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Kurzzusammenfassung

Ziel dieser Arbeit ist es, siliziumdioxidumhüllte Nickelnanostäbe auf ihre Eignung als Sonden-

partikel für die aktive Mikrorheologie und als Modellpartikel zur Untersuchung von Wechsel-

wirkungen in weichen Matrizen zu untersuchen. Dazu werden Nickelnanostäbe mit Durchmessern

von ∼ 20 nm und Längen von 150− 1000 nm durch Abscheidung in Template aus nanoporösem

Aluminiumoxid hergestellt und in eine wässrige kolloidale Suspension überführt. Durch Anwen-

dung des Stöberprozesses werden die Stäbe mit einer 30 − 60 nm dicken Siliziumdioxidschicht

umhüllt. Die Transmission linear polarisierten Lichts durch kolloidale Suspensionen dieser Par-

tikel wird in statischen und oszillierenden magnetischen Feldern sowohl experimentell gemessen

als auch theoretisch modelliert. Die Modellierung berücksichtigt dabei sowohl die magnetisch-

en als auch die hydrodynamischen und optischen Eigenschaften der Partikel, wobei besondere

Aufmerksamkeit der Bestimmung der optischen Querschnitte der Partikel zukommt. Basierend

auf Gröÿenabmessungen der Partikel, welche im Transmissionselektronenmikroskop bestimmt

werden, wird das magnetfeldabhängige optische Transmissionssignal modelliert. Es zeigt sich

eine sehr gute Übereinstimmung zwischen den gemessenen und den modellierten Signalen. Ein-

�üsse des Partikels und Ein�üsse der umgebenden Matrix auf Wechselwirkungen in weichen

Matrizen können somit getrennt werden und die Partikel eignen sich als Sondenpartikel für die

Mikrorheologie als auch als Modellpartikel.

Abstract

The main objective of the present work is to test whether silica coated nickel nanorods can

serve as probe particles for active microrheology and as model particles that can be used to

investigate interactions in soft materials. For this purpose, nickel nanorods with diameters of

∼ 20 nm and lengths of 150− 1000 nm are synthesized by deposition of nickel into nanoporous

alumina templates and transferred into an aqueous colloidal suspension. By applying the Stöber

process, the rods are coated with a silica shell of 30 − 60 nm thickness. The transmission of

linear polarized light through the colloidal particle suspension in static and oscillating magnetic

�elds is experimentally measured and theoretically modeled. In the modeling, the magnetic,

hydrodynamic, and optic properties of the particle are considered. Thereby, special attention

is payed on the determination of the optical cross sections of the particles. Based on size

parameters which are obtained by analyzing transmission electron micrographs, the magnetic

�eld-dependent optical transmission is modeled. A very good agreement between the measured

and modeled signal is found. Thus, contributions of the particle and contributions of the

surrounding matrix to the results of microrheologic measurements can be separated and the

particles are suitable as probe particles for microrheology and as model particles that can be

used to investigate interactions in soft materials.
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Chapter 1

Introduction

In 1827, Robert Brown observed irregular jerky motion of pollen on a water droplet and

by that discovered what was later called the Brownian motion [1]. In 1905, Albert Ein-

stein explained this motion as the result of the thermal movement of water molecules and

related it to the viscosity of water [2]. This famous example illustrates the use of probe

particles to study the viscoelasticity of liquid materials. The investigation of the defor-

mation and �ow properties of materials is called rheology. An additional consideration

of how the dynamic behavior of materials change with length scale leads to the extended

de�nition of microrheology [3]. The random motion of the pollen was observed in a

passive manner as done in passive microrheology where the probe particles are moved

by their inherent thermal energy. In typical microrheological experiments, the trajectory

of a probe particle is measured as a function of time, e.g. by optical microscopy. A gen-

eralized Stokes-Einstein relation is then used to extract frequency-dependent rheological

properties [4], like the storage and loss modulus.

Although several types of measurement can be used to study a variety of materials in

passive microrheology [3], it is limited to systems where the thermally activated particle

motion is comparatively high. In purely elastic soft materials or �uids of high viscosity,

an active control of the particle motion is more appropriate.

One possibility for an active control of microscopic particles is to use optical tweezers

where microscopic particles are moved into the focus of a laser beam [5]. Typically, the

beam is mirrored into a optical microscope to focus it in the object plane. If the particle

is transparent at the used wavelength, a momentum transfer caused by the refraction

of light by the particle results in a force moving it into focus. A di�erence between the

position of the laser beam and the position of the particle due to viscous drag or elastic
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1 - Introduction

interactions of the particle with the matrix can be observed and its analysis allows to

extract rheological properties of the medium. Brau et al. outlined the usage of opti-

cal tweezers to measure the microrheological behavior of several materials like glycerol,

methyl cellulose solutions, actin matrices, and cellular membranes [6] and Wilson et al.

performed passive and active (using optical tweezers) microrheological measurements of

PMMA colloids [7].

Another method to perform active microrheology is to manipulate magnetic particles

using external magnetic �elds [8�11]. In most of these experiments spherical magnetic

beads are used [12�14]. Using ferromagnetic particles additionally allows to exert torques

using homogeneous external �elds on the particles and thus to change the orientation of

the particles. The comparison of the orientation of the particle's magnetic moment and

the orientation of the external �eld can be used to extract rheological quantities.

An ansiotropic particle shape also allows to investigate rotation axis dependent interac-

tions with the surrounding matrix as well as to observe their orientation optically, em-

phasizing their suitability as probe particles in active microrheology [15]. One example

for the use of such anisotropic particles are Ni microrods (d ≈ 200 nm and l ≈ 5−20 µm)

which were investigated as magneto-optical switches [16], probe particles in interfacial

shear microrheology [17], and magnetic rotational spectroscopy [18, 19]. A direct obser-

vation of �eld-induced rotation by light microscopy is possible at the larger size of these

rods which also implies a comparatively high weight limiting the temporal stability of

suspension in liquids of low viscosity [16]. To reduce the e�ect of sedimentation, smaller

particles have to be employed which unfortunately limits their observability using optical

microscopy. However, the reduced depolarization factor along the rod axis leads to an

increased electrical polarizability with a resulting optical extinction cross section that

shows a strong dependence on the orientation of the particle relative to the polarization

direction of the incident light which allows the detection of the orientation of ensembles

of particles [20].

The electronic structure of Ni is responsible for its ferromagnetism and a moderate

damping of its plasmon resonance. This results in collinear magnetic and optical aniso-

tropies which can be used to produce magnetic �eld-dependent optical e�ects [20�22].

These e�ects may result in particular applications for homogeneous protein detection

[23] and magnetic �eld-dependent optical switches [16, 20]. The optical transmission

through Ni nanorod colloids in static external magnetic �eld (direct current magnetic

2



�eld-dependent optical transmission, DC-MOT) was already studied and the obtained

magnetic moments per particle agreed with values measured by vibrating sample mag-

netometry (VSM) [20, 24, 25].

Dynamic magnetic �eld-dependent optical transmission measurements in rotating mag-

netic �elds were used to observe a �eld and frequency dependent phase lag which is

related to the rotational di�usion coe�cient Dr. This method was used to measure

the rotational di�usion coe�cient of Polyvinylpyrrolidone (PVP) coated Ni nanorods

[24, 25]. Although the results agreed with AC magnetization and dynamic light scat-

tering, the absolute values were smaller by a factor of ∼ 2 than theoretically expected

based on the size of the nanorods obtained by electron microscopy. Since the rotational

di�usion coe�cient is related to the rotational friction coe�cient by ξr = kBT/Dr [2],

the experimental value of ξr is larger than the theoretically expected one. This may be

explained by di�erences in the geometric dimensions of the particle measured in vacuum

by transmission electron microscopy compared to the geometric dimension of the parti-

cle when dispersed in a liquid matrix. One reason for this discrepancy may be found in

the organic PVP coating of the Ni nanorods. The thickness of this polymeric layer is

unknown when dispersed in a liquid matrix like water. Furthermore, the rough surface

of the Ni core itself leads to a particle-matrix-interface with an ill-de�ned shape and

position, Fig. 1.1(a).

PVP 

Ni 
particle-matrix-interface silica 

(a) (b) 

Figure 1.1: Illustration of the ill-de�ned particle-matrix-interface of a PVP coated

nanorod (a) and the desired particle-matrix-interface of a nanorod with an additional

silica coating.

This indeterminableness of crucial parameters, i.e. length and diameters of the particles,

when dispersed in water hampers the calculation of an exact value for the rotational fric-

tion coe�cient. To solve this problem, an additional inorganic layer might be used to

3



1 - Introduction

provide a well-de�ned particle-matrix-interface, Fig. 1.1(b). Due to its mechanical sta-

bility and its well investigated properties, silica is a promising candidate for this purpose

and it was already used to coat nanoparticles such as silver and gold spheres [26, 27] or

gold rods [28]. Furthermore, the the usage of a silica shell o�ers the possibility for various

particle and surface functionalizations, e.g. �uorescence labeling [29] or hydrophobiza-

tion [30]. The objective of this work is to synthesize silica encapsulated Ni nanorods and

to investigate their hydrodynamic properties in terms of the rotational friction coe�cient.

Nanorods are synthesized by a template method and encapsulated by silica using the

Stöber process. The synthesized particles are dispersed in a medium with well-de�ned

interaction mechanisms, i. e. a Newtonian �uid where the dynamic behavior in general

and the rotational friction coe�cient of the particle in particular is determined by the

Navier-Stokes equations. The geometric dimensions of the particles can be measured

by analyzing transmission electron micrographs and their rotational friction coe�cient

calculated based on theoretical models. To determine the rotational friction coe�cient

experimentally, one could use AC magnetization measurements, as already done for PVP

coated Ni nanorods [24, 25]. To avoid hydrodynamic and dipolar particle-particle inter-

actions, the particle concentration should be as low as possible. A method suitable to

measure the rotational friction coe�cient at low particle concentrations is the magnetic

�eld-dependent optical transmission in oscillating magnetic �elds (OF-MOT) which was

already employed for the analysis of the gelation of gelatin aqueous solution [15]. In

this method, the particles in suspension are forced to an oscillatory motion by an ex-

ternal magnetic �eld. As in static or rotating magnetic �eld MOT, the orientation of

the particle ensemble is observed using the transmission of linearly polarized light. The

time-dependent transmitted intensity depends on several particle properties, i. e. the

magnetic moment, the rotational friction coe�cient, and the orientation dependent opti-

cal cross section. All these properties are determined by the geometric dimensions of the

particles implying the possibility to model the complete OF-MOT signal. A quantitative

agreement of the modeled with the measured data is expected if the modeling of all pa-

rameters, including the rotational friction coe�cient, is correct. Hence, the central idea

of this work is the comparison between measured and modeled OF-MOT signal of col-

loidal suspensions of silica coated Ni nanorods in order to critically investigate whether

or not their magnetic, optical, and particularly hydrodynamic properties are well-de�ned.

The most challenging part of the modeling is the determination of the orientation de-

4



pendent optical cross section of the particles. In previous studies, the electrostatic

approximation (EA) was used to estimate these cross sections [20]. The usage of the EA

was motivated by its major advantage of providing closed analytic expressions. However,

the accuracy of the derived cross sections remains questionable because the assumption

in the EA of a homogeneous electric �eld inside the nanorods is not justi�ed for rod

length L ≈ λ. Furthermore, in order to apply the EA, the particle shape has to be

approximated by prolate spheroids.

Thus, the cross sections should be calculated without these approximations using a more

advanced method. To calculate the optical cross sections, it is necessary to solve the

electromagnetic scattering problem which is a challenging task. G. Mie provided the

�rst exact solution for spherical particles of arbitrary size [31]. Applying the separa-

tion of variables method (SVM) to spheroidal vector wave functions leads to a solution

of the scattering problem for spheroids [32�34]. There are no exact solutions for arbi-

trarily shaped particles but semi-analytical methods are available, e. g. the T-matrix,

and numerical methods as the �nite di�erence time domain method (FDTD), the �nite

element method (FEM), and the discrete-dipole approximation (DDA). For more infor-

mation concerning the di�erent methods, reference is made to reviews by J. Parsons

[35] and T. Wriedt [36]. The spectral properties of cylindrical particles have been inves-

tigated with a major focus on gold nanorods due to their distinct plasmon resonances

[37�40] but size dependent optical cross sections for Ni nanorods could not be found

in literature. In the present work, numerical values for the extinction cross sections of

Ni nanorods with and without silica coating at a �xed wavelength for di�erent particle

lengths and diameters are derived using the �nite element method (FEM).

In continuation of the studies performed in [20] and in order to increase the complexity of

the modeling of the magnetic �eld-dependent optical transmission step by step, the �rst

part of this work is focused on static �eld-dependent measurements of the optical trans-

mission performed on suspensions of PVP coated Ni nanorods. These measurements can

be analyzed to obtain basic characteristics of a nanorod colloid, such as average mag-

netic moment per particle, aspect ratio, and particle concentration. The determination

of these quantities relies on an appropriate model for the nanorod optical extinction cross

sections which were obtained using the electrostatic approximation in earlier studies [20].

In the present work, the improved cross section calculation by FEM and for reasons of

comparison EA based cross sections will be used. One focus lies on the errors in the

analysis of DC-MOT measurements associated with the approximation of electrostatic

5



1 - Introduction

homogeneous polarization and of the particle shape as spheroids with the objective to

derive a more reliable analysis protocol.

In the next step, the established analysis of DC-MOT measurements is applied to col-

loidal suspensions of silica encapsulated Ni nanorods. This requires to expand the FEM

based calculation of optical cross sections to a core-shell model corresponding to silica

encapsulated Ni nanorods. In the last step, the rotational friction coe�cient is included

to model the dynamic OF-MOT signal. Finally, the modeled DC- and OF-MOT signals

are compared to the corresponding measured signals.

The outline of the work is as follows: The synthesis of PVP and silica coated Ni nanorods

is described in chapter 2. The used experimental methods, i. e. TEM, DC-MOT, and

OF-MOT are presented in chapter 3. The theory to calculate the magnetic, hydrody-

namic, and optical parameters of the particles is depicted in chapter 4. The resulting

relations are used in chapter 5 to derive instructions to model the DC- and OF-MOT

signal. Chapter 6 provides the results and discussion of DC-MOT measurements on

colloidal suspensions of PVP coated Ni nanorods and the focus of chapter 7 lies on the

results and the discussion concerning the comparison of modeled and measured mag-

netic �eld-dependent optical transmission of dispersions of silica coated Ni nanorods in

static and oscillating magnetic �elds. In chapter 8, the results are concluded and chap-

ter 9 provides an outlook for further studies using silica encapsulated Ni nanorods. The

appendices contain additional results and supplementary information.

6



Chapter 2

Particle synthesis

Ni nanorods were synthesized by a well-established [20, 24, 25, 41, 42] process which

uses porous alumina layers as templates. The synthesis of colloidal suspensions of PVP

coated Ni nanorods can be divided into four process steps. First, a double-stage anodic

oxidation was carried out to obtain a porous alumina layer. Then the pore channels were

�lled with Ni by current-pulsed electrodeposition. The resulting rods were trapped in

the alumina matrix, which was dissolved in the subsequent step. Finally, the obtained

suspension was washed several times to obtain a stable colloidal suspension.

2.1 PVP coated Ni nanorods

In the following, the practical proceeding of the synthesis of Ni nanorod colloids is

described. The protocol was already published in [43], see appendix E.

Porous alumina templates were synthesized by two-stage anodic oxidation [44]. The �rst

anodization of Al foils was carried out by applying a constant voltage of 15V for 24 h in

2M H2SO4 at -6 ◦C using Pb foils as counter electrodes. The obtained alumina layer was

dissolved in a solution of 0.12M H3PO4 and 0.2M H2CrO4 at 60 ◦C. A second anodization

was performed at a constant voltage of 20V under the same bath conditions as used in

the �rst anodization. The cumulated areal charge density during the second anodization

was limited to pre-de�ned values in the range of 2− 9C/cm2 in order to obtain alumina

layers of suitable thickness. The insulating barrier oxide thickness at the pore bottom was

reduced by decreasing the applied voltage at the end of the second anodization process

every 3 s in 1V-steps until 5V were reached [20]. After a 10 − 15min etching step in

0.1M H3PO4 at room temperature, which reduced structural inhomogeneities in the pore

7



2 - Particle synthesis

channels and slightly increased their diameter, the pores were �lled with Ni by pulsed

electrodeposition in a Watts-bath (300 g/l NiSO4 · 6H2O, 45 g/l NiCl2 · 6H2O and 45 g/l

H3BO3) at 35 ◦C, using Ni foils as counter electrodes [45�48]. A selected number #p of

current pulses (50mA/cm2), each consisting of a positive (duration t+) and a negative

(t−) pulse separated by a break (t0), were applied to obtain rods of di�erent length,

Tab. 2.1. The rods were released by dissolving the alumina template layer in an aqueous

NaOH solution (pH ≈ 11.5). The surfactant polyvinyl pyrrolidone (PVP) was added to

prevent rod agglomeration by steric repulsion [49, 50]. Stable colloidal dispersions were

obtained after repeated washing cycles consisting of centrifugation at 15557 rcf for 15min

and redispersion in double distilled water [24, 41]. Larger agglomerates were removed

by sedimentation in a �nal slow centrifugation step at 200 rcf for 2 h.

The samples scn-1 � scn-3 of PVP coated Ni nanorods were encapsulated using an

adapted Stöber process which will be described in the next section.

sample pcn-1 pcn-2 pcn-3 pcn-4 scn-1 scn-2 scn-3

charge density [C/cm2] 2 2 1.5 9 2 1.5 9

time in H3PO4 [min] 10 10 10 15 10 10 10

#p 200 400 500 4000 300 500 4000

t+ [ms] 16 4 4 4 4 4 4

t− [ms] 4 16 16 16 16 16 16

t0 [ms] 200 200 200 400 200 200 200

Table 2.1: Parameter for the synthesis of Ni nanorods.

2.2 The Stöber process

The Stöber synthesis [51] which is a sol-gel process was adapted to coat the Ni nanorods

with silica as �rst described in [52] which served as base for the following description.

The reaction involves two steps: the formation of very small particles of a few nanome-

ter followed by their aggregation to larger, but still microscopic, particles. Originally,

Stöber and Fink developed the method to synthesize spherical silica colloids based on

the hydrolysis of alkoxysilanes in a solution of ammonium hydroxide, water, and alcohol

[51]. While the alcohol is used to homogenize the alkoxysilanes and the water, the am-

monium hydroxide acts as a catalyst that accelerates the reaction by increasing the pH

8



2.2 The Stöber process

value [53]. The high pH value is important for a regular morphology of the particles [51].

The rates of nucleation and aggregation depend on the ratios of ammonium hydroxide,

water, and alcohol. By choosing the appropriate amounts of precursors, it is possible to

synthesize particles with a very narrow size distribution and diameters between 50 nm

and 2µm.

In the following, an overview of the reactions occurring during the Stöber process will

be given.

Chemical reactions

The formation of the silica particles is divided into two phases, hydrolysis of alkoxysilanes

leading to silicic acid molecules and condensation of these to form the �nal silica particles

[54].

Hydrolysis

In the present work, tetraethyl orthosilicate (TEOS, C8H20O4Si) with the alkyl R=C2H5

and the structure shown in Fig. 2.1 was used.

C2H5 O Si

O

CH2

O

C2H5

O C2H5

Figure 2.1: Structural formula of TEOS.

In the alkaline environment, the water dissociates and nucleophilic OH− ions are present.

These ions react with the alkoxy silane molecules and substitute its OR groups. Silicic

acid and ethanol are generated by this hydrolysis

Si(OR)4 + 4H2O → Si(OH)4 + 4ROH . (2.1)

The hydrolysis is a nucleophilic substitution reaction. The alkoxyl groups are not all

replaced at the same time, but in several steps, Fig. 2.2. The substitution of the �rst

9



2 - Particle synthesis

OR Si

OR

OR

OR ⇒ RO Si

OR

OR

OH ⇒ HO Si

OR

OR

OH ⇒ ...

Figure 2.2: Substitution reaction during hydrolysis.

OR group is the crucial step because the electron density of the silicon atom is reduced

and further OR groups are subsequently replaced [55].

Condensation

In the condensation reaction, several silicic acid molecules react with each other under

separation of water

nSi(OH)4 → nSiO2 + 2nH2O . (2.2)

This is an autocatalytic process because the formation of water occuring during the

condensation accelerates the reaction. Crosslinking of the molekular precursors follows

the reaction shown in Fig. 2.3.

Si OH + HO Si ⇒ Si O Si + H2O

Figure 2.3: Formation of silica particles.

Since partially hydrolyzed alkoxysilanes can also react to build Si−O−Si bonds leading
to silica and ethanol, not all OR groups need to be replaced by OH groups, Fig. 2.4.

Si OR + HO Si ⇒ Si O Si + ROH

Figure 2.4: Side reaction during the Stöber process.

The Stöber process allows the synthesis of monodisperse silica particles. In an adapted

form, the process can also be used to cover nanoparticles with a silica shell [26, 53, 56�

10



2.3 Silica coating of Ni nanorods

58]. The requirements to coat Ni nanorods with silica using an adapted Stöber process

will be discussed in the next section.

2.3 Silica coating of Ni nanorods

Silica coating of nanoparticles requires a high chemical a�nity of the surface of the par-

ticles to silica. Furthermore, to obtain single core particles, it is important that the

primary particles are individually dispersed in the reaction mixture.

To prevent agglomeration during the preparation of the Ni nanorods, PVP was added

to the NaOH solution in which the alumina template was dissolved. PVP adsorbes on

the rod surface and provides steric repulsion to counteract short range Van-der-Waals

forces as already mentioned in section 2.1. While the growth of silica on Ni oxides

was already reported in literature, it was shown that the a�nity of Ni to silica is low

[59]. Although the nanorods are expected to be covered by a NiO surface oxide layer,

it remains questionable if its thickness is su�ciently large to allow adsorption of silica

on the rod surfaces. However, PVP facilitates the growth of silica on various surfaces

[57] suggesting that silica coating is likely to grow on top of the PVP layer of the Ni

nanorods.

The individual dispersion of the nanorods in the reaction mixture poses an additional

challenge. In stable aqueous colloids, the long range dipolar attractive forces due to

the permanent magnetic moment of the rods is counteracted by electrostatic repulsion

of the positively charged rods. This repulsion is greatly reduced in solutions of high

ionic strength or at high pH values like in the ammonium hydroxide solution used in the

Stöber process. To reduce rod agglomeration during the Stöber process, the interpar-

ticle distance is increased by using very low particle concentrations resulting in a large

volume of the reaction mixture. As particles have to be separated from the solvent after

�nishing the Stöber process by centrifugation, �nding the optimal particle concentration

is determined by the compromise between a low particle concentration and the viability

of the separation process. In the present work, 15 samples of silica coated Ni nanorods

of di�erent lengths and diameters with di�erent ratios and amounts of precursors were

synthesized. Although the particle concentrations during the Stöber process were chosen

very low, the fraction of singly dispersed silica coated Ni nanorods was not satisfying

in most cases. Hence, most of the prepared samples were discarded due to insu�cient

sample quality.

The ratio of precursors has to be adjusted to obtain the desired thicknesses of the silica
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shells. A recipe published by Hardikar [26] who coated silver spheres with silica served

as the starting point and the amounts of chemicals were adjusted to obtain a complete

and homogeneous silica layer.

Practical procedure for the silica coating of the Ni nanorods

To synthesize silica encapsulated nanorods (scn), the colloidal dispersion of PVP coated

nanorods was diluted in a mixture of 2-propanol, NH3 solution (25%) and water at

40 ◦C. By adding tetraethoxysilane (TEOS, 99.9%), the Stöber process was initialized.

Details of the synthesis are shown in Tab. 2.2. The resulting particles were separated

by centrifugation at 15557 rcf for at least 10min and subsequently redispersed in double

distilled water. A strong magnetic gradient �eld that attracts the ferromagnetic core of

the silica encapsulated Ni nanorods was used to separate them from non magnetic pure

silica spheres which are a by-product of the Stöber process. The washing steps were

repeated until a stable dispersion of silica encapsulated Ni nanorods was obtained. In

the case of the samples scn-1 and scn-2, an additional centrifugation step at 200 g for

60min or 95min was carried out to remove large agglomerates.

sample scn-1 scn-2 scn-3

NH3 solution (25%) [ml] 6.8 5.3 5.2

H2O [ml] 28 8.9 2.7

TEOS [µl] 160 50 12.5

added nanorods [1010] 7.1 23 2.5

reaction time [min] 60 35 120

intermixing ms us us

Table 2.2: Amounts of reagents and Ni nanorods added to 100ml 2-propanol to syn-

thesize silica coated nanorods (scn). Mixing during the Stöber process was performed

with a magnetic stirrer (ms) or ultra sonic bath (us). The di�erences in the ratios of

the reagents between the di�erent samples arise from the di�erent particle sizes which

will be shown later.

In the next chapter, the experimental methods used to investigate the colloidal disper-

sions of PVP and silica encapsulated Ni nanorods, respectively, will be presented.
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Chapter 3

Experimental methods

Transmission electron microscopy (TEM) was used for structural characterization of

the particles. Static as well as dynamical magnetic �eld-dependent optical transmis-

sion (MOT) measurements were used for characterization of the particle concentrations,

diameters and their characteristic relaxation frequencies.

3.1 Transmission electron microscopy (TEM)

All micrographs used for the present work were generated using a JEOL JEM-2011

transmission electron microscope. A small volume of the rod suspension was dropped

onto a carbon coated copper grid and dried in the ambient atmosphere. The rods were

visualized in bright �eld TEM micrographs using electrons accelerated with 200 kV. Sup-

ported by the image analysis software ImageJ [60], geometric dimensions of hundreds of

particles were extracted from the TEM images. For this purpose, lengths and diameters

were measured manually and tabulated in a way that conserves the relation of length

and diameter of each particle.

3.2 Magnetic �eld-dependent optical transmission

(MOT)

Modi�ed versions of sections 3.2 and 3.2.1 were already published as a part of publication

[43], see appendix E.

For magneto-optical transmission measurements, a HeNe laser L is used which generates
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Figure 3.1: Experimental setup for magneto-optical transmission measurements of

nanorod colloids [43].

linearly polarized light (λ = 632.8 nm) with a polarization direction de�ned by a half-

wave plate P, Fig. 3.1. The laser beam propagates parallel to the z-direction. A beam

splitter B directs about half of the light intensity to a reference detector DR. The main

beam passes a cuvette (High Precision Cell by Hellma Analytics, special optical glass)

containing the colloidal suspension of the particles F (optical path length 1 cm). The

cuvette is centered inside two sets of crossed Helmholtz coils C which generate magnetic

�elds up to Hext = 150Oe parallel (x-direction) and perpendicular (y-direction) to the

electric �eld vector of the incident light, respectively. The magnetic �ux densities in

both directions are detected by Hall probes. The temperature of the cuvette was kept at

20◦C. The transmitted intensity is measured by the sample detector D. Oscillations and

drift in the laser intensity are compensated by computing the ratio of the two detector

voltages, R = UDR
/UD, which is proportional to the transmittance T = I/I0.

3.2.1 Static MOT

In static direct current magnetic �eld-dependent optical transmission (DC-MOT) mea-

surements, the optical transmission of the particle suspension R is determined at di�e-

rent static magnetic �elds Hext. The measured voltage ratios are normalized to R× =

R (Hext = 0), i.e.

R(H)/R× = T (H)/T× = I(H)/I× . (3.1)

Another mode of operation for the presented MOT setup are measurements in oscillating

magnetic �elds (OF-MOT) that will be described in the following.
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3.2 Magnetic �eld-dependent optical transmission (MOT)

3.2.2 Oscillating MOT

The setup used to perform oscillating magnetic �eld-dependent optical transmission

(OF-MOT) measurements is basically identical to the one described above, Fig. 3.1.

Details of the technical implementation of the OF-MOT mode can be found in [15]. The

amplitude and phase of the optical signal with respect to the magnetic �eld are measured

as a function of the frequency using the Lock-In algorithm. While the maximum angular

frequency supported by the setup is 30000 rad/s, the minimum frequency is limited by

increasing measurement times but not technically.

In the following, a magneto-optical response function will be de�ned and it will be shown

how it is obtained from the measured amplitude and phase lag.

The nanorods are exposed to a homogeneous magnetic �eld with a constant magnitude

H0 oscillating about the y-axis, Fig. 3.2:

Hy = H0 cos(β(t)) ,

Hx = H0 sin(β(t))
(3.2)

with

β(t) = β0 exp(iωt) . (3.3)

Figure 3.2: Oscillating magnetic �eld ~H in the xy-plane around the y-axis within an

angular range of ±β0 (dashed lines). θ(t) describes the oscillation of the nanorod axis

which is assumed to be identical to the direction of the magnetic moment ~m [15].

Due to this magnetic �eld, the particles are forced to an oscillation which can be described
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by

θ(t) = θ0 exp(i(ωt+ ϕ)) = θ̂0 exp(iωt) . (3.4)

Using Eq. (3.3) and Eq. (3.4), the magneto-optical response function

X̂(ω) = θ̂0(ω)/β0 (3.5)

is de�ned. Due to the viscous drag of the particles, their orientation is phase shifted as

compared to the oscillating external magnetic �eld. This results in an in-phase and an

out-of-phase component. The response function can be described by a complex function

X̂(ω) = X
′
(ω) + iX

′′
(ω) (3.6)

with the real part

X ′ω = Aω cos (φω) (3.7)

and the imaginary part

X ′′ω = Aω sin (φω) (3.8)

where Aω is the amplitude and φω the phase shift measured at a given applied angular

frequency ω.

The most obvious approach to measure the oscillatory motion of the nanorods is to mea-

sure the transmitted intensity of the light polarized in y-direction. As will be shown later,

the intensity I is proportional to exp (−Ns(Cext,L cos(Θ)2 + Cext,T1 sin(Θ)2)), where N

is the particle concentration, s is the optical pathlength, Cext,L and Cext,T1 are constants

related to the optical properties of the particle, and Θ is the angle between the particle

axis and the polarization direction of light. At this point, the dependence of the intensity

on the angle Θ is crucial. Choosing Θ = θ implies a rod oscillation between Θ = −12◦

and Θ = 12◦ (mean angle 0◦), where the change in intensity is minimal and hence the

resolution of measurements is poor. A signi�cantly increased resolution is reached when

the polarization direction of the incident light is tilded by an angle of 45◦ with respect

to the y-direction, Fig. 3.3.

The optical transmission in oscillating magnetic �elds is determined by the magnetic,

hydrodynamic, and optical properties of the nanorods. In order to model the whole DC

and OF-MOT signal, theoretical models for these physical properties of Ni nanorods will

be presented in the following chapter.
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Figure 3.3: Calculated transmitted intensity of a typical colloid with parallel alignment

of the nanorods as a function of the angle Θ between the rod axis and the polarization

direction of light (the shown intensity was calculated for an aqueous colloidal dispersion

of silica encapsulated Ni nanorods with a core diameter of dc = 20 nm, a core length of

lc = 200 nm, a shell thickness of Dsh = 50 nm, a particle concentration of N = 1015m−3,

and an optical path length of s = 0.1m; all these quantities will be de�ned and discussed

in detail in later chapters). The highest resolution is reached when the mean position

of the oscillating rod encloses an average angle of 45◦ with the polarization direction so

that the intensity variation upon oscillation within ±β0 = 12◦ is maximized.
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Chapter 4

Theory

This chapter provides the theoretical framework to describe the magnetic �eld-dependent

optical transmission of PVP and silica coated Ni nanorods. First, their magnetic pro-

perties will be described and it will be shown that Ni nanorods of size used in this work

are ferromagnetic single domain particles with a preferential alignment of the magnetic

moment parallel to the long rod axis (section 4.1).

While the mean orientation of the particles in static magnetic �eld-dependent opti-

cal transmission (DC-MOT) measurements is determined by the ratio of thermal and

magnetic energy, their time-dependent orientation in dynamical oscillating magnetic

�eld-dependent optical transmission (OF-MOT) measurements also depends on their

hydrodynamic properties. In this context, the rotational friction coe�cient is the deter-

mining quantity. Its calculation will be described in section 4.2.3.

For both measurement modes, static and dynamic, the detection of the particle orienta-

tion is realized by the measurement of the transmission of linearly polarized light when

passing the particle suspension. Hence, the quantities describing the interaction of the

corresponding electromagnetic wave with the anisotropic particles, i.e. the orientation

dependent optical cross sections, are introduced in section 4.3.

4.1 Magnetism of Ni nanorods

In the following treatment of the magnetism of the nanorods, the in�uence of the particle

shell (consisting of silica or PVP) will be neglected and all considerations refer to the Ni

core. Due to the exchange interaction between magnetic spins, ferromagnetic materials

show a spontaneous or saturation magnetization Ms even in the absence of an external

magnetic �eld. The alignment of the spins is in competition with their thermal energy,

19



4 - Theory

causing the magnetization to decrease with increasing temperature and to vanish upon

reaching the Curie temperature TC. The present work treats nanorods made of Ni (TC =

628K, [61]), which is a typical example for a material with ferromagnetism stemming

from 3d electrons. The di�erent terms of the micromagnetic energy functional of a

ferromagnetic material that is minimized for the realized magnetic state will be described

in the following.

4.1.1 Micromagnetic energy functional of ferromagnetic

materials

Neglecting magnetostriction, surface and shape anisotropies, any ferromagnetic material

adopts the magnetization ~M(~r ) that minimizes the total magnetic energy

Emag, tot = Eex + Ea + EZ + Ed. (4.1)

which is the sum of the exchange energy Eex, the anisotropy energy Ea, the Zeeman

energy EZ, and the demagnetization energy Ed [62]. These energy contributions will be

explained in the following:

� In order to describe the exchange energy Eex, the Hamilton operator

H = −2J
∑
<ij>

~Si ~Sj (4.2)

is introduced. It represents the interaction of localized Spins in adjacent atoms

where J is the interatomic exchange constant between the spins ~Si and ~Sj at

the lattice places i and j . Although Ni, as a 3d-ferromagnetic material, has no

localized spins, the formalism can be transferred and in the continuum picture the

exchange energy can be described by [63, section 7.1.1]1, [64, section 4.2.7]:

Eex =

∫
A

(
∇

~M

Ms

)2

dV . (4.3)

Eex depends on the saturation magnetization Ms and the exchange constant A

which is positive for all ferromagnetic materials. This causes the exchange energy

to be minimized when the spins are aligned parallel to each other.

1This notation means that the citation points to section 7.1.1 in reference [63].
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4.1 Magnetism of Ni nanorods

� The anisotropy energy Ea which for cubic systems with anisotropy constant K1 is

given as

Ea =
K1

M4
s

(M2
xM

2
y +M2

yM
2
z +M2

zM
2
x)V . (4.4)

The magnetocrystalline anisotropy originates from crystal �eld and spin-orbit in-

teraction, resulting in a preferred alignment of the magnetic moment along speci�c

crystallographic orientations [64, section 6.7.2], [63, section 5.5] which are called

easy axes.

� The Zeeman energy [63, section 2.5]

EZ = −
∫
µ0
~M ~H dV (4.5)

describes the interaction of the magnetization with an external magnetic �eld and

is minimal for a parallel alignment.

� The demagnetizing energy [63, section 2.5.1], [64, section 6.7.4]

Ed = −1

2

∫
µ0
~Hd

~M dV (4.6)

has its origin in the demagnetizing �eld ~Hd, which results from the magnetized

sample itself. The magnetization of a homogeneously magnetized ferromagnetic

material diverges on its surface. The relation ∇ ~M = −∇ ~H [64] (appendix B)

indicates an external stray �eld and a demagnetizing �eld opposite to the mag-

netization inside the particle. To minimize the demagnetization �eld, the mag-

netization splits into domains of di�erent magnetic orientation, Fig. 4.1. Hence,

macroscopic ferromagnetic samples do not necessarily exhibit a resulting macro-

scopic magnetization. However, for very small particles, a single domain state

might be energetically preferred.
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Figure 4.1: Illustration of a ferromagnetic sample whose magnetization splits into dif-

ferently oriented domains [65]. Within each domain, the magnitude of the magnetization

corresponds to the saturation magnetization whereas the orientations are di�erent.

4.1.2 Single domain particles

Due to the exchange energy, the change of orientation of the microscopic magnetic mo-

ments between adjacent domains occurs by gradual rotation along several magnetic

moments. The corresponding spatial region is called Bloch wall and its thickness

δ0 =

√
A

K1

(4.7)

is determined by the magnetocrystalline anisotropy constant K1 and the exchange con-

stant A. The excess energy per unit area σB which is necessary to form a Bloch wall

results from the minimization of the energy contributions Eex + Ea [61, 3.2.2.2]:

σB = 4
√
AK1 . (4.8)

The total magnetic energy of a ferromagnetic sphere in single (a) and two (b) domain

con�guration is shown in Fig. 4.2 (a) and (b) and can be calculated to [42]

Etot,a = Ed,a =
2

9
µ0Ms2πr3 ,

Etot,b = Ed,b + σBπr
2 =

1

9
µ0Ms2πr3 + 4

√
AK1πr

2 .
(4.9)

Fig. 4.3 shows Etot,a and Etot,b as functions of the diameter of the sphere. Below the crit-

ical diameter rc, sphere, the single domain state is energetically preferred. Using Eqs. (4.9)

and the condition Etot,a = Etot,b it follows that

rc, sphere = 36

√
AK1

µ0M2
s

(4.10)

and a value of rc, sphere = 15.7 nm is found for Ni [42].

For non-spheroidal particles, the critical size for single-domain states can be retrieved

22



4.1 Magnetism of Ni nanorods

Figure 4.2: Two con�gurations of the magnetization of a ferromagnetic sphere with a

preferred direction parallel to the z-axis [42]. The red arrows indicate the demagnetizing

�eldHd. The shown states are (a) the single domain state with maximum demagnetizing

energy and (b) a state where splitting into two domains of di�erent direction reduces

the demagnetization energy but results in an additional energy contribution to insert

the Bloch wall.
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Figure 4.3: Total magnetic energy of a Ni sphere for the two magnetization con�gu-

rations shown in Fig. 4.2 as functions of radius [42].
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from micromagnetic computer simulations. For cylinders with aspect ratios > 1, Ross et

al. [66] determined the critical diameter below which a single domain state is preferred

and found a critical diameter of ∼ 42 nm for Ni. The direction of magnetization is

determined by the dominant anisotropy, which in the case of Ni nanorods is the shape

anisotropy.

4.1.3 Shape anisotropy

As already mentioned, the magnetization ~M is discontinuous at the surface of a particle.

For a homogeneously magnetized sample, this discontinuity implies the demagnetizing

�eld

~Hd = Nd
~M (4.11)

where Nd is the demagnetization tensor which depends on the particle shape. After a

transformation to principal axes, Nd can be expressed by a diagonal matrix with entries

N1, N2, N3 and N1+N2+N3 = 1. Unfortunately, there is no simple method to determine

Ni for arbitrarily shaped particles like cylinders. An axisymmetric shape with known

demagnetizing factors is the prolate spheroid where N|| = N1 and N⊥ = N2 = N3 are

the demagnetizing factors parallel and perpendicular to the major axis. The respective

demagnetizing energy is given by [67]

Ed =
1

2
µ0M2

sV (N⊥ sin2 ϑ+N|| cos2 ϑ)

=
1

4
µ0M2

sV (1− 3N||) sin2 ϑ+
1

2
µ0M

2
s V N||

(4.12)

where ϑ is the angle between the long axis of the spheroid and the direction of the mag-

netic moment. The second summand which is independent of ϑ represents a physically

irrelevant shift of the zero point of energy and will be neglected.

By de�ning the shape anisotropy constant for spheroids

Ks =
1

4
µ0M

2
s (1− 3N||) , (4.13)

the shape anisotropy energy is given by

Es = KsV sin2 ϑ . (4.14)

Thus, the shape anisotropy energy is minimized for ϑ = 0. A parallel alignment of the

magnetic moment with the long axis is preferred if the shape anisotropy is the dominant
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4.1 Magnetism of Ni nanorods

contribution to the total anisotropy. This is the case for Ni cylinders with aspect ratios

> 1.1 as the shape anisotropy constant is larger than the crystal anisotropy constant

[42].

To determine the magnetization of a homogeneously magnetized spheroid as a function

of direction and magnitude of an external magnetic �eld, E.C. Stoner and E.P. Wohlfarth

[68] have developed a simple vector model that will be presented in the following.

4.1.4 The Stoner-Wohlfarth model

The Stoner-Wohlfarth model is used to describe the behavior of the magnetization of

a homogeneously magnetized prolate spheroid. In this model, it is assumed that all

magnetic moments inside the particle are parallel to each other and thus the magnitude

of the magnetization vector ~M is constant and adopts the value of the saturation mag-

netization | ~M | = Ms. The orientation of ~M results from the competition between the

shape anisotropy energy and the Zeeman energy.

Figure 4.4: Schematic illustration of a Stoner-Wohlfarth particle and de�nition of

angles used in the Stoner-Wohlfarth model [42].

Hence the total magnetic energy is

Etot = Es + EZ . (4.15)

Using the angles de�ned in Fig. 4.4, Eq. (4.15), it can be transformed to

Etot = KsV sin2(ϑ)− µ0HVMs cos(θ)

= (Ks sin2(Θ− θ)− µ0HMs cos(θ))V .
(4.16)
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Introducing the normalized quantities

ε =
Etot

2KsV
,

h =
H

Hk
with Hk =

2Ks

µ0Ms

(4.17)

leads to the reduced energy density

ε =
1

2
sin2(Θ− θ)− h cos(θ) . (4.18)

In a homogeneous magnetic �eld ~H, the magnetization vector ~M adopts the orientation

that minimizes the reduced energy density ε which is determined by

dε
dθ

= − cos(Θ− θ) sin(Θ− θ) + h sin(θ)
!

= 0 (I) ,

d2ε
dθ2

= − sin2(Θ− θ) + cos2(Θ− θ) + h cos(θ)
!
> 0 (II) .

(4.19)

For a given particle orientation Θ = const, the orientation of the magnetization vector

cos(θ(h)) = MH(H)/Ms can be determined and the following results are obtained:

� Θ = 90◦ (particle parallel to the external �eld): The solutions of Eq. (4.19 (I)) are

θ = 0, θ = π, and cos(θ) = h. Local minima can be found for the conditions

θ1 = 0 ∧ h > 1 ,

θ2 = π ∧ h < −1 ,

cos(θ) = h ∧ |h| < 1 .

(4.20)

The corresponding plot is shown in Fig. 4.5.

� Θ = 0◦ (particle perpendicular to the external �eld): The solution of Eq. (4.19 (I))

are θ = 0, θ = π, and cos(θ) = −h, but local minima can only be found for the

conditions

θ1 = 0 ∧ h > −1 ,

θ2 = π ∧ h < 1 .
(4.21)

For cos(θ) = −h a local maximum is found. The obtained magnetization curve

consists of two branches, the upper (−1 < h <∞) and lower (−∞ < h < 1) one,

Fig. 4.5.

26



4.1 Magnetism of Ni nanorods

� For arbitrary orientations (0◦ < θ < 90◦), the magnetization curves can be deter-

mined using numerical methods. For each of these cases the solution has an upper

and a lower branch, each showing a continuous behavior until a critical �eld value

is reached, Fig. 4.5. The change of magnetization inside each branch is realized by

a reversible rotation of the magnetic moments. Exceeding the critical �eld results

in an irreversible jump of the magnetization from one branch to the other.
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Figure 4.5: Magnetization curves of a Stoner-Wohlfarth particle as a function of the

normalized external �eld h for di�erent orientations Θ [42].

In contrast to the particles in the Stoner-Wohlfarth model, the particles used in this

work were not spatially �xed, but free to rotate in a purely viscous matrix. Although

Ni nanorods are not inherently superparamagnetic, the magnetization of their colloidal

dispersions can be described using the same formalism as used for superparamagnetic

particles.

4.1.5 Pseudo-superparamagnetic behavior

The energetic considerations in section 4.1.4 describe a time independent orientation of

the magnetic moment and did not consider any thermal energy contribution. The single

domain state with constant magnetization direction is only obtained if the anisotropy
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energy is larger than the thermal energy. If this condition is violated, thermally acti-

vated reorientations of the magnetic moments in absence of an external magnetic �eld

result in a change of the direction of the magnetization which causes the time averaged

magnetization of the particles to vanish. Applying an external �eld results in a pref-

erential alignment and positive net magnetization in �eld direction despite continuous

reorientations of the magnetization of the superparamagnetic particle. The orientation

of the magnetization in �eld direction happens on a characteristic time scale whose cor-

responding constant is called the Néel relaxation time [69].

The magnetization behavior of superparamagnetic particles can be described using the

Langevin function [70]

M(H) = MsL(ζ) ,

L(ζ) = coth(ζ)− 1

ζ
, ζ =

mµ0H

kBT

(4.22)

which is shown in Fig. 4.6.
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Figure 4.6: Langevin function L as a function of the ratio of magnetic and thermal

energy ζ.

Using a typical shape anisotropy constant of Ni nanorods Ks = 50 kJm−3 [71, 72], the

ratio of thermal energy and magnetic shape anisotropy energy of the smallest Ni nanorods
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used in this work can be estimated to

KsV

kBT
> 327 . (4.23)

The corresponding Néel relaxation time

τN = τ0 exp

(
KsV

kBT

)
(4.24)

where the constant τ0 assumes values of about 10−9 s [73], can be calculated to τN ≈
10133 s. Thus, all Ni nanorods used in this work are ferromagnetic and do not exhibit

superparamagnetic behavior.

But if the particles are dispersed in a liquid matrix, a relaxation process occurs by rota-

tion of the whole particle in �eld direction while the orientation of the moment relative

to the particle is �xed. This process is called Brownian relaxation [74] and the time

that an ensemble of rods needs to return to a uniform orientation distribution, after an

external �eld has been removed, is called the corresponding relaxation time.

Thus, Ni nanorods dispersed in a colloidal dispersion show a magnetization behavior

that can be described by Eq. (4.22), although they are uniaxial quasistatic ferromag-

netic single domain particles.

The considerations describe the static magnetization behavior, but in experiments in-

volving a dynamic external �elds, the rotational friction of the particles which hampers

an instantaneous rotation in �eld direction has a signi�cant in�uence on the measured

instantaneous magnetization.

In section 3.2.2, the nanorod axis was assumed to be identical to the direction of the

magnetic moment in OF-MOT experiments. However, in this setup the particles are

exposed to an oscillating magnetic �eld which is in general not parallel to the particle

axis and thus the magnetic moment is expected to rotate out of the the rod axis by an

angle which depends on the shape anisotropy constant Ks. In order to judge whether

the approximation of a parallel alignment of the particle axis and the magnetic moment

is justi�ed, this angle will be estimated.

4.1.6 Orientation of the magnetic moment in OF-MOT measure-

ments

In OF-MOT experiments, the distinct shape anisotropy of Ni cylinders is exploited to

induce particle rotations by external magnetic �elds. To exert a torque on the particle,
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the magnetic moment has to rotate out of the rod axis by an angle ϑ, Fig. 4.7. However,

in the derivation of the equation of motion of the nanorod in section 3.2.2, a parallel

alignment of the particle axis and the magnetic moment was assumed. In the following,

an upper bound ϑmax will be estimated to decide whether it is necessary to pay attention

to complex reorientations of the magnetic moment.

particle 
H

m

max
max







Figure 4.7: De�nition of angles between the particle axis, its magnetic moment ~m,

and the external magnetic �eld ~H.

If the phase shift between the oscillating applied magnetic �eld and the oscillation of the

measured intensity approaches 90◦, the amplitude of the rod oscillation vanishes while

the external �eld oscillates between βmax and −βmax. Thus, the maximum value of Θ is

βmax which was 12◦ in the experiments performed in this work. The Stoner-Wohlfarth

model enables the calculation of the angle θ between the magnetic moment of the rod and

the external �eld and thus the angle ϑ = Θ− θ between the magnetic moment and the

rod axis. For this purpose, Eq. (4.18) can be used to calculate the reduced energy density

ε as a function of θ. In absence of an external magnetic �eld (h = 0), the minimum

of ε would be found for θ = Θ = 12◦, Fig. 4.8, indicating parallel alignment of mag-

netic moment and particle axis. For an external �eld as used in OF-MOT experiments

(H = 60Oe), a typical shape anisotropy constant of Ni nanorods (Ks = 50 kJ/m−3), and

the value Ms = 488 ·103Am−1 for the saturation magnetization of Ni [63], the normalized

external �eld can be calculated to h = 0.03 and the minimum of ε shifts to θ = 11.7◦

indicating ϑ = 0.3◦. Hence, the maximum de�ection of the magnetic moment is 2.5 % of

the oscillation amplitude β0 so that it can safely be assumed that the magnetic moment

and the axis of the particle in OF-MOT measurements are in parallel alignment.

Another crucial aspect determining the time dependent behavior of a nanorod in os-

cillating magnetic �elds is its rotational friction due to the viscous drag which will be

treated in the following.
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Figure 4.8: Reduced energy density ε as de�ned in the SWM, Eq. (4.18), as a function

of the angle Φ between the magnetic moment and the external magnetic �eld. The lines

represent the curve in absence of an external magnetic �eld (h = 0) and for the con�g-

uration in OF-MOT measurements (h = 0.03). The lower graph shows a magni�cation

around θ = 12◦. Negative energy densities occur because the constant term in Eq. (4.12)

was neglected.
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4.2 Hydrodynamic properties of Ni nanorods

A constant torque T exerted on a particle which is surrounded by a viscous matrix results

in a continuous rotation with the angular frequency ω that is determined by the friction

due to the medium. The ratio

T

ω
= ξr (4.25)

is called the rotational friction coe�cient and is the physical quantity that determines

the oscillatory rotational motion of the nanorods. It depends on the density ρ, on the

viscosity η of the surrounding medium, on the particle volume and shape, and the di-

rection of the rotation axis.

To determine the motion of a particle in a �uid, it is necessary to solve the fundamental

equations describing the motion of a viscous �uid, the so called Navier-Stokes equations,

which were published for incompressible �uids by Navier in 1827 and for compressible

�uids by Poisson in 1831. Further deviations of these equations were given by De Saint-

Venant in 1843 and by Stokes in 1845.

The following representation untill chapter 4.2.1 follows the description in the textbook

Theoretische Hydromechanik by N.J. Kotchin et al. [75].

In the case of an incompressible �uid, the Navier-Stokes equation is

d
dt
~v = ~F +

η

ρ
4~v − 1

ρ
∇p (4.26)

where ~v is the velocity, ~F the body force density, η the dynamic viscosity, ρ the density,

and p the pressure acting on a small volume of the �uid. Together with the equation of

continuity

∇~v = 0 , (4.27)

the motion of a �uid is completely determined.

The Eqs. (4.26) and (4.27) are very complex partial di�erential equations that cannot be

solved exactly in most cases. One case which can be solved analytically is the case of a

sphere rotating with constant angular frequency in a purely viscous incompressible �uid

which will be presented in the following.
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4.2.1 The rotational friction coe�cient of a sphere

The �rst one who solved the problem of a sphere with radius a rotating with a small

constant angular frequency ω in a purely viscous incompressible �uid was Gustav Kirch-

ho� in his lectures on mechanics in 1897 [76]. In the present work, the presentation of

the solution of this problem follows the description of the textbook Theoretische Hy-

dromechanik by N.J. Kotchin et al. (1955) [75, chapter II �22].

To solve this spherically symmetric problem, spherical coordinates will be introduced.

The spherical coordinates of a point in the three dimensional space are the radius r, the

inclination θ and the azimuth ϕ, Fig. 4.9.

x
y

z





r

P

O . 

. 

Figure 4.9: De�nition of angles in spherical coordinates.

They are relatated to the cartesian coordinates x, y, and z by the relations

x = r · sin θ · cosϕ ,

y = r · sin θ · sinϕ ,

z = r · cos θ .

(4.28)

To solve the problem of a sphere rotating in a �uid, it is useful to transform the equations

of motion of the �uids, Eqs. (4.26), to a general Lamb form and write it component-by-
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component in spherical coordinates [75, chapter II �5]:

∂vr
∂t

+ vr
∂vr
∂r

+
vθ
r

∂vr
∂θ

+
vϕ

r sin θ

∂vr
∂ϕ
−
v2θ + v2ϕ

r

= Fr −
1

ρ

∂p

∂r
+
η

ρ

(∂2vr
∂r2

+
1

r2
∂2vr
∂θ2

+
1

r2 sin2 θ

∂2vr
∂ϕ2

+
2

r

∂vr
∂r

+
cot θ

r2
∂vr
∂θ
− 2

r2
∂vθ
∂θ
− 2

r2 sin θ

∂vϕ
∂ϕ
− 2vr

r2
− 2 cot θ

r2
vθ

)
,

(4.29)

∂vθ
∂t

+ vr
∂vθ
∂r

+
vθ
r

∂vθ
∂θ

+
vϕ

r sin θ

∂vθ
∂ϕ

+
vrvθ
r
−
v2ϕ cot θ

r

= Fθ −
1

ρr

∂p

∂θ
+
η

ρ

(∂2vθ
∂r2

+
1

r2
∂2vθ
∂θ2

+
1

r2 sin2 θ

∂2vθ
∂ϕ2

+
2

r

∂vθ
∂r

+
cot θ

r2
∂vθ
∂θ
− 2 cos θ

r2 sin2 θ

∂vϕ
∂ϕ

+
2

r2
∂vr
∂θ
− vθ
r2 sin2 θ

)
,

(4.30)

∂vϕ
∂t

+ vr
∂vϕ
∂r

+
vθ
r

∂vϕ
∂θ

+
vϕ

r sin θ

∂vϕ
∂ϕ

+
vrvϕ
r

+
vθvϕ cot θ

r

= Fϕ −
1

ρr sin θ

∂p

∂ϕ
+
η

ρ

(∂2vϕ
∂r2

+
1

r2
∂2vϕ
∂θ2

+
1

r2 sin2 θ

∂2vϕ
∂ϕ2

+
2

r

∂vϕ
∂r

+
cot θ

r2
∂vϕ
∂θ

+
2

r2 sin θ

∂vr
∂ϕ

+
2 cos θ

r2 sin2 θ

∂vθ
∂ϕ
− vϕ
r2 sin2 θ

)
.

(4.31)

Furthermore, the equation of continuity, Eq. (4.27), in spherical cooridnates is:

∂vr
∂r

+
1

r

∂vθ
∂θ

+
1

r sin θ

∂vϕ
∂ϕ

+
2vr
r

+
vθ cot θ

r
= 0 . (4.32)

In this case, the linear velocity ωa of the points of the equator of the sphere can be

assumed as characteristic velocity. Thus the Reynolds number R which is de�ned as

the ratio of inertial forces to viscous forces can be calculated to R = ρωa·a
η

. Since ω is

assumed to be small and thus R is small, the left side of Eqs. (4.29), and (4.30), (4.31)

can be set equal to zero [75]. Furthermore, the body force density will be neglected. The

resulting equations can be solved using the ansatz

vr = 0

vθ = 0

p = const

vϕ = v(r,θ)

(4.33)
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where v(r,θ) must be a solution to the equation

∂2v

∂r2
+

1

r2
∂2v

∂θ2
+

2

r

∂v

∂r
+

cot θ

r2
∂v

∂θ
− v

r2 sin2 θ
= 0 . (4.34)

The �uid particles that are in contact with the sphere are assumed to have the same

linear velocity as the surface of the sphere ωa sin θ. This boundary condition is called

no-slip (or stick) boundary condition and is characterized by the equation

v(a,θ) = ωa sin θ . (4.35)

Regarding this boundary condition, it is obvious to use the ansatz

v(r,θ) = A(r) sin θ (4.36)

to solve Eq. (4.34) resulting in an ordinary di�erential equation, i. e. a Cauchy-Euler

equation,

d2A
dr2

+
2

r

dA
dr
− 2A

r2
= 0 (4.37)

which can be solved by integration:

A(r) = C1r +
C2

r2
. (4.38)

The constants C1 and C2 are determined by the boundary conditions. For an unlimited

�uid, C1 = 0 has to be assumed to ensure a vanishing velocity of the �uid at in�nity.

Hence,

v(r,θ) = C
sin θ

r2
(4.39)

where C can be determined using the boundary condition represented by Eq. (4.35) to

C = ωa3. Thus, the �nally obtained relation for the velocity of the �uid is

v(r,θ) =
ωa3 sin θ

r2
. (4.40)

For a constant rotation of the sphere, a torque has to be applied to it. To determine

this torque, the stress on every in�nitely small area between two circles of latitude has

to be known. A useful relation for this problem can be found in [75, chapter II �5]:

pr,ϕ = η
(∂v
∂r
− v

r

)∣∣∣∣
r=a

= −3 ηω sin θ . (4.41)
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Since the area of the considered zones is 2πa sin θa dθ and the length of the lever arms

is a sin θ, the torque can be expressed by

T =

π∫
0

3ηω sin θ · a sin θ · 2πa2 sin θdθ

= 6πηωa3
π∫

0

sin3 dθ

= 8πηa3ω .

(4.42)

Thus, the rotational friction coe�cient of a slowly rotating sphere of radius a inside an

incompressible �uid with viscosity η is ξr = T/ω = 8πηa3. After solving the problem for

the simplest geometry, i.e. a sphere, the problem for the simplest anisotropic shape, i.e.

spheroids, will be treated in the following.

4.2.2 The rotational friction coe�cient of a spheroid

The �rst one who treated the rotational friction of a spheroid was D. Edwards (1893) [77]

whose work seems to be widely unknown, later Perrin worked on this topic [78]. Both

works were mentioned by R. Gans (1928) [79]. Unfortunately, several of the �nal results

derived by Perrin are incorrect resulting in some confusion in literature and corrections

to Perrin's results were reported in [80]. The results of this work will be presented in

the following.

For spheroids with semi-axes a and b = c, the rotational friction coe�cients are com-

plex functions of their outer dimensions. There are two independent rotational friction

coe�cients. One describes the rotation around the long semi-axis a

ξr,a =
4(1− (c/a)2)

3(2− (c/a)2aS)
ξr,sphere , (4.43)

while the other one describes the rotation around the short semi-axes b and c

ξr,b =
4(1− (c/a)4)

3(c/a)2(aS(2− (c/a)2)− 2)
ξr,sphere (4.44)

where ξr,sphere = 8πac2η is the rotational friction coe�cient of a sphere of equivalent

volume. The parameter S de�ned by Perrin can be calculated by:

S = S0(1− (c/a)2)−1/2 ln
{

[1 + (1− (c/a)2)1/2]/p
}

(prolate spheroid, a/c > 1) ,

S = S0(1− (c/a)2)−1/2 arctan[((c/a)2 − 1)1/2] (oblate spheroid, a/c < 1)
(4.45)
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where S0 = 2/a. The spheroid is the simplest anisotropic axial symmetric geometry that

could be used to describe the particles used in this work. A better description of the

shape is a cylinder whose rotational friction coe�cient will be calculated in the following.

4.2.3 The rotational friction coe�cient of a cylinder

Due to the complicated process of solving the partial di�erential equations in compliance

with the boundary conditions, a simple estimation of the rotational friction coe�cient

of a rod rotating around its short axis following [81, section 8.2.2] is presented.

In the shish-kebab model, the rod of length L is approximated by N = L/a beads with

diameter a which are numbered from −N/2 to N/2, Fig. 4.10. For a rod rotating with

L
2/N

2/N

a

a

a

Figure 4.10: Rodlike particle and shish-kebab model which consists of N = L/a beads

of diameter a placed along a straight line [81].

angular velocity ~ω, the bead n which has the distance nb to the center moves with the

velocity ~vn = ~ω × na~u where ~u is the unit vector parallel to the long rod axis. The

frictional force acting on the segment n is −ξt~vn where ξt is the translational friction

coe�cient of the bead. The problem of calculating ξt for a sphere at small Reynolds

numbers was �rst solved by Sir George Gabriel Stokes in 1850 [82] who found ξt = 3πηa.

Further derivations can be found in [75, 83]. Using Stokes' expression for ξt, the total
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torque is

~Tfriction = −
N/2∑

n=−N/2

na~u× ξt~vn

= −
N/2∑

n=−N/2

na~u× (ξt~ω × na~u)

= −ξt
N/2∑

n=−N/2

n2a2~ω

≈ −(3πηa)a2
2

3

(
N

2

)3

~ω

= −ηπL
3

4
~ω .

(4.46)

Following Eq. (4.25), the rotational friction coe�cient is

ξr =
πηL3

4
(4.47)

which is independent of the rod diameter a. This unexpected result is an artifact caused

by the negligence of the hydrodynamic interactions among the beads. An approxima-

tive analytical calculation considering hydrodynamic interactions can be found in [81,

appendix 8.1] and leads to

ξr =
πηL3

3 ln
(
L
2a

) . (4.48)

A more accurate approximation of a rod is to model it as an array of N interacting

spherical elements as exemplarily shown in Fig. 4.11.

Figure 4.11: Cylinder �lled up with an array of spheres.

The accuracy of the obtained results increases withN . Unfortunately, the calculation has

to be performed using numerical methods and thus an increase in N implies increasing
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run times. Tirado et al. combined this method with symmetry properties of rodlike

particles resulting in a modeling of cylinders as a stack of rings [84�86], Fig. 4.12.

Figure 4.12: Cyliner �lled up with an array of rings.

This leads to great simpli�cations implying short run times and thus to an increasing

of N and more accurate results. Tirado et al. calculated a set of rotational friction

coe�cients as a function of the aspect ratio and described the resulting curve by an

analytical expression. For the rotation around the short rod axis

ξr =
πηL3

3
(
ln
(
L
a

)
+ χ

(
L
a

)) (4.49)

where

χ

(
x =

L

a

)
= −0.662 +

0.917

x
− 0.050

x2
(4.50)

is the end-e�ect correction was found.

Today's computer power gives rise to numerical methods providing even more precise

results. For example, Aragon used the boundary element method to solve the exact hy-

drodynamic equations [87] for arbitrarily shaped particles and developed a corresponding

software suite called BEST. Later, Aragon solved the exact integral equation for Stokes

�ow with no slip boundary conditions of cylinders [88]. Similar to Tirado, they provided

a high-precision approximate analytical expression for their numerical results which is

also described by Eq. (4.49), but with a di�erent end-e�ect correction:

χ(x) = A− B
4
√
x

+
C√
x

+
D

x
− E

x2
+
F

x3
− G

x4
(4.51)

with A = −0.372093, B = 0.95622, C = 1.24792, D = 1.23085, E = 1.99498, F =

1.84201, G = 0.664147.
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Fig. 4.13 shows a comparison between the calculated rotational friction coe�cient of

cylinders with a diameter of 100 nm as a function of its length obtained by the di�erent

expressions mentioned above. All expressions that are not based on numerical methods

overestimate the rotational friction coe�cient signi�cantly. Since Eqs. (4.49) and (4.51)

exhibit the highest accuracy, they will be used for all calculations of the rotational friction

coe�cient in this work. For more information about macromolecular hydrodynamic

modeling, reference is made to the review article of Aragon [89].

In the next section, reasons for deviations between the calculated idealized and real

rotational friction coe�cients will be discussed.
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Figure 4.13: Calculated rotational friction coe�cient ξr as a function of the rod length

L in water (η = 1mPas) for a rod rotating around its short axis with a diameter of

100 nm. The calculations were performed using Eq. (4.44) assuming spheroids (with same

volume and aspect ratio as corresponding capped cylinders), Eq. (4.47) using the simple

shish-kebab model, Eq. (4.48) using the shish-kebab model with interaction among the

beads, Eqs. (4.49), (4.50) using Tirado's results, or Eqs. (4.49), (4.51) using Aragon's

results, respectively.
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4.2.4 In�uence of deviations from the considered model

In the present work, all particles are described as capped cylinders, but sometimes dif-

ferences at the cylinder ends like a non-hemispherical shape are observed. To estimate

their in�uence, the rotational friction coe�cient of the same cylinder as used in Fig. 4.13

was calculated by Aragon and Flamik [88] for three di�erent types of cylinders: open,

capped and rectangular, Fig. 4.14.

Figure 4.14: Triangular tessellations for open, capped, and rectangular cylinders [88].

Except for rod lengths below 200 nm, open and rectangular cylinders exhibit exactly the

same behavior within the precision of Fig. 4.15. For small lengths and thus small aspect

ratios the values for capped cylinders di�er about 40% compared to open and rectangular

cylinders. For larger aspect ratios corresponding to L = 1000 nm this di�erence decreases

to ∼ 17%.

Another perturbation of the shape can be caused by a rough surface. This problem was

treated by Yamakawa who compared the rotational di�usion coe�cient Dr = kBT/ξr

about the minor axis for a capped cylinder of length L and diameter d and a linear

array of spherical beads of length L and diameter d′ (looks similar to the shish-kebab

model but is calculated di�erently) [90]. A good agreement between those models was

found if the relation d = 0.741d′ is full�lled. This result suggests a large in�uence of

the surface roughness, but is has to be mentioned that a linear array of beads is an

example of a very rough surface (diameter of the particle varies between 0 and d′). The

surface roughness of the particles used in this work is much smaller and thus the e�ect

is presumably smaller, too.

The biggest problem when calculating the rotation friction coe�cient of a capped cylin-

der arises from uncertainties in the diameter of the particle which can arise from an

unknown thickness of a polymer coating for example.
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Figure 4.15: Same parameters as used in Fig. 4.13. Calculations performed for open,

capped, and rectangular cylinders using relations of Aragon et al. [88].

Figure 4.16: Thiol terminated linear polystyrene tethered to a nanoparticle surface

(top image). Polysterene in mushroom (random coil) or brush (extended) structure

(depending on polymer coverage, bottom image) [91].

Similar e�ects can be expected for PVP coated Ni nanorods. A. Günther observed a

di�erence of the diameter of PVP coated nanorods when investigated by TEM or SEM,

respectively [25]. The di�erence was attributed to the PVP layer which was not observed

in TEM, and determined to ≈ 4 nm. It should be noted that this thickness was estimated

in vacuum, while the layer is expected to swell in water. In an extreme case, a brush
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structure similar as observed for polysterene could be adopted. Krueger et al. investi-

gated the hydrodynamic size of polystyrene coated spherical Au and CdSe nanoparticles.

They discovered that the polymer assumes a brush conformation if the particle is fully

covered by the polymer, Fig. 4.16. In this conformation, the polymer is 44% longer than

the unbound polymer in solution. All these e�ects increase the hydrodynamic diameter

of the nanorods and may explain the di�erences (factor 2) between theoretical expected

and measured rotational di�usion coe�cients Dr = kBT/ξr observed by Günther [25].

Although swelling was also observed for Stöber particles [92], their change in size is ex-

pected to be less dramatically.

In conclusion, the perturbations arising from the di�erences in the cylinder ends, the

surface roughness, and uncertainties in the rod diameter are expected, but it is also ex-

pected that they are smaller for silica encapsulated nanorods compared to PVP coated

nanorods and will be neglected. The uncertainties in the particle diameter as discussed

for PVP coated Ni nanorods should vanish for particles with an additional inorganic

silica shell. Finally, the model for capped cylindrical particles proposed by Aragon,

Eqs. (4.49) and (4.51), will be used.

In the following, the last fundamental physical aspect concerning the magnetic �eld-

dependent optical transmission through nanorod colloids, i.e. their interaction with

linearly polarized light, will be discussed.
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4.3 Absorption and scattering of light

The following sections (4.3.1 - 4.3.5.3, 4.3.8) summarize chapters 1-3 of the text book

Absorption and scattering of light by small particles by Bohren and Hu�man [93] as far

as it is necessary to understand the corresponding physical quantities, especially the

optical cross sections used in the presented work. The considerations are limited to a

scattering problem where a single particle is hit by an electromagnetic wave within the

framework of classical electromagnetic theory and linear optics.

4.3.1 Physical basis

In this section the basic physical processes of an obstacle being hit by an electromag-

netic wave [93, sections 1.1-1.2] is described. Electric charges inside this obstacle (i.e.

electrons) are forced to an oscillatory motion. The accelerated electric charges radiate

energy indicating a secondary radiation, which is emitted by the obstacle and is called

scattering. Additionally to the reradiated electromagnetic energy, the excited elementary

charges can transform a part of the incident electromagnetic energy into other forms of

energy, e.g. thermal energy.

In the following, the electromagnetic scattering problem will be con�ned to the basic

problem of interaction of light with an arbitrary wavelength with a single particle that is

embedded in a homogeneous medium, meaning that the atomic or molecular heterogene-

ity is small compared to the wavelength of the incident light. Even though the particles

can be complicated in shape and in the composition of their homogeneous components, it

is assumed that every point of the particle can be described in macroscopic terms. The

analysis is also narrowed down to elastic scattering, which means that the frequency

of the scattered wave equals the frequency of the incident wave. In the following, the

Maxwell equations which provide the mathematical description of the scattering problem

will be introduced [93, section 2.1].
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4.3.2 Field vectors and the Maxwell equations

The basic equations to describe the absorption and scattering of electromagnetic waves

are the Maxwell equations which are given by

∇ · ~D = ρF,

∇× ~E +
∂ ~B

∂t
= 0,

∇ · ~B = 0,

∇× ~H = ~JF +
∂ ~D

∂t

(4.52)

in SI units, where ~E is the electric �eld and ~B the magnetic induction. The electric

displacement
~D = ε0 ~E + ~P (4.53)

is related to the electric polarization ~P (average electric dipole moment per unit volume)

by the permittivity ε0 and the magnetic �eld

~H =
1

µ0

~B − ~M (4.54)

to the magnetization ~M (average magnetic dipole moment per unit volume) by the

permeability of free space µ0. The quantities ρF and ~JF are the charge and current

density of free charges.

In order to apply the Maxwell equations to the scattering problem, the Poynting vector

[93, section 2.5]
~S = ~E × ~H (4.55)

is de�ned. It determines direction and magnitude of the rate of transfer of electromag-

netic energy at all points of space and has the dimension of energy per area and time.

Most instruments cannot follow the rapid oscillations of the Poynting vector, but they

can detect the intensity I which is equal to the time average of the Poynting vector

I =
〈
~S(t)

〉
=

1

τ

t+τ∫
t

~S(t′) dt′ , (4.56)

where τ is a time interval long compared to the inverse angular frequency 1/ω. The

Poynting vector will be used to de�ne the extinction, scattering, and absorption cross

section [93, section 3.4].
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4.3.3 Extinction, scattering, and absorption

Extinction describes the reduction of the detectable rate of electromagnetic energy of

light from U0 to U hitting a detector caused by the presence of particles in the pathway

of the light, Fig. 4.17.

Figure 4.17: Extinction by a collection of particles [93].

Absorption (e.g. transformation of electromagnetic energy into thermal energy) and

scattering by the particles has led to the di�erence U0−U . Fig. 4.18 shows the geometry

used to describe the extinction by a single arbitrary particle embedded in a nonabsorb-

ing medium when the particle is illuminated by a plane wave. The net rate at which

electromagnetic energy crosses the closed surface A of an imaginary sphere of radius r

around the particle is

Wa = −
∫
A

~S · ~er dA. (4.57)

Energy will be absorbed inside the sphere if Wa > 0. Due to the nonabsorbing medium,

Wa has to be the rate at which the particle absorbs energy. The rate at which energy is

extincted (from the point of view of the detector)Wext is the sum of the rate of absorbed

and scattered energy

Wext = Wa +Ws , (4.58)

where
Ws = −

∫
A

~Ss · ~er dA,

Wext = −
∫
A

~Sext · ~er dA.
(4.59)
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Figure 4.18: Extinction by a single particle [93].

The vector ~Ss is the Poynting vector which is associated to the scattered electromagnetic

wave and the vector ~Sext can be interpreted as a term arising due to the interaction of

the incident and scattered waves.

The ratio of the corresponding rates of energy and incident irradiance Ii

Cext =
Wext

Ii
,

Cabs =
Wa

Ii
,

Csca =
Ws

Ii

(4.60)

are quantities with dimension of area and are called the extinction, absorption, and

scattering cross section. Following Eq. (4.58), the extinction cross section is the sum of

the absorption and scattering cross section:

Cext = Cabs + Csca . (4.61)

Now the general problem of determining the �elds required to calculate these optical

cross sections will be discussed [93, section 3.1].

4.3.4 General formulation of the problem

The fundamental problem is to determine the electromagnetic �eld at all points inside

the particle which is illuminated by the electromagnetic wave and at all points of the

homogeneous medium in which the particle is embedded. Due to the experimental
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conditions used in this work, the considerations are limited to a linearily polarized plane

monochromatic wave.

If ( ~Ei, ~Hi) and ( ~Es, ~Hs) are the electric and magnetic �elds of the incident and scattered

electromagnetic wave, Fig. 4.19, then the �eld inside the particles ( ~E1, ~H1) and the �elds

inside the surrounding medium ( ~E2, ~H2) can be calculated by superposition

~E2 = ~Ei + ~Es ,

~H2 = ~Hi + ~Hs ,
(4.62)

where
~Ei = ~E0 exp(i~k · ~x− iωt) ,
~Hi = ~H0 exp(i~k · ~x− iωt) .

(4.63)

Figure 4.19: The incident �eld ( ~Ei, ~Hi) gives rise to a �eld ( ~E1, ~H1) inside the particle

and a scattered �eld ( ~Es, ~Hs) in the medium surrounding the particle [93].

Here, ~k is the wave vector in the surrounding medium. The �eld must satisfy the

Maxwell equations at all points where ε and µ are continuous. However, by crossing the

boundary between particle and medium, ε and µ change abruptly implying a macros-

copic discontinuity at the boundary. It is required that the tangential components of ~E

and ~H are continuous at the boundary(
~E2 − ~E1

)
× ~n = 0 ,(

~H2 − ~H1

)
× ~n = 0 ,

(4.64)
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where ~n is the outward directed normal to the surface S.

Our fundamental task is to �nd a solution of the Maxwell equations (4.52), both inside

and outside of the particle that additionally satis�es the boundary conditions (4.64).

Using Eqs. (4.57) � (4.60), the absorption, scattering, and extinction cross sections can

be calculated from the obtained �elds. The simplest geometry of a particle for which the

scattering problem can be solved is a sphere which will be addressed in the next section.

4.3.5 Solving the scattering problem for spheres

The exact physical description of light scattering by spherical particles of radius a was

derived in 1908 by Gustav Mie [31]. Although the particles used in this work, do not

have a spherical shape, a short outline of the Mie theory will be given to illustrate the

complexity of solving the scattering problem. The following description gives a resume

of the description that can be found in the book of Bohren and Hu�man [93, chapter

4] but suppresses a lot of mathematical details to keep the outline as short as possible.

Furthermore, approximations for particles small compared to the wave length will be

given.

4.3.5.1 Mie theory

The electric and magnetic �elds de�ned in Eqs. (4.62) and (4.63) have to satisfy the

Maxwell equations, which can be transformed to

∇ · ~E = 0, (4.65)

∇ · ~H = 0, (4.66)

∇× ~E = iωµ ~H, (4.67)

∇× ~H = −iωε ~E (4.68)

with continuous permittivity ε and permeability µ. The curls of Eqs. (4.67) and(4.68)

are
∇× (∇× ~E) = iωµ∇× ~H = ω2εµ ~E ,

∇× (∇× ~H) = iωε∇× ~E = ω2εµ ~H
(4.69)

Using the identity

∇× (∇× ~A) = ∇(∇ · ~A)−∇ · (∇ ~A) (4.70)

results in

∇2 ~E + k2 ~E = 0 , (4.71)

∇2 ~H + k2 ~H = 0 (4.72)

49



4 - Theory

where k2 = ω2εµ and ∇2 ~A = ∇ · (∇ ~A).

A scalar function ψ and an arbitrary constant vector ~c can be used to construct a vector

valued function ~M

~M = ∇× (~cψ) . (4.73)

Since the divergence of a rotation vanishes for every vector function, it follows that

∇ · ~M = 0. (4.74)

Using the identities

∇× ( ~A× ~B) = ~A(∇ · ~B)− ~B(∇ · ~A) + ( ~B · ∇) ~A− ( ~A · ∇) ~B, (4.75)

∇( ~A ·B) = ~A× (∇× ~B) + ~B × (∇× ~A) + (B · ∇) ~A+ ( ~A · ∇) ~B. (4.76)

results in

∇2 ~M + k2 ~M = ∇×
[
~c(∇2ψ + k2ψ)

]
. (4.77)

Thus, ~M satis�es the vector wave equation if ψ is a solution of the scalar wave equation

∇2ψ + k2ψ = 0 . (4.78)

Furthermore, ~M can be used to construct the function

~N =
∇× ~M

k
(4.79)

which is free of divergence and satis�es the vector wave equation ∇2 ~N + k2 ~N = 0.

Furthermore, the relation ∇× ~N = k ~M holds and hence ~N and ~M satisfy the attributes

of an electromagnetic �eld. Thus, the problem is reduced to the problem of solving the

scalar wave equation, Eq. (4.78).

The vector equation
~M = ∇× (~rψ) (4.80)

where ~r is the radius vector is a solution of the vector wave equation in spherical coor-

dinates as de�ned in Eqs. (4.28):

1

r2
∂

∂r

(
r
∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin θ

∂2ψ

∂ϕ2
+ k2ψ = 0 . (4.81)

This equation is separable and the ansatz

ψ(r,θ,φ) = R(r)Θ(θ)Φ(ϕ) (4.82)
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leads to three ordinary di�erential equations:

d2Φ
dϕ2

+m2ϕ = 0, (4.83)

1

sin θ

d
dϕ

(
sinϕ

dΘ

dθ

)
+

[
(n(n+ 1)− m2

sin2 ϕ

]
Θ = 0, (4.84)

d
dr

(
r2
dR
dr

)
+
[
k2r2 − n(n+ 1)

]
R = 0 (4.85)

where the separation constants m and n are determined by subsidiary conditions that ψ

must satisfy.

Eq. (4.83) represents the ϕ-dependence and can be solved by the linear independent

solutions

Φe = cosmϕ, Φo = sinmϕ (4.86)

where e and o hint to even and odd functions and m ∈ N.
Eq. (4.84) represents the θ-dependence and can be solved by the associated Legendre

functions of the �rst kind Pm
n (cos θ) of degree n and order m [94].

Finally, Eq. (4.85) represents the r-dependence and can be transformed to

ρ
d
dρ

(
ρ
dZ
dρ

)
+

[
ρ2 − (n+

1

2
)2
]
Z = 0 (4.87)

by introducing the dimensionless variable ρ = kr and de�ning Z = R
√
ρ. The linear

independent solutions of Eq. (4.87) are the Bessel functions of the �rst and second kind

Jn+1/2 and Yn+1/2. Hence, the linear independent solutions of Eq. (4.85) are

jn(ρ) =
√

π
2ρ
Jn+1/2(ρ) , (4.88)

yn(ρ) =
√

π
2ρ
Yn+1/2(ρ) , (4.89)

h(1)n (ρ) = jn(ρ) + iyn(ρ) , (4.90)

h(1)n (ρ) = jn(ρ)− iyn(ρ) (4.91)

where jn and yn can be expressed by zn which can be calculated using the recurrence

relations

zn−1(ρ) + zn+1(ρ) =
2n+ 1

ρ
zn(ρ), (4.92)

(2n+ 1)
d

dρ
zn(ρ) = nzn−1(ρ)− (n+ 1)zn+1(ρ) , (4.93)

where zn is either jn or yn. The �rst two orders

j0(ρ) =
sin ρ

ρ
, j1(ρ) =

sin ρ

ρ2
− cos ρ

ρ
, y0(ρ) = −cos ρ

ρ
, y1(ρ) = −cos ρ

ρ2
− sin ρ

ρ
, (4.94)
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allow to generate higher orders.

In conclusion, the solution of the scalar wave equation is

ψemn = cos(mϕ)Pm
n (cos θ)zn(kr),

ψomn = sin(mϕ)Pm
n (cos θ)zn(kr)

(4.95)

where zn(kr) is one of the four Bessel functions. Thus, the spherical harmonic vectors,

Eq. (4.73), are
~Memn = ∇× (~rψemn), ~Momn = ∇× (~rψomn) (4.96)

and

~Nemn =
∇× ~Memn

k
, ~Nomn =

∇× ~Momn

k
. (4.97)

Using the expressions for ~Memn, ~Momn, ~Nemn, and ~Nomn, a plane wave can be expanded

in spherical harmonic waves, which will be done in the following.

Expansion of a plane wave in vector spherical harmonics

A plane x-polarized wave that can be represented in spherical coordinates by

~Ei = E0e
ikr cos θ~̂ex with ~̂ex = sin θ~̂er + cos θ cosϕ~̂eθ − sinϕ~̂eϕ (4.98)

is scattered by an arbitrary sphere. To solve this problem, Eq. (4.98) is expanded in

spherical harmonic vectors:

~Ei =
∞∑
m=0

∞∑
n=m

(Bemn
~Memn +Bomn

~Momn + Aemn ~Nemn + Aomn ~Nomn) . (4.99)

The unknown coe�cients Bemn, Bomn, Aemn, and Aomn can be determined using the

orthogonality conditions of sin(mϕ) and cos(m′ϕ) leading to Bemn = Aomn = 0 for all m

and n. Furthermore, the remaining coe�cients vanish unless m = 1 and the superscript

l will be introduced to solve problems related to the misbehavior of yn at the origin.

Finally

~Ei = E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
( ~M

(1)
oln − i ~N

(1)
eln) (4.100)

is obtained. Since the expansion of the incident electric �eld ~Ei is now determined, the

Maxwell equations can be used to obtain the corresponding magnetic �elds ~Hi, too:

~Hi =
−k
ωµ

E0

∞∑
n=1

in
2n+ 1

n(n+ 1)
( ~M

(1)
eln + i ~N

(1)
oln) . (4.101)

Furthermore, the scattered �elds ( ~Es, ~Hs) as well as the �elds inside the sphere ( ~E1, ~H2)

can also be expanded in spherical vectors.
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The internal and scattered �elds

At the boundary between the sphere and the surrounding medium, the condition

( ~Ei + ~Es − ~E1)× ~er = ( ~Hi + ~Hs − ~H1)× ~er (4.102)

has to be satis�ed. These boundary conditions, the orthogonality of the vector harmon-

ics, and the form of the expansion of the incident �eld determine the expansions for the

scattered �eld and the �eld inside the sphere. After some mathematical manipulations,

it follows that

~E1 =
∞∑
n=1

En(cn ~M
(1)
oln − idn ~N

(1)
eln),

~H1 =
−k1
ωµ1

∞∑
n=1

En(dn ~M
(1)
eln + icn ~N

(1)
oln),

~Es =
∞∑
n=1

En(ian ~N
(3)
eln − bn ~M

(3)
oln),

~Hs =
−k
ωµ

∞∑
n=1

En(ibn ~N
(3)
oln − an ~M

(3)
eln)

(4.103)

where En = inE0(2n + 1)/n(n + 1) and µ1 is the permeability of the sphere. The

superscript (3) is appended to vector spherical harmonics for which the radial dependence

of the generating functions is speci�ed by h(1)n . The orthogonality of sin and cos, the

relations between the angle dependent functions πn = P l
n/ sin θ and τn = dP l

n/dθ, the

expansion of the incident, particle internal and scattered �elds, and the border conditions

Eq. (4.102), can be used to generate four linear equations for expansion coe�cients whose

solutions determine the expansion coe�cients inside the particle

cn =
µ1jn(x)[xh

(1)
n (x)]′ − µ1h

(1)
n (x)[xjn(x)]′

µ1jn(mx)[xh
(1)
n (x)]′ − µh(1)n (x)[mxjn(mx)]′

,

dn =
µ1mjn(x)[xh

(1)
n (x)]′ − µ1mh

(1)
n (x)[xjn(x)]′

µm2jn(mx)[xh
(1)
n (x)]′ − µ1h

(1)
n (x)[mxjn(mx)]′

(4.104)

and the scattering coe�cients

an =
µm2jn(mx)[xjn(x)]′ − µ1jn(x)[mxjn(mx)]′

µm2jn(mx)[xh
(1)
n (x)]′ − µ1h

(1)
n (x)[mxjn(mx)]′

,

bn =
µ1mjn(x)[xjn(x)]′ − µjn(x)[mxjn(mx)]′

µ1jn(mx)[xh
(1)
n (x)]′ − µh(1)n (x)[mxjn(mx)]′

.

(4.105)

Here, [...]′ describes derivatives with respect to the argument inside the parenthesis and

x =
2πNa

λ
(4.106)
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is the so called size parameter. It depends on the refractive index of the medium N and

the wave length of the incident light λ. The relative refractive index is related to the

refractive index of the particle N1 by

m =
N1

N
. (4.107)

Introducing the Riccati-Bessel-functions

ψn(ρ) = ρjn(ρ) , ξn(ρ) = ρh(1)n (ρ) , (4.108)

the scattering coe�cients can be simpli�ed to

an =
mψn(mx)ψ′n(x)− ψn(x)ψ′n(mx)

mψn(mx)ξ′n(x)− ξn(x)ψ′n(mx)
,

bn =
ψ(mx)ψ′n(x)−mψn(x)ψ′n(mx)

ψn(mx)ξ′n(x)−mξn(x)ψ′n(mx)
.

(4.109)

Using these scattering coe�cients, the scattered �elds and thus Wext, Wsca, and

Wabs = Wext −Wsca can be calculated via Eqs. (4.59), (4.61). Now, the scattering cross

section
Csca =

Ws

II

=
2π

k2

∞∑
n=1

(2n+ 1)
(
|an|2 + |bn|2

) (4.110)

and the extinction cross section

Cext =
Wext

II

=
2π

k2

∞∑
n=1

(2n+ 1)Re (an + bn)
(4.111)

of the sphere can be calculated. The absorption cross section is

Cabs = Cext − Csca . (4.112)

To calculate a numerical value of absorption or scattering cross sections, merely the

scattering coe�cients an and bn have to be calculated. However, it turns out that the

number of summands necessary for convergence is relatively large. Although this number

of summands is no big problem for today's computers, the determination of the scattering

coe�cients is a challenging numerical task since the coe�cients are complicated functions

of spherical Bessel functions and their derivatives with complex arguments.

In the case of particles small compared to the wavelength of the incident light, the

calculations can be dramatically simpli�ed as will be shown in the following.
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4.3.5.2 Spheres small compared to the wave length

The section description gives a resume of the description that can be found in the book

of Bohren and Hu�man [93, section 5.1]. Expanding the �rst scattering coe�cients to

an accuracy of terms of order x6 results in

a1 = −i2x
3

3

m2 − 1

m2 + 2
− i2x5

5

(m2 − 2)(m2 − 1)

(m2 + 2)2
+

4x6

9

(
m2 − 1

m2 + 2

)
+O(x7),

b1 = −ix
5

45
(m2 − 1) +O(x7),

a2 = −ix
5

15

m2 − 1

2m2 + 3
+O(x7),

b2 = O(x7).

(4.113)

To obtain this representation, it was assumed that the permeability of the sphere is equal

to the one of the medium. For |m|x � 1 it follows that |b1| � |a1| and thus only one

term of order three or higher remains:

a1 = −i2x
3

3

m2 − 1

m2 + 2
. (4.114)

The scattering cross sections can be determined by inserting this equation into Eq. (4.110)

Csca = πa2
8

3
x4
∣∣∣∣ ε1 − εmε1 + 2εm

∣∣∣∣2 . (4.115)

Here, N =
√
ε was used. The parameter ε1 is the permittivity of the sphere and the

parameter εm the permittivity of the medium. Similar, the extinction cross section can

be obtained by inserting Eq. (4.114) into Eq. (4.111) resulting in

Cext = πa2

[
4x Im

{
ε1 − εm
ε1 + 2εm

(
1 +

x2

15

ε1 − εm
ε1 + 2εm

m4 + 27m2 + 38

2m2 + 3

)}

+
8

3
x4Re

{(
ε1 − εm
ε1 + 2εm

)2
}]

.

(4.116)

For |m|x� 1 the term

x2

15

(
ε1 − εm
ε1 + 2εm

)
m4 + 27m2 + 38

2m2 + 3
(4.117)

is close to zero and the absorption cross section can be calculated by Cabs = Cext−Csca.

Since the corresponding term in the book of Bohren and Hu�man seems to have a typing
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error, the calculation will be shown in detail:

Cabs = Cext − Csca

= πa2

(
4xIm

{ ε1 − εm
ε1 + 2εm

}
+

8

3
x4Re

{( ε1 − εm
ε1 + 2εm

)2}
− 8

3
x4
∣∣∣ ε1 − εm
ε1 + 2εm

∣∣∣2)

= πa2

(
4xIm

{ ε1 − εm
ε1 + 2εm

}
+

8

3
x4Re

{( ε1 − εm
ε1 + 2εm

)2}
− 8

3
x4
(
Re
{ ε1 − εm
ε1 + 2εm

}2

+ Im
{ ε1 − εm
ε1 + 2εm

}2))

= πa2

(
4xIm

{ ε1 − εm
ε1 + 2εm

}
+

8

3
x4Re

{ ε1 − εm
ε1 + 2εm

}2

− 8

3
x4Im

{ ε1 − εm
ε1 + 2εm

}2

− 8

3
x4Re

{ ε1 − εm
ε1 + 2εm

}2

− 8

3
x4Im

{ ε1 − εm
ε1 + 2εm

}2
)

= πa2

(
4xIm

{ ε1 − εm
ε1 + 2εm

}
− 16

3
x4Im

{ ε1 − εm
ε1 + 2εm

}2
)

= πa2

(
4xIm

{ ε1 − εm
ε1 + 2εm

}(
1− 4

3
x3Im

{ ε1 − εm
ε1 + 2εm

}))
.

(4.118)

Furthermore, 4/3x3Im{(ε1−εm)(ε1+2εm)} � 1 holds for small x and thus the absorption

cross section is approximately

Cabs = πa24x Im
{ ε1 − εm
ε1 + 2εm

}
. (4.119)

The obtained expressions for the optical cross sections for particles small compared to

the wavelength were obtained starting from the results of Mie theory.

In the next section, the same expressions will be deduced by a much simpler approach

called the electrostatic approximation.

4.3.5.3 Spheres in the electrostatic approximation

The following section summarizes of the description that can be found in the book by

Bohren and Hu�man [93, section 5.2].

Assuming a wavelength signi�cantly larger than the particle size implies that the �eld

inside the particle depends only on time while it is independent of the position inside the

particle, Fig. 4.20. In this electrostatic approximation (also called quasistatic approxi-

mation), a homogeneously polarized isotropic sphere is considered to behave like an ideal
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Figure 4.20: In general, the electric �eld inside the illuminated particle depends on

location and time. In the electrostatic approximation, it is assumed that the particle is

much smaller than the wavelength of the incident light. In this case, the electric �eld

is assumed to be independent on the location inside the particle but still varying with

time [25].

dipole. If the permittivities of the medium and the sphere are not equal, a charge will be

induced on the surface of the sphere. The electric �elds inside and outside of the sphere
~E1 and ~E2 can be determined by calculating the negative gradient of the corresponding

potentials ~E1 = −∇φ1 and ~E2 = −∇φ2.

Considering these di�erential equations of the electric �eld and the conditions for po-

tentials at boundaries

φ1 = φ2 (4.120)

and

ε1
∂φ1

∂r
= εm

∂φ2

∂r
(r = a) (4.121)

and the fact that the electric �eld at large distances from the sphere has to be the

unperturbed applied �eld

lim
r→∞

= −E0z , (4.122)

the following relations are generated:

φ1 = − 3εm
ε1+2εm

E0r cos θ, (4.123)

φ2 = −E0r cos θ + a3E0
ε1−εm
ε1+2εm

cos θ
r2

. (4.124)

Eq. (4.124) determines the �eld outside of the sphere and consists of one term which is

identical to the potential of an ideal dipole

φ =
~p · ~r

4πεmr3
=

p cos θ

4πεmr2
(4.125)

with the dipole moment

~p = 4πεma
3 ε1 − εm
ε1 + 2εm

~E0 . (4.126)
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Hence, the applied �eld induces a dipole moment which is proportional to the �eld.

Using the relation

~p = εmα~E0 , (4.127)

the polarizability

α = 4πa3
ε1 − εm
ε1 + 2εm

(4.128)

can be attributed to the sphere.

These considerations are purely electrostatic, but the scattering of a plane wave by a

sphere is a dynamical problem. To calculate the scattering, the sphere is replaced by

an ideal dipole. Following Eq. (4.126), the dipole moment is assumed to be proportional

to the applied �eld and the permittivities at the frequency of the incident wave. The

moment of the ideal dipole oscillates with the frequency of the applied �eld and thus

emits an electric �eld
~Es =

eik(r−z)

−ikr
~XE, E = E0e

ikz (4.129)

with
~X =

ik3

4π
α~er × (~er × ~ex) . (4.130)

Using these expressions, the corresponding Poynting vectors and thus Wext, Wsca, and

Wabs = Wext −Wsca can be calculated by Eqs. (4.59) and (4.60). Now, the absorption

cross section

Cabs =
Wabs

II

= kIm(α)π

= a24xIm
(
ε1 − εm
ε1 + 2εm

)
,

(4.131)

and scattering cross sections

Csca =
Ws

II

=
k4

6π
|α|2

= πa2
8

3
x4
∣∣∣∣ ε1 − εmε1 + 2εm

∣∣∣∣2
(4.132)

are determined. These expressions are identical to those obtained for small spheres by

aborting the series expansion from the Mie theory, Eqs. (4.115) and (4.119). The main

advantage of the electrostatic approximation is not its accuracy, but it gives a physical

explanation of the dominant term of scattering by polarization.
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4.3 Absorption and scattering of light

The treatment of the optical properties of spheres is important to understand the scat-

tering problem, but the spherical shape is a completely insu�cient description of the

cylindrical shape of a nanorod. The simplest anisotropic shape is a spheroid and in the

following the determination of its optical cross sections will be outlined.

4.3.6 Solving the scattering problem for spheroids

4.3.6.1 The separation of variables method (SVM)

The separation of variables method (SVM) is similar to the Mie theory and provides an

exact solution for the Maxwell equations. However, while the Mie theory is limited to

spheres, the SVM is applicable to spheroids. Following the introduction to SVM in [95]

the basic idea of SVM is to solve the electromagnetic scattering problem for spheroids

in the spheroidal coordinate system. It is based on expanding the incident, internal,

and scattered �elds in vector spheroidal wave functions. The expansion coe�cients of

the incident �eld are calculated analytically. Boundary conditions are used to compute

the unknown expansion coe�cients of the internal and scattered �elds. Since the vector

spheroidal wave functions are not orthogonal on the spheroidal surface, the determina-

tion of the unknown expansion coe�cients results in an in�nite set of linear algebraic

equations. This set has to be truncated and solved by numerical methods.

A method providing very simple analytic expressions to calculate the optical cross sec-

tions for spheroids which are small compared to the wavelength of the incident light is

the electrostatic approximation which was already presented for the case of a sphere.

The idea can be transferred to spheroids.

4.3.6.2 Spheroids in the electrostatic approximation

A slightly modi�ed version of this section (4.3.6.2) was already part of publication [43],

see appendix E.

As already mentioned in section 4.3.5.3, in the electrostatic approximation (EA), the

particle is assumed to be small compared to the wavelength of the incident light in

the surrounding medium so that it is instantly and homogeneously polarized by a time-

variable, but spatially constant electric �eld [93]. The polarizabilities along the principal

axes of a particle are

αi = V · ε− εm
εm + Li · (ε− εm)

(4.133)
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where ε and εm are the permittivities of the particle material and the surrounding

medium, respectively, V is the particle volume and Li are the depolarization factors.

While in the case of a sphere Li = 1/3, for spheroids it has to be distinguished between

values of L along the major (i = 1) and minor axes (i = 2,3). For a prolate spheroid

L1 =
1

Θ2 − 1

(
Θ

2
√

Θ2 − 1
· ln
(

Θ +
√

Θ2 − 1

Θ−
√

Θ2 − 1

)
− 1

)
, (4.134)

L2 = L3 =
1

2
(1− L1) (4.135)

where Θ denotes the aspect ratio of the major to the minor spheroid axis [96]. In

this work, ε = −12.96 + 16.37i [97] for Ni and εm = 1.75 [98] for water is used. The

corresponding absorption and scattering cross sections are

Cabs = k · Im(α), (4.136)

Csca =
k4

6π
|α|2 , (4.137)

where k is the wave number of the incident light in the medium [93].

Although the EA provides simple expressions for anisotropic particles as used in this

study, there are two crude assumptions which might cause considerable inaccuracies.

First, the size of particles used in this study are not much smaller than the wavelength

of the incident light (sometimes even larger than it) and second, the approximation of

the particle shape by spheroids is questionable. The �rst problem could be solved using

the SVM whose greatest advantage is the high accuracy of its results [95]. Unfortunately,

the method is still limited to spheroids. To be able to predict the scattering behavior

of arbitrarily shaped particles including core-shell particles, simulations using the �nite

element method (FEM) were performed.

4.3.7 Solving the scattering problem for arbitrarily shaped par-

ticles by the �nite element method (FEM)

The outline of the �nite element method (FEM) follows the description in [35]. By

inserting the equation of harmonic �elds, Eq. (4.63), into the third and fourth Maxwell

equations (4.52)

∇× ~E = iωµ ~H ,

∇× ~H = −iωµ~E ,
(4.138)
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4.3 Absorption and scattering of light

is obtained. Applying the curl operator

∇× (∇× ~E) = iωµ∇× ~H = ω2εµ ~E ,

∇× (∇× ~H) = −iωµ∇× ~E = ω2εµ ~H
(4.139)

and using the identity

∇× (∇× ~A) = ∇(∇ · ~A)−∇ · (∇ ~A) (4.140)

results in the Helmholtz equations

∇2 ~E + k2 ~E = 0 ,

∇2 ~H + k2 ~H = 0
(4.141)

where

k2(~r) = ω2ε(~r)µ(~r)/c2. (4.142)

The FEM treats the scattering problem in the frequency domain by solving the Helmholtz

equations. The basic idea is to divide the whole space into small regions represented by

a grid mesh. Although it is not possible to describe every shape exactly, it is possible

to use many small elements to obtain a su�cient approximation to arbitrary shapes

as shown exemplarily in Fig. 4.21 for a capped cylinder with a length of 100 nm and a

diameter of 20 nm.

The electric and magnetic �elds inside each region are described by a local function. The

runtime depends on the number of �nite elements and hence of shape and volume of the

particle.

The Helmholtz Eqs. (4.141) are discretized in space and then numerically solved to �nd

Figure 4.21: Mesh of a capped cylinder with a length of 100 nm and a diameter of

20 nm built in CST Microwave 2015. To model the cylinder and the surrounding medium

45774 tetrahedrons were used.
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the �elds that satisfy the boundary conditions. To reduce the errors induced by the

mesh approximation, adaptive mesh re�nement procedures are used to re�ne elements

at which the gradients of ~E and ~H are largest between adjacent elements.

In the present work, the commercial tool CST Microwave 2015 was used to calculate the

optical cross sections for di�erently shaped particles. The simulations were performed in

the frequency domain which provides much shorter run-times compared to simulations

performed in the time domain but requires a range of frequencies instead of a single value.

The used excitation signal contains frequencies between 473 · 1012Hz and 475 · 1012Hz

including the frequency of the HeNe laser (473.76 · 1012Hz) used in the experimental

setup. Adaptive mesh re�nement of the tetrahedral mesh was repeated until the obtained

extinction cross section varied less than 0.1% in two successive runs or a prede�ned

number of mesh re�nements was reached. A value of 3d/4 where d is the diameter of

the core of the particle was chosen for the local maximum mesh step width inside the

particle for the initial mesh. This provided a su�cient quality of the initial mesh quality

for adaptive mesh re�nement resulting in converging cross sections.

Fig. 4.22 shows an example of a result of such a FEM simulation. In the next section, the

change in the intensity of light before and after passing a slab of particles with known

extinction cross sections will be calculated [93, section 3.4.1].

4.3.8 The Beer-Lambert law

With regard to the experimental conditions of this work, a beam of light passing a

suspension with optical path length s containing N identical particles per unit volume,

each with an extinction cross section Cext, is considered. In order to determine the

change in intensity before and after passing the suspension, the illuminated volume is

divided into slices of thickness ds. The di�erential decrease of intensity is proportional

to the intensity, the concentration of the particles, and their extinction cross section:

dI = −INCext ds

⇔ dI
I

= −NCext ds .
(4.143)

This di�erential equation can be solved by integration with the constant of integration

ln(I0) for s = 0 yielding the Beer-Lambert law

I = I0 exp(−NsCext). (4.144)

To avoid confusion about the notation of the Beer-Lambert law, it should be noted that

the term I = I010−Nsελ , where ελ = lg(e)Cext is the attenuation coe�cient which can
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Figure 4.22: A capped cylinder (diameter 15 nm, length 1000 nm) is hit by a linearly

polarized (y-direction) electro-magnetic wave (propagating in z-direction) with a wave-

length of 633 nm. The pictures exhibit the time-dependence of the y-component of

the electric �eld. The �eld inside the particle is much lower than outside and thus a

color scale was chosen that allows to see the di�erences inside the particle but can not

reproduce the full range of the wave outside. The �eld inside the particle is neither

homogeneous nor in phase with the �eld outside. Especially the latter aspect was also

observed for smaller nanorods. The simulation was performed using CST microwave

studio.
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also often be found in literature.

In this chapter, the theories to describe the magnetic, dynamic, and optical properties of

single nanorods were introduced. In the next section, the derived physical parameters will

be used for quantitative modeling of the static and dynamic MOT signals of ensembles

of nanorods.
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Chapter 5

Modeling

In this chapter, the combination of the previous theoretical models for the magnetic,

hydrodynamic, and optical properties of Ni nanorods to calculate the magnetic �eld-

dependent optical transmission in static as well as in oscillating �elds Ni nanorod sus-

pensions will be presented. All procedures described in this chapter were implemented

in MATLAB.

5.1 Modeling of �eld-dependent magneto-optical trans-

mission (DC-MOT)

First, the static magnetic �eld-dependent magneto-optical transmission of an ensemble

of monodisperse nanorods will be modeled. A modi�ed version of this section (5.1) was

already part of publication [43], see appendix E.

As shown in section 4.3.8, extinction E and transmittance τ of a dilute dispersion of

small particles can be described by the Beer-Lambert law,

E = − ln τ = − ln
I

I0
= NsCext , (5.1)

where I0 and I are the intensities of light before and after passing a path of length

s through a dispersion of N particles per unit volume. The extinction cross section

Cext depends on the dielectric properties of the particle material and the surrounding

medium, the size and shape of the particle, and in case of anisometric particles on

their orientation relative to the polarization of the incident light. The basic orientations

(longitudinal L and transversal T1 and T2) with respect to the coordinate system of the

incident electromagnetic wave are exemplarily shown for a prolate spheroid in Fig. 5.1.
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Figure 5.1: Basic orientations of a prolate spheroid with respect to the wave vector
~k and electric �eld vector ~E of linearily polarized light: longitudinal L and transversal

T1 and T2. For T1 con�guration, the electric �eld vector ~E is perpendicular to the

projection plane.

At an arbitrary orientation, de�ned by the polar coordinates θ and ϕ of the major

particle axis, Fig. 5.2, the extinction cross section is given as [93]

Cext = cos2 θ · Cext,L + sin2 θ sin2 ϕ · Cext,T1 + sin2 θ cos2 ϕ · Cext,T2 . (5.2)

A macroscopic DC-MOT measurement of a nanorod colloid captures the extinction

of a large ensemble of particles with a spatial orientation that can be described by an

orientation distribution function n(θ, ϕ). For the particular case of Ni nanorods with

or without a silica shell with permanent magnetic moment ~m along the major rod axis

dispersed in a viscous solvent, the distribution function for a superparamagnetic ensemble

is used [20, 24, 99],

n (β) dβ =
1

2
exp

(
mµ0H

kBT
cos β

)
sin βdβ , (5.3)

where β is the angle between the particle axis and the external magnetic �eld. The

magnetic moment per particle m = Ms · V is assumed to be determined by its core

volume V = V (l,d) and the saturation magnetization Ms = 488 · 103Am−1 of Ni [63].

For simpli�cation, the length and diameter distributions of the particle ensembles are

neglected and it is assumed that the ensemble can be represented by a characteristic

particle whose length and diameter correspond to the �rst moments of its distributions.

The angle β in Eq. (5.3) denotes the angle between the external magnetic �eld and the

major axis of the particle. The relation to θ and ϕ depends on the orientation of the
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Figure 5.2: De�nition of angles for a uniaxial anisotropic particle in an external mag-

netic �eld ~H illuminated by linearly polarized light with the electric �eld vector ~E,

magnetic �eld vector ~B, and wave vector ~k. The two relevant cases are shown: (a)
~E ‖ ~H⊥~k and (b) ( ~E⊥ ~H)⊥~k.

magnetic �eld relative to the electric �eld vector of the incident light with three cases of

particular interest with regard to the experiments performed in this work.

First, the external magnetic �eld ~H is assumed to be parallel to the electric �eld vector

of the incident light ~E, Fig. 5.2 (a). In this case, β in Eq. (5.3) corresponds to θ and the

distribution function n(θ, ϕ) is symmetric with respect to ϕ so that Eq. (5.2) provides

the ensemble average of the extinction cross section as

〈Cext〉‖ = 〈cos2 β〉Cext,L +
1

2
(1− 〈cos2 β〉)(Cext,T1 + Cext,T2)

= f‖(〈cos2 β〉).
(5.4)

For the distribution function given by Eq. (5.3), the second moment is

〈cos2 β〉 = 1 + 2/ζ2 − 2 coth (ζ)/ζ (5.5)

with ζ(H) = mµ0H/kBT .

If ~H is perpendicular to ~E, a particle orientation as shown in Fig. 5.2 (b) has to be

considered, with an angle ε between the particle axis' projection into the ( ~E,~k)-plane
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and ~E, and an angle δ between the particle and the external magnetic �eld. Here, δ

coincides with β in Eq. (5.3) and the angles θ, ε, δ, and ϕ are related by

cos2 θ = cos2 ε sin2 δ (5.6)

and

cos2 ϕ = 1− cos2 δ/(1− cos2 ε sin2 δ) . (5.7)

The ensemble average extinction cross section for this case can be calculated to

〈Cext〉⊥ =
1− 〈cos2 β〉

2
Cext,L

+
1 + 〈cos2 β〉

2
Cext,T2 + 〈cos2 β〉(Cext,T1 − Cext,T2)

= f⊥(〈cos2 β〉).

(5.8)

Finally, the orientation distribution of the particles at H = 0 which is assumed to be

isotropic due to thermal rotational di�usion is considered. The orientation averaged

extinction cross section is given as [93]

〈Cext〉× =
1

3
(Cext,L + Cext,T1 + Cext,T2) . (5.9)

The transmitted intensity, normalized to the zero-�eld transmission I×, is

I(H)⊥,‖/I× = exp
(
−Ns(〈Cext〉⊥,‖(H)− 〈Cext〉×)

)
. (5.10)

Thus, taking advantage of the symmetry and the superparamagnetic properties of the

nanorods, the problem of modeling the �eld-dependent optical transmission I(H)/I× can

be reduced to the calculation of the extinction cross sections Cext for the three principal

directions.

In the next section, the MOT in oscillating �elds will be presented.

5.2 Modeling of the response function of magneto-optical

transmission in oscillating �elds (OF-MOT)

To model the magneto-optical response function in oscillating �elds, the magnetic, hy-

drodynamic, and optical properties of the particles, introduced in chapter 4, will be

combined with their equation of motion. A simple model of a rotational oscillator will

be used to obtain a di�erential equation for the rotational motion of axisymmetric par-

ticles with a permanent magnetic moment parallel to its axis in an oscillating external

magnetic �eld [15].
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5.2.1 Equation of rotational motion

The rotational motion of the particles can be described in terms of a periodically driven

damped harmonic rotational oscillator:

Iθ̈ + ξrθ̇ = T (t) + y(t) (5.11)

with the moment of inertia I, the rotational friction coe�cient ξr, a time-dependent

magnetic torque T (t), and a stochastic torque due to the thermal energy y(t).

Inertial e�ects can be neglected since the analysis is limited to frequencies far below

τ−1l = ξr/I, i.e. to the regime of low Reynold numbers, thus Iθ̈ = 0. The rotational

friction coe�cient is calculated by Eq. (4.49), see section 4.2.3.

The magnetic torque depends on the magnetic moment m of the particle and can be

expressed by

T (t) = mµ0H0 sin[β(t)− θ(t)] , (5.12)

where β(t) and θ(t) are the time dependent angles as de�ned in Fig. 3.2. It is also

assumed that the chosen �eld amplitude is high enough to ensure ζ = mµ0H
kBT

� 1 at all

times and hence y(t) can be neglected. For small rotation angles θ(t) and β(t), the

approximation sinx ≈ x can be applied and Eq. (5.11) can be rewritten to

ξrθ̇(t) = mµ0H0(β(t)− θ(t)). (5.13)

Assuming a phase shifted periodic oscillation of the nanorods, the rotation angle as a

function of time is written as

θ(t) = θ̂0 exp(iωt). (5.14)

Solution of Eq. (5.13) yields

θ̂0 =
β0

1 + iω ξr
mµ0H0

. (5.15)

This corresponds to a classical Debye relaxation [100] with the characteristic relaxation

time τc = 1/ωc = ξr/(mµ0H0) which is related to the Brownian relaxation time τB =

ξr/(2kBT ) by τc = 2τB/ζ. The rotational di�usion coe�cient of the particles is Dr =

(ζτc)
−1.

With Eqs. (5.14) and (5.15), the rotation angle of a particle as a function of time can be

calculated. Corresponding to the measured response function, Eq. (3.5), the theoretically

expected response function can be calculated by

X̂v(ω) = θ̂(ω)/β0 = X
′

v(ω) + iX
′′

v (ω) . (5.16)
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For further analysis, it is useful to split it into a real and an imaginary part

X̂v(ω) = X
′

v(ω) + iX
′′

v (ω) (5.17)

with
X
′

v(ω) =
1

1 + (ωτc)2
,

X
′′

v (ω) =
−ωτc

1 + (ωτc)2
,

(5.18)

respectively.

In order to model the OF-MOT signal of an aqueous dispersion of monodisperse Ni

nanorods using Eqs. (5.18), the characteristic relaxation time ωc = 1/τc has to be deter-

mined.

5.2.2 Characteristic frequency of nanorods

The characteristic frequency of a nanorod can be calculated using its magnetic moment

and its rotational friction coe�cient. While for the former the geometric dimensions of

the ferromagnetic Ni core are relevant, the latter depends on the outer dimensions of the

whole particle. Due to various contributions like the NiO surface and PVP layer, these

geometric dimensions are not equal even without an additional silica shell. Hence, to

model the oscillating magnetic �eld-dependent optical transmission of a particle ensem-

ble, a geometry of a core-shell particle is considered, Fig. 5.3. As a �rst approximation,

any distribution in length and diameter of the ferromagnetic magnetic Ni core (l,d)

and the whole particle (L,D) is neglected. The magnetic moment of the representative

d 

l 

D 

L 

Dshell 

Figure 5.3: De�nition of lengths and diameters for core-shell capped cylinders.

particle can be calculated by

m = VmagMs =

(
π

4
d2mag(lmag − dmag) +

4π

24
d3mag

)
Ms , (5.19)

where l and d are the length and diameter of the Ni core. The rotational friction

coe�cient ξr = ξr(L,D) can be determined by Eqs. (4.49) and (4.51) to obtain the char-
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acteristic frequency

ωc = (τc)
−1 =

(
ξr

mµ0H

)−1
. (5.20)

Following Eq. (5.18), the real and the imaginary part of the magneto-optical response

function can be determined.

Until now, the modeling of the DC- and the OF-MOT signal was described under the

assumption of a monodisperse particle ensemble. In the next section, these models will

be extended to consider polydispersity.

5.2.3 Modeling of the DC-MOT and the OF-MOT response re-

specting distributions in the geometric parameters of the

particles

The particles used in this work underly a signi�cant distribution in their core lengths

and core diameters (l,d) as well as in their total lengths and total diameters (L,D).

Consequently, the magnetic moments, the rotational friction coe�cients, and the char-

acteristic frequencies of the particles are also distributed.

It is important to notice that larger particles have higher extinction cross sections and

thus have a larger in�uence on the �nally transmitted intensity. Since the extinction

cross section is not proportional to the particle size, the transmitted intensity is not di-

rectly proportional to a moment of the size distribution. Furthermore, it enters I/I0 in

an exponential function. The di�erent optical weights of di�erent particle fractions has

to be respected in the following modeling. To consider this polydispersity, characteris-

tic quantities corresponding to the magnetic, hydrodynamic, and optical properties of a

large number of particles have to be calculated to model the signal of the entire ensemble.

The �eld-dependent optical transmission, which takes the polydispersity of the particles

into account, can be modeled if a su�ciently large number Nc of tuples (l,d,L,D) of

geometric parameters of particles (lengths and diameters) representative for the ensemble

are known, e.g. from TEM image analysis. For each nanorod with index i, the magnetic

moment mi as well as the three principal extinction cross sections (Cext,L ,i, Cext,T1, i,

and Cext,T2, i) are calculated allowing to obtain Cext, i,⊥,‖(H) and Cext, i,×. Eq. (5.10) can

then be extended to

I(H)⊥,‖/I× = exp

(
−Ns 1

Nc

Nc∑
i=0

(
Cext, i,⊥,‖(H)− Cext, i,×

))
. (5.21)
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To model the optical transmission in oscillating magnetic �elds, the rotational friction

coe�cient of each particle ξr,i = ξr,i(Li,Di) has to be calculated, too. With that, the

normalized characteristic time constant τc,i can be calculated by Eq. (5.20).

Inserting these quantities into the equation of motion, Eqs. (5.14), the rotation dynamic

of every rod depending on the applied frequency ω can be described by

θi,ω(t) =
θ0

1 + ω2τ 2i
(cos(ωt) + ωτc,i sin(ωt)). (5.22)

The external �eld oscillates around a direction forming an angle of 45◦ with the electric

�eld vector of the incident light (bene�cial condition to increase the resolution of the

measurement, section 3.2.2), Fig. 5.4. It is useful to de�ne, the angle





45

)(

)(

t

t

polarization 
direction 

mean position 
of the oscillating field 

particle 
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Figure 5.4: Illustration of the angles θ(t) and Θ(t) describing the particle orientation

in an OF-MOT measurement.

Θi,ω(t) = 45◦ − θi,ω(t) . (5.23)

To include the optical properties of each particle, its extinction cross section for arbitrary

angles between the electric �eld vector of the incident light and the particle axis has to

be determined:

Cext,i(Θi(t)) = cos2 Θi(t) Cext, L,i + sin2 Θi(t)Cext, T1, i , (5.24)

where Cext, L,i and Cext, T1, i, as de�ned in Fig. 5.5, have to be calculated by FEM for the

particles. With these preparations, the transmittance as a function of time t at a given

angular frequency ω can be calculated using the Beer-Lambert law:

T ′ω(t) = exp

(
−N ′ss

∑
i

(
cos2(Θi,ω(t))Cext ,L ,i + sin2(Θi,ω(t))Cext ,T1 ,i

))
, (5.25)
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Figure 5.5: Basic orientations of the incident linearly polarized light with wave vector
~k and electric �eld vector ~E relative to the principle axes of the particle. For T1, the

electric �eld vector ~E is perpendicular to the projection plane.

where s is the optical path length. It is assumed that the particles constitute a repre-

sentative ensemble which is transferred to real particle densities by multiplication with

a factor N ′s. This factor can be omitted in the modeling of OF-MOT spectra as the

dynamical response function is obtained after normalization.

The anisotropic absorption of light results in a small rotation of the polarization direc-

tion of the incident light (linear dichroism) while passing the cuvette. This rotation has

been experimentally determined to be less than 5◦ for the highest concentrated sample

in this work and was neglected in the modeling.

To remove the o�set of the oscillating signal, the time average of the signal is substracted

Tω(t) = T ′ω(t)− 1

t0

t+t0∫
t

T ′ω(t) dt , (5.26)

where t0 � 1/ω. Using a regression analysis with

Tω(t) = Aω cos (ωt+ φω) , (5.27)

the amplitude Aω and phase φω of the signal and thus real and imaginary part of the

response function are obtained:

X ′ω = Aω cosφω ,

X ′′ω = Aω sinφω .
(5.28)

All steps have to be repeated for di�erent frequencies ω of the applied magnetic �eld to

obtain X ′(ω) and X ′′(ω). Eventually, X ′(ω) and X ′′(ω) are normalized to the maximum
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of X ′(ω).

The described procedures allow the simulation of the magneto-optical transmission of the

particles in static and oscillating �elds including polydispersity, needing merely tabulated

lengths and diameters of the particles. This allows us to compare the theoretically

expected behavior with the experimentally obtained results.
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Chapter 6

Results I - Analysis of DC-MOT

measurements of colloidal suspensions

of PVP coated Ni nanorod

A modi�ed version of the following sections (6.1-6.5) was already part of the publication

[43], see appendix E.

6.1 Structural characterization

Four samples of PVP coated Ni nanorods (pcn-1 � pcn-4) with di�erent sizes were

structurally characterized by TEM. The particles exhibit a capped cylindrical shape

with slight structural inhomogeneities such as diameter �uctuations and occasionally

irregular tip-ends, Fig. 6.1. The PVP layer cannot be explicitly identi�ed.

Due to the invisibility of the PVP layer in TEM micrographs, the overall length L and

diameter D of the Nanorods could not be measured. However, these parameters are only

important for dynamic measurements and this section is limited to static measurements.

Hence, it is su�cient to determine the geometric parameters of the Ni cores. The cor-

responding distributions of the particle core length l and core diameter d were obtained

by analyzing several TEM images and approximated by log-normal density functions

f(x) =
(√

2πσx
)−1

exp
(
−0.5 (lnx− lnxc)

2 σ−2
)
, x > 0 , (6.1)

Fig. 6.2. The location parameter ln (xc) and scale parameter σ provide the expected

value as the �rst moment of the distribution, Ex = xc exp (σ2/2). The results for the
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6 - Results I - Analysis of DC-MOT measurements of colloidal suspensions
of PVP coated Ni nanorod

Figure 6.1: TEM image of nanorods (sample pcn-3) reveals structural inhomogeneities

and the presence of small aggregates, such as dimers (marked). Several such images were

analyzed to determine the distribution of length and diameter of the capped cylindrically

shaped Ni nanorods for each colloid sample. Additional images can be found in appendix

A.

four colloid samples are listed in Tab. 6.1.

Recalling the template based synthesis of the nanorods and assuming a constant volume

of Ni deposited into the pores of the alumina layer, one could expect a correlation

between the length and diameter of the resulting particles. The length and diameters

of the particles were measured and tabulated in a way that allows to correlate every

diameter to the length of the same particle. This o�ers the possibility to investigate a

systematic correlation of length and diameter of the particles. A corresponding plot for

sample scn-3, Fig. 6.3, does not show any trend and hence it is assumed that length and

diameter of the nanorods are uncorrelated.

76



6.1 Structural characterization

0 1 0 2 0 3 0 4 0 5 0
0

2 5

5 0

7 5

1 0 0

co
un

ts

d  [ n m ]
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 6 0 0

0

2 5

5 0

7 5

1 0 0

co
un

ts
l  [ n m ]

Figure 6.2: Distributions of length l and diameter d for the nanorods of sample pcn-3

obtained from TEM image analysis. The lines represent least-square �ts using a log-

normal density function, Eq. (6.1).
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Figure 6.3: Plot of length l versus diameter d for the nanorods of sample pcn-3 obtained

from TEM image analysis reveals absence of a correlation between the two parameters.
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Sample pcn-1 pcn-2 pcn-3 pcn-4

synthesis parameters

#p 200 400 500 4000

t+ [ms] 16 4 4 4

t− [ms] 4 16 16 16

t0 [ms] 200 200 200 400

TEM analysis

Nc 202 250 537 204

lc [nm] 56.9 181.3 230.7 913.1

σl 0.25 0.17 0.24 0.62

El [nm] 60.6 186.6 244.4 1106.6

Nc 224 250 537 116

dc [nm] 22.6 24.1 23.6 23.4

σd 0.21 0.17 0.17 0.10

Ed [nm] 23.6 24.8 24.3 23.5

Table 6.1: Synthesis parameters used for electrodeposition of Ni nanorods: number of

current pulses #p, duration of positive current pulse t+, negative current pulse t− and

break t0. Parameters of the log-normal density function for the lengths and diameters

of the nanorod samples: number of measured nanorods Nc, location parameters lc and

dc, scale parameters σl and σd, and the resulting expected values El and Ed.

6.2 Static magnetic �eld-dependent optical transmis-

sion

The collinear magnetic and optical anisotropy of the nanorods is clearly revealed by the

�eld-dependent optical transmission measurements, Fig. 6.4. The transmitted intensi-

ties, normalized to the zero-�eld intensity I×, are plotted as a function of the magnetic

�eld perpendicular (I(H)⊥/I×, upper branch) and parallel (I(H)||/I×, lower branch)

to the polarization direction of the incident light. Optical transmission decreases upon

parallel alignment of the nanorods along the polarization direction due to the large

longitudinal extinction cross section. Accordingly, the transmittance increases for the

perpendicular con�guration. Furthermore, since the diameters of the nanorods were sim-
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6.2 Static magnetic �eld-dependent optical transmission

ilar, an increasing length implies increasing magnetic moments for the various samples

which is re�ected in the �eld-dependence of the alignment against thermal energy. The

shorter rods have lower magnetic moments and hence require a higher �eld strength

for magnetic alignment. By contrast, long rods saturate at �eld strengths as low as

H ≈ 20Oe. This signature of the �eld-dependent optical transmission has been used to

extract characteristic quantities, i. e. the particle diameter and particle concentration,

for a given nanorod colloid [20]. The underlying analysis, however, relies on a correct

physical model for the optical extinction cross sections of the nanorods.
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0 . 6

0 . 8

1 . 0
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1 . 4

 p c n - 1
 p c n - 2
 p c n - 3
 p c n - 4
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) / 

I

H  [ O e ]

×

Figure 6.4: The transmitted intensity I of nanorod colloids as a function of the external

magnetic �eld H parallel (lower branches) or perpendicular (upper branches) to the

polarization direction, normalized to the intensity at zero �eld, I×. The dots and the

solid lines represent least-square �ts using Eq. (5.10) based on extinction cross sections

obtained by EA (lines) or FEM (full dots), respectively.

To establish a sound basis for further analysis, the results of the independently obtained

least square �ts on the transmission measurements for the EA and FEM models will be
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compared.

6.3 Calculation of optical cross sections

As mentioned in the introduction, there are various methods to calculate optical cross

sections. The following comparison includes the EA, SVM and FEM, and is started by

focusing on spheroidal particles for two reasons. First, the cross section of spheroids

can be obtained analytically in the electrostatic approximation that can be easily im-

plemented in regression analysis of experimental results. Second, the SVM provides a

physically exact solution for spheroids which can be used as a reference to evaluate the

accuracy of EA and also of FEM calculations performed later in this work.

6.3.1 Spheroids in the electrostatic approximation (EA)

In anticipation of a comparison of the present calculations for spheroids with those

of capped cylinders in later sections, it is necessary to make a choice regarding an

'equivalent' size for the two geometries. The length l′ and diameter d′ for the spheroids

were chosen to provide the same aspect ratio Θ and volume V as capped cylinders of

length l and diameter d. The two sets of parameters can be transformed using the

relations d′ = 3
√

0.5(3− 1/Θ)d and l′ = 3
√

0.5(3− 1/Θ)l, Fig. 6.5. Note that both

l′ and d′ vary with Θ for a given diameter of the cylindrical nanorod. According to

Eqs. (4.133), (4.134), and (4.135), the cross sections in the EA are not a�ected by this

transformation as they are completely determined by Θ and V .

capped cylinder 

spheroid 

''VV  

d

'd

l

'l

Figure 6.5: Transformation of a capped cylinder with aspect ratio Θ = l/d and volume

V = (π/4)(l−d)d2+(4π/3)(d/2)3 to a spheroid with Θ′ = l′/d′ = Θ and V ′ = πl′d′2/6 =

V . Note that these conditions imply l 6= l′ and d 6= d′.
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Figure 6.6: Absorption cross sections Cabs (a) and scattering cross sections Csca (b) of

prolate spheroids for the three basic polarization directions L, T1, and T2 as a function

of the aspect ratio Θ′ obtained by EA and SVM. The values for spherical particles were

approximated by Θ′ = 1.0001.
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The absorption and scattering cross sections for prolate Ni spheroids in water as a

function of their aspect ratio are shown in Fig. 6.6. For longitudinal polarization (L),

the absorption cross section increases rapidly by two orders of magnitude until Θ ≈ 5

and then increases with a signi�cantly smaller slope. The observed shoulder is related to

the red-shift of the plasmon resonance with increasing aspect ratio. Despite signi�cant

damping, Ni exhibits a shallow resonance peak in the plasmon excitation at a wave

length of λr ≈ 450 nm (2.76 eV) for spherical particles [101]. With increasing aspect

ratio, the depolarization factor L1 decreases leading to a red-shift of this resonance.

Correspondingly, the maximum of Cabs = kIm(α) shifts and eventually passes the wave

length λ = 632.8 nm (1.96 eV) at Θ ≈ 5. This condition corresponds to the maximum

energy dissipation by the particle close to resonance. Regarding the two transversal

con�gurations, the EA provides identical depolarization factors, L2 = L3, Eq. (4.135),

implying Cext,T1 = Cext,T2 in EA, increasing continuously with the aspect ratio.

The results for the scattering cross sections are shown in Fig. 6.6 (b). At low aspect

ratios, Csca is about two orders of magnitude smaller than Cabs as expected for small

particles [93]. The transversal scattering cross sections increase almost linearly whereas

the longitudinal mode exhibits a shoulder at Θ ≈ 5 as remnant of the plasmon resonance.

In the following section, these results will be compared with the exact solution obtained

by the SVM for prolate spheroids.

6.3.2 Spheroids by the separation of variables method (SVM)

The SVM solves the electromagnetic scattering problem for spheroids by expanding

the incident, internal, and scattered �elds in vector spheroidal wave functions [95]. U-

sing Voshchinnikov's SVM code [34, 102] the absorption and scattering cross sections of

prolate spheroids with aspect ratios Θ′ = 1 .. 100 were obtained for the di�erent basic

orientations, Fig. 6.6. The comparison of the results by the EA and SVM reveals a good

agreement with only small deviations < 5% for aspect ratios Θ′ < 5, corresponding to

the particle length l = 100 nm. The shoulder in Cabs,L is more prominent and slightly

shifted to lower aspect ratios so that the curve obtained by SVM crosses the correspon-

ding one of the EA at Θ′ = 4. At larger aspect ratios, the EA overestimates Cabs,L by

up to 70% and underestimates the transversal cross sections by ≈ 22% at Θ′ > 10.

The scattering cross sections obtained from the SVM also increase with the aspect ratio,

yet with a smaller slope at Θ′ > 5, Fig. 6.6 (b). Accordingly, the deviation between EA

and SVM increases continuously reaching a factor of 10 at Θ′ = 100.

At �rst glance, the cross sections obtained by EA seem to be unusable for data analysis
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6.3 Calculation of optical cross sections

because of their meager quantitative agreement with the exact solution for nanorods

with Θ′ > 5, i.e. l > 100 nm. Even the SVM, being limited to spheroids, may not be

adequate for modeling cylindrical nanorods. Since there is no closed analytical solu-

tion for this geometry, FEM simulations are used to calculate Cabs and Csca for capped

cylindrical particles of �nite length. But beforehand, the previous results of the exact

solution obtained by the SVM are taken as reference to evaluate the accuracy of the

FEM calculations of identical spheroids.

6.3.3 Spheroids by the �nite element method (FEM)

The results obtained from FEM calculations are very close to the exact solution and

hence they are not shown in an separate �gure. By contrast, in order to illustrate the

accuracy of the FEM, the di�erences between the exact values of Cabs and Csca obtained

by the SVM and the values from FEM simulations for each polarization direction were

computed as a function of Θ′, Fig. 6.7. The deviations are less than 1% for the absorption

cross sections and < 5% for the scattering cross sections. Taking the di�erent order of

magnitude in the absolute values, i. e. Csca � Cabs, into account so that Cext =

Cabs + Csca ≈ Cabs, the accuracy of this computation is su�cient for the purpose of this

work and it is safe to proceeded with the FEM calculation of the extinction cross sections

of nanorods with the geometrical shape of a capped cylinder.
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Figure 6.7: Relative deviations in Cabs and Csca obtained by FEM as compared to the

exact solution by SVM for spheroids as function of aspect ratio Θ′.
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6.3.4 Capped cylinders by FEM

The cross sections Cabs and Csca of capped Ni cylinders with diameter d (15, 20, and

25 nm) as a function of their aspect ratio Θ = 1 .. 100 obtained by FEM simulation are

shown in Fig. 6.8. For all orientations Cabs and Csca increase with increasing Θ. The

qualitative shape of the curves is very similar to the results for prolate spheroids, Fig. 6.6.

To point out the in�uence of the particle shape, Cabs and Csca for both geometries, capped

cylinders (d = 20 nm, Θ = 1 .. 100) and equivalent spheroids (d′,l′), were calculated using

the FEM. The di�erences are moderate, 10% for Cabs and 20% for Csca, Fig. 6.9, and

smaller than those between the electrostatic approximation and the SVM for spheroids.

The maximum deviation occurs at aspect ratios 4 < Θ < 10. Hence, it is expected that

the errors in the data analysis caused by approximating the geometry of the nanorods as

spheroids to be less severe than the errors associated with the EA for large nanorods (l >

200 nm) whereas the shape e�ect dominates for shorter nanorods. The consequences of

applying the two approximations on the quantitative analysis of DC-MOT measurements

will be addressed in the following section.

6.4 Analysis of DC-MOT measurements

Prior to the comparison of the di�erent models, a general aspect of the data analysis

needs to be discussed. As shown in the previous sections, the optical properties of a

colloidal aqueous suspension of Ni nanorods are determined by several variables, i.e. the

length and diameter of the nanoparticles and their number density. The relationship be-

tween these parameters and the �eld dependent transmittance is complex. For instance,

the explicit �eld-dependence and the approach towards saturation of optical transmis-

sion depends on the particle's magnetic moment, which is related to its volume V ∼ ld2

whereas the splitting between the parallel and perpendicular branches is determined by

the aspect ratio Θ = l/d, the volume, and the particle concentration. Furthermore,

given three independent variables (l, d, and N) the relationship is overdetermined so

that there is no unique solution to the inverse problem. Therefore, the analysis of DC-

MOT measurements requires an assumption on one of the given colloid variables. The

�rst moment of the length distribution function El was taken as �xed value because it

can be determined from TEM images with suitable accuracy.
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Figure 6.8: Absorption cross sections Cabs (a) and scattering cross sections Csca (b) of

capped cylinders for longitudinal L (dash-dot), transversal T1 (dashed), and T2 (solid)

polarization as a function of their aspect ratio Θ for three di�erent diameters d = 15 nm

(top curve in each orientation), d = 20 nm (middle), and d = 25 nm (top).
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Figure 6.9: Normalized di�erences in the absorption cross sections Cabs and scattering

cross sections Csca between capped cylinders (d = 20 nm, l = 50 .. 2000 nm) and the

corresponding prolate spheroids with equal volume and aspect ratio.

6.4.1 Model A: capped cylinders by FEM

For analysis of DC-MOT measurements, a routine based on Eq. (5.10) describing the

�eld-dependent transmittance, section 5.1,

I⊥,‖(H)/I× = exp
(
−Ns

(
〈Cext〉⊥,‖(H)− Cext, ×

))
(6.2)

that �ts both branches simultaneously, was implemented. A direct regression analysis

would require a FEM recalculation of Cext for nanorods during the adjustment of the di-

ameter, which is rather ine�cient. Therefore, a data base of extinction cross sections was

calculated for discrete combinations of d = 10 .. 50 nm (13 values) and l = 50 .. 2000 nm

(25 values, logarithmic sweep) by FEM and intermediate values during regression ana-

lysis were computed by cubic spline interpolation. Using the expected length El for each

sample as �xed parameter, the regression analysis provided reasonable agreement with

the experimental results, Fig. 6.4. The obtained values for the particle concentration N

and the diameter dOT are summarized in Tab. 6.2. For each colloid, the diameter dOT
obtained from the regression calculation is smaller than the value Ed from TEM image

analysis re�ecting a slightly smaller magnetic moment per particle than expected from

the geometric size. This deviation has been reported before and can be explained by

a thin surface oxide layer [20, 103] with a thickness between 0.6 nm and 2.4 nm for the

86



6.4 Analysis of DC-MOT measurements

given samples. The contribution of this surface oxide layer to the extinction cross section

was not explicitly considered in the present work. Since an additional encapsulation with

silica will not remove the NiO surface layer, a reduced diameter of the Ni core is also

expected for silica coated Ni nanorods which will be investigated later.

Sample pcn-1 pcn-2 pcn-3 pcn-4

TEM analysis

El [nm] 60.6 186.6 244.4 1106.6

Ed [nm] 23.6 24.8 24.3 23.5

DC-MOT analyzed using FEM

dOT [nm] 22.4 20.4 19.4 19.8

N [1015/m3] 16.5 8.8 9.8 3.0

DC-MOT analyzed using EA

dOT [nm] 22.4 20.4 19.4 19.8

N [1015/m3] 20.9 5.1 6.0 1.3

z 1.263 0.583 0.614 0.437

z′ 1.262 0.582 0.613 0.435

z′‖ 1.262 0.573 0.601 0.429

z′⊥ 1.262 0.593 0.618 0.445

Table 6.2: Characteristic quantities of four di�erent nanorod colloids: expected val-

ues for the length El and diameter Ed obtained from TEM image analysis (repeated

from Tab. 6.1) and results of the regression analysis of DC-MOT measurements for the

nanorod diameter dOT and particle concentrations N based on the extinction cross sec-

tions for capped cylinders (Model A: FEM) or equivalent spheroids (Model B: EA).

Furthermore, ratio of particle densities z (Eq. (6.3)), and ratios of extinction cross sec-

tions z′ as de�ned in Eqs. (6.4) and (6.5) are shown.

6.4.2 Model B: spheroids by EA

As the extinction cross section calculated for spheroids in the EA deviate noticably from

those of FEM simulations of capped cylinders, one may expect distinct di�erences in the
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numerical results retrieved from the analysis of DC-MOT measurements. To investigate

this conjecture, the same data were analyzed based on cross sections for equivalent

spheroids in the EA. Surprisingly, the model curves describe the experimental data

equally well, Fig. 6.4. The di�erences between Model A and Model B are indiscernible

at the scales of that �gure. Furthermore, the diameters dOT were identical for both

models whereas the particle concentrations N were signi�cantly di�erent, Tab. 6.2. This

behavior is caused by an asymmetry in the correlation of the two �t parameters on the

calculated �eld-dependent optical transmission. The characteristic �eld dependence, i.e.

curvature and saturation behavior, of the transmission is entirely determined by the

magnetic moment per particle via Eq. (5.5). Hence, a �xed length El for the nanorods

implies a distinct value for the diameter dOT consistent with this magnetic moment.

Of course, the extinction cross sections, calculated for capped cylinders of size (El,dOT)

by FEM and those for equivalent spheroids of size (l′,d′) with equal volume (i.e. equal

magnetic moment) and aspect ratio, obtained in the EA, are di�erent as shown in the

previous sections. Consequently, the splitting in the optical transmission between parallel

and perpendicular con�guration of the nanoparticles are not identical for the two models.

The di�erence, however, is fully compensated by the second �t parameter, i.e. the

particle concentration N . This is a distinct feature of the particular analysis modality

and is plausible from the following argument.

Comparing the particle densities obtained from simultaneous regression analysis of both

branches for the two models reveals factors

z =
NEA

NFEM
(6.3)

between 0.437 and 1.263, Tab. 6.2. Identical splitting between the two branches of the

transmission at saturation (i.e. 〈cos2 β〉 = 1) is expected when this ratio is equal to �

and hence compensates � the ratio

z′ =
(Cext, T1 − Cext, L)FEM
(Cext, T1 − Cext, L)EA

(6.4)

of the di�erence in the principal extinction cross section, calculated by FEM and EA,

which is readily veri�ed, Tab. 6.2. Furthermore, the virtually identical model curves in

Fig. 6.4 imply the same ratios for each branch of the transmission measurements with

respect to the zero-�eld transmission,

z′‖(⊥) =
(Cext, L(T1) − Cext, ×)FEM
(Cext, L(T1) − Cext, ×)EA

. (6.5)
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Using Eqs. (5.9) and (6.5), recalling CT1 = CT2 for the EA, and writing CL, FEM = CL,

CT1, FEM = CT, and CT2, FEM = CT + ∆CT for the FEM cross sections, it can be shown

that
z′⊥
z′‖

=
CT − CL −∆CT

CT − CL + ∆CT/2
≈ 1− ∆CT

CT − CL
(6.6)

which is close to unity since the last term on the right hand side is typically of the order

of 10−2. This explains why both models provide nearly the same model curve to the

measured �eld-dependent optical transmission (Fig. 6.4) even for simultaneous �tting of

both branches. Relevant di�erences are only expected when ∆CT becomes signi�cant at

very large rod sizes.

From these results two important conclusions may be drawn. First, using the expected

value for the rod length El obtained from TEM image analysis as �xed parameter in the

�tting procedure, the diameter dOT of the nanorods determined from DC-MOT mea-

surements using analytically derived cross sections for spheroids in the EA is identical to

that obtained from the more elaborate FEM model. Second, the concentrations of the

nanorods in dispersion obtained from the EA model analysis di�er from the reference

values of the FEM analysis by well-determined factors. These ratios of optical cross

sections for the two models were calculated, Tab. 6.3, and can be employed as correction

factors in the analysis of DC-MOT measurements based on the analytic cross sections

of equivalent spheroids in the EA.

The performed analysis relies on the Beer-Lambert law which is applicable to dilute

suspensions with negligible electromagnetic interactions between the dispersed particles.

In order to review the usage of the Beer-Lambert law for colloidal dispersions of �nite

concentrations, the optical interaction of two particles is investigated in the next section.

89



6 - Results I - Analysis of DC-MOT measurements of colloidal suspensions
of PVP coated Ni nanorod

d = 15 nm d = 20 nm d = 25 nm
Θ || ⊥ Θ || ⊥ Θ || ⊥

1.13684 1.00484 1.01332 1.15948 1.03605 1.04527 1.0817 1.0492 1.06232
1.32572 1.04247 1.04762 1.25 1.05369 1.06318 1.26142 1.08901 1.10294
1.54598 1.07617 1.08081 1.35213 1.07737 1.08647 1.471 1.14407 1.15643
1.66667 1.09427 1.09816 1.57678 1.12323 1.13074 1.7154 1.20629 1.21629
1.80284 1.1146 1.11834 1.83875 1.16973 1.17576 2 1.26644 1.27432
2.10237 1.1463 1.14909 2.14425 1.21563 1.22029 2.33229 1.30921 1.3152
2.45167 1.16173 1.1638 2.5 1.22935 1.23291 2.71979 1.29651 1.30089
2.859 1.14644 1.14804 2.91536 1.19535 1.198 3.17167 1.17503 1.1783
3.33333 1.08086 1.0821 3.39973 1.09795 1.1 3.69862 0.96802 0.97058
3.88715 0.98801 0.98906 3.96458 0.9474 0.94909 4.31313 0.77011 0.77228
4.53298 0.88472 0.88569 4.62328 0.80902 0.81056 5.02973 0.62978 0.63179
5.28611 0.80863 0.80959 5.39141 0.70714 0.70866 5.8654 0.54546 0.54742
6.16437 0.76005 0.76108 6.28717 0.64855 0.65008 6.8399 0.49936 0.50131
7.18855 0.73411 0.73519 7.33175 0.6135 0.6151 7.97632 0.47059 0.47255
8.38289 0.72378 0.72494 8.54988 0.59627 0.5979 9.30154 0.46119 0.46324
9.77566 0.72423 0.72543 9.9704 0.59115 0.59279 10.84695 0.46 0.46228
11.39984 0.73171 0.73289 11.62693 0.59356 0.59525 12.64911 0.46051 0.46331
13.29386 0.74164 0.74286 13.55868 0.59456 0.59644 14.7507 0.45684 0.46031
15.50257 0.74566 0.74688 15.81139 0.5931 0.59529 17.20145 0.44516 0.44925
18.07824 0.74223 0.74358 18.43837 0.58461 0.58726 20.05938 0.43044 0.43493
21.08185 0.73466 0.73615 21.50181 0.56761 0.57064 23.39214 0.4109 0.41571
24.58449 0.72753 0.72934 25.07422 0.55804 0.56149 27.27863 0.38625 0.39112
28.66908 0.71992 0.72206 29.24018 0.53754 0.54121 31.81083 0.36069 0.36551
33.4323 0.70254 0.70487 34.09828 0.51143 0.51509 37.09603 0.33455 0.3394
38.9869 0.68375 0.68614 39.76354 0.48566 0.48931 43.25935 0.31139 0.31633
45.46438 0.6629 0.66548 46.37004 0.45893 0.4628 50.44667 0.28618 0.29116
53.01805 0.639 0.64149 54.07419 0.43202 0.43563 58.82812 0.26099 0.26579
61.82672 0.61211 0.61448 63.05834 0.4033 0.40711 68.60211 0.23604 0.24061
72.09892 0.59015 0.59276 73.53515 0.37403 0.3779 80 0.21285 0.21721
84.07778 0.56166 0.56442 85.75264 0.3451 0.34869 93.312 0.19149 0.19551
98.04687 0.53181 0.53436 100 0.31538 0.31891 100 0.18219 0.18602

Table 6.3: Calculated values of z′ for || and ⊥ orientation as function of aspect ratio

Θ for three di�erent diameters d.

90



6.5 Optical interaction of two particles

6.5 Optical interaction of two particles

Making use of the �exibility of FEM simulations regarding the geometry of the considered

object, the optical cross sections of nanorod pairs will be determined. In particular, the

focus lies on the absorption and scattering e�ciencies of two nanorods with parallel end-

to-end (Fig. 6.10) and side-by-side (Fig. 6.11) con�guration in the major orientations

with respect to the �eld- and propagation vectors of the incident light.
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Figure 6.10: Geometries simulated for two nanorods in end-to-end con�guration sepa-

rated by a distance w. The ⊗-symbol indicates a vector perpendicular to the projection
plane.
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Figure 6.11: Geometries simulated for two nanorods in side-by-side con�guration sepa-

rated by a distance w. The ⊗-symbol indicates a vector perpendicular to the projection
plane.
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of PVP coated Ni nanorod

The end-to-end con�guration is of interest because it represents the building unit of a

nanorod chain which may form in a homogeneous external �eld at high particle con-

centrations [104]. The absorption cross sections for two capped cylinders of diameter

d = 20 nm and length l = 200 nm in end-to-end con�guration as a function of the

distance w between the particles are shown in Fig. 6.12 and compared with the corre-

sponding value of two individual nanorods (horizontal lines) in order to highlight the

in�uence of the near-�eld electromagnetic interaction.

The absorption cross sections converge to those of individual rods at large distances

w > 100 nm. For all geometries the absorption decreases upon reduction of inter-

particle distance whereas the scattering cross sections increases. The observed changes

at the shortest separation are quantitatively consistent with the di�erences between

single nanorods of length l = 200 nm and of doubled length l = 400 nm. Computing

the combined extinction cross sections, the deviations partially compensate, yielding

∆Cext = −6.3% for longitudinal, −2.8% for the T1, and −0.6% for the T2 transversal

orientations, respectively.

The changes in the absorption and scattering cross sections of two nanorods in side-by-

side con�gurations caused by decreasing interparticle distance are shown in Fig. 6.13.

Similar to the end-to-end con�guration, electromagnetic interaction was found to be

negligible for particle spacings w > 100 nm. Assuming this distance as a characteristic

threshold value for arbitrary orientation of the two particles, a particle concentration

N ≈ (L + 100 nm )−3 = 4 · 1019m−3, below which near-�eld electromagnetic interac-

tion is negligible, can be estimated. By comparison with the highest concentration of

∼ 1016m−3 used in experiments, it can be concluded that this condition is clearly ful-

�lled in the DC-MOT measurements of the present study.

The two dominating contributions to Cabs (L1 and L2) both decrease by 15% whereas

positive and negative deviations were found for the other orientations. Large relative

changes were obtained for the T1,2 and T2,2 con�guration where the electic �eld vector
~E is parallel to the interparticle axis. The scattering cross sections increase signi�cantly

by ∼ 60% for longitudinal polarization. This large increase complies with a blue-shift of

the plasmon resonance reported for pairs of gold nanorods in side-by-side con�guration

[105, 106]. For Ni nanorods with aspect ratio Θ > 5 such a blue-shift of the shoulder is

expected to result in an increasing intensity.

Depending on the geometry of the measurement, various contributions combine to the

total extinction cross section. One particular example is given by the average of all six

con�gurations C̃ext, × which resembles the extinction cross section of an isotropic disper-
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Figure 6.12: Absorption and scattering cross sections for two capped cylinders (l =

200 nm, d = 20 nm) in end-to-end con�guration as a function of their distance w for

di�erent polarization directions as de�ned in Fig. 6.10. The horizontal lines represent

the corresponding values for two individual particles.
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Figure 6.13: Absorption and scattering cross sections for capped cylinders (l = 200 nm,

d = 20 nm) in side-by-side con�guration as a function of their distance w for di�erent

polarization directions and orientations as de�ned in Fig. 6.11. The horizontal lines

represent the corresponding values for two individual particles.
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6.5 Optical interaction of two particles

sion of side-by-side nanorod dimers, Fig. 6.14. This superposition reveals a maximum

deviation of only ∼ −4% in a range of interparticle distance of w ∼ 5 − 20 nm for two

nanorods with d = 20 nm and l = 200 nm.
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Figure 6.14: Average extinction cross section C̃ext,× for two agglomerated particles

(l = 200 nm, d = 20 nm) in side-by-side con�guration as a function of their distance w

compared to the corresponding value 2 · Cext,× for two individual nanorods (horizontal

line).

The side-by-side con�guration with anti-parallel orientation of their magnetic moments

represents the minimum energy state of two uniaxial ferromagnetic nanorods and is

frequently observed in TEM images, Fig. 6.1. As their magnetic moments cancel each

other out, such dimers exhibit purely statistically determined rotational di�usion at

the low external magnetic �elds applied during DC-MOT measurements and generate a

constant extinction background. In a recent study, the contribution of these dimers to

optical extinction was investigated by controlled destabilization of the colloidal nanorod

suspension [103]. By increasing the ionic strength of the colloid, the magnetic �eld-

dependent optical response due to individual nanorods was found to decrease with time

while a continuous increase of the �eld-independent background was observed. The
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6 - Results I - Analysis of DC-MOT measurements of colloidal suspensions
of PVP coated Ni nanorod

analysis suggested an optical extinction for each nanorod in a dimer con�guration equi-

valent to (0.8 ± 0.2) · Cext,× in accordance with the results of the FEM simulations

C̃ext,× ≈ 0.96Cext,×.

At this point, the treatment of the DC-MOT of colloidal suspensions of PVP coated

Ni nanorods is completed. In the next chapter the properties of silica coated nanorods

using DC-MOT and additionally OF-MOT measurements will be investigated.
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Chapter 7

Results II - Quantitative modeling of

DC- and OF-MOT signals of silica

coated Ni nanorods colloids

PVP coated Ni nanorods exhibit signi�cant deviations between theoretically expected

and measured rotational di�usion coe�cients [24] which is mainly attributed to the

ill-de�ned boundary between the particle and the liquid matrix and the concomitant

unknown thickness of the organic PVP layer. This uncertainty limits their suitability

as model particles for investigation on particle-matrix interaction signi�cantly. To ob-

tain a well-de�ned particle-matrix-interface, the PVP rods were encapsulated with an

additional inorganic silica shell as described in section 2.3. In the following, colloidal

suspensions of these particles will be investigated using static and dynamic MOT. The

comparison of measurements and theoretical models will serve as a benchmark for using

such core-shell nanorods as model objects for ferromagnetic probe particles.

7.1 Structural characterization

The silica encapsulated Ni nanorods were structurally characterized by bright �eld TEM

images. Fig. 7.1 exhibits micrographs of the samples (scn-1 � scn-3) which were inves-

tigated in the present work. The Ni nanorods of di�erent sizes are clearly discernible

as dark cores. These Ni cores exhibit the same structural inhomogeneities as the PVP

coated Ni nanorods, section 6.1, and are covered with amorphous silica (as veri�ed by

EDX chemical analysis, not shown) which appears as lighter outer layer. However, as

observed in former studies where nanoparticles were covered with silica, various struc-
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7 - Results II - Quantitative modeling of DC- and OF-MOT signals of silica
coated Ni nanorods colloids

Figure 7.1: TEM images of silica-encapsulated Ni nanorods: Sample scn-1 (left), scn-2

(middle), and scn-3 (right, with insert at double magni�cation). Individual core-shell

nanorods as well as multi-core particles, extended chains and adherent silica spheres are

found. Additional images can be found in appendix B.

tural defects and irregularities such as bumps in the silica shell, multi-core particles,

and fused particle chains are observed [26, 28, 59]. Also, pure silica spheres sticking at

nanorods were found, in particular in sample scn-3. It remains unclear to which extent

these structures are present in the colloid or may have formed during drying of the col-

loid on the TEM grid.

The shape of individual core-shell particles can be described as capped cylinders. The

characteristic geometric dimensions of these single core particles, i.e. length l and diam-

eter d of the Ni core as well as overall length L and diameter D (de�nitions in Fig. 5.3),

of more than 200 nanorods were measured. The corresponding histograms derived for

sample scn-2 are shown in Fig. 7.2. Furthermore, the thickness of the silica shell Dsh was

determined by Dsh = (D − d)/2. The distribution of each quantity was approximated

by log-normal density functions, Eq. (6.1),

f(x) =
(√

2πσx
)−1

exp
(
−0.5 (lnx− lnxc)

2 σ−2
)
, x > 0 , (7.1)

with location parameter xc, scale parameter ln(σx) and expected values Ex, Tab. 7.1.
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Figure 7.2: Distributions of (a) Ni core length l (grey), overall length L (open bars),

(b) Ni core diameter d (grey), and overall diameter D (open bars) for sample scn-2. The

lines represent the results of a regression analysis using a log-normal density function,

Eq. (6.1).
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Sample scn-1 scn-2 scn-3

Nc 205 516 206

lc [nm] 144.4 244.6 890.1
σl 0.29 0.20 0.47
El [nm] 150.8 249.5 991.7

dc [nm] 22.5 22.2 20.6
σd 0.18 0.14 0.16
Ed [nm] 22.9 22.4 20.8

Lc [nm] 310.2 351.1 953.9
σL 0.16 0.14 0.45
EL [nm] 314.3 354.6 1057.0

Dc [nm] 149.2 121.3 80.2
σD 0.05 0.11 0.10
ED [nm] 149.3 122.0 80.6

EDsh
[nm] 63.2 49.8 30.2

Table 7.1: For each sample of silica coated nanorods (scn), Nc particles were measured

by TEM image analysis. The location parameter xc, scale parameter σx, and expected

values Ex of the log-normal density functions, Eq. (6.1), which approximate the distri-

butions of the length l and diameter d of the Ni core and overall length L and diameter

D of the core-shell particles, were obtained. The values for the silica shell thickness were

calculated by Dsh = (D − d)/2.

7.2 Static magnetic �eld-dependent optical transmis-

sion (DC-MOT)

The collinear magnetic and optical anisotropy of the silica coated Ni nanorods is con-

�rmed by the static �eld-dependent optical transmission, Fig. 7.3. The transmitted in-

tensities for magnetic �eld perpendicular, I⊥(H) (upper branches), and parallel, I||(H)

(lower branches), are normalized by the zero-�eld intensity I× and exhibit the same qua-

litative behavior as the PVP coated Ni nanorods, section 6.2. The reduced transmission

upon parallel alignment complies with a larger extinction cross section of core-shell parti-
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coated Ni nanorods colloids

cles for longitudinal polarization as compared to transversal polarization. Increasing size

of the Ni core entails increasing magnetic moments and enables �eld-alignment against

thermal energy at lower �elds. Hence, the transmission of sample scn-3 nearly saturates

at a �eld strength of H ≈ 20Oe while shorter rods with comparable diameters (sample

scn-1 and scn-2) and thus lower magnetic moments require higher magnetic �elds. This

�eld-dependence has been analyzed to extract characteristic quantities of PVP coated

Ni nanorod colloids, i. e. the mean diameter per particle and the particle concentration

in the colloid in the previous chapter. In the following, this approach will be adapted

for the analysis of Ni/SiO2 core-shell nanorods.

As described in section 5.1, the �eld-dependent transmittance can be described by

I⊥,‖(H)/I× = exp
(
−Ns

(
〈Cext〉⊥,‖(H)− Cext, ×

))
. (7.2)

The protocol of the analysis is exactly the same as for PVP coated nanorods. The

analysis of �eld-dependent optical transmission is essentially reduced to modeling of the

extinction cross sections along the principle axes of the core-shell nanorods. For this

purpose, FEM simulations as described in section 4.3.7 were used to solve the Maxwell

equations. The required value of the permittivity of silica εsilica = 2.15502 was taken

from [107].

In order to illustrate the in�uence of the silica shell on the optical properties, the ab-

sorption and scattering cross sections of bare capped Ni nanocylinders with a diameter

of d = 20 nm, length l = 50 .. 2000 nm and of the same Ni nanorods encapsulated by a

silica shell with a thickness of Dsh = 50 nm are shown in Fig. 7.4.

The absorption cross sections of the bare nanorods are signi�cantly larger than the

scattering components, as already shown in section 6.3.1 and 6.3.4. For longitudinal po-

larization, Cabs exhibits a shoulder at L ∼ 80 nm related to the red-shift of the plasmon

resonance with increasing aspect ratio [43, 101]. For rod lengths L > 300 nm, Cabs, L

increases with a slope ∼ 1, Fig. 7.4(a). The same proportional increase � yet at much

smaller values � is found for the absorption cross sections at transversal polarization.

The additional silica layer has a minor impact on the absorption component whereas the

scattering cross sections are signi�cantly changed, Fig. 7.4(b). In particular, the scatter-

ing cross section for the transversal polarizations are increased signi�cantly while for the

longintudinal polarization a moderate decrease is found so that the optical anisotropy

nearly vanishes with respect to scattering. A variation of the silica shell thickness mainly

a�ects the scattering cross sections, Fig. 7.5. For a given core length of L = 250 nm, the

absorption cross sections change by less than 20% whereas Csca, T2 increases by a factor

102



7.2 Static magnetic �eld-dependent optical transmission (DC-MOT)

1 0 0 1 0 0 0
1 0 - 1 6

1 0 - 1 5

1 0 - 1 4 1

( a )
C ab

s [m
2 ]

c o r e  l e n g t h  l  [ n m ]

                      L       T 1      T 2
c o r e  /  s h e l l      
c o r e               

1 0 0 1 0 0 01 0 - 1 8

1 0 - 1 7

1 0 - 1 6

1 0 - 1 5

1 0 - 1 4

1

( b )

                      L       T 1      T 2
c o r e  /  s h e l l      
c o r e               

C sca
 [m

2 ]

c o r e  l e n g t h  l  [ n m ]
Figure 7.4: Absorption (a) and scattering (b) cross sections of bare capped Ni cylinders

(empty symbols) and silica coated capped Ni cylinders (full symbols) as a function of

the core length l. The core diameter was d = 20 nm and the thickness of the silica shell

was Dsh = 50 nm.
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capped Ni cylinders with core diameter d = 20 nm and core length l = 250 nm as a

function of the thickness of the silica shell Dsh.
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of ∼ 12 upon variation of the thickness of the silica shell in the range of Dsh =

30 .. 80 nm, even rising above the longitudinal contribution. Obviously, the distinct opti-

cal anisotropy of the Ni core drops away when the particles are encapsulated in a silica

shell with a thickness close to the length of the core particle.

After these considerations regarding the optical properties of the silica coated Ni nanorods,

the focus can be returned to the analysis of the DC-MOT measurements, Fig. 7.3. The

splitting between the two branches of parallel and perpendicular measurement depends

on the optical anisotropy of the nanorods as well as on their concentration N , as re-

ported for PVP coated Ni nanorords in the previous chapter. The �eld-dependence

of this splitting is characteristic for the magnetic moment of the Ni core because this

moment determines the alignment in �eld-direction against thermal energy. However,

cylindrical particles of equal volume and hence equal magnetic moment can be realized

with arbitrary aspect ratio, which in turn also implies varying optical anisotropy. So,

as for bare nanorods, the relationship between three independent variables (l, d, and

N) and the �eld-dependent transmission is overdetermined so that there is no unique

solution to the inverse problem. Therefore, the analysis of DC-MOT measurements of

Ni nanorod suspensions requires assumptions on all but two colloid variables. For bare

Ni nanorods, the �rst moment of the length distribution function El was taken as �xed

value because it can be determined from TEM images with suitable accuracy. For the

silica coated nanorods, the thickness of the silica shell EDsh
, determined for each colloid

from TEM images, Tab. 7.1, was also taken as �xed quantity and only the diameter d of

the Ni core and the concentration N of the colloidal particles served as free variables.

The results of the regression analysis using the model described in section 5.1 are shown

in Fig. 7.3 (dashed lines). The �eld-dependent splitting into the two branches and its

shift to a lower �eld strength with increasing size of the Ni core is correctly reproduced by

the model. The curvature and convergence to the saturation values of the transmission is

also well described with some small deviations for sample scn-2. However, the obtained

values for the diameter of the Ni core dOT tended to be larger than the expected values

Ed from TEM image analysis, Tab. 7.2. This result is in contrast to the studies in section

6.4 on PVP coated Ni nanorods which provided slightly smaller diameters caused by a

non-ferromagnetic surface oxide layer of 1�2 nm thickness. To evaluate whether such a

small variation in the diameter is signi�cant with regard to the measurement, a second

regression analysis was performed with the length as well as the diameter of the Ni cores
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being �xed at El and Ed − 2dox with dox = 1.5 nm1, respectively. Hence, the concen-

tration of the particles in the colloid was the only free �t parameter. The solid lines

in Fig. 7.3 show that such a small di�erence in the diameter of the nanorods is indeed

signi�cant and results in a clear shift of the �eld-dependent splitting to higher values.

The question whether the larger diameter or other factors may be responsible for this

discrepancy is left open for now and will be addressed later again. In order to gather

more information, the focus will be turned to the dynamical properties of the particles

in the following section.

Sample scn-1 scn-2 scn-3

TEM analysis Ed [nm] 22.9 22.4 20.8
(repeated from Tab. 7.1)

DC-MOT analysis, dOT [nm] 21.9 25.5 22.1
free parameters: d,N N [1015m−3] 5.5 0.68 0.204

DC-MOT analysis,
free parameter: N N [1015m−3] 6.9 1.1 0.306

Table 7.2: First moment of the core diameter distribution Ed obtained by TEM and

core diameters dOT as well as particle concentrations N obtained by the regression

analysis of DC-MOT measurements assuming monodisperse particle ensembles, Fig.7.3.

7.3 Dynamic magnetic �eld-dependent optical trans-

mission (OF-MOT)

The dynamical properties of the silica coated Ni nanorods in aqueous suspension were

investigated using oscillating magnetic �elds. An experimental setup as described in

section 3.2.2 was used for all dynamic measurements in this work. A �eld amplitude of

H0 = 60Oe was used to ensure su�ciently large Langevin parameters (ζ > 10) resulting

in a nearly parallel alignment of the particles with the �eld as shown in section 4.1.3. The

imaginary part of the response function X ′′(ω) is shown in Fig. 7.6 (dotted lines). The

relaxation peaks for the silica coated nanorods dispersed in water are found at angular

1Re�ering to section 6.4 and [20, 103], 1.5nm can be assumed as a typical value of dox.
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Figure 7.6: Measured imaginary part of the response function −X ′′(ω) as a func-

tion of the angular frequency of the applied magnetic �eld in water (dotted lines)

and in a gycerol-water mixture (full dots). The other lines are calculated follow-

ing Eq. (5.18) assuming a monodisperse particle ensemble with a core diameter

obtained from DC-MOT measurements (dashed) or a core diameter d = Ed−2dox

obtained by TEM (solid), respectively.
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frequencies ω > 1000 rad/s with tails exceeding the accessible frequency range of the

OF-MOT setup (ωmax = 3 · 104 rad/s). Mixing glycerol into the suspension medium

increased its viscosity η, Tab. 7.3, and resulted in a shift of the relaxation peaks into

the accessible frequency window, Fig. 7.6 (full dots). Assuming a monodisperse particle

ensemble allows the modeling of the relaxation peaks. The core lengths as well as the

overall lengths and diameters of the particle representing the ensemble were chosen to the

�rst moment of their distributions obtained by TEM (l = El, L = EL, and D = ED).

This model calculation was performed for the two scenarios discussed in the analysis

of DC-MOT measurements, i. e. for the diameters dOT obtained from the regression

analysis as free parameter (dashed lines in Fig. 7.6) and for the smaller diameters �xed at

Ed − 2dox (solid lines). The former which showed better agreement between measured

and modeled DC-MOT signals revealed a larger deviation from the relaxation peak

in the OF-MOT experiment than the latter, Tab. 7.3. Therefore, it is assumed that

the increased values of dOT are the result of a yet untreated contribution of multi-core

particles to the measured optical transmission. The value of the imaginary part at peak

maximum is −X ′′(ω)max = 0.5 for a relaxation following Eq. (5.18) with a single time

constant. The measured response functions have maximum values ≤ 0.47, Tab. 7.3, in

combination with a slight peak broadening. This e�ect is commonly attributed to a

distribution of relaxation times, which will be addressed in the next section.

7.4 Polydispersity

In order to investigate whether the observed peak broadening is consistent with the size

distribution of the core-shell particles revealed by TEM image analysis, the oscillating

�eld optical transmission of the polydisperse particle ensembles is computed as described

in section 5.2.3. The model calculations are based on the tabulated values of the Ni cores

(li and di) and overall size (Li and Di) for a large number of core-shell particles which

already served as a basis for the determination of the distribution functions, Fig. 7.2.

Furthermore, the extinction cross sections for each counted particle dispersed in a

glycerol-water-mixture was calculated by FEM2. The values for the permittivity of this

solvent were taken from [108] and can be found in Tab. 7.3. The result of this calculation

is shown in Fig. 7.7 together with the measured imaginary part of the response function

2The computation time for this step substantial since Cext of about 900 particles for the L and T1

mode had to be calculated. This resulted in about 1800 FEM simulations to calculate the cross sections

needed to model the polydisperse OF-MOT signal.
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sample scn-1 scn-2 scn-3

η [mPa s] 48.1 27.7 4.9
εr 2.0731 2.0474 1.9384

measurement −X ′′max 0.47 0.44 0.43
ω(−X ′′max) [rad/s] 57.9 111.5 133.2

calculation based on

El (TEM) and −X ′′max 0.5 0.5 0.5
d = dOT from Tab. 7.2 ωc [rad/s] 74.6 263.4 386.5

El (TEM) and −X ′′max 0.5 0.5 0.5
d = Ed − 2dox (TEM) ωc [rad/s] 60.6 152.2 251.2

Table 7.3: Parameters of −X ′′(ω) obtained by measurements or calculations assuming

monodisperse particle ensembles (using Eqs. (5.20) and (5.18)). The values for relative

permittivity εr and the viscosity η were calculated from the percentage of glycerol [108,

109].

−X ′′(ω). As expected, the polydispersity of the core-shell nanorods results in a moderate

broadening of the relaxation peak and a corresponding reduction of the peak maximum

rather close to the measured ones, Tab. 7.4. Consequently, the di�erences between the

measured and modeled relaxation peak observed in section 7.3 can be partially explained

by the polydispersity of the particles.

However, including the polydispersity has only a marginal in�uence on the position of

the relaxation peak. The observed lower frequency of the relaxation peak might be

caused by an additional hydrodynamic layer at the silica surface but the sample scn-1

with the shortest nanorods for which this e�ect is expected to be most prominent shows

the best agreement between the measured and modeled peak position. Therefore, this

hypothesis can be excluded. In the next step, the contribution of agglomerates to the

measured magnetic �eld-dependent optical signals will be included. But beforehand, the

impact of polydispersity on DC-MOT shall be investigated.

Similar to the construction of the OF-MOT signal, the model is based on the tabu-

lated values of li, di, Li, and Di but additionally has to consider the overall particle

concentration as the splitting of the DC-MOT curves depends on the absolute concen-

tration of nanorods in the colloid and is required for a quantitative modeling of the
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DC-MOT signal. In Fig. 7.8, the obtained modeled curves are shown. Compared to

the corresponding curve for a monodisperse particle ensemble (solid line in Fig. 7.3), the

agreement with the measured data is slightly improved for all samples but there are still

signi�cant deviations from the measured data especially in the region where the upper

and lower branches disjoin as well as at saturation. The concentrations obtained from

both analysis models are similar, Tab. 7.5.

In conclusion, neither the monodisperse modeling with diameters from static MOT mea-

surements nor reduced diameters from TEM analyisis nor the polydisperse modeling of

OF-MOT signals resulted in a quantitative agreement with the measured signal for all

samples. The calculated peak positions were higher than measured. This suggests a

second particle fraction with a characteristic relaxation frequency that is signi�cantly

lower than those of the so far treated single core particles. The next section focuses on

the identi�cation of these particles and, by extending the used model, their in�uence on

the MOT.

sample scn-1 scn-2 scn-3

measurement −X ′′max 0.47 0.44 0.43
ω(−X ′′max) [rad/s] 57.9 111.5 133.2

polydisperse modeling −X ′′max 0.46 0.47 0.41
based on TEM data ω(X ′′max) [rad/s] 62.8 163.7 211.9

Table 7.4: Parameters of −X ′′(ω) obtained by measurement and calculation of the

MOT respecting the polydispersity of the particles.

Sample scn-1 scn-2 scn-3

DC-MOT analysis (monodisperse), N [1015m−3] 6.9 1.1 0.306
free parameter: N (repeated from Tab. 7.2)

DC-MOT analysis (polydisperse) N [1015m−3] 6.9 1.07 0.3
(free parameter: N shown in Fig. 7.8)

Table 7.5: Particle concentrations obtained by regression analysis of DC-MOT mea-

surements assuming a monodisperse particle ensemble with dOT = Ed − 2dox or a poly-

disperse particle ensemble.
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Figure 7.7: Measured (points) and modeled (considering the size distribution of

the particles, solid lines) imaginary part of the response function −X ′′(ω). In the

model calculation, the core diameter was chosen to di − 2dox.
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7.5 Multi-core particles

7.5 Contributions of multi-core particles to the MOT

Figure 7.1 shown at the beginning of this chapter displays TEM images of particles

containing more than one Ni core. These multi-core particles exhibit di�erent structures

like linear and zig-zag chains or curved arc segments. Until now, these particles were

neglected in the modeling of the MOT. Due to the multitude of possible con�gurations, a

detailed modeling of the various multi-core structures is not feasible so that the objective

of the present study was to identify a representative aggregate that e�ectively captures

the contribution of these structures.

Figure 7.9: Typical examples of multi-core particles observed in TEM images such

as silica encapsulated dimers of two Ni nanorods in side-by-side con�guration (a), two

collinear cores (b), two tilted cores (c) and particles with three cores (d).

Fig. 7.9 shows typical examples for multi-core particles. Dimers of nanorods, Fig. 7.9(a),

in parallel side-by-side alignment are commonly observed in the present samples as well

as in colloids of PVP coated Ni nanorods [103]. In the ground state, the magnetization

of two nanorods in parallel con�guration point into opposite directions and compensate

each other. Due to the vanishing net magnetic moment, such dimers do not contribute

to the �eld-dependent transmission but add a �eld-independent extinction background

[103]. They do not participate in the �eld-modulated OF-MOT measurement and their

contribution to the DC-MOT is blanked out by normalization to the zero-�eld transmit-

tance and thus are not considered further.

A particular structural defect are single core-shell particles fused together into extended

chains by the silica coating. Di�erent conformations (e.g. linear, curved, zig-zag) of such

chains can be identi�ed. Linear chains containing two or more Ni cores, Fig. 7.9(b), ex-

hibit the highest magnetic moment and optical anisotropy. These particles are expected

to have a high in�uence on static and dynamical MOT measurements and can be readily
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modeled due to their axisymmetric shape.

The in�uence of particles with tilted cores, Fig. 7.9(c), depends on the angle between

the cores with the limiting cases shown in Fig. 7.9(a) and Fig. 7.9(b). As an example,

a particle containing two Ni cores that are oriented perpendicular to each other is as-

sumed, Fig. 7.10. To calculate its orientation dependent extinction cross section in a �rst

approximation, the particle is divided into two single core particle and the extinction

cross section is calculated by summation of the extinction cross sections of these single

core particles, hence electromagnetic interaction is neglected..

polarization direction 

total magnetic 
moment 

45° 

g 

g - 45° 
g + 45° 

Figure 7.10: Analysis of a multi-core particle with two cores perpendicular to each

other. The angle γ is the angle between the resulting magnetic moment of the particle

and the polarization direction of the incident light.

To obtain the e�ective extinction cross section when the polarization direction of the in-

cident light is parallel or perpendicular to the external magnetic �eld, as experimentally

realized in DC-MOT measurements, the argumentation is focused on the simple case

of saturation. In this case, the external magnetic �elds are high enough for a parallel

alignment of the resulting moment against thermal energy (ζ > 10) but small enough

to avoid signi�cant rotations of the magnetic moments out of the core axes. Then, ther-

mally activated rotations around the axis of the resulting magnetic moment have to be

considered and the e�ective extinction cross section for the parallel Cext, e�, || and for

the perpendicular Cext, e�, ⊥ case can be calculated by averaging Cext over all states of

rotation consistent with the �eld alignment. Hence for γ = 0, both rods include an angle

of θ = 45◦ with the external magnetic �eld, Fig. 5.2(a). The orientation-averaged extinc-

tion cross section of the whole multi-core particle can be calculated applying Eq. (5.2)

on both single core particles with the extinction cross sections Cext, L, Cext, T1, Cext, T2 :

Cext, e�, || = 2

(
1

2
Cext, L +

1

2

〈
sin2 φ

〉
Cext, T1 +

1

2

〈
cos2 φ

〉
Cext, T2

)
= Cext, L +

1

2
Cext, T1 +

1

2
Cext, T2 .

(7.3)
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For γ = 45◦, both rods include an angle of δ = 45◦ with the external magnetic �eld,

Fig. 5.2 (b). Using Eqs. (5.2), (5.6), and (5.7) Cext, e�, ⊥ can be calculated to

Cext, e�, ⊥ = 2

(〈
cos2 ε

〉
sin2 δCext, L +

(
1−

〈
cos2 ε

〉
sin2 δ

) 〈cos2 ε〉
1 〈cos2 ε〉 sin2 δ

Cext, T1

+ (1−
〈
cos2 ε

〉
sin2 δ)

(
1− 〈cos2 ε〉

(1− 〈cos2 ε〉 sin2 δ)

)
Cext, T2

)
=

1

2
Cext, L + Cext, T1 +

1

2
Cext, T2 .

(7.4)

For a particle containing two perpendicular arranged Ni cores with d = 20 nm, l = 200 nm

and Dsh = 50 nm, a ratio Cext, e�, ||/Cext, e�, ⊥ = 1.6 is found while for linear multi-core

particles Cext, ||/Cext, ⊥ = 7.3. This example shows that particles with tilted cores have

lower optical anisotropy and hence a smaller contribution to DC- as well as OF-MOT

measurements.

With the same reasoning, multi-core particles with three or more cores are also expected

to have the highest in�uence when the cores are aligned in a linear chain. With these

preliminary considerations, it was decided to model the in�uence of multi-core particles

on DC- and on OF-MOT using the simple linear multi-core particles as schematically

illustrated for a particle containing three cores in Fig. 7.11.

While the diameter D is assumed to be the same as observed for single core particles,

oxdD sh oxdD sh

'L

l

oxdd 2D

Figure 7.11: Example for a multi-core particle containing nc = 3 collinear Ni cores.

the length L′ depends on the number of Ni cores. For a particle consisting of nc Ni

cores, the resulting magnetic moment is expected to be nc times the moment of a single

core particle. The whole structure is assumed to be covered with a silica shell with

Dshell = 50 nm.

Before estimating the in�uence of these particles on the MOT, their optical properties

in terms of their extinction cross section need to be simulated by FEM. In the present

calculations particles containing up to ten Ni cores, each represented by a capped cylinder
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with a length of l = 250 nm and a diameter of d = 22.5 nm, were treated.

Fig. 7.12 shows the extinction cross section of such a linear multi-core particle as a

function of the number of Ni cores. The extinction is the highest for the L mode followed

by the T1 and T2 modes. The extinction cross sections increase linearly with the number

of cores nc (the lines in Fig. 7.12 are lines through origin with slope equal to Cext of a

single core particle). This relation may be used as an approximation and is reasonable

for the L mode and the isotropic case but less accurate for the transversal modes.

0 2 4 6 8 1 0
0

2 5

5 0

7 5

1 0 0

C ex
t [1

0-15
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2 ]
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L     
T 1  
T 2  
     ×

Figure 7.12: Extinction cross sections Cext of linear multi-core particles with a shell

thickness of Dsh = 50 nm as a function of the number of Ni cores. Each core has a

diameter of d = 22.5 nm and a length of l = 250 nm. The symbols represent values

obtained by FEM for the L, T1, and T2 mode as well as for the isotropic case (×). The
lines are drawn through the origin with a slope equal to the corresponding Cext of the

single core particle.
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7.5.1 Modeling OF-MOT using polydisperse single core and lin-

ear multi-core particles

Up to this point, the modeling of DC- as well as OF-MOT signals was limited to the

contributions of polydisperse single core particles. This treatment is insu�cient and

has to be extended by linear multi-core particles. The �rst approach to model the

relaxation peaks of the composed system of particles is a simple superposition of peaks

of di�erent particle fractions, i.e. polydisperse single-core and monodisperse linear multi-

core particles. This method neglects the di�erent optical weighting of di�erent particle

fractions but provides a simple and fast analysis.

Direct superposition of relaxation peaks

The superposition of relaxation peaks corresponding to single core-shell particles and

multi-core particles to the OF-MOT response function can be expressed by

X ′′(ω) = R′scX
′′
pd scp(ω) + (1−R′sc)X ′′mc(ω) , (7.5)

where R′sc is the ratio of single core particles, X ′′pd, scp(ω) the peak of the polydisperse

single core particles and X ′′mc(ω) the peak resulting from linear multi-core aggregates.

The length and diameter per core as well as the thickness of the silica shell for the

multicore aggregates were chosen to corresponding values of the �rst moment of the

distribution of these parameters obtained by TEM image analysis of the single core

particles.

Using Eq. (7.5) and the relaxation peak X ′′pd scp(ω) obtained by modeling the peak for

polydisperse single core particles, section 7.4, and peaks obtained for monodisperse multi-

core particles X ′′mc, a good approximation of the measured spectra can be obtained when

the mixing ratio is variable, Fig. 7.13.

For the two samples scn-1 and scn-3, a good agreement between the measured and

modeled data was found for a combination of polydisperse single core particles and

monodisperse two-core particles, Tab. 7.6.

For sample scn-2, a good agreement between the measured and modeled data was found

for a combination of polydisperse single core particles with monodisperse two-core and

three-core particles.
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Figure 7.13: Measured imaginary part of the OF-MOT response function

−X ′′(ω) (full dots) as well as −X ′′(ω) calculated by superposition of the rela-

xation peaks of single core particles and linear multi-core particles with two (red

dashed lines) or two and three (red dash-dot lines) Ni cores. The mixing ratios

for the superposition of relaxation peaks were free parameters, Tab. 7.6.



7.5 Multi-core particles

sample scn-1 scn-2 scn-3

best agreement R′sc [%] 92.5 55.0 62.0
for superposition of peaks R′mc-2 [%] 7.5 32.0 38.0

R′mc-3 [%] - 13.0 -

Table 7.6: Mixing ratios for the calculation of X ′′(ω) by supersposition of peaks of

polydisperse single core particles and monodisperse linear multi-core particles.

Since the transmitted intensity which is determined by the Beer-Lambert law is not an

extensive quantity such as e.g. the magnetic moment, the superposition of peaks is not

adequate. The magnetic, hydrodynamic, and optical properties of the particles have to

be combined in one model to obtain a quantitatively su�cient and reliable theoretical

signal of DC-MOT and OF-MOT signals. Simpli�ed models can lead to signi�cant

deviations and regarding the OF-MOT, the question about the reliability of the mixing

ratios of the particle fractions obtained by a simple superposition of peaks for single and

multi-core particles arises. To investigate this issue a correct calculation which is based

on a superposition of orientation dependent extinction cross sections will be performed

in the following.

Time-dependent superposition of orientation dependent cross sections

In order to investigate the in�uence of linear multi-core particles on the imaginary part

of the response function −X ′′(ω), the time-dependent superposition of orientation de-

pendent cross sections used to model the response of polydisperse ensembles is extended

to include the contributions of linear multi-core particles. The resulting transmittance

can be expressed by

T ′ω(t) = exp

[
−Nss

((
Rsc/Nc

Nc∑
i

(
cos2(θi,ω(t))Cext,L,i + sin2(θi,ω(t))Cext,T1,i

))
+ (1−Rsc)

(
cos2(θmc,ω(t))Cext, L, mc + sin2(θmc,ω(t))Cext, T1, mc

))]
, (7.6)

where θmc, ,ω(t) is the time and frequency dependent angle between the mean oscillating

axis and the particle axis. The extinction cross sections of the linear multi-core particle

for the L and T1 mode are Cext, L, mc and Cext, T1, mc. They were calculated by FEM for

particles as described in Fig. 7.11 with d, l, D and Dsh chosen to the �rst moments of

their distribution obtained by TEM for single core particles. The ratio of single core
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particles Rsc was the only free parameter in the following model.

Furthermore, the number of Ni cores inside the linear multi-core particle will be in-

creased in order to show the in�uence of the chain size on the modeled peaks. The

OF-MOT spectra were modeled for three di�erent combinations of polydisperse single

core particles and monodisperse linear multi-core particles with two, three, or four Ni

cores, respectively. The results of these calculations are shown in Fig. 7.14 and the ob-

tained ratios as well as observed peak parameters can be found in Tab. 7.7.

For sample scn-1, the best result was found for a combination of 92.5% single core

particles and 7.5% linear multi-core particles containing two Ni cores. For these param-

eters, the agreement between the calculated and measured maximum value of the peak

was > 98%. The agreement for the peak position was ≥ 99.8%. Further, an excellent

agreement of the peak shape was found, as for all other samples. A combination with

multi-core particles containing more than two cores resulted in very low fractions of these

particles and an increasing deviation of the peak height.

For sample scn-2, the best combination of single core and linear two-core particles re-

sulted in a curve slightly overestimating the peak maximum while the best combination

with three-core particles resulted in a slightly underestimated maximum. The combi-

nation of single core particles with four-core particles resulted in a curve exhibiting a

distinct shoulder and an insu�cient description of the peak shape. A combination of

single core particles with two fractions of multi-core particles containing two cores and

multi-core particles containing three cores results in an improved agreement with the

measured data, Fig. 7.15. For a mixture of 73% single core, 20% two-core, and 7% three-

core particles, Tab. 7.7, this resulted in an agreement of 98.8% for the peak maximum

and 99.9% for the peak position.

For sample scn-3, all combinations resulted in maxima below the measured one. The

best agreement was found for a mixture of 77% single core particles and 23% multi-core

particles with two cores. The corresponding agreement with the measured values was

> 96.8% for the peak height and 99.9% for the peak position.

It turns out that the �rst approach which was a simple superposition of peaks, leads to

�ts that show a comparable agreement with the measured data but also leads to signif-

icant di�erences in the obtained mixing ratios, Tab. 7.8. Hence, adequate modeling of

the MOT signals of a mixture of di�erent particle fractions requires the superposition of

time modulated extinction cross sections in the Beer-Lambert law.
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Figure 7.14: Measured imaginary part of the response function −X ′′(ω) (full

dots). The lines represent calculated signals resulting from a combination of

polydisperse single core particles and monodisperse linear multi-core particles

with two (dashed), three (dots) or four (small dots) Ni cores. The mixing ratio

between single core and multi-core particles was the only free parameter, Tab. 7.7.
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sample scn-1 scn-2 scn-3

measurement X ′′max 0.47 0.44 0.43
ω(X ′′max) [rad/s] 57.9 111.5 133.2

modeling including
polydisperse single core particles
and linear multi-core particles

with two cores −X ′′max 0.463 0.454 0.417
ω(−X ′′max) [rad/s] 57.8 111.7 133.3
Rsc% 92.5 68.0 77.0
Rmc-2% 7.5 32.0 23.0

with three cores −X ′′max 0.454 0.410 0.369
ω(−X ′′max) [rad/s] 57.9 111.4 143.3
Rsc% 97.0 85.0 90.0
Rmc-3% 3.0 15.0 10.0

with four cores −X ′′max 0.451 0.387 0.344
ω(−X ′′max) [rad/s] 57.9 133.4 155.5
Rsc% 98.5 90.0 92.0
Rmc-4% 1.5 10.0 8.0

with two and three cores −X ′′max - 0.435 -
ω(−X ′′max) [rad/s] - 111.4 -
Rsc% - 73.0 -
Rmc-2% - 20.0 -
Rmc-3% - 7.0 -

Table 7.7: Parameters of −X ′′(ω) obtained by measurement and modeling assuming

a combination of polydisperse single core particles and monodisperse linear multi-core

particles with di�erent numbers of Ni cores.

Having identi�ed a satisfying model for OF-MOT measurements, the same method, i.e.

the superposition of orientation dependent extinction cross sections, will be used to

analyze the DC-MOT measurements.
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Figure 7.15: Measured imaginary part of the response function −X ′′(ω) (points) of

sample scn-2. The dash-dot line represents a calculated signal resulting from a combi-

nation of polydisperse single core particles and linear multi-core particles with two and

three Ni cores. The mixing ratio between single core and multi-core particles was the

only free parameter, Tab. 7.7.

sample scn-1 scn-2 scn-3

results repeated R′sc [%] 92.5 73.0 77.0
from Tab. 7.7 R′mc-2 [%] 7.5 20.0 23.0

R′mc-3 [%] - 7.0 0.0

best agreement R′sc [%] 92.5 55.0 62.0
for superposition of peaks R′mc-2 [%] 7.5 32.0 38.0

R′mc-3 [%] - 13.0 -

Table 7.8: Mixing ratios for the calculation of X ′′(ω) by supersposition of peaks of

polydisperse single core particles and monodisperse linear multi-core particles.
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7 - Results II - Quantitative modeling of DC- and OF-MOT signals of silica
coated Ni nanorods colloids

7.5.2 Modeling DC-MOT using polydisperse single core and li-

near multi-core particles

Modeling the MOT of a combination of polydisperse single core particles and linear

multi-core particles in static magnetic �elds requires an extension of Eq. (5.21) to

I(H)⊥,‖/I× = exp

[
−Ns 1

Nc

Nc∑
i=0

(Cext, i,⊥,‖(H)− Cext, i,×)

−Nmcs(Cext, mc,⊥,||(H)− Cext, mc,×)

]
, (7.7)

where Nmc is the concentration of linear multi-core particles, Cext, mc,⊥,||(H) their �eld

dependent, and Cext, mc,× their orientation averaged extinction cross section which were

individually calculated for every sample by FEM.

With N and Nmc as the only free parameters, the DC-MOT was modeled for a combi-

nation of polydisperse single core particles and monodisperse linear multi-core particles

with nc = 2 (dashed), 3 (dotted) or 4 Ni cores (not shown), Fig. 7.16. A good agreement

was found for all three combinations with small deviations in the saturation behavior,

Tabs. 7.7 and 7.9. For sample scn-3, the experimental data for a perpendicular �eld

(upper branch) were below the calculated curve. The initial slope of the �rst data points

is apparently negative which suggests a small misalignment of the �eld direction in the

experiment. In contrast to the modeling of the OF-MOT signals where the number of

cores inside the multi-core particles had a signi�cant in�uence, the modeled DC-MOT

does not exhibit a strong dependence on the number of cores. However, the mixing ratios

which were free parameters in the modeling of the DC- as well as the OF-MOT show

the same trend for both measurement modes, i.e. the amount of single core particles is

highest for sample scn-1 and lowest for scn-2.

It should be noted, that the curves obtained by a regression analysis assuming a monodis-

perse single core particle ensemble with diameter as a free variable, Fig. 7.3, resulted in

a similar agreement. However, this regression analysis did not reveal the presence of

aggregates which is the real reason for the increased �eld dependence of the measured

signal and not as implicated �rst in section 7.2 the increased diameter of the single core

particles.
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plied external magnetic �eld (open circles). The lines represent calculated signals

resulting from a combination of polydisperse single core particles and monodis-

perse linear multi-core particles with two (dashed) or three (dots) Ni cores.



7 - Results II - Quantitative modeling of DC- and OF-MOT signals of silica
coated Ni nanorods colloids

In conclusion, DC- as well as OF-MOT measurements of silica encapsulated Ni nanorod

colloids can be quantitatively modeled with a combination of polydisperse single core

particles and monodisperse linear multi-core particles with two (scn-1 and scn-3) or two

and three (scn-2) Ni cores. The used models, especially for the multi-core particles, are

rather simple and widely based on independent determined variables. This allowed to

keep the number of free parameters low (one for OF-MOT and two for DC-MOT) and

resulted in very good agreements between theoretically expected and measured signals.

For comparison, in former studies performed on PVP coated Ni nanorod colloids, the

measured values of rotational friction coe�cients were twice as large as theoretically ex-

pected [24]. This indicates that silica encapsulated Ni nanorods are well suited as probe

particles in both static and dynamic MOT measurements. The superior properties with

respect to the well-de�ned particle-matrix boundary, however, are partially deteriorated

by the presence of chain-like aggregates. If their formation during the Stöber process

could be inhibited or their fraction in the colloid be signi�cantly reduced by separation

post-processing, the silica encapsulated Ni nanorods would be excellent model particles

to investigate particle matrix interactions in soft materials.

Furthermore, the silica coating o�ers the possibility for various particle functionaliza-

tions like �ourescence labeling which was used to observe the cellular uptake of silica-

encapsulated Ni nanorods by confocal laser scanning microscopy, appendix C, and in-

creases the colloidal stability of the particles in solvents of high ionic strength signi�-

cantly, appendix D.
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7.5 Multi-core particles

Sample scn-1 scn-2 scn-3

DC-MOT analysis (polydisperse), N [1015m−3] 6.9 1.07 0.3
free parameter: N

model including
polydisperse single core particles
and linear multi-core particles

with two cores Nsc [1015m−3] 5.08 0.295 0.153
Nmc-2 [1015m−3] 0.79 0.359 0.07

Rsc [%] 86.5 45.1 68.6
Rmc-2 [%] 13.5 54.9 31.4

with three cores Nsc [1015m−3] 5.78 0.592 0.225
Nmc-3 [1015m−3] 0.3 0.141 0.024

Rsc [%] 95.0 80.8 90.4
Rmc-3 [%] 5.0 19.2 9.6

with four cores Nsc [1015m−3] 6.02 0.689 0.247
Nmc-4 [1015m−3] 0.18 0.084 0.013

Rsc [%] 97.1 89.1 95.0
Rmc-4 [%] 2.9 0.9 5.0

Table 7.9: Parameters obtained by the regression analysis of DC-MOT measurements

assuming polydisperse single core particles only (repeated from Tab. 7.5) and assuming

a combination of polydisperse single core particles and monodisperse linear multi-core

particles with two, three or four Ni cores, Fig. 7.16.
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Chapter 8

Summary

The �rst part of this summary concerning the static magnetic �eld-dependent optical

transmission of suspensions of PVP coated Ni nanorods corresponds to the related sec-

tion in publication [43], see appendix E.

The objective of this work was to investigate the dynamic properties of silica coated Ni

nanorods in colloidal suspensions and to derive a quantitative model for optical trans-

mission measurements of rotational relaxation in oscillating magnetic �elds. Because the

�eld dependent optical response involves magnetic, hydrodynamic, and optical proper-

ties of non-spherical core-shell particles, the complexity of the modeling was increased

step-by-step aiming at a description which is su�cient to correctly capture all signal

features quantitatively, yet with the lowest possible number of unknown variables.

In the �rst step, PVP coated Ni nanorods of di�erent length were synthesized by the

AAO-template method and their structure was characterized by transmission electron

microscopy. The collinear magnetic and optical anisotropy was revealed by the static

�eld-dependent optical extinction of linearly polarized light, depending on the orientation

between the magnetic �eld and optical polarization. The experimental data were ana-

lyzed by assuming a superparamagnetic orientation distribution function for the nanorod

magnetic dipoles. As compared to earlier studies, di�erent models for the optical cross-

sections were investigated in detail. The consequences of two common approximations,

i. e. (i) the electrostatic approximation for the polarizability of the particles at optical

frequencies, and (ii) approximation of the particle shape as prolate spheroid, were of par-

ticular interest. For comparison, extinction cross sections were calculated for spheroidal

particles by the electrostatic approximation (EA), the separation of variables method
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(SVM), and FEM simulation. Using the latter, the optical cross sections were also

determined for capped cylindrical particles. The approximations regarding the polari-

zation (homogeneous and quasistatic vs. inhomogeneous and dynamic) and the shape

(spheroidal vs. cylindrical) of the di�erent approaches resulted in signi�cant di�erences

in the optical cross sections. In a regression analysis, the various models were applied

to �eld-dependent optical transmission data using the average length of the nanorods

obtained from TEM image analysis as �xed and the diameter and concentration of the

nanorods as variable parameters. The results for the diameter were identical for EA

and the FEM-based models whereas the expected di�erences were all captured in the

concentration parameter. This asymmetry was attributed to the particular correlation

of the two model parameters to the relevant physical quantities. The characteristic

�eld dependence of the transmission was directly related to the magnetic moment per

nanorod. Given a �xed length of the nanorods, regression analysis provided the same

diameter � and hence the same particle volume � consistent with this magnetic moment.

The di�erences in the optical cross sections between the two calculation methods of the

extinction cross section (EA vs. FEM) were compensated in the regression analysis by

the particle concentrations. A convenient procedure was suggested for modeling the

optical properties of Ni nanorods by using analytical cross sections for spheroids in the

EA and tabulated factors to compute corrected particle densities. This approach is re-

stricted to dilute nanorod colloids in which the concentration is low enough to neglect

near-�eld electromagnetic interaction which was veri�ed for the present work by FEM

simulation of extinction cross sections for pairs of nanorods in end-to-end con�guration

and side-by-side con�guration as a function of their spacing.

In the second step, Ni nanorods were coated with a silica layer using the Stöber process.

The length and diameter of the Ni core and of the overall core-shell particles were deter-

mined from TEM image analysis. The tabulated values of these parameteres were used

as a complementary data base for modeling the magnetic, hydrodynamic, and optical

properties of the polydisperse nanorods in suspension. Similar to the procedure used

for the PVP coated Ni nanorods, the superparamagnetic orientation distribution served

as the basis to model the �eld-dependent static MOT. In order to model the oscillat-

ing magnetic �eld-dependent optical transmission, the time resolved orientation of the

particles which is determined by their rotational friction coe�cient and their magnetic

moment was calculated by the equation of motion in oscillating magnetic �elds. Using

the time dependent orientation of the particles, the orientation dependent extinction
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cross section and thus the transmitted intensity could be calculated. By variation of

the magnetic �eld oscillating frequency, the magnetic �eld-dependent optical response

function was obtained.

As a �rst approach, the diameter of the Ni core was set as a free parameter in the mode-

ling of the DC-MOT signal. Although the obtained �tting curves showed a reasonable

agreement with the measured data, the obtained diameters were larger than those ob-

served in TEM. This result was not expected as similar measurements on PVP coated

Ni nanorods typically provide smaller diameters of the magnetic core due to the pre-

sence of a surface oxide layer. Comparison with a second analysis based on a diameter

�xed at the expected value clearly showed that the deviation of a few nanometers was

signi�cant. Additional information was obtained from the dynamical properties of the

particles measured in oscillating magnetic �elds. The relaxation frequencies were closer

to the measured signal for the smaller core diameter. In addition, the measured relax-

ation peaks exhibited a slight reduction in the peak maximum as well as some broadening

which is related to the polydispersity of the nanorods.

In the third step, polydispersity was taken into account by calculating the physical prop-

erties of each silica/Ni core-shell nanorod tabulated in the TEM image analysis database.

Assuming this sample of particles to be representative for the ensemble, the measured

�eld-dependent transmission signals were computed. As expected, the inclusion of poly-

dispersity resulted in a reduction in peak maximum as well as the observed broadening.

However, the calculated relaxation frequencies were still higher than measured.

Inspired by TEM micrographs exhibiting single core particles as well as several types

of multi-core particles, the used models were extended again. Combining polydisperse

single core particles with an additional particle fraction, i.e. linear multi-core particles,

resulted in models which show very good quantitative agreements with the measured

data for static and dynamic MOT. Using tabulated values for the size of the nanoparti-

cles obtained from TEM image analysis as a complementary source of information only

one (OF-MOT) or two (DC-MOT) free variables were needed.

In conclusion, the particles have well-de�ned magnetic, optic, and hydrodynamic prop-

erties and are suitable as probe particles in microrheological experiments. If the con-

tribution of chain-like agglomerates could be suppressed, they could be used as model

particles. Furthermore, the silica coating o�ers the possibility for various particle func-
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tionalizations like �ourescence labeling, appendix C, and increases the colloidal stability

of the particles in solvents of high ionic strength signi�cantly, appendix D.
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Chapter 9

Outlook

As shown in the present work, silica-encapsulated Ni nanorods exhibit well-de�ned hy-

drodynamic properties compared to PVP stabilized nanorods. This implies an almost

perfect suitability to study particle-matrix-interactions. This holds particularly in the

case of dispersions of single core particles, as shown by sample scn-1. In order to bene�t

from the superior properties in microrheological standard measurements, it would be

necessary to minimize the concentration of multi-core particles.

A decreased concentration of multi-core particles can be achieved either by improvement

of the synthesis protocol or additional separation steps like fractionation in magnetic �eld

gradients or centrifugation.

Regardless of the success of further optimizations, the particles are very well suited as

probes for microrheological studies since the ensemble averaged hydrodynamic proper-

ties, including the contribution of multi-core particles, can be readily characterized by a

reference measurement in a matrix with known rheological properties. For this purpose,

a purely viscous matrix like the glycerol water mixture used in this work can be used for

example. As long as the silica surface of the particles is not modi�ed in the biological

or chemical environment of the investigated sample, it is expected that the geometri-

cal factor in the rotational friction coe�cient of the nanorods stay constant. With the

correct calibration, magnetic �eld-dependent optical transmission measurements in ro-

tating, alternating, or as used in this work, oscillating magnetic �elds can be used to

study viscoelastic properties of complex soft matter on length scales that are determined

by the size of the nanorods. An interesting and yet open question is the characteristic

length scale of such substances that separates the regime of macroscopic properties from

the regime in which the molecular structures can be resolved. An example for which

this question is of practical importance is mucus which is a biological substance that
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covers the luminal surfaces of e.g. gastrointestinal and pulmonary tissue in humans and

most animals. On a macroscopic scale, mucus exhibits highly viscous or viscoelastic

properties. However, the more interesting behavior is observed on a microscopic scale.

On this scale, mucus allows the transport of nutrients and at the same time suppresses

the passage of pathogens. This selective barrier behavior is achieved by a special com-

bination of a particular cellular structure of the mucin network and its physico-chemical

properties. A detailed understanding of the transport properties of mucus is of great

importance for the drug administration and could be investigated using nanorods as size

variable probe particles.

The silica coating also enables further functionalization of the Ni nanorods. Incorpora-

tion of �uorescence label such as Rhodamine B o�ers the possibility to observe single

particles using confocal laser-scanning microscopy. This modi�cation was successfully

integrated in the synthesis of the core shell particles. The resulting particles were used to

investigate the magnetic �eld induced rotation of individual nanorods in elastic hydro-

gels and the incorporation of Ni nanorods in cell cultures of human brain microvascular

endothelial cells (HBMEC), appendix C. The latter one was performed in a cooperation

with the group of Dr. J. Clement at the Department of Hematology and Oncology of

the Jena University Hospital. The corresponding studies focus on the global cytotoxi-

city and the details of intracellular processes which are initiated by the penetration of

the nanorods into the cell. Hereby, �rst details of the pro-surival as well as stress and

in�ammation associated signaling pathways were found.

For studies of biological samples, an additional advantage of silica encapsulated nano-

rods as compared to the PVP coated nanorods has turned out and is of great importance.

The large shell thickness of typically 50 nm increases the stability of the nanorod colloid

against coagulation. Due to long range dipolar interactions, the colloidal stability of the

PVP coated nanorods is at risk and requires an e�cient electrostatic stabilization. At

the high ionic strength of typical biological systems, the electrostatic screening length is

reduced to a few nanometers. This results in a fast agglomeration of the nanorod colloids.

As shown in appendix D, the silica coating which acts as additional space between the

magnetic Ni cores increases the colloidal stability of the Ni nanorod colloid signi�cantly.

The positive e�ect of the silica shell regarding the coagulation is accompanied by a faster

sedimentation of the core-shell particles due to their larger size. The coagulation of the

nanorods at high ionic strength was not completely suppressed but the agglomerates

were only weakly bonded. This enables a complete redispersion using ultrasonication.

The coagulation of the silica encapsulated nanorods at di�erent ionic strength and pH
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values should be investigated systematically to determine the time frame of an individual

dispersion of the nanorods in biological systems.
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Appendix A

Additional TEM micrographs of PVP

coated Ni nanorods

In this appendix, some additional TEM micrographs of PVP coated Ni nanorods used

in this work are shown.

Figure A.1: TEM micrographs of sample pcn-1.
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Figure A.2: TEM micrographs of sample pcn-2.
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Figure A.3: TEM micrographs of sample pcn-3.
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A - Additional TEM micrographs of PVP coated Ni nanorods

Figure A.4: TEM micrographs of sample pcn-4.
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Appendix B

Additional TEM micrographs of silica

coated Ni nanorods

In this appendix, some additional TEM micrographs of silica coated Ni nanorods used

in this work are shown.

Figure B.1: TEM micrographs of sample scn-1.
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Figure B.2: TEM micrographs of sample scn-2.
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Figure B.3: TEM micrographs of sample scn-3.
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Appendix C

Vitality of human cells interacting with

di�erently coated Ni nanorods

In the following, some results on the interaction of Ni nanorods with human brain mi-

crovascular endothelial cells (HBMEC) obtained in cooperation with the group of J.H.

Clement, Department of Hematology and Oncology, Jena University Hospital, will be

summarized. The results have been published at conferences [110] and for more infor-

mation, reference is made to the master thesis of A.-K. Schmidt [111].

Magnetic nanomaterials are a subject of current biomedical research. Spherical iron ox-

ide nanoparticles are widely used due to their comprehensively tested biocompatibility

and their biodegradability. Although the usability of Ni nanoparticles in biomedical ap-

plications, e.g. for gene or drug delivery were investigated [112, 113], Ni ions exhibit a

low biocompatibility. To enable a reasonable usage in biomedical research, Ni particles

have to be encapsulated with a material of higher biocompatibility. The e�ect of di�er-

ent coatings of Ni nanorods on cell viability of human brain microvascular endothelial

cells (HBMEC) which are a commonly used model for the blood brain barrier [114] was

investigated. For this purpose, colloidal dispersions of Ni nanorods with di�erent coat-

ings (PVP, silica, silica with rhodamine B, and gelatine) were synthesized.

To ensure an interaction of the nanorods with the cells, the cellular uptake was investi-

gated �rst. For this purpose, silica coated Ni nanorods with an additional Rhodamine

B labeling were synthesized by varying a procedure provided by Günter Auernhammer,

Max Planck institute for polymer research, Mainz, in personal communication, as fol-

lows. First, a beaker with 10ml 2-propanol was placed on a magnetic stirrer. After

addition of 0.0938 g 3-(Aminopropyl)triethoxysilan and a short waiting time of about
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2min, 0.1178 g rhodamine B isothiocyanat was added. The beaker with the mixture

was closed and wrapped into Al foil to preserve photo-stability and the mixture was

stirred overnight. Then a Stöber process as described in section 2.2 was carried out,

with a volume of 0.28 µl per 100ml isopropanol of the mixture. The obtained rhodamine

B labeled silica coated Ni nanorods suspensions were stored in a dark environment to

preserve photo stability of the nanorod solution.

To perform the cellular uptake experiments, the rhodamine B labeled silica coated Ni

nanorods suspensions were added to HBMEC's. After a incubation time of 0.5 h, 3 h,

and 24 h, the cell nuclei and the actin cytoskeleton were stained with DAPI (blue) and

phalloidin-Alexa �uor 488 (green), respectively, and the particle uptake of the cells was

investigated using a confocal laser scanning microscope, Fig. C.1.

In the next step, the cytotoxicity of the di�erently coated particles were investigated.

The vitality of HBMEC's after 3 h and 24 h incubation time was studied using PrestoBlue

Cell Viability Assay (Invitrogen, Germany) and �ow cytometry (Annexin V/Propidium

iodide staining). Furthermore, Real-Time Cell Analysis (RTCA) (ACEA Biosciences,

USA) was applied for long term studies. The results of these investigations are shown

in Tab.C.1. For time periods ≤ 24h, independent on the particle coating, the cell

viability of HBMEC was not dramatically perturbed for the used particle concentrations.

Rergarding longer timeperiods, the viability of HBMEC cells was a�ected at higher

concentrations of Ni nanorods. In these experiments, the viability was best for silica

coated Ni nanorods, followed by gelatine coated and PVP coated nanorods.
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Figure C.1: Localization and quanti�cation of internalized silica rhodamine B coated

Ni nanorods into HBMEC after 24 hours of exposure: 200000 HBMEC were seeded onto

�amed coverslips which were placed into the wells of a 4-well cell culture plate. After

overnight cultivation, the cells were exposed to silica rhodamine B coated Ni nanorods

in a �nal Ni concentration of 1.5 µg/cm2 for 24 hours (B, B1). A, A1 indicate control

cells without nanoparticle incubation. After cell �xation and permeabilization, the cell

nuclei and the actin �laments were stained with DAPI I counterstain (blue) and Alexa

Fluor® 488 phalloidin (green), respectively. Representative images were recorded with

the confocal laser scanning microscope LSM 510 Meta (Zeiss, Germany). The x- (green

lines), y- (red lines), and z-levels (blue lines) are depicted simultaneously in the images A

and B. White arrows indicate internalized nanoparticles. A1 and B1 are magni�cations

of a part of the images A and B, image and text from [111].
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vitality assay
coating concentration PrestoBlue �ow cytometry RTCA

3h 24h 3h 24h 3h 24h 48h 96h
PVP 1

10
25

gelatine 1
10
25

silica 1
10
25

Table C.1: In�uence of Ni nanorods on the vitality of HBMECs: Ni nanorods with 3

di�erent coatings were applied to HBMEC cultures in di�erent concentrations and for

up to 96 hours. Cell vitality was monitored with 3 assays independently and rated as

follows: green: cell vitality ≥ 70% of control, yellow: cell vitality 30%− 70% of control,

red: cell vitality ≤ 30% of control, table and text from [110].
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Appendix D

Colloidal stability of silica

encapsulated nanorods in aqueous

dispersions

In [103], the DC-MOTmeasurements on colloidal suspensions of PVP coated Ni nanorods

were performed and the obtained transmitted intensities I(H) were normalized to the

intensity of the zero-�eld transmission I×, Fig.D.1 (full dots). A regression analysis

based on the same model as used in section 6.4.2 was applied and resulted in a reason-

able agreement with the measured data, Fig.D.1 (solid line).

The obtained particle lengths, diameters, and particle concentrations also allowed the

calculation of the absolute transmitted intensity I(H) normalized to a reference mea-

surement of pure water I0, Fig.D.1 (dashed line). Comparison with the correspond-

ing measured values of I(H)/I0 revealed signi�cant di�erences indicating an additional

�eld-independent contribution to the optical extinction. Due to the dipolar nature of

the nanorods, �ux-closing structures such as nanorod dimers without magnetic �eld-

dependent optical activity were expected to be the primary reason for the �eld-independent

extinction contribution. This assumption is supported by the observation of such ag-

gregates in TEM micrographs, Fig.D.2. The basic idea in [103] was to use the di�er-

ence between the theoretically expected and measured I/I0 to determine the concentra-

tion of agglomerated particles in addition to the concentration of individually dispersed

nanorods. This quantity was used to characterize the colloidal stability of Ni nanorod

dispersions. Taking into account the long-range magnetic dipolar interaction between

the magnetic nanorods, colloidal stability relies on an e�cient long-range electrostatic

repulsion between the nanorods originating from their positive surface charge. Increas-

149



D - Colloidal stability of silica encapsulated nanorods in aqueous dispersions

Figure D.1: Transmitted laser intensity as a function of the magnetic �eld paral-

lel (lower branches) or perpendicular (upper branches) to the polarization direction,

normalized to the zero-�eld transmission I× (full dots). Data analysis of the zero-�eld

normalized measurements (solid line) provided the concentration of singly dispersed par-

ticles Ns. The discrepancy between the calculated absolute transmittance (dashed line)

and the experimental data normalized to a reference measurement of pure water (open

circles) points to the presence of a magneto-optically inactive contribution to optical

extinction, image and text from [103].
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Figure D.2: A TEM image reveals individual Ni nanorods as well as aggregates such

as dimers of parallel nanorods (marked by dashed white frame), image and text from

[103].
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ing the ionic strength implies decreasing screening length and is expected to result in

an increasing coagulation rate of the nanorods. In [103], NaCl was used for a deliber-

ate destabilization of the dispersion and, by analyzing I/I× from a series of DC-MOT

measurements, the concentration of singly dispersed particles Ns was monitored as a

function of time. Furthermore, an additional analysis of I/I0 was used to obtain the

concentration of Ni nanorods trapped in magneto-optically inactive agglomerates Na as

a function of time. It was found that a decrease of Ns(t) is accompanied by an increase of

Na(t). Using a model involving extinction contributions of Ns dispersed single nanorods

as well as Na magneto-optically inactive nanorods in agglomerates, resulted in a good

agreement of theroetically calculated and measured I(H)/I0 curves (not shown).

In [103], time constants for the coagulation process for PVP coated Ni nanorods were

determined. The short time constant of 310± 40 min in a 22mM NaCl solution shows

that PVP coated Ni nanorods are not suitable as probe particles in environments of

higher ionic strenght, e.g. biological systems which exhibit typical NaCl concentrations

of 100mM if the measurement time typically exceeds the time constant of the coagula-

tion process.

In the present work, the in�uence of the silica shell on the colloidal stability will be

studied, performing the same experiments as described in [103], but using silica encap-

sulated Ni nanorods instead of PVP coated Ni nanorods. The colloidal stability of the

silica encapsulated Ni nanorods is expected to be improved by steric repulsion due to

the silica shell. However, as for PVP coated Ni nanorods, the colloidal stability relies

mainly on electrostatic repulsion.

To investigate the colloidal stability of silica encapsulated Ni nanorods, an aqueous sus-

pension was deliberately destabilized by addition of NaCl to reduce the electrostatic

repulsion between the particles. As observed for PVP coated Ni nanorods, the par-

ticles aggregate, Fig.D.3(a), presumably forming dimers of two parallel aligned single

core particles, Fig.D.3(b), with a vanishing resulting magnetic moment. These particles

loose their magnetic �eld-dependent optical activity and thus they are ignored when

analyzing DC-MOT measurements normalized to the intensity measured for an isotropic

orientation distribution I×. Thus, agglomerating particles apparantly vanish from the

measurement signal and Ns decreases.

A series of DC-MOT measurements (measurement time < 10min) was performed to

monitor the concentration of singly dispersed particles Ns as a function of time as de-

scribed in section 7.2, assuming monodisperse single core particles with given core length
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l, shell thickness Dsh, free diameter dOT, and free particle concentration Ns, neglecting

multi-core particles. For colloids stored for several days, a change in their transmittance

was observed which was attributed to particle sedimentation. To avoid sedimentation

e�ects, the closed cuvette was shaken by hand for some seconds prior to each measure-

ment. The agitation of the colloid is expected to be too weak to break agglomerates.

Fig.D.4 shows the concentration of singly dispersed rods Ns as a function of time elapsed

since addition of NaCl for silica encapsulated Ni nanorods (c = 10.8mM NaCl, sample

scn-2) and corresponding PVP coated nanorods (c = 10mM NaCl, sample pcn-3) with

comparable core length, diameter, and particle concentration. For the silica coated

(a) (b) 

Figure D.3: Schematic illustration of (a) a single core particle, and (b) a dimer con-

sisting of two single core particles. The white arrows indicate magnetic moments of the

individual Ni cores. Only (a) has a resulting magnetic moment.

core-shell particles, the particle concentration Ns was nearly constant for ∼ 4 h. Only

for very long incubation times ≥ 200 h, a slight decrease in Ns was found.

In contrast, the concentration of PVP coated Ni nanorods decreased rapidly within the

�rst few measurements and the particles were almost completely agglomerated after 3 h.

Thus, the colloidal stability of Ni nanorods was dramatically increased by the additional

silica shell.

In order to estimate the dependence of the time constant of the aggregation process on

NaCl concentrations, the measurements were repeated for higher NaCl concentrations.

Fig.D.5 shows Ns as a function of time for an aqueous suspension of silica coated

nanorods (scn-2) with a 50mM NaCl concentration.

The fraction of singly dispersed rods decreased from 4.2 ·1015m−3 to 1.4 ·1015m−3 within

seven hours and reached a value of 7.5 · 1014m−3 after more than 60 h. The rate of the

coagulation process could be characterized by a half-life t50 which was directly obtained

from the observed data. The measurement was repeated three times for two di�erent

NaCl concentrations. Half-lifes of 〈t50〉 = 163 h (standard deviation 16min) in a 50mM

and 〈t50〉 = 134 h (standard deviation 59min) in a 100mM NaCl solution were received.

Since t50 is much larger than the typical measurement time (∼ 10min) even in 100mM
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Figure D.4: Concentration of singly dispersed particles Ns as a function of time since

addition of NaCl for silica (full squares, 10.8mM NaCl, sample scn-2) and PVP coated

Ni rods (empty squares, 10mM NaCl). The circle indicates a 1min sonication before

the point was captured.
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Figure D.5: Sample scn-2, 50mM NaCl: Ns as a function of time since addition of

NaCl. The circle indicates a 1min sonication treatment before the point was captured.
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NaCl solutions, silica encapsulated Ni nanorods are promising candidates to act as probes

in systems of high ionic strength, for example in biological environments.

In conclusion, it was shown that due to the larger spacing between the magnetic cores,

the colloidal stability of silica coated Ni nanorods is signi�cantly increased as compared

to PVP coated Ni nanorods. Furthermore, the larger spacing reduces the stability of

formed aggregates, Fig.D.3 (b), as shown by the last measurement point in Figs.D.4

and D.5, which was captured after performing a 1min redispersion in an ultrasonic bath

which resulted in values for Ns comparable to the initial values. The possibility to break

agglomerates of silica encapsulated rods is a great advantage with regard to a long term

storage of the samples.

155



D - Colloidal stability of silica encapsulated nanorods in aqueous dispersions

156



Appendix E

Legal notice

Some parts of this work were already published in the Journal of Applied Physics un-

der the title Analysis of the static magnetic �eld-dependent optical transmission of Ni

nanorod colloidal suspensions (2016). This publication is equal to reference [43]. Every

time text from this publication was reused in the present work, a corresponding note is

given.

In the following, the contributions of the �rst and the co-authors to this publication will

be described. The samples were synthesized by MG (pcn-1 and pcn-2) and FK (pcn-3

and pcn-4). The structural characterization of the particles using TEM as well as analy-

sis of the resulting micrographs were performed by MG (pcn-1 and pcn-2) and FK (pcn-3

and pcn-4). Magnetic �eld-dependent optical transmission measurements on the colloids

were carried out by FK. All calculations including the determination of the optical cross

section by EA, SVM, and FEM as well as all the implementation and execution of all

regression analyses were done by FK. The �rst version of the manuscript was written by

FK. The �nal manuscript was generated jointly by FK and AT.
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� Analysis of the static magnetic �eld-dependent optical transmission of

Ni nanorod colloidal suspensions

F. Krämer, M. Gratz, and A. Tschöpe

Journal of Applied Physics, 120, 044301, July 2016

� In�uence of dipolar interactions on the angular-dependent coercivity of

nickel nanocylinders

P. Bender, F. Krämer, A. Tschöpe, and R. Birringer

Journal of Physics D: Applied Physics, Volume 48, Number 14, March 2015

� Quanti�cation of magneto-optically active nanorods and inactive aggre-

gates in nickel nanorod colloids

Andreas Tschöpe, Florian Krämer, Kerstin Birster, Micha Gratz, and Rainer Bir-

ringer

Colloids and Interface Science Communications, Volumes 10 � 11, January � March

2016, Pages 11 � 14, April 2016

Prepared:

� Static and dynamic magneto-optical properties of silica-coated nickel

nanorod colloidal suspensions

F. Krämer and A. Tschöpe
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� Ni nanorods interact with human cells and induce changes in intracel-

lular signalling and gene expression

A-K Schmidt, C Gräfe, F Krämer, A Tschöpe, R Birringer, A Hochhaus, and J H

Clement

F.2 Conference contributions

As �rst and presenting author:

� Examination of the Switching Field Distribution (SFD) and the shape

anisotropy constant of nickel nanorods

F Krämer, P Bender, A Tschöpe, and R Birringer

DPG Frühjahrstagung 2011, Dresden

� Investigation of the in�uence of dipolar interactions on the magnetic

behavior of Ni nanorods

F Krämer, P Bender, A Tschöpe, and R Birringer

DPG Frühjahrstagung 2012, Berlin

� Synthesis and characterization of silica-encapsulated Ni nanorods

F Krämer, A Tschöpe, and R Birringer

DPG Frühjahrstagung 2013, Regensburg

� In�uence of Silica-Encapsulation on the Hydrodynamical Properties of

Ni Nanorods

F Krämer, D Pieter, P Bender, A Tschöpe, and R Birringer

13th German Ferro�uid Workshop, Benediktbeuern, 2013

� Silica-Encapsulated Ni Nanorods as Model Particles for Stroboscopic

Small Angle X-Ray Scattering (S-SAXS)

F Krämer, P Bender, S Disch, M Kundt, D Honecker, A Tschöpe, and R Birringer

14th German Ferro�uid Workshop, Ilmenau, 2014

� Colloidal Stability of Silica-Encapsulated Ni Nanorods in Moderate Elec-

trolytes and their Biocompatibility to Human Brain Microvascular En-

dothelial Cells

F Krämer, C Gräfe, A Tschöpe, J Clement, R Birringer, and A Hochhaus
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� Coated superparamagnetic nickel nanorods a�ect cell vitality and intra-

cellular signalling
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15th German Ferro�uid Workshop, Rostock, 2015
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