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As early as 1972, it was discovered that improperly 
checked input data processed by a program may 
change its behaviour on behalf of an attacker. The 
Morris worm from 1988 showed that buffer overflows 
can be performed very purposefully as to arbitrarily 
change the behaviour of a program. As of 2016, this 
category is still one of the most prevalent types of 
attacks according to the MITRE Common Weakness 
Enumeration (CWE). It enables attackers to control 
input, computations and output to achieve their 
desired goal, such as changing a victim's online 
banking transaction, installing e-mail spamming 
servers or blackmailing victims by encrypting their 
valuable files.  
 
This thesis presents four novel approaches that all 
mitigate or prevent this type of imposition of 
malicious behaviour on otherwise benign code. 
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Deutsche Zusammenfassung

Gutartige Programme, welche sich in schädliche verwandeln lassen, stellen
eine größere Bedrohung dar, als Programme, die von vornherein bösartig sind.
Während bösartige Programme immerhin die klare Absicht des Diebstahls oder
der Manipulation von Daten haben, hat ein gutartiges Programm in aller Regel
einen Nutzen für den Anwender. Wenn nun aber ein Programmierfehler dazu
führen kann, plötzlich das Verhalten eines Programms zu verändern, bleibt
dies von traditionellen Virenscanner völlig ungeachtet, weil diese bloß per se
schädliche Programme erkennen. Hinzu kommt, dass Software oft weit ver-
breitet ist und in identischer Form auf Millionen von Computern Verwendung
findet – ein gefundenes Fressen, um Sicherheitslücken millionenfach auszunutzen.

Bereits 1972 zeigten Forscher, dass nicht ordnungsgemäß verarbeitete Eingaben
eines Programmes dessen Verhalten beliebig ändern können [P1, S.61]. Pro-
grammierfehler, wie beispielsweise das Überschreiten eines Puffers, könnten
nachgelagerte Daten überschreiben. Der Morris-Wurm von 1988 [P2] zeigte,
dass diese Pufferüberläufe gezielt dazu genutzt werden können das Verhalten
eines Programms beliebig zu beeinflussen. Laut MITRE Common Weakness
Enumeration (CWE [P3]) ist diese Art des Angriffs auch im Jahr 2015 noch
immer eine der weitverbreitetsten. Diese sog. Laufzeit-Angriffe befinden sich
auf Platz 2 ( “OS Command Injection”) und Platz 3 (“classic buffer overflow”)
der CWE Rangliste. Sie ermöglichen Angreifern sowohl Eingaben zu steuern,
Berechnungen zu verändern oder Ausgaben zu fälschen, beispielsweise mit
dem Ziel Online-Banking-Transaktion zu ändern, Spam-Email-Server im Hin-
tergrund zu installieren oder Opfer zu erpressen, indem wertvolle Dateien ver-
schlüsselt werden.

Diese Dissertation stellt vier neue Ansätze vor, welche alle auf unterschiedliche
Weise bösartige Verhaltensänderungen von eigentlich gutartiger Software ver-
hindern. Da auch die Angriffe während des Schreibens dieser Dissertation
verbessert wurden, stellen die hier beschriebenen Lösungskandidaten einen
iterativen Prozess dar, der über den zeitlichen Verlauf dieser Dissertation in
einem stetigen Katz-und-Maus-Spiel stückchenweise verfeinert wurde.
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Abstract

A bigger threat than malicious programs themselves are benign programs that
can turn malicious. While malicious programs have the clear intention of steal-
ing or manipulating data, a benign program was developed with good inten-
tions to fulfil everyday purposes such as browsing the Web, reading mail or typ-
ing letters. If programming flaws in those benign programs can be exploited
to suddenly change their behaviour, traditional virus scanners do not have a
chance because there is no ingress of a malicious program. Even worse, most
of the computers, smart phones, and tablets share the same software that has
been produced in volume, and if exhibiting such a program flaw, malicious
behaviour might be imposed on millions of instances out there.

As early as 1972, it was discovered that improperly checked input data pro-
cessed by a program may change its behaviour on behalf of an attacker [P1,
p.61]. Program flaws such as allowing program input to exceed the designated
reserved space for that input, have fatal consequences as they overwrite con-
secutive data or even code. The Morris worm from 1988 [P2] showed that
those overwrites can be performed very purposefully as to arbitrarily change
the behaviour of a program. As of 2015, this category is still one of the most
prevalent types of attacks according to the MITRE Common Weakness Enumer-
ation (CWE [P3]). It ranks top-2 (“OS Command Injection”) and top-3 (“Classic
Buffer Overflow”). It enables attackers to control input, computations and out-
put to achieve their desired goal, such as changing a victim’s online banking
transaction, installing e-mail spamming servers or blackmailing victims by en-
crypting their valuable files.

This thesis presents four novel approaches that all mitigate or prevent this type
of imposition of malicious behaviour on otherwise benign code. Since attacks
have adapted during the writing of this thesis, the counteract techniques pre-
sented herein are tailored towards different stages of the still ongoing cat-and-
mouse game and each technique resembles the status quo in defences at that
time.
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1 Underlying Scientific Papers

This dissertation is based on a subset of my published, peer-reviewed scientific
papers. The selected subset consists of four mitigation techniques against run-
time attacks that change the behaviour of an otherwise benign program. I
contributed to all papers as one of the main authors.

The following list places the underlying scientific publications in time and gives
background information and a short summary while the technical depth is ex-
plained in their respective chapters.

1. The first approach, presented in chapter 5, is based on Control Flow In-
tegrity (CFI) and operates on unmodified binary executables for Apple’s
iOS platform. The presented approach, called MoCFI (Mobile CFI), ex-
tracts a CFG from the binary executable (the iOS App) and constantly
checks the desired control flow of a program against the intended con-
trol flow of the current execution. This work was published in IEEE’s
proceedings of the Symposium on Network and Distributed Systems Secu-
rity (NDSS) in 2012 [M1]. I contributed to the entire MoCFI solution by
devising and implementing methods to extract the CFG from iOS executa-
bles file and by developing and implementing the CFI checks at run-time,
and securing Objective-C message passing with CFI enforcement.

2. Another defence against run-time attacks, presented in chapter 6, is specif-
ically geared towards the shortcomings of ASLR (Address Space Layout
Randomisation). This approach is based on load time Dynamic Binary
Rewriting of executable files and divides legacy binary code into small
chunks, which are then randomised to achieve high entropy. This de-
prives an attacker of the required knowledge about code and data lay-
out. This work was published in the ACM’s proceedings of the Sympo-
sium on Information, Computer and Communications Security (AsiaCCS)
in 2013 [M2]. I designed and implement a binary rewriter from scratch
that is capable of doing in-place rewriting on process start-up. I have
also designed all necessary algorithms, such as the creation of the CFG,
representation of instructions in an intermediate language, randomisa-
tion algorithms, optimisation algorithms, process loading and executable
and shared library parsing. I further extended this binary rewriter for the
approach presented in the Oxymoron chapter.
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3. In that Oxymoron chapter (chapter 7), I propose a different approach to
achieve fine-grained randomisation. That approach tackles the problem
that diversification in processes contradicts the longstanding paradigm
of memory sharing amongst processes in order to save space. The solu-
tion presented in chapter 7 is the first combination of memory sharing
despite having randomised memory layouts and is achieved using Mem-
ory Segmentation. It was published in the proceedings of the USENIX
Security Symposium in 2014 [M3]. To achieve the combination of mem-
ory sharing and randomisation, I invented Position-and-Layout-Agnostic
Code, a derivative of the traditional x86 calling convention that does not
incorporate any absolute addresses. To this end, I developed a transla-
tion from legacy x86 code to Position-and-Layout-Agnostic Code that is
transformed with the help of the aforementioned binary rewriter.

4. An attack to fine-grained memory randomisation with address hiding is
JIT-ROP (Just-in-time return-oriented programming). It can revert fine-
grained memory randomisation using a memory disclosure vulnerability.
In chapter 8, I present a solution that prevents such memory disclosure
vulnerabilities from being exploited in order to protect fine-grained mem-
ory randomisation. To this end, I modified the Linux Memory Paging
mechanism to emulate a non-existing hardware primitive XnR (eXecute
no Read). XnR prevents an attacker from gaining knowledge about code
of an unknown or randomised process. This work has also been published
in the proceedings of the ACM’s Conference on Computer and Communi-
cations Security (CCS) in 2014 [M4]. I have designed the XnR primitive
and developed a software emulation for that hardware feature. I also
implemented the XnR solution for the Linux kernel to demonstrate its
effectiveness on today’s hardware.

I have also published a number of other scientific peer-reviewed papers, which
are not subject of this thesis and are listed in the following as a reference and
might give some background information about myself. The papers that are
part of this thesis are highlighted in gray.
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2 Motivation

Attackers often take advantage of program vulnerabilities to manipulate a re-
mote program or service in their favour. Common attacks target widespread
programs such as Adobe’s PDF viewer Adobe Reader, Microsoft’s browser Inter-
net Explorer or even entire programming languages such as Java because they
are executed in their own run-time, which is written in vulnerable C++ code.
The motivation of the attackers is often monetary, realised, e.g. by manipulat-
ing web browsers or web servers in order to eavesdrop on sensitive data such
as credit card details. From a technical point of view, the culprit is the fact that
input processed by a program might influence its behaviour in an arbitrary way
chosen by an attacker.

Intriguingly, the execution of arbitrary code that can change during run-time
is actually a fundamental feature of computers, which makes them universal
computing machines. In fact, this universality is what sets computers apart
from other devices and enables these machines to compute every computable
function that will ever exist. In other words, computers can solve problems that
did not even exist when the computer was built. As a result, detecting a security
flaw is not as easily as disallowing the unknown to execute. Quite the opposite,
a computer constantly executes a continuous stream of instructions that is fed
to it. For an outside observer, programs are always happily computing as they
should based on their input – may it be malicious or benign.

Not surprisingly, there is a whole sub-discipline of computer science that aims
at preventing unintended behaviour: the field of correctness. In the field of
correctness, a program that has been designed to do an exactly specified task
is formally verified not to do anything else. However, formal verification or
automated theorem proofing often requires source code and sometimes is im-
practical or even impossible for off-the-shelf software or even an entire oper-
ating system such as Windows or Linux. Having said that, there exist several
approaches that verify operating system components [P4, P5] or even an entire
micro kernel [P6]. The general case, proving that a given program is always
secure for any possible input is even impossible as this would be equivalent
to the halting problem. This is why the goal of this thesis is to rather harden
software by converting its binary form into a more secure version – without
the need to access source code. This approach is more realistic to have greater
impact.
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2.1 Dependability

The hardening in this thesis always aims at preventing arbitrary code execu-
tion, or at least confining the consequences of code execution vulnerabilities
in off-the-shelf programs. Though, the solutions differ in where the technique
is applied and as a result in when it secures a program. Some techniques ap-
ply before the vulnerability can be exploited, others after it was exploited but
before it can have consequences. These possible points of application corre-
spond to the dependability chain [P7]. This chain describes a causality relation
in dependence of each other and is depicted in Figure 2.1.

Fault Error Failure

may lead to eventually causes

Figure 2.1: The dependability chain of Fault → Error → Failure

Fault - Is the existence of a deviation between intended will and actual design
of a program.

Error - If the path exposing the fault gets executed while the program runs,
the fault has surfaced as an error. If the faulty part of the program does
not get executed, this error cannot occur.

Failure - If the error changed the integrity of the program, it might fail. This
does not necessarily mean, that it will crash. But it certainly constitutes
undefined behaviour.

For example, a program fault may be that an array is not checked for its length
when writing elements to it. If the faulty program executes that affected part,
data might or might not be written beyond the arrays’s boundary. If the data
overwrote the array’s boundary, it overwrote other data, thereby creating an
error. This error might later cause a failure when the wrong, now overwritten,
data or code is used.

A very challenging attribute in the chain of Fault → Error → Failure, is the fact
that the Failure may occur at any time later after the Error. This makes it hard
to pinpoint the occurrence of a Failure to a specific Error. The occurrence of a
failure may even depend on the current stack layout, input data, and so forth.
Therefore, after an error occurred, the program may show erratic behaviour
and it might be impossible to reproduce the exact same behaviour again (a
so-called Heisenbug).
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2.2 Safe Languages

The most fundamental approach to prevent attacks that change a program’s
behaviour are situated in the first link of the chain: Fault. If a fault can be
prevented, the corresponding Error and Failure will never occur. Memory-safe
and type-safe languages or memory-safety dialects [P8]of existing languages
are such fundamental approaches. They ensure that classical buffer overflows
or pointer manipulations cannot take place and hence programs cannot exhibit
unintended control flow changes. Popular examples of such safe programming
languages are Java, Ada, and C#.

However, language popularity statistics indicate that unsafe languages, espe-
cially C, are still more popular than Java or C# (see Figure 2.2), despite Java
being on the market for more than 20 years now.
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Figure 2.2: Language popularity: Measured by parsing required programming
language skills of software developer job offers on Craigslist
source: http://langpop.com/ (October 2015)

The reasons for that dominance over Java are manyfold: Security and safety
is often not a major concern and Java is often associated with performance
overhead [L1]. Maybe the choice of programming language and the resistance
against certain languages is rooted deep in the inner persuasion about pro-
gramming language favourites. An additional factor that should not be under-
estimated is pride: A 10% performance loss for, e.g. in a browser, is equivalent
to a setback of a year in terms of performance development [L2].
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2.3 Legacy

This continued development of software in old but established languages, fore-
most C and C++, has led to a whole field in computer security that is devoted
to the fact that there is demand for securing legacy code written in legacy lan-
guages. Software fault isolation, control flow integrity, security policies, and
randomisation all strive for the same goal: depriving programs of their once
beloved Turing completeness in order to tame them to entities that have an
assessable power. Figure 2.3 categorises those different defences by situating
them in the different links of the dependability chain.

Static 
Analysis /
Language

�
�
�
�
�

Faults�

SFI
�
�
�
�
�
�
�

Errors�

Heuristics
&

Hiding
�
�
�
�
�

Failures�

Figure 2.3: Possible anchor points for defences against arbitrary code execu-
tion

Safe languages, such as Java, and also safe dialects of C, would be situated in
the first link: “Fault”. Here, buffer overflow and pointer pivoting bugs are pre-
vented by the design of the language. In the middle link, “Error”, approaches
can be summarised as Software Fault Isolation (SFI): Bugs may still exist in the
unsafe language and therefore programs experience Faults. However, when a
Fault appears in the form of an Error, it can be detected and program execution
can be stopped. For example, a buffer overflow might have already overwrit-
ten crucial control data but the consequences can be prevented, e.g. by Control
Flow Integrity checks, which are alluded to in more detail in the background
given in chapter 3. In the link on the right hand side, “Failure”, security so-
lutions even tolerate overwriting critical control data (Fault) and jumping to
that overwritten addresses (Error), but the consequences are either unlikely
or mitigated. A prime example would be Address Space Layout Randomisation
(ASLR), which does not deprive the adversary of its power to change control
flow but rather puts him in a position where he does not know what to do.
These concepts are explained in more detail in chapter 3.

While preventing the first link in the dependability chain seems to be the most
fundamental approach and the most reasonable from an academic point of
view, the industrial use of unsafe C is strikingly prominent (cf. Figure 2.2).
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This is why this dissertation focuses on hardening the status quo of unsafe
software written in C, C++ and Objective-C. All techniques described herein
aim at detecting and preventing certain malicious behaviour. The described
solutions are all situated in the middle and right link of the dependability chain,
namely methods of SFI, information hiding and heuristics for detection.
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3 Background

If an attacker is able to manipulate a program such that it executes code on
her behalf, this is equivalent to running a program crafted by the attacker on
the victim’s machine. This arbitrary code execution (a.k.a. run-time attack)
is particularly severe if it can be triggered remotely. This enables an attacker to
compromise millions of machines over the Internet if they suffer from such a
vulnerability. Once she controls a single process on the victim’s system, she can
exploit more vulnerabilities in order to escalate privileges up to system level,
effectively taking over control of the operating system. Having achieved this
highest level of exploitation, the attacker is able to cover traces pointing to her
malicious code and to an infection of the system.

There are many causes for code being susceptible to compromising. In the
early days of such exploits, programs were vulnerable to execution of injected
code. Meanwhile, almost thirty years after the first incarnation of remote code
execution in the wild [P2], this type of attack is still one of the most prevalent
ones – however, it has become substantially more sophisticated. The mutual
ping-pong between attack and defence has led to a profound refinement of at-
tacks and defences. This evolution culminated in a defence side that uses self-
mutating targets through randomisation, which are attacked from the other
side using just-in-time compiled malicious code that automatically tailors them-
selves to unknown processes. To give readers some background on the level of
sophistication we have reached thus far, this chapter sheds some light on the
history and chronological development of those types of attacks.

3.1 History of Code Injection and Code Reuse

The first written source that mentions security vulnerabilities that can lead to
the execution of attacker’s code is the Computer Security Technology Planning
Study by the U.S. Air Force [P1] from 1972. On pages 60 and 61, the study says
“The major weaknesses of contemporary operating systems occurs at the interface
between the system and the user. [...] The multiplicity of implementers almost
guarantees that one or more important checks will be overlooked. [...] This can
be used to inject code into the monitor that will permit the user to seize control of
the machine.” One of those “important checks” the author refers to, is ensuring
that user input data can never be stored at places not intended by the pro-
grammer or system design. A very popular example of such missing checks, is
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checking the destination size when writing to a buffer. If this check is not per-
formed, input data might exceed the designated length of that buffer, thereby
overwriting arbitrary consecutive data. This consecutive data might not only
contain important control information but also pointers to code. In particu-
lar, most processor architectures store return addresses for subroutines on the
stack. A deliberate overwriting of a buffer with input data that is too long can
thus overwrite the return address, which effectively changes program control
flow on the attacker’s behalf. A typical stack layout, which demonstrates this
vulnerability, is shown in Figure 3.1: the stack was created from right to left.
First, the caller put the return pointer on the stack to enable the callee to jump
back where execution came from. Then, the prologue of the callee saved the
old EBP, the base pointer against which local variables are referenced, on the
stack. This ensures it can be restored when exiting the sub-route. After that,
the sub-routine placed the local variables buffer and i. If the array buffer
is overwritten beyond its allocated size, other data gets overwritten, namely
the variable i, the saved EBP and the most notably the return pointer. By
overwriting the return pointer, the attacker can change the control flow by de-
liberately targeting to where the sub-routine returns. The attacker’s goal is to
execute arbitrary instructions in order to completely control the program. This
is fundamentally possible in two different ways. Either by inserting her own
instructions and directing control flow to them or by directing control flow to
useful existing instructions.

Return PointerSaved EBPLocal Variables

0xbffff756 0xbffff744 0xbffff758 0xbffff75c 

EB
P�

char buffer[] int i 0xbffff768 0x08048668 

Figure 3.1: A typical stack layout on the common Intel IA-32 architecture: The
stored buffer is succeeded by a return pointer, which is read by the processor.

Classic Buffer Overflow. One possibility to exploit a buffer overflow on the
stack is to inject code in the form of binary instructions into the buffer that can
be controlled by the attacker. The injected data has to be carefully laid out such
that it overwrites the return pointer. This attacker-chosen return pointer must
point to a valid address, specifically to the beginning of binary instructions
that have just been inserted (0xbfffff744 in Figure 3.1). To this end, the
attacker needs to know the memory address of the vulnerable buffer so that
she can point execution to the content of that buffer. If the exact address is not
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known, a typical means is to use a NOP sled, a long array of consecutive No-Op
instructions. With a NOP sled in place, the chosen address does not need to be
exact any more but landing somewhere inside the injected data suffices such
that execution will slide to the actual useful instructions.

No-eXecute (NX) Processors. The inherent flaw, namely buffer overflows,
can be avoided by using higher level languages that support automatic array
bounds checking. However, it is impractical to re-write millions of lines of code
in legacy software. Hence, an easy fix to thwart the execution of data that has
been injected at run-time is to mark memory regions as either executable (X)
or writeable (W ). This principle ensures that data, which has been written at
run-time cannot be executed later. Code that is part of the intended program,
however, is not writeable and hence cannot be changed and can be safely ex-
ecuted. An additional advantage is that this mechanism can be implemented
in hardware and therefore has no performance overhead. The Write xor eXe-
cute (W ⊕ X) hardware support was first introduced in the AMD64 Opteron
processors under the name No eXecute (NX). Other nomenclatures for the same
technique are Intel’s eXectute Disable (XD), or Microsoft’s Data Execution Pre-
vention (DEP).

Return-oriented Programming. Because the broad introduction of W ⊕ X
successfully mitigates code injection attacks, the only possibility left for an at-
tacker is to divert control flow to a useful position inside already existing code.
Surprisingly, the reuse of existing code is not limited to the functionality of
existing code but can arbitrarily exceed it. Similar to how simple assembler
instructions can form complex programs, the re-organisation of seemingly sim-
ple and benign assembler instructions can be used to build arbitrary, complex,
and malicious new behaviour. To achieve this, the attacker selects individual
assembler instructions and executes them in the order of his discretion. This is
made possible by jumping the individual instructions instead of the beginning
of sub-routines. Because a program easily consists of millions of instructions,
the attacker can choose those, which are followed by a return instructions,
thereby effectively isolating the execution of a single instruction of her will.
The subsequent return instruction has the side effect of fetching the next re-
turn pointer from the stack, which results in execution of the next instruction
that the attacker has chosen. These chains of individual, attacker-chosen in-
structions are identical to writing arbitrary assembler code based on already
existing instructions. This method successfully circumvents W ⊕ X protection
as it does not introduce new code but rather reuses individual, existing instruc-
tions. These small code pieces that typically consist of one or a few instructions
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followed by a return are called gadgets. Using a stream of gadgets by placing
their addresses on the stack is called return-oriented programming (ROP).
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Figure 3.2: ROP attack that selects useful gadgets and chains them together.

Since W ⊕ X does not prevent actual buffer overflows, it is still possible for
an attacker to overwrite return pointers such that they point to arbitrary many
useful gadgets. This way, it is possible to chain together a multitude of useful
assembler instructions – thereby creating arbitrary new behaviour. It is there-
fore not surprising that it has been shown that ROP is Turing-complete [P9,
P10]. A ROP attack example is shown in Figure 3.2: the original stack layout
is depicted in white and grows from top to bottom. The attacked layout is de-
picted in grey and grows from bottom to top. The buffer is overwritten with
garbage padding data that is not useful to the attacker but enables her to reach
to the saved EBP and return pointer. By overwriting the saved EBP with a fake
EBP, the attacker accommodates for fact that the sub-routine expects an EBP
to be saved there. The most important overwritten data starts after that, the
return pointer that the attackers wants to manipulate. In the example in Fig-
ure 3.2, the attacker overwrite the return pointer with ‘14’, which will divert
control flow to the address after 14, which is 16. Hence, the manipulated stack
layout forces execution to continue at address 16, which is add $4, %eax.
The execution will continue to execute the following instruction until the ret
instruction at address 22 is reached. This ret instruction pops the next return
pointer from the stack, 02 in the example, and executes mov $1, (%eax)
accordingly. The the return values (14 and 02) are not directly following each
other as the executed code of the first gadget contains a pop %ebp at address
20, which needs a dummy EBP value to pop off the stack.

Address Space Layout Randomisation (ASLR). For these gadgets to work,
the attacker needs to place the exact address on the stack. The next move
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in that mutual ping-pong of attack and defence was therefore to make those
needed addresses unpredictable by an attacker. Address Space Layout Ran-
domisation (ASLR, e.g. [L3]) randomises the base address of loaded code, data,
and stack segments in memory. Therefore, ASLR in theory makes it infeasible
for an attacker to predict the location of gadgets in memory. To make ASLR
practical, it only randomises the base address to leave relative offsets inside
the program intact. This way, the ASLR-enabled program becomes position-
independent as it is able to reference all parts of code and data relative to the
current execution address. However, this relative addressing can also be used
by an attacker who gained knowledge about a single leaked pointer [P11] –
may it be a data or a code pointer. From this leaked pointer, all addresses that
are of interest to an attacker can be calculated in relation to the leaked pointer.

Additionally, it has been shown that ASLR suffers from low entropy in prac-
tice [P12], which originates from various factors such as limited freedom in
address assignment and coarse-grained hardware memory addressing. In fact,
Shacham et al. [P12] found that the real entropy on a 32 bit memory space is
actually 16 bits. These mere 65,536 possibilities can be brute-forced in cases
when the victim process re-starts automatically and shows the same randomisa-
tion on every start. This seemingly artificial scenario is actually pretty common
for web servers such as Apache, because they fork child processes for handling
incoming connections. The creation of child processes using the fork() sys-
tem call efficiently starts a new process by copying the parent’s address space.
As a result, every forked child exhibits the exact same memory layout. It is
actually a feature, not a bug, that a web server is designed to re-start child
processes that have crashed. This way, availability is provided.

However, an attacker can exploit the automatic restart of child processes com-
bined with the fact that restarted children will have the same memory layout
to brute-force all possible combinations until her attack was successful. Each
unsuccessful guess of a valid address will result in a restart thereby narrowing
down the possible addresses as the newly created child will exhibit the exact
same memory layout.
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3.2 Mitigation Techniques in Academia
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Despite its known shortcomings, ASLR is actually state-of-the-
art as of 2015 for defences included in commercial operating
systems such as Windows, Mac OS or Linux. In contrast,
in the academic world, better solutions have been proposed
that, however, have not gained widespread adoption in off-
the-shelf operating systems yet.

Fine-Grained Randomisation. Many researchers have im-
proved defences against these remaining attacks, e.g. by
finer and finer code randomisation that, in contrast to ASLR,
also shuffles the code itself, not just its base address. Despite
the fact that such randomisation is a simple idea, its imple-
mentation is highly involved and several approaches exist in
the literature, ranging from compiler-based solutions [P14,
P15, P16] to run-time solutions [P17, M10, M2] that ran-
domise the program either once or even constantly during
its lifetime [P18].

Such solutions can either be based on source code transfor-
mations, linker modifications, static or dynamic binary trans-
lation. While source code transformations [P19] change the
source code to modify itself during run-time, linker modifica-
tions split small compiler units, such as functions, in separate
libraries that can be loaded in a random order [P20]. Static
binary translation works on already compiled code, reads an
executable or shared library file from disk, disassembles it
and transforms the instructions according to a pre-defined
pattern within the executable file itself. load time transla-
tion solutions are similar to static translation but apply the
translation at load time in order for the processes to bene-
fit from a re-randomisation at each run. This is achieved by
rewriting the binary file after it has been loaded but before
execution [P21, M10, M2]. In chapter 6, I describes a new
method for a load time, fine-grained randomisation scheme.

Just-in-Time ROP. Snow et al. [P13] showed that even fine-grained memory
randomisation is not effective if programs suffer from a disclosure vulnerability
which in turn allows the assembly of ROP gadgets on-the-fly. They showed that
it is possible to traverse valid memory a few or a single valid memory address.
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To get a single valid address, one could a buffer over-read to read a valid
return address from the stack. Given a memory disclosure vulnerability, bytes
stored at that discovered address can then be read. From there, they explore
the address space of the vulnerable process step step by following the control
flow. This is possible through dynamic disassembly of the memory content
that has been discovered so far. After they have found enough ROP gadgets,
they compile the payload so that it incorporates the actual current addresses
that were recorded on-site. This on-the-fly payload is then identical to classical
ROP payload, only the (valid) address have been discovered at run-time.

Control Flow Integrity (CFI). While the approaches presented above tackle
the problem by limiting the attacker’s capabilities after a control flow vulnera-
bility has been exploited, CFI tackles the root cause—namely prohibiting disal-
lowed control flows. To this end, CFI extracts a control flow graph (CFG) from
the program and thereby determines the allowed flows from each vertex in the
graph. During run-time, CFI then checks for every possible control flow change
if the control flow edge is allowed according to the extracted CFG. The rules
for edges and vertices in a CFG are clearly defined: Each basic block (BBL) of
code is represented as a vertex. A BBL is defined as a set of instructions that
are executed one after another without changing the control flow. The last in-
struction of a BBL is always a so-called exit instruction that changes the control
flow (e.g. jumps, branches, function calls). The edges connecting the BLLs, or
vertices, represent the possible target of such exit instructions. A typical CFI
enforcement is shown in Figure 3.3.

Code

1010101001010
0101010010010
0101000111011

void main()
{

Extracted CFG Run-time Monitoring

Checks

Figure 3.3: CFI extracts a CFG of the program to check whether control flow
stays on the pre-determined allowed path during execution.

First, the code is disassembled to discover control flow instructions (left). These
instructions are used to create the control flow graph (CFG), which contains
the theoretically possible control flow (middle). For each taken branch during
run-time, the currently intended control flow is compared to the theoretically
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possible saved in the CFG, which constitutes the allowed control flow. Any
deviation from the CFG results in an exception, thereby precenting the ex-
ploitation of control flow deviations. However, the necessary disassembly (first
step, left in the figure) of the binary code is not ambiguous, which is a result
of the impreciseness of disassembly in general. This ambiguity can stem from
aligned data or aligned functions that lead to different disassembly depending
on whether code is disassembled fall-through or recursively [P22].

3.3 Terminology

To avoid confusion, the following is a list of technical terms and how they are
understood and used within in thesis.

Program. A fixed set of code, pre-initialised and uninitialised data stored in a
standardised file format on disk.

Process. A process in contrast is an instantiation of a program that has been
loaded into memory by the operating system. Multiple processes of the
same program may co-execute simultaneously.

Compile-Time. The point in time before or during a program is compiled from
its source code form into a binary executable consisting of processor in-
structions.

Load-Time. The moment in time when a program is loaded from disk and
copied into a fresh address space, waiting to become a new process.

Run-Time. The entire time after load-time while a program is running, until it
is terminated.

Instruction The smallest execution unit that can be fed into a processor as
gets interpreted as a command to do something.

Exit instruction. An exit instruction is an instruction that can change the con-
trol flow such that program execution may continue at a different ad-
dress. Such instructions change control flow either directly (e.g. call),
indirectly (e.g. jmp *%eax) or conditionally (e.g. jne).

Entry instruction. Similarly, an entry instruction is the first instruction to which
other exit instructions point.

BBL. A Basic BLock (BBL) consists of an entry instruction as first instruction,
potentially some other instructions that cannot change control flow are
always executed one after another. A BBL ends with an exit instruction.
Every program/code can be divided in a set of non-overlapping BBLs.

30



CFG. (Control Flow Graph) The representation of a program as a graph in
which nodes represent BBLs. The edges in turn represent control flow
changes, i.e. the exit instructions.

Run-time attack. An attack that dictates a running program which instruc-
tions to execute – either by injecting new instructions or by re-using ex-
isting instructions.

Leaked pointer. A direct channel (not a side channel) through which informa-
tion about a certain memory address of the currently running program is
revealed to the attacker. This can be through a dangling pointer, a format
string vulnerability or a buffer overflow read vulnerability.

Memory Disclosure Vulnerability. Allows an attacker to retrieve the memory
content of an arbitrary address chosen by the attacker. Such attackers
occur for example when a buffer overflow vulnerability allows an attacker
to overwrite the value of an integer pointer, which can also be read by
the attacker.

KiB, MiB, GiB, ... This thesis uses the computer science friendly nomenclature
of Kibibytes (1024 bytes) instead of Kilobytes (1000 bytes). It is abbrevi-
ated KiB. Analogously, 1 MiB is 1024 KiB or 1, 048, 576 bytes as opposed
to one Megabyte, which is 1, 000, 000 bytes. GiB stands for Gibibyte and
so on.
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4 Related Work

The field of related works is very broad and there is no one way to cluster
them according to one or two dimensions. They could be divided into Attacks
vs. Defences. But there is more to it because related work discusses the un-
derlying problems, root causes, and software bugs that lead to arbitrary code
execution. Defences, on the other hand, could be divided into approaches that
tackle symptoms of malicious code execution and methods that try to solve the
root cause instead. While addressing the root cause of unintended code execu-
tion is more fundamental, the effectiveness and holism of those approaches is
usually hard to prove. The other direction, fighting the symptoms, can be sum-
marised as the goal of hiding information from the attacker. If this goal were
met, an attacker could not exploit vulnerabilities because she could not gain
information about memory layout. Some ideas stayed purely academic while
others have meanwhile found their way into commercial mainstream operating
systems.

Table 4.1 on the following page clusters prior work, concurrent work and
derivative work according to different criteria.

4.1 Software Fault Detection & Isolation

In the broad area of fault detection and isolation, generally software bugs are
expected and detection mechanisms are in place to detect deviation from in-
tended behaviour. One prominent example is Google’s Native Client (NaCl [P46,
P47]), a modified compiler that ensures reliable disassembly combined with
forced inline reference monitoring. This approach enables the run-time envi-
ronment to reason about the NaCl program’s behaviour because control flow
can only take pre-defined and verifiable paths.

More specifically, Control Flow Integrity (CFI) is the approach to prevent a
program from leaving its intended control flow. On the one hand, this makes
CFI a powerful and fundamental primitive, as it is agnostic to the type of attack
and can detect attacks very early, namely when they try to change the intended
control flow. On the other hand, CFI cannot use high level semantics to model
actual behaviour of a program in order to detect deviations. The high fan-out
of vertices in a CFG also makes CFI coarse-grained because it generally does not
have contextual information that would allow CFI to constrain control flow to
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only one allowed outgoing edge at any point in time. For performance reasons,
though, even looser notions of CFI have been published [P57, P56].

The foundation for CFI has been laid by Kiriansky et al. in their seminal work
on program shepherding [P59], which allows security policies to confine pro-
gram behaviour. The actual term Control Flow Integrity has been coined by
Abadi et al., who proposed CFI enforcement based on automatically assigned
labels between basic block transitions [P53, P54]. At run-time, for every con-
trol flow decision (branch), the list of allowed labels is searched for the in-
tended destination of that control flow. The authors extended their approach
to code augmented with meta information about control flow and scope of
memory access (XFI [P55]). Write Integrity Testing (WIT) goes one step further
and determines to which positions code can write data [P44]. The authors use
an inter-procedural points-to analysis, which computes the set of objects that
can be written by each instruction in the program. Based on this information
extracted during static analysis, WIT is then able to detect at run-time whether
write-attempts to a certain location do originate from an instruction that is not
supposed to write to that particular object.

While the approaches enumerated so far are all applied to executable file level,
the HyperSafe approach places CFI as the lowest layer in the software stack
underneath the unmodified operating system [P38]. Their modifications to
the open source hypervisors Xen [L4] and Bitvisor [L5] protect the running
operating systems and their user mode applications with control flow checks.
It achieves this goal by instrumenting branch instructions with a call to an
inline reference monitor that checks the validity of their target.

Since traditional CFI needs a static analysis phase in which all possible control
flow targets are determined, it is not suitable for extensible code, such as dy-
namically loaded libraries or even just-in-time (JIT) compiled code. Niu et al. ad-
dress things shortcoming with Modular CFI [P40], a representation of labels
that allows to dynamically add other valid call sites during run-time. The
authors use a similar approach to make CFI usable for JIT compiled code in
RockJIT [P41]. Criswell et al. [P39] have implemented a version of CFI for use
in kernels. Their CFI implementation ’KCoFI’ uses the FreeBSD [L6] kernel and
has been partially formally verified.

To address the drawback that prior CFI solutions needed either source code
or at least relocation information or debug symbols provided in the binaries,
Zhang et al. [P57] have developed CFI for COTS binaries. Commercial off-the-
shelf (COTS) binaries describe unmodified executable files that are provided
’as is’ by the operating system or distribution. Hence, their solution can be
readily applied to all custom software without the need for source code or re-
compilation. Zhang et al. also describe a looser enforcement for control flow
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targets, called bin-CFI. By assigning the same labels to all control flow tar-
gets, bin-CFI reduces the overhead of CFI checks as they do no longer need
to check multiple allowed targets [P57, P56]. This effectively reduces control
flow checks to ensure that execution flows to the beginning of any function,
but not necessarily to the one function, which is correct in the current context.
The strict notion of CFI gets even more relaxed because corner cases of control
flow, such as exception handling and computed code pointers must be dealt
with. This is done by including them in the list of allowed control flow targets.
The authors argue that this relaxation is not severe, as the number of additional
allowed targets does not increase significantly compared to all possible control
flows in an unprotected binary. For this purpose, Zhang et al. introduced the
notion of the Average Indirect Target Reduction (AIR). The AIR shall reflect how
many addresses in a program can no longer be targeted on average, due to con-
fined control flow. It is defined as the normalised sum of all ratios of confined
control flow vs. program size. Hence, the AIR roughly puts the average control
flow restriction for all possible control flows into perspective with unprotected
programs. However, while the comparison of AIR values of conservative CFI
with individual labels (99.13%) and bin-CFI (98.86%) suggests similar perfor-
mance, a huge relaxation is actually the case. A value of 99.13% reduction of
control flow targets for the original CFI work [P53] means that on average only
0.87% (100% − 99.13%) of all code can be called. In contrast, bin-CFI allows
100% − 98.86% = 1.14% to be called. That is 31% more!

Hence, Göktaş et al. [P24] have shown that this relaxed CFI still allows mod-
ified ROP attacks to be mounted despite alleged CFI protection. Their exem-
plary modified ROP payloads for Internet Explorer are still within the allowed
wiggle room of CCFIR and bin-CFI protected binaries. Also, Davi et al. discov-
ered that the relaxed CFI notion as presented by [P57, P56] can be overcome.

Because of these weaknesses, Mashtizadeh et al. [P36] presented cryptographi-
cally enforced CFI. This approach is based on LLVM’s [L7] clang compiler [L8]
for C and introduces randomly created keys that are used to protect control
flow targets using Message Authentication Codes (MACs). If an attacker does
not know the key (because it is only stored in registers), she cannot create
valid MACs for injected code addresses.

4.1.1 Integrity Checking & Heuristics

The fact that an attacker can execute arbitrary code means that either the code
itself can be modified or at least the data controlling the flow of code can be
tampered with. This observation is the basis for many approaches that monitor
the integrity of data structures during the run-time of a program.
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An early solution, proposed by Cowan et al. [P43] in 1998 introduces so-called
canaries on the stack – just before return addresses. Similar to coal mining,
where this term was borrowed from, a canary is was early indicator for an im-
manent threat: the lack of oxygen. In contrast to mining, a digital canary does
not die because of carbon monoxide, but they are placed such that overwriting
return addresses will overwrite the canary. Hence, it is a good indicator that
the integrity of the program has been violated.

Another way is to save a copy of the return address somewhere on a dedicated
stack, so that it is infeasible, or at least unlikely, for the attacker to overwrite
both. On return, the address on the dedicated stack is compared to the sup-
posed return address on the ordinary stack. Should the values not match, an
alarm is raised. This principle has been employed in StackGhost [P60], using
hardware mechanisms so that the operating system can transparently keep a
dedicated return copy stack for each running process it protects. Entire soft-
ware solutions have also been proposed. These solutions create a second, ded-
icated stack in software and explicitly store each return address additionally
on that stack. Return Address Defender (RAD) uses a modified compiler to re-
place the usual call and return instructions with more sophisticated code
snippets that make use of the secondary return stack. Also ROPdefender [P50]
works similarly but does not need access to source code to transform binary
thanks to the binary instrumentation framework Pin [L9], which can add those
checks dynamically during run-time.

4.1.2 Avoiding Buffer Overflows

In order to avoid buffer overflows in the first place, several techniques have
been proposed in the literature [P48, P8, P49, P44, P45]. All these solutions
tackle the problem from a slightly different angle. The observation of Write
Integrity Testing (WIT [P44]) was the fact that programs need to either change
control flow data (e.g. pointers, C++ vTables, return addresses) or non-control
data at some point in order to change the intended program behaviour. Con-
sequently, WIT statically extracts from the source code which parts of the code
legitimately write to which pointers, which data, which return addresses and
so on. Then, during run-time a monitor enforces that each memory write op-
eration originates from those extracted, legitimate code pieces only. Should
data or even control-data be overwritten by a piece of code that would not
and should not do that, it is detected and aborted, hence preventing the at-
tack. A little less generic are solutions that protect pointers only [P48, P8,
P49]. In these solutions, such as CPI, so-called Fat Pointers augment the tra-
ditional representation of a pointer, namely a pure integer representing the
linear address in memory, by additional attributes such as a valid length of the
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object it is pointing to. This way, read and write operations can be check to
be inside the legitimate boundaries of the object they actually intend to refer
to. Should a pointer be pivoted to outside its legitimate range, the access will
be detected. However, recent work has shown that some of those techniques
might be flawed. In ’Missing the Point’ [P27], the authors show that the needed
safe region for CPI can in fact be discovered by an adversary.

4.1.3 Anomaly Detection

Other approaches in the literature rely on anomaly detection. Examples are
ROPecker [P62], Kbouncer [P61] and ROPGuard [L10], which all try to detect
ROP payloads by monitoring a process’ behaviour for characteristics that dif-
fer from normal program execution. For example, a ROP attack usually chains
small gadgets (one or a few instructions followed by a return) together. Thus,
the number of returns per executed instructions is much higher than in usual,
compiler-generated program code. This can be detected using the hardware
performance counters [D2], such as the Last Branch Record (LBR) register. To
minimize performance impact, only calls to critical functions (such as syscalls)
are monitored and are used as checkpoints for benign behaviour. Recent re-
search results suggest that such approaches can be bypassed by an attacker
since she can construct gadget chains that bypass all proposed heuristics [P23,
P32, P31].

4.2 Information Hiding

Many defences are based on the fact that the attacker needs to know valid ad-
dresses in a program in order to direct control flow to instructions that benefit
the attacker. Hiding those addresses is thus a viable line of defence. This can
be achieved by randomisation, i.e. it is infeasible for the attacker to know nec-
essary addresses to mount an attack. An additional hurdle for an attacker is to
not to use addresses in plain text that could otherwise be revealed by attacker.
Pointguard [P73] thus encrypts pointers to make them useless for an attacker
who does not know the key.

4.2.1 Randomisation

The probably most widely used implementation of randomisation is part of all
major operating system: Address Space Layout Randomisation (ASLR). The im-
plementations between Windows [D3], Mac OS [L11], Linux [L3], Android [L12]
and iOS [L13] differ slightly, but are in essence very similar: The load address
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of the main executable and its shared libraries are randomised in memory. So
is the stack and allocation of heap memory. However, the loadable segments
of each module stay en bloc. This means that the main executable is loaded
at a random address as a whole, i.e. .text, .data and .bss segment keep
their relative addresses to each other. This process is repeated for each loaded
shared library. Due to the way fork() works, the address space is copied
when a child process is created, i.e. parent and child share the exact same
addresses.

4.2.2 Fine-Grained Randomisation

A significant downside of ASLR is that it suffers from low entropy [P12]. Ad-
ditionally, the fact that modules are moved en bloc, means a single leaked
pointer reveals all addresses relative to it, i.e. the entire module. Fine-grained
randomisation schemes try to address these problems by splitting the code into
pieces that are then randomised individually to enhance entropy and to make
relative distances unpredictable.

One way to categorise fine-grained memory randomisation solutions is by their
implementation: There exist compiler-based solutions, static or load time trans-
lations, and dynamic translations. Another dimension is whether they ran-
domise only once, every time the program starts, or even continuously during
program execution.

Compiler-Based Solutions. The idea of compiler-based approaches is to ran-
domise the layout of a program and to install differently randomised copies on
different computers so that the program layout is not predictable for an adver-
sary.

Cohen et al. [P14] suggested compiling different versions of the same pro-
gram. In a modern setting this technique can be applied within a smart-
phone app store to distribute individually randomised software. Similarly,
Franz et al. [P15, P16] have suggested the automation of this compiler pro-
cess such that every customer gets an individual version. This way, an attacker
cannot create an exploit for multiple machines since she must know the indi-
vidual code layout of a single victim instance. Franz et al. suggest that app store
providers integrate a multicompiler in the code production process. However,
those approaches have several shortcomings: First, app store providers have no
access to the app source code. This requires the multicompiler to be deployed
on the developer side, who has to deliver possibly millions of app copies to the
app store. Second, the proposed scheme requires software update processes to
correctly patch app instances that in turn differ from each other.
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Code Islands [P20] uses a compiler-based solution to divide a shared library
into several fragments. Their approach compiles groups of functions to sev-
eral shared libraries instead of one shared library containing all the functions.
These (potentially thousands of shared library files) are then put in a container
whose format is understood by a modified loader which maps the libraries into
the particular process. However, their solution needs a modified loader to sup-
port the proprietary format. Executables then need to load literally thousands
of shared libraries, while each library constitutes a single function.

In contrast, Bhatkar et al. [P19] presented a source code transformer and its
implementation for x86/Linux. The main idea is to augment any source code
with the capability of self-diversification for each run. In particular, features
are added to the source code that allow the program to re-order its functions
in memory in order to mitigate code reuse attacks. Their tool can also be ap-
plied to shared libraries if the source code is available. However, their solution
induces a run-time overhead of 11% and apparently needs access to the source
code.

Static Translation. Static translation reads an executable or shared library
file from disk, disassembles it and transforms the instructions according to a
pre-defined pattern within the executable file itself. Kil et al. [P63] use static
translation for their Address Space Layout Permutation (ASLP). ASLP performs
function permutation without requiring access to source code. The proposed
scheme statically rewrites ELF executables to permute all functions and data
objects of an application. The presented scheme is efficient and also supports
re-diversification for each run. However, only the functions themselves are
permuted, not their content.

Pappas et al. proposed randomising instructions and registers within a basic
block to mitigate return-oriented programming attacks [P67]. However, the
proposed solution cannot prevent return-into-libc attacks (which have been
shown to be Turing-complete [P74]), since all functions remain at their original
position.

Load-Time Translation. load time translation solutions are similar to static
translation but apply the translation at load time in order for the processes to
benefit from a re-randomisation at each run. This can be achieved by several
means, such as rewriting the binary file after it has been loaded but before
execution [P21, M2]. Such solutions usually suffer from the fact that each
execution either needs a translation/rewriting phase each time a process is
started or they need a prior static analysis phase [P21].
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Dynamic Translation. Dynamic translation leaves the original file untouched
and does not apply binary rewriting but the program undergoes a dynamic
translation, i.e. the instructions are transformed as they are executed. Dynamic
translation is very similar to Just-in-Time (JIT) compilation but usually trans-
lates from and to the same instruction set architecture. For example, Bruening
proposed the DynamoRIO framework in his PhD thesis [P70]. DynamoRIO
is able to perform run-time code manipulation. ILR (instruction location ran-
domisation) [P17] randomises the location of each single instruction in the vir-
tual address space. For this, a program needs to be analysed and reassembled
during a static analysis phase. This is why ILR induces a significant perfor-
mance overhead (on average 13%), and suffers from a high space overhead,
i.e. the rewriting rules reserve on average 104 MiB for only one benchmark
of the SPEC CPU benchmark suite. For direct calls, ILR can only randomise
the return address in 58% of the calls, meaning that for a large number of re-
turn instructions, ILR needs to do a live translation for un-randomised return
addresses to run-time addresses.

Constant Re-Randomisation. To the best of our knowledge, there are only
two papers that actually implemented and benchmarked re-randomisation.
Curtsinger et al. [P75] have implemented an LLVM compiler modification that
injects code, which adds the functionality to re-randomise the address of func-
tions every 500 ms. Their overhead of code, heap and stack (re-)randomisation
is 7%.

Giuffrida et al. [P18] changed the Minix [P76] microkernel to re-randomise
itself every x seconds. This is achieved by maintaining the intermediate lan-
guage of the LLVM [L7] compiler for the compiled kernel modules. However,
this procedure has a significant run-time overhead of 10% for a randomisation
every x = 5 seconds or even 50% overhead when applied every second.

Memory Sharing All the related work on fine-grained memory randomisa-
tion has in common that they either do not randomise shared libraries, or if
they do, the difference introduced in the shared libraries prohibits code shar-
ing. A solution to counteract this is presented in chapter 7 and was published
in [M3].

4.2.3 Memory Disclosure

It has been shown that fine-grained memory randomisation alone does not
suffice to protect against code reuse attacks. Snow et al. [P13] showed that
given a memory disclosure vulnerability, it is possible to assemble ROP gadgets
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on-demand without knowing the layout or randomisation of a process. They
explore the address space of the vulnerable process step-by-step by following
the control flow from an arbitrary start position. After they have discovered
enough ROP gadgets, they compile the payload so that it incorporates the ac-
tual current addresses that were discovered in the victim’s address space. This
attack needs a valid code address to begin with in order to avoid accessing
invalid memory.

Bittau et al. [P34] use a similar memory disclosure attack in their blind ROP
attacks to exploit servers with unknown binaries to which the attacker nor-
mally does not have access. Their attack allows to scan a remote process for
valuable gadgets, transfer the code contents back to the attacker over the net-
work where she can then mount a traditional ROP attack. Blind ROP consist
of three stages: First, a stack reading attack bypasses stack canaries and finds
return addresses. Second, return addresses on the stack are altered and the
server’s behaviour is observed as to infer gadget positions. They end this stage
once they found enough gadgets to perform a write()-syscall to transmit the
executable memory over the network. Lastly, they scan the dumped binary for
gadgets to launch a common ROP attack.

4.2.4 COOP

Counterfeit Object-oriented Programming (COOP [P33]) is a sophisticated type
of attack that does not chain simple return address one after another, like ROP.
Instead, a COOP attack creates fake C++ objects on the stack that resemble
existing C++ objects of the victim program. COOP is based on the observa-
tion that C++ objects are implemented such that code for each method of a
class exists only once but each instance’s fields and virtual functions are kept as
separate structs in memory. Hence, diverting object instance pointers to coun-
terfeit objects created by the attacker lets a class’ methods operate on counter-
feit objects. Using typical C++ implementation patterns, execution can chain
together several C++ objects to achieve turing completeness.

4.2.5 Hybrid Approaches

The authors of Mohan et al. [P58] propose a crossing between randomisation
approaches, typically used to hide information from the attacker, and CFI ap-
proaches that aim at preventing control flow deviations in the first place. The
authors’ observation is that classical CFI can be subverted given complete pro-
cess memory disclosure because the set of allowed branch targets (labels) is
implicitly stored in the CFI checks in code. They overcome these shortcom-
ings by externalising those CFI checks to hidden memory. Each control flow
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check is merely a check whether the current target is within the memory area
containing all allowed targets for that particular control flow. The memory
area is minimised by clustering possible targets close together. The positions of
those clusters are then randomised in memory so that for each run the allowed
memory area is at a different location and cannot be guessed.
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5 MoCFI

Control flow integrity (CFI) is a fundamental concept to inhibit control flow
attacks, such as code injection or ROP, at run-time. Control flow integrity
was first introduced in 2002 by Kiriansky et al. who enforced CFI in their
secure program interpreter (“Program Shepherding” [P59]). Later, in 2005
Abadi et al. used a similar concept to instrument code such that control flow
instructions check their destination [P53].

In this chapter, the design and implementation of a CFI enforcement framework
specifically for smartphone platforms is presented. In particular, the MoCFI
(Mobile CFI) framework focuses on the ARM architecture, which is the most
prominent hardware platform for smartphones. It is implemented to work with
Apple’s iOS platform for which numerous exploits (so-called jailbreaks) exist.
The implementation of CFI on ARM is often more involved than on desktop PCs
due to several subtle architectural differences that highly influence and often
significantly complicate a CFI solution.

1. The program counter is a general-purpose register

2. The processor may switch the instruction set (between THUMB and ARM)
at run-time

3. There are no dedicated return instructions

4. Control flow instructions may load several registers as a side-effect.

The MoCFI framework performs CFI on-the-fly during run-time without requir-
ing the application’s source code. Although MoCFI can be deployed to any
ARM based smartphone, the implementation was exemplarily done for Apple’s
iPhone because of three challenging issues:

1. The iPhone platform is a popular target of control flow attacks due to its
use of the Objective-C programming language. In contrast, Android is not
as prone to control flow attacks because applications are mainly written
in the type- safe Java programming language.

2. iOS is closed source meaning that we can neither change the operating
system nor can we access the application’s source code.

3. applications are encrypted and signed by default.
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Despite this prototype being developed for iOS, MoCFI and its principles are
also applicable to other ARM-based devices such as Android phones and tablets.
The performance as well the average overhead for typical applications and
worst-case scenarios was measured. The evaluation shows that MoCFI is effi-
cient and can successfully prohibit a control flow attack.

5.1 The Contribution to Science and My Part in it

MoCFI is the first CFI framework for iOS devices. It operates on binaries and
can be enabled on a per-application basis. This overcomes the problem that for
a vast majority of smartphone apps no source code is available.

The MoCFI approach presented herein first recovers the control flow graph
(CFG) of an iOS application provided in binary format. Based on this GFG, the
control flow verification is done at run-time for all instructions that can change
control flow. The prototypical MoCFI implementation is based on in-memory
patching of code, which is done by an injected library at load time. This tech-
nique makes it compatible with ASLR, static code signing, and encryption. The
MoCFI urlibrary, which must be loaded alongside to-be-protected processes can
be installed using a jailbreak.

I contributed to the entire MoCFI solution by designing and implementing
methods to extract the CFG from a decrypted iOS executable file and by design-
ing and implementing the run-time check mechanism that compares the actual
control flow with the allowed control flow based on the statically extracted
CFG. Further, I contributed to securing Objective-C message passing with CFI
enforcement. Message passing is a characteristic feature of Objective-C, the
language in which iOS and its apps are programmed, and allows methods of
inherited other objects to be invoked.

5.2 Primer on ARM and iOS

Since the processor architecture ARM and the operating system iOS influence
the design decisions of MoCFI, their peculiarities are briefly described in this
section.

5.2.1 The ARM Architecture

The ARM architecture is very popular with computation- and graphics-intense,
low power devices. The ARM architecture is a RISC architecture developed by
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ARM Holdings and licensed to chip manufacturers such as Samsung, TSMC or
Qualcomm.

This work focuses the very popular 32 bit processor type, because they were
state-of-art when this research was conducted in 2012. Since then, 64 bit ver-
sions are used since the introduction of the iPhone 5S in September 2013. In
the 32 bit processor, each instruction is exactly 32 bits wide and must also
be aligned to a multiple of 32 bit memory address. It features sixteen 32 bit
general-purpose registers r0 to r15. Some of these registers have a special
meaning, as shown in Table 5.1

r13 Stack pointer (sp)
r14 Link register (lr)
r15 Program counter (pc)

Table 5.1: Special Meaning of ARM Registers.

In contrast to Intel x86, machine instructions are allowed to directly operate
on the program counter pc (called EIP on x86).

To reduce the size of instructions, ARM has introduced the 16 bit wide THUMB
instruction set. Processors supporting THUMB mode can actually switch be-
tween ARM and THUMB instructions while executing code. To use the correct
instruction set during execution, function calls and returns implicitly encode
whether they are targeting ARM or THUMB code [D4]. In ARM assembly, a
function is called by either a BL instruction (Branch with Link) or BLX instruc-
tion (Branch with Link and eXchange). BLX can also take a register as an
argument (indirect call). Typical for function calls, BL and BLX both save the
return address, however, not on the stack. Instead, the return address is stored
in the link register lr. At the end of a function, execution returns by setting
pc ← lr. For nested function calls, the value of lr is usually pushed on the
stack when the called function is entered.

5.2.2 Apple’s iOS Operating System

iOS is the name of Apple’s mobile operating system that has been unveiled in
2007 with the first iPhone smartphone. Since then, it has become their default
operating system for mobile Apple devices such as iPhones, iPads, and iPods.
The W ⊕ X data execution prevention (cf. chapter 3) has been enabled by
default since iOS 2.0. Additionally, since iOS 4.3, ASLR is enabled by default
to randomise the address space of each started process. To reduce the attack
surface for malicious software, iOS is designed to only run applications (Apps)
that are digitally signed by Apple. An interesting security feature of iOS is
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dynamic Code Signing Enforcement (CSE) at run-time to prevent the injection
of new code [P77]. By default, stored programs are encrypted and are only
decrypted before execution. This encryption and signature would prevent the
traditional CFI approach [P53, P54] as it performs changes on the executable
file.

5.3 The Design of MoCFI

From a high-level point of view, MoCFI operates in two phases:

Preprocessing Phase. In this first phase, which only has to be done once per
application, all necessary information is extracted and packed with the
original App for later use. First, the encrypted binary executable file gets
decrypted so that it can be disassembled. The assembler representation
is then used to extract the CFG and also saves the position of control
changes (outgoing edges in the CFG) to be used with run-time enforce-
ment later.

Run-Time Enforcement Phase. This phase takes place every time the App is
executed. First, during load time, the executable is patched in memory
to incorporate the CFI checks. During run-time, the App is monitored
by means of an Inlined Reference Monitor (IRM [24]), which checks for
each control flow change whether it is allowed according to the statically
extracted CFG.

The interaction between the two phases is depicted in Figure 5.1.
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Figure 5.1: Overview showing the two phases of MoCFI.
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In more detail, the individual steps that make MoCFI work as follows:

Decrypt. To protect iOS Apps from piracy, they are encrypted by default. In
order to operate on the unprotected binary executable file, it must be decrypted
first. The unencrypted file content (code and data) is obtained by dumping the
running process of an App once, based on the method presented in PiOS [P78].

Disassemble. Then, the binary machine instructions stored in the code seg-
ment needs to be disassembled to be able to operate on an instruction ba-
sis. A proven and reliable disassembler is the IDA Pro disassembler by Hex
Rays [L14]. IDA allows the use of scripts written in C or Python to operate on
the reconstructed instructions and their control flow.

Branch Detector. I created an IDA script that is able to automatically ex-
tract the CFG of a given decrypted iOS App. For vertices of the CFG, indirect
branch instructions, indirect jumps, calls, and function returns are considered.
Their target addresses are variable at run-time and must therefore be protected.
Moreover, direct function calls with hard-coded targets are also included to ver-
ify the return address when the callee returns. Including direct jumps in the
CFG, however, is unnecessary as the target address for these instructions are
hard-coded and hence cannot be manipulated by an attacker.

Patch File. Alongside the CFG, patch information is created that contains the
instruction’s relative offset into the code segment, it’s length, type and pre-
calculated target(s). This patch file is later used at load time to patch the
loaded code with calls into the MoCFI run-time that do the actual CFI checks.
The executable file itself cannot be patched in-place by means of static binary
translation, because it is signed and encrypted and even if the encryption key
were known, the static modifications would invalidate the signature. Using
separate CFG and patch files leaves the original App unmodified and thus Ap-
ple’s CSE can still be used to protect the App. The patch file and the CFG are
saved inside the App’s package and are not included in the App’s signature
since this cannot be changed.

Run-Time Enforcement Phase. To achieve the goal of performing CFI checks
at run-time, a MoCFI protected App is modified in memory during load time. To
this end, the MoCFI library has to be injected into an App’s address space (see
details in section 5.4). The MoCFI library performs in-memory binary rewriting
after it has been loaded but before execution starts.
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Dynamic Binary Rewriting. During load time, the MoCFI library uses the
patch file to quickly find and overwrite the control flow instructions that corre-
spond to edges in the CFG. These patches redirect control flow into the MoCFI
run-time part for each edge in the CFG. We achieve this by replacing all control
flow instructions with a single instruction: the so-called dispatcher instruction.
The dispatcher instruction redirects the control flow to a code section where
the CFI checks reside, namely to the run-time Module of our MoCFI shared
library.

Inline Reference Monitor (IRM). This inter-positioned call instead of the
original call is known as Inline Reference Monitor (IRM) [P1]. It adds the pos-
sibility to have a centralised monitor that is consulted for each edge transition
in the CFG. If the intended target is allowed, control will be transferred to the
correct and valid vertex of the CFG without the App noticing. Otherwise, an
exception will be thrown and the App is terminated immediately. For the IRM
to determine if a target is valid, it checks the type of control flow and its in-
tended target against a valid target or a list of valid targets. While the target
address of an indirect jump or call can be validated against a statically extracted
list of outgoing edges, the validation of function returns requires special han-
dling. Returns are dynamically determined by the value of the lr register and
cannot be predicted ahead of time. Therefore, MoCFI uses the concept of a
shadow stack, which stores the only valid return target whenever a function is
called [P51].

5.4 Implementation

MoCFI was implemented for the then-new iOS version 4.3.2 and is made up of
three different parts:

• gdb script for decrypting any encrypted application.

• IDA Pro IDC Script for generating the CFG and patch files.

• iOS shared library to be attached to each MoCFI-protected process.

The Pre-Processing Phase is implemented as IDA Pro 6.0 IDC script (C language)
and generates the CFG for the application as well as the needed patch file. The
Run-time Phase library that is loaded in each process is written in C++ using
Apple’s Xcode 4.0 for iOS. The IDA IDC script consists of 842 lines of code
while the MoCFI library consists of 1,430 lines of code.
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5.4.1 Pre-Processing Phase

Decrypt. Before the executable file can be loaded into the IDA disassembler,
it needs to be decrypted first. Apple’s Mac OS X and iOS operating system
share the same Darwin kernel and hence use the same binary file format for
executable files and for shared libraries. Their Mach-O file format supports the
description of different sections (e.g. code and data) within the file but also
stores a variety of meta information alongside. Specifically, the Mach-O file
stores cryptographic signatures in the LC_SIGNATURE_INFO command [P78].
When an application is started that carries this information, the iOS loader
verifies the stored signature by recalculating the signature and comparing it
against the information stored in this section. If they do not match, the appli-
cation is not loaded and terminated. Moreover, Mach-O binaries also support
the so-called LC_ENCYPTION_INFO command, which specifies whether an ex-
ecutable is stored in encrypted form. If this is the case, the loader retrieves the
decryption key from the system’s secure key chain and places the decrypted
file contents in memory so that they can be executed. MoCFI uses this fact to
retrieve the cleartext executable file contents by dumping the App’s memory
contents. This dumping process has been automated using the gdb debugger,
which loads a MoCFI gdb script, starts a new App and attaches to the newly
created process. The script then matches the loaded cleartext sections in mem-
ory with the to-be-loaded sections stores in the Mach-O file and generates a
new Mach-O file with the encrypted sections being replaced by their cleartext
equivalents. This Mach-O file can be read by the IDA Disassembler natively.

Disassemble. IDA Pro uses a rather sophisticated disassembler whose recov-
ery rate of instructions is improved by guiding disassembly recursively through
the code as portions of the code as discovered. This method is superior to fall-
through disassembly, which cannot recover code and data very reliably. IDA
also automatically and reliably detects whether ARM or THUMB instructions
are used based on how they are called. The MoCFI IDC script loaded into IDA
identifies all relevant branch instructions and saves their type, relative offset,
and their length in the patch file. These branch instructions can be divided in
two categories:

(1) Instructions that encode a hard-coded control flow destination as an im-
mediate value in the instruction itself.
Example: bl 0x407ac

(2) instructions that take the target address from the value of a register.
Example: bx lr
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Category (1) branches are trivial to handle on iOS because the W ⊕X environ-
ment does not allow code to be changed. Hence, as an optimisation step we do
not consider category (1) branches in the CFG. Category (2) branches on the
other hand, are more involved to resolve as the possible register value needs
to be determined statically by means of program slicing [P79]. Program slicing
back-tracks the instructions preceding the branch instructions in question with
respect to whether and how they modify the register value the branch instruc-
tion uses. This way, the value of the register, and hence the the branch target,
can be determined. Also more complex cases, e.g. LDR pc,[r2,r3,LSL
#2]) can be solved by back-tracking the used registers. The LDR instruction
loads a register value from another register or from a complex computation
of other registers. In this example, the program counter pc is loaded from
pc ← r2 + r3 · 22. This effectively changes control flow to the calculated ad-
dress. If both r2 and r3 can be back-tracked, the correct value for pc can be
calculated.

Indirect Branches and Heuristics. Sometimes, it is not possible to back-
track the register to a single value, for instance when the register is loaded
from memory. In this case, MoCFI uses heuristics to narrow down the pos-
sible control flow destinations. Therefore, the reconstructed CFG is always a
superset of the actual CFG of the program because it cannot be accurately re-
constructed in all cases. Please note, that this is a general limitation of CFG
re-construction methods and not specific to the MoCFI approach. The heuris-
tics MoCFI employs to reconstruct register values are based on typical patterns
that the LLVM iOS App compiler incorporates in the executable file.

1 0x1000: MOV r2, 0x2000
2 0x1004: ADD.W r2, r2, r3, LSL#2
3 0x1008: MOV pc, r2
4 0x2000: B.W 0x3000
5 0x2004: B.W 0x3100
6 0x2008: B.W 0x3200

Listing 5.1: ARM Indirect Jump Using a Jump Table

Listing 5.1 is a common compiler-generated pattern to optimise switch state-
ments. Depending on the value of r3, the possible control flow targets (pc)
are 0x3000, 0x3100 or 0x3200. The MoCFI analysis can recover these pos-
sibilities because the compiler pattern is detected and all possible targets are
extracted. Patterns that have not been trained (e.g. handwritten assembler
code) cannot be detected. In those cases, the control flow is constrained to the
understanding of possible control flows. For instance, indirect calls must tar-
get the beginning of functions. Even though it is still possible to call arbitrary
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functions, the target control flow cannot land inside a function body. Similarly,
indirect jumps (BX) are only used to jump inside the scope of a function and
hence can be confined to the current function’s boundaries. Even though there
is no technical need for these restrictions, the C, C++ and Objective-C lan-
guages restrict control flow to the scope of one function, except for function
calls. Hence, MoCFI assumes that the scope of indirect jumps is bounded by
the enclosing function.

Objective-C Peculiarities. Traditional CFG generation techniques also need
to be extended for iOS applications due to a peculiarity of Objective-C. Inter-
nally, any method call of an Objective-C object is resolved to a call to the generic
message handling function objc_msgSend(). The name of the actual method
(called selector) is given as a parameter. Consequently, MoCFI tracks these pa-
rameters in the CFG generation phase and includes them in the CFG. Other-
wise, an attacker could modify the method parameters of objc_msgSend(),
thereby diverting the control flow to an invalid method. The parameter ex-
traction of objc_msgSend() was loosely based on the work presented in
PiOS [P78].

5.4.2 Run-time Phase

Most UNIX-based operating systems support the injection of libraries by provid-
ing the environment variable LD_PRELOAD that is checked by the OS loader
when initialising a new process. The loader ensures that the library is loaded
before any other dependency of the actual program binary. iOS provides an
analogous method through the DYLD_INSERT_LIBRARIES environment vari-
able [D5]. By letting this variable point to the MoCFI library, it gets loaded
when a new process is created. The variable is inherited to child processes,
which is handy in iOS because it allows MoCFI to be applied to all Apps started
by a parent process. In iOS, the home screen that shows all installed Apps is a
process called Spring Board. Forcing all Apps started by Spring Board to be pro-
tected by MoCFI is simply a matter of setting DYLD_INSERT_LIBRARIES for
the Spring Board process once. Because of the way DYLD_INSERT_LIBRARIES
works, MoCFI is initialised before any other dependency of the program is
loaded but after the signature of the App has been verified.

Load-Time Binary Rewriting. When control is transferred to the MoCFI li-
brary for the first time, no other code of the App has executed yet. This is ideal
for patching the loaded code in memory such that it incorporates the necessary
calls to the IRM, which performs the actual CFI checks.
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For the patching to take place, MoCFI first locates the correct patch file inside
the App bundle. Then, it rewrites the loaded code in memory according to
the information stored in the patch file. Since iOS enforces a W ⊕ X memory
protection policy, the code segment is actually not writable and also cannot be
turned writable again by using the mprotect system call. Instead, MoCFI cre-
ates a copy of the code segment using the mmap system call. Then, all relevant
instructions are patched using the meta information stored in the patch file.
As a last step, the patched code is mmap()’ed to the original position of the
code, thereby overwriting the write-protected, unmodified code. Please note,
that the presence of mmap does not give an attacker the opportunity to subvert
MoCFI by overwriting code. To use mmap, an attacked would already need
arbitrary code execution, which is prohibited by MoCFI.

Dispatcher Instructions. As described earlier, MoCFI’s binary rewriter over-
writes the relevant control flow instructions with Dispatcher Instructions. The
different dispatcher instructions accommodate for the fact that they replace
different control flow instructions, but they all transfer control to the MoCFI
library (see Figure 5.2). They are used as bridges between the application that
MoCFI protects and the MoCFI library itself.
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Figure 5.2: The Dispatcher Instructions overwrite original control flow instruc-
tions to build a bridge to the MoCFI Inline Reference Monitor (IRM)

As shown in Figure 5.2, MoCFI uses either a Static Dispatcher, a number of
Wrappers or an Exception Handler (EH) to call the actual MoCFI IRM, which
performs the CFI checks.
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Static dispatcher. This dispatcher is part of the MoCFI library and only exists
once. It is the simplest way to call the IRM. The dispatcher saves the registers
that could be modified by the IRM and calls the IRM. The IRM then checks if
the intended target is reachable from the current vertex in the CFG via single
outgoing edge. If yes, this constitutes a legitimate control flow and the IRM
simply returns. Otherwise, the program terminates itself. After returning from
the IRM, the dispatcher restores the registers and transfers control to the ac-
tual intended target as if the check did not happen. The dispatcher is slightly
different for calls to external libraries.

Wrapper. The wrapper is needed when the dispatcher instruction is larger
than the instruction it replaces or when the to-be-replaced instruction has side-
effects. The first case may happen for THUMB code as the needed B/BL/BLX
instruction to call the dispatcher is always 32-bits wide, while the instruction
it replaces might only be 16 bits wide. This necessarily results in overwriting
two 16 bit THUMB instructions, which need to be preserved in order to remain
the original semantics of the program. To this end, MoCFI has allocated an
individual Wrapper for each of those cases during its load time patching. The
wrapper stores both instructions that have been overwritten and also calls the
Static Dispatcher. In the example shown in Figure 5.2, the instruction MOV
r1, r2 gets overwritten by the call to Wrapper_1. Instead, Wrapper_1
then calls the missing MOV instruction, followed by a call to the dispatcher,
which then checks the actual control flow instruction for a valid target. If the
IRM and the Static Dispatcher return successfully, the actual copied control
flow instruction is executed inside Wrapper_1. This is necessary on the ARM
platform, as control flow instructions may have side-effects, such as loading
registers. In the example in Figure 5.2, the patched control flow instruction
POP {r4, pc} loads both, the program counter pc and register r4, from the
stack.

Exception Handler. An exception handler (EH) is required, if it is not possible
to overwrite two consecutive 16 bit instructions. For example, if the preceding
instruction uses the program counter pc or is itself a branch. In the example
shown in Figure 5.2, the preceding instruction LDR R2,[PC,#2] references
the program counter pc. Hence, we cannot simply overwrite that instruction
and execute it inside the Wrapper, as this would change the value of pc. Instead
of complicated corrections of the pc value, we opted for replacing only the
control flow instruction with a 16 bit illegal instruction. This way, iOS transfers
control to the exception handler for illegal instructions, which the MoCFI load
time Module has registered before. However, this simple method is deliberately
avoided when possible, as it introduces a significantly higher overhead than the
Wrapper approach. The EH then calls the IRM function directly because there
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is no need to restore registers as the iOS exception handler takes care of that
when returning.

The MoCFI IRM. In order to check intended control flow against legitimate
control flow stored in the CFG, the correct vertex must be retrieved from the
CFG. MoCFI realises a quick look-up by storing the CFG as vertex-edge pairs
that are sorted by their memory address. Hence, the CFG can be indexed by
the pc to retrieve the correct vertex. A flow chart of the different cases that
the IRM handles internally is depicted in Figure 5.3. The different branch
types (indirect jumps, indirect calls, direct calls and Objective C msgSend) are
handled differently and hence have dedicated validation routines.

Indirect�
Calls�

Shadow
Stack
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Return� Return
Valid?
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(b)
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Figure 5.3: The MoCFI Inline Reference Monitor (IRM), which performs the
actual checks of whether control flow is still on the pre-determined legitimate
path.

Function Calls and Returns (a). To prevent return-oriented attacks, MoCFI
uses the shadow stack principle that has been introduced by StackGhost [P60].
Whenever the program invokes a subroutine (through a direct, indirect, or
dispatcher call), MoCFI saves the return address on a dedicated shadow stack.
Upon function return, MoCFI compares the return address the program intends
to use to the address stored on the separate shadow stack. Since function calls
(through BL or BLX) automatically store the return address in the lr register,
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MoCFI simply pushes lr onto the shadow stack. One such stack is maintained
per application thread.

Indirect Jumps and Calls (b). The possible jump targets for indirect jumps
and calls have either been calculated during the Pre-Processing Phase or have
been confined to the scope of the current function. In the first case, the pre-
calculated values are compared to the intended control flow of the instruction
that MoCFI intercepted. In the most complex and versatile form, the instruc-
tion is of the form LDR pc,[rX,rY,LSL#Z] which loads pc according to the
given register values: pc ← rX+rY · 2Z . Consequently, MoCFI checks the cur-
rent value of the registers according to the above equation and matches them
against all outgoing edges of the corresponding CFG vertex. The instruction
itself does not need to be disassembled to determine which registers are used.
Instead, this information is saved as meta info attached a vertex in the CFG.
For simpler indirect jumps such as MOV pc,rX and indirect calls (BLX rX),
MoCFI only checks the content of rX.

Objective C msgSend() Calls (c). Dispatcher calls via the objc_msgSend()
function work similar to indirect calls. However, instead of a register, they use
the function’s name (’selector’) and an instance of a class to refer to a function’s
implementation. This information is used by objc_msgSend() to find the
correct memory address at run-time and then calls the appropriate address. To
protect those Objective C calls as well, MoCFI checks the supplied parameters
selector and class instance. The selector is a pointer to a string and is compared
to the correct string that has been extracted by the Pre-Processing Phase. To
avoid a string compare for each function call, MoCFI uses the same technique
as the objc_msgSend() function: a cache. The use of a cache is safe since
all possible strings are stored in a read-only memory area. Therefore, it is
sufficient to compare the string once and save its memory address as the only
comparison in the cache.

5.5 Security Evaluation

MoCFI adheres to the goal of detecting deviations from the control flow at run-
time from the known-good control flow. Since iOS enforces W ⊕ X, a memory
page cannot be writable and executable at the same time. Hence, it suffices
to check branch targets that depend on the value of a variable since those
can be changed during run-time. These include indirect branches and returns
from function calls, as they use an address popped from a potentially tampered
stack. As we check each such instruction, an adversary cannot subvert the con-
trol flow without MoCFI noticing. However, not all valid, known-good targets
can be calculated in advance during the static analysis phase. If this is not the
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case, heuristics confine the control flow to the scope of the current function.
This somewhat loosens the security guarantees in case of indirect branches.
Fortunately, for the majority of tested applications, indirect branches are used
in conjunction with jump tables (see section 5.4), and can be resolved during
the static analysis phase.

Since MoCFI performs binary rewriting after the iOS loader has verified the
application signature, it is compatible with application signing. On the other
hand, the load time modifications of MoCFI are not compatible with the iOS
CSE (Code Signing Enforcement) run-time model (see section 5.2). CSE pro-
hibits any code generation at run-time on non-jailbroken devices, except if an
application has been granted the dynamic signing entitlement. To tackle this
issue, one could assign the dynamic signing entitlement to applications that
should be executed under the protection of MoCFI. On the one hand, this is a
reasonable approach, since the general security goal of CFI is to protect benign
applications rather than malicious ones. Further, the dynamic signing entitle-
ment will not give an adversary the opportunity to circumvent MoCFI by over-
writing existing control flow checks in benign applications. In order to do so,
the attacker would have to mount a control flow attack beforehand that would
be detected by MoCFI. On the other hand, when dynamic signing is in place,
benign applications may unintentionally download new (potentially) malicious
code. To address these problems, one could constrain binary rewriting to the
load time phase of an application, so that the dynamic-signing entitlement is
not needed while the application is executing. Further, new sandbox policies
can be specified that only allow the MoCFI library to issue the mmap call to
replace existing code.

For an IRM to be secure, (i) it must mediate all events relevant to the security
policy being enforced, (ii) its integrity must be protected from subversion by
applications, and (iii) its presence must be transparent to applications [P80].
(i) is ensured by patching the code to redirect to the IRM for all control flows
present in the CFG. (ii) is ensured because the App cannot subvert the involve-
ment of the IRM without patching its own code or adding code during run-time.
Both can be prevented by disabling the appropriate system calls after load time.
(iii) is guaranteed since the involvement of the IRM has no side effects if the
control flow target was determined to be legitimate.

5.6 Performance Evaluation

In order to evaluate the performance of MoCFI, the iOS benchmark tool Gen-
systek Lite2 [L15] was used. Additionally, micro benchmarks for control flow
transitions and algorithms that heavily use control flow transfers were tested.
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One such algorithm is quicksort, as it recursively calls itself. MoCFI is only ap-
plied to the main application code and not to the loaded libraries. However,
the benchmark tools we apply perform most part of the computation within
the application.

A bar graph of the Gensystek benchmarks is shown in Figure 5.4. The num-
ber underneath each benchmark name represents the slowdown factor of that
particular benchmark. Surprisingly, the FPU/ALU, PI calculation, and the RAM
memory read-/write) benchmarks experience the highest overhead (3.85x and
5x, respectively). The overhead (slowdown greater than factor 1) for the re-
maining benchmarks is very low and ranges between 1% and 21%.
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Figure 5.4: Gensystek Benchmark Result with/without MoCFI

In order to approximate an upper boundary for the MoCFI performance impact,
the quicksort algorithm was used. The quicksort implementation makes use of
recursion and continuously calls a compare function which consists of only 4
instructions and one return. Therefore, MoCFI frequently performs a control-
flow check in this worst-case scenario. The resulting worst-case slowdown
factor is 12x.

In order to evaluate the overhead of an instruction that has been replaced by
a CFI check, the execution time of three typical instructions and their replace-
ment by MoCFI has been measured. For the exemplary case of Function Calls
and Returns, the actual function bodies (α) are subtracted from the time mea-
surement between call and return (β). The actual execution time is therefore
β − α. This calculation of the overhead per replaced instruction is depicted in
Figure 5.5.
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Figure 5.5: Function overhead calculation.

When running with MoCFI, the measurements (α′ and β′, respectively) are set
in relation to the measurement without MoCFI. Hence, the instruction slow-
down factor ϕ for one function replaced by MoCFI is:

ϕ = β′ − α′

β − α

For our tests, all the measurements were conducted 10,000 times and aver-
aged. However, in a typical program, instructions that have to be checked by
MoCFI are surrounded by other instructions. For n instructions in between,
MoCFI only has to be called every (n + 1)-th instruction. The total slowdown
ψ is therefore:

ψ(n) = n + ϕ

n + 1
The overhead (ψ(n)−1) as a function of n (instructions between MoCFI checks)
is plotted in Figure 5.6.

5.7 MoCFI Conclusion and Limitations

The MoCFI proof-of-concept demonstrates that a protection technique hat heav-
ily relies on the understanding of program and control flow internals is still
possible for binary applications. MoCFI protects an existing binary at the last
link of the chain Fault → Error → Failure by monitoring the symptoms of an ex-
ploited vulnerability. Deviations from expected and allowed behaviour are then
caught and the hijacked application is stopped before the changed behaviour
can cause any harm.

However, the current MoCFI implementation does not detect attacks exploiting
the exception handler. An adversary can overwrite pointers to an exception
handler and then deliberately cause an exception (e.g. by corrupting a pointer
before it is dereferenced). This is possible because GCC pushes these pointers
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Figure 5.6: Overhead as function of n instructions between MoCFI calls.

on the stack on demand. Similar problems have already been solved on other
platforms, such as on Windows [D6].

MoCFI currently does not protect shared libraries, which an adversary may ex-
ploit to launch a control flow attack. However, extending MoCFI accordingly
is straightforward, because no new conceptual work is need. Moreover, shared
libraries were no allowed in iOS Apps as this would introduce the possibility to
load code, which is discouraged by the Apple App Store Review Guidelines [D7].
However, with the release of iOS version 8.0 Apple has allowed App develop-
ers to use so-called Frameworks in their Apps, which essentially is a packaged
shared library. Consequently, MoCFI detects when execution is redirected to
a library and disables the return address check for functions that are directly
invoked by the shared library.

An orthogonal solution to control flow integrity is to protect the root cause
of code reuse and not just its symptoms. For an attack to be successful, an
attacker must know useful address in the to-be-exploited program. A method
of hindering an attacker to learn useful addresses is to randomise a running
program in small pieces. Such fine-grained randomisation is presented in the
next chapter.
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6 Fine-Grained Randomisation

The idea of Address Space Layout Randomisation (ASLR) is to deprive the at-
tacker of the necessary knowledge about gadget addresses. However, as al-
ready described in the background chapter 3, ASLR moves the entire code seg-
ment en bloc and as a result the relative locations of objects and functions do
not change. If the adversary additionally knows which object or function has
been leaked, he knows the address of that object/function. A single leaked
address is hence enough for an attacker to revert the layout for an entire ASLR
process. A single leaked address from the code segment is enough to calculate
the address of every instruction inside a process. This effectively enables an
attacker to infer all other objects or functions relative to the leaked address be-
cause the relative distances between functions stay exactly the same. This puts
an attacker back in the position prior to ASLR where he could choose gadgets
at his discretion, ultimately defeating ASLR.

The traditional ASLR as implemented in modern, off-the-shelf operating sys-
tems has several Drawbacks.

D1: Only entire modules (i.e. the main executable and each library) are ran-
domised. The modules themselves are treated as atomic units.

D2: The achieved entropy is much lower than the theoretically possible 32 bit
on a 32-bit system.

While D1 is a conceptual flaw, the limited entropy D2 results from several
legacy limitations that the operating system has to adhere to when loading
a module at a ‘random’ address. The following is an in-depth look at both
drawbacks.

D1: For executables or shared libraries to benefit from ASLR under Linux,
they must be compiled using position-independent code (PIC) and linked such
that the resulting ELF file type is SYM (shared object). Interestingly, the load
address will be fixed to zero. Consequently, code, data, and other loadable
segments have a load address relative to zero, or in other words, their load
address is identical to the offset of that section in the ELF file.

63



1 $ readelf -h /usr/sbin/sshd
2 ELF Header:
3 Class: ELF32
4 Type: DYN (Shared object file)
5 Program Headers:
6 Type Offset VirtAddr PhysAddr FileSiz MemSiz Flg Align
7 PHDR 0x000034 0x00000034 0x00000034 0x00120 0x00120 R E 0x4
8 INTERP 0x000154 0x00000154 0x00000154 0x00013 0x00013 R 0x1
9 [Requesting program interpreter: /lib/ld-linux.so.2]

10 LOAD 0x000000 0x00000000 0x00000000 0xc7dbc 0xc7dbc R E 0x1000
11 LOAD 0x0c859c 0x000c859c 0x000c859c 0x02130 0x07d50 RW 0x1000
12 DYNAMIC 0x0c9750 0x000c9750 0x000c9750 0x00158 0x00158 RW 0x4
13 NOTE 0x000168 0x00000168 0x00000168 0x00044 0x00044 R 0x4
14 GNU_EH_FRAME 0x0b3f50 0x000b3f50 0x000b3f50 0x02714 0x02714 R 0x4
15 GNU_STACK 0x000000 0x00000000 0x00000000 0x00000 0x00000 RW 0x10
16 GNU_RELRO 0x0c859c 0x000c859c 0x000c859c 0x01a64 0x01a64 R 0x1

Listing 6.1: PIC segments of the SSH daemon

The kernel’s ASLR implementation then adds a random value to that load ad-
dress, thereby shifting the entire module (shared object) in memory. This re-
sults in the fact that relative distance between instructions inside the code seg-
ment or relative distance from code to data always stay the same – regardless
of the random load address. This fact is actually used in PIC to address data:
the absolute address of data to be referenced is calculated by adding the offset
(known at compile time) to the absolute address of current execution: the pro-
gram counter (EIP). An attacker can also exploit this fact when she knows a
correct run-time address of a particular object. Suppose a program suffers from
a vulnerability that leaks a pointer. Then, an attacker can add the known offset
to a useful ROP gadget to calculate its absolute address. This is crucial infor-
mation for mounting a ROP or return-into-libC attack by exploiting yet another
vulnerability in the program. A leaked pointer occurs easily in a C program if
array boundaries are not checked properly.

1 int sizes[10];
2 int * size_ptr = sizes;
3

4 void retrieve_size(unsigned int index)
5 {
6 return sizes[index];
7 }

Listing 6.2: Exemplary program vulnerable to pointer leaks

An attacker can exploit this code to deliberately read beyond the end of the ar-
ray, thereby retrieving values of objects stored subsequent to the array. In the
example above, a supplied parameter of index = 10 would read the subse-
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quently stored global variable size_ptr. This pointer holds the address of the
array sizes, which is stored in the loadable segment .bss. After the attacker
knows the address of sizes, she can calculate the distance to a useful ROP
gadget by inspecting her local copy of the vulnerable executable. The distance
between size_ptr and the desired gadget is the same for her copy and any
other copy. Adding that distance to the leaked pointer results in the absolute
address of the desired ROP gadget in the (possible remote) target process.

D2: The possible ‘random’ load addresses are reduced by the granularity of
the page addressing system (multiple of 4 KiB pages) and by the fact how
mapping large memory areas work. In fact, in the latest Linux kernel 4.1, for
an mmap()’ed address, only 8 bits (bits 12 through 20) are randomised for
32-bit processes. Similarly, only 28 bits (bits 12 through 40) are randomised
for 64 bit processes.

68 unsigned long arch_mmap_rnd(void)
69 {
70 unsigned long rnd;
71

72 // 8 bits of randomness in 32bit mmaps, 20 address space bits
73 // 28 bits of randomness in 64bit mmaps, 40 address space bits
74 if (mmap_is_ia32())
75 rnd = (unsigned long)get_random_int() % (1<<8);
76 else
77 rnd = (unsigned long)get_random_int() % (1<<28);
78

79 return rnd << PAGE_SHIFT;
80 }

Listing 6.3: Linux Kernel 4.1 (/arch/x86/mm/mmap.c)

In this chapter, a much higher level of granularity in randomisation is achieved
by also randomising contents of loadable sections, especially of code. This
is achieved by the means of a binary rewriter that was written specifically
to address the aforementioned drawbacks D1 and D2. The binary rewriter
changes the code such that the distance between any two instructions in the
code changes. This renders information about relative distances to each other
useless. Consequently, an attacker cannot predict the address of a particular
instruction given a leaked address of another instruction.

The binary rewriter presented in this chapter was implemented in C++ and
supports the Linux ELF executable format. It’s core rewriting techniques are
agnostic of the processor architecture, however the differences between in-
struction sets and how processors address memory need an architecture spe-
cific layer on top. A layer that supports Intel’s common x86 32 bit architecture
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was implemented. A second architecture, the widespread ARM architecture is
supported, however not fully, e.g. no THUMB code.

6.1 The Contribution to Science and My Part in it

In traditional ASLR, the offset between all loadable sections (.text, .data
and .bss) stays the same so that position-independent code can reference
data relative to the load address of code. Instead, the binary rewriter pre-
sented in this thesis is designed to transform binary executables at load time
by randomising the base addresses of all loadable sections. Furthermore and
most importantly, it randomises the code (.text section) to a high degree
– if necessary down to instruction level granularity. This makes predictions
concerning relative distances of instructions to each other infeasible, thereby
preventing pointer-leak-based attacks. More precisely, the binary rewriter pre-
sented herein made the following contributions when the paper was published:

1. Code segments are randomised on a fine-grained (e.g. instruction) level,

2. Randomisation does not conflict with code signing, i.e. no static bi-
nary rewriting is used resulting in invalid signatures due to changed exe-
cutable files,

3. Instead, randomisation is performed at load time of the program such
that each process start exhibits a different memory layout.

In order to avoid a prior offline static analysis phase, the binary rewriter must
perform all necessary rewriting duties while the process is being loaded. Con-
sequently, this process must be very quick in order not to introduce any notice-
able delay at process start. To this end, I designed the rewriter in three very
performant phases:

1. Phase a: Selective disassembly that only disassembles instructions that
would change when stored at a different address.

2. Phase b: Reference discovery to create an internal reference graph repre-
sentation that describe which instruction depends on whose other mem-
ory address.

3. Phase c: Assembly of instructions which are connected by the reference
graph while the irrelevant instructions are treated as binary data.

The necessary randomisation is then performed between phase a and phase b.
Any changes made to the program are automatically reflected in phase c be-
cause the reference graph keeps track of which instructions need to be adjusted
for their new address.
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Besides load time performance, run-time performance is also an important fac-
tor that I took into consideration. An instruction granularity randomisation has
a high performance overhead as every single instruction must be connected
with an explicit control flow instruction to keep the original semantics of the
program. To optimise performance, a trade-off between the desired entropy
and run-time performance is dynamically calculated for each program. The
resulting granularity of randomisation is chosen such that the entire program
still features a high entropy. The desired entropy, and therefore the resulting
granularity, is adjustable by the user.

Existing binary rewriting approaches are not tailored to do in-memory rewrit-
ing and are hence not suitable for a fast fragmentation and randomisation. On
the other hand, for the required goal of splitting code into pieces and shuffling
it, only a subset of the features of a full-blown binary rewriter are required.
This is why I chose to design and implement a binary rewriter from scratch
that is capable of doing in-place rewriting on process start-up. Its implementa-
tion is detailed in section 6.4. It is not based on any prior software, not even the
x86 disassembly routines. I have also designed all necessary algorithms, such
as the creation of the CFG, representation of instructions in an intermediate
language, randomisation algorithms, optimisation algorithms, process loading
and executable and shared library parsing. The binary rewriter is also the basis
for the Oxymoron rewriter presented in chapter 7.

Benchmark results obtained using SPEC CPU2006 (see section 6.7) demon-
strate that the run-time performance overhead induced by the randomisation
is a mere 1.2%. Another additional overhead is the start-up time, as process
loading goes through an additional step of on-the-fly binary rewriting. This
rewriting achieves a throughput of 5000 KiB/s, i.e. a 10 KiB program takes
only 2 ms longer to load.

The prototypical implementation presented in this thesis relies on relocation
information to guide the partial disassembly. Otherwise, instructions that ref-
erence data or other code (i.e. pointers) cannot be recovered reliably. Note
that Smithson et al. [P81] have presented a patented binary rewriting solu-
tion, which supposedly does not require relocation information.

6.2 Design

The randomisation of all code (main executable and loaded libraries) takes
place at load time, before execution of the process starts, but after all the nec-
essary code has been loaded into the address space by the linker (phase (a) in
Figure 6.1). In order to randomise the individual code segments and to inter-
mix them (all library code and executable code), all references in the code are
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extracted in phase (a). Then, in phase (b) the code is cut into arbitrarily small
pieces, which are then shuffled. In the last phase (c), all code pieces are trans-
ferred back into x86 machine code and each loadable segment (e.g. .text,
.data and .bss) is loaded at a random address.
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Figure 6.1: High-level process of the randomisation

6.2.1 Phase (a) – Intermediate Representation

These individual phases are quite challenging and call for various corner cases
to be taken into account. The most prominent challenge is the fact that code
cannot simply be re-arranged without breaking its semantics since all addresses
are hard-coded and therefore control flow and data access would point into
nonsense. Identifying all references and keeping track of references is hence
the main duty of the binary rewriter. The foundation for automatic reference
bookkeeping is done in phase (a). This is achieved by transforming binary
code back into a representation that uses symbols instead of hard-coded ad-
dresses. This higher-level abstraction, or intermediate representation, allows
for instructions to be inserted while keeping the semantics of the underlying
code intact. Using a higher level intermediate representation makes code ab-
stract enough as to work with it without destroying its semantics.

The following is an example of disassembled x86 binary code and how it is
transformed to intermediate representation.
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1 0x8048000: e8 00 00 00 00 call 0x8048005
2 0x8048005: 5b pop %ebx
3 0x8048006: 81 c3 27 70 03 00 add $0x37027,%ebx
4 0x804800c: 8b 03 mov (%ebx),%eax

Listing 6.4: Disassembly of the input program

When this piece of code is moved in memory, the referred absolute addresses
(0x8048005) will no longer be correct. The same applies to relative address-
ing of data (in this case eip+0x37027), since, e.g. inserting instructions
changes the distance between code and data. On the one hand, destroying
relative distances is the intention of fine-grained randomisation, on the other
hand, it makes re-arranging code very difficult. Hence, a symbolic represen-
tation is created that abstracts any relative or absolute addresses. As a basis,
the unmodified (assumed to correct) program is taken and all references (rela-
tive or absolute) are transformed into symbolic labels from which the reference
graph can later be created.

1 loc_8048000: e8 00 00 00 00 call loc_8048005
2 loc_8048005: 5b pop %ebx
3 loc_8048006: 81 c3 27 70 03 00 add $(GOT+0x27-loc_8048005),%ebx
4 loc_804800c: 8b 03 mov (%ebx),%eax

Listing 6.5: Intermediate representation using symbols

The above form of code is similar enough to x86 to be efficient in terms of dis-
assembling and re-assembling, yet it is address-agnostic and can be re-arranged
in memory.

The most challenging part of this transformation into symbolic intermediate
representation is to identify all references in the code. If a reference is over-
looked, the semantics of the program would change, presumably leading to a
crash. Fortunately, compiler-generated patterns (such as the above position-
independent code) can be detected reliably. However, not all cases of memory
references can be detected with 100% accuracy. Ambiguous cases can be, for
instance, the addition of two seemingly random numbers whose sum is used as
a pointer. To reliably detect those corner cases, the binary rewriter additionally
uses relocation information as auxiliary information to guide the disassembly
processes even in those cases. Especially indirect jumps are hard to detect,
even though not impossible. The typical use of an indirect jump is a com-
piler optimisation of a switch/case statement. Often, compilers generate
a single indirect jump that uses the argument of switch, instead of several
if-then-else blocks to handle all cases.

69



The following example code uses a switch statement and illustrates how the
GCC compiler uses indirect jumps as optimisations. The attached relocation
information is then useful to identify the references in the indirect jump.

1 int res = 0;
2 switch(i)
3 {
4 case 1: func1(); break;
5 case 2: func2(); break;
6 default: funcdefault();
7 }

Listing 6.6: Indirect jump generated from C source

Without any optimisations (i.e. -O0 GCC switch), the generated code contains
two ifs and an else case to simulate the three cases in the switch:

1 8048ec7: 83 f8 01 cmp $0x1,%eax
2 8048eca: 74 0c je 8048ed8
3 8048ecc: 83 f8 02 cmp $0x2,%eax
4 8048ecf: 75 0e jne 8048edf
5 8048ed1: e8 cd ff ff ff call 8048ea3 <func2>
6 8048ed6: eb 0c jmp 8048ee4
7 8048ed8: e8 b7 ff ff ff call 8048e94 <func1>
8 8048edd: eb 05 jmp 8048ee4
9 8048edf: e8 ce ff ff ff call 8048eb2 <funcdefault>

10 8048ee4: c3 ret

Listing 6.7: Generated non-optimised x86 assembler

When optimising with -O2

1 8048eeb: ff 24 85 28 ed 0b 08 jmp *0x80bed28(,%eax,4)
2 8048ef2: e8 9d ff ff ff call 8048e94 <func1>
3 8048ef7: eb 1a jmp 8048f05
4 8048ef9: e8 9e ff ff ff call 8048ea3 <func2>
5 8048efe: eb 0c jmp 8048f05
6 8048f00: e8 bd ff ff ff call 8048ed0 <funcdefault>
7 8048f05: c3 ret
8 ...
9 80bed2c: 8048ef2

10 80bed30: 8048ef9
11 80bed34: 8048f00

Listing 6.8: Generated optimised x86 assembler

the GCC compiler has inserted an indirect jump into a jump table
(jmp *0x80bed28(,%eax,4)), which redirects to the landing pads right af-
ter that instruction. The jump table at 0x80bed2c simply contains word-sized
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addresses pointing to the landing pads at 0x8048ef2 and so on. The reloca-
tion information provided inside the executable file is helpful for determining
the size of the jump table because each entry in the jump table is annotated
with relocation information.

1 Offset Info Type Dest. Section Dest. Addr.
2 080bed2c 00000601 R_386_32 .text 8048ef2
3 080bed30 00000601 R_386_32 .text 8048ef9
4 080bed34 00000601 R_386_32 .text 8048f00

Listing 6.9: Relocation Information stored inside the compiled executable file

Even though this implementation relies on relocation information to accurately
determine all memory references, literature suggests that disassembly is possi-
ble without any relocation information [P81]. Code that is typically loaded at
different addresses, such as Linux and Windows kernel modules/device drivers
or Windows DLLs typically include such relocation information. However, in
the default configuration, it might not cover all memory references since the
linker assumes the code and data sections will stay exactly as they were at
compile-time. Because the rewriter is deliberately tearing apart the code, more
relocation information might be necessary to reliably discover all memory ref-
erences. To help this, all code was compiled using -Wl,-emit-relocs com-
piler/linker options. This option includes relocation information to every in-
struction that reads, writes or jumps to memory.

The rewriter details are described in section 6.4.

6.2.2 Phase (b) – Randomisation

The intermediate representation can be used to efficiently insert instructions
into the code segment. Inserting instructions with no side effect changes dis-
tances between instructions as they are then further apart. The set of instruc-
tions that can be inserted without any side effect are basically synonyms of nop
instructions:

1 0: 90 nop
2 1: 8d 00 lea (%eax),%eax
3 3: 66 8d 36 lea (%esi),%si
4 6: 67 66 8d 34 lea (%si),%si
5 a: 0a 05 00 00 00 00 or 0x0,%al
6 10: 8d b6 00 00 00 00 lea 0x0(%esi),%esi

Listing 6.10: Instructions with no Side-Effects (nops)
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Then, the code is broken apart into chunks with the intend to change their or-
der. To achieve the desired randomisation, the code is first logically divided into
chunks by drawing boundaries between two subsequent instructions. Before
those chunks can be re-ordered in memory, their implicit control-flow needs
to be transformed into explicit control flow. Otherwise, ripping apart two sub-
sequent code chunks results in a semantically invalid program. To avoid this,
the implicit control flow, i.e. the fall-through of one instruction to the next, is
made explicit by inserting a connection between the boundary of two chunks.
Such a connection is an unconditional jump that connects the last instruction
of one chunk to the first instruction of the consecutive chunk. When either of
the chunks is moved away, the connection remains intact. This is due to the
use of symbols rather than real addresses. As the symbols do not change, a
code chunk can be moved in memory without impairing the semantics of the
program. In Figure 6.2, the monolithic example program program consisting
of basic blocks A through H has been split in chunks of different size whose
order was changed. The original program’s semantics do still hold however,
as the control flow between the chunks has been adjusted to accommodate for
their changed position in memory.

��������������	 ��� �������	

a) b)

Figure 6.2: Splitting of code into several interconnected pieces.

Another challenge is the fact that splitting code in too many pieces imposes a
lot of pressure on the processor’s instruction cache (as can be seen in the perfor-
mance evaluation in section 6.7) since the locality of code has been destroyed.
To counteract this, the position and the number of cuts are restrained:

Positions: Whenever possible, existing control transfer instructions (e.g. jump,
call) in the original program are leveraged as a splitting boundary. This has
two advantages: when the two chunks surrounding a split are moved away,
no additional control flow instruction needs to be inserted because the existing
one can be used to transfer control to the new position. Second, the run-time
will be almost identical because no instruction has been introduced by only
the control flow target will change. An analysis of the coreutils and SPEC
benchmark binaries has shown that on average 15.5% of all instructions are
control flow instructions that can be used to split the code into chunks. This
means that for a very small 1000-instruction-binary already 156 code pieces
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are available to be shuffled. This entropy of 156! is already higher than the ul-
timate ASLR solution that would provide an entropy of 248 on a 64-bit system.

Number of Cuts: The possible number of permutations of n chunks is n!. Since
this number gets large very quickly for rather small n, it is possible to limit
the number of chunks n while still achieving a large entropy. The maximum
entropy for a 32-bit user mode process is 31 bits: 2 GB kernel space, 2 GB user
space. Therefore, a reasonable limit for n! is 231, even though the usable user
mode address space is actually less than 31 bits due to technical limitations.
The entropy of 13 permutations (13! = 6, 227, 020, 800) is already larger than
231. Therefore, it actually makes no sense to split more than 12 times1. This
yields log213! ≈ 32.54 bits of entropy for a 32-bit system. Analogously, for a 64-
bit system with 48 bit canonical address user space, 17 chunks yield sufficient
entropy.

6.2.3 Phase (c) – Re-Assembly

The last phase (c) takes care of reflecting all changes done on the intermediate
representation in the output binary code. This code is emitted into the address
space of the loaded process, since rewriting is done in-place in the newly cre-
ated process. In chapter 7, the rewriter is used to create new executable files
instead.

The code reassembly is achieved by stitching together binary strings of byte-
code that represent instructions. Instructions that do not reference any memory
do not change their binary representation when moved to a different position.
Hence, they can be copied and pasted from the original input. For the instruc-
tions that do change because they encode an address, a similar technique to re-
location information is used. The original bytecode of the instruction is copied
and pasted to the correct destination address covering the entire length of the
instruction. However, the bits of the bytecode of the instruction that encode
either a relative or absolute address are patched using the reference graph that
was created in phase (a). The relocation information types (absolute, relative,
multiple of 2, and so forth) are covered by the architecture-specific relocations
anyway so that all possible ways of encoding an address in an instruction are
covered. This way, re-assembly is fast.

All three phases (a) through (c) with their internal steps are depicted as an
overall process in Figure 6.3: The application gets disassembled and the ref-
erence graph is created. All nodes in the graph (A, B, . . . , E in Figure 6.3) lie
flat in the program memory until they are chunked, additional instructions are
inserted and the chunks are then permuted. This results in a reference graph

112 times splitting makes 13 pieces
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with changed order of its nodes as depicted in the bottom of Figure 6.3. Some
nodes have been split (A → {A1, A2}), others needed to be changed to insert
new control flow instructions (B′, C ′, D′, E′).
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Figure 6.3: Re-Organisation of control flow in memory.

6.3 Challenges

Function Returns. Instructions that unconditionally transfer control to an-
other point in the program (e.g. jmp 0x1234) can simply be rewritten to
their new address in memory to which the original target has been moved.
As described above, this is why they are used as a ’natural’ split boundary
for chunks. However, when code is split after an instruction with implicit
fall-through control flow, the insertion of an explicit control flow transfer is
required. All non-control-flow instructions have such implicit control flow, i.e.
the execution continues at the subsequent instruction. If code is split after such
an instruction then an explicit jump needs to be inserted when code following
the split is moved away.

Some control flow instructions feature both: an explicit control flow transfer
to another position in memory and an implicit fall-through. Such examples
are conditional branches. They might branch to a different position in the
code or execution might simply fall through in case the branch was not taken.
call instructions are similar in that respect as they transfer control to another
position in memory but control flow will continue at the next instruction after
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returning from the call. In either case, the subsequent instruction to which
the control flow would implicitly fall through can potentially be moved away
because it is now being part of different code piece that has been shuffled away.

����

A instrA1
instrA2 

B instrB1
instrB2
ret

C ret 

Call 0x12CAA
0x1000:

0x1200:

0x12C0: instrC1

a) original b) randomised
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B instrB2
ret

C ret 

A instrA1 
instrA2
Call 0x46DAA

0x4600:

0x464B:

0x46D1: instrC1

����	�instrA1, instrA2, instrC1, instrB1, instrB2

JmpppJJmmppJJ 0x460000xx4460000 44600

instrB1

Figure 6.4: Implicit fall-through control flow needs an explicit control flow in
order to sustain the original sequence of instructions.

Figure 6.4 shows an implicit control flow after a call instruction. In the origi-
nal code (a), execution returns from the call to 0x12C0 and will continue after
the call instruction by falling through to code piece B (instrB1, instrB2)
located at address 0x1200. If no explicit control flow is inserted in the ran-
domised version, it would also return to the position right after the call where
it left off. However, control flow would fall through to code piece C – which
is wrong. This is why the unconditional jump has been inserted in the ran-
domised (b) version in order to connect the control flow with the original code
piece that now resides at 0x4600.

Position-Independent Code (PIC). The implementation of ASLR required
executables and libraries to be able to work when loaded at different addresses.
The encoding of fixed, absolute addresses like done in traditional executables
contradicts ASLR. To this end, position-independent code was used. Instead
of absolute addresses, code and data are referenced as an offset to the current
execution position. 32 bit and 64 bit x86 code both reference code in a relative
fashion anyway. The only exception are indirect calls (e.g. call *%eax)
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that are usually used for function pointers or C++ vtables. In 64 bit mode,
the current address of execution, the instruction pointer RIP, can directly be
accessed and be used for addressing. Data can then be referred to relative to
RIP like so:

1 b3f9: 48 8b 0d e0 da 25 00 mov 0x25dae0(%rip),%rcx
2 b400: 0f b6 01 movzbl (%rcx),%eax

Listing 6.11: Position-Independent Code (PIC) taken from ssh executable
(64 bit)

In contrast, 32 bit x86 code cannot access EIP directly and has to go through
a little workaround to find out its current address of execution.

1 a2c2: 53 push %ebx
2 a2c3: e8 a8 fa ff ff call 9d70
3 a2c8: 81 c3 30 07 0a 00 add $0xa0730,%ebx
4 a2cd: 8b 83 78 07 00 00 mov 0x778(%ebx),%eax
5 ...
6 9d70: 8b 1c 24 mov (%esp),%ebx
7 9d73: c3 ret

Listing 6.12: Position-Independent Code (PIC) taken from ssh executable
(32 bit)

In the example above, the code gets its own address by moving the return
pointer into %ebx. Thus, after calling 9d70, the register %ebx contains a2c8
– the current address of execution. Data is then accessed the same way as in
64 bit mode – relative to this address.

For function calls into another library or global variables of shared libraries,
it gets more complex. Linux uses a Global Offset Table (GOT) to solve the
problem. This adds an additional level of indirection in a separate piece of
memory that is filled by the OS linker at start-up. The address of the GOT itself
can in turn be extracted from the executable’s symbol table. The program or
library then always indexes this GOT instead of calling the function or accessing
the global variable directly. Figure 6.5 a) shows a typical usage of the GOT: the
address of the GOT is calculated in relation to the current address of execution,
then an index inside the GOT is dereferenced to get the actual address.

In both cases, relative access to data and relative access to the GOT, the offset
from the current address of execution to the data or GOT in question needs to
be adjusted when randomising code chunks. Otherwise, the relative addresses
would not match the intended targets anymore. Because the relative distances
are not part of relocation information, access in that relative fashion can eas-
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ily be detected. To overcome this, the rewriter uses a code pattern detection
technique to detect PIC.
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Figure 6.5: Position-independent code (PIC) needs to be adjusted as it as-
sumes relative relations inside the code stay intact.

Figure 6.5 depicts a common write operation to data residing in the GOT. In
this example, the compiler-generated code to determine the current address
uses a call instruction that targets the next instruction (0x1004). The next
instruction then pops %ebx, which contains the return address of the aforemen-
tioned call off the stack. The %ebx register then holds the absolute address
in memory of where the call should return. In other words, the call and
pop %ebx move the current instruction pointer into %ebx. In 64 bit mode the
instruction pointer %rip can be directly accessed and moved into %rbx, how-
ever in 32 bit mode there is no such instruction as mov %eip, %ebx. Even
though the call instruction has no corresponding ret instruction, the pop
mimics the removal of the return address from the stack.

The bold add instruction in Figure 6.5 is the instruction in question which en-
codes the offset into the GOT relative to %eip. In the randomised version in
Figure 6.5 b), the add instruction is inserted into the reference graph in or-
der to benefit from the automatic reference adjustment of the rewriter. The
result is that the encoded offset is adjusted (0xC8 to 0xF4) such that it still
references the GOT. The detection of PIC code works as follows: First, call
targets are analysed for immediate pop instructions. Under normal function
call conventions, this would not make any sense as the callee cannot make any
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assumptions about the previous items on the stack. The detected pop instruc-
tion reveals into which register the return address is loaded. This register is
then tracked in arithmetic operations to detect which offset is added to or sub-
tracted from it. When the original offset plus its calculated own position equals
the GOT, a valid PIC case has been found and the offset can be extracted from
the add or sub instruction. During testing, no cases were found in which the
extracted offset + %eip did not point to the GOT.

Interestingly, the semantics of the pop %ebx instruction have slightly changed
in the randomised version. Before, the instruction popped its own absolute
address off the stack as if it were copying %eip into %ebx. However, as it
resides at a different position later, this is no longer the case. Since the 32 bit
PIC uses the diversion of the stack, this does not make any difference. However,
a future 64 bit version of the rewriter can no longer simply mov %rip, %rbx
because it resides at a different address.

C++ Exceptions. Handling C++ exceptions is not easy because the involved
stack unwind mechanism that tries to find the catch block at run-time relies
on pre-calculated addresses.

When the GCC compiler compiles C++ exceptions, a so-called unwind frame
is created for every function in a special section called .eh_frame. It con-
tains information about how to restore the stack and registers when returning
to the point inside the code that actually catches the exception. To find the
correct unwind frame inside .eh_frame, the list of all frames is searched for
the %eip. This is possible because all potential addresses where an excep-
tion might be thrown are known at compile-time. Hence, the offending %eip
must be in the list. This list is stored in ascending order so it can be efficiently
searched using binary search. Each entry provides information about which
function catches that particular exception and how to unwind the stack to con-
tinue execution at that function. The stack unwind information is stored as a
stack machine bytecode that is interpreted at run-time when the exception is
thrown. This GCC-specific machine language incorporates relative addresses in
order to calculate the beginning of a function given only %eip. The follow-
ing is an example of a typical unwind frame that has been decoded as GCC
machine language:

78



1 0000dea8 00000014 0000deac FDE cie=00000000 pc=080bd620..080bd64b
2 DW_CFA_advance_loc: 3 to 080bd623
3 DW_CFA_def_cfa_offset: 32
4 DW_CFA_advance_loc: 39 to 080bd64a
5 DW_CFA_def_cfa_offset: 4
6 DW_CFA_nop

Listing 6.13: Unwind Frame retrieved using readelf -u

However, after randomisation this information is no longer valid. Therefore,
the .eh_frame is rewritten according to the changed layout.

Intermixed Code and Data. Compilers often optimize code by aligning func-
tions in memory so that they start at the beginning of a cache line. The in-
evitable gap before aligned functions is sometimes filled with data in the mid-
dle of code. A typical fall-through disassembly2 is thus not possible, as it would
interpret alignment zeros (garbage) or intentional data as instructions. Unfor-
tunately, this could lead to cases where the disassembly is out of step with the
actual instructions.

To prevent this, code must not be disassembled in a linear fashion but should
rather realign itself with respect to indicators for the start of an instruction.
Such indicators are targets of control flow, function calls, conditional and un-
conditional branches. This information is used to realign the disassembly pro-
cess based on discovered control flow targets. Sanity checks ensure all refer-
ences from and to code and data stay in their respective segment and target
only the beginning of an instruction. Still, even self-aligning disassembly is
provably complete as corner cases might exist. However, during testing, no cor-
ner cases were detected, i.e. no illegal opcodes and no discovered references
into the middle of an instruction or outside of code or data were discovered.
Additionally, the rewritten files showed original behaviour and did not crash.
This is a good indicator that the disassembled code actually makes sense.

Interesting Compiler Quirks. The goal of the binary rewriter is to be com-
patible with all, or at least most, of the programs it might ever encounter. This
means the disassembly and rewriting process must be able to cope with weird
code that compilers might generate. To this end, the binary rewriter was de-
signed to perform a multitude of sanity checks on the disassembled code in
order to self-detect if recovered code and code-flows seem implausible. Some
of those plausibility warnings were actually compiler optimisations that the

2The process of disassembling instructions from the beginning of the code in a linear fashion to
its end.
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rewriter stumbled upon because they are seemingly irrational at first glance.
The following lists a few interesting discoveries about gcc’s optimisation.

call 0x00000000: One of those examples is an instruction found in every
program compiled with the GCC C and C++ compilers: call 0x00000000.
It occurs multiple times in each program and only a few of those calls are place-
holders for relocation that eventually get replaced by meaningful addresses.
The majority stays zero and should any of them ever be executed would def-
initely result in the process being killed by a SIGSEGV. All calls were located
inside the glibc library that is linked into every executable. Their pattern is
always similar: Each call to zero is preceded by a conditional jump, like so:

1 ...
2 80481bd: 85 c0 test %eax,%eax
3 80481bf: 74 05 je 80481c6 <_init+0x1e>
4 80481c1: e8 3a 7e fb f7 call 0
5 80481c6: 83 c4 08 add $0x8,%esp
6 ...

Listing 6.14: Call to zero found in every program

Since the default installations of GCC libraries do not have debugging informa-
tion attached, it is not possible to pinpoint the source of those peculiar calls.
After re-compiling GCC from its source with debugging information enabled,
it was possible to pin-point the exact source code files that are responsible
for those deliberate null-pointers. Almost all occurrences are function pointers
that are being called inside a loop. The following is taken from one occurrence,
namely the call to C++ destructors linked into every3 C and C++ program.

1 func_ptr f;
2 while (dtor_idx < max_idx)
3 {
4 f = __DTOR_LIST__[++dtor_idx];
5 f ();
6 }

Listing 6.15: Culprit found in GCC’s crtstuff.c start-up code

The optimisation level of the GCC compiler however un-rolls that loop and
splits it into cases where f equals zero and f is something else than zero. Since
__DTOR_LIST[...] is filled at compile time with pointers to destructors, it
will never actually be zero and this code will never be called.

3GCC also links C++ constructor/destructor code by default for compatibility to mixed C/C++
code.
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The rewriter, however, needs to be made aware of those peculiar calls to zero.
Otherwise, the reference graph cannot work because it would try to connect
this call instruction to a non-existent instruction located at address zero. How-
ever, leaving this instruction untouched would lead to incorrect code, as call
targets are encoded as relative position in both, x86 and ARM architectures.
Consequently, simply moving call 0 to a different address would result in a
call to an arbitrary address. Therefore, those call 0 instructions are treated
separately and will be corrected to point to zero again in the final executable.
Since they are actually never called (i.e. unreachable code) it would not matter
to treat them specially, but for the sake of semantical correctness, those calls
shall still point to zero in the final code.

nop, nop, nop, ret: Another peculiar case worth mentioning is that some
code snippets were detected as implausible, because several nop instructions
occur before the return (ret) of a function.

1 08048e50 <smallfunc>:
2 8048e50: 8b 44 24 04 mov 0x4(%esp),%eax
3 8048e54: 83 c0 01 add $0x1,%eax
4 8048e57: a3 9c af 0e 08 mov %eax,0x80eaf9c
5 8048e5c: 90 nop
6 8048e5d: 90 nop
7 8048e5e: c3 ret

Listing 6.16: Short functions compiled for Atom CPUs exhibit several nops
before returning

At first sight, this does not make any sense. At second sight though, this in-
struction pattern only occurs when compiling for the x86 architecture for Intel
Atom CPUs. A closer look in the Intel Developer’s Manual for Atom CPUs re-
veals that this particular CPU does not feature out-of-order execution, i.e. all
instructions are always executed in the order they occur in the code. However,
it features a pipelined architecture and because of that the return address,
which is pushed on the stack by a call instruction is not yet available for ret
if the executed function body consists of only a few instructions. The CPU has
to stall execution until the address becomes available. So how come code for
old x86 CPU that did not feature out-of-order execution as well (e.g. the 486)
did not exhibit these nops? The difference lies in the Atom’s Hyperthreading
feature, which allows the pseudo-parallel execution of instructions. While one
core executes nop instructions, the other core can fully use the CPU’s execution
unit. In contrast, a ret instruction stalls the entire CPU, i.e. both execution
units. In summary, executing a couple of nop instructions on one core allows at
least the other core to continue while waiting for the return address to become
available.
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6.4 Rewriter Internals

The binary rewriter is at the core of the fine-grained randomisation idea. Con-
sequently, its inner workings are explained in detail in this section. The rewriter
understands the default Linux executable and shared library file format ELF [D8].
The rewriter itself works as a stand-alone program and as a library. In the first
configuration, it is designed to work as static binary rewriter, i.e. it can emit
an ELF binary output file. In the library configuration, it is designed to be in-
jected into a process in order to perform in-place transformations, for example
at process start-up. The code is entirely written in C++ and consists of 8, 010
source lines of code (SLOC).

The precise internal workflow of the binary rewriter is shown based on the
following minimalistic running example:

1 0x8048000: e8 00 00 00 00 call 8048005
2 0x8048005: 5b pop %ebx

Listing 6.17: Running Example

This example is a typical code snipped compiled into position-independent pro-
grams by the GCC compiler. This routine returns the memory address of the
instruction that called it and is typically called i686.get_pc_thunk.bx in
the symbol table. The first instruction calls the next instruction thereby push-
ing the return address on the stack, which is then popped off the stack by the
second instruction. This second instruction (pop %ebx) is independent of its
load address in memory and therefore does not need to be transformed into
the intermediate representation.

In the following, the main steps (see Figure 6.6) involved in the rewriting
process are explained:

1. Loading the executable.

2. Disassembling the bytecode on-the-fly.

3. Building a Reference Graph of the executable.

4. Applying Transformation.

5. Writing the executable back to memory (Fixation) so that it can start
executing.
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Figure 6.6: Processing Steps of the Rewriter

6.4.1 Executable Loading

The default Linux file format for executable files and shared libraries is the Ex-
ecutable and Linking Format (ELF [D8]). ELF executables and shared libraries
are composed of different loadable segments. These segments are usually di-
vided into chunks of code with different memory protections, e.g. read-only,
writable or executable. Inside those loadable segments, ELF files feature sub-
segments, so-called sections. These sections are not technically necessary to
create a running program, but they help organise the executable. Typically in-
side the executable segment, code is located in the .text section. Analogously,
writable data resides in the section .data, read-only data inside .rodata,
uninitialised data inside .bss and exception handling information is stored in
.eh_frame. Typically, .rodata, .eh_frame reside in the read-only loadable
segment. However, some linkers put those sections in the executable segment
together with the ELF header4.

In order to rewrite the code stored in ELF files, the rewriter can either read
them from disk or it can be attached to a process before it is started. The first
way treats the ELF executable as an ordinary file, the second method uses the
LD_PRELOAD environment variable, which forces foreign shared libraries to be
loaded into an address space before the program starts. LD_PRELOADwas orig-
inally intended to fix bugs of legacy software by allowing the override the sym-
bol resolution of shared libraries. It can also be exploited to force arbitrary code
to be run in any process. Therefore, it is a viable solution to forcefully inject the
rewriter as a shared library (librewrite.so) into a process that shall be pro-
tected by fine-grained randomisation. This procedure makes librewrite.so

4This clearly is a security risk as it unnecessarily increases the number of gadgets due to unin-
tended instructions found in read-only data such as the ELF header.
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part of the address space as if it were referenced as a shared libraries by the to-
be-protected program. However, no function calls to librewrite.so exist,
as COTS programs are unaware of the rewriter. Consequently, its code would
never execute. Furthermore, the rewriter is designed to run before any code
starts executing in order to have a change to randomise the address space.
To achieve this desired goal, all shared libraries, including librewrite.so,
can make use of a special loadable section called .init. All code residing in
.init is guaranteed to be executed before the main entry point of the exe-
cutable. The rewriter uses this technique to ensure rewriter code is executed
before any of the main program code. Of course, other shared libraries might
also have an .init section that executes early code. However, the operating
system cannot guarantee the order of execution for several .init sections.

When execution starts in the .init section of librewrite.so, it is mostly
identical to the static binary rewriting version that can operate on ELF files
stored on disk. The only difference is that code and data sections are either
loaded from disk or accessed in-place in memory, respectively.

Because the rewriter needs relocation information, it is read from the main ex-
ecutable file and its shared libraries. However, relocation information provides
no information about local data/code references within a segment. As already
briefly explained in section 6.2, this information is obtained by static analysis
when transforming x86 instructions into the intermediate representation.

6.4.2 Instruction Representation

In order to work fast and efficiently with instructions, a representation was
chosen that is

1. independent of the current address of execution

2. allows direct manipulation of immediate instruction values such as mem-
ory addresses and memory offsets.

To address the above requirements, each native instruction is represented as
a C++ class called Instruction. This class features access to the actual
bytecode of an instruction by means of char* pointers that point to the ac-
tual position in the address space. Only an additional field is required, the
length of an instruction, as that may vary for x86. Derived classes, such as
CallInstruction, use a pointer of type Instruction* to reference other
instructions. This way, the resulting set of Instructions that represents the
original code is free of any addresses. If code needs to be written back to mem-
ory, all Instruction classes can directly set the call target by manipulating
specific bytecode bytes.
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This design decision has the advantage that unimportant instructions do not
have to be resolved to their precise type but can be stored as the generic
DontCareInstruction, which merely stores their bytecode representation.
This applies to a majority of instructions as they do not reference memory
addresses and hence their byte representation is not affected by the randomi-
sation.

Instruction Format. The rewriter must understand the native bytecode of
x86 in order to know each instruction’s length. Otherwise the beginning of
the next instruction could not be found. Both ARM and x86 instructions are
composed of a mandatory opcode, which defines the type of instruction (e.g.
push, call etc.) and optionally other encoded information. Unfortunately
there is no straight-forward way of decoding an x86 instruction. However,
there is a generic concept depicted in Figure 6.7.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 

���� OpcodeO OpcodeO Mod
R/M SIB ImmediateDisplacement��������

Figure 6.7: Layout of the longest x86 instruction possible (15 bytes)

The Main Opcode (byte 4 in Figure 6.7) is mandatory and is usually the first
byte so that the processor knows how many bytes can follow. However,
it can be preceded by up to three prefixes, each represented by a byte.

Prefixes have a unique value, that is not identical to any opcode so that they
can be identified. These prefixes usually affect the word operation width
(16 or 32 bits), can make an instruction atomic (LOCK between multi
processors) or override a segment selector (%gs:0x4). In some cases, an
additional opcode byte (byte 5 in Figure 6.7) is needed to accommodate
the need for more than 256 opcodes. Some opcodes need an additional
ModR/M byte. Depending on the opcode, this byte is either used for Mod-
ifiers, it names a register as operand or it indicates the use of Mem-ory.

Mod is used to further diversify or modify an opcode. It has a length of two
bits. It is therefore similar to two more opcode bits.

R/M is a three-bit value, which is stored two times (6 bits total) in the ModR/M
byte. Each value determines whether the source and/or destination is a
Register or Memory. In the latter case, the SIB (Scale-Index-Base) byte
can further specify the kind of memory access. The absolute address of
memory is specified in the Displacement section of the opcode.
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The SIB byte stands for Scale-Index-Base and describes how the actual memory
address is calculated manner. As a mnemonic, it is used as follows: addl
(%ebx,%ecx,0x4),%eax. The mathematical result of this instruction
is eax ← eax + ebx + 4 · ecx4. Scale refers to a multiplier to use (1, 2, 4
or 8), Index names the register to use and Base is used as an offset. An
immediate value might even be encoded as an additional offset (s.u.).

Displacement holds either an 8-bit, 16-bit or 32-bit memory address, hence is
either 1, 2 or 4 bytes long.

The Immediate part may contain any 8-, 16- or 32-bit operand, e.g. addl
eax, $1234. The number is then directly encoded in the instruction
itself. The immediate value can also be used in addition to an SIB or Dis-
placement. For example subl 0x10(%ebx,%ecx,0x4),%eax (note
the 0x10 in contrast to the example above). This results in eax ←
eax + ebx + 4 · ecx + 0x10.

Unfortunately, x86 has no bit in the opcode that indicates whether SIB or an
immediate value are encoded. To overcome this, the rewriter uses a look-up
table that it indexed by the opcode and returns whether SIB or immediate are
used. The decoding of SIB and ModR/M then reveals how many bytes of Dis-
placement or Immediate follow. This boils down the processes of disassembly
to a mere look-up and decoding of SIB/ModR/M. This feature increase perfor-
mance in two ways:

1. No sophisticated disassembling process is required that actually resolves
the mnemonic and all its operands,

2. Opcodes that do not or cannot encode any memory references are im-
mediately set to DontCareInstructions and all that remains is their
mere bytecode representation.

Experiments have shown that this ’fast disassembly’ is ≈ 10× faster than using
objdump’s internal libdisasm.

6.4.3 Reference Graph

All instructions that reference data or code are candidates, which potentially
need to be rewritten later and act as input to build the Reference Graph that
provides information as to which other part of code or data is referred to by
an instruction. This is enabled by keeping an additional layer of references
above the original instructions. Those references resemble a directed graph
with edges pointing from Instruction objects to other Instructions. If
data is referenced, it works in the same way as data is stored in a single, huge
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DontCareInstruction, which simply contains all the data bytes. Instruc-
tions that manipulate the stack are not part of the graph as the stack is always
addressed in relation to %esp. Hence, the stack (1) cannot be considered by
the rewriter, which is static analysis, and (2) it does not need to be considered
as the original semantics are kept in tact and hence the stack layout during
run-time is not affected. The internal representation and especially the refer-
ence graph is generic enough as to work with several processor architectures.
Currently, it supports a majority of the 32 bit x86 ISA and a subset of ARM.

Following the running example from above (call 0x8048005), the under-
lying bytecode is e8 00 00 00 00. In x86, calls and jumps are always ex-
pressed relative to EIP. When executing an instruction, the EIP internally
already points to the next instruction. Because the call is 5 bytes long,
EIP points to 0x8048005. Consequently, zero needs to be added to point
to 0x8048005. This is exactly what the bytecode does: e8 is the opcode for
call and 00 00 00 00 is 32 bit relative address to call.

In the Reference Graph representation, the target (Instruction*) is there-
fore connected to the instruction decoded at 0x8048005, which is of type
DontCareInstruction and simply has the bytecode 5b.

In order to be able to reassemble the call instruction in the last step of the
rewriter, the Instruction object must also save where inside the instruction
the target is encoded. In case of the call instruction, this is at offset 1 (skipping
the opcode byte) and is a 32 bit address stored relative to the instruction’s own
address with an offset of 5 (the instruction’s length). In C/C++ terminology,
this technique is a union as arbitrary bytes of memory inside an instruction’s
bytecode are interpreted as 8-, 16- or 32-bit (un-)signed integer numbers. How
to encode and decode those unions is stored as so-called FastDecode informa-
tion for each Instruction object (see Table 6.1). Particularly, FastDecode
information includes whether it is signed or unsigned, a bit mask, a bit shift
and a summand. This coding is generic enough to enable the rewriter to later
write back addresses to an instruction without understanding the instruction
itself, and is faster than assembling an instruction from scratch. When consid-
ering the running example, the attached FastDecode information would store
the values depicted in Table 6.1 for the ARM beq instruction.

The Bit Mask and Bit Shift fields are always the same for x86 but are required
for ARM. ARM encodes code references as 24 bit numbers, hence uses a Bit
Mask of 0x00ffffff. And because ARM instructions are always 4 bytes in
length, the relative distances would be multiples of 4. Therefore, ARM encodes
the relative distance to the code target shifted right by 2 bits.
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Info Value
Opcode e8
Signedness Signed
Bit Mask 0xffffffff
Bit Shift 0
Summand 5

Table 6.1: FastDecode information codes how to write back a part of an instruc-
tion in an assembler-agnostic way

6.4.4 Transformations

After the entire code has been read and is represented by Instruction ob-
jects, the desired fine-grained randomisation can take place on the Reference
Graph without caring about memory addresses.

The rewriter supports grouping instructions to Instruction Sequences that are
later used to move code pieces together in memory. ELF sections (.init,
.fini, .text) are treated as ’natural’ Instruction Sequences. Every sequence
can be (recursively) separated in two sequences. This is done by inserting a
jump as the last instruction in the preceding sequence. This is necessary to
keep the program’s semantics as alluded to in section 6.2. Each Instruction
Sequence also supports the insertion of new, arbitrary instructions at any po-
sition inside the Instruction Sequence. Inserting instructions in the Instruction
Sequence is used as a building block for the necessary explicit connection of sev-
ered code pieces using jumps but also for the insertion of the aforementioned
nop instructions. The randomisation itself therefore is an Instruction Sequences
permutation.

6.4.5 Fixation & Assembly

Lastly, the code pieces are transformed back to x86 or ARM instructions either
on-the-fly inside the address space of the process (librewrite.so) or they
are written to an ELF file on disk (static binary translation).

For this final step to work, all Instruction Sequences need a randomly chosen
memory address. This is the address at which they are loaded in memory. This
implicitly assigns each Instruction stored inside an Instruction Sequence a
unique address. The code and data is then written back by writing the instruc-
tion’s bytecode at the calculated instruction’s address. Of course, the bytecode
is adjusted with the help of the stored FastDecode. The necessary addresses that
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need to be encoded into an instruction are taken from assigned address of the
instruction they reference.

Because an Instruction Sequence does not necessarily fit inside a memory page,
a few bytes are potentially wasted. As the aligned instructions on ARM allow
exactly 1024 instructions to take place in a memory page, up to 1023 instruc-
tions (or 4092 bytes) are wasted in the worst case. For x86, in the worst case
4095 bytes are wasted.

6.5 Debugging

Debugging a randomised process is rather difficult in comparison to the original
process for two reasons:

1. The debugger expects the instructions in memory to be in the same order
as the program that is stored on disk.

2. Two subsequent executions of a program result in completely different
memory layouts, which makes it harder for humans to understand memory-
related faults in the program.

The first issue occurs because the debug symbols are rendered obsolete due to
the re-shuffling in memory. To counteract this, the rewriter can emit debug
symbols with up-to-date addresses to disk – even when loaded as a shared li-
brary. Currently, debugging information is written in the common DWARF [D9]
file format which can be read e.g. by the gdb debugger. The debugger can then
step through the code, inspect variables etc. as if the program were unmodi-
fied.

The second issue means that addresses change between every program run.
Therefore, finding the new addresses for the same object is labor-intensive. We
avoided this issue by adding a debug flag to librewrite.so that indicates
that the same random seed should be used for every execution of the program,
resulting in the same memory layout for each executing with that flag enabled.
The consequence is that every run of a particular program ends up in exactly
the same address space layout with every single instruction being at the exact
same address across multiple runs. For all intends and purposes, this is against
common sense of randomising a process in the first place. However, it greatly
helps debugging a randomised process because all the variables reside at the
very same address across different process runs or even reboots.
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6.6 Security Evaluation

The main goal of the rewriter is to change all relative offsets with the intend
to nullify all assumptions about code positions when a single pointer is leaked.
By dividing the code in several chunks and changing their order, all relative
distance to each other have changed. Only distances within a single code chunk
are kept as they were. Hence, the smaller the chunks, the more unlikely it is
for an attacker to find exactly the necessary gadgets in the surroundings of the
leaked pointer. Because the code is randomised at start-up, an attacker has
no knowledge about the order in memory even though she might have access
to the binary file itself. Since the attacker has no knowledge about the order
of the chunks, she must assume that the needed gadget address is within the
same chunk as the leak. If it were in another chunk, no assumptions about the
distance to it can be made. This stresses that the size of a chunk corresponds
to the security of this solution.

Let us assume a process’ address space contains p memory pages of code, which
present the c chunks into which the code has been broken. If the chunks are
equal in size and each memory page is typically 4 kiB, then each chunk is of
size s = 212 · p

c bytes. Now the attacker’s desired gadget may either reside in
the chunk where a leak occurred:

Pr[Advsamechunk] = 1
c

or the attacker has to guess the address of a chunk, which is

Pr[Advguess] = 2−20

because there are 220 (232−12) possible memory pages in the address space
where a particular page could be. Because the rewriter also inserts NOP in-
structions, the actual addresses inside a code chunk change. In fact, they are
slightly increased as an inserted instruction can increase the memory address
of following instructions but not decrease them. The farther the gadget ad-
dress is from the beginning of the original code start, the higher it is moved up
because of inserted NOPs. This means the insertion must be done with a ran-
dom spacing in between the NOPs because otherwise their distances become
predictable.

6.6.1 Practical Security Evaluation

In order to test the effectiveness, two experiments were performed: (1) Cal-
culating the gadget elimination. A comparison of found gadgets before and
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after the randomisation. (2) Mitigation of an exploit targeted to a vulnerable
program.

Gadget Elimination. The 12 benchmark programs from the SPEC CPU2006
suite (see Table 6.2) were used to scan for ROP gadgets using the program
ROPgadget [L16]. After applying the rewriter in static mode, ROPgadget was
run again to check whether and how many gadgets have stayed at the original
position.

Benchmark ROP
gadgets

Remaining
gadgets

400.perlbench 67 0
401.bzip2 51 0
403.gcc 194 0
429.mcf 45 0
445.gobmk 105 0
456.hmmer 58 0
458.sjeng 57 0
462.libquantum 45 0
464.h264ref 79 0
471.omnetpp 168 0
473.astar 91 0
483.xalancbmk 460 0

Table 6.2: Overview of the SPEC CPU2006 integer benchmark suite.

Exploit. The following toy example was used for the purpose of illustrating
how an exploit is defeated.

1 #include <stdio.h>
2 char welcome_msg[20];
3 float VERSION = 0.1f;
4

5 void main (int argc, char* argv[])
6 {
7 char buf[8];
8

9 strcpy(welcome_msg, "Welcome to ");
10 strcat(welcome_msg, argv[0]);
11 strcat(welcome_msg, " version %f\n")
12 printf(argv[0], VERSION);
13

14 scanf("%s\n", buf);
15 }

Listing 6.18: Example Exploit Used to Test Fine-Grained Randomisation
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The above code first prints "Welcome to program version 1.1", where
program is the actual name of the executable file. The executable file’s name
is gathered from the supplied argv parameter of the main function. Here
lies the first defect: The program’s name is used unescaped as an argument
to printf. If an attacker renames the program to ’%p’, it will actually print
the address of the next argument, which is the global variable VERSION. In
fact, it would print an address residing the .data section of the executable. If
traditional ASLR is enabled, an attacker could learn the address of VERSION,
thereby learning all addresses of all gadgets in the program.

The next vulnerability is the fact that the supplied user argument is written to
the array of chars buf, which can only hold 7 characters plus the terminating
zero character. This could easily be exploited by writing a saved EBP at the
ninth position and a fake return address at the thirteenth position.

To mount the attack, ROPgadget was used to find gadgets in the executable.
The address of those gadgets at run-time are simply offset by the address,
which was leaked in line 11 as a printf-statement. This exploit has a success
probability of 100% if the executable can be renamed to ’%p’.

After applying the fine-grained randomisation of the rewriter, however, the
program has been started the exploit failed. This is attributed to the fact that
all relative distances to the gadgets founds earlier have been modified and do
no longer work.

6.7 Performance Evaluation

In order to measure the design goal of performance, run-time and memory
overheads of the binary rewriter and the entire fine-grained randomisation so-
lution was evaluated. The run-time overhead was calculated using the industry
standard SPEC CPU2006 benchmark by comparing the performance of unmod-
ified benchmark binaries to that of randomised binaries. Micro benchmarks
were also used to measure the actual run-time of individual important control
flow instructions.

Run-Time Overhead on Intel x86. All benchmarks were performed on an
Intel Core i7-2600 CPU running at 3.4 GHz with 8 GB of DDR3-SDRAM. All
benchmarks were compiled using gcc-4.5.3 and the uClibc C library. All mea-
surements include a complete randomisation of the entire address space in-
cluding the executable and all shared libraries. Two different randomisation
configurations were compared:

92



• All BBLs: Every found control flow instruction is used to split code into
pieces.

• 52 Bits: The number of chunks is chosen such that the total entropy is
greater than the theoretical entropy of a 64-bit address space (48 bits
usable). The closest permutation with > 48 bits was 52 bits.
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Figure 6.8: Run-time measurements with SPEC CPU2006

As can be seen from Figure 6.8, the entropy of 52 bits achieved a low average
overhead of only 5%.

Explicit Jump Penalty. From a processor’s perspective, fine-grained randomi-
sation counteracts the locality an optimising compiler tries to achieve. Nor-
mally, compilers try to organise code such that so-called hot code paths are
close together so that they fit in a single cache line of the processor. This im-
proves performance because code does not have to be fetched from RAM as
often when it is already inside the cache.

Before code chunks can be shuffled and moved around in memory, they need
to be connected using explicit jumps, i.e. jmp instructions. To measure the
impact of the explicit jumps alone, randomisation was turned off and only
jump instructions were inserted. The number of total chunks did not matter,
but only their size. The order of the chunks was left untouched in order not
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to disturb locality. The total run-time of all instructions of bzip2 with a test
input file was measured. The tests were repeated 1,000 times. Figure 6.9 shows
the resulting overhead in dependence of the number of instructions between a
forceful jump. The graph is to be read as follows: if a jump is inserted as every
11th instruction, there are 10 original (‘productive’) instructions in between –
the resulting overhead is about 1.0%.
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Productive Instructions betwen Jumps�

Figure 6.9: Microbenchmarks for Explicit Call Overhead

The insertion of jmp instructions effectively decreases the number of original
program instructions that are executed per cache line. Additionally, the pro-
cessor has to reach out to the main memory more often because the number of
instructions increased for the same work unit.

6.7.1 Rewriting Time

Based on the SPEC CPU2006 benchmark programs, the time the rewriter re-
quires to rewrite a single program was evaluated. The rewriting process is not
exactly linear, but on average achieves between 250,000 and almost 1 million
instructions per semcond. An overview of the timings of several programs is
given in Table 6.3.

The number of instructions per benchmark reflect the total number of instruc-
tions from the executable file itself plus its dependent libraries.

6.7.2 Memory Overhead

During run-time, the librewrite.so is loaded once into the address space of
a process. The code size of librewrite.so that is mapped into an address
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Benchmark Total #
of Instructions

Rewriting
Time (s)

Throughput
Instr/sec

483.xalancbmk 1,111,779 4.02 276k
403.gcc 942,244 2.39 394k
471.omnetpp 238,978 0.656 364k
400.perlbench 322,084 0.684 471k
445.gobmk 226,661 0.724 313k
464.h264ref 170,942 0.284 602k
456.hmmer 54,582 0.096 569k
458.sjeng 40,438 0.088 460k
473.astar 32,502 0.056 580k
401.bzip2 28,087 0.040 702k
462.libquantum 15,788 0.016 987k
429.mcf 12,268 0.020 613k

Table 6.3: Rewriting time for benchmark executables. The total # of instruc-
tions include the all shared libraries.

space is ≈ 90 KiB. The overhead due to the inserted instruction varies. On
average, it increases the code by ≈ 5%.

6.8 Fine-Grained Randomisation Conclusion

Fine-grained randomisation is an effective way of defeating return-oriented
programming, especially in the light of leaked pointers. The chosen method of
binary rewriting and in-place rewriting allows the mitigation to take place on
binary programs for which no source code is available. Furthermore, in-place
transformation is compatible with application signatures, which are common-
place on desktop and mobile operating systems. Even this prototypical im-
plementation showed that a binary rewriting approach is a viable path to go
because of its low performance overhead. A binary rewriting approach, how-
ever, has its limitation when it comes to corner cases of assembler code and is
challenged by ambiguities between code and data. For a bullet-proof end user
product, more time needs to be invested in coping with corner cases.

An open problem at the time of designing fine-grained randomisation was the
fact that the popular copy-on-write (COW) feature depends on the fact that
the address space is contiguous. COW is a Linux feature that saves memory
by mapping the largely identical portions of processes in each address space
while they are only backed by a single instance of physical memory. This is
smart as most of the programs use identical libraries – hence the name shared
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library. Naturally, such a sharing is only possible if the content in each pro-
cess is identical. With fine-grained randomisation, this is no longer the case.
A problem that defeats the benefits of memory sharing, or COW in particular.
This is addressed with the solution presented in the next chapter, which com-
bines seemingly contradicting goals: sharing of different content. Hence the
name ’Oxymoron’.
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7 Oxymoron

Oxymoron /,6k.sI’mO:.r6n/ (noun)
Greek. ȯξúµωρov ("sharp dull"). A figure of speech that combines contra-
dictory terms.

This chapter presents the sweet spot of effective code reuse mitigation and code
sharing savings: A secure fine-grained memory randomisation technique on a
per-process level that does not interfere with code sharing.

Previous fine-grained memory randomisation solutions by definition rendered
memory sharing techniques impossible. Because there is intentionally no iden-
tical code in any two processes, no code can be shared amongst processes.
Normally, sharing mimics the existence of the same library in different pro-
cesses by mapping the library’s memory pages into different address spaces.
This sharing is a fundamental concept of modern operating system design and
minimises overall memory consumption. A dysfunctional code sharing, how-
ever, is not just a step backward in operating system design, but also increases
the memory footprint of the entire system, likely on the order of Gigabytes, as
elaborated in section 7.2.

7.1 The Contribution to Science and My Part in it

Oxymoron cuts executables and libraries into the smallest sharable piece: a
memory page. Those individual pages are then shared amongst processes.
Each shared page appears at a different, random address in each process. For
this technique to work, code can no longer refer to other code or data us-
ing addresses as they are different in each process. Instead, Oxymoron trans-
forms existing code into Position-and-Layout-Agnostic CodE (PALACE). PALACE
code uses no instructions that reference other code or data directly, but instead
the instructions use a layer of indirection referred to by an index. This index
uniquely identifies a target and hence remains identical when targets are ran-
domised in memory. Consequently, the memory in which those instructions are
stored does not change, thereby making it available to be shared with other
processes. The unique indices are organised in a translation table. The x86
processor’s segmentation feature is used to hide the actual addressed behind
an index.
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Oxymoron works by changing existing code to Position-and-Layout-Agnostic
CodE. To this end, I invented PALACE and a translation from legacy binary
code to PALACE code. Therefore, I adapted the binary rewriter presented in
chapter 6 to support PALACE. For this purpose, I extended its functionality to
output static binaries instead of in-place memory transformation. The resulting
binaries and shared libraries do not incorporate any direct memory references
anymore. This way, the executables and libraries only have to be transformed
once and continue to run on an unmodified Linux.

To demonstrate the effectiveness and efficiency, SPEC 2006 benchmarks were
run and yielded a very low run-time overhead of only 2.7%. By re-enabling
code sharing, Oxymoron is the first memory randomisation technique that
reduces the total system memory overhead back to levels it was before fine-
grained memory randomisation.

7.2 Primer on Memory Sharing

The goal of fine-grained randomisation is to feature a different memory layout
for every process – even identical programs. Chunking code in pieces and
shuffling the puzzle pieces throughout the entire address space yields a very
high entropy. However, sharing those puzzle pieces with other processes is
only possible if the content of each piece is identical in each process. With
traditional code, the content of those piece necessarily changes when their
order in memory is rearranged, because references in code need to be adjusted
accordingly.

Code references other code or other data using either absolute memory ad-
dresses, e.g. call 0x804bd32, or relative addresses, e.g. call +42. For
absolute addresses it is obvious that different randomisations necessarily lead
to different code and data addresses. As a result, the encoding of instructions
that hold such addresses changes as well, thereby forfeiting the sharing with
other processes.

For example, a call to function foo() is only possible if the entry point of foo
is known. In x86 assembly this is written as

1 call 0x804bd32

Listing 7.1: Example Absolute Call to Function

Relative addresses, in turn, make code independent of its load address in
memory. Making code independent of its base address can be achieved us-
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ing position-independent code (PIC). Here, function foo() is called relative to
the current instruction, e.g.

1 call +90

Listing 7.2: Example Relative Call to Function

However, x86 only uses relative encoding in their call and jump instructions.
Thus, the absolute call from the example above is actually encoded as the rel-
ative distance to that function. In any case, relative and absolute distances
change when code pieces are moved in memory. Those pieces cannot be shared
across processes as they feature different absolute/relative addresses encoded
in the instructions. Consequently, fine-grained memory randomisation impedes
common code sharing, which is a fundamental concept of all modern OSes.

Severity. Modern operating systems make use of code sharing because most of
the running programs use the same libraries (C library, threading library etc.).
As a result, different address spaces have identical code loaded – even for dif-
ferent programs. For multiple instances of the same program, all code and
read-only data is shared and hence only occupies space in RAM once – regard-
less of how many instances are loaded simultaneously. Only the corresponding
data and stack is private to each process.

A simple experiment was conducted to measure how much RAM is actually
saved due to code sharing and therefore how much is at stake. The exper-
iment used Ubuntu 13.10 x86 operating system on a machine with 4 GiB
of RAM. After booting to an idle desktop, the 234 running processes con-
sumed a total 679 MiB for code, data, heap and stack. The memory map-
pings in /proc/<PID>/maps revealed that most of the processes used the
same set of shared libraries. Two libraries were even loaded in every single
processes: the standard C library (libc.2.17.so) and the Linux linker itself
(ld-2.17.so).

The sharing of code is realised by mapping the physical RAM portion that holds
the actual code into many other address spaces instead of duplicating it. Mem-
ory page mappings in each process obtained from /proc/<PID>/maps re-
vealed that libc.2.17.so was shared between all of the 234 processes. All
mapped portions of libc sum up to 207,028 KiB while only 885 KiB of real
memory are consumed. This is a savings of 206 MiB for libc alone.

Figure 7.1 illustrates the top ten savings by library. In total, sharing instead of
duplicating saved 1,388 MiB of RAM on the idle Ubuntu desktop. When addi-
tionally starting the Firefox browser, the memory consumption was increased
from 679 MiB to 817 MiB. The total amount of savings by sharing summed up
to 1,435 MiB of RAM, which is an additional savings of 47 MiB.
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Figure 7.1: Savings due to sharing of libraries. Idle desktop saves 1388 MiB,
with Firefox 47 MiB more are saved.

7.3 Threat Model

The attacker model assumes a Linux operating system that runs a user mode
process, which contains a memory corruption vulnerability. The attacker’s goal
is to exploit this vulnerability in order to divert the control flow and execute
arbitrary code on her behalf. To this end, the attacker knows the process’
binary executable and can precompute potential gadget chains in advance. The
attacker can control the input of all communication channels to the process,
especially including file content, network traffic, and user input. However, the
attacker has not gained prior access to the operating system’s kernel and the
program’s binary is not modified. Apart from that, the computational power of
the attacker is not limited.

7.4 High-Level Design of Oxymoron

To benefit from the best of both worlds – fine-grained memory randomisation
and code sharing – the challenge is to create a form of code that does not in-
corporate absolute or relative addresses, as we have already shown that both
addressing schemes by definition suffer from being dependent on their ran-
domisation. An additional layer of indirection that translates unique labels to
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current randomised addresses allows the byte representation of code to remain
the same, which enables code page sharing. However, this approach is difficult
to realise as the following four requirements are crucial for its success:

1. The size of the translation table shall be small in order not offset the
memory that is saved by sharing,

2. A layer of indirection must be efficient in order to be practical,

3. The translation must be inaccessible for adversaries,

4. The solution shall run on a commodity, unmodified Linux OS.

Overall Procedure. Oxymoron prevents code reuse attacks by shuffling every
instruction of a program to a completely different position in memory so that
no instruction stays at a known address, thereby making it infeasible for an
adversary to guess or brute-force addresses. Oxymoron features a code rep-
resentation that does not incorporate absolute or relative addresses. In this
way, several processes can map shared libraries and executables that are split
in pieces in their address space, but at random addresses.

Oxymoron uses a three-step procedure (see Figure 7.2):

A) Code Transformation: The executable E is transformed to Position-and-
Layout-Agnostic CodE (PALACE). The result is a PALACE-code executable
PE . The same applies to shared libraries, which can be treated like exe-
cutables.

B) Splitting: The PE code is then split into the smallest possible piece that can
be shared among processes: a memory page. The code of PE now consists
of code pieces PE = p1|p2| . . . |pn.

C) Randomisation: At program load time, the pieces p1|p2| . . . |pn are shuffled
by the ASLR part of the operating system loader. In memory, their order is
completely random and the pieces may have gaps of arbitrary size between
them.

The first two steps only have to be done once, while the third step is performed
at load time of the executable PE .

7.4.1 Code Transformation

To enable layout-agnostic code, all references to code and data are replaced
with a unique label. Such a unique label is an assigned index into a translation
table. This Randomisation-agnostic Translation Table (RaTTle) in turn refers to
the actual target (see Figure 7.3). This is the key to code sharing amongst
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Figure 7.2: The program is transformed and split once (A and B), then ran-
domised at every process start-up (C).
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processes, since the byte representation of the PALACE code does not change
in the next step, when it is split and individual pieces are shuffled in memory.

�	��

A insAAAAinsAAAAretAA
B instBBBBret

ACalAAAAAA0x1000:

0x1200: instBBBB
������

�: 0x1200 
�: 0x15F9 
�: 0x3FFA

Figure 7.3: Control-flow is redirected through the RaTTle rather than jumping
to addresses directly.

7.4.2 Splitting

Splitting ensures that the resulting pieces can be mapped into different pro-
cesses at different addresses. As PALACE code references every target through
a unique label in the RaTTle, it can be split without the need for traditional
relocation, which would rewrite addresses that need to be changed.

The PALACE code is split into page-sized pieces. If those pieces are later shuf-
fled, it must be assured that the original semantics of the program are kept in-
tact. This requirement is identical to the fine-grained randomisation explained
in section 6.2. This is essential when control flows from the end of one piece
to the piece that was adjacent to it in the original program code. Thus, explicit
control flow instructions are inserted at the end of code pieces that might be
moved away in a later stage of randomisation. These explicit links only need to
be inserted as the last instruction of a piece to ensure that control indeed flows
to the intended successor (see Figure 7.4). After the links have been inserted,
the code pieces can be randomised in memory without violating the original
program semantics.

7.4.3 Randomisation

Modern OS loaders for shared libraries already support Address Space Layout
Randomisation (ASLR), i.e. they load the code, data, and stack segments at
random base addresses. Oxymoron leverages this fact by putting every memory
page in its own loadable segment of the executable file or of the shared library.
As the page-sized code pieces are already transformed to PALACE code, no
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8: 0x148D

0: 0x12C9 
4: 0x1200 

0x1200 0x12C9 0x11F7 

Figure 7.4: Filling a page with instructions and linking them with explicit control
flow transfers.

relocation of addresses is needed. An ASLR-enabled conventional loader can
blindly load all pieces at random addresses. Consequently, each process can
have its own permutation of the randomisation. Only the RaTTle needs to be
kept up to date with a per-process randomisation.

7.4.4 Addressing the RaTTle

At first glance, it might seem we have only shifted the problem of addressing
functions in code to securely addressing the RaTTle. However, the RaTTle can
be accessed by control flow instructions but not be read, e.g. by adversaries.
To understand how the RaTTle works, it is worthwhile to elaborate on exist-
ing approaches – and why they are all not suitable. As already alluded to by
Shacham et al. [P12], the following techniques have drawbacks:

Fixed. Storing the RaTTle at a fixed address in memory allows for its address
to be hard-coded in the instructions themselves. Unfortunately, a hard-
coded address restricts the table to a fixed position. This fact can be
exploited by an attacker.

GOT. Accessing the GOT is realized by using relative addresses, which forfeits
sharing as discussed earlier. Moreover, several attacks are known that
dereference the GOT [L17].

Register. A dynamic address that is randomly chosen for every process could
be stored in a dedicated machine register. However, this register would
need to be sacrificed and every original use of that register must then be
simulated with other registers or the stack. Moreover, a leakage vulnera-
bility could reveal the address of the RaTTle.
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Oxymoron Approach. The RaTTle does not suffer from the aforementioned
drawbacks. Oxymoron uses the x86 feature of memory segmentation to address
and at the same time hide the RaTTle from adversaries. X86’s segmentation
is no longer used today because it has been superseded by memory paging.
Memory paging, also called virtual memory, allows a fine-grained mapping of
memory on a per-process basis and is much more versatile than segmentation.
However, segmentation is still available in modern processors and in combina-
tion with paging allows for the security we need for the RaTTle. Additionally,
as segmentation is a hardware feature and we can use it to implement the
translation table, it is very efficient. Segmentation allows the memory to be
divided in user-defined segments that may overlap (see Figure 7.5).

��

���	

A instrAAAAAinstAAAAret

B instrBBBBret

Call 0xABC() AA0x1A06:

0x1ABC:

instBBBB

���

�
�	� 0x1000

�

Figure 7.5: Code using segments as offsets for addresses.

Segmentation is realised in the processor by adding a user-defined offset to
all addresses the processor uses. The offset itself is defined by choosing from
a list of segments via a Segment Selector. Each segment in turn has its own
base address and limit, i.e. the start and length of that segment. The list of
those so-called Segment Descriptors is kept in the Global Descriptor Table (GDT,
see Figure 7.5). A Segment Selectors must then point to exactly one segment
entry in that GDT. Segment selection is done using dedicated segment selector
registers such as CS (Code Segment), DS (Data Segment), SS (Stack Segment)
and three general purpose segment selectors ES, FS and GS.

Position-and-Layout-Agnostic CodE (PALACE). By default, CS, DS and SS
all point to the entire virtual address space (e.g. 0 to 4 GiB). Oxymoron does
not change that. However, it is possible to select a different segment for a
single instruction. In this way, a single instruction may use an addressing that
is relative to the RaTTle, thereby indexing the RaTTle to change control flow or
to access data. For example, call *%fs:0x4 dereferences the double-word
stored at %fs:4 and calls the function stored at that double-word. If we let
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the segment selector FS point to the randomly chosen address of the RaTTle,
we effectively index the RaTTle by an offset of 4 (see Figure 7.6).
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����

A instrAAAAAinstAAAAret

B instBBBBret

CallAAAA0x4 AA0x245A:

0x87CD: instBBBB

��	

����� 0x6F9B

�
�
		��

0: 0x2AB9 
4: 0x87CD 
8: 0x1A34�

0x6F9B:

Figure 7.6: The RaTTle in Action: Indexed through the GDT and dereferenced
using an indirect call; all in one instruction.

PALACE code substitutes each branch and jump instruction with an %fs seg-
ment override and a unique index. When not using the FS segment override,
code does not have access to the RaTTle because it uses a different segment.
The address of a segment, and hence of the RaTTle, cannot be read from user
space because the local and global descriptor tables point to kernel space mem-
ory which is inaccessible from user space. This makes the address of the RaTTle
inaccessible. As a segment selector for the RaTTle, we chose the general pur-
pose segment selector register FS, as already used in the example above. This
register is usually unused. Some exotic applications may use it though, e.g.
the Windows emulator Wine that uses segmentation for its 16-bit Windows
emulation.

Note: the GS register is already used in a similar fashion. Linux stores data
that needs to be globally accessed GS-relative, e.g. thread-local storage or the
system-specific syscall implementation (as shown in Listing 7.3):

1 int main(int argc, char* argv[])
2 {
3 __asm__(
4 "movl $20, %eax\n"
5 "call *%gs:0x10\n"
6 "movl %eax, pid\n"
7 );
8 printf("pid is %d\n", pid);
9 return 0;

10 }

Listing 7.3: A Linux syscall to getpid() using a GS-relative call
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Efficient Data Access. Data can be accessed in a similar way, but through the
Global Offset Table (GOT). The GOT is used in position-independent code such
as libraries anyway. To this end, the typical calculation of the GOT’s address
must be substituted with an indirection through the RaTTle. Further access
is done through the GOT as in traditional position-independent code. This is
explained in more detail in subsection 7.5.5.

Populating the RaTTle. The RaTTle is the only part of the code that needs
rewriting at load time. The RaTTle is empty in the ELF executable file on
disk and its memory gets initialised by the loader with the help of relocation
information. This relocation information points to the actual symbols that each
RaTTle index refers to. The Linux loader automatically takes the relocation
information to rewrite the RaTTle at program load [D8].

7.5 Design Details

With the ingredients described earlier, we can put together Oxymoron, a miti-
gation against code reuse attacks that is efficient, lightweight, and shares code
and data between processes.

7.5.1 Design Decisions

There are several ways to implement PALACE. A PALACE executable can be
produced by a compiler, or it can be transformed from a traditional executable
using static or load time translation.

Compiler Support. The same way contemporary compilers support PIC, they
can be augmented to emit PALACE code. Based on the principles of PALACE
code, the compiler needs to generate PALACE code and put it in subsequent
memory-page-sized chunks. It is then ready to be loaded by a traditional loader
that permutes the chunks prior to execution of the code.

Static Translation. If the source is not available, an existing executable can
be transformed to PALACE by means of static translation [P82, P83]. Static
translation reads an executable or shared library file from disk, disassembles it,
transforms the instructions, and writes a modified executable file back to disk.
For PALACE code, static translation keeps most of the instructions untouched
while only replacing code and data references with the appropriate indirection
through the RaTTle. However, static translation needs to disassemble compiled
instructions which cannot be done reliably in all cases [P81].

load time Translation. load time Translation can be regarded as a static trans-
lation that happens automatically at every load time, after the executable or
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library has been read from disk into memory but before it starts execution. Its
advantage is that a process can be randomised at every startup. In our scenario,
however, we do not need load time translation as we can achieve a randomisa-
tion at load time with specially crafted PALACE chunks and small ASLR pieces
in the executable file.

Decision. Oxymoron can be implemented by a compiler that simply emits
PALACE code instead of traditional code. However, I chose to build a legacy-
compatible solution that uses static translation and can be built on an exist-
ing fine-grained memory randomisation framework, which already uses static
translation. Here, the rewriter from chapter 6 comes in handy.

In theory, a static translation approach may seem fragile because it needs a
perfect disassembly. However, static translation can be tuned to reliably dis-
assemble code generated by a particular compiler with known and carefully
chosen parameters. Besides, in this thesis, the translation from traditional x86
code to PALACE code is used as a comprehensible running example that com-
pares traditional x86 code to PALACE code side-by-side.

PALACE Code and the Linux Loader. In both cases, compiler and static trans-
lation, the generated PALACE code of the executables and libraries can be read
by a commodity Linux. The Linux OS loader will detect the executable as
being ASLR-enabled and will randomise its base address. Unfortunately the
commodity loader does not randomise the program segments individually but
keeps their relative distances. For traditional position-independent code that
was necessary so that code in the .text section can still reference objects in
the .data section by their relative distance to the current instruction pointer.
However, for PALACE this limitation is not required. In contrast, a more fine-
grained randomisation is desirable that allows to place program segments indi-
vidually in memory. This can be achieved by requesting a special linker in the
program header, which randomises the segments individually. This achieves
the best of both worlds: a randomisation for every process start and legacy
compatibility as we do not need source code to transform executables.

7.5.2 Setting up the RaTTle

During the creation of PALACE code, the RaTTle needs to be filled with unique
indices that can be assigned to call sites and data references. Later, during load
of the rewritten program, the RaTTle needs to be loaded at a random address
and then populated with all references in the executable. Before the RaTTle
can be used, it has to be set up as follows:

1. During PALACE code generation, assign every reference in code a unique
number that will act as an index into the RaTTle,
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2. During program loading, fill the RaTTle with the actual, current, random
addresses of the original targets, and

3. Set up segmentation so that a free segment selector points to the RaTTle
such that it can be indexed.

In step 1, the absolute addresses of the original program are saved in a hash
set. Then, every address is assigned an ascending index. This ensures that the
table does not grow unnecessarily large. Since the final, random addresses are
unknown before the process is started, the RaTTle cannot be filled until start-up
of the process. Because the operating system loader shall not be modified, the
RaTTle must be populated using only traditional features of the loader. Such
a feature is relocation. Relocation information tells the loader which objects in
the executable file or in the library must be overwritten with current addresses
at load time. Therefore, for each RaTTle index, relocation information is added
to the final executable/library file. This ensures that the loader rewrites each
index so that it points to the corresponding position of code or data that this
index represents. As a result, the randomised addresses of the code pieces are
automatically written into the RaTTle by the operating system loader during
start-up.

7.5.3 Setting up Segmentation

In order to find the RaTTle in memory, the x86 segmentation must be set up
so that a pre-defined segment points to the beginning of the RaTTle. Setting
up segmentation requires the Global Descriptor Table (GDT) to be changed.
Changing the GDT can only be performed in kernel mode. Since the goal is to
avoid operating system modifications in order to stay legacy compatible, this
is not an option. Luckily, the x86 architecture additionally supports a so-called
Local Descriptor Table (LDT [D10]). The LDT can be switched for every address
space, so that Linux emulates a per-process LDT. This is a perfect feature for
enabling Oxymoron on a per-process basis.

GDT and LDT. The actual value that a segment selector must hold is not merely
an index to the GDT/LDT, but is defined by the architecture set as follows:

Bits 15 - 3 Bit 2 Bit 1 - 0
Index into the table (0-4095) 0=GDT, 1=LDT Privilege Level

Table 7.2: The GDT and LDT structure of the x86 architecture

As user mode is in Ring 3, bits 0 and 1 must be set to 11bin. Because the LDT
is used, bit 2 must be set. Finally, the index is prepended, so index “0” yields
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111bin (7 in decimal), index “1” yields 1111bin (15 in decimal) and so on.
Ultimately, the selector is set up using a simple mov with the correct number:
mov $7, %fs.

The setup of the LDT and the segment selector that points into the LDT is done
in initialisation code. For this purpose, the ELF executable format supports
a designated section, called .init, that stores initialisation code. Code in
this section is guaranteed to be executed before any other code. Oxymoron
uses this init code to set up the RaTTle. The code figures out the address at
which the RaTTle has been randomly loaded by the loader and sets up the
LDT accordingly. After the initialisation code has run, the segment selector FS
points to the random address of the RaTTle. The PALACE code can now work
as intended.

7.5.4 Control Flow and Data

The following are examples of instructions and instruction sequences that need
to be transformed by the static translation. In the following examples ’4’ is used
as an index in the RaTTle as an exemplary identifier of a fictional target.

Code. Control flow branches or function calls that target another memory page
need to be replaced with an indirection through the RaTTle. The simplest case
is a direct call or an unconditional jmp to a different place in code:

Address� Before� After�

8050512: call 0x8050c08 call %fs:4

RaTTle: [0] ..........
[4] 0x8050c08 

Only branches that reference code outside of the current memory page must
go through the RaTTle. Code and data access within one memory page may be
encoded position-relative (e.g. call +90).

If the to-be-replaced instruction is an indirect jump, the translation is slightly
larger due to the fact that x86 does not support two levels of indirection. It is
either possible to use the RaTTle to get the address of the second indirection
and then dereference that using an indirect jump or to use a trampoline. The
following example translation uses a trampoline as it is slightly faster:
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Address� Before� After�

8050512: jmp *0x80a00012 jmp %fs:4

80a00012: 8050c08 8050c08 

RaTTle: [0] ..........
[4] jmp *80a00012 

A slightly more complicated case is a conditional jump because there is no
equivalent conditional indirect jump. Hence, the solution emulates a condi-
tional indirect jump and is more involved:

Address� Before� After�

8050512: cmp %eax, %ebx cmp %eax, %ebx

8050514: jne 0x8050590 jne 0x8050518 

8050516: jmp 0x805051a 

8050518: jmp *%fs:4 

RaTTle: [0] ..........
[4] 0x8050590 

An indirect jump, such as jmp *%eax does not need to be replaced at all.
However, the used register (in this example %eax) must point to the correct
randomised position in memory. This is either ensured by the compiler that
generated PALACE code or by the translation from traditional code to PALACE
code. In either case, the %eax register must be loaded with a code address.
Optionally, jump tables or C++ vTables modify the register prior to transferring
control to the destination address.

Usually, the register used for an indirect jump is first populated with a fixed
address, e.g. mov $0x8402dbc, %eax. In the case of PALACE, this step
needs an indirection to conceal the actual address and to make the address
exchangeable by the RaTTle. In PALACE code this register loading looks like
this: mov %fs:$0x4, %eax. This copies an address stored as an entry in
the RaTTle to the register %eax. Then, some mathematical operations can be
performed, such as adding the offset into C++ vTables and finally the indirect
jump is performed as in traditional x86: jmp *%eax.

Data Access. Accessing data through the RaTTle is done in exactly the same
way. An indirect memory operation is used to read or write data from or to an
address stored in the RaTTle. The instruction mov %fs:$0x4, %ebx is used
to read the first entry (4 bytes) of the RaTTle into register %ebx and vice versa
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the operation mov %ebx, %fs:$0x8 copies the the content of register %ebx
to the second entry of the RaTTle.

7.5.5 Inter-Library Calls and Data

Control flow and access to data is not restricted to one library or executable.
Naturally, these code elements frequently use each other’s functions and data.
Some operating systems, like Windows, use relocation information to directly
patch the control flow so that it points into a library after it has been loaded.
Linux, on the other hand, uses the procedure linkage table (PLT) to link calls to
libraries with the advantage of lazy loading. In the beginning, PLT entries do
not point to the actual procedure inside a library because it has not been loaded
yet. Instead, they point to code that loads the library and then rewrites the PLT
to link the call to the actual target procedure. This way, when a program calls
printf@plt, the stub stored in the printf entry of the PLT first loads the C
library and then replaces the call with a call to the actual address of printf
inside the loaded C library.

Similarly, Oxymoron uses an indirection through the RaTTle for every library
call or access to global library data because this approach conceals the actual
address of the loaded library and has only minor performance impact.

Inter-Library Data. Libraries can export data to be used by the executable
main process or other shared libraries. Since it is known a priori which data
is accessed in another library, each reference gets a place-holder in the GOT
which can be accessed as described above. When the appropriate library is
loaded by the loader, it automatically updates the GOT based on the relocation
info pointing to this entry in the GOT.

The following is an example of typical position-independent code that uses
a GOT to access data: The code is first calling the next instruction, thereby
pushing its own address as a return address to the stack. Then, this address is
popped off the stack to get the absolute address of the currently running code.
The address of the GOT is calculated by adding a known offset.

Address� Before�

8050512:� call 0x8050517 

8050517:� pop %ebx

8050518:� add $1234, %ebx

805051e:� mov 4(%ebx), $1 

Call next instruction

ebx � 8050517

ebx � GOT

GOT[4] � 1
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When transforming this piece of code into PALACE, only the calculation of the
GOT needs to be substituted. In this case, the three former instructions get
compressed to a single instruction with segment override.

Address� After�

8050512:� mov %fs:4, %ebx

805051e:� mov 4(%ebx), $1

RaTTle:� 0x805174B 

ebx � GOT

GOT[4] � 1

Points to GOT

Interestingly, this is a faster method of accessing the GOT than the currently
used PC-relative addressing for x86-32. However, this calling convention for
the GOT has changed in 64 bit mode (x86-64) Linux. The call to the next in-
struction is not needed as x86-64 can use the instruction pointer RIP (formerly
EIP) as a general purpose register. Hence, adding an offset to RIP directly be-
came possible.

Inter-Library Calls. Inter-library calls are calls from one loaded library to an-
other or from the main executable to a library. In theory, these calls are no dif-
ferent from a call within the same library or executable because the RaTTle can
simply point to code in another library. However, in practice, this would require
the RaTTle to reflect all possible combinations of loaded libraries. Therefore,
a unique RaTTle is used for every loaded library. An inter-library call acts as a
trampoline that changes the segment selector FS to point to the corresponding
RaTTle of another library prior to jumping into that library (see in Figure 7.7).

Please note the missing “*” in the call %fs:8 of Figure 7.7, which means the
RaTTle is not dereferenced rather than used as a trampoline. This trampoline
then lets FS point to the index of the other library’s RaTTle without the need
to know the exact address. Suppose the function that we want to call is stored
at index 0 in RaTTle2, but RaTTle1 is currently active. The code in Figure 7.7
first sets FS to point to RaTTle2. RaTTle2 is the second selector in the LDT.
Hence, the trampoline code in RaTTle1 assigns 10111bin = 23 to FS, which
corresponds to a segment selector of “2” (see Table 7.2).

The trampoline code then jumps to index 0, which now corresponds to cur-
rently active RaTTle2. Because the trampoline uses a call instruction to fi-
nally call into the other library, control flow returns to the trampoline where
FS is restored to its former value.

Legacy Libraries. In order to work with legacy libraries that do not support
a RaTTle, the traditional approach using a GOT and PLT is used. The address
of the GOT and PLT, however, is resolved using the RaTTle, of course. For this
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4: 0x12C9 
8: mov LIBv 2, %fs
   call *%fs:0 

mov LIBv 1, %fs
   ret

call %fs:8
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ret
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0x6721  

Figure 7.7: Inter-Library Calls: Because the indices overlap, a new RaTTle
needs to be set up before those calls.

to work, it has to be known at compile time whether the linked library is in
PALACE-form with a RaTTle or not.

7.5.6 Debugging

Debugging information augments the executable or library file with annota-
tions describing which memory addresses correspond to which variables or
lines of code. These stored addresses must be compatible with Oxymoron ran-
domised addresses. Since Oxymoron is implemented as a static translation tool,
the original debugging information needs to be translated as well. Currently
Oxymoron supports the common DWARF [D9] file format which can be read by
gdb or other debuggers. This way, it is possible to teach gdb the randomised
addresses so that gdb can still step through the code, inspect variables etc. –
similar to non-randomised executables.

7.6 Evaluation

This section evaluates the effectiveness of Oxymoron empirically as well as the-
oretically. In order to demonstrate the efficiency, the de facto standard perfor-
mance benchmark SPEC CPU2006 was used together with micro benchmarks
to measure cache hit/miss effects.
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The security of the RaTTle is crucial, as the disclosure of randomised addresses
hinge on the proper protection of the RaTTle. Also, it is important to check
that the introduction of the RaTTle did not open the flood gates for other at-
tack vectors. Then, the slightly different randomisation of memory pages that
this solution entails is compared to the more classical memory randomisation
solutions in order to get an understanding of the implied security.

7.6.1 Practical Security Evaluation

We tested our randomisation solution against real-life vulnerabilities and ex-
ploits. The documented vulnerabilities CVE-2013-0249 and CVE-2008-2950
both allow arbitrary code execution by means of return-oriented program-
ming [L18]. CVE-2013-0249 targets the libcurl library which handles web
requests and is used in dozens of popular programs, including ClamAntiVirus,
LibreOffice, and the Git versioning system. The exploit for this vulnerability is
crafted in such a way that it triggers a buffer overflow in libcurl with the
ability to overwrite a return address and ultimately execute a chain of ROP
gadgets. The severity of this bug lies in the fact that it can be triggered re-
motely when libcurl accesses a prepared resource that is under the control
of the adversary. In order to test the exploit, a program that uses libcurl
was fed with the exploit. In particular, the stand-alone curl downloader ex-
ecutable in version 7.28.1 was used. Due to the vulnerability in that version,
it was possible to run arbitrary code by chaining together ROP gadgets. After
curl had been rewritten to use Oxymoron, the exploit was no longer possible
as the addresses that are needed to successfully mount the attack are unknown
due to the randomisation at every program start.

Similarly, the vulnerability CVE-2008-2950 allows for arbitrary code reuse
in the PDF library poppler, which is used by many popular programs such
as LibreOffice, Evince and Inkscape. A specially prepared PDF file can trig-
ger an arbitrary memory reference in the poppler library, ultimately lead-
ing to a code reuse attack. Not surprisingly, an exploit against pdftotext
using libpoppler 0.8.4 was successful. After applying Oxymoron to the
pdftotext executable, the memory address of the PALACE-protected process
were no longer known and consequently the exploit was rendered unsuccess-
ful.

7.6.2 Security of the RaTTle

The RaTTle holds lots of random addresses and, at first glance, seems like a
valuable target for an attacker. The security of the RaTTle originates from
the fact that its address is unknown and that its content cannot be accessed.
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All %fs-instructions are mere replacements for control flow branches and as
such only use the RaTTle as a layer of indirection without ever knowing the
actual address of the landing position. If an %fs-instruction is a replacement
for data access, the same holds true: The RaTTle is only used for indirect
access of the actual data. In general, the x86 architecture does not support
revealing addresses that segments point to. The only way to read the address
is to parse the GDT or LDT which both reside in kernel space. To access the LDT,
a user mode program needs to issue a special syscall. Even if a program would
consist of ROP gadgets to issue this syscall, an attacker would still need to know
the addresses of the required ROP gadgets. Hence a successful attack can be
reduced to finding special instructions that can be used as ROP gadgets. This
has a negligible probability as explained in “Theoretical Security Evaluation”.

Because processes are protected by W ⊕ X (data execution prevention), no
code can be injected by an attacker. Hence, the only possibility is to reuse ex-
isting code. This existing (PALACE) code is in fact littered with %fs-prefixed
instructions that implicitly point to the RaTTle due to the sheer fact they in-
corporate a reference to %fs. Again, this situation is identical to finding ROP
gadgets in a classical program, as an attacker needs to know their randomised
position in memory in order to chain them together. The fact that this address
is not known to an attacker prevents the reuse of code. In fact, the probability
of guessing a correct address is negligible (see subsection “Theoretical Security
Evaluation”).

7.6.3 Enhanced Security of the RaTTle

It is possible to further enhance the security of the RaTTle by making it com-
pletely inaccessible. The segmentation principle of the x86 architecture allows
to distinguish code access from data access. This way, it is possible to set up
two different RaTTles, one for code going through %fs and one for data go-
ing through %gs. First of all, in a program without self-modifying code, there
should be no instruction that reads from the code segment. Consequently, there
should be no instruction in PALACE code that reads data using the %fs code
segment selector. Even if there was such an instruction, the processor would
prohibit such access. Further, it is possible to move the RaTTle completely
outside of the normal, otherwise flat1 data segment (%ds). This results in the
inability for code to ever access the RaTTle without using proper segment selec-
tors, because it no longer resides in the accessible segment. This is an effective
protection against leakage and disclosure attacks (see subsection “Disclosure
Attacks”). Also, the call stack could be protected using this method. If return

1A flat segment is a segment that covers the entire address space, i.e. 0x00000000 to
0xFFFFFFFF on a 32-bit system. This is the default for Windows, Linux and MacOS.
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addresses are not saved on the regular stack, but rather on a side stack in a re-
served area inside the RaTTle, there is no way for memory disclosure exploits
to ever read return addresses and thus they cannot gain information about
function addresses.

7.6.4 Theoretical Security Evaluation

This subsection elaborates why the entropy of memory page granularity ran-
domisation is still sufficient for fine-grained randomisation and why it is much
higher than traditional ASLR.

First, it is shown that the entropy induced by a page-granular randomisation
is high enough in the sense that the adversary has only negligible probability
of successfully guessing an address. The adversary’s goal is to mount a code
reuse attack against a running program consisting of the executable and its
loaded libraries. Hence, his goal is to know the address of either a particular
function f of interest (return-into-libc attack) or of several particular instruc-
tions i1, i2, . . . ik to build gadgets for, i.e. a ROP attack. Since the contents of
a memory page can be extracted from the executable file, the attacker can de-
termine in which memory page the instruction in question resides. Therefore,
the success of the adversary relies on the probability of knowing the address of
a particular memory page.

Every memory page is assigned a random address at load time. Thus, the first
page can choose 1 out of n possible page-aligned address slots. The second 1
out of n − 1 and so forth. For p total process pages to lay out in memory, this
yields a total of

n · (n − 1) · (n − 2) . . . (n − p − 1) = n!
(n − p)!

combinations. The adversary’s probability of correctly guessing one address is
hence the reciprocal

(n − p)!
n! .

In a 32 bit address space, we have

n = 219 = 524, 288

possible page addresses. The probability of guessing one page correctly there-
fore is 2−19. That scenario is intuitively identical to ASLR which only ran-
domises the base address of the code. However, when finding ROP gadget
chains, the page granularity drastically lowers the chance of success compared
to ASLR because several pages have to be guessed correctly. For a 128 KiB
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(p = 32 pages) executable to lay out in memory, the adversary’s probability of
guessing the correct memory layout therefore is:

Pr [Advlayout] = (n − p)!
n! = (219 − 25)!

219! = 2−608

ASLR. The calculation shows that for one big page (p = 1), the formula above
yields

Pr[Adv1page] = (n − 1)!
n! = 1

n
= Pr[AdvASLR] = 2−19

According to Shacham et al., the number n of page-aligned addresses to choose
from for ASLR is rather limited [P12]. In fact, for ASLR using Linux’ PaX it
is lower than the theoretical entropy of n = 219 for a 32-bit address space.
Shacham et al. state that it is rather much closer to n = 216. The probability of
an adversary correctly guessing the address of a function (ret2libc attack) or a
ROP chain consisting of k instructions is hence:

Pr[AdvASLR
ret2libc] = 2−16 and Pr[AdvASLR

ROP ] = 2−16·k

Shacham et al. further showed that such a low probability of only 2−16 can
be brute-forced in a couple of minutes. If a program additionally suffers from
a so-called leakage vulnerability, an adversary might even be able to calculate
any particular address in the ASLR-randomised program.

Leakage Attacks in ASLR. A leakage vulnerability inadvertently reveals a valid,
fresh address inside the running program. If the adversary additionally knows
which object or function has been leaked, he then knows where a particular
object or function has been loaded. In the case of ASLR, the entire code seg-
ment has been shifted in memory en bloc. As a result, the relative distances
between functions stay exactly the same and can attacker can thus infer the
current addresses of all other objects or functions.

In the threat model (section 7.3), the attacker can exploit an existing leakage
vulnerability in order to learn a valid address. More formally, the adversary has
access to an oracle that can tell which function f has leaked and the adversary
can use the leakage vulnerability to learn the current address Af of the function
f . The adversary actually wants to divert control flow to function g and hence
wants to know Ag. To this end, he calculates the offset of the functions in the
executable file on disk:

d = Eg − Ef

d now denotes the offset between the two functions in the executable file,
which is identical in memory as the entire file has been loaded into memory at
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a random base address. Thus, the adversary can infer the current address Ag

of g by calculating the difference to the leaked function f :

Ag = Af + d

In the case of traditional ASLR, the address of any function g′ can be calculated
with probability 1. The adversary can calculate a function A(g′) that will always
return the current address of g′, given a leaked function f and its address Af :

A(g′) = Af + Eg′ − Ef

The success probability for a return-to-libc attack of the adversary, given an
exploitable leakage vulnerability, is always 1. If the adversary needs several
desired addresses, i.e. a ROP attack, the probability to find k gadgets is 1k = 1

Pr[AdvASLR
ret2libc] = 1 and Pr[AdvASLR

ROP ] = 1k = 1

Ultimately, the success probability of the adversary entirely depends on the
likelihood of finding such a leakage vulnerability.

Leakage Attacks in Oxymoron. In Oxymoron’s case of memory page granu-
larity shuffling, the relative distance between functions varies in general since
the code segment is not simply shifted en bloc. Even though the addresses
of functions are slightly shifted towards higher addresses because instructions
were inserted into the memory pages to connect them, it is assumed that the
adversary may calculate the exact offset by which content of a memory page
has been shuffled. The adversary may obtain such offsets by running Oxy-
moron on the vulnerable executable. The knowledge of the adversary hence
encompasses the content of each memory page in the executable file. He does
not how, however, the order of the memory pages.

In the following it is assume that the adversary wants to divert control flow
to function g and that the adversary, again, has access to the leaked pointer
f . If the desired function g coincidently resides in the same memory page, the
attacker knows the exact address Ag of g. For any leaked pointer f , there is a
chance that it resides in the same memory page as the desired function g. For
a program of a total size of only one memory page (4 KiB), both functions f
and g must reside in the same memory page. In an assumed probabilistic equal
distribution of the desired function g in p pages, the likelihood of g being in the
same page as f is 1

p . Hence

Pr[AdvP ALACE
ret2libc ] ≤ 1

p
and Pr[AdvP ALACE

ROP ] ≤ 1
pk
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Disclosure Attack. The following distinguishes between a leakage and a dis-
closure vulnerability:

• A Leakage Vulnerability is a single leaked pointer as described above.
This enables an adversary to correlate an actual current address of an
object in memory.

• A Disclosure Vulnerability allows an attacker to read arbitrary memory
content given its address.

Snow et al. proposed just-in-time code reuse, which showed that a disclosure
vulnerability can significantly reduce the security of fine-grained memory ran-
domisation [P13]. Just-in-time code reuse repeatedly exploits a memory disclo-
sure vulnerability to map portions of a process’ address space with the objective
of reusing the so-discovered code in a malicious way. In a fine-grained ran-
domisation such as [M2], the memory pages are scattered across the address
space and scanning with arbitrary memory addresses is very likely to end up
in unmapped memory. In order not to trap into unmapped memory, they rely
on a leakage attack to learn a valid address and then start from this address by
disassembling the code in order to follow control flow instructions. Even fine-
grained randomisation can be reversed using their technique by transitively
following the control flow.

However, in this setting of PALACE code, no control flow branch can be fol-
lowed by reading memory as such a branch only constitutes an offset into
the RaTTle. In order to resolve branches such as call *%fs:4, the attacker
would need to know the address of the RaTTle or the content of the %fs regis-
ter. Neither is possible, as alluded to earlier. The only chance an attacker has is
to rely on a leakage vulnerability to get a valid address. If that address points
to data it is useless to the attacker. If it points to code, the attacker can only
use a disclosure vulnerability to get the contents of up to a whole memory page
(4 KiB). Otherwise, he is likely to overrun the page and end up in unmapped
memory which triggers a page fault that kills the program.

Stack Leaks. Another possibility for an attacker is to hope for a leakage vulner-
ability that enables him to read addresses from the stack. Even though a call
%fs:04 instruction does not reveal addresses when disassembled, the call
instruction will always put the current address of execution on the stack in or-
der for the corresponding ret instruction to be able to return to that point. A
possible way to circumvent this, is to replace all call and ret instructions by
equivalents that follow the PALACE code principle. That means a PALACE-call
instruction needs an index into the RaTTle that describes the address of the
instruction following the PALACE-call. The PALACE-call then pushes that in-
dex onto the stack and the corresponding PALACE-ret instruction jumps to the
index that was popped from the stack.
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7.7 Performance Evaluation

In order to evaluate the efficiency of Oxymoron, CPU benchmarks using de
facto standard SPEC CPU2006 integer benchmark suite were conducted. The
SPEC benchmark suite evaluates the performance using 12 benchmarks that
have been derived from typical workloads of a variety of areas. All bench-
marks compare the performance of unmodified SPEC executables to executa-
bles transformed to PALACE code. The benchmarks were performed on an Intel
Core i7-2600 CPU running at 3.4 GHz with 8 GB of RAM.

7.7.1 Static Translation Overhead

Before the executable and libraries can be shuffled in memory, they either need
to be compiled with an PALACE-enabled compiler or they must be converted
using static translation (see section 7.4). Even though the translation only
needs to be performed once, it should be efficient in order not to introduce too
much delay. The rewriting time for all benchmark programs of the Spec CPU
suite was therefore also measured. The rewriting process is not exactly linear,
but on average achieves between 35,000 and 700,000 instructions per second.
Table 7.3 gives an overview of the timings of several programs.

Benchmark Total #
of Instructions

Rewriting
Time (s)

429.mcf 12,268 0.024
462.libquantum 15,788 0.024
401.bzip2 28,087 0.056
473.astar 32,502 0.032
458.sjeng 40,438 0.101
456.hmmer 54,582 0.116
464.h264ref 170,942 0.396
445.gobmk 226,661 6.744
400.perlbench 322,084 1.084
471.omnetpp 238,978 0.316
403.gcc 942,244 3.667
483.xalancbmk 1,111,779 4.321

Table 7.3: Timings for static rewriting that needs to be done at least once. The
total # of instructions include the executable and all its shared libraries.

The number of instructions per benchmark reflect the total number of instruc-
tions from the executable file itself plus its dependent libraries.
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Note. This measurement rewrites the entire C-library and other dependent
libraries again for each benchmark and is hence slower than just translating
the main executable.

7.7.2 Run-Time Overhead

Several factors influence the run-time overhead of Oxymoron:

• Indirection Through RaTTle. The processor has to execute a more com-
plex instruction that involves an additional memory look-up.

• jmp Instructions. These jump instructions connect pages (see section 7.4)
and result in additional instructions that are executed.

• Cache Miss Penalty. The fact that the code size increased and code has
intentionally been moved away from its original dense layout introduces
more cache misses due to poor locality.

The overall overhead of the SPEC benchmark tools was measured and is de-
picted in Figure 7.8. The average run-time overhead of all benchmarks is only
2.7% for the PALACE code and 0.5% for the additionally needed chunking into
memory page-sized pieces (4096 bytes).
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Figure 7.8: SPEC CPU2006 integer benchmark results.

123



Instruction Set. As different instructions have different execution times, it
is worth taking a look at what happens on a micro-architectural level when
replacing a normal call or jmp instruction with an inter-segment indirect
equivalent. In Intel CPUs, the complex instructions are translated internally
to simple instructions, so-called µOps [D10]. Each µOp can be executed in
a single cycle of the CPU. Consequently, a complex instruction takes several
cycles to execute. An indirect call for example gets internally divided in several
µOps that actually read the address from the specified memory location and
then transfer control to that dereferenced address. Replacing a simple call to
a function with an indirect inter-segment call produces much more µOps than
the original simple call. According to Agner Fog Research [D11], a simple call
gets translated to only 2 µOps, while an inter-segment call gets translated to
31 µOps on a ’Nahelem’ Core i7.

In PALACE code, accessing the GOT can be done in one instruction, whereas
in 32-bit traditional x86 code, three instructions are needed. However, this
single data operation is not necessarily faster than the original function call. A
segment-relative move of data costs 6 cycles on the ’Nahelem Core i7’ vs. the 2
cycle call +1 it replaces.

Cache Miss Penalty. The cache miss overhead that a randomisation introduces
was measured separately. This is important, since modern processors assume
locality of code, which might be thwarted by wild jumping in the code. The
experiment was conducted on an Intel Core i7-2600 with 32 KiB L1 cache, 64
bytes per line. To measure the cache miss overhead, handcrafted code was
used. This code consists of interdependent add instructions with a total length
of one L1 cache line. These instructions are aligned in memory in such a way
that they start at the beginning of a cache line and re-occur such that every
cache set and every cache line is filled after execution. This resembles the
baseline.

Afterwards, equidistant jmp instructions were inserted and the overhead of
100,000 runs was measured. The results show that the performance impact
is not measurable for Oxymoron. Only when the density of jmp instructions
increases, the overhead is measurable. If every sixth instruction is a jmp, a
small overhead of 0.4% is introduced. If the jmps get closer, the overhead rises
drastically. In Oxymoron however, the jmp instructions that are inserted are
4,091 bytes apart (4 kiB page - 5 bytes instruction). Of course, the code already
contains jmp instructions of the original code. Just for reference, an analysis
of the busybox code showed that after translating it to PALACE, on average
every 6th instruction is a branch or jump. This suggests that roughly 0.4% of
the total 2.7% run-time overhead can be attributed to cache misses.

124



7.7.3 Effectiveness of Memory Page Sharing

The busybox project was used to resemble a set basic programs one would typ-
ically find on a Linux machine. busybox incorporates 298 standard Linux com-
mands. Those command line programs were started and their memory foot-
print was measured using /proc/<PID>/maps. On average, they mapped
14.9% more code pages than their unmodified original. Their data pages
were unmodified. Only the RaTTle consumes additional memory (see Subsec-
tion 7.7.4). Compared to fine-grained memory randomisation solutions that
impede code page sharing, Oxymoron on average saves about 85% of program
memory.

7.7.4 Memory and Instruction Overhead

Compared to a traditional program, the introduction of PALACE code replaced
control flow branches with other, %fs-relative, instructions. For all SPEC2006
benchmark executables, on average 9% (± 1.7%) of all instructions are calls
that needed to be replaced by indirections through the RaTTle. GOT indirect
calls through the RaTTle account for only 0.03% of all instructions.

Additionally, a PALACE binary executable file is slightly larger than a traditional
executable file because each code page (4 KiB) is a separate ASLR-enabled
section in the executable file.

During run-time, the memory footprint also slightly increases because the RaTTle
has to be kept in memory. Of course, this run-time memory usage is accom-
panied with the achieved goal of memory savings due to the sharing of code
pages with other processes.

Encapsulating each memory page in a separate segment in the ELF file requires
the allocation of one section header and one program header per page. A
section header is 40 bytes and the ELF program header is 32 bytes which leads
to an overhead of 72 bytes per 4096 byte memory page, or ≈ 1.76%. Figure 7.9
depicts both the increase of instructions due the static translation as well as the
increase of the ELF section and program headers.

Run-Time. The size of the RaTTle depends on how many references the code
has. If a target is referenced more than once, e.g. the GOT, only one index is
saved in the RaTTle. For all files that belong to the SPECint CPU2006 bench-
mark, on average 19% of the code segment had to be added in the form of a
RaTTle.
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Figure 7.9: Memory overhead after static translation.

7.8 Oxymoron Conclusion and Limitations

The used PALACE code only relies on segmentation as an additional hard-
ware feature. Hence, Oxymoron also works in virtualised environments. Oxy-
moron was successfully tested in software (Qemu [L19]) and hardware (Virtu-
alBox [L20] with Intel VT-X) virtual machines as well as on a para-virtualised
Linux using the Xen hypervisor [L4].

The solution presented herein was implemented for the 32 bit x86 architec-
ture. While its 64 bit successor has limited supported for segmentation, the
necessary offset functionality of %fs segment registers is still available. How-
ever, in 64 bit mode, segmentation support is restricted and segment limits are
not longer enabled by default. Newer AMD64 processors do support segment
limit checking if the model specific register Long Mode Segment Limit
Enable (LMSLE) is set to 1 [D1, Sec. 4.12.2]. However, the limit is only
checked through FS segment register and only within the classical 0-4 GiB
address space.

JIT. Just-in-time (JIT) compiled code, such as the Java run-time environment,
is currently not protected as it is emitted during run-time. However, JIT-
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compilers can be adapted in order to emit PALACE-enabled code to benefit
from the protections presented in this thesis.

While Oxymoron helps against code-reuse exploits in the light of leaked point-
ers, a far more dangerous vulnerability is a memory disclosure vulnerability. In
contrast to a leaked pointer, a memory disclosure vulnerability allows an at-
tacker to read content of the process’ memory at her discretion. Thus, she can
disassemble a known address and thereby reveal code addresses of fine-grained
randomisation recursively. The next chapter presents a solution against that
problem by mitigating the root cause, memory disclosure vulnerabilities that
read their own code.
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8 Execute-no-Read (XnR)

Fine-grained randomisation, as presented in chapter 6, helps against vulnera-
bilities that arise from the fact that a single leaked pointer might be all it takes
to revert a whole address space layout. However, Snow et. al [P13] have shown
how to exploit information leakage vulnerabilities to piecemeal discover even
fine-grained randomisation inside a running process. These information leak-
ages might originate from a buffer overflow that allows the attacker to control
a read pointer which is later dereferenced, thereby revealing the contents of
RAM at an attacker-chosen address. With this primitive at hand, an attacker
can disassemble a known, valid address and thereby follow the chain of con-
trol flow to ultimately reveal almost all code addresses without tripping a page
fault.

While it is hard, or even impossible, to statically analyse code for memory dis-
closure vulnerabilities, this chapter follows another approach: In the cain of
Fault → Error → Failure (see Figure 2.1 in chapter 2), the approach presented
in this chapter lets the Fault happen, i.e. the code itself is not protected. How-
ever, its ramifications in the sense of unwanted code reads are detected and
stopped. This has the advantage that no matter how an attacker achieved to
exploit a memory disclosure vulnerability, its effects are detected and prohib-
ited before they can be exploited. This method fundamentally thwarts the root
cause of those memory disclosure exploits by preventing the inadvertent read-
ing of code while the code itself can still be executed. The newly proposed
underlying primitive is called Execute-no-Read (XnR), which ensures that code
can still be executed by the processor, but at the same time code cannot be
read as data. This ultimately forfeits the self-disassembly which is necessary
for just-in-time code reuse attacks (JIT-ROP) to work. Because contemporary
x86 hardware does not support the primitives needed for XnR, it has been im-
plemented in software by modifying the Linux kernel. Nevertheless, it has a
performance overhead of only 2.2% for the Linux implementation and 3.4%
for the Windows implementation.
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Traditional ROP that uses a leaked pointer to circumvent ASLR is not prevented
by XnR. This means that fine-grained ASLR, e.g. as described in chapter 6, or
ROP gadget elimination must be in effect to ensure a holistic defence against
code reuse attacks.

8.1 The Contribution to Science and My Part in it

This chapter systematically studies the root causes behind disclosure vulnera-
bilities. The insight is that current processors only allow memory to be marked
as non-writable or executable. However, code that is supposed to be executed
must remain readable in memory and hence poses a risk for disclosure attacks.

The “Execute-no-Read” (XnR) primitive maintains the ability to execute code
but prevents reading code as data, which is necessary to disassemble code and
finally find ROP gadgets (especially when they are constructed on-the-fly). The
XnR prototype implementation in software is a kernel-level modification for
Linux and Windows. These hardware emulations are achieved by patching the
memory management system in order to detect inadvertent reads of executable
memory.

I have developed the design of the necessary kernel modifications to make XnR
possible as well as implemented XnR for Linux.

8.2 Attacker Model

An attacker may exploit a disclosure vulnerability to read the address space
during run-time. The repeated application of the found vulnerability enables
her to map portions of a process’ address space with the objective of reusing
the so-discovered code in a malicious way. This enables her to disassemble a
running process with the intent of finding ROP gadgets.

8.2.1 Assumptions

It is assumed that a vulnerable user mode process exists, which exhibits a mem-
ory disclosure vulnerability. The code is split, as usual, into executable code
and data, while the code is randomised using fine-grained randomisation. The
attacker knows the process’ binary executable and the OS version of the victim
system and can hence precompute potential gadget chains in advance using a
local copy that features a different memory layout. The fine-grained randomi-
sation of the victim process is unknown to the attacker. It is assumed that the
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process has at least one memory disclosure vulnerability, which makes the pro-
cess read from an arbitrary memory location chosen by the attacker and report
the value at that location. The attacker can exploit this to discover memory
contents at chosen addresses. The ultimate goal is to know where all gadgets
reside in memory. The attacker can also exploit an assumed control flow vul-
nerability to divert the control flow and execute arbitrary code of her choosing.

The attacker can also control the input of all communication channels to the
process, especially including file content, network traffic, and data entered
over the user interface. However, the attacker has not gained prior access to
the operating system’s kernel and the program’s binary is not modified. Apart
from that, the computational power of the attacker is unlimited. In particular,
she can memorise disclosed memory, disassemble it, search it for gadgets, and
find meaningful chains of those gadgets.

In summary, an attacker tries to exploit a process to reach arbitrary code exe-
cution.

Given this attacker model, the aim is to prevent JIT-ROP attacks. If the mem-
ory disclosure vulnerability can no longer be exploited to dynamically discover
gadget chains, the execution cannot be diverted to a known, valid address. Be-
fore elaborating on the details of XnR, it should be stressed that other means
to prevent arbitrary code execution must be in place in addition to XnR.

8.2.2 Additional Requirements

While XnR is a powerful primitive, it is expected to be used in conjunction with
two other security mechanisms:

1. W ⊕ X (Non-Executable Data)

2. Fine-grained randomisation (e.g. from chapter 6)

Non-Executable Data. The first requirement, W ⊕ X, states that memory
cannot be writeable and executable at the same time. This prevents an attacker
from modifying existing code to suit her needs, or writing data and executing
it as shellcode afterwards. On modern operating systems such as Linux, Mac
OS, or Windows, the enforcement of W ⊕ X is a standard precaution and each
process can decide to enable it. On Windows W ⊕ X is dubbed Data Execution
Prevention [D12] and also must be requested by the application. However,
Microsoft has released a tool called EMET (Enhanced Mitigation Experience
Toolkit [L21]) that can be used to fore-enable DEP on processes that were
either created before DEP existed or that do not request DEP for some other
reason.
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When the W ⊕ X primitive is enforced, an attacker has to take advantage of
code that is already available in memory. In order to be able to make use of
existing code, the attacker has to know the addresses of useful gadgets.

Fine-Grained Randomisation. Fine-grained randomisation is required so that
an attacker cannot simply used a leaked pointer to calculate the addresses of
useful gadgets. Then, the attacker is forced to discover the current address
of gadgets by reading process memory, or effectively by disassembling process
memory. Here, it is assumed that fine-grained randomisation as described in
chapter 6 is used in conjunction with XnR.

8.3 Design

XnR is aimed at preventing JIT-ROP attacks by eliminating its root cause, namely
by detecting and preventing the underlying exploited disclosure vulnerability.
More specifically, as soon as a process tries to read its own code as data, XnR
considers this illegal behaviour. This prevents the first necessary step of a dis-
closure vulnerability. The implementation of XnR demonstrates that this new
primitive can be enforced with a reasonable overhead on contemporary com-
puter systems.

Von Neumann Architecture. Since contemporary processors all feature a von-
Neumann memory architecture that mixes code and data, determining whether
a particular piece of memory contains code is challenging. For XnR to work,
different types of memory accesses need to be distinguished. From a CPU’s
perspective, this distinction is easy to make since different parts are responsible
for these different actions. For the processor to do something useful, code must
be executed, which then tells the processor what to do.

1. Instruction Fetch

2. Execute

3. Load/Store

Code

Data

CPU Memory

�

�

�

Figure 8.1: The XnR primitive distinguishes between legitimate code execution
(instruction fetch) and illegal access to code using load/store instructions.
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Figure 8.1 shows an abstract way of how a processor decodes and executes
instructions. Before an instruction can be executed, the processor must first
read the bytes that constitute the instruction from memory. This so-called in-
struction fetch resembles implicit access to memory. The processor stores the
next instruction to be executed in the RIP (formerly EIP) register on x86.
If the memory can deliver the requested data stored at RIP, i.e. the mem-
ory is valid, the processor tries to interpret that data as instructions. In the
second phase, Execution, the according action of the interpreted instruction is
performed, e.g. adding two register values. An instruction being executed by
the processor might also explicitly access memory by means of load/store op-
erations, i.e. reading memory to a processor register or storing a processor
register value in memory. The effected address should typically contain data,
otherwise code would be read or written. This is exactly what XnR detects:
reading memory locations using a Load operation that actually contains code.
Usually, programs do not read their own instructions as data.

This leaves us with three types of memory access that need to be distinguished
for XnR:

Instruction Fetch: The processor fetches a few bytes from memory in order to
decode and execute the instruction that it resembles.

This constitutes a legal operation that takes place during code execution.

Load/Store of Data: An instruction may access memory that either contains
code or data. The load/store targets data if the address that the instruc-
tion referred to resides inside an area that contains data.

This constitutes a legal operation that is necessary to operate on data.

Load from Code: However, if a load instruction refers to an area of memory
containing code, the program tries to read from itself.

This constitutes a programmatic disassembly that we consider illegal.

However, the distinction between load/store of data and load/store of code is
not currently possible to do in hardware.

Hardware Limitations. The memory management unit (MMU) present in vir-
tually all modern processors such as x86 and ARM introduced the notion of a
process, which is a complete address space that exists from each process’ point
of view. Each such address space can have memory regions marked as writable
and others as read-only. While the MMU can detect write attempts to any part
of a process’ memory, detecting read attempts is not supported. Read attempts
can only be detected by declaring a certain memory region to be non-present
in the MMU. However, a non-present memory region cannot be executed any-
more. Moreover, the concept of non-readable, but executable, memory does
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not exist: memory permissions only allow to toggle the ability to write to mem-
ory or the ability to execute memory, where executable permissions imply read
permissions. As a result, XnR cannot be implemented with current hardware.

Emulating XnR in Software & Design Decisions. To counteract the fact that
hardware cannot distinguish between code and data reads, this XnR implemen-
tation is purely in software.

This has been achieved by extending the memory management system of Linux.
Page faults are used to trap access to memory pages and make informed de-
cisions about whether an XnR was detected and must be prevented. This de-
cision to use page fault is deliberate as other solutions, foremost a split TLB,
have unwanted drawbacks. Sherri Sparks and Jamie Butler, the authors of
Shadow Walker [P84], introduced a similar technique with completely different
intention. Sparks and Butler demonstrated how making memory containing a
rootkit non-readable but executable a perfect hideout. They exploited the fact
modern CPUs have different TLBs for code and data. By bringing them out of
sync, executable code can reside in the code TLB while trying to read from the
exact same memory location as data (e.g. a rootkit scanner) yields different
memory. However, implementing a split TLB would merely rely on hardware
side effect, which are different for AMD and Intel processors – and even be-
tween different revisions of the same brand processor. Implementing XnR with
a split TLB technique would considerably increase the effort to apply the XnR
technique in practice. Furthermore, the split TLB technique is more suited for
smaller code as the TLBs have to be constantly kept out of sync. In contrast,
the chosen method of using the well-defined page fault handler is also possible
in virtual environments.

This page fault based XnR software emulation was realised by extending the
memory management system of Linux. My co-authors Benjamin Kollenda, Jan-
nik Pewny and Thorsten Holz did the analogous implementation for Windows
by modifying Windows’ memory management.

Both implementations make use of the so-called page fault handler. Every time
the MMU detects a memory access violation in a process, the page fault han-
dler of the operating system kernel is called. An access violation may occur
when a process tried to read memory that is marked as non-present or when a
process tried to write to memory that is marked as read-only. The granularity
at which memory regions can have writable and present attributes is defined
by the hardware as so-called memory pages (usually 4 KiB). When a page fault
occurs, the process is halted and control is transferred to the kernel, which
then tries to handle the page fault. A page fault is no exception in the ordinary
run of a program but happens thousands of times during normal execution.
The reason is demand paging, a performance feature that starts every process
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with an empty address space and only maps pages that are actually accessed.
Demand paging is the underlying feature that XnR build upon since every first
access to a page is caught due to the initially empty process space.

XnR Logic. The modified page fault handler (see Figure 8.2) checks the vio-
lation conditions and decides whether to continue normally (i.e. to map the
missing page into the address space) or to terminate execution if a memory
disclosure was detected. Each page fault is provided with additional infor-
mation such as the address where the fault occurred and whether the access
was generated during an instruction fetch. The latter is crucial information for
XnR: If the CPU was trying to execute an instruction in a memory page that
was non-present, this constitutes a legitimate operation and the usual demand
paging routine of the kernel continues. It fetches the page and then marks it
as present. If, on the other hand, the access violation did not occur due to an
instruction fetch, then the processor was trying to read memory as data. In this
case, XnR has to distinguish whether the accessed address is indeed inside a
region containing data or if it tried to read from code. If the address resides
inside a data region of the process, the modified page fault handler continues
normally by mapping the missing page. Otherwise, the process tried to read
from a code region, which is illegal, since the XnR rule defines executable code
not to be readable. In this case, the faulting process is terminated with an error
and any possible attack has been successfully prevented.

Distinguishing Code and Data. Distinguishing between data and code regions
in a process is possible because the executable file formats provide information
as to which memory region is executable (code) and which is readable (data).
Both file formats, Linux’ ELF and Windows’ PE, incorporate attributes for each
loadable segment that will be mapped into memory. When a process is created
from an executable file or when an additional shared library is loaded into an
existing address space, the occupied memory region is tagged with the type
attributes copied over from the executable file. This way, when a page fault
occurs, the faulting address must lie inside any of the mapped regions, which
in turn has associated memory type information (code/data). This procedure
is displayed in Figure 8.3.

Continuously Trapping Access. Without any additional trickery, the proce-
dure described above would only trap on every first access to a memory page
because it will be present in the address space afterwards. Therefore, pages
need to be marked non-present again after execution in a particular page has
finished. However, the halting problem dictates that it is not generally possible
to decide when and if a program finished executing a particular memory re-
gion. A much simpler solution is to mark the first page that is accessed present
and leave it marked present until execution moves to another page. This way, it
is obvious that access continues somewhere else – at least for single-threaded
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Executable File
/usr/bin/bash
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Figure 8.3: How a loadable segment from an executable file is mapped into
memory and tagged accordingly

processes. The previously accessed page can then be deprived of its present bit,
which will trigger future page faults on that page when accessed. Whenever
execution runs outside of one memory page into another, the last page gets
inaccessible while the new page is set to present in the same atomic operation.
This method guarantees that an already accessed page will trigger new page
faults as long as at least one other page has been accessed in between.

Performance Considerations. As read/write access to data regions is always
deemed accepted program behaviour, data regions are exempt from the XnR
logic of hiding memory pages. Consequently, access to data pages does not
trigger a page fault and so no performance overhead at all occurs. The perfor-
mance penalty (see section 8.5) only occurs when accessing a code page, i.e.
when execution continues in another memory page or when code is attempted
to be read as data.

Normally, programs are optimised for high locality to make most use of com-
paratively small cache sizes. This also means that execution is likely to execute
a few hundred instructions before continuing in another memory page. This
behaviour is advantageous to XnR, as it means it will not trigger too many page
faults during execution. However, calling sub-routines in libraries causes a pro-
gram to continue execution in another memory page. Even worse, concurrent
execution results in several threads competing for the single active memory
page. In terms of performance, such behaviour would practically be worse
than single-threaded execution.
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To counteract this, XnR keeps more than one page present at all times. In fact,
the last recently used n pages are marked present while all the others remain
flagged non-present to form a sliding window (see Figure 8.4). This allows the
kernel to keep more than one page active at the same time, which reduces the
chance of a congestion.

��Present�
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0x6000

��Present�
�

0x1000

��Present�
�

0x3000

ent

0

0x2000

0x4000

0x5000

Control Flow

Figure 8.4: To improve performance, the parameter n adjusts the window
length of the sliding window that keeps up to n pages in the address space. At
the same time n is the security parameter.

Security Considerations. The parameter n is at the same time a security pa-
rameter as it correlates to the likelihood of trapping on an illegal code read
access. It constitutes a trade-off between performance and security.

For n = 1, only the page in which execution currently takes place is mapped
at any time. This is the only page that does not trigger a page fault when be-
ing accessed and hence is the only page that could potentially be read by an
attacker without being noticed by XnR. Since the attacker can only read the
page in which execution takes place, she has to know the current execution
address (instruction pointer) at the time of the exploit. This is usually not pos-
sible due to the assumption of fine-grained randomisation – or at least ASLR.
Even if it were possible to guess the execution address correctly and the at-
tacker exploits the disclosure vulnerability, she would only have access to the
single page in which the code for the disclosure vulnerability resides because
accessing another position of code would trigger an XnR exception.

For n > 1 mapped pages, the situation is more complex as there are now n
pages which can be accessed without triggering a page fault. If the attacker
can determine the address of one of those pages at run-time, she can read that
page and search it for gadgets. However, the set of visible n pages depends on
the past control-flow. Hence, each memory disclosure can only see exactly the
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same n pages, namely those whose control flow lead to the memory disclosure
vulnerability. If any other page, which is not in the set of n pages is accessed,
XnR will detect it. If n is equal to the total number of code pages of a process,
then all pages stay mapped in the process’ address space forever. This would
resemble XnR not being active at all.

8.4 Implementation

As mentioned before, XnR is not yet available as a hardware primitive because
hitherto, it did not make much sense to have a portion of memory executable
but not be able to read from it. The software emulation, which is a kernel
modification, was implemented for the Linux kernel and Windows 8 kernel –
both in their x86-64 version. In theory, the user mode programs to be protected
do not need any modifications at all. In practice, some of the binaries need to
be re-linked though (see subsection 8.5.2).

While the Linux and Windows implementations share the same concept, their
specific implementations differ vastly due to the different natures of Windows
and Linux. For both kernels, profound memory management functionality
needed to be changed. The kernels differ in the respect that Windows internals,
such as memory management, cannot easily be modified. This naturally led to
different approaches with respect to how and where XnR was engaged in the
specific kernels. In general, the fact that the Linux kernel is provided in source
code allows for a proper integration with the existing memory management
and process run-time system, whereas Windows prohibits any modifications in
the first place and hence forces the Windows implementation of XnR to be an
outer shell around immutable Windows kernel functions.

Since I implemented the Linux kernel modifications, this is the main focus of
this section. The Windows implementation details are elaborated on in the
published CCS paper [M4].

Trap Distinction. The goal of the XnR Linux kernel modifications is to inter-
cept any access to code or data, and to then decide whether that access was
triggered due to an instruction fetch (i.e. the processor is executing code) or
due to data access (i.e. load and store operations on data).

XnR uses the already existing memory management unit (MMU) of modern
processors to efficiently intercept each access to memory in software. The MMU
implements virtual memory and thereby enables process isolation. The oper-
ating system, in concert with the MMU, allows for the illusion of a contiguous
virtual address space for every process. Only the used parts of each address
space (i.e. each process) are actually mapped to physical memory, which is
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done completely transparent to each process. The MMU divides memory in
the smallest addressable unit, a memory page, for which a translation from
virtual memory address to physical memory pages can be set up for each page
and for each process. The MMU also allows trapping access to a certain mem-
ory page. In particular, writing to read-only portions of memory will trigger a
page fault – so will attempting to read from an address that is not mapped, i.e.
non-existent.

This trapping mechanism is also used for purposes other than detecting ille-
gal access. In fact, many modern memory optimisations use page faults as an
underlying feature. For example, variable stack sizes and lazy loading. The
stack can grow dynamically and only consumes as much memory as is actually
used. Every time the stack grows into a non-existent memory page, the kernel
jumps in and allocates a new, empty page in place where the fault occurred.
This gives each process the illusion of an infinitely large stack. Also, so-called
demand paging saves processing time and memory by loading parts of memory
from disk only when they are actually accessed. The same holds for mem-
ory allocated using malloc() (internally brk() syscall). The memory is not
actually mapped into the address space until it is accessed.

Because the demand paging already facilities a framework to detect access to
memory, it was a suitable position to entrench the XnR logic into the Linux
kernel. The advantage of an implementation in the demand paging subsystem
of Linux is that an illegal access can be detected before it can actually happen,
i.e. before the targeted code is accessible by the user mode process. The im-
plementation was based on the then current Linux kernel version 3.13.7 for
64-bit x86 CPUs. The Linux memory management is fairly sophisticated and
uses page faults not only to detect illegal access to memory but to transparently
implement demand paging, Copy-on-Write (COW), and to map files to memory.

A general overview of how XnR is integrated in the Linux kernel is given in
Figure 8.5. A typical XnR check works as follows:

For every page fault, Linux first checks

a) if the fault is due to access to invalid memory or

b) if the fault can be gracefully resolved by mapping a new page of memory.

In case a), the accessed position is not supposed to contain memory and was
spuriously accessed by the program. Consequently, it is killed as any further
access on invalid memory would be undefined behaviour by definition. The
other case b), means the program has accessed logically valid memory, but it
has not been loaded yet into the address space yet. Demand paging is invoked
to pretend the accessed page existed in the first place. After it has been loaded,
execution continues as if nothing happened. This way, the address space of
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Figure 8.5: Flow diagram of how the CPU, MMU and parts of the Linux kernel
interact in order to implement XnR.
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a process can be built on demand, rather than wasting memory and time by
pre-loading the entire address space at program start.

Integration nto demand paging. The Linux implementation is designed as
a patch against the 3.13.7 kernel and works with 64 bit and 32 bit programs
running on an x86-64 kernel. The patch modifies the existing minor page fault
handler as well the file mapping part of demand paging and adds the XnR-sub-
subsystem to the memory management subsystem of Linux. The entire XnR
logic was implemented in a separate new Linux kernel module that can be
switched on and off. The entire XnR patch is made available through an ad-
ditional kernel CONFIG parameter called CONFIG_EXECUTE_NO_READ. The
common make menuconfig command can be used to configure the kernel
with XnR support (see Figure 8.6).

Figure 8.6: Screenshot of an XnR-enabled kernel configuration
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Due to the architecture of Linux, the entire patch is spread across 13 files and
the patch modified 570 lines of code.

arch/x86/include/asm/pf_errorcodes.h
arch/x86/mm/fault.c
include/linux/mm.h
include/linux/mm_types.h
include/linux/XnR.h
include/linux/XnR_types.h
kernel/fork.c
mm/filemap.c
mm/init-mm.c
mm/Kconfig
mm/Makefile
mm/memory.c
mm/XnR.c

mm/Makefile, Kconfig describe the patch itself, so that it can be inte-
grated into the kernel as a module, which can be selected by the user.

arch/x86/mm/fault.c This file handles most of the demand paging and
then transfers control to file mapping (filemap.c) if a page has not
been loaded yet. Before the actual demand paging procedure is invoked,
the page fault status has to be checked for instruction fetch operation.
The x86 CPU pushes a word to the stack that encodes the type of access
violation (e.g. read, write, user, kernel, instruction fetch, data access). If
an instruction fetch happened, this is harmless. Nevertheless, the book-
keeping subroutines have to be called to save which page will be allowed
to execute in order to keep track of the sliding window. Then, the demand
paging logic does its regular job of mapping the particular page that was
not present. If, on the other hand, the target address points to data, it
must be checked to which logical area it belongs. If the faulting address
lies in a segment that is marked executable but not readable, the process
tried to read instructions from memory.

mm/filemap.c handles generic file systems whose files have been mapped
into memory. This is the case for executable files and shared libraries.
Parts of their content are mapped into different virtual address spaces.

mm/init-mm.c is responsible for initialising a new internal memory structure
that keeps track of all allocations of a process. The sliding window needs
to be anchored here in order to be part of a process’ memory allocation
structure.

143



kernel/fork.c implements fork()ing new processes, which effectively con-
stitutes cloning an existing process. Cloning is easy and inexpensive in
terms in memory and processing power, as the CPU uses virtual memory
mapping and hence two identical processes simply use the same map-
ping.

mm/memory.c implements the low level memory page handling such as map-
ping pages, unmapping pages, and traversing page table structures. Most
importantly, a majority of the functions contained in memory.c can be
called in an atomic way and these low-level functions take care of multi-
processor locks and accessing hardware page table information in a safe
manner. The file also contains functions that retrieve the corresponding
memory management structures given a faulting address. The functions
that correlate a triggered page fault with internal memory management
data structures have been patched to check if XnR is enabled and call the
sliding window mechanism accordingly.

mm/XnR.c implements most of the XnR helper functions, such as the actual
sliding window implementation, book-keeping and statistics. The slid-
ing window checks are called for every page fault from fault.c and
memory.c. The sliding window then ensures that pages that have al-
ready been paged into the address space of a process (e.g. by demand
paging) will be checked again when they are accessed again.

XnR Flag in Executable Files. In order for an executable file to signal that
it wants to be protected by XnR, it does not need an additional flag. Linux
executable files and shared libraries are usually provided in the ELF executable
format [D8]. ELF supports specifying access permissions of a particular mem-
ory area. In unmodified executables and shared libraries, the code segment
would usually be marked RX, so Readable and eXecutable. Code that shall be
protected by XnR simply has to remove the R from the ELF header of the re-
spective code section. The loaded executables and shared libraries then have
their X bit set but lack the R bit as shown in the active memory mappings of an
XnR-enabled process in Figure 8.7.

Figure 8.7: Screenshot of the loaded program segments of an XnR program
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Test Case. A simple program that deliberately tries to read its own memory
can be used to test the XnR functionality. A very basic test program is provided
in Listing 8.1.

1 #include <stdio.h>
2 extern void* wcschr;
3

4 #define PAGE_SIZE 4096
5 #define PAGE_BITS (PAGE_SIZE-1)
6 #define ROUND_DOWN(x) (x & ~PAGE_BITS)
7 #define ROUND_UP(x) (ROUND_DOWN(x) + PAGE_SIZE)
8

9 int main(int argc, char* argv[])
10 {
11 unsigned long address_start = (unsigned long)&main;
12 unsigned long address_end = (unsigned long)&wcschr;
13

14 printf ("Trying to read my own memory...\n");
15

16 unsigned long something = 0;
17 unsigned long* ptr;
18

19 for(ptr = address_start;
20 ptr < address_end;
21 ptr += PAGE_SIZE/sizeof(unsigned long*) )
22 {
23 printf ("Accessing [%p]\n", ptr);
24 // read it and store it into another variable so
25 // it won’t be optimised out
26 something += *ptr; // actual access
27 }
28

29 printf ("XnR did not trap if this is reached\n");
30 }

Listing 8.1: Tests for XnR functionality

The resulting compiled program then causes an XnR exception when run and
is killed before the respective memory can be read (shown in Figure 8.8

Figure 8.8: Screenshot of a program that violated XnR
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8.5 Evaluation

The effectiveness and performance of XnR has been evaluated on physical hard-
ware as well as inside a virtual machine. The physical hardware tests were
conducted on Intel Core i7 and AMD Phenom processors to ensure that no
microarchitecture-specific subtleties are exploited. The use of a virtual ma-
chine emphasises that this implementation does not depend on hardware spe-
cific side effects such as cache or TLB layouts.

8.5.1 Security Parameter n

The choice of n is roughly proportional to performance and inversely propor-
tional to the security. For an attacker to be successful, she needs an exploitable
memory disclosure vulnerability and a valid code address. This address can
then be fed into the memory disclosure vulnerability to get memory content,
which can then be disassembled in order to recursively uncover more valid
addresses.

If the sliding window size n has been set to a single page, i.e. n = 1, then the
attacker needs to know an address inside the currently active memory page. At
the time of the exploit, the currently active memory page is the page storing
the code that contains the memory disclosure vulnerability. Since the program
memory is randomised, the attacker requires the current randomised position
of code that contains the memory disclosure vulnerability. This could for exam-
ple happen through a memory leak, e.g. a read buffer overrun into the stack
where a valid return address is stored. However, this return address must at
the same time be close to the memory disclosure vulnerability in order to reside
in the only active page.

In summary, a memory leak must exist that reveals a valid address in the same
memory page as the memory disclosure vulnerability and then the memory dis-
closure vulnerability must be exploited with the discovered address of its own
code. Any other address would trigger an XnR exception. Likewise, reading
across the page’s boundary would trigger an XnR check as surrounding code
pages are not mapped if n = 1. If n > 1, the remaining n − 1 pages are those
pages where execution has been before. Hence, the only viable option to dis-
cover more content of a memory page through a memory disclosure exploit is
by traversing control flow back through the return stack. However, this option
is also not safe for the attacker as control flow might have diverted to other
pages in between, which is not visible from inspecting the call stack. The at-
tacker might have a local copy of the program, though. This enables her to
find most likely access patterns for code pages that lead to the memory page,
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which contains the memory disclosure vulnerability. Using this guessing, she
could determine the last used n − 1 pages. However, due to randomisation
their addresses are unknown to the attacker, unless they are also discoverable
by a memory leak.

The aforementioned attack paths of course only apply to single-threaded ex-
ecution. Otherwise, the n − 1 other pages cannot be enumerated with high
certainty as the order of execution in each thread greatly affects the set of ac-
tive n pages. Ultimately, even if the attacker has found a way to get access
to the single active page, which contains the disclosure vulnerability, a disas-
sembly can at most reveal 4 KiB of instructions – the size of a single page. All
usable gadgets must be found inside those 4 KiB.

8.5.2 Precision and Effectiveness

The most important property of XnR is that it can fulfil its goal in terms of secu-
rity, i.e. prevent illegitimate code reads. A desirable evaluation would need to
show that any possible memory disclosure attack is successfully caught by XnR
(i.e. no false negatives), while benign programs are not affected by the modifi-
cations (no false positives). As there is no enumeration of all possible memory
disclosure exploits, it is impossible to test against successful prevention of all
of them. Instead, this evaluation only tests a very generic but powerful mem-
ory disclosure to show that XnR can catch and prevent those illegitimate code
reads. The other case, no false positives, is also impossible to show empiri-
cally. Instead, a typical large set of programs is tested for incompatibility (false
positives) and the found problems are solved in a universal way.

Detection of Exploits. As an example exploit, the standard Linux netcat
program was modified to contain a memory disclosure vulnerability. netcat
is usually used to establish or listen on TCP/UDP network connections. In
order to make the source vulnerable to a memory disclosure vulnerability, it
was modified such that too long packets can trigger a buffer overflow which
overwrites an internal buffer pointer. This buffer pointer is used to assemble
network packets. This enables an attacker to craft malicious packets in such a
way as to intentionally overwrite the buffer pointer and thereby directing the
TCP response buffer to arbitrary memory. This resembles a memory disclosure
vulnerability that can extract memory regions from an attacker-driven address.

When the modified version of netcat is run on an unprotected Linux, the
memory disclosure vulnerability returns arbitrary memory containing data and
code to the attacker. With enabled XnR protection, however, the offending
netcat process is killed as soon as the memory disclosure vulnerability is di-
rected to a region containing executable code. Since JIT-ROP relies on the nec-
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essary precondition of reading memory such that gadgets can be constructed
on-the-fly, this behaviour is successfully detected and prevented by XnR.

Legitimate Code Reads. Since XnR prevents all read access to code, there
must not be any legitimate code reads as XnR’s behaviour would otherwise
hinder normal execution. If a benign program reads its own code segment
as data for a legitimate reason, blocking such access would constitute a false
positive.

Even though it might be counter-intuitive that programs try to read their own
code, our tests have shown that in fact a majority of tested Linux programs on
Debian attempted to read code during normal program execution. In fact, all
read attempts of different programs targeted the same object, the header of the
ELF executable file or the header of an ELF shared library. Closer inspection
revealed that this header is parsed by library functions that iterate over the
loaded sections (PHDRS). In contemporary Linux ELF executables, this header
resides in the .text segment (see Figure 8.9). Reading the header in memory
triggers an XnR exception because it belongs to .text, which is marked exe-
cutable. The fact that the ELF header resides in the loaded .text segment is a
result of file size optimisations by the linker. The fact that all loadable segments
have to be memory page-aligned also on disk, would waste a lot of space if the
first loadable segment would start at offset 4,096 in the ELF file. Consequently,
the first segment is designed such that it starts at 0, which by definition is a
multiple of 4,096. However, this results in the inclusion of the ELF header in
the first loadable segment. Strictly speaking, this default behaviour of all mod-
ern Linux programs is semantically wrong because the header (data) is not
supposed to be executable. Should the program have a vulnerability, the ELF
header unnecessarily resembles ROP gadgets.

R�RW�RX�

Header� .text
Code Section�

.data
Data Section�

.rodata
Data Section�

.ehframe
Exceptions�

Sections�

page-aligned�

50 bytes�

PHDRS�

Figure 8.9: A typical ELF file layout: The first loadable program header
(PHDR) spans across the ELF header in order to load it to memory as well.
This results in an executable ELF header.
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Instead, the ELF header should either be in its own PHDR loadable section or
simply be part of read-only data. Moving the header to the read-only data sec-
tion is not an option because the header must start at the first byte. Another
viable option, and the solution here, is to swap the PHDR loadable sections
such that read-only data is always the first segment in the ELF file. This does
not change where the segments will be loaded in memory. However, it en-
sures that the ELF header is stored inside the read-only loadable segment. This
solves two problems: The header no longer resembles ROP gadgets, and more
importantly, reading the header in memory does not trigger an XnR exception,
as it is no longer stored inside .text.

Linker Script Solution. The root cause of this default behaviour lies in the way
the commonly used Linux Linker ld arranges the loadable segments by default.
The ld linker is part of the binutils package and is used by gcc [L22] and
llvm [L7] on many Linux distributions. Both, gcc and llvm, also work with
the alternative Gold Linker (ld.gold) that has initially been developed by
Google and is nowadays part of the official GNU binutils source.

The suggested solution for the ELF header problem is to use a Linker Script.
Linker Scripts are usually implicitly used and are specified when binutils
are compiled. However, it is possible to specify an alternative linker script with
the -T option of ld. The changes the linker script can be narrowed down to
changing the order of the default PHDRS and its memory access flags. The
latter removes the readable flag from the code loadable segment and thereby
enables XnR in the kernel. Listing 8.2 shows the important PHDRS parts of the
modified linker script for x86-64 ELF64 executables and shared libraries.

1 /* Default linker script for XnR executables */
2 OUTPUT_FORMAT("elf64-x86-64", "elf64-x86-64",
3 "elf64-x86-64")
4 OUTPUT_ARCH(i386:x86-64)
5 ENTRY(_start)
6

7 PHDRS
8 {
9 rodata PT_LOAD FLAGS(4) ; /* read */

10 text PT_LOAD FLAGS(1) ; /* execute only */
11 data PT_LOAD FLAGS(6) ; /* read + write */
12 tls PT_TLS;
13 stack PT_GNU_STACK;
14 }

Listing 8.2: Modified x86-64 linker script with read flag removed from code and
order of PHDRS changed in order not to include the ELF header in the code
segment.
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After modifying the standard Linux linker script that creates executables and
shared libraries, the ELF headers reside in the read-only data section (.rodata)
and can be accessed without triggering an XnR violation. As a side effect, this
prevents the ELF headers from being executable.

Unaffected Execution. Testing the modified linker script with 352 standard
command line programs for Linux additionally gave good confidence that

a) the modified linker script is compatible with those programs

b) no XnR exceptions are caused during normal program execution.

The 352 programs used stem from the busybox [L23] project, which incorpo-
rates the most helpful Linux commands to install as a single package. The test
for unaffected execution was conducted as follows:

1. Call each of the 352 programs without any arguments and re-route the
program’s output (stdout and stderr) to a file. Additionally, each
program’s exit code was routed to a different file. This constitutes the
expected behaviour for each program later in the test.

2. After XnR was enabled, the programs are expected to produce exactly the
same output (stdout and stderr) and exactly the same exit code. All
programs were run again with XnR enabled and with their outputs and
exit codes stored in files.

3. The output files (stdout, stderr and exit code) were compared for
each of the 352 programs. There was not a single difference.

This is a very good indication that XnR does not affect the normal execution of
programs.

8.5.3 Performance Evaluation

XnR’s performance was evaluated using the de facto standard SPEC CPU2006
integer benchmark suite. SPEC measures the entire system’s performance for
their 12 typical benchmark workloads. To compare performance, all bench-
marks were run on an unmodified kernel 3.13.7 to set the baseline. Then, the
same benchmark executables were run with XnR enabled in the kernel. All
benchmarks were performed on an Intel Core i7-3770 CPU running at 3.4 GHz
with 4 GB of RAM. This particular CPU features four hardware cores with two
symmetric hardware threads each (HyperThreading).

As the programs themselves were not modified, any performance overhead
can only occur inside the modified page fault handler of the Linux kernel, as
this is the only part that was changed. The nominal delay in each page fault
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that occurs is comparatively low. However, the implementation of the sliding
window results in the number of page faults to increase drastically. While data
page faults are not affected at all, the code page faults increase due to the fact
the window mechanism ensures that at most n code pages are mapped into an
XnR-enabled process at any time.

Sliding Window Impact. During a program’s execution, its control flow takes
place in different memory pages. While it is executing a loop, it is very likely to
stay inside a single memory page and thus not trigger any page fault. However,
for programs that heavily jump between different code positions, the probabil-
ity is higher that they access different memory pages. Usually, compilers op-
timise code layout so that the locality of code is high, i.e. functions that call
each other or functions that resemble hot spots reside next to each other in the
compiled code. Additionally, non-control flow instructions are simply executed
one after another, i.e. they reside in the same memory page or eventually cross
a page boundary. If a program, however, continuously accesses more than n
pages, this results in constant eviction of pages from the process’ address space
and results in a performance degradation compared to a stock Linux kernel
without XnR checks.

As the window size n influences performance, the benchmarks are conducted
in dependence of n. Figure 8.10 depicts the performance depending on the
window size n = 2 pages, n = 4, n = 6 and n = 8 pages.
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Figure 8.10: SPECint2006 benchmark suite for Linux showing the perfor-
mance for each of the 12 benchmarks (and averages) dependent on the pa-
rameter n.

Even for a small window size of only n = 2 pages, the average overhead is
a moderate 2.2%. These good performance figures make choosing the right
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n fairly easy as small values of n allow for high security but remain decent
performance.

Working Set and Cache Effects. The low overhead contradicts the traditional
assumption that a large working set is necessary for good performance. The
working set describes the set of pages that are actually used by a process [P85].
With demand paging, the working set should hence increase until all necessary
pages have been touched once and remain in memory. However, XnR does not
actually revert the work done by demand paging. The sliding window mecha-
nism only marks the pages that fall out of the window as not present. This does
not actually reduce the working set size. In contrast to an unmapped page,
removing the present bit leaves the content of a memory page intact and also
does not touch any caches. The effort of demand paging, namely fetching the
contents of a page from disk, still only have to be done once and do not change
with XnR. Instead, XnR only re-enables the present bit, which causes a TLB miss
but at the same time profits from a cache that is still filled. Hence, the over-
head is mainly due to the CPU switching to kernel mode after the hardware
page fault and switching back to user mode after enabling the present bit.

Data vs. Code Access. Since XnR applies the sliding window technique to
code pages only, the performance impact of XnR is different for data-intense
applications vs. computationally intense applications.

An expected result is that the performance overhead is more distinct for ap-
plications that heavily jump between many code areas. To measure the differ-
ent effects, benchmarks from SPEC were taken and their page faults inspected
more closely.

• Data-Intense programs consume a lot of data, operate on it and either
refine a result or produce a stream of output. Compression algorithms
fulfil that description as they consume a lot of data, encode the data
differently and hence produce almost as much output. Such a candidate
is the BZip2 compression, which is part of the SPEC benchmark anyway.
SPEC’s version of BZip2 (401.bzip2) is optimised to perform almost no
I/O as SPEC is a CPU benchmark.

• Computationally-Intense programs crunch numbers and (repeatedly)
execute a lot of code on comparatively little data. Examples of such are
the Perl interpreter (benchmark 400.perlbench), which runs the email
indexer MHonArc and the anti-spam filter SpamAssassin.

The XnR page fault overhead for the chosen benchmarks 400.perlbench
and 402.bzip2 is shown in Table 8.1. The used window size was n = 4. As
expected, the data-intense 402.bzip2 benchmark caused was not affected by
the sliding window as much as 400.perlbench. While the number of page
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Program ∅ Page Fault Duration Page Faults / s
Stock Kernel With XnR Stock Kernel With XnR

402.bzip2 9.1 µs 12.9 µs 307 401
400.perlbench 5.4 µs 8.3 µs 108 512

Table 8.1: Microbenchmarks for data-intensive example (bzip2) and code-
intensive example (perl). Sliding window set to n = 4.

faults only increased by one third for 402.bzip2, 400.perlbench suffered
from more than three times as many page faults. This is to be expected as
data pages are not evicted from the address space by the sliding window and
the increase in page faults per second originate from the BZip2 algorithm not
fitting within n = 4 pages. The difference in page fault duration for the stock
Linux kernel stems from the fact that the different programs use the memory
differently and hence the page fault handler takes different paths. The overall
time spent in the page fault handler for each program is rather low. On aver-
age, 402.bzip2 spends only 0.28% of the entire benchmark duration (several
minutes) in the page fault handler. With XnR enabled, 402.bzip2 spends only
0.52% in the page fault handler. The overall slowdown due to the page fault
handler is thus a mere 0.24%. As expected, 400.perlbench spends even
less time in the page fault handler on a stock Linux kernel: 0.06%. However,
with XnR enabled, Perl spends 0.42% in the page fault handler (an increase
of 600%), but the overall slowdown due to the page fault handler is a mere
0.37%, as the time spent per page fault is significantly less than for BZip2.

The distribution of page fault durations for the two programs reveals even
more insight, as shown in Figure 8.11. The area under the curve has increased
for data-intense benchmark Bzip2 as the page faults take longer (shift towards
right) but at the same time more page faults occur. The additional checks on
every access result in a slightly broader distribution of page fault times. In
contrast, Perl’s few and short page faults have increased significantly with XnR
enabled, but each does not take much longer.

The total overhead in terms of run-time for the same input is almost negligible
for BZip2 (only 0.3% for n = 4), whereas the total run-time given the identical
input to Perl increased by 7.0%.

8.6 Discussion

Our prototype implementations for Windows and Linux show the general feasi-
bility of our approach. However, similar to W ⊕ X, to become widespread and
usable without restrictions, they need compiler support in the future. Before

153



��

����

����

����

����

����

 ���

!���

"���

�� ��� ��� ��� ��� ���  �� !�� "�� #�� ����

�
��

��
���

	��
�

��
��
��
��
�

��
��������������������

��
�������� �	��������

��
����������� �	�����������
��"���$�������#�$��

��#���$�� ������$��

Figure 8.11: Distribution of the duration of page faults that have been triggered
over a period of 2s.

W ⊕ X was introduced, executing the stack was normal1 and a paradigm shift
was needed to mark the stack not executable by default. We have observed
that both Windows and Linux programs were linked such that the resulting
executable files contained data stored in the code segment. This is not just
semantically wrong, but also hindered our XnR solution. While it was easy to
fix open source programs by re-compiling them with a modified linker script,
the Windows core DLLs remain closed source. With a change of the default
binutils linker script, XnR could become default. The same is true if Mi-
crosoft changed their default linker to put data in read-only data sections of
the EXE and DLL files, rather than code.

It is noteworthy that XnR prevents memory disclosures, but the protected pro-
gram might still suffer from a pointer leakage vulnerability. This is possible
because the address a pointer points to (integer value) is considered data even
though it might point to code. Such a leaked pointer (e.g. through a mal-
formed printf) may reveal function addresses. Therefore, the most basic
form of code reuse attacks – return-to-libc – would potentially be possible. In
a broader sense, the attacker could use functions as very coarse grained gad-
gets. However, return-to-libc attacks can be detected by the callee. The callee
needs to check whether the last address on the stack is its own address. Usu-
ally, it must be any other address but the callee’s address because it represents
the return address of the caller who used a regular call instruction. A call
pushes the return location to the stack, whereas a return pops the address

1e.g. trampolines need an executable stack
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of the targeted function (callee) off the stack. This prevention technique is a
very simple form of control-flow integrity checks [P53, M1]. It could either
be patched to the prologue of every function by means of binary rewriting or
require compiler support.

Our XnR solution might hinder debuggers. On a Linux machine, the gdb de-
bugger reads bytes from the code section and even overwrites bytes in the code
section to place breakpoints. This is prevented by XnR as shown in Figure 8.12.
However, a developer using a debugger can probably also control the XnR ker-
nel feature in order to allow debugging.

Figure 8.12: Screenshot of gdb debugger: XnR also disallows disassembly

However, return-to-libc can be easily detected by checking the stack layout
at every function prologue. A call pushes the return location to the stack,
whereas a return pops an address off the stack. This means that the callee
can easily distinguish full-function ROP-chains from legitimate calls.

The technical building block behind XnR, the ability to dynamically show and
hide pages, was also used to implement transparent encryption. This work has
been lead by Tilo Müller and Johannes Götzfried from University of Erlangen-
Nuremberg and was loosely based on my XnR implementation. The need for
transparent encryption originates from the fact that it is usually easier to at-
tack the endpoints where encryption takes place than to attack the underlying
cryptographic primitives. RamCrypt allows an unmodified Linux processes to
transparently work on encrypted data. It can be deployed and enabled on a
per-process basis without recompiling user-mode applications. In every en-
abled process, data is only stored in cleartext for the moment it is processed,
and otherwise stays encrypted in RAM. This work has been published at the
ACM SIGSAC Symposium on Information, Computer and Communications Se-
curity (ASIACCS) [M5].
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9 Conclusion

This dissertation has presented four different mitigation techniques against
code reuse attacks – still one of the most prevalent attacks today. MoCFI (chap-
ter 5) is a proof-of-concept for backward compatible protection of legacy binary
applications. MoCFI demonstrates that it is indeed possible to protect applica-
tions on a closed source ecosystem such as Apple’s iOS without access to source
code of the application or the operating system. Even though the root cause,
the possibility to divert control flow, resides in the way the compiler creates
executable code, the MoCFI solution does not need to tackles the code reuse
problem at source code or compiler level. Instead, MoCFI shows that it is suf-
ficient to protect the existing binary at the last link of the chain Fault → Error
→ Failure by monitoring the symptoms of an exploited vulnerability. Devia-
tions from expected and allowed behaviour are then caught and the hijacked
application is stopped before the changed behaviour can cause any harm.

In contrast to MoCFI, the other two code reuse preventions (fine-grained ran-
domisation in chapter 6, Oxymoron in chapter 7) engage one link earlier in
the chain by preventing the root cause, diverting control flow, in the first place.
These two methods also work on binaries for which no source code is avail-
able. They both build on the idea that introducing memory entropy deprives
an attacker of necessary address information for a successful exploit.

The fourth proposed solution acknowledges that hiding valuable information
from an attacker is a probabilistic game whose outcome depends on the addi-
tional information an attacker has. Given an additional memory disclosure vul-
nerability, the attacker is suddenly in the position to revert hidden addresses,
which are vital for a successful attack. This is why XnR (eXecute no Read, chap-
ter 8) prevents such memory disclosure attacks in order to make fine-grained
randomisation more secure.

While the proposed methods of this dissertation defend against attacks that
have evolved during the course of writing this thesis, the stepwise building of
defences is a witness for the fact that this is indeed an arms race. The next
defence for a new attack will sure be found, but systems stay vulnerable if
the story of code reuse continues to be a never-ending cat-and-mouse game. In
order to provide security guarantees against code reuse, it is necessary to put an
end to the arms race by discovering a fundamental solution to the code reuse
problem. Otherwise, a system is always at risk because new attacks against
existing defences could be found. Unfortunately, the other extreme to the arms
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race is the fact that Rice’s theorem [P86] tells us that it is impossible to decide
a non-trivial property of a program. Such a non-trivial property is whether a
given program is vulnerable to code reuse attacks. That means, we know that it
is impossible to generally prove a given program will never suffer from a code
reuse vulnerability. This is why this dissertation pushed the state-of-the-art in
defences in order to ride on the top of the wave in the ongoing arms race to
make it at least impractical for attackers.
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