
Preliminaries for
Distributed Natural Computing

Inspired by the Slime Mold
Physarum Polycephalum

Dissertation

A dissertation submitted towards the degree
Doctor of Natural Sciences (Dr. rer. nat.)

of the Faculties of
Mathematics and Computer Science

of Saarland University

submitted by:

Michael Dirnberger

Saarbrücken, February 2017

Day of doctoral examination: 31st July, 2017

Dean of Faculty: Prof. Dr. Frank-Olaf Schreyer

Head of examination committee: Prof. Dr. Hans-Peter Seidel

Examiner 1: Prof. Dr. Dr. h.c. mult. Kurt Mehlhorn

Examiner 2: Prof. Dr. Martin Grube, Karl-Franzens University of Graz

Examiner 3: Prof. Dr. Hans-Günther Döbereiner, University of Bremen

Academic staff: Dr. Karl Bringmann

ii

Abstract

This doctoral thesis aims towards distributed natural computing inspired by the
slime mold Physarum polycephalum. The vein networks formed by this organism
presumably support efficient transport of protoplasmic fluid. Devising models which
capture the natural efficiency of the organism and form a suitable basis for the
development of natural computing algorithms is an interesting and challenging goal.
We start working towards this goal by designing and executing wet-lab experi-

ments geared towards producing a large number of images of the vein networks of
P. polycephalum. Next, we turn the depicted vein networks into graphs using our
own custom software called Nefi. This enables a detailed numerical study, yielding
a catalogue of characterizing observables spanning a wide array of different graph
properties. To share our results and data, i.e. raw experimental data, graphs and
analysis results, we introduce a dedicated repository revolving around slime mold
data, the Smgr. The purpose of this repository is to promote data reuse and to
foster a practice of increased data sharing.
Finally we present a model based on interacting electronic circuits including

current controlled voltage sources, which mimics the emergent flow patterns observed
in live P. polycephalum. The model is simple, distributed and robust to changes
in the underlying network topology. Thus it constitutes a promising basis for the
development of distributed natural computing algorithms.

iii

http://nefi.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de

Zusammenfassung

Diese Dissertation dient als Vorarbeit für den Entwurf von verteilten Algorithmen,
inspiriert durch den Schleimpilz Physarum polycephalum. Es wird vermutet, dass
die Venen-Netze dieses Organismus den effizienten Transport von protoplasmischer
Flüssigkeit ermöglichen. Die Herleitung von Modellen, welche sowohl die natürliche
Effizienz des Organismus widerspiegeln, als auch eine geeignete Basis für den Entwurf
von Algorithmen bieten, gilt weiterhin als schwierig.

Wir nähern uns diesem Ziel mittels Laborversuchen zur Produktion von zahlre-
ichen Abbildungen von Venen-Netzwerken. Weiters führen wir die abgebildeten
Netze in Graphen über. Hierfür verwenden wir unsere eigene Software, genannt
Nefi. Diese ermöglicht eine numerische Studie der Graphen, welche einen Katalog
von charakteristischen Grapheigenschaften liefert. Um die gewonnenen Erkenntnisse
und Daten zu teilen, führen wir ein spezialisiertes Daten-Repository ein, genannt
Smgr. Hiermit begünstigen wir die Wiederverwendung von Daten und fördern das
Teilen derselben.

Abschließend präsentieren wir ein Modell, basierend auf elektrischen Elementen,
insbesondere stromabhängigen Spannungsquellen, welches die Flüsse von P. poly-
cephalum nachahmt. Das Modell ist simpel, verteilt und robust gegenüber topolo-
gischen Änderungen. Aus diesen Gründen stellt es eine vielversprechende Basis für
den Entwurf von verteilten Algorithmen dar.

iv

http://nefi.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de

Acknowledgements

As I start writing these lines intended to thank my Doktorvater Kurt Mehlhorn, I
struggle to find the words capturing the depth of my gratitude towards him. Kurt,
if you read this, please know that I will never forget the role you played in my life.
To me (and to many others) you are, and always will be, a true role model

worthy of admiration. You are a just and caring person, an enormous scientist, an
unparalleled teacher, a wise mentor and an exemplary leader. I admire you for your
humble demeanour, your perfect diligence and your unwavering purpose. Your down-
to-earth attitude and your seemingly untiring willingness to help others wherever
you can uplifts and inspires everyone around you.

I am grateful for the privilege of being your student. I feel extremely humbled by
your unending support and constant encouragement. I am grateful that you bravely
trusted me to find myself through my own projects, even if they were risky and out
of the ordinary. At times, I didn’t feel up to the task myself. Frequently I struggled.
Nevertheless, whatever the problem seemed to be, you never failed to help me find
the missing pieces. In truth, your generous advice quietly enabled me every step of
the way. I will carry with me the numerous lessons you taught me about science,
about people and about life. For this I will always be indebted to you. In fact, I
hope that one day, I will be able to do for someone, what you have done for me.

In addition to Kurt, there are many others that deserve my gratitude. Without
them this thesis would not have been possible either. This is particularly true for
my many outstanding co-authors. True to the nature of modern science, most of
the results presented in this thesis are the product of various collaborations and
many hours of lively discussions amongst colleagues. I would be remiss If I didn’t
mention Adrian Neumann and Matthias Függer who shared my ideas and supported
me actively during the earlier and the later stages of my doctorate respectively. I
estimate that roughly two thirds of my sanity have been preserved by interacting
with those two individuals and of course, by procrastinating with my office mates.

My final thanks are dedicated to my dear Sarah. I know that the “last hurrah” of
completing this thesis was as least as hard on you as it was on me. Thank you for
being patient and for overlooking, without complaint, the many late-night sessions
it required. Thank you also for always being convinced that my stuff was solid, and
that I was solid, and that I would pull through in the end no matter what.

v

Contents

Contents vii

List of Figures xi

List of Tables xiii

List of Code Listings xv

1. Introduction 1
1.1. The Slime Mold Physarum Polycephalum 1

1.1.1. Life of Slime . 2
1.1.2. The Plasmodium of P. Polycephalum 5
1.1.3. Overview of Research Focused on P. Polycephalum 7

1.2. Natural Computing . 8
1.2.1. Computing Inspired by Nature 9
1.2.2. Synthesis of Nature by Means of Computing 11
1.2.3. Computing with Natural Materials 12

1.3. Natural Computing with P. polycephalum 13
1.3.1. Key Experiments and Observations 13
1.3.2. Natural Computing Approaches 21

1.4. Motivation and Outline . 31

2. Network Extraction From Images 35
2.1. Introduction . 35
2.2. Network Extraction From Images 37

2.2.1. Preprocessing Collection . 41
2.2.2. Segmentation Collection . 42
2.2.3. Graph Detection Collection 42
2.2.4. Graph Filter Collection . 44

2.3. Evaluation . 45
2.3.1. Using a Graph Similarity Measure to Evaluate NEFI 45
2.3.2. Definition of the Similarity Measure 46
2.3.3. Evaluation of NEFI’s Output 49
2.3.4. Evaluation of Speed Performance 52

2.4. Limitations of NEFI . 53
2.5. Synergies With Other Software . 54

2.5.1. Analysis of Graphs . 54

vii

CONTENTS

2.5.2. Third-party Segmentation Software 54
2.6. Where to Download NEFI and how to Contribute 54
2.7. Discussion . 55
2.8. Acknowledgments . 55

3. Slime Mold Graph Repository 57
3.1. Introduction . 57
3.2. Repository Concept and Benefits 59
3.3. The KIST Europe Data Set . 60

3.3.1. Node Tracking . 65
3.4. Sample Usage of the KIST Europe Data Set 69
3.5. Discussion . 72
3.6. Acknowledgments . 73

4. Network Analysis 75
4.1. Introduction . 75
4.2. Methods . 77

4.2.1. Experimental data . 77
4.2.2. Graph Representation . 77
4.2.3. Statistical Methods . 79

4.3. Results . 79
4.3.1. Path Properties . 79
4.3.2. Face Properties . 86
4.3.3. Cut Properties . 94
4.3.4. Percolation . 97

4.4. Discussion . 101
4.5. Acknowledgments . 103

5. Modeling Flows 105
5.1. Introduction . 105
5.2. Overview of Modeling Approaches 107
5.3. Continuous Model . 110

5.3.1. Putting the Model on a Graph 111
5.4. Basic Properties of the Continuous Model 113
5.5. Discrete Model . 116
5.6. Basic Properties of the Discrete Model 117
5.7. Preliminary Simulation Results . 119

5.7.1. Cycle of Physarum Elements 121
5.7.2. Diamond of Physarum Elements 123
5.7.3. Paths of Physarum Elements 125
5.7.4. Trees of Physarum Elements 127
5.7.5. Two Linked Cycles of Physarum Elements 127
5.7.6. Physarum Elements and Changing Topology 131

5.8. Discussion . 133

viii

CONTENTS

6. Summary 135

A. Guide to Using NEFI 139
A.1. Properties of Ideal and Non-ideal Images 139
A.2. Dealing With Challenging Images 143

B. Details of Data Acquisition 145
B.1. Experiments . 145
B.2. Graph Extraction . 146
B.3. Continued Production of Sclerotia 148

C. Supplementary Figures 151
C.1. Goodness-of-fit Plots for Section 4.3 151
C.2. Addititonal Illustrations for Section 4.3.3 156

D. Code Listings 159

Bibliography 177

ix

List of Figures

1.1. P. polycephalum exploring various environments 2
1.2. Life cycle of P. polycephalum . 4
1.3. Details of apical zone and supporting network 5
1.4. Schematic drawing of the plasmodium of P. polycephalum 6
1.5. The goals of natural computing. 9
1.6. Oscillator experiment - Setup . 14
1.7. Oscillator experiment - Thickness oscillations 15
1.8. Classic maze experiment with P. polycephalum 17
1.9. Network of food sources by P. polycephalum 19
1.10. P. polycephalum avoiding illumination 20
1.11. Multi-agent P. polycephalum - Agent schematic 24
1.12. Multi-agent P. polycephalum - Collective behavior of agents 25
1.13. Multi-agent P. polycephalum - Evolution of agents 25
1.14. Multi-agent P. polycephalum - Approximate MST 26
1.15. Tokyo railway experiment . 28
1.16. P. polycephalum neurons - Setup 29
1.17. P. polycephalum neurons - State transitions 30

2.1. Nefi’s pipeline concept . 38
2.2. Nefi’s pipeline executed . 39
2.3. Nefi’s graphical user interface . 39
2.4. Nefi’s output - Physarum polycephalum 40
2.5. Nefi’s output - Ajax junius . 41

3.1. Setup for wetlab experiments . 62
3.2. Crumbs of P. polycephalum sclerotia forming an inoculation line . . 62
3.3. The apical zone advances . 62
3.4. The onset of network coarsening . 63
3.5. A complex network of veins within a region of interest 63
3.6. Graph extracted from a sample region of interest 63
3.7. Schematic description of node tracking 66
3.8. Demo - Computing an observable across an entire series of graphs . 69
3.9. Demo - Setup for tracking individual edges 71
3.10. Demo - Results for tracking individual edges 72

4.1. Graph representation of a P. polycephalum graph 78
4.2. Path length distribution . 80

xi

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

LIST OF FIGURES

4.3. Path length distribution - Fit parameters 81
4.4. Path length distribution - Fit parameter densities 82
4.5. Path width distribution . 83
4.6. Path width distribution - Fit parameters 84
4.7. Path width distribution - Fit parameter densities 85
4.8. Face degree distribution . 87
4.9. Face degree distribution - Fit parameter densities 87
4.10. Face area distribution . 88
4.11. Face area distribution - Fit parameter densities 89
4.12. Face degree weighted by face area 90
4.13. Face circumference distribution . 90
4.14. Face circumference distribution - Fit parameter densities 91
4.15. Face roundness distribution . 93
4.16. Average face roundness per face type 93
4.17. Cut properties . 96
4.18. Percolation properties . 98
4.19. Critical percolation thresholds . 99

5.1. The basic Physarum element . 110
5.2. Definitions for current controlled voltage sources 112
5.3. A node with 3 Physarum elements attached 113
5.4. Simulation - Cycles . 122
5.5. Simulation - Diamond or Wheatstone graph 124
5.6. Simulation - Paths . 126
5.7. Simulation - Trees . 128
5.8. Simulation - Dumbbell graph . 130
5.9. Simulation - Changing topology . 132

A.1. Nefi’s caveats - Reflections . 140
A.2. Nefi’s caveats - Gradients . 140
A.3. Nefi’s caveats - Non-network objects 141
A.4. Nefi’s caveats - Non-network objects 141
A.5. Nefi’s strengths - An ideal image of P. polycephalum 142
A.6. Nefi’s strengths - An ideal image of A. junius 142

C.1. Goodness-of-fit plots - Path length 151
C.2. Goodness-of-fit plots - Path width 152
C.3. Goodness-of-fit plots - Face degree 153
C.4. Goodness-of-fit plots - Face area . 154
C.5. Goodness-of-fit plots - Face circumference 155
C.6. Horizontal and vertical cuts illustrated 156
C.7. Detail of the apical zone . 157

xii

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

List of Tables

1.1. Computing inspired by P. polycephalum 23
1.2. Computing by synthesis of P. polycephalum 26
1.3. Computing with live P. polycephalum 30

2.1. Nefi’s evaluation - Ideal images . 50
2.2. Nefi’s evaluation - Edges with varying brightness 51
2.3. Nefi’s evaluation - Images with background color gradient 52
2.4. Nefi’s evaluation - Images with a blur 52
2.5. Nefi’s evaluation - Pipeline timings 53

5.1. Hydraulic analogy . 109
5.2. Simulation - Initial values . 120

xiii

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

List of Code Listings

D.1. Model implementation - Required libraries 159
D.2. Model implementation - Core of the simulation 159
D.3. Model implementation - Update node voltages 160
D.4. Model implementation - Update capacitor voltages 161
D.5. Model implementation - Update current controlled voltage sources . 162

xv

1 Introduction

In this chapter we give an introduction to the basic topics and concepts this thesis is
concerned with. We start by familiarizing the reader with the humble yet interesting
organisms that is the slime mold Physarum polycephalum. After a short excursion
to the realm of biology, we proceed by introducing the highly interdisciplinary field
of Natural Computing where we highlight various successful algorithms and the
natural phenomena that served as their source of inspiration. After illustrating how
one may look to nature to drive the development of new algorithms, we discuss how
P. polycephalum was discovered to be relevant as a medium for Natural Computing.
In this context we survey break-through experimental findings as well as the most
important Natural Computing approaches realized so far. The chapter closes by
giving the motivation of this thesis, namely to pave the way towards novel approaches
to distributed Natural Computing with Physarum polycephalum.

1.1. The Slime Mold Physarum Polycephalum

Physarum polycephalum is an acellular slime mold belonging to the myxomycetes .1
It is native to the forests of France, Italy, Spain, Romania, North-, Middle- and
South America as well as China, Nepal, Southeast Asia and Japan. Its striking
bright yellow renders the organism very noticeable, see Figure 1.1a. In the recent
past P. polycephalum has become increasingly at home in research laboratories and
schools across the globe where its extraordinary properties fascinate scientists and
students alike, see Figure 1.1b.
In the following we give a concise introduction to Physarum polycephalum, dis-

cussing its life cycle and scientific importance. We emphasize the plasmodium stage
in particular, which is of key importance for all natural computing applications
discussed in Section 1.3. We summarize selected material from several sources which
may be consulted for more detailed surveys [68], [81], [109], [129], [151], [162]. Our
exposition closely follows the structure of [129].

1 Myxomycetes, myxogastria or myxogastrea are all synonyms and denote a grouping of slime molds
containing 5 orders, 62 genera and 888 species [27].

1

1. Introduction

(a) (b)

Figure 1.1.: Today striking P. polycephalum seems equally at home in the forest
(a) and the in the laboratory (b). Figures courtesy of Prof. T. Ueda of Hokkaido
University.

1.1.1. Life of Slime

The life cycle of P. polycephalum starts with its spores which are propagated in a
predominately airborne fashion. After an incubation period of a few days, spores
begin to germinate given favorable conditions. In the process the walls of the spores
break open to release haploid protoplasmic bodies of 12 µm to 15 µm in diameter.
After a short period of quiescence these so-called myxoamoebae become active and
start growing and multiplying much like other soil amoebae.

Two reversible processes illustrate the remarkable adaptability of P. polycephalum
myxoamoebae. First, they have the ability to quickly grow one or two flagellae, i.e.
change into myxoflagellates. This enables them to better navigate moist environ-
ments such as water films. If moist conditions are followed by dry ones, the organism
can change back to its non-flagellate form. Second, both types of myxoamoebae
may form dormant micro cysts capable of enduring adverse conditions such as ex-
treme dryness or strong illumination. As soon as conditions become favorable again,
myxoamoebae escape their cysts and are ready to continue the life cycle.
In the next stage of the life cycle of P. polycephalum, pairwise sexual or het-

erothallic fusion between two haploid myxoamoebae are observed. This leads to the
irreversible formation of a diploid zygote. It is also possible that a single myxoamoeba
changes directly into a haploid zygote in an apogamic or selfing fashion.
Both types of zygotes have in common that from now on, nuclear division hap-

pens synchronously every 8 h to 10 h without cell devision. This dramatic change
signals the onset of a peculiar cellular organization, the so-called plasmodium. In this
stage P. polycephalum lives as an macroscopic brightly yellow mass of protoplasm
consisting of up to millions of nuclei contained in a singular cell. Remarkably, the
plasmodium stage is unique to myxomycetes and unparalleled throughout all of
nature.

2

1.1. The Slime Mold Physarum Polycephalum

In its plasmodium stage P. polycephalum is acting as an undifferentiated macro-
scopic creature, capable of sensing food sources, migrating towards them and feeding
on them by means of phagozytosis. Typical food sources encountered by P. poly-
cephalum in the field include bacteria, amoebae, algae, common molds and various
organic materials. It is also known to feed on spores, hyphen or fruiting bodies of
fungi. In the lab P. polycephalum can sustain itself on substrates containing solute
nutrients. Under continued food intake, the plasmodium can grow to cover large ar-
eas of up to several dm2. Under unfavorable conditions the plasmodium can change
into many multi-nucleated dormant macrozysts, forming a crust of dried slime, the
so-called sclerotium. P. polycephalum may reverse back to its plasmodium form in
better conditions even after prolonged periods of lying dormant.
Towards the end of the life cycle, triggered by illumination, the plasmodium

seeks out dry and preferably elevated locations to begin the irreversible process of
sporulation. In a synchronous differentiation process P. polycephalum forms colonies
of 1 mm to 2 mm tall fruiting bodies. These so-called sporangia are numerous and
come with a stem and a head each. Their appearance inspired its species designation
Physarum polycephalum, the multi-headed. Within the fruiting bodies, spores are
maturing which are responsible for species propagation. After maturing, fruiting
bodies break open allowing the contained spores to be dispersed by the wind. Thus
the life cycle of P. polycephalum, given suitable conditions, may start anew.
It is fascinating how this multi-potent development system exists in extremely

different forms of live while controlled by one and the same genome in a unique
temporal sequence. From spores to amoeba, on to plasmodium and finally to fruiting
bodies. From there back to spores and again into more amoeba. The complete life
cycle of Physarum polycephalum is illustrated in Figure 1.2.

Next we discuss the plasmodium stage of P. polycephalum in more detail as it is
most relevant to this thesis.

3

1. Introduction

Figure 1.2.: The complete life cycle of Physarum polycephalum. Reprint from [151].

4

1.1. The Slime Mold Physarum Polycephalum

1.1.2. The Plasmodium of P. Polycephalum

The typical plasmodium of P. polycephalum takes the shape of an extended sheet-
like structure capable of moving to explore unvisited territory in search of food
sources. Figure 1.1b illustrates that in this stage of its life cycle, the organism
consists of a complex vein network (bottom right area of image) which connects to
the boundary of the organism, its apical zone or growing front (arcing from bottom
left to top right). Figure 1.3a and Figure 1.3b show details of the apical zone and
the vein network respectively. The overall shape of the network is highly dynamic
and may change drastically in response to changing environmental conditions such
as encountered attractants or repellents. This extraordinary functional plasticity
allows P. polycephalum to navigate its environment successfully.

(a) (b)

Figure 1.3.: (a) Detailed image of the apical zone being supported by thick veins.
(b) A larger example of the complex vein network. Note the large cycles of thick
veins. Smaller veins provide additional connections.

The veins themselves are approximately cylindric with vein walls consisting of a
thick connected mesh of Actin and Myosin fibers. They connect to form a complex
planar vein network. Within the veins protoplasmic fluid, or protoplasm for short,
can freely flow back and forth. Protoplasmic flow transports cell nuclei, nutrients
and various other relevant factors. Figure 1.4 shows a schematic drawing of a macro
plasmodium.
The protoplasmic flow itself is driven by periodic cross-sectional contractions of

the actin-myosin mesh forming the walls of the veins. The contractions cause a peri-
staltic pumping effect inducing protoplasmic streaming and net material transport.
Resulting peristaltic contraction waves can be observed across the entire network
inducing complex flow patterns including periodic flow arrests and reversals. Every
(50± 5) s the velocity of the protoplasmic flow streaming through a vein decays
smoothly until the flow completely arrests. After one or two seconds of standstill,
flow velocity quickly accelerates back to normal and the cycle proceeds. Interestingly,
after most but not all arrests, the direction of flow is reversed after the flow picks

5

1. Introduction

Figure 1.4.: Schematic drawing of slime mold plasmodium with facing side sec-
tioned and upper left section enlarged. k moving front, pl trailing plasmodial strand,
f deposited material, s slime; d vacuole with deposit; ph phagocytosis vesicle; n
nucleus; z central plasma; pe peripheric membrane stacks. Peristaltic contractions
occur in the peripheric plasma, while the central plasma is subject to shuttle stream-
ing. Hand-drawing by Prof. M. Grube, Karl-Franzens University of Graz. Reprinted
with permission from [68].

up again. Protoplasmic flow exhibits enormous flow speeds of up to 1000 µm/s.2 It
is believed that the interplay of network topology, peristaltic pumping and complex
flow patterns with high flow velocity facilitates efficient transport of nutrients and
signaling molecules across the entire organism.

In addition to enabling fluid transport, flow patterns also cause periodic pressure
waves arriving at the apical zones of the organism. Each incoming wave extends
the organism boundary by a small amount by pushing forward protoplasm that
arrives via the vein network. This process is called shuttle streaming. Since the
pressure of the streaming protoplasm is very high, material practically shoots out of
the supporting veins, resulting in fan-like growing tips which can be seen along the
boundary of the organism, see Figure 1.3a. As the advancing growing front leaves
behind a network of veins, continued support for expansion is ensured.
Given abundant food supply, P. polycephalum rapidly advances a coherent and

dense apical zone exploring the available space. The growing front proceeds as one
large unit following an exploration strategy aptly termed phalanx, see Figure 1.1b
or Figure 1.3a. If nutrients are scarce, however, a different strategy is employed and
P. polycephalum tends to grow several separate distinct growing tips, each advancing
their own substantially smaller growing front. This behavior increases the odds of
discovering more distant sources of nutrients. Since branches may react individually

2 Note that 1000µm = 1mm. Also note that flow speeds of 2µm/s to 78 µm/s known for streaming
plasma in plants pale in comparison.

6

1.1. The Slime Mold Physarum Polycephalum

to attractants such as food, a more adaptive search is achieved. Once new food
sources are secured, the organism can concentrate its movement towards them by
reallocating its mass as needed. This strategy has been termed guerilla. Figure 1.1a
shows a separate growing tip on the right side. The figure also hints at the fact
that the plasmodium of P. polycephalum can naturally interpolate between the two
extreme strategies. The strategies employed by P. polycephalum are reminiscent
of two well know graph traversal strategies: Breadth-first and Depth-first search.
In BSF, the explored region grows uniformly like a wave that expands evenly in
all available directions. In contrast to that, DFS chooses one direction in order to
explore it to maximum depth first. Only then does it backtrack to resolve other
places ignored so far.

Finally, we remark that the plasmodium stage of P. polycephalum can be regarded
as simple in terms of its biological organization because it lacks any form of brain
or nervous system capable of orchestrating complex tasks such as foraging for food.
The fact that the organism still displays a level of complex organized behavior
sufficient to survive is one of its most fascinating features. Today it is believed that
effective global organization emerges from the delicate interplay of local effects such
as periodic contractions, topological dynamics and the integration of environmental
signals. Shedding light on the details of these dynamics remains one of the major
challenges in P. polycephalum research.

1.1.3. Overview of Research Focused on P. Polycephalum

P. polycephalum develops exceptionally well when cultured in the lab which makes
it an ideal subject for scientific studies. Significant research activity in the beginning
of the latter half of the 20th century explored the life cycle of P. polycephalum and
described the morphology and physiology of its various stages for the first time.
Culturing procedures as well as genetic and molecular techniques were developed
which allowed a detailed study of its mitotic cycle, cellular motility, differentiation
and many other questions of biological interest. Although interest in P. polycephalum
was at first exclusively fueled by general questions of biology, a wider scientific
community soon began to appreciate the value of P. polycephalum as a multi-potent
model system that could be controlled and studied effectively. Within a short period
P. polycephalum became a core experimental platform, driving a variety of different
research efforts. The study of cell motility is particularly noteworthy in this context.
Relevant reviews dating from the 1980s can be found in [4], [56], [150], [151].
After a period of intense research up to the 1980s, the remainder of the century

saw a general decline in interest related to P. polycephalum. It should not end until
the beginning of the 21th century, when exciting new question surrounding the
networks formed by the plasmodium of P. polycephalum arose.3 In particular, it was
shown that the vein networks formed by the plasmodium of P. polycephalum exhibit

3 Some members of the research community today have been humorously referring to these events
as “the second coming” of P. polycephalum.

7

1. Introduction

highly localized dynamic oscillatory behavior and a capability to adaptively change
their topology. Together with its remarkable chemotactic abilities, these properties
play a key role in the foraging behavior of P. polycephalum. Despite the lack of any
centralized control, they enable the organism to act as an organized unit in order
to establish robust and effective vein networks connecting a potentially large set of
spatially distributed food sources.
In a similar context, the vein network established by P. polycephalum has been

shown experimentally to mimic man-made transportation networks such as railway
systems or highways [123], [174], [176]. Furthermore, it has been demonstrated
that the plasmodium of P. polycephalum can establish the shortest path between
a pair of food sources placed in a maze [124]. These astounding feats received
major interest amongst scientists of many disciplines and simultaneously earned
P. polycephalum a place in the perception of the general public. Within a short
period of time,P. polycephalum became the focus of diverse interdisciplinary research
efforts, engaging biologists, physicists and computer scientists alike. The renewed
multi-disciplinary interest lead to a resurgence of research in P. polycephalum that
can be observed to this day. For a rare, more recent review, and various recent results
see [179] and [5], [120], [155], [167], [175]. Please note that this selection represents
a fairly limited part of current research on P. polycephalum. In fact, it is focused on
results revolving around the network forming plasmodium stage of P. polycephalum
which are relevant in the context of this thesis.

1.2. Natural Computing

For some time the words Nature and Computing used to denote terms which could
hardly be any more opposite to each other. Starting in the mid 1940s this perception
began to fade gradually when researchers started to explore the exciting possibility
of looking towards nature for alternative ways of doing computing. The search for
new problem solving techniques, novel approaches to synthesize natural phenomena
in silico as well as novel natural materials capable of realizing computations began.
Today, the pursuit of these three distinct, yet interrelated approaches is known as
Natural Computing [42], [48].

In this section we give a short introduction to the scope of natural computing
and mention its most important areas of interest. Our exposition closely follows
de Castro [43], who describes natural computing as the extraction of ideas from
nature to develop computational systems, or using natural materials to perform
computation. He suggests to divide the field into three main areas:

a) Computing inspired by nature

b) The simulation and emulation of nature by means of computing

c) Computing with natural materials

8

1.2. Natural Computing

Figure 1.5.: A schematic of the components and goals of natural computing.

Figure 1.5 illustrates the goals of natural computing. The study of these three
highly entangled areas seamlessly merge empirical observations and theoretical stud-
ies from diverse fields such as biology, physics, chemistry, engineering and computer
science amongst others. Thus it is vital for researchers to be open, collaborate and
share their ideas and knowledge in order to meet the challenges posed by the highly
interdisciplinary field that is natural computing.
What follows is a short description of the main areas of natural computing in-

cluding some of its most important achievements. For an extensive discussion and
a comprehensive collection of references see [43].

1.2.1. Computing Inspired by Nature

In the area of natural computing, the goal is to utilize natural processes and phe-
nomena as a source of inspiration in order to devise novel computational systems
and algorithms geared towards solving complex problems. Of particular interest
are alternative solution methods for problems for which standard techniques such
as linear, non-linear and dynamic programming encounter severe difficulties. Some
of the best known representatives of nature inspired computing include artificial
neural networks,4 evolutionary algorithms and swarm intelligence [43].

4 The field of artificial neural networks deals with computational problems as opposed to the accurate
biological modeling of the brain and the nervous system. The latter are questions of computational
neuroscience.

9

1. Introduction

Neural networks are formed by artificial neurons arranged according to a prede-
fined network architecture, typically consisting of several functional layers of
neurons. Triggered by a special activation function, each neuron may fire, i.e.
mapping its potentially many weighted inputs to a single output. Different
types of learning strategies may adjust the input weights of each neuron in
response to encountered input stimuli. Indeed, some amount of learning, also
known as training, is typically required before a neural network becomes com-
petent. Given proper training various problems such as classification, pattern
recognition or more general function approximation can be solved without
further assisting the neural network. Unfortunately, a deeper understanding of
why neuronal networks work the way they do remains elusive. A fact, that does
not diminish their usefulness which lead to their large (commercial) success.
For references see [26], [59], [77].

Evolutionary Computing and in particular genetic algorithms, try to leverage the
power of evolution by simulating a population of individuals with certain traits.
Individuals represent points in a search space associated with solutions to a
given optimization problem. Each potential solution is evaluated with regards
to the objective function of the problem. This process is known as determining
the fitness of an individual. Individuals are then selected to reproduce, i.e.
pass on their traits to the next generation, with a probability proportional to
their fitness in an sexual or asexual fashion. In the former case the offspring
is determined by a recombination of the traits of the parents. Further genetic
variation is introduced by random mutation of traits. If this process is repeated,
it evolves towards better solutions in an iterative manner. Typically such
algorithms terminate after a predefined number of iterations or when the
desired level of fitness is reached. Evolutionary algorithms have found success
in problems such as routing, scheduling, packing and various machine learning
tasks [13], [160], [188]. Important practical applications include determining
optimal design choices in various engineering settings [101], [153].

Swarm Intelligence encompasses techniques for problem solving that are inspired
by the collective behavior of human or animal societies. They rely on the
social behavior of a population of individuals capable of interacting with the
environment or one another in either a direct or indirect fashion [43]. The
popular ant colony optimization approach uses artificial ants that lay and
follow artificial pheromone trails. In the shortest path problem for instance,
ants travel all possible paths between two distinct nodes at the beginning.
However, as time goes by, longer routes have less pheromones associated with
them due to pheromones evaporating. Since the probability for an ant to
choose a given route is proportional to the present amount of pheromone, ants
become less likely to travel long routes and tend to concentrate on the shorter
paths, thereby reinforcing them repeatedly. As a result, ants are progressively
converging towards the shortest path. This general scheme can be adapted to

10

1.2. Natural Computing

various other discrete optimization problems such as the traveling salesman
problem and certain vehicle and network routing problems. For references
see [30], [31], [32], [66].

1.2.2. Synthesis of Nature by Means of Computing

The synthesis of nature by means of computing aims for full or partial reproduction of
phenomena, behaviors or patterns observed in nature [43]. This in silico approach
allows the exploration of a wide range of questions which may not be tractable
using traditional analytic or experimental techniques. Frequently theoretical work
suggest theories and models to be studied in silico using simulations with the aim of
obtaining a deeper understanding of the original phenomenon being modeled. The
simulation itself may serve as an evaluation of a proposed model, ideally suggesting
further improvements to the model and itself. In addition to the sheer growth in
computing power observed in the last few decades, much of the success of fields like
computational biology, computational chemistry or computational physics owes to
the symbiotic relationship between theory and simulation.

Examples for the synthesis of natural phenomena include cellular automata as a
model for self-reproduction or L-systems modeling the development of multicellular
organisms. These concepts were designed to capture and study certain, well-defined
rules and associated behaviors. However, over time their elegance and simplicity
lead to a variety of unforeseen applications. Cellular automata have played a role in
modeling the physics of fluids or gases on lattices [147], and the microscopic study
of high-way traffic [117], to name but a few. L-systems have been a successful tool
in the study of various properties of virtual plants [170]. In addition to that they
have found applications outside of biology in formal language theory, the study of
tumor growth and even musical composition [42].
Arguably the most exciting field we like to mention in the context of synthesis

by means of computing is the study of artificial life [105]. Within artificial life, it
is proposed that life itself should be regarded as an emergent property resulting
from the organization of matter as opposed to a simple property of matter itself.
It follows that besides the carbon based chain of life observed on earth, i.e. life-as-
we-know-it, different materials could lead to alternative life-like organizations aptly
termed life-as-could-be. While it is debatable what properties such an organization
requires to be rightfully termed alive, the prospect of new unknown forms of life is
extremely exciting.
A well-known example for non-trivial behavior in the context of life-as-could-be

is demonstrated by boids [144]. Here artificial life is represented merely as virtual
agents that are allowed to move in space. They obey the following simple rules:
(1) Avoid collision with neighboring boids or obstacles; (2) Mirror velocity and
direction of neighboring boids; (3) Stay close to neighboring boids. From these
simple rules complex collective behavior emerges allowing a flock of boids to closely
imitate the non-trivial behavior seen in flocking birds or shoals of fish [43].

The examples in this section illustrate that much can be learned from attempts to

11

1. Introduction

synthesize nature by means of computing. It is likely that ongoing research efforts
will sooner or later drastically alter our understanding of nature in general and life
in particular. It is this authors personal opinion that the question of how life arises
from inanimate matter constitutes one of the most important scientific questions in
the entire history of science.

For extensive reviews on the topic of artificial life, we refer the reader to [25], [29],
[105], [171].

1.2.3. Computing with Natural Materials

Computing with natural materials aims to go beyond standard transistor-based
computing by utilizing natural materials other than silicon as media for computing.
Examples for approaches to computing that are in stark contrast to conventional
computing are DNA and quantum computing [43].

In DNA computing complex molecules such as DNA strands are used to store and
process information. Complex computations can then be realized using a set of basic
operations that apply to interacting molecules. These operations are derived from
molecular biology and involve fusing, copying or deletion of DNA strands to name
but a few. The power of DNA computing derives from the fact that a large number of
molecules may interact with each other simultaneously. Despite the potentially slow
individual reactions, the inherent massive parallel information processing capability
of DNA computing lead to novel approaches to hard combinatorial problems such
as the Hamiltonian path problem [3]. Today various other applications are known
ranging from matrix multiplication to cryptography [33], [34], [134], [139]. Drawbacks
of DNA computing include scaling with problem size as well as retrieving the actual
problem solution from the DNA computation [43].

Another promising alternative to classical computing is quantum computing [128].
Here the so-called qubit replaces the classic binary bit which is limited to the two
states, 0 or 1. In contrast to that, the qubit, thanks to its quantum nature, can
represent any superposition state of the classical bit states. Thus it is capable of
representing all possible combinations of 0 and 1 simultaneously. As a result, a
quantum computer using n qubits may be in 2n different states at the same time,
very much unlike a classical computer which is in exactly one state at a time.

Elementary operations on qubits take the form of quantum logic gates. Gates
may be arranged in such a way that they compute the solution to a given problem.
A sequence of gates operating on qubits is then called a quantum algorithm. In
the final steps of any quantum algorithm the qubit superposition is collapsed in
order to obtain the result which is often probabilistic in nature. Exploiting the
massive in-build parallelism, dedicated quantum algorithms have been developed
that outperform all known classical algorithms for a small set of problems. The
two most prominent ones being Shor’s integer factorization and Grovers’s database
search algorithm [67], [156].

In addition to speeding up certain tasks, quantum systems may operate in ways
that classical systems cannot. This fact is exploited in quantum communication or

12

1.3. Natural Computing with P. polycephalum

quantum cryptography, where protocols have been developed which reduce commu-
nication complexity or provide perfect secrecy [43]. A major roadblock on the way
of success for quantum computing consists of the physical realization of coherent
systems capable of preparing qubits and executing quantum algorithms reliably.
Here the very quantum nature which enables extraordinary computation, presents
formidable difficulties when it comes to controlling the quantum system. Unfortu-
nately this fact still severely limits the number of qubits that have been used in
successful computing applications [128].

1.3. Natural Computing with P. polycephalum

Starting with the year 2000 a series of break-through experiments caused the unas-
suming organisms that are slime molds to become the focus of intense research
efforts. In particular, it was demonstrated that in its plasmodium stage, P. poly-
cephalum is capable of reacting to environmental conditions in a manner that is
reminiscent of optimization processes. Examples include the maximization of food
uptake given a small set of food sources, or the minimization of exposure to light
known to be harmful to the organism. It is striking that there is no central control
coordinating these nontrivial processes. Since P. polycephalum lacks any sort of
brain or nervous system, it has been speculated that the observed capabilities are
emergent as a result of local interactions. Given its abilities, P. polycephalum can be
seen as a highly distributed system with properties suitable for distributed natural
computing.
In order to explain the behavior of P. polycephalum and to harness its in-built

optimization capabilities, several different approaches were put forward. The most
successful amongst those either focus on modeling certain key observations that
were discovered experimentally or manipulate the organism in vivo in such a way
that its behavior can be interpreted as computation. In the next section we survey
some of the most influential experiments which paved the way for natural computing
with P. polycephalum.

1.3.1. Key Experiments and Observations

Emergence of Synchronization in P. polycephalum

In the last decade of the 20th century the rhythmic contractions exhibited by the
plasmodium of P. polycephalum were the subject of a series of experiments aimed
at shedding light onto the basic mechanisms governing P. polycephalum [115], [121],
[165]. Soon it was established that mechanochemical reactions among intracellular
chemicals such as ATP and calcium generate periodic cycles of contraction and re-
laxation of actomyosin fibers, explaining the observed oscillations in the thickness of
the plasmodium. Periodic changes in thickness induce pressure differences between
different parts of the slime mold which cause protoplasmic fluid to be streaming to

13

1. Introduction

and fro, exhibiting periodic reversals of direction. Given the experimental findings
it seemed natural to view the plasmodium of P. polycephalum as an ensemble of
coupled non-linear oscillators. Using this Ansatz, mutual entrainment of intracel-
lular oscillators may give rise to self-organization and the information processing
capabilities of P. polycephalum.

In this context, a key experiment was presented in 2000 which uses the plasmodium
of P. polycephalum to realize a living system of coupled oscillators [166]. To this
end a micro-fabricated structure was prepared, consisting of two identical circular
reservoirs, connected by a channel of a predetermined width and length. In the
experiment, the two reservoirs and the channel are populated with plasmodium.
The reservoirs act like two distinct P. polycephalum oscillators while the channel
ensures a controllable coupling between the two. Here the width of the channel
represents the coupling strength while the length of the channel corresponds to the
time delay in the coupling. The setup depicted in Figure 1.6 realizes a system of
two delay-coupled oscillators whose thickness oscillations were studied as a function
of the channel dimensions.

(a) (b)

Figure 1.6.: (a) Detail of the growing front of P. polycephalum. Arrows indicate the
presence of thick veins. (b) Top: A micro-fabricated structure designed to confine
P. polycephalum. The diameter of the reservoirs was chosen such that they can
be regarded as distinct oscillators. Bottom: The dumbbell shaped structure loaded
with P. polycephalum. Reprinted from [166].

Figure 1.7 shows rich self-synchronizing oscillation patterns exhibiting both in-
phase and anti-phase entrainment consistent with theoretical expectations. The
experiment shows that the geometry of the channel plays a key role in the generation
of thickness oscillations driving peristaltic pumping of protoplasm.

14

1.3. Natural Computing with P. polycephalum

(a)

(b)

Figure 1.7.: (a) Visualization of thickness anti-phase oscillations propagating
between the two oscillators by means of the transmitted light intensity through
the plasmodium. Darker/brighter areas indicate an increase/decrease in thickness.
The time interval between consecutive images is 16 s. (b) Time development of
thickness oscillations. The thick respectively thin lines represent the thickness of
individual oscillators obtained by averaging the transmitted light intensity for each
oscillator. Top: Anti-phase oscillations were observed for W = 0.4000 mm and
L = 4 mm. Bottom: In-phase oscillations were observed for W = 0.5000 mm and
L = 10 mm. Adapted and reprinted from [166].

15

1. Introduction

Shortest Path in a Maze

Introduced in the year 2000, in the so-called “maze experiment”, the plasmodium of
P. polycephalum is placed in a maze, see Figure 1.8a [124]. After the plasmodium has
spread evenly across the entire maze, two food sources are introduced at two specific
points in the maze, see Figure 1.8b. The organism reacts to the food source by slowly
retracting from areas of the maze that do not coincide with any path connecting
them. This process continues for several hours until the plasmodium takes the shape
of one single thick vein connecting the food sources. In repeated experiments, it
was shown that after sufficient time this vein does not occupy any path, but selects
the shortest path (α1 + β1, see Figure 1.8a) in most of the cases. This demonstrates
the organisms remarkable ability to iteratively improve the efficiency of fluid flow
between the two food sources. By making veins progressively shorter and wider, the
hydrodynamic resistance to protoplasmic flow is minimized which is beneficial in
terms of nutrient transport[96].
In terms of natural computing, one may interpret the maze as a graph with

edge weights equal to the lengths of the associated maze segments and the food
sources as two distinct nodes N1 and N2, see Figure 1.8d. Thus the slime mold
Physarum polycephalum can be seen to demonstrate an in vivo approximate solution
to the s− t shortest path problem with s = N1 and t = N2.

16

1.3. Natural Computing with P. polycephalum

(a) (b)

(c) (d)

Figure 1.8.: (a) The plasmodium of P. polycephalum is evenly spread across a
maze. Filled black circles denote two specific points in the maze. Arrows indicate
segments of possible paths between them. (b) Two food sources, labeled AG, are
introduced at the specific points. After a while the plasmodium retreats from areas
of the maze that do not intersect with a path connecting the food sources. (c) The
plasmodium settles on the shortest path between the two food sources. (d) The
maze can be interpreted as an abstract graph with two distinct nodes N1 and N2

corresponding to the food sources. The scale bars denote 1 cm. Reprinted from [175].

17

1. Introduction

Efficient networks maximizing food uptake given multiple food sources

In 2004 the plasmodium of P. polycephalum was presented with multiple food
sources arranged in various regular patters including equilateral triangles and small
grids [120], [123]. Independent of the chosen pattern, the organism reacted by chang-
ing its shape from a sheetlike plasmodium to a distinct network featuring thick
veins. This network was found to balance two competing yet desirable features.
Namely, small total length of the tubular network and high tolerance against acci-
dental loss of connectivity. The first feature implies that the biomass required for
maintaining veins be small. As a result the bulk of the biomass may concentrate on
the food sources themselves in order to improve food uptake. The second feature
makes sure that the organism is not disconnected after severing a small number
of veins. This allows the organism to keep exploiting obtained food sources and
information as a unit. Such behavior is crucial for instance, if a remote part of
the vein networks senses an unclaimed food source. Then this information may be
processed by the entire organism leading to a potential redistribution of biomass,
enabling further improvement of food uptake. If the part which discovers the new
food source is disconnected from the main body, the latter cannot react to benefit
from the discovery.
Experimentally it was found that the networks formed by P. polycephalum re-

semble minimum Steiner trees with additional cycles contributing a degree of fault
tolerance, see Figure 1.9. The authors allow however, that the approximate Steiner
points are likely to be a mere byproduct of searching for short connections between
food sources. The inherent capability of forming functional networks was demon-
strated impressively in another experiment where P. polycephalum was set up to
approximate the railway area of Tokyo and the greater Kanto area [176].

18

1.3. Natural Computing with P. polycephalum

(a) (b) (c)

Figure 1.9.: (a) A network resembling the minimum Steiner tree connecting six
food sources (FS) laid out in a regular pattern. (b) An example of a network with a
SMT-like pattern in the upper half and a cycle of veins in lower half. (c) A sample
minimum Steiner tree on six nodes. Reprinted from [120].

Minimizing Risk Associated with Illumination

In 2007 the plasmodium of P. polycephalum was challenged with a different variant
of optimization problem involving the organisms strong tendency to avoid light.

In the experiment the plasmodium is allowed to spread evenly across a rectangular
petri dish. Next, two food sources are introduced at two adjacent corners of the
container and a fraction of the container is evenly illuminated with white light. When
the whole container is illuminated P. polycephalum forms a thick vein connecting
the two food sources, approximating the shortest path between them. If only a
fraction of the container is illuminated, P. polycephalum still connects the two food
sources forming a thick vein. However, now the organism is trying to minimize
its exposure to light by striking a balance between short connection and a short
path through the illuminated area. In fact, the behavior of P. polycephalum in this
experiment is strikingly similar to the behavior of refracting light as given by Snell’s
law. Figure 1.10 illustrates the experiment.
The illumination experiments yet again demonstrate the uncanny ability of

P. polycephalum to solve complex problems. Furthermore, it shows that the be-
havior of P. polycephalum can be effectively steered using light. Together with the
potential to use chemical attractants and repellents, rich possibilities of controlling
the behavior of the slime mold are available.

19

1. Introduction

(a) (b)

(c) (d)

(e) (f)

Figure 1.10.: (a) The rectangular sheetlike morphology of the organism imme-
diately before the introduction of two food sources (FS). The region affected by
illumination is indicated by a dashed rectangle. In (c) and (d) the entire region
was illuminated. As a result an the shortest path between the two food sources is
approximated by a thick vein. In (b), (d) and (f) partial illumination leads to a
reduced path length through the illuminated area at the expense of an increase in
total path length. Note the natural variation in the exhibited paths from experiment
to experiment. Reprinted from [118].

20

1.3. Natural Computing with P. polycephalum

1.3.2. Natural Computing Approaches

After a short survey of key experimental observations presented in the previous
section, we move on to discuss common strategies to use the plasmodium of P. poly-
cephalum as a medium for natural computing. Here we present examples for the
different paradigms discussed in the section natural computing. In the interest of
brevity, we focus on the most successful approaches and refer the reader to the
literature for details.

Computing Inspired by P. Polycephalum

The approach aims at modeling certain aspects of P. polycephalum with the goal of
using the resulting models for in silico computation. The major challenge here is
to look past the intricate bio-physical processes that are observed experimentally
and find a suitable level of abstraction capable of reproducing the computational
abilities of P. polycephalum.

Shortly after it was demonstrated that P. polycephalum forms networks connecting
more than two food sources, Nakagaki et al. went on to explain their own observations
on a physiological level in [174].

They claim that the plasmodium of P. polycephalum organizes itself through the
formation of thick veins through which the protoplasm is driven as a result of periodic
contractions of the veins themselves, i.e. peristaltic pumping. Veins are formed when
streaming of protoplasm persist in a given direction for a sufficiently long time [125].
On a molecular scale Actomyosin fibers carried by the protoplasmic flow attach
themselves to each other forming a mesh of fibers, eventually resulting in tubular
structures. The fast flowing protoplasm causes shear stress, exerting a force which
stretch-induces a regular orientation of the otherwise arbitrarily oriented fibers along
the direction of flow. As a result, veins with a large flux manage to accumulate
and orient even more Actomyosin fibers which over time lead to an increase in
vein diameter. This in turn further reduces the resistance to flow, since under the
assumption that the fluid flow in the veins of P. polycephalum is a Poiseuille flow,
the theory of hydrodynamics dictates that it be proportional to the forth power of
the vein diameter and inverse proportional to the vein length. It follows that veins
which are carrying little flow either are long and/or thin or happen to be dead-end
veins. The latter are likely to degenerate over time as experimentally demonstrated
in various experiments. At the same time, reinforcing thick and short veins increases
the efficiency of fluid flow, which in turn enables effective circulation and transport
of nutrients, nuclei and other factors.

These considerations became the basis of a concise model presented in 2006, which
captures the behavior of the slime mold as demonstrated in the maze experiment
and lead to the first natural computing approaches based on P. polycephalum [174].
The model can be formulated on a graph G = (V,E), where the node set V denotes
the junction points of veins and the edge set E denotes the veins themselves. Each
node u ∈ V has a hydrodynamic pressure associated with it denoted by pu(t). Each

21

1. Introduction

edge e = (u, v) ∈ E has a length Le as well as a time-dependent flow through the
vein labeled Qe(t). Here it is assumed that the flow is a Poiseuille flow such that

Qe(t) =
πre(t)

4

8η

pu(t)− pv(t)
Le

, (1.1)

holds. Here re(t) is the diameter of an edge and η refers to the viscosity of the
protoplasmic fluid. Let De(t) = πr(t)4/8η. Then we can simplify Equation (1.1) to
read

Qe(t) =
De(t)

Le
(pi(t)− pj(t)) . (1.2)

Let us choose two distinct nodes s, t ∈ V representing the source and sink nodes
in the graph. Using this definition we obtain an equation for each edge e ∈ E:

∑
e=(u,v)

Qe(t) =


1 for u = s ,

−1 for u = t ,

0 otherwise .
(1.3)

Note that the l.h.s is chosen such that flow is conserved everywhere except at the
source and the sink where flow is entering respectively leaving the graph. Thus one
unit of flow is introduced to the system. Equation (1.3) can be solved to obtain the
values of the Q(t)e and the pu(t) simultaneously.

Finally the time-dependence of D(t)e is choosen such, that the positive feedback
between D(t)e and Qe(t) is as described above. For each e ∈ E the dimensionless
equation for D(t)e reads

d

dt
De(t) = f(Q(t)e)−De(t) , (1.4)

which is called adaptation or evolution equation. Here f is a monotonically increasing
continuous function such that f(0) = 0. Equation (1.4) is the key of the model
which formalizes the experimental observations reported earlier. If at time t the flux
through an edge is such that f(Qe(t)) < De(t) then De(t) decreases which further
reduces the flux through e. In this scenario an edge e is degenerating. Likewise
f(Qe(t)) > De(t) leads to an increase in De(t) which further increases the flux. In
this case e is reinforced. Only, f(Qe(t)) = De(t) enables a stationary state which
leaves De(t) and Qe(t) constant.
The model thus evolves the thickness of veins in P. polycephalum according to

Equation (1.4) relying on the values of pu(t) and Qe(t) which are governed by
Equation (1.3). For suitable choices of f(Qe) this system can be discretized and
solved numerically [174]. For the graph depicted in Figure 1.8d a stationary state
was found where the De(t) of all edges that do not belong to the shortest path
between s = N1 and t = N2 vanished. At the same time De(t) of edges on the
shortest path approached a constant. That is, just like the slime mold, the model
has selected the shortest path in the graph between s and t.

22

1.3. Natural Computing with P. polycephalum

Problem Authors Year

Transport network design Tero et al. [176] 2010
Linear programs Johannson et al. [86] 2012
Learning Bayesian network structure Schön et al. [152] 2012

Table 1.1.: Various problems and related solution strategies inspired by the original
Physarum solver.

After this initial demonstration of the viability of P. polycephalum as a medium for
natural computing, mathematicians and computer scientists started to analyze the
model and its variants contributing a sequence of convergence proofs and complexity
bounds. For suitable choices of f(Qe) convergence was proven for planar graphs at
first [113], [114], but shortly thereafter proofs were extended to general graphs for
the original model and for variations thereof [23], [35], [36], [83]. The fact that the
theoretical properties of the so-called Physarum solver are rather well understood
is a rarity amongst natural computing algorithms.
Due to its success and intuitive basic idea, the Physarum solver has received

much interest in the scientific community. Subsequently it inspired several other
algorithms with varying degree of similarity to the original problem. An incomplete
selection is given in Table 1.1.

Synthesis of P. Polycephalum Using Computation

This approach seeks to faithfully synthesize P. polycephalum by means of simulation.
To do so, it relies on a suitable model capable of mimicking the behavior of the
organism. Contrary to the approach presented in the previous section, finding a
model that solves a computational problem is not the main goal. However, it has
been shown that in the case of P. polycephalum accurate modeling of the organism
produces a model with problem solving capabilities.
In 2010 Jones suggested to take a closer look towards the foraging behavior of

P. polycephalum, emphasizing its ability to move towards food based on sensing
chemicals signaling its presence [89]. In particular he puts forward the idea of
modeling the plasmodium of P. polycephalum as a virtual 2D material consisting of
a large population of virtual agents. These agents reside on a 2D lattice whose nodes
store the concentration of a hypothetical chemical representing the presence of food.
Agents are equipped with sensors that allow them to orient themselves towards the
locally strongest concentration c of this chemical in the lattice. After reorientation
the agent deposits a chemical concentration equal to c at its current location and
then takes a step forward. This behavior effectively couples neighboring agents
with each other, since they read and react to the trails of chemicals that are being
deposited by others. A similarity with the general idea of ant colony optimization
is observed. Figure Figure 1.11 depicts a schematic of an agent and its sensors.
Given suitable parameters settings, the collective behavior of all agents leads to

23

1. Introduction

(a)

Figure 1.11.: Structure of a virtual agent showing central position and 3 forward-
facing offset sensors. Reprinted from [89].

the spontaneous formation of transport networks. The emergent global patterns
formed by the collective of agents resemble the actin-myosin mesh structures forming
the veins of P. polycephalum, while the individual trajectories of the agents can
be interpreted as protoplasmic fluid flowing through the veins of the organism, see
Figure 1.12. Figure 1.13 shows how an initially randomly distributed collection of
agents evolves in time to eventually form a network. In particular, certain parameters
of the model can be tuned such that the collective demonstrates minimization
processes observed in [21], [90], [91].
In [92] it is pointed out that pattern formation in itself does not yet constitute

computation. Thus inspired by previous experimental results, it was suggested to add
additional external stimuli to the lattice. These act as the input and the constraints
necessary for a controlled computation. They can be attractants or repellents which
are projected onto the lattice and create concentration gradients which agents may
react to. The placement of additional stimuli acts as constraints to the natural
minimization process realized by the virtual material. The constrained process
may be interpreted as computation. It is halted once the material has reached a
stable configuration which is then interpreted as the solution or the output of the
computation.
An example of this approach can be seen in Figure 1.14 where six attractants

where projected onto the chemo-attractant lattice. They correspond to food sources
representing the input to the virtual P. polycephalum experiment. When the virtual
material is introduced it undergoes morphological changes constrained by the input.
After a certain number of iterations the configuration has stabilized, revealing a
minimum Steiner tree.
Further examples of problem solving by synthesizing P. polycephalum in silico

are given in Table 1.2.

24

1.3. Natural Computing with P. polycephalum

(a) (b)

Figure 1.12.: (a) A static collective of agents approximates plasmodium actin-
myosin mesh. (b) A mobile stream of agents approximates protoplasmic flow within
the plasmodium. Caption and figures reprinted from [89].

(a)

Figure 1.13.: The coupling of agents with each other causes spontenous formation
and evolution of transport networks. Reprinted from [92].

25

1. Introduction

(a) t = 0 (b) t = 40 (c) t = 350

(d) t = 850 (e) t = 1500 (f) t = 5000

Figure 1.14.: Material computation by constraining pattern formation. (a) A
pattern of six nodes inside a circular arena is projected into the diffusive lattice as
attractant stimuli. (b) Spontaneous formation of a transport network from random
inoculation positions realized with 4000 particles. (c)-(e) The minimization of the
network is constrained by the attraction to nodes. (f) The final stable configuration
(output) is a Steiner minimum tree. Caption and figure adapted from [92].

Problem Authors Year

Cellular automata Gunji et al. [70], [71] 2008,2011
Voronoi diagrams Jones et al. [95] 2013
Traveling salesman Jones et al. [93] 2014
Data smoothing and filtering Jones et al. [94] 2014
Convex and concave hull Jones et al. [92] 2016

Table 1.2.: Various problems and related solution strategies obtained via synthesis
of P. polycephalum.

26

1.3. Natural Computing with P. polycephalum

Computing with Live P. Polycephalum

In order to realize computation with live P. polycephalum, the plasmodium may
be interpreted as a parallel amorphous biological computing system. Here input
is encoded via the spatial configuration of food sources. The slime mold reacts to
the presented stimuli in a dynamic process which is interpreted as computation.
Finally, once the organism has settled in response to the input, the configuration of
its vein network is interpreted as the output of the process. The initial experiments
conducted by Nakagaki et al. can be considered the first deliberate realizations of
natural computing with P. polycephalum as a computing medium. Soon thereafter
further possibilities to manipulate and steer the behavior of the plasmodium with
chemical attractants, repellents and light where explored.
Two approaches, the perhaps most impressive, deserve to be mentioned sepa-

rately. The first demonstrates an in vivo solution to the problem of planning a
transportation network connecting a set of cities. The second shows how a clev-
erly devised feedback-control system allows P. polycephalum to act as an entirely
different natural computing system, namely a neural network.
Tero et al. cultivated P. polycephalum in a Petri dish designed as a miniature

replica of the greater Kanto region where oat flakes were placed at the locations
of Tokyo and other major cities. Geographical constraints such as oceans, lakes
and mountains were realized by means of a corresponding illumination mask. Since
P. polycephalum tends to avoid light, growth was restricted to the shaded areas.
Under these conditions P. polycephalum soon formed a network spanning all the food
sources available in the shade. Surprisingly, the networks formed by P. polycephalum
were found to resemble the actual railway networks serving the Kanto region while
balancing efficiency, fault tolerance and cost [176].

The experiment impressively demonstrated that P. polycephalum can compute a
feasible solution to the complex problem of designing a desirable real-life transport
network, see Figure 1.15. Note that properly encoding the input by combining the
location and quality of food sources as well as the illumination mask representing
geographical constraints is critical. In addition to the in vivo computation, Tero et
al. also suggested a model based on the Physarum solver suitable for an in silico
replica of this experiment.

27

1. Introduction

(a) (b) (c)

(d) (e) (f)

Figure 1.15.: Network formation in Physarum polycephalum. (a) At t = 0, a small
batch of plasmodium was placed at the location of Tokyo in an experimental arena
bounded by the Pacific coastline (white border) and supplemented with additional
food sources at each of the major cities in the region (white dots). The horizontal
width of each panel is 17 cm. (b) to (f): The plasmodium grew out from the initial
food source with a contiguous margin and progressively colonized each of the food
sources. Behind the growing margin, the spreading mycelium resolved into a network
of tubes interconnecting the food sources. Caption and figure reprinted from [176].

28

1.3. Natural Computing with P. polycephalum

While Tero et al. harvested the computing capabilities that follow from the natural
foraging behavior and light-sensitivity of P. polycephalum, Aono et al. suggest to
trick P. polycephalum into realizing a neural network [8], [9], [10], [11]. Their scheme
is as follows: First, they design a star-shaped container where the “legs” of the
container represent 8 identical “neurons”, see Figure 1.16.

Figure 1.16.: L.h.s.: P. polycephalum expanding unrestrictedly from an inoculation
site. R.h.s.: P. polycephalum placed in a star-shaped container. Scale bar equals
2 mm. Reprinted from [10].

When P. polycephalum is placed inside the star it spreads equally across it. A
neuron xi is considered active if more than a quarter of its area is occupied by the
organism. Consequently, any neuron can be deactivated by illuminating its branch,
which causes the plasmodium to retreat owing to its photo avoidance. The behavior
of P. polycephalum can be exploited to realize logical functions such as logical NOR
by enforcing that a neuron xi be deactivated if any of its neighbors are active.

Thus, the exploring slime mold influences itself through the illumination pattern
as it looks to occupy as large an area of possible. Under these conditions the
plasmodium is lead towards certain configurations with a stable illumination pattern.
When all neurons remain unchanged, the adopted configuration is interpreted as
the output of the computation. Figure 1.17 shows various states the experimental
setup can take.

Interestingly, the shape changes that the plasmodium undergoes in this setup may
also be interpreted as state transitions in a McCulloch-Pitts neural network [10].
Such networks have well studied computational capabilities and are known to be
capable of approximating computational problems such as the traveling salesman
problem. Exploiting the computational power of neural networks, Aono et al. demon-
strated that P. polycephalum can be used to realize an in vivo computing system.
Indeed, using an experimental setup with N × N branches it is possible to guide
P. polycephalum towards finding a solution for a TSP problem with N = 4 [11].

This astonishing ability to guide and manipulate the behavior of P. polycephalum
is the key to various in vivo computing systems devised so far, see Table 1.3.

29

1. Introduction

Figure 1.17.: Time development of the P. polycephalum neuron system. Illumi-
nated branches of the container are indicated by white rectangles. The thickness
oscillation phases are binarized as red and yellow for relaxing (thickness increasing)
and contracting (decreasing) states, respectively. The l.h.s. row shows examples of
transient states where the plasmodium is still exploring the container. The center
row illustrates short term changes in thickness. The r.h.s. shows various stable
configurations respecting different illumination patterns. Reprinted from [10].

Problem Authors Year

Logic gates Tsuda et al. [177] 2004
Robot control Tsuda et al. [178] 2007
PhyChip: Growing computers from Slime Mould Adamatzky et al. [1] 2012

Table 1.3.: Various applications of P. polycephalum of as a living computing system.

30

1.4. Motivation and Outline

1.4. Motivation and Outline

After surveying the most important experimental facts about P. polycephalum and
discussing the natural computing strategies inspired by them, we are now in a
position to give the motivation of this thesis.
Recall for a moment that some of the most successful natural computing ap-

proaches are based on modeling the morphological changes observed in P. poly-
cephalum. The Physarum solver for instance replicates the changes in vein thickness
as a function of throughput while the multi-agent approach mimics the network
topology in a dynamic manner. What these and other approaches have in common
is that they fail to capture another distinguishing feature of the slime mold: the
periodic reversals of the direction of protoplasmic flow through veins. This feature
is highly interesting for several reasons.
From a biophysical point of view it may be assumed that flow reversals are a

byproduct of the organisms efforts to keep protoplasmic fluid circulating. An efficient
circulation of protoplasm is beneficial, possibly necessary, for P. polycephalum to
survive since it ensures that nutrients, nuclei and other relevant factors are equally
available across the entire individual. Note that such a circulation is naturally
maintained despite the dynamically changing and growing underlying network of
veins. Again we stress the fact that P. polycephalum lacks any form of nervous
system or brain. As a result, there is no central control to be made responsible for
coordinating the apparently coordinated observed behavior. It is intriguing to ask
how this organism manages to organize efficient and robust fluid transport in a fully
decentralized manner.
From a computing point of view such properties are non-trivial and highly de-

sirable. What P. polycephalum seems to produce and maintain naturally is an
(approximate) solution to the problem of distributing resources in a dynamically
changing planar graph. This is an interesting and complex transport problem with
various conceivable practical applications, particularly in the domain of operations
research. As a result, it is desirable to model the behavior of P. polycephalum with
the goal of developing algorithms for this problem. Ideally such an algorithm would
have the following properties:

• The algorithm maintains a dynamic circulation of flow including flow reversals
mimicking the flows observed in live P. polycephalum. Since resources are
transported with the flow, they go wherever the flow reaches.

• The algorithm is robust against changes in topology. Neither natural changes of
network topology nor accidental disconnection of veins renders P. polycephalum
in a state from which it cannot recover. The algorithm should share this quality.

• The algorithm is distributed and requires no central control. As a result,
complex global coordination of any sort must emerge from local interactions.

31

1. Introduction

• The algorithm has a degree of efficiency. Based on the assumption that a
certain degree of efficiency is necessary for P. polycephalum to survive, one
may hope that models and algorithms mimicking the organism, inherit this
efficiency at least to some extent.

Paving the way towards such an algorithm constitutes the main motivation of
this thesis. In it, we seek to contribute to the field of natural computing with
P. polycephalum through the use of experimental and theoretical methods in an
interdisciplinary spirit.

Ultimately, we aim to find a model which yields a circulating flow including flow
reversals for individual edges as displayed by P. polycephalum. Ideally, this model
covers the properties listed above and can be used to derive an efficient algorithm
which mimics the way P. polycephalum distributes resources all across its network
of veins by means of peristaltic pumping.
The past has shown that successful modeling of natural phenomena tends to

build upon a reliable body of experimental data and results concerning the same.
The reason for this is twofold: First experimental results help build intuition which
is crucial in the formulation of models. Second, experimental data can be used
after models and/or algorithms have been derived to assess the degree to which
they resemble the workings of the natural phenomenon in question. Thus, before
engaging in attempts to model the flows observed in P. polycephalum, this thesis
looks towards experimental work.
In this context, the oscillator experiments introduced in Section 1.3.1 are most

promising. They suggests to explore an approach based on the behavior of synchro-
nized coupled oscillators. Experimentally it was shown that dynamic flows, including
flow reversals, follow from changing pressure gradients induced by organized thick-
ness oscillations in the plasmodium of P. polycephalum. Here the experimenters
stress in particular that network properties such as the lengths and the thickness
of veins critically influence the observed emergent behavior.

To gain insights in the dynamics of the flow, one may a) look at the flows directly,
or b) study the vein networks themselves. Experimentally it is possible to track the
flow of protoplasm through single veins of the organism for a certain amount of time.
However, obtaining this information for large vein networks including thousands of
veins lies outside of our capabilities and is thus infeasible. Alternatively, one may
study the topology of the networks on a large scale. This is idea forms the starting
point of this thesis.
Thus, we conduct a large number of tailored wet-lab experiments designed to

produce images of P. polycephalum networks. To evaluate and study the obtained
experimental data, we develop a software called Network Extraction From Images
or Nefi. It is designed to turn images depicting networks into equivalent graphs.
After processing these P. polycephalum graphs, we obtain a detailed numerical
characterization of their properties searching for clues supporting our modeling
efforts.
Naturally, we want all our results, i.e. experimental raw data, processed data

32

http://nefi.mpi-inf.mpg.de

1.4. Motivation and Outline

as well as our numerical studies, to serve others the same way the serve us. Thus
we set up a dedicate repository, the so-called Slime Mold Graph Repository or
Smgr, designed to further the reuse and exchange of P. polycephalum related data
with a focus on slime mold graphs. All results presented in this thesis are readily
available to the natural computing community and everyone who is interested online
at smgr.mpi-inf.mpg.de and nefi.mpi-inf.mpg.de.
This thesis documents our studies of the networks formed by Physarum poly-

cephalum on the road towards novel distributed natural computing approaches
inspired by it. In this thesis, we set out on an ambitious interdisciplinary journey
with an uncertain destination.

The remainder of this thesis is structured as a sequence of self-contained chapters
supported by relevant appendices. They can be read in order or independently:

In Chapter 2 we introduce Nefi and the problem of extracting networks or graphs
from images. Network extraction remains a vital precursor to network analysis
and the key to making raw data from wet-lab experiments tractable. Chapter 3
describes the experiments we conducted with live P. polycephalum. We discuss the
experimental setup as well as the data we obtain. Furthermore we introduce the
Smgr, a publicly available data repository intended to promote the distribution and
reuse of slime mold related data and results. In Chapter 4 we focus on the actual
analysis of the data we obtained earlier. Here we present a systematic study of several
graph observables characterizing the vein networks formed by P. polycephalum.
Finally, in Chapter 5 we present our efforts of modeling the complex flow patterns
known to occur in said networks through the use of electric elements. In particular,
we study the properties of circuits formed by these elements combining analytic
and numerical methods. Furthermore, we discuss the potential of our approach and
its suitability for developing natural computing algorithms inspired by the behavior
of P. polycephalum. We close with a general discussion and concluding remarks
regarding the tools, services and results presented. In particular we offer suggestions
for potential further research.

33

http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de/
http://nefi.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de

2 Network Extraction From
Images

Networks are amongst the central building blocks of many systems. Given a graph of
a network, methods from graph theory enable a precise investigation of its properties.
Software for the analysis of graphs is widely available and has been applied to study
various types of networks. In some applications, graph acquisition is relatively
simple. However, for many networks data collection relies on images where graph
extraction requires domain-specific solutions. In this chapter we introduce Nefi, a
tool that extracts graphs from images of networks originating in various domains.
Nefi provides a novel platform allowing practitioners to easily extract graphs from
images by combining basic tools from image processing, computer vision and graph
theory. Thus this novel software constitutes an alternative to tedious manual graph
extraction and special purpose tools.
In the context of this thesis Nefi is used exclusively to extract graphs that

represent vein networks formed by P. polycephalum depicted in images acquired in
the wet lab experiments discussed in Chapter 3.

This chapter documents joint work with Dr. A. Neumann and Mag. T. Kehl [52].

2.1. Introduction

The study of complex network-like objects is of increasing importance for multiple
scientific domains. The mathematical study of networks, Graph Theory, formalizes
a network’s structure by modeling the constituents of a network as vertices and the
pairwise relations between them as edges .1 Networks are ubiquitous in everyday life.
Examples are as diverse as the Internet, social networks, transportation networks,
metabolic networks, blood vessels or the vein networks of leaves. For a comprehensive
review see [127].
In situations where the extraction of a mathematical graph from a physical

network is easy, the size of graphs that can be analyzed may quickly increase from
hundreds to millions of vertices. In such cases it is possible to build large databases
of networks which can be explored automatically using software relying on methods
from statistics and graph theory. The combination of a large number of available
graphs with dedicated methods of analyzing them yielded many results that changed
our understanding of large scale network structures. Unfortunately, digitization

1 Some communities traditionally refer to vertices as nodes or sites and to edges as arcs or links.

35

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

2. Network Extraction From Images

of networks is not always easy and remains difficult for many types of networks.
Examples include e.g. leaf venations, blood vessels or food webs, and therefore ready-
to-analyze datasets are often not available. In these cases, investigation on a larger
scale requires tedious and sometimes error prone data acquisition.
In many experimental settings networks are initially available as high quality

images obtained under laboratory control. Before any analysis can take place, it
is necessary to extract the associated graphs from these images. This requires the
identification of vertices and edges within the depicted structure. This process
can quickly become very work-intensive even for smaller networks, which makes
automated solutions indispensable.

Leveraging advances in computer vision, several authors have proposed and suc-
cessfully implemented solutions for domain specific graph extraction applications.
The authors of [131], [132] consider the mycelial networks of P. impudicus, a member
of the fungi. They use watershed segmentation in combination with a novel enhance-
ment step designed to highlight curvilinear features in the input networks. Based
on the segmented image a skeleton is computed and used to extract the graph rep-
resenting the input network. The resulting method is designed to be brightness and
contrast invariant in order to correctly extract the networks grown by P. impudicus
from challenging noisy or low contrast images.

Baumgarten et al. [18], [20] investigate the vein networks of P. polycephalum using
image processing techniques. For segmenting the input image they rely on careful
constant thresholding followed by a sequence of restoration algorithms designed
to remove artifacts introduced during thresholding. Next, the restored segmented
image is used to compute a skeleton. After applying another sequence of correction
steps, the skeleton is scanned to extract the graph of the input network.

In [44] a more general algorithm applicable to a variety of problems is proposed.
Based on an original stochastic model, the authors use Monte Carlo sampling to
obtain junction-points in the input image. This technically involved solution guar-
antees structural coherence for the resulting graph representation. Further examples
include the extraction of road networks [126], retinal blood vessel analysis [103] and
the extraction of plane graphs [149].

The three above mentioned algorithmic solutions for the network extraction prob-
lem exhibit one or more of the following limitations:

• They do not build on top of well-established computer vision methods and
tend to rely on ad-hoc algorithms. As a result the quality of the method and
its implementation could likely be improved. In addition, a lot of time is spent
on reimplementing algorithms that are already available in common libraries.

• They are not implemented at all or only available on paper as pseudo-code.

• They are implemented but it is clear that the authors never intended for anyone
else to use their code. Resulting implementations tend to neglect ease of use,
distribution or issues of extendability.

36

2.2. Network Extraction From Images

Naturally, we need to keep in mind that the primary objective of the work cited
above is not the production of reusable software, but of algorithms and tools for
solving a concrete research question at hand. The aim is to get the job done. As
a result, the time for researching computer vision libraries and implementations,
following best software engineering practice or writing documentation is limited.
From experience we know that when trying to produce an easy-to-use software,

a large part of the required work consists of specifying and improving the user-
interface as well as working out minor bugs and annoyances. This type of work,
while very time consuming, is essential for any software aiming to reach a non-
negligible audience. However, efforts like these are hardly attractive to researchers
whose focus is on obtaining the next result. While we understand that under these
circumstances the aforementioned limitations arise naturally, we strongly believe
that it is necessary to overcome those limitations in order to increase the value
and the impact of scientific software in general and network extraction software in
particular. It is possible to do better.
To this end, we introduce Nefi, a lightweight piece of ready-to-go software in-

tended to enable the non-expert to automatically extract networks from images.
Nefi constitutes an extensible framework of interchangeable algorithms accessible
through an intuitive graphical user interface.
We emphasize at this point that we do not claim to introduce novel techniques

for image processing or computer vision. Instead, our contribution consists of a
reusable, flexible and easily extendable toolbox combining well-known methods,
which have become standard in their respective fields of origin, in a meaningful
way. By introducing Nefi, we hope to make these methods more widely accessible,
especially to practitioners that are unfamiliar with them.

Nefi’s segmentation is based on a combination of standard routines available
in OpenCV [37]. These algorithms are known to perform well on clean and unclut-
tered images obtained under controlled laboratory conditions. However, on more
challenging inputs of low contrast, strong gradients or similar irregularities, their per-
formance is severely reduced. Nevertheless, in these cases more involved algorithms,
currently not implemented as part of a reliable library and thus not integrated into
Nefi, may still be able to process these images. To help meet this situation, Nefi
was designed with extendability in mind. As a result users will hopefully find it easy
to build on-top of Nefi’s code in order to add their own implementations of more
sophisticated methods.

2.2. Network Extraction From Images

Nefi features a collection of image processing routines, segmentation methods and
graph algorithms designed to process 2D digital images of various networks and
network-like structures. Its main function is executing a so-called extraction pipeline,
designed to analyze the structures depicted in the input image. An extraction
pipeline, for short pipeline, denotes an ordered sequence of algorithms. A successful

37

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://opencv.org/
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

2. Network Extraction From Images

Figure 2.1.: A flow chart illustrating Nefi’s pipeline components in green boxes.
Dashed arrows depict optional sections of the pipeline. Blue and orange boxes denote
Nefi’s input and possible outputs respectively.

execution will return a representation of the network in terms of an edge-weighted
undirected planar graph. Computed weights include edge lengths and edge widths.
Once the graph is obtained, available graph analysis software [16], [17], [74], [106],
[107], [185] or custom written scripts can be deployed to investigate its properties.
A typical pipeline combines algorithms from up to four different classes: prepro-

cessing, segmentation, graph detection and graph filtering, see Figure 2.1. A more
detailed description follows below.

For each pipeline section, Nefi typically offers several interchangeable algorithms
to choose from. After executing preprocessing routines, a segmentation algorithm
separates foreground from background. Then the foreground is thinned to a skeleton
from which the vertices and edges of the graph are determined. In the process various
edge weights are computed. Finally, the graph can be subjected to a variety of useful
graph filters. Figure 2.2 illustrates the intermediate results of Nefi’s pipeline steps
listed in the order of their execution. When a pipeline is executed, Nefi makes all
intermediate results available via its clean and intuitive graphical user interface, see
Figure 2.3.
Via the graphical user interface all basic functions of Nefi can be accessed in

an intuitive fashion. To facilitate ease-of-use, most of Nefi’s algorithms come with
default parameters based on settings in OpenCV [37], which were found to perform
well on our test sets as well as on many other images.

There are various predefined pipelines to get started immediately. Alternatively,
users may freely combine the various methods to build custom pipelines. Both

38

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://opencv.org/

2.2. Network Extraction From Images

(a) (b) (c) (d) (e)

Figure 2.2.: Direct comparison of Nefi’s pipeline steps given a slice of an image
depicting veins of a slime mold (P. polycephalum). (a) Input image, (b) segmented
image, (c) skeletonized image, (d) detected graph and (e) filtered graph. The green
square contains a very faint vein which the segmentation did not pick up fully.
As a result, the skeleton became fragmented which leading to spurious vertices in
the detected graph. By applying a graph filter we remove stray vertices without
manipulation of the segmented or the skeletonized image. Similar filtering can remove
“dead-ends”, i.e. vertices that do not belong to any cycle in the graph.

Figure 2.3.: A screenshot of Nefi’s GUI running on Mac OS. On the left hand side
Nefi lists intermediate results as thumbnails. Bringing the final result to the center
workspace allows for direct visual assessment of the quality of the extracted graph.
On the right hand side Nefi’s pipeline elements can be accessed via convenient
drop-down menus.

39

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

2. Network Extraction From Images

(a) (b)

Figure 2.4.: Extracted graph of a vein network formed by P. polycephalum. (a)
Input image depicting the network. (b) The extracted graph drawn on top off the
input image for direct comparison. Note, that no filters have been applied. As a
result, there are quite a few clumped up nodes and dead-end edges.

approaches allow the user to experiment with the available methods in order to close
in on the optimal settings for the data at hand. Once a pipeline is constructed, it can
be saved and reused. Nefi’s simple pipeline concept together with a self-explanatory
graphical user interface make working with Nefi intuitive and straightforward. Nefi
also offers a command-line mode, which is suited for batch processing large quantities
of input images.

Nefi comes with a number of example images from different domains which we
use to produce the figures presented in this chapter. Figure 2.4 and Figure 2.5
show Nefi’s output on two images using predefined pipelines. Blue squares denote
the vertices and red lines the edges of the detected graph. The thickness of the
detected edges corresponds to thickness of the depicted structures. For comparison
the extracted graph is drawn on top of the input image. We present a detailed
quantitative evaluation in Section 2.3.

We stress that Nefi can deal with a range of inputs from various domains as long
as they are of sufficient quality. In addition to the examples shown above, it has
been successfully used to process images of natural (e.g. leaf venation, patterns of
mud cracks) as well as man-made structures (e.g. tilings). It is also straightforward
to add custom extensions. We provide a well documented platform which allows

40

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

2.2. Network Extraction From Images

Figure 2.5.: Extracted graph of the vein network exhibited by a wing of a dragonfly
(Ajax junius). Note, that after the use of various filters an extraordinarily clean
graph is obtained. Image courtesy of Pam and Richard Winegar.

programmers to include more specialized segmentation algorithms or additional
graph filters. For an overview of alternative graph extraction approaches see for
example [49].

Next, we discuss the purpose and design of each major stage of the pipeline and
highlight some of Nefi’s strong points.

2.2.1. Preprocessing Collection

The preprocessing section of the pipeline offers various standard image processing
algorithms intended to be used prior to the segmentation step. Preprocessing meth-
ods may be exploited to positively affect the output of the segmentation step. For
example, adding a slight blur to an input image may benefit the overall result by
reducing the amount of spurious white pixels appearing in the segmented image.
However, blurring too much will remove detail and reduce accuracy in determining
the thickness of depicted edges. As a result, we recommend to experiment with differ-
ent approaches and parameter settings in order to decide how to use preprocessing.
For images of sufficient quality we found that excellent results can be obtained
without preprocessing.

Nefi relies on OpenCV [37] for preprocessing and offers Gaussian and Median
Blurring, Denoising as well as Bilateral Filtering.

41

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://opencv.org/

2. Network Extraction From Images

2.2.2. Segmentation Collection

The goal of the segmentation step is separating the image foreground, i.e. the
structures of interest, from the remaining image. Nefi builds on top of OpenCV [37]
combining different segmentation algorithms. The algorithms shipped with Nefi are
multi purpose and have become standard in image processing. They are very reliable
as long as input images are clean, devoid of strong gradients and have good contrast
between fore- and background. Conversely, if the input becomes more challenging,
the effectiveness of Nefi’s segmentation degrades quickly and more complex or
domain-specific algorithms become necessary. We defer a quantitative study of how
the properties of the input image affect Nefi’s performance to Section 2.3.

Nefi’s segmentation is designed such that several algorithms can be used inter-
changeably. We included basic thresholding algorithms like Otsu’s method [136],
or adaptive thresholding as well as more involved segmentation routines such as
guided watershed [111], and the GrabCut algorithm [146]. The last two methods
receive as an additional input a so-called marker. The better the markers approxi-
mate the foreground, the better these algorithms work. Nefi offers several marker
strategies which can be used interchangeably together with the respective marker
based segmentation routines.
Interchangeability of the algorithms is a core design principle of all pipeline

steps. This design facilitates swift experimentation with different methods. Our
own experience shows that a priori it is often unclear which method will work
best for a given input image. A sensitive method may yield excellent segmented
images and very detailed graphs. However its sensitivity increases the chance of
false positives for both nodes and edges. Since the ideal choice usually depends on
several competing factors, targeted experimentation with different settings coupled
with immediate visual feedback from the graphical user interface constitute major
strong points of Nefi.
Flexibility is not limited to the algorithms that come with Nefi. Modular soft-

ware design makes it easy to integrate additional methods and access them via the
graphical user interface. It is likely that sooner or later input images will be en-
countered in practice, too challenging for the core algorithms presently available in
Nefi. In these cases a potential user may choose to implement additional, perhaps
domain-specific, methods capable of meeting the challenge at hand. When extending
Nefi, users may build on existing modules, yielding more reliable code which is
easier to understand and to maintain. In this way Nefi is set up to support future
development and growth.

2.2.3. Graph Detection Collection

The graph detection collection consists of algorithms that take a segmented image
as input and determine the nodes and the edges of the output graph. We offer
a colloquial description of the actual algorithm because we do not rely on well-
documented library code for this section of the pipeline.

42

http://nefi.mpi-inf.mpg.de
http://opencv.org/
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

2.2. Network Extraction From Images

The first step for graph detection is called thinning. Here we reduce the segmented
foreground such that every line is only one pixel thick, while preserving the connec-
tivity properties of both the foreground and the background pixels. The result of
this process is called the skeleton of the segmented image. To do so we implemented
the algorithm by Guo and Hall [72]. It always produces thin results and preserves
8-connectivity of the foreground pixels. The latter is essential for preventing all sorts
of erroneous edges and spurious nodes. For this reason we choose Guo-Hall thinning
over other available thinning algorithms. A pure Python implementation proved to
be fairly slow, hence we chose to implement this function as a C extension.

For fairly thin and network-like foreground structures this method is nearly flaw-
less and finds a skeleton where the lines lie in the center of the foreground areas.
However, large foreground structures that do not resemble networks lead to artifacts
in the skeleton whose exact shape depends on the noise present at their borders.
Once the skeleton is established, we use it to detect the positions of nodes. For

this purpose we adapt criteria from a thinning algorithm by Zhang and Suen [186].
A white skeleton pixel becomes a node in the output graph if its removal creates
exactly one or at least three 4-connected white components in its 1-neighborhood.
In the former case the pixel forms the end of a path, i.e. a node of degree d = 1,
in the latter case is the meeting point of at least three edges, i.e. a node of degree
d ≥ 3.

Note that due to this step, the maximum degree of the graphs we detect is limited
to four. This is inevitable if nodes are detected at single-pixel locations. For higher
degree nodes we will create several nodes of smaller degree that are very close to
each other. In this way it is possible to establish the correct large node degree by
merging the smaller degree nodes in a later post-processing step.
Given the node positions, it is very simple to find the edges by establishing the

paths of pixels between them. We perform a variant of breadth first search on the
white pixels in the skeleton, starting from each node simultaneously. Each white
pixel around a node gets a unique number and a queue. In each step we iterate
over all queues and take out the first pixel. If it is unmarked, we mark it with the
unique number of this queue and enqueue all its white neighbors. Otherwise, we
have detected an edge, i.e. there is a path along white pixels connecting two distinct
nodes.

While walking along the pixels we record the length of the edge in units of pixel.
Horizontal and vertical steps count as one unit, diagonal steps count as

√
2 ≈ 1.41

units.
The diameter of an edge is calculated by computing the distance transform of the

segmented image. Next, we assume that the path of skeleton pixels representing an
edge approximately goes through the middle of the real edge seen in the input image.
Under this assumption, which we found to hold for all our test images, computing
the diameters becomes a simple lookup of each edge-pixel from the skeleton in the
distance transformed image. Since in doing so, we obtain the diameter for every
pixel along an edge, we can easily compute statistical quantities over the recorded
diameter values.

43

2. Network Extraction From Images

For handling the graph in terms of data-structures, we rely on NetworkX [74].

2.2.4. Graph Filter Collection

The graph filter collection offers the possibility to add powerful processing steps
that directly apply to the graph obtained after graph detection. Unlike the methods
in the preprocessing collection, graph filters do not affect segmentation and graph
detection.
Often it is possible to improve the quality of the obtained graph by removing

unwanted artifacts caused by segmentation or later processing steps. A common
strategy, used for example in [18], [20], consists of “repairing” the errors present in the
skeleton due to bad segmentation using heuristics or user assisted methods. While
such methods can do well, they carry the potential risk of introducing additional
errors.

Nefi pursues a novel approach exploiting knowledge of the structure of the
extracted graph together with dedicated filtering methods. We start by using very
sensitive segmentation retaining a maximum of structural information. We do not
manipulate the resulting segmented image or the skeleton at all. Based on the
skeleton, we establish a graph which in general will contain artifacts. For example,
if the network in the input image is large and connected, the resulting graph will
consist of a large connected component plus a number of spurious smaller components
caused by noise and very sensitive segmentation. Such components can easily be
spotted by eye when one compares the original images with the output graph. Using
one of Nefi’s graph filters they can be removed effectively and safely, increasing
the degree of similarity between the original network and the extracted graph. Since
the effects of filtering the graph can immediately be evaluated by visual inspection,
we prefer graph filtering over less transparent approaches aiming to improve the
graph before it was established. Figure 2.2 illustrates the use of filtering.
We have used filtering with sensitive segmentation to obtain surprisingly good

results. Overly sensitive segmentation picks up fine detail but is also prone to create
artifacts due to noise. However, almost all of these artifacts are benign in the sense
that they lead to very small components which can easily be removed by filtering.
The desired detail will remain mostly unaffected because it is part of the largest
component. The graph depicted in Figure 2.5 was obtained using this technique
which demonstrates the effectiveness of filtering given good input.

Filtering in general may be used to remove parts of the graph which are not of
interest. The following filters are predefined in Nefi. A filter removing everything
not in the largest connected component, one smoothing vertices of degree provided
no parallel edges are created and finally, a filter which removes all vertices and edges
that are not contained in a cycle. Filters may be freely combined with each other
in any order to achieve various results. Naturally, the filter collection is designed
for extendability which means that users may add their own filters to the existing
collection.

44

https://networkx.github.io/documentation/latest/index.html
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

2.3. Evaluation

Graph filtering and its various applications delivers excellent results. To our
knowledge, no other software offers such flexible tools as part of its core work flow.

2.3. Evaluation

To assess Nefi’s performance we quantify the quality of the resulting output graphs
as a function of input images of varying difficulty. To this end we define a quality
measure that captures the degree of similarity between the graphs computed by Nefi
and the networks depicted in the input. While to a certain degree said similarity
can be determined for a small set of instances by visual inspection, a dedicated
measure allows us to systematically and reproducibly investigate whether Nefi’s
graph extraction is reliable. As an additional metric of interest, we report Nefi’s
speed which becomes relevant as soon as one starts to process large batches of input
images.

2.3.1. Using a Graph Similarity Measure to Evaluate NEFI

Our quality measure needs to quantify the degree of congruence between the graph
depicted in the original input image i and the graph computed by Nefi.
Let A = (VA, EA) be the true graph correctly describing the structure depicted

in i, with VA and EA denoting its vertex and edge set respectively. We call A the
ground truth, which is of course not known in general. Furthermore, let B denote the
graph obtained by executing one of Nefi’s pipelines. Note that, A,B ∈ G, where G
denotes the set of undirected edge-weighted planar graphs where vertices are labeled
with their respective euclidean coordinates in the plane. With these definitions we
propose a function s mapping any pair of graphs A,B ∈ G onto a number s ∈ [0, 1].
Then, this number s serves as our similarity measure.

To obtain s, we compute a correspondence of vertices in A to vertices in B.
Two edges e ∈ EA and f ∈ EB then correspond if their endpoints correspond. We
choose the correspondence such that the following intuitive notions of similarity are
optimized.

1. Positions of vertices in VA are similar to the positions of corresponding vertices
in VB.

2. Edges in EA including their weights are similar corresponding edges in EB.

We require that the measure s is maximal if any graph A is compared with itself,
that is s(A,A) = 1. Consequently, if A is completely different from B we have
s(A,B) = 0. This minimum value is assumed if no viable correspondence between
VA and VB can be found. Naturally, the value of s(A,B) increases (decreases) if the
similarity between A and B increases (decreases).

An exact definition of s and the notions of similarity and correspondence is given
in the following section. Readers not interested in the details may skip ahead to the
results of the evaluation using the measure s given in Section 2.3.3.

45

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

2. Network Extraction From Images

2.3.2. Definition of the Similarity Measure

In order to determine the overall quality of Nefi’s output we need to quantify the
degree of similarity between two graphs A = (VA, EA) and B = (VB, EB) using
a graph similarity measure. Let A,B ∈ G, where G is a set of undirected edges-
weighted planar graphs where the nodes are labeled with their respective coordinates
in the Euclidean plane. Then we may define a similarity measure s as

s : G × G 7→ [0, 1] ,

s(A,B) = matching(A,B) ∀ A,B ∈ G , (2.1)

where matching(A,B) denotes the normalized cost of a minimum cost graph match-
ing problem which we will define shortly. Given this definition the degree of similarity
between A and B is quantified by the value of s(A,B). The similarity measure we
propose has the following desirable properties:

• A compared to itself yields a maximum similarity score of s(A,A) = 1.

• If there are no vertices in VA with corresponding similar nodes in VB and no
edges EA with corresponding similar edges in EB the minimum similarity score
of s(A,B) = 0 is obtained.

• The similarity score s(A,B) increases (decreases) if the similarity between A
and B increases (decreases).

We proceed with making the notions of similarity and correspondence more precise
by constructing a minimum cost graph matching problem. Given the two graphs
A,B ∈ G, let nA, nB denote the number of nodes and mA,mB denote the number
edges of the respective graphs. Note that nA and nB can differ, as can mA and mB.

We can now define a matching between A and B consisting of three parts. First we
define a matching between the node sets VA, VB, then we define a matching between
the edge sets EA, EB and finally we introduce a coupling between the two. To obtain
a solution to the final problem we rephrase the combined matching problem as an
integer linear program and obtain a solution using IBM’s CPLEX solver [46]. For
ease of exposition, however, we discuss the problem using the language of matchings.

For the node matching, we match each node i ∈ VA with at most one node j ∈ VB.
We define a variable xij that is 1 if we match i with j and 0 otherwise. With a
match we associate a cost of ∆V (i, j). The function ∆V (i, j) returns the euclidean
distance between node i and node j. If any node u remains unmatched, we assign a
penalty of pV (u) to it. A node can either be penalized or matched but not both. We
thus compute a minimum cost node matching, in which it is favorable for a node
i ∈ VA to find a match with a node j ∈ VB such that i and j are close in distance as
measured by ∆V (i, j). Two nodes are thus similar if their euclidean positions are
almost the same. For any given node in VA there can be many similar nodes in VB,

46

http://nefi.mpi-inf.mpg.de

2.3. Evaluation

all of which are candidates for a match. Amongst all candidates the minimum cost
matching selects pairs that are most similar. We call selected pairs of similar nodes
corresponding.

The edge matching proceeds analogously to the node matching. Each edge e ∈ EA
is matched with at most one edge f ∈ EB. We denote this match with a decision
variable yef and associate a cost of ∆E(e, f) with it. The function ∆E(e, f) returns
the sum of the differences in edge weights between edge e and edge f . If any edge
d remains unmatched, we assign a penalty of pE(d) to it. An edge can either be
penalized or matched but not both. We thus compute a minimum cost edge matching,
in which it is favorable for an edge e ∈ EA to find a match with an edge in f ∈ EB
such that e and f are close in weights as measured by ∆E(e, f). Two edges are thus
similar if their weights are almost the same. For any given edge in EA there can
be many similar edges in EB, all of which are candidates for a match. Amongst all
candidates the minimum cost matching selects pairs that are most similar. We call
matching pairs of edges corresponding.

As of yet both matchings are independent of each other. In particular this allows
an edge e ∈ EA to be matched with an edge f ∈ EB independently from their
respective positions in the plane as long as they have similar weights! A more
meaningful matching favors pairing edges where the endpoints of both edges are
also similar to each other. Hence, start and end nodes of corresponding edges should
be pairwise corresponding themselves. In other words, head and tail nodes of both
edges are geographically close respectively.

This additional constraint suggests a dependence between node and edge matching.
To enforce it we add the constraint that an edge e = (a, b) ∈ EA can only be matched
to an edge f = (a′, b′) if the respective nodes are pairwise matched as well. That is,
we require a to be matched to a′ and b to be matched to b′ or alternatively a to be
matched to b′ and b to be matched to a′.
By combining node matching, edge matching and the additional coupling con-

straint we obtain the final minimum cost matching problem. We rephrase the
uncoupled matching problem as an integer linear program (ILP) as follows:

Minimize: f =
∑
i∈VA
j∈VB

∆V (i, j)xij +
∑
i∈VA

pV (i)xi +
∑
j∈VB

pV (j)xj +

∑
e∈EA
f∈EB

∆E(e, f)yef+
∑
e∈EA

pE(e)ye +
∑
f∈EB

pE(f)yf (2.2)

s.t.: xij ∈ {0, 1} i ∈ VA j ∈ VB (2.3)
yef ∈ {0, 1} e ∈ EA f ∈ EB (2.4)

47

2. Network Extraction From Images

s.t.: ∀ i
∑
j

xij ≤ 1 ∀ j
∑
i

xij ≤ 1 (2.5)

∀ e
∑
f

yef ≤ 1 ∀ f
∑
e

yef ≤ 1 (2.6)

s.t.: xi = 1−
∑
j∈VB

xij xj = 1−
∑
i∈VA

xij (2.7)

ye = 1−
∑
f∈EB

yef yf = 1−
∑
e∈EA

yef . (2.8)

To introduce the dependence between the vertex and the edge matching, we add
an additional constraint as described earlier:

s.t.: 2yef ≤ xaa′ + xab′ + xba′ + xbb′ ∀ e = (a, b),∀ f = (a′, b′) . (2.9)

From an ILP solution the optimal matching for nodes and edges can be recovered.
Thus, we know what matching pairs have been formed and which nodes and edges
remained unmatched. We use this information to define true positives, false positives
and false negatives as described in the next section.

In addition to that, we obtain the optimal value of the objective function Opt, i.e.
the cost associated with the selected optimal matching. The value of Opt includes
both the costs incurred by node and edge matches as well as the penalty terms
arising from nodes and edges that cannot be matched. Thus, it is a measure of the
similarity between the two graphs A and B.

We point out that Opt = 0 if a graph G is matched with itself. Every single node
and edge finds its exact copy as a match of cost 0 for itself and thus no penalties arise.
The other extreme is realized when there are no vertices in VA with corresponding
similar nodes in VB and no edges EA with corresponding similar edges in EB. In
this case the value of Opt attains its maximum Opt because all nodes and edges
of both graphs are penalized. Naturally, the value of Opt increases (decreases) with
decreasing (increasing) graph similarity. Given these observations it is natural to
use Opt and Opt to define a similarity measure betweens two graphs A,B ∈ G as

s(A,B) = matching(A,B) = 1− Opt(A,B)

Opt(A,B)
, (2.10)

with

Opt(A,B) =
∑
i∈VA

pV (i) +
∑
j∈VB

pV (j) +
∑
e∈EA

pE(e) +
∑
f∈EB

pE(f) . (2.11)

48

2.3. Evaluation

As a practical remark, we note that the number of variables entering the ILP
grows like O(nAnB +mAmB). As a result, it may become prohibitively large even
for graphs of moderate size. To deal with this issue, it is convenient to define a circle
with search radius r centered around each node i. We may exclusively consider
nodes j found within this search radius as possible matches for node i. By doing
so, we dismiss all pairings for i for which we know a priori that they cannot be
part of the optimal solution. They are simply too expensive. Consequently, we may
safely omit the corresponding LP variables xij from the ILP, thus reducing its size
considerably.

Correctly enforcing this idea, requires r ≥ pV (i) + pV (j). To see this, assume that
we have a node i in distance d of node j. If d = ∆V (i, j) < pV (i) + pV (j) then the
ILP matches them. However, to do so it needs to see this match as a possibility and
thus r ≥ pV (i) + pV (j).

Note that, this reasoning conveniently ignores the fact that node matches enable
or disable a number of associated potential edge matches. These may come with
additional penalties affecting the value of r. In practice, we may circumvent this
issue by choosing r generously in relation to the penalties.

The number of variables yef referring to edge pairs can be reduced by separately
applying the previous argument to each of the nodes involved. We enumerate the
set of all possible edges f = (a′, b′) to be matched with edge e = (a, b). The set
of edges f is constructed by connecting all nodes a′ within a radius r around the
node a with all nodes b′ within a radius r around node b. This process can create
self-loops which we exclude as candidates. If there are no nodes within a distance r
from a or b, the associated edge variables yef can be omitted from the ILP.
Choosing the search radius and adjusting the penalties accordingly in order to

control the size of the integer linear program seems more natural to the authors than
the other way around. This approach has the additional advantage that a sensible
value for the search radius can often be inferred by the looking at the length scales
of the structures of interest in the original input image.

As a concluding remark, we stress that the choice of penalties for nodes and edges
affects the final value of the similarity measure s(A,B) via the normalization. As
a result, when using this measure to compare several graphs with each other, the
penalties and tracking radius r must be chosen consistently in order to guarantee
the viability of derived comparisons.

2.3.3. Evaluation of NEFI’s Output

We proceed with the evaluation of Nefi’s output using the above similarity measure.
To do so we create a set A of artificial ground truth graphs such that A ⊂ G. We
obtain A by simply turning a set I0 containing 250 images of the slime mold
P. polycephalum into an equivalent set of graphs using Nefi.

Next, we turn the ground truth graphs in A into a test set I1 of 2D images by
simply drawing them. The drawing preserves the euclidean positions of the nodes,
the edge lengths and the thickness of the edges. As a result, the image i ∈ I1 depicts

49

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

2. Network Extraction From Images

Method Similarity score Sensitivity Precision

Otsu’s method 0.984± 0.005 0.970± 0.011 0.998± 0.001
Adaptive threshold 0.984± 0.005 0.970± 0.011 0.997± 0.001
Watershed (deletion/erosion) 0.980± 0.006 0.959± 0.013 0.988± 0.001
Watershed (distance transform) 0.906± 0.121 0.837± 0.160 0.998± 0.001
Watershed (adaptive) 0.977± 0.008 0.956± 0.016 0.998± 0.001
Grabcut (deletion/erosion) 0.984± 0.005 0.970± 0.011 0.998± 0.001
Grabcut (distance transform) 0.983± 0.005 0.967± 0.011 0.998± 0.001

Table 2.1.: Results for ideal test images I1.

the graph Ai ∈ A. In other words, we know the ground truth Ai for every image i
in the test set I1.
To compare different segmentation methods, we prepare a set P of pipelines

differing only in the segmentation algorithms used. The parameters of the pipeline
where chosen manually for each test set using experimentation and visual inspection.

Given the sets I1 and A as well as our similarity measure we can now evaluate
Nefi’s output. We take an image i ∈ I1 and process it with a given pipeline p ∈ P
to obtain a graph Bi ∈ B1, i.e. the graph Nefi extracted from the input image.
Then we compute the similarity score s(Ai, Bi). To obtain statistical statements,
we repeat this procedure for all images and all pipelines.

During the computation of s(Ai, Bi), we record features Nefi failed to detect in
i, namely the number of vertices (edges) in Ai which remain without corresponding
vertices (edges) in Bi. This is the number of false negatives (FN). Furthermore,
we record the number of vertices (edges) in B for which no corresponding vertices
(edges) exist in Ai. These are features which Nefi detects in i but which are in fact
not present. These are false positives (FP). Finally we record the number of vertices
(edges) in Bi that have corresponding elements in Ai. That is, features correctly
extracted from the image i, which we count as true positives (TP). Unfortunately,
the number of true negatives (TN) is not accessible in a similar fashion. For this
reason we restrict ourselves to computing sensitivity (TP

TP+FN
) and precision (TP

TP+FP
)

in the results of the evaluation. Sensitivity and precision reported in the following
Tables combine the respective values for vertices and edges.

Table 2.1 summarizes the results of processing the set I1. The images in I1 are
ideal inputs for Nefi for which all our segmentation routines produce very good
results. Otsu’s method and adaptive thresholding yield perfect segmentations. Hence,
any difference between Nefi’s output and the ground truth cannot originate in the
segmentation part of the pipeline but must be attributed to thinning and graph
detection. The excellent correspondence between Nefi’s output and the ground
truth confirms that thinning and graph detection are very reliable. It can be seen
that the obtained similarity scores are very close to optimal.

One might question the validity of using graphs which were detected by Nefi as
the input set for evaluating Nefi itself. We reply that the approach is valid because

50

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

2.3. Evaluation

Method Similarity score Sensitivity Precision

Otsu’s method 0.868± 0.018 0.704± 0.028 0.987± 0.005
Adaptive threshold 0.941± 0.010 0.853± 0.034 0.976± 0.025
Watershed (deletion/erosion) 0.859± 0.018 0.693± 0.028 0.984± 0.006
Watershed (distance transform) 0.408± 0.176 0.239± 0.154 0.987± 0.007
Watershed (adaptive) 0.966± 0.008 0.936± 0.016 0.984± 0.017
Grabcut (deletion/erosion) 0.864± 0.019 0.696± 0.029 0.986± 0.005
Grabcut (distance transform) 0.858± 0.020 0.688± 0.030 0.986± 0.005

Table 2.2.: Results for images I2 with edges drawn with random brightness.

the origin of the images in I1 has no significance regarding Nefi’s performance. In
other words, they are just as hard or as easy to process as images obtained in any
other way. However, note that the perfect images in I1 do not represent real life
input very well. Therefore we produced three more test sets and evaluate them as
described above.
For the set I2 we take the images in I1 and change the brightness of the edge

drawings randomly. As a result the local contrast between foreground and back-
ground varies widely across the image. To create set I3 we take the images in I1 and
insert a color gradient into the background while leaving the foreground unchanged.
Set I4 is obtained by taking the images in I1 and subjecting them to a global blur.
Table 2.2 summarizes the results of processing the set I2. We observe that both

similarity score as well sensitivity are deteriorating for almost all methods except
for adaptive thresholding and watershed based on adaptive thresholding. Adaptive
thresholding is still able to compensate the local changes in brightness present in the
test images and returns segmented images of high quality. We stress that for images
showing more severe irregularities the performance of these methods is expected to
suffer. Note that the precision remains comparably high still. This indicates that the
vertices and edges that are being detected by Nefi are indeed part of the ground
truth.

Table 2.3 summarizes the results of processing the set I3. We observe that almost
all methods, with the exception of adaptive thresholding and watershed based on
adaptive thresholding perform very poorly. In particular watershed based on a
distance transform marker is completely unable to handle the input images.

Table 2.4 summarizes the results of processing the set I4. We observe that almost
all methods, with the exception of watershed with distance transform, perform
reasonably well. Sensitivity and similarity scores are slightly smaller than the results
obtained for the optimal test images I1. This is due to the fact that blurring an
image i causes the depicted edges to appear slightly wider. This increase in width
translates to the edge weights of the graphs Bi. Since differences in edge weights
are penalized, the similarity score s(Ai, Bi) decreases accordingly.
Summarizing the results we conclude that the quality of a graph detected by

Nefi depends on the input image and the selected pipeline. We have established

51

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

2. Network Extraction From Images

Method Similarity score Sensitivity Precision

Otsu’s method 0.737± 0.060 0.602± 0.065 0.911± 0.065
Adaptive threshold 0.984± 0.005 0.970± 0.011 0.998± 0.001
Watershed (deletion/erosion) 0.752± 0.047 0.588± 0.061 0.977± 0.009
Watershed (distance transform) 0.334± 0.303 0.240± 0.261 0.943± 0.043
Watershed (adaptive) 0.982± 0.005 0.967± 0.012 0.997± 0.001
Grabcut (deletion/erosion) 0.733± 0.053 0.573± 0.066 0.987± 0.005
Grabcut (distance transform) 0.742± 0.052 0.582± 0.065 0.983± 0.008

Table 2.3.: Results for images I3 with a color gradient in the background.

Method Similarity score Sensitivity Precision

Otsu’s method 0.953± 0.011 0.909± 0.022 0.993± 0.003
Adaptive threshold 0.947± 0.010 0.863± 0.028 0.989± 0.005
Watershed (deletion/erosion) 0.950± 0.010 0.915± 0.022 0.981± 0.010
Watershed (distance transform) 0.738± 0.127 0.575± 0.147 0.915± 0.059
Watershed (adaptive) 0.954± 0.010 0.909± 0.329 0.975± 0.020
Grabcut (deletion/erosion) 0.950± 0.012 0.903± 0.024 0.993± 0.003
Grabcut (distance transform) 0.918± 0.024 0.838± 0.046 0.990± 0.004

Table 2.4.: Results for blurred test images I4.

that the major factor determining the quality of the extracted graph is indeed
the segmentation step. Errors introduced by thinning and graph detection appear
negligible in comparison.

2.3.4. Evaluation of Speed Performance

Nefi was designed to efficiently process large quantities of images. Thus it outsources
computationally intensive tasks to highly optimized and reliable libraries such as
OpenCV [37] and NetworkX [74]. Table 2.5 illustrates the effectiveness of some of
Nefi’s algorithms.

52

http://nefi.mpi-inf.mpg.de
http://opencv.org/
https://networkx.github.io/documentation/latest/index.html
http://nefi.mpi-inf.mpg.de

2.4. Limitations of NEFI

Pipeline element Small image (1152× 864) Large image (5760× 3840)

Watershed < 1 s 2 s
GrabCut 6 s 160 s
Adaptive threshold < 1 s 7 s
Guo-Hall thinning < 1 s 12 s
Vertex detection < 1 s 5 s
Edge detection < 1 s 6 s
Computing edge weights < 1 s 5 s

Table 2.5.: Timings of some of Nefi’s pipeline elements on images of different
dimensions as given in pixel. The timings were obtained on a Macbook Pro notebook
equipped with a 2.4 GHz Intel i5 processor and 8 GB of RAM.

2.4. Limitations of NEFI

In Section 2.3.3 we have seen how the quality of the extracted graph changes de-
pending on the input image and the selected segmentation algorithms. We have
established that the major factor determining the quality of the extracted graph is
indeed the segmentation step. As a result Nefi’s major limitation naturally arises
from the limited domain of effectiveness of Nefi’s general purpose segmentation
collection. It’s methods do not work very well if the input contains irregular back-
ground or color/brightness gradients, has low contrast or insufficient resolution to
detect structures that are either too dense or too fine. For these inputs, domain
specific algorithms are necessary and should be implemented as extensions for Nefi.
Alternatively, the segmentation step can be entirely outsourced to more specialized
third-party software in which case Nefi’s pipeline may start directly with graph
detection.

In general, however, Nefi’s domain of effectiveness is limited to sufficiently clean
and uncluttered images such as images produced under controlled laboratory con-
ditions. We refer the reader to Appendix A for a guide on how to use Nefi which
also summarizes our experience when dealing with more challenging input.
Another limitation arises due to the nature of Nefi’s vertex detection. Since

we walk the skeleton in search for junctions corresponding to nodes, no nodes of
degree two are detected. Furthermore, nodes of high degree (4 or more) are split
into several degree three nodes. The latter can be undone by merging nodes using
a suitable graph filter.
As a concluding remark, we stress that Nefi tries to compensate some of its

limitations by offering the possibility to work with segmented images from other
sources or to integrate additional algorithms with comparably little effort. Nefi
should be regarded as a flexible platform suitable for further development rather
than a universal solution to the difficult general problem of network extraction.

53

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

2. Network Extraction From Images

2.5. Synergies With Other Software

2.5.1. Analysis of Graphs

Nefi is a tool that facilitates data acquisition, which is a necessary precursor to
data analysis. To analyze Nefi’s output one can either rely on open source graph
analysis software [16], [17], [74], [106], [107], [185] or write custom programs. Owing
to NetworkX [74], Nefi can output many common graph formats, readable by most
popular applications which process graphs. To get the user started immediately,
we provide a minimal Python program that illustrates the basic steps required to
perform graph analysis. It shows how to read Nefi’s output from disk and how to
compute a histogram of a given edge attribute. The code can be downloaded from
Nefi’s project page at the Max Planck Institute for Informatics, nefi.mpi-inf.mpg.de.

2.5.2. Third-party Segmentation Software

Nefi’s graph detection takes a segmented image as an input. Such an image need not
be produced by using Nefi but can be obtained by relying on arbitrary third-party
segmentation algorithms or tools.

In this context an interesting tool called Ilastik [159], was brought to our attention.
Ilastik utilizes concepts from machine learning and offers a so-called classification
work flow were a pixel classifier is trained relying on interactive user inputs. The
trained classifier can then be used to automatically segment previously unseen
images. Given proper training, the classifier might be able to deal with images
that are hard for non-supervised, automatic segmentation as deployed by Nefi.
Naturally, the segmented images obtained using Ilastik can directly be turned into
graphs using Nefi. By cleverly combining Nefi’s graph extraction with with third-
party segmentation software Nefi’s major weakness can potentially be circumvented
completely.

2.6. Where to Download NEFI and how to
Contribute

Nefi is an open source Python application and available at its project page at Max
Planck Institute for Informatics, nefi.mpi-inf.mpg.de. Nefi’s homepage includes a
gallery of various use-cases and a comprehensive guide containing instructions on
how to download, install and use Nefi on Windows, Mac and Linux. Additionally, a
supplementary dataset is available for download there, allowing for a quick evaluation
of Nefi’s main features. This dataset can be used to reproduce the figures and
evaluation results shown in this manuscript.
Ongoing development of Nefi is organized via a dedicated repository which is

linked from Nefi’s project page. The repository makes the source code of Nefi

54

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
https://networkx.github.io/documentation/latest/index.html
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

2.7. Discussion

available to everyone. People can get their own copies which they can modify, adapt
and extend according to their needs. Furthermore it is possible to join the project
as a contributor. Additional services such as bug reporting and issue tracking, as
well as a small forum revolving around Nefi are also available for public use.

2.7. Discussion

Nefi is a valuable tool which allows scientists from any domain to automate graph
extraction from images in an intuitive fashion requiring no expert knowledge. We
hope that researchers will be able to spend more time on analyzing their data and
less time on processing it. By providing a flexible platform for graph extraction, we
invite experts to extend and improve Nefi in order to introduce their contributions
to a wider interdisciplinary audience. In the long run we would like Nefi to further
the field of network science by promoting the creation of new network databases.
In the context of this thesis Nefi provides the key to the numerical study of

properties of the vein networks formed by P. polycephalum.

2.8. Acknowledgments

We thank Prof. M. Hauser for his hospitality and the stimulating discussions which
sparked our interest in the topic of graph extraction. We thank P. and R. Winegar
as well as the Korea Institute of Science and Technology Europe (Kist Europe) for
contributing sample data which was critical during the early development stages of
Nefi.

A large software project such as Nefi cannot be realized by one individual alone.
Its development was a team effort requiring the support of several individuals. In
particular we are grateful towards several students from Saarland University for
contributing to the code base of Nefi. A full list of acknowledgments is available
at Nefi’s project page here: nefi.mpi-inf.mpg.de.

55

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
www.kist-europe.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

3 Slime Mold Graph Repository

In this chapter we introduce the Slime Mold Graph Repository or Smgr, a novel
data collection promoting the visibility, accessibility and reuse of experimental data
revolving around network-forming slime molds. By making data readily available to
researchers across multiple disciplines, the Smgr promotes novel research as well as
the reproduction of original results. While Smgr data may take various forms, we
stress the importance of graph representations of slime mold networks due to their
ease of handling and their large potential for reuse. Data added to the Smgr stands
to gain impact beyond initial publications or even beyond its domain of origin.
We initiate the Smgr with the comprehensive Kist Europe data set focusing

on the slime mold Physarum polycephalum, which we obtained in the course of our
original research. It contains sequences of images documenting growth and network
formation of the organism under constant conditions. Suitable image sequences
depicting the typical P. polycephalum network structures are used to compute se-
quences of graphs faithfully capturing them. Given such sequences, node identities
are computed, tracking the development of nodes over time. Based on this informa-
tion we demonstrate two out of many possible ways to begin exploring the data.
The entire data set is well-documented, self-contained and ready for inspection at
smgr.mpi-inf.mpg.de.
The chapter documents an extensive collaboration with Mag. T. Mehlhorn and

Prof. K. Mehlhorn [54]. The former was responsible for the realization of all de-
scribed wet-lab experiments in the laboratories of the Korea Institute of Science
and Technology Europe (Kist Europe).

3.1. Introduction

Slime molds are interesting and complex organisms providing a rich substrate for
interdisciplinary research. One member of the family, Physarum polycephalum, has
received increased interest as of late. The resulting intensive research efforts continue
to shed light on many aspects of this organism. Of particular interest is its ability
to form and maintain complex networks. Efforts to improve our understanding of
formation, structure and function of these networks are manifold [5], [19], [22], [108],
[176] and ongoing.
A popular two-step approach, not restricted to slime molds, consists of taking

images of the networks formed by the organism and converting them to graphs.1

1 In this context graphs denote abstract mathematical objects, subject of Graph Theory, consisting

57

http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
www.kist-europe.de

3. Slime Mold Graph Repository

First, images are obtained by cultivating Physarum polycephalum in the wet-lab
whilst documenting the development of the organism and its networks. This is a
time consuming process which needs to be repeated sufficiently often under constant
conditions to acquire a reliable body of observations.

The second part requires methods capable of analyzing an image and deriving a
faithful graph representation of the network depicted therein. Such methods have
become available recently as convenient software packages [52], see Chapter 2. Once
graphs are available, concepts and methods from network science and graph theory
directly apply, enabling efficient and detailed investigations of graph properties [20],
[78].

We stress that both steps are challenging as they require time, special laboratory
resources and expert knowledge. Data acquisition and graph extraction in particular,
may quickly become serious obstacles deterring interested researchers from starting
to work with networks formed by P. polycephalum.

Despite such difficulties, graph-based approaches have been quite successful and
various interesting results are available today [19], [22], [61], [62], [84]. However,
data used to establish these results, i.e. the graphs and their underlying images
themselves, are not nearly as available in many cases. This is unfortunate because
due to their ease of handling and their power of abstraction, graphs naturally lend
themselves to reuse, potentially gaining impact beyond their initial publications or
even beyond their domain of origin.

Our own experience shows, that most researchers are, at least in principle, willing
to share their valuable data. However, data sharing can be cumbersome which
often constitutes an extra hurdle discouraging data reuse. To combat this, data
needs to be collected and made available in an organized fashion. Similar efforts
have become best practice for diverse types of data originating in various fields of
science. Examples are numerous including collections of images of cells [38], large
graphs [106] or experimental data in high energy physics [180], to name but a few.
To the best of our knowledge no such repository exists for data concerned with

networks of slime molds. For this reason we decided to set up the Slime Mold Graph
Repository with the goal of providing an available collection of networks focused on
slime molds. Although this is clearly a niche topic, we believe that due to the many
open question revolving around the structure and function of such networks and
their large interdisciplinary appeal, setting up a small but dedicated repository is
of pronounced value.
In the following we discuss the concept and benefits of the Smgr followed by

a detailed account of its initial contents, the Kist Europe data set. We start by
discussing how the data was obtained experimentally and move on to present our
tracking algorithm, a novel method designed to resolve how networks formed by
P. polycephalum change in time. To illustrate the usefulness of both data and method,
we show proof-of-principle applications which suggest avenues for further research.
Our exposition aims to promote the Smgr across disciplines and is sufficiently

of vertices and edges. Throughout this thesis we will use both terms interchangeably

58

http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de

3.2. Repository Concept and Benefits

detailed and introductory for non-experts to access.

3.2. Repository Concept and Benefits

Today the impact of data sharing as a scientific practice is ever increasing. Currently,
two major forms of data collections are commonly encountered.

First, data is being collected in large, well-organized repositories which are holding
enormous amounts of information. Such major repositories easily contain thousands
of datasets, covering numerous topics across its domain of relevance. Due to their size
and complexity, curating and maintaining such repositories requires major resources,
typically provided by larger research institutions or non-profit organizations.

Most major data collections, however, have started as small and specialized repos-
itories at some point. Such repositories constitute the second approach to data
sharing common today. Small repositories are typically much simpler in structure
and contain a smaller number of datasets. They tend to be more specialized and
have very close ties to their relevant research communities since the operators of the
repository are often researchers themselves. Their small size allows them to operate
with minimal infrastructure requirements since changes to the repository are less
frequent and data sets are limited in number and space requirements. Due to their
minimal implementation they do not offer most of the services frequently provided
by larger repositories and focus on but the most essential features.

With the Smgr we seek to establish a collection of research-grade data revolving
around network-forming slime molds. Given the highly specialized nature of the
topic, we believe that setting up a small stand-alone repository realized as a minimal
implementation is advantageous and the correct point to start from. Note that we
do not present novel software but rather combine available open source software
components to supply a minimal repository service. Keeping the repository simple
allows for easier maintenance and more flexibility. As a result it is easier to adapt
and evolve based on community feedback. This is why at present only the most
basic features necessary for repository operation are offered by the Smgr. However,
if sufficient and continued interest is observed, the implementation of additional
features may be warranted. For further reasons why we launch the Smgr as a
minimal repository, please consult the FAQ on the Smgr project page at smgr.mpi-
inf.mpg.de.
In its present form, the idea of the Smgr was first introduced at PhysNet 2015

in New York and was well received with individuals signaling their willingness to
contribute data [51]. We strongly believe that a tight integration with the research
community, is key to the future success of the Smgr.
The benefits of the Smgr are manifold. Making data available for everyone

increases visibility of contributors, allows original results to be reproduced and puts
data in a prime position to become a catalyst for novel research. Given the significant
costs, i.e. time and resources, which are typically associated with obtaining high
quality data, promoting increased reuse of data is an economical choice. Researchers

59

http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de

3. Slime Mold Graph Repository

and other professionals that do not have the required resources/connections to
produce/obtain their own data sets benefit in particular from repositories like the
Smgr, since it provides immediate and convenient access to experimental material
that would be hard to acquire by other means.
We envision the Smgr to become a mediator between theory and experiment.

Theoretical work in biology and biophysics concerned with modeling various aspects
of P. polycephalum networks, may utilize experimental data as a testbed for model
predictions. This approach has been put into practice previously [21], but was
exclusive to researchers in possession of relevant data. With the introduction of the
Smgr such limitations are removed. Similar statements can be made for other fields,
e.g. computer science, which is actively studying P. polycephalum in the context
of natural Computing, see Section 1.3. Access to experimental data via the Smgr
allows to compare theory and experiment and helps build the intuition crucial to
theoretical investigations and modeling efforts.
In order for the Smgr to be useful from day one, we initiate the repository by

sharing the extensive data that is driving our own slime mold research which was
obtained at the Korea Institute of Science and Technology Europe in Saarbrücken.
It is important to us, that anyone can go the Smgr project page, download our
data and immediately start working with it in whichever way he or she chooses.
The data set we provide also serves as a possible example for the type of data the
Smgr looks to collect and what level of documentation is appreciated.
We stress at this point that the Smgr is not intended to simply provide a per-

manent data storage service. First and foremost, we seek to collect data that has
not yet been fully explored an has a strong potential to be of use to others. The
Kist Europe data set described in the next section fulfills both criteria.

Finally, any repository needs a set of instructions, policies and requirements apply-
ing to data submission, data usage and various other general aspects of repository
operation. For these the Smgr relies on established best practices of data shar-
ing whilst striving to keep things as straight-forward as possible [182]. A detailed
account can be found on the Smgr project page, which we consider an integral
part of our work. We opt to treat policies, user instructions and other important
questions in a comprehensive FAQ on the Smgr project page rather than in this
thesis, simply because they are subject to future change.

The Smgr and all available data can be found here: smgr.mpi-inf.mpg.de.

3.3. The KIST Europe Data Set

In the following we present an overview of the Kist Europe data set designed to
give the interested reader a high-level understanding of its nature and content. At
the same time, we recommend to inspect the data directly using the browsing and
download functions provided on the Smgr project page. We refer the expert reader,
interested in reproducing all the steps involved in the creation of the data set, to
an in-depth exposition given in Appendix B.

60

http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de

3.3. The KIST Europe Data Set

The Kist Europe data set contains raw and processed data obtained and derived
from 81 identical wet-lab experiments, carefully executed under constant conditions.
Figure 3.1 illustrates the experimental setup used. The data was produced using
the following procedure:

1. A rectangular plastic dish is prepared with a thin sheet of 1.25 % agar.

2. 1.5 g of dried P. polycephalum (HU195xHU200) sclerotia crumbs are lined up
along the short edge of the dish, see Figure 3.2. The dish is put into a large
light-proof box.

3. After approximately 14 h the plasmodium resuscitates and starts exploring
the available space towards the far side of the dish. Typically, the apical zone
needs to cover a distance of several centimeters before network formation can
be observed properly, see Figure 3.3.

4. For the next 30 h we take a top-view image of the growing plasmodium and
the changing network every 120 s from a fixed position. A typical obtained
image is seen in Figure 3.4. We stop capturing when the apical zone is about
to reach the far side of the dish, which is well outside of the observed area.

5. After obtaining sequences of images showing the characteristic networks of
P. polycephalum, we use Nefi to compute corresponding sequences of graph
representations of the depicted structures within a predefined region of inter-
est [52], see Figure 3.5. The graphs store precise information of the length
and width of the edges as well as the coordinates of the nodes in the plane. A
typical resulting unfiltered graph is seen in Figure 3.6.

6. Given the resulting sequence of graphs we apply filters removing artifacts and
other unwanted features of the graphs. Then we proceed to compute a novel
node tracking which encodes the time development of every node taking into
account the changing topology of the evolving graphs.

Repeating this experiment we obtain 81 similar sequence of images, which we
consider our raw data. We stress at this point that given the inherently uncontrollable
growth process of P. polycephalum, the obtained sequences differ in length and nature.
In some experiments the organism behaved unfavorably, simply stopping its growth,
changing direction or even escaping the container. While such sequences are part
of the raw dataset, we excluded them partially or completely from the subsequent
graph extraction efforts. The removal of such data reduces the number of series
depicting optimal network formation to 54.

After obtaining the raw data, we transform the images into equivalent mathemat-
ical graphs, thus opening up a wealth of possibilities for data analysis. To this end
we deploy Nefi [52], which analyzes a digital image, separates the depicted slime
mold network from the background and returns its graph representation. Using this
tool effectively requires moderate amounts of image preprocessing. In particular, for

61

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

3. Slime Mold Graph Repository

Figure 3.1.: Schematic description of the experimental setup.

Figure 3.2.: Crumbs of P. polycephalum sclerotia forming the inoculation line.

Figure 3.3.: The plasmodium explores the dish. The apical zone advances towards
the right side of the dish supported by a complex network that is continuously
forming.

62

3.3. The KIST Europe Data Set

Figure 3.4.: As the apical zone is about to escape the observation region, the
coarsening of the network becomes more pronounced.

Figure 3.5.: The apical zone has moved on, leaving behind a complex network of
veins. The dashed rectangle depicts a typical region of interest relevant for subsequent
image analysis and graph detection.

Figure 3.6.: The network within the region of interest has been extracted by Nefi.
Note that no filters have been applied. Dead ends and nodes of degree 2 are visible
still, leading to small patches of nodes appearing to clump up. Such artifacts can
be removed in suitable post-processing steps.

63

http://nefi.mpi-inf.mpg.de

3. Slime Mold Graph Repository

each sequence of images it is necessary to decide on a suitable subsequence to be
processed. Here we typically exclude parts of the sequence where the apical zone is
still visible. For each such subsequence a suitable region of interest is defined man-
ually. Figure 3.5 depicts a typical choice for the region of interest to be processed
by Nefi. The established unfiltered graph can be seen in Figure 3.6. The graph
stores the position of the nodes in the plane as well as edge attributes such as edge
length and widths for each edge. In addition to the output of Nefi including the
unfiltered graphs, the dataset contains Nefi’s input, i.e. the selected subsequences
of images cropped according to their defined regions of interest.
Note that some parts of the image series showing proper network formation did

not yield optimal representations of the depicted networks. This is a result of images
exhibiting strong color gradients or other effects rendering them too challenging for
automatic network extraction. While such cases may still be handled by tuning the
parameters of image processing manually on an image per image basis, we decided
to discard affected series from subsequent processing efforts. As a result the number
of usable graph sequences of highest quality reduced to 36. To this we apply a set of
filters removing artifacts, isolated small components and dead-end paths. Thus we
obtain a total of 3134 distinct filtered graphs faithfully reflecting the topology and
edge attributes which P. polycephalum displayed during the wet-lab experiments.
At this point available graph analysis packages or custom written analysis code

can be deployed to investigate the data in various ways, e.g. [16], [74]. The dataset
includes the filtered graphs as well as all corresponding graph drawings. The latter
enable a quick visual inspection of the graph extraction results.
Given the obtained time-ordered sequences of graphs the development of the

entire graph can be investigated. One may also study what happens to single nodes
as P. polycephalum evolves. Given a graph in a sequence of graphs, let us pick any
node u. Can we determine a set of nodes from graphs in the sequence that are
equivalent to u, i.e. all nodes in the set are earlier or later versions of u in time?
We answer this question by computing a so-called node tracking which establishes
the time development of all nodes in the graph. Crucially, this tracking takes into
account topological changes in the evolving graphs. The result of the tracking is
available as node properties of the graphs. Naturally, the program computing the
tracking is included in the dataset. To the best of our knowledge, this type of data
and algorithm is made available for the first time through the Kist Europe data
set.

Finally, in addition to the actual data, i.e. images and graphs, the Kist Europe
data set contains scripts and larger programs used to process and evaluate the data.
Suitable configuration files specify the used regions of interest and the parameters
used with Nefi. Thus it is possible to repeat the entire data production process
from the raw images to the obtained filtered graphs including the tracking of nodes.
As part of the Smgr, the Kist Europe data set is well-structured and self-contained.
In particular, sufficient on-the-fly documentation is available when using the online
browsing function of the Smgr.

64

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de

3.3. The KIST Europe Data Set

3.3.1. Node Tracking

In this section we explain how to compute a node tracking. Our approach is a variant
of a tracking method introduced previously [99], [184]. Here we give a self-contained
account of the tracking technique geared towards non-experts in optimization. For
technical details, proofs and an experimental evaluation of the method we refer the
interested reader to the original publications.
For each of our experiments, let us denote the respective time ordered sequence

of k filtered graphs with G = G1, G2, . . . , Gt, . . . , Gk and the union of the respective
node sets with V̄ =

⋃k
i=1 Vk. Each node in V̄ can be represented as a non-negative

integer triple (x, y, t). Here x and y denote a node’s pixel coordinates relating to
the input image used for graph extraction and t denotes its position in the sequence,
i.e. its position in time.
We seek to exploit this information to partition the set V̄ into a collection of

disjoint, time-ordered paths such that every u ∈ V̄ is part of exactly one path. We
call such a path a track and assign an unique identifier to it, e.g. a unique color,
which is shared by all nodes in the track. Intuitively speaking, rather than thinking
of a track as a collection of nodes, one can interpret it as the realization of the same
physical node at different points in time.

Let us define the length of a track by the number of nodes it contains. We stress
that in general a track need not have length k. Tracks may start at any t = i such
that 1 ≤ i ≤ k and end at any t = j such that i ≤ j ≤ k. In particular tracks of
length 1 are possible. Crucially, any node in a track has at most one predecessor
and at most one successor node.
Let us refer to the edges within a track as tracking edges. Tracking edges may

connect nodes of temporal distance larger than one, i.e.:

e = (u, v) = ((xu, yu, tu), (xu, yu, tv)) and 1 ≤ tu < tv ≤ k .

Such tracks simply “skip” nodes between the start and the endpoint of the track
and correspond to nodes that have not been observed by Nefi for some amount
of time. Given the continued changes in the network topology observed during the
growth of P. polycephalum such tracks are expected to appear frequently.

Let us elaborate on two effects that impact said topology. First, P. polycephalum
networks tend to coarsen as time goes by. Eventually, this process may cause the
thickness of receding veins to slowly drop below the detection threshold of Nefi.
Hence, they disappear from the graphs leading to tracks of length much shorter
than k. Second, periodic changes in the thickness of veins are observed. It may
happen that the thickness of a subset of contracting veins may drop below the
detection threshold of Nefi. As a result, those veins disappear from the graph.
However, as the contraction cycle of the vein proceeds its thickness may increase
again, eventually exceeding the detection threshold and thereby returning to the
graph. These periodic changes in the topology of the graphs naturally lead to tracks
that skip a certain number of frames periodically. Both effects are present at the
same time and can be observed in the graphs we have obtained.

65

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

3. Slime Mold Graph Repository

a1

c1
b1

d1

f1e1

t = 1

a2

c2

d2

f2

t = 2

a3

c3

b3

d3

f3
e3

t = 3

Figure 3.7.: Schematic of a graph and its changing topology with respect to time.
At time t = 2 the edge (b, e) and its nodes disappear from the graph because the
thickness of the corresponding vein in P. polycephalum dropped below the detection
threshold of Nefi. The colors indicate tracks Tb and Te for nodes b and e respectively.

We stress at this point that given a time resolution of 120 s, one must not use the
graphs contained in the Kist Europe data set to study the quasi-periodic oscillations
of edge thickness due to peristaltic pumping. The period of these oscillations is known
to be approximately 100 s and thus cannot be properly resolved [163]. However, large
changes in topology are on a much slower time scale and are reliably reflected by
the graphs.
We proceed to explain how to compute a node tracking. Let us study the graph

in Figure 3.7 to gain some insight into the problem. Consider e.g. node a1. We seek
to find a unique track that contains this node, representing its development in time.
A straight-forward suggestion would be a track Ta = [a1, a2, a3]. However the track
Ta = [a1, c2, f3] is just as valid, as is Ta = [a3] and so forth. The example illustrates
that the number of possible tracks and therefore the number of disjoint partitions
into tracks grows exponentially with the number of nodes involved.

Ultimately, we seek to find a partition, that faithfully captures the time develop-
ment of the nodes in V̄ . To do so we rely on the observation that optimal tracks
are likely to consist of nodes that are close in space as well as close in time. In
the following we formalize this requirement and construct a linear program (LP)
that selects an optimal partition amongst all possible partitions. Once an LP has
been defined, solving it becomes a standard task of optimization and can be done
efficiently using solvers like Gurobi [73], or Cplex [46].
Let us define the optimization problem we want to solve. First, we construct

all possible tracking edges using space partition techniques. Assigning a unique
identifier to each edge we obtain the set Ē. When the linear program considers
edges to include in a possible tracking solution it refers to them using the ids in
this set. We define the cost of selecting a particular tracking edge e = (u, v) =
((xu, yu, tu), (xv, yv, tv)) as

∆(e) = ε((xu − xv)2 + (yu − yv)2) + τ(tu − tv)2 , (3.1)

where ε and τ are constants used to control the relative strength of the squared

66

http://nefi.mpi-inf.mpg.de

3.3. The KIST Europe Data Set

Euclidean distance in space and time respectively. Note that using this cost function
in our example in Figure 3.7, track Ta = [a1, a2, a3] is favored over Ta = [a1, c2, f3].
Note also that tracks of length 1 have cost 0 since there are no tracking edges to
pay for. As a result the minimum cost solution consists of singleton tracks and is
not very useful. To circumvent this problem we assign dedicated costs to any node
that starts or ends a track as

p(u) = C . (3.2)

Here it is important that C is selected carefully. It must not be too small since
this will force the formation of artificial singleton tracks while too large a value may
erroneously suppress such tracks. Going back to Figure 3.7, assuming ε = τ = 1, a
choice of 1 < C < 22 = 4 will lead to two singleton tracks for the node b, namely
b1 and b3 because a tracking edge connecting b1 and b3 comes at an edge cost of
∆(e) = 4. Increasing the node cost such that C > 22 = 4 changes the picture and
results in the desired tracks Tb = [b1, b3] and Te = [e1, e3]. The example illustrates
the importance of the constants involved in the cost functions.

Note that, we are still facing an exponential number of tracks to consider. Luckily,
we can reduce the size of the set Ē, and thus the size of the LP, dramatically by
combining the effect of the costs functions with additional assumptions valid for
tracking P. polycephalum graphs. In particular, the cost functions imply that we
favor non-singleton tracks with nodes that are close in time as well as space. As a
result, we may discard all options that have a geographical distance larger than a
certain R and a temporal distance larger than a certain T . Intuitively, when trying
to find all possible tracking edges for a node u, we likely need not consider nodes that
are located on the other side of the graph or have an unrealistically large temporal
separation. Instead we can restrict the search to tracking edges within a cylinder
centered at u with radius R and a height of T . We can exclude all tracking edges
outside such a search cylinder, because their resulting costs are such that the linear
program will never select any of them.
The problem thus boils down to determining suitable values for R and T . Since

the nodes of P. polycephalum are well-separated and do not move within a time
period of 120 s, a small radius of R = 30 pixel is justified. We choose T = 10 which
amounts to a time period of 1200 s to look for tracking edges in temporal direction.
To tie the cost of singleton tracks to the physical features of our experiment, we
choose C = 2R2 + T 4. Setting ε = 1 and τ = 10 completes the set of constants
involved in the tracking problem. With these choices we follow the approach in [99].
We convinced ourselves that these settings are suitable for dealing with P. poly-

cephalum graphs by computing node trackings on artificial test graphs which enable
a comparison with known ground truths. To obtain one such series we take a real
P. polycephalum graph and randomly remove a certain fraction of nodes from it to
obtain artificial graphs at later times. Furthermore we slightly perturb the coordi-
nates of all the nodes of these graphs. As expected we find the error rate to strongly
depend on the strength of the geographical perturbation of nodes. As long as the

67

3. Slime Mold Graph Repository

perturbation is smaller than the minimum distance between nodes, the computed
tracking is identical to the ground truth. When nodes start moving more from frame
to frame, there is a danger that they randomly move past each other. As a result
they end up swapping their respective tracks, introducing an error. When the per-
turbation is set such that a node can only move within a radius of R = 30 pixel, less
than 4 % of the nodes end up in wrong tracks given the settings illustrated above.
However, we expect that this error is somewhat pessimistic because nodes in real
P. polycephalum do not move much compared to our artificial test graphs. Careful
visual inspection of the obtained node trackings resulting from real P. polycephalum
data supports this conjecture.
From the arguments in the previous section it also follows that filtering has a

strong impact on the quality of the node tracking. If graphs are filtered such that
nodes are well-separated, excellent results can be expected. Thus, we recommend
to carefully apply filters if any research questions based on the node tracking are
to be tackled. In particular, contracting nodes of degree 2 is strongly advised.

Finally, by combining the considerations discussed above, we are in a position to
define the actual linear program computing a node tracking:

Minimize: f =
∑
e∈Ē

∆(e)xe+
∑
i∈V̄

p(i)yi +
∑
j∈V̄

p(j)zj

s.t.: ∀ e ∈ Ē : xe ≥ 0 ∀ i ∈ V̄ : yi ≥ 0 ∀ j ∈ V̄ : zj ≥ 0

∀ i : yi = 1−
∑

e=(n,i)∈Ē

xe ∀ j : zj = 1−
∑

e=(j,n)∈Ē

xe .

Note the last two constraints including sums over tracking edges that leave re-
spectively enter a node. They make sure that a given node represented by yi either
has exactly one predecessor or pays the cost p(i) for starting a new track. Likewise,
a node represented by zj either has exactly one successor or pays the cost p(j) for
ending an existing track. Thus the LP either pays for selecting a tracking edge or
the penalties associated with ending or starting tracks but never both. For a more
technical exposition of this optimization problem we refer the reader to [99].
The optimal values of the LP variables xe, yi and zj are then determined by

solving the LP. All LP variables are integer values where a selected tracking edge e
is encoded by xe = 1, a selected node i is starting a track if yi = 1 and ending it if
zi = 1. Naturally, if yi = zi = 1 we have a singleton track consisting solely of node
i.

Partitioning the entire selection into disjoint tracks yields the desired node track-
ing. As a final step, we assign each track a unique color identifier and propagate
this color to each node in the track, i.e. across all graphs in a given series. The
color information is part of the graphs of all our datasets and thus readily available
for further processing. A program constructing and solving the tracking LP using
Cplex [46] is provided as part of the data set.

68

3.4. Sample Usage of the KIST Europe Data Set

3.4. Sample Usage of the KIST Europe Data Set

Next we illustrate the principal usefulness of the data contained in the Kist Europe
data set set by demonstrating how to compute two different example observables.
The python code used to obtain the presented plots is available as part of the data
set. As sample data we choose a time series of P. polycephalum graphs consisting of
60 graphs. Since the time between two graphs is 120 s, the whole series documents
the growth of the slime mold over a period of 2 h. Figure 3.8a shows one of the
graphs superimposed on the image from the laboratory it was extracted from. The
intricate network formed by P. polycephalum is clearly visible. In particular it can
be seen that the edges of the graph are of varying thickness. This is to be expected
and reflects the variations of thickness observed in the veins of the slime mold.
One may ask the question of how the thickness of veins is distributed in these

graphs. Answering this question is very easy, since the graphs in the Kist Europe
data set all come with edge weights readily available. Edge thickness or lengths are
present for all edges in the graphs. As a result the edge width data can easily be
accessed and represented as a histogram. Figure 3.8b shows a cumulative normalized
histogram of the edge widths including the edges from all 60 graphs in the series.
Note that the width is measured in pixel. Due to the resolution of the original
images 37.0625 pixel correspond to 1 mm.

(a) (b)

Figure 3.8.: (a) A sample graph of P. polycephalum from the Kist Europe data
set. It is part of a series of 60 graphs. The area indicated by the dashed rectangle
is magnified in Figure 3.9 (b) Cumulative edge width distribution computed over
all 60 graphs.

While computing such histograms is merely an exercise of using the information
stored in the graphs, more interesting and insightful observables can be derived.
In fact, in Chapter 4 the results of a comprehensive non-trivial study of the Kist
Europe data set will be presented [53].
In the context of said study, additional questions that could be explored based

on the Kist Europe data set naturally arose. In particular, one may determine

69

3. Slime Mold Graph Repository

whether there is a similarity between P. polycephalum networks and Voronoi graphs.
The latter are well-studied and it is interesting to explore a possible connection
between their properties and the features of P. polycephalum. A different suggestion
consists of exploring the question whether P. polycephalum graphs are geometric
spanners. Spanners have properties that enable efficient communication between
different parts of the graph, a feature clearly relevant and desirable for an organism
such as P. polycephalum.
Yet another way to study the Kist Europe data set lies in the information

provided by the tracking algorithm presented in this manuscript. Since all the
graphs in the data set were tracked already, identifiers are available determining
which nodes belong to which unique tracks. For simplicity, we refer to the track
identifier as color. As a proof-of-principle application, we shall demonstrate how to
exploit this information to study the width of selected single edges in time. Since we
aim to follow the time development of edges, we first need to establish the concept
of tracks for edges. For any edge e = (u, v), we define its color by combining the
colors of u and v in a set:

color(e) = {color(u), color(v)} . (3.3)

Looking at the tracking example given in Figure 3.7, the edges (b1, e1) and (b3, e3)
are assigned the color {blue, orange} signaling that both edges belong to the same
edge track and are merely different instances of one and the same edge at different
points in time. Note that this edge is missing at t = 2 and thus the length of the
edge track is reduced by one.
Given this edge color information it trivial to find all the edges that belong to

an edge track. Once the tracks are known, it is easy to study how edge properties
change within a track. Figure 3.9a gives a detail of the graph shown in Figure 3.8a
and highlights two distinct edges which we want to investigate in this example.
Edge A was chosen such that the length of its track is equal to the length of the
entire time series, i.e. this thick edge is fully accounted for and does not disappear
at any point in time. To illustrate the way the tracking algorithm resolves tracks
were edges disappear at different points in time, we have selected an edge B which
is much thinner than A. There are two ways for an edge to disappear. Either its
thickness falls below the detection threshold which means it is not present in the
graph anymore, or it is split by a node introduced by the appearance of another
edge. Figure 3.9b shows the latter situation where B is split into two new edges by
a newly detected third edge. The new edges have colors different from B.
Finally, Figure 3.10 shows the edge widths for edges A and B given their estab-

lished tracks. Note that the track including the thicker edge A runs across the entire
60 graph in the series. The situation is different for edge B where its track reflects
that it is repeatedly split by a third edge which is sometimes present. Eventually,
the splitting edge remains established for much of the latter half of the time series,
thus superseding edge B permanently. This simple example shows how the tracking
information allows one to “zoom in” on what happens with selected edges and study

70

3.4. Sample Usage of the KIST Europe Data Set

(a) (b)

Figure 3.9.: Detail of a P. polycephalum graph, corresponding to the dashed
rectangle in Figure 3.8a. (a) Two edges A and B are selected for tracking. (b) A
third edge appears, causing B to split up causing it to disappear from its track.

them in detail.
At the time of writing, the novel information provided by the computed tracking

is yet to be explored in a large and systematic study. What can be inferred from
the topological changes recorded? Can one identify patterns with certain structural
properties? Can topological properties be related to questions of biological relevance?
Given the large number of graphs in the Smgr, an investigation of such questions
becomes feasible.

The Kist Europe data set is not limited to the use cases and suggestions provided
here. Rather, it constitutes a flexible basis to work with as it contains a host of
useful data, code and instructions. In particular, potential users are not restricted
to working with the graphs that are presently provided. They are encouraged to
start from the raw images and determine their own specific data selection, graph
extraction and tracking procedures tailored to their particular research agenda. They
may use the tools provided by us or deploy entirely different strategies to better
suit their needs.

71

http://smgr.mpi-inf.mpg.de

3. Slime Mold Graph Repository

Figure 3.10.: Development of edge widths for edges A (green triangles) and B
(blue circles) as given by their established edge tracks. Note that for track B we
have set the value of the edge width to zero whenever the edge was missing. This
serves to illustrate the fragmentation of track B. The widths are given in units of
pixel and time is measured in units of 120 s.

3.5. Discussion

The first and most important step in sharing your data is to share your data [182].
To this end, we introduce the Slime Mold Graph Repository, a novel platform that
facilitates the exchange of experimental data revolving around networks formed
by slime molds. We believe that by encouraging the reuse of data, the value and
visibility of experimental ground work is significantly increased. Not only does the
reproduction of results based on publicly available data become much easier, shared
data may be put to unforeseen use by researchers from different fields willing to
examine it from a new point of view.

To enable this, we initiate the Smgr with an extensive set of raw data, ready-to-
use graphs and dedicated methods such as the introduced tracking algorithm. We
show the usefulness of time-series of graphs by discussing two out of many possible
different approaches to investigate them. First, we discuss how to obtain simple
statistical observables for all edges in the graph. In particular, we compute the
cumulative distribution of edge widths. Second, we illustrate how the information
obtained by the tracking algorithm allows us to explore the time-development of
single edges.
Clearly, future investigations are hardly limited to the examples and suggestion

given in this manuscript. It is fair to say that any observable defined on a weighted
graph, relevant to P. polycephalum, can be studied using the Kist Europe data
set. In particular, we’d like to stress the implications for evaluating and guiding all
sorts of theoretical modeling approaches based on graphs. Any model that produces

72

http://smgr.mpi-inf.mpg.de

3.6. Acknowledgments

a prediction which can be formulated as an observable defined on a graph can
immediately be tested on the Kist Europe data set. This includes time dependent
observables. Predictions that agree with Smgr data may increase the trust in a
given model, while discrepancies between predictions and data hopefully suggest
improvements. Thus, data contained in the Kist Europe data set may be used to
drive modeling efforts and help bridge the gap between theory and experiment.
We would like the research community to interpret the Smgr as a twofold chal-

lenge. First, we challenge people working on slime molds to contribute their data,
enable others and to increase the visibility and impact of their experimental work
at the same time. Second, we challenge everyone to use the current contents of the
Smgr and to come up with new ways to enrich our understanding of the interesting
organisms that are slime molds.

3.6. Acknowledgments

We are grateful to Prof. T. Ueda for providing us with sclerotia and for teaching
us to the art of culturing Physarum polycephalum with infinite patience. We thank
Prof. M. Grube and Dr. C. Westendorf for hospitality, support and expert advice
on slime molds. We acknowledge Prof. A. Manz and Prof. L. Abelmann and their
group at Kist Europe for stimulating discussions. Lastly, we are grateful towards
Dr. M. Függer for his encouraging comments and proof-reading.

73

http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
www.kist-europe.de

4 Network Analysis

We present a systematic study of the characteristic vein networks formed by the
slime mold P. polycephalum. Our study is based on an extensive set of graph rep-
resentations of slime mold networks. We analyze a total of 1998 graphs capturing
growth and network formation of P. polycephalum as observed in 36 independent,
identical, wet-lab experiments. Relying on concepts from graph theory such as face
cycles and cuts as well as ideas from percolation theory, we establish a broad collec-
tion of individual observables taking into account various complementary aspects
of P. polycephalum networks. As a whole, the collection is intended to serve as a
specialized knowledge-base providing a comprehensive characterization of P. poly-
cephalum networks. To this end, it contains individual as well as cumulative results
for all investigated observables across all available data series, down to the level of
single P. polycephalum graphs. Furthermore we include the raw numerical data as
well as various plotting and analysis tools to ensure reproducibility and increase the
usefulness of the collection. All our results are publicly available in an organized
fashion in the Smgr introduced in Chapter 3.

This chapter presents joint work with Prof. K. Mehlhorn [53].

4.1. Introduction

Networks are systems consisting of nodes and links. In general, nodes represent
abstract entities while links define abstract relationships between them. Once one
adopts this powerful concept, networks appear virtually everywhere throughout
nature and as systems created by men.
Man-made examples include networks of servers such as the Internet [58], [82],

[98], networks of web-pages [2], networks of streets [39], [85], power grids [145],
[187] or transportation networks involving trains or air planes [15], [69], [154], [157].
Examples for networks observed in nature include gene regulation networks [6], [112],
food webs [116], [142], fungal cord networks [65], [78], or vascularization networks
in plants and mammals [100], [102], [148], to name but a few.
A property shared by many networks is that they are complex. While an unam-

biguous definition of the term is elusive, complex networks share some common
characteristics. They typically consist of a large number of nodes exhibiting possibly
unknown, non-trivial interactions. The network itself as well as the interactions
between its constituents are not constant but subject to change induced by internal
or external events. Furthermore, self-organization and emergent phenomena are
commonly observed in complex networks [14], [28].

75

http://smgr.mpi-inf.mpg.de

4. Network Analysis

Given the intellectual challenges and the importance of technical applications
associated with complex networks, research concerned with their structure and func-
tion has attracted continuing scientific interest. For extensive reviews and references
on the topic consult [7], [28], [127], [164].
The present article focuses on vein-networks formed by the unicellular, multi-

nucleated slime mold Physarum polycephalum [81]. This peculiar amoeba-like organ-
ism is able to maintain a massive cell body in the form of an extended network of
veins. Similar to a mammalian vascular network, the veins carry protoplasmic fluid
distributing nutrients and other matter throughout the cell body by means of peri-
staltic pumping [96]. P. polycephalum reacts to changing environmental conditions
by dynamically adapting the topology of its network. In the absence of a central
nervous system capable of coordinating morphological changes in P. polycephalum,
it is believed that the ability to reorganize itself to better meet environmental con-
ditions is an emergent property resulting from underlying local interactions [119],
[176].
In order to further improve our understanding of the mechanisms governing

the morphology of P. polycephalum one may directly study the properties of its
networks. A popular two-step approach, consists of capturing images of networks
and converting them to mathematical graphs, enabling a detailed investigation of
their properties [20]. The first part relies on cultivating P. polycephalum in the
lab whilst taking images that document the development of the organism and its
networks. The second part requires dedicated methods capable of analyzing the
obtained images and computing graph representations of the networks depicted
therein. Such methods have become available as software packages recently [52].
Once graphs have been established, methods from graph theory and network science
apply and various quantities of interest can be computed. This approach has been
quite successful and various interesting network properties have been established [19],
[22], [84], however, many questions remain open.

In this chapter we continue to investigate P. polycephalum using the graph-based
approach. Our study relies on a publicly available set of P. polycephalum graphs
which is part of the Smgr [54], see Chapter 3.

Based on the Kist Europe data set, we define and compute a broad collection
of observables characterizing P. polycephalum graphs. We begin our investigation
by reporting a suite of basic graph properties and discuss our findings in relation
to results obtained prior to our study [22]. We proceed by introducing a family of
observables using concepts from graph theory such as face cycles and cuts. Finally,
we study the robustness of P. polycephalum networks under random attack by
establishing edge and node percolation thresholds.
We seek to establish a broad spectrum of descriptive observables designed to

cover various complementary aspects of the organism. The combination of these
may be interpreted as a kind of multidimensional “fingerprint” capable of charac-
terizing P. polycephalum graphs. Using such fingerprints, it becomes possible to
compare individual P. polycephalum graphs in a quantitative manner. This can be
of particular use when comparing different slime molds with each other or in the

76

http://smgr.mpi-inf.mpg.de

4.2. Methods

evaluation of models or algorithms producing graphs which claim properties similar
to those of P. polycephalum. Our approach nicely complements recent efforts to
compare different slime molds based on properties of their plasmodia and certain
chemotactic responses [181].
We stress that this manuscript only provides an overview of our findings. The

complete set of results is available for download and inspection at the SMGR.
This includes the full list of observables and associated plots, useful tools as well
as instructions that allow the reproduction of all obtained results. Crucially, the
provided tools enable the reader to define and compute new observables tailored to
their particular research questions.

Establishing a broad body of reliable information and making it available together
with useful tools are the major goals of our efforts. We hope that they will serve as
a catalyst for future research.

4.2. Methods

4.2.1. Experimental data

To investigate the properties of networks formed by P. polycephalum we rely on
experimental data publicly available in the Smgr. The Smgr was introduced
recently in an effort to improve the visibility and reuse of experimental data with a
focus on slime mold networks and their graph representations.

For the present study we work with the SMGR’s initial data set, called the Kist
Europe data set. In particular we focus on a processed subset of this data tagged high
unfiltered. For a detailed account on how this data was obtained (experimental setup
and procedures), processed (raw images, network extraction and filtering, relevant
implementations) and organized we refer to Chapter 3.
Here it suffices to say that the Kist Europe data set contains time series of

mathematical graphs derived from images depicting growth and network formation
of P. polycephalum as observed in 36 independent, identical, wet-lab experiments.
Note that no additional food sources where introduced in these experiments. In
addition to capturing the topology of P. polycephalum, the graphs carry information
such as the position of the nodes in the plane and edge lengths and widths. The
time between two consecutive graphs within a series is 120 s. The image resolution
is such that 370.6250 pixel correspond to 1 cm. The 36 data series include a total of
1998 distinct P. polycephalum graphs.

4.2.2. Graph Representation

The graphs we analyze represent P. polycephalum networks. They have been pro-
cessed to ensure that they are connected and that every edge belongs to at least one
cycle. In other words, everything not contained in the largest connected component
and all dead-end paths were removed. In our graphs, all nodes are of degree 2 or 3.

77

http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de

4. Network Analysis

A significant fraction of the remaining nodes are of degree 2, forming long paths
which connect pairs of degree 3 nodes. Such paths represent veins of P. polycephalum,
while degree 3 nodes model veins joining together to form junctions. Figure 4.1 shows
a schematic detail of a typical P. polycephalum graph.
At this point one could replace the paths by edges that directly connect their

start and endpoints, thus obtaining 3-regular graphs. For some observables this
is advantageous and natural, since degree 2 nodes have no clear meaning in real
P. polycephalum. For instance, we ignore degree 2 nodes in our percolation experi-
ments and when computing the degrees of face cycles. For others, however, one may
exploit the fact that a better geometric interpolation of the real P. polycephalum
veins can be achieved by taking into account paths of degree 2 nodes. We make use
of this fact when it comes to path and cut properties as well as to computing the
area and circumference of face cycles.

In this work, we study the properties of face cycles in P. polycephalum [110]. To
this end, we compute the dual graphs of all available graphs. Since P. polycephalum
graphs are planar graphs with a naturally embedding in the plane, their geometric
duals can be constructed by placing a (dual) node in each region, including the
exterior region. If two regions share an edge, their corresponding (dual) nodes are
joined by an (dual) edge. The dual graph of a planar graph is again planar. To
compute the duals we rely on a planar face traversal routine described in LEDA [110].

A

B

C

D

E

Figure 4.1.: Schematic representation of a P. polycephalum graph. Labeled blue
squares form a face cycle (region) representative of veins and junctions of the slime
mold. The face cycle is of degree 5 as it contains 5 degree 3 nodes. They are
connected via 5 distinct paths of varying length, two of which are highlighted in
orange. Paths consist of circular nodes of degree 2 which interpolate the veins of
P. polycephalum. Degree 2 nodes often are the product of removing dead-end paths,
one of which is indicated in gray extending into the interior of the face cycle near
node E.

78

4.3. Results

4.2.3. Statistical Methods

Statistical quantities are reported with their associated errors. Unless noted other-
wise in the text, we either show bootstrapped standard errors of the mean or errors
reported by fit routines where applicable. For the percolation experiments sample
sizes were large enough to estimate the errors directly. Fits reported are least square
fits, respectively weighted least square fits when errors where taken into account.
For kernel density estimation we either rely on R or the numpy.stats packages [88],
[143].

Statistical distribution testing was done using R, in particular using the excellent
fitdistrplus and bimodalitytest packages [50]. The process of determining the
theoretical distribution of an observable O from empirical samples is as follows. For
every data series we compute the empirical distributions of O for the individual
graphs as well as the cumulative empirical distribution taking into account all graphs
within the given series. Furthermore we fit the obtained empirical distributions with
several common distribution functions. To choose suitable candidate distributions we
rely on visual inspection of the empirical distributions and their indicative Skewness-
Kurtosis plots when no guiding knowledge of the underlying generating processes
is available. To evaluate the quality of the resulting fits we rely on four classical
goodness-of-fit plots [47]: the density plot, the CDF plot, the Q-Q plot and the
P-P plot. For a detailed description see [50]. Relevant plots supporting the results
presented in this chapter can be found in Appendix C.

4.3. Results

In the following we discuss a representative selection of results based on the Kist
Europe data set. It is designed to illustrate the most important findings and to
familiarize the reader with the type of information that is contained in the full
set of results which is available for inspection and download at the Smgr project
page. The full set contains plots of individual and cumulative results of all computed
observables for all available data series, down to the level of singular P. polycephalum
graphs. Furthermore fit parameters of all applied candidate fit distributions are
available together with their goodness-of-fit plots. In addition to that tools and
instructions are added which allow the interested reader to investigate aspects of
the data that go beyond the scope of this chapter.

4.3.1. Path Properties

Recently, the distributions of basic observables including the length and the width
of veins of P. polycephalum graphs have been studied [22]. Here we revisit earlier
findings in an attempt to reproduce them. Surprisingly, despite (or because of) the
increased amount of data available to us compared to earlier work, we were not able
to unambiguously determine the underlying distributions of the observables under

79

http://smgr.mpi-inf.mpg.de

4. Network Analysis

(a) (b)

Figure 4.2.: Empirical cumulative path length distributions for data series 22
(a) and data series 35 (b). Associated gamma and log-normal fits are shown.
Abscissa in units of pixel.

consideration. Instead we consider a set of valid candidate distributions and report
on the most promising one in detail.
Let us define the length of a path as the sum of the length of the individual

edges it contains. In Figure 4.2 we compare the cumulative empirical path length
distributions of data series 22 and data series 35. An inspection of the den-
sity histograms of data series 22, Figure 4.2a, does not allow a clear distinction
between a candidate log-normal or a gamma distribution. At the same time data
series 35, Figure 4.2b, seems to tend towards a gamma distribution. Note that the
distribution of data series 22 indicates very dense networks dominated by short
paths while the probability mass in data series 35 has started to shift towards
longer paths. This is a result of the so-called coarsening process characteristic to
P. polycephalum [22].

We choose the case of data series 22 to illustrate the process we apply to deal
with the observed ambiguities in detail. To do so we compare the goodness-of-fit
plots associated with fitting a gamma, log-normal distribution and other candidate
distributions in Figure C.1. Empirical and theoretical CDFs are in excellent agree-
ment for both gamma and log-normal fits. The same holds true for the P-P plot
where empirical and theoretical probabilities coincide, illustrating that both fits do
not suffer from “lack-of-fit” in the center of the distribution. Looking at the Q-Q
plots however, differences between empirical and theoretical quantiles can be seen,
indicating that both gamma and log-normal fits are lacking in the right tails of the
distributions. The gamma fit could be favored in the end, since it is not as lacking as
the log-normal fit when it comes to the right tails, i.e. the longer path lengths. We
remark that an exponential distribution was attributed to path lengths in previous
work [22]. Our data indicates that it is a possible choice, provided a good description
of the right tail is desired and the comparatively weak performance in the center of
the distribution is not an issue.

80

4.3. Results

(a) (b)

Figure 4.3.: Time dependence of shape s (a) and rate r (b) for data series 35
(blue circles) and data series 58 (green triangles). Linear fits are shown to guide
the eye. Abscissa in units of 120 s.

We stress at this point that in order to assess the match between data and fit it is
not sufficient to check the agreement between theoretical and empirical distributions
alone. Since the latter is given as a density histogram, our perception can easily
be mislead by an unfortunate choice of bin sizes. To mitigate this problem we rely
on the Freedman–Diaconis rule to determine optimal bin sizes [64]. In combination
with the goodness-of-fit plots a reliable judgment of fit quality can thus be achieved.

The example of data series 22 is illustrative of the difficulties in determining
descriptive theoretical distributions we encounter for almost all our data series.
Given the available empirical data it is not possible to choose a single distribution
from the proposed candidates that captures the tails and the centers equally well
for all data series. As a result, depending on what part of the data is of interest
one may opt for different theoretical distributions to maximize the usefulness of the
description.

It is our impression however, that the gamma distribution yields a good compro-
mise between center and tail accuracy in most cases. Thus we shall proceed with
reporting the properties of the gamma fits in this manuscript. Details of properties
of other fit options are available in the complete collection of results.
Given a time-ordered data series, one may study the obtained fit parameters as

a function of time. For a gamma distribution these are the shape s and the rate r
of the distribution. Figure 4.3 compares the time development of the parameters
obtained for two long-running data series. Despite the considerable fluctuations, it
can be seen in Figure 4.3a that the shape has a tendency to increase, while the
rate is slightly declining as shown in Figure 4.3b. Since the mode of the gamma
distribution is given by (s− 1)/r for s > 1, its value is increasing with time for both
data series. It follows that the most likely path length to be observed increases in
value as time moves on. This is accompanied by a shift of probability mass towards
longer paths, which is consistent with network coarsening.

81

4. Network Analysis

In addition to the time development of the fit parameters within distinct data
series, we investigate the obtained values across the entire data set that has been
fit. Figure 4.4 shows the scatter-plot of s and r and the associated estimated kernel
density. The result illustrates what characteristic ranges of fit parameters, and by
extension distributions, one may expect to encounter when it comes to path lengths
in P. polycephalum graphs. Given the location of the density maximum, we can
compute the mode of the associated gamma distribution and obtain 107.2389 pixel.

Figure 4.4.: Scatter-plot and kernel density estimates of shape s and rate r for
gamma fits of empirical path lengths using the entire dataset. The maximum of the
density is located at s = 1.8403 and r ≈ 0.7836× 10−2.

After detailing the procedure applied to the path lengths we proceed by investi-
gating the average path widths and the path volume in the same manner. Since the
procedure is the same, we keep the description more concise from now on.

Let us define the average path width as the average over the individual edge widths
a path contains. In Figure 4.5 we compare the empirical path width distributions
of data series 22 and data series 35. Yet again an inspection of the density
histograms alone does not allow to decide between the two most promising candidate
distributions and we look to the goodness-of-fit plots to learn more. Figure C.2 shows
that for data series 35, both gamma and log-normal fits do not suffer from lack-
of-fit in the tails of the distribution. Furthermore, empirical and theoretical CDFs

82

4.3. Results

(a) (b)

Figure 4.5.: Empirical cumulative distributions of average path widths for data
series 22 (a) and data series 35 (b). Associated gamma and log-normal fits are
shown. Abscissa in units of pixel.

agree. At the same time, the P-P plot indicates that both options are lacking in the
center of the distribution. Both gamma and log-normal fits yield almost the same
fit quality, even a normal fit yields a usable description. In the end, we favor the
gamma fit yet again, because it delivers slightly better Q-Q plots.

Taking into account the whole data set, the theoretical distribution of the average
paths widths remains undecidable. The differences between gamma and log-normal
fits are minute and thus the fact that earlier work attested a log-normal behavior of
the widths is still supported by our findings [22]. We remark that, the pronounced
“shoulder” seen in Figure 4.5b suggest to the eye that a bimodal distribution could
be responsible for the observations. Thus we attempted to fit the path widths with
a Gaussian mixture. However, we failed to satisfy the associated statistical tests
conforming that a Gaussian mixture is indeed the correct underlying distribution.
Next we report the gamma fit parameters as a function of time. Figure 4.6

compares the time development of the parameters obtained for data series 35 and
data series 58. Note that, for both series a linear relationship between shape s and
rate r can be observed. For data series 35 we find that s(r) = (8.0634± 0.1160)r+
(2.4148± 1.8410) holds. At the same time we obtain s(r) = (9.1390± 0.1420)r +
(0.5859± 0.1870) for data series 58.

Figure 4.7 illustrates that a similar linear relation holds across all the available
data. It is given by s(r) = (8.3761± 0.0400) r + (2.0081± 0.0640). We believe that
this relation follows naturally from the fact that the path widths are relatively small
in value and their distributions show only little variation from one data series to
the next. In this regards the path widths behave decisively different from the path
lengths, which show much larger variation.

We may use the given linear relation to parametrize the gamma distributions as a
function of r and study the effect on the mode and the tails of the distribution as r

83

4. Network Analysis

(a) (b)

Figure 4.6.: Time dependence of shape s (a) and rate r (b) for data series 35
(blue circles) and data series 58 (green triangles). Linear fits are shown to guide
the eye. Abscissa in units of 120 s.

assumes values in [0.5, 3]. We find that the position of the mode is confined within a
relatively small interval of [8.467, 10.893]. Furthermore, as r increases the probability
mass concentrates around the mode as it is traversing the given interval. At the
same time s(r) increases, causing the gamma distribution to approach a normal
distribution with µ = s/r and σ2 = s/r2. Thus the distribution of average path
widths smoothly interpolates between a gamma distribution for small r and normal
distribution for larger r. For r = 1.2799, which is associated with a maximum in
the density plot of Figure 4.7, the mode takes a value of 9.1637 pixel. The fact that
the gamma distribution naturally captures the transition to a normal distributions
increases our confidence that the gamma distribution yields a correct description
of the data.
We point out that within the observed range of fit parameters, the probability

mass in the right tail of the distribution is largest for small values of r. Thus
one would expect the rate to drop as time goes by if larger path widths are to
become more probable as the slime mold networks undergo coarsening. Looking
at Figure 4.6, data series 58 does exhibit this behavior. At the same time data
series 35 does not seem to show any long term changes in the rate, which would
indicate that the distribution remains stable. Taking into account the entire data
set, we repeatedly find both types of behavior.
We remark that earlier work proposed the normal distributions as a suitable

description for path widths of coarsened networks that contain a significant number
of paths of large width [22]. This is in contrast to the results above, which indicate
that within the range of observed parameters, normal distributions are associated
with networks where large average path widths are comparatively rare.

While paths are the atomic constituents of P. polycephalum their weights do not
tell us anything about their arrangement within the graphs. To gain some insight
we move on to study the next larger building blocks, namely cycles formed by paths,

84

4.3. Results

Figure 4.7.: Scatter-plot and kernel density estimates of shape s and rate r for
gamma fits of the empirical average path width using the entire dataset. The
maximum of the density is located at s ≈ 12.7177 and r ≈ 1.2799. A linear fit is
shown in yellow.

85

4. Network Analysis

in the next section.

4.3.2. Face Properties

When cultured under the right conditions on flat surfaces, P. polycephalum forms
(almost perfect) 3-regular planar graphs that have a natural geometric embedding
given by the euclidean coordinates of its nodes in the plane [22]. Each face of the
embedding, with the exception of the outer face, is bounded by a cycle of edges. We
call such cycles face cycles or faces for short, see Figure 4.1. In other words, faces
can be regarded as basic graph building blocks that correspond to loops formed by
the veins of the organism. To characterize the structures formed by P. polycephalum,
we study various statistical properties of its faces. Given a graph, all of its faces can
be obtained in polynomial time by computing its dual [110].

Let us stress at this point that the number of faces in our graphs is significantly
smaller than the number of nodes or edges. In fact, using Euler’s formula for planar
graphs and the fact that P. polycephalum graphs are 3-regular it is easy to see
that the number of faces f is given by f = 2 + n

2
. As a consequence any statistical

observable we compute over the set of faces suffers from smaller sample sizes as
compared to path properties for example. Throughout all of our measurements, we
ignore outer faces.

Let us define the degree of a face cycle as the number of degree 3 nodes it contains.
The cumulative face degree distribution for data series 35 is given in Figure 4.8a.
It clearly shows that faces of degree 4, 5 and 6 account for the majority of faces. These
findings are consistent across all available data sets. With regards to determining the
theoretical distributions, gamma and log-normal fits yield comparable goodness-of-
fit plots, with gamma fits being slightly favorable, see Figure C.3. Another indication
to go with gamma fits is given by similar studies that focus on faces of 2-dimensional
Voronoi graphs [80], [169]. Since Voronoi graphs are planar, 3-regular and strongly
resembling P. polycephalum graphs, gamma fits can be expected to be a good choice.
It is interesting to note that for Voronoi graphs faces of degree 6 are known to have
the largest expectation. We remark at this point, that the time development of the fit
parameters shown in Figure 4.8b shows rather large values of shape, which indicates
that the gamma distribution is approaching a normal distribution. Furthermore, a
linear relationship between shape s and rate r is apparent.

Figure 4.9 shows that this relation is valid across the entire dataset and is given
by s(r) = (5.3403± 0.0210)r + (0.3508± 0.0370).
Given this relation we may parametrize the gamma distribution as a function

of r and study the behavior of the mode as r takes on values in [1, 3]. Again we
find that the possible positions of the mode are restricted to a rather small interval
given by [4.6911, 5.1239]. For r = 1.6255, which is associated with the maximum
in the density plot of Figure 4.9, the mode takes a value of 4.941. Rounding these
values to the nearest integer suggests that a mode of 5 is most likely to be found
for a randomly picked face of a P. polycephalum graphs.
Analogous to the discussion of the path widths, for a data series to exhibit a

86

4.3. Results

(a) (b)

Figure 4.8.: (a): Cumulative empirical face degree distribution for data series
35. Candidate gamma and log normal fits are shown. (b): Gamma fit parameters
shape (blue circles) and rate (green triangles) as a function of time for the same
series. Linear fits are shown to guide the eye. Abscissa in units of 120 s.

Figure 4.9.: Scatter-plot and kernel density estimates of shape s and rate r for
gamma fits of the empirical face degrees using the entire dataset. The maximum of
the density is located at s ≈ 9.0387 and r ≈ 1.6255.

87

4. Network Analysis

(a) (b)

Figure 4.10.: (a): Cumulative empirical face area distribution for data series
35. Candidate gamma and log normal fits are shown. Abscissa in units of pixel2. (b):
Gamma fit parameters shape (blue circles) and rate (green triangles) as a function
of time for the same series. Linear fits are shown to guide the eye. Abscissa in units
of 120 s.

high density of large degree faces, small values of r are necessary. Figure 4.8b
indicates that the underlying networks of data series 35 are actively changing
as to increase the number of large degree faces while keeping the distribution mode
largely constant. While we find this behavior for many data series, there are others
which seem to keep the degree distribution largely stable. The reasons for this are
unclear at this point.
Next we investigate the empirical distributions of the areas enclosed by faces in

more detail. The cumulative face area distribution for data series 35 is given in
Figure 4.10a. It’s goodness-of-fit plots suggest that a gamma fit yields a reliable
description of the empirical data, see Figure C.4. The time development of the
associated fit parameters is given in Figure 4.10b. Note that the shape values fall
below 1 repeatedly, which prevents us from using the mode to characterize the
most likely face areas since it requires s > 1. However, analogous to earlier results,
increasing values of s in combination with decreasing values of r indicate that the
probability mass of the associated gamma distribution is shifting towards larger
face areas. Given the time development depicted in Figure 4.10b, this is consistent
with network coarsening.

We stress that, while a gamma distribution yields a good description of data
series 35, for numerous other data series gamma fits perform poorly in the center
of the distributions compared to a log-normal distribution. The fact that the face
area data exhibits a large degree of variance in combination with the reduced size of
the available data points hampers our ability to properly select a fitting theoretical
description. Results associated with log-normal fits are available in the full data
collection.

A global impression of what ranges of fit parameter one can expect to encounter

88

4.3. Results

for gamma fits of the empirical face area distributions is given in Figure 4.11.

Figure 4.11.: Scatter-plot and kernel density estimates of shape s and rate r for
gamma fits of the empirical face areas using the entire dataset. The maximum of
the density is located at s ≈ 0.7022 and r ≈ 1.0381× 10−5.

Finally, Figure 4.12 shows how the sum of the area covered by all faces across all
data series is distributed with respect to face degree. It can be seen that faces of
degree 6 and 7 account for the majority of the area covered, while faces of degree 5
and 8 play a smaller role in comparison.

Let us now move on to the empirical distributions of the circumferences of faces.
The cumulative face circumference distribution for data series 35 is given in
Figure 4.13a. Here, goodness-of-fit plots indicate that a gamma distribution is
clearly superior to other candidate fits, see Figure C.5. Surprisingly, this is true
for all our datasets. Figure 4.13b shows the time development of rate and shape,
indicating that the distribution is shifting towards faces of larger circumference.
This time development can be seen for a significant fraction of the available data.

Finally, a global impression of the obtained fit parameters is given in Figure 4.14.
Since the shape values are larger than 1, we may obtain the value of the mode of the
distribution associated with the global maximum of the density to be 627.1050 pixel.
Let us complete our report on face properties by characterizing the geometric

shape of the faces observed in P. polycephalum. In particular we want to quantify

89

4. Network Analysis

Figure 4.12.: Global cumulative histogram of face degree weighted by face area.
The area under the histogram, which is normalized to one, corresponds to the
sum of face areas across all observed faces, i.e. the total area covered by 1998
P. polycephalum graphs.

(a) (b)

Figure 4.13.: (a): Cumulative empirical face circumference distribution for data
series 35. Candidate gamma and log normal fits are shown. Abscissa in units of
pixel. (b): Gamma fit parameters shape (blue circles) and rate (green triangles) as a
function of time for the same series. Linear fits are shown to guide the eye. Abscissa
in units of 120 s.

90

4.3. Results

Figure 4.14.: Scatter-plot and kernel density estimates of shape s and rate r for
gamma fits of the empirical face circumference using the entire dataset. The global
maximum of the density is located at s ≈ 3.4247 and r ≈ 3.8665× 10−3.

91

4. Network Analysis

the resemblance between a face of degree k and a regular polygon consisting of k
edges. We do so by defining the dimensionless roundness r(f) for any face f as

r(f) =
4πA(f)

C(f)2
, (4.1)

where A(f) and C(f) denote face area and face circumference respectively. For
k →∞, we have r(f) = 1 if f forms a circle, and 0 < r < 1 if f has any other shape.
The closer the polygon defined by f is to a circle, the closer r is to 1. To obtain an
equivalent statement for faces of finite k we need to normalize r(f) with respect to
k. The normalization factor rmax(k) is defined as the roundness of a regular polygon
with k edges. It is given by

rmax(k) =
π

k
(tan(

π

k
))−1 . (4.2)

Hence, we obtain the normalized roundness of a face f of degree k as

R(f, k) =
r(f)

rmax(k)
. (4.3)

Thus for any k it holds that, the closer R(f, k) is to 1, the closer a face f of degree
k is to being a regular polygon consisting of k edges.

With this definition we give the empirical distribution of the R(f, k) for all faces in
data series 35 in Figure 4.15a. The distribution is sharply concentrated around
0.8513 ± 0.0077 indicating a tendency for the faces of the underlying graphs to
approach regular polygons. A value of 0.8532 ± 0.0205 is found when the entire
dataset is considered. Figure 4.15b indicates that the mode of the roundness shows
only small variations in time for data series 35. The fact that this behavior
is consistent across all datasets makes the roundness a very distinct and robust
quantity describing the face structure of P. polycephalum graphs.
It is interesting to investigate how the roundness is connected to the degree of

the faces under consideration. Figure 4.16a shows the roundness values averaged
over classes of faces that have the same degree. We find that the roundness steadily
increases with k to reach a maximum of 0.8206 ± 0.0014 for k = 7. After the
maximum is attained the roundness falls off again, albeit slightly. We may also ask
which class of faces contributes the most to the global sum of observed roundness
values. Figure 4.16b shows the histogram of face degrees weighted by face roundness.
It indicates that faces of degree 4, 5 and 6 account for the majority of the global
sum of roundness. Since these faces form a large fraction of all available faces, we
can now quantify the degree to which P. polycephalum networks are formed by
components that resemble regular polygons.
We stress at this point that looking at roundness numbers by themselves is not

very instructive. Their usefulness, however, becomes apparent in combination with
other face properties when it comes to comparing P. polycephalum graphs amongst
themselves or with other structures. While the roundness gives a measure of what
shapes of faces are present in a graph, face area and circumference add a physical

92

4.3. Results

(a) (b)

Figure 4.15.: (a) Cumulative normalized face roundness distribution for data
series 35. The kernel density estimation of the cumulative distribution is show
as a solid line. The value of the abscissa at the maximum of the KDE serves as
an estimate for the mode of the underlying unknown theoretical distribution. (b)
The development of the estimates of the mode for the individual networks of data
series 35. Abscissa in units of 120 s.

(a) (b)

Figure 4.16.: (a) Cumulative normalized face roundness averaged over classes of
faces with identical face degree. Classes of size smaller than 30 are excluded as
bootstrapping error-bars ceases to be reliable for small sample sizes. (b) Histogram
of face degrees weighted by the associated roundness values. Here the area under
the histogram, which is normalized to one, corresponds to the sum of roundness
values across all observed faces.

93

4. Network Analysis

dimension to them. Together with the degree distribution of faces a comprehensive
description of the entire network of P. polycephalum in terms of its basic two
dimensional building blocks is available. Since this description can be computed
efficiently for any weighted planar graph, a quantitative comparison with other
planar networks becomes possible.

4.3.3. Cut Properties

In this chapter we study the extend of spatial homogeneity of P. polycephalum
networks with respect to two special directions: First, the direction in which the
organism expands, i.e. its growth direction and second, the direction perpendicular
to it. To do so we use the graph theoretic concept of cuts. A cut defines a partition of
the nodes of a graph into two disjoint subsets. Furthermore, it determines a cut-set,
a set of edges with the property that each edge has one endpoint in each of the two
node subsets. These are the edges crossing the cut. Since we are interested in the
cut-set only, let us refer to it simply as cut from now on.

We distinguish vertical and horizontal cuts, which we determine in the following
way. First we take the dimensions of the original images containing the graphs of
a series. For each series this yields a rectangle of a certain size. Next we partition
these rectangles by slicing them into 100 identical smaller sub-rectangles. Here we
distinguish between horizontal and vertical slices. For each image we overlay the
resulting horizontal/vertical lines with the graph extracted from the image. Each
horizontal/vertical line crosses through a unique set of edges which defines a cut.
Thus, for each graph in a series we obtain 100 equidistant horizontal/vertical cuts.
Vertical cuts proceed from left to right, i.e. in the direction of growth. Horizontal
cuts proceed from top to bottom, i.e. perpendicular to the direction of network
expansion, see Figure C.6. Since cuts are defined consistently within a series, we
may study how interesting cut properties change as we proceed through the cuts.
By comparing the two types of cuts we can shed light on structural properties of
the network with respect to its growth direction (vertical cuts) or perpendicular to
it (horizontal cuts). We define three such properties: the size, the width and the
length of a cut. The size of a cut is given by the number of its cut edges. The width
of a cut is the sum of the widths of all the edges in the cut while the length of a
cut sums over the lengths of the cut edges.
We begin by discussing the size of cuts for both horizontal and vertical cuts.

Figure 4.17a and Figure 4.17b give the results for two characteristic data series. For
any given cut, the ordinate shows the value of the cut averaged across all graphs in
the respective series while the abscissa enumerates the cuts in a sequence of cuts.
Both data series 45 and data series 35 exhibit significant fluctuations in the
actual cut values. This is to be expected since the network keeps changing as time
advances. Linear fits are applied to illustrate trends in the development of the cut
values. Looking at data series 45, it can be seen that, within fluctuations, vertical
cut values remain rather stable while horizontal cuts show only a slight tendency
to increase in value. The behavior of the cut values of data series 45 indicates

94

4.3. Results

that it has a large degree of spatial homogeneity. The situation is different for data
series 35 where vertical cuts show a trend to decrease while horizontal cuts tend
to increase at the same time. The fact that the behavior of the lengths and widths
of cuts closely mirrors the cut sizes, indicates that the properties of the edges that
are being cut are homogeneous throughout the network. Differences in cut lengths
or widths are predominately due to differences in cut sizes.

Taking into account the entire data set we find that horizontal cuts remain
largely constant, while the vertical cuts frequently show significant changes. The
latter include both increasing and decreasing cut values.

The fact that some series exhibit distinctly different trends between horizontal
and vertical cuts is curious. Why are the cuts in growth direction more stable than
the cuts perpendicular to it? For an attempt to explain this, we take a closer look at
the cut widths and their significance with regards to fluid transport. Assume that
for the organism to advance its growing front, it needs to actively direct its flow
towards the general direction it wants to expand towards. Given the experimental
setup underlying the data we explore, this means the organism is advancing along
the positive x-axis with an apical zone approximately parallel to the y-axis, see
Figure C.7. Thus any fluid flow proceeding along the x-axis must pass trough a
sequence of vertical cuts. By virtue of the min-cut max-flow theorem, it is known
that the maximum amount of flow that may pass through such a sequence is equal
by the value of the minimum capacity cut. Intuitively, any attempt to push flow
through a sequence of cuts is always capped by the amount of flow the bottleneck
cut admits, see dashed lines in Figure 4.17e and Figure 4.17f. In light of this fact it
seems natural for the sequence of vertical cuts to be balanced in width because this
configuration allows for efficient fluid transport. We stress that in order to increase
the fluid transportation capabilities across a sequence of cuts, only improvements of
the minimum cut are effective. Increasing the capacity of any other cut implies higher
material costs without any immediate benefits in terms of directed fluid transport.
Thus balanced cuts provide the optimal ratio of material cost to transport capacity.

While vertical cuts are well-balanced for almost all series, it is interesting to note
that a significant number of series show unbalanced horizontal cuts. We find such cuts
across all our data groups, which leads us to speculate that a significant structural
difference between the two major directions of fluid transport is present. The fact
that P. polycephalum favors balancing vertical cuts over balancing horizontal cuts
when expanding along the positive x-axis indicates that exploring new territory, i.e.
foraging, takes precedence over improving circulation within the existing network.

Note, that our reduction of the complex flow patterns observed in P. polycephalum
to two cardinal directions is rather crude. However, our results yield a first quan-
titative indication that the growth direction is indeed intimately connected with
distinct structural properties. It is worthwhile to think about more sophisticated
methods trying to establish links between network growth and network structure
in the future.

95

4. Network Analysis

(a) (b)

(c) (d)

(e) (f)

Figure 4.17.: Cumulative cut properties for data series 35 (l.h.s. row) and
data series 45 (r.h.s. row). The errors denote one sigma standard deviations.
Solid lines give linear fits to the data intended to guide the eye. Green triangles
pointing downwards belong to horizontal cuts (moving from top to bottom) while
blue triangles pointing to the right illustrate vertical cuts (moving from left to right).
Dashed lines illustrate the values of minimum width cuts.

96

4.3. Results

4.3.4. Percolation

Previously, concepts from percolation and graph theory where successfully combined
to study the assembly of macroscopic P. polycephalum networks from microscopic
slime mold fragments, called microplasmodia [60], [61], [62]. Here we shall take the
reverse approach to add another item to the collection of characteristic P. poly-
cephalum properties. To do so, we start with a well-formed P. polycephalum network
and gradually disassemble or “damage” it until it becomes maximally fragmented. A
network G is damaged by removing nodes or edges successively in a random order.
Removal continues until the graph is empty. The result is a sequence of graphs
S = G,G1, . . . , Gk with a strictly decreasing number of edges or nodes. For each
graph in the sequence one may then compute various observables and study their
behavior with respect to the inflicted damage. This process has been successfully
applied to various networks to determine the extend to which networks can remain
operable despite of its components sustaining damage [40], [41].
Let us focus on random node and edge percolation. We define an occupation

probability p such that any given node u or edge e respectively is present in the
graph with probability p. Equivalently, it is removed with probability 1− p. For any
graph Gi ∈ S, we study the behavior of two important observables: the sizes of the
largest and second largest connected components in Gi as p is varied from 0 to 1.
We repeat this measurement 1000 times for each graph in S and obtain averages
and statistical errors for the measured quantities.

Figure 4.18 shows the results for two graphs selected from data series 22 and
data series 35 respectively. Let us first discuss the size of the largest connected
component (LC). From the theory of percolation it is known that this quantity acts
as an order parameter, signaling that as a certain critical occupation probability
pc is reached, the system undergoes a (topological) phase transitions. For p < pc
the size of the LC is very small, implying that the graph is fragmented, consisting
of a large number of small connected components. Thus, it cannot function as a
large connected unit. As we approach pc the situation changes abruptly and the
largest connected component quickly grows to encompass the whole graph. Starting
at p = pc the largest connected component is said to percolate, indicating that the
graph may functions as one connected unit. Thus, if one removes less than a 1− pc
fraction of nodes or edges from a P. polycephalum network, it is guaranteed to contain
a large connected component whose size is comparable to the system size. Hence,
the value of pc can be used to quantify the degree of damage a P. polycephalum
network can sustain whilst being able to maintain communication between almost
all of its nodes.
To determine the value of pc we study the size of the second largest component

(sLC). The theory of percolation predicts that this quantity diverges for p = pc on
graphs of infinite size. On finite size graphs it becomes maximal. To obtain the
location of the maximum, we fit the peak with a parabolic function

f(p) = a (p− d)2 + c , (4.4)

97

4. Network Analysis

(a) (b)

(c) (d)

Figure 4.18.: Percolation properties for a sample graph from data series 22 (top
row) and from data series 35 (bottom row). The abscissa gives the occupation
probability p. The ordinate shows the normalized size of the largest connected
component (LC, l.h.s. column) or the normalized size of the second largest connected
component (sLC, r.h.s. column). Red squares denote random node percolation, blue
circles random edge percolation. For the second largest component sizes, parabolic
fits approximate the location of the peaks as illustrated by dashed lines. Errors
show one sigma standard deviations.

98

4.3. Results

where the value of the fit parameter d approximates the value of the critical threshold
pc. It is also apparent that the critical threshold for random node percolation is larger
than the one for random edge percolation. This is a general property of percolation
and serves as a sanity check, suggesting that our simulations were performed correctly.
It also dictates that P. polycephalum graphs are more resilient to the removal of
edges than to the removal of nodes.

It is known that the critical threshold pc depends on the topology of the graph,
the dimension of the space and the type of percolation, e.g. node or edge percolation.
Figure 4.18 clearly shows that for a sample graph from data series 22, containing
some of our largest graphs, the size of the LCC increases faster around pc than for a
graph from data series 35 containing much smaller graphs. At the same time the
peak in the size of the sLC is less pronounced for the smaller graphs. These so-called
finite size effects are expected and introduce a dependence on the graph size to pc.
As a result, what we are measuring for individual graphs is an effective finite size
percolation threshold pc(L). Here L denotes the number of nodes n in case of node
percolation and the number of edges m in case of edge percolation. Naturally, we
are interested in the so-called thermodynamic limit, i.e. pc(L) for L→∞.

To get an impression of the dependence of the system size L, Figure 4.19 shows
the values of pc for the collective data. It can be seen that the critical values vary
with the size of the system as expected. For small L critical values are smaller than
for larger L where they seem to become constant. Extracting this constant value for
L→∞ is the objective of finite size analysis. In it, relying on the theory of critical
phenomena, a scaling function is derived, which captures finite size corrections as a
function of the system size L and a small set of critical exponents.

Figure 4.19.: Dependence of the critical threshold pc(L) for all available P. poly-
cephalum graphs on the size of the graph L. Blue circles refer to random node
percolation, red squares to random edge percolation. Dashed lines indicate scaling
fits.

99

4. Network Analysis

As a possible scaling law we propose an Ansatz of

pc(L) = a+ bLc + dLe + flog(L)g , (4.5)

where we add a logarithmic term to the polynomial expression to allow for sub-
leading corrections, without which scaling fits may fail, particularly on small size
systems. Furthermore we restricted the exponents c, e and g to negative numbers to
obtain a finite value of pc(L) as L→∞. The resulting fits are shown in Figure 4.19.
Note that for small L the fit is lacking as it overestimates the values of pc(L).
Furthermore it appears that for large L the available data points are underestimated.
The effect is small but seems to be systematic. It likely causes us to underestimate
the final critical thresholds in the thermodynamic limit. The thresholds are pc =
0.7118± 0.0544 for random node percolation and pc = 0.6584± 0.0217 for random
edge percolation. Note that compared to other numerical percolation results, the
error of both quantities is very large and thus the obtained values are to be taken
as a rough approximation only.
Let us discuss potential reasons for the large uncertainty in the critical values.

First, the graphs we use might be too small. It is known that the reliability of
percolation studies increases with larger system sizes. However, the values for pc(L)
in Figure 4.19 appear to be relatively stable in the limit of large L. This does
suggest that the graphs are large enough to observe finite size scaling properly. On
the other hand, there is only a limited sample of larger graphs which this observation
is based on. Also smaller graphs dominate our data in comparison to large graphs
may lead to diminished accuracy of the fits. We have experimented with excluding
the smaller graphs from the set, but imposing arbitrarily chosen size thresholds
did not significantly improve the fits. A real improvement can probably only be
achieved by increasing the number of large graphs that enter the analysis.

Second, it is possible that our choice of a scaling law is suboptimal. After search-
ing the literature, we only found one alternative option to our scaling choice in
an earlier percolation study focusing on graphs that are topologically similar to
P. polycephalum networks. While the alternative looked promising on paper, it was
not able to satisfyingly fit our data. Thus we had to eliminate this option. An
additional downside of the general scaling law we proposed is the resulting difficulty
in interpreting the fit results in terms of meaningful critical exponents. Further
studies are necessary to obtain reliable results in this regard.
Third, it is conceivable that scaling fails because of a natural variability present

in P. polycephalum graphs. It is apparent from Figure 4.19 that points with similar
L can still differ considerably in pc(L). This is surprising because, if we assume that
there is one complex physical process responsible for the observed topology of the
graphs, one would expect it to produce networks that exhibit the same percolation
properties for systems of identical size. Either this assumption is incorrect, or we
must admit that other, possibly random, effects are responsible for the observed
deviations. Candidates are minor variations in the experimental setup during cul-
turing or other unknown environmental effects influencing the network formation
of P. polycephalum.

100

4.4. Discussion

Finally, let us compare the obtained approximate critical thresholds with those
of two other structures which are planar, 3-regular and well-studied in the con-
text of percolation: The honeycomb lattice with pc = 0.6962(6) and pc = 1 −
2sin(π/18) ≈ 0.6527 and the 2D Voronoi Tessellation1 with pc = 0.71410(2) and
pc = 0.666931(5) [24], [55]. Cited values denote node and edge percolation respec-
tively. The similarity between the critical thresholds indicates that these structures
exhibit a similar degree of resilience against random attacks. Where hexagonal lat-
tices are clearly too regular to resemble P. polycephalum, Voronoi graphs are more
interesting. It is intriguing to see that the percolation of P. polycephalum networks
seems almost identical to percolation on Voronoi graphs. Are there similarities be-
tween the way P. polycephalum grows in search of food and the way Voronoi graphs
form? It is worthwhile to investigate these question in detail in the future.

4.4. Discussion

In this chapter we investigate 36 time-series of P. polycephalum graphs based on
the Kist Europe data set available in the Smgr. This amounts to a total of 1998
graphs under consideration, which to the best of our knowledge, makes this study
the largest of its kind available today. We present a investigation of this data leading
to a comprehensive collection of various descriptive properties of P. polycephalum
networks. Let us first discuss the results individually and then comment on their
combined usefulness.

Paths can be regarded as the atomic building blocks of P. polycephalum networks
since they correspond to veins carrying protoplasm. We find that our data does
not allow to unambiguously determine the underlying theoretical distribution of
path lengths and average path widths, however, fitting gamma distributions slightly
outperforms other distribution choices. Relying on gamma fits, we explore the time
development of the distributions and find behavior that is consistent with network
coarsening for a large number of data series. We determine a range of parameters
that captures the distributions of path lengths and average path widths one may
expect to observe in P. polycephalum networks. In particular we find a linear relation
between fit parameters for the average path width. Within the range of observed
values, this means that the variation in the path width distribution is small, i.e. the
mode of the distribution is confined to a small interval. This is not the case for path
lengths, which may display larger variations. With regards to network coarsening, it
follows that the tendency to replace short veins with long ones is more pronounced
than the tendency to replace thin veins with thick ones.

In order to obtain more information about the structure of P. polycephalum net-
works we introduce the study of its faces which correspond to cycles formed by veins.
Here we determine the distribution of physical aspects of faces such as the number
of paths in a face (face degree) as well as its area and circumference. Unfortunately,

1 The point set for the tessellation is Poisson distributed in the plane.

101

http://smgr.mpi-inf.mpg.de

4. Network Analysis

we are not able to determine the underlying distribution with certainty, but find that
gamma distributions capture face degree, area and circumference well. Similarly to
the path properties we report on the range of parameters that quantify the variance
in the observed distribution and explore their time dependence. We find that the
majority of faces are of degree 5, while the faces of degree 6 account for the majority
of the area covered by P. polycephalum. We quantify the similarity in shape between
faces and regular polygons and find that the most frequently occurring faces tend
to be rather regular.
To study the degree of spatial homogeneity of P. polycephalum graphs we cut

each network of a given time-series in 100 equidistant horizontal and vertical cuts.
For each cut set we compute the following values: Its size and the sum of the lengths,
respectively widths, of the edges in the set. Studying the change in cut values as one
moves horizontally or vertically allows us to shed light on the degree of homogeneity
with respect to these directions. We find that there is a pronounced difference
between the two different cut directions. Vertical cuts seem largely stable in value
as one moves through the cuts, while horizontal cuts show a pronounced tendency
to change. Since vertical cuts are perpendicular to the growth direction of the slime
mold, balancing the cut values is beneficial for pushing flow towards the growing
front in order to advance it further. At the same time balancing cuts perpendicular
to the growth direction seems to be of minor importance for P. polycephalum.
This indicates that foraging takes precedence over improving circulation. While we
establish a first quantitative connection between transport capabilities and growth
direction, a more detailed investigation of such a connection suggests interesting
future research.

Finally, we look towards a topological property of P. polycephalum networks and
investigate its resilience to random damage using concepts from percolation theory.
We do observe finite size effects and perform a finite size scaling analysis. In the
thermodynamic limit of infinite system size, we obtain pc = 0.7118 ± 0.0544 for
random node percolation and pc = 0.6584±0.0217 for random edge percolation. The
results imply that a fraction of 1− pc of nodes respectively edges can be removed
at random before the network of infinite size loses its connectivity. For finite size
networks the obtained thresholds yield a reliable approximation of how much damage
can be sustained before circulation is critically compromised. It is interesting to note
that the obtained critical thresholds are very close to those known for 2D Voronoi
tessellations [24]. Thus a closer investigation of the similarities might be rewarding.

While the obtained results are individually interesting and novel, they are selected
such that their combination yields a comprehensive characterization of P. poly-
cephalum networks and useful base of knowledge to work with. In particular it
becomes possible to answer the question whether a given weighted planar network
is similar to the networks contained in the Kist Europe data set. Computing
the distributions of various path and face properties in conjunction with cut and
percolation properties yields a “fingerprint” which can be compared with the data
presented in this manuscript. Thus, the combined information is suitable to guide
and evaluate research geared towards modeling aspects of P. polycephalum. Models

102

4.5. Acknowledgments

that make predictions in terms of the observables studied here may be put to the
test effectively. Furthermore, detailed knowledge of individual graph properties and
what ranges of values to expect from them may be useful on their own.

To help facilitate all of this, we make all our results accessible online via the
Smgr. This includes the raw numerical data as well as individual and cumulative
results of all computed observables for all available data series, down to the level
of single P. polycephalum graphs. In addition to that, we include tools which allow
the interested reader to repeat our measurements as well as to conduct experiments
that go beyond the ones presented here.

4.5. Acknowledgments

We are grateful towards Prof. M. Grube and Dr. C. Westendorf for their hospitality,
expert advice on slime molds and their encouragement in the early stages of this
work. We thank to Prof. H.-G. Döbereiner for valuable feedback and suggestions.
We acknowledge Prof. A. Manz and Prof. L. Abelmann and their group at the Kist
Europe for stimulating discussions. Lastly, we are grateful towards Dr. A. Neumann,
Dr. M. Függer and Prof. A. Maas for their encouragement and valuable technical
suggestions.

103

http://smgr.mpi-inf.mpg.de

5 Modeling Flows

In this chapter we propose to model the oscillatory flows observed in the vein
networks formed by the slime mold Physarum polycephalum as currents in an electric
circuit. Our approach is inspired by the modeling of the human cardiovascular
system and relies on electronic elements such as resistors, capacitors and current
controlled voltage sources to capture the properties of interacting flow-carrying veins
of the organism. In particular we map the effects of oscillatory peristaltic pumping
to the behavior of a simple interacting electronic circuit, the so-called Physarum
element. Connecting these elements according to a given graph, yields an electric
Physarum network. The currents induced by certain networks exhibit complex
emergent flow patterns reminiscent of the flows observed in live P. polycephalum.
Our model is simple, fully distributed and robust to changes in the topology of the
Physarum network. Thus it constitutes a promising basis for the future development
of distributed natural computing algorithms.
This chapter documents joint work with Prof. M. Grube, Dr. M. Függer and

Prof. K. Mehlhorn. The first provided many valuable insights regarding the biology
of P. polycephalum, while the latter two were the driving force behind the analytic
work presented in this chapter.

5.1. Introduction

Slime molds are interesting and complex organisms providing a rich substrate for
interdisciplinary research. In the recent past, one member of the family, called
Physarum polycephalum [81], has been discovered as a suitable medium for natural
computing. Its outstanding morphological dynamics have been repeatedly connected
to optimization processes capable of solving complex problems. Prominent examples
include computing shortest paths [36], [124], [174], designing transport networks [119],
[176], or controlling robots [177], amongst others.

One striking feature of P. polycephalum is its ability to form and maintain a mas-
sive cell body in the form of a dynamic complex network of veins. These networks
are highly adaptive and may change drastically in response to changing environ-
mental conditions. This extraordinary functional plasticity allows P. polycephalum
to navigate its environment successfully in search for food. Efforts to improve our
understanding of formation, structure and function of these networks are manifold
and ongoing [5], [19], [22], [108], [176].

Similar to the way a typical mammalian vascular network ensures the circulation
of blood, the veins of the plasmodium allow protoplasmic fluid to freely flow [97].

105

5. Modeling Flows

The resulting fluid circulation is vital to the organism as a whole since it ensures
that nutrients, nuclei and other relevant factors are equally available across an entire
individual. Note this circulation is maintained naturally despite the ever changing
and adapting underlying network of veins.

The protoplasmic flow itself is driven by quasi-periodic cross-sectional contractions
that occur with a period of approximately 100 s [163], [183]. They are generated
by a mesh consisting of actin and myosin fibers forming the walls of the tubular
veins. Contractions cause a peristaltic pumping effect leading to net fluid transport,
the so-called shuttle streaming [96]. Resulting peristaltic pressure waves can be
observed across the entire network inducing complex flow patterns [125]. These
include periodic flow arrests and reversals in single veins on a time scale of (50± 5) s.
It is believed that efficient and robust transport of protoplasm across the entire

organism emerges from the interplay of dynamic network topology, quasi-periodic
local contractions and complex flow patterns [5], [172]. Unfortunately, the details
of such a process remain in the dark.

From a biological point of view it can be argued that evolution has optimized the
behavior of P. polycephalum at least to the point where fluid transport is efficient
and robust enough to survive. Another evolutionary advantage can be seen in the
self-organizing character of the slime mold since the evolved neural circuitry, vital to
the survival of more complex organism, is simply not necessary to P. polycephalum.
Indeed, P. polycephalum lacks any type central control capable of coordinating its
apparently coordinated behavior. It is intriguing to ask how this organism manages
to organize efficient and robust fluid transport in a fully decentralized manner.
From a computing point of view such properties are non-trivial and highly de-

sirable. What P. polycephalum seems to produce and maintain naturally is an
(approximate) solution to the problem of distributing resources in a dynamically
changing planar graph. This is an interesting and complex transport problem with
various conceivable practical applications, particularly in the domain of operations
research. For an overview of similar transport problems and their computational
complexity see [12], [57], [79].
As a result, modeling the behavior of the slime mold with the goal of deriving

algorithm for transport problems is an interesting proposition. Provided such an
algorithm can be obtained, it should have the following properties:

• The algorithm maintains a dynamic circulation of flow including flow reversals
mimicking the flows observed in live P. polycephalum. Since resources are
transported with the flow, they go wherever the flow reaches.

• The algorithm is robust against changes in topology. Neither natural changes of
network topology nor accidental disconnection of veins renders P. polycephalum
in a state from which it cannot recover. The algorithm should share this quality.

• The algorithm is distributed and requires no central control. As a result,
complex global coordination of any sort must emerge from local interactions.

106

5.2. Overview of Modeling Approaches

• The algorithm has a degree of efficiency. Based on the assumption that a
certain degree of efficiency is necessary for P. polycephalum to survive, one
may hope that models and algorithms mimicking the organism, inherit this
efficiency at least to some extent.

In this manuscript we present a model of P. polycephalum intended to support
the development of distributed natural computing algorithms. It is inspired by the
modeling of the human cardiovascular system and yields emergent flow patterns
similar to the ones displayed by the organism. This includes flow reversals and
anti-phase oscillations. Our model aspires to the properties listed above and aims at
replicating the way P. polycephalum distributes resources across its vein network. In
particular it maps the oscillatory behavior of P. polycephalum to simple interacting
electronic circuits designed to mimic the effect of peristaltic pumping. The model is
fully distributed and exhibits emergent dynamic flow patterns. Due to its relative
simplicity it remains amenable to analytic treatment. In silico investigations are
presented in support of the validity of our approach which demonstrate the behavior
of our model.

The presented model may serve as a basis for future investigations in the context
of natural computing. Two primary directions discussed in Section 1.2 are possi-
ble: a) computing inspired by nature and b) the synthesis of nature by means of
computing. For the former, one may utilize the model in an effort to develop novel
distributed natural computing algorithms inspired by P. polycephalum. The latter
may aim towards refining the model with the goal of improving both its accuracy and
predictive power. Both approaches present distinct challenges and both approaches
deserve future exploration.

5.2. Overview of Modeling Approaches

Before we introduce our approach of modeling the oscillations and flow dynamics
observed in P. polycephalum, let us survey three classes of existing approaches that
provided inspiration.
The first class consists of interpreting the plasmodium of P. polycephalum as a

living ensemble of interacting oscillators. These can take different forms, ranging
from intricate chemical oscillators [158], to various mechanical ones [166], [168],
[173].
As an example, we mention interpreting the plasmodium of P. polycephalum as

a living system of delay-coupled mechanical oscillators [166], see Section 1.3.1 for a
detailed description. Here it suffices to say, that a micro-fabricated structure was
prepared, consisting of two identical circular reservoirs connected by a channel of
variable width and length, see Figure 1.6b. In the experiment, the two reservoirs
and the channel are populated with plasmodium. The reservoirs act as two distinct
P. polycephalum oscillators while the channel ensures a controllable coupling between
the two with its width determining the coupling strength, while its length controls

107

5. Modeling Flows

the time delay. In the experiment P. polycephalum shows rich self-synchronizing os-
cillation patterns between the distinct reservoirs with both in-phase and anti-phase
entrainment. A strong dependence on the geometry of the channel was observed.
These results were found to agree with the theoretical predictions of an equiva-
lent model consisting of a system of two fully distributed delay-coupled oscillators
representing the two reservoirs and the channel. The findings confirmed that the
behavior of delay-coupled oscillators yields a good description of the oscillation
patterns exhibited by P. polycephalum in the experiment.

One disadvantage of oscillator approaches is the difficulty of obtaining the actual
flow patterns from the knowledge of the oscillation phases. Furthermore, systems
with a non-trivial number of interacting oscillators quickly become intractable ana-
lytically.
The second class follows a different approach and focuses on fluid mechanics

including accurate modeling of peristaltic pumping [5], [172]. Here the central aim
is to connect the contractions of vein segments to the resulting hydrodynamic fluid
flow.
Recent work along those lines showed that fluid flow and transport through a

network of vein segments is optimal if the wavelength of the peristaltic wave is of the
order of the size of the network [5]. The flow patterns predicted by a hydrodynamic
model, including the effects of peristalsis, showed flow reversals and arrests which
were found to be in good agreement with experimental observations.

The subtle downside of this class of models is the fact that they are not fully
decentralized. Solving them requires one to fix certain initial conditions for the
hydrodynamic equations. In other words the initial states for a selected set of points
need to be chosen and the entire system evolution is made to depend the choices
made. Note how these choices introduces a central dependence on a small set of dis-
tinct points which contrasts truly decentralized systems such as live P. polycephalum.
For them, no such distinct points exist and the system state is determined by a
self-organizing process which is often insensitive to starting conditions.

The third class assumes that the hydrodynamic analogy holds true for veins and
networks formed by P. polycephalum. Based on this assumption, notions from the
theory of electric circuits are used to model P. polycephalum as an electrical network
rather than a hydraulic one. Table 5.1 translates between both descriptions. We
remark that the idea of modeling single viscoelastic tubes and complex networks
formed by them as electrical circuits is not novel. It has been introduced and
subsequently refined with great success in the context of modeling the human
cardiovascular system[63], [76], [104], [138], [161]. Given the apparent similarities
between the networks formed by P. polycephalum and human vascular networks,
it is natural to explore this approach for the modeling of slime molds such as
P. polycephalum.

Shifting the description of the dynamics of P. polycephalum from the hydraulic to
the electric world offers several advantages: First, one may dismiss the challenging
hydrodynamic equations in favor of simpler electrical ones. Second, electrical circuits
are subject to Kirchhoff’s circuit laws which can be used to simplify their treatment

108

5.2. Overview of Modeling Approaches

Hydrodynamic System Electrical analogue

Fluid Charge
Fluid flow Charge flow, i.e. current
Pressure Potential
Pressure difference Potential difference, i.e. voltage
Viscosity Resistance
Distensibility Capacitance
Pump Voltage source
Inert mass Inductance

Table 5.1.: Illustrating the analogy between hydraulic and electric systems.
Adapted and extended based on [138].

analytically. Third, the approach is very flexible and allows one to study different
properties of P. polycephalum within the same framework.
Extremely recent examples include the study of the mechanisms of information

processing in P. polycephalum [133].1 Relevant electronic models have also been
formulated to describe various abilities of P. polycephalum which were demonstrated
in earlier experiments. Examples include the prediction of periodic changes in its
environment [140], and the solving of mazes [130].
The difficulty with this class of models lies with the fact that the electronic

elements they contain (resistors, capacitors, inductors, current controlled voltage
sources) require a number of parameters to be set. If relevant statements with actual
predictive power are to be obtained by using such a model, extreme care must be
taken when deciding on the parameters. Unfortunately, this task remains difficult.

In the following we present an electric model of P. polycephalum inspired by earlier
attempts of modeling the human cardiovascular network [138], [161]. Our model
focuses on capturing the self-organized oscillatory dynamics of P. polycephalum
with the goal of obtaining emergent flow patterns similar to those observed in the
slime mold. In particular we mimic the effect of peristalsis through the introduction
of current controlled voltage sources. Our approach embodies the most desirable
features of previous models, namely a direct representation of fluid flows governed
by a fully decentralized, tractable dynamics. At this point, we operate our model
with a set of parameters which is suitable for exploring its behavior. Determining
parameters that allow reliable physical predictions is not our focus at this point.

We begin by defining a continuous time model from which we subsequently derive
a discrete version suitable for numerical treatment.

1 At the time of writing, only the abstract of this work was available.

109

5. Modeling Flows

+−

up

ip R

+ −

u′p

i′pR
C

+

−
uC

iC

+

−

x

+

−

y

Figure 5.1.: Electrical model of a P. polycephalum vein segment. The two resistors
R and the capacitor C form the three-element Windkessel model [135]. The two
current controlled voltage sources up and u′p augment the model to include the
effects of peristaltic pumping.

5.3. Continuous Model

We model a single vein of P. polycephalum, respectively a sufficiently short segment
of a vein, by an electrical circuit. Here we rely on the hydraulic analogy where current
represents protoplasmic flow and voltage refers to differences in fluid pressure. The
basis of our model is formed by the three-element Windkessel model [63], [75],
comprised of two resistors and a capacitor. The electrical resistance is analogous to
hydrodynamic resistance, a result of viscous dissipation inside the tubular veins of
P. polycephalum. Capacitors accommodate the fact that the veins of P. polycephalum
are not rigid but exhibit a degree of volume compliance. Their addition also prevents
changes in current to propagate through the entire network instantaneously. While
this is the case in purely resistive networks it certainly seems unphysical for flows
in P. polycephalum. At this stage, we ignore the inertia of the protoplasmic fluid
which in the Windkessel model is captured by inductors. For a full derivation of the
Windkessel model we refer the reader to [135].

We extend the Windkessel model by adding active components, namely current
controlled voltage sources. These voltage sources create potential differences leading
to a current. In this way, they account for the fact that veins of P. polycephalum act
as peristaltic pumps capable of creating pressure differences which induce fluid flow.
Figure 5.1 depicts the resulting circuit. Note that the circuit is symmetric, ensuring
that its behavior does not depend on the sign of the current flowing through it.

Both current controlled voltage sources are identical and we specify their behavior
by:

u∗p(t) = max(min(β · ip(t), Û),−Û) (5.1)
dup(t)

dt
= α(u∗p(t)− up(t)) , (5.2)

where α, β > 0 and Û > 0 are constants. To ensure that the currents induced by
the current controlled voltage sources are not completely damped by resistances, we

110

5.3. Continuous Model

further assume that

β > R . (5.3)

Note that Equation (5.1) specifies the limit behavior of the current controlled
voltage source. The voltage u∗p(t) is directly proportional to current ip(t), but cut
off symmetrically at Û and −Û . Thus the output of the voltage source is capped
yielding both negative as well as positive voltages depending on the sign of the
current. The constant β controls how sensitive the current controlled voltage source
reacts to changes in current, see Figure 5.2a.
These choices were inspired by empirical observations linking the diameter of

veins of P. polycephalum to the fluid flow through them. If throughput is high/low,
the vein diameter is expected to grow/shrink [124]. As a result, effectiveness of the
peristaltic pumping is altered since the generated flow is directly proportional to the
diameter of the vein. To capture this positive feedback our model is setup such that
current is proportional to the voltage of the current controlled voltage source which
in turn affects the current. Note that an increase/decrease in vein diameter also
decreases/increases the hydrodynamic resistance of the vein. Thus, the electrical
resistors R in our model should have a dependency on the current. At this stage of
modeling, however, we choose to ignore this dependency in favor of a simpler model.
Taking into account the interplay between current and resistance would yield a more
accurate model and thus is a strong contender for future augmentations.
Equation (5.2) accounts for the inertia of the current controlled voltage source

through a first order differential equation. To model the fact that pumping in
P. polycephalum does not adapt arbitrarily fast to changes in fluid flow, we chose
to delay the reaction of the current controlled voltage source through the use of a
low-pass filter, see Figure 5.2b.

5.3.1. Putting the Model on a Graph

In the previous section we have defined the basic electronic building block of our
model representing a vein segment of P. polycephalum. In the following we shall refer
to it as Physarum element. Next we define how Physarum elements are combined
according to a graph G in order to form electronic networks representing arbitrary
vein network of P. polycephalum.

A Physarum network is specified by a directed graph G(V,E) where each edge
e = (i, j) ∈ E represents a Physarum element with i, j ∈ V . With respect to the
Physarum element shown in Figure 5.1, x corresponds to node i and y to node j. We
connect all segments accordingly when they share a common node. Note that solely
for the purpose of analysis do we assume that edges are directed. By construction,
two Physarum elements which differ only in orientation will behave the same.

Edges are labeled by a choice for parameters R,C, α, β, Û specifying the electric
properties of an Physarum element. Note that at this exploratory stage of modeling,
any sensible choice of constants allows us to study the model. In particular we may
postpone a detailed study of the physical meaning of these constants for now.

111

5. Modeling Flows

Û

−Û

ip(t)

u∗p(t)

(a)

t1

u∗p(t)

up(t)

t

U

(b)

Figure 5.2.: (a) Current controlled voltage u∗p(t) may not increase/decrease indefi-
nitely but is capped at a constant value. The constant β defines the slope of the red
line passing through the origin. (b) A voltage up(t) is gained after applying a first
order low-pass filter to u∗p(t). Note that the slope at time t1, indicated by a dashed
gray line, is proportional to α.

Furthermore, we add initial values for the capacitor voltage uC(t = 0) and the
initial current controlled voltage source voltages up(t = 0). Our actual choices do not
matter since the model is going to adjust these values dynamically in a self-organized
manner.

An execution of a Physarum network is a function that maps each edge in G to
a signal t 7→ uC(t), i.e. tracking the time development of the capacitor voltages in
the network defined by G.

Our exposition follows the notational conventions to refer to the voltage present
at a node v ∈ G by uv, and adding an index e ∈ E for variables of the corresponding
Physarum element. For example, uC,e is the capacitor voltage for Physarum element
e.

We say a Physarum network G converges if for its execution we have that uC,e
converges for all e ∈ G. We say that a Physarum network dies if it converges, and
for all its edges e ∈ G, ip,e = 0.

Figure 5.3 depicts an exemplary Physarum network featuring a node v ∈ G with
three incident Physarum elements denoted by E(v). Observe, that we may apply
Kirchhoff’s voltage law to the junction node v, as well as to the paths over each
voltage source, resistor, and capacitance of each edge. Furthermore, from Kirchhoff’s
current law at the junction v, we have that in-flows must be equal to out-flows at
v, i.e. charge is conserved.

For arbitrary degree, the voltage at node v at time t is denoted by uv(t). It is

112

5.4. Basic Properties of the Continuous Model

+−

up,e

ip,e

Re

Ce

+

−
uC,e

iC,e
+−

up,e′

ip,e′

Re′

Ce′
+

−
uC,e′

iC,e′

+−

up,e′′

ip,e′′

Re′′

Ce′′
+

−
uC,e′′

iC,e′′

+

−
uv

Figure 5.3.: Voltage uv at a node v ∈ G of degree 3 with incident edges e, e′, and
e′′. The r.h.s. parts of the Physarum elements are not shown because they do not
affect uv.

determined by

∀e ∈ E(v) : (uC,e(t)− up,e(t)) + ip,e(t)Re = uv(t) (5.4)∑
e∈E(v)

ip,e(t) = 0 . (5.5)

In the remainder of this work we assume that all Physarum elements are identical,
i.e. have identical sets of constants. This is a strong simplification, but we believe
it is necessary to keep the model simple enough for analytic treatment. Relaxing it
is non-trivial and subject of future improvements.
Thus,

uv(t) =
1

|E(v)|
∑
e∈E(v)

(uC,e(t)− up,e(t)) . (5.6)

5.4. Basic Properties of the Continuous Model

Given the definition of our model, we explore it analytically by establishing some
basic properties and investigate Physarum networks with simple topologies such as
rings and trees.
Let the sum of the charge stored by all capacitors in a Physarum network be Q.

We show that Q is a conserved quantity.

113

5. Modeling Flows

Lemma 1. For all Physarum networks, there exists a Q ∈ R such that,

∀t ≥ 0 :
∑
e∈E

CeuC,e(t) = Q . (5.7)

Proof. Since all capacitors are connected with one end to ground, we may apply
Kirchhoff’s current law to the ground. Thus∑

e∈E

iC,e(t) = 0 ,

holds. Furthermore the relation between capacitor current I and voltage U is given
by I = C dU

dt
. Thus we get ∑

e∈E

Ce
duC,e(t)

dt
= 0 ,

and hence

d

dt

∑
e∈E

CeuC,e(t) =
d

dt
Q = 0 .

Next let us study Physarum networks with the topology of a cycle. Here Physarum
elements are chained one after another with the last edge connecting back to the
start. The analysis implies that these networks show very interesting behavior.

Lemma 2. Let G be a Physarum network that is a cycle. If G converges, then it
converges to either of three steady states:

1. it dies, i.e., for all edges e in G, ip,e = 0,

2. it does not die, and for all edges e in G, ip,e = |E|Û∑
e∈E Re

,

3. it does not die, and for all edges e in G, ip,e = − |E|Û∑
e∈E Re

.

Proof. Let e be an arbitrary Physarum element in G. Since we assume that G has
converged the capacitor voltage uC,e(t) is constant. Thus we have

0 = Ce
duC,e(t)

dt
= iC,e(t) , (5.8)

which implies that no current flows into the capacitors. Since charge is conserved
and G is a cycle, all current must flow through the resistors instead. Thus, for all
edges e ∈ G we have

ip,e(t) = −i′p,e(t) = i∗ , (5.9)

114

5.4. Basic Properties of the Continuous Model

illustrating that all currents have identical strength. In a cycle non-zero current
thus flows either clock-wise or counter-clockwise.

Next we substitute i∗ in Equation (5.1) and obtain

up,e(t) = u∗p,e(t) = max(min(βi∗, Û),−Û) =: up , (5.10)

indicating that the current controlled voltages are also identical and constant for all
e ∈ G. The circuit of the Physarum element also implies that u′p,e(t) = −up = u′p.

We next apply Kirchhoff’s voltage law along the path traversing the whole cycle
and obtain

0 =
∑
e∈E

(up − u′p − 2i∗Re) = 2
∑
e∈E

(up − i∗Re) . (5.11)

Next, we distinguish between three cases for up, according to Equation (5.10):
Case (1): up = βi∗, Case (2): up = Û , and Case (3): up = −Û .

Case (1): Substituting up = βi∗ into Equation (5.11) yields

0 = 2i∗
∑
e∈E

(β −Re) . (5.12)

Since β 6= Re by assumption (5.3), the above equation is only fulfilled if i∗ = 0,
which corresponds to case 1 in the lemma.

Case (2): From up = Û and Equation (5.11) we have

i∗ =
|E|Û∑
e∈E Re

. (5.13)

Since, case (2) only applies when βi∗ > Û , we further obtain

|E|β∑
e∈E Re

> 1 , (5.14)

in correspondence with case 2 in the lemma. Note, that the previous statement is
implied by assumption Equation (5.3).

Case (3): The proof for case up = −Û , corresponding to case 3 in the lemma, is
analogous to case (2).

Lemma 3. Let G be a Physarum network that is a tree. If G converges, it dies.

Proof. Assume that G converges. By definition uC,e(t) is constant for all edges e in
G. We will show by induction on the distance of an edge e to the leaf edges, that
its currents ip,e and i′p,e are 0.

115

5. Modeling Flows

To begin the induction, consider a leaf edge e. Without loss of generality we may
assume that the e is oriented in a way such that node x in Figure 5.1 is of degree 1.
From Kirchhoff’s current law we then have that ip,e = 0. From the fact that G is
converged, we know that iC,e = 0. By Kirchhoff’s current law it follows that i′C,e = 0.
As induction hypothesis, assume that all edges e at distance ` ≥ 0 have ip,e =

i′p,e = 0. Consider an edge e′ at distance ` + 1. Assuming, again without loss of
generality, that e′ is oriented in a way such that its node x is incident to an edge
at distance `. Observe that by the induction hypothesis, ip,e′ = 0. By arguments
analogous to the start of the induction we find that i′C,e′ = 0 and the inductive step
follows.

5.5. Discrete Model

In the following we propose a discrete round model, with rounds r ∈ N. Again, a
Physarum network is specified by a graph G(V,E) whose edges are labeled as in
the continuous time model. For simplicity we assume that all parameters R,C, α, β
and Û are the same for all edges.
The discrete model is derived from the continuous model using forward Euler

integration. Let ε > 0 denote the step-size, i.e. the time between two discrete rounds.
We refer the reader to Appendix D for a basic implementation of the crucial updates
defined in this section.

Intially at r = 0: For each edge e in G do:

1. Set uC,e(r = 0) and up,e(r = 0) as specified by the edge label.

At each round r ≥ 1:

1. Update node voltages (Code Listing D.3): in the continuous model we deter-
mine node voltages according to Equation (5.6). We follow the same approach
in the discrete model. Let v be a node in G. Without loss of generality we as-
sume that all edges incident to v are oriented as in Figure 5.1 with v connected
to x. Then we have

uv(r − 1) =
1

|E(v)|
∑
e∈E(v)

(uC,e(r − 1)− up,e(r − 1)) . (5.15)

2. Update capacitor voltages (Code Listing D.4): in the continuous model, for
each edge e = (v, w) in G, we have

C
duC,e(t)

dt
= iC,e(t) = ip,e(t) + i′p,e(t)

=
uv(t) + uw(t) + up,e(t) + u′p,e(t)− 2uC,e(t)

R
. (5.16)

116

5.6. Basic Properties of the Discrete Model

By first order discretization, we thus obtain

uC,e(r) = uC,e(r − 1)+

+
uv(r − 1) + uw(r − 1) + up,e(r − 1) + u′p,e(r − 1)− 2uC,e(r − 1)

RCε−1
. (5.17)

3. Update current controlled voltages (Code Listing D.5): for each edge e in G:

ip,e(r − 1) =
uv(r − 1) + up,e(r − 1)− uC,e(r − 1)

R
, (5.18)

u∗p,e(r) = max(min(βip,e(r − 1), Û),−Û) , (5.19)
up,e(r) = u∗p,e(r)(1− e−αε) + up,e(r − 1)e−αε . (5.20)

Analogously, for the right voltage source, set

i′p,e(r − 1) =
uw(r − 1) + up,e(r − 1)− uC,e(r − 1)

R
, (5.21)

u′
∗
p,e(r) = max(min(βi′p,e(r − 1), Û),−Û) , (5.22)
u′p,e(r) = u′

∗
p,e(r)(1− e−αε) + u′p,e(r − 1)e−αε . (5.23)

5.6. Basic Properties of the Discrete Model

In the following we establish the discretized version of Lemma 1. This proof is
important since it guarantees that the discretization we introduced in the previous
section to solve the model does not break conservation of charge numerically. In
particular, we know that the sum of the charges stored in the capacitors is still
conserved.

Lemma 4. For all Physarum networks, there exists a Q ∈ R such that

∀r ≥ 0 :
∑
e∈E

CeuC,e(r) = Q . (5.24)

Proof. Let r > 0. By rewriting Equation (5.17) we have

uC,e(r) =

(
1− 2ε

RC

)
uC,e(r − 1) (5.25)

+ ε
uv(r − 1) + uw(r − 1)

RC
+ ε

up,e(r − 1) + u′p, e(r − 1)

RC
.

We may sum over all edges e ∈ E on both sides to obtain

117

5. Modeling Flows

∑
e∈E

uC,e(r) =

(
1− 2ε

RC

)∑
e∈E

uC,e(r − 1) (5.26)

+
ε

RC

(∑
e∈E

uv(e)(r − 1) +
∑
e∈E

uw(e)(r − 1)

)
+

ε

RC

∑
e∈E

(
up,e(r − 1) + u′p,e(r − 1)

)
.

Here v(e) denotes the tail of edge e and w(e) the head. We apply this distinction
when we sum over all edges e ∈ E in Equation (5.15), to obtain∑

e∈E

uv(e)(r − 1) =
∑
e∈E

1

|E(v(e))|
∑

e′∈E(v(e))

(uC,e′(r − 1)− up,e′(r − 1)) , (5.27)

∑
e∈E

uw(e)(r − 1) =
∑
e∈E

1

|E(w(e))|
∑

e′∈E(w(e))

(uC,e′(r − 1)− u′p,e′(r − 1)) . (5.28)

Where we assume that the edges E(v(e)) are out-edges while the E(w(e)) are in-
edges. This assumption is convenient for the purpose of analysis. however, it has no
further implications since Physarum elements are symmetric.

Next we substitute (5.27) and (5.28) into Equation (5.26) and get

∑
e∈E

uC,e(r) =

(
1− 2ε

RC

)∑
e∈E

uC,e(r − 1) (5.29)

+
ε

RC

∑
e∈E

1

|E(v(e))|
∑

e′∈E(v(e))

(uC,e′(r − 1)− up,e′(r − 1))


+

ε

RC

∑
e∈E

1

|E(w(e))|
∑

e′∈E(w(e))

(uC,e′(r − 1)− u′p,e′(r − 1))


+

ε

RC

∑
e∈E

(
up,e(r − 1) + u′p,e(r − 1)

)
.

Seeking to simplify the double summations appearing in Equation (5.29), we first
point out that for the sums regarding the uC,e′(r − 1) we have

∑
e∈E

1

|E(v(e))|
∑

e′∈E(v(e))

uC,e′(r − 1) =
∑
e′∈E

uC,e′(r − 1)
∑

e∈E;v(e)=v(e′)

1

|E(v(e))|
(5.30)

=
∑
e′∈E

uC,e′(r − 1) =
∑
e∈E

uC,e(r − 1) ,

118

5.7. Preliminary Simulation Results

where the summations have been interchanged to get rid of one of the sums. Similarly
we examine the sums regarding the up,e′(r − 1) and find

∑
e∈E

1

|E(v(e))|
∑

e′∈E(v(e))

up,e′(r − 1) =
∑
e′∈E

up,e′(r − 1) =
∑
e∈E

up,e(r − 1) , (5.31)

and analogously for the sums regarding the u′p,e′(r − 1) it reads∑
e∈E

1

|E(w(e))|
∑

e′∈E(w(e))

u′p,e′(r − 1) =
∑
e′∈E

u′p,e′(r − 1) =
∑
e∈E

u′p,e′(r − 1) . (5.32)

Finally, we substitute (5.30), (5.31) and (5.32) into Equation (5.29) to arrive at

∑
e∈E

uC,e(r) =

(
1− 2ε

RC

)∑
e∈E

uC,e(r − 1) (5.33)

+
ε

RC

(∑
e∈E

uC,e(r − 1)−
∑
e∈E

up,e(r − 1) +
∑
e∈E

uC,e(r − 1)−
∑
e∈E

u′p,e′(r − 1)

)
+

ε

RC

∑
e∈E

(
up,e(r − 1) + u′p,e(r − 1)

)
=
∑
e∈E

uC,e(r − 1) .

Thus we have∑
e

uC,e(r) =
∑
e

uC,e(r − 1) =
∑
e

uC,e(r − 2) = . . . =
∑
e

uC,e(0) = const. .

(5.34)

From the fact that that all Ce are constant and equal the lemma follows immediately.

5.7. Preliminary Simulation Results

In this section we present the results of preliminary in silico explorations of the
discretized model presented in Section 5.5. We investigate several different basic
circuits of Physarum elements and discuss our findings. The circuits are based on
small graphs in the hope that one may still reason about them analytically. This
is a preparatory step towards a better understanding of the behavior of our model.
Ultimately, the hope is to gain insights useful for deriving an algorithm based on
the model.
The following facts suggest, that our implementation is correct: First, we find

that during the execution of our model Kirchoff’s laws are obeyed. Second, the

119

5. Modeling Flows

Property value

up = u′p 0
ip = i′p 0
uC rand. uniform real uC ∈ [−0.5, 0.5)
C 10
R 1

Û 1
α (RC)−1

β 3R
x = y 1

Table 5.2.: Initial settings for discrete simulations at r = 0.

implementation maintains the distinct invariants we have established analytically
as given by Lemma 1. Finally, for converged cycles of Physarum elements we observed
precisely the behavior predicted by Lemma 2. This constitutes a nice example of how
numerical simulation and analytical work are in an symbiotic relationship. Insights
gained in one frequently suggest directions of exploration to the other.
All the topologies we present are drawn as directed graphs. The orientation of

an edge e = (x, y) corresponds to the definition of the Physarum element given in
Figure 5.1. We stress that the orientation has no effect on the results of the simulation
since Physarum elements are symmetric as are the chosen initial conditions. In the
plots presented shortly we always show the value of ip for all involved Physarum
elements to illustrate the current flow. Thus if ip > 0 current flows in the direction
the edge is pointing to, i.e. from node x to node y. The reverse is true if ip < 0.
This information is important when interpreting how the flows split up at junctions
of the Physarum network.
Unless noted otherwise, all presented simulations were initialized with the same

starting values for all Physarum elements. The only exception are the initial capac-
itor voltages which were set at random. They are summarized in Table 5.2.2 The
number of executed rounds can be read off the plots directly.
For some topologies we observe periodic oscillations. To determine the period

of these oscillations we explored three different methods of period detection. They
are based on signal auto-correlations, FFT and simply determining the distance
between subsequent peaks respectively. It turned out that while all three methods
usually agree, the simplest method of extracting the period from the peaks directly
yielded the most robust results and was thus adopted.

2 Unfortunately, many plots appear to start at ip(r = 0) 6= 0 instead of ip(r = 0) = 0. This illusion
is the product of the circuits instantly jumping from ip(r = 0) = 0 to ip(r = 1) 6= 0 in a single
round.

120

5.7. Preliminary Simulation Results

5.7.1. Cycle of Physarum Elements

We begin by investigating the behavior of a Physarum network that is a cycle.
Exemplary we present the result obtained for a 4-cycle consisting of 4 Physarum
elements, see Figure 5.4a. Note that together with Figure 5.4b, a color coding is
defined which serves as a legend for the remaining plots of Figure 5.4.
For a converged 4-cycle of Physarum elements we obtain precisely the results

predicted by Lemma 2. Namely, current can either flow clockwise, counter-clockwise
or not at all if the Physarum network is converged.

These scenarios are reflected in the behavior of the capacitor voltages uC,e(t) given
by Figure 5.4d, Figure 5.4f and Figure 5.4h. It can be seen that convergence is rapid
for all three depicted cases. Note, that only in Figure 5.4d the values converge to 0.
This is the case in which the respective currents ip,e(t) converge to zero as well, see
Figure 5.4c. The currents indicate that the flow through the entire cycle dies out.
This is expected, since for this case exclusively, β = R was chosen as a simulation
parameter. As a result, currents are quickly damped to zero as can be seen in the
proof of Lemma 2.
Figure 5.4e and Figure 5.4g illustrate the remaining cases treated in said proof.

For a given period the Physarum elements of the cycle interact to eventually “agree”
on a common, constant value of current. This value can either be positive, leading
to counter-clockwise flow through the cycle or negative, resulting in clockwise flow.
At present, we do not know how the circuit decides on the sign of the current. Either
the initial choice of the capacitor voltages determine the sign or it is random. This
question deserves further investigation in the future.

We have repeated this experiment for various n-cycles with n ∈ [3, 10] obtaining
identical results. We find that edges agree rapidly on the flow for all tested n. It seems
that for larger n the circuit needs progressively longer to converge. Unfortunately,
no precise statements about convergence and its dependence on the size of the cycle
are available at this point.
Finally, we remark that the above results are only valid for converged cycles.

Extreme initial conditions can also be chosen such that the Physarum network does
not converge. For a 4-cycle anti-phase oscillations between pairs of edges have been
forced in this way.

121

5. Modeling Flows

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.4.: Cycle of 4 Physarum elements.

122

5.7. Preliminary Simulation Results

5.7.2. Diamond of Physarum Elements

The graph we investigate next is the so-called diamond graph depicted in Figure 5.5a.
This topology is also widely known under the name of Wheatstone graph or Wheat-
stone bridge. It consists of a 4-cycle with an additional “bridge” edge (2, 0) added.
Again Figure 5.5b defines a color coding which serves as a legend for the remaining
plots of Figure 5.5. We show the results of three distinct runs of the simulation.

Similar to the 4-cycle explored previously, we investigate several scenarios. In all
of them the capacitor voltages uC,e(t) quickly converge, see Figure 5.5d, Figure 5.5f
and Figure 5.5h. However, due to the additional edge introduced to the Physarum
network, edges do not converge to the same values anymore but split up in three
distinct groups. The first group is formed by edges (0, 1) and (1, 2). The second
group are edges (2, 3) and (3, 0). And the last group is the bridge edge (2, 0). Note
that in all scenarios the voltages show that the first two groups are symmetric
around the value the center edge converges to. Although the capacitor voltages
show identical behavior, very different currents can be accommodated.
Figure 5.5c shows a scenario, where 1.5 units of current flow through the center

edge to split evenly at node 0. The split flow then circles back to node 2 showing
appropriate signs and values. Figure 5.5e shows the same situation but with the
flow on the center edge reversed. Naturally, there is no reason to assume that flow
must split up symmetrically. Figure 5.5g shows one of many possible unbalanced
scenarios. As in the case of the 4-cycle, we do not know the details of the splitting
process nor its dependence on initial conditions at this point.

123

5. Modeling Flows

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.5.: Diamond of Physarum elements.

124

5.7. Preliminary Simulation Results

5.7.3. Paths of Physarum Elements

Next we look at paths of Physarum elements. Here no circulation is possible but
neighboring Physarum elements still interact with each other leading to non-zero
currents. Figure 5.6a depicts a path consisting of 5 chained Physarum elements.
Again Figure 5.6b defines a color coding which serves as a legend for the remaining
plots of Figure 5.6. We show the results of three different sub-path of Figure 5.6a
all starting at node 0. The paths have lengths l ∈ [2, 3, 4].

First, note the capacitor voltages of at least one edge does not converge for any of
the depicted paths, see Figure 5.6d, Figure 5.6f and Figure 5.6h. Almost all voltages
are quasi-periodic and thus none of these Physarum elements is converged.
A similar behavior is observed for the currents illustrated in Figure 5.6c, Fig-

ure 5.6e as well as Figure 5.6g. Note that for all paths we find that the currents of
all but one edge periodically reverse their signs, i.e. flow reversal occurs naturally.
At present, we do not know why there remains one edge with zero flow.

The distinguishing feature of these Physarum elements seems to be the period of
the oscillations. For paths of length 3 we repeated the simulation 100 times with
different random initial conditions. Without fail the Physarum network produced a
signal with a period of T = 1087 rounds in every execution. We thus conclude that
the period is invariant under initial conditions within the ranges we explored.

Furthermore, we find that the period of the oscillations decreases with increasing
path length. For small path lengths the observed values suggest a linear relation
between path length and period as a best fit. To explore the matter further we
extended the simulations to paths lengths of up to 10. We found that a simple
functional relationship between path length and period cannot be confirmed for all
tested lengths. Rather, for path lengths longer than 7 more complicated oscillation
patters are found to repeat themselves. Here it appears that higher order oscillations
come into play. At present their meaning is not clear to the authors. We conclude,
however, that there is a complex relation between the oscillation patterns and the
size of the underlying Physarum elements that warrants further exploration.
Another aspect awaiting investigation is the nature of the phase shifts observed

between the edges of the circuits.

125

5. Modeling Flows

(a) (b)

(c) Period T ≈ 694 rounds. (d) Period T ≈ 694 rounds.

(e) Period T ≈ 1087 rounds. (f) Period T ≈ 1087 rounds.

(g) Period T ≈ 1522 rounds. (h) Period T ≈ 1522 rounds.

Figure 5.6.: Various paths of Physarum elements.

126

5.7. Preliminary Simulation Results

5.7.4. Trees of Physarum Elements

Let us study trees of Physarum elements next. The situation is similar to paths,
with the added possibility of flows splitting up non-trivially at nodes of degree 3.
Figure 5.7a depicts a tree rooted at node 0. We stress that the special status of root
node exists only in the picture serving for better illustration. From the viewpoint of
the model, all nodes are equal and the orientation of the edges matters not due to
the symmetry of Physarum elements. As before Figure 5.7b defines a color coding
which serves as a legend for the plots of Figure 5.7.

Similar to the study of paths, we find that a Physarum network with a tree
topology does not converge, see the capacitor voltages in Figure 5.7d. Again we
observe periodic behavior for both currents and capacitor voltages with a period of
T ≈ 1701 rounds. Of particular interest is the behavior of the currents as given by
Figure 5.7c. After a brief period of interaction, the tree exhibits perfect anti-phase
oscillation between its subtrees. Looking at the edges e1 = (0, 1) and e2 = (0, 2) we
see that whenever a positive current flows along e1 an equal current with opposite
sign flows through e2. The same phase shift can be observed for the subtrees rooted
at node 1 and node 2 respectively. This exact type of behavior was observed in 100
independent simulations with different initial conditions.

With regards to the period we observe identical values across all 100 runs. Similar
to the path, the period of the tree is robust to varying initial condition given the
range we tested. A proof solidifying this statement is missing at this point.

Let us discuss the behavior of the phases. Note that with respect to Figure 5.7a
we may state that the currents through the left and the right subtree oscillate in
perfect anti-phase. It is striking that the circuit itself suggest that it be viewed as a
tree rooted at node 0. It is not clear why it is precisely the subtrees at node 0 that
show this anti-phase entrainment. In principle we could choose any other node as
the root, leading to different subtrees that should show different behavior. To shed
light on these observations further numerical studies of various tree layouts could
be useful.

5.7.5. Two Linked Cycles of Physarum Elements

Finally, we combine the features of paths and cycles to obtain a Physarum network
as shown in Figure 5.8a. Figure 5.8b defines a color coding which serves as a legend
for the plots of Figure 5.8.
The proposed topology is meant as a first attempt of exploring the connection

between the workings of our model and the behavior of live P. polycephalum. We
do so by interpreting the Physarum network in Figure 5.8a as an abstract represen-
tation of the way P. polycephalum was modeled as a living system of delay-coupled
mechanical oscillators as mentioned in the short survey of existing modeling ap-
proaches [166]. See Section 1.3.1 for details. The two 3-cycles represent the reservoirs
while the path of length 1 constitutes the channel connecting them. In the original
wet-lab experiment P. polycephalum showed rich self-synchronizing oscillation pat-

127

5. Modeling Flows

(a) (b)

(c) (d)

Figure 5.7.: A simple tree of Physarum elements.

128

5.7. Preliminary Simulation Results

terns between the distinct reservoirs with both in-phase and anti-phase entrainment.
It is interesting to ask, whether our model can reproduce any of the observed effects.

To explore the behavior of our model, we present 3 distinct simulation instances.
First we look towards the capacitor voltages to find symmetric oscillations in perfect
anti-phase between the two cycles. After a brief period of entrainment, the edges
of the two cycles converge symmetrically around the value the channel edges (0, 5)
converges to, see Figure 5.8d, Figure 5.8f and Figure 5.8h. The picture is similar
to what was observed for the diamond graph, except that the non-bridge edges, i.e.
the cycle edges, can now sustain oscillation. While this anti-phase entrainment is
reminiscent of the behavior delay-coupled oscillators, we were not able to get our
model to show in-phase entrainment. In fact, given the invariants we were able to
proof, it is unlikely to be possible.
With regards to the currents flowing in the Physarum network, we observe sce-

narios that are intuitive. The currents in both cycles can be identical and flowing
in the same direction, either clockwise, see Figure 5.8e, or counter-clockwise, see
Figure 5.8c. Furthermore, the currents can flow in the opposite directions adding
two more scenarios. Figure 5.8g shows one of them with the l.h.s. cycle showing
counter-clockwise flow while the r.h.s. cycle exhibits clockwise flow. A scenario
where currents are damped is not shown. In contrast to cycles, the coupling between
the two cycles induces oscillations in the circular flows. Interesting in all scenarios,
is the behavior of the channel edge (0, 5) which shows periodic flow reversals with
a period of T ≈ 1629 rounds and large peak flows. Again 100 repetitions of the
simulation suggests the period to be independent on the initial conditions within
the range we tested.

Clearly, the model we propose yields only a crude approximation of the behavior of
P. polycephalum. Based on the high degree of abstraction and the relatively simple
model, it is surprising that effects like flow reversal and anti-phase entrainment
emerge naturally. It is also apparent, that we are limited to simple topologies of
Physarum elements if we are to make sense of the behavior analytically. Of course
this does not prohibit using the model as a black box for more complicated and/or
larger graphs.

129

5. Modeling Flows

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 5.8.: A Physarum network designed to mimic aspects of the delay-coupled
oscillator model of P. polycephalum.

130

5.7. Preliminary Simulation Results

5.7.6. Physarum Elements and Changing Topology

Finally, we show that the model is capable of adapting to changes in the topology of
the underlying Physarum network. This is not surprising given that at the heart of
our model are electronic circuits. It is possible that a formal proof of this property
can be obtained.
Here we present numerical evidence based on modifying the graph presented in

the previous section, see Figure 5.8a. Needless to say, Figure 5.8b defines a color
coding which serves as a legend for the plots of Figure 5.9.
In Figure 5.9a and Figure 5.9b the channel edge (5, 0) was removed from the

Physarum network at point r = 4000 and reinserted at r = 8000. The plots illustrate
how oscillations cease immediately at r = 4000 in favor of steady flow of opposite
sign through the two cycles. The same speedy adaptation is seen in reverse when
the channel edge returns at r = 8000.
The procedure of changes is more complicated in Figure 5.9c and Figure 5.9d.

Here we start the simulation with the channel edge (5, 0) as well as one edge from
the right cycle (2, 0) removed. As expected the plots show both the behavior of
a path of length 2 as well as constant flow in the remaining cycle. At r = 4000
we bring back the channel edge. At this point the Physarum network consists of a
3-cycle with a path of length 3 attached to it. Note the complex signal shown by
the circuit. The influence of the path is clearly visible, inducing oscillations in the
cycle. At r = 8000 we bring back the remaining edge and observe how the system
jumps back to the expected initial behavior.
These preliminary examples illustrate that changes in topology are naturally

accommodated by the model. A more systematic investigation is a possible task for
the future. Note, that when obtaining formal robustness properties for Physarum
networks one may start by scanning related literature for classical electronic circuits.

131

5. Modeling Flows

(a) (b)

(c) (d)

Figure 5.9.: Physarum networks changing every 4000 rounds.

132

5.8. Discussion

5.8. Discussion

We have proposed a preliminary model representing the oscillatory flows observed in
networks formed by P. polycephalum as currents in electrical networks. Our approach
is based on the three-element Windkessel model. This approach has successfully been
used in the past to model human cardiovascular networks which strongly resemble
the vein networks of P. polycephalum. The major difference between the two is the
fact that slime molds do not have one powerful central pump, i.e. a heart, capable
of producing flows. Rather, each and every vein of the slime mold network may act
freely and contribute to the flow as an independent peristaltic pump. Since a vein
may be connected to several neighboring veins, non-trivial local interactions arise.
To model emergent global oscillations we propose an extension to the Windkessel
model, namely current controlled voltage sources. The resulting electronic Physarum
elements are then connected according to a given topology to form a Physarum
network. The electric currents induced by such networks exhibit complex emergent
flow patterns reminiscent of the flows observed in live P. polycephalum.
In a symbiotic fashion we combine analytic and numerical methods to explore

the characteristics of the resulting model. We find first and foremost, that our
model can be discretized and solved to yield current flows for Physarum network of
arbitrary topology. In practice we restrict our simulations to simple graph classes
of limited size. They illustrate that the model is fully distributed as it requires no
central control. It exhibits self-organization leading to coordinated flows and global
anti-phase entrainment. In addition to that, we determine that the model is robust
to changes of the underlying topology of Physarum networks. These are qualities
attributed to live P. polycephalum. Furthermore, we hope that our model also
inherits some of the natural efficiency attributed to the behavior of P. polycephalum.
We are reduced to hope in this instance, because there is no way of asserting the
statement in a systematic way.

When we began thinking about meaningful extensions to the Windkessel model,
we noticed that we were frequently faced with decisions about what assumptions
to accept during the initial stages of modeling. First and foremost we decided to
keep the model simple enough to be able to proof facts about it. This is in line
with our desire to obtain a prospective candidate model that would serve as a basis
for future attempts of natural computing. Thus we placed significant emphasis on
implementing simplifying assumptions. Needless to say, these come at the cost of
a less accurate description of live P. polycephalum. While this is unfortunate, in
the context of computing inspired by nature it is of minor concern. In summary we
decided to differentiate the original general model such, that modeling accuracy is
sacrificed for ease of analytical treatment.

Naturally, a different approach is necessary if your goal is synthesis of nature by
means of computing. Here one seeks to obtain a model providing modeling accuracy
and ultimately, predictive power. To do so, trading manageable complexity for a
higher degree of modeling accuracy is acceptable. This entails replacing some of

133

5. Modeling Flows

the following simplifying assumptions with more meaningful alternatives in order to
obtain a model that is more interesting from a biophysical point of view. Perhaps
most influential of all is the assumption that the electric resistance is constant
and the same for all edges in the network. Note that the electrical resistance of
Physarum elements translates to hydraulic resistance of veins in live P. polycephalum,
a quantity which strongly depends on the width of the veins. In fact, we have
established in Section 4.3 that the distribution of widths in real P. polycephalum is
not constant but is more likely to follow a gamma or log-normal distribution. Clearly,
the model could be made more meaningful by incorporating width distributions of
P. polycephalum graphs. Furthermore, the topologies of real P. polycephalum graphs
which are conveniently available in the Smgr could directly be used to run the
model on.
Incorporating these improvements including the move from simple small graphs

to more complex P. polycephalum graphs with more degrees of freedom for the
edges likely shuts down our hopes of obtaining analytical statements about what
is going on. Note that such a model may yet be solvable given the right numerical
tools. It could still form a valid basis for natural computing, however the analysis
of obtained algorithms is expected to range somewhere between challenging and
seemingly impossible.

Note that augmenting the Windkessel model such that modeling accuracy is max-
imized does not automatically yield a model with predictive power. What remains
is to determine a way to set biophysically meaningful parameters for the Physarum
elements. Unfortunately, the authors have no suggestion as to how to resolve this
problem at present. A closer collaboration with biologist and biophysicists seems
necessary to tackle this question.
The authors are convinced that both described approaches supported by an

augmented Windkessel model are valid and should be explored further. Indeed
a manuscript is being prepared documenting our own attempts of deriving a dis-
tributed natural computing algorithm based on this model. While it is not necessary
for a natural computing algorithm to closely resemble its source of inspiration, it
would be nice if a connection between the way such an algorithm works and the
way P. polycephalum operates could be established. This task will likely require
insights obtained in the pursuit of models of higher biophysical relevance and further
strengthen the interdisciplinary appeal of natural computing with P. polycephalum.

134

http://smgr.mpi-inf.mpg.de

6 Summary

The present thesis intends to pave the way towards distributed natural computing
inspired by the slime mold Physarum polycephalum. The networks formed by this
humble organism exhibit an extraordinary plasticity and presumably support effi-
cient circulation of protoplasmic fluid through them. For this reason the complex
dynamics observed in P. polycephalum have repeatedly been compared to optimiza-
tion processes. Devising models that both capture the natural efficiency of this
organism and at the same time form a suitable basis for the development of natural
computing algorithms, is an interesting an challenging proposition.

This thesis documents a series of sequential research efforts that build on-top of
each other, working towards this goal. These can be subdivided into three broad
categories: Experimental work, data analysis and modeling efforts.

In the first category we design and execute a number of wet-lab experiments with
P. polycephalum. The experimental setup is geared towards producing images which
document the topology of P. polycephalum vein networks and their time development.
Next, we turn the images depicting networks into actual graphs enabling subsequent
analysis. To do this we develop a custom software calledNefi. At this point, we make
all obtained data, i.e. raw images and corresponding graphs available to everyone.
To facilitate this we introduce a dedicated publicly available repository revolving
around slime mold data, the Smgr. The goal of this repository is to enable data
reuse and to invite others to join in our efforts of fostering a practice of increased
data sharing.
In the data analysis category of this thesis we scrutinize the P. polycephalum

graphs we obtained previously. To this end we design a set of observables aimed at
capturing various properties of the vein networks. These include structural informa-
tion about paths, face cycles as well as graph cuts. Finally we investigate percolation
properties gauging the robustness of networks formed by P. polycephalum. The re-
sults obtained by us form an extensive catalog of characterizing data which help
quantify properties of slime mold networks.
The last category of this thesis is concerned with modeling of P. polycephalum

which is the immediate precursor to deriving natural computing algorithms. Here
we rely on electronic elements to model the dynamic flows observed in live the live
organism. Our approach is inspired by the modeling of the human cardiovascular
system but introduces additional current controlled voltage sources to mimic the
effects of peristaltic pumping. These elements are connected according to a given
topology in order to form electronic networks representing vein networks of P. poly-
cephalum. The model is simple but has the advantage that it analytically tractable

135

http://nefi.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de

6. Summary

on top of being solvable numerically. A preliminary in silico exploration of its
properties shows, that just like P. polycephalum, it operates fully decentralized and
is robust against changes in the underlying network topology. Above all, it yields
complex current flows that resemble flow patterns observed in live P. polycephalum.
In particular, emergent anti-phase entrainment and flow reversals are observed. As
such the model we obtain constitutes a promising candidate for the development of
distributed natural computing algorithms inspired by P. polycephalum. Efforts in
this direction are underway and will be reported separately from this thesis.

What started as a fascination with existing natural computing algorithms inspired
by P. polycephalum, organically developed into a desire1 to work towards our own
natural computing approach. Little did we know when we started that we were
embarking on a rather interdisciplinary journey.

Note that at every step of the way we put a strong emphasis on making sure that
everything we do, is at least as useful to others as it is to us. Needless to say, this
almost always required us to go the so-called “extra mile” investing considerable
time and effort. However, the idea of creating additional value for others, on-top of
obtaining novel scientific results, is rather satisfying and thus quickly became an
underlying principle of our work. Today it can be seen resonating throughout all of
this thesis.

Our network extraction software Nefi for instance was designed to process images
depicting networks originating from various domains. In particular, it is not limited
to the applications presented in this thesis. Rather, our tool and its multi-purpose
design has the potential to be of continued use in a variety of unforeseen applications.

The same can be said about our slime mold data repository, the Smgr. Anyone
can download its data and start using it right away. At the same time experts are
invited to contribute their hard earned data and results to the Smgr in order to
increase the reach and impact of their work. We hope that the idea of the Smgr
will resonate with the research community concerned with slime molds.

Our efforts of characterizing the networks formed by P. polycephalum yielded a
catalog of observables spanning a wide array of different graph properties. While the
obtained results are not exactly ground-breaking, they have potential implications
for evaluating and guiding all sorts of theoretical modeling approaches regarding
P. polycephalum. Model predictions that agree with data in the catalog increases
the trust in a given model. At the same time discrepancies between predictions
and catalog data hopefully suggest improvements to the model. Thus, the data and
results presented in this thesis may be beneficial to the modeling efforts of others.
Last but not least, there are our own modeling efforts regarding the flows ob-

served in P. polycephalum. Here we are working towards computing inspired by
nature. By making various simplifying assumptions in the process of abstracting
the flow dynamics of the organism, we emphasis low model complexity at the cost
of reduced biophysical modeling power. Our aim is to strike a balance between both
aspects such that the model remains manageable yet still captures the complex flow

1 Some would even use the term “obsession”.

136

http://nefi.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de

patters displayed by P. polycephalum to a sufficient degree. Since our interests lie
in the domain of natural computing, this trade-off is acceptable because a model
of manageable complexity is more likely to eventually lead to algorithms which can
be analyzed analytically.

Now, one may rightfully ask, why this trade-off cannot lean the other way, leading
to a more reliable description of P. polycephalum with an emphasis on biophysical
accuracy at the expense of increased complexity. In other words placing an emphasis
on the synthesis of the behavior of P. polycephalum by means of computing. The first
steps towards this direction probably start with omitting or improving some of the
simplifying assumptions we made during the modeling process. It would be intriguing
to investigate to which extend variations of the model are capable of producing
meaningful predictions with regards to the behavior of P. polycephalum. At present
we believe that such an approach could be of pronounced interest regarding questions
of biology and biophysics. It certainly appears feasible and suggests itself for future
in-depth explorations.

Note that the two different trade-offs between modeling power and complexity we
illustrated are geared towards different goals and seem to support disjoint types of
research questions. At first glance, they appear to be in stark contrast to each other.
However, we propose to adopt a different view of the matter entirely. In fact, we
strongly believe that they are merely two of many approaches which can and should
support each other in contributing different clues to the study of P. polycephalum.
Combining various approaches to the study of this humble organism creates ad-
ditional value but requires an open mind with a strong willingness to work in an
interdisciplinary manner. The author tried to live up to this ideal with this thesis.

137

A Guide to Using NEFI

Here we document our experiences with using Nefi. As discussed in Chapter 2, the
combination of input image quality and Nefi’s segmentation algorithms makes or
breaks the resulting graph. Let us first discuss the properties of ideal and non-ideal
input images. Our goal is to give the prospective user an idea of what to avoid and
what to look out for regarding inputs. Furthermore, we add some pointers on how
to deal with challenging inputs and what one can try to do in order to improve the
output of Nefi.

A.1. Properties of Ideal and Non-ideal Images

Since, the determining factor of the quality of Nefi’s graph extraction is the seg-
mentation step, ideal images should enable a nearly perfect separation of foreground
and background. Such images have high contrast between the depicted structures
of interest and the background. At the same time it is very important that images
are free of strong reflections or shadows because such areas are likely to show an
even higher contrast to the background than the actual structures of interest. As a
result, the segmentation algorithms are prone to identify these regions as foreground
causing the actual structures of interest to be ignored. The presence of strong color
or brightness gradients can have similar detrimental effects and should thus be
prevented if possible. See Figure A.1 and Figure A.2 for examples of challenging
images which Nefi will have difficulties working with.
Another factor that influences segmentation, and by extension graph detection,

are contaminations of different origin. Examples include parts of the image which
might not belong to the object of interest at all. Such regions should be removed
before loading the image into Nefi, see Figure A.3.

Figure A.4 depicts an image lacking in a similar way. The image contains objects
that are technically part of the network one would be interested to extract, however,
they are not suited very well to be represented as a graph. In particular, they will
be picked up correctly in the segmentation step yielding four large areas of white
pixels. Subsequently, thinning will try to reduce these to lines resulting in more
or less unpredictable results. While the remaining parts of the structure will be
processed correctly, such images do not constitute ideal candidates for processing
with Nefi.

139

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

A. Guide to Using NEFI

Figure A.1.: This image of P. polycephalum contains strong light reflections in
the upper right quadrant which will cause Nefi’s segmentation algorithms to be
lead astray. The fact that the image is not properly focused is less of a problem in
comparison.

Figure A.2.: This image of P. polycephalum was not illuminated evenly from below.
As a result it contains a brightness gradient which is detrimental for many of the
segmentation algorithms currently implemented in Nefi. The fact that the image
contains a lot of visible noise makes it a bad candidate for processing with Nefi.

140

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

A.1. Properties of Ideal and Non-ideal Images

Figure A.3.: In addition to the network of P. polycephalum the image contains
the edge of a petri dish and pieces of the background on the right hand side (as well
as light reflections). Prior to any attempt of processing the image, petri dish and
background should be removed.

Figure A.4.: The network of P. polycephalum depicted in the image contains
4 massive, non-network-like regions (oat flakes completely covered by the mold).
After segmentation, thinning will try to reduce these regions to lines leading to
unpredictable results. The remaining parts of the network, however, will be extracted
correctly.

141

A. Guide to Using NEFI

Figure A.5.: An ideal image of P. polycephalum. The image has been obtained
using bright field illumination and was produced in a collaboration with the KIST
Europe.

Figure A.6.: An ideal image depicting a detail of the wing of A. junius. Image
courtesy of Pam and Richard Winegar.

Summarizing this information we have the following desirable properties for an
ideal image:

• High contrast between foreground and background.

• Uniform background void of reflections, shadows as well as color or brightness
gradients.

• No contaminations that might disrupt the segmentation process.

When producing images to be processed with Nefi one should strive to fulfill
these properties whenever possible. See Figure A.5 and Figure A.6 for examples of
very good input images.

142

http://nefi.mpi-inf.mpg.de

A.2. Dealing With Challenging Images

A.2. Dealing With Challenging Images

Nefi operates best on images produced under controlled laboratory conditions that
fulfill the properties described in the last section. However, more difficult inputs
may still be processed, but most likely at the cost of reduced quality. Based on
our experience when dealing with more challenging input and the results of our
evaluation, we are able to formulate the following recommendations for the usage
of Nefi:

Otsu’s method may be used on noisy or blurred images. It will do reasonably well
as long as the image has a high contrast between network and background.
Adaptive threshold, watershed based on adaptive threshold, and GrabCut with
deletion and erosion may even perform slightly better under these conditions.
Otsu’s has the advantage that no parameters have to be set in order to get good
results. The choice should be based on the desired degree of resolution of the
extracted graph. We would recommend these methods to process Figure A.3
after removing areas that are not of interest.

Adaptive threshold and watershed based on adaptive threshold may
be used if differences in contrast between foreground and background are local
and not too strong. If this is the case, good results may still be obtained.
Both methods allow to analyze images that contain a color gradient in the
background or that contain edges which have differing levels in brightness.
One might try to process images like Figure A.1 and Figure A.2 with these
methods while experimenting with different parameter settings. However, such
images remain challenging. Nefi’s current algorithms may not deliver sufficient
results.

Preprocessing methods like Gaussian and Median Blurring, Denoising as well as
Bilateral Filtering can be used to remove small artifacts, contaminations or
irregularities from the image. Although these methods can reduce the amount
of artifacts produced during segmentation and thinning, improvements come
at a price. For example, imposing a strong blur causes the depicted edges to
appear slightly wider. This effect will propagate through the pipeline causing
the edge widths of the final graph to overestimate the true widths depicted in
the image. We recommend to use preprocessing with care especially if a high
accuracy regarding edge weights is required.

Graph filtering enables the removal of unwanted artifacts and spurious vertices
caused by irregularities in the input which propagate through the pipeline.
However, filtering can only repair the result up to a given point. While the
ability to add custom filters is powerful, it appears pointless to filter a graph
established on the basis of a failed segmentation. We encourage users to visually
verify the integrity of the established graph and only then to proceed with
filtering.

143

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

A. Guide to Using NEFI

We anticipate users to encounter images Nefi’s algorithms will be unable to
handle properly. In this situation the user will have to rely on different segmentation
solutions.
As a first suggestion, we recommend to user to look for available software spe-

cializing in segmentation. In this regard we like to point out the Kitware, ITK
Project [87]. It’s C++ code base has been developed by the medical image process-
ing community and serves as the basis for many other specialized tools that deal
with image processing as well as segmentation.

After a segmented image has been obtained using specialized third party segmen-
tation software, Nefi can take this image and proceed with graph detection and
filtering directly.
If no proper software is available, the user has the option to extend Nefi’s

segmentation capabilities by adding more sophisticated code. When doing so, one can
built on top of existing features already implemented in Nefi. The literature offers
a wealth of different approaches to segmentation leading to algorithms of varying
complexity. Before diving into any implementation efforts, we strongly recommend
to survey existing methods and their domains of effectiveness by consulting [45],
[137], [141].

144

http://nefi.mpi-inf.mpg.de
http://www.itk.org/itkindex.html
http://www.itk.org/itkindex.html
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

B Details of Data Acquisition

Let us now explain all steps involved in furnishing the Kist Europe data set in full
detail. First, we describe how to setup and execute necessary wet-lab experiments,
including the production of sclerotia [81]. Next, we explain how to turn the network
structures depicted in the raw images into series of equivalent graphs. Finally, we
illustrate how to establish unique node identities and track them within a given
series of graphs.

B.1. Experiments

For our experiments we cultivate P. polycephalum (HU195xHU200) in a rectangular,
20 cm× 30 cm× 13 cm, translucent plastic dish ontop of a 10 mm layer of 1.25 %
agar (Kobe I). To do so we place 1.5 g of dried P. polycephalum sclerotia crumbs
along the short edge of the dish. We make sure to evenly spread them out such that
a continuous and straight line is formed, connecting two adjacent edges of the dish.
In the following we refer to this line as the inoculation line, see Figure 3.2. This
concludes the preparation of the dish.

Since P. polycephalum is sensitive to light, we place the dish inside a large light-
proof wooden box of 110 cm× 110 cm× 110 cm. Temperature and humidity inside
were kept constant at 22 ◦C and 55 % to 60 % relative humidity. In our setup we rely
on dried sclerotia, rather than plasmodium, because the former give exact control
over the initial mass of P. polycephalum introduced to the dish. We make sure
to keep the input masses, the properties of the agar layers and the environment
constant to ensure consistent repetition of experiments. For a detailed description
on how to produce dried sclerotia from an initial sample we refer the reader to
Section B.3.
Inside the box we fix a digital camera (Canon EOS 645D, Lens EFS 18 mm to

55 mm) 16 cm above the dish. The camera is oriented perpendicular to the dish
and centered right above it. Each shot captures a large area of 10 cm× 15 cm at
a resolution of 5184 pixel× 3456 pixel in JPG format. With these settings 1 cm on
the dish corresponds to 370.6250 pixel in the image. Since during graph extraction
all lengths and widths measured are stored in units of pixel, this information can
be used to map pixels back to centimeters.

To provide the necessary light for the camera to work inside the dark box we opt
for bright field illumination using a negatoscope, also known as X-ray film viewer
(Planilux, 2× 15 W, emitting white light). It provides a large area of low intensity
illumination which is uniform in space and time. By putting the translucent dish

145

B. Details of Data Acquisition

ontop of the negatoscope the light that passes trough makes the structures formed
by P. polycephalum visible to the camera overhead. By design we ensure optimal
contrast between the networks and the background and eliminate all sources of
reflections or shadows in the images. This is particularly desirable as such effects
are diminishing the effectiveness of Nefi. This concludes the preparation of the
box. A schematic of the complete setup can be seen in Figure 3.1.

After the prepared dish is placed in the box, it takes roughly 15 h for the organism
to make its transition from sclerotia to plasmodium. Once the plasmodium begins
to spread towards the far side of the dish we start capturing its growth progress by
taking an image every 120 s using dedicated software (Motion detection software;
Vulpessoft, DSLR Master). We stop capturing when the growing front first hits the
adjacent wall of the dish. By doing so we minimize the probability of P. polycephalum
moving back towards the inoculation line. We do not feed the organism throughout
the entire experiment. This concludes one iteration of our experiments.

We repeat this experiment under constant conditions and obtain 81 image series
depicting the growth of P. polycephalum and the networks it forms. Since there is a
natural variability in the growth of the organism, we obtain series of different length
and nature. We refer to this data as raw data. It is available in the Smgr.
We are aware of a potential caveat of our approach, namely the light source in

the negatoscope emitting the full spectrum of white light. It is well known that
P. polycephalum reacts to specific parts of the spectrum while it is insensitive to
others [122]. Thus, ideally one chooses a light source such that the organism remains
undisturbed. However, such a light source was not at our disposal so we decided to
minimize the impact of the light by minimizing the time P. polycephalum is exposed
to it. In particular we couple the triggering of the camera with the power supply
of the negatoscope. Thus we ensure that the slime mold is illuminated a mere 1 s
every 120 s. Since we did not observe any irregularities in our experiments known
to be induced by light, we conclude that our precautions were sufficient.

B.2. Graph Extraction

Given the obtained raw data, we discard all series that do not show proper network
formation. Thus the number of usable datasets is reduced to 54. For the remaining
series we seek to describe the characteristic P. polycephalum networks by equivalent
graphs. In addition to capturing the topology of the networks, we want to obtain
a precise measure on the length and width of each vein observed. Furthermore, we
want to establish the positions of the junctions of the veins in the image. Thus, we
want to compute a weighted graph, whose nodes carry the positions of the junctions
in the plane and whose edges carry weights corresponding to the length and the
width of the observed veins.

To compute such a graph representation we rely on Nefi. This tool takes as
input an image from the raw dataset depicting a network and returns a faithful
representation of this network in form of a weighted undirected graph. Nefi of-

146

http://nefi.mpi-inf.mpg.de
http://smgr.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

B.2. Graph Extraction

fers several different algorithms and a variety of settings to do graph extraction.
Some experimentation was necessary to find a sequence of algorithms, a so-called
pipeline, such that the returned graph representations preserve as much information
as possible. The pipeline has been stored and is part of the dataset for reasons of
reproducibility. Asserting the effectiveness of a pipeline is convenient and easy, since
the tool allows to visually compare the computed graph with the network in the
input image by drawing the former ontop of the latter. An example can be seen in
Figure 3.6. For a more detailed discussion of the reliability of Nefi and how to use
it, we refer to its project page and Appendix A.

The main caveat of Nefi is that, like any form of image processing or computer
vision, the quality of the output strongly depends on the quality of the input. To
obtain good results with this tool, the input image must be of high contrast and
void of strong color gradients and other detrimental effects [52]. Due to the design
of our experiments these requirements are largely satisfied. However, due to its
implementation Nefi struggles with parts of the image that do not depict networks.
In particular it fails to process regions depicting the inoculation line and the apical
zone. For the network extraction to succeed these areas must be removed from the
images or equivalently a region of interest must be defined excluding such areas. For
consistency we define a specific region of interest for each given image series of the
raw data set. A typical region of interest is seen in Figure 3.5.
To do so, we visually inspected every single image1 of every sequence in order

to decide on a maximal region of interest containing properly formed networks.
It is common that somewhere within an image sequence P. polycephalum starts
to deviate from “well-behaved” growth, effectively disqualifying the sequence from
this point on. Examples include P. polycephalum suddenly reversing direction or
spontaneously spawning new growing tips within an already established network.
Thus we make two choices: First, for each sequence of images we find the longest
usable subsequence and second, for each subsequence we decide on one region of
interest. We store this information in small configuration files suitable for automated
graph extraction. We point out that in general it has been beneficial if the choices of
selection are made somewhat defensively, leading to a reduced likelihood of artifacts
occurring in the graph detection process.
Given the configuration files and the extraction pipeline, Nefi can be used to

batch process sequences automatically. Note that for some series, partially containing
strong color gradients in the background, Nefi failed to properly segment the
input images resulting in unusable graphs. This situation can be detected easily by
inspection of the segmented images or the graph drawings produced by Nefi. The
affected series and the resulting graphs are then excluded from further processing.
While this reduces the number of usable graph series to 36, the remaining graphs
capture the topology of the original P. polycephalum networks exceptionally well.
Note that the raw graphs obtained so far are likely to contain artifacts such as

1 The reader is absolutely right to assume that inspecting several thousand images required an
extraordinary amount of patience and time.

147

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de

B. Details of Data Acquisition

isolated nodes and dead-ends, see Figure 3.6. This is to be expected since Nefi
cannot reliably resolve structures that are very fine grained, e.g. veins in the network
with a width of less than 5 pixel. As a result small structures in the graph break
up into several disconnected parts. In a similar fashion spurious isolated nodes can
enter the computed graph. We strongly recommend anyone considering to work
with the raw graphs to carefully inspect them first in order to assess whether these
artifacts need to be removed using filters. In our experience, a moderate amount of
filtering is always appropriate and considerably improves quality of the graphs, i.e.
the degree to which they resemble the original P. polycephalum networks.
To deal with the mentioned artifacts Nefi comes with the possibility to apply

filters capable of removing isolated nodes and dead ends. We have filtered all raw
graphs to obtain the final set of graphs which we store in several file formats. In
particular we removed all edges that are not on a cycle, i.e. dead ends are removed,
and kept only the largest connected component. For all but the finest of veins
the filtered graphs capture the structure of the original P. polycephalum networks
extremely well. Furthermore they carry precise information about node positions,
edge widths and edge lengths. For a detailed description of how to work with the
actual graph files produced by Nefi we refer to its project page.

Lastly, we point out that the process of graph extraction described here is geared
towards answering a particular set of research questions, see [53]. For a different
set of questions changes may be appropriate and necessary. They can easily be
implemented by starting with the raw graphs and applying different filters. Also, it
is not difficult to go back even further to the original image sequences and select
different regions of interest and different subsequences, leading to different series of
raw graphs. Given Nefi and the possibility to use configuration files to automate
the graph extraction, it becomes possible to adapt the data in the Kist Europe
data set to various particular needs.

B.3. Continued Production of Sclerotia

Here we describe how to continuously produce dried sclerotia [81], from a small
initial sample2 of the same. First, we prepare a 22 cm× 32 cm plastic dish with
a layer of 1 % Agar (Kobe I) and line up a generous amount of sclerotia evenly
along the short side of the dish, forming an inoculation line. Ideally, the dish is
kept in a light-proof box with high humidity at a temperature around 22◦. That
being said, forest-dwelling P. polycephalum is rather forgiving and will make do
with room-temperature and room-humidity provided it is properly shielded from
light.
After 10 h to 14 h P. polycephalum changes from the sclerotia state to the plas-

modium stage and starts to explore the dish. From this point on we recommend to
feed it with oat flakes every 4 h to 6 h. To do so, distribute a small amount of oat

2 Starting samples of dried P. polycephalum sclerotia can be purchased online or shared via the
P. polycephalum community, e.g. at the Slime Mold Collective.

148

http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://nefi.mpi-inf.mpg.de
http://slimoco.ning.com/

B.3. Continued Production of Sclerotia

flakes evenly across the inoculation line. Given the additional nutrients the organ-
ism will rapidly cover the whole dish at a rate of approximately 1 cm h−1. Shortly
before it reaches the far side of the dish we proceed to transfer the organism to new
containers. The mass covering the oat-flakes is moved to a new dish with ample
room to keep the growth of the plasmodium going in a continuous fashion. The
remainder of the organism is transfered to a bucket allowing it to dry, thus triggering
the transition back to the stage of sclerotia. A detailed description of both steps
follows.

First, we move the plasmodium at the inoculation line together with the accumu-
lated overgrown oat-flakes to a new 22 cm× 32 cm dish prepared with agar gel. To
do so we cut the agar of the old dish underneath the inoculation line into suitable
pieces, which we transfer to the new dish using a small spatula. We arrange the
pieces of gel carrying the plasmodium such that a new inoculation line is formed.
Soon the plasmodium will proceed to conquer the new dish. From time to time we
add a small amount of oat flakes to the starting line to make sure P. polycephalum
keeps growing steadily. Transferring to a new dish serves to keep the growth of the
organism going continuously. This step can be omitted if continued production of
plasmodium is not desired. If at some point the growth of the slime mold seems to
have come to an unintentional halt, we recommend to make sure it is not to dry by
carefully moistening P. polycephalum using distillate water and a plant sprayer.
Next, we move the remaining contents of the overgrown gel to a 40 cm high and

25 cm wide ordinary cylindrical plastic bucket. In particular we make sure to transfer
the whole growing front since it constitutes a significant part of the biomass of the
organism. Before we transfer the organism, we cover the bottom of the bucket with
tissue paper and stick moist filter paper to the walls of the bucket such that its inside
is completely covered. After a while the plasmodium starts exploring the bucket
and is naturally drawn towards the moistened areas. Eventually it will move away
from the drier bottom and move along the bucket walls covering the filter paper. As
soon as most of the filter paper is occupied by P. polycephalum, the paper can be
removed, wrapped up and stored to dry, triggering the transition from plasmodium
to sclerotia. Letting the wrapped up filter paper dry in a cardboard box is simple
and effective. After approximately 3 days, the cell mass is fully dry and in the state
of sclerotia. They can easily be handled and stored for later use. Once dried, the
sclerotia can be scraped off the filter paper and used with precision in follow-up
experiments.

149

C Supplementary Figures

This appendix contains figures supplementing Chapter 4. Note that the full set of
goodness-of-fit plots for all data series is available online at the Smgr.

C.1. Goodness-of-fit Plots for Section 4.3

Figure C.1.: Goodness-of-fit plots of fitting the empirical path length distribution
of data series 22 comparing various common theoretical distributions.

151

http://smgr.mpi-inf.mpg.de

C. Supplementary Figures

Figure C.2.: Goodness-of-fit plots of fitting the empirical average path widths dis-
tribution of data series 22 comparing various common theoretical distributions.

152

C.1. Goodness-of-fit Plots for Section 4.3

Figure C.3.: Goodness-of-fit plots of fitting the empirical face degree distribution
of data series 22 comparing various common theoretical distributions. Since the
degree distribution is a discrete distribution while the fitted distributions are con-
tinuous, we obtain the observed steps. We did not look towards fitting discrete
distributions.

153

C. Supplementary Figures

Figure C.4.: Goodness-of-fit plots of fitting the empirical face area distribution of
data series 22 comparing various common theoretical distributions.

154

C.1. Goodness-of-fit Plots for Section 4.3

Figure C.5.: Goodness-of-fit plots of fitting the empirical face circumference dis-
tribution of data series 22 comparing various common theoretical distributions.

155

C. Supplementary Figures

C.2. Addititonal Illustrations for Section 4.3.3

Figure C.6.: After a while the growing front has escaped the area of observation
leaving behind its supporting vein network. We consider the network within a
predefined region of interest (dashed rectangle). We subdivide this region of interest
by defining 100 equidistant vertical and horizontal lines. The intersection of the vein
network with these lines define cuts. Horizontal cuts proceed from top to bottom,
i.e. perpendicular to the growth direction. Vertical cuts proceed from left to right,
i.e. in growth direction. Solid lines show one cut of each type.

156

C.2. Addititonal Illustrations for Section 4.3.3

Figure C.7.: P. polycephalum advancing its growing front and expanding along
the positive x-axis. The front itself is approximately parallel to the y-axis, i.e.
perpendicular to the direction of growth.

157

D Code Listings

Here we list the basic code snippets which constitute the heart of the numerical simu-
lation of our model. They serve merely as an illustration and written documentation
of the simulation setup and are not intended to provide a run-able program.1 A
complete run-able version of our simulation is available for download at the authors
page.

Code Listing D.1.: Required python libraries. Here the excellent networkx pro-
vides graph support [74].

1 from itertools import combinations
2 import networkx as nx
3 import numpy as np

Code Listing D.2.: Core of the simulation. Note that the sequence of updates is
different from Section 5.5. This change simplifies computation but does not affect
the results.

1 def simulation(graph, epsilon = 0.01, max_iterations = 3000):
2

3 number_of_iterations = 0
4

5 while True:
6

7 update_node_voltage(graph)
8 update_voltage_source(graph, epsilon)
9 update_edge_capacitor_voltage(graph, epsilon)

10

11 number_of_iterations += 1
12

13 if number_of_iterations >= max_iterations:
14 print "Reached the maximum number of iterations:",

max_iterations↪→

15 break
16

17 return graph

1 The snippets listed here fully describe the entire non-trivial part of our simulation. We omit code
of minor concern such as the creation of test graphs, initialization and data logging.

159

https://people.mpi-inf.mpg.de/~mtd/
https://people.mpi-inf.mpg.de/~mtd/

D. Code Listings

Code Listing D.3.: Function updating the voltages for all nodes. Implements Equa-
tion (5.6). Using the dictionaries R_map and Uc_map in conjunction with np.prod
and combinations yields a convenient way to compute the required sums and
products.

1 def update_node_voltage(graph):
2 # d_u["U"] --> voltage at node u
3 # d_e["Uc"] --> capacitor voltage at edge e
4 # d_e["R?"] --> resistance at edge e
5 # d_e["Up_?"] --> current controlled voltage source voltage
6

7 for u, d_u in graph.nodes_iter(data=True):
8

9 R_map = {}
10 Uc_map = {}
11 edge_counter = 0
12

13 if graph.degree(u) == 1:
14

15 for _,_,d_e in graph.in_edges_iter(u, data=True):
16 d_u["U"] = d_e["Uc"] - d_e["Up_2"]
17

18 for _,_,d_e in graph.out_edges_iter(u, data=True):
19 d_u["U"] = d_e["Uc"] - d_e["Up_1"]
20

21 elif graph.degree(u) >= 2:
22

23 for _,_,d_e in graph.in_edges_iter(u, data=True):
24

25 R_map[edge_counter] = d_e["R2"]
26 Uc_map[edge_counter] = d_e["Uc"] - d_e["Up_2"]
27 edge_counter += 1
28

29 for _,_,d_e in graph.out_edges_iter(u, data=True):
30

31 R_map[edge_counter] = d_e["R1"]
32 Uc_map[edge_counter] = d_e["Uc"] - d_e["Up_1"]
33 edge_counter += 1
34

35

36 R_product = np.prod(R_map.values())
37 combined_resistance = sum([np.prod(e) for e in

combinations(R_map.values(),len(R_map.values())-1)])↪→

160

38

39 current = 0.0
40

41 for key in R_map.keys():
42

43 current += R_product * (float(Uc_map[key])/R_map[key])
44

45 voltage = current / combined_resistance
46

47 d_u["U"] = voltage

Code Listing D.4.: Function updating the capacitor voltages for all edges. The
quantity Ucs is the sum over all capacitor voltages and invariant by Lemma 1 since
Ce = C for all e ∈ G as determined by the initial conditions.

1 def update_edge_capacitor_voltage(graph, epsilon):
2 # d_e["I1"] --> current ip at edge e
3 # d_e["I2"] --> current ip* at edge e
4 # d_e["C"] --> capacity of capacitor at edge e
5 # d_e["Up_old_?"] --> previous value of d_e["Up_?"]
6

7 for n in graph.nodes_iter():
8

9 # examine out edges for node n
10 for u,v,d_e in graph.out_edges_iter(n, data=True):
11

12 C = d_e["C"]
13 r1 = d_e["R1"]
14 r2 = d_e["R2"]
15 p1 = d_e["Up_old_1"]
16 p2 = d_e["Up_old_2"]
17

18 Ux = graph.node[u]["U"]
19 Uy = graph.node[v]["U"]
20

21 a = euler_step_size/(r1*C)
22 b = euler_step_size/(r2*C)
23

24 Uc = Ux*a + Uy*b + d_e["Uc"] +
euler_step_size/(r1*C)*((d_e["Up_old_1"] + d_e["Up_old_2"]) -
2*d_e["Uc"])

↪→

↪→

25

26 d_e["Uc"] = Uc
27

161

D. Code Listings

28 # the following quantity is an invariant
29 Ucs = sum(nx.get_edge_attributes(graph,"Uc").values())

Code Listing D.5.: Updates for current controlled voltage source. Implements
Equation (5.18), Equation (5.19) and Equation (5.20) for the l.h.s. and Equa-
tion (5.21), Equation (5.22) and Equation (5.23) for r.h.s. voltage source respectively.

1 def update_current_controlled_voltage_sources(graph, epsilon):
2 # d_e["beta_?"] --> property beta
3 # d_e["alpha_?"] --> property alpha
4 # d_e["Upmax"] --> cap for current controlled voltage source
5

6 def voltage_delay(Up_target, Up_current, alpha, epsilon):
7

8 c = np.exp((-1)*epsilon*alpha)
9

10 return Up_target * (1 - c) + Up_current * c
11

12 for n, d_u in graph.nodes_iter(data=True):
13

14 for u,v,d_e in graph.out_edges_iter(n,data=True):
15

16 # equation 18, here "Uc" = Uc(r-1) in the text
17 I1 = (d_u["U"] + d_e["Up_1"] - d_e["Uc"])/d_e["R1"]
18 d_e["I1"] = I1
19

20 beta_1 = d_e["beta_factor"]*d_e["R1"]
21 Up_max = d_e["Upmax"]
22 Up_min = (-1)*d_e["Upmax"]
23 alpha = d_e["alpha_factor"]/(d_e["R1"]*d_e["C"])
24

25 # equation 19
26 Up_target = max(min(Up_max, beta_1 * I1), Up_min)
27

28 Up_current = voltage_delay(Up_target, Up_current =
d_e["Up_1"], alpha, epsilon)↪→

29

30 d_e["Up_old_1"] = d_e["Up_1"]
31 d_e["Up_1"] = Up_current
32

33 for u,v,d_e in graph.in_edges_iter(n,data=True):
34

35 # equation 21, here "Uc" = Uc(r-1) in the text
36 I2 = (d_u["U"] + d_e["Up_2"] - d_e["Uc"])/d_e["R2"]

162

37 d_e["I2"] = I2
38

39 beta_2 = d_e["beta_factor"]*d_e["R2"]
40 Up_max = d_e["Upmax"]
41 Up_min = (-1)*d_e["Upmax"]
42 alpha = d_e["alpha_factor"]/(d_e["R2"]*d_e["C"])
43

44 # equation 22
45 Up_target = max(min(Up_max, beta_2 * I2), Up_min)
46 # equation 23
47 Up_current = voltage_delay(Up_target, Up_current =

d_e["Up_2"], alpha, epsilon)↪→

48

49 d_e["Up_old_2"] = d_e["Up_2"]
50 d_e["Up_2"] = Up_current

163

Bibliography

[1] A. Adamatzky, V. Erokhin, M. Grube, et al., “Physarum chip project: Grow-
ing computers from slime mould.”, IJUC, vol. 8, no. 4, pp. 319–323, 2012.

[2] L. A. Adamic and B. A. Huberman, “Power-law distribution of the world
wide web”, Science, vol. 287, no. 5461, pp. 2115–2115, 2000.

[3] L. M. Adleman, “Molecular computation of solutions to combinatorial prob-
lems”, Nature, vol. 369, p. 40, 1994.

[4] H. Aldrich,Cell Biology of Physarum and Didymium V1: Organisms, Nucleus,
and Cell Cycle. Elsevier, 2012.

[5] K. Alim, G. Amselem, F. Peaudecerf, et al., “Random network peristalsis in
Physarum polycephalum organizes fluid flows across an individual”, Proceed-
ings of the National Academy of Sciences, vol. 110, no. 33, pp. 13 306–13 311,
2013.

[6] U. Alon,M. G. Surette, N. Barkai, et al., “Robustness in bacterial chemotaxis”,
Nature, vol. 397, no. 6715, pp. 168–171, 1999.

[7] L. A. N. Amaral and J. M. Ottino, “Complex networks”, The European
Physical Journal B, vol. 38, no. 2, pp. 147–162, 2004.

[8] M. Aono and M. Hara, “Amoeba-based nonequilibrium neurocomputer uti-
lizing fluctuations and instability”, in Proceedings of the 6th International
Conference on Unconventional Computation, Springer International Publish-
ing, 2007, pp. 41–54.

[9] ——, “Spontaneous deadlock breaking on amoeba-based neurocomputer”,
Biosystems, vol. 91, no. 1, pp. 83–93, 2008.

[10] M. Aono, M. Hara, and K. Aihara, “Amoeba-based neurocomputing with
chaotic dynamics”, Communications of the ACM, vol. 50, no. 9, pp. 69–72,
2007.

[11] M. Aono, Y. Hirata, M. Hara, et al., “Amoeba-based chaotic neurocomputing:
Combinatorial optimization by coupled biological oscillators”, New Genera-
tion Computing, vol. 27, no. 2, pp. 129–157, 2009.

[12] G. Ausiello, M. Protasi, A. Marchetti-Spaccamela, et al., Complexity and
Approximation: Combinatorial Optimization Problems and Their Approx-
imability Properties. Springer International Publishing, 1999.

[13] T. Back, D. B. Fogel, and Z. Michalewicz, Eds., Handbook of Evolutionary
Computation. IOP Publishing Ltd., 1997.

165

Bibliography

[14] A.-L. Barabási and R. Albert, “Emergence of scaling in random networks”,
Science, vol. 286, no. 5439, pp. 509–512, 1999.

[15] A. Barrat, M. Barthélemy, and A. Vespignani, “Weighted evolving networks:
Coupling topology and weight dynamics”, Physical review letters, vol. 92, no.
22, p. 228 701, 2004.

[16] M. Bastian, S. Heymann, and M. Jacomy, “Gephi: An open source software
for exploring and manipulating networks”, 2009.

[17] V. Batagelj and A. Mrvar, “Pajek-program for large network analysis”, Con-
nections, vol. 21, no. 2, pp. 47–57, 1998.

[18] W. Baumgarten and M. J. Hauser, “Detection, extraction, and analysis of
the vein network”, Journal of Computational Interdisciplinary Sciences, vol.
1, no. 3, pp. 241–249, 2010.

[19] ——, “Functional organization of the vascular network of Physarum poly-
cephalum”, Physical Biology, vol. 10, no. 2, p. 026 003, 2013.

[20] W. Baumgarten and M. Hauser, “Computational algorithms for extraction
and analysis of two-dimensional transportation networks”, Journal of Com-
putational Interdisciplinary Sciences, vol. 3, pp. 107–16, 2012.

[21] W. Baumgarten, J. Jones, and M. J. Hauser, “Network coarsening dynamics
in a plasmodial slime mould: Modelling and experiments”, Acta Physica
Polonica B, vol. 46, no. 6, pp. 1201–1218, 2015.

[22] W. Baumgarten, T. Ueda, and M. J. Hauser, “Plasmodial vein networks of the
slime mold Physarum polycephalum form regular graphs”, Physical Review
E, vol. 82, no. 4, p. 046 113, 2010.

[23] L. Becchetti, V. Bonifaci, M. Dirnberger, et al., “Physarum can compute
shortest paths: Convergence proofs and complexity bounds”, in International
Colloquium on Automata, Languages, and Programming, Springer Interna-
tional Publishing, 2013, pp. 472–483.

[24] A. M. Becker and R. M. Ziff, “Percolation thresholds on two-dimensional
voronoi networks and delaunay triangulations”, Physical Review E, vol. 80,
no. 4, p. 041 101, 2009.

[25] M. A. Bedau, J. S. McCaskill, N. H. Packard, et al., “Open problems in
artificial life”, Artificial life, vol. 6, no. 4, pp. 363–376, 2000.

[26] C. M. Bishop, Neural Networks for Pattern Recognition. Oxford University
Press, Inc., 1995.

[27] E. Boa, “Ainsworth and Bisby’s Dictionary of the Fungi”, Plant Pathology,
vol. 47, no. 4, pp. 541–541, 1998.

[28] S. Boccaletti, V. Latora, Y. Moreno, et al., “Complex networks: Structure
and dynamics”, Physics reports, vol. 424, no. 4, pp. 175–308, 2006.

166

Bibliography

[29] M. A. Boden, The Philosophy of Artificial Life. Oxford University Press, Inc.,
1996.

[30] E. Bonabeau,M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural
to Artificial Systems. Oxford University Press, Inc., 1999.

[31] ——, “Inspiration for optimization from social insect behaviour”, Nature, vol.
406, no. 6791, pp. 39–42, 2000.

[32] E. Bonabeau and G. Théraulaz, “Swarm smarts”, Scientific American, vol.
282, no. 3, pp. 72–79, 2000.

[33] D. Boneh, C. Dimworth, and R. J. Lipton, “Breaking DBS using a molecular
computer”, DNA Based Computing, vol. 27, p. 37, 1996.

[34] D. Boneh, C. Dunworth, R. J. Lipton, et al., “On the computational power
of DNA”, Discrete Applied Mathematics, vol. 71, no. 1, pp. 79–94, 1996.

[35] V. Bonifaci, “Physarum can compute shortest paths: A short proof”, Infor-
mation Processing Letters, vol. 113, no. 1-2, pp. 4–7, 2013.

[36] V. Bonifaci, K. Mehlhorn, and G. Varma, “Physarum can compute shortest
paths”, Journal of Theoretical Biology, vol. 309, pp. 121–133, 2012.

[37] G. Bradski, “The OpenCV Library”, Dr. Dobb’s Journal of Software Tools,
2000.

[38] D. Brandner and G. Withers, The Cell Image Library, 2010.

[39] J. Buhl, J. Gautrais, N. Reeves, et al., “Topological patterns in street networks
of self-organized urban settlements”, The European Physical Journal B, vol.
49, no. 4, pp. 513–522, 2006.

[40] D. S. Callaway, M. E. Newman, S. H. Strogatz, et al., “Network robustness
and fragility: Percolation on random graphs”, Physical review letters, vol. 85,
no. 25, p. 5468, 2000.

[41] J. M. Carlson and J. Doyle, “Complexity and robustness”, Proceedings of the
National Academy of Sciences, vol. 99, no. 1, pp. 2538–2545, 2002.

[42] L. N. de Castro, “Natural computing”, in Encyclopedia of Information Science
and Technology, IGI Global, 2005, pp. 2080–2084.

[43] ——, “Fundamentals of natural computing: An overview”, Physics of Life
Reviews, vol. 4, no. 1, pp. 1–36, 2007.

[44] D. Chai, W. Forstner, and F. Lafarge, “Recovering line-networks in images
by junction-point processes”, in Conference on Computer Vision and Pattern
Recognition (CVPR), IEEE, 2013, pp. 1894–1901.

[45] R. Chellappa and B. Manjunath, “Texture classification and segmentation:
Tribulations, triumphs and tributes”, in Foundations of Image Understanding,
vol. 628, Springer International Publishing, 2001, pp. 219–240.

[46] CPLEX, V12. 1: User’s manual for cplex, 2009.

167

Bibliography

[47] A. C. Cullen and H. C. Frey, Probabilistic techniques in exposure assessment:
A handbook for dealing with variability and uncertainty in models and inputs.
Springer Science & Business Media, 1999.

[48] L. N. De Castro, Fundamentals of natural computing: Basic concepts, algo-
rithms, and applications. CRC Press, 2006.

[49] M. T. Dehkordi, S. Sadri, and A. Doosthoseini, “A review of coronary vessel
segmentation algorithms”, Journal of medical signals and sensors, vol. 1, no.
1, p. 49, 2011.

[50] M. L. Delignette-Muller, C. Dutang, et al., “Fitdistrplus: An R package for
fitting distributions”, Journal of Statistical Software, vol. 64, no. 4, pp. 1–34,
2015.

[51] M. Dirnberger, T. Kehl, T. Mehlhorn, et al., “Towards an open online reposi-
tory of P. polycephalum networks and their corresponding graph representa-
tions”, in The first international workshop on physarum transport networks,
ACM, 2016.

[52] M. Dirnberger, T. Kehl, and A. Neumann, “Nefi: Network extraction from
images”, Scientific reports, vol. 5, 2015.

[53] M. Dirnberger and K. Mehlhorn, “Characterizing networks formed by P.
polycephalum”, Journal of Physics D: Applied Physics, submitted, 2016.

[54] M. Dirnberger, K. Mehlhorn, and T. Mehlhorn, “Introducing the slime mold
graph repository”, Journal of Physics D: Applied Physics, submitted, 2016.

[55] Z. V. Djordjevic, H. E. Stanley, and A. Margolina, “Site percolation threshold
for honeycomb and square lattices”, Journal of Physics A: Mathematical and
Theoretical, vol. 15, no. 8, p. L405, 1982.

[56] W. F. Dove and H. P. Rusch, Growth and Differentiation in Physarum poly-
cephalum. Princeton University Press, 1980.

[57] S. Even, A. Itai, and A. Shamir, “On the complexity of time table and multi-
commodity flow problems”, in 16th Annual Symposium on Foundations of
Computer Science, 1975, pp. 184–193.

[58] M. Faloutsos, P. Faloutsos, and C. Faloutsos, “On power-law relationships of
the internet topology”, in SIGCOMM computer communication review, ACM,
vol. 29, 1999, pp. 251–262.

[59] L. Fausett, Ed., Fundamentals of Neural Networks: Architectures, Algorithms,
and Applications. Prentice-Hall, Inc., 1994.

[60] A. Fessel, C. Oettmeier, and H.-G. Döbereiner, “Structuring precedes exten-
sion in percolating Physarum polycephalum networks”,Nano Communication
Networks, vol. 6, no. 3, pp. 87–95, 2015.

[61] A. Fessel, C. Oettmeier, E. Bernitt, et al., “Physarum polycephalum per-
colation as a paradigm for topological phase transitions in transportation
networks”, Physical review letters, vol. 109, no. 7, p. 078 103, 2012.

168

Bibliography

[62] A. Fessel, C. Oettmeier, and H.-G. Döbereiner, “An analytical model for perco-
lation in small link degree transportation networks”, in Proceedings of the 8th
International Conference on Bioinspired Information and Communications
Technologies, 2014, pp. 81–86.

[63] O. Frank, “Die Grundform des arteriellen Pulses”, Z Biol., vol. 37, no. 483-526,
p. 19, 1899.

[64] D. Freedman and P. Diaconis, “On the histogram as a density estimator: L
2 theory”, Probability theory and related fields, vol. 57, no. 4, pp. 453–476,
1981.

[65] M. Fricker, L. Boddy, and D. Bebber, “Network organisation of mycelial
fungi”, in Biology of the fungal cell, Springer International Publishing, 2007,
pp. 309–330.

[66] Y. Fukuyama, “Fundamentals of particle swarm optimization techniques”,
Modern heuristic optimization techniques: Theory and applications to power
systems, pp. 71–87, 2008.

[67] L. K. Grover, “A fast quantum mechanical algorithm for database search”,
in Proceedings of the twenty-eighth annual ACM symposium on Theory of
computing, ACM, 1996, pp. 212–219.

[68] M. Grube, “Physarum, quo vadis?”, in Advances in Physarum Machines,
Springer International Publishing, 2016, pp. 23–35.

[69] R. Guimera and L. A. N. Amaral, “Modeling the world-wide airport network”,
The European Physical Journal B, vol. 38, no. 2, pp. 381–385, 2004.

[70] Y.-P. Gunji, T. Shirakawa, T. Niizato, et al., “Minimal model of a cell connect-
ing amoebic motion and adaptive transport networks”, Journal of Theoretical
Biology, vol. 253, no. 4, pp. 659–667, 2008.

[71] Y.-P. Gunji, T. Shirakawa, T. Niizato, et al., “An adaptive and robust bio-
logical network based on the vacant-particle transportation model”, Journal
of Theoretical Biology, vol. 272, no. 1, pp. 187–200, 2011.

[72] Z. Guo and R. W. Hall, “Parallel thinning with two-subiteration algorithms”,
Communications of the ACM, vol. 32, no. 3, pp. 359–373, 1989.

[73] Gurobi, Gurobi optimizer reference manual, 2012.

[74] A. A. Hagberg, D. A. Schult, and P. J. Swart, “Exploring network structure,
dynamics, and function using NetworkX”, in Proceedings of the 7th Python
in Science Conference (SciPy2008), 2008, pp. 11–15.

[75] S. Hales, “Statical Essays Haemostaticks vol. 2”, London W, vol. 2, p. 230,
1733.

[76] V. Hardung, “Propagation of pulse waves in viscoelastic tubings”, Handbook
of physiology, vol. 1, pp. 107–135, 1962.

169

Bibliography

[77] S. Haykin, Neural Networks: A Comprehensive Foundation. Prentice Hall
PTR, 1998.

[78] L. Heaton, B. Obara, V. Grau, et al., “Analysis of fungal networks”, Fungal
Biology Reviews, vol. 26, no. 1, pp. 12–29, 2012.

[79] F. S. Hillier and G. J. Lieberman, Introduction to Operations Research.
Holden-Day, Inc., 1986.

[80] A. Hinde and R. Miles, “Monte carlo estimates of the distributions of the
random polygons of the voronoi tessellation with respect to a poisson process”,
Journal of Statistical Computation and Simulation, vol. 10, no. 3-4, pp. 205–
223, 1980.

[81] F. L. Howard, “The life history of Physarum polycephalum”, American Jour-
nal of Botany, vol. 18, no. 2, pp. 116–133, 1931.

[82] B. A. Huberman and L. A. Adamic, “Internet: Growth dynamics of the
world-wide web”, Nature, vol. 401, no. 6749, pp. 131–131, 1999.

[83] K. Ito, A. Johansson, T. Nakagaki, et al., “Convergence properties for the
physarum solver”, Arxiv:1101.5249, 2011.

[84] M. Ito, R. Okamoto, and A. Takamatsu, “Characterization of adaptation by
morphology in a planar biological network of plasmodial slime mold”, Journal
of the Physical Society of Japan, vol. 80, no. 7, p. 074 801, 2011.

[85] B. Jiang and C. Claramunt, “Topological analysis of urban street networks”,
Environment and Planning B: Planning and design, vol. 31, no. 1, pp. 151–
162, 2004.

[86] A. Johannson and J. Zou, “A slime mold solver for linear programming prob-
lems”, in How the World Computes: Turing Centenary Conference and 8th
Conference on Computability in Europe. Springer International Publishing,
2012, pp. 344–354.

[87] H. J. Johnson, M. McCormick, L. Ibáñez, et al., The ITK Software Guide,
Kitware, Inc., 2013.

[88] E. Jones, T. Oliphant, P. Peterson, et al., Open source scientific tools for
Python, 2001.

[89] J. Jones, “Characteristics of pattern formation and evolution in approxima-
tions of physarum transport networks”, Artificial life, vol. 16, no. 2, pp. 127–
153, 2010.

[90] ——, “Influences on the formation and evolution of Physarum polycephalum
inspired emergent transport networks”, Natural computing, vol. 10, no. 4,
pp. 1345–1369, 2011.

[91] ——, “Applications of multi-agent slime mould computing”, International
Journal of Parallel, Emergent and Distributed Systems, pp. 1–30, 2015.

170

Bibliography

[92] ——, “Multi-agent slime mould computing: Mechanisms, applications and
advances”, in Advances in Physarum Machines, Springer International Pub-
lishing, 2016, pp. 423–463.

[93] J. Jones and A. Adamatzky, “Computation of the travelling salesman problem
by a shrinking blob”, Natural computing, vol. 13, no. 1, pp. 1–16, 2014.

[94] ——, “Material approximation of data smoothing and spline curves inspired
by slime mould”, Bioinspiration & biomimetics, vol. 9, no. 3, p. 036 016, 2014.

[95] ——, “Slime mould inspired generalised voronoi diagrams with repulsive
fields”, Arxiv:1503.06973, 2015.

[96] N. Kamiya, “Motive Force Responsible for the Protoplasmic Streaming”, in
Protoplasmic Streaming, Springer International Publishing, 1959, pp. 38–52.

[97] N. Kamiya and K. Kuroda, “Studies on the velocity distribution of the
protoplasmic streaming in the myxomycete plasmodium”, Protoplasma, vol.
49, no. 1, pp. 1–4, 1958.

[98] T. Karagiannis, M. Molle, and M. Faloutsos, “Long-range dependence ten
years of internet traffic modeling”, Internet Computing, vol. 8, no. 5, pp. 57–
64, 2004.

[99] A. Karrenbauer and D. Wöll, “Blinking molecule tracking”, in Proceedings
of the 12th international symposium on experimental algorithms, Springer
International Publishing, 2013, pp. 308–319.

[100] E. Katifori, G. J. Szöllősi, and M. O. Magnasco, “Damage and fluctuations
induce loops in optimal transport networks”, Physical review letters, vol. 104,
no. 4, p. 048 704, 2010.

[101] R. Kicinger, T. Arciszewski, and K. De Jong, “Evolutionary computation and
structural design: A survey of the state-of-the-art”, Computers & Structures,
vol. 83, no. 23, pp. 1943–1978, 2005.

[102] K. Koizumi, M. Sugiyama, and H. Fukuda, “A series of novel mutants of
Arabidopsis thaliana that are defective in the formation of continuous vascular
network: Calling the auxin signal flow canalization hypothesis into question”,
Development, vol. 127, no. 15, pp. 3197–3204, 2000.

[103] M. Krause, R. M. Alles, B. Burgeth, et al., “Fast retinal vessel analysis”,
Journal of Real-Time Image Processing, pp. 1–10, 2013.

[104] G. Landes, “Einige Untersuchungen an elektrischen Analogieschaltungen zum
Kreislaufsystem”, Z. Biol., vol. 101, pp. 418–429, 1943.

[105] C. G. Langton, Artificial Life: An Overview. MIT Press, 1995.

[106] J. Leskovec and R. Sosič, SNAP: A general purpose network analysis and
graph mining library in C++, http://snap.stanford.edu/snap, 2014.

171

http://snap.stanford.edu/snap

Bibliography

[107] S. Loscalzo and L. Yu, “Social network analysis: Tasks and tools”, in So-
cial computing, behavioral modeling, and prediction, Springer International
Publishing, 2008, pp. 151–159.

[108] W. Marwan, “Amoeba-inspired network design”, Science, vol. 327, no. 5964,
pp. 419–420, 2010.

[109] R. Mayne, “Biology of the Physarum polycephalum plasmodium: Prelimi-
naries for unconventional computing”, in Advances in Physarum Machines:
Sensing and Computing with Slime Mould. Springer International Publishing,
2016, pp. 3–22.

[110] K. Mehlhorn and S. Näher, “LEDA: A Platform for Combinatorial and Geo-
metric Computing”, Commun. ACM, vol. 38, no. 1, pp. 96–102, 1995.

[111] F. Meyer, “Un algorithme optimal pour la ligne de partage des eaux”, Dans
8me congrès de reconnaissance des formes et intelligence artificielle, vol. 2,
pp. 847–857, 1991.

[112] R. Milo, S. Shen-Orr, S. Itzkovitz, et al., “Network motifs: Simple building
blocks of complex networks”, Science, vol. 298, no. 5594, pp. 824–827, 2002.

[113] T. Miyaji, I. Ohnishi, et al., “Mathematical analysis to an adaptive network
of the plasmodium system”, Hokkaido Mathematical Journal, vol. 36, no. 2,
pp. 445–465, 2007.

[114] T. Miyaji and I. Ohnishi, “Physarum can solve the shortest path problem
on riemannian surface mathematically rigorously”, International Journal of
Pure and Applied Mathematics, vol. 47, no. 3, pp. 353–369, 2008.

[115] Y. Miyake, S. Tabata, H. Murakami, et al., “Environment-dependent self-
organization of positional information field in chemotaxis of Physarum plas-
modium”, Journal of Theoretical Biology, vol. 178, no. 4, pp. 341–353, 1996.

[116] J. M. Montoya, S. L. Pimm, and R. V. Solé, “Ecological networks and their
fragility”, Nature, vol. 442, no. 7100, pp. 259–264, 2006.

[117] K. Nagel, D. E. Wolf, P. Wagner, et al., “Two-lane traffic rules for cellular
automata: A systematic approach”, Physical Review E, vol. 58, no. 2, p. 1425,
1998.

[118] T. Nakagaki, M. Iima, T. Ueda, et al., “Minimum-risk path finding by an
adaptive amoebal network”, Physical review letters, vol. 99, p. 068 104, 6 2007.

[119] ——, “Minimum-risk path finding by an adaptive amoebal network”, Physical
review letters, vol. 99, no. 6, p. 068 104, 2007.

[120] T. Nakagaki, R. Kobayashi, Y. Nishiura, et al., “Obtaining multiple separate
food sources: Behavioural intelligence in the Physarum plasmodium”, Pro-
ceedings of the Royal Society of London B: Biological Sciences, vol. 271, no.
1554, pp. 2305–2310, 2004.

172

Bibliography

[121] T. Nakagaki and T. Ueda, “Phase switching of oscillatory contraction in rela-
tion to the regulation of amoeboid behavior by the plasmodium of Physarum
polycephalum”, Journal of Theoretical Biology, vol. 179, no. 3, pp. 261–267,
1996.

[122] T. Nakagaki, S. Umemura, Y. Kakiuchi, et al., “Action spectrum for sporula-
tion and photoavoidance in the plasmodium of Physarum polycephalum, as
modified differentially by temperature and starvation”, Photochemistry and
photobiology, vol. 64, no. 5, pp. 859–862, 1996.

[123] T. Nakagaki, H. Yamada, and M. Hara, “Smart network solutions in an
amoeboid organism”, Biophysical Chemistry, vol. 107, no. 1, pp. 1–5, 2004.

[124] T. Nakagaki, H. Yamada, and Á. Tóth, “Intelligence: Maze-solving by an
amoeboid organism”, Nature, vol. 407, no. 6803, pp. 470–470, 2000.

[125] T. Nakagaki, H. Yamada, and T. Ueda, “Interaction between cell shape and
contraction pattern in the Physarum plasmodium”, Biophysical chemistry,
vol. 84, no. 3, pp. 195–204, 2000.

[126] M. Negri, P. Gamba, G. Lisini, et al., “Junction-aware extraction and reg-
ularization of urban road networks in high-resolution sar images”, IEEE
Transactions on Geoscience and Remote Sensing, vol. 44, no. 10, pp. 2962–
2971, 2006.

[127] M. E. Newman, “The structure and function of complex networks”, SIAM
review, vol. 45, no. 2, pp. 167–256, 2003.

[128] M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum In-
formation: 10th Anniversary Edition. Cambridge University Press, 2011.

[129] W. Nowotny,Myxomyceten (Schleimpilze) und Mycetozoa (Pilztiere) - Lebens-
formen zwischen Pflanze und Tier. 2000.

[130] V. Ntinas, I. Vourkas, G. C. Sirakoulis, et al., “Oscillation-based slime mould
electronic circuit model for maze-solving computations”, IEEE Transactions
on Circuits and Systems I: Regular Papers, 2016.

[131] B. Obara, M. D. Fricker, and V. Graua, “Contrast independent detection
of branching points in network-like structures”, in SPIE Medical Imaging,
International Society for Optics and Photonics, 2012, pp. 83141L–83141L.

[132] B. Obara, V. Grau, and M. D. Fricker, “A bioimage informatics approach to
automatically extract complex fungal networks”, Bioinformatics, vol. 28, no.
18, pp. 2374–2381, 2012.

[133] C. Oettmeier, J. Lee, and H.-G. Döbereiner, “Hydrodynamic mechanism of
information processing in Physarum polycephalum”, in Physics of Physarum
polycephalum and Other Slime Molds - Joint Focus Session (BP/DY) orga-
nized by Hans-Günther Döbereiner, 2017.

[134] J. S. Oliver, “Computation with DNA: matrix multiplication”, DNA Based
Computers II. Proc of DIMACS, vol. 44, pp. 113–22, 1998.

173

Bibliography

[135] M. S. Olufsen, A. Nadim, et al., “On deriving lumped models for blood flow
and pressure in the systemic arteries”, Math. Biosci. Eng., vol. 1, no. 1,
pp. 61–80, 2004.

[136] N. Otsu, “A threshold selection method from gray-level histograms”, IEEE
Transactions on Systems, Man, and Cybernetics, vol. 9, no. 1, pp. 62–66, 1979.

[137] N. R. Pal and S. K. Pal, “A review on image segmentation techniques”,
Pattern Recognition, vol. 26, no. 9, pp. 1277–1294, 1993.

[138] L. de Pater and J. van den Berg, “An electrical analogue of the entire human
circulatory system”, Medical electronics and biological engineering, vol. 2, no.
2, pp. 161–166, 1964.

[139] G. Păun, “Computing with membranes”, Journal of Computer and System
Sciences, vol. 61, no. 1, pp. 108–143, 2000.

[140] Y. V. Pershin, S. La Fontaine, and M. Di Ventra, “Memristive model of
amoeba learning”, Physical Review E, vol. 80, no. 2, p. 021 926, 2009.

[141] D. L. Pham, C. Xu, and J. L. Prince, “Current methods in medical image seg-
mentation 1”, Annual review of biomedical engineering, vol. 2, no. 1, pp. 315–
337, 2000.

[142] S. L. Pimm, J. H. Lawton, and J. E. Cohen, “Food web patterns and their
consequences”, Nature, vol. 350, no. 6320, pp. 669–674, 1991.

[143] R Core team and others, R: A language and environment for statistical
computing, 2013.

[144] C. W. Reynolds, “Flocks, herds and schools: A distributed behavioral model”,
in Proceedings of the 14th Annual Conference on Computer Graphics and
Interactive Techniques, ACM, 1987, pp. 25–34.

[145] M. Rohden, A. Sorge, M. Timme, et al., “Self-organized synchronization in
decentralized power grids”, Physical review letters, vol. 109, no. 6, p. 064 101,
2012.

[146] C. Rother, V. Kolmogorov, and A. Blake, “Grabcut - interactive foreground
extraction using iterated graph cuts”, ACM Transactions on Graphics (SIG-
GRAPH), pp. 309–314, 2004.

[147] D. H. Rothman and S. Zaleski, Lattice-gas cellular automata: Simple models
of complex hydrodynamics. Cambridge University Press, 2004, vol. 5.

[148] A. Roth-Nebelsick, D. Uhl, V. Mosbrugger, et al., “Evolution and function
of leaf venation architecture: A review”, Annals of Botany, vol. 87, no. 5,
pp. 553–566, 2001.

[149] E. Samuel, C. de la Higuera, and J.-C. Janodet, “Extracting plane graphs
from images”, in Structural, Syntactic, and Statistical Pattern Recognition,
vol. 6218, Springer International Publishing, 2010, pp. 233–243.

[150] H. Sauer, Developmental biology of Physarum. CUP Archive, 1982, vol. 11.

174

Bibliography

[151] H. W. Sauer, “Introduction to Physarum”, in The Molecular Biology of
Physarum polycephalum. Springer International Publishing, 1986, pp. 1–17.

[152] T. Schön, M. Stetter, and E. W. Lang, “Structure learning for bayesian
networks using the Physarum solver”, in 11th International Conference on
Machine Learning and Applications (ICMLA), IEEE, vol. 1, 2012, pp. 488–
493.

[153] H.-P. Schwefel, Evolution and Optimum Seeking: The Sixth Generation. John
Wiley & Sons, Inc., 1993.

[154] P. Sen, S. Dasgupta, A. Chatterjee, et al., “Small-world properties of the
indian railway network”, Physical Review E, vol. 67, no. 3, p. 036 106, 2003.

[155] T. Shirakawa and Y.-P. Gunji, “Emergence of morphological order in the
network formation of Physarum polycephalum”, Biophysical chemistry, vol.
128, no. 2, pp. 253–260, 2007.

[156] P. W. Shor, “Polynomial-time algorithms for prime factorization and discrete
logarithms on a quantum computer”, SIAM review, vol. 41, no. 2, pp. 303–332,
1999.

[157] J. Sienkiewicz and J. A. Hołyst, “Statistical analysis of 22 public transport
networks in Poland”, Physical Review E, vol. 72, no. 4, p. 046 127, 2005.

[158] D. Smith and R. Saldana, “Model of the Ca2+ oscillator for shuttle streaming
in Physarum polycephalum”, Biophysical Journal, vol. 61, no. 2, pp. 368–380,
1992.

[159] C. Sommer, C. Straehle, U. Köthe, et al., “Ilastik: Interactive learning and
segmentation toolkit”, in International symposium on biomedical imaging:
From nano to macro, IEEE, 2011, pp. 230–233.

[160] W. M. Spears, K. A. De Jong, T. Bäck, et al., “An overview of evolution-
ary computation”, in European Conference on Machine Learning, Springer
International Publishing, 1993, pp. 442–459.

[161] A. Stefanovska, “Physics of the human cardiovascular system”, Contemporary
Physics, vol. 40, no. 1, pp. 31–55, 1999.

[162] S. L. S. Stephenson, L. Steven, et al., Myxomycetes; a handbook of slime
molds. 1994.

[163] P. A. Stewart and B. T. Stewart, “Protoplasmic movement in slime mold
plasmodia: The diffusion drag force hypothesis”, Experimental cell research,
vol. 17, no. 1, pp. 44–58, 1959.

[164] S. H. Strogatz, “Exploring complex networks”, Nature, vol. 410, no. 6825,
pp. 268–276, 2001.

[165] K. Takahashi, G. Uchida, Z.-S. Hu, et al., “Entrainment of the self-sustained
oscillation in a Physarum polycephalum strand as a one-dimensionally cou-
pled oscillator system”, Journal of Theoretical Biology, vol. 184, no. 2, pp. 105–
110, 1997.

175

Bibliography

[166] A. Takamatsu, T. Fujii, and I. Endo, “Time delay effect in a living coupled
oscillator system with the plasmodium of Physarum polycephalum”, Physical
review letters, vol. 85, pp. 2026–2029, 9 2000.

[167] A. Takamatsu, E. Takaba, and G. Takizawa, “Environment-dependent mor-
phology in plasmodium of true slime mold Physarum polycephalum and a
network growth model”, Journal of Theoretical Biology, vol. 256, no. 1, pp. 29–
44, 2009.

[168] A. Takamatsu, R. Tanaka, H. Yamada, et al., “Spatiotemporal symmetry in
rings of coupled biological oscillators of physarum plasmodial slime mold”,
Physical review letters, vol. 87, no. 7, p. 078 102, 2001.

[169] M. Tanemura, “Statistical distributions of poisson voronoi cells in two and
three dimensions”, Forma, vol. 18, no. 4, pp. 221–247, 2003.

[170] F. Tardieu, “Virtual plants: Modelling as a tool for the genomics of tolerance
to water deficit”, Trends in plant science, vol. 8, no. 1, pp. 9–14, 2003.

[171] C. Taylor and D. Jefferson, “Artificial Life As a Tool for Biological Inquiry”,
Artificial Life, vol. 1, no. 1-2, pp. 1–13, 1993.

[172] V. Teplov, Y. M. Romanovsky, and O. Latushkin, “A continuum model of
contraction waves and protoplasm streaming in strands of Physarum plas-
modium”, Biosystems, vol. 24, no. 4, pp. 269–289, 1991.

[173] A. Tero, R. Kobayashi, and T. Nakagaki, “A coupled-oscillator model with a
conservation law for the rhythmic amoeboid movements of plasmodial slime
molds”, Physica D: Nonlinear Phenomena, vol. 205, no. 1, pp. 125–135, 2005.

[174] ——, “Physarum solver: A biologically inspired method of road-network nav-
igation”, Physica A: Statistical Mechanics and its Applications, vol. 363, no.
1, pp. 115–119, 2006.

[175] ——, “A mathematical model for adaptive transport network in path finding
by true slime mold”, Journal of Theoretical Biology, vol. 244, no. 4, pp. 553–
564, 2007.

[176] A. Tero, S. Takagi, T. Saigusa, et al., “Rules for biologically inspired adaptive
network design”, Science, vol. 327, no. 5964, pp. 439–442, 2010.

[177] S. Tsuda, M. Aono, and Y.-P. Gunji, “Robust and emergent physarum logical-
computing”, Biosystems, vol. 73, no. 1, pp. 45–55, 2004.

[178] S. Tsuda, K.-P. Zauner, and Y.-P. Gunji, “Robot control with biological cells”,
Biosystems, vol. 87, no. 2–3, pp. 215–223, 2007.

[179] T. Ueda, “An intelligent slime mold: A self-organizing system of cell shape
and information”, Lecture Notes in Complex System, vol. 3, pp. 221–253, 2005.

[180] G. Watt, M. Whalley, J. Bentham, et al., The HepData Project, 2014.

176

Bibliography

[181] C. Westendorf, C. Gruber, and M. Grube, “Quantitative comparison of plas-
modial networks of different slime molds”, in Proceedings of the 9th EAI
International Conference on Bio-inspired Information and Communications
Technologies, 2016, pp. 611–612.

[182] E. P. White, E. Baldridge, Z. T. Brym, et al., “Nine simple ways to make
it easier to (re) use your data”, Ideas in ecology and evolution, vol. 6, no. 2,
2013.

[183] K. E. Wohlfarth-Bottermann, “Oscillatory contraction activity in physarum”,
Journal of Experimental Biology, vol. 81, no. 1, pp. 15–32, 1979.

[184] D. Wöll, C. Kölbl, B. Stempfle, et al., “A novel method for automatic single
molecule tracking of blinking molecules at low intensities”,Physical Chemistry
Chemical Physics, vol. 15, no. 17, pp. 6196–6205, 2013.

[185] K. Xu, C. Tang, R. Tang, et al., “A comparative study of six software packages
for complex network research”, in Communication software and networks,
2010. iccsn ’10. second international conference on, 2010, pp. 350–354.

[186] T. Zhang and C. Y. Suen, “A fast parallel algorithm for thinning digital
patterns”, Communications of the ACM, vol. 27, no. 3, pp. 236–239, 1984.

[187] M. Zhongwei, L. Zongxiang, and S. Jingyan, “Comparison analysis of the
small-world topological model of chinese and american power grids”, Automa-
tion of Electric Power Systems, vol. 15, p. 004, 2004.

[188] E. Zitzler, K. Deb, and L. Thiele, “Comparison of multiobjective evolution-
ary algorithms: Empirical results”, Evolutionary computation, vol. 8, no. 2,
pp. 173–195, 2000.

177

	Contents
	List of Figures
	List of Tables
	List of Code Listings
	1 Introduction
	1.1 The Slime Mold Physarum Polycephalum
	1.1.1 Life of Slime
	1.1.2 The Plasmodium of P. Polycephalum
	1.1.3 Overview of Research Focused on P. Polycephalum

	1.2 Natural Computing
	1.2.1 Computing Inspired by Nature
	1.2.2 Synthesis of Nature by Means of Computing
	1.2.3 Computing with Natural Materials

	1.3 Natural Computing with ¶
	1.3.1 Key Experiments and Observations
	1.3.2 Natural Computing Approaches

	1.4 Motivation and Outline

	2 Network Extraction From Images
	2.1 Introduction
	2.2 Network Extraction From Images
	2.2.1 Preprocessing Collection
	2.2.2 Segmentation Collection
	2.2.3 Graph Detection Collection
	2.2.4 Graph Filter Collection

	2.3 Evaluation
	2.3.1 Using a Graph Similarity Measure to Evaluate NEFI
	2.3.2 Definition of the Similarity Measure
	2.3.3 Evaluation of NEFI's Output
	2.3.4 Evaluation of Speed Performance

	2.4 Limitations of NEFI
	2.5 Synergies With Other Software
	2.5.1 Analysis of Graphs
	2.5.2 Third-party Segmentation Software

	2.6 Where to Download NEFI and how to Contribute
	2.7 Discussion
	2.8 Acknowledgments

	3 Slime Mold Graph Repository
	3.1 Introduction
	3.2 Repository Concept and Benefits
	3.3 The KIST Europe Data Set
	3.3.1 Node Tracking

	3.4 Sample Usage of the KIST Europe Data Set
	3.5 Discussion
	3.6 Acknowledgments

	4 Network Analysis
	4.1 Introduction
	4.2 Methods
	4.2.1 Experimental data
	4.2.2 Graph Representation
	4.2.3 Statistical Methods

	4.3 Results
	4.3.1 Path Properties
	4.3.2 Face Properties
	4.3.3 Cut Properties
	4.3.4 Percolation

	4.4 Discussion
	4.5 Acknowledgments

	5 Modeling Flows
	5.1 Introduction
	5.2 Overview of Modeling Approaches
	5.3 Continuous Model
	5.3.1 Putting the Model on a Graph

	5.4 Basic Properties of the Continuous Model
	5.5 Discrete Model
	5.6 Basic Properties of the Discrete Model
	5.7 Preliminary Simulation Results
	5.7.1 Cycle of Physarum Elements
	5.7.2 Diamond of Physarum Elements
	5.7.3 Paths of Physarum Elements
	5.7.4 Trees of Physarum Elements
	5.7.5 Two Linked Cycles of Physarum Elements
	5.7.6 Physarum Elements and Changing Topology

	5.8 Discussion

	6 Summary
	A Guide to Using NEFI
	A.1 Properties of Ideal and Non-ideal Images
	A.2 Dealing With Challenging Images

	B Details of Data Acquisition
	B.1 Experiments
	B.2 Graph Extraction
	B.3 Continued Production of Sclerotia

	C Supplementary Figures
	C.1 Goodness-of-fit Plots for sec:analysisresults
	C.2 Addititonal Illustrations for sec:cutproperties

	D Code Listings
	Bibliography

