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Zusammenfassung  
 

Charakteristisch für das olfaktorisches System ist die hohe Komplexität in der 

Peripherie, durch die hohen Anzahl an exprimierten olfaktorischen Rezeptor- 

(OR) Gene und die kombinatorische Kodierungsstrategie zwischen 

verschiedenen ORs. Das olfaktorisches System der Maus beruht auf etwa 

1.100 OR Gene, die monogenisch und monoallelisch exprimiert werden. Es 

wird angenommen, dass jedes olfaktorische sensorische Neuron (OSN) nur 

eine Art von OR aus dem OR Repertoire exprimiert. Die OSNs, die die selben 

ORs exprimieren, laufen an der selben Stelle im olfaktorischen Bulbus (OB) 

zusammen, wo sie zwei oder mehr Glomeruli pro Bulbus formen. Dieser 

Prozess wird axonale Verschaltung genannt. Um die axonale Verschaltung zu 

verstehen, muss man verstehen was die OSNs dem Gehirn erzählen damit 

die olfaktorischen Information interpretiert werden.  

 

Es wird angenommen, dass der exprimierte OR die Eigenschaften der  

Geruchsantwort bestimmt. Charakteristisch für einige ORs ist eine eng 

gefasste Empfindlichkeit für Geruchsstoffe. Anderseits haben andere OSNs 

eine breit gefächerte Empfindlichkeit für eine andere Reihe von Chemikalien. 

Die breitest gefächerte Empfindlichkeit, die bisher bei natürlichen OSNs der 

Maus beschrieben wurde, war bei OSNs, die das OR Gen für den septalen 

Rezeptor 1 (SR1) exprimieren, auch bekannt als MOR256-3 und Olfr124. In 

dieser Thesis wird gezeigt, dass die OSNs, die den OR MOR256-17, auch 

bekannt als OR3 und Olfr15, exprimieren, eine noch bereiter gefächerte 

Empfindlichkeit als SR1 haben. Die Empfindlichkeit gegenüber Gerüche 

wurde mit Hilfe von Mausstämmen (SR1-IRES-tauGFP; MOR256-17-IRES-

tauGFP), die mit dem grün fluoreszendierendes Protein (GFP) markiert 

wurden, und perforierender patch clamp Aufzeichnungen, untersucht. 

 

MOR256-17 OSNs reagierten auf 31 von 35 getesteten Chemikalien. Zudem 

waren alle 10 Chemikalien, auf die SR1 OSNs reagierten, ebenfalls in dem 

Geruchsfeld von MOR256-17 OSNs. Interessanterweise konnten MOR256-17 

auf drei Amine (cyclohexylamine, isopenthylamine and phenylethylamine) 

reagieren, die typische Liganden für OSNs sind, die Rezeptoren neurogene 
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Amine (TAARs) exprimieren. Es wurde kein Unterschied zwischen den 

Eigenschaften der Membran zwischen den zwei OSN Unterpopulationen 

festgestellt, was nahe legt, dass die Unterschiede in Geruchsreaktion auf den 

exprimierten ORs beruhen. 

 

Zudem beschreibt diese Thesis den Einfluss von neuronaler Aktivität auf die 

axonale Verschaltung. Zwei Ionenkanäle wurden untersucht: ein von 

Kalziumchlorid aktivierter Kanal (CaCC), das Transmembranprotein 16B 

(Tm16b), auch bekannt als Anoctamin 2 (Ano 2), welcher eine wichtige Rolle 

im Transduktionsweg der OSNs spielen, indem sie das olfaktorische Signal 

verstärken; und ein Natriumkanal (Nav1.7), welcher eine kritische Rolle in der 

Weiterleitung von olfaktorischen Informationen zu den Mitralzellen im OB 

spielen. Die Rolle dieser zwei Kanäle wurde unabhängig untersucht, indem 

die axonale Verschaltung von den M71 (auch bekannt als Olfr151) 

exprimierenden OSNs mittels konditionalen Mutanten (-/- fNAv1.7 und -/- 

Tm16b) in diesen Neuronen verglichen wurde. Die Idee war es, die 

monoallelische Expression der OSNs zu nutzen und in dem selben 

Mausstamm Kontroll-OSNs, die sowohl M71 als auch GFP exprimieren, und 

M71 OSNs denen die Expression von Nav1.7 oder Tm16b fehlt, welche das 

Reportergen tdRFP expremieren, zu besitzen. Die Ergebnisse zeigten keinen 

Unterschied in der axonalen Verschaltung wenn Nav1.7 ausgeschaltet wurde 

und die Glomeruli erschienen in der normalen M71 glomerularen Position zu 

sein. Das gleiche gilt für den Tm16b Kanal. 

 

Zusammengefasst hat diese Thesis ein extrem breites Reaktionsprofil von 

OSNs, die MOR256-17 exprimieren, mit anderen OSN Populationen mit 

spezifischen OR Genen der Maus verglichen, und eine redundante Funktion 

von Tm16b und Nav1.7 bei der axonalen Verschaltung gezeigt . 
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1 Abstract  
 
The olfactory system is characterized by an extreme complexity at the 

periphery, due to the large number of olfactory receptor (OR) genes 

expressed, and the combinatorial coding strategy of ORs. The mouse 

olfactory system relies on approximately 1,110 OR genes expressed in a 

monogenic and monoallelic manner. It is believed that each olfactory sensory 

neuron (OSN) expresses only one type of OR from the OR gene repertoire. 

Axons of OSNs expressing the same OR converge to the same place in the 

olfactory bulb (OB), forming two or more glomeruli per OB. This process is 

known as OSN axonal guidance.  Understanding olfactory coding and OSN 

axonal guidance is crucial to comprehend what OSNs are telling the brain to 

interpret olfactory information.  

 

The OR expressed is thought to determine the odorant response properties of 

an OSN. Some ORs are characterized by a narrow tuning to odorants. 

However, others have a broad responsiveness to different chemical 

compounds.  The broadest odorant response so far described in native 

mouse OSNs was for OSNs that express the OR gene septal receptor 1 

(SR1), also known as MOR256-3 and Olfr124. This thesis demonstrated that 

the odorant responsiveness of OSNs expressing the OR (MOR256-17), also 

known as OR3 and Olfr15, was even broader than that of SR1-expressing 

OSNs. SR1 was so far the broadest OR described in native OSNs. The 

odorant responsiveness was studied using tagged green fluorescent protein 

(GFP) OSNs mouse strains (SR1-IRES-tauGFP; MOR256-17-IRES-tauGFP) 

and perforate patch clamp recordings. MOR256-17 OSNs responded to 31 

chemicals from the 35 chemical compounds tested. Moreover, all the 10 

compounds that activated SR1 OSNs, were included in the odorant space of 

MOR256-17 OSNs. Interestingly, MOR256-17 OSNs were able to detect three 

amines (cyclohexylamine, isopenthylamine and phenylethylamine), which are 

typical ligands for OSNs expressing trace associate amine receptors 

(TAARs). No difference was observed in membrane properties between the 

two OSNs subpopulation, indicating that the odorant differences are related to 

the expressed OR.  
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This thesis also described the impact of neural activity on OSN axonal 

guidance. Two channels were investigated: a calcium activating chloride 

channel (CaCC), transmembrane protein 16b (TMEM16b), also known as 

anoctamin 2 (Ano2), which plays an important role in the transduction 

pathway in OSNs, by amplifying the olfactory signal; and a sodium channel 

Nav1.7, which has a non-redundant role in transferring the olfactory 

information to the mitral/tufted cells in the OB. The role of these two channels 

were investigated separately, by comparing within the same OB the axonal 

projections of conditional mutant -/- fNAv1.7 or -/- Tm16b in a subpopulation 

of OSNs that express the OR M71, also known as Olfr151. The idea was to 

take the advantage of the OSN monoallelic expression feature, to generate in 

the same mouse strain, control OSNs expressing both M71 and GFP; versus 

M71 OSNs lacking the expression of Nav1.7 or Tm16b, and expressing a 

reporter gene tdRFP. The results showed no difference in axonal guidance 

when Nav1.7 was knocked out, and the glomeruli appear to be in the normal 

M71 glomeruli position. The same result was seen within the Tm16b channel.  

 

Taken together, this thesis showed an extreme odorant responsiveness of 

OSNs expressing MOR256-17 among OSNs subpopulations expressing 

specific OR genes in the mouse, and a redundant role of Tm16b and Nav1.7 

in axonal guidance. 
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2 Introduction 

2.1   Evolutionary aspect of the olfactory system  

              Living organisms are in constant interaction with the external environment. 

This interaction allows them to move and react, with respect to their external 

surroundings and their own inner environment. For that, they require a 

constant flow of information between different body cell types. The nervous 

and endocrine systems are the two major networks of intracellular 

communication. Certain nervous system cells have differentiated into 

sensory receptors, which are able to encode physicochemical stimuli, which 

serve to inform the organism about changes in their environment. The 

information arising from the sensory systems causes a sensation, which is 

interpreted and perceived by the central nervous system (CNS). Species 

according to their phylogenetic position have developed very different and 

sophisticated ways of sensory perception, in order to sense the external 

environment; among them, the ability to encode and perceive chemical cues.   

From bacteria to mammals, chemosensation is an essential process. Coding 

the identity and the intensity of external chemical signals is crucial for the 

survival and continuity of species. In most vertebrates, chemoreception has 

evolved into four modalities: The main olfactory system, the accessory 

olfactory system, the trigeminal system, and the gustatory system (Lledo et 

al., 2005). Olfaction is the principal chemosensory modality in animals. 

Notably, the sense of smell allows animals to detect food in order to survive, 

to identify mates allowing reproduction, and to avoid predators averting 

death (Su et al., 2009).   

 

The detection of odorants is different according to the living environment. 

The solubility of stimuli in water is critical for aquatic animals, while volatility 

is an essential feature for terrestrials (Zippel and Lüthje, 2003). In mammals 

and specifically in rodents, the capacity to detect odorant stimuli relies on 

distinct peripheral anatomical structures, and is organized in different 

olfactory subsystems. The main olfactory epithelium (MOE) with the 

vomeronasal organ (VNO) represents the main and the accessory olfactory 
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system, respectively.  Two other subsystems have been also discovered; the 

septal organ (SO) and the Grueneberg ganglion (GG).   

2.2 Organization of the mouse olfactory system 

2.2.1 Main olfactory epithelium  

	  
Located inside the nasal cavity, the MOE contains several million OSNs. 

OSNs are bipolar neurons with a single dendrite that ends in the apical 

surface of the epithelium with a knob-like structure (Menco and Morrison, 

2003). The knob diameter is ~1-2 µm and ~2-3.5 µm in mouse and rat, 

respectively (Ma et al., 1999). Emanating from the dendritic knob are the cilia, 

which contain the OR proteins and the transduction machinery (Brunet et al., 

1996; Buck and Axel, 1991; Wong et al., 2000). The cilia length is different 

depending on the localization of the OSNs (Challis et al., 2015). For example, 

OSNs located in the dorsal anterior region of the MOE have longer cilia in 

contrast to the cilia of OSNs located in the posterior or ventral regions (Challis 

et al., 2015). Mucosal secretions from the Bowman’s glands protect the tissue 

that is in direct contact with the external environment (Solbu and Holen, 

2012). The mucus contains some components implicated in perireceptor 

events, like odorant-degrading enzymes and olfactory binding proteins 

(OBPs) (Getchell et al., 1984; Pelosi, 2001).   

Figure 2.1 Mouse olfactory subsystems.  Sagittal whole-mount dissection of the nasal 
cavity, and the forebrain of an OMP-IRES-tauLacZ mouse, with X-gal staining in blue. 
MOE, main olfactory epithelium; MOB, main olfactory bulb; VNO, vomeronasal organ; SO, 
septal organ; GG, Grueneberg ganglion. (From Munger et., al 2009)11 
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OSN axons cross the cribriform plate and project to the OB. It is believed that 

one OSN expresses only one type of an estimated 1100 OR genes (Chess et 

al., 1994). OSNs expressing the same OR project to the same glomeruli in the 

OB; usually two glomeruli per OB (Mombaerts, 2006).  

 

OSNs are surrounded by glia-like cells named sustentacular/supporting cells 

(SUS) (Getchell, 1977). SUS cells are the second most abundant cell 

population in the MOE after OSNs. SUS cells are involved in ion and water 

regulation (Menco and Morrison, 2003), endocytosis (Bannister and Dodson, 

1992), phagocytosis, and metabolism of xenobiotics (Carr, 2005). They are 

also implicated in calcium flux between the basal cells and OSNs, suggesting 

that SUS cells communicate with OSNs, basal cells, and SUS cells 

themselves (Hegg et al., 2009). Patch clamp recordings from murine SUS 

cells revealed that they are electrically excitable. SUS cells are able to 

generate action potentials and they are electrically coupled by gap junctions 

(Vogalis, 2005; Vogalis et al., 2005).               

 

 

Figure 2.2 Olfactory epithelium.  Abbreviations used: DK, dendritic knob; SUS, sustentacular/ 
supporting cell; OSN, olfactory sensory neuron; GBC, global basal cell; HBC, horizontal basal 
cell.  
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OSNs are characterized by a constant turnover, and renewal throughout 

postnatal life (Graziadei and Graziadei, 1979). This feature is due to basal 

cells located in the basal compartment of the MOE (Beites et al., 2005). 

According to their morphology, basal cells are divided in two types: horizontal 

basal cells (HBCs) and globose basal cells (GBCs). These two types of stem 

cells can give rise to all cell types in the MOE (Brann and Firestein, 2014). 

 

Besides the ciliated OSNs, SUS cells, and basal cells, the MOE also contains 

other cell types equipped with microvilli, which are located in the apical part of 

the MOE. Morphologies of microvillous cells are variable, and less abundant 

than SUS cells and OSNs (Menco and Morrison, 2003). Microvillous cells are 

thought to be of heterogeneous function; for instance, some cells express the 

transient receptor potential cation channel M5 (TRPM5), a key receptor in 

gustation (Hansen and Finger, 2008). Furthermore, they do not have axonal 

projections to the OB, they do not express neural markers, and they are not in 

contact with trigeminal fibers (Hansen and Finger, 2008). However, a recent 

study reported that these cells are cholinergic and also sensitive to chemicals 

such as adenosine triphosphate (ATP), volatile odorants, and thermal 

stimulations (Ogura et al., 2011).  

 

Taken together, the MOE contains five cell types: OSNs, SUS cells, basal 

cells and microvillous cells. Of these populations, SUS and microvillous cells 

need more investigation to characterize their specific role in olfaction.   

2.2.2 Vomeronasal organ  

 
First described in 1813 by the physician and anatomist Ludvig Jacobson, the 

vomeronasal organ (VNO) is present in a large number of animals, including 

rodents. The morphology and the location of the VNO are different across 

vertebrates (Trotier and Døving, 1998). In rodents, the VNO is located in the 

two sides in the ventral part of the nasal septum, enclosed in a cartilaginous 

capsule (Trotier and Døving, 1998). The vomeronasal sensory epithelium 

consists of basal cells, SUS, and vomeronasal sensory neurons (VSNs) 

(Keverne, 1999). VSNs are located in two different layers in the 
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neuroepithelium of the VNO; an apical and a basal layer. VSNs express two 

receptors derived from the G-protein coupled receptor multigene family (Dulac 

and Axel, 1995). Specifically, VSNs expressing the vomeronasal type 1 

receptor (V1R) are found in the apical layer, and those expressing 

vomeronasal type 2 receptor  (V2R) are found in the basal layer (Dulac and 

Axel, 1995; Herrada and Dulac, 1997). By detecting pheromones, VSNs are 

crucial in communication and social behavior between species (Munger and 

Leinders-Zufall, 2009). VSNs expressing V1R and V2R project their axons to 

the anterior accessory olfactory bulb (aAOB) and posterior accessory 

olfactory bulb, respectively (pAOB) (Jia and Halpern, 1996) (Ishii and 

Mombaerts, 2011).  

 

In addition to the different locations of V1R and V2R, components of their 

signaling transduction cascades also differ. While V1R-VSNs express Gαi2, 

the transient receptor potential cation channel C2 (TRPC2), and 

Figure 2.3 Axonal wiring of vomerosensory neurons (VSNs). Abbreviations 
used: V1Rs, vomeronasal receptors 1; V2Rs, vomeronasal receptors 2; 
aAOB, anterior accessory olfactory bulb; pAOB, posterior accessory olfactory 
bulb. 
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phosphodiesterase 4A (PDE4A); V2R-VSNs express Gαo, TRPC2, and H2-

Mv (Ishii et al., 2003). Furthermore, the V1R mouse genes exhibit a 

monogenic, monoallelic pattern of expression (Rodriguez et al., 1999). In 

contrast, it appears that V2R-VSNs co-express multiple genes (Silvotti et al., 

2007).  

 

Phospolipase C (PLC) and TrpC2 are key elements in the transduction 

pathway that facilitates the conversion of a chemical signal into an electrical 

one (Holy et al., 2000; Liman et al., 1999). Once a stimulus is bound to a VSN 

receptor, the specified G protein activates PLC, which converts phosphatidyl 

inositol diphosphate (PIP2) to inositol triphosphate (IP3). IP3 activates 

diacylglycerol (DAG), which leads to the opening of TrpC2, the entry of Ca2+ 

and Na+ cations, thus leading to cell depolarisation (Munger, 2009).  

 

The VNO contains two other subpopulations of neurons. The first one is 

defined by the expression of some OR genes, which are thought to be 

responsible for odorant detection. These neurons project their axons to the 

AOB (Lévai et al., 2006). The second population is a new chemosensory 

family, defined by the expression of formyl peptide receptor (FPR), which are 

implicated in the identification of pathogens (Rivière et al., 2009). This finding 

demonstrates that the olfactory system is involved in functions others than 

that of odorant and pheromone detection. 

2.2.3 The septal organ of Masera  

 
The septal organ (SO) is a small patch of cells located in the two sides of the 

ventral part in the nasal septum. It is situated near to the choana, an orifice 

leading to the nasopharynx, and separated from the MOE by the respiratory 

epithelium. The cellular components of the SO are similar to the MOE; 

however, the density of OSNs in this area is lower. Furthermore, epithelial 

thickness in the MOE is greater than in the SO; ~20 µM and 60-80 µM, 

respectively.  Thus, OSNs in the SO are characterized by a short dendrite, 

flattened somata, and a slightly larger olfactory knob than those in the MOE 

(Ma et al., 2003). Approximately 93% of OSNs in the SO express only eight 



17 

ORs genes, the most abundant one being MOR256-3 (septal receptor1; SR1) 

gene which is expressed in ~50% of the cells (Tian and Ma, 2004).  

The majority of OSNs in the SO exhibit Gαolf, ACIII, and cAMP pathway 

signaling, with a small subset of cells signaling via cyclic guanosine 

monophosphate (cGMP) and guanylyl cyclase D (GC-D) (Ma et al., 2003). 

Patch clamp recordings from dendritic knobs of single SO OSNs indicate that 

these cells are responsive not only to odorants but also mechanical stimuli 

(Grosmaitre et al., 2009; 2007).  

 

Despite several investigations in the SO, the exact role of this olfactory 

subsystem remains elusive. It has been postulated that this system is involved 

in sensing compounds of low volatility (Wysocki et al., 1980), and participating 

in sensing general odor environment owing to the broad range of molecules 

that the SO is capable of detecting (Grosmaitre et al., 2009; Tian and Ma, 

2004).  

2.2.4 Grueneberg ganglion  

 
The Grueneberg ganglion (GG) was discovered in 1971 by Hans Grueneberg 

(Grüneberg, 1973). The mouse has two GGs, which are anteriorly, close to 

the naris opening. The structure of the GG is different among species 

(Brechbühl et al., 2014). In mouse, gene targeting experiments directed 

against olfactory marker protein has shown that these cells are organized in a 

grape-like structure (Fuss et al., 2005). Furthermore, their axons project to the 

MOB near the AOB, and do not exhibit dendrites or ciliated structure (Fuss et 

al., 2005).  

Figure 2.4 Morphology of Grueneberg ganglion (GG) neurons. A, a cluster of GG neurons in 
an OMP-GFP mouse. B, view of a single GG neuron. (from Fuss et al., 2005).    
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GG neurons express cGMP as primary second messenger (Fleischer et al., 

2009). Patch clamp recordings revealed that GG neurons have a voltage 

gated current, voltage dependent ionic currents, and display different patterns 

of spontaneous firing (Liu et al., 2012).  

 

The GG appears very early during the development (E14.5), suggesting a 

chemosensory role during the neonatal period (Fuss et al., 2005). It has also 

been implicated in thermoregulation (Schmid et al., 2010) and the detection of 

alarm pheromones (Brechbühl et al., 2008).  

 

2.3 Physiological properties of OSNs 

2.3.1 Membrane properties of OSNs  

The resting membrane potential of OSNs varies amongst species, ranging 

from −30 mV to −90 mV (Schild and Restrepo, 1998). On average, resting 

potentials are −58 mV and −55 mV in rat and mouse, respectively (Ma et al., 

1999).  

 

Whole-cell recordings have shown an intrinsic voltage-gated current 

characterized by two major currents; a faster transient inward current followed 

by a slower outward current (Firestein and Werblin, 1987; Ma et al., 1999). 

Pharmacological perturbation of the inward-outward currents revealed 

different components. The inward phase is composed of two components; the 

first carried by Na+ and sensitive to tetrodotoxin (TTX), followed by a second 

sustained inward current carried by Ca+2 and sensitive to nifedipine (Trombley 

and Westbrook, 1991). Action potential repolarization is terminated by the 

activation of three mainly outward K+ currents; one that is voltage-dependent, 

one that is Ca+2 dependent, and a delayed rectifier K+ current (Ma et al., 

1999) (Trombley and Westbrook, 1991) (Lynch and Barry, 1991) (Maue, 

1987).  
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2.3.2 Odorant-induced currents 

 
The electric activity in the olfactory mucosa was first studied by Hosoya and 

Yoshida in dogs (1937), and separately in rabbits and frogs by Ottoson (1956) 

who introduced and described the electro-olfactogram (EOG) (Scott and 

Scott-Johnson, 2002). The EOG detects potential changes when the olfactory 

mucosa is stimulated by odorant-saturated air. While it is still an important tool 

to understand the electrophysiological properties of OSNs by giving an 

overview of the electrical ensemble of OSNs, it does not allow to study a 

single neuron. However, much of our knowledge regarding OSN physiology 

and odorant-induced currents has been derived from patch clamp recordings.  

 

There are several methods of measuring odorant-induced current and 

voltage-gated conductance including whole cell patch clamp recordings, 

(under voltage clamp) and current clamp mode configuration. This 

configuration allows measurement of odorant-induced current and voltage-

gated conductance (Lowe and Gold, 1991). However, the direct contact of the 

recording pipette with the cell inner milieu can wash out some intracellular cell 

components. A cell-attached configuration allows the measurement of 

currents through a single or a few channels of the patch (Lynch and Barry, 

1989). The perforated patch technique uses antibiotics (nystatin or 

amphotericin for example) to perforate the cell membrane, allowing the 

recording pipette to come in contact with the inner cell milieu (Ma et al., 1999). 

Like whole cell recordings, this configuration allows the measurement of 

voltage gated ionic current, and odorant-induced current under voltage clamp 

and current clamp mode, whilst preventing the diffusion of large cytoplasm 

components to the recording pipette. However, this technique is not without its 

limitations; for instance, the rupture of the patch can lead to the contamination 

of the cytosol.  

       

The first studies of odorant-induced current were carried out using dissociated 

OSNs and occasionally in explant slices, derived mainly from amphibians. 

The response to odorant stimuli diluted in solutions has been well described.  

Often, odorant responsiveness is measured in voltage clamp mode after a 
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brief pulse of odorants. One of the earliest studies done in this manner was by 

Firestein and Werblin in 1989. Using a mixture of odorants, they stimulated 

the phase salamander OSNs in a slice preparation; OSNs that responded 

generated an inward receptor current. The response latency was 

approximately 140-570 ms (Firestein and Werblin, 1989). Patch clamp 

recordings from a mouse intact MOE preparation also revealed a shorter 

latency of approximately 160 ms (Grosmaitre et al., 2006; Ma et al., 1999). 

Furthermore, the peak current varied in a dose-response manner, depending 

on the stimulus concentration. In addition, OSNs expressing the same OR 

have shown response heterogeneity in terms of sensitivity and response 

kinetics from one cell to another (Grosmaitre et al., 2006).  

 

Prolonged stimulation of OSNs leads to adaptation and desensitization, as 

demonstrated by a decrease with the time of the odorant-induced current 

(Zufall et al., 1991) (Reisert and Matthews, 1999). In rodents, a short-term 

adaptation is also observed when the OSN is subjected to a brief paired 

repeated stimuli; in this scenario, the odorant-induced current is smaller in the 

second stimulus than the first one, and 10 to 20 s is required for full recovery 

(Ma et al., 1999). This adaptation was thought to be mediated primarily via 

cAMP signaling (Ma et al., 1999).  

2.4 Transduction pathway signaling 

2.4.1  cAMP signaling 

 
By separately stimulating and recording OSN odorant-induced currents in the 

axons, soma, and dendrites, it was clear that the transduction occurred in the 

cilia (Lowe and Gold, 1991). The major elements in OSNs transduction 

pathway are well known. The conversion of the chemical signal to an electric 

one occurs once a stimulus binds to an OR (Buck and Axel, 1991).  ORs 

belong to the G-protein coupled receptor (GPCR) superfamily, and a specific 

subtype of G protein (Golf) is expressed in canonical OSNs.  Golf is activated 

by binding a guanosine tri-phosphate (GTP) (Jones and Reed, 1989), which in 

turns activates adenylate cyclase 3 (ACIII) (Bakalyar and Reed, 1990). ACIII 

converts adenosine triphosphate (ATP) to cyclic adenosine monophosphate 
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(cAMP), a molecule used in cell signaling as a second messenger. An 

increase in intracellular cAMP leads to the activation of a cyclic nucleotide 

gated channel (CNG) (Firestein et al., 1991; Nakamura and Gold, 1987), 

which conducts an inward current of monovalent and bivalent cations such 

Na+ and Ca2+. Consequently, this cationic influx increases the charge inside 

the cell, and once the threshold is reached an action potential is generated 

(Firestein, 2001). Moreover, the signal is amplified by the opening of another 

Ca2+ gated chloride channel, the opening of which is triggered by the initial 

influx of Ca2+ ions. Opening this channel, leads to an efflux of Cl–, ultimately 

depolarizing the neuron further (Lowe and Gold, 1993).  

 

 

 

A number of mechanisms may contribute to the termination of the odorant-

induced current. This includes the hydrolysis of cAMP to AMP by 

phosphodiesterase C (PDE1C) (Cygnar and Zhao, 2009), the closing of CNG 

channel and Ca+2 activated Cl– channel by removal of Ca2+ using the 

Na+/Ca+2 exchanger (Reisert and Matthews, 2001), or by the regulator of G-

protein signaling (RGS) which also attenuates odorant signaling by reducing 

ACIII activity (Sinnarajah et al., 2001).  

Figure 2.5 cAMP transduction pathway in OSNs. The binding of odorants to ORs leads to an 
increase of intracellular cAMP mediated by ACIII activation. cAMP gates CNG channel that 
depolarize the neuron via an influx of Na+ and Ca2+. The opening of a calcium chloride 
channel further depolarizes the cell.  
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2.4.2 Additional signaling pathways  

Studies have shown that genetic disruption of one of the transduction 

signaling components described above (Golf, ACIII, CNG), causes general 

anosmia in mice, showing the importance of cAMP signaling in olfactory 

coding (Belluscio et al., 1998; Brunet et al., 1996; Wong et al., 2000). 

However, there is responsiveness to certain odorant in CNGA2 (a subunit of 

the CNG channel) knockout mice, suggesting that independent cAMP 

pathways exist in the MOE (Lin et al., 2004). It is obvious that some OSN 

subpopulations express different signaling pathways other than cAMP. For 

instance, OSNs expressing guanylyl cyclase GC-D receptor use the cGMP 

cascade to convert chemsosensory signals (Munger, 2009).  

 

Recently, Omura and Mombaerts (2014) have shown two new OSN 

subpopulations expressing signaling components for different pathways other 

than those described previously. The first OSN subpopulation expresses OR 

genes and relies for chemosensory transduction on ACIII, CNGA2, and 

TRPC2, a channel known to be expressed and implicated specifically in VSNs 

(Omura and Mombaerts, 2014). The second OSN subpopulation expresses a 

guanylate cyclase (Gucy1b2) receptor, co-expresses CNGA2, and TRPC2, 

but lacks ACIII expression (Omura and Mombaerts, 2014; Omura and 

Mombaerts, 2015). The physiological roles of these two populations are 

unknown.  

2.5 Trace amine-associated receptors  

Some OSNs express trace amine-associated receptors (TAARs).  TAARs are 

GPCR receptor encoded by 15 genes in mouse, 17 genes in rat, and 6 in 

humans (hTAARs) (Liberles, 2015). TAARs use the same signaling pathway 

as canonical OSNs; for example, TAAR4 is associated with the expression of 

Gαolf, ACIII, CNGA2, TMEM16b, and PDE4A (Zhang et al., 2004). OSNs 

expressing TAARs can be activated by some amine-based odorants (Pacifico 

et al., 2012). Patch clamp recordings have shown a broad and exquisite 

sensitivity detection to amines; for example, OSNs expressing TAAR3 and 

TAAR4 can detect amines at nanomolar concentrations (Zhang et al., 2013). 
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In mouse, the repertoire of TAAR genes is clustered on chromosome 10; 

genetic ablation of the TAAR gene cluster abolished innate aversion to 

amines (Dewan et al., 2013). Moreover, the deletion of TAAR4 resulted in the 

lack of avoidance towards predators urine (Dewan et al., 2013). This study 

revealed the essential contribution of TAARs in the detection of amines and 

thus, predators. 

2.6 OSNs spontaneous activity  

Spontaneous activity (also called basal activity or noise) occurs in central and 

peripheral neural systems. This activity is crucial for maintaining the 

development of neural circuits (Blankenship and Feller, 2010). In the olfactory 

system, OSNs fire action potentials in the absence of odorant stimulation. 

This neural activity is crucial for the establishment and maintenance of the 

wiring in the OB (Yu et al., 2004).  

 

Patch clamp recordings from dissociated and intact OSNs expressing different 

GFP tagged ORs have shown different frequencies of spontaneous activity 

(Connelly et al., 2013; Reisert, 2010), suggesting that the type of OR 

influences spontaneous firing. The mean firing frequency in intact OSNs was 

higher than in dissociated OSNs, and is attributed to the loss of cilia during 

OSN dissociation (Connelly et al., 2013). Moreover, the spontaneous activity 

varied even in OSNs expressing the same OR (Connelly et al., 2013).  

 

It would appear that spontaneous activity is driven by ciliary transduction 

components. The application of niflumic acid (a Ca+2 activated Cl– channel 

blocker) abolished the spontaneous activity (Reisert, 2010). Patch clamp 

recordings from OSNs expressing a mutant OR incapable of G-protein 

activation also indicated that basal activity was abolished (Connelly et al., 

2013). Hence, it is apparent that basal activity is derived from ORs 

themselves.  

2.7 OSNs mechanical response  

Odorant detection aside, OSNs are responsive to mechanical stimuli. 

Mechanosensitivity in OSNs was investigated by patch clamp recordings from 



24 

the SO and the MOE (Grosmaitre et al., 2007). OSNs were able to detect a 

pressure derived from Ringer puff stimulation and generated an inward 

current (Grosmaitre et al., 2007). OSNs displayed a latency of hundreds of ms 

after stimulation (Grosmaitre et al., 2007). Furthermore, the peak amplitude 

generated increased in a dose-dependent manner (Grosmaitre et al., 2007). 

Remarkably, mechanosensitivity enhanced neural activity. The stimulation of 

an OSN invoked by the same odorant concentration, with different pressures 

generated different odorant-induced currents. The increased pressure led to 

stronger inward currents, which could be important for the system to detect 

stimuli at weaker concentrations (Grosmaitre et al., 2007).  

 

Mechanosensitivity is derived from ORs themselves; different OSNs 

expressing different ORs types have demonstrated variable 

mechanosensitivity (Connelly et al., 2015). Moreover, the response to 

mechanical stimuli shares the same classical transduction pathway 

components implicated in OSN chemosensitivity. The disruption of any of 

these components (OR, Golf, ACIII, or CNGA2) by genetic or pharmacological 

manipulation, led to the drastic reduction or complete abolishment of OSN 

mechanosensitivity (Connelly et al., 2015) (Grosmaitre et al., 2007). 

2.8 Ca+2 activated Cl– channel (TMEM16b, Ano2) 

The CaCCs were described in the early 1980s by using voltage clamp 

recordings from Xenopus oocytes (Barish, 1983). CaCCs act by depolarizing 

the cell membrane after being activated by an increase in the cytosolic Ca+2 

concentrations. They are physiologically important across a variety of cell 

types and functions, like the membrane excitability of neurons and cardiac 

myocytes, phototransduction, gustation (Hartzell et al., 2005), and olfaction as 

aforementioned. 

 

The molecular identity of the exact CaCC channel implicated in olfactory 

transduction was unknown. TMEM16B (transmebmrane protein 16B) also 

known as (Ano2 for anoctamin 2) belong to the recently identified gene family 

TMEM16 (A-K), described by Katoh and Katoh using a bioinformatics 

approach (Katoh and Katoh, 2003). All TMEM16 proteins consist of eight 
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transmembrane segments and intracellular NH2 and COOH termini. In 2008 

three independent groups demonstrated that the first two genes TMEM16A 

and TMEM16B are CaCCs (Yang et al., 2008) (Caputo et al., 2008) 

(Schroeder et al., 2008), which is  why the anoctamin nomenclature was 

proposed (anion + octa). Thus, TMEM16A was designated as Ano1, and 

TMEM16B as Ano2 (Yang et al., 2008).  

 

TMEM16B has been detected utilizing a variety of different techniques, 

ranging from proteomic screening of cilia membrane (Stephan et al., 2009), in 

situ hybridization (Hengl et al., 2010), and by immunohistochemistry (Dauner 

et al., 2012). All these studies revealed that TMEM16B expression is 

restricted only to the cilia of OSNs. Moreover, TMEM16B is only expressed in 

chemosensory neurons in all of the olfactory subsystems of the mouse, 

except for the GG (Dauner et al., 2012).  

 

In addition, patch clamp recordings from HEK-293 cells expressing the 

olfactory form of TMEM16b and CNGA2 channel generated Ca+2 dependent 

chloride currents suggesting that TMEM16B is the major component of the 

olfactory CaCC (Stephan et al., 2009). Indeed, the generation of the Ano2-/- 

knockout mice confirmed this (Billig et al., 2011). Whole-cell patch clamp 

analysis of Ano2-/- OSNs indicated that all Ca+2 activated Cl– currents were 

completely abolished (Billig et al., 2011). Surprisingly, EOG recordings have 

shown a moderate decrease of global OSN neural activity in Ano2-/- mice 

(Billig et al., 2011). Moreover, olfaction was not altered in newborn Ano2 -/- 

mice, which exhibited normal growth and survival patterns. Importantly, Ano2 

-/- OSNs coalesce and from regular glomeruli without any disruption in the OB 

(Billig et al., 2011).   

 

2.9 The voltage-gated sodium channel Nav1.7   

Voltage-gated sodium channel genes have been identified in a variety of 

species from bacteria to mammals; they play an indispensible role in the 

initiation and propagation of action potentials in excitable cells. Nine genes 

(Nav1.1–Nav1.9) have been identified in mammals (Catterall et al., 2005). The 
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structure of the sodium channel proteins is well characterized in mammals; 

they are composed of a long polypeptide containing around 2000 amino 

acids, consisting of a complex of a single α subunit and one or more β 

subunits. The α subunit contains 24 transmembrane segments with an 

intracellular amino and carboxy termini and organized on four domains (I-IV). 

Within each domain are four transmembrane segments (S1-S4) that are 

involved in voltage sensing and two transmembrane segments (S5-S6), which 

are the part of the channel that form the pore (Catterall, 2000).  

 

The sodium current has been described from the classical work of Hodgkin 

and Huxely using voltage clamp technique in the giant axon of the squid. They 

described three features related to sodium: a voltage dependent activation, 

rapid inactivation, and a selective ion conductance (Hodgkin and Huxley, 

1952a) (Hodgkin and Huxley, 1952b).   

 

The Nav1.7 channel, also known as PN1 (peripheral nerve 1 sodium channel) 

is encoded by the Scn9a gene and located on chromosome 3. Nav1.7 is 

highly expressed in peripheral neurons (Dib-Hajj et al., 2012). It was first 

detected in somatosensory and sympathetic ganglion neurons (Toledo-Aral et 

al., 1997). Nav1.7 exhibits a rapid activating and inactivating current. The 

channel is TTX sensitive and can be blocked by nanomolar concentrations 

(1.1 nM) (N Klugbauer, 1995). Nav1.7 is implicated in nociception; the 

deletion of Nav1.7 from the dorsal root ganglion neurons causes a reduction 

or complete knockdown of inflammatory pain (Nassar et al., 2004). Nav1.7 is 

a predominant transcript in OSNs with a high level of expression in OSN 

axons bundles (Weiss et al., 2011; Ahn et al., 2011). In humans and mice, the 

loss of function of Scn9a gene causes general anosmia (Weiss et al., 2011). 

The genetic ablation of Nav1.7 from OSNs in mice causes a loss of synaptic 

transfer to the OB (Weiss et al., 2011). Nav1.7 -/- OSNs were able to 

generate odorant-induced currents, but the mitral cells with which OSNs 

synapse remained completely silent. This study provided evidence that 

Nav1.7 is crucial for the signal propagation to the OB (Weiss et al., 2011). 
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2.10 Progress in OR-ligand identification 

Discovered by Buck and Axel in 1991, OR genes represent the largest gene 

family in mammals (Buck and Axel, 1991).  The mouse genome contains 

around ~1100 OR genes expressed in monogenic and monoallelic manner 

(Chess et al., 1994). ORs are composed of seven transmembrane domains 

typical of GPCRs, containing ~300-500 amino acids (Gaillard et al., 2004). 

Based on phylogenetic analysis, OR genes were classified in two classes: a 

fish-like class I and a mammalian-like class II (Freitag et al., 1995).  

  

One of the intriguing questions in the field was: how can ~1100 ORs detect 

the enormous repertoire of odors? A combinatorial strategy has been 

described, using calcium imaging to measure Ca+2 flux after odorant 

stimulation in a single OSN and single-cell RT-PCR to recognize the specific 

OR expressed in this cell. This approach revealed that a single OR is able to 

recognize multiple odorants, that a single odorants can activate different OR 

types, but also that different odorants are detected by different combinations 

of ORs (Malnic et al., 1999). The same strategy was utilized for human ORs, 

and similar results observed (Gonzalez-Kristeller, 2015). Moreover, some 

ORs show sensitivity to a wide variety of compounds, whilst others had only a 

narrow window of sensitivity. 

 

Deorphaning ORs (identifying ligand-receptor combination) is crucial to our 

understanding of olfactory coding at the peripheral and central level. 

Substantial progress have been made since the discovery of the first OR-

ligand pair (octanal and I7 in rat) (Zhao et al., 1998). Other OR-ligand pairs 

have been identified either by calcium imaging experiments from dissociated 

OSNs, eugenol and MOR-EG (Kajiya et al., 2001), Lyral and MOR23 

(Touhara et al., 1999), acetophenone/benzaldehyde and M71 (Bozza et al., 

2002), or by patch clamping in ex vivo preparation, of single OSNs expressing 

an OR tagged with GFP, Lyral and MOR23 (Grosmaitre et al., 2006), 

acetophenone analogues and M71/M72 receptors, 2-phenylethyl alcohol  and 

the S1 receptor (Lam and Mombaerts, 2013).  
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Moreover, in vivo calcium imaging has been carried out in the OB, followed by 

dye injections in the activated glomerulus which facilitated the tracing and the 

identification of the specific OR expressed, by RT-PCR (Oka et al., 2006).  

 

More recently, two in vivo assays have been described. The first one is based 

on GFP targeting of the S100a5 gene, which encodes a Ca2+ and zinc binding 

protein, located in both OSN cilia and axons (Kuhlmann et al., 2014; Schäfer 

et al., 2000). S100a5 expression is correlated with odor stimulation (Bennett 

et al., 2010). After odorant exposure, RNA from activated GFP positive 

neurons were measured, this assay permitted the re-identification of ORs that 

respond to eugenol and muscone (McClintock et al., 2014).  The second one 

is an assay called DREAM, which rise for deorphanization of receptors based 

on expression alterations of mRNA levels (von der Weid et al., 2015). This 

technique is based on measuring the decrease of OR mRNA level after 

odorant exposure. The DREAM approach allowed the identification olfactory 

receptor-ligand pairs in vertebrates and invertebrates. It has made possible, to 

screen a response profile of thousand of ORs to specific molecule. Until 

recently, DREAM is the most rapid in vivo assay used to deorphan ORs. 

 

Others rapid assays used are the forced expression of ORs in heterologous 

cells, such as human embryonic kidney (HEK293T) (Saito et al., 2004). 

Progress was slow due to the lack of OR expression at the cell surface 

(Gimelbrant et al., 1999). However, the discovery of receptor transporting 

protein (RTP), a 20 N-terminal amino-acid rhodopsin derivative, resolved the 

problem of inadequate cell surface and many ORs have since been 

deorphanized (Saito et al., 2004). The assay is based on the co-expression of 

a specific OR, Gαolf, RTP, and the measurement of cAMP or the cAMP 

response element (CRE) levels, using a CRE-luciferase reporter assay 

system. Similarly, measuring the increase of Ca2+ levels following odorant 

stimulation has also been used in heterologous systems (Krautwurst et al., 

1998; Kajiya et al., 2001). Furthermore, the use of biosensors in an attempt to 

mimic the nose have been employed; in a such an approach a biosensor is 

built and a combination of optical, resonant, and electrochemical technologies 
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are used to mimic OR signaling, ultimately creating a bioelectronics nose 

(Glatz and Bailey-Hill, 2011).  

 

Taken together, we can sum up the different approaches developed to 

deorphan mammalian ORs into four groups. (i) In vivo assays; (ii) 

physiological assays based on the combination of calcium imaging and single 

cell RT-PCR, calcium imaging or electrophysiological recordings from 

transgenic mice expressing tagged ORs; (iii) ORs expressed in heterologous 

systems with measurement of cAMP, increases in intracellular Ca2+, or by 

electrophysiological recordings from heterologous systems (i.e. ORs 

expressed in Xenopus leavis oocytes), and (iiii) biosensor technology. 

2.11 Olfactory receptor responsiveness 

A given OR and the population of OSNs that express this OR reside on a wide 

spectrum of odorant response profiles, from having a narrow response 

window to that of a broad one. Narrow responsiveness means that a specific 

OR can detect only few chemical compounds from different chemical groups, 

or many chemical analogous compounds from the same chemical group. 

However, a broadly responsive OR can detect a wide range of chemical 

compounds, from different chemical groups, for example aliphatic, cyclic, or 

aromatic. This broad responsivity is poorly understood at the molecular and 

the physiological level.   

 

In humans, olfaction is based on approximately 400 OR genes (Malnic et al., 

2004), and to date only a small percentage (~10%) of these receptors have a 

known agonists (Gonzalez-Kristeller, 2015). Some human ORs are very 

narrowly tuned to odorants, like OR7D4 which is only activated by 

androstenone, and androstadienone (Keller et al., 2007).  However, other 

ORs can have a broad responsiveness range to odorants (Gonzalez-

Kristeller, 2015), like the OR1G1 receptor (Sanz et al., 2005). 

 

In insects, specifically in D. melanogaster and A. gambiae, a wide range of 

OR specificities, from narrow to broad tuning was screened (Hallem and 

Carlson, 2006; Wang et al., 2010). The combinatorial coding is consistent in 
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insects, since ORs were activated by multiple odorants, and most ligands 

activated multiple ORs (Andersson et al., 2015). For example in Hallem and 

Carlson, 2006, a large panel of 110 odorants from different chemical groups 

was tested, the broad tuned ORs were characterized by a strong excitatory 

response and sensitivity to similar odorant structure. Or67a was able to 

respond to 31 different odorants, including lactone, organic acids, aldehydes, 

ketones, aromatics, alcohols and esters (Hallem and Carlson, 2006).  

 

In mice, OSNs that express OR gene SR1 (also known as Olfr124 and 

MOR256-3) have thus far demonstrated the broadest odorant responsiveness 

in a homologous ex vivo system (i.e. in native OSNs that express an 

unmodified OR protein from the endogenous locus in the genome) 

(Grosmaitre et al., 2009). OSNs expressing SR1 were able to detect camphor, 

amyl acetate, octanoic acid, heptanoic acid, and benzaldehyde (Grosmaitre et 

al., 2009). The response profile MOR256-17 (also known as Olfr15 and OR3), 

have been investigated only in heterologous expression systems; in HEK293T 

cells (Saito et al., 2009; Dahoun et al., 2011), in micelle and nanodisc 

biomimetic chemical sensors (Goldsmith et al., 2011), and in Xenopus laevis 

oocytes (Liu et al., 2012). A third member of the MOR256 family, MOR256-31 

(formally known as Olfr42 and now designated Olfr263), also conveys a broad 

odorant response profile when expressed in heterologous HEK293T cells, 

following recovery of the transcript by RT-PCR from a single native OSN that 

responded broadly to odorants (Nara et al., 2011; Yu et al., 2015). Recently, 

Yu et.al showed essential residues in the SR1 protein structure which are 

critical for its broad response; disruption of just a few residues substantially 

narrowed the response profile for this receptor (Yu et al., 2015). Conversely, 

an OR with a narrow response profile, could be converted to a broad one by 

manipulating a small number of amino-acid residues (Yu et al., 2015).   

2.12 OSN axons guidance 

In the mouse olfactory system, OSNs expressing the same OR are unique 

that their axons navigate from the MOE, cross the cribriform plate to reach the 

OB, and coalesce in the same position making two or a few glomeruli (Bozza 

et al., 2002). Depending on the OR expressed, glomeruli for a specific OSN 
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population can exhibit variable positions in the OB (Zapiec and Mombaerts, 

2015). The glomerulus is an organized neuropil in the OB; the result of 

connections made by the OSN axons, and the dendrites of mitral and tufted 

cells (Pinching and Powell, 1971). Glomeruli are completely formed after birth; 

however, axon terminals reach the OB early on during development and 

maybe synoptically active (Lam and Mombaerts, 2013). At the time of birth, 

there are thought to be around 1600-1800 glomeruli (Mombaerts, 2006).  

 

The mechanisms controlling axonal wiring are not completely understood. 

Early studies using knock-in, knockout mice greatly clarified our 

understanding of axonal guidance. Using a gene-targeting strategy 

Mombaerts et al. found that the ORs themselves are essential for guidance of 

axons to the correct position in the OB (Mombaerts et al., 1996). In particular, 

replacing the P2 sequence with that of the M12 receptor led to the formation 

of a glomerulus, but in a completely different position to that of the regular P2 

and M12 glomerular position in the OB (Mombaerts et al., 1996). Glomerular 

shifting as a consequence of OR substitution is in accordance with other such 

studies (Wang et al., 1998; Bozza et al., 2002; Feinstein and Mombaerts, 

2004; Bozza et al., 2009).  

However, the replacement of M71 receptor sequence with another non-

olfactory β2 adrenergic receptor (β2AR) also led to glomerular formation 

(Feinstein et al., 2004), suggesting  that the OR itself is not the only element 

required for axonal guidance. Thus, components of the transduction pathway 

have also been investigated for their role in axonal guidance. In -/- ACIII mice 

OSN wiring was dramatically affected (Zou et al., 2007).  The deletion of ACIII 

gene affected the cells in different ways. In some populations of OSNs, the 

cell number decreased and the axons were able to navigate to the OB, but 

were unable to form a glomerulus (Zou et al., 2007). The decrease in cell 

number suggests that a threshold must attained in order for glomerular 

formation to occur. This was not the case for MOR23 neurons, where the cell 

number remained constant but also failed to form glomeruli (Zou et al., 2007).  

In other instances, axons were able to form glomeruli but the position was 

shifted in contrast to wild-type counterparts (Zou et al., 2007). These results 
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suggest a different role for ACIII in OSNs expressing different ORs. The 

perturbation of G-protein signaling or CNGA2 also led to disordered axonal 

wiring (Imai et al., 2006; Zheng et al., 2000).   

Further, other mechanisms independent from OR activity have been 

implicated in axonal wiring. For instance, the adhesion molecule neuropilin-1 

(Pasterkamp et al., 1998). The interaction between plexin-1/neuropilin-1 

complexes enables the detection of the chemo-repulsive protein semaphoring 

3A (Takahashi et al., 1999). Semaphorin 3A repels growing olfactory axons 

expressing neuropilin-1 which is critical for spatial arrangement of glomeruli 

(Taniguchi et al., 2003). P2 OSNs specifically lacking semaphorin 3A 

expression form multiple smaller glomeruli (Schwarting and Raitcheva, 2004; 

Schwarzenbacher et al., 2004), indicating the perturbation of the regular 

wiring organization. Furthermore, other cell adhesion molecules such as 

Kirrel2 and Kirrel3 have been reported to influence axonal sorting and 

organization, as well as the repulsive molecules ephrins (Serizawa et al., 

2006).  

2.13 Aims of the thesis  

Identifying OR-ligand pairs is challenging due the high OR genes number 

expressed in mice, but critical for our understanding of the olfactory coding at 

the peripheral, and the central levels. Moreover, less interest was given to 

broad responsiveness ORs, the mechanisms, and the role of these ORs in the 

olfactory system remains elusive.  

 The glomeruli in the OB are remarkably organized. Despite the progress 

done in our understanding of OSN axons navigation, the whole process in not 

yet achieved. Specifically, the implication of neural activity in axonal guidance 

is not well understood and remains controversial.  

 

The objectives of this thesis were to: 

1. Study the physiology, and the odorant responsiveness of MOR256-17 

OSNs, and SR1 OSNs. 

2. Explore the implication of neural activity in axonal guidance, by 

investigating the role of the sodium ion channel NaV1.7, and the 

calcium gated chloride channel TMEM16B, in M71 OSNs.  
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3 Materials and methods  

3.1 Animals  

All animals were generated in-house, unless otherwise specified. A gene 

targeting strategy has been developed based on the integration of marker 

genes such as green or red fluorescent protein (GFP and RFP, respectively) 

and LacZ, for example (Mombaerts, 1996). Integration of these markers at OR 

loci is achieved by homologous recombination in mouse embryonic stem cells 

(Mombaerts, 1996). The gene targeting cassette also contains an internal 

ribosome entry site (IRES); derived from the encephalomyocarditis virus (Kim et 

al., 1992), it is recognized by ribosomes that facilitates an initiation of translation 

in the middle of a messenger RNA (mRNA).  

 

In order to study the physiology of odorant responsivity, the MOR256-17-IRES-

tauGFP (Tazir et al., 2015), and SR1-IRES-tauGFP (Grosmaitre et al., 2009) 

strains were used. 

 

For studies of axonal guidance, the MOR256-17-IRES-tauLacZ (generated in-

house), M71-IRES-tauGFP (Bozza et al., 2002), M71-IRES-Cre (Lin et al., 

2004), tdRFP (Luche et al., 2007), Nav1.7-lox (Weiss et al., 2011), and Tm16b-

lox (Billig et al., 2011) strains were used.  

 

Mouse experiments were carried out in accordance with the guidelines of the 

National Institute of Health regarding the care and use of animals for 

experimental procedures, and in accordance with the German Animal Welfare 

Act, the European Communities Council Directive 2010/63/EU, and the 

institutional ethical and animal welfare guidelines of The Rockefeller 

University, the Max Planck Institute of Biophysics, the Max Planck Research 

Unit for Neurogenetics, and the Université de Bourgogne. Approvals came 

from the Institutional Animal Care and Use Committee of The Rockefeller 

University, the Regierungspräsidium Darmstadt, and the Veterinäramt of the 

City of Frankfurt. In Frankfurt, mice were maintained in specified pathogen-

free conditions in individually ventilated cages (Techniplast, Italy). Mice 

received ad libitum water and gamma-irradiated ssniff V1124-727 (ssniff, 
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Soest, Germany). Nesting, bedding, and enrichment were provided as 

nestpak, Datesand Grade 6 (Datesand, Manchester, United Kingdom).  In 

Dijon, mice were housed in cages with Lignocel select fine bedding (SORAC, 

Spain), and given A03 feed (SAFE, Augy, France) and water ad libitum.  

3.2 Electrophysiology experiments 

3.2.1 Dissecting the olfactory epithelium 

The mice were deeply anesthetized via intraperitoneal injection of 

ketamine/xylazine (150 mg/kg and 10 mg/kg, respectively), and then 

decapitated using a rodent guillotine (World Precision Instruments, Sarasota, 

FL, USA). The head was immediately put in a petri dish and immersed in ice-

cold oxygenated Ringers solution containing 124 mM NaCl, 3 mM KCl, 1.3 

mM MgSO4, 2 mM CaCl2, 26 mM NAHCO3, 1.25 mM NaH2PO4, 15 mM 

glucose, at pH 7.5 and 305 mOsm, oxygenated with 95% O2 and 5% CO2 (All 

from Sigma Sigma-Aldrich, Saint-Quentin-Fallavier, France).  

A longitudinal medial incision was made in the dorsal part of the head to 

remove the skin. The lower jaws with the upper teeth were removed, and then 

a coronal cut was made behind the eyes. The preparation was transferred to 

another petri dish, with a clean cold oxygenated Ringer solution for dissection 

under the scope (SZX16 Olympus), as seen in the figure 3.1. The olfactory 

Figure 3.1 Dissection of the MOE. a, Dorsal head view after removing the skin and 
the lower jaws; b, two sagittal cuts are  made in the ventral part to remove the teeth; 
c, two sagittal cuts are made in the dorsal part to remove the; d, MOE after removing 
the anterior dorsal bones of the scale; e, upper view of the MOE; f, MOE transferred 
to recording chamber.  
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mucosa attached to the nasal septum was removed and kept in oxygenated 

Ringer solution. Before use, the mucosa was gently peeled away from the 

underlying bone and transferred to a recording chamber. During recording, 

the preparation was continuously perfused at a rate of approximately 1 

mL/min at room temperature. In this intact epithelial preparation neither 

mechanical nor enzymatic treatments were used. The OSNs cilia were intact 

with long axons and the neurons were not isolated from their natural milieu in 

contrast to dissociated cells. This approach is advantageous as it 

approximates in vivo conditions (Grosmaitre et al., 2006; Ma et al., 1999). The 

quality of the dissection is important; in order to obtain intact neurons, the 

dissection should be fast (<10 minutes) and precise to avoid tissue damage. 

The preparation was kept for around two hours for patch clamp recordings. 

3.2.2 Visualizing fluorescent dendritic knob 

The dendritic knobs of OSNs were visualized through an upright microscope 

(Olympus BX51WI), equipped with an Olympus DP72 camera, and a 40X 

water-immersion objective. An accessory lens in the light path achieved an 

extra 4X magnification. The GFP-labeled cells were visualized under 

fluorescence illumination. Superimposition of the fluorescent and bright-field 

images allowed identification of the GFP positive cells under bright field 

(figure 3.3). 

 

2.2.3 Patch clamp recordings 

Recordings were controlled with an EPC-10 amplifier combined with 

Patchmaster Software (HEKA Electronic, Germany). Perforated patch 

clamping was performed on the dendritic knobs with 260 µM nystatin. Nystatin 

was prepared in dimethyl sulfoxide (DMSO), vortexed and sonicated for 

approximately five minutes and kept in the dark. 
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Borosilicate-recording pipettes (Sutter Instrument, Novaco, CA, USA) were 

pulled with a Flaming/Brown micropipette puller model (P-97, Sutter 

Figure 3.2 Experimental setup used for patch clamping 

Figure 3.3 Detection of GFP OSNs. A, Intact MOE taken from SR1-IRES-tauGFP 
mouse, observed under bright-filed condition at the 40X magnification. Arrows show 
OSN dendritic knob in a mesh of supporting cells (SC) and Bowman glands (BG). B, 
dendritic knobs of SR1 OSNs. C, the same filed as in B showing SR1 OSNs under 
fluorescent light. D, Recording pipette approaching SR1 neurons under bright filed, the 
red arrow represent the same SR1 dendritic knob. Scale bar, 5 µM. (From Jarriault et al. 
2015). 1 
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instruments CO, USA). The pipette was filled with the following solution: 70 

mM KCl, 53 mM KOH, 30 mM methanesulfonic acid, 5.0 mM EGTA, 10 mM 

HEPES, 70 mM sucrose; this was adjusted to pH 7.2 with KOH and to 310 

mOsm with sucrose. The resistance of the pipette in the bath solution was 

approximately 20 MΩ. The junction potential was approximately 9 mV and 

was corrected in all experiments off-line. For odorant-induced transduction 

currents, signals were sampled at 20 kHz. Under voltage-clamp mode, the 

signals were initially filtered at 10 kHz and then at 2.9 kHz. 

2.2.4 Odorant stimulation 

A seven-barrel pipette was used to deliver stimuli by pressure ejection 

through a picospritzer (Pressure System IIe, Toohey). The seven-barrel pre-

pulled pipette was manually prepared. Six-glass pipette (Glass THINW W/FIL 

1.0MM, World Precision Instuments, Sarasota, FL, USA) were curved at 45  

 

degrees, about 1 cm from the tip using a flame. The six bent glasses were 

inserted in an eyelet with another straight pipette in the middle. The eyelet 

and the seven glass pipettes are maintained together using a heat-shrink 

Figure 3.4 Preparation of the stimulation pipette. a, Seven glass pipettes; b, six glass 
pipettes are curved, resembled together using eyelet and heat-shrink tube; c, pre-
pulled pipette; d, a multibarrel-pipette puller; e, a multibarrel-pipette pulled and filled 
up with odorants.  
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tube.  White glue was applied around the eyelet and stored to dry overnight. 

The pre-pulled pipette was pulled before the beginning of each experiment, 

using a multi-pipette puller (PMP-107, MicroData Instrument, Inc., S. 

Plainfield, NJ, USA).  

 

    Odorant stocks were prepared at 0.5 M solution in DMSO and stored at   20°C. 

The list of odorant is described in table 2. Mixture 1 (Mix1) contains 19 

compounds in equal molar concentration (table 1). Mix1 was prepared as at 

0.1 M in DMSO, and stored at -20°C. 

    Table 1. Mixture 1 (Mix1): 

Chemical 
compound Chemical group 

heptanol Alcohol 
octanol Alcohol 
hexanal Aldehyde 
heptanal Aldehyde 
octanal Aldehyde 

heptanoic acid carboxylic acid 
octanoic acid carboxylic acid 

cineole Terpenoid 
amyl acetate Ester 
(+) limonene Terpene 
(-) limonene Terpene 
(+) carvone Terpene 
(-) carvone Terpene 

2-heptanone Ketone 
3-heptanone Ketone 

ethyl vanilline aromatic 
aldehyde 

benzaldehyde aromatic 
aldehyde 

anisaldehyde aromatic 
aldehyde 

acetophenone aromatic ketone 
 

Final solutions of odorants were prepared before each experiment by adding 

Ringers solution, and 1 µg/mL erioglaucine, a blue dye used to visualize 

successful delivery of the odorant to the dendritic knob.  
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Table 2. List of chemical compounds: 

Chemical compound Chemical group  
menthol aromatic alcohol  
phenethyl alcohol aromatic alcohol  
ethyl maltol aromatic alcohol  
trans-2-hexanal Aldehyde 
heptanal Aldehyde 
Octanal Aldehyde 
Lyral aromatic aldehyde 
ethyl vanillin aromatic aldehyde 
benzaldehyde aromatic aldehyde 
dihydrocarvone Terpene 
(+/-) carvone Terpene 
(+) limonene Terpene 
(-) limonene Terpene 
1-heptanethiol Thiol 
1-hexanethiol Thiol 
1-octanethiol Thiol 
heptanoic acid carboxylic acid 
octanoic acid carboxylic acid 
decanoic acid carboxylic acid 
3,4-hexanedione Ketone 
2,3-hexanedione Ketone 
4-tert-
butylcyclohexanone Ketone 

cyclohexanone Ketone 
2-heptanone Ketone 
acetophenone Ketone 
musk Ketone Ketone 
amyl acetate Ester 
amyl hexanoate Ester 
ethyl isobutyrate Ester 
whiskey lactone Lactone 
2-coumaranone Benzofuran 
eugenol Phenylpropanoid 
3-nitrotoluene Toluene 

Mix1 Mixture of 19 chemical 
compounds  

*Note: All chemical were purchased from Sigma-Aldrich (Saint-Quentin-

Fallavier, France) except for Lyral, which was provided as a generous gift 

from International Flavors & Fragrances (Dijon, France).  
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3.3 Genotyping 

3.3.1 Genomic DNA extraction  

Approximately 5 mm of mouse-tail was cut, placed in 1.5 mL sterile screw-cap 

tubes, and stored at -20oC. Before genotyping, the tails were incubated 

overnight at 55oC in 200 µL of Proteinase K (Biolone, Luckewald) diluted at 

1:100 in digestion buffer (Peqlab, Erlangen) on a rocking platform. The 

following day, the lysed tails were incubated at 85o C for 45 min to deactivate 

enzymatic digestion, and subsequently stored at 4oC. 

3.3.2 Polymerase chain reaction  

Polymerase chain reaction (PCR) was used for DNA amplification to confirm 

and determine the mouse strain of interest using a SimpliAMP/Thermocycler 

(Applied Biosystems, Darmstadt). A standard reaction mix was prepared with 

MilliQ water (Millipore, Billerica MA, USA), 10X reaction buffer, deoxyribose 

nucleotide tri-phosphates (dNTPs) and Taq polymerase (Taq Hot Start). 10X 

buffer, dNTPs, and Taq polymerase were provided by Takara Bio Inc, Shiga, 

Japan. PCR steps are described in figure 3.5. 

 

PCR primers were provided by Sigma-Aldrich, St. Louis MO, USA. For all the 

mouse strains a primer pair for the wild type allele (WT) and the mutant allele 

(MUT) was tested, except for the fNa1.7 and TMEM16B genes, where only 

the mutant allele was tested due to its unknown locus in the genome. Each 

genotyping experiment contained two positive controls, containing MUT DNA 

of the mouse strain and WT B6 DNA mouse strain, and a negative control 

containing only distilled water.  

3.3.3 Agarose gel electrophoresis 

The amplified DNA was separated using gel electrophoresis. The gel was 

made using 1.2% agarose (Carl Roth + Co. KG, Karlsruhe) in TBE buffer 

(Tris/borate/EDTA; Carl Roth + Co. KG, Karlsruhe) mixed, and heated in a 

microwave.  After heating, 3 µL of ethidium bromide (EtBR) was added. The 

intercalation of the EtBR with the DNA permits its visualization under 

ultraviolet (UV) light, at a wavelength of 302nm. A blue dye was added to the 



41 

samples to show DNA migration in the gel.  A voltage of 120 V was applied for 

30 min. Electrophoresis separates DNA fragments by size; while larger 

fragments migrate slower and remain near the top of the gel, shorter 

fragments travel faster and are found near the end.   

 

 

Figure 3.5 PCR protocol for genotyping. The denaturation consists of heating 
the reaction, which causes DNA melting by disrupting the hydrogen bonds 
between the DNA bases. The annealing steps occurred at 60˚ for 1 min 
permitting the annealing of the primers to the stranded DNA. In the 
polymerization step the taq polymerase synthetize a new DNA strand 
complementary to the DNA template. 
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Table 3. List of primers:  

Mutant 
name  

Oligo 
wildtype  

WT 
band 
size  

Oligo 
MUT  

MUT 
band 
size  

M71-
IRES-
tauGFP  

1121B/A114A  309 bp  819/ 
A114A  ~250 bp  

M71-
IRES-Cre  

1121B/ 
A114A  309 bp  900A/ 

901A  ~450 bp 

tdRFP 
(ROSA-
tdRFP) 

HL54/ HL152 210 bp HL152/ 
HL15 301bp 

Tm16b   177 bp 778/7781 211 bp  

fNav1.7   317 bp 16s / 17a 461bp 

MOR256-
17-IRES-
tauGFP 

MK162/ 
MK163 455 bp MK99/ 

MK163 401bp 

MOR256-
17-IRES-
tauLacZ 

MK162/ 
MK163 455 bp MK100/ 

MK163 415 bp 

SR1-
IRES-
tauGFP 

SF1/SF2  562 bp SF3/ SF2  439 bp 

 

3.4  Immunohistochemistry 

Mice were deeply anaesthetized by intraperitoneal injection of 0.01 mL/g 

anesthetic (0.25 mL 2% xylazine, 1.2 mL 10% ketamine and 8.55 mL 0.9% 

NaCl). To perform an intracardial perfusion, the skin from the abdomen was 

sterilized by alcohol and removed. To reach the heart the ribcage was 

removed, a needle was inserted in the left ventricle, and then a small incision 

was made in the right atrium. The blood was washed away by 10 mL cold 

PBS. Tissue fixation was achieved by perfusing 20 mL 4% paraformaldehyde 

(PFA) (Sigma-Aldrich, St. Louis, MO, USA & Merck, Darmstadt).  

The mouse was decapitated and dissected for post fixation; specifically, the 

skin, eyes, lower jaw, and palatine bones were removed. The head was 

immersed in 4% PFA and incubated for 2 H at 4 o C with agitation, followed by 

decalcification with 0.5 M EDTA (Carl Roth + Co. KG, Karlsruhe) overnight 
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and cryoprotected with ascending grades (10%, 15%, and 30%) over the 

period of three nights at 4o C with gentle agitation. Mouse heads were then 

frozen in optimal cutting temperature (O.C.T) compound (Tissue-Tek, 

Torrance, CA, USA), and sectioned at 12 µm on a cryostat Leica CM3050 S.  

MOR256-17 sections were collected on SuperfrostTM slides (ThermoScientific, 

Germany) and blocked in 10% normal donkey serum (NSD) in PBS for one 

hour at room temperature, followed by incubation with primary antibodies 

MOR256-17 (1:800; Strotmann et al., 2004, a gift from Prof. Dr. Jörg 

Strotmann), GFP 1:500 (chicken polyclonal, Abcam, Cambridge, MA, USA), 

OMP 1:5,000 (goat antiserum, Wako Chemicals USA, Richmond, VA, USA), 

all in 2% normal donkey serum overnight at 4˚C. Sections were washed in 

0.1% Triton in PBS (PBS-T), and incubated with secondary antibody 

fluorescein conjugated donkey anti-chicken 1:800 (Jackson ImmunoReseach 

Lab, West Grove, PA, USA), rhodamine-red-X-conjugated donkey- anti-rabbit 

1:800 (Jackson ImmunoReseach), and Cy5-conjugated donkey-anti-goat 

1:1000 (Jackson ImmunoReseach). Immunostained sections were examined 

and imaged with a Zeiss LSM 510 confocal microscope (Jena, Germany). 

For Nav1.7 immunostaining, sections of 12 µm were performed using a 

cryostat (Leica Biosystems, Wetzlar), collected on SuperfrostTM slides 

(ThermoScientific, Germany), and stored at -80oC until required for 

immunostaining.  

The slides were taken from -80oC, dried with cold wind dryer, covered with 

aluminum and stored overnight at room temperature to dry further.  Before 

applying the primary antibody the slides are washed 3 x 5 min in PBS, and 

blocked on 10 % NDS in PBS-T at room temperature for one hour. Excess of 

blocking solution was removed, and followed by an overnight incubation in 

primary antibody anti-Nav1.7 (1:500, rabbit polyclonal; Millipore) at 4oC. 

Sections were washed 3 x 10 min with 0.1 Triton in PBS at room temperature, 

followed by 1.5 H incubation in secondary antibody (1:100, Alexa fluor 555 

donkey anti rabbit, Invitrogen), at room temperature. Following secondary 

antibody incubation, the slides were washed 3 x 10 min in PBS-T, stained with 

DAPI for 10 min at room temperature, mounted and coverslipped with Moviol, 



44 

and left overnight to dry at room temperature. 

3.5 X-gal staining 

X-gal staining (also called lacZ staining) is a powerful technique to visualize 

the OSNs axon guidance and their projections in the OB. This staining is rapid 

and simple to perform. The technique is based on the expression of the 

bacterial (E-coli) gene LacZ, which encodes the β-galactosidase enzyme. This 

enzyme catalyzes the hydrolysis of X-gal (5-bromo-4-chloro-3-indolyl-beta-D-

galactopyranoside) into galactose and 5-bromo-4-chloro-3-hydroxyindole; this 

latter is oxidized into 5,5'-dibromo-4, 4’-dichloro-indigo, an intensely blue 

product allowing visualization of LacZ activity. 

Table 4. X-gal staining buffers: 

Buffer A Buffer B Buffer C 

100 mM PBS (pH 7.4) 

2 mM MgCl2 

5 mM EGTA 

100 mM PBS (pH 7.4) 

2 mM MgCl2 

0.01% Na deoxycholate 

0.02% IGEPAL CA-630 

5 mM hexacyanoferrate 

(II) 

5 mM hexacyanoferrate 

(III) 

1 mg/mL X-gal in DMF 

in Buffer B 

 

X-gal staining was performed in sagittal or dorsal whole mount preparation. 

Dorsal dissection allows the visualization of dorsal glomeruli, whilst dissection 

in the sagittal aspect allowed visualization of medial glomeruli. The mice were 

anesthetized as aforementioned in chapter (2.4) and decapitated, followed by 

removal of the skin, lower jaw, and skull to expose the OB. The head was 

fixed with 4 % PFA on ice for 30 min, and then washed with Buffer A 3x for 5 

min, at room temperature. The head was washed with Buffer B 2x for 5 min, 

at room temperature and incubated in dark with Buffer C for 15 min at 37˚C. 

Once the color change to blue was deemed sufficient, the head was stored in 

4 % PFA at 4˚C.  
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3.6 Data analysis and statistics 

Unpaired t tests were performed with GraphPad Prism software (La Jolla, CA, 

USA), to indicate statistical differences between the two populations of OSNs, 

P values <0.05 were considered significant. Dose-response curves were fitted 

with Origin 9.1 (OriginLab, Northampton, MA) using the Hill equation, 

I=Imax/(1+(K1/2/C) n), where I represents the peak of odor-induced response, 

Imax the maximum response at saturating concentrations, K1/2 the 

concentration when half of the maximum response was reached (EC50), C the 

concentration of odorant, and n the Hill coefficient. Electrophysiology data 

analysis was performed using PatchMaster (Heka electronics, Germany) and 

Igor pro software (Wavemetrics, Lake Oswego, OR, USA). Averaged data are 

shown as mean ± SEM. 
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4 Results 

4.1 The MOR256-17 mouse strain tagged with GFP  

The mouse OR gene MOR256-17 is also referred to as OR3 (Nef and 

Hermans-Borgmeyer, 1992) and Olfr15. The mouse strain MOR256-17-IRES-

tauGFP was generated in-house, by gene targeting in embryonic stem cells 

(Tazir et al., 2015) along the same design as in (Luxenhofer et al., 2008). In 

heterozygous or homozygous mice, OSNs coexpress tauGFP and MOR256-

17. This is due to a bicistronic strategy that is afforded by the internal 

ribosome entry site (IRES). Expression of tauGFP can be visualized by using 

the intrinsic fluorescence of GFP or with anti-GFP antibodies (Tazir et al., 

2016). 

 

In a coronal cryosection of the nasal cavity of a 35-day old mouse 

heterozygous for MOR256-17-IRES-tauGFP, green-fluorescent cells are 

4 .1 The olfactory system of the MOR256-17-IRES-tauGFP mouse strain. A, coronal section 
of a heterozygous post-natal day (PD) 35 mouse, immunostained for OMP (blue) and intrinsic 
GFP fluorescence (green). B,  confocal z-stack image of GFP fluorescence of the lateral 
glomerulus in a whole mount of a homozygous PD45 mouse. C, immunostaining with 
MOR256-17 antibody (red), GFP antibody (green) and OMP (blue) in a heterozygous PD35 
mouse. Arrow shows MOR256-17 antigen in a GFP-negative OSN, consistent with 
monoallelic expression. D, MOR256-17 immunostaining (red) reveals the arborization of OSN 
cilia in a heterozygous PD35 mouse. E, confocal en face image of dendritic knobs, with 
colocalization of MOR256-17 immunostaining and GFP (arrow) in a heterozygous. (From 
Tazir et al. 2016). 
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observed scattered across a broad zone in the middle of the main olfactory 

epithelium (MOE) (Figure 4.1A). In a whole-mount of a 45-day old mouse 

homozygous for MOR256-17-IRES-tauGFP, green-fluorescent axons 

coalesced into a complex and large glomerulus within a ventral domain of the 

lateral face of the olfactory bulb (Figure 4.1B). An antibody against MOR256-

17 (Strotmann et al., 2004; Schwarzenbacher et al., 2004; Schwarzenbacher 

et al., 2006; Fuss et al., 2007) colabelled GFP immunoreactive cells in 

heterozygous mice (Figure 4.1C-E). Approximately half of the MOR256-17 

immunoreactive cells were GFP immunoreactive in heterozygous mice, 

consistent with the well-established principle of monoallelic expression of OR 

genes.  

 

The intrinsic fluorescence of tauGFP expressed from an OR locus was 

sufficiently high to visualize these OSNs including their dendritic knobs and 

cilia in intact epithelial preparations, thus allowing single-cell 

electrophysiological recordings according to a well-established method (Ma et 

al., 1999; Grosmaitre et al., 2006; Grosmaitre et al., 2009; Lam and 

Mombaerts, 2013; Omura et al., 2014). 

 

The MOR256-17-IRES-tauLacZ strain was generated in-house (at Rockefeller 

University, NY, USA). This mouse was used to visualize MOR256-17 OSNs 

wiring and their glomeruli in the OB.  

4 .2 Axonal wiring of MOR256-17-IRES-tauLacZ. Two lateral dorsal 
glomeruli of MO256-17-IRES-tauLacZ.  
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4.2 Electrophysiology study of MOR256-17-IRES-tauGFP and SR1-IRES-

tauGF OSNs 

4.2.1 Monitoring the state of the cells during recordings 

 
 

 
4.3 Membrane properties of OSN under voltage clamp recording. A, Voltage 
gated current elicited by increasing depolarizing steps, from a healthy cell.   B, 
voltage gated current recorded from unhealthy cell.  

Once a gigaohm seal was made, nystatin perforated the cell membrane, 

permitting the contact of the recordings pipette with the cell cytosol, a voltage-

gated ionic current was observed under voltage clamp mode by eliciting 

increasing depolarization steps from the membrane potential -67 mV to 40 mV 

from a holding potential of -70 mV. As described in chapter (2.3.2) three 

currents were observed, one sodium current and two potassium currents 

(transient current and delayed rectifier current). The voltage-gated ionic 

current was used to examine cell health, and the quality of the recordings 

during the experiments.  A healthy cell has a current pattern as seen in figure 

4.3A, whilst in an unhealthy or a dying cell, the currents are dramatically 
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decreased or completely absent (Figure 4.3B). Recordings were only taken 

from healthy cells. 

4.2.2 Spontaneous activity analysis 

The spontaneous activity of the MOR256-17-IRES-tauGFP, and SR1-IRES-

tauGFP OSNs was analyzed using the perforated whole-cell patch clamp 

configuration. The total recording time for each cell was between 20-30 s. 

Examples of spontaneous firing are given in Figure 4.4.  

 

 
Figure 4.4 Spontaneous activity of SR1 and MOR256-17 OSNs. Spontaneous 
activity recordings from three different MOR256-17 cells and three different 
SR1 cells. 

  

The spontaneous firing pattern was varied from cell to another.  Some cells 

fire repetitive bursts whilst other cells fired single action potentials followed by 

bursts of action potentials, while other cells were silent for 10 to 15 s before 

firing action potentials.  
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The spontaneous activity of 9 cells from each cell population (SR1, n=9; 

MOR256-17, n=9) was analyzed. The average resting potential was -69.97 ± 

0.76 mV for SR1-GFP OSNs and -70.36 ± 0.79 mV for MOR256-17-GFP 

OSNs.  

 

Four parameters were analyzed; the mean firing frequency, the instantaneous 

firing frequency (a time segment during which bursts of action potentials 

occur), the inter-spike interval defined as the time between each spike during 

the whole recordings and the spike number. These different parameters were 

compared between SR-1 and MOR256-17 cell populations. 
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Figure 4.5 Spontaneous activity analysis of SR1 and MOR256-17 OSNs. B, 
mean firing frequency. Data are shown for nine individual OSNs of each 
population. C, Instantaneous firing frequency. Data are shown for nine 
individual OSNs for each population. D, Inter-spike interval. E, number of 
action potentials. Data are presented as mean ± SEM. (Tazir et al. 2016). 
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There was no significant difference in the mean frequencies: 3.12 ± 0.89 Hz 

for SR1 vs. 3.24 ± 1 Hz for MOR256-17 (Figure 4.5A). Similarly, there was no 

difference in the instantaneous frequencies: 13.03 ± 4.34 Hz for SR1 vs. 

10.17 ± 2.17 Hz for MOR256-17 (Figure 4.5C). There was no significant 

difference in the inter-spike interval either: 1,573.08 ± 917.25 ms for SR1 vs 

708.65 ± 318.23 ms for MOR256-17 (Figure 4.5B). Finally, there is also no 

significant difference in the number of action potentials: 65.22 ± 16.95 for SR1 

vs. 67.11 ± 19.96 for MOR256-17 (Figure 4.5D). Within a single OSN 

population, the spontaneous activity varied considerably from cell to cell. 

4.2.3 Current-induced activity analysis 

To study the membrane excitability of SR1 cells and MOR256-17 cells, firing 

patterns were analyzed by eliciting action potentials, via injection of a 

depolarizing current of 7 pA into SR1 neurons (n = 6 cells) or MOR256-17 

neurons (n = 6 cells) 

 

Figure 4.6 The firing pattern of SR1 OSNs and MOR256-17 OSNs current-clamp mode. A, 
traces representing action potentials elicited by injecting a current of 7 pA to the cells. B, 
number of action potentials. Data are shown for six OSNs of each population. C, inter-spike 
interval. D, latency is defined as the time that the cell takes to fire the first action potential 
after the current is injected. E, instantaneous firing frequency. Data are presented as mean ± 
SEM. (from Tazir et al. 2016). 
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(Figure 4.6A).  As with analysis of spontaneous activity, the same four 

parameters (the mean firing frequency, instantaneous firing frequency, inter-

spike interval, and the spike number) were analyzed, and compared between 

the two cell populations. There is no significant difference in the number of 

action potentials, 31 ± 4.9 for SR1 vs. 32.5 ± 5.95 for MOR256-17 (Figure 

4.6B); in the inter-spike interval, 69.48 ± 12.3 ms for SR1 vs. 83.3 ± 34.87 ms 

for MOR256-17 (Figure 4.6C); in the latency, 18.84 ± 3.89 ms for SR1 vs. 14 

± 2.36 ms for MOR256-17 (Figure 4.6D); and in the instantaneous firing 

frequency, 19.55 ± 3 Hz for SR1 vs. 23.16 ± 4 Hz for MOR256-17 (Figure 

4.6E). 

4.2.4 Extremely broad responsiveness of MOR256-17 OSNs 

The odorant response of MOR256-17 OSNs was characterized using a 

mixture of odorant (Mix1) containing 19 chemical compounds (Grosmaitre et 

al., 2009), and 35 single chemical compounds at 10 µM, belonging to more 

than 9 chemical groups including alcohols, aldehydes, amines, carboxylic 

acids, esters, ketones, terpenes, and thiols. Some chemicals were chosen 

from previous heterologous systems studies, from previous broad OSNs 

reports, or randomly. The closely related chemicals within each functional 

group family, were taken in consideration, in order to examine the ability of 

these neurons to respond to similar odorants (same functional group but 

different carbon chain length), or odorants with different functional groups. At 

least five cells were tested for each odorant and Mix1. The response rate to a 

given odorant was either 0% or 100% within a given OSN population.  

 

MOR256-17 OSNs have shown an extremely broad responsiveness to 

different chemical compounds from different chemical groups. In fact, 

MOR256-17 OSNs were able to respond to Mix 1 and 31 out of 35 single 

chemical compounds tested.  

 

At 10 µM, MOR256-17 cells respond the strongest to acetophenone 

(CH3COC6H5) 145.26 ± 37.34 pA, n = 9 cells; 4-tert-butylcyclohexanone 

((CH3)3CC6H9(=O)) 119.82 ± 32.35 pA, n = 16 cells; (+/-) carvone (C10H14O) 

111.5 ± 14.44 pA, n = 8 cells; 3-nitrotoluene (CH3C6H4NO2) 105.13 ± 16.29 
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pA, n = 15 cells; and to Mix 1 118.3 ± 30.1 pA, n = 22 cells.  Examples of 

recordings traces in both voltage-clamp, and current-clamp mode are shown 

in Figure 4.7. Bumps of action potentials can be seen in voltage clamp mode, 

due to imperfections in clamp space.  

 

 
Figure 4.7 MOR256-17 OSNs respond to divers odorant compounds. A, 
single neuron responded to four odorant at 1 µM under voltage clamp holding 
potential -70 mV, B response of the same neuron under current clamp mode.  

 

At 10 µL, MOR256-17 cells responded the weakest to eugenol (C10H12O2) 41 

± 9.88 pA, n = 7; 2-coumaranone (C8H6O2) 41.85 ± 15.28 pA, n = 7; and ethyl 
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maltol (C7H8O3) 43 ± 6.32 pA. Examples of odorant response in voltage clamp 

and current clamp mode are given in Figure 4.8. 

 

MOR256-17 OSNs were also able to detect other chemical group compounds; 

the responses amplitudes recorded in voltage clamp mode are resumed in 

table 4.1.  

 

 

 

However, MOR256-17 neurons failed to respond to (+) limonene (C10H16), n = 

6 cells; (-) limonene (C10H16), n = 10 cells; cyclohexanone (C6H10 (=O)), n = 6 

cells; and heptanoic acid (CH3 (CH2)5 COOH) n = 7 cells  (fig 3.9). 

Figure 4.8 weakest odorant response of MOR256-17. A,B single neuron responding to 
eugenol and ethyl maltol in voltage clamp mode (left) holding potential -70 mV and current 
clamp mode (right). 
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Figure 4.9 Voltage clamp recording from single MOR256-17 neurons. The flat 
traces represented negative response to heptanoic, (+) limonene, (-) limonene 
and cyclohexanone 

Table 4.1 Average peak current response under voltage clamp of MOR256-17 
OSNs 
 

Chemical compound  Peak current (pA) Cell number 
(-) limonene  0 n = 10 
(+) limonene 0 n = 6 
(+/-) carvone 111.5 ± 14.44 n = 8 
1-heptane thiol 41.75 ± 11.24 n = 8 
1-hexane thiol 38.5 ± 11.64 n = 8 
1-octane thiol 80.16 ± 23.87 n = 6 
2-coumaranone 41.85 ± 15.28 n = 7 
2-heptanone 96.63 ± 25.10 n = 10  
2,3-hexandione 0 n = 9 
3-nitrotoluene 105.13 ± 16.29 n = 15 
3,4-hexanedione  30.26 ± 9.09 n = 9 
4,tert-
butylcyclohexanone 119.82 ± 32.35 n = 16 
acetophenone 145.26 ± 37.34 n = 9 
amyl acetate 54.12 ± 19.06 n = 8 
amyl hexanoate 67 ± 18.73 n = 5 
cyclohexanone 0 n = 6 
cyclohexylamine  79.51 ± 33.45 n = 7 
decanoic acid 50 ± 17.79 n = 5 
dihydrocarvone 36.65 ± 5.97 n = 7 
ethyl isobutyrate 62 ± 14.28 n = 6 
ethyl maltole 43 ± 6.32 n = 5 
ethyl vanillin 58.71 ± 17.32 n = 7 
eugenol 41 ± 9.88 n = 7 
heptanal 82.25 ± 21.98 n = 8 
heptanoic acid 0 n = 7 
isopenthylamine 66.62 ± 28.84 n = 5 
Lyral 41 ± 9.88 n = 7 
menthol 50.28 ± 8.47 n = 8 
Mix1  118.29 ± 30.14 n = 22 
musc ketone 35.38 ± 4.35 n = 7 
octanal  551.6 ± 10.78 n = 5 
octanoic acid 28.66 ± 6.05 n = 9 
phenethyl alcohol 55.33 ± 9.79 n = 9 
phenethylamine 87.54 ± 40.58 n = 7 
trans-2-hexanal 66.62 ± 14.64 n = 9 
whiskey lactone 55 ± 21.69 n = 5 
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Figure 4.10 Average peak current responses of MOR256-17 OSNs 
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However, MOR256-17 neurons failed to respond to  (+) limonene (C10H16), n 

= 6 cells; (-) limonene (C10H16), n = 10 cells; cyclohexanone (C6H10 (=O)), n = 

6 cells; and heptanoic acid (CH3 (CH2)5 COOH) n = 7 cells  (Figure 4.9). 

 

Interestingly, MOR256-17-GFP OSNs were activated by three amines at 10 

µL, cyclohexylamine, 79.51 ± 33.45 pA, n = 7 cells; isopenthylamine 66.62 ± 

28.84 pA, n = 5 cells; and phenylethylamine 87.54 ± 40.52 pA, n = 7 cells. 

These are typically viewed as ligands for chemosensory neurons in the main 

olfactory epithelium that express TAAR genes, a family of 15 genes encoding 

G-protein coupled receptors unrelated in sequence to ORs. 

 

4.2.5 Similar odorant responses of MOR256-17 neurons in the MOE and the 

SO 

SR1 cells showed similar response in two different olfactory subsystems 

(MOE and, SO), to amyl acetate, (+) camphor, benzaldehyde, octanoic acid, 

and heptanal (Grosmaitre et al., 2009).  

 

MOR256-17 neurons are also expressed in the MOE, and the SO. Thus, an 

odorant responsiveness comparison of MOR256-17 cells was conducted in 

the SO and the MOE.  Like SR1 neurons, MOR256-17 neurons could also 

detect the same odorants in the SO and the MOE. Some, but not all the 

odorant compounds were tested in the SO; the most of the recordings 

experiments were conducted in the MOE. In contrast with SR1-GFP neurons, 

there were more MOR256-GFP neurons in the MOE than the SO. MOR256-

17 neurons in the SO were able to respond to 4-tert-butylcyclohexanone (n = 

6 cells), dihydrocarvone (n = 1 cell), trans-2-hexanal (n = 2 cells), 3,4-

hexandione (n = 1 cell), and menthol (n = 2 cells).  
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Figure 4.11 Similar response of MOR256-17 in the MOE and SO. A, single MOR256-17 
neuron responding to different concentration (1 µM, 10 µM, and 100 µM) of 4-tert-
butylcyclohexanone at voltage clamp in the SO, holding potential -70 mV. B, response to 
MOR256-17 to different concentration of 4-tert-butylcyclohexanone in the MOE. C, dose 
response curve of two MOR256-17 neurons in the SO. 
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4.2.6 Odorant responsiveness comparison of MOR256-17 OSNs and SR1 

OSNs 

 
After confirmation of the broad responsiveness of MOR256-17 neurons, the 

same range of odorants was also tested in SR1 neurons. MOR256-17 

neurons responded to Mix1 and 31 out of 35 single compounds, whereas SR1 

responded to Mix1 and only 10 single chemical compounds. The average 

response amplitude recorded in voltage-clamp mode is shown in Table 4.2. 

Moreover, the odorant response profile of SR1 OSNs is fully included within 

hat of MOR256-17 (Figure 5.1). SR1 neurons were not able to respond to the 

three amines tested cyclohexylamine (n=9 cells), isopentylamine (n=9 cells), 

and phenethylamine (n=11 cells) (Figure 4.12). SR1 OSNs were not 

responsive to the three thiols: 1-heptanethiol (n=6 cells), 1-hexanethiol (n=8 

cells), and 1-octanethiol (n=5 cells) (Figure 4.13).                                  

                                

At 10 µM, SR1 OSNs showed a strong response to whiskey lactone 133.07 ± 

17.94 pA, n = 8 cells; (+/-) carvone 95.75 ± 23.11 pA, n = 10 cells; 2-

heptanone 95.64 ± 22.52 pA, n = 13 cells; and octanal 91.44 ± 25.33 pA, n = 

5 cells. At the same concentration SR1 OSNs responded the weakest to 2-

coumaranone 44.54 ± 9.41 pA, n = 7 cells; heptanal 52.91 ± 18.92 pA, n = 6 

cells; and acetophenone 57.94 ± 30.17, n = 5 cells.  

 

Moreover, the response profile reported for SR1 OSNs was five odorants: 

camphor, amyl acetate, benzaldehyde, octanoic acid, and heptanal 

(Grosmaitre et al., 2009). In this study six more odorants activating SR1 

OSNs, were identified: (+/-) carvone (95.75 ± 23.11 pA, n=10 cells), 2-

heptanone (95.64 ± 22.52 pA, n=13 cells), acetophenone (57.94 ± 30.17 pA, 

n=5 cells), 2-coumaranone (44.51 ± 9.41 pA, n=7 cells), phenylethyl alcohol 

(69.75 ± 17.10 pA, n=6 cells) and whiskey lactone (133.07 ± 17.94 pA, n=9 

cells). 
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Table 4.2 Average peak current responses under voltage clamp of SR1 OSNs 

Chemical compound  Peak current (pA) Cell number 
(-) limonene  0 n = 8 
(+) limonene 0 n = 8 
(+/-) carvone 95.75 ± 23.11 n = 10 
1-heptane thiol 0 n = 8 
1-hexane thiol 0 n = 6 
1-octane thiol 0 n = 8 
2-coumaranone 44.54 ± 9.41 n = 7 
2-heptanone 95.64 ± 22.52 n = 13 
2,3-hexandione 0 n = 6 
3-nitrotoluene 0 n = 7 
3,4-hexanedione  0 n = 5 
4,tert-
butylcyclohexanone 0 n = 9 
acetophenone 57.94 ± 30.17 n = 5 
amyl acetate 88.92 ± 35.9 n = 7 
amyl hexanoate 0 n = 7 
cyclohexanone 0 n = 7 
cyclohexylamine  0 n = 9 
decanoic acid 0 n = 7 
dihydrocarvone 0 n = 7 
ethyl isobutyrate 0 n = 7 
ethyl maltole 0 n = 7 
ethyl vanillin 0 n = 6 
eugenol 0 n = 7 
heptanal 52.91 ± 18.92 n = 6 
heptanoic acid 0 n = 5 
isopenthylamine 0 n = 9 
Lyral 0 n = 6 
menthol 0 n = 6 
Mix1  145.61 ± 38.08 n = 20 
musc ketone 0 n = 8 
octanal  91.44 ± 25.33 n = 5 
octanoic acid 98.67 ± 26.74 n = 11 
phenethyl alcohol 69.75 ± 17.10 n = 6 
phenethylamine 0 n = 11 
trans-2-hexanal 0 n = 10 
whiskey lactone 133.07 ± 17.94 n = 8 
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Figure 4.12 Average peak current responses of SR1 OSNs to the 35 odorants tested 
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 Figure 4.13 Traces of inward odorant current for Mix 1 and chemical compounds 
in SR1 OSNs and MOR256-17 OSNs, under voltage clamp. Flat traces indicate 
no response to odorant stimulus. (From Tazir et al.2015). 
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       Figure 4.14 SR1 OSNs and MOR256-17 OSNs respond to a variety of chemical 
compounds. Voltage clamp recordings in SR1 and MOR256-17 OSNs to 35 chemical 
compounds at 10 µM and Mix1, which consists of 19 odorants each at 10 MM. Each 
dot represents the average response of at least five OSNs. (From Tazir et al., 2016) 
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4.2.7 Differences in odorant response properties between SR1 and 

MOR256-17 OSNs 

To compare the responses to the 10 ligands and Mix1 that are shared 

between SR1 and MOR256-17 OSNs, five parameters of the odorant-induced 

current were analyzed: latency, rise time, peak current, half-width, and total 

charge area (Figure 4.15 A). 

As populations, SR1 OSNs and MOR256-17 OSN populations differ in certain 

parameters for various chemicals. But a consistent pattern is seen only with 

Figure 4.15 Odorant-induced currents for the common ligands of SR1 OSNs and MOR256-17 
OSNs. (A) Analysis of five parameters of odorant-induced current under voltage-clamp mode. 
Latency is the time between the onset of the stimulus and the starting point of the response; 
the rise time is the time that it takes the current to reach 90% of the peak from the starting 
point of the response; the half-width of the current is the time between the rising and falling 
phase at  50% of the peak; and the total charge area is the area of the entire response. (B–F) 
Analysis of voltage-clamp kinetics for common ligands of SR1+ OSNs and MOR256-17+ 
OSNs. Data are presented as mean + SEM.	  (From Tazir et al., 2015)9.	  
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octanoic acid; SR1+ OSNs respond with a shorter latency (Figure 4.15B), a 

shorter rise time (Figure 4.15C), and a higher peak current (Figure 4.15D), 

and overall have a higher total charge area (Figure 4.15F). The half-width 

(Figure 4.15E) is the only parameter in which SR1 OSNs and MOR256-17 

OSNs do not differ in their responses to octanoic acid. Thus, the response to 

octanoic acid is faster and stronger in SR1 OSNs than in MOR256-17 OSNs. 

But neither population has a faster and stronger response than the other 

4.2.8 Dose-response curves  

 
 

Figure 4.16 Dose–response curves of the peak current for selected odorants. Different 
colours in A–F correspond to individual cells. (A) Responses of SR1+ OSNs to (+/-) 
carvone. (B) Responses of MOR256-17+ OSNs to (+/-) carvone. (C) Responses of SR1+ 
OSNs to 2-heptanone. (D) Responses of MOR256-17+ OSNs to 2-heptanone. (E) 
Responses of MOR256-17+ OSNs to 3-nitrotoluene. (F) Responses of MOR256-17+ 
OSNs responding to 4-tert-butylcyclohexanone. (Tazir et al., 2016) 
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Dose-response curves of SR1 OSNs and MOR256-17 OSNs for (+/-) carvone 

and 2-heptanone was measured (Figure 4.16A-D). Moreover, dose-response 

curves of MOR256-17 OSNs for 3-nitrotoluene and 4-tert-butylcyclohexanone 

(Figure 4.16E-F) was also measured. The relation between odorant dose and 

peak odorant-induced current was fitted using the Hill equation. Several dose-

response curves of MOR256-17 OSNs did not show a sigmoidal shape, 

presumably because the highest concentration tested was not saturated.  

 Three parameters of the kinetics of the dose-response curves were 

compared: the K1/2 (EC50), the maximum amplitude (Vmax), and the Hill 

coefficient (Hn). No significant difference was observed between the two cell 

populations. Figure 4.17 shows the EC50 values and the Vmax values as 

scatter plots.  

Table 4.3 Dose-response curves kinetics of SR1 OSNs:  

 

 

 

Table 4.4 Dose-response curves kinetics of MOR256-17 OSNs: 

 

 

 

 

  2-heptanone (+/-) carvone  

Vmax (pA) 74.95 ± 12.70 229.20 ± 76.19 
EC50 (µM) 2.62 ± 0.95 7.37 ± 4.20 
Hn 1.58 ± 0.16 0.80 ± 0.23 

  
3-

nitrotoluene 2-heptanone 
(+/-) 

carvone  
4-tert-

butylcyclohexanone 
Vmax 
(pA) 

143.32 ± 
28.92 

179.49 ± 
47.79 

152.81 ± 
20.87 278.11 ± 58.40 

EC50 
(µM) 0.25 ± 0.09 0.83 ± 0.62 2.43 ± 1.31 6.31 ± 1.88 
Hn 0.61 ± 0.15 1.02 ± 0.54 0.53 ± 0.05 1.11 ± 0.14 
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4.3 Nav1.7 Knockout in specific subpopulation M71 OSNs 

As mentioned in Chapter 1.9, Weiss et al. showed the importance of Nav1.7 in 

the transmission of the olfactory signal to the second order neurons 

(Mitral/tufted cells) in the OB: -/- Nav1.7 OSNs were able to generate an 

odorant-induced current, however, the mouse was completely anosmic due to 

silencing of the mitral cells (Weiss et al., 2011).  

 

In this chapter, the role of Nav1.7 in axonal guidance was investigated by 

generating a Nav1.7 conditional knockout mouse in one subtype of OSN. The 

Nav1.7 channel was knocked out in some OSNs, and expressed in other OSNs 

belonging to the neuron subpopulations M71, in the same mice. This approach 

allowed in vivo competition between OSNs expressing a specific OR gene, and 

the comparison within the same OB axonal projections of -/- Nav1.7, and +/+ 

Nav1.7, M71-expressing OSNs. This was possible due the monogenic and the 

monoallelic features of OR genes (Chess et al., 1994).  

Figure 4.17 Dose-response curves analysis. EC50 values (in log10) of dose–response curves 
to odorants for MOR256-17+ OSNs (open symbols) and SR1+ OSNs (filled symbols).  Vmax 
values of dose–response curves to odorants for MOR256-17+ OSNs (open symbols) and 
SR1+ OSNs (filled symbols). Data are presented as mean ± SEM. From Tazir et al.2016 

 



68 

A breeding strategy was performed by crossing different gene-targeted mouse 

strains expressing M71 gene. M71 is a suitable OR gene to study axonal 

guidance, due the dorsal axonal projections in the OB, which allowed glomeruli 

imaging. Moreover, M71 gene is an OR gene that is very well studied and 

characterized (Bozza et al., 2002; Feinstein and Mombaerts, 2004) . 

  

In the first strain, the fNav1.7 conditional null mouse (Weiss et al., 2011) was 

crossed to M71-IRES-Cre x tdRFP mouse strain already available in-house. 

This strain was the result of a cross between M71-IRES-Cre, with the tdRFP 

mouse strain; tdRFP was used as a reporter gene for the Cre recombinase. The 

fNav1.7 x M71-IRES-Cre x tdRFP offspring were intercrossed till the acquisition 

of mice homozygous for the three mutations fNav1.7, M71-IRES-Cre and 

 tdRFP. In this strain, the Cre recombinase recognized the two loxP sites and 

flank the Nav1.7 channel, resulting in conditional knockout in M71 OSNs with 

expression of tdRFP (Figure 4.18). 

 

 

In the second strain, the fNav1.7 conditional null mice were crossed to the M71-

IRES-tauGFP strain, and once mice homozygous for M71-IRES-tauGFP and 

fNav1.7 genes were obtained, fNav1.7 x M71-IRES-tauGFP was crossed to the 

tdRFP mouse strain (Figure 4.18). In this strain the fNav1.7 is intact, because 

the Cre recombinase is absent, resulting in M71 OSNs with expression of GFP 

and fNav1.7 channel, which were the control OSNs.  

 

fNav1.7  X M71-IRES-Cre x tdRFP 

fNav1.7 x M71-IRES-Cre x tdRFP 

Figure 4.18 Breeding strategy to generate M71 OSNs with a fNav1.7 knockout 
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In the final strain, the two triple crossed homozygous strains fNav1.7 x M71-

IRES-Cre x tdRFP and fNav1.7 x M71-IRES-tauGFP x tdRFP were crossed.  

 

 

 

 

The offspring were intercrossed till the acquisition of quadruple homozygous 

mice for the mutations fNav1.7, M71-IRES-tauGFP, M71-IRES-Cre and tdRFP. 

In this final mouse strain the M71 expressing tauGFP OSNs are healthy 

neurons, however, M71 OSNs expressing tdRFP are lacking fNav1.7 

expression. This allowed the comparison of the impact of fNav1.7 channel on 

axonal guidance within the same OB. 

M71-IRES-tauGFP fNav1.7  X 

fNav1.7 x M71-IRES-tauGFP  X tdRFP 

fNav1.7 x M71-IRES-tauGFP x tdRFP 

fNav1.7 x M71-IRES-tauGFP x 
tdRFP fNav1.7 x M71-IRES-Cre x tdRFP X 

fNav1.7 x M71-IRES-Cre x tdRFP x M71-IRES-tauGFP  

Figure 4.19 Breeding strategy to generate control M71 OSNs  

Figure 4.20 Breeding strategy to generate the final compound heterozygous mice. In this 
strain M71 OSNs expressing fNav1.7 (green) coexist with M71 OSNs lacking expression 
of fNav1.7 (red).  
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The axonal guidance was normal in the triple cross strain lacking the expression 

of fNav1.7, in the triple cross strain expressing the fNav1.7 channel, and in the 

final compound heterozygous quadruple mutant strain (Figure 4.21). At 21 

postnatal days, the axons from both fNav1.7 -/- and fNav1.7 +/+ M71 OSNs 

colocalized, in the normal dorsal lateral position of the M71 glomerulus (Figure 

4.21B).  

 

 

 

The axonal wiring was also verified at PD42.  

 

A B 

Figure 4.21 fNav1.7 does not affect M71 glomerular position. A, Dorsal view of the left 
and right OBs from a PD21 fNav1.7 x M71-IRES-Cre x tdRFP x M71-IRES-tauGFP 
mouse. The dorsal glomeruli appear normal, the red M71 OSNs axons lacking 
fNav1.7 expression coalesce with the green M71 OSNs axons expressing fNav1.7. B, 
High magnification of the left dorsal glomerulus. 

Figure 4.22 Dorsal glomerulus a PD43 mouse from the fNav1.7 x M71-IRES-Cre 
x tdRFP x M71-IRES-tauGFP strain. 
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heterozygous quadruple mutant mouse, no difference in the wiring was seen 

between fnav1.7 -/- and fNav1.7 +/+ M71 OSNs (Figure 4.22).  

4.4 Tm16b Knockout in specific subpopulation M71 OSNs 

The same breeding strategy performed for fNav1.7 was used to investigate the 

role of the CaCC Tm16b in OSNs axonal wiring (Figure 4.23).  

 

 

 

Tm16b-lox  X M71-IRES-Cre X tdRFP 

Tm16b-lox x M71-IRES-Cre x tdRFP 

Figure 4.23 Breeding strategy to generate Tm16b knockout M71-expressing OSNs 
mouse strain.  

Figure 4.24 Dorsal glomerulus from a PD56 
Tm16b x M71-IRES-Cre x tdRFP mouse. 
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The final triple homozygous mutant strain Tm16b x M71-IRES-Cre x tdRFP was 

analyzed, using whole-mount dissection, and no effect in the axonal guidance of 

M71 neurons was observed. The glomerulus looked normal and located in the 

normal position of M71 glomerulus. 

 

In Chapters 3.3 and 3.4, the impact of neural activity on OSNs axonal guidance 

was investigated by studying two channels Nav1.7 and Tm16b. The results 

revealed no obvious changes in wiring of OSN axons or in the glomerular 

formation in conditional mutant M71-expressing OSNs.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



73 

5 Discussion 

25 years ago after the discovery of the OR genes (Buck and Axel, 1991), it is 

apparent that the olfactory system relies on the combination of different ORs 

(Buck, 2004), in order to detect the enormous number and variety of  chemical 

compounds present in the environment.  Olfactory coding at the periphery of 

the olfactory system is not completely understood. Thus, investigating 

odorant-OR pairs is crucial to provide further insight. The mouse genome 

contains approximately 1100 intact OR genes (Godfrey et al., 2004). Despite 

technical progress to identify OR ligands, most of these ORs still orphans and 

only a few odorant-pairs are known.  

 

In this thesis, a detailed and comparative electrophysiological study was 

performed in two mouse strains, each expressing a specific OR tagged with 

GFP, SR1-IRES-tauGFP and MOR256-17-IRES-tauGFP, respectively. This 

targeting strategy allowed their identification in intact epithelial preparation ex 

vivo. Thus, the activity of native OSNs expressing defined ORs from their 

endogenous locus in an environment mimics an in vivo scenario was 

investigated.  

 

This well-established method (Ma et al., 1999) (Jarriault and Grosmaitre, 

2015) has been previously used to characterize responses of OSNs 

expressing an OR with a narrow response profile such as MOR23 

(Grosmaitre et al., 2006) or S1 (Lam and Mombaerts, 2013), an OR with a 

broad response profile such as SR1 (Grosmaitre et al., 2009), and the β2-

adrenergic receptor expressed in OSNs from an OR locus (Omura et al., 

2014)). This preparation has been informative in a variety of experimental 

contexts such as aging (Lee et al., 2009), the effect of variations in OR 

sequence to odorant responses (Zhang et al., 2012), prenatal 

development(Lam and Mombaerts, 2013), spontaneous activity (Connelly et 

al., 2013) odorant-induced plasticity (Cadiou et al., 2014), and the correlation 

of OSN ciliary length with sensitivity in the septum and dorsal recess (Challis 

et al., 2015).  
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This study provided quantitative and qualitative results concerning the 

olfactory coding of broad tuned ORs, by recording odorant-induced current 

from defined OSNs populations, 130 OSNs expressing MOR256-17 and 88 

OSNs expressing SR1 have been analyzed. 

 

5.1 Intrinsic membrane properties of SR1 and MOR256-17 neurons  

In order to characterize the membrane properties of SR1 and MOR256-17 

OSNs the firing patterns were studied. The two populations fired 

spontaneous, and repetitive action potentials when a current of 7 pA was 

injected to the cells (Chapters 4.2.2 and 4.2.3; Figures 4.5 and 4.6), as 

showed before in rat and mouse OSNs (Ma et al., 1999).  

 

The spontaneous firing rates and the instantaneous activity of SR1 OSNs 

(3.12 ± 0.89 Hz, n = 9 cells), (13.3 ± 4.34 Hz, n = 9 cells) were similar to those 

reported by Connelly et al (3.79 ± 0.57 Hz, n = 11 cells), (10.73 ± 1.7 Hz, n = 

11 cells), which used cell attached patch clamp configuration, with the same 

intact olfactory epithelium preparation and the same SR1 mouse strain, used 

in this study (Connelly et al., 2013).  

 

The firing frequency between the SR1 and MOR256-17 OSNs (figure 4.5A), 

was not statistically significant (Figure 4.5A, p > 0.9), which is in disagreement 

with other studies that reported a variety of spontaneous activity between 

different OSNs populations (Reisert, 2010) (Connelly et al., 2013). This may 

be attributed to other OSN populations expressing different ORs, like broadly 

responsive ORs, which do not exhibit variation in spontaneous activity. 

Reisert has compared only three OSN populations (mOR-EG, M71, and I7) 

(Reisert, 2010), and Connelly et al. investigated just five OSN populations 

(M71, I7, SR1, mOR-EG, and MOR23) (Connelly et al., 2013).   

  

Moreover, SR1 and MOR256-17 OSNs revealed a spontaneous spiking 

heterogeneity pattern among the same population (Figure 4.4). These results 

extend previous findings in OR-IRES-tauGFP mouse strains, it has been 
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shown that spontaneous activity varies among OSNs expressing the same 

OR (Connelly et al., 2013). 

 

Variations in a homogenous population of OSNs are not well understood, and 

difficult to examine. It is evident that ORs themselves drive the spontaneous 

activity (Connelly et al., 2013), thus, the number of receptors expressed could 

influence the spiking rate of the cell.  Recently, OSNs have shown variation in 

cilia length and odorant sensitivity, depending on where the neurons are 

located in the neuroepithelium (Challis et al., 2015). It would be informative to 

compare the spontaneous activity of a defined OSN population in these 

different zones, to determine if cilia length influences the spontaneous firing of 

OSNs.  

 

Comprised of thousands of OSN axons (Bressel et al., 2016), spontaneous 

firing is necessary for establishing and maintaining the organization of 

glomeruli in the bulb (Yu et al., 2004). Therefore, differences in spontaneous 

activity between OSNs belonging to the same neuron subpopulation may play 

a role in this process.  

 

5.2 Extremely broad odorant responsiveness of MOR256-17 OSNs 

Earlier work investigating the OR responsiveness in amphibians suggested 

the existence of broad ligand specificity of OSNs (Sicard and Holley, 1984) 

(Firestein et al., 1993). However, the only characterized broadly tuned OSNs 

in mouse were SR1 neurons (Grosmaitre et al., 2009) and MOR256-31 (Nara 

et al., 2011), owing to the slow progress in this aspect of olfaction. 
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In this study, MOR256-17 OSNs responded to 31 out of 35 single chemical 

compounds tested (Figures 4.10 and 4.14). The odorant responsiveness of 

these neurons was broader than that of SR1 neurons: all 10 ligands for SR1 

OSNs also activated MOR256-17 OSNs (Figure 5.1). It is possible that a 

different scenario would result with a larger ligand set; however, the low 

throughput nature of patch clamping does not make this a feasible option. 

 

Interestingly, MOR256-17 OSNs were able to detect cyclohexylamine, 

isopenthylamine, and phenylethylamine, while SR1 OSNs were not able to 

detect them (Figure 4.14). These amines are classical ligands for TAARs and 

TAAR-expressing OSNs (Liberles and Buck, 2006); (Pacifico et al., 2012); 

(Dewan et al., 2013); (Zhang et al., 2013). However, the concentration 

required to elicit a response in MOR256-17 OSNs was high 10 µM compared 

to the extremely high sensitivity of TAAR-expressing chemosensory neurons 

in the MOE, for instance TAAR4-expressing OSNs were able to detect 

phenylethylamine at the picomolar level (0.1 pM) (Zhang et al., 2013). Amine 

detection by canonical OSNs expressing an OR such as MOR256-17 may 

modify the behavioral response to amines at higher concentrations or in 

mixtures. 

Figure 5.1 MOR256-17 neurons are more broadly tuned than SR1 OSNs. Venn 
diagram showing that SR1 odorant panel is included in the MOR256-17 one. 
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In ORs with a narrow response window, it is clear that the physicochemical 

characteristics of odorants are critical. Some ORs have a particular 

preference to some specific structural features, and tolerance for others, 

which enable the exquisite discrimination of hundreds of odorants. For 

instance, the I7 receptor is activated by saturated aliphatic aldehydes with a 

length of 7-10 carbon atoms (Zhao et al., 1998). The aldehyde group and the 

molecule length were critical; replacing the aldehyde group with other 

functional groups reduced the odorant evoked amplitude in EOG recordings 

(Araneda et al., 2000). In addition, M71 and M72 also showed affinity to 

acetophenone and its analogues like propiophenone, 4-methylacetophenone, 

4-methoxyacetophenone and 2-hydroxyacetophenone (Zhang et al., 2012).  

However, in broadly responsive ORs the odorant response was more complex 

due to the large odorant panel detected. MOR256-17 OSNs were responsive 

to a broad range of odorants, all five aldehydes, three amines, three esters, 

three thiols, three alcohols, all the ketones tested (except cyclohexanone), 

and toluene activated MOR256-17. There is some subtle selectivity: in each 

functional group, MOR256-17 OSNs showed tail length tuning for homologous 

n-compounds. These cells responded to some carbon chain lengths, but not 

others. For example, responses were observed more frequently and with 

higher amplitudes for 8-carbon chains (octanoic acid, 1-octanethiol) compared 

to 7-carbon chains (no response to heptanoic acid and an even weaker 

response to 1-heptanethiol). This was not specific to all 7-carbon chains 

however; amyl acetate, heptanal, and 2-heptanone responded with high 

amplitude (Figure 4.10). 

 

MOR256-17 showed a preference to some six-carbon cyclic molecules in 

which the response was the highest, such as acetophenone, 3-nitrotolune, 

(+/-) carvone, and 4-tert-butylcyclohexanone (Figure 4.7). This was not the 

case for the cyclic compound cyclohexanone, which has the same ring 

structure as 4-tert-butylcyclohexanone but lacks the tert functional group. 

Thus, trying to find a link between the chemical structure and the activation of 

broadly tuned ORs is extremely complex.  
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Furthermore, limonene and carvone are monoterpenes that differ only in one 

carbonyl group (Clarin et al., 2010), limonene failed to elicit a response from 

MOR-256-17, while (+/-) carvone did (Figures  4.7 and 4.9).  

 

Taken together, these results showed discriminating features of MOR256-17 

neurons in detecting different chemical compounds, and demonstrated that 

odorant detection depends not only on the chemical structure or the presence 

of a specific functional group but on the interaction of the odorant with the OR.  

 

In other species like Drosophila Melanogaster, Or67a too was broadly tuned, 

and responded to 31 odorants unrelated in chemical structure. However, the 

broad tuning was related to stimulus intensity; at low concentrations Or67a 

was not sensitive to odorants and the broad response profile was strongly 

affected (Hallem and Carlson, 2006). The animals in their natural environment 

encounter a wide range of odorant concentrations. The intensity of the 

odorant stimulus also depends on the distance; it possible the intensity code 

may play a role in the fly navigation, or for emerging different odorant 

perception in the brain. In this study only 4 from the 35 odorants tested did not 

activated MOR256-17 OSNs at 10 µM. However, 25 odorants were not able to 

activate SR1 OSNs at the same concentration (Figure 4.12). Previous studies 

have reported that higher odorant concentrations activated more neurons than 

lower concentrations (Ma and Shepherd, 2000) (Hallem and Carlson, 2006) .  

Thus, increasing the concentration of the non-activating odorants of SR1 

OSNs could change their response. 

 

To characterize the sensitivity of the two OSN subpopulations SR1 and 

MOR256-17, dose-response curves for certain odorants were performed and 

analyzed. The dose-response curves of MOR256-17 OSNs exhibit a broad 

dynamic range and high sensitivity, and were similar to dose-response curves 

of SR1 OSNs (Figure 4.16).  

 

Sensitivity to odorants varied within the same sub-population of OSNs. Some 

neurons were able to detect the same odorant (for instance 4-tert-

butylcyclohexanone) at concentrations as low as 0.01 µM, whereas others did 
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not respond until concentrations of 0.1 µM or 1 µM were attained (Figures 

4.16F and 4.11C). This result is consistent with previous studies, where 

MOR23 showed differences in sensitivity to Lyral (Grosmaitre et al., 2006). 

Some cells were able to detect Lyral at concentrations as low as 10 nM, while 

others did not respond until 1 µM or 10 µM were applied (Grosmaitre et al., 

2006). These differences were also observed for acetophenone and 

benzaladehyde in M71 OSNs (Bozza et al., 2002), and 2-phenylethyl alcohol 

in S1 OSNs (Lam and Mombaerts, 2013).  

 

The sensitivity of 2-heptanone and (+/-) carvone were compared between 

SR1 and MOR256-17 OSNs (Figure 4.17). The insignificant statistical in EC50 

between the two populations, was maybe obscured by the relative low 

number of OSNs examined.  

 

MOR256-17 neurons are expressed in the MOE, and the SO, an odorant 

responsiveness comparison of MOR256-17 cells was conducted in the two 

olfactory subsystems. MOR256-17 neurons were able to detect 4-tert-

butylcyclohexanone (Figure 4.11), menthol, trans-2-hexanal and 1-

heptanthiol, in the SO and the MOE. 

  

This finding was previously reported in SR1 OSNs, which are also expressed 

in the MOE and the SO (Grosmaitre et al., 2009). SR1 OSNs showed a 

response to amyl acetate, (+) camphor, benzaldehyde, octanoic acid, and 

heptanal in the two olfactory subsystems (Grosmaitre et al., 2009).  Moreover, 

dose response-curve analysis to amyl acetate had the same dynamic range in 

the MOE, and the SO (Grosmaitre et al., 2009).  

 

Moreover, profound differences in the response kinetics of the odorant-

evoked current recorded in voltage clamp mode within the same OSN 

subpopulation were observed. This is similar to what was reported for MOR23 

OSNs which showed considerable variation among the cells in odorant-

evoked current amplitudes and half-widths (Grosmaitre et al., 2006).  
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The response kinetics for all 10 common ligands for SR1 and MOR256-17 

were compared (Figure 4.15), and a systematic difference in the latency (p < 

0.0001), rise time (p < 0.0001), peak current (p < 0.03) and the total charge 

area (p < 0.002), was observed only in octanoic acid (Figures 4.15B,C, D and 

F). Differences in OSNs response kinetics are not very understood; the variety 

in the activation and deactivation phases of the odorant-evoked response may 

play a role in filtering the odorant signal in the OB, when different OSN 

subpopulations are activated.  

 

Furthermore, a host of factors could account for these differences. For 

instance, the size of the cilia (Challis et al., 2015), the number of ORs 

expressed,  the age of the mouse (Lee et al., 2009), but also the age of the 

OSN itself as a result of ongoing unsynchronized neurogenesis in the MOE 

(Brann and Firestein, 2014). 

5.3 Discrepancies with heterologous systems 

The results differ from data obtained by expressing MOR256-17 in 

heterologous cell expression systems (Saito et al., 2009) (Dahoun et al., 

2011) (Goldsmith et al., 2011) (Li et al., 2012). Most importantly, no response 

was observed to cyclohexanone. Cyclohexanone was reported as a stimulus 

for human embryonic kidney HEK293T cells that were transfected a rho-

tagged MOR-256-17 expression vector (Saito et al., 2009), and for micelle 

and nanodisc nanotubes in which recombinant MOR256-17 protein produced 

in Sf9 insect cells was inserted (Goldsmith et al., 2011). However 

cyclohexanone was not reported as a stimulus in another study (Dahoun et 

al., 2011) that used the same cell line; however, secreted alkaline 

phosphatase was measured as a function of activity instead of luciferase and 

cells were exposed to cyclohexanone for 16h instead of 4h (Saito et al., 

2009). Conversely, responses were observed to 2-heptanone, ethyl 

isobutyrate, (+/-) carvone, dihydrocarvone, heptanal, octanal, and 

acetophenone; chemicals that were reported as non-activating odorants by 

Saito et al., 2009. The data for MOR256-17 OSNs were close to those 

obtained from Xenopus laevis oocytes; the exception being that ethyl vanillin 

and eugenol were not able to elicit a response in the latter (Li et al., 2012) . 
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These similarities may be attributed to the co-expression of Golf in Xenopus 

laevis oocytes, which provided a similar transduction pathway and hence, 

response profiles. 

 

In the present study, heptanoic acid and 1-octanethiol failed to elicit a 

response in SR1 OSNs, and responses to 2-heptanone and acetophenone 

were observed (Figure 4.12), whereas the opposite results have been 

reported for HEK293T cells transfected with an SR1 expression plasmid (Yu 

et al., 2015).  

 

False-negative responses (discrepancies in which a heterologous system fails 

to detect a response that is observed in native OSNs) can be attributed to 

lower sensitivity of the heterologous system. However, for false-positive 

responses towards heptanoic acid and cyclohexanone to be observed in 

MOR256-17 and 1-octanethiol for SR-1 directly conflicts with results obtained 

from heterologous systems (Saito et al., 2009) (Goldsmith et al., 2011) (Yu et 

al., 2015). This may be attributed to perireceptor events in vivo, where 

odorant-binding proteins derived from the mucosa may change the overall 

structure of the compound and therefore, the ability of the ligand to bind to the 

receptor. 

 

The expression of the early immediate gene c-fos was used in previous 

studies, to determine glomerular activation by odorant exposure (Guthrie et 

al., 1993; Lin et al., 2004; Clarin et al., 2010). In MOR256-17-IRES-tauGFP 

mice exposed to 2,3-hexanedione, there was an increase in the percentage of 

c-fos positive juxtaglomerular cells surrounding the GFP glomeruli (Loch et 

al., 2013). This was consistent in MOR256-17 OSNs, that were also able to 

respond to 2,3-hexanedione (Figures 4.10 and 4.14).   

 

While the low-throughput nature of this technique does not allow the 

screening of a larger odorant panel, it is still a more informative and efficient 

approach to explore the physiology of OSNs and their putative ligands. 

Moreover, data from heterologous systems should be interpreted carefully. 
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The in vivo DREAM technique (Weid et al., 2015) is a promising approach to 

deorphanized the repertoire of OR genes. 

5.4 Why does the mouse olfactory system employ broadly responsive ORs? 

Both MOR256-17 and SR1 belong to the same OR family, the MOR256 

family. With 37 members, it is one of the largest families in the mouse OR 

gene repertoire (Zhang and Firestein, 2002). A third broadly responsive OR, 

Olfr263 (Nara et al., 2011; Yu et al., 2015), (formerly known as Olfr42), was 

previously known as MOR256-31 and thus also belongs to the MOR256 

family. 

 

In contrast, other members of the MOR256 family exhibit a narrower odorant 

response profile, at least when assessed in the heterologous Xenopus laevis 

oocyte system (Liu et al., 2012) or HEK293T cells (Yu et al., 2015). Recently, 

residues properties analyses of four ORs belonging to MOR256 family (two 

broadly tuned: SR1, MOR256-31; and two narrowly tuned MOR256-8, 

MOR256-22) revealed conserved amino acids in the four ORs, with specifics 

ones only in the two broadly ORs (Yu et al., 2015). Substituting SR1 residues 

by those of MOR256-8 (for instance L107I) dramatically decreased its odorant 

response (Yu et al., 2015). It will be interesting to determine if the same OR 

residues are involved in broadening the responsiveness in the case of 

MOR256-17, to determine whether these sequence homologies are 

stereotyped among other broadly ORs. Similarly, the narrowly responsive 

receptor MOR256-8 (also known as Olfr1362) can be converted to a broadly 

responsive OR by making a single mutation, as assayed in HEK293T cells 

(Yu et al., 2015). 

 

Pharmacological perturbation of broadly tuned ORs may be a useful tool to 

elucidate their transduction pathways. Using blockers of the different (cAMP, 

cGMP) transduction pathways, the responses to different odorants from 

different chemical classes could be recorded. This would allow one to 

determine whether ligands activate different transduction pathways in the 

same population of OSNs. 
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The integration of odorant mixtures remains a challenge to investigate, as 

integration can occur at any point from the periphery to higher order 

processing centers. Therefore, OSNs expressing broadly tuned ORs are a 

unique tool to investigate mixture integration at the periphery: what is the 

integration of multiple odorants by a broadly tuned receptor (such as SR1 or 

Olfr15) compared to a relatively narrowly tuned receptor (such as MOR23 or 

M71)? What transduction pathway is used by these neurons to integrate 

mixtures? 

 

Typically, different ensembles of OSNs detect different odorant mixtures. 

However, to date the combinatorial coding is not very well understood, for 

instance how two or more OSN subpopulations behave when they are 

stimulated by a single or a mixture of chemical compounds. While technically 

difficult to execute, it would be interesting to perform a double patch clamp 

recordings from two different subpopulations of OSNs at the same time. For 

instance, performing recordings from a narrowly and broadly tuned OSN, or 

from two broadly responsiveness subpopulations like SR1 and MOR256-17. 

The SO is a suitable olfactory subsystem for patch clamping due to dendritic 

knobs being slightly larger than in the MOE, and most importantly, both SR1 

and MOR256-17 receptors are expressed in the SO. Double patch clamping 

could be conducted from SR1 and MOR256-17 in the SO by generating for 

instance a cross between SR1-IRES-tauRFP and MOR256-17-IRES-tauGFP. 

  

However, MOR256-17 exhibits a broad responsiveness in both OSNs and 

other heterologous systems, indicating that broad tuning is a specific feature 

to this receptor. Therefore, it is possible that these OSNs do not follow the 

conventional ‘one-receptor, one-neuron’ theory. Recently, transcriptome 

analysis of subpopulation of OSNs expressing Olfr73 demonstrated the 

predominance of this receptor, however, other ORs were detectable (Scholz 

et al., 2016). It could be interesting to analyze and compare broadly tuned and 

narrowly OSNs transcriptomes, to determine whether they express different 

ORs or other proteins.  

 



84 

The evolutionary emergence and biological relevance of broadly responsive 

ORs within a repertoire of mostly narrowly responsive ORs remain elusive in 

the absence of any behavioral data. Their role may lie in detecting the mere 

presence of odorants in the nasal cavity, leaving discrimination to narrowly 

responsive ORs, or in contributing to the discrimination of structurally similar 

ligands by increasing the number of responsive neurons (Nara et al., 2011). 

On the other hand this increase in number of responsive OSNs may blur the 

actual discriminating signal by increasing the noise.  

 

It will be informative to generate gene-targeted strains with single or combined 

knockouts of genes that encode broadly responsive ORs such as SR1, 

MOR256-17, and Olfr263, and to perform behavioral assays that measure 

olfactory performance in these mice, such as threshold detection and odorant 

discrimination, to investigate the role of broadly responsive OSNs, in animal 

behavior. 

5.5 Neural activity and axonal guidance 

One of the understandable mechanisms in axonal guidance is the implication of 

neural activity, which includes the spontaneous, the odorant-evoked activity, or 

the correlation between both of them.  

 

In Chapters 4.3 and 4.4, two channels were investigated to further comprehend 

their role in OSN axonal guidance, a sodium channel Nav1.7 and a CaCC 

Tm16b. 

 

Nav1.7 is one of the nine voltage gated isoforms, implicated in the rising phase 

of action potential in excitable cells (Catterall, 2000). The attention was given to 

Nav1.7 due his non-redundant role in the transmission of the odorant 

information to the OB (Weiss et al., 2011).  

 

The generation of mouse expressing or not Nav1.7 in M71-expressing OSNs, 

permitted the investigation of the axonal guidance in the same OB. However, no 

influence was seen in axon wiring (Figure 4.21). Both M71 OSNs axons lacking 

or expressing fNav1.7 were able to navigate, enter the OB, form a glomerulus, 
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and coalesce in the same position (Figure 4.21B). The result confirms Weiss et 

al., who reported a normal synapse formation in conditional mutant Nav1.7 

mouse (Weiss et al., 2011). Thus, this channel was only important to amplify 

and conduct the odorant information in OSNs axonal terminals, to the first 

synapse (Weiss et al., 2011), but had not a necessary role in modulating OSNs 

map in the OB. 

 

The Tm16b is an important channel in amplifying the odorant signals in OSNs 

cilia (Billig et al., 2011). The wiring influence of Tm16b channel was investigated 

by generating a conditional mutant mouse in a subtype of OSNs expressing 

M71 gene. The axonal guidance and the glomerular formation in Tm16b x M71-

IRES-Cre x tdRFP mouse appeared normal (Figure 4.24); the M71 axons 

converge to the typical M71 glomerulus position. This results is in accordance 

within a previous study, that also showed normal axonal coalescence of P2-

IRES-tauLacZ, and M72-IRES-tauLacZ mice, lacking Tm16b expression (Billig 

et al., 2011).  

 

The most major effects on axonal guidance occurred by disrupting the OR gene 

(Mombaerts et al., 1996) or ACIII gene (Zou et al., 2007). Axonal convergence 

occurred normally in CNG channel mutant mice (Lin et al., 2000), EOG 

recordings revealed that this mouse was anosmic (Brunet et al., 1996). These 

data argued that the odorant-evoked activity was not required for establishing 

the olfactory map in the OB. Moreover, this was consistent in Golf mutant mice 

that could not detect odorants; however the P2 OSNs lacking Golf expression, 

could project axons and form normal glomeruli (Belluscio et al., 1998). 

  

Interestingly, the membrane properties were not altered in CNG mutant mouse, 

and no difference was seen in terms of spontaneous activity, although the 

number of single OSNs recorded in CNG mutant mice were fewer (Brunet et al., 

1996). Remarkably, the olfactory map was altered by silencing the spontaneous 

activity (Yu et al., 2004). The spontaneous activity was not investigated in the 

conditional null Nav1.7 mouse (Weiss et al., 2011). Hence, OSNs lacking the 

expression Nav1.7 or Tm16b could rely on the spontaneous firing to establish 

the glomerular map.  
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However, in OCNC1 mice in which a subunit of the CNG channel was knocked-

out, show a perturbation of P2 OSNs axons but not in M72 neurons (Zheng et 

al., 2000). This result suggests that the axonal guidance machinery is not 

stereotyped over all OSN subpopulations. The Nav1.7 or Tm16b may have 

axonal guidance effects in other OSNs expressing different OR genes. To 

confirm the redundant role of Nav1.7 and Tm16b in axonal wiring, other OSN 

subtypes should be investigated.  

 

5.6 Summary  

Despite the progress in the field of olfaction, little is known about the basics of 

the olfactory coding. OR deorphanization is crucial to better understand this 

process. This work contributed to the understanding of odorant responsiveness 

and the olfactory coding in the neuroepithelium, by deorphaning a specific 

population of OSNs, expressing MOR256-17. The results showed that 

MOR256-17 reside in one extreme of odorant responsiveness among the ~1100 

OR genes repertoire in the mouse. Moreover, investigating the axonal 

navigation is important to understand the billions of connections in the brain, 

and repair them when damaged. This thesis shed light on the non-contribution 

of two channels (Nav1.7 and Tm16b) in OSNs axonal guidance. However, 

further investigations are needed to confirm this issue.  
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