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Abstract

“Don’t quote me on that!”

Christoph Lenzen

Abstract We study three problems. The first is the phenomenon of metastability in
digital circuits. This is a state of bistable storage elements, such as registers, that is
neither logical 0 nor 1 and breaks the abstraction of Boolean logic. We propose a time- and
value-discrete model for metastability in digital circuits and show that it reflects relevant
physical properties. Further, we propose the fundamentally new approach of using logical
masking to perform meaningful computations despite the presence of metastable upsets
and analyze what functions can be computed in our model. Additionally, we show that
circuits with masking registers grow computationally more powerful with each available
clock cycle.

The second topic are parallel algorithms, based on an algebraic abstraction of the
Moore-Bellman-Ford algorithm, for solving various distance problems. Our focus are dis-
tance approximations that obey the triangle inequality while at the same time achieving
polylogarithmic depth and low work.

Finally, we study the continuous Terrain Guarding Problem. We show that it has
a rational discretization with a quadratic number of guard candidates, establish its
membership in NP and the existence of a PTAS, and present an efficient implementation
of a solver.

Zusammenfassung Wir betrachten drei Probleme, zunächst das Phänomen von Me-
tastabilität in digitalen Schaltungen. Dabei geht es um einen Zustand in bistabilen
Speicherelementen, z. B. Registern, welcher weder logisch 0 noch 1 entspricht und die
Abstraktion Boolescher Logik unterwandert. Wir präsentieren ein zeit- und wertdiskretes
Modell für Metastabilität in digitalen Schaltungen und zeigen, dass es relevante physi-
kalische Eigenschaften abbildet. Des Weiteren präsentieren wir den grundlegend neuen
Ansatz, trotz auftretender Metastabilität mit Hilfe von logischem Maskieren sinnvolle
Berechnungen durchzuführen und bestimmen, welche Funktionen in unserem Modell
berechenbar sind. Darüber hinaus zeigen wir, dass durch Maskingregister in zusätzlichen
Taktzyklen mehr Funktionen berechenbar werden.

Das zweite Thema sind parallele Algorithmen die, basierend auf einer Algebraisierung
des Moore-Bellman-Ford-Algorithmus, diverse Distanzprobleme lösen. Der Fokus liegt
auf Distanzapproximationen unter Einhaltung der Dreiecksungleichung bei polylogarith-
mischer Tiefe und niedriger Arbeit.

Abschließend betrachten wir das kontinuierliche Terrain Guarding Problem. Wir
zeigen, dass es eine rationale Diskretisierung mit einer quadratischen Anzahl von Wächter-
positionen erlaubt, folgern dass es in NP liegt und ein PTAS existiert und präsentieren
eine effiziente Implementierung, die es löst.
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CHAPTER 1

Introduction

“The boundaries between true intellectual disciplines are currently enforced by
little more than university budgets and architecture.”

Sam Harris, Our Narrow Definition of “Science”

While this thesis is firmly rooted in theoretical computer science, we study problems
from three vastly different areas — digital circuit design, parallel algorithms, and compu-
tational geometry — using very different techniques and asking very different questions.
Our study of digital circuit design is motivated from electrical engineering and requires
us to look at transistor-level circuits. At the same time, we ask questions from the
realm of theoretical computer science: What can be computed in our circuit model
w.r.t. a range of parameters? Regarding parallel algorithms, we design algorithms for
distance problems in graphs in a theoretical model of computation. Our approach, how-
ever, blends into distributed computing and employs algebraic techniques. In the third
part, we study a popular problem from computational geometry and answer important
theoretical questions about it. Our results make an implementation possible. We develop
an implementation and test it with exhaustive computational experiments. Observations
from such experiments feed back into the theoretical contributions, refining them in
service of an optimized implementation.

This thesis is organized in three parts. The parts are self-contained, except for notation
and preliminaries presented in Chapter 2 and the assumption that the reader is familiar
with the foundations of theoretical computer science. Below, we informally motivate
each part; an in-depth introduction and discussion of related work is presented in the
respective introductory chapters.

Metastability-Containing Circuits Digital circuits are an integral part of virtually
every contemporary piece of technology. They are used in, e.g., desktop computers, servers,
phones, and network routers, as well as in machines under some degree of electronic
control, like cars, trains, planes, washing machines, medical equipment, robots, and coffee
machines.

At its heart, a digital circuit relies on a simple concept: Two distinct voltage levels
represent logical 0 and logical 1. Unfortunately, intermediate voltages cannot be avoided
entirely: The output voltage behaves continuously over time, hence, sampling at a critical
moment results in a deteriorated signal. This is unavoidable in, e.g., analog-to-digital
conversions or when communicating across unsynchronized clock domains.

Ultimately, these effects lead to deteriorated signals, unspecified voltage levels, and
degraded timing behavior. These, in turn, can drive memory elements like registers
into metastability, a state of a bistable element. Metastable registers typically output
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unspecified voltages between logical 0 and 1 or show late transitions, i.e., output further
deteriorated signals. In other words, metastability causes deterioration, which causes
metastability, etc. This can continue indefinitely and render the abstraction of Boolean
logic meaningless.

The standard approach to solve this issue is to exploit that the probability of main-
tained metastability decreases exponentially over time, i.e., to wait. This is implemented
with specialized storage elements called synchronizers. Unfortunately, this merely de-
creases the odds of metastability instead of eliminating it altogether and delays the
computation. Furthermore, trends in hardware design like growth in circuit complexity,
reduced operating voltage, and increasing numbers of clock domains intensify the risk
of metastable upsets.

In Part I, we study a novel perspective on the phenomenon of metastability. Our key
technique is logical masking: While the output of an And gate with inputs M and 1 —
where M represents a deteriorated signal — is M ∧ 1 = M, its output under inputs M
and 0 is M∧0 = 0. In the latter case, the stable input of 0 fixes the output and voids the
deteriorated input’s influence on the output. This is equivalent to Kleene’s three-valued
logic. Instead of trying to probabilistically shield a circuit against metastability, we accept
that metastability cannot be prevented and contain its effects using logical masking.

Our core contribution is a clocked time- and value-discrete model for metastability in
digital circuits. We verify that it reflects known physical phenomena, i.e., the impossibility
of avoiding, detecting, or resolving metastability in a digital circuit, and show that non-
trivial positive results can be derived in it. As our model assumes worst-case propagation
of metastability, we can derive deterministic guarantees as opposed to the probabilistic
promises provided by synchronizers.

On the practical side, we establish that a variety of metastability-containing com-
ponents like Metastability-Containing Multiplexers (CMUXes), unary to Gray code
converters, and sorting networks can be implemented. Regarding CMUXes, we present
efficient transistor-level implementations. The list of presented components is by no
means exhaustive, but already establishes that a synchronizer-free implementation of a
fault-tolerant clock-synchronization algorithm is within reach. Furthermore, this estab-
lishes that synchronization delay poses no fundamental limit on the operating frequency
of clock-synchronization hardware.

On the theoretical side, we examine which functions can be implemented in our circuit
model. Our key result in this regard is that the number of clock cycles is irrelevant in
combinational circuits and in circuits restricted to standard registers, but that the class
of computable functions strictly grows with each clock cycle when permitting masking
registers. Furthermore, we classify all functions computable by combinational circuits
and circuits without masking registers.

Parallel Distance Problems Distance problems in graphs are ubiquitous in computer
science. This is at least partly due to the fact that graphs are such a general tool;
applications include navigation, logistics, digital circuit design, networks of neurons, social
networks, and many more. Another core problem in computer science, the relevance of
which increased with the availability of multi-core CPUs, is parallelization. Hence, we
study parallel distance problems in Part II.

To this end, we turn our attention to the classical Moore-Bellman-Ford (MBF) algo-
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rithm, which offers simplicity, generalizes to a variety of distance problems, and is benign
in terms of parallelization. We propose an algebraic generalization of the MBF algorithm
and demonstrate that it successfully describes a wide range of known algorithms, which
we term Moore-Bellman-Ford-like (MBF-like) algorithms. What MBF-like algorithms
have in common is their strategy to spread information through a network. Besides being
of theoretical interest and offering a new perspective on the MBF algorithm, MBF-like
algorithms prove useful for making statements of the form “d appropriately arranged
iterations in graph G are equivalent to an iteration in graph H” tangible while at the
same time separating them from concrete algorithms.

We develop parallel algorithms of polylogarithmic depth (parallel time) and little
work (sequential time) that determine approximate metrics or metric tree embeddings of
weighted graphs. As these are fundamental tools for approximating distance problems,
it is important to develop efficient parallel algorithms for them.

Our core algorithmic result is an oracle for MBF-like queries. Provided with an
MBF-like algorithm and a graph G, the oracle answers with the result of the algorithm
in a graph H which approximates distances of G. While H has a low Shortest-Path
Diameter (SPD), which is key to polylogarithmic-depth algorithms, we cannot run the
algorithm in H directly: H is a complete graph and hence explicitly constructing it is
computationally too expensive. The insight is that the oracle can simulate iterations in
H using only iterations in G and a polylogarithmic overhead in both depth and work.

As a consequence of our techniques, we are able to efficiently construct approximate
metrics and sample tree embeddings of expected logarithmic stretch by querying the
oracle with appropriate MBF-like algorithms. Furthermore, our techniques allow us to
improve upon the state of the art regarding the distributed computation of metric tree
embeddings as well as the parallel approximation of the buy-at-bulk network design and
k-median problems.

Terrain Guarding Many real-world problems are intrinsically linked to geometry,
especially when the entities associated with them have a location, shape, or orientation
in space. Examples for this include the optimization of a parking-lot layout where access
routes must be kept free, various problems in robotics, and place & route in circuit
design.

A famous example is the Art Gallery Problem (AGP), where one is given a 2D floor
plan of a building, the art gallery, and looks for a minimum number of security cameras
that together cover the entire gallery. In its classical 2D form, the AGP lacks height
information. Adding such information, creating a 2.5D AGP, is highly relevant — e.g.,
to optimally cover an outdoor environment that includes hills, trees, and buildings with
cellphone towers — but at the same time a non-trivial endeavor.

Part III discusses the Terrain Guarding Problem (TGP). It is a relative of the AGP
that is all about height information and may hence serve as an intermediate step towards
a 2.5D AGP. In the TGP, we remove one dimension from the AGP and instead add
height. The result is an x-monotone chain of line segments, like the altitude profile of a
mountain road, which is to be guarded.

Our main result is that the continuous version of the TGP, where there is no restriction
on where on the terrain the guards may be placed, has a discretization of O(n2) potential
guard locations, where n is the number of vertices of the terrain. The coordinates of

3
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our discretization are rational if the terrain’s vertex coordinates are. This is surprising,
because the AGP does not permit such a result, not even for monotone polygons. We
hope that our insights serve as a stepping stone towards a 2.5D AGP. Due to previous
work, the existence of such a discretization implies that the continuous TGP admits a
Polynomial-Time Approximation Scheme (PTAS) and is NP-complete.

In addition to theoretical insights, we present an algorithm that efficiently solves large
instances of the TGP. To this end, we combine theory and practice, devise an efficient
C++ implementation, make effective use of the Computational Geometry Algorithms
Library (CGAL), apply linear optimization techniques, significantly reduce the size of
our discretization, and thoroughly evaluate our implementation in experiments.

4



CHAPTER 2

Notation and Preliminaries

“The scientific theory I like best is that the rings of Saturn are composed entirely
of lost airline luggage.”

Mark Russell

In order to avoid ambiguities, we denote the natural numbers with and without 0 by
N0 and N, respectively. The integers are denoted by Z, the rationals by Q, and the real
numbers by R. For c ∈ R, we occasionally use R≥c to refer to the set {x ∈ R | x ≥ c};
R>c, R≤c, and R<c are defined analogously. Furthermore — usually in the context of
Boolean expressions — we use B := {0, 1}, where we associate 0 with false and 1 with
true, if applicable. At times, we use the shorthand x̄ := 1− x for x ∈ B.

Let M and N be sets. For c ∈ N , constc : M → N is the constant function with
constc(x) = c. We refer to id : M → N as the identity function with id(x) = x, which
requires M ⊆ N . Furthermore, we denote by P(M) := {M ′ ⊆M} the power set of M ,
and by

(
N
k

)
:= {N ′ ⊆ N | |N ′| = k} all subsets of N with cardinality k ∈ N0.

For a totally ordered non-empty set M , we use min,max: P(M) \ ∅ → M as func-
tions that pick the minimum and maximum of a set, respectively. Whenever convenient,
however, we use them as binary operators min,max: M×M →M , e.g., as the operation
of a semigroup.

We frequently use asymptotic notation to reason about various quantities. Consider
a function f : N→ R≥0 with n 7→ f(n). We use the standard definitions of O(f), Ω(f),
Θ(f), o(f), and ω(f) provided by, e.g., Cormen et al. [35]. Furthermore, we abbreviate
the set of polynomials in n by poly n and the set of polylogarithms in n by polylog n.
In the context of problem size n, we use Õ(f), Ω̃(f), Θ̃(f), õ(f), and ω̃(f) to hide
polylogarithmic factors in n; an example is Õ(f) := O(f) · polylog n, the other sets are
defined analogously.

2.1 Algebraic Foundations

For the sake of self-containment and unambiguousness, we give some algebraic definitions
and a standard result. Definitions 2.1–2.3 are adapted from Chapters 1 and 5 of Hebisch
and Weinert [72].

Semigroups are among the most fundamental structures; they merely comprise a set
M of elements and an associative operation ◦ : M ×M → M . Commutativity and the
existence of a neutral element can optionally be required.
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Definition 2.1 (Semigroup). Let M be a set and ◦ : M ×M →M a binary operation.
(M, ◦) is a semigroup if and only if ◦ is associative, i.e.,

∀x, y, z ∈M : x ◦ (y ◦ z) = (x ◦ y) ◦ z. (2.1)

We write x ∈ (M, ◦) for x ∈M . A semigroup (M, ◦) is commutative if and only if

∀x, y ∈M : x ◦ y = y ◦ x. (2.2)

e ∈M is a neutral element of (M, ◦) if and only if

∀x ∈M : e ◦ x = x ◦ e = x. (2.3)

Semirings — rings without additive inverses — are structures that tie together two
semigroups on the same set of elements. Hence, there are two operations, referred to
as addition and multiplication. These operations are required to obey the distributive
laws we are accustomed to from, e.g., (N0,+, ·), (Z,+, ·), (Q,+, ·), and (R,+, ·). Further
examples for semirings are Smin,+ = (R≥0 ∪ {∞},min,+), known as the min-plus or the
tropical semiring, and the Boolean semiring (B,∨,∧). (N,+, ·) is not a semiring due to
our convention of 0 /∈ N, i.e., because it lacks the neutral element of addition.

In the context of addition and multiplication, we refer to neutral elements as 0
and 1, respectively. Note, however, that the meaning of 0 and 1 depends on the concrete
operations. Consider Smin,+ as an example: Its zero, the neutral element of addition (min),
is ∞ and its one, the neutral element of multiplication (+), is 0.

Definition 2.2 (Semiring). Let S 6= ∅ be a set, and ⊕,� : S×S → S binary operations.
Then S = (S,⊕,�) is a semiring if and only if

(1) (S,⊕) is a commutative semigroup with neutral element 0,

(2) (S,�) is a semigroup with neutral element 1,

(3) the left- and right-distributive laws hold:

∀x, y, z ∈ S : x� (y ⊕ z) = (x� y)⊕ (x� z) and (2.4)

∀x, y, z ∈ S : (y ⊕ z)� x = (y � x)⊕ (z � x), and (2.5)

(4) 0 annihilates w.r.t. �:

∀x ∈ S : 0� x = x� 0 = 0. (2.6)

We write x ∈ S for x ∈ S, and refer to ⊕ as addition and to � as multiplication.

Some authors do not require semirings to have neutral elements or an annihilating 0.
We, however, require them by definition because we need them and work on semirings
which provide them.

Semimodules over semirings generalize vector spaces over fields. The elements of
a semimodule have an addition and support scalar multiplication with the semiring
elements; both operations obey distributive laws.
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2.1. Algebraic Foundations

Definition 2.3 (Semimodule). Let S = (S,⊕,�) be a semiring. M = (M,⊕,�) with
binary operations ⊕ : M ×M →M and � : S ×M →M is a semimodule over S if and
only if

(1) (M,⊕) is a semigroup and

(2) for all s, t ∈ S and all x, y ∈M :

1� x = x, (2.7)

s� (x⊕ y) = (s� x)⊕ (s� y), (2.8)

(s⊕ t)� x = (s� x)⊕ (t� x), and (2.9)

(s� t)� x = s� (t� x). (2.10)

M is zero-preserving if and only if

(1) (M,⊕) has the neutral element 0 and

(2) 0 ∈ S is an annihilator for �:

∀x ∈M : 0� x = 0. (2.11)

We write x ∈M for x ∈M , and refer to ⊕ as addition and to � as (scalar) multiplica-
tion.

In the context of a semiring or semigroup, we implicitly associate ⊕ and � with the
respective addition and (scalar) multiplication. Furthermore, we follow the convention
to occasionally omit � and give it priority over ⊕, for example, we interpret xy ⊕ z as
(x� y)⊕ z.

A common semimodule over the semiring S is Sk with coordinatewise addition, i.e.,
k-dimensional vectors over S. Note that S = S1 always is a semimodule over itself. The
following lemma is a standard result.

Lemma 2.4. Let S = (S,⊕,�) be a semiring and k ∈ N0 an integer. Then Sk :=
(Sk,⊕,�) with, for all s ∈ S and x, y ∈ Sk,

(x⊕ y)i := xi ⊕ yi and (2.12)

(s� x)i := s� xi (2.13)

is a zero-preserving semimodule over S with zero (0, . . . , 0)>.

Proof. We check the conditions of Definition 2.3 one by one. Throughout the proof, let
1 ≤ i ≤ k, s, t ∈ S, and x, y ∈ Sk be arbitrary.

(1) (Sk,⊕) is a semigroup because (S,⊕) is.

(2) Equations (2.7)–(2.10) hold due to

(1� x)i = 1� xi = xi, (2.14)

(s� (x⊕ y))i = s� (xi ⊕ yi) = (s� xi)⊕ (s� yi) = ((s� x)⊕ (s� y))i, (2.15)

((s⊕ t)� x)i = (s⊕ t)� xi = (s� xi)⊕ (t� xi) = ((s� x)⊕ (t� x))i, (2.16)

and ((s� t)� x)i = (s� t)� xi = s� (t� xi) = (s� (t� x))i. (2.17)

7
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(3) (0, . . . , 0) is the neutral element of (Sk,⊕) because 0 is the neutral element of
(S,⊕).

(4) 0 is an annihilator for �:

(0� x)i = 0� xi = 0. (2.18)

2.2 Probability Theory

We refer to standard literature [35, 114] for the basics of probability theory. The following
is adapted from Mitzenmacher and Upfal [114]. Given a sample space Ω and an event E ⊆
Ω, we write P[E ] for the probability of E . The complement of E is Ē := Ω \ E . Regarding
a random variable X : Ω→ R, we denote its expectation by E[X].

A first simple, useful, and ubiquitous bound is the union bound. We adapt the version
of Mitzenmacher and Upfal [114].

Lemma 2.5 (Union Bound). Let E1, E2, . . . be countably many events. Then we have

P

⋃
i≥1

Ei

 ≤∑
i≥1

P [Ei] . (2.19)

The next concept we need is a standard definition of events occurring with high
probability.

Definition 2.6 (With High Probability). Let E be an event. E occurs with high proba-
bility (w.h.p.) if P[E ] ≥ 1− n−c for any constant c ∈ R≥1 that is fixed in advance.

Observe that c is a constant in terms of the O-notation. The idea is to design an
algorithm A that is parameterized with c and succeeds w.h.p., which is much stronger
than an algorithm A′ that succeeds with a constant probability p < 1. As an example,
suppose that A′ is used as a subroutine that is invoked k times and has to succeed every
time. The success probability of that quickly becomes small when k grows. Using A
instead, c can be chosen such that all k instances of A collectively succeed w.h.p. as long
as k ∈ poly n, which is a standard result:

Lemma 2.7. Let E1, . . . , Ek be events occurring w.h.p. and k ∈ poly n. Then the event
E1 ∩ · · · ∩ Ek occurs w.h.p.

Proof. If n = 1 the claim is trivial. Otherwise, we have k ≤ anb for fixed a, b ∈ R>0 and
choose that all Ei occur with a probability of at least 1− n−c′ with c′ := c+ b+ log2 a
for some fixed c ∈ R≥1. As log2 a ≥ logn a, the union bound yields

P
[
E1 ∩ · · · ∩ Ek

] (2.19)

≤
k∑
i=1

P
[
Ēi
]
≤ kn−c′ ≤ anbn−c−b−logn a = n−c, (2.20)

hence E1 ∩ · · · ∩ Ek occurs w.h.p. as claimed.
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Chernoff’s bound is a commonly used, strong bound regarding the sum of independent
0–1 random variables. We adapt the version of Mitzenmacher and Upfal [114].

Lemma 2.8 (Chernoff’s Bound). Let X1, . . . , Xn be independent 0–1 random variables
and X :=

∑n
i=1Xi. Then the following bounds hold.

(1) For all δ ∈ R>0

P [X ≥ (1 + δ)E[X]] ≤
(

eδ

(1 + δ)(1+δ)

)E[X]

, (2.21)

(2) for all 0 < δ ≤ 1

P [X ≥ (1 + δ)E[X]] ≤ e−E[X]δ2/3, and (2.22)

(3) for all R ≥ 6E[X]
P [X ≥ R] ≤ 2−R. (2.23)

We are interested in upper-bounding X when E[X] ∈ O(log n). The following is a
standard result.

Corollary 2.9. Let X1, . . . , Xn be independent 0–1 random variables, X =
∑n

i=1Xi,
and E[X] ∈ O(log n). Then X ∈ O(log n) w.h.p.

Proof. We use that there are c′ ∈ R≥1 and n0 ∈ N such that E[X] ≤ c′ log2 n for all
n ≥ n0. Given an arbitrary c ∈ R≥1, we may thus choose R := 6cc′ log2 n, i.e., we have
R ≥ 6E[X] as well as R ∈ O(log n), and obtain

P[X ≥ R]
(2.23)

≤ 2−R = 2−6cc′ log2 n = n−6cc′ ≤ n−c, (2.24)

for all n ≥ n0, i.e., that X ∈ O(log n) w.h.p.
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PART I

Metastability-Containing Circuits

“You can’t turn a no to a yes without a maybe in between.”

House of Cards, Chapter 29

This part is the result of close collaboration with Matthias Függer, Attila Ki-
nali, and Christoph Lenzen. It is based on an article that is under submission
to the IEEE Transactions on Computers (TC) as of May 2017, a full version
is available online [55], and one that is to appear in the IEEE Computer
Society Annual Symposium on VLSI (ISVLSI 2017), 2017 [60]. Furthermore,
a patent application has been filed [99].

The author’s contribution to the paper coauthored by Attila Kinali [60] is the
idea of a transistor-level CMUX, the CMUX circuits, and the improvements
regarding metastability-containing sorting networks.
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CHAPTER 3

Introduction

In digital circuits, every bistable storage element — e.g., latch or flip-flop — can become
metastable. Metastability refers to volatile states that usually involve an internal voltage
strictly between logical 0 and 1. A metastable storage element can output deteriorated
signals, e.g., voltages stuck between logical 0 and logical 1, oscillations, late or unclean
transitions, or show otherwise unspecified behavior. Such deteriorated signals may violate
timing constraints or input specifications of gates and further storage elements. Hence,
deteriorated signals may spread through combinational logic and drive further bistables
into metastability. While metastability refers to a state of a bistable, we refer to the
abovementioned deteriorated signals as “metastable” for the sake of exposition.

Unfortunately, any way of reading a signal from an unsynchronized clock domain or
performing an analog-to-digital or time-to-digital conversion incurs the risk of a metasta-
ble result; no physical implementation of a non-trivial digital circuit can deterministically
avoid, resolve, or detect metastability [108].

Traditionally, the only countermeasure is to write a potentially metastable signal into
a synchronizer [13, 14, 15, 67, 88, 89] — a bistable storage element like a flip-flop — and
wait. Synchronizers exponentially decrease the odds of maintained metastability over
time [88, 89, 133]: In this unstable equilibrium the tiniest displacement exponentially
self-amplifies and the bistable resolves metastability. Put differently, the waiting time
determines the probability to resolve to logical 0 or 1. Accordingly, this approach delays
subsequent computations and does not guarantee success.

We propose a fundamentally different approach: It is possible to contain metastability
by fine-grained logical masking so that it cannot infect the entire circuit. This technique
guarantees a limited degree of metastability in — and uncertainty about — the output.
At the heart of our approach lies a model for metastability in synchronous clocked
digital circuits. Metastability is propagated in a worst-case fashion, allowing to derive
deterministic guarantees, without and unlike synchronizers.

The Challenge The problem with metastability is that it fundamentally disrupts
operation in Very Large-Scale Integration (VLSI) circuits by breaking the abstraction
of Boolean logic: A metastable signal can neither be viewed as being logical 0 or 1. In
particular, a metastable signal is not a random bit and does not behave like an unknown
but fixed Boolean signal. As an example, the circuit that computes ¬x ∨ x using a Not
and a binary Or gate may output an arbitrary signal value if x is metastable: 0, 1, or
again a metastable signal. Note that this is not the case for unknown, but Boolean, x.
The ability of such signals to “infect” an entire circuit poses a severe challenge.

The Status Quo The fact that metastability cannot be avoided, resolved or detected,
the hazard of infecting entire circuits, and the unpleasant property of breaking the
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abstraction of Boolean logic have led to the predominant belief that waiting — using
well-designed synchronizers — essentially is the only method of coping with the threat of
metastability: Whenever a signal is potentially metastable, e.g., when it is communicated
across a clock boundary, its value is written to a synchronizer. After a predefined time, the
synchronizer output is assumed to have stabilized to logical 0 or 1, and the computation
is carried out in classical Boolean logic. In essence, this approach trades synchronization
delay for increased reliability; it does, however, not provide deterministic guarantees.

Relevance VLSI circuits grow in complexity and operating frequency, leading to a
growing number unsynchronized clock domains, technology becomes smaller, and the
operating voltage is decreased to save power [76]. These trends intensify the risk of
metastable upsets. Treating these risks in the traditional way — by adding synchronizer
stages — increases synchronization delays and thus is counterproductive w.r.t. the desire
for faster systems. Hence, we urgently need alternative techniques to reliably handle
metastability in both mission-critical and day-to-day systems.

Our Approach We challenge the point of view that synchronizers are the only way
to deal with metastability and exploit that logical masking provides some leverage. If,
e.g., one input of a Nand gate is stable 0, its output remains 1 even if its other input is
arbitrarily deteriorated. This is owed to the way gates are implemented in Complementary
Metal-Oxide-Semiconductor (CMOS) logic and to transistor behavior under intermediate
input voltage levels.

We demonstrate that it is possible to contain metastability to a limited part of the
circuit instead of attempting to resolve, detect, or avoid it altogether. Given Marino’s
result [108], this is surprising, but not a contradiction. More concretely, we show that a
variety of operations can be performed in the presence of a limited degree of metastability
in the input, maintaining an according guarantee on the output.

As an example, recall that in Binary Reflected Gray Code (BRGC) x and x + 1
always only differ in exactly one bit; each upcount flips one bit. Suppose Analog-to-
Digital Converters (ADCs) output BRGC but, due to their analog input, a possibly
metastable bit u decides whether to output x or x + 1. As x and x + 1 only differ in
a single bit, this bit is the only one that may become metastable in an appropriate1

implementation. Hence, all possible stabilizations are in {x, x + 1}, we refer to this as
precision-1. Among other things, we show that it is possible to sort such inputs in a way
that the output still has precision-1.

We assume worst-case metastability propagation and still are able to guarantee
correct results. This opens up an alternative to the classic approach of postponing the
computation by first using synchronizers. Advantages over synchronizers are:

(1) No time is lost waiting for (possible) stabilization. This permits fast response times
as, e.g., useful for high-frequency clock synchronization in hardware, see Chapter 10.
Note that this removes synchronization delay from the list of fundamental limits
to the operating frequency.

(2) Correctness is guaranteed deterministically instead of probabilistically.

1The appropriate implementation is a metastability-containing multiplexer with select bit u and
inputs x and x+ 1. We discuss this in Chapter 6.
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TDCTDC Sort/Select Ctrl.

analog
digital

metastability-containing
analog

TDCTDC Sort/Select Ctrl.

analog
digital

metastability-containing
analog

Figure 3.1: The separation of concerns (analog – digital metastability-containing –
analog) for fault-tolerant clock synchronization in hardware.

(3) Stabilization can, but is not required to, happen “during” the computation, i.e.,
synchronization and calculation happen simultaneously.

Separation of Concerns Clearly, the impossibility of deterministically resolving me-
tastability [108] still holds; metastability may still occur, even if it is contained. Hence,
a separation of concerns, compare Figure 3.1, is key to our approach.

For the purpose of illustration, consider a hardware clock-synchronization algorithm,
we discuss this in Chapter 10. We start in the analog world: nodes generate clock pulses.
Each node measures the time differences between its own and all other nodes’ pulses
using Time-to-Digital Converters (TDCs). Since this involves entering the digital world,
metastability in the measurements is unavoidable [108]. The traditional approach is to
hold the TDC outputs in synchronizers, spending time and thus imposing a limit on the
operating frequency. But as discussed above, it is possible to limit the metastability of
each measurement to at most one bit in BRGC-encoded numbers, where the metastable
bit represents the “uncertainty between x and x+ 1 clock ticks,” i.e., precision-1.

We apply metastability-containing components to digitally process these inputs to
derive digital correction parameters for the node’s oscillator. These parameters contain
at most one metastable bit, as above accounting for precision-1. We convert them to an
analog control signal for the oscillator. This way, the metastability translates to a small
frequency offset within the uncertainty from the initial TDC measurements.

In short, metastability is introduced at the TDCs, deterministically contained in the
digital subcircuit, and ultimately absorbed by the analog control signal.

3.1 Our Contribution

In detail, our contributions are the following.

(1) In Chapter 4, we present a rigorous time-discrete value-discrete model for metasta-
bility in clocked as well as in purely combinational digital circuits. We consider two
types of registers: simple (standard) registers that do not provide any guarantees re-
garding metastability and masking registers that can “hide” internal metastability
to some degree using high- or low-threshold inverters. The propagation of meta-
stability is modeled in a worst-case fashion and metastable registers may or may
not stabilize to 0 or 1. Hence, the resulting model allows us to derive deterministic
guarantees concerning circuit behavior under metastable inputs.

15
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We consider the model that allows a novel and fundamentally different worst-case treat-
ment of metastability our main contribution. Accordingly, we are obligated to verify
that it properly reflects the physical behavior of digital circuits, i.e., that it is sufficiently
pessimistic. At the same time, the model is useless if it is too pessimistic in the sense
that it does not allow non-trivial positive results. We address these points in Chapters 5
and 6.

(2) We perform a reality check, showing in Chapter 5 that the physical impossibility of
avoiding, resolving, or detecting metastability [108] holds in our model. Any model
dealing with metastability must reflect these properties.

(3) In Chapter 6, we turn our attention to Multiplexers (MUXes); they constitute a
good example of the problems caused by ignoring metastability. We fix these issues
by developing Metastability-Containing Multiplexers (CMUXes). This illustrates
what we mean by “containing metastability” in the light of the impossibility of
resolving it, shows that our model permits non-trivial positive results, and demon-
strates key aspects of our model, for example the spread of metastability through
the combinational logic, clocked and unclocked circuits, and how to use masking
registers.

Furthermore, we develop transistor-level implementations of CMUXes. These are
not covered by our gate-level model, but are relevant w.r.t. practical implementa-
tions and show how to apply our line of reasoning to CMOS logic. The practical
relevance of transistor-level CMUXes is demonstrated by massively reducing the
size of existing metastability-containing sorting networks.

Having established some confidence that our model properly reflects the physical world
and allows reasoning about circuit design, we turn our attention to the question of
computability.

(4) We analyze the computational power of combinational circuits in Chapter 7. Com-
binational circuits are a special class of circuits that essentially only comprise
combinational logic. We show that they behave “as expected,” e.g., that additional
clock cycles do not enhance their computational power.

(5) Chapter 8 constitutes a core contribution. We analyze what functions are com-
putable by circuits w.r.t. the available register types, the number of clock cycles,
and whether a circuit is combinational. Let FunrM denote the class of functions
that can be implemented by an arbitrary circuit in r clock cycles;2 analogously, let
FunrS and FunrC denote the classes of functions implementable in r clock cycles of
circuits that can only use simple registers, simple circuits, and by combinational
circuits, respectively.

We show that the number of clock cycles is irrelevant for combinational and simple
circuits: FunC := Fun1

C = FunrC and FunS := Fun1
S = FunrS for all r ∈ N. This

reflects the intuition from electrical engineering that synchronous Boolean circuits
can be unrolled. It is, however, not obvious that unrolling works in the presence
of metastability; hence we establish these claims.

2 The M indicates that the circuit may comprise masking registers.
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The abovementioned non-obviousness is reflected in a surprising result: In the
presence masking registers, unrolling does not yield equivalent circuits and we
obtain a strict inclusion:

FunC = FunS = Fun1
M ( Fun2

M ( Fun3
M ( · · · . (3.1)

(6) In Chapter 9, we move on to demonstrating that with combinational and simple
circuits, many non-trivial functions can be computed in the face of worst-case
propagation of metastability. To this end, we fully classify FunC = FunS , the class
of functions that can be computed by such circuits. Furthermore, we establish
the metastable closure, the strictest possible extension of a function specification
that allows it to be computed by a combinational or simple circuit. Our classifi-
cation provides a simple test for deciding whether a desired specification can be
implemented by such circuits.

Finally, we apply our techniques to show that an advanced, useful circuit is in reach.

(7) We show in Chapter 10 that all arithmetic operations required by the widely
used [17, 92, 93, 94] fault-tolerant clock synchronization algorithm of Lundelius
Welch and Lynch [106] — max and min, sorting, and conversion between Ther-
mometer Code (TC) and BRGC — can be performed in a metastability-containing
manner. Employing the abovementioned separation of concerns, a hardware im-
plementation of the entire algorithm is within reach, providing the deterministic
guarantee that the algorithm works correctly at all times, despite metastable upsets
originating in the TDCs and without synchronizers.

Note that the algorithm tolerates f < n/3 Byzantine faults — Byzantine nodes
can show arbitrarily malicious behavior [96] — but under the assumption that
nodes adhere to Boolean logic. Metastable upsets, however, are harsher errors: A
metastable measurement may behave inconsistently within a node, violating the
abstraction of Boolean logic as indicated above, which is different from receiving a
faulty but stable message.

As a consequence, we show that (a) synchronization delay poses no fundamental
limit on the operating frequency of clock synchronization in hardware and that
(b) clock domains can be synchronized without synchronizers. The latter shows
that we may eliminate communication across unsynchronized clock domains as a
source of metastable upsets altogether.

We conclude this part in Chapter 11.

3.2 Related Work

Metastability The phenomenon of metastable signals has been studied for decades [88]
with the following key results. (1) No physical implementation of a digital circuit can
reliably avoid, resolve, or detect metastability; any digital circuit, including “detectors,”
producing different outputs for different input signals can be forced into metastabil-
ity [108]. (2) The probability of an individual event generating metastability can be kept
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low. Large transistor counts and high operational frequencies, low supply voltages, tem-
perature effects, and trends in technology, however, disallow to neglect the problem [14].
(3) Being an unstable equilibrium, the probability that, e.g., a memory cell remains in a
metastable state decreases exponentially over time [88, 89, 133]. Thus, waiting for a suffi-
ciently long time reduces the probability of sustained metastability to within acceptable
bounds.

Synchronizers The predominant technique to cope with metastable upsets is to use
synchronizers [13, 14, 15, 67, 88, 89], carefully designed [13, 67] bistable storage elements
that hold potentially metastable signals, e.g., after communicating them across a clock
boundary. After a predefined time, the synchronizer output is assumed to have stabilized
to logical 0 or 1 and the computation is carried out in classical Boolean logic. In essence,
this approach trades delay for increased reliability, typically expressed as Mean Time
Between Failures (MTBF)

MTBF =
et/τ

TWFCFD
, (3.2)

where FC and FD are the clock and data transition frequencies, τ and TW are technology-
dependent values, and t is the predetermined time allotted for synchronization [13, 14, 15,
67, 88, 89, 129, 130] referred to as synchronization delay. Note that classical bounds for the
MTBF assume a uniform distribution of clock and data transitions [13, 89]. Synchronizers,
however, do not provide deterministic guarantees and avoiding synchronization delay is
an important issue [129, 130].

Glitch/Hazard Propagation Metastability-containing circuits are related to glitch-
free/hazard-free circuits, which have been extensively studied since Huffman [74] and
Unger [132] introduced them. Eichelberger [43] extended these results to multiple switch-
ing inputs and dynamic hazards, Brzozowski and Yoeli extended the simulation algo-
rithm [25], Brzozowski et al. surveyed techniques using higher-valued logics [24] such
as Kleene’s 3-valued extension of Boolean logic [90], and Mendler et al. studied delay
requirements needed to achieve consistency with simulated results [111].

While we too resort to Kleene logic to model metastability, there are differences
to the classical work on hazard-tolerant circuits: (1) A common assumption in hazard
detection is that inputs only perform well-defined, clean transitions, i.e., the assumption
of a hazard-free input-generating circuitry is made. This is the key difference to metasta-
bility-containment: Metastability encompasses much more than inputs that are in the
process of switching; metastable signals may or may not be in the process of completing
a transition, may be oscillating, and may get “stuck” at an intermediate voltage. (2) An-
other common assumption in hazard detection is that circuits have a constant delay. This
is no longer the case in the presence of metastability; unless metastability is properly
masked, circuit delays can deteriorate in the presence of metastable input signals, even if
the circuit eventually generates a stable output [60]. This can cause late transitions that
potentially drive further registers into metastability. (3) Glitch-freedom is no requirement
for metastability-containment. (4) When studying synthesis, we allow for specifications
where outputs may contain metastable bits. This is necessary for non-trivial specifica-
tions in the presence of metastable inputs [108]. (5) We allow a circuit to compute a
function in multiple clock cycles. (6) Circuits may comprise masking registers [88].
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OR Causality The work on weak (OR) causality in asynchronous circuits [134] studies
the computation of functions under availability of only a proper subset of its parameters.
As an example, consider a Boolean function f(x, y), where f(0, 0) = f(0, 1). An early-
deciding asynchronous module may set its output as soon as x = 0 arrives at its input,
disregarding the value of y. Early-deciding circuits, however, differ from our work because
they are neither clocked synchronous designs nor do they necessarily operate correctly in
presence of metastable input bits: f(0,M) = f(0, 0) = f(0, 1) does not necessarily hold.

Speculative Computing To the best of our knowledge, the most closely related
work is that by Tarawneh et al. on speculative computing [129, 130]. The idea is the
following: When computing f(x, y) in presence of a potentially metastable input bit x,
(1) speculatively compute both f(0, y) and f(1, y), (2) in parallel, store the input bit x
in a synchronizer for a predefined time that provides a sufficiently large probability of
resolving metastability of x, and (3) use x to select whether to output f(0, y) or f(1, y).
This hides (a part of) the synchronization delay allotted to x.

Like our approach, speculative computations allow for an overlap of synchronization
and computation time. The key differences are: (1) Relying on synchronizers, speculative
computing incurs a non-zero probability of failure; metastability-containment insists on
deterministic guarantees. (2) In speculative computing, the set of potentially metastable
bits X must be known in advance. Regardless of the considered function, the complexity
of a speculative circuit grows exponentially in |X|. Neither is the case for metastability–
containment, as illustrated by several circuits [26, 62, 100, 128]. (3) Our model is rooted
in an extension of Boolean logic, i.e., uses a different function space. Hence, we face the
question of computability of such functions by digital circuits; this question does not
apply to speculative computing as it uses traditional Boolean functions.

Metastability-Containing Circuits Since the foundation of this part was first pub-
lished [55], many of the proposed the techniques have been successfully employed to ob-
tain metastability-aware TDCs [62], metastability-containing BRGC sorting networks [26,
100], CMUXes [60],3 and metastability-tolerant network-on-chip routers [128]. Simula-
tions verify the positive impact of metastability-containing techniques [26, 60, 128]. Most
of these works channel efforts towards metastability-containing Field-Programmable Gate
Array (FPGA) and Application-Specific Integrated Circuit (ASIC) implementations of
fault-tolerant distributed clock synchronization; this part establishes that all required
components are within reach.

3.3 Notation and Preliminaries

We abbreviate [k] := {` ∈ N0 | ` < k} for k ∈ N0 and concatenate tuples using

◦ : (A1 × · · · ×Am)× (B1 × · · · ×Bn)→ (A1 × · · · ×Am ×B1 × · · · ×Bn) (3.3)

(a1, . . . , am) ◦ (b1, . . . , bn) := (a1, . . . , am, b1, . . . , bn). (3.4)

3We present the parts of this paper the author has contributed. Whenever referring to further results
from this work — e.g., simulation results — we cite it as related work.
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For functions f, g : X → P(Y ), we call g a subfunction of f and write g ⊆ f if and only
if g(x) ⊆ f(x) for all x ∈ X.
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CHAPTER 4

Circuit Model

We propose a discrete-time and discrete-value circuit model in which registers can become
metastable and their resulting output signals deteriorated. The model supports synchro-
nous, clocked circuits composed of registers and combinational logic as well as purely
combinational circuits. Specifically, we study the generic synchronous state-machine de-
sign depicted in Figure 4.1. Data is initially available in the input registers. At each
rising clock transition, local and output registers update their state according to the
circuit’s combinational logic. Figure 4.1(b) shows the phases of a clock cycle:

(1) In the first phase, the output of the recently updated local and output registers
stabilizes. This is accounted for by the clock-to-output time that is bounded, unless
a register is metastable; in this case, no deterministic upper bound exists.

(2) During phase two, the register output propagates through the combinational logic
to the register inputs. Its duration can be upper-bounded by the worst-case propa-
gation delay through the combinational logic. If a register output is deteriorated,
however, this is unbounded as well, unless the according signals are properly masked.

(3) In the third phase, the register inputs are stable, ready to be sampled, and result
in updated local and output register states. The duration of this phase can account
for small extra delays in phase (1), possibly mitigating some metastable upsets. If
phase (1) or (2), however, take too long due to metastability and the corresponding
deteriorated signals, registers may read a deteriorated input value, potentially
driving the register into metastability.

As motivated in Chapter 3, metastable registers output an unspecified, arbitrarily
deteriorated signal. Deteriorated can mean any constant voltage between logical 0 and
logical 1, arbitrary signal behavior over time, oscillations, or simply violated timing
constraints, such as late signal transitions. Furthermore, deteriorated signals can cause
registers to become metastable, e.g., due to violated constraints regarding timing or
input voltage. Knowing full well that metastability is a state of a bistable element and
not a signal value or voltage, we still need to talk about the “deterioration caused by or
potentially causing metastability in a register” in signals. For the sake of presentation —
and as these effects are causally linked — we refer to both phenomena using the term
metastability without making the distinction explicit.

Our model uses Kleene’s 3-valued logic [90], a ternary extension of Boolean logic.
The third value of the Kleene logic appropriately expresses the uncertainty about gate
behavior in the presence of metastability. In the absence of metastability our model
behaves like a traditional, deterministic, binary circuit model. In order to obtain deter-
ministic guarantees, we assume worst-case propagation of metastability: If a signal can
be “infected” by metastability, there is no way to prevent it.
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(a) Synchronous circuit.
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(b) Three-phase clock cycle.

Figure 4.1: Generic synchronous state machine (a) and clock cycle (b). Input registers
are prefilled, local and output registers are updated at each rising clock transition. Clock
cycles comprise three phases: (1) register-output stabilization, (2) propagation of outputs
through combinational logic to register inputs, and (3) stable register inputs.

Given the elusive nature of metastability, it is easy to jump to conclusions. Hence,
we show in Chapter 5 that the proposed model reproduces well-known impossibility
results from the realm of digital circuit design, namely, the impossibility of avoiding,
detecting, and resolving metastability in physical implementations of digital circuits
established by Marino [108]. This obliges us to provide evidence that our model has
practical relevance, i.e., that it is indeed possible to perform meaningful computations.
We meet this obligation in Chapter 6, where we develop CMUXes. Together with recent
results complementing ours [26, 62, 100, 128], we are confident that our model makes
meaningful predictions.

In our model, circuits are synchronous state machines: Combinational logic, repre-
sented by gates, maps a circuit state to possible successor states, compare Figure 4.1.
The combinational logic uses, and registers store, signal values BM := {0, 1,M}. M rep-
resents a metastable register state or — w.r.t. the simplification in terminology motivated
above — signal value. Metastability is the only source of non-determinism in our model.
The classical Boolean signal values are B = {0, 1}. Let x ∈ BkM be a k-bit tuple. We call
x stable if and only if x ∈ Bk. Stored in registers over time, metastable bits may resolve
to 0 or 1. The set of partial resolutions of x is ResM(x) and the set of metastability-free,
completely stabilized, resolutions is Res(x). Ifm bits in x are metastable, |ResM(x)| = 3m

and |Res(x)| = 2m, since M serves as “wildcard” for BM and B, respectively. Formally,
we have

ResM(x) :=
{
y ∈ BkM | ∀i ∈ [k] : xi = yi ∨ xi = M

}
and (4.1)

Res(x) := ResM(x) ∩Bk. (4.2)

The metastable superposition [100] captures the intuition of “overlaying” signals:

⊕ : BkM ×BkM → BkM (4.3)

(x⊕ y)i :=

{
xi if xi = yi and

M otherwise.
(4.4)
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Figure 4.2: We model registers as non-deterministic state machines. State transitions
represent a clock cycle elapsing and are labeled with what is read (sampled) at a register’s
output at the according rising clock flank. Figures (a)–(c) model the physical register
behavior. Assuming worst-case behavior, we may simplify the state machines by omitting
the dashed lines and obtain Figures (d)–(f), which we use in our model.

Clearly, (BkM,⊕) is a commutative semigroup. Hence, we may abbreviate
⊕

x∈X x for
non-empty1 X ⊆ BkM.

4.1 Registers

The phenomenon of metastability is intrinsically linked to time: It is a volatile state
that quickly decays; the odds of maintained metastability decrease exponentially over
time [88, 89, 133], which is exploited in synchronizers that achieve an MTBF which
exponentially increases with the time allotted for synchronization [13, 14, 15, 67, 88, 89].
However, we propose a time-discrete model for metastability. Hence, correctly modeling
registers is the critical step, as they are the only elements in our model that permit
maintaining a state across clock cycles, i.e., over time.

To this end, we proceed in two steps. The first is to model the physical register
behavior with all degrees of freedom incurred by metastability. We do this using state

1X may not be empty because (BkM,⊕) has no neutral element. This makes sense, since the superpo-
sition of an empty set of signals possesses no meaningful interpretation in this context.
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Figure 4.3: Masking registers can, e.g., be implemented by attaching high- or low
threshold inverters to a flip-flop’s slave latch (a). This amplifies internal metastability to
a stable output (b). It is still possible to observe a deteriorated output while the signal
crosses the threshold. As the signal is already being amplified at this point, this time
window is short. Figure adapted from Section 3.1 of Kinniment [88].

machines, where the state transitions indicate the possible behavior within one clock
cycle; this is depicted in Figure 4.2(a)–4.2(c). This leaves us with rather complex state
machines that are not amenable to a theoretical analysis. Fortunately, we benefit from
proposing a worst-case model, where we may make pessimistic simplifications like “if
the register may be read as metastable or stable we assume it is read as M.” This is
reflected in the state machines depicted in Figures 4.2(d)–4.2(f); they greatly simplify
the analysis and we use them throughout this part.

We consider three types of single-bit registers, all of which behave just like in binary
circuit models unless metastability occurs:

simple registers are oblivious to metastability in the sense that they provide no guar-
antees regarding their behavior once they are metastable. The physical behavior is
captured by the state machine in Figure 4.2(a), we use the pessimistic simplification
in Figure 4.2(d), see below.

mask-0 registers output 0 while in state M. If they stabilize to state 0, the intermediate
metastability is never observed at the output. But if they stabilize to 1, there is a
brief time window, in our case one clock cycle, when metastability is propagated
to the output.

Physical realizations of masking registers are obtained by flip-flops with high-
threshold inverters at the output, amplifying an internal metastable signal to 0;
see, e.g., Section 3.1 on metastability filters of Kinniment [88]. This effectively
“hides” metastability below the inverter threshold, see Figure 4.3. However, it is
still possible to observe a deteriorated signal while a mask-0 register crosses the
inverter threshold, hence the one round in which M can be observed. A mask-0
register behaves according to the state machine in Figure 4.2(b) which simplifies
to that in Figure 4.2(e) as argued below.

mask-1 registers are analogous to mask-0 registers. The complex behavior is depicted
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4.2. Gates

in Figure 4.2(c) and simplifies to that in Figure 4.2(f).

In our model, a register R has a type (simple, mask-0, or mask-1) and a state
xR ∈ BM. R behaves according to xR and its type’s non-deterministic state machine in
Figures 4.2(d)–4.2(f). Each clock cycle, R performs one state transition annotated with
some oR ∈ BM, which is the result of sampling R at that clock cycle’s rising clock flank.
This happens exactly once per clock cycle and we refer to it as reading R. The state
transitions account for the possible resolution of metastability over time.

Consider the simple register in Figure 4.2(a). When in state 0, its output and successor
state are both 0; it behaves symmetrically in state 1. In state M, however, any output
in BM combined with any successor state in BM is possible. Since our goal is the design
of circuits that operate correctly under metastability even if it never resolves, we make
two pessimistic simplifications:

(1) First, if there are three parallel state transitions from state M to x with outputs
0, 1,M, we only keep the one with output M and then

(2) if, for some fixed output o ∈ BM, there are state transitions from a state M to
multiple states including M, we only keep the one with successor state M. This
maintains the possibility of encountering metastability in future clock cycles.

These simplifications are obtained by ignoring the dashed state transitions in Fig-
ures 4.2(a)–4.2(c) and yield the state machines in Figures 4.2(d)–4.2(f). In the following,
we only use the state machines in Figures 4.2(d)–4.2(f). Observe that the dashed lines
are an artifact of the highly non-deterministic behavior in the physical world. If one is
pessimistic about the behavior — which we are — one obtains the proposed simplification.

Regarding simple registers, the above simplifications yield a deterministic state ma-
chine. The mask-b registers, b ∈ B, shown in Figures 4.2(e) and 4.2(f), exhibit the
following behavior: As long as their state remains M, they output b 6= M; only when
their state changes from M to 1− b they output M once, after that they are stable.

4.2 Gates

We model the behavior of combinational gates in the presence of metastability. A gate
is defined by k ∈ N0 input ports, one output port — gates with k ≥ 2 distinct output
ports are represented by k single-output gates — and a Boolean function f : Bk → B.
We generalize f to fM : BkM → BM by

fM(x) :=
⊕

x′∈Res(x)

f(x′) =


0 if f(x′) = 0 for all x′ ∈ Res(x),

1 if f(x′) = 1 for all x′ ∈ Res(x), and

M otherwise.

(4.5)

The premise leading to this definition is that each metastable input can be badly deteri-
orated but might also “look like” a 0 or 1. Hence, if all stabilizations x′ ∈ Res(x) lead
to the same output f(x′) = b 6= M, the metastable bits in x have no influence on the
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fAnd 0 1

0 0 0
1 0 1

fAnd
M 0 1 M

0 0 0 0
1 0 1 M
M 0 M M

(a) And.

fOr 0 1

0 0 1
1 1 1

fOr
M 0 1 M

0 0 1 M
1 1 1 1
M M 1 M

(b) Or.

fNot –

0 1
1 0

fNot
M –

0 1
1 0
M M

(c) Not.

Table 4.1: Gate behavior under metastability. We extend f : Bk → B to fM : BkM → BM

such that fM(x) = b 6= M if and only if f returns the same value for all full stabilizations
of x, otherwise fM(x) = M. The top row depicts gate symbols.

output of the gate.2 Otherwise, the metastable bits do have an influence on f(x) and the
gate can output a metastable signal. Whenever a gate can output a metastable signal,
we assume it does, reflecting our goal of devising a worst-case model. Observe that, due
to Res(x) = {x} for all stable x ∈ Bk, we have

∀x ∈ Bk : fM(x) = f(x) ∈ B. (4.6)

Hence, gate behavior is compatible with classical Boolean gates if no metastability occurs.
Our definitions are equivalent to Kleene logic [90], see Table 4.1. Note that Kleene

logic has been used by, e.g., Eichelberger [43] to model hazards, where the third value
represents switching signals. As motivated above, our definition of “M” includes arbitrary
signal behavior over time, i.e., includes switching signals as well. Hence, it seems natural
that we use Kleene logic as well.

As an example, consider Table 4.1(a) and the And gate with two input ports im-
plementing fAnd(x1, x2) = x1 ∧ x2. We extend fAnd : B2 → B to fAnd

M : B2
M → BM. For

x ∈ B2, we have fAnd(x) = fAnd
M (x). Next, consider x = M1. As Res(M1) = {01, 11},

we have fAnd
M (M1) = fAnd(01)⊕ fAnd(11) = 0⊕ 1 = M. For x = M0, on the other hand,

we obtain Res(x) = {00, 10} and fAnd
M (M0) = fAnd(00)⊕ fAnd(10) = 0⊕ 0 = 0, i.e., the

metastable bit is masked.
The Not, Or, and other gates are handled analogously. Refer to Chapter 6 and to

Figure 6.2 in particular for an example of metastability in combinational logic.

4.3 Combinational Logic

We model combinational logic as Directed Acyclic Graph (DAG) G = (V,A) with parallel
arcs, compare Figure 4.4. Each node either is an input node, an output node, or a gate

2This holds for standard CMOS implementations of common gates like Not, Or, And, Nor, and
Nand. However, it has to be checked with care w.r.t. the underlying technology; possibly, one has to
work with a subset of the gates or modify some of them. Our transistor-level CMUX implementation in
Chapter 6 can be interpreted as “implementing a MUX gate.”
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Figure 4.4: Combinational logic DAG with gates (gray) and registers (white). The
input (I1), output (O1), and local (L1 and L2) registers occur as input nodes, output
nodes, and both, respectively.
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(a) Const0.
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(b) x ∧ ¬x.

Figure 4.5: Two combinational logic DAGs implementing x 7→ 0 (a) and x 7→ x∧¬x (b).
While these are equivalent w.r.t. Boolean logic, i.e., under stable inputs, they are not
equivalent w.r.t. Kleene logic, i.e., under metastable inputs.

(see Section 4.2).

Input nodes are sources in the DAG, i.e., have indegree 0 and an arbitrary outdegree,
and output nodes are sinks with indegree 1, i.e., have indegree 1 and outdegree 0. If v ∈ V
is a gate, denote by fv : BkvM → BM its gate function — generalized to possibly metastable
inputs and outputs as in Section 4.2 — with kv ∈ N0 parameters. For each parameter
of fv, v is connected to exactly one input node or gate w by an arc (w, v) ∈ A. Every
output node v is connected to exactly one input node or gate w by an arc (w, v) ∈ A.

Note that input nodes and gates can serve as input to multiple gates and output
nodes, i.e., the fan-out is unbounded. Furthermore, observe that G may have sources
that are no input nodes; these are gates without input and with constant output, i.e.,
Const0 and Const1. Lastly, note that G may comprise sinks that do not correspond
to output nodes if the output of a gate is ignored.

Suppose G has m input nodes and n output nodes. Then G defines a function
fG : BmM → BnM as follows. Starting with input x ∈ BmM, we evaluate the nodes v ∈ V . If
v is an input node, it evaluates to xv. Gates of indegree 0 are constants and evaluate
accordingly. If v is a gate of non-zero indegree, it evaluates to fv(x̄), where x̄ ∈ BkvM is
the recursive evaluation of all nodes w with (w, v) ∈ A. Otherwise, v is an output node,
has indegree 1, and evaluates just as the unique node w with (w, v) ∈ A. Finally, fG(x)v
is the evaluation of the output node v.

Observation 4.1. Carefully note that two combinational logic DAGs that behave iden-
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tically under stable inputs may show different behavior in the presence of metastability.
This is, in fact, a major point about containing metastability. As an example consider
DAGs G and H with one input and one output node in Figure 4.5. G in Figure 4.5(a)
ignores the input and always outputs 0 using a Const0 gate. The DAG H, see Fig-
ure 4.5(b), uses a Not and an And gate to output x ∧ ¬x, where x is the input. We
obtain fG, fH : BM → BM with

fG(0) = fG(1) = 0 = fH(0) = fH(1). (4.7)

However, we have
fG(M) = 0 6= M = fH(M). (4.8)

For a more relevant example refer to the CMUXes in Chapter 6, in particular to Fig-
ure 6.2.

We proceed with a fundamental lemma about the behavior of combinational logic
DAGs. Provided with a partially metastable input x, some gates — those where the
collective metastable input ports have an impact on the output — evaluate to M. So
when stabilizing x bit by bit, no new metastability is introduced at the gates. Furthermore,
once a gate stabilized, its output is fixed; further stabilizing the input does not lead to
destabilizing the output. Formally, we obtain the following lemma.

Lemma 4.2. Let G be a combinational logic DAG with m input nodes. Then for all
x ∈ BmM,

x′ ∈ ResM(x) ⇒ fG(x′) ∈ ResM
(
fG(x)

)
. (4.9)

Proof. We show the statement by induction on |V |. For the sake of the proof we extend
fG to all nodes of G = (V,A), i.e., write fG(x)v for the evaluation of v ∈ V w.r.t. input x,
regardless of whether v is an output node. The claim is trivial for |V | = 0. Hence, suppose
the claim holds for DAGs with up to i ∈ N0 vertices, and consider a DAG G = (V,A)
with |V | = i+1. As G is non-empty, it contains a sink v ∈ V . Removing v allows applying
the induction hypothesis to the remaining graph, proving that fG(x′)w ∈ ResM(fG(x)w)
for all nodes w 6= v.

Concerning v, the claim is immediate if v is a source, because fG(x)v = xv if v is
an input node and fG(x)v = b for a constant b ∈ BM if v is a gate of indegree 0. If v is
an output node, it evaluates to the same value as the unique node w with (w, v) ∈ A,
which behaves as claimed by the induction hypothesis. Otherwise v is a gate of non-zero
indegree; consider the nodes w ∈ V with (w, v) ∈ A. For input x, v receives input x̄ ∈ BkvM ,
whose components are given by fG(x)w; define x̄′ analogously w.r.t. input x′. By the
induction hypothesis, we have x̄′ ∈ ResM(x̄). If fv(x̄) = M, the claim holds because
ResM(M) = BM. On the other hand, for the case that fv(x̄) = b 6= M, our gate definition
entails that fv(x̄

′) = b, because x̄′ ∈ ResM(x̄).

Note that the evaluation of the combinational logic is entirely deterministic in our
model. In the physical world, however, the amplification of digital gates may “stabilize”
a deteriorated input signal. This would lead to a partial stabilization of the output of
the combinational logic DAG by an argument analogous to the proof of Lemma 4.2. As
permitting the non-deterministic resolution of metastability during the evaluation of
the combinational logic is equivalent to resolving it afterwards, we do the latter; this
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is captured in the write phase defined in Section 4.5. This simplifies the analysis while
being computationally equivalent to allowing partial stabilization during the evaluation.

In order to describe circuits that comprise only combinational logic and to also
capture — possibly inconsistent — stabilization within the combinational logic, we define
combinational circuits below. We analyze them in Chapter 7. In particular, we formalize
and prove the claim that they are equivalent to combinational logic.

4.4 Circuits

With registers, gates, and combinational logic — see Sections 4.1–4.3 — at our disposal,
we proceed with a formal circuit definition. We specify how it behaves in Section 4.5 and
give an example in Section 4.6.

Definition 4.3 (Circuit). A circuit C is defined by:

(1) m input registers, k local registers, and n output registers, where m, k, n ∈ N0.
Each register has exactly one type — simple, mask-0, or mask-1 (see Section 4.1) —
and is either input, output, or local register.

(2) A combinational logic DAG G as defined in Section 4.3. G has m+ k input nodes,
exactly one for each non-output register, and k + n output nodes, exactly one for
each non-input register. Local registers appear as both input node and output node.

(3) An initialization x0 ∈ Bk+n
M of the non-input registers.

Each s ∈ Bm+k+n
M defines a state of C. We refer to C as simple if it only uses simple

registers and as combinational if it has no local registers.

A meaningful application clearly uses a stable initialization x0 ∈ Bk+n; this restric-
tion, however, is not formally required. Furthermore, the initialization of the output
registers is irrelevant because output registers are never read, see Section 4.5.

Combinational circuits are circuits that do not carry a state from one round into the
next. In circuit design, a combinational circuit comprises only combinational logic, but
no registers; our definition, however, only requires the absence of local registers. This
removes the feedback loop from Figure 4.1(a). Carefully note that the required input and
output registers are just an artifact of our definition, the “registers” of a combinational
circuit can be interpreted as input and output pins. We analyze combinational circuits
and show that they are equivalent to our definition of combinational logic in Chapter 7.

Observe that Definition 4.3 does not allow registers to be input and output registers
at the same time, an overlap in responsibilities that is often used in digital circuits. Note,
however, that we impose this restriction for purely technical reasons; our model supports
registers that are read and written — local registers — and it is possible to emulate the
abovementioned behavior.3 Hence, this formal restriction has no practical implications.

3In the first round, copy the input into local registers. Use the local registers in the role where they
are both read and written in every round. Where needed, copy the content of the local registers to output
registers in every round.
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We denote by

In: Bm+k+n
M → BmM, (4.10)

Loc: Bm+k+n
M → BkM, and (4.11)

Out: Bm+k+n
M → BnM (4.12)

the projections of circuit state to its values at input, local, and output registers, respec-
tively. We use the convention that for any circuit state s, s = In(s) ◦ Loc(s) ◦Out(s).

4.5 Executions

Consider a circuit C in state s and let x = In(s) ◦ Loc(s) be the state of the non-output
registers. Suppose each register R is read, i.e., makes a non-dashed state transition
according to its type, state, and corresponding state machine in Figures 4.2(d)–4.2(f).
This state transition yields a value read from, as well as a new state for, R. In general,
this is a non-deterministic process as the state machines of the masking registers are
non-deterministic. We denote by

ReadC : Bm+k
M → P

(
Bm+k

M

)
(4.13)

the function mapping x to the set of all possible values read from non-output registers
of C depending on x. When only simple registers are involved, the read operation is
deterministic:

Observation 4.4. In a simple circuit C, ReadC(x) = {x}.
Proof. By Figure 4.2(d), each simple register in state x ∈ BM has output x.

In the presence of masking registers, x ∈ ReadC(x) can occur, but the output may
partially stabilize:

Observation 4.5. Consider a circuit C in state s. Then for x = In(s) ◦ Loc(s)

x ∈ ReadC(x) and (4.14)

ReadC(x) ⊆ ResM(x). (4.15)

Proof. Check the state transitions in Figures 4.2(e) and 4.2(f). For Equation (4.14),
observe that for all state machines and all states b ∈ BM a state transition with output
b ∈ BM starts in state b. Regarding (4.15), observe that registers in state M are not
restricted by the claim and registers of any type in state b ∈ B are deterministically read
as b ∈ ResM(b) = {b}.

Let G be the combinational logic DAG of C with m+k input and k+n output nodes.
Suppose o ∈ Bm+k

M is read from the non-output registers. Then the combinational logic
of C evaluates to fG(o), uniquely determined by G and o. We denote all possible results
of first reading the registers of C w.r.t. x and then evaluating the result by EvalC(x):

EvalC : Bm+k
M → P

(
Bk+n

M

)
, (4.16)

EvalC(x) :=
{
fG(o) | o ∈ ReadC(x)

}
. (4.17)
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When registers are written, we allow, but do not require, signals to stabilize. If the
combinational logic evaluates the new values for the non-input registers to x̄ ∈ Bk+n

M ,
their new state is in ResM(x̄); the input registers are never overwritten. We denote this
by

WriteC : Bm+k
M → P

(
Bk+n

M

)
, (4.18)

WriteC(x) :=
⋃

x̄∈EvalC(x)

ResM(x̄). (4.19)

Observe that this is where metastability can cause inconsistencies: If a gate is read as M
and this is copied to three registers, it is possible that one stabilizes to 0, one to 1, and one
remains M. This is an important property of modeling metastability. Furthermore, recall
from Section 4.3 that permitting stabilization at this point is computationally equivalent
to allowing — possibly inconsistent — partial stabilization during the evaluation of the
combinational logic DAG.

For the sake of presentation, we write ReadC(s), EvalC(s), and WriteC(s) for a circuit
state s ∈ Bm+k+n

M , meaning that the irrelevant part of s is ignored.

Let sr be a state of C. A successor state sr+1 of sr is any state that can be obtained
from sr as follows.

Read phase First read all registers, resulting in read values o ∈ ReadC(sr). Denote by
ιr+1 ∈ BmM the state of the input registers after the state transitions leading to
reading o.

Evaluation phase Then evaluate the combinational logic according to the result of the
read phase to x̄r+1 = fG(o) ∈ EvalC(sr).

Write phase Pick a partial resolution xr+1 ∈ ResM(x̄r+1) ⊆ WriteC(sr) of the result
of the evaluation phase. Observe that the possible choices for xr+1 depend on the
read phase. The successor state is sr+1 = ιr+1 ◦ xr+1.

In each clock cycle, our model determines some successor state of the current state of
the circuit; we refer to this as round.

Note that due to worst-case propagation of metastability, the evaluation phase is
deterministic, while read and write phase are not: Non-determinism in the read phase
is required to model the non-deterministic read behavior of masking registers, and non-
determinism in the write phase allows copies of metastable bits to stabilize inconsistently.
In a physical circuit, metastability may resolve within the combinational logic; as argued
in Section 4.3, however, we do not model this as a non-deterministic evaluation phase,
as it is equivalent to postpone possible stabilization to the write phase.

Let C be a circuit in state s0. For r ∈ N0, an r-round execution (w.r.t. s0) of C is a
sequence of successor states s0, s1, . . . , sr. We denote by SCr (s0) the set of possible states
resulting from r-round executions w.r.t. s0 of C:

SC0 (s0) := {s0} and (4.20)

SCr (s0) :=
{
sr | sr is a successor state of some s ∈ SCr−1(s0)

}
. (4.21)
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I1
I2

L1

L1

O1

(a) The Circuit.

r
state sr read o eval x̄r+1 write xr+1

I1 I2 L1 O1 I1 I2 L1 L1 O1 L1 O1

0 M M 1 1 0 M 1 M M 1 M
1 M M 1 M M M 1 M M M M
2 1 M M M 1 M M 1 M 1 0
3 1 M 1 0 1 M 1 1 1 1 1
4 1 M 1 1

(b) States, reads, evaluations, and writes.

Figure 4.6: Example execution in a circuit (a). The node states as well as the results of
the read, evaluation, and write phases are listed in the table (b). Register I1 is a mask-0
register, all others are simple registers. The initialization is 11, the input is MM, and
hence s0 = MM11.

The initial state of C w.r.t. input ι ∈ BmM is s0 = ι ◦ x0. We use Cr : BmM → P(BnM) as a
function mapping an input of C to all possible outputs resulting from r-round executions
of C:

Cr(ι) :=
{

Out(sr) | sr ∈ SCr (ι ◦ x0)
}
. (4.22)

We say that r rounds of C implement f : BmM → P(BnM) if and only if Cr(ι) ⊆ f(ι) for all
ι ∈ BmM, i.e., if all r-round executions of C result in an output permitted by f . If there
is some r ∈ N, such that r rounds of C implement f , we say that C implements f .

Observe that our model behaves exactly like a traditional, deterministic, binary circuit
model if s0 ∈ Bm+k+n.

4.6 Example

We use this section to present an example of our model. Figure 4.6 specifies a circuit
and its states, as well as the results of the read, evaluation, and write phases. The
combinational logic DAG implements fG(x) = (x1 ∨ x2, (x1 ∨ x2) ∧ x3). The input
registers are I1 and I2, the only local register is L1, and the only output register is O1.
Regarding register types, the input register I1 is a mask-0 register and all other registers
are simple registers.

The initialization is x0 = 11, the input is ι = MM, and the initial state hence is
s0 = ι ◦ x0 = MM11, which is indicated in the upper left entry in Figure 4.6(b). In
the read phase, all non-output registers are read. Since I2 and L1 are simple registers,
their read deterministically evaluates to M and 1, respectively, by the state machine in
Figure 4.2(d). The mask-0 register I1 in state M may either be read as 0 and remain
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in state M, or be read as M and transition to state 1, compare Figure 4.2(e); in this
case it does the former. So far, we fixed the outcome of the read phase, 0M1, and the
follow-up state of the input registers, MM; the other registers are overwritten at the end
of the write phase. The evaluation is uniquely determined, a read phase resulting in o
evaluates to fG(o), here, fG(0M1) = MM. We are left with only one more step in this
round: The non-input registers are overwritten with some value in the resolution of the
evaluation phase’s result, in our case with 1M ∈ ResM(MM). Together we obtain the
successor state s1 = MM1M.

In the next round, I1 follows the other state transition, i.e., is read as M, and hence
has state 1 in the next round. Its state thus remains fixed in all successive rounds by the
state machine in Figure 4.2(e). The other reads are deterministic, so we obtain o = MM1
as the result of the read phase and successor states 1M for I1 and I2. The evaluation is
fG(o) = fG(MM1) = MM and the state of L1 and O1 is overwritten with some value
from ResM(MM), here, by MM.

By round r = 2, the result of the read phase is deterministic because the only
masking register stabilized, we read o = 1MM, and evaluate to 1M. The remaining
non-determinism is whether to write 1M or some stabilization thereof; we examine the
case that 10 is written.

Rounds r ≥ 3 now are entirely deterministic. The only possible read is 1M1, which
evaluates to fG(1M1) = 11, fixing the result of the write phase to 11. Further rounds
are identical: The only metastable register, I2, remains metastable but has no impact on
the evaluation phase as the Or gate always receives input 1 from I2 and hence masks
the metastable input.

4.7 Basic Properties

In this section, we establish basic properties regarding computability in the model pro-
posed above. Regarding the implementability of functions by circuits, we focus on three
resources: the number r ∈ N of rounds, the register types available to it, and whether
the circuit is combinational.

Definition 4.6 (FunrM , FunrS , and FunrC). Let FunrM be the class of functions implement-
able with r rounds of arbitrary circuits. Analogously, FunrS denotes the class of functions
implementable with r rounds in simple circuits, i.e., by circuits that may only use simple
registers. With FunrC , we refer to the class of functions implementable with r rounds of
a combinational circuit, i.e., by circuits without local registers.

Our first claim is that the result of the write phase, i.e., WriteC , is not influenced by
the register types the circuit C uses. Carefully note that the successor state is influenced
by the register types, as it accounts for the state transitions that registers make in the
read phase. The reason that WriteC does not depend on the register types is as follows.
By Observations 4.4 and 4.5, simple registers in state x are deterministically read as x,
and masking registers in state x either as x or as some x′ ∈ ResM(x). Hence, the use of
masking registers might partially stabilize the input to the combinational logic which,
by Lemma 4.2, partially stabilizes its output. The same stabilization, however, can also
occur in the write phase.
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Lemma 4.7. Consider a circuit C in state s. Let CS be a copy of C that only uses
simple registers and x = In(s) ◦ Loc(s) the projection of s to the non-output registers.
Then

WriteC(s) = WriteCS (s) = ResM
(
fG(x)

)
. (4.23)

Proof. In CS , we have ReadCS (s) = {x} by Observation 4.4. So EvalCS (s) = {fG(x)},
and WriteCS (s) = ResM(fG(x)) by definition.

In C, x ∈ ReadC(s) by Observation 4.5, so ResM(fG(x)) ⊆ WriteC(s). All other
reads x′ ∈ ReadC(s) have x′ ∈ ResM(x) by Observation 4.5 and fG(x′) ∈ ResM(fG(x))
by Lemma 4.2. It follows that WriteC(s) = ResM(fG(x)).

Carefully note that the write phase only affects non-input registers; input registers
are never written. Hence, Lemma 4.7 does not generalize to multiple rounds: State
transitions of input registers in the read phase affect future read phases.

In 1-round executions, however, masking and simple registers are equally powerful,
because their state transitions only affect rounds r ≥ 2. We show in Chapter 8 that these
state changes may indeed lead to differences for r ≥ 2 rounds if C contains masking
registers.

Corollary 4.8. Fun1
C = Fun1

S = Fun1
M .

In contrast, simple and masking registers used as non-input registers behave iden-
tically, regardless of the number of rounds: A circuit C in state sr overwrites them
regardless of their state. Since WriteC(sr) is oblivious to register types by Lemma 4.7,
so is Loc(sr+1) ◦Out(sr+1) for a successor state sr+1 of sr.

Corollary 4.9. Simple and masking registers are interchangeable when used as non-input
registers.

Consider a circuit C in state s and suppose x ∈ ReadC(s) is read. Since the evaluation
phase is deterministic, the evaluation y = fG(x) ∈ EvalC(s) is uniquely determined by
x and C. Recall that we may resolve metastability to ResM(y) ⊆WriteC(s) in the write
phase: The state of an output register R becomes 0 if yR = 0, 1 if yR = 1, and some
b ∈ BM if yR = M. Consequently, output registers resolve independently:

Corollary 4.10. Let C be a circuit. Then the output bits of C after one round resolve
independently, i.e.,

C1 = g0 × · · · × gn−1, (4.24)

where gi : B
m
M → {{0}, {1},BM}.

Proof. Let s = ι ◦ x0 be the initial state of C w.r.t. input ι and x = In(s) ◦ Loc(s). By
Lemma 4.7, WriteC(s) = ResM(fG(x)), i.e., C1(ι) = {Out(s′) | s′ ∈ ResM(fG(x))}. By
definition, ResM(fG(x)) =

∏
i∈[n] ResM(fG(x))i. Hence, the claim follows with gi(ι) :=

ResM(fG(ι ◦ Loc(x0)))i for all ι ∈ BmM and i ∈ [n].

We show in Chapter 9 that Corollary 4.10 generalizes to multiple rounds of simple cir-
cuits. This is, however, not the case in the presence of masking registers, as demonstrated
in Chapter 8.

Lemmas 4.2 and 4.7 apply to the input of circuits: Partially stabilizing an input
partially stabilizes the possible inputs of the combinational logic, and hence its evaluation
and the circuit’s output after one round.
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Observation 4.11. For a circuit C and input ι ∈ BmM,

ι′ ∈ ResM(ι)⇒ C1(ι′) ⊆ C1(ι). (4.25)

Proof. Let x0 be the initialization of C, s = ι ◦ x0 its initial state w.r.t. input ι, and
x = In(s) ◦ Loc(s) the state of the non-output registers; define s′ and x′ equivalently
w.r.t. input ι′ ∈ ResM(ι). Using Lemmas 4.2 and 4.7 and that ResM(x′) ⊆ ResM(x) for
x′ ∈ ResM(x), we obtain that

WriteC(s′)
(4.23)

= ResM(fG(x′))
(4.9)

⊆ ResM(fG(x))
(4.23)

= WriteC(s). (4.26)

Finally, note that adding rounds of computation to non-combinational circuits cannot
decrease computational power; a circuit determining x in r rounds can be transformed
into one using r+ 1 rounds by buffering x for one round. Furthermore, allowing masking
registers does not decrease computational power and neither does allowing local registers.

Observation 4.12. For all r ∈ N0 we have

FunrS ⊆ Funr+1
S , (4.27)

FunrM ⊆ Funr+1
M , (4.28)

FunrS ⊆ FunrM , and (4.29)

FunrC ⊆ FunrM . (4.30)

4.8 The Next Steps

The subtlety of metastability in digital circuits makes it challenging to properly model
it. Especially a model that is both time-discrete and value-discrete, as the one proposed
above, runs the risk of oversimplifying matters. Hence, we are obliged to address two
issues.

(1) One is the question whether the proposed model is consistent with physical circuit
properties: Is the model “too powerful” in the sense that it permits things that
are known to be impossible in physical circuits? We address this by showing in
Chapter 5 that Marino’s impossibility result [108] — no digital circuit can reliably
avoid, detect, or resolve metastability — holds in our model.

(2) The other question is whether the model is not “too pessimistic” and permits non-
trivial positive results. We demonstrate that this is not a problem in Chapters 6
and 10, where we develop CMUXes, a core component of metastability-containing
circuits, and show that all components needed for metastability-tolerant clock
synchronization in hardware are within reach.

Together with further positive results developed using this model [26, 62, 100, 128],
including simulations [26, 60, 128], this strongly indicates that the proposed model is
both useful and makes meaningful predictions.

This document is arranged such that Chapter 5, which justifies the model, is ordered
before Chapter 6, which uses it. We refer to the first sections of Chapter 6 for relevant
examples on how to use the model.
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CHAPTER 5

Justification

The elusive nature of metastability and Marino’s impossibility result [108] raise two
concerns about the model proposed in Chapter 4. Is is “too optimistic” to derive mean-
ingful statements about the physical world? Or is it “too pessimistic” in the sense that it
does not permit non-trivial positive results? In this chapter, we address the first concern
by showing that our model reproduces Marino’s impossibility result. We answer the
second question in Chapter 6, where we develop CMUXes, starting with the theory at
the gate-level and advancing to optimized transistor-level implementations.

Marino established that no digital circuit can reliably (1) avoid, (2) resolve, or (3) de-
tect metastability [108]. It is critical that these impossibilities are reflected by any model
comprising metastability. We show in Theorem 5.4 and Corollaries 5.5–5.6 that (1)–(3)
are impossible in the model proposed in Chapter 4 as well. Note that this is about
putting the model to the test rather than reproducing an established result.

We first verify that avoiding metastability is impossible in non-trivial1 circuits. Con-
sider a circuit C that produces different outputs for inputs ι 6= ι′. The idea is to observe
how the output of C behaves while transforming ι to ι′ bit by bit, always involving
intermediate metastability, i.e., switching the differing bits from 0 to M to 1 or vice
versa. This can be seen as a discrete version of Marino’s argument for signals that map
continuous time to continuous voltage [108]. Furthermore, the bit-wise transformation
of ι to ι′, enforcing a change in the output in between, has parallels to the classical
impossibility of consensus proof of Fischer et al. [52]; our techniques, however, are quite
different. The following definition formalizes the step-wise manipulation of bits.

Definition 5.1 (Pivotal Sequence). Let d ∈ N0 and ` ∈ N be integers and x, x′ ∈ BdM.
Then (

x(i)
)
i∈[`+1]

, x(i) ∈ BdM, (5.1)

is a pivotal sequence from x to x′ over BdM if and only if it satisfies

(1) x(0) = x and x(`) = x′,

(2) for all i ∈ [`], x(i) and x(i+1) differ in exactly one bit, and

(3) that bit is metastable in either x(i) or x(i+1).

Consider i ∈ [`]. We call the differing bit in x(i) and x(i+1) the pivot from i to i + 1.
In the context of a pivotal sequence of circuit states, we refer to the register holding the
pivot as pivotal register.

1We call the circuit C non-trivial if there are inputs ι 6= ι′ and a number of rounds r ∈ N such that
Cr(ι) ∩ Cr(ι′) = ∅, i.e., if r rounds of C have to produce different outputs for ι and ι′.
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I1
I2

L1

L1

O1

(a) The Circuit.

x(i) fG
(
x̄(i)
)

y(j)

I1 I2 L1 O1 L1 O1 I1 I2 L1 O1

x(0) 0 0 0 0 0 0 0 0 0 0 y(0)

x(1) 0 0 M 0 0 0 0 0 0 0

x(2) 0 0 1 0 0 0 0 0 0 0

x(3) 0 M 1 0 M M 0 M 0 0 y(1)

0 M 1 0 M M 0 M M 0 y(2)

0 M 1 0 M M 0 M M M y(3)

0 M 1 0 M M 0 M M 1 y(4)

0 M 1 0 M M 0 M 1 1 y(5)

x(4) 0 1 1 0 1 1 0 1 1 1 y(6)

(b) Pivotal sequences of circuit states for x̄(i) := In
(
x(i)
)
◦ Loc

(
x(i)
)
.

Figure 5.1: A circuit with input (I1 and I2), local (L1), and output (O1) registers (a),
all simple, and a pivotal sequence of circuit states x(0), . . . , x(4) with the constructed
pivotal sequence of successor states y(0), . . . , y(6) (b). Each step in x is reflected in a
re-evaluation of the combinational logic fG(x(i)), which may affect several registers of
the successor state. To be pivotal, the sequence y accounts for these changes bit by bit.

Carefully note that we do not use pivotal sequences as temporal sequences of successor
states. The bit-wise manipulation does not happen over time, instead, we describe closely
related circuit states and examine the resulting 1-round executions. The generalization
to r-round executions is made in Corollary 5.3.

We begin with Lemma 5.2, which applies to a single round of computation. It states
that initializing a circuit C with a pivotal sequence x of circuit states results in a pivotal
sequence of possible successor states y. Hence, if C is non-trivial —C guarantees different
outputs for x(0) and x(`) — some intermediate element of y must contain a metastable
output bit. This implies that there is a 1-round execution in which an output register
of C becomes metastable. We argue about successor states rather than just the output
because we inductively apply Lemma 5.2 below to obtain a statement about r-round
executions.

A sample circuit with pivotal sequences is depicted in Figure 5.1. Observe that in
this example, the local register L1 changes its state. This does not occur in the first
round, because the initialization for local registers is fixed. It may, however, happen in
successive rounds.

Let x be a pivotal sequence of non-output register states, i.e., over Bm+k
M , and suppose

the pivotal register changes from stable to M from x(i) to x(i+1). By Observation 4.5, we
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may construct executions where x(i) ∈ ReadC(x(i)) and x(i+1) ∈ ReadC(x(i+1)) are the
result of the respective read phases. The key insight is that due to x(i) ∈ ResM(x(i+1)),
we have

WriteC
(
x(i)
)
⊆WriteC

(
x(i+1)

)
(5.2)

because

WriteC
(
x(i)
)

(4.23)
= ResM

(
fG
(
x(i)
))

(5.3)

(4.9)

⊆ ResM

(
fG
(
x(i+1)

))
(5.4)

(4.23)
= WriteC

(
x(i+1)

)
(5.5)

by Lemmas 4.2 and 4.7. Thus, advancing the non-output bits of the initial state from
x(i) to x(i+1) destabilizes the bits that are affected by the pivot from i to i + 1; we
leave all other bits unchanged. Leveraging this, we obtain a pivotal sequence of successor
states, changing the affected output bits from stable to M one by one, each the result
of a 1-round execution of C starting in state x(i+1). A reversed version of this argument
applies when a non-output register changes from M to stable.

Observe that this process does not guarantee that x and y have the same length;
some steps in x may not lead to a new successor state at all while others may require
several steps for y to “catch up.” Figure 5.1 contains examples for both cases.

Lemma 5.2. Let C be a circuit and(
x(i)
)
i∈[`+1]

, x(i) ∈ Bm+k+n
M , (5.6)

a pivotal sequence of states of C. Then there is a pivotal sequence(
y(j)
)
j∈[`′+1]

, y(j) ∈ Bm+k+n
M , (5.7)

where each y(j) is a successor state of some x(i), satisfying that y(0) and y(`′) are successor
states of x(0) and x(`), respectively.

Proof. See Figure 5.1 for an illustration of our arguments. Let G be the combinational
logic DAG of C. Starting from x(0), we inductively proceed to x(`), extending the sequence
y by a suitable, possibly empty, subsequence for each step from x(i) to x(i+1), i ∈ [`].

We maintain the invariants that

(1) For all i ∈ [`+ 1], In(x(i)) ◦ Loc(x(i)) ∈ ReadC(x(i)) is the result of the read phase
in all constructed executions starting in state x(i) and that

(2) For all i ∈ [`+ 1], there is a j ∈ [`′ + 1] with

Loc
(
y(j)
)
◦Out

(
y(j)
)

= fG
(

In
(
x(i)
)
◦ Loc

(
x(i)
))

, (5.8)

i.e., where no stabilization happens in the write phase of the execution resulting in
state y(j). In this context, y(j) is the state corresponding to x(i). This is the case for
the state pairs x(0) and y(0), x(1) and y(0), x(2) and y(0), x(3) and y(3), and x(4) and
y(6) in Figure 5.1.
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Let ι := In(x(0)) be the state of the input registers. Lemma 4.7 guarantees that we
have fG(ι ◦ Loc(x(0))) ∈WriteC(x(0)). Define

y(0) := ι′ ◦ fG
(
ι ◦ Loc

(
x(0)

))
∈ SC1

(
x(0)

)
, (5.9)

where ι′ is the uniquely determined state of the input registers after reading ι. By
construction, x(0) and y(0) fulfill the invariants.

We perform the step from x(i) to x(i+1), i ∈ [`]. Let P be the pivotal register from
x(i) to x(i+1). If P is an output register, y does not change as P has no impact on the
successor state, trivially completing the induction step. Hence, assume that P is an
input or local register. From the previous step, or from the definition of y(0), we have
an execution resulting in state y(j) for some index j, such that In(x(i)) ◦ Loc(x(i)) is the
result of the read phase and y(j) corresponds to x(i). For the next step, we keep the
result of the read phase for all registers except P fixed. Regarding all registers that do
not depend on P , i.e., may attain the same states regardless of what is read from P , we
rule that they attain the same states as in y(j), the state corresponding to x(i).

Suppose first that x
(i)
P = b 6= M and x

(i+1)
P = M (e.g., the step from x(2) to x(3) with

P = I2 in Figure 5.1). Consider the set of non-input registers R that depend on P , i.e.,

R :=
{
R | fG

(
x(i)
)
R
6= fG

(
x(i+1)

)
R

}
(5.10)

(R = {L1, O1} in the step from x(2) to x(3) in Figure 5.1). Since x(i) ∈ ResM(x(i+1)), by
Lemma 4.2 fG(x(i)) ∈ ResM(fG(x(i+1))). Hence,

fG
(
x(i+1)

)
R

= M 6= fG
(
x(i)
)
R

(5.11)

for all R ∈ R.
If P is an input register, we first extend y by one item that only changes yP to M and

increase j by one if that is the case (e.g., the step from y(0) to y(1) in Figure 5.1). Then
we extend y by y(j+1), . . . , y(j+|R|) such that in each step, for one R ∈ R, we change yR
from bR 6= M to M. This is feasible by Corollary 4.10, as the product structure of C1

implies that we can flip any written bit without affecting the others (e.g., steps y(2) and
y(3) in Figure 5.1). By construction, in state y(j+|R|) the state of the non-input registers
is fG(ι ◦ x(i+1)), i.e., y(j+|R|) corresponds to x(i+1) and our invariant is satisfied.

To cover the case that x
(i)
P = M and x

(i+1)
P = b 6= M, observe that we can apply the

same reasoning by reversing the order of the constructed subsequence.
As y is pivotal by construction — we change only one bit at a time and always switch

from M to stable or vice versa — this completes the proof.

We may apply Lemma 5.2 inductively: Starting with a pivotal sequence of initial
states, we obtain executions leading to a pivotal sequence of circuit states after one round,
these in turn lead to two-round executions and a pivotal sequence of circuit states after
two rounds, and so on.

Corollary 5.3. Let C be a circuit, x0 its initialization, and(
ι(i)
)
i∈[`+1]

, ι(i) ∈ BmM, (5.12)
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be a pivotal sequence of inputs of C. Then there is a pivotal sequence of states(
y(j)
)
j∈[`′+1]

, y(j) ∈ Bm+k+n
M , (5.13)

that C can attain after r ∈ N rounds satisfying that y(0) ∈ SCr (ι(0) ◦ x0) as well as
y(`′) ∈ SCr (ι(`) ◦ x0).

Proof. Inductive application of Lemma 5.2 to C and states
(
ι(i) ◦ x0

)
i∈[`+1]

.

The following theorem concludes that any non-trivial circuit can produce metastable
outputs, i.e., that the first of Marino’s impossibility results applies to the model proposed
in Chapter 4.

Theorem 5.4. Let C be a circuit with Cr(ι) ∩ Cr(ι′) = ∅ for some ι, ι′ ∈ BmM. Then C
has an r-round execution in which an output register becomes metastable.

Proof. Apply Corollary 5.3 to a pivotal sequence from ι to ι′ and C. This yields a pivotal
sequence y of states that C can attain after r-round executions. Consider(

ȳ(i)
)
i∈[`+1]

, ȳ(i) ∈ BnM, (5.14)

the projection of y to the output registers that skips succeeding, identical elements. Since
Cr(ι) ∩ Cr(ι′) = ∅, ȳ is a pivotal sequence that contains at least two elements. Hence,

ȳ
(i)
R = M for some output register R and some i ∈ [` + 1], i.e., there is an r-round

execution in which C outputs a metastable bit, as claimed.

Marino proved that no digital circuit can reliably (1) compute a non-constant function
and guarantee non-metastable output, (2) detect whether a register is metastable, or
(3) resolve metastability of the input while faithfully propagating stable input [108].
Theorem 5.4 captures (1); Corollaries 5.5 and 5.6 settle (2) and (3), respectively. The
key is that a circuit detecting or resolving metastability is non-constant and can hence
become metastable by Theorem 5.4, defeating the purpose of detecting or resolving
metastability in the first place.

Corollary 5.5. There exists no circuit that implements f : BM → P(BM) with

f(x) =

{
{1} if x = M and

{0} otherwise.
(5.15)

Proof. Assume such a circuit C exists and implements f using r rounds. As we have
Cr(0) ∩ Cr(M) = ∅, applying Theorem 5.4 to ι = 0 and ι′ = M yields that C has
an r-round execution with metastable output. This violates the specification in Equa-
tion (5.15), contradicting the assumption.

Corollary 5.6. There exists no circuit that implements f : BM → P(BM) with

f(x) =

{
{0, 1} if x = M and

{x} otherwise.
(5.16)
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Proof. As in Corollary 5.5 with ι = 0 and ι′ = 1.

In summary, our circuit model from Chapter 4 is consistent with physical models
of metastability. We demonstrate in Chapters 6 and 10 that it also permits non-trivial
positive results and further examine its computational power in Chapters 7–9.
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CHAPTER 6

Metastability-Containing Multiplexers

In this chapter, we develop Metastability-Containing Multiplexers (CMUXes). The basis
of our discussion are gate-level implementations, which are a good example on how to use
our model because (1) they have the right level of complexity and (2) metastability-con-
tainment makes a difference in MUXes in the sense that a MUX and a CMUX behave
differently. From a broader perspective, this demonstrates that our model, especially
the worst-case propagation of metastability, is not “too pessimistic” to permit positive
results while Chapter 5 shows that it is not “too optimistic,” either.

As MUXes are ubiquitous in digital circuits, we also study efficient transistor-level
CMUX implementations. The idea is that a small CMUX implementation can be used
as drop-in replacement to improve existing circuits. Bund et al. ask whether such an
implementation exists [26], as existing metastability-containing sorting networks heavily
depend on CMUXes [26, 100]. Our smallest CMUX implementation uses only 8 transis-
tors — no more than a standard1 transistor-level MUX — and dramatically decreases the
size of the metastability-containing sorting networks of Lenzen and Medina [100] and of
Bund et al. [26], saving up to 69 % and 65 % in circuit complexity, respectively.

In this chapter, we use the following convention to simplify the specification of small
combinational circuits.

Remark 6.1 (Notation). We specify some combinational circuits, e.g., Mux-Gate in
Figure 6.1(a), only by their combinational logic DAG. The circuit in terms of Defini-
tions 4.3 which we mean by that is the one that (1) only uses simple input and arbitrarily
initialized output registers,2 (2) has no local registers, and (3) uses the given combina-
tional logic DAG. We only follow this convention for combinational circuits which are
equivalent to the combinational logic and w.l.o.g. use a single round of computation by
Theorem 7.1.

6.1 Problem Statement

Prior to discussing metastability-containing variants, let us examine a standard MUX.
An (n-bit) Multiplexer (MUX) is a circuit with 2n+ 1 inputs that implements

fMUX : BM ×BnM ×BnM → BnM (6.1)

fMUX(s, a, b) :=


ResM(a) if s = 0,

ResM(b) if s = 1, and

BnM otherwise.

(6.2)

1Pass-gate MUXes need 4 transistors but are inherently vulnerable to metastability, see Section 6.3.2.
2The initialization is irrelevant as the output registers do not influence the computation.
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Figure 6.1: Gate-level MUX implementations. Mux-Gate (a) is a standard gate-
level MUX and can become metastable, see Figure 6.2. CMux-Gate (b) and CMux-
Delay (c) avoid this by employing additional gates and a masking register, respectively.

For the sake of presentation, we use n = 1 throughout the chapter; all presented circuits
generalize to higher values of n by replication. We refer to s as the select bit. In the case
of a stable select bit, a MUX determines whether to output (some stabilization of) a
or b. If s is metastable, the output is unspecified. Figure 6.1(a) shows Mux-Gate, a
typical gate-level implementation of a MUX.

Note that a real-world circuit typically uses an efficient transistor-level MUX instead
of a gate-level implementation like Mux-Gate. The gate level, however, is captured
by our model from Chapter 4. Furthermore, it is well-suited for demonstrating the
basic problem with standard MUXes that is also present — although harder to see — in
transistor-level MUXes. We discuss this in Section 6.3.

A desirable property of a MUX is that if a = b, the output is ResM(a), regardless
of s: Being uncertain whether to select a or b should be insubstantial in this case. If,
however, s = M and a = b = 1, a standard implementation like Mux-Gate can become
metastable, compare Figure 6.2(a).

Observation 6.2. Let CMux-Gate be the circuit associated with Mux-Gate in the sense
of Remark 6.1. As depicted in Figure 6.2(a), CMux-Gate can become metastable when
provided with input s = M and a = b = 1, i.e., CMux-Gate

1 (M, 1, 1) = BM. This follows
from observing that (s, a, b) can be read as (M, 1, 1) by Observation 4.5, evaluating the
combinational logic DAG accordingly

(¬s ∧ a) ∨ (s ∧ b) = (¬M ∧ 1) ∨ (M ∧ 1) = M ∨M = M, (6.3)

and recalling that this implies WriteC
Mux-Gate

(M, 1, 1) = ResM(M) = BM.

Hence, we ask for an (n-bit) Metastability-Containing Multiplexer (CMUX), an im-
proved circuit that implements

fCMUX : BM ×BnM ×BnM → BnM (6.4)

fCMUX(s, a, b) :=


ResM(a) if s = 0,

ResM(b) if s = 1, and

ResM(a⊕ b) otherwise,

(6.5)

i.e., which has to output ResM(a) if a = b, even if s = M.
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metastability

b = 1

a = 1

1
M

M

1
M M

s = M

o = M

(a) Mux-Gate under input s = M and
a = b = 1.

b = 1

a = 1

s = M
1
M

M

1
M M

1
1 1

o = 1

(b) CMux-Gate under input s = M
and a = b = 1.

Figure 6.2: Gate-level MUX behavior under inputs (s, a, b) = (M, 1, 1); in this case, the
output should be 1 regardless of the select bit s. Mux-Gate (a), however, can become
metastable. CMux-Gate (b) fixes this using logical masking.

6.2 Gate-Level Implementations

The circuit3 CMux-Gate in Figure 6.1(b) implements fCMUX from Equation (6.5):
The problematic case of s = M and a = b = 1 is handled by the third And gate which
outputs 1, providing the ternary Or gate with a stable 1 as input, compare Figure 6.2(b).

Lemma 6.3. One round of CCMux-Gate implements fCMUX from Equation (6.5).

Proof. CCMux-Gate has no local registers and its combinational logic DAG implements

o = (¬s ∧ a) ∨ (s ∧ b) ∨ (a ∧ b). (6.6)

It is easy to verify that this implements fCMUX from Equation (6.5) for s 6= M. Hence,
consider s = M in the following. If a 6= b or a = b = M, the output of CCMux-Gate is not
restricted by Equation (6.5), so consider the remaining two cases:

Case 1 In the case of a = b = 0, all clauses in Equation (6.6) are 0, leading to o = 0.

Case 2 If a = b = 1, we have a ∧ b = 1 and o = 1, regardless of the other clauses.

Together, this concludes the proof.

The price for this improvement is an additional And gate and a ternary instead of
a binary Or gate, which can be costly if a and b have a large bit width n. Lenzen and
Medina allocate 28 transistors to implement CMux-Gate, 2 for the Not, 6 for each
And, and 8 for the ternary Or [100]. This can be improved to 20 using Nand gates and
the de Morgan equivalent of Equation (6.6),

(¬s ∧ a) ∨ (s ∧ b) ∨ (a ∧ b) = ¬(¬(¬s ∧ a) ∧ ¬(s ∧ b) ∧ ¬(a ∧ b)), (6.7)

allocating 4 and 6 transistors for a binary and a ternary Nand, respectively [60]. Still,
20 transistors are well beyond the 10 or even 6 transistors — counting the 2 transistors

3In the sense of Remark 6.1.
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input: s (mask-1), a, b (simple)
local: s′ (simple, initialized with 0)
output: o (simple, initialized with 0)

1: each round:
2: s′ ← s
3: o← (¬s ∧ a) ∨ (s′ ∧ b)
4: end

o

b
s′
a
s

s′

Algorithm 6.1: Two-round implementation of a CMUX. The register initialization is
arbitrary and the combinational logic DAG is implied by the assignments, also compare
Figure 6.1(c).

for inverting s for fair comparison — for a standard and a pass-gate implementation,
respectively, see Section 6.3.

One way to reduce the number of gates is to use a masking register and a second
round of computation to implement fCMUX from Equation (6.5). This is indicated by
CMux-Delay in Figure 6.1(c). First, we show how to implement fCMUX using two clock
cycles and then derive from it an efficient unclocked physical implementation with fewer
gates. The former is captured by our model and the latter is not, because the model is
time-discrete.

The two-round circuit is specified by Algorithm 6.1. It defines a clocked circuit by
assignments of logic expressions to registers; in fact, it uses the same combinational
logic DAG as Mux-Gate in Figure 6.1(a). The trick is to sequentially read s from a
mask-1 register, ensuring that at most one copy of s can be metastable, compare the
state machine in Figure 4.2(f). This guarantees that in the case of s = M and a = b = 1,
one of the And-clauses is stable 1.

Lemma 6.4. Two rounds of the circuit implied by Algorithm 6.1 implement fCMUX from
Equation (6.5).

Proof. If s 6= M, we have s = s′ after round 1 and it is easy to verify that Algorithm 6.1
behaves as specified by Equation (6.5). Hence, consider s = M in the remaining part
of the proof. If a 6= b or a = b = M, the output is not restricted by Equation (6.5). So
consider s = M and a = b 6= M.

If s = M and a = b = 0, we have o = (¬s ∧ 0) ∨ (s′ ∧ 0) = 0, as claimed. The
interesting case is s = M and a = b = 1. Here we exploit that the read phases of rounds 1
and 2 only have three possible outcomes by the state machine of mask-1 registers in
Figure 4.2(f): The possible reads of s are 11, 1M, and M0. Hence, in round 2, the first
bit (or a stabilization of it) is stored in s′ and the second is read from s.

Case 1 If 11 is read, s = s′ = 1, yielding

o = (¬s ∧ a) ∨ (s′ ∧ b) = (¬1 ∧ 1) ∨ (1 ∧ 1) = 1. (6.8)

Case 2 If 1M is read, we have s′ = 1 and obtain

o = (¬s ∧ a) ∨ (s′ ∧ b) = (¬s ∧ 1) ∨ (1 ∧ 1) = 1. (6.9)
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Case 3 If M0 is read, we have s = 0 which yields

o = (¬s ∧ a) ∨ (s′ ∧ b) = (¬0 ∧ 1) ∨ (s′ ∧ 1) = 1. (6.10)

As specified, the output is 1 in each case, concluding the proof.

Observe that the circuit implied by Algorithm 6.1 uses the combinational logic from
Mux-Gate which is not metastability-containing, see Figure 6.1(a). Instead of fortifying
Mux-Gate with additional gates — as done in CMux-Gate in Figure 6.1(b) — Algo-
rithm 6.1 uses a masking register and an additional clock cycle to fulfill the specification
of a CMUX. This construction hence does not increase the transistor count the way
CMux-Gate does and scales well with increasing bit widths n of a and b, since only
the select bit needs to be stored in a masking register.

However, a hardware implementation of Algorithm 6.1 as a clocked state machine
may be too slow for practical applications. Fortunately, Algorithm 6.1 has an optimized
unclocked realization: The serialization of assignments in Algorithm 6.1 ensured by the
two clock cycles can also be enforced by local delay constraints instead of clock cycles,
see CMux-Delay in Figure 6.1(c). With a propagation delay from s to the And gate
with non-negated input s being larger than the gate delay from s to the And gate
with negated input ¬s— and a delay difference large enough to not observe internal
metastability of the register at both And gates simultaneously — the circuit exhibits the
specified behavior. Observe that this realization cannot be directly be expressed in our
time-discrete circuit model from Chapter 4. However, delay lines can be avoided entirely
using the completely digital transistor-level CMUXes presented below.

6.3 Transistor-Level Implementations

In this section, we develop efficient transistor-level implementations4 of CMUXes. As
motivated above, MUXes are ubiquitous in digital circuits and CMUXes are used in
metastability-containing sorting networks [26, 100]. We hope that our implementations
are a contribution to the practical feasibility of metastability-containing circuits.

We propose two CMUX implementations: CMux-A is a conservative implementation
that uses 10 transistors and CMux-B uses 8 transistors at the expense of a somewhat
increased peak current and a slightly deteriorated output under s = M. Not only do
we greatly improve upon the 28 transistors that Lenzen and Medina allocate for Mux-
Gate [100], see above, we also have only a marginal overhead w.r.t. classical transistor-
level MUX implementations of 8 transistors. We are not, however, on par with the 4
transistors of a pass-gate implementation for reasons discussed below.

Refer to Section 6.4 for a demonstration of the impact of our CMUXes. Simply
using CMux-B as a drop-in replacement in metastability-containing sorting networks
of Lenzen and Medina [100] and Bund et al. [26], which both heavily rely on CMUXes,
reduces the respective circuit sizes by up to two thirds.

4We present CMOS implementations.
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6.3.1 Transistors and CMOS Circuits

As the model from Chapter 4 does not capture transistor-level logic, the remaining part of
this chapter is not covered by it. In particular, we cannot give formal correctness proofs of
the proposed circuits within our model. However, our idea of adding a third, unspecified,
signal to the digital world carries over to the transistor level and Complementary Metal-
Oxide-Semiconductor (CMOS) logic. We need to examine the behavior of transistors
under unspecified input voltages.

VDD

VSS

x x̄

Figure 6.3: A CMOS inverter.
The transistor in the top is a
p-FET, the one in the bottom
an n-FET. For x = 0, the p-FET
closes and the n-FET opens, re-
sulting in output 1. The opposite
is the case if x = 1.

Consider the CMOS inverter in Figure 6.3 as ex-
ample. A Field-Effect Transistor (FET) has three ter-
minals: source, drain, and gate. There are p-FETs and
n-FETs. The transistor in the top of Figure 6.3 is a
p-FET, its source is connected to VDD, logical 1, and
its drain to the output on the right. The transistor
in the bottom is an n-FET, its source is connected to
VSS, logical 0, and its drain to the output. Both tran-
sistors’ gates are connected to the input on the left.
When connecting p-FET and n-FET sources to VDD

and VSS, respectively, one can think of the source as
the “input,” the drain as the “output,” and the gate as
a switch controlling the source–drain resistance. This
is an oversimplification, but it suffices for our purposes.
We refer to standard literature [4, 131] for details.

The n-FET in the bottom of Figure 6.3 has a neg-
ligibly small source–drain resistance when its gate is
connected to logical 1 and an extremely high source–
drain resistance when connected to logical 0. The
p-FET in the top behaves the other way around: If
the gate is connected to logical 0 (logical 1), it has a
low (high) resistance.

For x = 0, the p-FET is “closed” (conductive) and
the n-FET is “open” (non-conductive), i.e., there is a

low-resistance path from the output to VDD and only one of extremely high resistance
to VSS, resulting in output x̄.

This illustrates a fundamental CMOS concept: The logic is designed such that for
any input, exactly one of VDD and VSS is connected to the output.

Next, we apply this line of reasoning to arbitrary voltages between logical 0 and 1,
i.e., M. A FET exposed to a gate input of M might not be completely switched on
or off, i.e., act as an unspecified source–drain resistance; this results in an unspecified
output, i.e., M. Furthermore, a FET receiving M as source input has an unspecified
output as well. In particular, when applying stable voltages — logical 0 or 1, i.e., VSS

or VDD, respectively — to a transistor’s source and drain but M to its gate, it acts as
an unspecified source–drain resistance. For the inverter in Figure 6.3, x = M means
that both transistors turn into unspecified source–drain resistances, hence, the output is
unspecified.

Note that our only assumption is that the behavior is unspecified in the presence
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Figure 6.4: Transistor-level MUX and CMUX implementations. Mux-T (a) and Mux-
Pass (b) show conventional combinational and pass-gate MUXes, respectively. Both
are vulnerable to metastability, especially Mux-Pass: s = M causes an unspecified
pass resistance. CMux-A (c) and CMux-B (d) implement CMUXes, i.e., metastability-
containing alternatives. CMux-A requires 10 transistors and has a low peak current.
CMux-B saves 2 transistors, at the expense of a slightly increased peak current in the
case of s = M and a = b.

of M, which is very conservative.

6.3.2 Standard Transistor-Level Multiplexers

Mux-T in Figure 6.4(a) is a standard transistor-level MUX. Under input s = M, all
connections from VSS or VDD to the output contain a transistor with input s or s̄ at
the gate, i.e., an unspecified resistance. Hence, the output may be deteriorated. This is
reflected by the case of fixing s = M while simultaneously switching a = b from 0 to 1
or vice versa [60].

A common MUX implementation is Mux-Pass, see Figure 6.4(b). Using only four
transistors, it forwards a or b via pass gates, i.e., without direct connections to VSS or VDD.
Unfortunately, pass gates have the drawback of a non-negligible pass resistance. This
means that they degrade the output signal, even if all inputs are stable. Hence, chains of
pass-gate MUXes should be used with caution, possibly using signal regeneration.5 The
pass-resistance problem severely intensifies in the context of metastability-containment:
s = M effectively turns all transistors of Mux-Pass into unspecified resistances. Sim-
ulations reveal that when fixing s = M and simultaneously switching a = b from 0 to
1 or vice versa — as above —Mux-Pass performs even worse than Mux-T [60]. We
conclude that CMUX implementations based on pass gates need to regenerate the signal.

5A slightly degenerate signal can be restored by, e.g., using an inverter. This connects to VSS or VDD

and serves as an amplifier, pulling the output towards logical 0 or 1.
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This requires additional transistors and surrenders the original advantage, i.e., using few
transistors, of a pass-gate implementation. Hence, we do not use pass gates.

6.3.3 Our Circuits

We propose two transistor-level implementations of a CMUX, referred to as CMux-A
and CMux-B and depicted in Figures 6.4(c) and 6.4(d), respectively. Both implement a
CMUX up to an inverted output6 bit. CMux-A is a conservative implementation that
requires 10 transistors. CMux-B needs only 8 transistors — the same as the conventional
Mux-T— but has a slightly increased peak current and produces a slightly degraded
output signal under s = M and a = b. Note that this is a very low overhead for
metastability-containment.

10 Transistors We propose CMux-A, see Figure 6.4(c), as transistor-level implemen-
tation of a CMUX. It is not hard to verify that CMux-A works correctly if all inputs
s, a, b are logical 0 or 1, up to inversion of the output. Regarding correct operation under
s = M and a = b, recall that a transistor with an unspecified input voltage produces an
unspecified output voltage. For the proposed implementation, this implies that under
s = M, all transistors with gate input s or s̄ are to be treated as unspecified resistances.

For s = M and a = b = 0, there is a low-resistance path from ō to VDD at the
top right of CMux-A, but only high-resistance paths from ō to VSS, so ō = 1 = ā. All
transistors with voltage M at the gate are bypassed and do not influence the output
voltage. CMux-A behaves symmetrically if s = M and a = b = 1: There is a low-
resistance path from ō to VSS but none from ō to VDD. We conclude that CMux-A
implements a CMUX. Simulations verify the correct behavior and establish quick and
clean switching behavior under the abovementioned test case, i.e., fixing s = M and
simultaneously switching a = b from logical 0 to logical 1 and vice versa [60].

8 Transistors We propose CMux-B, see Figure 6.4(d), as an alternative to CMux-A.
As above, it is not hard to check that CMux-B works correctly under stable inputs: If
all inputs s, a, b are logical 0 or 1, CMux-B outputs ā if s = 0 and b̄ if s = 1.

So consider the case s = M and a = b. Then transistors with gate input s or s̄ act
as resistors of unspecified resistance, allowing a current from VDD to VSS along the left
path of CMux-B. This results in an increased peak current under s = M [60].

If a = b = 1 the n-FETs pull the output low while the p-FETs on the left represent
an unspecified resistance, which may become low enough to cause an unspecified output
level. This constitutes the key difference to CMux-A which logically masks this case. To
ensure correct output levels, we use transistors of double width on the right branch with
inputs a and b [60]. Simulations confirm that CMux-B behaves correctly under input
s = M with this tweak [60]. In the case of a = b = 0, CMux-B behaves symmetrically.

Altogether, CMux-B implements a CMUX, but has a higher peak current than
CMux-A in the presence of a metastable select bit [60].

6This is not uncommon in digital circuit design, e.g., Mux-T does the same.
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6.4 Impact on Metastability-Containing Circuits

In this section, we demonstrate how our CMUX implementations drastically reduce
the complexity of existing metastability-containing circuits. This is achieved by simply
using CMux-A or CMux-B as a drop-in replacement wherever a CMUX is required. We
demonstrate this using the metastability-containing sorting networks for BRGC proposed
by Lenzen and Medina [100] and the more recent improvement by Bund et al. [26]; using
CMux-B reduces the size of 16-bit sorting networks by 69 % and 65 %, respectively.

Both papers describe 2-sort implementations that work for inputs that are either
BRGC numbers or metastable superpositions of successive BRGC numbers. As BRGC
only changes one bit in an increment, the latter can only become metastable at that
particular bit, if implemented correctly [62]. We shed some light on this in Chapter 10.

For a 2-sort of B-bit BRGC numbers, Lenzen and Medina require O(B2) transistors
and Bund et al. O(B logB). Each paper presents the transistor counts required by
optimal sorting networks of 4, 7, and 10 channels for B ∈ {2, 4, 8, 16} assembled from
their respective 2-sort implementation. Both papers use the abovementioned 28-transistor
estimate for CMux-Gate by Lenzen and Medina [100].

a

b

c

d

ot
t̄

s
s̄

Figure 6.5: 4-CMUX assembled
from three 2-CMUXes [100].

The proposed 2-sort implementations require
a 4-CMUX, i.e., a CMUX that uses two select
bits to choose one of four inputs. A 4-CMUX is
a straightforward generalization of fCMUX from
Equation (6.5) and can be assembled from three
CMUXes as in Figure 6.5 [100]. Note that us-
ing CMux-A or CMux-B in this two-level ap-
proach doubly negates the output and hence di-
rectly produces the desired result. Together with
four transistors to invert both select bits, we require
3 · 8 + 4 = 28 transistors to implement a 4-CMUX
from CMux-B,7 much less than the 3·28 = 84 tran-
sistors allocated in both implementations [26, 100].
Note that in the 2-sort derived from Lenzen and
Medina [100], we only need a total of two inverters
for each recursion level, as both 4-CMUXes use the
same select bits.

Table 6.1 shows how replacing the naive CMUX
implementation by CMux-B from Figure 6.4(d) reduces the transistor count of
metastability-containing sorting networks and gives an overview on how large these
networks are.

Regarding the comparison with Lenzen and Medina, note that the authors present a
polynomially as well as an exponentially sized 2-sort [100]. The exponentially sized 2-sort
is more efficient for B ∈ {2, 4}. We always plug CMux-B into the polynomially sized
circuit and compare it to the unmodified polynomially sized circuit. A comparison with
the exponentially sized circuit would be obscured, because Lenzen and Medina report
inconsistent transistor counts for them: The size of a 4-, 7-, and 10-sort is not exactly 5,

7Using CMux-A requires 3 · 10 + 4 = 34 transistors.
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bits
4-sort 7-sort 10-sort

[100] we saved [100] we saved [100] we saved

2 540 340 37.0 % 1728 1088 37.0 % 3132 1972 37.0 %
4 4020 1620 59.7 % 12864 5184 59.7 % 23316 9396 59.7 %
8 21060 7060 66.5 % 67392 22592 66.5 % 122148 40948 66.5 %
16 95460 29460 69.1 % 305472 94272 69.1 % 553668 170868 69.1 %

bits
4-sort 7-sort 10-sort

[26] we saved [26] we saved [26] we saved

2 960 400 58.3 % 3072 1280 58.3 % 5568 2320 58.3 %
4 4440 1640 63.1 % 14208 5248 63.1 % 25752 9512 63.1 %
8 13920 4960 64.4 % 44544 15872 64.4 % 80736 28768 64.4 %
16 37080 13000 65.0 % 118656 41600 65.0 % 215064 75400 65.0 %

Table 6.1: Transistors saved by using CMux-B in the sorting networks of Lenzen and
Medina [100] and Bund et al. [26].

10, and 29 times8 that of a 2-sort. This, however, only makes a difference for B ∈ {2, 4},
as the polynomially sized 2-sort is smaller for B ∈ {8, 16} and higher.

Our approach saves between 37.0 % and 69.1 % of the transistors in the described
settings. The savings w.r.t. Bund et al. [26] are equally drastic: Using CMux-B reduces
the size of the sorting network by 58.3 %–65.0 %, removing almost two thirds of the
original circuit.

8The number of 2-sorts in the respective sorting networks.

52



CHAPTER 7

Combinational Circuits

In this chapter, we analyze combinational circuits. Note that in circuit design, the term
“combinational circuit” refers to circuits using only combinational logic and no registers;
we define combinational circuits as circuits without local registers. At first glance this
may seem different, but the concept is the same: A combinational circuit does not
remember previous clock cycles. As the only feedback loop in our model leads through
the local registers, compare Figure 4.1(a), we can establish that property by removing
them. The input and output registers required by Definition 4.3 merely are a consequence
of moving the non-determinism of possible stabilization out of the combinational logic;
we discuss this in Section 4.3. Hence the “registers” of a combinational circuit can simply
be interpreted as input and output pins attached to the combinational logic.

We fully classify the functions implementable by combinational circuits and formally
show that the output of a combinational circuit is — up to possible stabilization of
metastable output bits — equivalent to its combinational logic. Furthermore, we show
that it does not matter which registers are used in combinational circuits, formalizing
the above claim that they may be interpreted as input and output pins.

This implies that in combinational circuits, our model essentially boils down to
Sections 4.2 and 4.3: gates and combinational logic. Put differently, Kleene logic models
metastability in combinational circuits. We consider this a strong indicator that our
model is quite natural. In Chapter 8, we show that simple circuits are computationally
equivalent to combinational circuits as well. The reason our model requires the additional
complexity of registers, clock cycles, and non-determinism is to capture masking registers;
we demonstrate in Chapter 8 that circuits with masking are computationally strictly
more powerful than simple circuits.

Theorem 7.1 (Combinational Circuits). Let C be a combinational circuit with combi-
national logic DAG G, m input registers, and n output registers. Then we have

C1(ι) = Cr(ι) = ResM
(
fG(ι)

)
(7.1)

for all r ∈ N and all inputs ι ∈ BmM and hence

Fun1
C = FunrC (7.2)

for all r ∈ N. Furthermore, it holds for all ι ∈ BmM and all i ∈ [n] that

C1(ι)i = {0} ⇔ fG(ι)i = 0, (7.3)

C1(ι)i = {1} ⇔ fG(ι)i = 1, and (7.4)

C1(ι)i = BM ⇔ fG(ι)i = M. (7.5)
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Proof. Let ι ∈ BmM and r ∈ N be an arbitrary input and a number of rounds. In order
to show that Cr(ι) = ResM(fG(ι)), observe that there is an execution where we read ι
from the input registers in round r by the state machines in Figures 4.2(d)–4.2(f): Each
input register R maintains state ιR for r− 1 rounds and makes the uniquely determined
state transition resulting in output ιR in round r. The combinational logic DAG then
evaluates to fG(ι) in the r-th evaluation phase and the possible writes are ResM(fG(ι)),
showing that

Cr(ι) ⊇ ResM(fG(ι)). (7.6)

Further observe that — also by the state machines in Figures 4.2(d)–4.2(f) — the r-th
read phase is guaranteed to yield some ι′ ∈ ResM(ι). Hence, the combinational logic
DAG always evaluates to some fG(ι′) ∈ ResM(fG(ι)) by Lemma 4.2 and all possible
writes are in ResM(fG(ι)). This guarantees

Cr(ι) ⊆ ResM(fG(ι)). (7.7)

As the above arguments hold for arbitrary ι and r, and in particular for r = 1, Equa-
tion (7.1), and with it Equation (7.2), follows.

Claims (7.3)–(7.5) are a direct consequence of the definition of the write phase; if
the combinational logic evaluates to x, the possible writes are ResM(x).

Note that Equation (7.1) is independent from the register types used in the com-
binational circuit. This reflects the above informal statement that the registers of a
combinational circuit can be interpreted as input and output pins.

Observation 7.2. Let C be a combinational circuit. Then C1 is invariant under changing
the register types used in C.

In the light of Theorem 7.1, we simplify notation to

FunC := Fun1
C . (7.8)

We establish in Chapter 8 that the computational power of combinational circuits
is the same as that of simple circuits, as simple circuits can be unrolled. However,
circuits that may use masking registers become strictly more powerful with each round
of computation.
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CHAPTER 8

Computational Hierarchy

In this chapter, we determine the impact of the number of rounds, of the available register
types, and whether local registers are permitted on the computational power of circuits
in the model from Chapter 4. Recall from Definition 4.6 that FunrM , FunrS , and FunrC
denote the functions implementable using r ∈ N rounds in arbitrary circuits, in simple
circuits, and in combinational circuits, respectively, where simple circuits are restricted to
simple registers and combinational circuits have no local registers. Further recall that the
number of rounds is irrelevant in combinational circuits, i.e., that FunC = Fun1

C = FunrC
by Theorem 7.1. The main results are the following.

(1) Even in the presence of metastability, circuits restricted to simple registers can
be unrolled. This means that r ∈ N copies of the combinational logic can be
arranged to implement r rounds of the original circuit in a single round. In terms
of computable functions, this means that FunS := Fun1

S = FunrS . We discuss this
in Section 8.1.

(2) Combinational circuits are exactly as powerful as simple circuits: FunC = FunS .
This is discussed in Section 8.2.

(3) With masking registers, however, unrolled circuits are not equivalent to multiple
rounds of computation anymore. Regarding computable functions, we show in
Section 8.3 that this leads to a strict inclusion: FunrM ( Funr+1

M for all r ∈ N.

Together with Corollary 4.8, we obtain the following hierarchy:

FunC = FunS = Fun1
M ( Fun2

M ( Fun3
M ( · · · . (8.1)

We believe this to make a strong case for further pursuing masking registers in research
regarding metastability-containing circuits.

8.1 Simple Circuits

It is folklore that binary-valued synchronous circuits can be unrolled such that the
output after r ∈ N clock cycles of the original circuit is equal to the output after
a single clock cycle of the unrolled circuit. Theorem 8.1 states that this result also
holds in presence of potentially metastable simple registers. Carefully note that this
result — defying intuition — does not carry over to circuits with masking registers, see
Theorem 8.3.

Theorem 8.1 (Unrolling). Given a simple circuit C and r ∈ N, one can construct a
simple circuit C ′ such that C ′1 = Cr. In particular, if r rounds of C implement f , a single
round of C ′ implements f . Hence, it holds that

∀r ∈ N : Fun1
S = FunrS . (8.2)
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I1

L1

L2

L1

L2

L1

L2

L1

L2

O1

Figure 8.1: Unrolling three rounds of the circuit in Figure 4.4 with three gates (gray),
and four registers (white). Local registers (L1 and L2) become Id gates and early output
is ignored.

Proof. The claim is trivial for r = 1, hence suppose r ≥ 2. We construct a circuit C ′

with C ′1(ι) = C2(ι). Given C, we construct C ′ as follows, compare Figure 8.1. Let G be
the combinational logic DAG of C, consider two copies G1 = (V1, A1) and G2 = (V2, A2)
of G, and let G′ = (V1 ∪̇ V2, A1 ∪̇A2) be the combinational logic DAG of C ′, up to the
following modifications.

(1) Every input register I of C corresponds to input nodes vI1 ∈ V1 and vI2 ∈ V2. Identify
{vI1 , vI2} to a single input node in G′ (compare I1 in Figure 8.1) and associate it
with a new input register in C ′; apply this to all input registers of C.

(2) In order to ignore “early” output, replace each output node in G1 corresponding
to an output register in C with a gate that has one input and whose output is
ignored (like the first two copies of O1 in Figure 8.1).

(3) The remaining input and output nodes are associated with local registers. Each
local register L of C corresponds to exactly one output node vL1 ∈ V1 and one input
node vL2 ∈ V2. Identify {vL1 , vL2 } to an Id gate in G′ that simply forwards its input
(the center copies of L1 and L2 in Figure 8.1).

Associate the k remaining input nodes of G1 and output nodes of G2 with local registers,
maintaining the original mapping. Observe that G′ has n input, m output, and k local
registers; we rule that all registers are simple. Define the initial state of C ′ as that of C.

To check that one round of C ′ is equivalent to two rounds of C, let ι ∈ BmM be an input,
s0 the initial state of both C and C ′ w.r.t. input ι, and x0 = In(s0) ◦ Loc(s0) the initial
state of the non-output registers. As all registers are simple, we have ReadC

′
(x0) = {x0}

by Observation 4.4 and hence, by construction of G′,

EvalC
′
(s0) =

{
fG
′
(x0)

}
=
{
fG
(
ι ◦ Loc

(
fG(x0)

))}
. (8.3)

In C, we have WriteC(s0) = ResM(fG(x0)) by Lemma 4.7. Recall that by the state
machine in Figure 4.2(d), simple registers do not change their state when read. Thus,
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when C is in some state s1 ∈ SC1 after the first round, we have that

ReadC(s1) = {ι ◦ Loc(s1)} (8.4)

⊆
{
ι ◦ Loc(x) | x ∈WriteC(s0)

}
(8.5)

⊆ ResM
(
ι ◦ Loc

(
fG(x0)

))
, (8.6)

using Observation 4.4. By Lemma 4.2, we obtain

EvalC(s1) ⊆ ResM
(
fG
(
ι ◦ Loc

(
fG(x0)

)))
. (8.7)

This means that the second evaluation phase of C yields a stabilization of the first
evaluation phase of C ′, because the write phase allows for arbitrary stabilization. On
the other hand, it is possible that no stabilization happens in C, as the unstabilized
ι ◦ Loc(fG(x0)) ∈ EvalC(s1). Together, we have SC2 = SC

′
1 and C ′1(ι) = C2(ι) follows.

An inductive application of the above arguments yields the claims.

Naturally, the unrolled circuit is larger than the original and a physical implementation
needs longer clock cycles, as the increase in delay is linear in r. However, the point is
that adding rounds does not affect the computational power of simple circuits. In the
light of Theorem 8.1, we use

FunS := Fun1
S (8.8)

in the following.

8.2 Combinational Circuits

As simple circuits can be unrolled, local registers do not contribute to their computational
power. Hence, simple circuits are exactly as powerful as combinational circuits.

Theorem 8.2. We have

FunS = FunC . (8.9)

Proof. Consider f ∈ FunC . By Observation 7.2, there is a simple, combinational circuit
C that implements f . As C is simple, f ∈ FunS and hence FunC ⊆ FunS .

On the other hand, consider f ∈ FunS . By Theorem 8.1, there is a simple circuit C
that implements f in a single round. As C only uses one round, its local registers are
only read once. Hence, replacing each local register with a Const0 or a Const1 gate,
depending on its initialization, yields a combinational circuit that implements f . We
conclude FunS ⊆ FunC and the claim follows.

8.3 Arbitrary Circuits

As discussed above, additional rounds make no difference in terms of computability for
simple and combinational circuits; the corresponding hierarchies collapse into FunS . In
the presence of masking registers, however, unrolled circuits are not equivalent to multiple
rounds of computation: As detailed in Section 8.1, unrolling requires an input register
to be connected to each copy of the combinational logic. Since a masking register in

57



Chapter 8. Computational Hierarchy
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Figure 8.2: Simulating a masking register with a selector.

state M may be read as M, all these copies may receive M as input. This, however, does
not happen when reading from the masking register sequentially: A masking register
guarantees that M is read at most once, compare Figure 4.2.

Below, we demonstrate that this leads to a strict inclusion: FunrM ( Funr+1
M for

all r ∈ N. We show this using a metastability-containing fan-out buffer specified by
Equation (8.10). It creates r copies of its input bit, at most one of which is permitted
to become metastable:

f(x) :=

{
{xr} if x 6= M and⋃
i∈[r] ResM

(
0iM1r−i−1

)
otherwise.

(8.10)

Theorem 8.3. It holds that

∀r ∈ N : FunrM ( Funr+1
M . (8.11)

Proof. Fix 2 ≤ r ∈ N and consider f from Equation (8.10). We first show f ∈ FunrM ,
and then that f /∈ Funr−1

M .
First observe that f is implemented by r rounds of the circuit C which uses a mask-0

input register Rr−1 and a chain of local registers Rr−2, . . . , R0. In each round, the value
read from register Ri+1, i ∈ [r − 1], is copied to Ri and output register Oi, i ∈ [r], gets
the value read from Ri. Observe that the specification of a mask-0 register is such that,
given an initial state, r reads (and possibly stabilization in the write phase) may return
exactly the sequences specified in Equation (8.10). Since C faithfully copies these values,
it follows that f = Cr ∈ FunrM .

Below, we show that f /∈ Funr−1
M , for which we use the following subcircuits:

r-round counters take no input and have r outputs, such that the (i− 1)-th output
is 1 in round 1 ≤ i ≤ r and 0 else. This is implemented by a linear chain of local
registers Ri, i ∈ [r], where each Ri is copied to Ri+1 for i ∈ [r− 1], R0 is initialized
to 1 and all others to 0. Output register Oi, i ∈ [r − 1], is fed the Xor of Ri
and Ri+1, and Rr−1 is copied to Or−1.

r-round selectors take r inputs xi, i ∈ [r], and have one output O, such that the state
of O in round 1 ≤ i ≤ r is in ResM(xi−1), i.e., holds a copy of xi−1. This is achieved
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using an r-round counter and feeding the And of xi and the i-th counter output
into an r-ary Or, the output of which is written to O.

We claim that f /∈ Funr−1
M . Assume for contradiction that there is a circuit C such

that r − 1 rounds of C implement f , i.e., Cr−1 ⊆ f . We derive a contradiction by
simulating the behavior of C in a circuit C ′ with r− 1 simple input registers, which may
initially hold any possible sequence of values read from the input register of C in r − 1
rounds.

By Corollary 4.9, we may assume w.l.o.g. that all non-input registers ofC are simple. If
the only input register of C is also simple as well, we may unroll C into C̄ by Theorem 8.1.
Applying Lemma 4.7 to C̄ yields Mr ∈ C̄1(M) = Cr−1(M) /∈ f(M), i.e., violating the
specification. Hence, suppose the input register of C is a masking register.

Consider the case that the input register is a mask-0 register and compare Figure 8.2.
Define C ′ as a copy of C, except that r − 1 simple input registers serve as input to an
(r − 1)-round selector. This compound represents the only input register R of C: Every
gate or output node driven by R in C is instead connected to the selector’s output in C ′.

A surjective mapping of executions of C ′ with inputs restricted to all possible se-
quences of r − 1 reads from R in state M, i.e., restricted to inputs{

0r−1
}
∪
{

0iM1r−i−2 | i ∈ [r − 1]
}
, (8.12)

to executions of C is defined as follows. We interpret the selector’s output in round r as
the value read from R in round r and “copy” the remaining execution of C ′ (without
inputs and the selector) to obtain a complete execution of C. As our restriction of the
inputs reflects exactly the possible reads of a mask-0 register, see the state machine in
Figure 4.2(e), the result always is a feasible execution of C with input M.

By Theorem 8.1, we may w.l.o.g. assume that a single round of C ′ implements f .
Consider the sequence of C ′-inputs from 0r−1 to 1r−1 in which we flip the bits one by
one from right to left, from 0 to 1, with some parallels to Fischer et al. [52]. By the
pigeon hole principle, there must be some 1 ≤ r̄ ≤ r − 1 so that two output bits of C ′

change compared to r̄ − 1. Since, when fixing the other input bits, two outputs ` 6= `′

depend on the r̄-th input bit from the right and C ′ only uses simple registers, we have
by Lemma 4.7 that

MM ∈WriteC
′ (

0r−r̄−1M1r̄−1 ◦ x0

)
`,`′

, (8.13)

where x0 is the initialization of the local registers. Hence, ` and `′ can become metastable
in the same execution of C ′. We map this execution to an execution of C, in which the
corresponding output registers attain the same state (i.e., two of them are M) after
r− 1 rounds. This contradicts the assumption that r− 1 rounds of C implement f from
Equation (8.10).

The above argument covers the case that the input register is a mask-0 register. A
mask-1 register is handled analogously by replacing Equation (8.12) with all possible
reads of a mask-1 register, i.e., by{

1r−1
}
∪
{

1iM0r−i−2 | i ∈ [r − 1]
}
, (8.14)

and adapting the subsequent arguments accordingly.
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From the contradictions derived above, we conclude that Cr−1 6⊆ f . This implies
that f /∈ Funr−1

M and Funr−1
M 6= FunrM . As r ≥ 2 was arbitrary and, by Observation 4.12,

Funr−1
M ⊆ FunrM , this concludes the proof.
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CHAPTER 9

Simple and Combinational Circuits

In this chapter, we fully classify FunS = FunC . By Theorems 8.1 and 8.2, our results
carry over to an arbitrary number of rounds in simple circuits and to combinational
circuits in particular. We present sufficient and necessary conditions for a function to be
implementable with a simple or combinational circuit.

Using this classification, we demonstrate how to take an arbitrary Boolean function
f : Bm → Bn and extend it to the most restrictive specification [f ]M : BmM → P(BnM),
the metastable closure of f , that is implementable in simple and combinational circuits.

The way to use this when designing metastability-containing circuits is to start with a
function f required as component, “lift” it to [f ]M, and check whether [f ]M is restrictive
enough for the application at hand. If it is, one can work on an efficient implementation
of [f ]M, otherwise a new strategy, possibly involving masking registers, must be devised.

9.1 Natural Subfunctions

Let C be a simple circuit. From Corollary 4.10 and Observation 4.11, we know that C1,
the set of possible circuit outputs after a single round, has three properties: (1) its output
can be specified bit-wise, (2) each output bit is either 0, 1, or completely unspecified,
and (3) stabilizing a partially metastable input restricts the set of possible outputs.
Hence C1 — and by Theorems 8.1 and 8.2 all simple and combinational circuits — can be
represented in terms of bit-wise Karnaugh maps with values “{0}, {1},BM” instead of
“0, 1, D” (D for “don’t care”); as this is equivalent to combinational logic by Theorem 7.1,
we may also use “0, 1,M.” We call such functions natural and show below that f ∈ FunS
if and only if f has a natural subfunction.

Definition 9.1 (Natural Function). The function f : BmM → P(BnM) is natural if and
only if it is bit-wise, closed, and specific:

Bit-wise The components f1, . . . , fn of f are independent:

f(x) = f1(x)× · · · × fn(x). (9.1)

Closed Each component of f is specified as either 0, as 1, or completely unspecified:

∀x ∈ BmM : f(x) ∈ {{0}, {1},BM}n . (9.2)

Specific Stabilizing partially metastable input does not destabilize the output of f :

∀x ∈ BmM : x′ ∈ Res(x)⇒ f(x′) ⊆ f(x). (9.3)
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Suppose we ask whether a function f is implementable with a simple or combinational
circuit, i.e., if f ∈ FunS . If there is a simple circuit that implements f , we can unroll
it by Theorem 8.1 and may thus assume w.l.o.g. that C1 ⊆ f . Hence, Corollary 4.10
and Observation 4.11 state a necessary condition for f ∈ FunS : f must have a natural
subfunction. Theorem 9.2 establishes that this condition is sufficient, too.

The main technique of Theorem 9.2 — covering all prime implicants — is mentioned
by Huffman [74] and formally shown to prevent logic hazards by Eichelberger [43], who
also uses Kleene logic [90]. This is owed to the fact that Eichelberger uses Kleene logic
to model gate behavior under switching inputs [43]. As what we refer to as “M” includes
arbitrary signal behavior over time — see Chapter 4 — and hence also switching signals,
this analogy is not surprising. For the sake of self-containment and as our notation and
model are quite different, we state and prove Theorem 9.2.

Theorem 9.2. Let g : BmM → P(BnM) be a function. Then it holds that g ∈ FunS if and
only if g has a natural subfunction.

Proof. Regarding the “⇒” direction, we have a simple circuit C such that C1 ⊆ g by
Theorem 8.1. C1 is bit-wise and closed by Corollary 4.10 and specific by Observation 4.11.
Hence, C1 is a natural subfunction of g.

We proceed with the “⇐” direction. Let f ⊆ g be a natural subfunction of g; we
construct a circuit C that implements f in one round. As f is bit-wise, we may w.l.o.g.
assume that n = 1. If f = const{0} or f = constBM

, let C be the circuit whose output
register is driven by a Const0 gate; if f = const{1}, use a Const1 gate.

Otherwise, consider fB : Bm → {{0}, {1}} given by

fB(x) =

{
{0} if f(x) = {0} or f(x) = BM and

{1} if f(x) = {1}.
(9.4)

We call a partial variable assignment A that implies fB(x) = {1} for all x obeying A
an implicant of fB; if the number of variables fixed by A is minimal w.r.t. A being an
implicant, we refer to A as a prime implicant of fB [29].

Construct the combinational logic DAG of C in a Disjunctive Normal Form (DNF)
fashion: Use an And gate1 for each prime implicant of fB, with inputs connected to the
respective, possibly negated, input registers. The respective outputs feed an Or gate2

driving the circuit’s only output register. See Figure 9.1 for an illustration. C has m
input registers, no local registers, and one output register; all registers are simple as
required. The initialization of the output register is arbitrary. By construction, we have
that

∀x ∈ Bm : C1(x) = fB(x) ⊆ f(x). (9.5)

To see that C1 ⊆ f , consider x ∈ BmM \Bm and make a case distinction.

Case 1 If f(x) = BM, then trivially C1(x) ⊆ f(x).

1If no And gate of sufficient fan-in is available, use a tree of And gates. For the sake of presentation,
and because it is equivalent to the tree, we assume an And gate of sufficient fan-in is available.

2As above, we assume an Or gate of sufficient fan-in is available.
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Figure 9.1: Karnaugh map of a MUX. Mux-Gate from Chapter 6 covers the prime
implicants sa = 01 and sb = 11. The metastability-containing implementation CMux-
Gate additionally covers ab = 11; this corresponds to the construction in the proof of
Theorem 9.2.

Case 2 If f(x) = {0}, we have for all x′ ∈ Res(x) that f(x′) = {0} = fB(x′) by
Equation (9.3), as f is specific. Thus, for each such x′, all And gates, corresponding
to prime implicants, output 0. Furthermore, under input x and for each And gate,
there must be at least one input that is stable 0: Otherwise, there would be some
x′ ∈ Res(x) making one And gate, i.e., prime implicant, output 1, resulting in
C1(x′) = {1} and contradicting Equation (9.5). By our definition of gate behavior,
this entails that all And gates output 0 for all x′ ∈ ResM(x) as well, and hence

C1(x) = {0} = f(x). (9.6)

Case 3 If f(x) = {1}, all x′ ∈ Res(x) have f(x′) = fB(x′) = {1} by Equation (9.3).
Thus, fB outputs {1} independently from the metastable bits in x, and there is a
prime implicant of fB which relies only on stable bits in x. By construction, some
And gate in C implements that prime implicant. This And gate receives only
stable inputs from x, and hence outputs a stable 1. The Or gate receives that 1
as input and, by definition of gate behavior, outputs stable 1. We conclude that

C1(x) = {1} = f(x). (9.7)

As f is closed, the above case distinction is exhaustive. The claim follows as one round
of C implements f .

As an example, consider a binary single-bit MUX specification f : B3 → B,

f(s, a, b) =

{
a if s = 0 and

b otherwise,
(9.8)

and its Karnaugh map in Figure 9.1. A DNF implementation that is unaware of metasta-
bility only has to cover all ones in the Karnaugh map with implicants. This is achieved
by implementing the prime implicants sa = 01 and sb = 11, which is exactly what Mux-
Gate from Chapter 6 does. Applying the construction of the proof of Theorem 9.2, on

63



Chapter 9. Simple and Combinational Circuits

the other hand, requires implementing all prime implicants, i.e., to implement ab = 11
in addition to sa = 01 and sb = 11. This yields CMux-Gate from Chapter 6, a CMUX
implementation.

9.2 Metastable Closure

Consider a Boolean function f : Bm → Bn. Lift the definition of f to [f ]M : BmM → P(BnM),
dealing with metastable inputs analogously to gate behavior in Section 4.2: Whenever all
metastable input bits together can influence the output, specify the output as “anything
in BM.” We call [f ]M the metastable closure of f , and argue below that [f ]M ∈ FunS . For
f : BmM → P(BnM), i.e., for more flexible specifications, [f ]M is defined analogously. Note
that the concept of the metastable closure is equivalent to the absence of Eichelberger’s
logic hazards [43].

Definition 9.3 (Metastable Closure). For a function f : BmM → P(BnM), we define its
metastable closure [f ]M : BmM → P(BnM) component-wise for i ∈ [n] by

[f ]M(x)i :=


{0} if ∀x′ ∈ ResM(x) : f(x′)i = {0},
{1} if ∀x′ ∈ ResM(x) : f(x′)i = {1}, and

BM otherwise.

(9.9)

We generalize this to Boolean functions. For f : Bm → Bn, we define [f ]M : BmM → P(BnM)
as

[f ]M(x)i :=


{0} if ∀x′ ∈ Res(x) : f(x′)i = 0,

{1} if ∀x′ ∈ Res(x) : f(x′)i = 1, and

BM otherwise.

(9.10)

Example 9.4. The metastable closure of a binary MUX specification from Equation (9.8)
is exactly the specification of a CMUX from Equation (6.5).

Observe that Equation (9.10) is equivalent to the behavior we demand from gates
in Section 4.2 when identifying 0 with {0}, 1 with {1}, and M with BM, respectively.
Furthermore, note that for f : Bm → Bn, the metastable closure is very closely related
to the metastable superposition:

[f ]M(x) = ResM

 ⊕
x′∈Res(x)

f
(
x′
) . (9.11)

Most importantly, observe that [f ]M is bit-wise, closed, and specific by construction;
hence [f ]M is natural.

Observation 9.5. [f ]M ∈ FunS for all f : Bm → Bn and all f : BmM → P(BnM).

An immediate consequence of Observation 9.5, Theorem 8.1, and Theorem 8.2 for
the construction of circuits is that, given an arbitrary Boolean function f : Bm → Bn,
there are simple and combinational circuits that implement [f ]M in a single round.
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Observation 9.6. For f : Bm → Bn, Theorem 9.2 shows that [f ]M is the most restrictive
extension of f implementable with simple or combinational circuits: By Equation (9.3),
any natural extension g of f must satisfy

∀x ∈ BmM, ∀i ∈ [n] :
⋃

x′∈Res(x)

f(x′)i ⊆ g(x)i, (9.12)

and thus that

∃x′, x′′ ∈ Res(x) : f(x′)i 6= f(x′′)i ⇒ g(x)i = BM (9.13)

by Equation (9.2).

In order to show that a function is not implementable with simple registers only, it
suffices to show that it violates the preconditions of Theorem 9.2, i.e., that it has no
natural subfunction.

Example 9.7. Consider f : B2
M → P(B2

M) with

f(x) := ResM(x) \ {MM}. (9.14)

This function specifies to copy a 2-bit input; if there is metastability in the input, it may be
propagated to at most one output. This specification does not contradict the impossibility
results discussed in Chapter 5, but still, no circuit without masking registers implements f ,
i.e., f /∈ FunS.

Proof. Assume for the sake of contradiction that f ∈ FunS , i.e., that f has a natural
subfunction g ⊆ f by Theorem 9.2.

As specified in Equation (9.14), f(00)1 = {0} and f(11)1 = {1}. Since g ⊆ f and
g(x) 6= ∅ because g is closed, we have g(00)1 = {0} and g(11)1 = {1}. The fact that g
is specific implies that g(00)1 ∪ g(11)1 ⊆ g(MM)1, i.e., {0, 1} ∈ g(MM)1. This in turn
means that g(MM)1 = BM, because g is closed. Furthermore, we know that g is bit-wise,
so g = g1 × g2 with g1(00) = {0}, g1(11) = {1}, and g1(MM) = BM. Analogously,
g2(00) = {0}, g2(11) = {1}, and g2(MM) = BM.

Since g is bit-wise, g(MM) = g1(MM) × g2(MM) 3 MM, but MM /∈ f(MM),
contradicting the assumption g ⊆ f . As we did not make any restrictions regarding g,
this holds for all natural subfunctions of f . It follows that f /∈ FunS .

9.3 Open Problem

Theorem 9.2 is useful for checking if a combinational or simple circuit implementing some
function exists. Furthermore, its proof is constructive, providing an indication on where
to start with the design of such a circuit. However, it is well-known that covering all
prime implicants can be costly as there may be exponentially many [29]. While efficient
metastability-containing implementations for some problems are known [26, 100], there
is a fundamental open question: What is the overhead of implementing the metastable
closure?
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More precisely, let f : Bm → Bn be a Boolean function and consider the smallest
possible combinational circuit, in terms of the number of gates, that implements

f̄ : BmM → P (BnM) (9.15)

f̄(x) =

{
{f(x)} if x ∈ Bm and

BM otherwise.
(9.16)

What is the worst-case overhead of implementing [f ]M instead of f̄ in a combinational
circuit w.r.t. a fixed set of gates?

As an example, the combinational circuits Mux-Gate and CMux-Gate in Chap-
ter 6 which implement fMUX and fCMUX = [fMUX]M, respectively. When restricting
the gate fan-in to 2, CMux-Gate uses six gates3 and Mux-Gate only uses four4 but
does not implement [fMUX]M. Is there a gate-level CMUX with five or four gates when
restricted to Const0, Const1, Not, binary Or, and binary And?

3CMux-Gate uses one Not, three And, and two Or gates.
4Mux-Gate has one Not, two And, and one Or gate.
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CHAPTER 10

Clock Synchronization

We establish the implementability of the fault-tolerant clock-synchronization algorithm
by Lundelius Welch and Lynch [106] with a deterministic correctness guarantee, despite
the unavoidable [108] presence of metastable upsets. As we do not require synchronizers,
yet tolerate metastable upsets, this has two important consequences:

(1) Synchronization delay does not impose a fundamental limit on the operating fre-
quency of clock-synchronization algorithms in hardware.

(2) An implementation of the proposed algorithm can, in principle, remove the risk of
metastability from communication across clock domains altogether, as communi-
cation between synchronized clock domains does not incur metastable upsets.

We demonstrate that a variety of metastability-containing combinational circuits —
referred to as components — can be implemented. Due to the machinery established in
the preceding chapters, this is possible with simple checks, usually using Observation 9.5.
We remark that since the paper this chapter is based on [55] appeared, efficient imple-
mentations of some of the components described below have been proposed [26, 62, 100].
The list of components we present is by no means an exhaustive list on what compu-
tations can be realized in a metastability-containing way, yet it permits implementing
a highly non-trivial application: a hardware implementation of the fault-tolerant clock
synchronization algorithm of Lundelius Welch and Lynch [106].

The algorithm of Lundelius Welch and Lynch is widely applied, e.g., in the Time-
Triggered Protocol (TTP) [92, 93, 94] — in the context of the TTP, this is commonly
referred to as the fault-tolerant average algorithm, which uses the strategy of Lun-
delius Welch and Lynch, see Kopetz and Ochsenreiter [94] — and FlexRay [17] clock-
synchronization protocols. Kopetz et al. predict an achievable precision in the order
of microseconds for software–hardware based implementations of TTP [93]. High oper-
ating frequencies, however, ultimately require a pure hardware implementation: 1 GHz
clocks, for example, only leave very few CPU cycles per pulse. Kinali et al. present
an FPGA implementation that uses synchronizers instead of metastability-containing
techniques [83]. We are not aware of a metastability-containing implementation of the
clock-synchronization algorithm as a whole.

All known implementations synchronize potentially metastable inputs from the TDCs
before computations. This technique becomes less reliable with increasing operating
frequencies since less time is available for metastability resolution. Furthermore, low
temperatures and supply voltages intensify this issue [14]. Moreover, classical bounds for
the MTBF regarding metastable upsets in synchronizers assume a uniform distribution
of input transitions [13, 89]; this is not guaranteed to be the case in clock synchronization,
since the goal is to align clock ticks. Either way, synchronizers merely increase the odds
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of stabilization and we prefer deterministic correctness guarantees over a probabilistic
statement.

In order to demonstrate why, recall that the MTBF is estimated by Equation (3.2).
Suppose, we want to synchronize 1 GHz clocks, this yields FC = FD = 109 Hz. The
values τ and TW depend on the technology; SPICE [127] simulations for an ASIC using
a 130 nm process yield τ = 31.6 · 10−12 s and TW = 8 · 10−12 s [62]. Assuming that 50 %,
80 %, and 100 % of the clock cycle are available for stabilization yields MTBF estimations
of

MTBF0.5 ns ≈
e15.823

8 · 106
s ≈ 0.9 s, (10.1)

MTBF0.8 ns ≈
e25.316

8 · 106
s ≈ 12.3 · 103 s (3.5 hours), and (10.2)

MTBF1.0 ns ≈
e31.646

8 · 106
s ≈ 6.9 · 106 s (80 days). (10.3)

This means that the MTBF drops to less than a second per synchronizer when reserving
half the clock cycle for stabilization, rises to about 3.5 hours for the more conservative
estimate of 0.8 ns, but never exceeds approximately 80 days, even when leaving no time
for computations. Note that these estimates are per synchronizer of which n(n− 1) are
needed, where n ≥ 4 is required in order to tolerate one fault.

The MTBF is catastrophic for a synchronization delay of 0.8 ns and does not permit
the implementation of a mission-critical system, even for a synchronization delay of 1 ns.
Hence, we are left with two options. One is to include pipelining in the algorithm of
Lundelius Welch and Lynch such that it reacts to measurements only after a sufficient
synchronization delay. This means that the difference between clocks indicated by a
measurement may grow during the synchronization delay reserved for stabilization of
that measurement, hence pipelining reduces the quality of clock synchronization. The
alternative is to develop a metastability-containing implementation; we propose one in
the following.

Also observe that allotting time t for using synchronizers before beginning the com-
putation imposes a fundamental limit of 1/t on the operating frequency. In the light of
ever-increasing operating frequencies, we ask: Does the unavoidable presence of meta-
stable upsets when measuring relative timing deviations pose a principal limit on the
operating frequency? Below, we argue that this is not the case. We demonstrate the
feasibility of a hardware implementation of the Lundelius Welch and Lynch algorithm
that does not depend on metastability-free inputs and thus does not suffer from system
failures induced by metastable upsets.

10.1 Algorithm

The algorithm of Lundelius Welch and Lynch works on n fully connected nodes with a
local clock each [106]. Each node generates clock pulses, measures their difference to the
other nodes’ clock pulses, and adjusts its local clock accordingly. The algorithm tolerates
up to f < n/3 Byzantine [96] faults.

Our core strategy is a separation of concerns, compare Figure 3.1, between the analog
and the digital part of the circuit:
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Ē

D Q

Ē
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Figure 10.1: Tapped delay line TDC. It is read as either 1k0n−k or 1kM0n−k−1, i.e.,
produces at most one metastable bit and hence has precision-1.

(1) The arrival times of incoming analog clock pulses relative to a node’s internal clock
are measured using TDCs,

(2) metastability-containing components ensure that the digital part of the circuit han-
dles the potentially partially metastable outcome of the time-to-digital conversion,
and

(3) the digital, possibly still partially metastable, signals are converted to analog signals
controlling the local clock.

This process provides a guaranteed end-to-end uncertainty of a single bit throughout all
digital computations, see below, without the hazard of spreading metastability in the
control logic in an uncontrolled fashion. Given Marino’s result [108], we find it highly
surprising that such a thing is possible. The key is that the digital part of the circuit
can become metastable, but that metastability is properly contained and ultimately
translated into bounded fluctuations in the analog world, not contradicting Marino.

Sophisticated implementations of individual components introduced below have been
proposed [26, 62, 100] since the result this chapter is based on [55] first appeared; we
point them out below.

We propose a hardware implementation in which each node does the following.

Step 1: Analog to Digital First, we step from the analog into the digital world:
Delays between remote pulses and the local pulse are measured with TDCs. The mea-
surement can be realized such that at most one of the output bits, accounting for the
difference between x and x + 1 ticks, becomes metastable; we say such numbers have
precision-1 and formally define them in Section 10.2.

TDCs can be implemented using tapped delay lines [69, 122, 123], see Figure 10.1: A
line of delay elements is tapped in between each two consecutive elements, driving the
data input port of initially enabled latches initialized to 0. The rising transition of the
remote clock signal fed into the delay line’s input passes through the line and sequentially
sets the latches to 1; the rising transition of the local clock signal is used to disable all
latches at once. After that, the delay line’s latches contain the time difference as unary
TC. Choosing the propagation delays between the latches larger than their setup/hold
times, we ensure that at most one bit is metastable, i.e., that their status is of the form
1∗0∗ or 1∗M0∗. The output is hence a precision-1 TC-encoded time difference.

The recently proposed metastability-containing TDC by Függer et al., building upon
our ideas, implements this step and the next [62].
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Step 2: Encoding We translate the time differences into BRGC, making storage
and subsequent components much more efficient. The results are BRGC-encoded time
differences with at most one metastable bit of precision-1.

In this step, metastability-containing TC to BRGC conversion is needed and we
discuss it in Section 10.3. A more efficient way is to use a metastability-containing TDC
which directly produces BRGC of precision-1. As stated above, building on our ideas,
such a component has recently been proposed by Függer et al. [62].

Step 3: Sorting Network A sorting network selects the (f + 1)-th and (n − f)-th
largest remote-to-local clock differences; tolerating f faults requires discarding the top
and bottom f values [106].

This requires 2-sort building blocks that pick the minimum and maximum of two
precision-1 BRGC-encoded inputs preserving precision-1. We discuss this in Section 10.3;
recently, efficient implementations based on our techniques have been presented by Lenzen
and Medina [100] and Bund et al. [26], which we improve in Chapter 6.

Step 4: Decoding and Digital to Analog The BRGC-encoded (f + 1)-th and
(n − f)-th largest remote-to-local clock differences are translated back to TC-encoded
numbers. As discussed in Section 10.3, this can be done preserving precision-1, i.e., such
that the results are of the form 1∗0∗ or 1∗M0∗.

This can be used to we step back into the analog world, again without losing precision:
The two values are used to control the local clock frequency via a Digitally Controlled
Oscillator (DCO). However, the DCO design must be chosen with care. Designs that
switch between inverter chains of different length to modify the frequency of a ring
oscillator cannot be used, as metastable switches may occur exactly when a pulse passes.
Instead, we propose using a ring oscillator whose frequency is controlled by effects such
as digitally controlled current sources, capacitor banks, and resistances [39]. While the at
most two metastable control bits — at most one in each remote-to-local clock difference —
may dynamically change the load of two inverters, this has a limited effect on the overall
frequency change and does not lead to glitches within the ring oscillator, because the
effect on the clock speed is in the convex hull of the effects of all stabilizations of the
digital control parameters.

10.2 Encoding and Precision

An appropriate encoding is key to designing metastability-containing components.

Example 10.1 (Binary). Suppose a control bit u indicating whether to increase x = 7 by
1 is metastable and x is encoded in standard binary. The result must be some resolution
of the metastable superposition, see Equation (4.4), of 00111 and 01000, i.e., anything
in Res(00111 ⊕ 01000) = Res(0MMMM) and thus any number x′ ∈ [16], even after
stabilization.

The original uncertainty between 7 and 8 is massively amplified; a good encoding
should allow to contain the uncertainty imposed by u = M.
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A code is an injective function γ : [n]→ Bk mapping a natural number x ∈ [n] to its
encoded representation. For y = γ(x), we define γ−1(y) := x, and for sets X,

γ(X) := {γ(x) | x ∈ X} and (10.4)

γ−1(X) := {x | γ(x) ∈ X}. (10.5)

We need two encodings: Thermometer Code (TC) and Binary Reflected Gray Code
(BRGC). For the k-bit (unary) TC we use

un: [k + 1]→ Bk (10.6)

un(x) := 0k−x1x. (10.7)

BRGC, compare Figure 10.2(a), is represented by rg(x) and is much more efficient, using
only dlog2 ne bits. In fact, rg : [2k] → Bk is bijective. We choose un and rg due to the
property that in both encodings γ(x) and γ(x+1) differ in a single bit only. This renders
them suitable for metastability-containing operations.

Example 10.2 (TC and BRGC). We revisit Example 10.1 with the metastable control
bit u indicating whether to increase x = 7 by 1.

TC In 9-bit TC, 7 is encoded as 001111111 and 8 as 011111111, so their metastable
superposition resolves to Res(0M1111111), i.e., only to un(7) or un(8). Unary
encoding, however, is very inefficient regarding the number of bits.

BRGC Analogously, in 5-bit BRGC, 7 is encoded as 00100 and 8 as 01100, compare
Figure 10.2(a), so their metastable superposition resolves to Res(0M100), i.e., only
to rg(7) or rg(8).

Since the original uncertainty is whether or not to increase x = 7 by 1, the uncertainty
is perfectly contained instead of amplified as with binary code in Example 10.1.

We formalize the notion of the amount of uncertainty in a partially metastable code
word: x ∈ BkM has precision-p (w.r.t. the code γ) if

max
{
y − ȳ | y, ȳ ∈ γ−1(Res(x))

}
≤ p, (10.8)

i.e., if the largest possible difference between resolutions of x is bounded by p.
Note that the components presented below make heavy use of BRGC. This makes

them more involved, but they are exponentially more efficient than their TC coun-
terparts in terms of memory and avoid the amplification of uncertainties incurred by
standard binary encoding. As a matter of fact, recently proposed efficient implementa-
tions for metastability-containing sorting networks [26, 100] and metastability-containing
TDCs [62] use BRGC.

10.3 Digital Components

In the following, we show that all metastability-containing components required for the
clock synchronization algorithm outlined in Section 10.1 exist. As motivated above, the
components have to maintain meaningful outputs in face of limited metastability; more
precisely, we deal with the abovementioned precision-1 output of TDCs.
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0 0 0 0
1 0 0 1
2 0 1 1
3 0 1 0
4 1 1 0
5 1 1 1
6 1 0 1
7 1 0 0

(a) 3-bit BRGC.
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(b) Transformation circuit.

Figure 10.2: Efficient TC-to-BRGC conversion.

TC-to-BRGC Converter Figure 10.2(b) depicts a circuit that translates 7-bit TC
into 3-bit BRGC. It generalizes to n-bit inputs, with a depth of dlog2 ne. While such
translation circuits are well-known, it is important to check that the given circuit fulfills
the required property of preserving precision-1: This holds as each input bit influences
exactly one output bit and, due to the structure of BRGC, this bit makes exactly the
difference between rg(x) and rg(x+ 1) given a TC-encoded input of 1xM07−x−1.

Sorting Networks It is well-known that sorting networks can be efficiently composed
from 2-sort building blocks [3, 11], which map (x, y) to (min{x, y},max{x, y}). We show
that max (and analogously min) of two precision-1 k-bit BRGC numbers is implementable
with combinational logic, i.e., without masking registers, such that each output has
precision-1. Observe that this is straightforward for TC-encoded inputs with bit-wise
And and Or for min and max, respectively. However, this is possible for BRGC inputs
as well.

Lemma 10.3. Define maxBRGC : Bk ×Bk → Bk as

maxBRGC(x, y) := rg
(
max

{
rg−1(x), rg−1(y)

})
. (10.9)

Then [maxBRGC]M ∈ FunS and it determines precision-1 output from precision-1 inputs
x and y.

Proof. Since x and y have precision-1, rg−1(Res(x)) ⊆ {a, a+ 1} for some a ∈ [2k − 1]
(analogously for y w.r.t. some b ∈ [2k − 1]). W.l.o.g. assume a ≥ b, i.e., for all possible
resolutions of x and y, the circuit must output rg(a) or rg(a+ 1). By Definition 9.3 and
the fact that rg(a) and rg(a+ 1) differ in a single bit only, [maxBRGC]M(x, y) has at most
one metastable bit and precision-1.

An analogous argument holds for

minBRGC(x, y) := rg
(
min

{
rg−1(x), rg−1(y)

})
. (10.10)

Observe that sorting precision-1 BRGC numbers may lead to the following effect:
Consider rg(6)⊕ rg(7) = 10M, the metastable superposition of 6 and 7 in 3-bit BRGC,
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compare Figure 10.2(a). Then

[maxBRGC]M (10M, 10M) = ResM(10M) = [minBRGC]M (10M, 10M). (10.11)

Hence, it is possible that after stabilization 100 = rg(7) is ordered before 101 = rg(6). By
definition of the metastable closure and due to using precision-1 BRGC input, however,
the flipped order can only occur between numbers that differ by at most 1, i.e., the error
is bounded by the initial uncertainty.

Based on our proposed 2-sort building blocks, Lenzen and Medina [100] and Bund
et al. [26] present implementations using O(k2) and O(k log k) gates, respectively.

Metastability-containing sorting networks open up another option. If we insist on
using synchronizers, we can still deploy them after sorting and selecting the (f + 1)-th
and (n− f)-th largest remote-to-local clock differences. While this does not remove the
synchronization delay, it reduces the total number of synchronizers from n(n− 1) to 2n,
i.e., from O(n2) to O(n). This trade-off, however, may only become interesting for large
values of n and low-overhead precision-1 BRGC comparators.

BRGC-to-TC Converter A BRGC-encoded number of precision-1 has at most one
metastable bit: For any up-count from an encoding of x ∈ [2k − 1] to x+ 1 a single bit
changes, which thus can become metastable if it has precision-1. It is possible to preserve
this guarantee when converting to TC.

Lemma 10.4. Define rg2un: Bk → B(2k−1) as

rg2un(x) := un
(
rg−1(x)

)
. (10.12)

Then [rg2un]M ∈ FunS converts its parameter to TC, preserving precision-1.

Proof. If x has precision-1, then rg−1(Res(x)) ⊆ {a, a+ 1} for some a ∈ [2k − 1]. Hence,
un(a) and un(a+ 1) differ exactly in the (a+ 1)-th bit, proving the claim.
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Conclusion

No digital circuit can reliably avoid, detect, or resolve metastable upsets [108]. While
the standard approach is to use synchronizers to trade time for an increased MTBF [13,
14, 15, 67, 88, 89], we propose a fundamentally different method: It is possible to design
efficient digital circuits that tolerate a certain degree of metastability in the input. This
technique has critical advantages:

(1) Where synchronizers decrease the odds of failure, our techniques provide deter-
ministic guarantees. A synchronizer may or may not stabilize in the allotted time
frame. Our model, on the other hand, guarantees to return one of a specific set of
known values — e.g., the metastable closure, but this depends on the application —
without relying on probabilities.

(2) Our approach saves time and, by eliminating synchronizers, removes one funda-
mental limitation on the operating frequency. If the required functions can be
implemented in a metastability-containing way, there is no need to reserve time
for synchronization before starting the computation.

(3) If metastability needs to be resolved eventually, one can still save time by allowing
for stabilization during the metastability-containing computations.

In light of these properties, we expect our techniques to prove useful for a variety of
applications, in particular in time- and mission-critical scenarios.

Our argumentation is based on a model developed in Chapter 4. It captures clocked
and combinational circuits and models the spread of metastability in a worst-case fashion.
In the absence of metastability, it behaves like a regular circuit model. We check the
merits of our model by showing in Chapter 5 that it reproduces the known impossibility
of avoiding, detecting, or resolving metastability. Further, we demonstrate in Chapter 6
that the explanatory power of our model extends to the transistor level by developing
CMOS implementations of CMUXes.

We show in Chapters 7 and 8 that circuits with simple registers can be unrolled
and are computationally equivalent to combinational circuits. In this case, our model
can be simplified to Kleene logic in combinational logic DAGs, making reasoning about
circuits much more convenient than in the general case. The presence of masking regis-
ters, however, strictly increases the computational power with each clock cycle; we are
able to establish a strict inclusion result. Furthermore, we fully classify all functions
implementable in combinational and simple circuits in Chapter 9.

As a consequence of our techniques, we establish the implementability of the fault-
tolerant clock synchronization algorithm by Lundelius Welch and Lynch [106] with
a deterministic correctness guarantee, despite the unavoidable presence of metastable
upsets, in Chapter 10.
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Recent Developments A range of promising results has been obtained based on our
work: metastability-containing sorting networks [26, 100], a TDC that directly produces
precision-1 BRGC [62], and metastability-aware network-on-chip routers [128]. Together
with verification in simulations [26, 60, 128], we believe this to strengthen the case for
the explanatory power of our model.

Future Work We focus on computability under metastable inputs. There are many
open questions regarding circuit complexity in our model of computation.

It is of interest to reduce the gate complexity and latency of concrete circuits, as
well as to determine the complexity overhead of metastability-containment in general.
In particular, the overhead of implementing the metastable closure [f ]M as compared
to an implementation of f that is oblivious to metastability — and if there has to be an
overhead at all — is an open question, in general as well as for particular functions f , see
Section 9.3.

Masking registers are computationally strictly more powerful than simple registers
(Theorem 8.3). An open question is which metastability-containing circuits benefit from
masking registers and to find further examples separating FunrM from Funr+1

M .
Our model does not capture clock gating, i.e., non-input registers are overwritten in

every clock cycle. Hence, storing intermediate results in masking registers is pointless:
Taking advantage of at most one read from an input masking-register becoming meta-
stable does not apply to results of intermediate computations. It is an open problem
whether this makes a difference in terms of computability.
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PART II

Parallel Distance Problems

“Confusion is the only thing that grows when shared.”

A confused meerkat

This part is the result of close collaboration with Christoph Lenzen. The
text is based on an article that is under submission to the Journal of the
ACM (JACM) as of August 2016, an extended abstract of which appeared in
the Proceedings of the 28th ACM Symposium on Parallelism in Algorithms
and Architectures (SPAA 2016), pages 455–466, 2016 [61].



78



CHAPTER 12

Introduction

Many problems in computer science are intrinsically linked to distances in graphs. This
certainly is due to the fact that graphs are an extremely useful tool for modeling re-
lationships between discrete entities. Hence, it is not surprising that some of the most
classic algorithms determine distances in graphs, e.g., Dijkstra’s algorithm [41] and the
Moore-Bellman-Ford (MBF) algorithm [16, 54, 116]. But distance problems are by no
means a closed book; recent literature offers plenty of results on this front. We cannot
hope to give an exhaustive list of related work, but would like to mention distance
approximations [20, 34, 48, 73, 91, 101, 103, 135], spanners [10], hop sets [34, 48, 73],
algebraic distance computations [5, 35, 115, 135], metric tree embeddings [6, 8, 9, 20, 21,
50, 65, 81, 110], and distributed algorithms [10, 65, 73, 81, 101, 102, 103, 104, 107, 119].

Another highly relevant topic are parallel computations [10, 19, 21, 22, 33, 34, 48,
77, 91, 105, 107, 113]. Gigantic data centers, the distributed storage and processing of
information, and large-scale computer networks are commonplace. Given the relevance
of graph problems and that they grow more and more complex, it is highly relevant to
harness the power of parallel machines in this context, as pointed out by, e.g., Lumsdaine
et al. [105].

Our goal are polylogarithmic depth (parallel time) algorithms of little work (total
number of operations). The work can be thought of as the time required by a sequential
machine and the depth as a lower bound on the time required by a parallel machine with
an arbitrary number of processors and without synchronization overhead. Ideally, an
algorithm’s work is close to the time of a fast sequential algorithm for the same problem.

We study parallel computations of distance problems in graphs; our focus are distance
approximations that preserve the triangle inequality. To see the relevance in this, let
G = (V,E, ω) be a graph with n vertices and m edges and recall that exact distances
in G, denoted by dist(·, ·, G) : V × V → R≥0 ∪ {∞},1 fulfill the triangle inequality:

∀u, v, w ∈ V : dist(u,w,G) ≤ dist(u, v,G) + dist(v, w,G), (12.1)

i.e., the “direct route” from u to w is never heavier than any “detour” visiting u, v, and
w in order. The triangle inequality is one of the properties required from a metric.

Exact distances automatically fulfill the triangle inequality. In order to obtain efficient
parallel algorithms, however, we often resort to approximate distances. The problem is
that if d : V ×V → R≥0∪{∞} is an α-approximation of dist(·, ·, G), the triangle inequality
does not necessarily hold in d. This is irrelevant for some problems — e.g., finding an
approximately shortest path between two vertices — but it is highly relevant for others.
As an example, the probabilistic metric tree embedding of Fakcharoenphol, Rao, and
Talwar (FRT) relies on the subtractive form of the triangle inequality [50].

1Below, we use the notation introduced in Section 12.3 without explicit forward references.
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Hence, we study approximate, parallel, polylogarithmic-depth, work-efficient algo-
rithms that either explicitly compute or implicitly work on approximate metrics, i.e.,
obey the triangle inequality. We list our contributions below, however, one key result are
algorithms that w.h.p. determine a (1+o(1))- and O(1)-approximate metric of dist(·, ·, G)
using polylog n depth and Õ(n(m+n1+ε)) and Õ(n2+ε) work, respectively. Observe that
the latter is close to the trivial lower bound of Ω(n2) work for writing the result. Another
key result is that we can w.h.p. sample a probabilistic FRT-style tree embedding of G
that has an expected stretch of O(log n) using polylog n depth and Õ(m1+ε) work. The
work can be reduced to Õ(m+ n1+ε) at the expense of increasing the expected stretch
to O(ε−1 log n). In both cases, the work is close to O(m log n), the state of the art in the
sequential setting [20].

MBF-like Algorithms In order to obtain algorithms that use polylogarithmic depth
while at the same time being work-efficient and guaranteeing consistency with the triangle
inequality, we resort to a virtual graph H. It has a Shortest-Path Diameter (SPD) of
O(log2 n), meaning that we can find shortest paths with at most SPD(H) ∈ O(log2 n)
hops between each pair of nodes. This resolves the issue with the triangle inequality —
we compute exact distances in H which automatically form a metric — and maintains
the possibility of polylogarithmic depth, as O(log2 n) iterations suffice. Assuming we
may add an appropriate hop set [34] to G, dist(·, ·, H) is a (1 + o(1))-approximation of
dist(·, ·, G), meaning that the computed distances are essentially as good as those in G.

Unfortunately, H is a complete graph. Hence, explicitly computing the adjacency
lists of H, or even performing a single iteration in H, incurs Ω(n2) work; this defeats
the hope of near-linear work in the number of edges of G.

Fortunately, we can simulate the iterations of an algorithm in H using iterations
in G and polylogarithmic overhead in both work and depth. The simulation requires
some structural properties of the algorithm, but generally works for algorithms that
“behave like the MBF algorithm.” We formalize this notion, propose the class of Moore-
Bellman-Ford-like (MBF-like) algorithms, and show that the simulation argument holds
for them.

Our classification of MBF-like algorithms provides a new perspective on a clas-
sical scheme of spreading information through a graph that is a key ingredient to
many algorithms [16, 54, 65, 73, 81, 101, 102, 103, 104, 116]. Further, it captures a
wide range of known algorithms, including but not limited to source detection, Single-
Source Shortest Paths (SSSP), k-Source Shortest Paths (k-SSP), All-Pairs Shortest
Paths (APSP) and Multi-Source Shortest Paths (MSSP) over the min-plus semiring,
Single-Source Widest Paths (SSWP), All-Pairs Widest Paths (APWP) and Multi-Source
Widest Paths (MSWP) over the max-min semiring, the more involved k-Shortest Dis-
tance Problem (k-SDP) and k-Distinct-Shortest Distance Problem (k-DSDP) over the
all-paths semiring, and connectivity over the Boolean semiring. As the above list is by
no means complete, we conclude that our classification is rather flexible and consider it
of independent interest.

The basic observation is that in an MBF-like algorithm each node in each iteration
(1) propagates the information obtained so far to all its neighbors, (2) then aggregates
the received information, and (3) optionally filters out irrelevant parts. As an example,
consider k-SSP, where we determine, for each node, the k nodes closest to it. Each node
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stores node–distance pairs (initially only themselves at distance 0) and then iterates
the following steps: (1) propagate the node–distance pairs to the neighbors, uniformly
increasing distances by the corresponding edge weight, (2) aggregate the received values
by picking the minimum distance for each node, and (3) discard node–distance pairs for
which there are k closer alternatives.

An MBF-like algorithm has three key components: a semiring S, a semimodule
M = (M,⊕,�) over S, and a filter r : M→M. The semiring captures how distances
and edge weights interact in the underlying graph. A standard choice is the min-plus
semiring that is a common tool for distance problems [5, 35, 115, 135]. We use the
semimoduleM as a “data structure” for collecting information that can be accumulated
during the algorithm. M might be a single distance when solving SSSP or a vector of n
distances for APSP. Propagation corresponds to � and aggregation to ⊕.

The filter is a projection that discards information which is irrelevant for the algorithm
at hand. Roughly speaking, in an h-iteration MBF-like algorithm, each node determines
its part of the output based on its h-hop distances to all other nodes. For efficiency
reasons, however, various algorithms [65, 73, 81, 101, 102, 103, 104, 115] compute only
a subset of these distances. The role of the filter is to remove the irrelevant values to
allow for better efficiency. The core feature of an MBF-like algorithm is that filtering
is “compatible” with propagation and aggregation: If a node discards information and
then propagates it, the discarded parts must be “uninteresting” at the receiving node as
well. We model this using a congruence relation on the node states; filters pick a suitable
(efficiently encodable) representative of the node state’s equivalence class.

We hope that relatively few standard choices for S and M can be reused for many
algorithms, leaving it up to the filter to implement the algorithm-specific customization.
Hence, we hope that the framework of MBF-like algorithms, besides capturing many
algorithms, easily extends to further algorithms. This is different from Mohri’s framework
which requires a custom semiring for each algorithm [115].

Our Approach APSP and MSSP determine a metric and a submetric, respectively,
and collecting Least Element (LE) lists [33] readily allows to sample an FRT tree [21, 81],
the abovementioned tree embedding of expected logarithmic stretch. These algorithms
are MBF-like, hence we may simulate them in H to obtain good approximations of what
these algorithms would determine in G. Observe that running any of these algorithms
in G to determine exact distances — in order to respect the triangle inequality — takes
SPD(G) iterations, where SPD(G) = n− 1 is possible. This corresponds to linear depth
and hence is not an option in our setting. We sample an FRT tree (alternatively, determine
a metric or a submetric) using the following sequence of embeddings. Starting with the
graph G, we

(1) first obtain G′ by adding a (d, ε̂)-hop set, where d, ε̂−1 ∈ polylog n to G [34], then

(2) metrically embed G′ into H (implicitly), and

(3) embed H into an FRT tree (alternatively, determine a metric or submetric).

Is the second step required, i.e., is there no hop-set algorithm that ensures that d-hop
distances satisfy the triangle inequality? Unfortunately, hop sets do not solve the problem.
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Chapter 12. Introduction

First recall that a (d, ε̂)-hop set is a set of edges that, when added to the graph, ensures
that d-hop distances in G′ approximate dist(·, ·, G), i.e., ensure that

∀v, w ∈ V : dist(v, w,G) ≤ distd(v, w,G′) ≤ (1 + ε̂) dist(v, w,G), (12.2)

where G′ is G augmented with the hop-set edges [34]. Put differently, hop sets guarantee
that d-hop distances approximate distances. However, any hop set that fulfills the triangle
inequality on d-hop distances has to reduce the SPD to at most d, i.e., yield exact
distances, which is a much harder problem:

Observation 12.1. Let G be a graph that contains a (d, ε̂)-hop set. If distd(·, ·, G) is a
metric, then distd(·, ·, G) = dist(·, ·, G), i.e., SPD(G) ≤ d.

Proof. Let π be a shortest u-v-path in G. Since distd(·, ·, G) fulfills the triangle inequality,

distd(u, v,G) ≤
∑

{u1,u2}∈π

distd(u1, u2, G) ≤
∑

{u1,u2}∈π

ω(u1, u2) = dist(u, v,G) (12.3)

holds and the claim follows due to dist(u, v,G) ≤ distd(u, v,G).

This is why it is not an option to determine LE lists based on d-hop distances in G′,
which would be a straightforward adjustment of the algorithm of Khan et al. [81]. As
pointed out by Ghaffari and Lenzen [65], the FRT construction depends on the triangle
inequality [50], but distd(·, ·, G′) does not guarantee it, not even in the presence of a
(d, ε̂)-hop set. We overcome this issue by embedding G′ in H. Where hop sets preserve
distances exactly and ensure the existence of approximately shortest paths with few hops,
we preserve distances approximately but guarantee to obtain them exactly with few hops.

Metric Tree Embeddings In many graph problems the objective is closely related
to distances in the graph. Prominent examples are shortest path problems, Minimum
Spanning Trees (MSTs), a plethora of Steiner-type problems [71], the Traveling Salesman
Problem (TSP), and many more. If approximation is viable or mandatory, a successful
strategy is to approximate the distance structure of the weighted graph G by a simpler
graph G′, where “simpler” can mean fewer edges, smaller degrees, being from a specific
family of graphs, or any other constraint making the considered problem easier to solve.
One then proceeds to solve a related instance of the problem in G′ and maps the solution
back to G, yielding an approximate solution of the original instance. Naturally, this
requires a mapping of bounded impact on the objective value.

Metric embeddings map the graph G = (V,E, ω) to a graph G′ = (V ′, E′, ω′), such
that V ⊆ V ′ and

∀v, w ∈ V : dist(v, w,G) ≤ dist(v, w,G′) ≤ α dist(v, w,G) (12.4)

for some α ∈ R≥1 referred to as stretch. The abovementioned hop sets are an example
for a metric embedding. An especially convenient class of metric embeddings are metric
tree embeddings, where G′ is a tree, plainly because very few problems are hard to solve
in tree instances. The utility of tree embeddings originates in the fact that, despite their
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extremely simple topology, it is possible to randomly construct an embedding of any
graph G into a tree T so that the expected stretch

α = max
v 6=w∈V

ET [dist(v, w, T )]

dist(v, w,G)
(12.5)

satisfies α ∈ O(log n) [50]. By linearity of expectation, this ensures an expected approxi-
mation ratio of O(log n) for many problems.

A substantial advantage of tree embeddings lies in the simplicity of applying the
machinery: Translating the instance in G to one in T , solving the instance in T , and
translating the solution back tends to be extremely efficient and highly parallelizable.
Hence, a low-depth small-work parallel algorithm for embedding weighted graphs into
trees in the vein of FRT gives rise to fast and efficient parallel approximations for
many graph problems. Unfortunately, the state of the art regarding polylog n depth uses
Ω(n2) work and requires constant-time query access to dist(·, ·, G) [21], whereas the best
sequential algorithm only uses O(m log n) time w.h.p. [20].

12.1 Our Contribution

Our contributions are organized in techniques and their application. We establish the
required techniques in Chapters 13–15:

(1) Our key tool is the algebraic classification of MBF-like algorithms described in
Chapter 13. As our framework subsumes a large class of known algorithms and
explains them from a different perspective, we consider it to be of independent
interest.

(2) We demonstrate that our framework of MBF-like algorithms captures a wide range
of algorithms using numerous examples in Chapter 14.

(3) Chapter 15 proposes a sampling technique for embedding a graph G in which d-hop
distances (1 + ε̂)-approximate exact distances — a graph that contains a (d, ε̂)-hop
set — into a complete graph H, where H has an SPD of O(log2 n) and preserves
G-distances (1 + ε̂)O(logn)-approximately. The polylogarithmic SPD of H is key
to achieving polylogarithmic-depth algorithms that obey the triangle inequality.
Unfortunately, we cannot use H directly, because it is a complete graph and hence
imposes Ω(n2) work per iteration. We can, however, simulate an iteration of an
MBF-like algorithm A in H using only Õ(d) iterations G. Hence, we can simulate
all SPD(H) ∈ O(log2 n) iterations of A in H using only polylogarithmic overhead
in depth and work w.r.t. a single iteration of A in G. We formulate this as an
oracle theorem: The oracle is provided with G and A, and answers with the result
of running A in H. Together with an appropriate hop-set algorithm, i.e., one that
guarantees d ∈ polylog n, this allows for algorithms of polylog n depth and Õ(m)
work.

We apply the above techniques to establish the results in Chapters 16–19. The strongest
result is our algorithm that w.h.p. samples an FRT tree using polylog n depth and
Õ(m1+ε) work in Chapter 17.
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(4) A first consequence of our techniques is that we can query the oracle with APSP
to determine dist(·, ·, H), i.e., to efficiently calculate a metric that approximates
dist(·, ·, G). For a constant 0 < ε ≤ 1

2 , we w.h.p. obtain a (1 + o(1))-approximate

metric of dist(·, ·, G) using Õ(n(m+n1+ε)) work and polylog n depth. Alternatively,
we can apply the spanner construction of Baswana and Sen [10] as a preprocessing
step to w.h.p. obtain an O(1)-approximation using Õ(n2+ε) work and polylog n
depth. Both results generalize to submetrics by using MSSP instead of APSP. We
discuss this in Chapter 16.

(5) In Chapter 17, we show that for any constant 0 < ε ≤ 1
2 , there is a randomized

parallel algorithm of polylog n depth and Õ(m1+ε) work that computes a metric tree
embedding of expected stretch O(log n) w.h.p. This is possible because determining
LE lists [33] is an efficient MBF-like algorithm, which in turn allows us to sample
an FRT tree on H using the oracle. Applying the spanner construction of Baswana
and Sen [10] as a preprocessing step, the work can be reduced to Õ(m + n1+ε)
at the expense of stretch O(ε−1 log n). We improve upon the state of the art by
Blelloch et al., who require O(n2) work for sampling the FRT tree and require
constant-time query access to dist(·, ·, G) to do so [21]. Further observe that our
work almost matches the state of the art sequential-time algorithm of Blelloch et al.
which w.h.p. requires O(m log n) time [20].

(6) Our techniques allow to improve over previous algorithms computing tree embed-
dings in the CONGEST model, a standard model of computation for distributed algo-
rithms. We improve upon the algorithm by Ghaffari and Lenzen, which computes a
tree embedding of expected stretch O(ε−1 log n) in Õ(min{n1/2+ε, SPD(G)}+D(G))
rounds [65], by reducing the expected stretch to O(log n) and the round complexity
to min{Õ((n1/2 + D(G))no(1)), Õ(SPD(G))}. This is detailed in Chapter 18.

(7) We further illustrate the utility of our results by providing efficient approximation
algorithms for the k-median and buy-at-bulk network design problems. Blelloch
et al. propose polylogarithmic-depth parallel algorithms based on FRT embeddings
for these problems that either require constant-time query access to dist(·, ·, G) as
input or first determine it by solving APSP [21]. We remove this constraint, resulting
in more general and more work-efficient algorithms. The details are discussed in
Chapter 19.

Chapter 20 concludes this part.

12.2 Related Work

We confine the discussion to undirected graphs.

Classical Distance Computations The earliest — and possibly most basic — algo-
rithms for SSSP computations are Dijkstra’s algorithm [41] and the Moore-Bellman-Ford
(MBF) algorithm [16, 54, 116]. From the perspective of parallel algorithms, Dijkstra’s
algorithm performs excellent in terms of work, requiring Õ(m) computational steps, but
suffers from being inherently sequential, processing one vertex at a time.
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Algebraic Distance Computations Distance computations can be performed by
multiplication with the weighted adjacency matrix A over the min-plus, a.k.a. tropical,
semiring Smin,+ = (R≥0 ∪ {∞},min,+) [5, 35, 115, 135]. The MBF algorithm can be
interpreted as a fixed-point iteration x(i+1) := Ax(i), where addition and multiplication
happen in Smin,+, i.e., are replaced by min and +, respectively. This is a well-established
tool for distance computations and from this point of view, SPD(G) is the number
of iterations until a fixed point is reached. The MBF algorithm thus permits depth
Õ(SPD(G)) and work Õ(m SPD(G)), where small SPD(G) are possible.

One may overcome the issue of large depth entirely by performing the fixed-point
iteration on A, by setting A(0) := A and iterating A(i+1) := A(i)A(i); this guarantees that
a fixed point is reached after dlog2 SPD(G)e ≤ dlog2(n − 1)e iterations [35]. The final
matrix then has as entries exactly the pairwise node distances, and the computation has
polylogarithmic depth. This comes at the cost of Ω(n3) work, even if m � n2. If the
graph is dense, however, it is as work-efficient as solving APSP using n SSSP instances
of Dijkstra’s algorithm — of O(n log n+m) work each — without incurring depth Ω(n).

Mohri solved various shortest-distance problems using the Smin,+ semiring and vari-
ants thereof [115]. This framework is quite general, but our approach is different in key
aspects:

(1) Mohri’s algorithm can be interpreted as a generalization of Dijkstra’s algorithm [41],
because it maintains a global queue and, in each iteration, applies a relaxation
technique to the dequeued element and its neighbors. Like Dijkstra’s algorithm,
this strategy is inherently sequential. We do not need a global queue and, to the
best of our knowledge, are the first to present a general algebraic framework for
distance computations that exploits the implicit parallelism of the MBF algorithm.

(2) Mohri uses an individual semiring for each problem and solves it by a general
algorithm. Our approach, on the other hand, is more generic as well as easier to
use: We use off-the-shelf semirings like Smin,+ and combine them with appropriate,
usually standard, semimodules that carry enough problem-specific information.
The problem-specific customization happens in the filter that discards information
irrelevant for the problem at hand. We demonstrate the modularity and flexibility
of the approach by various examples in Chapter 14, which cover a large variety of
distance problems, including Mohri’s.

(3) In our framework, node states are semimodule elements and edge weights are
semiring elements; hence, there is no multiplication of node states. Mohri’s ap-
proach, however, does not make this distinction and hence requires an artificial
multiplication of node states.

(4) In Mohri’s approach, choosing the global queuing strategy is not only an integral
part of an algorithm, but also simplifies the construction of the underlying semirings,
as one may rule that elements are processed in a convenient order. Our framework
is flexible enough to achieve counterparts even of Mohri’s more involved results
without such assumptions; concretely, we propose a suitable semiring for solving
k-SDP and k-DSDP in Chapter 14.
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Approximate Distance Computations As metric embeddings reproduce distances
only approximately, we may base them on approximate distance computations in the
original graph. Using rounding techniques to reduce the matrix–matrix product over
Smin,+ to one over R, Zwick is able to use fast matrix multiplication to speed up the
aforementioned fixed-point iteration A(i+1) := A(i)A(i) [135]. This reduces the work to
Õ(ε−1nω) at the expense of only (1+ε)-approximating distances, yielding Õ(nω) work for
a (1+o(1))-approximation for ε−1 = log n. Here, ω denotes the fast matrix-multiplication
exponent. However, even if the conjecture that ω = 2 holds true, this technique must
result in Ω(n2) work, simply because Ω(n2) pairwise distances are computed.

Regarding SSSP, there was no work-efficient low-depth parallel algorithm for a long
time, even when allowing approximation: Matrix–matrix multiplication was inefficient in
terms of work, while sequentially exploring (shortest) paths resulted in depth Ω(SPD(G)).
Klein and Subramanian [91] showed that depth Õ(

√
n) can be achieved with Õ(m

√
n)

work, beating the Ω(n2) work barrier with sublinear depth in sparse graphs.

In a seminal paper, Cohen [34] proved that SSSP can be (1 + o(1))-approximated
at depth polylog n and near-optimal Õ(m1+ε) work, for an arbitrary constant choice of
0 < ε ≤ 1

2 . Her approach is based on constructing the aforementioned (d, ε̂)-hop set,
where d, ε̂−1 ∈ polylog n, and then computing d-hop distances. Henzinger et al. [73]
determine an (no(1), o(1))-hop set using (n1/2 + D(G))no(1) rounds in the CONGEST
model; their construction, however, does not yield a parallel algorithm of polylog n depth.
Recently, Elkin and Neiman obtained hop sets with improved trade-offs [48], both for
the parallel setting and the CONGEST model. Our embedding technique is formulated
independently from the underlying hop-set construction, the performance of which is
reflected in the depth and work bounds of our algorithms. Elkin and Neiman, however,
do not enable us to simultaneously achieve work m1+o(1) and depth polylog n, while
maintaining our approximation guarantees.

∆-Stepping Other than resorting to approximation algorithms, authors have worked
on parallelizing exact SSSP computations based on Dijkstra’s algorithm [41], process-
ing multiple elements of the queue used in Dijkstra’s algorithm in parallel. The most
prominent example for this is the ∆-stepping algorithm by Meyer and Sanders [113].
It maintains buckets of nodes that have a tentative distance between i∆ and (i + 1)∆
from the source node s, where ∆ ∈ R>0 is a parameter of the algorithm, and pro-
cesses the nodes of the non-empty bucket closest to s in parallel. The performance
depends on ∆, the maximum node degree and the maximum weight of a shortest s-v
path, and can be impeded by reinsertions in the active bucket. However, ∆-stepping
performs well on certain random graphs and road networks [113]. Regarding practical
implementations, Lumsdaine et al. obtained promising results from several ∆-stepping
implementations [105].

Metric Tree Embeddings When metrically embedding into a tree, it is, in general,
impossible to guarantee a small stretch. For instance, when the graph is a cycle with unit
edge weights, it is impossible to embed it into a tree without having at least one edge
with stretch Ω(n) [8]. When discarding an edge uniformly at random in this example,
however, the edges are stretched by at most a constant factor in expectation, justifying
the hope that one may be able to randomly embed into a tree such that, for each pair of
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nodes, the expected stretch is small. A number of algorithms [6, 8, 9, 50] compute tree
embeddings, culminating in the one by Fakcharoenphol, Rao, and Talwar (FRT) that
achieves stretch O(log n) in expectation [50], which is optimal [8]. Mendel and Schwob
show how to sequentially sample from the FRT distribution in O(m log3 n) steps [110].
This upper bound has recently been improved to O(m log n) w.h.p. by Blelloch et al. [20].
Both approaches match the trivial Ω(m) lower bound up to polylogarithmic factors.
However, neither approach leads to a low-depth parallel algorithm.

Several parallel and distributed algorithms compute FRT trees [21, 65, 81]. These
algorithms and ours have in common that they represent the embedding by LE lists,
which were first introduced by Cohen [33]. In the parallel case, the state-of-the-art
solution due to Blelloch et al. [21] achieves O(log2 n) depth and O(n2 log n) work, where
the latter drops to O(n2) if the ratio between the maximum and the minimum distance is
exponentially bounded in n. However, Blelloch et al. assume the input to be given as an
n-point metric, where the distance between two points can be queried at constant cost.
Note that our approach is more general as a metric can be interpreted as a complete
weighted graph of SPD 1; a single MBF-like iteration reproduces the result by Blelloch
et al. Moreover, this point of view shows that the input required to achieve subquadratic
work must be a sparse graph. For graph inputs, we are not aware of any algorithms
achieving polylog n depth and a non-trivial work bound, i.e., not incurring the Ω(n3)
work caused by relying on matrix–matrix multiplication.

Furthermore, Blelloch et al. show how to obtain LE lists — through repeated use of
an SSSP algorithm as black box — using O(D log n) depth and O(W log n) work, where
D and W are the depth and work required by the SSSP algorithm [19]. As mentioned
above, the LE lists readily yield an FRT tree. Since the SSSP routine is used for different
source nodes, consistency with the triangle inequality needs to be established. We are,
however, not aware of a, possibly approximate, SSSP algorithm which achieves that and
still yields D ∈ polylog n and W ∈ Õ(m).

In the distributed setting, Khan et al. [81] demonstrate how to compute LE lists
in O(SPD(G) log n) rounds in the CONGEST model. On the lower-bound side, trivially
Ω(D(G)) rounds are required, where D(G) is the maximum hop distance — ignoring
edge weights — between nodes. Even if D(G) ∈ O(log n), however, Ω(n1/2) rounds are
necessary [38, 65]. Extending the algorithm by Khan et al., Ghaffari and Lenzen [65] show
how to obtain a round complexity of Õ(min{n1/2+ε,SPD(G)}+D(G)) for arbitrary 0 < ε
at the expense of an expected stretch of O(ε−1 log n). We partly build on these ideas;
specifically, the construction of the graph H in Chapter 15 can be seen as a generalization
of the key technique from Ghaffari and Lenzen [65]. As detailed in Chapter 18, our
framework of MBF-like algorithms subsumes the algorithms by Khan et al. and by
Ghaffari and Lenzen. Leveraging further results [73, 103], we can improve upon them in
terms of expected stretch and round complexity: We obtain a metric tree embedding with
expected stretch O(log n) that is computed in min{Õ((n1/2 + D(G))no(1)), Õ(SPD(G))}
rounds in the CONGEST model.

12.3 Notation and Preliminaries

Graphs We consider weighted, undirected graphs G = (V,E, ω) with nodes V , edges E,
and edge weights ω : E → R>0. Unless specified otherwise, we set n := |V |, m := |E|,
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and do not permit parallel edges. For an edge e = {v, w} ∈ E, we write ω(v, w) := ω(e),
ω(v, v) := 0 for v ∈ V , and ω(v, w) := ∞ for {v, w} /∈ E. We assume that the ratio of
the maximum and minimum edge weight is polynomially bounded in n, this is required
by Cohen’s hop-set construction [34]. Unless specified otherwise, we assume that G is
connected and given in the form of an adjacency list.

Let p ⊆ E be a path, where paths are loop-free unless explicitly stated otherwise.
p has |p| hops, and weight

ω(p) :=
∑
e∈p

ω(e). (12.6)

For the nodes v, w ∈ V let P(v, w,G) denote the set of paths from v to w in G and
Ph(v, w,G) := {p ∈ P(v, w,G) | |p| ≤ h} the set of such paths using at most h hops,
where we rule that ∅ ∈ P0(v, v,G) for all v ∈ V . We denote by

disth(v, w,G) := min
{
ω(p) | p ∈ Ph(v, w,G)

}
(12.7)

the h-hop distance from v to w, where min ∅ := ∞; the distance between v and w is
dist(v, w,G) := distn(v, w,G). The shortest-path hop distance between v and w is

hop(v, w,G) := min {|p| | p ∈ P(v, w,G) ∧ ω(p) = dist(v, w,G)} (12.8)

and

MHSP(v, w,G) := {p ∈ P(v, w,G) | ω(p) = dist(v, w,G) ∧ |p| = hop(v, w,G)} (12.9)

denotes all min-hop shortest paths from v to w. Finally, the Shortest-Path Diameter
(SPD) of G is

SPD(G) := max
v,w∈V

hop(v, w,G) (12.10)

and the unweighted hop diameter of G is

D(G) := min
{
h ∈ N | ∀v, w ∈ V : disth(v, w,G) <∞

}
. (12.11)

Hop Sets A graph G = (V,E, ω) contains a (d, ε̂)-hop set if

∀v, w ∈ V : distd(v, w,G) ≤ (1 + ε̂) dist(v, w,G), (12.12)

i.e., if its d-hop distances (1 + ε̂)-approximate its distances. This definition is based on
Cohen [34], who describes how to efficiently construct a set of weighted edges in order
to establish this property for arbitrary weighted graphs.

Metrics A metric on a set V captures the notion of distance between the elements of V .
Examples are Euclidean distances in Rn and distances between nodes in a graph with
positive edge weights. We complement the standard definition of metric and submetric
with the term α-approximate metric.

Definition 12.2 (Metric, Submetric, and Approxmiate Metric). Given a set V , a func-
tion d : V × V → R≥0 ∪ {∞} is a metric on V if, for all u, v, w ∈ V ,
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(1) zero distance is equivalent to node identity

d(v, w) = 0 ⇔ v = w, (12.13)

(2) distances are symmetric

d(v, w) = d(w, v), and (12.14)

(3) the triangle inequality holds

d(u,w) ≤ d(u, v) + d(v, w). (12.15)

Each V ′ ⊆ V spans a submetric by restricting the domain of d to V ′ × V ′. Consider
α ∈ R≥1 and a metric d on V . We refer to d′ as α-approximate metric of d if

(1) d′ is a metric on V and

(2) for all v, w ∈ V ,

d(v, w) ≤ d′(v, w) ≤ αd(v, w). (12.16)

Some authors explicitly require d(v, w) ≥ 0 from a metric. This, however, follows
from (12.13)–(12.15), as 2d(v, w) = d(v, w) + d(w, v) ≥ d(v, v) = 0 for all v, w ∈ V .

Note carefully that our definition of an approximate metric requires the approximation
of the distance function to be a metric. For example, consider a graph G = (V,E, ω) that
contains a (d, ε̂)-hop set. Clearly, dist(·, ·, G) is a metric on V and distd(·, ·, G) (1 + ε̂)-
approximates dist(·, ·, G) by definition. But as detailed in Observation 12.1, distd(·, ·, G)
is not necessarily an approximate metric.

Algebraic Distance Computations Refer to Chapter 2 for a brief specification of
algebraic terms used below. Among others, we extensively use the min-plus semiring in
the following chapters. It is a well-established tool to determine pairwise distances in a
graph via the distance product, see, e.g., Alon et al. [5], Mohri [115], or Zwick [135].

Definition 12.3 (Min-Plus Semiring). We refer to Smin,+ := (R≥0 ∪ {∞},min,+) as
the min-plus semiring. In literature, it is sometimes referred to as the tropical semiring.
Let G = (V,E, ω) be a graph. The adjacency matrix A ∈ SV×Vmin,+ of G is given by

(avw) :=


0 if v = w,

ω(v, w) if {v, w} ∈ E, and

∞ otherwise.

(12.17)

The operations involved in matrix addition and multiplication are those of the un-
derlying semiring S = (S,⊕,�), i.e., for square matrices A,B ∈ SV×V we have

(A⊕B)vw = avw ⊕ bvw and (12.18)

(AB)vw =
⊕
u∈V

avu � buw. (12.19)
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For A,B ∈ SV×Vmin,+ in particular, we obtain

(A⊕B)vw = min {avw, bvw} and (12.20)

(AB)vw = min
u∈V
{avu + buw} , (12.21)

Alon et al. refer to the latter as “funny matrix multiplication” [5]. Observe that the
identity matrix over Smin,+, I ∈ SV×Vmin,+, is

Ivw =

{
0 if v = w and

∞ otherwise
(12.22)

which is the adjacency matrix of a graph without edges. The abovementioned distance
product Ah is determined over Smin,+ and corresponds to h-hop distances, i.e., (Ah)vw =
disth(v, w,G). In particular, this corresponds to exact distances for h ≥ SPD(G). This
is a standard result [5, 35, 115, 135], however, we shed some light on it in Chapter 14
w.r.t. our notation and some additional techniques introduced in the following.

Model of Computation We are interested in NC and RNC algorithms. NC is the class
of problems that can be solved by a Parallel Random-Access Machine (PRAM) with
poly n processors in polylog n time; RNC additionally allows for randomization. Refer to
Johnson [78] for a formal introduction.

Our perspective is that an algorithm defines a Directed Acyclic Graph (DAG), com-
pare JáJá [77]. Input and constants constitute the sources of the DAG. Each non-source
node of the DAG has constantly bounded fan-in and performs a basic instruction — such
as addition, multiplication, comparison, etc. — on its inputs, where the inputs are either
source nodes or recursively evaluated. Some predefined subset of the nodes marks the
algorithm’s output. We allow using independent randomness, hence the DAG is a random
graph.

Given an instance of the problem, the work is the number of nodes of the DAG and
the depth — parallel time — is its longest directed path [21, 22, 34, 77]. In the absence
of read and write conflicts, the work is proportional to the time required by a single
processor of uniform speed to complete the computation; the depth is the lowest time
that can be achieved with an arbitrarily large number of processors. Note that work and
depth may be random variables. Algorithms that achieve low — e.g., polylogarithmic —
depth and a work close to good sequential-time algorithms are of interest because they
are efficient on machines with a few as well as with many processors. We occasionally
use the term constant time to refer to an operation with constantly bounded work and
depth.

The problems computable in polylogarithmic parallel time on a polynomial number
of processors in the Concurrent Read Concurrent Write (CRCW), Concurrent Read
Exclusive Write (CREW), and Exclusive Read Exclusive Write (EREW) PRAM models
constitute subsets of NC, which in turn is a subset of P [78]. However, the measure of
depth is not robust across these models [22], which makes the above work/depth perspec-
tive on the NC and RNC classes convenient. Furthermore, the work/depth perspective
avoids distraction from memory locality, synchronization primitives, communication be-
tween processors, scheduling, and many other aspects of various models for parallel
computations [77].
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12.3. Notation and Preliminaries

When making probabilistic statements, we require that they hold for all instances,
i.e., that the respective probability bounds are satisfied after fixing an arbitrary instance.
Further, we assume that a single register can store any number computed throughout
the algorithm with sufficient precision. As we are interested in approximation algorithms
and assume polynomially bounded edge weights, O(log n) bits yield sufficient precision.
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CHAPTER 13

MBF-like Algorithms

The Moore-Bellman-Ford (MBF) algorithm [16, 54, 116] is both fundamental and elegant.
In its classical form, see Algorithm 13.1, it solves the SSSP problem: Given a weighted
graph G = (V,E, ω) and a source node s ∈ V , determine, for all v ∈ V , dist(s, v,G) and
the predecessor on a shortest path from s to v. The MBF algorithm comprises n − 1
iterations.1 It maintains the invariant that by the end of the i-th iteration, each node
v ∈ V knows disti(s, v,G), the i-hop distance from s to v, as well as the predecessor
on an according i-hop shortest path. The initialization is dist0(s, v,G) which is 0 for
v = s and∞ everywhere else. Given disti(·, ·, G), disti+1(·, ·, G) is determined by relaxing
each edge: If disti(s, w,G) + ω(w, v) is smaller than the shortest s-v path seen so far,
update accordingly. All (i + 1)-hop shortest s-w-paths are either i-hop shortest s-w-
paths or composed of an i-hop shortest s-v-path followed by the edge {v, w}. As the
MBF algorithm explores all edges in all iterations, i iterations yield i-hop s-v distances.
Since every edge is relaxed in every iteration, a sequential implementation of the MBF
algorithm takes O(nm) time [35].

Dijkstra’s algorithm, see Algorithm 13.2, is the classical alternative to the MBF
algorithm for solving SSSP [41]. It builds a shortest-path tree from s, adding the closest
unprocessed node in each iteration. To this end, it maintains a queue Q of unprocessed
nodes. For the processed nodes V \Q, a shortest-path tree and dist(s, v,G) is known; all
unprocessed nodes have at least the same distance to s as the processed ones. Initially,
we have Q = V , dist(s, s,G) = 0, and dist(s, v,G) =∞ for all v 6= s. In each iteration,
Dijkstra’s algorithm processes the node in Q that is closest to s. No shortest path can
return from v ∈ Q to V \Q, hence dist(s, v,G) can be fixed when v leaves the queue and
its incident edges are relaxed. In the sequential setting, this can be implemented using
O(n log n+m) time [35].

Observe that the invariants of the MBF algorithm and of Dijkstra’s algorithm are
quite different. Dijkstra’s algorithm “flood fills” the graph and guarantees maintaining
a shortest-path tree by processing nodes in the correct order, using a global priority
queue. The MBF algorithm, on the other hand, relaxes all edges in all iterations which
is possible without global information: An edge {v, w} can be relaxed knowing only
dist(s, v,G), dist(s, w,G), and ω(v, w).

This has consequences for parallelizing these algorithms. While the inner loop of
both algorithms — which relaxes either all or a subset of the edges — easily parallelizes,
the outer loop is more challenging. For both algorithms, in order to maintain hope for
sublinear depth, either the number of iterations in the outer loop must be reduced or
some of these iterations have to be done in parallel. Regarding the MBF algorithm,
this means that we need the h-hop distances to be good approximations for the n-hop
distances; this problem is addressed by hop sets [34, 48, 73], making the MBF algorithm

1SPD(G) iterations suffice, but SPD(G) = n− 1 is possible.
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input: Weighted graph G = (V,E, ω), source node s ∈ V
output: Shortest paths to s (encoded in distance(·) and predecessor(·))

1: Init(s, V )
2: for i← 1, . . . , n− 1 do . n− 1 ≥ SPD(G) iterations
3: for each {v, w} ∈ E do
4: Relax(ω, v, w)
5: Relax(ω,w, v)
6: end for
7: end for

8: function Relax(ω, v, w)
9: if distance(w) > distance(v) + ω(v, w) then

10: distance(w)← distance(v) + ω(v, w)
11: predecessor(w)← v
12: end if
13: end function

14: function Init(s, V ) . Initialize with dist0(s, ·, G)
15: for each v ∈ V do
16: distance(v)←∞
17: predecessor(v)← ⊥
18: end for
19: distance(s)← 0
20: end function

Algorithm 13.1: The Moore-Bellman-Ford (MBF) algorithm [16, 54, 116], adapted
from Cormen et al. [35].

input: Weighted graph G = (V,E, ω), source node s ∈ V
output: Shortest paths to s (encoded in distance(·) and predecessor(·))

1: Init(s, V )
2: Q← V
3: while Q 6= ∅ do . n iterations
4: v ← arg minv∈Q distance(v)
5: Q← Q \ {v}
6: for each {v, w} ∈ E do
7: Relax(ω, v, w)
8: end for
9: end while

Algorithm 13.2: Dijkstra’s algorithm [41], adapted from Cormen et al. [35].
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a benevolent candidate for parallelization.
The queue in Dijkstra’s algorithm, however, is an inherently sequential feature: Fewer

than n iterations imply that some subset of the nodes has not been visited, making it hard
to guarantee that dist(s, ·, G) is approximated sufficiently well. Hence, multiple queued
vertices have to be processed in parallel which is, e.g., addressed by the ∆-stepping
algorithm [113] of which there are efficient parallel implementations [105]. It performs
well on certain classes of random graphs and on graphs of low degree, like road networks,
but its worst-case guarantee is no better than Õ(dL) time in the PRAM model, where d
is the maximum vertex degree and L the maximum weight of a shortest s-v-path. Hence
good performance as well as dL ∈ Θ(nm) are possible, depending on the setting.

Over the years, numerous algorithms emerged that use schemes similar to the MBF
algorithm for distributing information [65, 73, 81, 101, 102, 103, 104]. It is natural to
ask for a characterization that captures all these algorithms. In this chapter, we propose
such a characterization: the class of MBF-like algorithms. With parallel and distributed
algorithms in mind, we take a rather distributed perspective, interpreting nodes as actors
that share information across edges.

Observe that we introduce a level of complexity that, on first sight, may not seem
justified in the light of the simplicity of Algorithm 13.1. It proves, however, capable of cap-
turing many variants of the MBF algorithm; we demonstrate this in Chapter 14 and give
an example below. Furthermore, our abstraction allows us to maintain a clean separation
between our techniques — primarily, the oracle for MBF-like algorithms in Chapter 15 —
and our results. While most proposed techniques originally aimed at the development of
parallel FRT algorithms (Chapter 17), they generalize to distributed FRT embeddings
(Chapter 18) and parallel metric and submetric approximations (Chapter 16).

Our abstraction is the following:

(1) An initial state vector x(0) ∈ MV contains the information initially known to
each node. M is the set of possible node states and can be seen as a “data type”
capable of holding the information that the MBF-like algorithm can produce at
an arbitrary node.

(2) In iteration i + 1 each node first propagates the information available to it from

the last iteration, i.e., x
(i)
v ∈M , along all incident edges as well as to itself.

(3) All nodes then aggregate the received information. This and the previous step
correspond to relaxing all edges incident to a node v in Algorithm 13.1.

(4) Finally, irrelevant information is filtered out before moving on to the next iteration.
This is not required in Algorithm 13.1 as it never generates irrelevant information,
but crucial to many of its more involved generalizations like the following example.

As a concrete example consider k-SSP, the task of determining for each node the list
of its k closest nodes. To this end, one needs to consider all nodes as sources and at the
same time be able to locally discard distances that are too large, otherwise one solves
APSP. Nodes store values in (R≥0 ∪ {∞})V , so that in iteration i each node v ∈ V can
store disti(v, w,G) ∈ R≥0 ∪ {∞} for all w ∈ V .

Initially, x
(0)
vw is 0 if v = w and ∞ everywhere else (the 0-hop distances). Propagating

these distances over an edge of weight ω(e) in iteration i+ 1 means uniformly increasing
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them by ω(e). This corresponds to appending e to the i-hop shortest paths determined in

the previous iteration; the state x
(i)
v at node v from the previous iteration is memorized

by v propagating x
(i)
v over an “edge” of weight 0 to itself. During aggregation, each node

picks, for each target node, the smallest distance reported so far.
This is costly, since each node might learn non-∞ distances values for all other nodes.

To increase efficiency, we filter out, in each iteration and at each node, all source–distance
pairs but the k pairs with the smallest distance. Note that filtering makes the difference
between solving APSP — and only in the end discarding all but the k closest sources per
node — and the variant that continuously discards irrelevant distances. Both versions
are correct, but the latter (with Θ̃(mk) work per iteration) is more efficient than the
former (with Θ̃(mn) work per iteration). We formalize k-SSP in Example 14.5.

The crucial characteristics exploited by this idea are the following.

(1) Propagation and aggregation are interchangeable in the sense that it makes no
difference whether two pieces of information are propagated separately or as a
single aggregated piece of information.

(2) As motivated above, filtering or not filtering after aggregation has no impact on
the correctness of an algorithm. Omitting the filtering step, however, may increase
work or the amount of information propagated along edges; the latter is relevant
in distributed algorithms in the CONGEST model.

In this chapter, we formalize this approach for later use in more advanced algorithms.
To this end, we develop a characterization of MBF-like algorithms in Sections 13.1–
13.3 and establish basic properties in Section 13.4. We verify that our characterization
captures a wide variety of known algorithms in Chapter 14. Refer to Chapter 2 for basic
algebraic definitions.

13.1 Propagation and Aggregation

For the initial discussion, consider the min-plus semiring Smin,+ and the according ad-
jacency matrix, both from Definition 12.3; we generalize below. Let M be the set of
node states, i.e., the possible values that an MBF-like algorithm can store at a single
vertex. We represent propagation of x ∈ M over an edge of weight s ∈ R≥0 ∪ {∞} by
s � x, where � : R≥0 ∪ {∞} ×M → M , and aggregation of x, y ∈ M by x ⊕ y, where
⊕ : M ×M → M . Filtering is deferred to Section 13.2. Concerning the aggregation of
information, we demand that ⊕ is associative and has a neutral element ⊥ ∈M encod-
ing “no available information,” hence (M,⊕) is a semigroup with neutral element ⊥ (see
Definition 2.1). Furthermore, we require for all s, t ∈ R≥0 ∪ {∞} and x, y ∈ M (note
that we “overload” ⊕ and �) that

0� x = x, (13.1)

∞� x = ⊥, (13.2)

s� (x⊕ y) = (s� x)⊕ (s� y), (13.3)

(s⊕ t)� x = (s� x)⊕ (t� x), and (13.4)

(s� t)� x = s� (t� x). (13.5)

96



13.1. Propagation and Aggregation

Our requirements are quite natural: Equations (13.1) and (13.2) state that propagating
information over zero distance (e.g. keeping it at a vertex) does not alter it and that
propagating it infinitely far away (i.e., “propagating” it over a non-existing edge) means
losing it, respectively. Note that 0 and ∞ are the neutral elements w.r.t. � and ⊕ in
Smin,+. Equation (13.3) says that propagating aggregated information is equivalent to
aggregating propagated information along identical distances, Equation (13.4) means
that propagating information over only the shorter of two edges is equivalent to moving it
along both edges and then aggregating it (information “becomes obsolete” with increasing
distance), and Equation (13.5) states that propagation steps may be merged.

Altogether, this is equivalent to demanding thatM = (M,⊕,�) is a zero-preserving
semimodule (see Definition 2.3) over Smin,+. A straightforward choice ofM is the direct
product of |V | copies of R≥0 ∪ {∞}, which is suitable for many of the applications we
consider.

Definition 13.1 (Distance Map). Let D := ((R≥0 ∪ {∞})V ,⊕,�), where ⊕ and � are
defined such that for all s ∈ Smin,+ and x, y ∈ D,

(x⊕ y)v := xv ⊕ yv = min{xv, yv} and (13.6)

(s� x)v := s� xv = s+ xv, (13.7)

be the distance map semimodule.

Corollary 13.2. By Lemma 2.4, D is a zero-preserving semimodule over Smin,+ with
zero ⊥ = (∞, . . . ,∞)>.

Distance maps can be represented by only storing the non-∞ distances (and their
indices from V ). This is of interest when there are few non-∞ entries, which can, e.g., be
ensured by filtering (see below). In the following, we denote by |x| the number of non-∞
entries of x ∈ D. The following lemma shows that this representation allows efficient
aggregation.

Lemma 13.3. Suppose x1, . . . , xn ∈ D are stored in lists of index–distance pairs as
above. Then

⊕n
i=1 xi can be computed with O(log n) depth and O(

∑n
i=1 |xi| log n) work.

Proof. We sort
⋃n
i=1{(v, xiv) | xiv 6= ∞} (with duplicates) in ascending lexicographi-

cal order. This can be done in parallel with O(log(
∑n

i=1 |xi|)) ⊆ O(log n) depth and
O(
∑n

i=1 |xi| log n) work [3]. Then we delete each pair for which the next smaller pair has
the same index; the resulting list hence contains, for each v ∈ V for which there is a
non-∞ value in some list xi, the minimum such value. As the last operation is easy to
implement with O(log n) depth and O(

∑n
i=1 |xi| log n) work, the claim follows.

While Smin,+ and D suffice for many applications and are suitable to convey our
ideas, it is sometimes necessary to use different semirings and semimodules to unfold the
full potential of our framework. We elaborate on this in Chapter 14. Hence, rather than
confining the discussion to semimodules over Smin,+, in the following we make general
statements about an arbitrary semimodule M = (M,⊕,�) over an arbitrary semiring
S = (S,⊕,�) wherever it does not obstruct the presentation. It is, however, helpful to
keep S = Smin,+ and M = D in mind.
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13.2 Filtering

MBF-like algorithms achieve efficiency by maintaining and propagating — instead of the
full amount of information nodes are exposed to — only a filtered (small) representative
of the information they obtained. Our goal in this section is to capture the properties
a filter must satisfy. We start with a congruence relation, i.e., an equivalence relation
compatible with propagation and aggregation, onM. A filter r : M→M is a projection
mapping all members of an equivalence class to the same representative within that class,
compare Definition 13.6.

Definition 13.4 (Congruence Relation). Let M = (M,⊕,�) be a semimodule over the
semiring S and ∼ an equivalence relation on M . We call ∼ a congruence relation onM
if and only if

∀s ∈ S, ∀x, x′ ∈M : x ∼ x′ ⇒ sx ∼ sx′ (13.8)

∀x, x′, y, y′ ∈M : x ∼ x′ ∧ y ∼ y′ ⇒ x⊕ y ∼ x′ ⊕ y′. (13.9)

A congruence relation induces a quotient semimodule.

Observation 13.5. Denote by [x] the equivalence class of x ∈M under the congruence
relation ∼ on the semimoduleM. Set M/∼ := {[x] | x ∈M}. ThenM/∼ := (M/∼,⊕,�)
is a semimodule with the operations [x]⊕ [y] := [x⊕ y] and s� [x] := [sx].

An MBF-like algorithm performs efficient computations by implicitly operating on
this quotient semimodule, i.e., on suitable — small — representatives of the equivalence
classes. Such representatives are obtained in the filtering step using a representative
projection, also referred to as filter. We refer to this step as filtering since, in all our
applications and examples, it discards a subset of the available information that is
irrelevant to the problem at hand.

Definition 13.6 (Representative Projection). LetM be a semimodule over the semiring
S and ∼ a congruence relation on M. Then r : M→M is a representative projection
w.r.t. ∼ if and only if

∀x ∈M : x ∼ r(x) (13.10)

∀x, y ∈M : x ∼ y ⇒ r(x) = r(y). (13.11)

Observation 13.7. A representative projection is a projection, i.e., r2 = r.

In the following, we typically first define a suitable projection r; this projection in
turn defines equivalence classes [x] := {y ∈ M | r(x) = r(y)}. The following lemma is
useful when we need to show that equivalence classes defined this way yield a congruence
relation, i.e., are suitable for MBF-like algorithms.

Lemma 13.8. Let M be a semimodule over the semiring S, let r : M → M be a
projection, and for x, y ∈M, let x ∼ y :⇔ r(x) = r(y). Then ∼ is a congruence relation
with representative projection r if:

∀s ∈ S,∀x, x′ ∈M : r(x) = r(x′)⇒ r(sx) = r(sx′), and (13.12)

∀x, x′, y, y′ ∈M : r(x) = r(x′) ∧ r(y) = r(y′)⇒ r(x⊕ y) = r(x′ ⊕ y′). (13.13)

98



13.3. The Class of MBF-like Algorithms

Proof. Obviously, ∼ is an equivalence relation and r fulfills (13.10) and (13.11). Condi-
tions (13.8) and (13.9) directly follow from the preconditions of the lemma.

An MBF-like algorithm has to behave in a compatible way for all vertices in that
each vertex follows the same propagation, aggregation, and filtering rules. This induces
a semimodule structure on the (possible) state vectors of the algorithm in a natural way.

Definition 13.9 (Power Semimodule). Given a node set V and a zero-preserving semi-
module M = (M,⊕,�) over the semiring S, we define MV := (MV ,⊕,�) by applying
the operations of M coordinatewise, i.e., ∀x, y ∈MV , ∀s ∈ S, and ∀v ∈ V :

(x⊕ y)v := xv ⊕ yv and (13.14)

(s� x)v := s� xv. (13.15)

Furthermore, we denote the componentwise application of a representative projection r
by rV , such that for all x ∈MV and v ∈ V :

rV (x)v := r(xv), (13.16)

inducing the equivalence relation ∼ on MV via

x ∼ y :⇔ ∀v ∈ V : xv ∼ yv. (13.17)

Observation 13.10. By Lemma 2.4, MV is a zero-preserving semimodule over S with
zero ⊥V := (⊥, . . . ,⊥)> ∈ MV , where ⊥ is the zero of M. The equivalence relation ∼
induced by rV is a congruence relation on MV with representative projection rV .

13.3 The Class of MBF-like Algorithms

The following definition connects the properties introduced and motivated above.

Definition 13.11 (MBF-like Algorithm). A Moore-Bellman-Ford-like (MBF-like) algo-
rithm A is determined by

(1) a zero-preserving semimodule M over a semiring S,

(2) a congruence relation on M with representative projection r : M→M, and

(3) initial values x(0) ∈MV for the nodes (which may depend on the input graph).

In a graph G with adjacency matrix A, h iterations of A determine

Ah(G) := x(h) := rVAhx(0). (13.18)

If A reaches a fixed point after h ∈ N0 iterations in G, i.e., if x(h) = x(h+1), we abbreviate
A(G) := Ah(G).

Note that the definition of the adjacency matrix A ∈ SV×V depends on the choice
of the semiring S. For the standard choice of S = Smin,+, which suffices for all our core
results, we define A in Equation (12.17); examples using Smin,+ as well as other semirings
and the associated adjacency matrices are discussed in Chapter 14.

The (i + 1)-th iteration of an MBF-like algorithm A determines x(i+1) := rVAx(i)

(propagate, aggregate, and filter). Thus, h iterations yield (rVA)hx(0) which we show to
be identical to rVAhx(0) in Corollary 13.20 of Section 13.4.
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Observation 13.12 (Fixed Points). Over Smin,+ and for the adjacency matrix A from
Equation (12.17), A reaches a fixed point after at most SPD(G) iterations. This is due
to the fact that Ahvw = disth(v, w,G), compare Lemma 14.1. In fact, most examples that
we present reach a fixed point after at most n − 1 iterations because they explore loop-
free paths. Not all MBF-like algorithms, however, have a fixed point. As an example,
consider distances w.r.t. paths that have exactly h hops in a cycle. These distances can
be determined by an MBF-like algorithm when replacing the entries on the diagonal of A
in Equation (12.17) by ∞, forcing nodes to discard their state from the previous iteration.

13.4 Equivalence of Iterations

In the following chapters, we need statements like “one iteration of an MBF-like algorithm
in the graph H is equivalent to d appropriately arranged iterations in the graph G.” The
first step of formalizing that statement is Definition 13.9 which lifts the notion of state
equivalence from single nodes (on M) to the entirety of a graph’s nodes (on MV ). We
complete the formalization using the following steps.

(1) We introduce Simple Linear Functions (SLFs), the functions needed to iterate
MBF-like algorithms. Those are exactly the matrices SV×V , adjacency and other.
The set of SLFs together with addition and concatenation of functions is isomorphic
to the matrix semiring over S and forms a proper subset of the linear functions
on MV (Definition 13.13, Remark 13.14, and Lemma 13.15).

(2) The next step is to observe that SLFs are well-behaved w.r.t. the equivalence
classesMV /∼ of node states: SLFs map equivalent node states to equivalent node
states (Lemma 13.16).

(3) We introduce the notion of equivalent functions and, by extension, equivalent
iterations. Two functions are equivalent if and only if they map equivalent inputs
to equivalent outputs. Equivalence classes of SLFs yield the functions required
for the study of MBF-like algorithms. These form a semiring of (a subset of) the
functions on MV /∼ (Observation 13.17 and Theorem 13.18).

(4) Next, we observe that rV ∼ id, formalizing the concepts of “operating on equiva-
lence classes of node states” and “filtering being optional w.r.t. correctness” (Corol-
lary 13.20).

(5) Finally, we remark that our restriction to SLFs and componentwise filtering is
required by the framework at hand (Remarks 13.21 and 13.22).

An SLF f is “simple” in the sense that it corresponds to matrix–vector multiplications,
i.e., maps x ∈MV such that (f(x))v is a linear combination of the coordinates xw,w ∈ V ,
of x.

Definition 13.13 (Simple Linear Function). LetM be a semimodule over the semiring S.
Each matrix A ∈ SV×V defines a Simple Linear Function (SLF) A : MV →MV (and
vice versa) by

A(x)v := (Ax)v =
⊕
w∈V

avwxw. (13.19)
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Thus, each iteration of an MBF-like algorithm is an application of an SLF given by an
(adjacency) matrix followed by an application of the filter rV . Observe that asymmetric
matrices (for directed graphs) or matrices with non-zero entries on the diagonal are not
a problem for our framework. Cohen’s hop-set construction, however, explicitly requires
an undirected graph [34]. Hence, we inherit the same requirement wherever we rely on
Cohen’s hop sets, most importantly regarding the parallel computations of approximate
metrics and FRT embeddings in Chapters 16 and 17.

Remark 13.14 (Non-Simple Linear Function). Not all linear2 functions on MV are
SLFs. Choose V = {1, 2}, S = Smin,+, and M = D. Consider f : MV →MV given by

f

(
(x11, x12)

(x21, x22)

)
:=

(
(x11 ⊕ x12,∞)

⊥

)
. (13.20)

While f is linear, f(x)1 is not a linear combination of (x11, x12) and (x21, x22). Hence,
f is not an SLF. We demonstrate in Remark 13.21, however, that our techniques require
the restriction to SLFs.

In the following, fix a semiring S, a semimodule M over S, a congruence relation ∼
on M, and a representative projection r w.r.t. ∼. Let A,B ∈ SV×V be SLFs. We write
A(x) for function application, Ax for matrix–vector multiplication, and (A⊕B)(x) :=
A(x) ⊕ B(x) and (A ◦ B)(x) := A(B(x)) for the addition and concatenation of SLFs,
respectively. In Lemma 13.15, we show that matrix addition and multiplication are
equivalent to the addition and concatenation of SLFs. It follows that the SLFs form a
semiring that is isomorphic to the matrix semiring over S. Hence, we may use A(x) and
Ax interchangeably in the following.

Lemma 13.15. F := (SV×V ,⊕, ◦), where ⊕ denotes the addition of functions and ◦
their concatenation, is a semiring. Furthermore, F is isomorphic to the matrix semiring
(SV×V ,⊕,�) over S, i.e., for all A,B ∈ SV×V and x ∈MV ,

(A⊕B)(x) = (A⊕B)x and (13.21)

(A ◦B)(x) = ABx. (13.22)

Proof. Let A,B ∈ SV×V and x ∈ MV be arbitrary. Regarding (13.21) and (13.22),
observe that we have

(A⊕B)x = Ax⊕Bx = A(x)⊕B(x) = (A⊕B)(x) and (13.23)

ABx = A(Bx) = A(B(x)) = (A ◦B)(x), (13.24)

respectively, i.e., addition and concatenation of SLFs are equivalent to addition and
multiplication of their respective matrices. It follows that F is isomorphic to the matrix
semiring (SV×V ,⊕,�) and hence F is a semiring as claimed.

Recall that MBF-like algorithms project node states to appropriate equivalent node
states and that SLFs correspond to MBF-like iterations. Hence, it is important that

2A linear function f : M→M on the semimodule M over the semiring S satisfies, for all x, y ∈M
and s ∈ S, that f(x⊕ y) = f(x)⊕ f(y) and f(s� x) = s� f(x).
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SLFs are well-behaved w.r.t. the equivalence classesMV /∼ of node states. Formally, we
call a function A : MV →MV — SLF or other — well-behaved w.r.t. ∼ if and only if

∀x, x′ ∈MV : x ∼ x′ ⇒ A(x) ∼ A(x′). (13.25)

Lemma 13.16. Let A ∈ SV×V be an SLF. Then A is well-behaved w.r.t. ∼.

Proof. First, for k ∈ N, let x1, . . . , xk, x
′
1, . . . , x

′
k ∈ M be such that xi ∼ x′i for all

1 ≤ i ≤ k. We show that for all s1, . . . , sk ∈ S it holds that

k⊕
i=1

sixi ∼
k⊕
i=1

six
′
i. (13.26)

We argue that (13.26) holds by induction over k. For k = 1, the claim trivially follows
from Equation (13.8). Regarding k ≥ 2, suppose the claim holds for k − 1. Since xk ∼
x′k, we have that skxk ∼ skx

′
k by Equation (13.8). The induction hypothesis yields⊕k−1

i=1 sixi ∼
⊕k−1

i=1 six
′
i. Hence,

k⊕
i=1

sixk =

(
k−1⊕
i=1

sixi

)
⊕ skxk

(13.9)∼
(
k−1⊕
i=1

six
′
i

)
⊕ skx′k =

k⊕
i=1

six
′
k. (13.27)

As for the original claim, let v ∈ V be arbitrary and note that we have

(Ax)v =
⊕
w∈V

avwxv
(13.26)∼

⊕
w∈V

avwx
′
v = (Ax′)v. (13.28)

Hence, each SLF A ∈ SV×V not only defines a function A : MV → MV , but also
a function A : MV /∼ →MV /∼ with A[x] := [Ax]. This is useful, since MBF-like algo-
rithms implicitly operate onMV /∼. As a last preliminary for Theorem 13.18, we need the
concept of equivalent functions. To this end, we rule for all functions A,B : MV →MV

that are well-behaved w.r.t. ∼ by Equation (13.25) — SLFs as well as other functions —
that

A ∼ B :⇔ ∀x ∈MV : A(x) ∼ B(x), (13.29)

i.e., that they are equivalent if and only if they yield equivalent results when presented
with the same input. Let [A] be the set of functions equivalent to A. This directly leads
us to the observation that [A]([x]) := [A(x)] is well-defined.

Observation 13.17. Let A ∼ A′ : MV → MV be functions that are well-behaved
w.r.t. ∼. Then, for all x ∼ x′ ∈MV :

A(x)
(13.25)∼ A(x′)

(13.29)∼ A′(x′), (13.30)

i.e., [A]([x]) := [A(x)] is well-defined.

Regarding SLFs, we may partition F into equivalence classes SV×V /∼. In Theo-
rem 13.18, we show that these equivalence classes of functions, together with summation
and concatenation, yield a semiring F/∼. As MBF-like algorithms implicitly work on
MV /∼, we obtain with F/∼ precisely the structure that may be used to manipulate the
state of MBF-like algorithms, which we leverage in Chapter 15.
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Theorem 13.18. F/∼ := (SV×V /∼,⊕, ◦), where ⊕ denotes the addition and ◦ the
concatenation of functions, is a semiring of functions on MV /∼ with

[A]⊕ [B] = [A⊕B] and (13.31)

[A] ◦ [B] = [AB]. (13.32)

Proof. Consider arbitrary A,B ∈ SV×V and x ∈MV . By Observation 13.17, [A], [B] ∈
SV×V /∼ are well-defined on MV /∼. Equation (13.31) follows from Equation (13.21)

([A]⊕ [B])([x]) = [A]([x])⊕ [B]([x])
(13.30)

= [A(x)]⊕ [B(x)] = [(A⊕B)(x)] (13.33)

(13.21)
= [(A⊕B)x] (13.34)

(13.30)
= [A⊕B][x], (13.35)

and Equation (13.32) from Equation (13.22)

[A ◦B]([x])
(13.30)

= [(A ◦B)(x)]
(13.22)

= [ABx]
(13.30)

= [AB][x]. (13.36)

It immediately follows from Equations (13.31) and (13.32) that F/∼ is a semiring.

Observation 13.19. [A] ∈ F/∼ is linear.

Proof. Let s ∈ S and x, y ∈MV be arbitrary, compute

[A][x⊕ y] = [A(x⊕ y)] = [Ax⊕Ay] = [Ax]⊕ [Ay] = [A][x]⊕ [A][y] and (13.37)

[A](s[x]) = [A(sx)] = [s(Ax)] = s[Ax] = s[A][x], (13.38)

and the claim follows.

Corollary 13.20 demonstrates that we may leave out or apply additional filter steps
whenever convenient. This is a key property which we use throughout the following
chapters, e.g., in Chapter 15 where we simulate MBF-like iterations in an implicitly
represented graph H whose edges correspond to entire paths in the original graph G.
Intermediate filtering steps in G keep the intermediate results of the simulation small.
Furthermore, as promised in Section 13.3, Corollary 13.20 settles that (rVA)h ∼ rVAh.
We establish this property separately from Theorem 13.18 because rV is not an SLF.

Corollary 13.20 (rV ∼ id). Let r be a representative projection w.r.t. the congruence
relation ∼ on the semimodule M and let A be an SLF. By definition, rV is well-behaved
in terms of Equation (13.25). Moreover, we have rV ∼ id, i.e., it holds that

rVA ∼ ArV ∼ A. (13.39)

In particular, for any MBF-like algorithm A, we have

Ah(G)
(13.18)

= rVAhx(0) (13.39)
= (rVA)hx(0). (13.40)

Carefully note that, while much of the above machinery may seem quite natural,
both the initially chosen restrictions to SLFs and componentwise application of r in rV

are crucial for Corollary 13.20. We begin by pointing out that arbitrary linear functions,
as opposed to SLFs, break Corollary 13.20.
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Remark 13.21 (Non-Simple Linear Functions break Corollary 13.20). Consider V , S,
M, and f from Remark 13.14. Choose r(x) := (x1,∞) for all x ∈M. Then

rV f

(
(2, 1)

⊥

)
= rV

(
(1,∞)

⊥

)
=

(
(1,∞)

⊥

)
but (13.41)

frV
(

(2, 1)

⊥

)
= f

(
(2,∞)

⊥

)
=

(
(2,∞)

⊥

)
, (13.42)

implying that rV f 6∼ frV .

Intuitively speaking, it is clear that inconsistencies are introduced when some nodes
of a graph run SSSP and others APSP: The nodes running SSSP discard all but the
distance to the source node while the nodes running APSP keep all distances. Hence, a
node running SSSP may discard vital information about a shortest path. We formally
state SSSP and APSP as MBF-like algorithms in Examples 14.4 and 14.6, respectively.
In terms of the machinery developed in this chapter, this means that all nodes have
to apply the same representative projection, i.e., that rV : MV → MV has to apply
r : M→M to all its coordinates:

Remark 13.22 (Non-componentwise filtering breaks Corollary 13.20). Consider V ,
S, and M from Remark 13.14. Suppose f is the SLF given by f(x) :=

(
x1⊕x2
⊥
)

and
rV
(
x1
x2

)
:=
(
x1
⊥
)
, i.e., rV applies different representative projections — id and const⊥— to

each coordinate of x ∈MV . Then we have that

rV f

(
(2,∞)

(1,∞)

)
= rV

(
(1,∞)

⊥

)
=

(
(1,∞)

⊥

)
but (13.43)

frV
(

(2,∞)

(1,∞)

)
= f

(
(2,∞)

⊥

)
=

(
(2,∞)

⊥

)
, (13.44)

again implying that rV f 6∼ frV .
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CHAPTER 14

A Collection of MBF-like Algorithms

For the purpose of illustration and to demonstrate the generality of the framework
of MBF-like algorithms proposed in Chapter 13, we show that a variety of standard
algorithms are MBF-like algorithms; due to the established machinery, this is a trivial
task in most cases.

We demonstrate that some more involved distributed algorithms in the CONGEST
model have a straightforward and compact interpretation in our framework in Chapter 18.
They compute metric tree embeddings based on the FRT distribution; we present them
alongside an improved distributed algorithm based on the other results of this work.

MBF-like algorithms are specified by a zero-preserving semimodule M over a semi-
ring S, a representative projection w.r.t. a congruence relation onM, an initial state x(0),
and the number of iterations h, compare Definition 13.11. While this is a long list, a stan-
dard semiring and semimodule can be chosen; the general-purpose choices of S = Smin,+

andM = D (see Definition 13.1), or S =M = Smin,+ (every semiring is a zero-preserving
semimodule over itself) often are up to the task. Refer to Sections 14.2–14.4 for exam-
ples that require different semirings. However, even in these cases, the semirings and
semimodules specified in Sections 14.2–14.4 can be reused. Hence, all that is left to do in
most cases is to pick an existing semiring and semimodule, choose h ∈ N0, and specify
a representative projection r.

14.1 MBF-like Algorithms over the Min-Plus Semiring

The min-plus semiring — a.k.a. the tropical semiring — is known to be the semiring of
choice to capture many standard distance problems. Recall Smin,+ and the adjacency
matrix A ∈ SV×Vmin,+ of the weighted graph G, both from Definition 12.3, and the specifi-
cation of the distance-map semimodule D from Definition 13.1. In that light consider
the initialization x(0) ∈ DV with

x(0)
vw :=

{
0 if v = w and

∞ otherwise
(14.1)

and observe that the entries of
x(h) := Ahx(0) (14.2)

correspond to the h-hop distances in G. It is well-known that the min-plus semiring
can be used for distance computations [5, 35, 115, 135]. Nevertheless, for the sake of
completeness, we prove the following lemma in terms of our notation and in the light of
the framework of MBF-like algorithms proposed in Chapter 13.

Lemma 14.1. For h ∈ N0 and x(h) from Equation (14.2), we have

x(h)
vw = disth(v, w,G). (14.3)
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Proof. The claim trivially holds for h = 0. As induction hypothesis, suppose the claim
holds for h ∈ N0. We obtain

x(h+1)
vw =

(
Ax(h)

)
vw

(14.4)

=

(⊕
u∈V

avu � x(h)
u

)
w

(14.5)

=
⊕
u∈V

avu � x(h)
uw (14.6)

= min
u∈V

{
avu + x(h)

uw

}
(14.7)

= min
{
ω(v, u) + disth(u,w,G) | {v, u} ∈ E

}
∪
{

0 + disth(v, w,G)
}
, (14.8)

i.e., exactly the definition of disth+1(v, w,G), as claimed.

As a first example, we turn our attention to source detection. It generalizes all
examples covered in this section, saving us from proving each of them correct individually;
well-established examples like SSSP and APSP follow. Source detection was introduced
by Lenzen and Peleg [104]; we extend their definition by a maximum distance d.

Definition 14.2 (Source Detection [104]). Given a weighted graph G = (V,E, ω), sources
S ⊆ V , hop and result limits h, k ∈ N0, and a maximum distance d ∈ R≥0 ∪ {∞},
(S, h, d, k)-source detection is the following problem: For each v ∈ V , determine the k
smallest elements of {(disth(v, s,G), s) | s ∈ S, dist(v, s,G) ≤ d} w.r.t. lexicographical
order; determine all of them if there are fewer than k.

Example 14.3 (Source Detection). Source detection is solved by h iterations of an
MBF-like algorithm with S = Smin,+, M = D,

r(x)v =


xv if v ∈ S, xv ≤ d and xv is among k smallest S-entries of x

(ties broken by index) and

∞ otherwise,

(14.9)

and x(0) from Equation (14.1).

Proof. Let s ∈ Smin,+ be arbitrary and let x, x′, y, y′ ∈ D be such that x ∼ x′ and
y ∼ y′, where x ∼ y :⇔ r(x) = r(y). By Lemma 13.8, it suffices to show that (1) r2 = r,
(2) r(sx) = r(sx′), and (3) r(x⊕ y) = r(x′ ⊕ y′). We show the claims one by one.

(1) r(x) has at most k non-∞ entries, each at most d, so r(r(x)) = r(x) by (14.9).

(2) Since multiplication with s uniformly increases the non-∞ entries of x and x′, it
does not affect their order w.r.t. (14.9). As the k smallest S-entries of x and x′

w.r.t. (14.9) are identical (the same nodes and the same values), so are those of
sx and sx′. Some entry (sx)v may become larger than d (if xv ≤ d < s+ xv), but
that happens if and only if it does for (sx′)v as well, hence r(sx) = r(sx′).
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(3) We show that r(x ⊕ y) = r(r(x) ⊕ r(y)); the claim then follows from observing
that r(x⊕ y) = r(r(x)⊕ r(y)) = r(r(x′)⊕ r(y′)) = r(x′ ⊕ y′).
To see that r(x ⊕ y) = r(r(x) ⊕ r(y)) we show that, for all v ∈ V , we either
have (x⊕ y)v = (r(x)⊕ r(y))v or that r(x⊕ y)v = r(r(x)⊕ r(y))v = ∞, i.e., the
entries of x ⊕ y and r(x) ⊕ r(y) are either equal or set to ∞ by r. Suppose that
(x⊕y)v 6= (r(x)⊕r(y))v for some v ∈ V . It follows that (x⊕y)v < (r(x)⊕r(y))v =∞
as well as v ∈ S because r only modifies S-entries by setting them to ∞. As
(r(x)⊕ r(y))v = min{r(x)v, r(y)v}, it follows that xv is not among the k smallest
S-entries of x and that yv is not among the k smallest S-entries of y. Hence,
v cannot be among the k smallest S-entries of x⊕ y. It follows that r(x⊕ y)v =
r(r(x)⊕ r(y))v =∞.

Together, this fulfills the conditions of Lemma 13.8 and the claim follows.

Example 14.4 (Single-Source Shortest Paths). Single-Source Shortest Paths (SSSP)
requires to determine the h-hop distance to s ∈ V for all v ∈ V . It is solved by an

MBF-like algorithm with S = M = Smin,+, r = id, and x
(0)
s = 0 and x

(0)
v = ∞ for all

v 6= s.

Equivalently, one may use ({s}, h,∞, 1)-source detection. This effectively results in
M = Smin,+: when only storing the non-∞ entries, only the s-entry is relevant.

Example 14.5 (k-Source Shortest Paths). k-Source Shortest Paths (k-SSP) requires to
determine, for each node, the k closest nodes in terms of the h-hop distance disth(·, ·, G).
It is solved by an MBF-like algorithm, as it corresponds to (V, h,∞, k)-source detection.

Example 14.6 (All-Pairs Shortest Paths). All-Pairs Shortest Paths (APSP) is the task
of determining the h-hop distance between all pairs of nodes. It is solved by an MBF-like
algorithm because we can use (V, h,∞, n)-source detection, resulting in M = D, r = id,
and x(0) from Equation (14.1).

Example 14.7 (Multi-Source Shortest Paths). The Multi-Source Shortest Paths (MSSP)
problem is to determine, for each node, the h-hop distances to all nodes in a designated set
S ⊆ V of source nodes. This is solved by the MBF-like algorithm for (S, h,∞, |S|)-source
detection.

Example 14.8 (Forest Fires). The nodes in a graph G form a distributed sensor network,
the edges represent communication channels, and edge weights correspond to distances.
Our goal is to detect, for each node v, if there is a node w on fire within distance
dist(v, w,G) ≤ d for some d ∈ R≥0 ∪ {∞}, where every node initially knows if it is on
fire. As a suitable MBF-like algorithm, pick h = n, S =M = Smin,+,

r(x) =

{
x if x ≤ d and

∞ otherwise,
(14.10)

and x
(0)
v = 0 if v is on fire and x

(0)
v =∞ otherwise.
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Example 14.8 can be handled differently by using (S, n, d, 1)-source detection, where
S are the nodes on fire. This also reveals the closest node on fire, whereas the solution
from Example 14.8 is anonymous. One can interpret both solutions as instances of SSSP
with a virtual source s /∈ V that is connected to all nodes on fire by an edge of weight 0.
This, however, requires a simulation argument and additional reasoning if the closest
node on fire is to be determined.

14.2 MBF-like Algorithms over the Max-Min Semiring

Some problems require using a semiring other than Smin,+. As a first example, consider
the Widest Path Problem (WPP), also referred to as the bottleneck shortest path problem:
Given two nodes v and w in a weighted graph, find a v-w-path maximizing the lightest
edge in the path. More formally, we are interested in the widest-path distance between
v and w:

Definition 14.9 (Widest-Path Distance). Given a weighted graph G = (V,E, ω), a path
p has width width(p) := min{ω(e) | e ∈ p}. The h-hop widest-path distance between
v, w ∈ V is

widthh(v, w,G) := max
{

width(p) | p ∈ Ph(v, w,G)
}
. (14.11)

We abbreviate width(v, w,G) := widthn(v, w,G).

An application of the WPP are trust networks: The nodes of a graph are entities
and an edge {v, w} of weight 0 < ω(v, w) encodes that v and w trust each other with
ω(v, w). Assuming trust to be transitive, v trusts w with maxp∈P(v,w,G) mine∈p ω(e) =
width(v, w,G). The WPP requires a semiring supporting the max and min operations:

Definition 14.10 (Max-Min Semiring). We refer to Smax,min := (R≥0∪{∞},max,min)
as the max-min semiring.

For the sake of completeness, we prove the following standard result.

Lemma 14.11. Smax,min is a semiring with neutral elements 0 and ∞.

Proof. We check each of the requirements of Definition 2.2. Throughout the proof, let
x, y, z ∈ R≥0 ∪ {∞} be arbitrary.

(1) (R≥0 ∪ {∞},max) is a commutative semigroup because max is associative and
commutative. Since 0 is the minimum of R≥0 ∪ {∞}, it is the neutral element of
(R≥0 ∪ {∞},max).

(2) (R≥0 ∪ {∞},min) is a semigroup because min is associative. Its neutral element
is ∞ because it is the maximum of R≥0 ∪ {∞}.

(3) Regarding the left- and right-distributive laws in Equations (2.4) and (2.5), a case
distinction between the cases (a) x ≤ y ≤ z, (b) y ≤ x ≤ z, and (c) y ≤ z ≤ x is
exhaustive due to the commutativity of max. It reveals that

min{x,max{y, z}} = max{min{x, y},min{x, z}}, (14.12)
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i.e., that the left-distributive law holds. Since min is commutative,

min{max{y, z}, x} = max{min{y, x},min{z, x}} (14.13)

immediately follows from Equation (14.12).

(4) 0 is an annihilator for min because

min{0, x} = min{x, 0} = 0 (14.14)

for all x ∈ R≥0 ∪ {∞}.

Together, it follows that Smax,min is a semiring as claimed.

Corollary 14.12. Smax,min is a zero-preserving semimodule over itself. Furthermore, we
have that W := SVmax,min is a zero-preserving semimodule over Smax,min by Lemma 2.4.

As adjacency matrix of G = (V,E, ω) w.r.t. Smax,min we propose A ∈ SV×Vmax,min with

(avw) :=


∞ if v = w,

ω(v, w) if {v, w} ∈ E, and

0 otherwise.

(14.15)

This is a straightforward adaptation of the adjacency matrix w.r.t. Smin,+ in Equa-
tion (12.17). As an initialization x(0) ∈ WV in which each node knows the trivial path
of unbounded width to itself but nothing else is given by

x(0)
vw :=

{
∞ if v = w and

0 otherwise.
(14.16)

Then h ∈ N0 multiplications with A, i.e., h iterations, yield

x(h) := Ahx(0) (14.17)

which corresponds to the h-hop widest-path distance:

Lemma 14.13. Given x(h) from Equation (14.17), we have

x(h)
vw = widthh(v, w,G). (14.18)

Proof. The claim holds for h = 0 by Equation (14.16). As induction hypothesis, suppose
the claim holds for some h ∈ N0. We obtain

x(h+1)
v

(14.17)
=

(
Ax(h)

)
v

=
⊕
w∈V

avw�x(h)
w

(14.15)
= ∞� x(h)

v︸ ︷︷ ︸
x
(h)
v

⊕
⊕

{v,w}∈E

ω(v, w)�x(h)
w . (14.19)

As ⊕ in W is the element-wise maximum, we have

x(h+1)
vu = max

{
x(h)
vu

}
∪
{

min
{
ω(v, w), x(h)

wu

}
| {v, w} ∈ E

}
(14.20)
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and the induction hypothesis yields

x(h+1)
vu = max

{
widthh(v, u,G)

}
∪
{

min
{
ω(v, w),widthh(w, u,G)

}
| {v, w} ∈ E

}
,

(14.21)

which is exactly widthh+1(v, u,G).

Example 14.14 (Single-Source Widest Paths). Single-Source Widest Paths (SSWP)
asks for, given a weighted graph G = (V,E, ω), a designated source node s ∈ V , and
h ∈ N0, the h-hop widest-path distance widthh(s, v,G) for every v ∈ V . It is solved by

an MBF-like algorithm with S =M = Smax,min, r = id, and x
(0)
s =∞ and x

(0)
v = 0 for

all v 6= s.

Example 14.15 (All-Pairs Widest Paths). All-Pairs Widest Paths (APWP) asks for,
given G = (V,E, ω) and h ∈ N0, widthh(v, w,G) for all v, w ∈ V . APWP is MBF-like;
it is solved by choosing S = Smax,min, M = W, r = id, and x(0) from Equation (14.16)
by Lemma 14.13.

Example 14.16 (Multi-Source Widest Paths). The Multi-Source Widest Paths (MSWP)
problem is to determine, for each node, the h-hop widest path distance to all nodes in a
designated set S ⊆ V of source nodes. This is solved by the same MBF-like algorithm as

for APWP in Example 14.15 when changing x(0) to x
(0)
vw =∞ if v = w ∈ S and x

(0)
vw = 0

otherwise.

14.3 MBF-like Algorithms over the All-Paths Semiring

Mohri discusses the k-SDP, where each v ∈ V is required to find the k shortest paths to
a designated source node s ∈ V , in the light of his algebraic framework for distance com-
putations [115]. Our framework captures this application as well, but requires a different
semiring than Smin,+: While Smin,+ suffices for many applications, see Section 14.1, it
cannot distinguish between different paths of the same length. This is a problem in the
k-SDP, because there may be multiple paths of the same length among the k shortest.

Observation 14.17. No semimodule M over Smin,+ can overcome this issue: The
left-distributive law for semimodules, see Equation (2.9), requires, for all x ∈ M and
s, s′ ∈ Smin,+, that sx ⊕ s′x = (s ⊕ s′)x. Consider different paths π 6= π′ ending in the
same node with ω(π) = s = s′ = ω(π′). W.r.t. Smin,+ and M, the left-distributive law
yields sx ⊕ s′x = min{s, s′} � x, i.e., propagating x over π, over π′, or over both and
then aggregating must be indistinguishable in the case of s = s′.

This does not mean that the framework of MBF-like algorithms cannot be applied;
it merely indicates that we need a more powerful semiring than Smin,+. The motivation
of this section is to generalize Smin,+ to the all-paths semiring Pmin,+ and add it to
the toolbox. With Pmin,+ in place, the established machinery becomes available: pick a
semimodule (in our examples, Pmin,+ itself suffices) and define a representative projection.
We demonstrate this for the k-SDP and a variant.
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The basic concept of Pmin,+ is to remember paths instead of destination–distance
pairs. Furthermore, we include the ability to remember multiple paths, regardless of
whether they have the same weight. This includes enough features in Pmin,+; we do not
require dedicated semimodules for k-SDP and use the fact that Pmin,+ is a zero-preserving
semimodule over itself.

We begin with a convenient representation of paths: Let P = V + denote the set of
directed paths on V , with loops, denoted as non-empty tuples of nodes. Furthermore, let
◦ ⊆ P 2 be the relation of concatenable paths defined by

(v1, . . . , vk) ◦ (w1, . . . , w`) :⇔ vk = w1. (14.22)

By abuse of notation, we occasionally use ◦ as concatenation operator when and if
its operands are concatenable. Furthermore, we abbreviate the rather cumbersome
{(π1, π2) ∈ P 2 | π1 ◦ π2 ∧ π is the concatenation of π1 and π2} by the more compact
{(π1, π2) | π = π1 ◦ π2} to denote all two-splits of π.

Let π = (v1, . . . , vk) ∈ P be a sequence of k ∈ N nodes. In the context of a graph
G = (V,E, ω), we generalize ω(π) :=

∑k−1
i=1 ω(vi, vi+1). We call π valid if and only if

ω(π) 6=∞ and invalid otherwise (recall that ω(v, w) =∞ if {v, w} /∈ E). Observe that π
uniquely determines a sequence of k−1 edges and is valid if and only if all of these edges
exist in E. Furthermore, recall that ∅ ∈ P0(v, v,G) for all v ∈ V and observe that we
consider single-node paths (v) valid paths of weight 0. Together, all p ∈ P(·, ·, G) have a
uniquely determined, valid, vertex-based representation π ∈ P with ω(p) = ω(π).

As motivated above, the all-paths semiring is a generalization of Smin,+ capable of
remembering multiple paths. We represent this using vectors in (R≥0 ∪ {∞})P storing a
non-∞ weight for each explored path and∞ for all others. Making the∞ entries implicit
creates an efficient representation.

Definition 14.18 (All-Paths Semiring). We call Pmin,+ = ((R≥0 ∪ {∞})P ,⊕,�) the
all-paths semiring, where ⊕ and � are defined, for all π ∈ P and x, y ∈ Pmin,+, by

(x⊕ y)π := min{xπ, yπ} and (14.23)

(x� y)π := min{xπ1 + yπ2 | π = π1 ◦ π2}. (14.24)

We say that x contains π (with weight xπ) if and only if xπ <∞.

Summation (x ⊕ y)π picks the smallest weight associated to the path π in either
operand. Multiplication (x� y)π finds the lightest estimate for π composed of two-splits
π = π1 ◦ π2, where π1 is picked from x and π2 from y. Note carefully that π1 and π2

have to contain at least one node by definition of P , hence, y may contain paths not
contained x � y. Observe that Pmin,+ supports upper bounds on path lengths; we do,
however, not use this feature. Intuitively, Pmin,+ stores all encountered paths with their
exact weights; in this mindset, summation corresponds to the union and multiplication
to the “concatenability-obeying Cartesian product” of the paths contained in x and y.

Lemma 14.19. Pmin,+ is a semiring with neutral elements

0 := (∞, . . . ,∞)>, and (14.25)

1π :=

{
0 if π = (v) for some v ∈ V and

∞ otherwise
(14.26)
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w.r.t. ⊕ and �, respectively.

Proof. We check the requirements of Definition 2.2 step by step. Throughout the proof,
let π ∈ P and x, y, z ∈ Pmin,+ be arbitrary.

(1) We first show that ((R≥0 ∪ {∞})P ,⊕) is a commutative semigroup with neutral
element 0. The associativity of ⊕— and with it the property of ((R≥0 ∪{∞})P ,⊕)
being a semigroup — follows from the associativity of min:

((x⊕ y)⊕ z)π = min{min{xπ, yπ}, zπ} (14.27)

= min{xπ,min{yπ, zπ}} (14.28)

= (x⊕ (y ⊕ z))π. (14.29)

⊕ is commutative, because min is. It is easy to check that (x⊕0)π = (0⊕x)π = xπ.

(2) To see that ((R≥0 ∪ {∞})P ,�) is a semigroup with neutral element 1, we first
check that � is associative, i.e., that it is a semigroup:

((x� y)� z)π = min{(xπ1 + yπ2) + zπ3 | π = (π1 ◦ π2) ◦ π3} (14.30)

= min{xπ1 + (yπ2 + zπ3) | π = π1 ◦ (π2 ◦ π3)} (14.31)

= (x� (y � z))π. (14.32)

Furthermore, (1 � x)π = min{0 + xπ} = xπ = (x � 1)π, hence 1 is the neutral
element w.r.t. �.

(3) Regarding the distributive laws, we begin with the left-distributive law (2.4):

(x� (y ⊕ z))π = min{xπ1 + min{yπ2 , zπ2} | π = π1 ◦ π2} (14.33)

= min{min{xπ1 + yπ2 , xπ1 + zπ2} | π = π1 ◦ π2} (14.34)

= min

{
min{xπ1 + yπ2 | π = π1 ◦ π2},
min{xπ1 + zπ2 | π = π1 ◦ π2}

}
(14.35)

= ((x� y)⊕ (x� z))π. (14.36)

Regarding the right-distributive law (2.5), we obtain:

((y ⊕ z)� x)π = min{min{yπ1 , zπ1}+ xπ2 | π = π1 ◦ π2} (14.37)

= min{min{yπ1 + xπ2 , zπ1 + xπ2} | π = π1 ◦ π2} (14.38)

= min

{
min{yπ1 + xπ2 | π = π1 ◦ π2},
min{zπ1 + xπ2 | π = π1 ◦ π2}

}
(14.39)

= ((y � x)⊕ (z � x))π. (14.40)

(4) It remains to check that 0 is an annihilator w.r.t. �. We have

(0� x)π = min{0π1 + xπ2 | π = π1 ◦ π2} (14.41)

= min{∞+ xπ2 | π = π1 ◦ π2} (14.42)

=∞ (14.43)

= 0π (14.44)

and, analogously, (x� 0)π = 0π.
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14.3. MBF-like Algorithms over the All-Paths Semiring

Together, Pmin,+ is a semiring as claimed.

Corollary 14.20. Pmin,+ is a zero-preserving semimodule over itself.

Computations in a graph G = (V,E, ω) w.r.t. Pmin,+ require an adjacency matrix
A ∈ PV×Vmin,+. We propose the following generalization of Equation (12.17) with

(avw)π :=


1π if v = w,

ω(v, w) if π = (v, w), and

∞ otherwise.

(14.45)

On the diagonal, avv = 1 contains exactly the zero-hop paths of weight 0; all non-trivial
paths are “unknown” in avv, i.e., accounted for with an infinite weight. An entry avw
with v 6= w contains, if present, only the edge {v, w}, represented by the path (v, w) of
weight ω(v, w); no other path is contained in avw. An initialization where each node v
knows only the zero-hop path (v) is represented by the vector x(0) ∈ PVmin,+ with

(
x(0)
v

)
π

:=

{
0 if π = (v) and

∞ otherwise.
(14.46)

Then h ∈ N0 multiplications of x(0) with A, i.e., h iterations, yield

x(h) := Ahx(0) (14.47)

and x
(h)
v contains exactly the h-hop paths beginning in v with their according weights:

Lemma 14.21. Let x(h) be defined as in Equation (14.46), w.r.t. the graph G = (V,E, ω).
Then for all v ∈ V and π ∈ P(

x(h)
v

)
π

=

{
ω(π) if π ∈ Ph(v, ·, G) and

∞ otherwise.
(14.48)

Proof. We prove the claim by induction. The claim holds for h = 0 by Equation (14.46).
As induction hypothesis, suppose the claim holds for h ∈ N0. The induction step yields

x(h+1)
v

(14.47)
=

(
Ax(h)

)
v

=
⊕
w∈V

avwx
(h)
w

(14.45)
= avv︸︷︷︸

1

x(h)
v ⊕

⊕
{v,w}∈E

avwx
(h)
w . (14.49)

We have avvx
(h)
v = 1x

(h)
v = x

(h)
v by construction, i.e., avvx

(h)
v contains exactly the properly

weighted h-hop paths beginning at v by the induction hypothesis. Next, consider {v, w} ∈
E. By induction, x

(h)
w contains exactly the h-hop paths beginning in w and avw contains

only the edge {v, w} of weight ω(v, w) by Equation (14.45). Hence, avwx
(h) contains all

(h+ 1)-hop paths beginning with {v, w}. Due to Equation (14.49) and to

Ph+1(v, ·, G) = Ph(v, ·, G) ∪
⋃

{v,w}∈E

{
(v, w) ◦ π | π ∈ Ph(w, ·, G)

}
, (14.50)

x
(h+1)
v contains exactly the properly weighted (h+ 1)-hop paths, as claimed.
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With the all-paths semiring Pmin,+ established, we turn to the k-SDP, our motivation
for adding Pmin,+ to the toolbox of MBF-like algorithms in the first place.

Definition 14.22 (k-Shortest Distance Problem [115]). Given a graph G = (V,W, ω)
and a designated source vertex s ∈ V , the k-Shortest Distance Problem (k-SDP) asks:
For each node v ∈ V and considering all v-s-paths, what are the weights of the k lightest
such paths? In the k-Distinct-Shortest Distance Problem (k-DSDP), the path weights
have to be distinct.

With S = M = Pmin,+ and r = id, we already have an inefficient solution for the
k-SDP and the k-DSDP in place: This corresponds to collecting all h-hop paths and then
picking only k at each node. In terms of efficiency, however, this is like solving SSSP by
first solving APSP and then discarding almost all distances. In order to solve the k-SDP
more efficiently, we require a representative projection that reduces the abundance of
paths stored in an unfiltered x(h) to the relevant ones.

Observe that with the above definitions of A and x(h), we always associate a path π
with either its weight ω(π) or with ∞; in particular, invalid paths always are associated
with ∞. Formally, G induces a subsemiring of Pmin,+. Besides being an interesting ob-
servation, these properties are required for the representative projections defined below —
r breaks for the k-DSDP when facing inconsistent non-∞ values for the same path — so
we formalize them. Let G = (V,E, ω) a graph and let D(G) ⊂ (R≥0 ∪ {∞})P be the
restriction of (R≥0 ∪ {∞})P to exact path weights and ∞:

xπ ∈ {ω(π),∞}; (14.51)

recall that ω(π) =∞ for all paths π invalid w.r.t. G.

Definition 14.23 (Graph-Induced All-Paths Semiring). Let G be a graph and D(G) ⊂
(R≥0 ∪ {∞})P as above. Then we refer to Pmin,+(G) := (D(G),⊕,�) as the all-paths
semiring induced by G, where ⊕ and � are the same as in Definition 14.18.

The next step is to show that Pmin,+(G) is a semiring. It actually is a subsemiring of
Pmin,+. We do, however, not use that property and hence refrain from formally introducing
the according definitions.

Lemma 14.24. Pmin,+(G) is a semiring.

Proof. Fix a graph G = (V,E, ω). We show that D(G) is closed under ⊕ and �. Consider
x, y ∈ D(G) and let π ∈ P be a path. Hence, we have xπ, yπ ∈ {ω(π),∞} if π is valid
and xπ = yπ =∞ if π is invalid in G; recall that we defined ω(π) =∞ for invalid paths.

(1) Consider x ⊕ y. It directly follows from xπ, yπ ∈ {ω(π),∞} that (x ⊕ y)π =
min{xπ, yπ} ∈ {ω(π),∞}. Hence, (x⊕ y) ∈ D(G).

(2) Regarding multiplication, we have (x � y)π = xπ1 + yπ2 for some two-split of π.
Due to xπ1 ∈ {ω(π1),∞} and yπ2 ∈ {ω(π2),∞}, we obtain (x� y)π = xπ1 + yπ2 ∈
{ω(π1) +ω(π2),∞} = {ω(π),∞}. If π is invalid in G, π1 or π2 must be invalid and
(x� y)π = xπ1 + yπ2 =∞ follows.

Also observe that 0, 1 ∈ D(G) for 0 and 1 from Lemma 14.19. Together, it follows from
Lemma 14.19 that Pmin,+(G) is a semiring.
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14.3. MBF-like Algorithms over the All-Paths Semiring

Corollary 14.25. Pmin,+(G) is a zero-preserving semimodule over itself.

Observe that we have A ∈ PV×Vmin,+(G) as well as x(0) ∈ PVmin,+(G). It follows that
Lemma 14.21 holds for Pmin,+(G) as much as it does for Pmin,+. Furthermore, observe
that the restriction to Pmin,+(G) happens implicitly, simply by starting with the above
initialization. There is no information about Pmin,+(G) that needs to be distributed in
the graph in order to run an MBF-like algorithm over Pmin,+(G).

With Pmin,+(G) in place, we turn our attention back to the k-SDP. Specifically, we
need a representative projection that, given the abundance of possible paths collected
by the all-paths semimodule, discards all but the relevant paths. Relevant in this case
means to keep the k shortest v-s-paths. In order to formalize this, let P (v, w, x) denote,
for x ∈ Pmin,+(G) and v, w ∈ V , the set of v-w-paths contained in x:

P (v, w, x) := {π ∈ P | π is a v-w-path with xπ 6=∞}. (14.52)

Order P (v, w, x) ascendingly w.r.t. the weights xπ, breaking ties using lexicographical
order on P . Then let Pk(v, w, x) denote the set of the first at most k entries of that
sequence:

Pk(v, w, x) := {π | (xπ, π) is among k smallest of {(xπ′ , π′) | π′ ∈ P (v, w, x)}}. (14.53)

We define the (representative, see below) projection r : Pmin,+(G)→ Pmin,+(G) by

r(x)π :=

{
xπ if π ∈ Pk(v, s, x) for some v ∈ V and

∞ otherwise.
(14.54)

If xπ = r(x)π we say that r keeps π and otherwise that r discards π. The projection r
keeps, for each v ∈ V , exactly the k shortest v-s-paths contained in x. Let π be a v-w-
path and y ∈ Pmin,+(G) such that y contains only π, i.e., with yπ = ω(π) and yπ′ =∞
for all π′ 6= π. We say that π is dominated in x if and only if r(x⊕ y)π =∞, meaning
that making π available in x does not change the outcome of filtering. Regarding the
k-SDP, this is the case where either (1) π does not end in s, or (2) x contains k other
v-s-paths that are shorter than π or have the same weight as π but are lexicographically
ordered before π. While the notion of domination may seem overly complicated for the
matter at hand, it sufficiently generalizes the proof for Lemma 14.27 to cover the k-SDP
as well as the k-DSDP from Examples 14.28 and 14.29, respectively.

Observation 14.26. Note that r discards all paths not ending in s. Furthermore, for
all paths π, we have

r(x)π = xπ or r(x)π =∞, (14.55)

i.e., r(x) ∈ Pmin,+(G) for all x ∈ Pmin,+(G), as r either keeps a path with its original
weight or discards it by setting the according entry to ∞. We also obtain that, for all
v ∈ V ,

Pk(v, s, x) = Pk(v, s, r(x)) (14.56)

because Pk(v, s, x) is invariant under discarding dominated paths from x.

Following the standard approach — Lemma 13.8 — we define vectors x, y ∈ Pmin,+(G)
to be equivalent if and only if their entries for Pk(·, s, x) do not differ:

∀x, y ∈ Pmin,+(G) : x ∼ y :⇔ r(x) = r(y). (14.57)
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Lemma 14.27. ∼ is a congruence relation on Pmin,+(G) with representative projection r.

Proof. Clearly, r is a projection. Below, we show in one step each that it fulfills Condi-
tions (13.12) and (13.13) of Lemma 13.8. Throughout the proof, fix a graphG = (V,E, ω),
let x, x′, y, y′ ∈ Pmin,+(G) be such that x ∼ x′ and y ∼ y′.

(1) We show below that r(yx) = r(yr(x)). Equation (13.12) then follows using that
r(yx) = r(yr(x)) = r(yr(x′)) = r(yx′). To see that r(yx) = r(yr(x)), we argue
that for all v-s-paths π, we either have (yx)π = (yr(x))π, or both π /∈ Pk(v, s, yx)
and π /∈ Pk(v, s, yr(x)). In other words, the entries regarding π are either equal in
yx and yr(x), or r discards π from yx as well as from yr(x).

Consider a v-s-path π with (yx)π 6= (yr(x))π. Observe that this implies ω(π) =
(yx)π < (yr(x))π =∞ because the non-∞ entries of r(x) are a subset of those of x.
Hence, π is contained in yx. By definition of �, it holds that (yx)π = yπ1 + xπ2

for some partition π = π1 ◦ π2, where π1 and π2 are, for some node w, v-w- and
w-s-paths, respectively. It follows from Equation (14.55) and x ∈ Pmin,+(G) that

ω(π2) = xπ2 < r(x)π2 =∞. (14.58)

Hence, π2 /∈ Pk(w, s, x), i.e., π2 is dominated in x. As Pk(w, s, r(x)) = Pk(w, s, x)
by Equation (14.56), the following k v-s-paths are contained in yr(x) and in yx
each: {

π1 ◦ π̄2 | π̄2 ∈ Pk(w, s, r(x))
}
. (14.59)

We conclude that π is dominated in — and thus discarded from — both yx and yr(x),
as claimed.

(2) Consider a node v ∈ V and a v-s-path π. As (x ⊕ y)π = min{xπ, yπ}, we have
P (v, s, x⊕ y) = P (v, s, x) ∪ P (v, s, y). In particular, it holds that Pk(v, s, x⊕ y) ⊆
Pk(v, s, x) ∪ Pk(v, s, y), because if π ∈ P (v, s, x⊕ y) is dominated in x and in y, it
is dominated in x⊕ y as well. Using Equation (14.56), we obtain that

Pk(v, s, x⊕ y) ⊆ Pk(v, s, x) ∪ Pk(v, s, y) = Pk(v, s, r(x)) ∪ Pk(v, s, r(y)). (14.60)

As r discards all paths not ending in s, and xπ = r(x)π for all π ∈ Pk(v, s, r(x))
and, analogously, yπ = r(y)π for all π ∈ Pk(v, s, r(y)), we conclude that r(x⊕ y) =
r(r(x)⊕ r(y)). Hence, r(x⊕ y) = r(r(x)⊕ r(y)) = r(r(x′)⊕ r(y′)) = r(x′⊕ y′), i.e.,
r fulfills Equation (13.13).

Since x ∼ x′ and y ∼ y′ are arbitrary, r fulfills the preconditions of Lemma 13.8 and the
claim follows.

Observe that r is defined such that it maintains the k shortest v-s-paths for all v ∈ V ,

potentially storing k|V | paths instead of just k. Intuitively, one could argue that rV x
(h)
v

only needs to contain k paths since they all start in v, which is what the algorithm should
actually be doing. This objection is correct in that this is what actually happens when

running the algorithm with initialization x(0): By Lemma 14.21, x
(h)
v contains the h-hop

shortest paths starting in v and r removes all that do not end in s or are too long. On
the other hand, the objection is misleading. In order for r to behave correctly w.r.t. all
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x ∈ Pmin,+(G) — including those less nicely structured than x
(h)
v where all paths start

at v— we must define r as it is, otherwise the proof of Lemma 14.27 fails for mixed
starting-node inputs.

Example 14.28 (k-Shortest Distance Problem). The k-SDP, compare Definition 14.22,
is solved by an MBF-like algorithm A with S = M = Pmin,+(G), the representative
projection and congruence relation defined in Equations (14.54) and (14.57), the choices
of A and x(0) from Equations (14.45) and (14.46), and h = SPD(G) iterations.

By Lemma 14.21 and due to h = SPD(G), x
(h)
v contains all v-s-paths with their

correct weights. Hence, Ah(G)v = (rV x(h))v contains the subset of those paths the
k-SDP asks for. We remark that solving a generalization of the k-SDP looking for the
k shortest h-hop distances is straightforward using h iterations. Furthermore, note that
our approach reveals the actual paths along with their weights.

Example 14.29 (k-Distinct-Shortest Distance Problem). The k-DSDP from Defini-
tion 14.22 is solved by an MBF-like algorithm analogous to that for the k-SDP from
Example 14.28.

In order for this to work, the definition of Pk(v, w, x) in Equation (14.53) needs to be
adjusted. For each of the k smallest weights in x, the modified P̄k(v, w, x) contains only
one representative: the path contained in x of that weight that is first w.r.t. lexicographical
order on P . This results in

P̄ ′k(v, w, x) := {π | xπ is among the k smallest of {xπ′ | π′ ∈ P (v, w, x)}} and (14.61)

P̄k(v, w, x) := {π | π is lexicographically first of {π′ ∈ P̄ ′k(v, w, x) | xπ′ = xπ}}. (14.62)

Observe that this changes the meaning of π being dominated in x. With that in mind, Ob-
servation 14.26 and the proof of Lemma 14.27 work without modification when replacing
Equation (14.53) with Equations (14.61)–(14.62).

14.4 MBF-like Algorithms over the Boolean Semiring

A well-known semiring is the Boolean semiring B := (B,∨,∧) and by Lemma 2.4, BV is
a zero-preserving semimodule over B. It can be used to check for connectivity in a graph1

using the adjacency matrix

(avw) :=


1 if v = w,

1 if {v, w} ∈ E, and

0 otherwise

(14.63)

together with initial values

x(0)
vw :=

{
1 if v = w and

0 otherwise
(14.64)

indicating that each node v ∈ V is connected to itself. Induction over h reveals that(
Ahx(0)

)
vw

= 1 ⇔ Ph(v, w,G) 6= ∅. (14.65)

1In this section, we drop the assumption that graphs are connected.
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Example 14.30 (Connectivity). Given a graph, we want to check which pairs of nodes
are connected by paths of at most h hops. This is solved by an MBF-like algorithm using
S = B, M = BV , r = id, and x(0) from Equation (14.64).

Example 14.30 directly generalizes to single-source and multi-source connectivity
variants using a filter function that discards non-sources.
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CHAPTER 15

An Oracle for MBF-like Queries

Our goal is to solve distance problems in a graph G using polylog n depth and as little
work as possible. In order to keep the number of iterations low, we augment G with
Cohen’s (d, ε̂)-hop set [34]: a small number of additional (weighted) edges for G, such that
for all v, w ∈ V , distd(v, w,G) ≤ (1 + ε̂) dist(v, w,G), where d, ε̂−1 ∈ polylog n. Cohen’s
algorithm is sufficiently efficient in terms of depth, work, and number of additional
edges. Our presentation, however, is independent from the hop-set algorithm: We only
require that distd(·, ·, G) is a (1 + ε̂)-approximation of dist(·, ·, G), i.e., that d iterations
of MBF-like algorithms obtain good distance approximations, which is a cornerstone
for algorithms of polylog n depth. As detailed in Observation 12.1, however, distd(·, ·, G)
does not obey the triangle inequality and SPD(G) remains unaffected by additional
hop-set edges. Unfortunately, the triangle inequality is vital to the problems that we
discuss: approximate metrics and FRT embeddings in Chapters 16 and 17, respectively.

Hence, we reduce the SPD, accepting a slight increase in stretch. After augmenting
G with the hop set, we embed it into a complete graph H on the same node set such that
SPD(H) ∈ O(log2 n) and dist(v, w,G) ≤ dist(v, w,H) ∈ (1 + o(1)) dist(v, w,G). Where
hop sets preserve distances exactly and ensure the existence of approximately shortest
paths with few hops, H preserves distances approximately but guarantees that we obtain
exact shortest paths with few hops. This is discussed in Section 15.1.

This approach keeps algorithms of polylog n depth in reach, resolves the issue with
the triangle inequality, and still guarantees (1 + o(1))-approximate distances w.r.t. G.
Unfortunately, however, H is a complete graph, so directly working on it or even storing
it in memory imposes Ω(n2) work. Hence, we improve our approach to allow low-work
algorithms while still maintaining the requirement of polylog n depth. In particular, we
want to sample an FRT embedding using near-linear work in m, see Chapter 17. Our
solution is an oracle for MBF-like queries over Smin,+; we develop it in Sections 15.2–15.3.
Given an MBF-like algorithm A over Smin,+, a graph G, and a number of iterations h,
the oracle answers with Ah(H). Put differently, the oracle can simulate A in H without
explicitly constructing H, instead, it internally works on G. The oracle heavily exploits
the properties of MBF-like algorithms from Chapter 13 and simulates each iteration of A
in H using polylogarithmically many iterations of A in G. As h = SPD(H) ∈ O(log2 n)
iterations suffice, Ah(H) can be determined with only a polylogarithmic overhead w.r.t.
a single iteration in G. This keeps a work of Õ(m) in reach while maintaining polylog n
depth, obeying the triangle inequality, and (1 + o(1))-approximating distances.

15.1 The Simulated Graph H

After augmenting G with the hop set, we embed it into a complete graph H on the same
node set so that SPD(H) ∈ O(log2 n), keeping the stretch limited. Since our construction
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requires to first add a hop set to G, assume for the sake of presentation that G already
contains a (d, ε̂)-hop set for fixed ε̂ ∈ R>0 and d ∈ N throughout this chapter.

We begin the construction of H by sampling levels for the vertices V : Every vertex
starts at level 0. In step λ ≥ 1, each vertex in level λ − 1 is raised to level λ with
probability 1

2 . We continue until the first step Λ+1 where no node is sampled. λ(v) refers
to the level of v ∈ V and we define the level of an edge e ∈ E as λ(e) := min{λ(v) | v ∈ e},
the minimal level of its incident vertices. In the following, we abbreviate λ(v, w) :=
λ({v, w}).
Lemma 15.1. W.h.p., Λ ∈ O(log n).

Proof. For a constant c ∈ R≥1, v ∈ V has λ(v) < c log n ∈ O(log n) with a probability
of at least 1 − (1

2)c logn = 1 − n−c, i.e., w.h.p. By Lemma 2.7, this w.h.p. holds for all
nodes and the claim follows.

The idea is to use the levels in the following way. We devise a complete graph H
on V . An edge of H of level λ is weighted with the d-hop distance between its endpoints
in G— a (1+ ε̂)-approximation of their exact distance because G contains a (d, ε̂)-hop set
by assumption — multiplied with a penalty of (1 + ε̂)Λ−λ. This way, high-level edges are
“more attractive” for shortest paths, because they receive exponentially smaller penalties.

Definition 15.2 (Simulated graph H). Let G = (V,E, ω) be a graph that contains a
(d, ε̂)-hop set with levels sampled as above. We define the complete graph H as

H :=

(
V,

(
V

2

)
, ωΛ

)
(15.1)

ωΛ({v, w}) := (1 + ε̂)Λ−λ(v,w) distd(v, w,G). (15.2)

We formalize the notion of high-level edges being “more attractive” than low-level
paths. In H, any min-hop shortest v-w-path is exclusively comprised of edges of level
λ(v, w) or higher; no min-hop shortest path’s level locally decreases. Therefore, all min-
hop shortest paths can be split into two subpaths, the first of nondecreasing and the
second of nonincreasing level.

Lemma 15.3. Consider v, w ∈ V , λ = λ(v, w), and p ∈ MHSP(v, w,H). Then all edges
of p have level at least λ.

Proof. The case λ = 0 is trivial. Consider 1 ≤ λ ≤ Λ and, for the sake of contradiction,
let q be a non-trivial maximal subpath of p containing only edges of level strictly less
than λ. Observe that q ∈ MHSP(v′, w′, H) for some v′, w′ ∈ V with λ(v′), λ(w′) ≥ λ. We
have

ωΛ(q) ≥ (1 + ε̂)Λ−(λ−1) dist(v′, w′, G) (15.3)

because q only uses edges of level at most λ−1, which all receive a multiplicative penalty
of at least (1 + ε̂)Λ−(λ−1) in ωΛ. However, the edge e = {v′, w′} has level λ(v′, w′) ≥ λ
and weight

ωΛ(e) ≤ (1 + ε̂)Λ−λ distd(v′, w′, G) ≤ (1 + ε̂)Λ−(λ−1) dist(v′, w′, G) ≤ ωΛ(q) (15.4)

because G contains a (d, ε̂)-hop set. As q is a min-hop shortest path, we have q = {e},
contradicting the assumption that q only contains edges of level λ− 1 or less.
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Having established that edge levels in min-hop shortest paths are first nondecreasing
and then nonincreasing, the next step is to limit the number of hops spent on each level.

Lemma 15.4. Consider vertices v and w of H with λ(v), λ(w) ≥ λ. Then w.h.p., one
of the following statements holds:

hop(v, w,H) ∈ O(log n) or (15.5)

∀p ∈ MHSP(v, w,H) ∃e ∈ p : λ(e) ≥ λ+ 1. (15.6)

Proof. Condition on the event EVλ that Vλ ⊆ V , with v, w ∈ Vλ, is the set of nodes with
level λ or higher, with level λ+ 1 not yet sampled. Let

Hλ :=

(
Vλ,

(
Vλ
2

)
, ωλ

)
with (15.7)

ωλ({v, w}) := (1 + ε̂)Λ−λ distd(v, w,G) (15.8)

denote the subgraph of H spanned by Vλ and capped at level λ.

Consider p ∈ MHSP(v, w,Hλ). Observe that P[λ(u) ≥ λ+1 | EVλ ] = 1
2 independently

for all u ∈ Vλ, and hence P[λ(e) ≥ λ+ 1 | EVλ ] = 1
4 for all e ∈ p. The latter probability

holds independently for every other edge of p. If |p| ≥ 2c log4/3 n+ 1 for some choice of
c ∈ R≥1, the probability that p contains no edge of level λ+ 1 or higher is bounded from
above by (3

4)b|p|/2c ≤ (3
4)(|p|−1)/2 = (3

4)c log4/3 n = n−c, so p contains such an edge w.h.p.

Fix an arbitrary p ∈ MHSP(v, w,Hλ). Let Ep denote the event that p contains an
edge of level at least λ + 1 or fulfills |p| ∈ O(log n); as argued above, Ep occurs w.h.p.
Note that we cannot directly apply the union bound and Lemma 2.7 to deduce a similar
statement for all q ∈ MHSP(v, w,Hλ) because |MHSP(v, w,Hλ)| is not polynomially
bounded. Instead, we argue that if Ep holds, it follows that all q ∈ MHSP(v, w,H) must
behave as claimed.

To show that all q ∈ MHSP(v, w,H) fulfill (15.5) or (15.6) under the assumption that
Ep holds for the choice of p fixed above, recall that q only uses edges of level λ or higher
by Lemma 15.3. Furthermore, observe that ωΛ(q) ≤ ωΛ(p) because q is a shortest path
in H, that ωλ(p) ≤ ωλ(q) because p is a shortest path in Hλ, and that ωΛ(p) ≤ ωλ(p)
for all p ∈ P(v, w,Hλ) by construction of H and Hλ. If q contains an edge of level λ+ 1
or higher, (15.6) holds for q. Otherwise, q uses only edges that are exactly of level λ. We
conclude ωλ(q) = ωΛ(q) and distinguish two cases:

Case 1 If |p| ∈ O(log n), we have

ωΛ(p) ≤ ωλ(p) ≤ ωλ(q) = ωΛ(q), (15.9)

and ωΛ(q) = ωΛ(p) and |q| ≤ |p| both follow from q ∈ MHSP(v, w,H). It follows
from the case premise that |q| ∈ O(log n), i.e., that (15.5) holds.

Case 2 If p contains an edge of level λ + 1 or higher, we obtain ωΛ(p) < ωλ(p). This
implies

ωΛ(p) < ωλ(p) ≤ ωλ(q) = ωΛ(q), (15.10)

which contradicts q ∈ MHSP(v, w,H).
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So far, we condition on EVλ . In order to remove this restriction, fix v, w ∈ V and let
Evw denote the event that (15.5) or (15.6) holds for v and w. The above case distinction
shows that P[Evw | EVλ ] ≥ 1− n−c for an arbitrary c ∈ R≥1. We conclude that

P[Evw | λ(v, w) ≥ λ] =
∑
Vλ⊆V

P[EVλ | λ(v, w) ≥ λ]P[Evw | EVλ ] (15.11)

=
∑

{v,w}⊆Vλ⊆V

P[EVλ | λ(v, w) ≥ λ]P[Evw | EVλ ] (15.12)

≥
∑

{v,w}⊆Vλ⊆V

P[EVλ | λ(v, w) ≥ λ](1− n−c) (15.13)

= (1− n−c)
∑

{v,w}⊆Vλ⊆V

P[EVλ | λ(v, w) ≥ λ] (15.14)

= 1− n−c, (15.15)

which is the statement of the lemma.

We argue that any min-hop shortest path in H traverses every level at most twice in
Lemma 15.3, Lemma 15.4 states that each such traversal, w.h.p., only has a logarithmic
number of hops, and Lemma 15.1 asserts that, w.h.p., there are only logarithmically many
levels. Together, this means that min-hop shortest paths in H have O(log2 n) hops w.h.p.
Additionally, our construction limits the stretch of shortest paths in H as compared to
G by (1 + ε̂)Λ+1, i.e., by (1 + ε̂)O(logn) w.h.p.

Theorem 15.5. W.h.p., SPD(H) ∈ O(log2 n) and, for all v, w ∈ V ,

dist(v, w,G) ≤ dist(v, w,H) ≤ (1 + ε̂)O(logn) dist(v, w,G). (15.16)

Proof. Fix a level λ. Any fixed pair of vertices of level λ or higher fulfills, w.h.p., (15.5)
or (15.6) by Lemma 15.4. Since there are at most

(
n
2

)
such pairs, w.h.p., all of them

fulfill (15.5) or (15.6) by Lemma 2.7.
Let Elog denote the event that there is no higher level than Λ ∈ O(log n), which holds

w.h.p. by Lemma 15.1. Furthermore, let Eλ denote the event that all pairs of vertices
of level λ or higher fulfill (15.5) or (15.6), which holds w.h.p. as argued above. Then
E := Elog ∩ E0 ∩ · · · ∩ EΛ holds w.h.p. by Lemma 2.7.

Condition on E . In particular, no min-hop shortest path whose edges all have the
same level has more than O(log n) hops. Consider some min-hop shortest path p in H.
By Lemma 15.3, p has two parts: The edge level is nondecreasing in the first and
nonincreasing in the second part. Hence, p can be split into at most 2Λ − 1 maximal
segments, in each of which all edges have the same level. As this holds for all min-hop
shortest paths, we conclude that SPD(H) ∈ O(Λ log n) ⊆ O(log2 n), as claimed.

As for Inequality (15.16), recall that H is constructed from G = (V,E, ω), and that
G contains a (d, ε̂)-hop set. For all v, w ∈ V , we have

dist(v, w,H) ≤ ωΛ(v, w) ≤ (1 + ε̂)Λ distd(v, w,G) ≤ (1 + ε̂)Λ+1 dist(v, w,G) (15.17)

and dist(v, w,H) ≥ dist(v, w,G) by construction of H. Recalling that Λ ∈ O(log n) and
that we only condition on E , which occurs w.h.p., completes the proof.
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We use Cohen’s construction to obtain a (d, ε̂)-hop set with ε̂ ∈ 1/ polylog n, where
the exponent of the polylog n term is under our control [34]. A sufficiently large exponent
yields

(1 + ε̂)O(logn)
1+x≤ex
⊆ eε̂O(logn) ⊆ e1/polylogn ⊆ 1 + 1/ polylog n, (15.18)

where the last step follows from observing that ex ≤ 1 + eux for all 0 ≤ x ≤ u. This
upper-bounds (15.16) by

dist(v, w,G) ≤ dist(v, w,H) ∈ (1 + 1/polylog n) dist(v, w,G). (15.19)

To sum up: Given a weighted graph G, we augment G with a (d, 1/ polylog n)-hop
set. After that, the d-hop distances in G readily (1 + o(1))-approximate the actual
distances in G, but these approximations may violate the triangle inequality. We fix
this by embedding into H, using geometrically sampled node levels and an exponential
penalty on the edge weights with decreasing levels. The result is that where G preserves
distances exactly and ensures the existence of approximate shortest paths with few hops,
H preserves distances (1 + o(1))-approximately but guarantees that we obtain exact
shortest paths with few hops.

15.2 Decomposing H

The situation is thatH has a polylogarithmic SPD — more precisely, SPD(H) ∈ O(log2 n)
w.h.p. — while at the same time (1 + o(1))-approximating the distances in G. This paves
the way for algorithms of polylog n depth. In order to keep the work under control,
however, recall that explicitly writing H into memory to directly work on it imposes
Ω(n2) work which rules out subquadratic-work algorithms. In particular, this prevents
us from sampling an FRT embedding using near-linear work in m, see Chapter 17.

The idea to fix this is to never explicitly write H —H is uniquely determined by
G and the node levels — and to simulate iterations of an MBF-like algorithm A in H,
using d iterations of A in G instead. As AG, the adjacency matrix of G, only has O(m)
non-∞ entries and hd ∈ polylog n, this maintains our requirement of algorithms with
polylog n depth that still may have a work bounded by Õ(m). To this end, we require a
representation of AH , the adjacency matrix of H, in terms of AG.

For the remainder of this chapter, we keep the notation of AG and AH as adjacency
matrices of G and H, and fix the semiring to be Smin,+. In order to formalize the
decomposition of AH in terms of AG motivated above, recall that by Definition 15.2 we
have

(AH)vw = ωΛ(v, w) = (1 + ε̂)Λ−λ(v,w) distd(v, w,G) = (1 + ε̂)Λ−λ(v,w)(AdG)vw. (15.20)

For a level λ ∈ {0, . . . ,Λ}, denote by Pλ : MV →MV the projection to coordinates of
level λ or higher, i.e., to Vλ := {v ∈ V | λ(v) ≥ λ}:

Pλ(x)v :=

{
xv if λ(v) ≥ λ and

⊥ otherwise.
(15.21)
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Observe that Pλ is an SLF with (Pλ)vw = 0 if v = w ∈ Vλ and (Pλ)vw = ∞ otherwise.
Furthermore, let Aλ be the adjacency matrix AG stretched by a factor of (1 + ε̂)Λ−λ,
corresponding to the stretch imposed on edges of level λ in H:

(Aλ)vw := (1 + ε̂)Λ−λ(AG)vw. (15.22)

This gives us the tools to decompose AH as motivated above.

Lemma 15.6. With the above definitions of Aλ and Pλ, we have

AH =
Λ⊕
λ=0

PλA
d
λPλ. (15.23)

Proof. Since (AdG)vw = distd(v, w,G), we have (Adλ)vw = (1+ ε̂)Λ−λ distd(v, w,G). There-
fore, we get (

AdλPλ

)
vw

= min
u∈V

{
(Adλ)vu + (Pλ)uw

}
(15.24)

=

{
(1 + ε̂)Λ−λ distd(v, w,G) if w ∈ Vλ and

∞ otherwise,
(15.25)

and hence(
PλA

d
λPλ

)
vw

= min
u∈V

{
(Pλ)vu + (AdλPλ)uw

}
(15.26)

=

{
(1 + ε̂)Λ−λ distd(v, w,G) if v, w ∈ Vλ and

∞ otherwise.
(15.27)

We conclude that(
Λ⊕
λ=0

PλA
d
λPλ

)
vw

=
λ(v,w)

min
λ=0

{
(1 + ε̂)Λ−λ distd(v, w,G)

}
(15.28)

= (1 + ε̂)Λ−λ(v,w) distd(v, w,G) (15.29)

= ωΛ(v, w) (15.30)

= (AH)vw.

As the oracle computes Ah(H), i.e, rVAhHx
(0), we use our decomposition of AH to

analyze AhH in that regard. With an efficient implementation in mind, we take the freedom
to apply filters intermediately, which is feasible due to rV ∼ id by Corollary 13.20. It
is important to keep in mind, however, that we do not compute any of these matrix
multiplications explicitly. Instead, we determine (rVAλ)dx using Ad(G), i.e., d iterations
of A in G. Filtering, projection, and aggregation are computed directly. For all h ∈ N0

we have

AhH
(15.23)

=

(
Λ⊕
λ=0

PλA
d
λPλ

)h
(13.39)∼

(
rV

(
Λ⊕
λ=0

Pλ(rVAλ)dPλ

))h
rV (15.31)
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15.3. Implementation

input: A graph G = (V,E, ω) containing a (d, ε̂)-hop set and an MBF-like algorithm A
over Smin,+ with initialization x(0) and h ∈ N0 iterations

output: Ah(H)
1: x(0) ← rV x(0)

2: for i← 1, . . . , h do . h iterations in H
3: for each λ ∈ {0, . . . ,Λ} in parallel do
4: yλ ← Pλx

(i−1) . discard low-level nodes
5: for f ← 1, . . . , d do . d iterations of A in G with stretched edge weights
6: yλ ← rVAλyλ
7: end for
8: yλ ← Pλyλ . discard low-level nodes
9: end for

10: x(i) ← rV
⊕Λ

λ=0 yλ
11: end for
12: return x(h)

Algorithm 15.1: An Oracle for MBF-like Algorithms over Smin,+.

and hence

Ah(H)
(13.18)

= rVAhHx
(0) (13.11),(15.31)

=

(
rV

(
Λ⊕
λ=0

Pλ(rVAλ)dPλ

))h
rV x(0). (15.32)

Observe that we can choose h = SPD(H) ∈ O(log2 n) w.h.p. by Theorem 15.5 and recall
that w.h.p. Λ ∈ O(log n) by Lemma 15.1 and that d ∈ polylog n for an appropriate
hop set [34]. Overall, we obtain hdΛ ∈ polylog n which allows us to determine A(H)
with polylogarithmic depth and Õ(m) work, provided that the individual steps of the
underlying MBF-like algorithm can be implemented at this complexity.

15.3 Implementation

The oracle determines iterations of A in H using iterations in G while only introducing
a polylogarithmic overhead w.r.t. iterations in G. With the decomposition of H from
Lemma 15.6 at hand, we propose Algorithm 15.1 as an implementation of the oracle.
It works as follows. Given a state vector x(i−1) ∈ MV representing the result of the
(i−1)-th iteration, simulate the i-th iteration of A in H for edges of level λ, i.e., determine
yλ := Pλ(rVAλ)dPλx

(i−1) by (1) discarding entries at nodes of a level smaller than λ
(line 4), (2) running d iterations of A with distances stretched by (1 + ε̂)Λ−λ in G,
applying the filter after each iteration (lines 5–7), and (3) again discarding entries at
nodes with levels smaller than λ (line 8). After running this procedure in parallel for
all 0 ≤ λ ≤ Λ, aggregate the results of all levels and apply the node-wise filter, i.e.,
determine x(i) = rV (

⊕Λ
λ=0 yλ) (line 10).

Consider nodes v, w ∈ V . Since (Adλ)vw = (1 + ε̂)Λ−λ distd(v, w,G), the above ap-
proach ensures that we propagate information between nodes v and w with the correct
edge weight in the parallel run for λ = λ(v, w). Furthermore, any exchange between v
and w in any run for λ > λ(v, w) is discarded by Pλ. In a run for λ < λ(v, w), however,
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v and w exchange information. But observe that this information is propagated over
too long a distance because edge weights are scaled by (1 + ε̂)Λ−λ > (1 + ε̂)Λ−λ(v,w).
Hence, the “outdated” information “loses” against the copy that was propagated over the
shorter distance during aggregation. Formally, it is discarded due to the left-distributive
law of semimodules over Smin,+:(

(1 + ε̂)Λ−λ(v,w) � x
)
⊕
(

(1 + ε̂)Λ−λ � x
)

(15.33)

(2.9)
=
(

(1 + ε̂)Λ−λ(v,w) ⊕ (1 + ε̂)Λ−λ
)
� x (15.34)

= min
{

(1 + ε̂)Λ−λ(v,w), (1 + ε̂)Λ−λ
}
� x (15.35)

= (1 + ε̂)Λ−λ(v,w) � x (15.36)

for all semimodules M over Smin,+ and all x ∈M. Therefore, aggregating the results of
all levels (using ⊕) in line 10 and applying rV completes the simulation of an iteration
of A in H.

The efficiency of Algorithm 15.1 crucially depends on directly implementing iterations
of A in G instead of explicitly multiplying matrices (line 6) as well as on the semimodule
M and the filter r used by A. In order to keep Theorem 15.7 general, we do not impose
restrictions onM or r. Hence, the work and depth of the basic operations — determining
rV x(0) from x(0) (line 1), rVAλy from an intermediate state y (line 6), and

⊕Λ
λ=0 yλ from

the individual yλ (line 10) — are parameters of the theorem. Observe that we could use
single-purpose work and depth parameters for determining rV x(0) from x(0) instead of
reusing W and D. This, however, usually is a trivial operation and we do not wish to
obstruct the presentation with further parameters.

Together, we can run any MBF-like algorithm A over Smin,+ in H with only a
polylogarithmic overhead w.r.t. just a single iteration of A in G.

Theorem 15.7 (Oracle). Consider an MBF-like algorithm A using a semimodule M
over the semiring Smin,+, the representative projection r : M→M, and the initialization
x(0) ∈ MV . If we can, for all 1 ≤ f ≤ d, 1 ≤ i ≤ h, and 0 ≤ λ ≤ Λ, where we may
assume Λ ∈ O(log n),

(1) compute rV x(0) from x(0) with depth D and work W (line 1),

(2) determine rVAλy from any intermediate state vector y = (rVAλ)f−1Pλx
(i−1) —

corresponding to the f-th iteration w.r.t. Aλ starting at state x(i−1) — with depth
D and work W (line 6), and

(3) compute rV (
⊕Λ

λ=0 yλ) from the individual yλ = (Pλr
VAdλPλ)x(i−1), 0 ≤ λ ≤ Λ —

reflecting aggregation over all levels to complete a simulated iteration in H — using
depth D⊕ and work W⊕ (line 10),

then we can w.h.p.

(1) determine Ah(H) using O((dW log n+W⊕)h) ⊆ Õ((dW+W⊕)h) work and a depth
of O((dD +D⊕)h) and thus

(2) calculate A(H) using O((dW log n+W⊕) log2 n) ⊆ Õ(dW +W⊕) work and a depth
of O((dD +D⊕) log2 n) ⊆ Õ(dD +D⊕).
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15.3. Implementation

Proof. See Algorithm 15.1. Condition on Λ ∈ O(log n) and SPD(H) ∈ O(log2 n); both
events occur w.h.p. by Lemma 15.1 and Theorem 15.5. By Equation (15.32), we have to
compute

Ah(H) =

(
rV

(
Λ⊕
λ=0

Pλ(rVAλ)dPλ

))h
rV x(0). (15.37)

Concerning Pλ, note that we can evaluate (Pλy)v∈V lazily, i.e., determine whether (Pλy)v
evaluates to ⊥ or to yv only if it is accessed. Thus, the total work and depth required
by Algorithm 15.1 increase by at most a constant factor due to all applications of Pλ.
Together with the prerequisites, this means that (rVAλPλ)y can be determined in O(W )
work and O(D) depth (line 6), and that evaluating Pλ(rVAλ)dPλy sequentially in d
requires O(dW ) work and O(dD) depth (lines 4–8).

The set of summands of
⊕Λ

λ=0 Pλ(rVAλ)dPλy (lines 3–9) can be determined using
O(ΛdW ) work and O(dD) depth, since this is independent for each λ. Performing the
aggregation applying the filter (line 10) is possible in D⊕ depth and W⊕ work by as-
sumption. We arrive at O(ΛdW + W⊕) work and O(dD + D⊕) depth for determining
x(i) = rV

⊕Λ
λ=0 Pλ(rVAλ)dPλx

(i−1) from x(i−1).
Sequentially iterating this h times to determine Ah(H) (lines 2–11) increases work

and depth by a factor of h, yielding O((ΛdW +W⊕)h) work and O((dD+D⊕)h) depth.
Computing rV x(0) (line 1) requires work W and depth D by the prerequisites and does
not change the asymptotic complexity accumulated so far. Due to Λ ∈ O(log n) and we
arrive at O((dW log n+W⊕)h) work and O((dD+D⊕)h) depth, which is the first claim;
SPD(H) ∈ O(log2 n) yields the second claim. As we only condition on two events that
occur w.h.p., this concludes the proof by Lemma 2.7.

Recall that the motivation for the oracle are subquadratic-work algorithms of poly-
logarithmic depth that guarantee consistency with the triangle inequality. Specifically,
subquadratic refers to near-linear work in m in Chapter 17. Observe that m is not among
the parameters of Theorem 15.7 because it is “hidden” in D, W , D⊕, and W⊕, the depth
and work required for iterations in G and aggregating their results.

Chapter 16 contains a straightforward application of Theorem 15.7 that demonstrates
the usage of the oracle and may serve as example.
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CHAPTER 16

Parallel Approximate Metrics

Our oracle for MBF-like queries from Chapter 15 permits the efficient simulation of
MBF-like algorithms in a graph H, which (1 + o(1))-approximates distances in G. The
entire simulation only has polylogarithmic overhead w.r.t. a single iteration inG, provided
that we first add an appropriate hop set to G. Querying the oracle with the MBF-like
algorithm APSP — see Example 14.6 — hence yields a (1 + o(1))-approximate metric of
dist(·, ·, G) w.r.t. Definition 12.2; note that respecting the triangle inequality is critical
for this problem.

Determining the hop set and querying the oracle with APSP together requires poly-
logarithmic depth and Õ(nm+n2+ε) work, compare Corollary 16.6. In sparse graphs, this
is much more work-efficient than the naive approach using O(n3 log n) work — squaring
the adjacency matrix dlog2 ne times — for obtaining dist(·, ·, G) exactly.

Instead of APSP, however, we use MSSP below. MSSP determines dist(s, v,G) for all
s ∈ S and v ∈ V , where S ⊆ V is a designated set of source nodes, compare Example 14.7.
This is a slight generalization of APSP — APSP is MSSP with S = V — that gives us
the flexibility to compute the submetric spanned by S. It helps, however, to keep APSP
and S = V in mind.

Carefully note that we do not reproduce existing distance approximations using hop
sets. Although we approximate distances, we require them to form an approximate metric
of dist(·, ·, G) in the sense of Definition 12.2.

In Theorem 16.1, we formulate the result motivated above independently from a
concrete hop-set algorithm. We plug in Cohen’s hop set [34] in Theorem 16.2 to obtain
specific guarantees.

Theorem 16.1 (Approximate Multi-Source Shortest Paths). Let G = (V,E, ω) be a
weighted graph that contains a (d, ε̂)-hop set and let S ⊆ V be a set of source nodes. We
can w.h.p. compute A ∈ (R≥0 ∪ {∞})S×V such that:

(1) (Asv)s∈S,v∈V is a subset of the pairwise distances of a (1 + ε̂)O(logn)-approximate
metric of dist(·, ·, G).

(2) In particular, (Ast)s,t∈S is a (1 + ε̂)O(logn)-approximate submetric of dist(·, ·, G).

The computation is possible using Õ(|S|dm) work and Õ(d) depth.

Proof. MSSP with source nodes S, see Example 14.7, is an MBF-like algorithm with

at most |S| non-∞ entries in all intermediate node state x
(i)
v . Hence, an iteration of

MSSP incurs O(log n) depth and O(δv|S| log n) work at node v— where δv is the degree
of v— by Lemma 13.3. As this can be done in parallel for all v ∈ V , an entire iteration
is possible using

D ∈ O(log n) (16.1)
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depth and

W ∈ O

(∑
v∈V

δv|S| log n

)
= O(|S|m log n) ⊆ Õ(|S|m) (16.2)

work. Filtering only initially removes all non-S entries from x(0) and after that remains
without effect. So it does not increase the above asymptotic bounds on depth and work.
Aggregation over Λ ∈ O(log n) vectors, i.e., determining

⊕Λ
λ=0 yλ for yλ ∈ D, takes

O(log n) depth and a work of O(Λ|S| log n) = O(|S| log2 n) per node by Lemma 13.3.
This can be done in parallel for all vertices, resulting in

D⊕ ∈ O(log n) (16.3)

depth and
W⊕ ∈ O

(
|S|n log2 n

)
⊆ Õ (|S|n) (16.4)

work. By Theorem 15.7, we can w.h.p. simulate SPD(H) iterations of MSSP in H using
Õ(dD +D⊕) ⊆ Õ(d) depth and Õ(dW +W⊕) ⊆ Õ(|S|dm) work, as claimed.

It remains to show that we determine a subset of the distances from a (1 + ε̂)O(logn)-
approximate metric of dist(·, ·, G). To this end, observe that we determine a subset of
dist(·, ·, H) by Theorem 15.7, which is a metric and, by Theorem 15.5, (1 + ε̂)O(logn)-
approximates dist(·, ·, G).

The next step is to plug Cohen’s hop-set algorithm [34] into Theorem 16.1 to obtain
(a subset of the distances of) a (1 + o(1))-approximate metric of dist(·, ·, G) as promised
above.

Theorem 16.2 ((1+o(1))-Approximate Multi-Source Shortest Paths). Given a weighted
graph G = (V,E, ω), a constant 0 < ε ≤ 1

2 , and a set of source nodes S ⊆ V , we can
w.h.p. compute A ∈ (R≥0 ∪ {∞})S×V such that:

(1) (Asv)s∈S,v∈V is a subset of the pairwise distances of a (1+1/ polylog n)-approximate
metric of dist(·, ·, G).

(2) In particular, (Ast)s,t∈S is a (1+1/polylog n)-approximate submetric of dist(·, ·, G).

The computation takes Õ(|S|(m+ n1+ε) +m1+ε) work and polylog n depth.

Proof. W.h.p. augment G with a (d, 1/ polylog n)-hop set using Õ(m1+ε) work and
polylog n depth with d ∈ polylog n using Cohen’s hop-set construction [34]. The re-
sulting graph G′ = (V,E′, ω′) has m′ := |E′| ∈ Õ(m + n1+ε) edges, where E ⊆ E′ and
ω′(e) = ω(e) for all e ∈ E.

Applying Theorem 16.1 to G′ yields an additional Õ(d) depth and Õ(|S|dm′) work.
Together with the hop-set construction, we obtain polylog n depth and

Õ
(
|S|dm′ +m1+ε

)
⊆ Õ

(
|S|
(
m+ n1+ε

)
+m1+ε

)
(16.5)

work as claimed.
The determined distances are from an approximate metric by Theorem 16.1. Using

Theorem 15.5 and Equation (15.19), it follows that the metric w.h.p. (1 + 1/polylog n)-
approximates dist(·, ·, G) as claimed.
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With the sparsifier of Baswana and Sen [10], we obtain a different work–approximation
trade-off, see Theorem 16.4. In fact, we are near-optimal in terms of work, due to the
trivial lower bound of Ω(|S|n) for writing down the result of MSSP. Before fleshing out
the theorem, however, we state the properties of the sparsifier of Baswana and Sen in
our model of computation.

Given an integer k ∈ N, Baswana and Sen [10] show how to compute a (2k − 1)-
spanner of G = (V,E, ω), i.e., ES ⊆ E such that GS := (V,ES , ω) fulfills, for all v, w ∈ V ,

dist(v, w,G) ≤ dist(v, w,GS) ≤ (2k − 1) dist(v, w,G). (16.6)

In expectation, we obtain |ES | ∈ O(kn1+1/k). We summarize the original paper [10] with
the help of Appendix A of Becker et al. [12].

The algorithm works in k iterations and maintains a clustering of the nodes. In order
to assess the depth and work of the algorithm, observe that the bulk of the algorithm
happens at the nodes: In each iteration, each cluster is marked with probability n−1/k and
all nodes in unmarked clusters (1) ignore, for each incident cluster, all but the cheapest
edge leading into that cluster, (2) sort the remaining edges by weight, and (3) add the
lightest ` of these edges, where the `-th edge is the first that is incident to a marked
cluster, to ES and join the corresponding cluster (if there is no incident marked cluster,
all remaining edges are added to ES and the node remains inactive in future iterations).

For a node v ∈ V of degree δv, the above procedure can be implemented by the
following steps, each of which is possible using O(log n) depth and O(δv log n) work:
(1) sort cluster–edge pairs lexicographically, (2) discard all tuples that have a predecessor
in the same cluster, (3) sort the remaining edges by weight, (4) find the index ` of the first
edge leading to a marked cluster, and (5) mark the first ` edges as part of ES . Hence, we
obtain O(log n) depth and O(m log n) work per iteration for all nodes, i.e., Õ(k) depth and
Õ(km) work in total. Baswana and Sen argue that |ES | ∈ O(kn1+1/k) in expectation [10],
it is, however, not hard to show that |ES | ∈ O(kn1+1/k log n) ⊆ Õ(kn1+1/k) w.h.p. [12].

Observation 16.3. W.l.o.g., we have k ∈ O(log n) because for k ≥ log2 n, both the
stretch and the spanner’s number of edges |ES | grows due to kn1/k = k2log2 n/k > k.

We use the spanner of Baswana and Sen [10] to offer an alternative version of Theo-
rem 16.2, essentially reducing the work at the expense of a constant factor regarding the
stretch. The result is a constant-factor approximation of MSSP. Note that this result
is near-optimal in terms of work due to the trivial lower bound of Ω(|S|n) for writing
down the solution.

Theorem 16.4 (O(1)-Approximate Multi-Source Shortest Paths). Given a weighted
graph G = (V,E, ω), a constant 0 < ε ≤ 5

4 , and a set of source nodes S ⊆ V , we can
w.h.p. compute A ∈ (R≥0 ∪ {∞})S×V such that:

(1) (Asv)s∈S,v∈V is a subset of the pairwise distances of an O(1)-approximate metric
of dist(·, ·, G).

(2) In particular, (Ast)s,t∈S is an O(1)-approximate submetric of dist(·, ·, G).

The computation takes Õ(|S|n1+ε +m) work and polylog n depth.
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Proof. Choose ε′ :=
√

1 + ε − 1 and k := dε′−1e. We first compute a (2k − 1)-spanner
GS of G and then apply Theorem 16.2 to GS . The details are as follows.

(1) Compute a (2k − 1)-spanner GS = (V,ES , ω) of G. As detailed above and due
to Observation 16.3, GS can be determined using Õ(k) ⊆ polylog n depth and
Õ(km) ⊆ Õ(m) work, i.e., within the stated bounds. In particular, this w.h.p.
yields |ES | ∈ Õ(n1+1/k) ⊆ Õ(n1+ε′) edges and a stretch that is constant in n
and m.

(2) Apply Theorem 16.2 to GS and ε′, observing that

0 < ε′ =
√

1 + ε− 1 ≤
√

9

4
− 1 =

1

2
, (16.7)

as required. This w.h.p. incurs polylog n depth and a work of

Õ
(
|S|
(
|ES |+ n1+ε′

)
+ |ES |1+ε′

)
= Õ

(
|S|
(
n1+ε′ + n1+ε′

)
+ n(1+ε′)2

)
(16.8)

= Õ
(
|S|n1+ε′ + n1+ε

)
(16.9)

⊆ Õ
(
|S|n1+ε

)
. (16.10)

Together, we obtain a depth of polylog n and Õ(|S|n1+ε +m) work. By construction, we
compute distances in a metric that has a stretch of (2k − 1)(1 + o(1)) ⊆ O(ε−1), i.e., is
constant w.r.t. n and m.

As a last step, observe that the above results allow us to compute (1 + o(1))- as well
as O(1)-approximate submetrics and metrics of dist(·, ·, G). To obtain an approximate
submetric of

distS : S × S → R≥0 ∪ {∞} (16.11)

distS(s, t) := dist(s, t,G), (16.12)

simply ignore the computed s-v-distances for all v ∈ V \ S. For determining an approxi-
mate metric of distV choose S = V , turning MSSP into APSP.

Corollary 16.5 (Approximate Submetric). Let G = (V,E, ω) be a weighted graph and
S ⊆ V be a set of source nodes. We can w.h.p. compute a

(1) (1+1/polylog n)-approximate metric of distS, using Õ(|S|(m+n1+ε)+m1+ε) work
and polylog n depth, where 0 < ε ≤ 1

2 is an arbitrary constant, and

(2) O(1)-approximate metric of distS, using Õ(|S|n1+ε +m) work and polylog n depth,
where 0 < ε ≤ 5

4 is an arbitrary constant.

In both cases, the resulting metric is represented as a matrix in (R≥0 ∪ {∞})S×S, i.e.,
offers constant-time query access.

Proof. Follows from Theorems 16.2 and 16.4 by restricting the output to (Ast)s,t∈S .
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Corollary 16.6 (Approximate Metric). Let G = (V,E, ω) be a weighted graph. Then
we can w.h.p. compute a

(1) (1 + 1/polylog n)-approximate metric of dist(·, ·, G), using Õ(n(m+ n1+ε)) work
and polylog n depth, where 0 < ε ≤ 1

2 is an arbitrary constant, and

(2) O(1)-approximate metric of dist(·, ·, G), using Õ(n2+ε) work and polylog n depth,
where 0 < ε ≤ 5

4 is an arbitrary constant.

In both cases, the resulting metric is represented as a matrix in (R≥0 ∪ {∞})V×V , i.e.,
offers constant-time query access.

Proof. Follows from plugging S = V in Corollary 16.5 and observing that in the first
claim m1+ε ≤ m3/2 ≤ nm.

Blelloch et al. show how to construct an FRT tree from a metric using O(n2) work and
O(log2 n) depth [21]. Combining this with Corollary 16.6 enables us to w.h.p. construct an
FRT tree from a graph G using polylogarithmic depth and Õ(n2+ε) work, which already
improves upon the state of the art. While this does not yield the same FRT tree as
when directly embedding G since we “embed an approximation of dist(·, ·, G),” it has the
same expected asymptotic stretch of O(log n) due to the constant-factor approximation
provided by Corollary 16.6. This can, however, be done more efficiently in sparse graphs:
Constructing FRT trees is an MBF-like algorithm and solving the problem using the
oracle reduces the work to Õ(m1+ε), alternatively to Õ(m + n1+ε) at the expense of
increasing the stretch by a factor of O(ε−1); we discuss this in Chapter 17.
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CHAPTER 17

Parallel FRT Embeddings

This chapter develops our main result (Theorem 17.11, Corollary 17.12, and Corol-
lary 17.13): Given a weighted graph G, we can w.h.p. sample a tree embedding of G with
expected stretch O(log n) using polylog n depth and Õ(m1+ε) work, where 0 < ε ≤ 1

2 is
an arbitrary constant. This brings our work close to the sequential state of the art, the
algorithm of Blelloch et al. which w.h.p. requires O(m log n) time [20]. We do this by
sampling an FRT tree [50] in H. Alternatively, we can reduce the work to Õ(m+n1+ε) at
the expense of an expected stretch of O(ε−1 log n) for any 0 < ε ≤ 5

4 using the sparsifier
of Baswana and Sen [10].

As discussed in Chapter 16, we can use Corollary 16.6 to explicitly construct a
metric that O(1)-approximates dist(·, ·, G) using polylogarithmic depth and Õ(n2+ε)
work; sampling an FRT tree on that metric is possible within the same bounds of work
and depth, as demonstrated by Blelloch et al. [21]. The challenge is to reduce the work to
Õ(m1+ε). To this end, we show that we can collect the information required to construct
an FRT tree — the LE lists of H — with an MBF-like algorithm. This algorithm serves as
a query that can be directly answered by the oracle (Theorem 15.7) instead of taking the
detour of explicitly determining an approximate metric. A single iteration of collecting
LE lists has polylog n depth and Õ(m) work w.h.p. The oracle can simulate the entire
algorithm in H with only a polylogarithmic overhead w.r.t. one such iteration. Since
dist(·, ·, H) is a (1 + o(1))-approximation of dist(·, ·, G), we only need to add Cohen’s
hop set [34] to G to achieve our result.

We give a formal definition of metric embeddings in general and the FRT embedding
in particular in Section 17.1, proceed to show that the underlying algorithm is MBF-like
and that all intermediate steps are sufficiently efficient in terms of depth and work in
Sections 17.2 and Section 17.3, and present our main result in Section 17.4. Section 17.5
describes how to retrieve the original paths in G that correspond to the edges of the
sampled FRT tree and in Section 17.6 we discuss how to construct a tree embedding
without Steiner nodes that guarantees the same asymptotic stretch.

17.1 FRT Embeddings from LE Lists

We use this section to introduce the random distribution over metric tree embeddings
of Fakcharoenphol, Rao, and Talwar (FRT), which has expected stretch O(log n) [50].
Furthermore, we introduce LE lists and show that computing them directly yields an
FRT tree. This establishes the efficient computation of LE lists as the main objective
for the remaining part of this chapter. We begin with a formal definition of metric
embeddings.
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Definition 17.1 (Metric Embedding). Let G = (V,E, ω) be a graph. A metric embed-
ding of G is a graph G′ = (V ′, E′, ω′) such that V ⊆ V ′ and

∀v, w ∈ V : dist(v, w,G) ≤ dist(v, w,G′) ≤ α dist(v, w,G), (17.1)

where α ∈ R≥1 is referred to as stretch. If G′ is a tree, we refer to it as metric tree
embedding. For a random distribution of metric embeddings, we require dist(v, w,G) ≤
dist(v, w,G′) and define the expected stretch as

α := max
v 6=w∈V

E

[
dist(v, w,G′)

dist(v, w,G)

]
. (17.2)

We continue with an introduction to the FRT embedding. For a full description, we
refer to the original paper [50]; as an alternative summary, which focuses on LE lists and
is thus closer to our perspective, we recommend Ghaffari and Lenzen [65]. Informally,
the idea behind FRT trees, compare Figure 17.1, is the following. Consider a graph
G = (V,E, ω) and one of its vertices v ∈ V . Furthermore, fix some order of the vertices;
in the context of such an order, we write v ≤ w (v < w) if v is ordered (strictly) before w.
Begin with a ball around v, starting at a radius so small that it only contains v. Iteratively
double the ball’s radius until it spans the entire graph; we demonstrate this for all nodes
in Figure 17.1(b). For each iteration, consider the minimum vertex in the corresponding
ball around v. Initially this is v, however, the minimum vertex changes with increasing
radius. Eventually, the minimum is minV ; this must happen at the latest when the
ball around v contains all vertices. We obtain a sequence v = v0, . . . , vk = minV . That
sequence is a leaf in the FRT tree and we identify it with v. The parent of the leaf
is obtained by discarding the first item of the sequence, its grandparent by discarding
the first two, its great-grandparent by discarding the first three, and so on, compare
Figure 17.1(c). The last item of every sequence is minV which is the root of the FRT
tree. Accounting for the exponential growth of the balls with exponentially increasing
edge weights, this completes the construction of the FRT tree. Observe that each v ∈ V
is associated with one and only one leaf in the tree.

Formally, consider a graph G = (V,E, ω), a real number 1 ≤ β < 2, and an order of V .
Denote by ωmin := min{ω(e) | e ∈ E} and ωmax := max{ω(e) | e ∈ E} the minimum and
maximum edge weight, respectively. Let B(v, r) := {w ∈ V | dist(v, w,G) ≤ r} denote
the ball of radius r around v ∈ V . For v ∈ V , define the sequence (v0, . . . , vk) by

(vi)i∈{0,...,k} := min B
(
v, 2i−1β ωmin

)
, (17.3)

choosing

k := 1 +

⌈
log2

maxv∈V dist(v,minV,G)

β ωmin

⌉
. (17.4)

Observe that the radii are chosen such that, for all v ∈ V , we have v0 = v and vk = minV ,
because, due to β/2 < 1,

20−1β ωmin < ωmin and (17.5)

2k−1β ωmin ≥ max
v∈V

dist(v,minV,G). (17.6)

136



17.1. FRT Embeddings from LE Lists

v1

v2

v3

v4

v5

v6

4

1

7

1

1

2

3

1

(a) A weighted graph G = (V,E, ω) with ωmin = 1 and maxv∈V dist(v, v1, G) = 5,
resulting in k = 3 for β = 1.5.

i 0 1 2 3
2i−1β ωmin 0.75 1.5 3 6

B(v1, 2
i−1β ωmin) {v1} {v1, v3} {v1, v3, v5} {v1, v2, v3, v4, v5, v6}

B(v2, 2
i−1β ωmin) {v2} {v2, v4, v5} {v2, v3, v4, v5, v6} {v1, v2, v3, v4, v5, v6}

B(v3, 2
i−1β ωmin) {v3} {v1, v3} {v1, v2, v3, v5, v6} {v1, v2, v3, v4, v5, v6}

B(v4, 2
i−1β ωmin) {v4} {v2, v4} {v2, v4, v5, v6} {v1, v2, v3, v4, v5, v6}

B(v5, 2
i−1β ωmin) {v5} {v2, v5, v6} {v1, v2, v3, v4, v5, v6} {v1, v2, v3, v4, v5, v6}

B(v6, 2
i−1β ωmin) {v6} {v5, v6} {v2, v3, v4, v5, v6} {v1, v2, v3, v4, v5, v6}

(b) Exponentially growing balls around the vertices of G with β = 1.5.

(v1, v1, v1, v1)︸ ︷︷ ︸
=̂v1

(v3, v1, v1, v1)︸ ︷︷ ︸
=̂v3

(v5, v2, v1, v1)︸ ︷︷ ︸
=̂v5

(v2, v2, v2, v1)︸ ︷︷ ︸
=̂v2

(v4, v2, v2, v1)︸ ︷︷ ︸
=̂v4

(v6, v5, v2, v1)︸ ︷︷ ︸
=̂v6

(v1, v1, v1) (v2, v1, v1) (v2, v2, v1) (v5, v2, v1)

(v1, v1) (v2, v1)

(v1)

33 3 3 3 3

6 6 6 6

12 12

(c) The resulting FRT tree.

Figure 17.1: We construct the FRT tree of the graph G in (a) w.r.t. the node order
v1 < · · · < v6 and β = 1.5. The exponentially growing balls around each vertex are given
in (b). The minima (underlined) in the balls around vi determine a sequence of nodes;
discarding the first element yields the parent in the corresponding FRT tree (c).
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As maxv∈V dist(v,minV,G) is bounded from above by nωmax and ωmax /ωmin ∈ poly n
by assumption, we obtain

k ∈ O(log n). (17.7)

With the terminology in place, we proceed to a formal definition FRT trees, embeddings,
and distributions.

Definition 17.2 (FRT Tree, Embedding, and Distribution [50]). Let G = (V,E, ω) be
a graph and 1 ≤ β < 2 a real number. Fix an order on V . The Fakcharoenphol, Rao,
and Talwar (FRT) tree of G w.r.t. β and the node order is T := (VT , ET , ωT ) with

VT := {(vi, . . . , vk) | v ∈ V, 0 ≤ i ≤ k} , (17.8)

ET := {{(vi, vi+1, . . . , vk), (vi+1, . . . , vk)} | v ∈ V, 0 ≤ i < k} , and (17.9)

ωT ({(vi, vi+1, . . . , vk), (vi+1, . . . , vk)}) := 2i+1β ωmin (17.10)

for k from Equation (17.4). When identifying each v ∈ V with (v0, . . . , vk), T is a metric
tree embedding of G, referred to as FRT embedding. The random distribution of FRT
trees w.r.t. G defined by choosing uniformly at random 1 ≤ β < 2 and, also uniformly at
random, a permutation of V as node order is referred to as the FRT distribution.

Remark 17.3. Fakcharoenphol et al. in the conference version of [50], Khan et al. [81],
and Ghaffari and Lenzen [65] choose 1 ≤ β < 2 uniformly at random. In the journal
version, however, Fakcharoenphol et al. [50] choose 1 ≤ β ≤ 2 randomly w.r.t. the
probability density function p(x) = 1

x ln 2 . This choice does not have an impact on the
expected asymptotic stretch of the FRT distribution. As the random distribution for β can
be easily adapted in our algorithms and for the sake of presentation, we only explicitly
state the option of choosing β uniformly at random in the following.

For an arbitrary graph G, the FRT distribution has expected stretch O(log n) [50].
Bartal established that this expected stretch is asymptotically optimal [8].

The FRT embedding critically depends on the subtractive form of the triangle in-
equality, compare the reasoning leading up to Theorem 2 of Fakcharoenphol et al. [50].
Hence, as detailed in Chapter 15, we need the oracle — Theorem 15.7 — to sample from
the FRT distribution in only polylogarithmic depth, as we cannot afford the computation
of exact distances. More precisely, we sample from the FRT distribution for the graph
H introduced in Chapter 15 instead of G. Since H is an embedding of G with a stretch
of 1 + o(1), we w.h.p. obtain a tree embedding of G that has an expected stretch in
(1 + o(1)) O(log n) = O(log n).

In order to apply the oracle, we need to show that the information required to sample
from the FRT distribution can be obtained by an MBF-like algorithm over Smin,+. To this
end, we employ the approach of Khan et al., who use LE lists as a suitable representation
for sampling an FRT tree [81]. Given a graph G = (V,E, ω) and a node order, the Least
Element (LE) list — a concept first introduced by Cohen [33] — of v ∈ V is

{(w,dist(v, w,G)) | w ∈ V,w = min B (v,dist(v, w,G))} . (17.11)

Essentially, v learns, for every distance d, the smallest node within distance at most d,
i.e., min{w ∈ V | dist(v, w,G) ≤ d}.
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input: A graph G = (V,E, ω)
output: An FRT tree of G

1: sample 1 ≤ β < 2 uniformly at random
2: sample a node order uniformly at random
3: for each v ∈ V do
4: Lv ← LE list of v
5: determine ancestors (v0, v1, v2, . . . , vk), (v1, v2, . . . , vk), . . . , (vk) of v from Lv
6: end for
7: return FRT tree assembled from individual ancestor lists

Algorithm 17.1: FRT embedding via LE lists, adapted from Khan et al. [81].

Observe that the FRT tree is uniquely determined by the LE lists and β. The LE list
of v allows the easy recovery of min B(v, r) for any radius r. Regarding the FRT tree,
we require that information for a small set of radii, i.e., the k + 1 exponentially growing
radii used in Equation (17.3).

In a nutshell, Khan et al. demonstrate that an FRT tree can be sampled by using the
high-level approach outlined in Algorithm 17.1: (1) Sample β and a random node order,
(2) determine the according LE lists, and (3) construct the resulting FRT tree [81]. We
follow the same overall approach. Khan et al. w.h.p. need O(SPD(G) log n) rounds in
the CONGEST model1 to determine the exact distances in G needed for the LE lists.
Ω(SPD(G)) rounds imply Ω(SPD(G)) depth in our model of computation, which is a
problem as SPD(G) = n− 1 is possible. Hence, as motivated above, we circumnavigate
the obstacle by instead using the graph H with SPD(H) ∈ O(log2 n) via the oracle
(Theorem 15.7). To this end, we show that the computation of LE lists is an MBF-like
algorithm over Smin,+ that w.h.p. requires polylog n depth and Õ(m) work per iteration.

Showing that determining LE lists is an efficient MBF-like algorithm is the main
part of this chapter. However, we also need to show that constructing the FRT tree from
the individual LE lists — lines 5 and 7 of Algorithm 17.1 — is straightforward if the LE
lists are not too long. The assumption of short LE lists holds w.h.p., which we establish
in Section 17.3.

Lemma 17.4. Given LE lists of length O(log n) for all vertices, the corresponding FRT
tree can be determined using O(n log3 n) work and O(log2 n) depth.

Proof. Determining ωmin and k is straightforward at this complexity, as is sorting of
each node’s LE list in ascending order w.r.t. distance. Note that, in each resulting list
of node–distance pairs, the nodes are strictly decreasing in terms of the random node
order and that each list ends with an entry for the minimal node minV .

For each node v and entry (dist(v, w,G), w) in its list in parallel, we determine the
values of i ∈ {0, . . . , k} such that w = min B(v, 2i−1β ωmin) is the smallest node within
distance 2i−1β ωmin of v. This is done by reading the distance value d′ of the next entry
of the list — using d′ =∞ if (dist(v, w,G), w) is the last entry — and writing to memory

1The logn factor is owed to the CONGEST model. LE lists contain O(logn) elements w.h.p., each
of O(logn) bits, as they contain a node ID. Hence, it takes O(logn) rounds in the CONGEST model to
communicate an LE list to a neighboring node.
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vi := w for each i satisfying that dist(v, w,G) ≤ 2i−1β ωmin < d′. By Equation (17.7),
this has depth O(log n). The total work is O(n log2 n).

Observe that the above procedure yields the sequence (v0, . . . , vk) for each v ∈ V ,
i.e., the leafs of the FRT tree. Recall that the ancestors of (v0, . . . , vk) are determined
by its k suffixes. It remains to remove duplicates wherever nodes share a parent. To
this end, we sort the list of (k + 1)n ∈ O(n log n) suffixes — each with O(log n) entries —
lexicographically, requiring O(n log3 n) work and depth O(log2 n), as comparing two
suffixes requires depth and work O(log n). Then duplicates can be removed by comparing
each key to its successor in the sorted sequence, taking another O(n log2 n) work and
O(log n) depth. Overall, we spend O(n log3 n) work at O(log2 n) depth, as claimed.

Note that tree edges and their weights are encoded implicitly: The parent of each
node is given by removing the first node from the sequence, the level of a node is given
by the length of the sequence representing it, and the weight of the according edge is
uniquely determined by the node levels, β and ωmin. If required, it is thus trivial to
determine, e.g., an adjacency list within the work and depth stated in Lemma 17.4.

17.2 Computing LE Lists is MBF-like

Picking β (line 1 of Algorithm 17.1) is trivial. Furthermore, it is a well-known fact [65, 81]
that choosing a random order of the nodes (line 2 of Algorithm 17.1) can be done w.h.p.
by assigning to each node a string of O(log n) uniformly and independently chosen
random bits. Hence, in the following, we assume these steps to be completed, resulting
in a total order of the vertices. It remains to show how to efficiently compute LE lists.

We establish that LE lists can be computed by an MBF-like algorithm, see Chap-
ter 13, using the parameters in Definition 17.5. To this end, we need to show that
Equations (17.12) and (17.13) define a representative projection and a congruence rela-
tion, which we do in Lemma 17.7.

Definition 17.5. For constructing LE lists, use the semiring S = Smin,+ and the distance
map M = D from Definition 13.1 as zero-preserving semimodule. For all x ∈ D, define

r(x)v :=

{
∞ ∃w < v : xw ≤ xv and

xv otherwise, and
(17.12)

x ∼ y :⇔ r(x) = r(y) (17.13)

as representative projection and congruence relation, respectively. We use x(0) ∈ DV with

x(0)
vw :=

{
0 if v = w and

∞ otherwise
(17.14)

as initialization.

Hence, r(x) is the LE list of v ∈ V if xw = dist(v, w,G) for all w ∈ V . We say that
a node–distance pair (v, d) dominates (v′, d′) if and only if v < v′ and d ≤ d′; in the
context of x ∈ D, we say that xw dominates xv if and only if (w, xw) dominates (v, xv).
The filter in Equation (17.12) discards exactly the dominated entries in x.
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We prepare the proof that LE lists can be retrieved by an MBF-like algorithm with
the following lemma. It states that filtering keeps the relevant information: If a node–
distance pair is dominated by an entry in a distance map, the filtered distance map also
contains a — possibly different — dominating entry.

Lemma 17.6. Let x, y ∈ D, v ∈ V , and s ∈ R≥0 ∪ {∞} be arbitrary. Then

∃w < v : xw ≤ s ⇔ ∃w < v : r(x)w ≤ s (17.15)

Proof. Observe that the necessity “⇐” is trivial. As for sufficiency “⇒,” suppose that
there is w < v such that xw ≤ s. If r(x)w = xw, we are done. Otherwise, there must be
some u < w < v satisfying xu ≤ xw ≤ s by definition of r, i.e., some xu dominating xw.
Since |V | is finite and domination induces a partial order, an inductive repetition of the
argument reveals that there is some w′ < v with r(x)w′ = xw′ ≤ s.

Equipped with this lemma, we can prove that ∼ is a congruence relation on D with
representative projection r.

Lemma 17.7. The equivalence relation ∼ from Equation (17.13) is a congruence relation
and r from Equation (17.12) is a representative projection w.r.t. ∼.

Proof. Trivially, r is a projection, i.e., r2(x) = r(x) for all x ∈ D. By Lemma 13.8, it
hence suffices to show that (13.12) and (13.13) hold, which we show in one step each.
To this end, let v ∈ V as well as s ∈ Smin,+ be arbitrary and x, x′, y, y′ ∈ D such that
r(x) = r(x′) and r(y) = r(y′) throughout the proof.

(1) Concerning (13.12), observe that, trivially,

∃w < v : xw ≤ xv ⇔ ∃w < v : s+ xw ≤ s+ xv. (17.16)

Hence, we have r(sx) = sr(x) and it follows that r(sx) = sr(x) = sr(x′) = r(sx′).

(2) Regarding (13.13), we show that

r(x⊕ y) = r(r(x)⊕ r(y)) (17.17)

which implies (13.13) due to r(x⊕y) = r(r(x)⊕r(y)) = r(r(x′)⊕r(y′)) = r(x′⊕y′).
First observe that (x⊕ y)v is dominated if and only if

∃w < v : (x⊕ y)w ≤ (x⊕ y)v (17.18)

⇔ ∃w < v : min{xw, yw} ≤ (x⊕ y)v (17.19)

⇔ ∃w < v : xw ≤ (x⊕ y)v ∨ yw ≤ (x⊕ y)v (17.20)

(17.15)⇔ ∃w < v : r(x)w ≤ (x⊕ y)v ∨ r(y)w ≤ (x⊕ y)v (17.21)

⇔ ∃w < v : min{r(x)w, r(y)w} ≤ (x⊕ y)v (17.22)

⇔ ∃w < v : (r(x)⊕ r(y))w ≤ (x⊕ y)v. (17.23)

In order to show (17.17), we distinguish two cases.
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Case 1 If (x ⊕ y)v is dominated, we obtain r(x ⊕ y)v = ∞ by definition of r.
Additionally, we know that

(r(x)⊕ r(y))v = min{r(x)v, r(y)v} ≥ min{xv, yv} = (x⊕ y)v. (17.24)

Hence, (r(x) ⊕ r(y))v must be dominated due to (17.23). We conclude that
r(r(x)⊕ r(y))v =∞ = r(x⊕ y)v.

Case 2 If (x⊕ y)v is not dominated, suppose w.l.o.g. that xv ≤ yv; the other case
is symmetric. We obtain

r(x⊕ y)v = (x⊕ y)v = xv. (17.25)

Furthermore, the negation of (17.23) holds, i.e.,

∀w < v : (x⊕ y)v < (r(x)⊕ r(y))w, (17.26)

and we conclude

∀w < v : xv
(17.25)

= (x⊕ y)v
(17.26)
< (r(x)⊕ r(y))w ≤ r(x)w. (17.27)

Plugging ∀w < v : xv < r(x)w into Equation (17.15), flipping the quantifier
and using s = xv, yields

∀w < v : xv < r(x)w
(17.15)⇔ ∀w < v : xv < xw︸ ︷︷ ︸

xv is not dominated

⇔ xv = r(x)v, (17.28)

where the last step follows from recalling that r discards exactly the entries
that are dominated. Next, observe that

(r(x)⊕ r(y))v = min{r(x)v, r(y)v}
(17.28)

= min{xv, r(y)v} = xv; (17.29)

the last step follows from r(y)v ≥ yv and our initial assumption that w.l.o.g.
xv ≤ yv. This yields

∀w < v : (r(x)⊕ r(y))v
(17.29)

= xv
(17.25)

= (x⊕y)v
(17.26)
< (r(x)⊕ r(y))w. (17.30)

In particular, (r(x) ⊕ r(y))v is not dominated. Hence, r does not discard it
and we obtain

r(r(x)⊕ r(y))v = (r(x)⊕ r(y))v
(17.29)

= xv
(17.25)

= r(x⊕ y)v. (17.31)

As v is arbitrary, this concludes the case.

The case distinction establishes that Equation (17.17) holds which, as argued above,
implies (13.13).

Together, the claim follows.

Having established that LE lists can be determined by an MBF-like algorithm allows
us to apply the machinery developed in Chapters 13 and 15. Next, we establish that
LE-list computations can be performed efficiently, which we show by bounding the length
of LE lists.
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17.3 Computing LE Lists is Efficient

Our course of action is to use the oracle theorem — Theorem 15.7 — for an efficient
computation of LE lists. As detailed in Chapter 15, the oracle is our strategy to balance
the need for a polylogarithmic SPD — to obtain an algorithm of polylogarithmic depth —
while at the same time not violating the triangle inequality and guaranteeing a good
distance approximation. The purpose of this section is to prepare the lemmas required
to apply Theorem 15.7. We stress that the key challenge is to perform each iteration in
polylog n depth and Õ(m) work; this allows us to collect the LE lists in H within the same
bounds of work and depth — up to a small overhead in work caused by the additional edges
of Cohen’s hop set [34] — because the oracle induces only a polylogarithmic overhead
w.r.t. both parameters.

To this end, we first establish the length of intermediate LE lists to be logarithmic
w.h.p. in Lemma 17.8. We remark that LE lists are known to have length O(log n)
w.h.p. throughout intermediate computations [65, 81]; however, these results assume
that LE lists contain h-hop distances. Lemma 17.8 uses the same key argument but
is more general, since it makes no assumption about x except for its independence of
the random node order; we need the more general statement due to our decomposition
of AH , compare Chapter 15.

Recall that by |x| we denote the number of non-∞ entries of x ∈ D and that we only
need to keep the non-∞ entries in memory. Lemma 17.8 shows that any LE list r(x) ∈ D
has length |r(x)| ∈ O(log n) w.h.p., provided that x does not depend on the random
node order. Observe that the lemma is quite powerful, as it suffices that there is any
x′ ∼ x that does not depend on the random node order: as it holds that r(x) = r(x′),
we have |r(x)| = |r(x′)| ∈ O(log n) w.h.p.

Lemma 17.8. Consider x ∈ D. If x and the random order of the nodes are independent,
|r(x)| ∈ O(log n) w.h.p.

Proof. Order the non-∞ values of x by ascending distance, breaking ties independently
of the random node order. Denote for i ∈ {1, . . . , |x|} by vi ∈ V the i-th node w.r.t. this
order, i.e., xvi is the i-th smallest entry in x. Furthermore, denote by Xi the indicator
variable that is 1 if vi < vj for all j ∈ {1, . . . , i− 1} and 0 otherwise. As the node order

and x are independent, we obtain E[Xi] = 1/i. For X :=
∑|x|

i=1Xi, this implies

E[X] =

|x|∑
i=1

1

i
≤

n∑
i=1

1

i
∈ Θ(log n). (17.32)

Observe that {X1, . . . , Xi−1} and Xi are independent, as whether vi < vj for all j < i
is independent of the internal order of the set {v1, . . . , vi−1}.

We claim that {X1, . . . , X|x|} are independent and show it using that {X1, . . . , Xk}
are independent if P[(X1, . . . , Xk) = (x1, . . . , xk)] =

∏k
i=1P[Xi = xi] for any possible

assignment (x1, . . . , xk) ∈ Bk. This trivially holds for k = 1. Assuming that {X1, . . . , Xk}
are independent as an induction hypothesis, the independence of {X1, . . . , Xk+1} follows
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from

P[(X1, . . . , Xk+1) = (x1, . . . , xk+1)] (17.33)

=P[(X1, . . . , Xk) = (x1, . . . , xk)] · P[Xk+1 = xk+1] (17.34)

=

(
k∏
i=1

P[Xi = xi]

)
· P[Xk+1 = xk+1] (17.35)

=
k+1∏
i=1

P[Xi = xi], (17.36)

where the first step follows from the above observation that {X1, . . . , Xi−1} and Xi are
independent, the second step from the induction hypothesis, and the third step is trivial.

Applying Chernoff’s bound — see Lemma 2.8 and Corollary 2.9 — yields that X ∈
O(log n) w.h.p. As P[X = k] = P[|r(x)| = k], this concludes the proof.

Hence, filtered, possibly intermediate, LE lists r(x) w.h.p. comprise O(log n) entries.
We proceed to show that under these circumstances, r(x) can be computed efficiently.

Lemma 17.9. Let x ∈ D be arbitrary. Then r(x) can be computed using O(|r(x)| log n)
depth and O(|r(x)||x|) work.

Proof. We use one iteration per non-∞ entry of r(x). In each iteration, we first identify
the smallest vertex v w.r.t. the random node order that is not discarded, then copy xv
to r(x)v, and finally mark all entries of x dominated by xv as discarded. The invariant is
that the nodes are moved to r(x) in ascending order w.r.t. the random node permutation;
all non-discarded non-∞ entries of x are ordered after those on r(x). This yields |r(x)|
iterations as follows:

(1) Initialize r(x)← ⊥. Construct a tournament tree on the non-∞ elements of x and
identify its leaves with their indices v ∈ V (O(log n) depth and O(|x|) work).

(2) Find the element with the smallest node index v w.r.t. the random node order
whose corresponding leaf is not marked as discarded (O(log n) depth and O(|x|)
work). Set r(x)v ← xv.

(3) Mark each leaf w for which xv ≤ xw, including v, as discarded (O(1) depth and
O(|x|) work).

(4) If there are non-discarded leaves (O(log n) depth and O(|x|) work), continue at
step (2).

Note that for each w 6= v for which the corresponding node is discarded, we have
r(x)w = ∞. On the other hand, by construction we have for all v for which we stored
r(x)v = xv that there is no w ∈ V satisfying both xw ≤ xv and w < v. Thus, the
computed list is indeed r(x).

The depth and work bounds follow from the complexity of the individual steps stated
above and by observing that in each iteration, we add a distinct vertex–distance pair
with non-∞ value to the list that after termination equals r(x).
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Based on Lemmas 17.8 and 17.9, Lemma 17.10 establishes that w.h.p. each of the
intermediate results required by the oracle can be computed efficiently. The challenge is
that the use of Lemma 17.8, which guarantees that the LE lists are short w.h.p., requires
the lists and the random node order to be independent. As intermediate computations by
the oracle make heavy use of intermediate filtering — compare, e.g., Equation (15.31) —
the intermediate results do depend on the node order. The key insight, however, is that
due to the properties of MBF-like algorithms, leaving out the intermediate filtering steps
does not change the result of the computation by Corollary 13.20. We leverage this to
remove said dependence, allowing us to apply Lemma 17.8.

Any intermediate result used by the oracle is of the form rVAλy with

y = (rVAλ)fPλx
(h), (17.37)

where x(h) = rVAhHx
(0) is the intermediate result of h iterations on H, λ ∈ {0, . . . ,Λ} is

a level, and (rVAλ)fPλ represents another f iterations in G with edge weights stretched
according to level λ. The oracle uses this to simulate the (h + 1)-th iteration in H,
compare Chapter 15 and Theorem 15.7 in particular.

Lemma 17.10. Consider x(0) ∈ DV from Equation (17.14). For arbitrary h, f, λ ∈ N0,
we can w.h.p.

(1) determine rV x(0) from x(0) using O(n) work and O(1) depth,

(2) compute rVAλy from y as defined in Equation (17.37) using W ∈ O(m log2 n)
work and D ∈ O(log2 n) depth, and

(3) compute rV (
⊕Λ

λ=0 yλ) from the individual yλ = (Pλr
VAdλPλ)x(i), 0 ≤ λ ≤ Λ, with

W⊕ ∈ O(n log4 n) work and D⊕ ∈ O(log2 n) depth.

Proof. We establish the claims in order.

(1) Regarding the first claim, observe that rV x(0) = x(0). Hence, we can copy x(0) using

O(
∑

v∈V |x
(0)
v |) = O(n) work and constant depth.

(2) As for the second claim, we expand x(h) in Equation (17.37) and remove all inter-
mediate filtering steps, obtaining

y
(15.31)

= (rVAλ)fPλ

(
rV

(
Λ⊕
λ=0

Pλ(rVAλ)dPλ

))h
rV x(0) (17.38)

(13.39)
= rV AfλPλ

(
Λ⊕
λ=0

PλA
d
λPλ

)h
x(0)

︸ ︷︷ ︸
=:y′

. (17.39)

The key observation is that — since the random order of V only plays a role for
r and we removed all intermediate applications of rV — y′ does not depend on
that order. Hence, we may apply Lemma 17.8 which yields that for each v ∈ V ,
|yv| = |r(y′v)| ∈ O(log n) w.h.p. Condition on |yv| ∈ O(log n) for all v ∈ V in the
following, which happens w.h.p. by Lemma 2.7.
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Regarding the computation of rVAλy, we first compute each (Aλy)v in parallel for
all v ∈ V . By Lemma 13.3 and because |yv| ∈ O(log n), this can be done using
O(log n) depth and work

O

∑
v∈V

∑
w∈V
{v,w}∈E

|yw| log n

 ⊆ O

 ∑
{v,w}∈E

log2 n

 = O
(
m log2 n

)
. (17.40)

Here we use that propagation w.r.t. D— uniformly increasing weights — requires,
due to |yv| ∈ O(log n), no more than O(1) depth and O(m log n) work and is thus
dominated by aggregation. To bound the cost of computing rVAλy from Aλy,
observe that we have

|(Aλy)v| ∈ O

 ∑
w∈V
{v,w}∈E

|yw|

 . (17.41)

Hence, by Lemma 17.9 and due to |yv| ∈ O(log n), we can compute (rVAλy)v in
parallel for all v ∈ V using O(log2 n) depth and

O

(∑
v∈V
|(Aλy)v| log n

)
(17.41)

⊆ O

∑
v∈V

∑
w∈V
{v,w}∈E

|yw| log n

 (17.42)

⊆ O

 ∑
{v,w}∈E

log2 n

 (17.43)

⊆ O
(
m log2 n

)
(17.44)

work. All operations are possible using D ∈ O(log2 n) depth and W ∈ O(m log2 n)
work. As we condition only on an event that occurs w.h.p., this concludes the proof
of the second claim.

(3) Regarding the last claim, condition on logarithmic length of all LE lists, i.e., on
|yλv| ∈ O(log n) for all 0 ≤ λ ≤ Λ. We can compute

⊕Λ
λ=0 yλv ∈ D, the aggregation

for a single vertex v, using O(
∑Λ

λ=0 |yλv| log n) = O(log3 n) work and O(log n)
depth by Lemma 13.3. As the work bounds the length of the resulting list, we can
determine r(

⊕Λ
λ=0 yλv) using O(log4 n) work and O(log2 n) depth by Lemma 17.9.

Doing this in parallel for all v ∈ V yields W⊕ ∈ O(n log4 n) work and D⊕ ∈
O(log2 n) depth. As we condition on two events that occur w.h.p., this concludes
the last claim.

Together, the claims are established.

17.4 Efficient Parallel Metric Tree Embeddings

Determining the LE lists of H yields a probabilistic tree embedding of G with expected
stretch O(log n) (Section 17.1), is the result of an MBF-like algorithm (Section 17.2),
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and each iteration of this algorithm is efficient (Theorem 15.7 and Section 17.3). We
assemble these pieces in Theorem 17.11, which relies on G containing a suitable hop set;
Corollaries 17.12 and 17.13 remove this assumption by first invoking known algorithms to
establish this property. Note that Theorem 17.11 serves as a blueprint yielding improved
tree embedding algorithms when provided with improved hop-set algorithms.

Theorem 17.11. Suppose we know the weighted incidence list of a graph G = (V,E, ω)
that contains a (d, ε̂)-hop set, i.e., that satisfies distd(v, w,G) ≤ (1 + ε̂) dist(v, w,G) for
all v, w ∈ V , where d ∈ N and ε̂ ∈ R≥0. Then we can w.h.p. sample a tree embedding
of G of expected stretch O((1 + ε̂)O(logn) log n) using depth O(d log4 n) ⊆ Õ(d) and work
O(m(d+ log n) log5 n) ⊆ Õ(md).

Proof. We first w.h.p. compute the LE lists of H, see Definition 15.2 and Theorem 15.5.
To this end, by Lemma 17.10, we may apply Theorem 15.7 with parameters D ∈ O(log2 n),
W ∈ O(m log2 n), D⊕ ∈ O(log2 n), and W⊕ ∈ O(n log4 n); we arrive at

O
(
(dD +D⊕) log2 n

)
= O

(
d log4 n

)
(17.45)

depth and

O
(
(dW log n+W⊕) log2 n

)
= O

(
(dm+ n log n) log5 n

)
(17.46)

⊆ O
(
m(d+ log n) log5 n

)
(17.47)

work. Note that the bounds of D, W , D⊕, and W⊕ hold w.h.p. for a single iteration. As
there is only a polynomially bounded number of iterations, however, the stated bounds
w.h.p. hold for all of them by Lemma 2.7.

In order to compute the according FRT tree T , observe that the LE lists of H have
length O(log n) w.h.p. by Lemma 17.8. Hence, we can compute T using depth O(log2 n)
and work O(n log3 n) by Lemma 17.4. The depth and work of this step are dominated
by the above-stated depth and work for invoking Theorem 15.7.

It remains to show that T is a tree embedding, compare Definition 17.1, of G with
the expected stretch stated above. As shown by Fakcharoenphol et al. [50], T is a tree
embedding of H with an expected stretch of O(log n) and by Theorem 15.5, w.h.p.
dist(v, w,G) ≤ dist(v, w,H) ≤ (1 + ε̂)O(logn) dist(v, w,G). Hence, we obtain

dist(v, w,G)
(15.16)

≤ dist(v, w,H)
[50]

≤ dist(v, w, T ) (17.48)

and, in expectation,

dist(v, w, T )
[50]
∈ O(dist(v, w,H) log n) (17.49)

(15.16)

⊆ O
(

(1 + ε̂)O(logn) dist(v, w,G) log n
)
, (17.50)

concluding the proof.

As stated above, we require G to contain a (d, 1/polylog n)-hop set with d ∈ polylog n
in order to achieve polylogarithmic depth. We also need to determine such a hop set using
polylog n depth and near-linear work in m and that it does not significantly increase
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the problem size by adding too many edges. With Cohen’s hop set [34] we can meet
these requirements — up to the extra factor of mε in work — resulting in Corollary 17.12.
Observe that our work almost matches the sequential state of the art, the algorithm of
Blelloch et al. that requires O(m log n) time w.h.p. [20].

Corollary 17.12. Given a weighted incidence list of a graph G and a constant 0 < ε ≤ 1
2 ,

we can w.h.p. sample a tree embedding of G of expected stretch O(log n) using depth
polylog n and work Õ(m1+ε).

Proof. We apply the hop-set construction by Cohen [34] to G = (V,E, ω) to w.h.p.
determine an intermediate graph G′ with vertices V and an additional Õ(m1+ε) edges.
The algorithm guarantees distd(v, w,G) ≤ (1 + ε̂) dist(v, w,G′) for d, ε̂−1 ∈ polylog n,
where the exponent of the polylog n term for ε̂ is under our control, and has depth
polylog n and work Õ(m1+ε). Choosing ε̂ ∈ O(1/ log2 n) and applying Theorem 17.11,
the claim follows due to Equation (15.19).

Adding a hop set to G, embedding the resulting graph in H, and sampling an FRT
tree on H are three nested embeddings of G. Still, in terms of stretch, the embedding
of Corollary 17.12 is — up to a factor in 1 + o(1) — as good as directly constructing
an FRT tree of G: (1) Hop sets do not stretch distances. (2) By Theorem 15.5 and
Equation (15.19), H introduces a stretch of 1 + 1/ polylog n. (3) Together, this ensures
that the expected stretch of the FRT embedding w.r.t. G is O(log n).

It is possible to reduce the work at the expense of an increased stretch by first
applying the spanner construction by Baswana and Sen [10]. Refer to Chapter 16 for
a brief discussion of its most relevant properties w.r.t. our model of computation and
our applications. Essentially, an additional factor of O(ε−1) in the stretch allows us to
reduce the work from Õ(m1+ε) to Õ(m + n1+ε). Observe that at this point, one can
take the position that ε is a constant and that, accordingly, Corollary 17.13 is stronger
than Corollary 17.12 as it provides the same asymptotic guarantees with lower work.
On the other hand, one may argue that a constant overhead in the stretch does matter
as, after all, the expected stretch from Corollary 17.12 is essentially — up to a factor in
1 + o(1) — exactly the same as that of an FRT embedding of G.

Corollary 17.13. Suppose we are given the weighted incidence list of a graph G and
a constant ε ∈ R with 0 < ε ≤ 5

4 . Then we can w.h.p. compute a tree embedding of G
with an expected stretch of (2dε−1e − 1)α ∈ O(ε−1 log n) = O(log n), where α ∈ O(log n)
is the expected stretch of Corollary 17.12, using depth polylog n and work Õ(m+ n1+ε).

Proof. Choose ε′ :=
√

1 + ε− 1 and k := dε′−1e; observe that k ∈ N and 0 < ε′ ≤ 1
2 . We

determine a (2k − 1)-spanner GS of G and apply Corollary 17.12 to GS . The detailed
procedure is the following.

(1) As detailed in Chapter 16, the algorithm of Baswana and Sen [10] computes a
(2k−1)-spanner of G = (V,E, ω), i.e., a subgraph GS = (V,ES , ω) satisfying for all
v, w ∈ V that dist(v, w,G) ≤ dist(v, w,GS) ≤ (2k − 1) dist(v, w,G). This requires
Õ(k) depth and Õ(km) work, we obtain |ES | ∈ Õ(kn1+1/k) w.h.p., and k ∈ O(log n)
w.l.o.g. by Observation 16.3.

The bound of k ∈ O(log n) simplifies the depth to polylog n, the work to Õ(m),
and, w.h.p., the number of edges in the spanner to |ES | ∈ Õ(n1+1/k).
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(2) Apply Corollary 17.12 to GS and ε′, where the latter is within the permitted bounds
as argued above. This step requires an additional polylog n depth and

Õ
(
|ES |1+ε′

)
= Õ

(
(n1+1/k)1+ε′

)
⊆ Õ

(
n(1+ε′)2

)
= Õ

(
n1+ε

)
(17.51)

work, where the bound on work holds w.h.p.

Sequentially executing both steps yields polylog n depth and w.h.p. Õ(m+ n1+ε) work,
as claimed. Let α be the expected stretch from Corollary 17.12, where α ∈ O(log n) w.h.p.
As we only require constantly many events that occur w.h.p. to succeed, observing that
the spanner increases the expected stretch to (2k − 1)α = (2dε−1e − 1)α ∈ O(ε−1 log n)
concludes the proof.

17.5 Reconstructing Paths from Virtual Edges

Given that we deal with distances and not with paths in the construction of FRT trees,
one concern needs to be addressed: Consider a graph G = (V,E, ω), its augmentation
with a (d, ε̂)-hop set resulting in G′, which is then embedded into the complete graph
H = (V,

(
V
2

)
, ωH), and finally into an FRT tree T = (VT , ET , ωT ). How can an edge

e ∈ ET of weight ωT (e) be mapped to a path p in G with ω(p) ≤ ωT (H)? Note that it
is desirable to answer this question in polylogarithmic depth and without incurring too
much memory overhead. In Observations 17.14–17.16, we outline a three-step approach
that maps edges of T to paths in H, edges of H to paths in G′, and finally edges of G′

to paths in G. Our purpose is not to provide specifically tailored data structures, but
rather to informally sketch how this can be achieved within polylogarithmic depth.

Observation 17.14. Concerning a tree edge e ∈ ET , we claim that e maps back to a
path p of at most SPD(H) ∈ O(log2 n) hops in H with ωH(p) ≤ ωT (e).

Identify each tree node (vi, . . . , vk) — recall Section 17.1 and Definition 17.2 — with
its leading node vi ∈ V . In particular, each leaf (v0, . . . , vk) is identified with the node
in v0 = v ∈ V . First consider the situation that e = {(v0, v1, . . . , vk), (v1, . . . , vk)} ∈ ET
is incident to a leaf of T identified with v0. In this case, the LE list of v0 contains an
entry (v1, dist(v0, v1, H)) that must fulfill dist(v0, v1, H) ≤ 20β ωmin and we can trace
the shortest v0-v1-path p in H based on the LE lists (nodes locally store the predecessor
of shortest paths just like in APSP). By construction, p fulfills

ωH(p) ≤ 20β ωmin ≤ 21β ωmin = ωT (e) (17.52)

and has at most SPD(H) ∈ O(log2 n) hops by Theorem 15.5.

Next, consider the case that e = {(vi, vi+1, . . . , vk), (vi+1, . . . , vk)} is not incident to
a leaf of T . Choose an arbitrary leaf v0 that is a descendant of (vi, vi+1, . . . , vk) (this
choice can, e.g., be fixed when constructing the tree from the LE list without increasing
the asymptotic bounds on depth or work). We can trace shortest paths from v0 to vi
and from v0 to vi+1 in H, respectively. The cost of their concatenation p, a path from
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vi to v0 to vi+1, is

ωH(p) = dist(v0, vi, H) + dist(v0, vi+1, H) (17.53)

≤ 2i−1β ωmin +2iβ ωmin (17.54)

< 2i+1β ωmin (17.55)

= ωT (e) (17.56)

by the properties of FRT trees. Note that, due to the identification of each tree node
with its leading graph node, paths in T map to concatenable paths in H. Furthermore,
p has at most 2 SPD(H) ∈ O(log2 n) hops.

Observation 17.15. We can map an edge e = {v, w} of H to a d-hop shortest v-w-
path p in G′ using Õ(nd) memory. The mapping guarantees ω(p) ≤ ωH(e), where ω is
appropriately extended to account for the hop-set edges in G′.

Regarding the mapping from an edge e of H to a path in G′, recall that we compute
the LE lists of H by repeated application of the operations rV , ⊕, Pλ, and Aλ with
0 ≤ λ ≤ Λ, compare Chapter 15. Observe that rV , ⊕, and Pλ discard information, i.e.,
distances to nodes that do not make it into the final LE lists and therefore are irrelevant to
routing. Aλ, on the other hand, is an MBF-like iteration. Thus, we may store the necessary
information for tracing back the induced paths at each node. Specifically, we can store,
for each iteration h ≤ SPD(H) ∈ O(log2 n) w.r.t. H, each of the intermediate d iterations
in G′, and each λ ≤ Λ ∈ O(log n), the state vector y of the form in Equation (17.37)
in a lookup table. This requires Õ(d) memory per node and maps edges of H to d-hop
shortest paths in G′. The guarantee that ω(p) ≤ ωH(e) follows from observing that p
is a d-hop shortest v-w-path in G′ and that we have ω(p) = distd(v, w,G′) ≤ ωH(e) by
Definition 15.2.

Observation 17.16. Mapping edges of G′ to paths in G depends on the hop set. This
mapping does not increase the weight.

Cohen [34] does not discuss this in her article, but her hop-set edges can be effi-
ciently mapped to paths in the original graph by a lookup table: Hop-set edges either
correspond to a shortest path in a small cluster, or to a path that has been explored
using polylogarithmic depth. Regarding other hop-set algorithms, we note that many
techniques constructing hop-set edges using depth D allow reconstructing corresponding
paths at depth O(D), i.e., that polylogarithmic-depth algorithms are compatible analo-
gously to Cohen’s hop sets. For instance, this is the case for the hop-set construction by
Henzinger et al. [73] which we leverage in Chapter 18. This observation, however, needs
to be carefully checked for each hop-set construction. The fact that path weights do not
increase follows from the requirement that hop sets do not decrease distances; a hop-set
edge {v, w} must have a weight of at least dist(v, w,G) [34, 73].

17.6 Tree Embeddings without Steiner Nodes

As detailed by Blelloch et al. [21], it is possible to obtain from an FRT tree a metric tree
embedding that contains no Steiner nodes while maintaining the expected asymptotic
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stretch. To this end, label each node of the original FRT tree with the smallest node in its
subtree and contract all edges between nodes with the same label. Non-contracted edges
can be mapped to paths in H just like in Observation 17.14 when using the label — the
smallest leaf — instead of an arbitrary leaf. A formal argument on why this yields the
same asymptotic stretch as the original FRT tree is given in Lemma 3.12 of Blelloch
et al. [21]. Note that Blelloch et al. explicitly stretch all edges of the original FRT tree
by a factor of 2, while we already account for this factor in Definition 17.2. Observe that
the labels uniquely determine the tree and can be determined using O(n log n) work and
O(log n) depth by propagating the minima up the original FRT tree.

Observation 17.17. Corollaries 17.12 and 17.13 still hold when not permitting the tree
embedding to use Steiner nodes. Observation 17.14 applies to the resulting trees.
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CHAPTER 18

Distributed FRT Embeddings

In this chapter, we show that distributed algorithms for constructing FRT-type tree em-
beddings in the CONGEST model are covered by our framework as well. We improve upon
the state of the art by reducing the round complexity of determining a tree embedding
of expected stretch O(log n) in the CONGEST model.

We introduce the CONGEST model in Section 18.1. In Sections 18.2 and 18.3, we
briefly summarize the algorithms by Khan et al. [81] and by Ghaffari and Lenzen [65].
Our framework permits doing this in a compact way. We use these preliminaries, our
machinery, and a distributed hop-set construction due to Henzinger et al. [73] in Sec-
tion 18.4, where we propose an algorithm that reduces a multiplicative overhead of nε in
the round complexity of Ghaffari and Lenzen [65] to no(1). Note that replacing the hop
set is straightforward since our theorems in the previous chapters are formulated w.r.t.
generic (d, ε̂)-hop sets. Furthermore, our algorithm improves the expected stretch: We
replace the multiplicative penalty of O(ε−1) by Ghaffari and Lenzen [65] in the expected
stretch by 1 + o(1).

Throughout this chapter, let G = (V,E, ω) be a weighted graph and denote, for any
graph G, by AG ∈ (R≥0 ∪ {∞})V×V its adjacency matrix according to Equation (12.17).
Fix the semiring S = Smin,+, the zero-preserving semimodule M = D from Defini-
tion 13.1, and r, ∼ and x(0) as given in Definition 17.5.

18.1 The CONGEST Model

The CONGEST model captures distributed computations performed by the nodes of a
graph — in this context commonly referred to as network — where communication is
restricted to the graph’s edges. Furthermore, the volume of communication per edge
and time unit is limited, hence the name of the model. We refer to Lynch [107] and
Peleg [119] for formal definitions of distributed models of computation. In this section,
we briefly outline the core aspects of the CONGEST model.

Each node is initialized with a unique identifier (ID) of O(log n) bits, knows the IDs
of its adjacent nodes along with the weights of the corresponding incident edges, and
its part of the input. The objective is for each node to compute its part of the output.
Regarding the computation of FRT trees, the input of a node is empty and its output,
as detailed in Chapter 17, is its LE list.1

Computations are organized in perfectly synchronous rounds. In each round, each
node does the following:

1In the CONGEST model, it is not feasible for each node determine the entire FRT tree in o(n)
rounds: This requires communicating at least the random node order to each node, taking Ω(n) rounds
of communication in the presence of nodes of degree one.
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(1) Perform finite but otherwise arbitrary2 local computations.

(2) Send a, possibly empty, message of O(log n) bits to each neighboring node. It is
not required to send the same message to all neighbors.

(3) Receive the messages sent by the neighbors in the current round, where the sending
node of a message is known.

We are interested in the round complexity, i.e., in how many rounds it takes for an
algorithm to complete. Recall that edge weights can be encoded using O(log n) bits
by assumption. Hence, we may encode constantly many ID–distance pairs in a single
message.

LOCAL Observe that without congestion — this is referred to as the LOCAL model in
which we drop the restriction regarding message size — every problem can be solved in
D(G) rounds [119]: Every node broadcasts its ID and weighted adjacency list, all nodes
acquire full information about the network, and each node locally computes its part of
the output. Further observe that Ω(D(G)) rounds also are a lower bound for determining
an FRT tree in the LOCAL model: From the resulting FRT tree, every node can derive
a 2-approximation of its distance to the vertex with the smallest ID — the “root of the
FRT tree” — in a weighted line graph, which is not possible without learning about edge
weights that are Ω(D(G)) hops away from the node at one end of the line.

Bounds In the presence of congestion, however, there are stronger lower bounds for
many problems [38]. A prominent example is the lower bound of Ω(

√
n/ log n+ D(G))

on the round complexity of determining an MST. It holds for deterministic, exact MST
computations [120], as well as for randomized and approximate MST algorithms [38, 47].
Regarding the FRT embedding, Ghaffari and Lenzen lower-bound the round complexity
of determining any tree embedding by Ω̃(

√
n+ D(G)), assuming that it has non-trivial

expected stretch [65].

Termination Regarding the termination of a distributed algorithm, we distinguish
between local termination and global termination. Local termination means that a node
stops sending messages and global termination means that all nodes learn that all local
computations are finished, i.e., that the algorithm reached a fixed point. We are interested
in global termination, as constructing a metric tree embedding is an inherently global
problem.

As all algorithms presented in the chapter require Ω(D(G)) rounds of computation,
we can afford to detect global termination using standard techniques. With a BFS tree
in place, each of its leafs in each round sends a bit to its parent that indicates whether it
considers the computation locally complete. Non-leaf nodes send the logical And of the
bits received from their children and their own opinion. The root of the BFS tree can
decide whether the computation is globally over and initiate an appropriate broadcast
once that happens. All of the above steps, including the construction of a BFS tree, are
possible with an additive overhead of O(D(G)) in the round complexity.

2Some authors restrict the time for local computations [119]. Polynomial time, however, suffices for
all algorithms in this chapter.
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18.2 The Algorithm of Khan et al.

In our terminology, the algorithm of Khan et al. [81] performs SPD(G) iterations of the
MBF-like algorithm for collecting LE lists implied by Definition 17.5, compare Chapter 17.
This means that the algorithm determines

rVA
SPD(G)
G x(0) (13.39)

=
(
rVAG

)SPD(G)
x(0), (18.1)

where each node v ∈ V learns its own LE list (rV x(SPD(G)))v. The algorithm works in
SPD(G)+1 iterations by initializing x(0) as in Equation (17.14) and iteratively computing
x(i+1) = rVAGx

(i) until a fixed point is reached, i.e., until x(i+1) = x(i).

As (rVAG)ix(0) = rVAiGx
(0), Lemma 17.8 shows that w.h.p. |x(i)

v | ∈ O(log n) for
all iterations i and all v ∈ V . Therefore, each node v ∈ V can w.h.p. transmit its LE

list x
(i)
v to all of its neighbors entry by entry using O(log n) rounds. Upon reception

of its neighbors’ lists, v locally computes x
(i+1)
v . Thus, each iteration takes O(log n)

rounds w.h.p., implying the round complexity of O(SPD(G) log n) w.h.p. shown by Khan
et al. [81].

18.3 The Algorithm of Ghaffari and Lenzen

The strongest lower bound regarding the round complexity for constructing a low-stretch
metric tree embedding of G in the CONGEST model is Ω̃(n1/2 + D(G)), see Section 18.1.
In the case that SPD(G) � max{D(G), n1/2} one may thus hope for a solution that
runs in õ(SPD(G)) rounds and, indeed, Ghaffari and Lenzen show for any ε ∈ R>0 that
expected stretch O(ε−1 log n) can be achieved in Õ(n1/2+ε + D(G)) rounds [65]. In the
following, we summarize their approach.

The strategy is to first determine the LE lists of a constant-stretch metric embedding
of (the induced submetric of) an appropriately sampled subset of V . The resulting graph
is called the skeleton spanner, and its LE lists are used to jump-start the computation
in the remaining graph. When sampling the skeleton nodes in the right way, stretching
non-skeleton edges analogously to Chapter 15, and fixing a shortest path for each pair
of vertices, w.h.p. all of these paths contain a skeleton node within a few hops. Ordering
skeleton nodes before non-skeleton nodes w.r.t. the random order implies that each LE
list has a short prefix accounting for the local neighborhood, followed by a short suffix
containing skeleton nodes only. This is due to the fact that skeleton nodes dominate all
non-skeleton nodes for which the respective shortest path passes through them. Hence,
no node has to learn information that is further away than dS , an upper bound on the
number of hops when a skeleton node is encountered on a shortest path that holds w.h.p.

The Graph H Ghaffari and Lenzen embed G = (V,E, ω) into H and sample an
FRT tree on H, where H is derived as follows. Sample S ⊆ V , where each v ∈ V
joins S independently with probability 1/

√
n. For a sufficiently large constant c ∈ R≥1,
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abbreviate ` := dc√n log ne. Define the skeleton graph as

GS := (S,ES , ωS) , where (18.2)

ES :=

{
{s, t} ∈

(
S

2

)
| dist`(s, t,G) <∞

}
and (18.3)

ωS(s, t) := dist`(s, t,G). (18.4)

Then w.h.p. dist(s, t,GS) = dist(s, t,G) for all s, t ∈ S (Lemma 10 of Ghaffari and Len-
zen [65]). Unfortunately, it is not possible to determine GS exactly in o(n) rounds [103];
hence, GS is not explicitly constructed.

Instead, however, it is possible to determine a spanner of GS using the construction
of Baswana and Sen [10] and to make it global knowledge. For k ∈ Θ(ε−1), construct a
(2k − 1)-spanner

G′S :=
(
S,E′S , ωS

)
(18.5)

of the skeleton graph GS that has Õ(kn1/2+1/k) ⊆ Õ(n1/2+ε) edges w.h.p. (compare
Chapter 16 and Theorem 11 of Ghaffari and Lenzen [65]). Define

H := (V,EH , ωH), where (18.6)

EH := E ∪ E′S , and (18.7)

ωH(e) :=

{
ωS(e) if e ∈ E′S and

(2k − 1)ω(e) otherwise.
(18.8)

By construction, G embeds into H with a stretch of 2k − 1 w.h.p., i.e.,

dist(v, w,G) ≤ dist(v, w,H) ≤ (2k − 1) dist(v, w,G). (18.9)

Computing an FRT tree T of H of expected stretch O(log n) thus implies that G embeds
into T with expected stretch O(k log n) = O(ε−1 log n).

FRT Trees of H Observe that min-hop shortest paths in H contain only a single
maximal subpath consisting of spanner edges, where the maximal subpaths of non-spanner
edges have at most ` hops w.h.p. This follows analogously to Lemma 15.4 with two levels
and a sampling probability of 1/

√
n.

Assume s < v for all s ∈ S and v ∈ V \ S; we establish this assumption below.
With that assumption in mind, consider s ∈ S and v, w ∈ V \ S. The only way an entry
(s, dist(v, s,H)) of the LE list of v ∈ V can be dominated by (w,dist(v, w,H)) is that
w is closer to v than s. In fact, no non-skeleton node w ∈ V \ S is part of the LE list
of v, unless dist(v, w,H) < min{dist(v, s,H) | s ∈ S}. Hence, the LE list of v has some
entries accounting for the local neighborhood and only S-entries with higher distances.

Furthermore, for each v ∈ V and each entry (w,dist(v, w,H)) of its LE list, there
w.h.p. is a min-hop shortest v-w-path with a prefix of at most ` non-spanner edges
followed by a shortest path in G′S . This entails that w.h.p.

rVA
SPD(H)
H x(0) = rVA`G,2k−1A

|S|
G′S
x(0) = rVA`G,2k−1

(
rVA

|S|
G′S
x(0)

)
︸ ︷︷ ︸

=:x̄(0)

, (18.10)
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where AG,s is AG with entries stretched by factor of s ∈ R>0 and we extend AG′S to a
V × V matrix by setting, for all v, w ∈ V \ S, (AG′S )vw =∞ if v 6= w, and (AG′S )vw = 0
otherwise (the equivalent of treating V \ S as singleton vertices).

In order to construct an FRT tree, suppose we have sampled uniform permutations of
S and V \S, and a random choice of β. We extend the permutations to a permutation of
V by ruling that for all s ∈ S and v ∈ V \S, we have s < v, fulfilling the above assumption.
Lemma 20 of Ghaffari and Lenzen [65] shows that the introduced dependence between
the topology of H and the resulting permutation on V does not increase the expected
stretch of the embedding beyond O(log n). The crucial advantage of this approach lies
in the fact that the LE lists of nodes in G′S , x̄(0) in Equation (18.10), may be used to
jump-start the construction of LE lists of H, i.e., the computation of A`G,2k−1x̄

(0) in
Equation (18.10).

The Algorithm In the CONGEST model, the LE lists of H can be determined in
Õ(n1/2+ε + D(G)) rounds as follows [65].

(1) Some node v0 ∈ V starts the computation by broadcasting a random choice of β,
constructing a BFS tree on the fly. Upon receipt, each node generates a random
ID of O(log n) bits which is unique w.h.p. This takes O(D(G)) rounds. Finding the
minimum and the maximum vertex ID as well as counting the amount of nodes with
an ID of less than some threshold via the BFS tree takes O(D(G)) rounds. Hence,
v0 can determine the d√n e-th node ID via binary search in O(D(G) log n) rounds;
this determines the set S and satisfies the assumption used in Equation (18.10).
Together, Õ(D(G)) rounds suffice.

(2) The nodes in S determine G′S , such that all v ∈ V learn E′S and ωS . By Theorem 11
of Ghaffari and Lenzen [65], this is possible in Õ(n1/2+ε + D(G)) rounds. This

enables all v ∈ V to locally determine x̄
(0)
v , which is trivial for v /∈ S— in this case,

the LE list only contains the entry (v, 0) — and uniquely determined by the node
IDs and G′S otherwise.

(3) Subsequently, all nodes w.h.p. determine, via ` ∈ O(n1/2 log n) MBF-like iterations
of

x̄(i+1) := rVAG,2k−1x̄
(i), (18.11)

their component of x̄(h) = rVA`G,2k−1x̄
(0). Here, one exploits |x̄(i)

v | ∈ O(log n) w.h.p.

for all 0 ≤ i ≤ ` by Lemma 17.8.3 Furthermore, filtering is a local operation. Thus,
each iteration can be performed by transmitting an LE list of O(log n) entries over
each edge, i.e., in O(log n) rounds. The entire step hence requires Õ(`) ⊆ Õ(n1/2)
rounds.

Together, this w.h.p. implies the round complexity of Õ(n1/2+ε+D(G)) for an embedding
of expected stretch O(ε−1 log n).

3We apply Lemma 17.8 twice, as it requires x ∈ D and the permutation to be independent. First
consider a computation initialized with y

(0)
vw := 0 if v = w ∈ S and y

(0)
vw :=∞ else. By Lemma 17.8, we

have |y(i)v | ∈ O(logn) w.h.p. for all y(i) := rVAiHS
y(0) and iterations i ∈ {1, . . . , |S|}. Analogously, apply

Lemma 17.8 to z(i) := rVAiG,2k−1z
(0), i ∈ {1, . . . , `} with z

(0)
vw := 0 if v = w ∈ V \ S and z

(0)
vw :=∞ else;

this yields that |z(i)v | ∈ O(logn) for all v ∈ V w.h.p., too. As we have x
(i)
v = rV (y

(j)
v ⊕ z(k)v ) for all v ∈ V

and appropriate i, j, k ∈ N0, we obtain |x(i)v | ∈ O(logn) w.h.p.
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18.4 O(log n) Stretch in Near-Optimal Time

The multiplicative overhead of nε in the round complexity as well as the factor of O(ε−1)
in stretch are due to constructing, broadcasting, and using the skeleton spanner. We
improve upon this by relying on hop sets, just as we do in our parallel construction in
Chapter 17. Henzinger et al. show how to compute an (no(1), o(1))-hop set of the skeleton
graph in the CONGEST model using (n1/2 + D(G))no(1) rounds [73].

Our approach is similar to the one outlined in Section 18.3. The key difference is
that we replace the skeleton spanner by an approximation of the skeleton graph which
we augment with a hop set. We combine this with the techniques from Chapter 15. This
permits the efficient construction of the LE lists of S which can be used to jump-start
the construction of LE lists for all nodes. However, we construct the LE lists of S in a
distributed fashion and not by broadcasting the corresponding subgraph.

The Graph H Let `, c, and the skeleton graph GS = (S,ES , ωS) be defined as in
Section 18.3 and Equations (18.2)–(18.4), w.h.p. yielding dist(s, t,GS) = dist(s, t,G) for
all s, t ∈ S. As in Section 18.3, however, we cannot afford to compute GS . Suppose
instead that we know ω′S : S × S → R≥0 ∪ {∞} with

∀s, t ∈ S : dist(s, t,G) ≤ ω′S(s, t) ≤ (1 + 1/ log2 n)ωS(s, t); (18.12)

we can determine ω′S using (1+1/ log2 n)-approximate (S, `, |S|)-detection [103].4 Further,
we can compute a (d,O(1/ log2 n))-hop set with d ∈ no(1) of (S,ES , ω

′
S) using the

algorithm of Henzinger et al. [73]. Together, we may construct a graph

G′S := (S,E′S , ω
′
S), (18.13)

where E′S contains the approximately weighted skeleton edges ES as well as the additional
hop-set edges. ω′S is extended to the hop-set edges and if s, t ∈ S are connected by both
a hop-set edge and a skeleton edge, we keep the shorter of the two. Then it w.h.p. holds
for all s, t ∈ S that

dist(s, t,GS) ≤ dist(s, t,G′S) ≤ distd(s, t,G′S) ∈ (1 + ε̂) dist(v, w,GS), (18.14)

for some ε̂ ∈ O(1/ log2 n). Next, embed G′S into HS as in Section 15.1, yielding node
and edge levels λ(e) ∈ {0, . . . ,Λ}:

HS :=

(
S,

(
S

2

)
, ωHS

)
with (18.15)

ωHS ({s, t}) := (1 + ε̂)Λ−λ(s,t) distd(s, t,G′S). (18.16)

By Theorem 15.5, we w.h.p. have that SPD(HS) ∈ O(log2 n) and for all s, t ∈ S that

dist(s, t,GS) ≤ dist(s, t,HS) ∈ α dist(s, t,GS), (18.17)

4ω′S is not a (1 + 1/ log2 n)-approximation of ωS = dist`(·, ·, GS), because we might obtain distance
estimations that are smaller than `-hop distances.
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where an upper bound of α ∈ 1 + O(1/ log n) ⊆ 1 + o(1) can be derived analogously to
Equation (15.18). Analogously to Equations (18.6)–(18.8), define

H := (V,EH , ωH), where (18.18)

EH := E ∪
(
S

2

)
, and (18.19)

ωH(e) :=

{
ωHS (e) if e ∈

(
S
2

)
and

αωG(e) otherwise.
(18.20)

By construction we thus have, for all v, w ∈ V and w.h.p.,

dist(v, w,G) ≤ dist(v, w,H) ≤ α dist(v, w,G) ∈ (1 + o(1)) dist(v, w,G), (18.21)

i.e., that H is a metric embedding of G with stretch 1 + o(1).

FRT Trees of H Analogously to Section 18.3, we arrange that the node IDs of S
are ordered before those of V \ S. Hence, min-hop shortest paths in H contain a single
maximal subpath of edges in EHS : Distances in HS w.h.p. are α-approximate distances
of G, the original edges of G are stretched by a factor of α in H, and hence subpaths of
skeleton nodes w.h.p. are min-hop shortest paths in H. To determine the LE lists of H,
we hence compute

rVA
SPD(H)
H x(0) =

(
rVAG,α

)` (
rVAHS

)SPD(HS)
x(0)︸ ︷︷ ︸

=:x̄(0)

, (18.22)

where AG,α is given by multiplying each entry of AG by the abovementioned factor of α
and AHS is extended to an adjacency matrix on the node set V as in Section 18.3.

Let α′ ∈ O(log n) denote the expected stretch of the FRT embedding. By construction,
an FRT embedding ofH has an expected stretch of αα′ ∈ (1+o(1))α′ ⊆ O(log n) w.r.t. G.
In particular, the multiplicative overhead regarding the expected stretch is (1 + o(1)),
i.e., smaller than the multiplicative overhead of O(ε−1) induced by the spanner-based
construction of Ghaffari and Lenzen [65].

The Algorithm We determine the LE lists of H as follows, adapting the approach
from [65] outlined in Section 18.3. Both algorithms have in common that they use x̄(0)

to jump-start the remaining ` ∈ O(n1/2) iterations of Khan et al. [81]. The difference is
that Ghaffari and Lenzen broadcast the skeleton spanner — resulting in the nε overhead
in the round complexity — and that we compute x̄(0) in a distributed fashion.

(1) A node v0 ∈ V starts the computation by broadcasting a random choice of β.
The broadcast is used to construct a BFS tree. Upon receipt of the broadcast,
nodes generate random IDs of O(log n) bits which are unique w.h.p. Analogously
to Section 18.3, v0 figures out the ID threshold of the bottom |S| node IDs w.r.t.
the induced random order using binary search. After broadcasting that threshold,
every node knows whether it is in S. This can be done in Õ(D(G)) rounds.
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(2) Each skeleton node s ∈ S computes ω′S(s, t) for all t ∈ S, using the (1 + 1/ log2 n)-
approximate (S, `, |S|)-detection algorithm by Lenzen and Patt-Shamir [103]. This
takes Õ(`+ n1/2 + D(G)) ⊆ Õ(n1/2 + D(G)) rounds.

(3) Run the algorithm of Henzinger et al. [73] to compute an (no(1),O(1/ log2 n))-hop
set of G′S . Here, all skeleton nodes learn all hop-set edges with the according weights;
we only require, however, each s ∈ S to learn its incident hop-set edges. This is
possible in Õ((n1/2 + D(G))no(1)) rounds by Theorem 4.7 in the full version of
Henzinger et al. [73].

(4) Implicitly construct HS . To this end, nodes in S locally determine their level and
broadcast it over the BFS tree, which takes O(|S| + D(G)) ⊂ Õ(n1/2 + D(G))
rounds.5 Thus, s ∈ S learns the level of {s, t} ∈ EHS for each t ∈ S.

(5) To determine x̄(0), we follow the same strategy as in Theorem 15.7, i.e., we simulate
matrix–vector multiplication with AHS via matrix–vector multiplications with AG′S
(where both matrices are extended to V × V matrices analogously to Section 18.3).
Hence, it suffices to show that we can efficiently perform a matrix–vector multipli-
cation AG′Sx for any x that may occur during the computation — we may ignore

applications of rV as it is a local operation and thus free — assuming each node
v ∈ V knows xv and its row of AG′S .

Since multiplications with AG′S only affects lists at skeleton nodes, this can be done
by local computations once all nodes know xs for each s ∈ S. We broadcast all xs
of all skeleton nodes s ∈ S, rendering the remaining computations local.

As above, |xs| ∈ O(log n) w.h.p., so
∑

s∈S |xs| ∈ O(|S| log n) ⊆ Õ(n1/2) w.h.p.

We broadcast these lists over the BFS tree, taking Õ(n1/2 + D(G)) rounds per
matrix–vector multiplication. Due to SPD(HS) ∈ O(log2 n) by Theorem 15.5 and
d ∈ no(1), this results in a round complexity of Õ((n1/2 + D(G))no(1)).

(6) Applying rVA`G,α is analogous to step (3) in Section 18.3 and hence takes us an

additional O(` log n) ⊆ Õ(n1/2) rounds.

Altogether, we arrive at a round complexity of Õ((n1/2 + D(G))no(1)).
Recall that the algorithm of Khan et al. takes Õ(SPD(G)) rounds [81]. Hence it

may be faster if SPD(G) is small. Using a standard technique, we can have the best of
both worlds by running both algorithms simultaneously: Interleave the execution of both
algorithms by, e.g., advancing one in even and the other in odd rounds, and return the
result of whichever algorithm terminates first. We conclude the following result.

Theorem 18.1. There is a randomized distributed algorithm in the CONGEST model
that, in a graph G with a polynomially bounded ratio between the minimum and maximum
edge weight, w.h.p. computes a metric tree embedding of expected stretch O(log n) using

min
{

Õ
((
n1/2 + D(G)

)
no(1)

)
, Õ (SPD(G))

}
(18.23)

5This step can be merged with step (1) by having all nodes v ∈ V sample a level λ(v) independently
from their random ID, ID(v). As λ(v) ∈ O(logn) w.h.p. by Lemma 15.1, we can broadcast (ID(v), λ(v))
instead of just ID(v). Later on, we only use the levels of skeleton nodes and ignore the other IDs. This,
however, does not affect the asymptotic round complexity.
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rounds of computation. The expected stretch is larger than the expected stretch of an FRT
embedding of G by a factor of 1 + o(1).
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CHAPTER 19

Applications

In this chapter, we apply our parallel FRT embedding algorithm from Chapter 17 to
k-median and the buy-at-bulk network design problem in Sections 19.1 and 19.2, respec-
tively.

We improve upon the state of the art by generalizing the algorithm of Blelloch
et al. [21] for k-median from constant-time query access metrics to arbitrary graphs,
providing the same approximation guarantees. Regarding buy-at-bulk network design,
we improve another algorithm by Blelloch et al. [21] by reducing the work from Õ(n3)
to Õ(min{m+ n1+ε + kn, n2}) ⊆ Õ(n2).

19.1 k-Median

Given a graph G = (V,E, ω), the k-median problem is about requests from clients located
at a subset V ′ ⊆ V of its nodes that are served by at most k facilities F ⊆ V . For example,
G could represent a residential area, V ′ customer locations, dist(·, ·, G) walking distances,
and F the locations of convenience stores. Requests occur at client nodes v ∈ V ′ and
serving them incurs costs dist(v, F,G), the distance of v to the closest facility f ∈ F :

dist(v, F,G) := min {dist(v, f,G) | f ∈ F} . (19.1)

The k-median problem takes the perspective of placing at most k facilities in G, such
that the sum of all possible requests is minimized.

Definition 19.1 (k-Median). In the k-median problem we are given a weighted graph
G = (V,E, ω), clients V ′ ⊆ V , and an integer k ∈ N. The task is to determine F ⊆ V
with |F | ≤ k that minimizes

Φ
(
F, V ′, G

)
:=
∑
v∈V ′

dist(v, F,G). (19.2)

Blelloch et al. study the k-median problem and give the following result [21]: Given a
metric with constant-time query access, it is possible to determine an expected O(log k)-
approximation of k-median using O(log2 n) depth and Õ(nk + k3) work for k ≥ log n;
the special case of k < log n admits an Õ(n)-work solution of the same depth [22].

We improve upon this result using our techniques, the constraint being polylogarith-
mic depth. Our contribution is to accept an arbitrary weighted graph G as input. This
only provides implicit access to the distance metric dist(·, ·, G), instead constant-time
query access. Hence, our solution is more general as any finite metric defines a complete
graph of SPD 1. The use of hop sets, however, restricts us to polynomially bounded
edge-weight ratios. Below, we establish that the same approximation guarantees pro-
vided by Blelloch et al. — w.h.p. an expected O(log k)-approximation for k ≥ log n and
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an O(1)-approximation for k < log n— of k-median can be achieved in a weighted graph
using polylog n depth and Õ(m1+ε + k3) work.

Observe that a weaker version of our result that uses Õ(n2+ε + k3) work directly
follows from (1) applying Corollary 16.6 to obtain a metric that O(1)-approximates
dist(·, ·, G) and (2) using the algorithm of Blelloch et al. [21] as black box on that metric.
Below, we show how to reduce the work to Õ(m1+ε + k3). This, however, requires us to
adapt some steps of the existing algorithm.

Let G = (V,E, ω) be a weighted graph, V ′ ⊆ V a set of clients, and k ∈ N an
integer. Recall that Blelloch et al. require constant-time query access to dist(·, ·, G) and
let OPT := min{Φ(F, V ′, G) | F ⊆ V, |F | ≤ k} denote the cost of an optimal k-median
solution w.r.t. the above instance. The algorithm of Blelloch et al. [21] comprises the
following steps:

(1) Use a parallel version of a sampling technique due to Mettu and Plaxton [112]
(Section 4.4 of Blelloch et al. [21]). It samples candidates Q that guarantee the
following properties: (a) Φ(Q,V ′, G) ≤ βOPT w.h.p. for some β ∈ O(1) and
(b) q := |Q| ∈ O(K log n

K ), where K = max{k, log n}. Note, however, that Q may
be infeasible for the original instance due to q > k.

In the following, associate each client v ∈ V ′ with a center q ∈ Q that minimizes
dist(v, q,G). Furthermore, consider the weighted k-median problem on the sub-
metric spanned by Q, where each q ∈ Q is weighted with the number of clients
in V ′ associated with it; if q ∈ Q receives weight 0, we remove it from the set of
clients. This guarantees that an α-approximation of the weighted instance w.h.p.
αβ-approximates OPT (Appendix A.1 of Blelloch et al. [21]).

(2) If k < log n, solve the modified instance exactly, using the algorithm of Blelloch
and Tangwongsan [22], and return the result. On an input of size n, the algorithm
of Blelloch and Tangwongsan uses O(log2 n) depth and O(k2n2 log n) work. Due to
k < log n, we have K = log n and q ∈ O(log2 n), hence, the work is O(k2q2 log n) ⊆
O(log7 n). This special case yields an O(1)-approximation.

(3) If k ≥ log n, we have K = k and hence q ∈ O(k log n
k ). Sample an FRT tree

regarding the submetric spanned by Q. Normalize the tree to a binary tree —
this is required by the next step — which is possible without incurring too much
overhead w.r.t. the depth of the tree (Section 4.2 of Blelloch et al. [21]).

(4) Run an O(kq2)-work dynamic-programming algorithm to solve the weighted binary
tree instance optimally without using any Steiner nodes (Sections 4.1 and 4.3 of
Blelloch et al. [21]). In expectation, this w.h.p. yields an O(log q) ⊆ O(log k2) ⊆
O(log k)-approximate solution of the original problem instance by the observation
in step (1).

Blelloch et al. show how the above steps can be performed using O(nk + k3) ⊆ O(kn2)
work and O(log2 n) depth, w.h.p. guaranteeing a constant-factor approximation in the
case of k < log n and an expected O(log k)-approximation if k ≥ log n [21].

We leave the overall structure in place and modify steps (1)–(3). The main challenge
is to account for the lack of constant-time distance queries due to accepting a general
graph as input. We propose the following algorithm:
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(1) Augment G with a (d, ε̂)-hop set. This is possible such that we obtain Õ(m1+ε)
edges and d, ε̂−1 ∈ polylog n, using polylog n depth and Õ(m1+ε) work [34]. Observe
that this does not change the approximation quality.

(2) The sampling procedure — step (1) in the above algorithm — uses O(log n
K ) iter-

ations. It maintains a candidate set U that initially contains all vertices. In each
iteration, O(K) candidates S are sampled and added to Q. Then, a constant frac-
tion of vertices in U , those closest to S, is removed from U (Algorithm 4.1 of
Blelloch et al. [21]). After the last iteration, all vertices remaining in U are added
to Q.

The key to adapting this procedure lies in efficiently determining dist(u, S,G) for
all u ∈ U in order to determine which subset of U to discard (this is trivial with
constant-time query access to the metric).

We achieve this by sampling in H from Chapter 15 which only costs a factor of
(1 + o(1)) in approximation, regardless of k. By Theorem 15.5, we only require
O(log2 n) iterations of the MBF-like algorithm from Example 14.8 for d =∞— this
is (S, SPD(H),∞, 1)-source detection — to determine each node’s distance to the
closest vertex in S w.h.p. After that, binary search reveals the distance threshold
and with it the nodes to be discarded.

An iteration of (S,SPD(H),∞, 1)-source detection is simple; each node only has to
pick the smallest distance received from its neighbors. Hence, an iteration only takes
D ∈ O(log n) depth and work W ∈ O(m1+ε log n), aggregation over Λ ∈ O(log n)
values takes D⊕ ∈ O(log n) depth and W⊕ ∈ O(log2 n) work. Theorem 15.7 hence
allows us to run the algorithm in H using polylog n depth and Õ(m1+ε) work. As
there are O(log n) iterations, we can afford to do this in every iteration.

The other parts of this step can be done analogously to Blelloch et al. [21].

(3) If k < log n we can afford to determine a metric that (1 + o(1))-approximates
(dist(v, w,G))v,w∈Q using polylog n depth and Õ(m1+ε) work; this follows from
Corollary 16.5 with |S| = |Q| ∈ O(log2 n) (compare step (2) of the above algorithm).
As the approximate metric offers constant-time query access, we may apply the
algorithm of Blelloch and Tangwongsan [22], within the stated limits of depth and
work and immediately return the result. Further, as we only increase the stretch
by a factor in (1 + o(1)), we obtain an O(1)-approximation analogously to step (2)
of the above algorithm.

(4) Otherwise, we have k ≥ log n and sample an FRT tree on the submetric implicitly

spanned by Q in H. To compute the embedding only on Q set x
(0)
vv = 0 if v ∈ Q

and x
(0)
vw = ∞ everywhere else. Consider only the LE lists of nodes in Q when

constructing the tree. As we are limited to polynomially bounded edge-weight
ratios, our FRT trees have logarithmic depth. We normalize to a binary tree using
the same technique as Blelloch et al. [21].

(5) The O(kq2) ⊆ O(k(k log n
k )2) ⊆ O(k3 log2 n) ⊆ Õ(k3)-work polylogarithmic-depth

dynamic-programming algorithm of Blelloch et al. can be applied without modifi-
cation.
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W.h.p., we arrive at an expected O(log k)-approximation of k-median for k ≥ log n and
a constant-factor approximation if k < log n.

Theorem 19.2. For any fixed constant 0 < ε ≤ 1
2 , there is an algorithm that w.h.p.

computes an expected O(log k)-approximation to k-median in a weighted graph using
polylog n depth and Õ(m1+ε + k3) work. The special case of k < log n yields an O(1)-
approximation.

19.2 Buy-at-Bulk Network Design

In the buy-at-bulk network design problem, we consider a weighted graph G = (V,E, ω)
and are given several demands, i.e., source–target node pairs together with a requested
capacity. Furthermore, there are different types of cables available, each type has a
capacity and a price per unit. The task is to place enough cables on the edges of the
graph, where the length of an edge denotes how much of the cable has to be bought,
such that all demands can be served simultaneously. It is possible to buy the same type
of cable several times for the same edge. Possible applications of this problem include,
as indicated by its name, the design of computer or power-supply networks.

Definition 19.3 (Buy-at-Bulk Network Design). In the buy-at-bulk network design
problem, one is given

(1) a weighted graph G = (V,E, ω),

(2) demands (si, ti, di) ∈ V × V ×R>0 for 1 ≤ i ≤ k, and

(3) cable types (ui, ci) ∈ R>0 ×R>0 for 1 ≤ i ≤ `, where ui is the capacity and ci the
cost per unit of length.

The goal is to choose exactly one si-ti-path — we may not split the flow — for each demand
and to find an assignment of cable types and multiplicities to edges minimizing the total
cost, such that the resulting edge capacities allow to route di units of distinct flow from
si to ti for all 1 ≤ i ≤ k simultaneously. The purchase of a cable of type i for the edge e
incurs a cost of ci ω(e). Multiple cables of the same type can be bought for an edge.

Blelloch et al. give an expected O(log n)-approximation w.h.p. using polylog n depth
and O(n3 log n) work for the buy-at-bulk network design problem; in the case constant-
time query access to dist(·, ·, G) is available, the work is reduced to O(n2 log n) because
solving APSP dominates the work [21].

Observe that using Corollary 16.6 to O(1)-approximately solve APSP while preserving
the triangle inequality, we immediately arrive, w.h.p., at a Õ(n2+ε)-work algorithm of
polylog n depth with the same asymptotic approximation guarantee as Blelloch et al.

Our tools, however, admit a more work-efficient parallelization that w.h.p. uses
polylog n depth and Õ(min{m+n1+ε+kn, n2}) ⊆ Õ(n2) work, without requiring constant-
time query access to dist(·, ·, G). In expectation, we achieve a O(log n)-approximation,
i.e., the same asymptotic guarantee as Blelloch et al. [21]. The use of hop sets, however,
restricts us to polynomially bounded edge-weight ratios.

We propose the following modification of the approach of Blelloch et al. [21]:
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(1) Metrically embed G into tree T = (VT , ET , ωT ) with an expected stretch of O(log n)
with VT = V , see Observation 17.17. Dispensing with Steiner nodes is required by
the underlying approximation algorithm of Awerbuch and Azar [7].

(2) O(1)-approximate in T by picking, for each e ∈ ET , the cable of type i that
minimizes cidde/uie, where de is the accumulated flow on e. Awerbuch and Azar
argue why it is a constant-factor approximation [7].

(3) Map the tree solution back to G as detailed in Observations 17.14–17.16.

First observe that the above procedure yields an expected O(log n)-approximation:
Let OPTG and OPTT denote the costs of the respective optimal solutions in G and in T .
Translating the optimal solution of G to T yields, in expectation, costs of βOPTG for
some β ∈ O(log n) due to the expected stretch of the tree embedding and the fact that
the objective function is linear in the edge weights. As we α-approximate in T , where
α ∈ O(1), and OPTT ≤ βOPTG, our solution in T costs at most

αOPTT ≤ αβOPTG ∈ O(log n) OPTG (19.3)

in T . We map our tree solution back to G without incurring additional costs.
Using Corollary 17.13, the first step has polylog n depth and Õ(m+ n1+ε) work. For

the second step, Blelloch et al. discuss an algorithm of polylog n depth and Õ(n + k)
work [21]. Concerning the third step, observe that we can map a leaf-leaf path in T to
a path of Õ(n) hops in G— possibly with loops — using Observations 17.14–17.16 and
the fact that T has depth O(log n) due to the polynomially bounded edge-weight ratios.
Since there are k demand pairs, we evaluate min{k, n} such paths (T only has n leaves),
resulting in Õ(min{kn, n2}) work. As discussed in Observations 17.14–17.16, we assume
that appropriate data structures for doing this using polylog n depth are in place. The
above algorithm hence has

Õ
(
m+ n1+ε + n+ k + min

{
kn, n2

})
⊆ Õ

(
min

{
m+ n1+ε + kn, n2

})
(19.4)

work and polylog n depth. We arrive at the following theorem.

Theorem 19.4. For any constant 0 < ε ≤ 5
4 , w.h.p., an expected O(log n)-approximation

to the buy-at-bulk network design problem can be computed using polylog n depth and
Õ(min{m+ n1+ε + kn, n2}) ⊆ Õ(n2) work.
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CHAPTER 20

Conclusion

We propose an algebraic classification of MBF-like algorithms in Chapter 13. This is a
new perspective on a large group of algorithms and formalizes the characterization of
“algorithms that behave like the MBF algorithm.” Besides being of theoretical interest,
our characterization captures many algorithms. We demonstrate this in Chapter 14 and
reduce the task of devising and analyzing such algorithms to the following recipe:

(1) Pick a suitable semiring S and semimodule M over S. While custom semirings
and semimodules can be used, our hope is that the generic variants proposed in
Chapter 14 prove useful for many algorithms.

(2) Choose a filter r : M→M, initial values x(0) ∈MV , and a number of iterations
h ∈ N0, such that rVAhx(0) is the desired output. The filter r is where the problem-
specific customization happens. Hence, we hope that a small number of generic
semimodules can be repurposed for many algorithms.

(3) Verify that r induces a congruence relation on M.

(4) Leverage repeated use of rV to ensure that iterations can be implemented effi-
ciently. This is where irrelevant information — in the sense that some part of the
accumulated information is irrelevant not only in the current but also in future
iterations — is dropped, as soon as it is classified as such.

We focus on parallel, polylogarithmic-depth, low-work algorithms.

A key application of the proposed class of MBF-like algorithms is that it allows
formalizing a statement like “one iteration of an algorithm in the graph H is equivalent
to d appropriately aggregated iterations in the graph G.” Without a generic framework,
this has to be done on a per-algorithm basis; in our case it would have entangled the
LE list computation with the graph H, making it inconvenient at best to show that the
same approach also works for parallel metric approximations.

The framework allows us to devise a simulation strategy for MBF-like algorithms
over the Smin,+ semiring in Chapter 15, where we are able to devise a graph H of
polylogarithmic SPD — which is useful for polylogarithmic-depth parallel algorithms —
that (1) we cannot explicitly compute because it is complete and thus induces too much
work, but that (2) allows simulating MBF-like algorithms in H using only iterations in
the original graph G and polylogarithmic overhead in depth and work. Together with an
appropriate hop-set algorithm, this allows us to devise the oracle with the property that
if we can run a single iteration (and other simple operations) of an arbitrary MBF-like
algorithm A over Smin,+ in G using D depth and W work, then we can simulate all
iterations of A in H using Õ(D) depth and Õ(W ) work. As distances in H (1 + o(1))-
approximate distances in G, the oracle yields a good approximation of distances that
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at the same time are consistent with the triangle inequality at only a polylogarithmic
overhead.

It is the consistency with the triangle inequality that allows us to determine approx-
imate metrics and submetrics in Chapter 16, because MSSP and APSP are MBF-like.
Further, collecting LE lists — the key part of sampling an FRT tree — is MBF-like, allow-
ing us to determine an FRT-style metric tree embedding of expected logarithmic stretch
in Chapter 17.

While we consider the polylogarithmic factors too large for our algorithm to be of
practical interest, this result motivates the search for solutions that achieve low depth de-
spite having work comparable to the currently best known sequential bound of O(m log n)
w.h.p. [20]. Concretely, better hop-set constructions could readily be plugged into our
machinery to yield improved bounds and one may seek to reduce the polylogarithmic
overhead incurred by the remaining construction.

Further, we use our techniques to improve upon the stretch and the round complexity
required to sample an FRT-style embedding in the CONGEST model in Chapter 18 and
to improve upon the state of the art of parallel approximation algorithms regarding the
k-median and the buy-at-bulk network design problem in Chapter 19.

We hope that our framework of MBF-like algorithms, the oracle, and our parallel
FRT construction are useful in the design of parallel and distributed algorithms.

A possible generalization of the framework of MBF-like algorithms is to not propagate
the entire filtered knowledge of a node, but just a subset thereof. This is sometimes
required in the CONGEST model to ensure that the maximum message size is not
exceeded.
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PART III

Terrain Guarding

“There was a terrible pseudo-familiarity about them — which somehow made
me look furtively and apprehensively over the abominable, sterile terrain to-
ward the north and northeast.”

H. P. Lovecraft, The Shadow out of Time

This part is based on the article that appeared in the 7th volume of the
Journal of Computational Geometry (JoCG), pages 256–284, 2016 [56] which
extends and subsumes Chapter 3 of James King’s PhD thesis, pages 29–
72, 2010 [86], the extended abstracts that appeared in the Proceedings of the
26th Canadian Conference on Computational Geometry (CCCG 2014), pages
367–373, 2014 [57] and in the 31st European Workshop on Computational
Geometry (EuroCG 2015), pages 212–215, 2015 [58], and the Terrain Guarding
Problem Instance Library [59].

The following chapters are the result of close collaboration with Michael Hem-
mer and Christiane Schmidt. James King published the first discretization of
the Continuous Terrain Guarding Problem [86]. The discretization developed
with Michael Hemmer and Christiane Schmidt in [57, 58] was discovered
independently from, and unaware of, James King’s [86]. Our subsequent joint
publication [56] contains the discretization of Friedrichs et al. [57, 58]; it
beats the asymptotic complexity of that of James King [86] by a factor of n.
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CHAPTER 21

Introduction

In the 1.5D Terrain Guarding Problem (TGP), we are given an x-monotone chain of
line segments in R2, the terrain T . We want to place a minimum number of point-
shaped guards on T that together cover T , where g ∈ T covers w ∈ T if and only if
the line segment gw is nowhere below T , compare Figure 21.1(a). Our main interest
is the Continuous Terrain Guarding Problem (CTGP), where guards can be placed
anywhere on T . The CTGP is more challenging than TGP versions with an a priori
discretization, e.g., the Terrain Guarding Problem with Vertex Guards (VTGP): Good
guard candidates are not necessarily located on the vertices, compare Figure 21.1(b),
and have to be identified first.

The TGP is a close relative of the Art Gallery Problem (AGP), where a minimum
number of point-shaped guards is to be placed to cover1 a polygon. Traditionally, the
TGP is motivated by the optimal placement of antennas for line-of-sight communication
networks, and the placement of street lights or security cameras along roads [18]. We
would, however, like to revive a motivation rooted in our research regarding algorithms
solving the AGP [40, 49, 51] already mentioned by Ben-Moshe et al. [18]: An application
of the AGP is the placement of sensors or communication devices w.r.t. obstacles, for
example placing laser scanners in production facilities to acquire a precise mapping of
the facility [49, 95].

While the AGP properly models most indoor environments, it cannot capture many
outdoor scenarios, like placing cell phone towers in an urban environment, because it
does not take height information into account. Fixing this requires two dimensions and
height, a 2.5D AGP. In order to study the aspect of elevation, one dimension and height,
the 1.5D TGP, is a natural starting point to develop techniques for the 2.5D AGP.
Despite being a simplification of the AGP, the CTGP is NP-hard [87] and thus not an
oversimplification.

We show that the “height dimension” of the TGP is more benevolent than the
“second dimension” of the AGP: 1.5D terrains with rational vertex coordinates have a
polynomial-size discretization of only rational coordinates. This is surprising, because
Abrahamsen et al. recently showed that this is not the case for the AGP: Guards with
irrational coordinates are sometimes required to cover polygons with rational vertex coor-
dinates [1]. This is a serious issue for software solving the AGP, where the discretization
of subproblems poses a key challenge [40], and by extension the 2.5D AGP. Nevertheless,
we hope that our result indicates that the 2.5D AGP is not harder than the AGP.

Another motivation for discretizing the CTGP is the following. The existence of
a polynomial-size discretization immediately yields a Polynomial-Time Approximation
Scheme (PTAS) for the CTGP and establishes the NP-completeness of its decision variant.
This follows because the discrete TGP is known to permit a PTAS [66] and the decision

1Analogously to the TGP, a guard g covers the point w in a polygon P if and only if gw ⊆ P .
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p

(a) The visibility region V(p) of p ∈ T has O(n) subterrains.

(b) This terrain needs two vertex- but only one non-vertex guard [18].

Figure 21.1: The Terrain Guarding Problem.

variant of the CTGP is known to be NP-hard [87]. Unknown to the authors of Friedrichs
et al. [57, 58] until after publication, King developed a discretization of size O(n4) [86].
The discretization independently developed by the authors is presented in Chapter 22.
It has size O(n3), i.e., is asymptotically smaller by a factor of n and is the foundation of
the joint publication [56]. Hence, the PTAS and the NP-completeness of the CTGP in
Chapter 23, our initial motivation, are implicit to prior work.

21.1 Our Contribution

(1) Our core contribution is Chapter 22. We show that the CTGP, where guards can
be freely placed on the terrain, has a discretization with O(n2) guard candidates2

and O(n3) witnesses;3 the discretization only requires rational coordinates for ter-
rains restricted to rational vertex coordinates. Our discretization is asymptotically
smaller than that of King [86] by a factor of n and was discovered independently (see
above). Furthermore, we propose filtering techniques that can drastically reduce
the size of the discretization and thus pave the way for an efficient implementation.

(2) The results of Chapter 23 immediately follow.

(a) While the decision version of the CTGP is known to be NP-hard [87], we
conclude that it also is a member of NP and hence NP-complete.

2Possible guard locations.
3Coverage of the entire terrain follows from coverage of all witness points by guard candidates.
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(b) It follows from the PTAS for the discrete TGP of Gibson et al. [66] that there
is a PTAS for the CTGP.

As discussed above, both results are implicit to prior work [86].

(3) An efficient algorithm for continuous and discrete TGP versions is proposed in
Chapter 24. It is based on an Integer Linear Program (IP) and finds optimal
solutions for terrains with up to 106 vertices on a standard desktop computer4

within minutes. This is achieved following the Exact Geometric Computation
(EGC) paradigm, i.e., using exact arithmetic for geometric calculations to ensure
correctness. We test our algorithm and the filtering techniques from Chapter 22
on a large collection of instances [59].

We conclude this part in Chapter 25.

21.2 Related Work

The TGP is closely related to the AGP, where, given a polygon P , we seek a minimum
cardinality guard set that covers P . Potential guards can, e.g., be located on the vertices
only, on arbitrary points in P , or patrol along edges or diagonals of P . Many polygon
classes have been considered for the AGP, including simple polygons, polygons with holes,
and orthogonal polygons. Moreover, the guards’ task can be altered, e.g., Laurentini [97]
required visibility coverage for the edges of P , but not the interior.

The first result in the context of the AGP was obtained by Chvátal [30], who proved
the Art Gallery Theorem, answering a question posed by Victor Klee in 1973, see
O’Rourke [117]: bn3 c guards are always sufficient and sometimes necessary to guard
a polygon of n vertices. A simple and elegant proof of the sufficiency was later given
by Fisk [53]. Related results were obtained for various polygon classes; Kahn et al. [79]
established a tight bound of bn4 c for orthogonal polygons with n vertices.

The above results focus on bounds regarding the number of guards. However, the
AGP also is an optimization problem: Given a polygon, find a minimum number of
guards covering it. The decision variant of this optimization problem was shown to
be NP-hard for various problem versions [118, 124], even for vertex guards in polygons
without holes [98]. Eidenbenz et al. established APX-hardness of many AGP variants [45].
Chwa et al. [31] considered witnessable polygons, in which coverage of some finite set
of witness points implies coverage of the entire polygon. For classical surveys on the
AGP see O’Rourke [117] and Shermer [125], and de Rezende et al. [40] for more recent
computational developments.

For the 1.5D TGP, research first focused on approximation algorithms, because NP-
hardness was generally assumed, but had not been established. The first constant-factor
approximation was given by Ben-Moshe et al. [18] for the discrete vertex guard problem
version TGP(V, V ),5 where only vertex guards are used to cover only the vertices. They
were able to use it as a building block for an O(1)-approximation of TGP(T, T ), where
guards on arbitrary locations on T must guard all of T . The approximation factor

4Standard as of 2015: An Intel Core i7-3770 CPU with 3.4 GHz with 14 GB of main memory.
5TGP(G,W ) means that W ⊆ T must be covered using only guards located in G ⊆ T , see Defini-

tion 21.1. CTGP refers to TGP(T, T ) and VTGP to TGP(V, T ).
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of this algorithm was not stated by the authors, but claimed to be 6 by King [85]
(with minor modifications). Another constant-factor approximation based on ε-nets and
Set Cover (SC) was given by Clarkson and Varadarajan [32]. King [85] presented a
4-approximation (which was later shown to actually be a 5-approximation [84]) for
TGP(V, V ) and TGP(T, T ). The most recent O(1)-approximation was presented by
Elbassioni et al. [46]: Using LP-rounding techniques, they achieve a 4-approximation
of TGP(T, T ) and TGP(G,W ) w.r.t. finite, disjoint G,W ⊂ T (a 5-approximation if
G ∩W 6= ∅). This approximation generalizes to the TGP with weighted6 guards. In the
2009 conference version, Gibson et al. [66] devised a PTAS based on local search for
TGP(G,W ) and TGP(G,T ), where G,W ⊂ T are finite.

Only after all these approximation results, in the 2010 conference version, King and
Krohn [87] established the NP-hardness of both the discrete and the continuous TGP by
a reduction from PLANAR 3SAT. The membership of the CTGP in NP was implicitly
established by King [86], but, to the best of our knowledge, not published in conference
or journal articles before our joint publication [56]. Khodakarami et al. [82] showed that
the TGP is Fixed-Parameter Tractable (FPT) w.r.t. the depth of terrain onion peeling,
the number of layers of upper convex hulls induced by a terrain.

Variants of the TGP include guards hovering above the terrain (Eidenbenz [44]),
orthogonal terrains (Katz and Roisman [80]), and directed visibility (Durocher et al. [42]).
Hurtado et al. [75] gave algorithms for computing visibility regions in 1.5D and 2.5D
terrains. Haas and Hemmer [70] presented implementations for 1.5D visibility based on
Hurtado et al. [75] and the triangular expansion technique for visibility computations in
polygons by Bungiu et al. [27].

Martinović et al. [109] proposed an approximate solver for the discrete TGP. Re-
quiring a priori knowledge about pairwise visibility of the vertices V , they 5.5- and
6-approximate TGP(V, V ) on instances with up to 8000 vertices and dense (0.19–0.65)
visibility matrices in 11–900 and 4–250 seconds, respectively. As visibility information is
encoded in the input, they are not tied to the EGC paradigm; hence, they use floating-
point arithmetic and a parallel GPU implementation. Note that we solve a different
problem: We determine the discretization and visibility information that Martinović
et al. require as input, follow the EGC paradigm, and guarantee optimal solutions in
no more than 3.5 seconds for 10000 vertices. However, we do not focus on dense visibil-
ity matrices and use different hardware, rendering a comparison of computation times
meaningless.

Regarding a discretization for the CTGP, Gibson et al. claimed that their local search
works well, but could not bound the number of bits representing the guard positions [66].
King gave a discretization with O(n3) guard candidates and O(n4) witnesses in his
PhD thesis in 2010 [86] and posed the question whether a smaller discretization exists.
Independently, Friedrichs et al. discovered a discretization using O(n2) guard candidates
and O(n3) witnesses [57, 58] in 2014; there was a joint publication in 2016 [56]. This work
subsumes and extends the joint publication [56], as detailed above. Recently, Abrahamsen
et al. showed that the AGP sometimes requires irrational guards [1]. This makes the
existence of a rational discretization for the CTGP surprising, especially because the
proof of Abrahamsen et al. only requires monotone polygons which — unlike arbitrary

6Guards with non-uniform cost.

176



21.3. Notation and Preliminaries

polygons — are subject to many of the structural restrictions of 1.5D terrains.

21.3 Notation and Preliminaries

A terrain T , see Figure 21.1, is an x-monotone chain of line segments in R2 defined by
its vertices V (T ) = {v1, . . . , vn} that has edges E(T ) = {e1, . . . , en−1} with ei := vivi+1.
Unless specified otherwise, n := |V (T )|. Where T is clear from context, we occasionally
abbreviate V (T ) and E(T ) by V and E. vi and vi+1 are the vertices of the edge ei,
and int(ei) := ei \ {vi, vi+1} is its interior. Observe that all edges ei are closed sets,
vi, vi+1 ∈ ei, while int(ei) is not closed. Due to monotonicity, the points on T are totally
ordered w.r.t. their x-coordinates. For p, q ∈ T , we write p ≤ q (p < q) if p is (strictly)
left of q, i.e., has a (strictly) smaller x-coordinate. We refer to a closed, connected subset
of T as a subterrain.

A point p ∈ T sees or covers q ∈ T if and only if pq is nowhere below T . With

V(p) := {q ∈ T | p sees q} (21.1)

we denote the visibility region of p. Observe that V(p) is the union of O(n) subterrains,
see Figure 21.1(a), hence, V(p) is closed but not necessarily connected. We say that
q ∈ V(p) is extremal in V(p) if q has a maximal or minimal x-coordinate within its
subterrain in V(p). For G ⊆ T we abbreviate

V(G) :=
⋃
g∈G
V(g). (21.2)

A set G ⊆ T with V(G) = T is a (guard) cover of T . In this context, g ∈ G is sometimes
referred to as guard.

Definition 21.1 (Terrain Guarding Problem). In the Terrain Guarding Problem (TGP)
we are given a terrain T and sets of guard candidates and witnesses G,W ⊆ T . We
abbreviate this by TGP(G,W ), omitting T as an explicit parameter because it is clear
from context throughout the following chapters. C ⊆ G is feasible w.r.t. TGP(G,W ) if
and only if W ⊆ V(C). We define

OPT(G,W ) := min{|C| | C ⊆ G is feasible w.r.t. TGP(G,W )} (21.3)

and call C ⊆ G optimal w.r.t. TGP(G,W ) if and only if C is feasible and |C| =
OPT(G,W ). TGP(G,W ) asks for an optimal guard cover C ⊆ G. The Continuous
Terrain Guarding Problem (CTGP) is TGP(T, T ) and the Terrain Guarding Problem
with Vertex Guards (VTGP) is TGP(V (T ), T ).

Observe that TGP(T, T ) is well-defined: Placing a guard on every other vertex is
feasible and yields OPT(T, T ) ≤ n

2 . In the following, we assume W ⊆ V(G), i.e., that
TGP(G,W ) has a feasible solution. The CTGP is our primary focus. Observe that CTGP
and VTGP are different problems [18], as demonstrated in Figure 21.1(b). We consider
VTGP a representative of the numerous discrete versions of the TGP; our algorithm
solves both CTGP and VTGP, and generalizes to arbitrary discretizations.
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CHAPTER 22

Discretization

This chapter is the foundation of our contributions to the CTGP. We consider the
following problem: Given a terrain T with n vertices, construct sets G,W ⊂ T (guard
candidate and witness points) of size polynomial in n, such that any feasible (optimal)
solution for TGP(G,W ) is feasible (optimal) for TGP(T, T ) as well. We proceed as
follows.

(1) In Section 22.1 we assume that we are provided with some finite guard candidate
set G ⊂ T and show how to construct a witness set W (G) with |W (G)| ∈ O(n|G|),
such that any feasible solution of TGP(G,W (G)) is feasible for TGP(G,T ) as well.

(2) The main part is Section 22.2, where we propose a set of guard candidates U with
|U | ∈ O(n2) and OPT(U, T ) = OPT(T, T ).

(3) We combine the above steps in Section 22.3.

(4) With an efficient implementation in mind, we propose filtering techniques to reduce
the size of the discretization in Section 22.4.

As detailed in Chapter 21, our discretization was developed independently from that of
King [86] and is asymptotically smaller by a factor of n.

As a preliminary consideration, let us explore the extent to which the idea of wit-
nessable polygons w.r.t. the AGP pursued by Chwa et al. [31] can be transferred to the
TGP. Witnessable polygons allow placing a finite set of witnesses W , such that coverage
of W implies coverage of the entire polygon. The basic building blocks of Chwa et al.
are visibility kernels: Given a point w in a polygon, the visibility kernel of w is the set
of points that see at least as much as w (definition for terrains below). Chwa et al. show

w ∈ VK(w)

w′ w′′

w̄

Figure 22.1: Witness w, V(w) highlighted in red, and its finite visibility kernel VK(w) =
{w,w′, w′′} marked in blue. w̄ has equivalent properties.
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that a polygon admits a finite witness set if and only if it can be covered by a finite set
of visibility kernels; this is not the case for arbitrary polygons.

This approach, however, does not carry over to the TGP. The visibility kernel of
w ∈ T is VK(w) := {w′ ∈ T | V(w) ⊆ V(w′)}. Then for the terrain T and w ∈ T in
Figure 22.1 we have VK(w) = {w,w′, w′′}, so VK(w) is finite. The same argument holds
for infinitely many w̄ ∈ T near w. It follows that T does not admit a finite visibility-
kernel cover. Hence, applying the approach of Chwa et al. to T does not yield a finite
set of witness points, such that covering them implies coverage of T . Below, we choose a
different approach and associate the witness set developed in Section 22.1 with a finite
set of guard candidates instead of arbitrary guard locations.

22.1 Witnesses

Suppose we are given a terrain T , a finite set G ⊂ T of guard candidates with V(G) = T ,
and we want to cover T using only guards C ⊆ G, i.e., we want to solve TGP(G,T ).
G could be the set V (T ) of vertices to solve the VTGP or any other finite set, in
particular, our guard candidates in Equation (22.5). We construct a finite set W (G) ⊂ T
of O(n|G|) witness points, such that all feasible solutions of TGP(G,W (G)) are feasible
for TGP(G,T ).

Observe that any finite set of points on T induces a subdivision of T . Due to the
x-monotonicity of T w.l.o.g. consider its projection on the x-axis, i.e., the closed interval
spanned by the x-coordinates of v1 and vn, the leftmost and the rightmost vertex of T .
This is a 1D arrangement1 of vertices and open2 line segments. Let g ∈ G be a guard
candidate. V(g) consists of O(n) subterrains, see Figure 21.1(a). The extremal points
of V(g) induce an arrangement like above that we call the visibility arrangement A
of g, where each open line segment and each vertex of A corresponds to a region on
T that is either entirely seen or not seen by g. We refer to the line segments of A
as visibility intervals and to its vertices as endpoints. Next, consider the overlay3 of
all visibility arrangements of guards in G, i.e., the subdivision induced by all extremal
visibility points of all guard candidates, see Figure 22.2(a). Every point in a feature f (the
region on T corresponding to a visibility interval or endpoint) of the resulting visibility
arrangement is entirely seen by the same set of guards

G(f) := {g ∈ G | f ⊆ V(g)} . (22.1)

Observation 22.1. Let f be a feature of the guard candidates’ overlay and let g ∈ G be
a guard. Now consider an arbitrary witness w ∈ f . Then

w ∈ V(g) ⇔ f ⊆ V(g)
(22.1)⇔ g ∈ G(f). (22.2)

Place one witness in each feature of the subdivision. Covering such a witness implies
covering its entire feature, hence, covering all witnesses implies coverage of T . This

1Arrangements are a standard tool [2] that is, e.g., useful w.r.t. the AGP [40, 49].
2The leftmost and the rightmost line segment are not open when restricting the arrangement to T .

This is irrelevant to the discussion at hand, however, including v1 and vn into the point set w.l.o.g.
ensures that all line segments are open.

3This is a standard technique in AGP-related problems [40, 49].
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g1

g2

{g1} {g1, g2} {g1} {g2} {g1, g2} {g2, g3}{g1, g2}

g3

G(f)

(a) Visibility overlay of V(g1),V(g2), and V(g3) indicated in blue, orange,
and green, respectively. Overlaps are indicated by altering colors.

|G|
3

|G|
3

(b) The set of inclusion-minimal features may have cardinality Θ(n|G|).

Figure 22.2: Witness discretization: visibility overlay (a) and a lower bound on the
number of inclusion-minimal features (b).
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requires O(n|G|) witnesses, as each guard’s visibility region has O(n) extremal points
which bounds the number of features by O(n|G|). However, keeping efficient algorithms in
mind, we reduce the number of witnesses, see Section 22.4.3: Similar to the shadow atomic
visibility polygons by Couto et al. [36] — a successful strategy in AGP algorithms [40] —
it suffices to include only those features f with inclusion-minimal G(f), i.e., those for
which no f ′ with G(f ′) ⊂ G(f) exists:

Theorem 22.2. Consider a terrain T and a finite set of guard candidates G with
V(G) = T . Let FG denote the set of features of the visibility overlay of G on T and
wf ∈ f an arbitrary point in the feature f ∈ FG. Then for

W (G) := {wf | f ∈ FG, G(f) is inclusion-minimal }, (22.3)

we have that if C ⊆ G is feasible w.r.t. TGP(G,W (G)), then C is also feasible w.r.t.
TGP(G,T ) and

OPT(G,W (G)) = OPT(G,T ). (22.4)

Proof. Let C ⊆ G cover W (G) and consider some point w ∈ T . We show that w ∈ V(C).
By assumption, w ∈ V(G) and thus w ∈ f for some feature f ∈ FG. The set W (G)
contains some witness in wf ∈ f or a witness wf ′ ∈ f ′ with G(f ′) ⊆ G(f) by construction.
In the first case, w must be covered, otherwise wf would not be covered and C would be
infeasible for TGP(G,W (G)). In the second case wf ′ is covered, so some guard in G(f ′)
is part of C, and that guard also covers f and therefore w.

Regarding Equation (22.4), observe that TGP(G,W (G)) is a relaxation of TGP(G,T ),
so OPT(G,W (G)) ≤ OPT(G,T ) follows. Furthermore, if C is feasible and optimal
w.r.t. TGP(G,W (G)), it is also feasible for TGP(G,T ) as argued above. It follows that
|C| = OPT(G,W (G)) ≥ OPT(G,T ), proving Equation (22.4).

Observation 22.3. Using the set of one witness per inclusion-minimal feature as in
Equation (22.3) does not reduce the worst-case complexity of |W (G)| ∈ O(n|G|) witnesses.

Proof. See Figure 22.2(b). For |G| ∈ Θ(n) consider the terrain with Θ(n) valleys with
|G|
3 guards placed on the left (blue) and the right (red) slope each. In addition there is

one guard (black) placed in each valley. Thus, each of the Θ(n) valleys contains Θ(|G|)
inclusion-minimal intervals depicted in violet, resulting in Θ(n|G|) inclusion-minimal
features.

Nevertheless, using only inclusion-minimal witnesses significantly speeds up our im-
plementation, refer to Section 22.4.3 and Chapter 24.

Observation 22.4. Let p be an endpoint of the visibility overlay of G on T . Then W (G)
does not require a witness corresponding to p: p is incident to at least one visibility
interval I and we have G(p) ⊇ G(I) because visibility regions are closed sets. Hence,
G(p) is not inclusion-minimal.

22.2 Guards

Throughout this section, let T be a terrain, V = V (T ) its vertices, and E = E(T ) its
edges. Let C ⊂ T be a finite guard cover of T that is feasible w.r.t. TGP(T, T ) and
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22.2. Guards

possibly optimal. Define U as all vertices along with the extremal points of their visibility
regions:

U := V ∪
⋃
v∈V
{p | p is extremal in V(v)} . (22.5)

Observation 22.5. |U | ∈ O(n2) as noted by Ben-Moshe et al. [18]: It contains n
vertices, each associated with O(n) subterrains of at most two extremal points.

Ben-Moshe et al. use a similar set, but they also add an arbitrary point of T between
each pair of consecutive points in U . They need these points as witnesses. We, however,
keep the witnesses separate by our definition of TGP(G,W ).

In the remainder of this section we show that U contains all guard candidates neces-
sary for solving the CTGP, TGP(T, T ), i.e., that OPT(U, T ) = OPT(T, T ). Recall that
OPT(T, T ) ≤ n

2 . Our strategy is to show that in any cover C of T it is always possible
to move a guard in C \ U to a carefully chosen point in U without losing coverage.
This procedure preserves the cardinality and feasibility of any feasible cover; iterating it
results in a cover C ⊆ U . In particular, this is possible for an optimal guard cover.

First observe that an edge that is entirely covered by a guard g ∈ C \U is still covered
after moving g to one of its neighbors in U .

Lemma 22.6. Let g ∈ C \U be a guard that covers an entire edge ei ∈ E, i.e., ei ⊆ V(g).
Then u` and ur, the U -neighbors of g, with

u` := max{u ∈ U | u < g} (22.6)

ur := min{u ∈ U | g < u} (22.7)

each entirely cover ei, too, i.e., ei ⊆ V(u`) and ei ⊆ V(ur).

Proof. g covers ei, so vi, vi+1 ∈ V(g), implying g ∈ V(vi) ∩ V(vi+1). Moving g towards
u` does not move g out of V(vi) or V(vi+1), as the boundaries of those regions are
contained in U by construction. Hence, vi, vi+1 ∈ V(u`) and thus ei ⊆ V(u`). Analogously,
ei ⊆ V(ur).

It remains to consider the edges not entirely covered by a single guard, refer to
Figure 22.3(a). We refer to such edges as critical edges:

Definition 22.7 (Critical Edge). An edge e ∈ E is critical w.r.t. g ∈ C if C \{g} covers
some part of, but not all of, int(e). If e is critical w.r.t. some g ∈ C we call e a critical
edge.

So e is critical if and only if more than one guard is responsible for covering int(e).

Definition 22.8 (Left-Guard/Right-Guard). g ∈ C is a left-guard (right-guard) of
ei ∈ E if g < vi (vi+1 < g) and ei is critical w.r.t. g. We call g a left-guard (right-guard)
if it is a left-guard (right-guard) of some e ∈ E.

For the sake of completeness, we state and prove the following lemma which also
follows from the well-established order claim [18]:
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g` gr

g′

g′′
ei

vi+1vi

(a) The edge ei is critical w.r.t. g` and gr: The right (left) part
of ei, indicated in blue (red), is seen by g` (gr) only.

g

g` gr

e` er
p`

≤ 180◦

≤ 180◦

pr

e

(b) No guard g is both left- and right-guard. Any point on the critical edge e`
seen by g is also seen by gr, hence e` cannot be critical w.r.t. g.

gv`

p
e

(c) Moving the left-guard g to the left. Any point p that g sees
to its right remains visible while moving g towards v`.

Figure 22.3: Guard discretization: critical edges (a) and dominated guards (b)–(c).
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Lemma 22.9. Let g ∈ C be a guard left of vi (right of vi+1) such that g covers a non-
empty subset of int(ei). Then g covers a single interval of ei, including vi+1 (including vi).
In particular, this holds if g is a left-guard (right-guard) of ei.

Proof. Refer to Figure 22.3(a), where g` (gr) depicts the guard left of vi (right of vi+1).
Obviously, g` is nowhere below the line supporting ei. Let p be a point on ei seen by g`.
It follows that g`p and pvi+1 form an x-monotone convex chain that is nowhere below T .
Thus, g`vi+1 is nowhere below T . It follows that g` sees vi+1 and any point on pvi+1. A
symmetric argument holds for gr and vi.

Corollary 22.10. For a critical edge there is exactly one left- and exactly one right-
guard.

Proof. Suppose for the sake of contradiction that g, g′ ∈ C are distinct critical left-guards
of ei ∈ E. By Lemma 22.9, I := V(g)∩ ei and I ′ := V(g′)∩ ei are connected intervals on
ei with vi+1 ∈ I, I ′. Assume w.l.o.g. that I ′ ⊆ I. This contradicts g′ being a left-guard
of ei because g dominates g′ on ei, i.e., ei ⊆ V(C \ {g′}). So ei has exactly one critical
left-guard. A symmetric argument shows that ei has exactly one right-guard.

Corollary 22.11. Let ei ∈ E be a critical edge and let g`, gr ∈ C be its left- and
right-guards. Then V(g`) ∩ ei ∩ V(gr) 6= ∅.

Proof. Consider I` := ei∩V(g`). By Lemma 22.9, I` is a single interval on the right of ei,
i.e., from some point p` ∈ int(ei) up to its right vertex vi+1. Since ei and V(g`) are closed
sets, so is I`, hence, p` is well-defined. Analogously, define Ir := ei ∩ V(gr) and let pr
be the rightmost point in Ir. Let pm := 1

2(p` + pr) ∈ ei be the midpoint of the interval
boundaries. We argue in two steps: (1) Observe that I` ∪ Ir = ei. Otherwise, pm /∈ I`, Ir
would be covered by some guard g ∈ C \ {g`, gr}. By Lemma 22.9, g would dominate
either g` or gr on ei, contradicting the precondition that g` and gr are critical w.r.t. ei.
(2) Due to ei = I` ∪ Ir, we have pm ∈ I` ∩ Ir. Hence, pm ∈ V(g`) ∩ ei ∩ V(gr) and the
claim follows.

By Lemma 22.6, we can move non-critical guards to one of their neighbors in U
because they are only responsible for entire edges. Unfortunately, this is impossible if
g ∈ C \ U is a left- or a right-guard: We might lose coverage of some part of an edge
that is critical w.r.t. g. However, the following lemma establishes that we can move a
left-guard g to its left neighbor vertex if g is not a right-guard (a symmetric version for
non-left-guards follows).

Lemma 22.12. Let C be some finite cover of T , let g ∈ C \ V be a left- but not a
right-guard, and let v` := max{v ∈ V | v < g} be the rightmost vertex left of g. Then

C ′ = (C \ {g}) ∪ {v`} (22.8)

is a guard cover of T .

Proof. Since g is a left-guard of some critical edge er, there is a corresponding right-
guard gr of er by Corollary 22.10, see Figure 22.3(b). Let p` ∈ {p ∈ V(g) | p ≤ g} be
a point that g sees to its left. We show that p` is seen by gr: Consider pr, a point in
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V(g)∩er ∩V(gr), which exists by Corollary 22.11. p`g, gpr, and prgr form a convex chain
(convex due to g, pr /∈ V ) that is nowhere below T , so p` ∈ V(gr). Thus, g is dominated
to its left by gr. Moreover, g is dominated to its right by v`, see Figure 22.3(c): Let
p ∈ {p ∈ V(g) | g ≤ p} be a point seen by g located to its right. Then v`g and gp form a
convex chain nowhere below T , so p ∈ V(v`). In conclusion, replacing g by v` in C yields
a feasible cover because {p ∈ V(g) | p ≤ g} is covered by gr and {p ∈ V(g) | g ≤ p}
by v`.

Corollary 22.13. Let C be some finite cover of T , let g ∈ C \ V be a right- but no
left-guard, and let vr := min{v ∈ V | g < v} be the leftmost vertex right of g. Then

C ′ = (C \ {g}) ∪ {vr} (22.9)

is a guard cover of T .

So far, the status is that guards in C \U that are neither left- nor right-guard can be
moved to a U -neighbor. Left-guards (right-guards) that are no right-guard (left-guard)
can be moved to the next vertex to the left (right). The remaining case, i.e., guards that
are both left- and right-guards, cannot happen:

Lemma 22.14. Let C be a finite cover of T . No g ∈ C \ V is both a left- and a
right-guard.

Proof. Refer to Figure 22.3(b). Suppose for the sake of contradiction that g ∈ C \ V is
the left-guard of an edge er (er is to the right of g) and the right-guard of edge e` (e` is to
the left of g). Since er is critical, there must be a right-guard gr of er by Corollary 22.10.
By Corollary 22.11 there is a point pr ∈ er seen by g and gr. As g /∈ V , g ∈ int(e) for
some edge e.

Now consider some point p` ∈ V(g) such that p` < g. p` and pr are not below the
line supported by e and the same holds for g and gr w.r.t. er. It follows that segments
p`g, gpr, and prgr form an x-monotone convex chain that is nowhere below T . Hence,
p` ∈ V(gr). Since p` was arbitrary, any point p ∈ V(g) to the left of g is also seen by gr,
a contradiction to g being a right-guard.

The next theorem shows that the set U as defined in Equation (22.5) contains all
guard candidates necessary for a minimum-cardinality guard cover of T .

Theorem 22.15. Let T be a terrain and consider U from Equation (22.5). Then we
have

OPT(U, T ) = OPT(T, T ). (22.10)

Proof. Let C be optimal w.r.t. TGP(T, T ) and observe that C is finite, as placing a
guard on every other vertex is feasible. We show how to replace a single guard g ∈ C \U
by one in U while maintaining feasibility, i.e., V(C) = T . The claim then follows by
induction.

Should g be neither left- nor right-guard, it can be replaced by a neighboring point
in U by Lemma 22.6. If g is a left-, but not a right-guard (or vice versa), it can be replaced
by its left (right) neighbor in V ⊆ U by Lemma 22.12 (Corollary 22.13). Lemma 22.14
asserts that g cannot be a left- and a right-guard at the same time.
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22.3 Full Discretization

We formulate the key result of this chapter: The CTGP, i.e., finding a minimum-
cardinality guard cover C guarding an entire terrain T , without any restriction on where
on T the guards can be placed, is a discrete problem with a discretization (U,W (U)) of
size O(n3) and polynomially bounded coordinate complexity.

Theorem 22.16. Let T be a terrain, and consider U and W (U) from Equations (22.5)
and (22.3). Then the following claims hold.

(1) If C ⊆ U is feasible w.r.t. TGP(U,W (U)) then C is feasible w.r.t. TGP(T, T ).
Furthermore,

OPT(T, T ) = OPT(U,W (U)). (22.11)

(2) We have |U | ∈ O(n2) and |W (U)| ∈ O(n3).

(3) Let B be the largest number of bits required to represent a coordinate of V . The
number of bits required to represent the coordinates of a guard candidate g ∈ U is
polynomial in B.

Proof. To show (1), observe that if C is feasible w.r.t. TGP(U,W (U)), it is feasible w.r.t.
TGP(U, T ) by Theorem 22.2; feasibility of C w.r.t. TGP(T, T ) follows from U ⊂ T .
Equation (22.11) holds due to

OPT(T, T )
(22.10)

= OPT(U, T )
(22.4)

= OPT(U,W (U)). (22.12)

Claim (2) follows from Observations 22.5 and 22.3. Regarding (3), observe that if g ∈ V ,
the claim trivially holds. Otherwise, g ∈ U \ V is the intersection of two lines, each
spanned by two vertices in V .

22.4 Reducing the Size of the Discretization

While O(n2) guard candidates and O(n3) witnesses, see Theorem 22.16, may be sufficient
from a theoretical point of view, it is imperative to reduce their numbers for an efficient
implementation. We propose filtering techniques that, while not reducing the asymptotic
size of the discretization, typically remove around 90 % of the guard candidates and an
even larger fraction of the witnesses. The experiments in Chapter 24 demonstrate this
to be a key success factor that increases the size of solvable instances by several orders
of magnitude.

We say that g ∈ T dominates g′ ∈ T if V(g′) ⊆ V(g), in which case g′ can be safely
discarded. A core issue, however, is that visibility calculations are expensive, so the key
challenge is to identify dominated guard candidates without determining their visibility
region. The guard filter in Section 22.4.2 is capable of that. We propose guard filters in
Sections 22.4.1 and 22.4.2, discuss a witness filter in Section 22.4.3, and present an open
problem in Section 22.4.4.
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e2
e3

e4

e5

e6

e7

e1

{e2, e3, e4, e5, e6, e7} {e1, e2, e3, e4, e5, e6}
∪{e3} ∪{e2}

∪{e7} ∪{e1}
∪{e6} ∪{e5}

Figure 22.4: Edge-interior guards are only responsible for entire edges. Edges can only
become visible when crossing some u ∈ U , the arrows indicate in which direction. Only
the orange regions contain guard candidates that are inclusion-maximal w.r.t. entire
edges.

22.4.1 Filtering Dominated Guards

Let T be a terrain and G ⊂ T a finite set of guard candidates with V(G) = T . Consider
g, g′ ∈ G, suppose we know V(g) and V(g′), and observe that checking whether g domi-
nates g′ takes O(n) time since visibility regions consist of O(n) subterrains. Moreover,
removing all dominated guards from G requires O(|G|2) domination queries, i.e., an
intolerable O(n5) time when applied to G = U from Equation (22.5).

Instead, we propose a heuristic using O(|G|) domination queries and thus an ac-
ceptable O(n3) time for G = U . Suppose G is ordered w.r.t. x-coordinates. The local
domination filter removes all guard candidates that are dominated by one of their neigh-
bors. This is based on the observation that neighboring guards’ visibility regions often
are quite similar or one clearly dominates the other (a local “dent”). Experiments dem-
onstrate that this strategy is beneficial in terms of time and memory consumption, see
Chapter 24.

22.4.2 Filtering Edge-Interior Guards

Let T be a terrain, U the guard candidates from Equation (22.5), and fix an edge e. By
Lemma 22.12, Corollary 22.13, and Lemma 22.14 assume w.l.o.g. that all critical guards
are located at the vertices. Hence, guards in Ue := U ∩ int(e) are only responsible for
covering entire edges. Recall that by construction of U , when moving across u ∈ Ue, a
vertex becomes visible or invisible, depending on the direction. Furthermore, observe
that covering an entire edge is equivalent to seeing both its vertices. The sets of edges
entirely seen by each u ∈ Ue,

Eu := {e ∈ E | e ⊆ V(u)} = {ei ∈ E | vi, vi+1 ∈ V(u)}, (22.13)

define a partial order on Ue w.r.t. inclusion as indicated in Figure 22.4. Most importantly,
u is inclusion-maximal if Eu′ 6⊃ Eu for all u′ ∈ Ue. We show that it suffices to consider
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the guard candidates that are inclusion-maximal w.r.t. Eu:

Theorem 22.17. Let U ′e ⊆ Ue be the set that only contains inclusion-maximal guard
candidates w.r.t. entire edges, as defined above. Then

U ′ := (U \ Ue) ∪ U ′e (22.14)

admits covering T with the same number of guards as U , i.e.,

OPT(U ′, T ) = OPT(U, T ). (22.15)

Proof. No guard can be a left- and a right-guard at the same time by Lemma 22.14.
Furthermore, by Lemma 22.12 (Corollary 22.13), a left-guard (right-guard) can be moved
to its left (right) neighbor in V . Thus, w.l.o.g., u ∈ Ue is no left- or right-guard, because Ue
does not contain vertices by definition. Hence, no edge is critical w.r.t. u by Definition 22.7;
u is only responsible for covering entire edges and can be replaced by its inclusion-maximal
sibling in U ′e without changing the feasibility or cardinality of a cover of T .

The key is that identifying guard candidates u ∈ U \V that are not inclusion-maximal
w.r.t. entire edges can be implemented without determining V(u): For each u ∈ U \ V ,
store a reference to the vertex whose visibility region is extremal at u, as well as whether
it is situated to the left or to the right of u. This allows to decide which vertex becomes
visible or invisible when sweeping across u from left to right, as indicated in Figure 22.4.

We use the following sweep-line algorithm. For every e ∈ E, sweep through Ue from
left to right. While encountering u ∈ Ue where new vertices become visible, do nothing.
When reaching the first u ∈ Ue where a vertex becomes invisible, report u. Since u is
inclusion-maximal w.r.t. vertices, it is inclusion-maximal w.r.t. entire edges. Then ignore
all points corresponding to vertices becoming invisible until encountering the first that
becomes visible and continue as above. This algorithm reports guard candidates that are
inclusion-maximal w.r.t. vertices. However, no vertex can become visible and invisible
in two distinct u, u′ ∈ Ue ⊂ int(e) by Lemma 22.9, hence the reported guard candidates
are inclusion-maximal w.r.t. edges, as claimed.

This efficiently discards up to 98 % of the guard candidates in the CTGP — with-
out determining their visibility regions — and essentially removes the computational
boundary between VTGP and CTGP as demonstrated in Chapter 24.

Observation 22.18. The above sweep-line algorithm needs only the visibility regions of
vertices, not those of U \ V . Deciding whether a vertex v becomes visible or invisible at
u ∈ Ue depends only on whether u is extremal in V(v) and on v < u, as described above.

Observation 22.19. Filtering U as above still may yield Θ(n2) guard candidates: Insert
a vertex below each guard on the slopes in Figure 22.2(b). Then every other interval is
inclusion-maximal w.r.t. the vertices on the slopes.

22.4.3 Filtering Witnesses

Let U be a possibly filtered set of guard candidates. The construction of the witness
set W (U) as in Equation (22.3) already includes a filtering mechanism: Only inclusion-
minimal witnesses need to be kept. Observe that a smaller, filtered,U automatically yields
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a smaller W (U). Furthermore, observe that in terms of an implementation witnesses are
much cheaper then guard candidates: They require no visibility region or coordinates —
by Observation 22.1, they only need to store references to the guards covering them.

We acquire witnesses very much like guards in Section 22.4.2: Sort the extremal
points of all guard candidates’ visibility regions by their x-coordinates. For each of these
points we know whether a visibility region opens or closes and to which guard it is
associated. Sweeping through these points, it is straightforward to keep track of which
guard candidates see the current event point and where this set is inclusion-minimal.

Our approach keeps witnesses that are locally, but not necessarily globally, inclusion-
minimal. We can efficiently exploit the underlying geometry to identify the locally
inclusion-minimal witnesses, but it is an open question whether globally inclusion-minimal
witnesses can be identified just as efficiently. However, experiments demonstrate that
our approach is extremely effective, see Chapter 24.

22.4.4 Open Problem

Our discretization has size |U |+ |W (U)| ∈ O(n3) by Theorem 22.16. The filters prove
invaluable to our implementation by quickly reducing, on average, the size by more
than 90 % — see Chapter 24 — but do not reduce the asymptotic complexity. In the
interest of finding a small discretization, observe that a discretization that minimizes
|G|+ |W | is one where |G| = OPT(T, T ), i.e., just as hard to find as solving TGP(T, T ).
Is there a discretization, obtainable in polynomial time, of size o(n3)?
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CHAPTER 23

NP-Completeness and Approximation

The results in this chapter directly follow from the existence of a polynomially-sized
discretization of the CTGP — see Chapter 22 — and are a key motivation for its devel-
opment. As as detailed in Chapter 21, our discretization was developed independently
from but after that of King [86], hence, the results in this chapter are implicit to prior
work. Nevertheless, we present them as they are key consequences of Chapter 22.

For a long time, the NP-hardness of the decision variants of the CTGP and the VTGP
were generally assumed but not shown until 2010 by King and Krohn [87].1 The NP-
completeness of the decision variant of the VTGP immediately follows. In Theorem 23.1,
we establish that the decision version of the CTGP is also a member of NP, and thus
NP-complete, which is possible because polynomially many bits suffice to represent all
required guard coordinates. This is surprising as the more general AGP has been recently
shown to require irrational guard coordinates [1], even in monotone polygons.

Theorem 23.1. The decision variant of the Continuous Terrain Guarding Problem
(CTGP), i.e., the following decision problem is NP-complete:

Input A terrain T with rational vertices V (T ) ⊂ Q2 and k ∈ N.

Output Yes if the CTGP permits k guards G = {g1, . . . , gk} ⊂ T with V(G) = T , i.e.,
if OPT(T, T ) ≤ k, and No otherwise.

Proof. The above problem is known to be NP-hard [87]. It remains to show that it is a
member of NP: A non-deterministic Turing machine computes U from Equation (22.5),
which is possible in polynomial time by Theorem 22.16, and guesses guards C ⊆ U with
|C| ≤ k. It then verifies V(C) = T in polynomial time [75].

Our discretization can be combined with the PTAS for discrete TGP variants by
Gibson et al. [66].

Theorem 23.2. There exists a PTAS for the Continuous Terrain Guarding Problem
(CTGP). That is, for any constant ε > 0, there is a polynomial-time algorithm which,
given a terrain T , returns C ⊂ T with V(C) = T and |C| ≤ (1 + ε) OPT(T, T ).

Proof. Using Equations (22.5) and (22.3), we determine the sets U and W (U) for T
with |U |+ |W (U)| ∈ O(n3) in polynomial time by Theorem 22.16. Using the PTAS for
TGP(G,W ) with finite G,W ⊂ T by Gibson et al. [66], we compute C ⊆ U ⊂ T with

|C|
[66]

≤ (1 + ε) OPT(U,W (U))
(22.11)

= (1 + ε) OPT(T, T ) (23.1)

in polynomial time, where C is feasible w.r.t. TGP(T, T ) by Theorem 22.16.

1The conference version of King and Krohn [87] appeared 2010.
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CHAPTER 24

Solver

The discretization and the filters proposed in Chapter 22 allow for an efficient imple-
mentation of a solver for the TGP: First determine the guard locations (or start with
user-provided guard candidates when solving a discrete TGP variant), apply the filters,
and generate the witnesses. At this point, the problem is a finite instance of SC which can
be solved by an external solver; we use an IP solver. The IP is presented in Section 24.1.
We propose the algorithm in Section 24.2. It solves instances of the TGP with up to 106

vertices within roughly 1–2 minutes on a standard desktop computer, as demonstrated
in Section 24.3.

Our approach is to efficiently determine and filter a discretization; once the discretiza-
tion is obtained, the resulting SC instance is solved by an IP solver. Focusing on the
polynomial-time part of the algorithm and delegating its NP-hard part is founded in our
experience with the closely related AGP. It has been established that in many AGP-
solver variants, the geometric subroutines and not the SC instances form the bottleneck
in terms of real-world performance [40]. Finding a discretization and the overhead of
the EGC paradigm, i.e., the use of exact number types, exhaust computational resources
long before the SC instances become large enough to be problematic. Furthermore, SC
is a well-studied problem and state-of-the-art solvers benefit from that.

We admit that instances deliberately designed to be hard for the underlying IP solver
are not covered by the above line of reasoning. Still, we choose to focus on an efficient
reduction of TGP to SC instances, as this is required by any fast solver for the TGP.
As a consequence, we evaluate our algorithm’s performance in the presence and absence
of the individual filtering techniques. It turns out that these techniques are critical for
good performance.

24.1 IP Formulation

Let T be a terrain and let G,W ⊂ T be finite sets of guard candidates and witnesses
such that W ⊆ V(G). In that case, TGP(G,W ) is an instance of SC:1 We ask for a cover
of the set W by a minimal number of subsets from {V(g)∩W | g ∈ G}. Hence, we obtain
the following IP formulation of TGP(G,W ):

min
∑
g∈G

xg (24.1)

s.t.
∑

g∈V(w)∩G

xg ≥ 1 ∀w ∈W (24.2)

xg ∈ {0, 1} ∀g ∈ G. (24.3)

1Refer to, e.g., Garey and Johnson [63] for a definition of SC.
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input: Terrain T and mode ∈ {VertexGuards,PointGuards} . VTGP or CTGP
output: Guard cover of T

1: U ← V (T ) . vertices are guard candidates in both modes
2: W ← ∅
3: for each u ∈ U do
4: determine V(u)
5: end for

6: if PointGuards then . the alternative is VertexGuards
7: U ← U ∪⋃v∈U{p | p is extremal in V(v)} . Equation (22.5)
8: if EdgeFilter then
9: filter edge-interior guards in U by sweep-line algorithm . Section 22.4.2

10: end if
11: for each u ∈ U \ V (T ) do
12: determine V(u) . after EdgeFilter, see Section 22.4.2
13: end for
14: end if

15: if DominationFilter then
16: filter out guards in U dominated by a neighbor . Section 22.4.1
17: end if

18: if WitnessFilter then
19: W ← inclusion-minimal features of the overlay of U . Equation (22.3)
20: else
21: W ← all features from the overlay of U . unfiltered Equation (22.3)
22: end if

23: solve TGP(U,W ) with an IP solver . Equations (24.1)–(24.3)

Algorithm 24.1: Optimal TGP solutions.

A binary variable xg for each guard candidate g ∈ G indicates whether g is picked: xg = 1
if and only if g is part of the cover. For each witness w ∈W , a constraint ensures that w
is covered by at least one guard. We minimize the number of guards in the cover. This
is a standard IP formulation that is, e.g., used in AGP solvers [40].

Choosing G = U (possibly filtered) and W = W (U) from Equations (22.5) and (22.3),
(24.1)–(24.3) model the CTGP. In order to solve the VTGP, pick G = V and W = W (V ).
For an arbitrary a priori guard discretization G, i.e., for TGP(G,T ), pick W = W (G).

24.2 Algorithm

Algorithm 24.1 has two modes.

(1) PointGuards solves TGP(T, T ) and

(2) VertexGuards solves TGP(V, T ).
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Figure 24.1: Exact computations and the Terrain Guarding Problem: The guard candi-
date marked by the white circle lies exactly on the intersection of three lines spanned by
edges of the terrain. If it is not found due to rounding errors the solution is suboptimal.

Everything except lines 6–14 applies to both modes; lines 6–14 generate non-vertex guard
candidates and possibly filter them. Filtering mechanisms are activated individually:

(1) DominationFilter from Section 22.4.1 removes guard candidates that are domi-
nated by one of their neighbors,

(2) EdgeFilter corresponds to the guard filter from Section 22.4.2 and is only appli-
cable in the PointGuards mode, and

(3) WitnessFilter determines whether only the inclusion-minimal witness are used,
refer to Equation (22.3) and Section 22.4.3.

We remark two things about line 23. (1) It is the only subroutine that may require
superpolynomial time, due to the NP-hardness of the TGP [87]. In our experiments,
however, this is not the bottleneck of our algorithm; the geometric subroutines require
most time and memory. We discuss this in Section 24.3.4. (2) Algorithm 24.1 transforms
an instance of VTGP or CTGP into an instance of SC which it delegates to a solver.
An IP or SAT solver, an SC approximation algorithm, the PTAS by Gibson et al. [66],
or any other solver (including those oblivious to the underlying geometry) can be used
as a drop-in replacement. Observe that all solvers benefit from our filtering framework.
However, since benchmarking the underlying solver is not our concern, we restrict our
experiments to a state-of-the-art IP solver.

24.2.1 Implementation

We implemented Algorithm 24.1 in C++11 and compiled with g++-4.8.4 [64]. The
geometric subroutines use CGAL-4.6 [28] (the Computational Geometry Algorithms
Library) with the visibility implementation of Haas and Hemmer [70] and we solve
IPs using CPLEX-12.6.0 [37]. Furthermore, we use boost-1.58.0 [23] and simple-svg-
1.0.0 [126].

Like CGAL, our implementation adheres to the EGC paradigm, compare, e.g., Pion
and Fabri [121]. In a nutshell, this means that no geometric subroutine introduces
rounding errors. As an illustration of why this is necessary consider the terrain T in
Figure 24.1.2 There is exactly one optimal solution of TGP(T, T ) and it requires the

2We use T as a test case of our software.
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guard g at the intersection of three lines: the lines spanned by the leftmost, the rightmost,
and the bottom edge. If the coordinates of g are only slightly off, for example due to the
use of floating-point arithmetic, an optimal solution is not found. Similarly, rounding
errors may introduce infeasibilities as the guards are not located on the terrain or — due
to imprecision in the calculated visibility regions — do not cover all of it. The core of
the problem is that even slightly perturbed coordinates can lead to an output which is
more than just “slightly wrong:” either one guard can see all of T or not.

In order to circumvent this effect, CGAL supports the use of a variety of exact
number types instead of floating-point arithmetic. Concretely, we resort to CGAL’s
CGAL::Exact predicates exact constructions kernel kernel [121]. It initially repre-
sents a coordinate by two doubles that encode an interval containing the actual coordi-
nate. This suffices for many decisions, for instance, a comparison with another coordi-
nate. However, in cases in which this is insufficient, e.g., because two intervals overlap,
the exact coordinates are computed with the GNU Multiple Precision Arithmetic Li-
brary (GMP) [68]. Compared to the pure exact approach this usually yields a significant
advantage regarding speed and memory [121].

24.3 Experiments

Algorithm 24.1 can solve large instances within minutes on a standard desktop computer;
our filtering techniques prove critical to success. Especially EdgeFilter and Witness-
Filter, see Sections 22.4.2 and 22.4.3, significantly increase the solvable instance size.
Our instances, the tested configurations of Algorithm 24.1, the experimental setup, and
our findings are described in Sections 24.3.1–24.3.4.

24.3.1 Instances

We test four classes of random terrains, see Figure 24.2 for an overview. Each class
comprises 20 instances with 103, 104, 105, 5 · 105, and 106 vertices each, yielding a total
of 400 instances. With reproducibility and possible future work in mind, we made these
instances and additional ones, verified optimal solutions w.r.t. the VTGP and the CTGP
where available, and the scripts generating the instances publicly available in the Terrain
Guarding Problem Instance Library (TGPIL) [59].

A Walk, see Figure 24.2(a), has n vertices with x-coordinates 0, . . . , n− 1 and the
(i+1)-th y-coordinate is a random offset from the i-th. SineWalk and ParabolaWalk,
see Figures 24.2(b) and 24.2(c), are the sum of a Walk and a properly scaled sine or
parabola, respectively. Both classes pose a challenge because many points located on
a slope of a valley see a large part of the opposite slope that is highly fragmented by
shadows of local features.

Preliminary experiments revealed that the above classes hardly require non-vertex
guards for optimal solutions w.r.t. the CTGP. Hence we propose the ConcaveValleys
class, see Figure 24.2(d). It encourages point guards because instances are constructed as
follows: Start with a Walk instance. Iteratively pick an edge uniformly at random and
replace it by a valley with concave slopes. Connect the slopes by a bottom edge, such
that a point in its interior covers both slopes like in Figure 21.1(b). An optimal solution
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(a) Walk: Random walk with uniform step width.

(b) SineWalk: Sum of a sine wave and a random walk.

(c) ParabolaWalk: Sum of a parabola
and a random walk.

(d) ConcaveValleys: Optimal solu-
tions require point guards in the valleys.

Figure 24.2: Four classes of random test instances available in the TGPIL [59].
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Configuration Mode EdgeFilter DominationFilter WitnessFilter

VDefault VertexGuards n/a yes yes
VNoDom VertexGuards n/a no yes
VNoW VertexGuards n/a yes no

PDefault PointGuards yes yes yes
PNoEdge PointGuards no yes yes
PNoDom PointGuards yes no yes
PNoW PointGuards yes yes no

Table 24.1: Algorithm configurations, VTGP above and CTGP below.

w.r.t. the CTGP for such a terrain usually requires at least one guard in a bottom edge’s
interior.

None of the above classes deliberately provokes the NP-hardness of the TGP; they
are not designed to contain a reduction of hard instances of, e.g., PLANAR 3SAT, as
used in the NP-hardness proof of King and Krohn [87]. As motivated above, testing such
instances is out of scope: We provide and evaluate the means to transform a terrain into
a small discretization that can be handed to a solver; IP, PTAS, SAT, or other. The
transformation has to be efficient and our experiments are designed to test just that.
Combinatorially hard instances merely benchmark the underlying solver.

24.3.2 Configurations

We test Algorithm 24.1 in seven configurations, see Table 24.1, to individually assess the
impact of each filtering technique from Section 22.4. VDefault, VNoDom, and VNoW
test the VertexGuards mode; PDefault, PNoEdge, PNoDom, and PNoW test
the considerably harder PointGuards mode. Recall that EdgeFilter does not apply
to VertexGuards mode. Since we test 400 instances, this results in 2800 test runs.

24.3.3 Experimental Setup

We used eight identical Linux 3.13 machines with Intel Core i7-3770 CPUs running at
3.4 GHz, provided with 8 MB of cache and 16 GB of main memory. Every run was limited
to 15 minutes of CPU time and 14 GB of memory. Our software, except solving IPs with
CPLEX, is not parallelized. Refer to Section 24.2.1 for details regarding the toolchain
and the implementation.

24.3.4 Results

The solution rate and median CPU time of every combination of configuration, instance
class, and instance complexity are listed in Tables 24.2 and 24.3; each cell corresponds
to 20 test runs. Due to the imposed time and memory limits, not all test runs succeeded;
we account for unfinished test runs with an infinite completion time. Hence, we use the
median instead of the mean throughout the analysis. More detailed timing information
is presented in Figure 24.5.

198



24.3. Experiments

Configuration Instance
#vertices

103 104 105 5 · 105 106

VDefault

Walk 100 % 100 % 100 % 100 % 100 %
SineWalk 100 % 100 % 100 % 0 % 0 %
ParabolaWalk 100 % 100 % 100 % 0 % 0 %
ConcaveValleys 100 % 100 % 100 % 100 % 100 %

VNoDom

Walk 100 % 100 % 100 % 100 % 100 %
SineWalk 100 % 100 % 100 % 0 % 0 %
ParabolaWalk 100 % 100 % 100 % 0 % 0 %
ConcaveValleys 100 % 100 % 100 % 100 % 100 %

VNoW

Walk 100 % 100 % 100 % 0 % 0 %
SineWalk 100 % 100 % 0 % 0 % 0 %
ParabolaWalk 100 % 25 % 0 % 0 % 0 %
ConcaveValleys 100 % 100 % 100 % 0 % 0 %

PDefault

Walk 100 % 100 % 100 % 100 % 100 %
SineWalk 100 % 100 % 100 % 0 % 0 %
ParabolaWalk 100 % 100 % 100 % 0 % 0 %
ConcaveValleys 100 % 100 % 100 % 100 % 100 %

PNoEdge

Walk 100 % 100 % 100 % 55 % 0 %
SineWalk 100 % 100 % 0 % 0 % 0 %
ParabolaWalk 100 % 100 % 0 % 0 % 0 %
ConcaveValleys 100 % 100 % 100 % 90 % 0 %

PNoDom

Walk 100 % 100 % 100 % 100 % 100 %
SineWalk 100 % 100 % 100 % 0 % 0 %
ParabolaWalk 100 % 100 % 100 % 0 % 0 %
ConcaveValleys 100 % 100 % 100 % 100 % 100 %

PNoW

Walk 100 % 100 % 100 % 0 % 0 %
SineWalk 100 % 100 % 0 % 0 % 0 %
ParabolaWalk 100 % 20 % 0 % 0 % 0 %
ConcaveValleys 100 % 100 % 100 % 0 % 0 %

Table 24.2: Solution rate by configuration, instance class, and instance complexity. Each
cell corresponds to 20 test runs.

Except in PNoEdge mode, all unsolved instances were caused by running out of
memory, we discuss this phenomenon below. In the following, we turn our attention to
the relative hardness of the instance classes, an overview of VertexGuards and Point-
Guards modes, the impact of EdgeFilter, DominationFilter and WitnessFilter,
timing behavior, and memory consumption.

Overview: Instances Tables 24.2 and 24.3 clearly reveal that the SineWalk and
ParabolaWalk instances are harder to solve than their Walk and ConcaveValleys
counterparts. This is to be expected, since SineWalk and ParabolaWalk contain a
Walk as additive noise and since the sole purpose of ConcaveValleys is to encourage
placing non-vertex guards, see Section 24.3.1. Furthermore, SineWalk and Parabola-
Walk comprise facing valleys, resulting in highly fragmented visibility regions and
complex visibility overlays in which a large portion of the guards and witnesses cannot
be filtered out. This induces time and memory intensive calculations and a complex IP,
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Configuration Instance
#vertices

103 104 105 5 · 105 106

VDefault

Walk 0.0 s 0.2 s 2.9 s 18.0 s 40.3 s
SineWalk 0.0 s 0.9 s 13.8 s n/a n/a
ParabolaWalk 0.1 s 1.8 s 21.7 s n/a n/a
ConcaveValleys 0.2 s 2.4 s 24.2 s 177.2 s 337.6 s

VNoDom

Walk 0.0 s 0.3 s 3.6 s 21.8 s 48.6 s
SineWalk 0.1 s 1.3 s 18.2 s n/a n/a
ParabolaWalk 0.1 s 2.5 s 27.8 s n/a n/a
ConcaveValleys 0.2 s 2.4 s 24.3 s 177.1 s 411.0 s

VNoW

Walk 0.0 s 0.4 s 8.8 s n/a n/a
SineWalk 0.1 s 6.4 s n/a n/a n/a
ParabolaWalk 0.4 s n/a n/a n/a n/a
ConcaveValleys 0.2 s 2.7 s 32.0 s n/a n/a

PDefault

Walk 0.0 s 0.3 s 4.6 s 27.9 s 62.4 s
SineWalk 0.1 s 1.7 s 26.3 s n/a n/a
ParabolaWalk 0.2 s 3.3 s 45.1 s n/a n/a
ConcaveValleys 0.1 s 0.8 s 10.3 s 68.2 s 137.4 s

PNoEdge

Walk 0.2 s 4.5 s 79.7 s 833.3 s n/a
SineWalk 1.0 s 58.8 s n/a n/a n/a
ParabolaWalk 4.1 s 220.3 s n/a n/a n/a
ConcaveValleys 0.2 s 3.2 s 58.3 s 652.3 s n/a

PNoDom

Walk 0.0 s 0.4 s 5.0 s 31.5 s 70.4 s
SineWalk 0.1 s 2.0 s 31.1 s n/a n/a
ParabolaWalk 0.2 s 4.0 s 51.8 s n/a n/a
ConcaveValleys 0.1 s 0.9 s 10.7 s 68.0 s 145.5 s

PNoW

Walk 0.0 s 0.6 s 10.4 s n/a n/a
SineWalk 0.1 s 7.8 s n/a n/a n/a
ParabolaWalk 0.6 s n/a n/a n/a n/a
ConcaveValleys 0.1 s 1.1 s 20.8 s n/a n/a

Table 24.3: Median CPU time by configuration, instance class, and instance complexity.
Each cell corresponds to 20 test runs.
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Configuration Instance
#vertices

103 104 105 5 · 105 106

PNoDom

Walk 80.1 % 86.8 % 89.5 % 91.0 % 91.7 %
SineWalk 92.7 % 97.6 % 98.3 % n/a n/a
ParabolaWalk 97.5 % 98.8 % 98.9 % n/a n/a
ConcaveValleys 65.8 % 72.5 % 77.7 % 79.9 % 80.6 %

Table 24.4: The median percentage of guard candidates removed by EdgeFilter.

making SineWalk and ParabolaWalk challenging instance classes.

Overview: Vertex Guards VDefault and VNoDom solve all instances of Walk
and ConcaveValleys, and the SineWalk and ParabolaWalk instances of up to
105 vertices; VNoW can solve instances which are smaller by about a factor of 10, see
Table 24.2. This already demonstrates the importance of WitnessFilter. VDefault
and VNoDom require a comparable amount of CPU time, with a slight advantage for
VDefault, see Table 24.3; VNoW is slower.

Overview: Point Guards In terms of solved instances, refer to Table 24.2, PDefault
and PNoDom are the strongest configurations, solving all Walk and ConcaveValleys
instances as well as the SineWalk and ParabolaWalk instances with up to 105

vertices. PNoW and PNoEdge are much weaker. Table 24.3 indicates that PDefault
is slightly faster than PNoDom. It is clear from the performance of PNoEdge that
EdgeFilter is crucial in PointGuards mode.

Impact of Filtering Edge-Interior Guards Recall that EdgeFilter, see Sec-
tion 22.4.2, only applies to PointGuards mode. Table 24.4 depicts the percentage
of guards it removes in the PNoDom configuration — the only configuration without
interfering guard filters — and Figure 24.3 illustrates its effectiveness using a 105-vertex
ParabolaWalk as example.

EdgeFilter proves to be our most effective guard filter by removing roughly 90 %
(80 %) of the guard candidates in the 106 vertex Walk (ConcaveValleys) instances,
and well above 95 % in the largest solved SineWalk and ParabolaWalk instances.
Tables 24.2 and 24.3 demonstrate that EdgeFilter massively improves performance
in terms of solution rates and median CPU time. This makes it the key success factor
when solving the CTGP, removing the computational barrier between the VTGP and
the CTGP: Without it, PNoEdge would be the state of the art, and solvable instances
of the CTGP would be smaller by at least a factor of 10 than for the VTGP and would
take much more time.

Impact of Filtering Dominated Guards Table 24.5 displays the percentage of
guard candidates that DominationFilter, refer to Section 22.4.1, filtered out in the
VDefault and PNoEdge configurations. Observe that we need to obtain these numbers
in configurations without other active guard filters.
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(a) Unfiltered guard candidates. (b) Filtered guard candidates.

Figure 24.3: The effect of EdgeFilter (excerpt of the right slope of a 105-vertex
ParabolaWalk). Circles depict guard candidates. Local features on the right slope
(e.g., the left peak) can induce many guard candidates (e.g., on the right): A feature
casts a slightly different shadow for each vertex on the left slope (not depicted), resulting
in many guard candidates. EdgeFilter mitigates this effect very well.

Configuration Instance
#vertices

103 104 105 5 · 105 106

VDefault

Walk 65.8 % 64.1 % 63.6 % 63.5 % 63.5 %
SineWalk 58.5 % 63.0 % 63.6 % n/a n/a
ParabolaWalk 59.9 % 63.3 % 63.6 % n/a n/a
ConcaveValleys 13.4 % 13.1 % 13.3 % 13.3 % 13.3 %

PNoEdge

Walk 92.9 % 94.7 % 95.6 % 95.8 % n/a
SineWalk 88.1 % 96.7 % n/a n/a n/a
ParabolaWalk 93.2 % 98.0 % n/a n/a n/a
ConcaveValleys 77.1 % 80.5 % 83.9 % 85.0 % n/a

Table 24.5: Median percentage of guard candidates removed by DominationFilter.
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Configuration Instance
#vertices

103 104 105 5 · 105 106

VDefault

Walk 91.9 % 94.3 % 95.4 % 96.1 % 96.4 %
SineWalk 95.8 % 98.8 % 99.3 % n/a n/a
ParabolaWalk 98.6 % 99.4 % 99.5 % n/a n/a
ConcaveValleys 76.5 % 80.5 % 83.7 % 85.1 % 85.5 %

PDefault

Walk 91.9 % 94.3 % 95.5 % 96.1 % 96.4 %
SineWalk 96.3 % 98.9 % 99.3 % n/a n/a
ParabolaWalk 98.7 % 99.5 % 99.5 % n/a n/a
ConcaveValleys 80.3 % 84.2 % 87.4 % 88.7 % 89.1 %

Table 24.6: Median percentage of witnesses removed by WitnessFilter.

DominationFilter has no impact on the solution rates within the limits imposed by
our setup (see Section 24.3.3). VDefault and PDefault are slightly faster than VNo-
Dom and PNoDom, respectively. The key advantage of DominationFilter, however,
is that it saves memory by deleting dominated guard candidates; this is important since
memory consumption is the bottleneck of our implementation, see below.

Impact of Filtering Witnesses The percentage of witnesses removed by Witness-
Filter, see Section 22.4.3, in the VDefault and PDefault configurations is displayed
in Table 24.6. Throughout our instances, WitnessFilter removes the vast majority of
witnesses, often more than 95 %. Furthermore, Table 24.2 clearly shows that disabling it
reduces the solvable instance size by at least a factor of 10. Given that PointGuards
mode may have to deal with |W (U)| ∈ Θ(n3) witnesses, this is not surprising. All of this
renders WitnessFilter simple, fast, and useful.

Timing Behavior Figures 24.4 and 24.5 show how much CPU time is spent in each
part of Algorithm 24.1 and the distribution of the CPU time, respectively. For a compar-
ison, we pick an instance class and a complexity that was solved by every configuration,
a Walk with 105 vertices, the other combinations are omitted as they permit the same
interpretation.

The strongest impact is that of EdgeFilter, which is disabled in the rightmost
bar in Figure 24.4. Without EdgeFilter there is a computational gap between Point-
Guards and VertexGuards mode, as determining visibility regions of unneeded
guards dominates the CPU time. Guard-filtering time also increases in PNoEdge mode
because DominationFilter is active and has more guards to compare.

WitnessFilter has the second most important impact. In its absence, CPU time
roughly doubles due to an increased IP solution time: In the IP, non-inclusion-minimal
witnesses form constraints that are dominated by the inclusion-minimal witnesses’ con-
straints. The IP solver eliminates dominated constraints in a preprocessing phase, but
WitnessFilter does so more efficiently, since it exploits the underlying geometry.

The timing behavior is hardly influenced by DominationFilter. It is, however,
beneficial w.r.t. memory consumption, see below.

A general observation is that the filtering mechanisms significantly reduce the com-
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Figure 24.4: Median CPU time by subroutine regarding 105-vertex Walk instances.
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Figure 24.5: Box plot of CPU time regarding 105-vertex Walk instances. Boxes depict
1st–3rd quartile, whiskers the 10th and 90th percentile.
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putational overhead. One would expect the IP solution-time to dominate an exact solver
for an NP-hard problem. This, however, tends not to be the case in geometric optimiza-
tion problems like the AGP and its relatives [40], an effect that is rooted in the EGC
paradigm: Instead of floating-point arithmetic, exact number types must be used to
ensure consistent and correct results. VDefault and PDefault still are not clearly
dominated by the IP solution time, but much closer to it than unfiltered approaches.

Memory Consumption Within our experimental setup, using the VDefault and
PDefault modes, even instances with 106 vertices are solved within minutes. All un-
solved configuration–instance pairs run out of memory, not time. The only exception is
PNoEdge, which occasionally runs out of time owed to the large number of unnecessary
visibility calculations otherwise prevented by EdgeFilter, see Table 24.4 and the corre-
sponding discussion. So as long as instances are not designed to reveal the NP-hardness
of the TGP, the limiting resource is memory.

Two phases of Algorithm 24.1 generate a significant amount of data that persists
in memory. One phase is the computation of all visibility regions of all vertices V in
line 4. This may store Θ(n2) x-coordinates3 in memory which define the unfiltered
guard-candidate set U . Filters remove the vast majority of candidates from U . The
other phase is the one that determines the visibility regions of the remaining points
in U \ V , generating the largest chunk of data in line 12: At this point, we may keep
Θ(n3) x-coordinates in memory. It is not obvious how to avoid holding all these visibility
regions in memory since a guard at the far right of the terrain may still see a region
at its very left; it is an open question if it is possible to apply WitnessFilter before
knowing all extremal points.

We remark that the memory bottleneck may be amplified by the fact that we follow
the EGC paradigm, compare Section 24.2.1, which ensures a correct and consistent rep-
resentation of all visibility regions and a correct order of all visibility events. Specifically,
we do not store coordinates of points using floating-point arithmetic. In our case, the
CGAL::Exact predicates exact constructions kernel kernel [121] performed better
in terms of CPU time and memory usage than non-lazy variants like GMP [68].

3We never store y-coordinates of visibility regions. Instead, we represent them as unions of intervals
of x-coordinates.
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Conclusion

We present a discretization with O(n2) guard candidates and O(n3) witnesses for the
CTGP. It was discovered independently from that of King [86] and is asymptotically
smaller by a factor of n. This positively answers King’s question whether O(n2) guard
candidates suffice. The existence of a polynomially sized discretization settles two open
questions: (1) The decision variant of the CTGP is a member of NP and, since its
NP-hardness is known [87], NP-complete. (2) Moreover, the CTGP admits a PTAS, since
the PTAS for the discrete TGP [66] applies to our discretization.

Furthermore, we propose an algorithm for finding optimal solutions for the CTGP and
the VTGP; it directly generalizes to other discrete versions of the TGP. Our implemen-
tation solves instances with up to 106 vertices within minutes. The filtering techniques
reducing the size of the discretization — and with it the geometric overhead — are a key
success factor, essentially removing the computational barrier between the CTGP and
the VTGP.



Chapter 25. Conclusion
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