+q−k−K+K′) = N · δq+Krec,K−K′ where Krec is a vector of the reciprocal
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lattice. We only consider normal processes [105,124] with Krec = 0. It follows

Ĥexc−TO = −
∑
q,k,
K,K′

∑
l,l′,λ,λ′,
v,v′,c,c′

(
~

2Nµωq,TOa2

)1/2

U∗v,c,λ,K(Rl)Uv′,c′,λ′,K′(Rl′)εTO·

[
−ei(K+k)·(Rl−Rl′ )δc,c′Θv′,v(k +K −K ′,k)

+eik·(Rl−Rl′ )ei(K−K
′)·Rlδv,v′Θc,c′(k +K −K ′,k)

]
×

ŝ†λ,K(v, c)ŝλ′,K′(v
′, c′)

(
b̂†−q,TO + b̂q,TO

)
δq,K−K′ , (5.30)

with

Θn′,n(k +K −K ′,k) =

∫
V

ψ∗n′,k+K−K′(x
′)VDP (x′) ψn,k(x′) d3x′. (5.31)

Since the integrals in Eq.(5.31) only depend on the difference between the wavevectors of

the two involved Bloch functions [110], i.e. Θn′,n(k +K −K ′,k) = Θn′,n(K −K ′), we

can sum over k yielding

Ĥexc−TO = −
∑

q,K,K′

λ,λ′,
v,v′,c,c′

Gq,TO(λKvc, λ′K ′v′c′)ŝ†λ,K(v, c)ŝλ′,K′(v
′, c′)

(
b̂†−q,TO + b̂q,TO

)
,

(5.32)

with

Gq,TO(λKvc, λ′K ′v′c′) =

(
~N

2µωq,TOa2

)1/2

εTO · [−qh(λKcv, λ′K ′v′c) Θv′,v(K −K ′)δc,c′

+qe(λKcv, λ′K ′v′c) Θc,c′(K −K ′)δv,v′ ] δq,K−K′ . (5.33)

Here, using Eq.(4.12), we have set [110]

qe(λKcv, λ′K ′v′c) =
∑
l

e
i

mh
me+mh

Rl·(K−K′)φ∗λ,v,c(Rl)φλ′,v,c′(Rl),

qh(λKcv, λ′K ′v′c) =
∑
l

e
−i me

me+mh
Rl·(K−K′)φ∗λ,v,c(Rl)φλ′,v′,c(Rl). (5.34)

In order to obtain an estimate for the coupling constant ~gxb, for long-wavelength

optical phonons we can evaluate the coupling constant Gq,TO(λKvc, λ′K ′v′c′) setting
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q = K −K ′ ' 0. This leads us to evaluate

Θn,n′(0) =
1

V

∫
V

u∗n,0(x′)VDP (x′) un′,0(x′) d3x′ ≡ 〈n|VDP |n′〉 . (5.35)

5.4. Symmetry properties of the deformation

potential matrix elements

In order to estimate the matrix elements 〈v′|VDP |v〉 and 〈c|VDP |c′〉 we perform some

symmetry considerations. We introduced the band structure of CdTe in subsection 5.1.2.

We only consider the lowest energy conduction band and recall that, without spin, this

conduction band is non-degenerate and has Γ1 symmetry, i.e., in terms of atomic orbitals,

it is s-like. The highest energy valence band is doubly degenerate at the Γ point, splitting

into light- and heavy-hole bands, and it transforms under symmetry operations of the

crystal according to Γ4 symmetry, i.e. p-like. We will neglect in our analysis the split-off

band since it is energetically far (≈ 0.92 eV [104]) from the heavy- and light-hole doublet.

The deformation potential VDP transforms like a vector, i.e. it belongs also to the Γ4

irreducible representation [104,133]. Note that, in general, the symmetry of the phonon

determines the symmetry of the deformation potential operator VDP [134], because the

Hamiltonian, which is the product between lattice displacement and deformation potential,

must be a scalar function.

From the matrix element theorem, that we introduced in subsection 5.1.1, it follows that

〈c|VDP |c′〉 = 0,

and thus only the holes are interacting with long wavelength optical phonons via the

deformation potential interaction. Intuitively this can be seen as the operator VDP does

not couple two states of the same parity.

We show in Appendix E that, at K −K ′ = 0, the expression of the matrix elements

〈v′|VDP |v〉 in the Bloch and Luttinger-Kohn basis [124,135] coincide. In analogy with the

literature [124,132], we choose to work in the Luttinger-Kohn basis [135]. This basis is

more convenient because it is the eigenbasis of the total pseudo-angular momentum J that

we introduced in subsection 5.1.2. The eigenfunctions describing the different possible
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valence band states read

|Jhole,mJ,hole〉 =

∣∣∣∣32 ,+3

2

〉
≡
∣∣∣∣ 1√

2
(X + iY ) ↑

〉
≡
∣∣hh+

〉
∣∣∣∣32 ,+1

2

〉
≡

∣∣∣∣∣ i√6
(X + iY ) ↓ −

√
2

3
iZ ↑

〉
≡
∣∣lh+

〉
∣∣∣∣32 ,−1

2

〉
≡

∣∣∣∣∣ 1√
6

(X − iY ) ↑ +

√
2

3
Z ↓

〉
≡
∣∣lh−〉∣∣∣∣32 ,−3

2

〉
≡
∣∣∣∣ i√2

(X − iY ) ↓
〉
≡
∣∣hh−〉 . (5.36)

Even if only holes interact with TO phonons via the deformation potential, we need to keep

in mind the state of the electron. The eigenstates of an electron in the s-like conduction

band are given by

|Jelectron,mJ,electron〉 =

∣∣∣∣12 , 1

2

〉
≡ |S ↑〉∣∣∣∣12 ,−1

2

〉
≡ |S ↓〉 . (5.37)

Here we introduced Jhole/electron and mJ,hole/electron, that denote the eigenvalues of the total

pseudo-angular momentum of the hole/electron and its projection to the quantization axis.

The coordinate representations of the states |S〉 , |X〉 , |Y 〉 , |Z〉 correspond to the Bloch

functions, as defined in Eq.(5.28), for k = 0 [124, 127]. The coordinate representations

of the states |S〉 , |X〉 , |Y 〉 , |Z〉 are related to cubic harmonics [127] in a similar way as

x, y, z are related to spherical harmonics6. Cubic harmonics are symmetry-adapted linear

combinations of spherical harmonics [106] and take into account the fact that the crystal

potential is not spherically symmetric.

We only consider excitons which can couple to light, i.e. excitons where

mJ,hole +mJ,electron = ±1.

This corresponds to the states |hh+〉 |S ↓〉 , |lh+〉 |S ↑〉 , |lh−〉 |S ↓〉 , |hh−〉 |S ↑〉.

We detail exemplarily the calculation of the matrix element of the deformation potential

6For example Yl=1,m=1 = x+iy√
2

.
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between hh+ and lh− state∑
m=x,y,z

ε
(m)
TO 〈S ↓|

〈
hh+

∣∣V (m)
DP

∣∣lh−〉 |S ↓〉
=
∑

m=x,y,z

ε
(m)
TO

〈
1√
2

(X − iY ) ↑
∣∣∣∣V (m)

DP

∣∣∣∣∣ 1√
6

(X − iY ) ↑ +

√
2

3
Z ↓

〉

=
−i√
12
ε

(z)
TO

(
〈X|V (z)

DP |Y 〉+ 〈Y |V (z)
DP |X〉

)
=− i d0

2N
ε

(z)
TO ≡ j∗, (5.38)

where we have set 〈X|V (z)
DP |Y 〉 = 〈Y |V (z)

DP |X〉 = d0/N
√

3/2, with d0 the deformation

potential constant used in Ref. [124]. The factor 1/N follows from the fact that the

deformation potential constant is defined as the average of the deformation potential over

all Wigner-Seitz cells of the crystal.

The matrix element 〈X|V (z)
DP |Y 〉 would vanish for pure p−wave spherical harmonics.

However, in the case of zinc-blende crystals, the cubic harmonics made with |X〉 , |Y 〉 , |Z〉
are a superposition of spherical harmonics of p-type and of d- type7 [136]. In coordinate

representation they can be written as

〈x |X〉 ∼ x+ εyz 〈x |Y 〉 ∼ y + εzx 〈x |Z〉 ∼ z + εxy. (5.39)

This leads to nonvanishing values for the matrix element 〈X|V (z)
DP |Y 〉, because

〈X|V (z)
DP |Y 〉 ∼

∫
(εyz + x)z(εzx + y) ∼

∫
εx2z2 + εy2z2 6= 0. Intuitively the ε takes into

account that in the Td crystal structure, one ion is pulling stronger on the electronic

orbitals and thus deforms them stronger than the other ion. This is also the reason for

the noncentrosymmetry.

Note that the matrix elements of type 〈X|V (z)
DP |Y 〉 are even nonzero in the case of

the centrosymmetric diamond structure (Oh symmetry group), but the reasoning is

different [124,133]: In the case of the diamond lattice, the optical phonon transforms at

the point Γ as a pseudovector (symmetry Γ25′). The valence band has symmetry Γ25′ as

well, thus the matrix element reads 〈X|V (z)
DP |Y 〉 ∼

∫
yz × xy × xz 6= 0.

Let’s come back to CdTe: we want to summarize the results for the calculation of the

matrix element of the deformation potential operator between two valence band states,

taking into account, that the electron’s state has to stay unchanged during the hole-phonon

7This can be shown be decomposing the irreducible representations of the rotation-inversion group O(3)
into the irreducible representations of group Td, as shown in Ref. [106] for Oh.
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5. Derivation of the exciton-TO-phonon interaction

interaction, as can be seen in Eq.(5.33). The nonvanishing matrix elements are shown in

table 5.2, where j = i d0
2N
ε

(z)
TO [124, 132]. The table shows that the deformation potential∑

m=x,y,z ε
(m)
TO 〈v′|V

(m)
DP |v〉 δc,c′ |hh−〉 |S ↑〉 |lh−〉 |S ↓〉 |lh+〉 |S ↑〉 |hh+〉 |S ↓〉

〈S ↑| 〈hh−| 0 0 j 0
〈S ↓| 〈lh−| 0 0 0 j
〈S ↑| 〈lh+| j∗ 0 0 0
〈S ↓| 〈hh+| 0 j∗ 0 0

,

Table 5.2.: Matrix elements of the deformation potential between two valence band states,
taking into account that the electron’s state has to stay the same.

interaction leads to a coupling of light- and heavy-hole states. Hence, it is important to

work with a bulk semiconductor instead of quantum wells, usually used in semiconductor

microcavities in the strong coupling regime, since in a bulk semiconductor light- and

heavy-hole bands are degenerate. Secondly, we notice, that due to its vector symmetry,

the deformation potential couples states with different total pseudo-angular momentum.

Finally, we see that just one deformation potential constant j is needed to describe all

nonvanishing matrix elements, as follows from the Luttinger-Kohn basis functions, defined

in Eq.(5.36), together with time-reversal symmetry of the deformation potential operator

(see Appendix F for more details).
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5.5. Exciton-phonon interaction for zinc-blende crystals

5.5. Exciton-phonon interaction for zinc-blende

crystals

In order to obtain the final expression for the exciton-phonon interaction, we specialize

Eq.(5.32) to the case of the 1s exciton, i.e. we set λ = λ′ = 1s and omit the conduction

band indices, since we have shown that only hole-state matrix elements contribute to the

exciton-phonon interaction. Writing explicitly the creation and annihilation operators

for excitons with heavy-hole |hh±〉 or light-hole |lh±〉 states, the final exciton-phonon

interaction reads

Ĥexc−TO = −
∑

q,K,K′

(
b̂†−q,TO + b̂q,TO

)(
Gq,TO(Khh−,K ′lh+)ŝ†K(hh−)ŝK′(lh

+)

+Gq,TO(Klh+,K ′hh−)ŝ†K(lh+)ŝK′(hh
−)

+Gq,TO(Klh−,K ′hh+)ŝ†K(lh−)ŝK′(hh
+)

+Gq,TO(Khh+,K ′lh−)ŝ†K(hh+)ŝK′(lh
−)
)
, (5.40)

with

Gq,TO(Khh−,K ′lh+) = −qh(Khh−,K ′lh+)

√
N~

2µωq,TOa2

〈
lh+
∣∣V (z)

DP

∣∣hh−〉
Gq,TO(Klh+,K ′hh−) = G∗q,TO(Khh−,K ′lh+)

Gq,TO(Klh−,K ′hh+) = −qh(Klh−,K ′hh+)

√
N~

2µωq,TOa2

〈
hh+

∣∣V (z)
DP

∣∣lh−〉
Gq,TO(Khh+,K ′lh−) = G∗q,TO(Klh−,K ′hh+).

(5.41)

Finally, we estimate the value of qh(Khh,K ′lh). For long-wavelength phonon states we

assume K −K ′ ' 0. Taking the continuum limit of Eq.(5.34) we have

qh(Khh,K ′lh) =

∫
φ∗1s,hh,c(R)φ1s,lh,c(R)d3R. (5.42)

Note that this overlap integral is independent of the angular momentum of the hole since

it is only determined by the exciton’s relative wavefunction. We use the two 1s energy
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5. Derivation of the exciton-TO-phonon interaction

eigenstates of the hydrogen atom in spherical coordinates

φ1s,hh,c(r) =
1√

π(a∗B,hh)
3
e−r/a

∗
B,hh φ1s,lh,c(r) =

1√
π(a∗B,lh)

3
e−r/a

∗
B,lh . (5.43)

The exciton’s Bohr radius is given by Eq.(4.6), where in the case of an exciton build

by a heavy (light) hole the reduced mass is given by µhh = memhh
me+mhh

(µlh = memlh
me+mlh

).

Here me,mhh,mlh correspond to the effective masses of electron, heavy and light hole

respectively. For bulk CdTe we use [137]

mlh = 0.051me,0

me = 0.047me,0

mhh = 0.879me,0,

with me,0 the mass of the free electron, and we obtain qh(Khh,K ′lh) ≈ 0.9.

5.6. Bright excitons in strong coupling with cavity

photons

For our purpose, we consider only bright exciton states, as only them contribute to the

exciton-polariton state. Thus next we want to identify the bright exciton states and

transform the Hamiltonian in Eq. (5.40) in the corresponding basis.

Let us first consider upper and lower exciton-polariton states of identical polarization. We

show in Appendix G that this assumption leads to a vanishing exciton-phonon interaction

in the bright exciton basis. The reason is that the corresponding bright exciton contains the

excitons formed by hh+, lh+, lh− and hh− to equal parts. Thus all the terms in Eq.(5.40)

add up with the same weight and, using the results in table 5.2, this yields a vanishing

bright-exciton-TO-phonon interaction. To overcome this problem we need a coupling

between the excitons and the cavity photons which is sensitive to the total pseudo-angular

momentum of the hole. In essence, it should couple differently to hh− than to hh+. For

this purpose, in order to get a nonvanishing coupling, we consider the polarization degree of

freedom of the cavity mode. Note that the Luttinger-Kohn states, as defined in Eq.(5.36),

can be mapped onto effective circular polarization states. It is practical to work in a linear
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5.6. Bright excitons in strong coupling with cavity photons

(horizontal/vertical) basis for both cavity photons and excitons, defined as

|v〉 = −i |+〉 − |-〉√
2

,

|h〉 =
|+〉+ |-〉√

2
. (5.44)

In the basis {|cav, v〉 , |lh, v〉 , |hh, v〉 , |cav, h〉 , |lh, h〉 , |hh, h〉} the effective Hamiltonian

which describes the exciton-photon coupled system is given by

H1 =



Ev
c Vl Vh 0 0 0

Vl Ev
lh 0 0 0 0

Vh 0 Ev
hh 0 0 0

0 0 0 Eh
c Vl Vh

0 0 0 Vl Eh
lh 0

0 0 0 Vh 0 Eh
hh


. (5.45)

Ev,h
c is the cavity mode energy and in the following we assume that it is independent

of the polarization Eh
c = Ev

c , i.e. we neglect the TE-TM splitting. Vl = Vh = V is the

photon-exciton coupling, which we assume the same for heavy-hole and light-hole excitons,

and Eh
lh = Ev

lh = Eh
hh = Ev

hh = Ex are the energies of light-hole and heavy-hole excitons at

the Γ point of the band structure. The Hamiltonian H1 is an extension of the coupled

harmonic oscillator model for exciton-polaritons [112,113]. Here we consider the coupling

between three harmonic oscillators (cavity mode, light-hole exciton and heavy-hole exciton)

with an additional degree of freedom which is the polarization. Note that a semiclassical

model of the coupling between the cavity and different excitonic levels was used e.g. in

Ref. [138].

Diagonalization of H1 yields a two-fold degenerate eigenvalue corresponding to two

dark states, |D, v〉 and |D, h〉, with energy Ex and the degenerate upper and lower,

horizontal and vertical exciton-polariton states |UXP, α〉 and |LXP, α〉 with eigenen-

ergy ~ωUXP ;LXP = 1
2

(
Ec + Ex ±

√
8V 2 + ~2δ2

)
, where α stands for “h” or “v” and

where we introduced δ = Ec − Ex. In the strong-coupling regime upper and lower

exciton-polariton branches are composed by a cavity photon |cav, α〉 and a bright exci-

ton |B,α〉. The Hopfield transformation linking the cavity and exciton to the exciton-

polariton basis is given by Eq.(4.25). The diagonalization of Hamiltonian Eq.(5.45)

together with the transformation defined by Eq.(4.25) allow to establish the transfor-

mation matrix between the basis of light- and heavy-hole excitons in linear polarization
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5. Derivation of the exciton-TO-phonon interaction

basis {|cav, v〉 , |lh, v〉 , |hh, v〉 , |cav, h〉 , |lh, h〉 , |hh, h〉} and the basis of dark and bright

excitons {|D, v〉 , |cav, v〉 , |B, v〉 , |D, h〉 , |cav, h〉 , |B, h〉}, where the Hamiltonian reads

H2 =



Ex 0 0 0 0 0

0 Ev
c ~Ω 0 0 0

0 ~Ω Ex 0 0 0

0 0 0 Ex 0 0

0 0 0 0 Eh
c ~Ω

0 0 0 0 ~Ω Ex


, (5.46)

and we have set ~Ω ≡
√

2V . The matrix yielding the basis transformation has the form



|cav, v〉
|lh, v〉
|hh, v〉
|cav, h〉
|lh, h〉
|hh, h〉


=



0 1 0 0 0 0

−1/
√

2 0 1/
√

2 0 0 0

1/
√

2 0 1/
√

2 0 0 0

0 0 0 0 1 0

0 0 0 −1/
√

2 0 1/
√

2

0 0 0 1/
√

2 0 1/
√

2





|D, v〉
|cav, v〉
|B, v〉
|D, h〉
|cav, h〉
|B, h〉


. (5.47)

Using Eq.(5.47) and the transformation between linear and circular basis as defined in

Eq.(5.44) we readily obtain the bright-exciton projection to the heavy-hole and light-hole

states

∣∣lh±〉
bright

=
1

2
|B, h〉 ± i

2
|B, v〉

∣∣hh±〉
bright

=
1

2
|B, h〉 ± i

2
|B, v〉 . (5.48)

Notice that thanks to the use of two polarizations, the |hh±〉 states (and similarly the |lh±〉
states) differ one to the other in their projection to the bright-exciton subspace, thereby

yielding the sought mechanism for a nonzero bright-exciton-TO-phonon coupling. Inserting

Eq.(5.48) in Eq.(5.40) yields the bright-exciton/TO-phonon coupling Hamiltonian

Ĥbr−exc−TO = −
∑

q,K,K′

ε
(z)
TO~gxb

(
b̂†−q,TO + b̂q,TO

)
δq,K−K′(

ĉ†K,vĉK′,h + ĉ†K,hĉK′,v

)
, (5.49)

where we defined ĉ†K,αĉK′,α′ = |B,α〉 〈B,α′|, with α, α′ = v,h indicating respectively
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5.6. Bright excitons in strong coupling with cavity photons

vertical or horizontal polarization. The coupling strength is given by

~gxb = qh

√
~

2NµωTOa2

d0

2
= qh

√
~a

8V µωTO

d0

2
, (5.50)

where we used that the number of Wigner-Seitz cells N = V
VWS

, with V the total volume of

the semiconductor slab and VWS = a3/4 the volume of the Wigner-Seitz cell. Furthermore

we consider a deformation potential constant of d0 = 30 eV for CdTe [139], the lattice

constant a = 6.48Å and a reduced mass of the two ions of the elementary cell of 10−25 kg

(MCd = 112 u,MTe = 127 u). Thus for a CdTe slab of size V = 18µm3 we estimate

~gxb = 0.2 µeV.

The wavevectors in Eq.(5.49) are three-dimensional. We will keep in mind that as

we deal with excitons in a semiconductor microcavity, their wavevector along the cavity

axis is fixed. So, strictly speaking, their wavevector can only vary in the cavity plane.

Furthermore we note that the only TO phonons participating to the coupling to excitons

are those polarized in the z direction, along the cavity axis, and thus propagating in the

cavity plane.

From the structure of the Hamiltonian of Eq.(5.49) we conclude that the bright-

exciton/TO-phonon coupling is active, provided that both bright exciton polarization

components are excited. This can be achieved using polaritons, through pumping two light

polarization modes, and then relying on the strong-coupling mechanism which preserves

polarization.

In the next chapter we will use the Hamiltonian of Eq.(5.49) as cornerstone of the

frequency conversion scheme. Note that we will omit the index TO of the transverse optical

phonon in the following as there won’t be any different types of phonons. Furthermore we

will use k and k′ to denote the wavevector of the center-of-mass motion of the exciton

instead of K and K ′.
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Chapter 6

The frequency conversion scheme

This chapter is dedicated to the frequency conversion scheme. We here bring together

the ingredients that we introduced in the Chapters 4 and 5. We start in Section 6.1

by introducing the microscopic model of the conversion scheme. We first present the

Hamiltonian of the system and discuss our assumptions and the physical picture of the

mechanism before we devote Section 6.2 to the calculation of the number of outcoming

THz photons by means of Heisenberg-Langevin equations. In Section 6.3 we link our

results with the description of the conversion scheme via an effective χ(2) susceptibility

and we briefly conclude in Section 6.4.

6.1. The microscopic model

Our conversion scheme is based on a chain of interactions: optical photons in the semi-

conductor microcavity strongly couple to excitons. The excitons weakly couple to TO

phonons. The TO phonons strongly couple to THz photons. The Hamiltonian describing

our system has the form

Ĥ = Ĥbr-exc-cav + Ĥphon-THz + Ĥbr-exc-TO + Ĥlaser, (6.1)

where Ĥbr-exc-cav is given by Eq.(4.19). It describes the interaction between optical cavity

photons (creation operator â†α,k‖ for an in-plane momentum k‖ and a polarization α)

and a bright excitonic state (creation operator ĉ†α,k‖ with an in plane momentum k‖ and

a polarization α) in the strong coupling regime. We consider two linear polarizations,

i.e. we set α = v, h. We choose a Rabi frequency of ~Ω = 6 meV. The energy of the

excitonic transition does not depend on the wavevector and is given by ~ωx = 1680 meV.

In the experimental setup we are considering, it is possible to change the thickness of the
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cavity using a wedge shaped device [140]. The change of the thickness changes the cavity

frequency. Taking this experimental ressource into account, the cavity dispersion relation

reads

~ωc(k‖, δ) = ~ω0
c +

~2|k‖|2

2mc

+ ~δ. (6.2)

Note that this is a generalization of Eq.(4.16). Without loss of generality ~ω0
c = ~cmed,optkz

is set to be equal to ~ωx, with kz fixed by the cavity length. The speed of light with

frequencies in the optical range in CdTe is typically cmed,opt ' c/2.5. The effective mass

of the cavity photons is given by mc and defined in Eq.(4.17). It is in the order of 10−5

times the free electron mass.

The interaction between TO phonons of frequency ωTO and THz photons is characterized

by the Hamiltonian Ĥphon-THz, defined in Eq.(5.6). We recall that b̂†q creates a TO phonon

with a 3D momentum q and l̂†q creates a THz photon with momentum q. We will use a

Rabi frequency of ~Ωir = 5.575 meV. The dispersion of the THz photons is given by

~ωir(q) = ~cmed,ir

√
|q‖|2 + q2

z , (6.3)

with q‖ = (qx, qy)
T and the speed of light in CdTe at infrared frequencies is typically

cmed,ir ' c/3.57.

The cornerstone of the conversion mechanism is the weak interaction between bright

exciton states and TO phonons via the deformation potential that we derived in Chapter 5.

It is described by the Hamiltonian Ĥbr-exc-TO, given in Eq.(5.49). The only TO phonons that

couple to excitons via the mechanism described by the Hamiltonian (5.49) are polarized

along the z direction and thus have a qz = 0, so they propagate in the cavity plane (x, y).

We have estimated the exciton-phonon coupling ~gxb = 0.2 µeV as shown in Section 5.6.

Being orders of magnitude weaker than Ω and Ωir, the interaction magnitude gxb will

be conveniently treated as a perturbation. Following Hopfield’s transformation for both

exciton and phonon-polaritons as defined in equations (4.25) and (5.8), we can rewrite Ĥ,

as given by Eq.(6.1), in the basis of upper and lower exciton-polariton and of upper and

lower phonon-polariton [113]

Ĥ = Ĥex-pol + Ĥphon-pol + Ĥbr-exc-TO + Ĥlaser, (6.4)
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with

Ĥex-pol =
∑
α=v,h

∑
k‖

~ωu(k‖, δ)û†α,k‖ûα,k‖ + ~ωp(k‖, δ)p̂†α,k‖ p̂α,k‖ , (6.5)

where ωu(k‖, δ) and ωp(k‖, δ) are given by equations (4.27) and (4.28) respectively, where

the cavity dispersion is now defined in Eq.(6.2) and we assume that the cavity frequency

doesn’t depend on the polarization. The phonon-polariton Hamiltonian has the form

Ĥphon-pol =
∑
q

~ωw(q)ŵ†qŵq + ~ωz(q)ẑ†qẑq, (6.6)

with ωw(q) and ωw(q) defined in equations (5.11) and (5.10). In the phonon and exciton-

polariton basis the TO phonon-exciton coupling term reads

Ĥbr-exc-TO = −
∑
q,k,k′

~gxb
(
−N−qŵ†−q + T−qẑ

†
−q −Nqŵq + Tqẑq

)
δk,k′+q[

XkXk′ p̂
†
v,kp̂h,k′ +XkCk′ p̂

†
v,kûh,k′ + CkXk′û

†
v,kp̂h,k′

+CkCk′û
†
v,kûh,k′ + h.c.

]
. (6.7)

In our total Hamiltonian, gxb thus couples the exciton-polaritons and phonon-polaritons

subspace; interestingly, since it is very weak as compared to the other coupling magnitudes

gxb � Ω,Ωir we can assume that the polaritonic states, whether excitons or phonons,

remain the proper eigenstates of the system.

The last term in Eq.(6.4) describes the optical excitation that pumps the exciton-

polariton states. We consider a two-pump scheme which excites both the lower polariton

branch of a given polarization, e.g. α = v, and the upper polariton branch of opposite

polarization, i.e. α = h. The pumps have amplitudes ~η±, wavevector k±, and frequency

ω±. The corresponding Hamiltonian reads

Ĥlaser = ~η−e−iω−tp̂†v,k− + ~η+e
−iω+tû†h,k+

+ h.c. (6.8)

Note that we neglect exciton-exciton interactions. Hence our model is only valid for weak

pump excitations.

In the following, we will focus on the two exciton-polariton states which are macroscop-

ically populated by the laser pump, i.e. p̂v,k− and ûh,k+ . In particular this allows us to

neglect the intraband terms (p̂†v,kp̂h,k′ or û†v,kûh,k′), because while processes that create an
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exciton-polariton with k 6= k± are possible, they are negligible as the population at k 6= k±

is negligible. On the other hand, for processes where for example a lower exciton-polariton

with horizontal polarization at k− is annihilated in favor of an upper exciton-polariton

with vertical polarization k−, momentum conservation yields a phonon-polariton with

q = 0. Furthermore focusing on only two macroscopically populated states, i.e. p̂v,k− and

ûh,k+ allows us to neglect all terms that contain p̂h,k− or ûv,k+ .

Among the remaining exciton-phonon interaction terms in Eq.(6.7) we keep those which

describe the frequency conversion process we are interested in, namely p̂†v,k−ûh,k+ŵ
†
q and

p̂†v,k−ûh,k+ ẑ
†
q (and their Hermitian conjugate) as depicted in Fig.6.1. This conversion process

corresponds to difference frequency generation or parametric down conversion [141,142].

We neglect the terms p̂v,k−û
†
h,k+

ŵ†q and p̂v,k−û
†
h,k+

ẑ†q and their Hermitian conjugate as

they will not be resonant with the process considered. Under these approximations the

Figure 6.1.: Sketch of interaction mechanisms between exciton-polaritons and phonon-
polaritons, that are taken into account: An upper exciton-polariton (UXP) is
annihilated and a lower exciton-polariton (LXP) and either a lower or an upper
phonon-polariton (LPP and UPP respectively) is created. The wavevector of the
outcoming phonon-polariton is fixed due to momentum conservation q = k+ − k−.
Only TO phonons that are polarized along the z axis interact via this mechanism,
thus they propagate in the cavity plane.

Hamiltonian describing our conversion mechanism is given by

Ĥconversion = ~ωu(k+, δ)û
†
h,k+

ûh,k+ + ~ωp(k−, δ)p̂†v,k− p̂v,k−

+
∑
q

~ωw(q)ŵ†qŵq + ~ωz(q)ẑ†qẑqδk+,k−+q

−
∑
q

~gxbε(z)TOXk−Ck+

[
p̂†v,k−ûh,k+

(
−N−qŵ†−q + T−qẑ

†
−q

)
δk−,k++q (6.9)

+û†h,k+
p̂v,k− (−Nqŵq + Tqẑq) δk+,k−+q

]
+ Ĥlaser.

At this point we recall that the z component of wavevector of the exciton-polaritons is
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fixed by the cavity. The TO phonons that are interacting with excitons via the deformation

potential, described by Eq.(5.49), are polarized along the z axis and thus qz = 0. The

momentum conservation yields

q‖ = k+,‖ − k−,‖, (6.10)

where k+,‖ denotes the in-plane component of the pump wavevectors. We will assume that

the two pumps are at k+ = −k−, such that q‖ = 2k+,‖. The phonon-polaritons propagate

in the cavity plane and radiatively decay into THz photons at the cavity interface. Fig.6.2

shows a sketch of the experimental setup and the pump scheme.

Figure 6.2.: Sketch of the experimental setup and the pump scheme. A semiconductor micro-
cavity with cavity axis along z is externally pumped by two pumps with amplitudes
~η±, wavevector k±, and frequency ω±. The phonon-polaritons are polarized along
the z axis, propagate in the cavity plane with q‖ = k+,‖ − k−,‖ and decay at the
interface into THz photons.

We introduce Ω̃(k+,k−, δ) = ω+(k+, δ)− ω−(k−, δ). This parameter is easily tunable

in actual experiments: its lowest value is fixed by the Rabi splitting 2Ω, while it can be

increased several times above at the expense of a decreasing (increasing) excitonic (photonic)

fraction of the considered lower (upper) exciton-polariton state. This increase can be

achieved either by increasing the laser incidence angle on the microcavity (resulting in

increasing k±) [143], or by tuning the cavity photon energy ~ωc(k‖, δ) using the microcavity

intentional wedged shape [140].

The physical picture of our conversion mechanism is the following: by shining laser light

onto both the upper and lower polaritons, an excitonic density is created in the microcavity
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6. The frequency conversion scheme

active region (a slab of bulk semiconductor), which is time modulated at the frequency

Ω̃(k+,k−, δ). Note that this population beat1 requires both polaritons modes (upper and

lower) to be optically excited simultaneously. It induces a mechanical vibration of the

lattice unit cell via the deformation potential interaction. In our scheme, the modulation

frequency Ω̃(k+,k−, δ) matches that of a TO phonon-polariton state, so that the earlier

excites the latter. Finally, the thus created phonon-polaritons propagate in the structure

and decay radiatively into THz photons upon reaching an interface. Fig.6.3 shows a sketch

of the conversion mechanism.

Exciton-polaritons Phonon-polaritons

THz

Figure 6.3.: Sketch of the conversion mechanism: We depict the dispersion relations for upper
and lower exciton branch along one in-plane axis (here x) and the upper and lower
phonon-polariton branch as a function of |q|. Upper and lower exciton-polariton are
externally pumped with pump strength η± and wavevector k±. Here we depict the
pumps resonant with the exciton-polariton branches ω± = ωu,p. The simultaneous
pumping of both branches leads to a beating between the two dressed states with
frequency Ω̃(k+,k−, δ) which couples to the phonon-polaritons via the deformation
potential interaction. Note that in the figure we omit the dependence of Ω̃ on δ.
Depending on the value of Ω̃(k+,k−, δ) either lower or upper phonon-polaritons
are created.

Note that it may be experimentally challenging to collect the THz emission in the cavity

plane. In order to engineer the emission direction, in the future one could investigate the

use of microstructures such as pillars.

1The population beat corresponds to Rabi oscillations in the exciton, cavity photon basis.
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6.2. Dynamics of the conversion mechanism

6.2. Dynamics of the conversion mechanism

We now want to quantitatively describe our conversion scheme and predict the output

power of THz photons. In order to determine the input-output characteristics of the

system in the steady-state (i.e. assuming CW excitation), we use the Heisenberg-Langevin

formalism, introduced in Section 1.8. The corresponding Heisenberg-Langevin equations

for the polariton annihilation operators read

˙̂pv,k− =
1

i~
[p̂v,k− , Ĥconversion]− γpp̂v,k− +

√
2γpp̂v,in(t)

= −iωp(k−)p̂v,k− + igxbXk−Ck+ûh,k+

(
−N−qŵ†−q + T−qẑ

†
−q

)
− iη−e−iω−t

− γpp̂v,k− +
√

2γpp̂v,in(t), (6.11)

˙̂uh,k+ =
1

i~
[ûh,k+ , Ĥconversion]− γuûh,k+ +

√
2γuûh,in(t)

= −iωu(k+)ûh,k+ + igxbCk+Xk− p̂v,k− (−Nqŵq + Tqẑq)− iη+e
−iω+t

− γuûh,k+ +
√

2γuûh,in(t), (6.12)

˙̂wq =
1

i~
[ŵq, Ĥconversion]− γwŵq +

√
2γwŵin(t)

= −iωw(q)ŵq − igxbNqXk−Ck+ p̂
†
v,k−

uh,k+ − γwŵq +
√

2γwŵin(t), (6.13)

˙̂zq =
1

i~
[ẑq, Ĥconversion]− γz ẑq +

√
2γz ẑin(t)

= −iωz(q)ẑq + igxbTqXk−Ck+ p̂
†
v,k−

ûh,k+ − γz ẑq +
√

2γz ẑin(t), (6.14)

where the momentum of the phonon-polaritons is fixed to q = k+ − k−. The decay rates

of upper and lower exciton-polariton are defined as [144]

γu(k+) = γxC
2
k+

+ κX2
k+
,

γp(k−) = γxX
2
k− + κC2

k− , (6.15)

where κ denotes the cavity photon loss rate and γx the excitonic (nonradiative) decay rate.

Correspondingly we introduce the decay rates of upper and lower phonon-polariton

γw(q) = γbN
2
q + γlT

2
q ,

γz(q) = γbT
2
q + γlN

2
q , (6.16)
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6. The frequency conversion scheme

with γl and γb the decay rates of THz photon and TO phonon respectively. Furthermore

we consider that the input noises of the polaritons are given by

√
2γpp̂v,in(t) = −

√
2κâv,in(t)Ck− +

√
2γxĉv,in(t)Xk− ,√

2γuûh,in(t) =
√

2κâh,in(t)Xk+ +
√

2γxĉh,in(t)Ck+ ,√
2γwŵin(t) = −

√
2γbb̂in(t)Nq +

√
2γl l̂in(t)Tq,√

2γz ẑin(t) =
√

2γbb̂in(t)Tq +
√

2γl l̂in(t)Nq. (6.17)

Here âi,in(t), ĉi,in(t), b̂in(t) and l̂in(t) are the input noises for the optical cavity photon with

polarization i = h, v, the exciton, the TO phonon and the THz photon respectively. We

assume that all noises can be modeled by the coupling of the concerned oscillator with an

external thermal bath consisting of harmonic oscillators. Thus their expectation values

fulfill the equations (1.45)-(1.47).

Note that for the definitions of the decay rates and the noises for the polaritons, given

in equations (6.15)-(6.17), we assumed that the polaritons inherit the decay and noise

behavior of their constituents, weighted with the corresponding transformation coefficient

(N, T,X,C). Our justification is the strong coupling regime and the fact that we neglect

the interdependency of the noises. From measurements found in literature [130] we estimate

γw = γz ' 0.6 THz for the phonon-polariton decay rates, taking for simplicity a value

which is momentum independent.

We consider room temperature and can thus neglect the occupation of the thermal

bath for the optical cavity photons. As we will only be interested in observables that are

normally ordered, we can omit the noise on the cavity (âv,in(t) and âh,in(t) respectively).

We take for the decay rate of the cavity photon, TO phonon and THz photon κ = 0.1 THz,

γb = 0.35 THz [130] and γl = 0.6 THz. The typical decay rate of the exciton γx is in the

order of 0.01 THz [145] and we will thus neglect it.

The four Heisenberg-Langevin equations (6.11)-(6.14) are nontrivially coupled by the

term proportional to gxb. As gxb � Ω,Ωir, we can decouple them by assuming gxb ' 0.

This allows us to solve equations (6.11) and (6.12) and to calculate the expectation value of

p̂†v,k−(t)ûh,k+(t) for times longer than the characteristic time scale of the Rabi oscillations

t� TR, with TR = 1/Ω̃

n0(t) = 〈p̂†v,k−(t)ûh,k+(t)〉t�TR

=
η∗−η+

(−iγp − (ωp − ω−)) (iγu − (ωu − ω+))
e−iΩ̃t. (6.18)
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6.2. Dynamics of the conversion mechanism

We see that there is a beating between upper and lower exciton-polariton mode which

is modulated at frequency Ω̃. Inserting n0(t) in equations (6.13) and (6.14) shows that

pumping both exciton-polariton branches leads to an effective pumping of the phonon-

polariton branches. We can now solve the equations (6.13) and (6.14) and obtain the

number of phonon-polaritons in lower and upper mode

Nw = 〈ŵ†q(t)ŵq(t)〉t�TR

=
|η̃(k+,k−)|2N(q)2

γ2
w + (Ω̃(k+,k−, δ)− ωw(q))2

+
γb
γw
N(q)2n̄b(ωTO)

+
γl
γw
T (q)2n̄l(ωir(q)), (6.19)

Nz = 〈ẑ†q(t)ẑq(t)〉t�TR

=
|η̃(k+,k−)|2T (q)2

γ2
z + (Ω̃(k+,k−, δ)− ωz(q))2

+
γb
γz
T (q)2n̄b(ωTO)

+
γl
γz
N(q)2n̄l(ωir(q)), (6.20)

with effective pump strength

η̃(k+,k−) =
gxbXk−Ck+η

∗
−η+

(−iγp − (ωp − ω−)) (iγu − (ωu − ω+))
. (6.21)

The phonon-polaritons travel in the cavity plane and decay radiatively into THz photons at

the interface between the semiconductor slab and the air outside. The number of emitted

THz photons can thus be determined by multiplying the number of phonon-polaritons

with the corresponding photonic fraction (i.e. T 2 for lower, N2 for upper phonon-polariton

branch). An observable in the experiment is the emission power of THz photons, measuring

the energy of the outcoming photons per time. We define it as

P = NwT
2γw~ωw +NzN

2γz~ωz. (6.22)

Fig.6.4 shows the emission power of THz photons as function of their frequency Ω̃ and

their in-plane wavevector q‖ = |q‖| for a pump strength of η+ = η− = 1Ω and resonant

pumping thus ω− = ωp and ω+ = ωu. Here we leave Ω̃ as a free parameter. As we will

show below, it can be chosen independently of q‖ provided that we suitably choose the

detuning δ. The white dashed line corresponds to the dispersion relation for the THz

photons inside the medium, as defined in Eq.(6.3). It is the asymptote of upper and
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6. The frequency conversion scheme

Figure 6.4.: Emission power of THz photons as function of their frequency Ω̃ in units of Ω
and their in-plane wavevector q‖ = |q‖| for η− = η+ = 1Ω. The white dashed line
corresponds to the dispersion relation of the THz photons inside the medium as
defined in Eq.(6.3).

lower phonon-polariton branch for large and small q‖ respectively. We see that THz

photons are emitted if the frequency difference between upper and lower exciton-polariton

branch Ω̃ matches either the lower or the upper phonon-polariton branch. The emission

at frequencies above the TO phonon frequency ωTO = 3Ω increases for increasing q‖. The

opposite behavior is observed for frequencies below ωTO. The reason is that the emission

power is proportional to the phonon-polariton energy in Eq.(6.22), which increases for the

upper branch while it tends to a constant for the lower branch.

The frequency of the emitted THz photons is given by Ω̃. It can be tuned both via the

wavevectors of the pumps k± and via the detuning between cavity and exciton δ. The

wavevectors of the pumps are related to the wavevector of the phonon via momentum

conservation, and we assume that we pump at k+ = −k−, thus it follows q‖ = 2k+,‖. For a

given value of q‖ we can thus determine the value of the detuning δ in order to generate a

desired Ω̃. For resonant pumping and Ω̃ matching the frequency of upper (and analogously

the lower) phonon-polariton branch it holds

Ω̃(q‖, δ) =
√

4Ω2 + (ωc(k+,‖, δ)− ωx)2 !
= ωz(q‖, qz)

⇒ δ = −
~2|q‖|2

4

1

2mc

±
√
ωz(q‖, qz)2 − 4Ω2. (6.23)
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6.3. Description of the conversion scheme with a nonlinear susceptibility

Thus the detuning δ depends on the wavevector q‖ as illustrated in Fig.6.5, where for

simplicity we show only the expressions for δ with the positive sign in Eq.(6.23). We see

that its behavior is mainly determined by the dispersion of the phonon branches.

Figure 6.5.: Detuning δ of the cavity, given by Eq.(6.23), in units of Ω as function of the
in-plane wavevector of the THz photons q‖ for Ω̃ = ωw (red curve) and Ω̃ = ωz
(yellow curve).

6.3. Description of the conversion scheme with a

nonlinear susceptibility

Up to now we considered the microscopic model of the frequency conversion scheme. In

this section which is based on Ref. [141], we want to link it to a macroscopic description

using a second order nonlinear susceptibility χ(2).

In general the susceptibility χ is the proportionality constant between an applied

field (e.g. magnetic or electric) and the response of the system (e.g. magnetization or

polarization) [146]. The susceptibility can be nonlinear in the sense that the response

depends nonlinearly on the strength of the applied field. For instance for nonlinear optical

processes the polarization P(t) can be expressed in powers of the applied electric field
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6. The frequency conversion scheme

strength E(t) according to [141]2

P(t) = ε0
[
χ(1)E(t) + χ(2)E2(t) + χ(3)E3(t) + ...

]
(6.24)

≡ P(1)(t) + P(2)(t) + P(3)(t) + ...,

with χ(1) the linear susceptibility, ε0 the permittivity of free space and χ(2), χ(3) the second-

and third-order nonlinear optical susceptibilities. Note that here the polarization and

the electric field are considered as scalars for simplicity. Taking into account their vector

character, the susceptibilities become tensors.

In the common case the nonlinearity of a crystal is of electronic origin Ref. [141]. The

expressions for the nonlinear susceptibilities can be classically derived starting with the

anharmonic oscillator model. It is an extension of the Lorentz model of an atom and

takes into account a possible nonlinear restoring force on the electron. The corresponding

equation of motion for the electron at position x describes a driven damped harmonic

oscillator subjected to a nonlinear restoring force and is given by

ẍ+ 2γẋ+ ω2
0x+ ax2 = −λeE(t)

m
, (6.25)

where e is the charge of the electron, ω0 is the oscillator frequency, a denotes the strength

of the nonlinearity. It leads to a deviation from the harmonic potential of a standard

harmonic oscillator3. The electric driving field E is assumed to read

E(t) = E1e
−iω1t + E2e

−iω2t + c.c. (6.26)

It will be treated as perturbation, λ denotes the perturbation strength. In order to solve

Eq.(6.25) we make the ansatz

x = λx(1) + λ2x(2) + ... (6.27)

The lowest-order solution corresponds to the solution of the standard Lorentz model

x(1)(t) =
∑
j=1

x(1)(ωj)e
−iωjt + c.c. (6.28)

2In SI units.
3This form of the nonlinearity describes only noncentrosymmetric media as the potential contains both

even and odd powers of x and is thus not symmetric under inversion at x = 0.
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6.3. Description of the conversion scheme with a nonlinear susceptibility

with x(1)(ωj) = e
m

Ej
D(ωj)

and D(ωj) = ω2
0 − ω2

j − 2iωjγ. The second order term x(2)(t)

depends on the square of x(1)(t), containing all different possible combinations of the

frequencies ω1 and ω2. We are only interested in the difference frequency generation (DFG)

which is sketched in Fig.6.6. The term describing DFG corresponds to the response at

Figure 6.6.: Sketch of difference frequency generation: Two fields with frequencies ω1 and ω2

enter a crystal with second-order nonlinear susceptibility χ(2) and get mixed such
that a field with frequency ω1 − ω2 is created.

frequency ω1 − ω2 and is given by

x(2)(t) = x(2)(ω1 − ω2)e−i(ω1−ω2)t, (6.29)

with

x(2)(ω1 − ω2) = −
( e
m

)2 2a

D(ω1 − ω2)D(ω1)D(−ω2)
E1(ω1)E2(ω2)∗. (6.30)

In the case of difference frequency generation the Fourier component of the second-order

nonlinear response x(2)(ω1 − ω2) can be linked to the Fourier component of the nonlinear

polarization via

P(2)(ω1 − ω2) = −N ex(2)(ω1 − ω2) = 2ε0χ
(2)(ω1 − ω2)E1(ω1)E2(ω2)∗, (6.31)

where N denotes the number of atoms per unit volume. We can now identify the second

order susceptibility and express it as function of first order susceptibilities according to

χ(2)(ω1 − ω2) =
e3

ε0m2

Na
D(ω1 − ω2)D(ω1)D(−ω2)

=
ε20ma

N 2e3
χ(1)(ω1 − ω2)χ(1)(ω1)χ(1)(−ω2). (6.32)

The second order susceptibility χ(2) has units m/V. Its value depends on the material,

the frequencies of the applied fields and on the considered nonlinear process. Some
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experimental values for the χ(2) of CdTe for second-harmonic generation at wavelength of

several tens of µm are given in Ref. [147]; they are in the order of 10−10 m/V.

In our frequency conversion scheme the origin of the nonlinearity is the exciton-TO

phonon coupling. The applied pump fields are directly driving both exciton-polariton

modes as described by the pump Hamiltonian in Eq.(6.8). For long times (t� TR) the

solutions of equations (6.11) and (6.12) allow to identify a susceptibility χ̃ as proportionality

constant between the external applied field and the response of the exciton-polariton

branches

〈p̂v,k−(t)〉t�TR = χ̃(1)
p (ω−)η−e

−iω−t,

〈ûh,k+(t)〉t�TR = χ̃(1)
u (ω+)η+e

−iω+t, (6.33)

with χ̃
(1)
p (ω−) = 1

iγp−(ωp−ω−)
and χ̃

(1)
u (ω+) = 1

iγu−(ωu−ω+)
. As we have seen in Section 6.2

the pumping of both exciton-polariton branches leads to an effective pumping of the

phonon-polariton branches. The effective pumping is mediated via the exciton-TO phonon

coupling that provides a nonlinearity corresponding to difference frequency generation.

The response of the phonon-polariton modes to the effective pump is given by the solution

of equations (6.14) and (6.13). It can be cast into the form

〈ẑq(t)〉t�TR = χ̃(2)
z (Ω̃ = ω+ − ω−)η∗−η+e

iω−te−iω+t,

〈ŵq(t)〉t�TR = χ̃(2)
w (Ω̃ = ω+ − ω−)η∗−η+e

iω−te−iω+t, (6.34)

with

χ̃(2)
z (Ω̃ = ω+ − ω−) = −TXCgxbχ̃(1)

p (ω−)
∗
χ̃(1)
u (ω+)χ̃(1)

z (Ω̃),

χ̃(2)
w (Ω̃ = ω+ − ω−) = NXCgxbχ̃

(1)
p (ω−)

∗
χ̃(1)
u (ω+)χ̃(1)

w (Ω̃), (6.35)

where χ̃
(1)
z (Ω̃) = 1

iγz−(ωz−Ω̃)
and χ̃

(1)
w (Ω̃) = 1

iγw−(ωw−Ω̃)
. We see that formally we can express

the response of the phonon-polariton branches at the frequency Ω̃ with the help of a second

order nonlinear susceptibility χ̃(2), which depends on linear susceptibilities in the same way

as Eq.(6.32). Notice that the units of our χ̃(2) are 1/Hz2 since it is the susceptibility of the

number operator. In outlook, it will be interesting to convert our nonlinear susceptibility

χ̃(2) to the same units as the usual nonlinear susceptibility of the bare CdTe crystal. For

this purpose we also need to take into account the tensor character of the fields and of

the susceptibility. The nonlinear polarization component l, with l = x, y, z at a frequency
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ωn + ωm is defined as [141]

Pl(ωn + ωm) = ε0
∑

j,k=x,y,z

∑
(m,n)

2dljkEj(ωn)Ek(ωm), (6.36)

with dljk = 1
2
χ

(2)
ljk. Using a contracted notation the nonlinear polarization leading to

difference frequency generation at ω3 = ω1 − ω2 reads

Px(ω3)

Py(ω3)

Pz(ω3)

 = 4ε0

d11 d12 d13 d14 d15 d16

d21 d22 d23 d24 d25 d26

d32 d32 d33 d34 d35 d36





Ex(ω1)Ex(−ω2)

Ey(ω1)Ey(−ω2)

Ez(ω1)Ez(−ω2)

Ey(ω1)Ez(−ω2) + Ez(ω1)Ey(−ω2)

Ex(ω1)Ez(−ω2) + Ez(ω1)Ex(−ω2)

Ex(ω1)Ey(−ω2) + Ey(ω1)Ex(−ω2)


.

The only nonvanishing elements for zinc-blende structured crystals are d14, d25, d36 which

corresponds to elements of the form χ
(2)
xzy and all permutations of the indices [141]. We

notice the same symmetry of the usual χ(2) in bulk CdTe as in our calculation of the

nonvanishing matrix elements of the deformation potential operator between two hole

states (see Section 5.4).

6.4. Conclusion

In this part of the Thesis we have presented a frequency down conversion scheme to convert

optical photons in THz photons in a CdTe semiconductor microcavity. The scheme is based

on a χ(2) nonlinearity, coming from the weak interaction between bright excitons and TO

phonons, and it doesn’t involve any change in the microcavity material nor an externally

applied field. For future applications, it will be interesting to extend the present calculation

to the case of materials with large band gap. These materials are interesting in two respects:

(i) the strong coupling regime is stable also at room temperature, with obvious benefits for

the future realization of an actual polaritonic THz devices and (ii) the TO phonons energy

(~ωTO = (66.5; 69.5) meV in GaN and ~ωTO = (47.7; 51.7) meV in ZnO4) can be well

matched by the Rabi splitting in a state-of-the-art microcavity [148–150]. Due to their

wurtzite crystalline structure additional calculations are needed to determine exactly the

4The first (second) number in the parenthesis correspond to a TO phonon modes polarized parallel
(perpendicular) to the wurtzite’s C-axis.
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value of the bright-exciton-TO phonon coupling strength, but a preliminary analysis based

on symmetry considerations suggests that our mechanism should be applicable as well.
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We presented in this work two projects that deal with different aspects of light-matter

interactions in crystals and that are based on two different experimental platforms, namely

ultracold atoms and exciton-polaritons in semiconductor microcavities.

In the first project we have studied ultracold atoms in optical lattices, in the context

of a cavity quantum electrodynamics setup. In detail we combined an optical lattice

and a high-finesse optical cavity mode with incommensurate wavelengths to generate

a quasiperiodic potential for a single ultracold atom. This system gives rise to an

Aubry-André like Hamiltonian, with a modified site-dependent onsite interaction term

and allows to investigate the localization transition of the atom in presence of cavity

backaction. We first showed that, in the limit where the cavity backaction is negligible

(|C| � 1), we recover the usual Aubry-André model and obtain a critical point that

depends on the incommensurability parameter. Then we demonstrated how our modified

Aubry-André model arises from the optomechanical coupling of a single atom which is

confined in an optical lattice and dispersively interacts with a single mode of a high finesse

cavity. In particular we performed a time-scale separation between the cavity and the

atomic motion dynamics allowing us to identify an effective potential for the atom. The

competition between this effective potential and the optical lattice leads to a resulting

quasiperiodic Hamiltonian. Our main contribution was to analyze the properties of the

localization transition and to discuss a possible realization of the modified Aubry-André

model with existing experimental setups of CQED with cold atoms. We studied the inverse

participation ratio and the Lyapunov exponent as a function of the cooperativity and

the strength of the quasiperiodic potential. We also monitored the ground state density

distribution for different values of the cooperativity. We observed a sharp extended-to-

localized transition for all considered values of the cooperativity C 6= 0. While for small

cooperativities the Aubry-André model is reproduced, the point where the transition

takes place as well as the behavior of the Lyapunov exponent change for an increasing

cooperativity. This is due to the increasing importance of the cavity backaction which
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means that higher harmonics of the Aubry-André potential become relevant. Close to the

parameters where the system exhibits an optomechanical resonance we noticed peculiar

features in the functional behavior of the Lyapunov exponent and an enhanced asymmetry

in the phase diagram of the inverse participation ratio.

A natural extension of our model is the study of the localization transition of N

(non)interacting atoms confined in an optical lattice and coupled to the mode of an optical

cavity with incommensurate wavelengths. We conjecture that this leads to an amplification

of the intracavity photon number and could thus enhance the experimental accessible

signal at the cavity output. However, for N > 1, the derivation of the effective potential

for the atom due to the cavity requires additional assumptions, as here the infinitely long

range interactions mediated by the cavity need to be taken into account [43]. For the case

of pumped atoms this derivation and the corresponding phase diagram for fixed disorder

are reported in Ref. [45, 77]. An interesting next step is thus to derive the N particle

Hamiltonian for the pumped cavity case and to study the phase diagram for variable

disorder strengths for both pump scenarios. In the perspective of a tunable quantum

simulator of disordered systems, this would allow to analyze the interplay between cavity

mediated long range interactions, short range interactions due to atom-atom collisions,

and disorder.

The second project we presented is based on exciton-polaritons in semiconductor

microcavities. We suggest a frequency conversion scheme in order to create THz radiation

emission out of visible light. The conversion scheme is based on a chain of interactions:

optical cavity photons strongly interact with bright excitons. The bright excitons weakly

couple to transverse optical phonons which again strongly couple to THz photons. The

crucial part is the exciton-TO-phonon interaction that we derived by specializing the

electron-phonon deformation potential interaction to the case of weakly bound excitons

interacting with TO phonons. Taking into account the symmetry properties of CdTe, we

showed that in zinc blende structured crystals the deformation potential interaction couples

light- and heavy-holes states of different polarization. Furthermore, we saw that the TO

phonons required for this interaction are polarized along the z direction and propagate in the

cavity plane. In order to obtain a nonvanishing coupling between the bright excitons that

strongly couple to the cavity and the TO phonons, we found that it is necessary to consider

a polarization dependent light-exciton coupling and thus we considered two differently

polarized cavity modes. We then discussed the frequency conversion scheme starting with

the microscopic model that describes the chain of interactions. We assumed an external

pump of the upper exciton-polariton branch with a different polarization than the pump
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of the lower exciton-polariton branch. This lead to an effective exciton-polariton-phonon-

polariton interaction Hamiltonian that corresponds to difference frequency generation.

We determined the population of the phonon-polariton modes by solving the Heisenberg-

Langevin equations of the coupled polariton modes to lowest order in the exciton-phonon

interaction strength gxb. Here we found that the beating between the exciton-polariton

branches, induced by the two pumps, yields an effective pumping of the phonon-polariton

branches. The effective pump strength is proportional to gxb. Phonon-polaritons are

thus created if the difference between the two pump frequencies of the exciton-polaritons

matches the frequency of either lower or upper phonon-polariton branch. In fact this is one

of the main strength points of the proposal since the energy difference between upper and

lower exciton-polariton branch in CdTe matches the frequency of the phonon-polaritons,

which is in the THz range. The phonon-polaritons propagate in the cavity plane and

decay into THz photons upon reaching an interface. We estimated the emission power

of THz photons as a function of their frequency and their in-plane wavevector. We also

discussed that the frequency difference between upper and lower exciton-polariton branch

can be adjusted via the wedge shape of the cavity. We further linked our microscopic

model of the exciton-TO-phonon interaction to the description with an effective second

order susceptibility.

There are many open questions for the future. For instance, it would be interesting to

study if our conversion scheme can be transposed to large band gap semiconductors as GaN

or ZnO. They provide exciton-polaritons at room temperature and possess wurtzite-type

crystal structure. Preliminary symmetry considerations allow us to conjecture that it is

possible, but additional calculations are needed in order to determine the exciton-TO

phonon coupling strength gxb. Furthermore, we have shown that gxb is inverse proportional

to the semiconductor slab volume. The semiconductor microcavity is a first step towards

nanostructuring and a next step could be to investigate the exciton-TO-phonon coupling

in different confining structures, such as disks or micropillars, in order to get higher values

of gxb and engineer the emission direction of the THz photons. One could also link the

susceptibility coming from the exciton-TO phonon interaction with the χ(2) of the bare

CdTe crystal. The description of the conversion mechanism using Heisenberg-Langevin

equations also opens the door for the study of quantum effects. In a first step, one

could solve the Heisenberg-Langevin equations, taking into account the operator nature

of p̂†û instead of relying on a mean-field like treatment. Another possibility is to include

exciton-exciton interactions to our model. Furthermore, in order to describe strongly

pumped excitons, we could incorporate the composite character of the excitons in the
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Summary and outlook

derivation of the exciton-TO-phonon interaction, in the spirit of Ref. [109].
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Appendix A

The Stark Shift

In this appendix we derive the Stark Shift following the reasoning of Ref. [59]. The notation

is slightly modified. We describe the laser field quantum mechanically and assume that the

rotating wave approximation is valid and that the Rabi-frequency ϑ is time-independent

Ĥ = Ĥ0 + V̂ ,

with V̂ = ~ϑ
(
|e〉 〈g| â+ â† |g〉 〈e|

)
and Ĥ0 = ~ω0 |e〉 〈e|. The energy shift of the i-th state,

with unperturbed energy Ei, due to the perturbation V̂ , in second-order time-independent

perturbation theory, can be calculated according to

δEi =
∑
j 6=i

| 〈j| V̂ |i〉 |2

Ei − Ej
. (A.1)

First we calculate the correction to the ground state of the atom. The unperturbed energy

is E|g,n〉 = 0 + ~ωn, where n is the number of photons in the field. The only state, that

can be coupled to |g, n〉 using V̂ is |e, n− 1〉. It’s energy is E|e,n−1〉 = ~ω0 + ~ω(n− 1). It

follows

δE|g,n〉 =
| 〈e, n− 1| V̂ |g, n〉 |2

~∆
=

~ϑ2

∆
. (A.2)

The energy shift, experienced by the excited state can be calculated analogously

δE|e,n−1〉
| 〈g, n| V̂ |e, n− 1〉 |2

−~∆
= −~ϑ2

∆
. (A.3)

In conclusion, the interaction of a far-detuned laser with a two-level atom leads to a

level shift (known as ’light shift’ or ’ac Stark shift’). The shift experienced by the ground

state and the one experienced by the excited state have opposite sign. The shift of the
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A. The Stark Shift

ground state corresponds to the dipole potential for the two-level atom. If one can assume

that the atom is mainly in the ground state, one can interpret the light shifted ground

state as the potential that determines the motion of the atom, as depicted in figure (1.2),

also taken from [59].
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Appendix B

Elimination of the cavity field

In this appendix we show the derivation of the stationary cavity field as given in Eq.(2.21).

We show it exemplarily for the case of the pumped cavity, where ζ(x̂) is given by Eq.(2.12).

On the timescale δt we can consider that the atomic operator â can be replaced by the

stationary cavity field âst (= time averaging of δt as given in Eq.(2.20)). Furthermore we

can assume that the atomic position doesn’t change on the time scale δt

x̂(t+ δt) ≈ x̂(t). (B.1)

Now we want to solve the differential Eq.(2.17) on the timescale δt, i.e. the time variable t

will only run on the timescale δt. The solution of the homogeneous equation has the form

âhom = a0e
(iδc−κ)t−iU0

∫ t
0 cos2(kcx̂)dτ = a0e

(i∆c(x̂)−κ)t

with a0 = a(t = 0) a constant, given by the initial conditions and ∆c(x̂) = δc−U0 cos2(kcx̂).

Here we used Eq. (B.1). In order to solve the inhomogeneous equation we use variation of

constants, so we insert the ansatz âinhom = ã(t)e(i∆c(x̂)−κ)t. It follows

ã(t) = −iη
∫ t

0

dτ e−(i∆c(x̂)−κ)τ +

∫ t

0

dτ e−(i∆c(x̂)−κ)τ
√

2κâin(τ),

and thus for the total solution we find

âtot(t) =a0e
(i∆c(x̂)−κ)t − iη

∫ t

0

dτ e(i∆c(x̂)−κ)(t−τ) +

∫ t

0

dτ e(i∆c(x̂)−κ)(t−τ)
√

2κâin(τ). (B.2)

Because of the timescale separation we can consider that on the timescale δt the atomic

position doesn’t depend on time and so the integrals can be calculated. We obtain the
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B. Elimination of the cavity field

annihilation operator of the stationary resonator field by inserting Eq.(B.2) in Eq.(2.20)

âst(t) =
1

δt

∫ t+δt

t

dT a0e
(i∆c(x̂)−κ)T − iη

δt

∫ t+δt

t

dT

∫ T

0

dτ e(i∆c(x̂)−κ)(T−τ)

+

√
2κ

δt

∫ t+δt

t

dT

∫ T

0

dτ e(i∆c(x̂)−κ)(T−τ)âin(τ),

We integrate and neglect terms of the order 1
δt(κ−i∆c(x̂))

and 1
δt(κ−i∆c(x̂))2

because the

timescale separation requires δt|δc + iκ| � 1. Thus it follows

âst(t) =
η

δc + iκ− U0 cos2(kcx̂)
+

i
√

2κ ¯̂ain(t)

δc + iκ− U0 cos2(kcx̂)
, (B.3)

with ¯̂ain the input noise averaged over δt. From now on we will assume that we can neglect

the averaged input noise term. In order to legitimate this assumtion, we look at the

expectation value of âstâ
†
st

〈âstâ
†
st〉 =

〈
η2

(δc − U0 cos2(kcx̂))2 + κ2

〉
+

〈
2κ

(δc − U0 cos2(kcx̂))2 + κ2

〉
〈¯̂ain

¯̂a†in〉. (B.4)

We know that 〈âin(τ)〉 = 0 and 〈âin(τ)â†in(τ ′)〉 = δ(τ − τ ′), thus we evaluate

〈¯̂ain
¯̂a†in〉 =

1

δt2

∫ t+δt

t

dτ

∫ t+δt

t

dτ ′ 〈âin(τ)â†in(τ ′)〉

=
1

δt2

∫ t+δt

t

dτ

∫ t+δt

t

dτ ′ δ(τ − τ ′) =
1

δt2

∫ t+δt

t

dτ =
1

δt
.

Hence we can neglect the input noise term if

η2 � 2κ

δt
� 2κ

√
4ωrkBT

~
. (B.5)

where we used Eq.(2.15) as a lower bound for 1/δt.
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Appendix C

Optical phonons

This appendix is devoted to the derivation of the dispersion relation for phonons, in order

to show that for longwavelength optical phonons the center of mass displacement is zero

(see Section 5.2). For simplicity we consider a 1D lattice with two atoms per Wigner-Seitz

(primitive) cell, with equilibrium positions ja and ja+ d. We are interested in the normal

modes of the lattice vibrations and will derive them generalizing the calculus done in [129]

for two different masses M1 and M2. We assume d ≤ a/2 and only nearest neighbor

interaction, and thus the force for pairs separated by d is stronger than for pairs separated

by a − d: K ≥ G. We denote with u1(ja) the displacement of the ion with mass M1

Figure C.1.: Adapted from [129]: The diatomic linear chain with 2 atomic species, connected
by springs of alternating strength.

that oscillates around ja and with u2(ja) the displacement of the ion with mass M2 that

oscillates around ja+ d. The situation is sketched in figure C.1. The equations of motion

are

M1ü1(ja) = −K [u1(ja)− u2(ja)]−G [u1(ja)− u2([j − 1]a)]

M2ü2(ja) = −K [u2(ja)− u1(ja)]−G [u2(ja)− u1([j + 1]a)] . (C.1)
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C. Optical phonons

We make the ansatz

u1(ja) = ε1e
i(kja−ωt)

u2(ja) = ε2e
i(kja−ωt)

corresponding to a wave with frequency ω, wave vektor k and polarisation ε. Substituting

this ansatz into Eq.(C.1) yields the two coupled equations

[
M1ω

2 − (K +G)
]
ε1 +

[
K +Ge−ika

]
ε2 = 0 (C.2)[

K +Geika
]
ε1 +

[
M2ω

2 − (K +G)
]
ε2 = 0. (C.3)

They will have a solution if the determinant of the coefficients vanishes,

M1M2ω
4 − ω2(K +G)(M1 +M2) + (K +G)2 −K2 +G2 + 2KG cos(ka) = 0,

which is the case for two positive values of ω

⇒ ω2 =

K +G

2µ
±

√
1

4

(
K +G

M1M2

)2

(M1 −M2)2 +
1

M1M2

(K2 +G2 + 2KG cos(ka))

1/2

,

(C.4)

where we introduced the reduced mass µ = M1M2/(M1 +M2). The solution containing

a + corresponds to the optical branch, whereas the other solution corresponds to the

acoustical branch. The eigenvectors fullfill

ε1
ε2

=
−(K +Ge−ika)

M1ω2 − (K +G)
. (C.5)

For optical phonons with small wave vectors (wave vectors close to the center of the

Brillouin zone k � π/a) it follows for Eq.(C.4) in lowest order in ka

ω2 =
K +G

µ
. (C.6)

Inserting this into the relation for the eigenvectors for ka ≈ 0 leads to

M1ε1 = −M2ε2. (C.7)
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Note that here we used the notation of [129]. In Chapter 5 we use the notation of [105].

They differ in the definition of the polarization vector by a factor of
√
M

εAscroft
1

√
M1 = εMadelung

1 . (C.8)
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Appendix D

Second quantization of the deforma-

tion potential

In this appendix we derive the Hamiltonian of the exciton-TO phonon interaction as given

by Eq.(5.23). For this purpose we want to write the change in the electron’s potential

VDP in the second quantization. We consider electrons weakly bound to holes to form

Wannier excitons and neglect the internal structure of the electron-hole pair.

An exciton with wave vector K ′ of the center-of-mass motion and inner quantum number

λ′, where the electron is in the conduction band c′ and the hole in valence band v′ is

described by the many-body wave function Ψλ′,K′,v′,c′(x1,x2, ...xN) defined in Eq.(5.25).

For the second quantization of the deformation potential operator we start with a general

exciton wave function which sums over all possible quantum numbers

Ψ(x1,x2, ...xN) =
∑

λ′,K′,v′,c′

Ψλ′,K′,v′,c′(x1,x2, ...xN). (D.1)

We assume that we only deal with λ′ = 1s excitons. Furthermore the band structure of

CdTe as sketched in figure 5.3 suggests to consider two valence bands (heavy and light

hole bands vhh and vlh respectively) and one conduction band c′. In the ground state N

electrons are in the valence band vhh and N are in vlh. In the excitonic state one electron

can be taken either from the valence band vhh or from the valence band vlh and be excited

to the nondegenerate conduction band c′. Using the notation suggested in Eq.(4.12), our

general wave function reads

Ψ(x1,x2, ...xN) =
1√
N

∑
K′,m′,l′

∑
v′=vhh,vlh

eiK
′·Rm′U1s,K′,v′,c′(Rl′)Av′,c′(m

′,m′ + l′). (D.2)
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D. Second quantization of the deformation potential

Av′,c′(m
′,m′ + l′) is the Slater determinant describing the configuration in which a valence

electron at site m′ is excited from valence band v′ into the conduction band c′ at the

m′ + l′th site. The single-particle wave functions in the Slater determinant are given by

Wannier functions [62]. Choosing eg an electron from site m′ in the valence band vhh that

is promoted to site m′ + l′ in the conduction band c′ the Slater determinant has the form1

Avhh,c′(m
′,m′ + l′) =

1√
(2N)!

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

wvhh,R1(x1) wvhh,R1(x2) ... wvhh,R1(xm′) ... wvhh,R1(x2N)

wvlh,R1(x1) wvlh,R1(x2) ... wvlh,R1(xm′) ... wvlh,R1(x2N)

wvhh,R2(x1) wvhh,R2(x2) ... wvhh,R2(xm′) ... wvhh,R2(x2N)

wvlh,R2(x1) wvlh,R2(x2) ... wvlh,R2(xm′) ... wvlh,R2(x2N)
...

...
...

...
...

...

wc′,Rm′+l′
(x1) wc′,Rm′+l′

(x2) ... wc′,Rm′+l′
(xm′) ... wc′,Rm′+l′

(x2N)

wvlh,Rm′
(x1) wvlh,Rm′

(x2) ... wvlh,Rm′
(xm′) ... wvlh,Rm′

(x2N)
...

...
...

...
...

...

wvhh,RN
(x1) wvhh,RN

(x2) ... wvhh,RN
(xm) ... wvhh,RN

(x2N)

wvlh,RN
(x1) wvlh,RN

(x2) ... wvlh,RN
(xm) ... wvlh,RN

(x2N)

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

. (D.3)

It consists of 2N single-electron Wannier functions, out of which N−1 electrons occupy the

valence band vhh, N occupy the valence band vlh and 1 electron occupies the conduction

band c′. The Wannier function for an electron in the valence band at x1, which is centered

at lattice site m′ is denoted as wc′,Rm′
(x1) = wc′(x1 −Rm′). The normalization of the

Wannier functions reads∫
V

w∗c′,Rm′
(x)wc,Rm(x) d3x = δc,c′δRm′ ,Rm , (D.4)

where V indicates the volume of the entire crystal.

An alternative way of representing the Slater determinant of Eq.(D.3) can be also written

in terms of the antisymmetrizing operator Â

Avhh,c′(m
′,m′ + l′) =√

(2N)!Â
(
wvhh,R1(x1)wvlh,R1(x2)...wc′,Rm′+l′

(x2m′)wvlh,Rm′
(x2m′+1)...

)
, (D.5)

1This is a generalization of [151] to two bands.
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where

Â =
1

(2N)!

∑
σ∈SN

(−1)σσ̂, (D.6)

with σ̂ the permutation operator and the sum going over all possible permutations. We

note that Â is Hermitian and Â2 = Â.

In order to write the deformation potential in second quantization we follow the approach

of [152]: We project an exciton wave function χ(x1,x2, ...xN ) with a fixed set of quantum

numbers, choosen examplarily as 1s,K, vhh, c, onto the deformation potential operator

applied to the general excitonic wave function Ψ(x1, ...xN) as defined in Eq.(D.2) and

integrate over all electron positions

∫
d3x1

∫
d3x2...

∫
d3xN χ∗(x1, ...xN)

N∑
p=1

VDP (xp −Xn)Ψ(x1, ...xN), (D.7)

with

χ(x1, ...xN) = eiK·RmU1s,K,vhh,c(Rl)Av,c(m,m+ l). (D.8)

In the second quantization procedure one replaces the sum over all electrons by the sum

over the quantum numbers and introduces occupation numbers of a given state [152].

The deformation potential operator is a single-particle operator and we will show in the

following that it can only link two exciton states that differ either in their hole or in

their electron state (Slater Condon rules [153]). Therefore we investigate which terms are

non-zero after integration over the positions of the electrons. For this purpose we use that

the deformation potential operator VDP is invariant under relabelling of the electrons and

thus commutes with the antisymmetrizing operator

ÂVDP Â = Â2VDP = ÂVDP .
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D. Second quantization of the deformation potential

It is helpful to point out that for m 6= m′

Avhh,c′(m
′,m′ + l′) =√

(2N)!Â
(
...wvhh,Rm(x2m)wvlh,Rm(x2m+1)...wc′,Rm′+l′

(x2m′)wvlh,Rm′
(x2m′+1)...

)
,

Avlh,c′(m
′,m′ + l′) =√

(2N)!Â
(
...wvhh,Rm(x2m)wvlh,Rm(x2m+1)...wvhh,Rm′

(x2m′)wc′,Rm′+l′
(x2m′+1)...

)
,

Avhh,c(m,m+ l) =√
(2N)!Â

(
...wc,Rm+l

(x2m)wvlh,Rm(x2m+1)...wvhh,Rm′
(x2m′)wvlh,Rm′

(x2m′+1)...
)
. (D.9)

Let’s us now first consider only zeroth order terms in the permutations. This means that

Â = 1
N !

1. The only nonvanishing terms are:

• terms with the same hole state (position m = m′ and band index v′ = vhh) and the

same electron state (position m′ + l′ = m+ l and band index c = c′)∫
d3x1 w

∗
vhh,R1

(x1)VDP (x1)wvhh,R1(x1)...

∫
d3x2m w∗c,Rm+l

(x2m)wc,Rm+l
(x2m)︸ ︷︷ ︸

=1

+

...

∫
d3x2 w

∗
vhh,R1

(x2)VDP (x2)wvhh,R1(x2)...

• terms with the same hole state (position m = m′ and band index v′ = vhh) and

different electron state∫
d3x1 w

∗
vhh,R1

(x1)wvhh,R1(x1)︸ ︷︷ ︸
=1

...

∫
d3x2m w∗c,Rm+l

(x2m)VDP (x2m)wc′,Rm′+l′
(x2m)

Only this one term of the sum survives in 3 possible cases:

– position and band index are different m+ l 6= m′ + l′ ∧ c 6= c′

– same position and different band index m+ l = m′ + l′ ∧ c 6= c′

– different position and same band index m+ l 6= m′ + l′ ∧ c = c′

All the other terms vanish, for example

• terms with same electron state (position m′ + l′ = m+ l and band index c = c′) and
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different hole state∫
d3x1 w

∗
vhh,R1

(x1)VDP (x1)wvhh,R1(x1)...∫
d3x2m w∗c,Rm+l

(x2m)wvhh,Rm(x2m)︸ ︷︷ ︸
=0

...

∫
d3x2m′+1 w

∗
vlh,Rm

(x2m′+1)wc′,Rm′+l′
(x2m′+1)︸ ︷︷ ︸

=0

The deformation potential can prevent only one of the two integrals over x2m and

x2m+1 from being zero. Therefor there is no nonzero contribution for two excitonic

states with the same electron state and different hole state, considering only zeroth

order in the permutations.

Now we check which terms are nonvanishing in first order in the permutations, which

means that we exchange two electrons: Â = − 1
N !
σ(xotto,xeva). The nonvanishing terms

are terms with the same electron state (position m′ + l′ = m+ l and band index c = c′)

and different hole state:

• If the two holes have the same band index v′ = vhh but different positions m 6= m′,

we get the only nonvanishing term by exchanging the quantum numbers of electron

2m′ with those of electron 2m, so that the wave function reads

χ(x1, ...σ(x2m)...σ(x2m′)...xN) ∝(
...wvhh,Rm′

(x2m)wvlh,Rm(x2m+1)...wc,Rm+l
(x2m′)wvlh,Rm′

(x2m′+1)...
)
.

The only nonvanishing term is

−
∫
d3x2m w∗vhh,Rm′

(x2m)VDP (x2m)wvhh,Rm(x2m).

• If the two holes have a different band index v′ 6= vhh and a different hole position

m 6= m′, we get the only nonvanishing term by exchanging the quantum numbers of

electron 2m with those of electron 2m′ + 1, so that the wave function reads

χ(x1, ...σ(x2m)...σ(x2m′+1)...xN) ∝(
...wvlh,Rm′

(x2m)wvlh,Rm(x2m+1)...wvhh,Rm′
(x2m′)wc,Rm+l

(x2m′+1)...
)
.
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D. Second quantization of the deformation potential

The only nonvanishing term is

−
∫
d3x2m w∗vlh,Rm′

(x2m)VDP (x2m)wvhh,Rm(x2m).

• If the two holes have a different band index v′ 6= vhh and the same hole position

m = m′, we get the only nonvanishing term by exchanging the quantum numbers of

electron 2m with those of electron 2m+ 1, so that the wave function reads

χ(x1, ...σ(x2m)...σ(x2m+1)...xN) ∝(
wvhh,R1(x1)wvlh,R1(x2)...wc,Rm+l

(x2m)wvlh,Rm(x2m+1)...
)

(D.10)

The only nonvanishing term is

−
∫
d3x2m w∗vlh,Rm

(x2m)VDP (x2m)wvhh,Rm(x2m). (D.11)

Thus we can write the deformation potential in second quantization∑
p

VDP (xp)→
∑

K,K′,λ,λ′

v,v′,c,c′

〈λ,K, v, c|VDP |λ′,K ′, v′, c′〉 s†λ,K(v, c)sλ′,K′(v
′, c′) (D.12)

taking into account that the exciton states differ either in the hole or in the electron state.

Here s†K,λ(c, v) [sK′,λ′(v
′, c′)] creates [annihilates] an exciton with wave vector K [K ′] of

the center-of-mass motion and inner quantum number λ [λ′], where the electron is in the

conduction band c [c′] and the hole in valence band v [v′]. In position representation the

exciton state |λ′,K ′, v′, c′〉 is given by the many-body wave function

Ψc′,v′,λ′,K′(x1,x2, ...xN) =
1√
N

∑
m′,l′

eiK
′·Rm′Uλ′,K′,v′,c′(Rl′)Av′,c′(m

′,m′ + l′). (D.13)

The Hamiltonian in second quantization is given by Eq.(5.40), with coupling constant

Gq,TO(Khh−,K ′lh+) as defined by Eq.(5.41). We want to simplify the expression for the

coupling constant and thus evaluate the matrix element: according to the considerations

mentioned above (Slater Condon rules) the deformation potential operator can couple two
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excitonic states that differ either in their hole or in their electron state. Thus it follows

〈λ,K, v, c|VDP |λ′,K ′, v′, c′〉

=
1

N

∑
m,m′

l,l′

U∗λ,K,v,c(Rl)Uλ′,K′,v′,c′(Rl′)e
iK′·Rm′e−iK·Rm

{
−δc,c′δm+l,m′+l′

∫
V

w∗v′,Rm′
(x)VDP (x−Xn)wv,Rm(x) d3x

+δm,m′δv,v′

∫
V

w∗c,Rm+l
(x)VDP (x−Xn)wc′,Rm′+l′

(x) d3x

}
(D.14)
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Appendix E

Transformation in the Luttinger-Kohn

basis

In this appendix we show that at K −K ′ = 0 the expression of the matrix elements

〈v′|VDP |v〉 in the Bloch and Luttinger-Kohn basis [124, 135] coincide. We used this

property in Section 5.4.

We start by introducing the Luttinger-Kohn basis in coordinate representation [135]

χv,k(x) = eik·xψv,k0(x) =
ei(k+k0)·x
√
V

uv,k0(x), (E.1)

where k0 denotes a band extremum. The Luttinger-Kohn functions are normalized∫
V
χ∗v′,k′(x)χv,k(x) d3x = δv,v′δk,k′ .

We will only consider the situation where the band extremum is in the zone center

k0 = 0 (Γ point). A general Bloch function with band index v and wave vector k can be

expanded in terms of the Luttinger-Kohn functions according to [135]

ψv,k(x) =
eik·x√
V
uv,k(x) =

eik·x√
V

∑
V

βv,V(k)uV,0(x) =
∑
V

βv,V(k)χV,k(x), (E.2)

where the index V runs over all bands that are taken into account. In order to perform

the change from Bloch to Luttinger-Kohn basis, we distinguish two cases:

1) the holes are in the same valence band v = v′. The basis change is performed by
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E. Transformation in the Luttinger-Kohn basis

summing over all possible conduction bands and thus the new operators read

s†λ,K(v, c) =
∑
d

〈K, d|K, c〉z†λ,K(v, d)

=
∑
d

∫
V

χ∗d,K(x)ψc,K(x) d3x z†λ,K(v, d)

=
∑
d,γ

βc,γ(K)

∫
V

χ∗d,K(x)χγ,K(x) d3x︸ ︷︷ ︸
δd,γ

z†λ,K(v, d)

=
∑
d

βc,d(K)z†λ,K(v, d)

sλ′,K′(v
′, c′) =

∑
d′

〈K ′, c′|K ′, d′〉zλ′,K′(v, d′) =
∑
d′

β∗c′,d′(K
′)zλ′,K′(v, d

′).

2) the electrons are in the same conduction band c = c′. The basis change is performed

by summing over all possible valence bands. The new operators read

s†λ,K(v, c) =
∑
d

〈K, v|K, d〉z†λ,K(d, c) =
∑
d

β∗v,d(K)z†λ,K(d, c)

sλ′,K′(v
′, c′) =

∑
d′

〈K ′, d′|K ′, v′〉zλ′,K′(d′, c′) =
∑
d′

βv′,d′(K
′)zλ′,K′(d

′, c′).

Note that in the definition of the new operators the expansion coefficients β∗v,d and

βv′,d′ of the creation and annihilation operator are inverted with respect to case 1)

because the creation of an exciton corresponds to the creation of an electron in a

conduction band and to the annihilation of a hole in a valence band.

z†K,λ(d, c) [zK′,λ′(d
′, c′)] creates [annihilates] an exciton with wave vector K [K ′] of the

center-of-mass motion and inner quantum number λ [λ′], where the electron is in the

conduction band c [c′] and the hole in valence band d [d′]. Using Eq.(E.2) and distinguishing
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the two cases mentionned above, the Hamiltonian reads in the Luttinger-Kohn basis

Hexc−TO = −
∑

q,K,K′

λ,λ′

(
~N

2µωq,TOa2

)1/2

εTO

(
b†−q,TO + bq,TO

)
δq,K−K′×

 ∑
c,c′,C,C′
d,d′

qe(λKvc, λ′K ′vc′)

∫
V

β∗c,d(K)χ∗d,K(x′)VDP (x′) βc′,d′(K
′)χd′,K′(x

′) d3x′

βc,C(K)β∗c′,C′(K
′)z†λ,K(v, C)zλ′,K′(v, C ′)

−
∑

v,v′,V,V ′
d,d′

qh(λKvc, λ′K ′v′c)

∫
V

β∗v′,d′(K
′)χ∗d′,K′(x

′)VDP (x′) βv,d(K)χd,K(x′) d3x′

β∗v,V(K)βv′,V ′(K
′)z†λ,K(V , c)zλ′,K′(V ′, c)

]
. (E.3)

Now we perform the sum over v, v′, c, c′, assuming that we can neglect the dependence of

qe and qh on v, v′, c, c′. Using∑
v βv,d(K)β∗v,V(K) = δd,V it follows

Hexc−TO = −
∑

q,K,K′

λ,λ′,
V,V ′,
C,C′

Gq,TO(CVλK, C ′V ′λ′K ′)z†λ,K(V , C)zλ′,K′(V ′, C ′)
(
b†−q,TO + bq,TO

)
δq,K−K′

(E.4)

with

Gq,TO(CVλK, C ′V ′λ′K ′) =

(
~N

2µωq,TOa2

)1/2

εTO · [−qh(CVλK, CV ′λ′K ′)θV ′,V(K −K ′)δC,C′

+qe(CVλK, C ′Vλ′K ′)θC,C′(K −K ′)δV,V ′ ] ,

(E.5)

and

θn,n′(K −K ′) =
1

V

∫
V

e−i(K−K
′)·x′u∗n,0(x′)VDP (x′) un′,0(x′) d3x′. (E.6)

For long wavelength TO phonons (small q = K − K ′) we neglect the wave vector

dependence of this integral [125] and recover Eq.(5.35).
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Appendix F

Time reversal

We want to understand in more details the form of table 5.2. In this appendix we will

show that we can derive all nonvanishing elements starting with just one known element.

We consider that we know just one matrix element, namely

εTO ·
〈
hh−

∣∣ 〈S ↑|VDP |S ↑〉 ∣∣lh+
〉
≡ j (F.1)

As the deformtion potential operator is hermitian it follows directly that

εTO · (〈S ↑|
〈
lh+
∣∣VDP ∣∣hh−〉 |S ↑〉)∗ = j∗. (F.2)

We now consider the time reversal operator K̂ as introduced in Ref. [124]. Its effect on a

given spinor wave function in position representation Ψ(x) (considering a spin s = 1/2

particle, which in our case will be the hole) consists in taking the complex conjugate and

multiplying by the Pauli matrix σy

K̂Ψ(x) = K̂

(
Ψ1(x)

Ψ2(x)

)
= σyΨ

∗(x) =

(
0 −i
i 0

)(
Ψ∗1(x)

Ψ∗2(x)

)
=

(
−iΨ∗2(x)

iΨ∗1(x)

)
, (F.3)

where we used the notation Ψ1(x) = 〈↑,x|Ψ〉 and Ψ2 = 〈↓,x|Ψ〉.

The Luttinger-Kohn functions describing the possible valence band states, Eq.(5.36),
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F. Time reversal

are linked via the time reversal operator

K̂Ψhh+(x) = K̂

(
1√
2
(X + iY )

0

)
=

(
0 −i
i 0

)(
1√
2
(X − iY )

0

)
=

(
0

i√
2
(X − iY )

)
=

= Ψhh−(x)

K̂Ψhh−(x) = −Ψhh+(x)

K̂Ψlh−(x) = K̂

 1√
6
(X − iY )√

2
3
Z

 =

 −i
√

2
3
Z

i√
6
(X + iY )

 = Ψlh+(x)

K̂Ψlh+(x) = −Ψlh−(x), (F.4)

where we have used Ψhh+(x) = 〈x|hh+〉. We start again with the matrix element given by

Eq.(F.1) and use the relations (F.4) and the notation of Ref. [124]

j = εTO ·
〈
hh−

∣∣VDP ∣∣lh+
〉

= εTO

∫
Ψ∗hh−(x)VDPΨlh+(x)d3x

= εTO

∫
(K̂Ψhh+(x))∗VDP K̂Ψlh−(x)d3x

= εTO

∫
Ψ∗lh−(x)VDPΨhh+(x)d3x

= εTO ·
〈
lh−
∣∣VDP ∣∣hh+

〉
. (F.5)

Here we used in the last step that for an operator Ô which is even upon time reversal (i.e.

it doesn’t change sign when t is replaced by −t) it holds [124]∫
(K̂Ψn(x))∗ÔK̂Ψm(x)d3x =

∫
Ψ∗m(x)ÔΨn(x)d3x. (F.6)

Note that the deformation potential operator as defined in Eq.(5.17) only depends on

quantities as coordinates, mass or energy which do not change sign upon time reversal

and thus it is even upon time reversal.
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Appendix G

Bright exciton transformation for one

cavity mode

In this appendix we want to identify the bright excitons in the case where the excitons

formed by the states |hh+〉 |S ↓〉 , |lh+〉 |S ↑〉 , |lh−〉 |S ↓〉 , |hh−〉 |S ↑〉, strongly couple to a

single cavity mode. We start with the Hamiltonian describing the coupling in the basis

{|cav〉 , |lh,+〉 , |lh,-〉 , |hh,+〉 , |hh,-〉}

H1 =


Ec Vl Vl Vh Vh

Vl Ex 0 0 0

Vl 0 Ex 0 0

Vh 0 0 Ex 0

Vh 0 0 0 Ex

 , (G.1)

where we assumed that all the excitons have the same energy. Diagonalization yields

H2 =


Ex 0 0 0 0

0 Ex 0 0 0

0 0 Ex 0 0

0 0 0 ~ω− 0

0 0 0 0 ~ω+

 , (G.2)

where ~ω± = 1
2
(Ec + Ex ±

√
8(V 2

h + V 2
l ) + δ2), with δ = Ec − Ex. The eigenvectors are

given the three dark exciton states (D1..D3) and by the lower and upper exciton polariton
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G. Bright exciton transformation for one cavity mode

state (LXP and UXP respectively)

|D1〉 =
1√

V 2
l + V 2

h


0

−Vh
0

0

Vl

 |D2〉 =
1√

V 2
l + V 2

h


0

−Vh
0

Vl

0

 |D3〉 =
1√
2


0

−1

1

0

0



|LXP〉 =
1

Ṽ


−CṼ
XVl

XVl

XVh

XVh

 |UXP〉 =
1

Ṽ


XṼ

CVl

CVl

CVh

CVh

 , (G.3)

with Ṽ =
√

2(V 2
l + V 2

h ) and

X =

√√
8(V 2

h + V 2
l ) + δ2 + δ

2
√

8(V 2
h + V 2

l ) + δ2
C =

√√
8(V 2

h + V 2
l ) + δ2 − δ

2
√

8(V 2
h + V 2

l ) + δ2
. (G.4)

The Hamiltonian in the basis of bright and dark excitons {|D1〉 , |D2〉 , |D3〉 , |cav〉 , |B〉}
can be identified using the transformation

H3 = DH2D−1 =


Ex 0 0 0 0

0 Ex 0 0 0

0 0 Ex 0 0

0 0 0 Ec Ṽ

0 0 0 Ṽ Ex

 , (G.5)

with transformation matrix

D =


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 −C X

0 0 0 X C

 . (G.6)
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Now the light and heavy hole states can be linked to the bright and dark exciton states via
|cav〉
|lh,+〉
|lh,-〉
|hh,+〉
|hh,-〉

 = R−1D


|D1〉
|D2〉
|D3〉
|cav〉
|B〉

 , (G.7)

where R contains the vectors |D1〉 , |D2〉 , |D3〉 , |cav〉 , |B〉 as rows. Finally we obtain

∣∣lh±〉 ∝ Vl

Ṽ
|B〉

∣∣hh±〉 ∝ Vh

Ṽ
|B〉 . (G.8)

We write the Hamiltonian given in Eq.(5.40) in the new basis

s†K(hh−)sK′(lh
+) =

∣∣hh−〉 〈lh+
∣∣ ∝ VlVh

Ṽ 2
|B〉 〈B|

s†K(lh+)sK′(hh
−) =

∣∣lh+
〉 〈
hh−

∣∣ ∝ VlVh

Ṽ 2
|B〉 〈B|

s†K(hh+)sK′(lh
−) =

∣∣hh+
〉 〈
lh−
∣∣ ∝ VlVh

Ṽ 2
|B〉 〈B|

s†K(lh−)sK′(hh
+) =

∣∣lh−〉 〈hh+
∣∣ ∝ VlVh

Ṽ 2
|B〉 〈B| (G.9)

We see that all terms in Eq.(5.40) contain the same portion of the bright exciton. As two

terms are multiplied with j and two terms are multiplied with −j, the contributions add

up to zero.
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Nanofriction in Cavity Quantum Electrodynamics, Phys. Rev. Lett. 115, 233602

(2015).

[90] H. J. Kimble, in Cavity Quantum Electrodynamics, edited by P. R. Berman (Academic

Press, New York, 1994), p. 203.

[91] H. Habibian, Cavity Quantum Electrodynamics with Ultracold Atoms, PhD thesis,

2013.

[92] I. B. Mekhov, C. Maschler, and H. Ritsch, Probing quantum phases of ultracold

atoms in optical lattices by transmission spectra in cavity quantum electrodynamics,

Nature Physics 3, 319 (2007).

[93] T. Schulte, S. Drenkelforth, J. Kruse, W. Ertmer, J. Arlt, K. Sacha, J. Zakrzewski,

and M. Lewenstein, Routes Towards Anderson-Like Localization of Bose-Einstein

Condensates in Disordered Optical Lattices, Phys. Rev. Lett. 95, 170411 (2005).

[94] J. F. Sherson, C. Weitenberg, M. Endres, M. Cheneau, I. Bloch, and S. Kuhr,

Single-atom-resolved fluorescence imaging of an atomic Mott insulator, Nature 467,

68 (2010).

[95] E. Haller, J. Hudson, A. Kelly, D. A. Cotta, B. Peaudecerf, G. D. Bruce, and S.

Kuhr, Single-atom imaging of fermions in a quantum-gas microscope, Nature Physics

11, 738 (2015).

164



Bibliography

[96] S. Gupta, K. L. Moore, K. W. Murch, and D. M. Stamper-Kurn, Cavity Nonlinear

Optics at Low Photon Numbers from Collective Atomic Motion, Phys. Rev. Lett. 99,

213601 (2007).

[97] C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, Observation of the coupled

exciton-photon mode splitting in a semiconductor quantum microcavity, Phys. Rev.

Lett. 69, 3314 (1992).

[98] Y. Hokomoto, Y. Kadoya, and M. Yamanishi, THz electromagnetic wave radiation

from coherent oscillation of exciton population in high-Q semiconductor microcavities,

Appl. Phys. Lett. 74, 3839 (1999).

[99] M. A. Kaliteevski, K. A. Ivanov, G. Pozina, and A. J. Gallant, Single and double

bosonic stimulation of THz emission in polaritonic systems, Scientific Reports 4,

5444 (2014).

[100] S. Huppert, O. Lafont, E. Baudin, J. Tignon, and R. Ferreira, Terahertz emission

from multiple-microcavity exciton-polariton lasers, Phys. Rev. B 90, 241302 (2014).

[101] S. De Liberato, C. Ciuti, and C. C. Phillips, Terahertz lasing from intersubband

polariton-polariton scattering in asymmetric quantum wells, Phys. Rev. B 87, 241304

(2013).

[102] J. Kasprzak, D. D. Solnyshkov, R. André, L. S. Dang, and G. Malpuech, Formation
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[142] S. Blum, G. A. Olivares-Renteŕıa, C. Ottaviani, C. Becher, and G. Morigi, Single-

photon frequency conversion in nonlinear crystals, Phys. Rev. A 88, 053807 (2013).
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