
Modeling Common Sense

Knowledge via Scripts

UNIVERSITÄT
DES
SAARLANDES

Ashutosh Modi

A dissertation submitted towards the degree

Doctor of Engineering

of the Faculty of Mathematics and Computer Science

of Saarland University

Saarbrücken, July 2017

ii

Date of the colloquium: 7 July, 2017

Dean: Prof. Dr. Frank-Olaf Schreyer

Chairman of the examination board: Prof. Dr. Holger Hermanns

Reporters: Dr. Ivan Titov

Prof. Dr. Manfred Pinkal

Prof. Dr. Alexander Koller

Scientific Assistance: Dr. Michael Roth

To my Guru Pt. Shriram Sharma Acharya,

my Dad and my Mom

without whom this would have not been possible.

Acknowledgements

This dissertation would not have been possible without the guidance of Prof. Dr.

Manfred Pinkal and Dr. Ivan Titov, from whom I have learned a lot and whose

teachings are going to be useful for me throughout life.

I am grateful to my wife Nupur, who was patient enough and provided me moral

and emotional support throughout my dissertation. I am also grateful to my father

and my brother for motivating me. Above all I am grateful to my mother, you would

always be remembered. I thank all the members of my family for being there with me.

A very special thanks to MMCI (MultiModel Cluster Initiative) and SFB-Ideal for

supporting me during the research.

I am thankful to my colleagues Alexandre Klementiev, Mikhail Kozhevnikov,

Fatemeh Torabi Asr, Asad Sayeed, Annemarie Friedrich, Andrea Horbach, Lilian

Wanzare and Simon Ostermann. It was wonderful to have discussions with you all.

I express my gratitude towards my friends in Saarbrücken who were there with me

during the tough times.

And finally, to everyone in the Computational Linguistics department who helped

me and with whom I exchanged wonderful ideas.

Thank you everyone, for the support and motivation!

Abstract

It is generally believed that incorporation of common sense knowledge about the world

would benefit natural language understanding systems. This dissertation considers

modeling common sense knowledge associated with everyday activities. The common

sense knowledge about everyday activities can be understood and modeled using the

concept of scripts. Scripts are sequences of events describing stereotypical human

activities (i.e. scenarios), for example, cooking pasta, baking a cake, etc. Scripts have

been shown to be useful for drawing inferences from text. Consequently, scripts find

applications in the area of natural language processing (NLP) and artificial intelligence

(A.I.), for example, temporal reasoning, coreference resolution, story understanding

and question answering systems.

To model script knowledge, three main tasks need to be addressed: event order-

ing, event paraphrasing and event prediction. This dissertation introduces a novel

probabilistic neural network based model for learning event ordering and event para-

phrasing from a crowdsourced scripts corpus and the Gigaword news corpus. The

model outperforms currently prevalent graph based and count based methods. In

addition to event ordering and paraphrasing, a script understanding system should

have the ability to predict an upcoming event in a script. We propose an extension

of the event ordering model for event prediction. Experiments on a movie summary

corpus show the advantages of the event prediction model over existing count based

methods.

vi

Currently, most corpora describing narratives involve inter-mingling of scripts from

many different scenarios. Such narratives containing the inter-play of different scenarios

make it difficult to study the influence of script knowledge corresponding to a single

scenario. In order to address this problem and analyze the contribution of script

knowledge, this dissertation introduces the InScript corpus. InScript is a crowdsourced

collection of stories, where each story is about only one particular script scenario. The

corpus is manually annotated with script specific event types, participant types and

coreference information.

Intuitively, script knowledge should influence language understanding. This dis-

sertation contributes towards foundational work done for understanding the influence

of script knowledge on language comprehension. We propose models for checking

the influence of script knowledge on discourse referent prediction. From multiple

experiments, we conclude that script knowledge makes a substantial contribution in

predicting the upcoming discourse referents. Thus, we were able to empirically establish

that script knowledge plays a significant role in language comprehension.

Kurzfassung

Im Allgemeinen wird angenommen, dass Systeme zur automatischen Sprachverarbeitung

von der Benutzung von Weltwissen profitieren können. In dieser Dissertation wird

Weltwissen in der Form alltäglicher Tätigkeiten modelliert. Weltwissen in dieser

Form kann mit Hilfe von sogenannten Skripten verstanden und modelliert werden.

Skripte sind Sequenzen von Ereignissen, die stereotypische menschliche Tätigkeiten

(“Szenarien”) beschreiben, z.B. das Kochen von Nudeln, das Backen eines Kuchens

etc. Die Nützlichkeit von Skripten wurde vor allem bei Systemen der automatischen

textuellen Inferenz gezeigt. Als Konsequenz finden Skripte Anwendung im Bereich von

automatischer Verarbeitung natürlicher Sprache und in der künstlichen Intelligenz, z.B.

beim zeitlichen Schließen, der Auflösung von Anaphern, dem automatischen Verstehen

von Geschichten und in Systemen zur automatischen Beantwortung von Fragen.

Um Skriptwissen zu modellieren, müssen 3 zentrale Aufgaben betrachtet werden:

Das zeitliche Ordnen von Ereignissen, das Paraphrasieren von Ereignissen und das

Vorhersagen von Ereignissen. Diese Dissertation stellt ein neues Modell vor, das auf

einem probabilistischen neuronalen Netz basiert und das die zeitliche Ordnung von

Ereignissen und Paraphrasen eines Ereignisses aus einem auf Crowdsourcing basierten

Skript-Corpus und aus dem Gigaword-News-Corpus lernt. Das Modell übertrifft

aktuelle Graph-basierte und Kookkurrenz-basierte Modelle. Zusätzlich zum Ordnen

von Ereignissen und der Paraphrasenerkennung solcher, sollte ein System, welches

Skriptwissen modelliert, ein bevorstehendes Ereignis in einem Skript vorhersagen

viii

können. Wir präsentieren eine Erweiterung des Modells zum Ordnen von Ereignissen

für deren Vorhersage. Experimente auf einem Corpus von Filmzusammenfassungen

zeigen die Vorteile unseres Modells zur Vorhersage von Ereignissen im Vergleich mit

aktuell existierenden Methoden, die auf Vorkommenshäufigkeiten basieren.

Die Modellierung und das automatische Verstehen von narrativen Geschichten in

aktuellen Korpora erfordern die Vermischung von Skripten unterschiedlicher Szenarien.

Solche Narrative enthalten ein Zusammenspiel verschiedener Szenarios und erschweren

es daher, den Einfluss von Skriptwissen basierend auf einem einzelnen Szenario zu

erforschen. Um dieses Problem zu beheben und den Einfluss von Skriptwissen zu

messen, wird in dieser Dissertation das InScript-Korpus vorgestellt. InScript ist eine

auf Crowdsourcing basierte Sammlung von Geschichten, von denen jede von einem

speziellen Skriptszenario handelt. Das Korpus wurde manuell mit skriptspezifischen

Ereignistypen, Partizipantentypen und Koreferenzinformation annotiert.

Intuitiv sollte Skriptwissen auch das Sprachverstehen beeinflussen. Diese Disserta-

tion leistet einen Beitrag zur grundlegenden Erforschung des Einflusses von Skriptwissen

auf das Sprachverstehen. Wir stellen Modelle zur Überprüfung des Einflusses von

Skriptwissen auf die Vorhersage von Diskursreferenten vor. Wir erschließen, basierend

auf mehreren Experimenten, dass Skriptwissen einen substantiellen Einfluss auf die

Vorhersage des textuell bevorstehenden Diskursreferenten hat. Auf Grundlage dessen

sind wir also imstande, empirisch zu belegen, dass Skriptwissen eine signifikante Rolle

für das Sprachverstehen spielt.

Table of contents

List of figures xiv

List of tables xvii

1 Introduction 1

1.1 Introduction . 2

1.2 Frame Semantics . 7

1.3 Script Knowledge . 9

1.4 Thesis Structure . 10

1.5 Thesis Contributions . 11

2 Unsupervised Induction of Frame-Semantic Representations 13

2.1 Introduction . 14

2.2 Unsupervised SRL: Motivation . 17

2.3 Task Definition . 18

2.4 Model and Inference . 20

2.4.1 Dirichlet Process and Chinese Restaurant Process 20

2.4.2 A Model for Frame-Semantic Parsing 23

2.4.3 Inference . 25

2.5 Experimental Evaluation . 26

2.5.1 Data . 26

Table of contents x

2.5.2 Evaluation Metrics . 26

2.5.3 Model Parameters . 27

2.5.4 Qualitative Evaluation . 27

2.5.5 Quantitative Evaluation . 28

2.6 Related Work . 31

2.7 Conclusions . 32

3 Scripts 34

3.1 Introduction . 35

3.2 Scripts: Motivation . 39

3.3 Scripts: Cognitive Perspective . 41

3.4 Scripts: Computational Perspective . 44

3.5 Recent Work on Scripts . 49

3.6 Conclusion . 55

4 Neural Models of Script Knowledge 56

4.1 Introduction . 57

4.2 Event Ordering Script Model . 57

4.2.1 Event Representation . 61

4.2.2 Learning to Order . 62

4.3 Event Ordering Experiments . 63

4.3.1 Learning from Crowdsourced Data 63

4.3.2 Event Paraphrasing . 68

4.3.3 Learning from Natural Text . 70

4.4 Count Based Event Prediction . 74

4.4.1 Background . 75

4.5 Event Ordering Tasks Definition . 78

Table of contents xi

4.6 Event Prediction Script Model . 79

4.6.1 Event Representation . 80

4.6.2 Event Sequence Model . 83

4.7 Event Prediction Model Evaluation . 85

4.7.1 Data . 85

4.7.2 Baselines Systems . 87

4.7.3 Evaluation Metrics . 87

4.7.4 Narrative Cloze Evaluation . 88

4.7.5 Adversarial Narrative Cloze Evaluation 89

4.8 Related Work . 90

4.9 Conclusion . 91

5 InScript: Narrative Texts Annotated with Script Information 93

5.1 Introduction . 94

5.2 Data Collection . 97

5.2.1 Collection via Amazon M-Turk 97

5.2.2 Data Statistics . 99

5.3 Annotation . 100

5.3.1 Annotation Schema . 100

5.3.2 Development of the Schema . 107

5.3.3 First Annotation Phase . 108

5.3.4 Modification of the Schema . 108

5.3.5 Special Cases . 109

5.4 Data Analysis . 112

5.4.1 Inter-Annotator Agreement . 112

5.4.2 Annotated Corpus Statistics . 113

5.4.3 Comparison to the DeScript Corpus 115

Table of contents xii

5.5 Conclusion . 118

6 Modeling Semantic Expectation:

Using Script Knowledge for Referent Prediction 119

6.1 Introduction . 120

6.1.1 Scripts . 123

6.2 Data: The InScript Corpus . 124

6.3 Referent Cloze Task . 125

6.4 Referent Prediction Model . 128

6.4.1 Model . 128

6.4.2 Features . 130

6.4.3 Experiments . 138

6.5 Referring Expression Type Prediction Model (RE Model) 142

6.5.1 Uniform Information Density Hypothesis 142

6.5.2 A Model of Referring Expression Choice 143

6.5.3 RE Model Experiments . 144

6.5.4 Results . 144

6.6 Conclusion . 147

7 Conclusion and Future Directions 149

7.1 Thesis Summary . 150

7.2 Future Directions . 151

7.2.1 Multi-Script Modeling . 152

7.2.2 Script Modeling via Reinforcement Learning 152

7.2.3 Scripts for Coreference Resolution 153

7.2.4 Scripts and SRL . 154

7.2.5 Inference via Scripts . 154

Table of contents xiii

7.2.6 Multimodal Script Modeling . 155

References 156

List of figures

1.1 A small narrative with an implicit “making coffee” script. 5

2.1 An example of a semantic dependency graph. 18

2.2 Generative story for the frame-semantic parsing model. 25

3.1 Event sequence for the Baking a cake scenario. 36

3.2 An event in the Baking a cake scenario. 36

3.3 Different event sequence descriptions (ESDs) for the Baking a cake

scenario (Wanzare et al., 2016). 37

3.4 Script for the Baking a cake scenario represented as a directed acyclic

graph (Wanzare et al., 2016). 38

3.5 A small narrative describing a visit to a restaurant. 40

3.6 Architecture of the DISCERN system (Miikkulainen, 1993) 48

3.7 An example of a temporal script graph (TSG) induced from ESDs for

Eating in a fast food restaurant (Regneri et al., 2010) 51

4.1 Computation of an event representation for a predicate with two argu-

ments (the bus disembarked passengers), an arbitrary number of argu-

ments is supported by our approach. 60

4.2 Events on the timeline; dotted arcs link events from the same ESD. . . 68

List of figures xv

4.3 Results for different frequency bands: unseen, medium frequency (be-

tween 1 and 10) and high frequency (> 10) verb pairs. 73

4.4 A small narrative text . 77

4.5 Computation of an event representation for a predicate with dependency

and an argument (subj (batman) embarked batmobile), an arbitrary

number of arguments is supported by our approach. 80

4.6 Model for learning event sequences. Here, we are given sequence of

events e1, e2,, ek−1, ek, ek+1. Event ek is removed from the sequence

and it is predicted incrementally. 82

5.1 An excerpt from a story on the taking a bath script. 95

5.2 Connecting DeScript and InScript: an example from the Baking a

cake scenario (InScript participant annotation is omitted for better

readability). 96

5.3 BathAnnotation . 106

5.4 The number of participants and events in the templates. 111

5.5 Inter-annotator agreement statistics: Average Fleiss’ Kappa. 112

5.6 Inter-annotator agreement statistics: Coreference agreement. 113

5.7 Annotation statistics over all scenarios. 113

5.8 The number of stories in the baking a cake scenario that contain a

certain participant label. 114

5.9 Distribution of participants (left) and events (right) for the 1, the top 2-5,

top 6-10 most frequently appearing events/participants, ScrEv/ScrPart_Other

and the rest. 115

5.10 Average number of participant mentions for a story, for the first, the top

2-5, and top 6-10 most frequently appearing events/participants, and

the overall average. 116

List of figures xvi

5.11 MTLD values for DeScript and InScript, per scenario. 117

5.12 Entropy over verb lemmas for events (left y-axis, H(x)) in the going

on a train scenario. Bars in the background indicate the absolute

number of occurrence of instances (right y-axis, N(x)). 118

6.1 An excerpt from a story in the InScript corpus. The referring expressions

are in parentheses, and the corresponding discourse referent label is given

by the superscript. Referring expressions of the same discourse referent

have the same color and superscript number. Script-relevant events are

in square brackets and colored in orange. Event type is indicated by the

corresponding subscript. 125

6.2 An illustration of the Mechanical Turk experiment for the referent cloze

task. Workers are supposed to guess the upcoming referent (indicated

by XXXXXX above). They can either choose from the previously

activated referents, or they can write something new. 126

6.3 Response of workers corresponding to the story in Fig. 6.2. Workers

guessed two already activated discourse referents (DR) DR_4 and DR_1.

Some of the workers also chose the “new” option and wrote different

lexical variants of “bathtub drain”, a new DR corresponding to the

participant type “the drain”. 127

6.4 An example of the referent cloze task. Similar to the Mechanical Turk

experiment (Figure 6.2), our referent prediction model is asked to guess

the upcoming DR. 133

6.5 Average relative accuracies of different models w.r.t human predictions. 141

6.6 Average Jensen-Shannon divergence between human predictions and

models. 142

List of tables

2.1 Examples of the induced multi-verb frames. The left column shows

the induced verb clusters and the right column lists the gold frames

corresponding to each verb and the number in the parentheses are their

occurrence counts. 29

2.2 Frame labeling performance. 30

2.3 Role labeling performance. 30

4.1 Results on the crowdsourced data for the verb-frequency baseline (BL),

the verb-only embedding model (EEverb), Regneri et al. (2010) (MSA),

Frermann et al. (2014)(BS) and the full model (EE). 67

4.2 Paraphrasing results on the crowdsourced data for Regneri et al. (2010)

(MSA), Frermann et al. (2014)(BS) and the all-paraphrase baseline

(APBL) and using intervals induced from our model (EE). 70

4.3 Results on the Gigaword data for the verb-frequency baseline (BL), the

verb-only embedding model (EEverb), the full model (EE) and CJ08 rules. 72

4.4 Data statistics . 86

4.5 Model evaluation on test set for narrative cloze task against the baselines 88

4.6 Model evaluation on predicate only event test set for narrative cloze

task against the baselines . 88

List of tables xviii

4.7 Model evaluation on test set for adversarial narrative cloze task against

the baselines . 90

4.8 Model evaluation on predicate only test set for adversarial narrative

cloze task against the baselines . 90

5.1 Corpus statistics for different scenarios (standard deviation given in

parentheses). The maximum per column is highlighted in boldface, the

minimum in boldface italics. 98

5.2 Bath scenario template (labels added in the second phase of annotation

are marked in bold). 101

6.1 Summary of feature types . 130

6.2 Summary of model features . 137

6.3 Accuracies (in %) and perplexities for different models and scenarios.

The Script model substantially outperforms Linguistic and Base models

(with p < 0.001, significance tested with McNemar’s test (Everitt, 1992)).

As expected, the human prediction model outperforms the Script model

(with p < 0.001, significance tested by McNemar’s test). 139

6.4 Accuracies from ablation experiments. 140

6.5 Coefficients obtained from regression analysis for different models. Two

NP types considered: full NP and Pronoun/ProperNoun, with base class

full NP. Significance: ‘***’ < 0.001, ‘**’ < 0.01, ‘*’ < 0.05, and ‘.’ < 0.1. 146

CHAPTER 1

Introduction

1.1 Introduction . 2

1.2 Frame Semantics . 7

1.3 Script Knowledge . 9

1.4 Thesis Structure . 10

1.5 Thesis Contributions . 11

If you would be a real seeker after truth, it is necessary that at least once in your life you doubt,

as far as possible, all things.
**

Rene Descartes

1.1 Introduction 2

1.1 Introduction

Since time immemorial, humans have envisioned creating machines that can perform

many mundane human chores. We have been successful (e.g. industrial robots, self-

driving cars, etc.) to some extent but when it comes to emulating human intelligence,

we still have a long way to go. With the goal to create intelligent machines1, the field of

artificial intelligence was introduced in 1956 by John McCarthy and colleagues at the

famous Dartmouth workshop2. Ever since then, there have been concerted efforts to

replicate human intelligence and behavior in the machines. Humans have been looking

for intelligent machines that can assist them in carrying out activities on a day to day

basis.

One of the important components of such an intelligent system is communication

with the environment. Until now, one of the dominant ways of communicating with

computers has been in the languages that computers understand, i.e. computer pro-

grams. But given the fact that humans are not born with the natural tendency to

write computer programs, it will be desirable to have systems that can understand

the natural language that humans speak/write. In contrast to computer programming,

language3 is something that humans learn early in their lives, without making too

much effort. Language is a natural mode of communication for humans. Consequently,

for communicating with machines effortlessly and seamlessly, it is desirable to have a

natural language understanding interface for a machine.

Although language includes both the spoken component and written text, this

dissertation’s scope is limited to the written form of language, available in a variety
1The terms machines, computer systems and intelligent systems are used inter-changeably.
2Dartmouth workshop: http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html

and http://www-formal.stanford.edu/jmc/slides/dartmouth/dartmouth/node1.html
3The term language is used to refer to natural language, unless the term is ambiguous, in which

case it will be referred to as natural language.

http://www-formal.stanford.edu/jmc/history/dartmouth/dartmouth.html
http://www-formal.stanford.edu/jmc/slides/dartmouth/dartmouth/node1.html

1.1 Introduction 3

of forms like documents, news articles, books, websites, blogs etc. Henceforth, in this

dissertation, language processing implies processing the textual form of the language.

Developing natural language understanding systems is far from trivial. Languages

come with their own complexity and inherent ambiguities. Language can have ambi-

guities at multiple levels. There is ambiguity at the lexical level (i.e. at the level of

words), where the same word can have multiple meanings. For example, in sentence

(1.1) does the word “bank” refer to “financial institution” or to “riverside”? There

can be ambiguities at the level of syntax (i.e. at the level of grammar), where the

same sentence can have different equally plausible syntactic structures of syntactic

analysis (i.e. multiple, equally likely, syntactic parse trees). For example, in sentence

(1.2), did the man see another man with the help of binoculars? Or does it indicate

that the man saw another man carrying binoculars? There are ambiguities at the level

of semantics (i.e. at the level of meaning), where the text is open to many possible

interpretations. For example, in sentence (1.3) did Nupur leave the restaurant or

was it the waitress who left?

(1.1) He went to the bank and saw a lot of people

standing there.

(1.2) He saw a man with binoculars.

(1.3) Nupur paid the waitress and then she left the

restaurant.

(1.4) John hit Bill

(1.5) Bill hit John

Ambiguities in language make communication more compact and efficient by

discarding the redundant information. In a language, with a small set of words (e.g.

words in a dictionary), it is possible to generate innumerable meaningful sentences,

making communication compact. However, this limited vocabulary comes at the cost

1.1 Introduction 4

of ambiguity, as a word can be overloaded and can have multiple meanings. The

same set of words can be used to generate sentences having different meanings. For

example, sentences (1.4) and (1.5) have the same set of words but have different

meanings. Sentence (1.4) means that John acted on Bill but sentence (1.5) means

the opposite, Bill acted on John.

Consequently, this compactness and efficacy of language make computational

modeling of the language challenging. An important and dominant component of

a language processing system deals with ambiguity resolution. One of the ways of

resolving the ambiguities in a language is by taking into account the linguistic context

of the word/phrase under consideration. Linguistic context (in this dissertation, simply

referred to as context) refers to the neighboring words, sentences and other neighboring

discourse related structures. For example, it becomes clear who has possession of the

binoculars, if the sentence following (1.2) is “Then he zoomed in the binoculars to

see the man clearly.”

But many times the context is absent or does not convey enough information. In

such cases, it is not possible to resolve the ambiguity on the basis of context alone.

For example in the sentence (1.3), it is difficult to answer the question who left, if

further context is not given. However, if we utilize common sense knowledge about

the world, in particular, common sense knowledge about a typical restaurant scenario,

then we know that, since Nupur paid the bill, she is most likely the customer and it is

usually the customer (Nupur) who leaves the restaurant after paying the bill.

(1.6) I paid the bill and left.

While communicating, humans very often skip details of common daily activities

(common sense knowledge), as it is taken for granted that the comprehender already

knows them. For example, when you read the sentence (1.6), it implicitly implies

that the speaker took out money from his wallet and paid it to the concerned person

1.1 Introduction 5

Ashutosh started writing the article while sipping coffee. But he
realized that coffee didn’t have sugar. A few minutes ago, he had
been to the kitchen. He had just started boiling water when Simon
entered the kitchen. They both started talking about the new
project that Ashutosh was pursuing. When the water had boiled,
he put the coffee powder in the cup and then poured the boiling
water into the cup. The coffee was ready, and then both Ashutosh
and Simon came back to their office with coffee. Now, Ashutosh
went back to the kitchen to put some sugar cubes in his cup.

Fig. 1.1 A small narrative with an implicit “making coffee” script.

and then left the place. As you can notice, the sentence omits this implicit knowledge

about the process of paying the bill.

We distinguish common sense knowledge about everyday activities from knowledge

describing facts about the world (which is readily available), for example, facts about

the earth, facts about different countries, facts about different scientific phenomena

or technology, news about the recent presidential candidate, etc. The focus of this

dissertation is on common sense knowledge associated with prototypical activities that

we perform on day to day basis, like going to a restaurant, making coffee, cooking

pasta.

There are myriad sources of factual knowledge (for example, Wikipedia, books,

newspapers), but there is a dearth of knowledge sources about common sense knowledge.

For example, it is hard to find texts that explicitly describe how to eat food in a

restaurant. Common-sense knowledge is often mentioned implicitly in the text and

hard to infer computationally. For example, consider the activities involved in a visit

to a restaurant: typically, you enter the restaurant, followed by looking at the menu,

followed by ordering food and so on and so forth until you pay the bill and leave. This

mundane and implicit knowledge is rarely mentioned in detail in texts, as it is assumed

to be known to the reader.

1.1 Introduction 6

Moreover, even if some text describes an activity, the order of actions mentioned

in the text may not always correspond to the default order of actions as they would

usually occur. For example, Figure 1.1 presents a short narrative which implicitly

describes a “making coffee” scenario. But, as one can notice, the order of actions

mentioned in the story does not exactly correspond to the order of actions that would

take place while making coffee. For example, when making coffee, usually sugar is

added before you start drinking the coffee.

The common sense knowledge about the sequences of prototypical activities is

referred to as script knowledge. It has been shown that knowledge about scripts

makes communication more efficient (Schank and Abelson, 1977). Script knowledge

is implicitly acquired by humans and is evoked when a particular situation demands

(Bower et al., 1979) it. In order to have a natural language understanding system at par

with human performance, script knowledge should be included as one of the components.

This dissertation describes attempts towards acquiring and modeling script

knowledge.

Modeling script knowledge is challenging. As described before, script knowledge is

implicit in the text. Also, even if a text mentions a sequence of actions describing a

prototypical activity, the order of actions may not always correspond to the default order

in which they would occur prototypically. Moreover, a text may not instantiate a script

scenario uniquely4. The text may describe two or more script scenarios simultaneously,

thus intermingling scenarios. For example, a text describing a restaurant scenario may

also describe a paper reading scenario going on while having food in the restaurant.

We discuss these issues and their solutions in more detail in Chapter 5.

In order to model script knowledge and address the challenges that come with it,

we use statistical and probabilistic techniques. Recently, there have been successful
4A scenario refers to a specific kind of prototypical activity, for example, baking a cake, making

coffee, visiting a restaurant etc. A script is an event structure describing the scenario. Refer to
Chapter 3 for more details.

1.2 Frame Semantics 7

applications of statistical and probabilistic techniques to model language understanding

systems. These techniques are data driven and infer the rules for learning the syntax or

representing the meaning from the text itself. These techniques have been successfully

applied to the task of machine translation, question answering, summarization, etc.

(Jurafsky and Martin, 2009) In Chapter 4, we describe the statistical models proposed

by us for modeling script knowledge.

1.2 Frame Semantics

The main focus of this dissertation is modeling script knowledge for natural language

understanding. Before we delve deeper into different approaches for script modeling,

we focus our attention on something more basic, i.e. modeling individual activi-

ties/events in a script. Typically, script events are verbalized by a sentence. One of

the many possible ways of understanding the meaning of a sentence is in terms of the

events/activities (and the involved participants) it describes. For example, sentence

(1.7) can be understood in terms of the “cutting” activity which is initiated by the

actor “Ashutosh” on the object “pizza” with the help of another object “knife”. The

main activity in the sentence is described by a predicate (typically a verb), and the

people or objects participating in the activity are described by semantic roles for that

particular predicate.

(1.7) Ashutosh cut the pizza with a knife.

(1.8) Ashutosh sliced the pizza into pieces with

a knife.

For example, in the sentence (1.7), Ashutosh is the initiator of the action and

is assigned the agent role. Pizza is the object acted upon and has the role item and

similarly, the knife is assigned the instrument role. Sentence (1.8) has semantics

1.2 Frame Semantics 8

similar to sentence (1.7) but with different surface forms. The various predicates

and the corresponding roles, expressing the idea of some activity, together constitute a

semantic frame. As we have seen in the examples, the same concept can be expressed

via different surface realizations; therefore a semantic frame has a set of predicates

(called lexical units) each of which describes the main concept of the semantic frame.

Similarly, semantic roles describe the participants that would be part of the activity. A

semantic frame can be evoked in the text by one of the lexical units along with some

of the semantic roles.

Semantic frames evoked in the text abstract out the information about main events

described in the text. Semantic frames can help in understanding the text by answering

questions like who did what to whom and by what means? The task of assigning

semantic roles to phrases in sentences is referred to as semantic role labeling (SRL).

More details about semantic frames and SRL are described in chapter 2. SRL has been

shown to be useful for a variety of natural language processing applications like question

answering (Shen and Lapata, 2007), summarization (Khan et al., 2015), plagiarism

detection (Osman et al., 2012) etc.

This idea of understanding the text in terms of semantic frames evoked in the

text was proposed by Charles J. Fillmore (Fillmore, 1976, 1968, 1977a,b, 1982, 1985;

Fillmore and Baker, 2001). Semantic frames describe a type of event, relation, or

entity and the participants in it. With the goal of understanding the text in terms of

semantic frames, the FrameNet5 (Baker et al., 1998) project was started in 1997 at the

International Computer Science Institute in Berkeley and has been in operation since

then. FrameNet is a corpus of English text annotated with semantic frames. More

details about the FrameNet corpus are given in chapter 2. This dissertation proposes

an unsupervised probabilistic model for inferring semantic frames from the text (Modi
5https://framenet.icsi.berkeley.edu/fndrupal/IntroPage

https://framenet.icsi.berkeley.edu/fndrupal/IntroPage

1.3 Script Knowledge 9

et al., 2012). This is a step towards inferring the meaning of the text, as explained

earlier.

1.3 Script Knowledge

Frame semantics describes the meaning of the text in terms of activities described in the

text. FrameNet captures some relations (e.g. causal, precedence) between some of the

frames. FrameNet also describes script like structures called “scenario frames”, which

partially describe some script scenarios. However, the coverage of FrameNet is quite

limited and not appropriate for modeling script knowledge. In general, frame semantics

works more at the sentence level rather than at the discourse level. Intuitively, it

makes sense that an event evoked in the current sentence is influenced (for example,

via causal relation) by events evoked earlier in the text. For example, in the restaurant

scenario mentioned previously, the ordering event is followed by the eating event. This

chain of events describing a stereotypical activity constitutes a Script.

Script theory has been motivated by research in cognitive psychology, as described

in detail in Chapter 3. Scripts are a step towards modeling procedural knowledge

(Schank and Abelson, 1977). Scripts have been shown to be useful for variety of natural

language processing (NLP) tasks since they provide knowledge about prototypical

order of events (Bower et al., 1979; Chambers and Jurafsky, 2009, 2008; Miikkulainen,

1993; Rau et al., 1989; Schank, 1991; Schank and Cleary, 1995).

This dissertation proposes a probabilistic neural network based model for learning

the prototypical order of events in a script (Modi and Titov, 2013, 2014). The proposed

model achieves state of the art performance on event ordering and event paraphrase

detection tasks. We also propose another neural network based probabilistic model

for event prediction. The model is evaluated using a task called the narrative cloze

(inspired from psychology) task. The narrative cloze task evaluates the ability of a

1.4 Thesis Structure 10

script learning model to predict a missing event in a given sequence of events. Chapter

4 describes the model and its evaluation in more details.

From the cognitive point of view, it would be interesting to know if script knowledge

affects language comprehension. To address this question, this dissertation proposes

different models to study the influence of script information at the level of discourse.

Models are evaluated using a discourse level evaluation task. More particularly, a

model is required to predict an upcoming discourse referent in the text. Predictions of

different models, with a different set of features (for example, linguistic features, script

features, etc.), are compared to human predictions on the same task. The resulting

experiments ascertain that script knowledge does play a substantial role in language

comprehension (Modi et al., 2017). A detailed description is given in Chapter 6.

1.4 Thesis Structure

This dissertation first addresses the models for frame semantics in Chapter 2. It

proposes a non-parametric Bayesian model for inferring semantic frames from the

text in an unsupervised fashion. The experiments show the efficacy of the model. As

described before, frame semantics work more at sentence level rather than at discourse

level. Chapter 3 introduces the concept of scripts and motivates script theory both

from cognitive and computational perspective. It describes recent work done in the

area of script modeling.

Next, this dissertation proposes methods for modeling scripts in Chapter 4.

In particular, it proposes a neural network based probabilistic model for learning

prototypical event order. The model outperforms other models in event ordering

evaluation experiments. This chapter also describes a model for event prediction. It is

evaluated using the narrative cloze task, an important task for evaluating a model’s

ability to capture and generalize script knowledge.

1.5 Thesis Contributions 11

Currently, most of the corpora describing narratives involve inter-mingling of scripts

from many different scenarios. For example, a narrative text might be describing a story

of a person traveling in a bus and reviewing a scientific paper. In this narrative text,

two scripts are active, one corresponding to the scenario of Riding a bus and another

one corresponding to reviewing a scientific paper. Such narratives, involving

an inter-play of different scenarios, make it difficult to study the influence of script

knowledge corresponding to a single scenario. In order to address this problem and

simplify the analysis of the contribution of scenario specific knowledge, this dissertation

introduces the InScript corpus in Chapter 5. InScript is a novel corpus of stories,

where each story focuses on only one particular scenario. The corpus is annotated with

script specific event types, participant types and coreference information.

In order to check the influence of script knowledge on language comprehension,

Chapter 6 describes models for checking the influence of script knowledge on discourse

referent prediction. A battery of experiments confirms our conjecture about the role of

script knowledge in language comprehension. We address a problem which explores

cognitive aspects of natural language processing. Finally, Chapter 7 concludes the

dissertation and explores future directions for this line of research.

1.5 Thesis Contributions

This dissertation makes the following contributions:

• It proposes a novel unsupervised non-parametric Bayesian probabilistic model

for inferring semantic frames from the text (Modi et al., 2012).

• It proposes a neural network based probabilistic model for event ordering and

event paraphrasing in scripts. The model has state-of-the-art performance on

script event-ordering task (Modi and Titov, 2013, 2014).

1.5 Thesis Contributions 12

• It proposes a neural network based probabilistic model for event prediction.

The model is evaluated using the narrative cloze task. Experiments show the

advantages of the model over co-occurrence count based methods. (Modi, 2016).

• It introduces the InScript corpus (Modi et al., 2016). The corpus is annotated

with script specific fine-grained events and participants. InScript is a novel corpus

of script specific narratives. This corpus will be a useful resource for the research

community working in the area of script knowledge modeling.

• This dissertation investigates the influence of script knowledge on discourse

referent prediction (Modi et al., 2017). The proposed models show a substantial

contribution of script knowledge in language comprehension. We hope that it

will open many more avenues for research on the topic of the influence of script

knowledge on language comprehension.

CHAPTER 2

Unsupervised Induction of Frame-Semantic

Representations

2.1 Introduction . 14

2.2 Unsupervised SRL: Motivation 17

2.3 Task Definition . 18

2.4 Model and Inference . 20

2.5 Experimental Evaluation 26

2.6 Related Work . 31

2.7 Conclusions . 32

Inside every non-Bayesian there is a Bayesian struggling to get out.
**

Dennis V. Lindley

2.1 Introduction 14

2.1 Introduction

In Chapter 1, we gave an example which demonstrated how the meaning of a sentence

can be analyzed in terms of the actions/activities it describes. This chapter describes

in detail how this idea can be formalized and realized practically.

Consider, for example, sentence (2.1). This sentence talks about a buying activity

where one company (Microsoft) purchases another company (Malubaa). The meaning

(semantics) of the sentence can easily be captured by the predicate describing the

activity (purchase) and the corresponding syntactic arguments (Microsoft and Maluuba).

But there is not just one way of expressing the acquisition idea. Consider sentences

(2.2) through (2.4). All of them are talking about the same activity but have

different surface forms (predicates and sentence construction). A close examination

indicates the commonality across all the sentences. There is a buying activity going on,

which involves a buyer (Microsoft) and an entity (another company Maluuba) which is

bought. Sentences also indicate the money involved and the time when it happened.

(2.1) Microsoft purchased the Canadian company Maluuba.

(2.2) A.I. company Maluuba was bought by Microsoft

on January 9, 2017.

(2.3) Microsoft purchased Maluuba for $30 million.

(2.4) In a recent move, Microsoft bought the Canadian

startup Maluuba.

The examples are indicative of how the semantics of the sentence can be captured

in terms of semantic representations involving predicates and corresponding arguments.

The roles played by different arguments are referred to as semantic roles. Semantic

roles are an abstract concept describing the type of entity that would be involved in the

2.1 Introduction 15

activity. For example, in sentence (2.1), two semantic roles are realized, the buyer

role (realized by Microsoft) and the goods role (realized by Maluuba). The buyer role

abstracts the notion of an entity that would buy in a buying activity. Similarly, the

goods role abstracts the notion of an entity that would be bought in a buying activity.

Sentence (2.2) has in addition a time role (realized by January 9, 2017) and sentence

(2.3) a money role (realized by $30 million).

As indicated in the examples, there are multiple ways of specifying the same semantic

content using different predicates and sentence constructions. But the meaning captured

by all of them is similar. These many to one realizations are captured using semantic

frames (Fillmore, 1985). A semantic frame is an abstract concept describing an activity

and all its possible roles. A semantic frame includes all the predicates (verbal as well

as nominal) which can describe the activity and the corresponding semantic roles

which describe different entities that would be involved in the activity. The predicates

describing the main action are referred to as lexical units or frame evoking elements

and the different semantic roles are referred to as frame elements.

For example, sentences (2.1) through (2.4) can be described by the semantic

frame “Commerce_buy”. The lexical units in this semantic frame are “buy (verb), buyer

(noun), client (noun), purchase [active] (noun), purchase (verb), purchaser (noun)”.

Each semantic frame has some core semantic roles which are essential for the activity to

be described and they must be present in each realization of the frame. Other semantic

roles are non-core; these roles convey additional information and may or may not be

present in each realization of the frame. Non-core roles mostly correspond to modifiers

and usually generalize across different frames. Core roles in the “Commerce_buy”

frame are “buyer” and “goods”. Some of the non-core roles are “time”, “money”,

“place”, “means”, etc. Most of the non-core roles are mostly consistent across different

2.1 Introduction 16

frames; however, some of the non-core roles (e.g. “money”) can be a core role in some

of the frames.

Semantic roles capture the shallow semantics of the text. These allow answering

questions like “who did what to whom?” and also possibly answer questions related to

additional information like “how, where, when, etc.” Semantic roles have been shown

to be useful for a variety of natural language processing applications, for example

question answering (Shen and Lapata, 2007), summarization (Khan et al., 2015) or

plagiarism detection (Osman et al., 2012). The task of assigning semantic roles to

phrases in the sentences is referred to as semantic role labeling (SRL). This task

is important in its own right, as it helps to draw inferences from the text that would

not be possible from parse trees alone.

There exists two major role annotated corpora for English: PropBank and FrameNet.

PropBank (Proposition Bank) (Palmer et al., 2005) is a corpus of semantic role

annotated text from the Penn TreeBank. PropBank annotates predicate-specific

semantic roles. Each sense of a predicate has its own set of semantic roles for the

arguments. However, some of the semantic roles are fairly general and are shared

across most of the predicates. For example, Arg0 role represents proto-agent and Arg1

role represents proto-patient. In general case, there is no guarantee that same role

name means the same across different predicates.

The other corpus with semantic role annotations is FrameNet1 (Fillmore, 1976, 1968,

1977a,b, 1982, 1985; Fillmore and Baker, 2001). Unlike PropBank, where semantic

roles are predicate specific, FrameNet has semantic roles that are specific to a semantic

frame. As explained before, each semantic frame in FrameNet comes with its set of

lexical units, core and non-core semantic roles. This thesis focuses on techniques for

performing SRL on FrameNet.
1https://framenet.icsi.berkeley.edu/fndrupal/IntroPage

https://framenet.icsi.berkeley.edu/fndrupal/IntroPage

2.2 Unsupervised SRL: Motivation 17

FrameNet corpus includes a dataset annotated with semantic role annotations, these

annotations can be useful for training a supervised system, for learning to perform

SRL on the new text. A number of approaches have been proposed in this regard. The

next section motivates why supervised approaches may not always be feasible and how

unsupervised techniques can be useful for SRL.

2.2 Unsupervised SRL: Motivation

Most approaches to SRL have relied on large annotated corpora (Carreras and Màrquez,

2005; Hajič et al., 2009; Surdeanu et al., 2008).By far, most of this work has focused

on PropBank-style representations (Palmer et al., 2005) where roles are defined for

each individual verb or even individual senses of a verb. The only exceptions are

modifiers and roles A0 and A1 which correspond to proto-agent (a doer, or initiator

of the action) and proto-patient (an affected entity), respectively. However, the SRL

task is known to be especially hard for the FrameNet-style representations for a

number of reasons, including the lack of cross-frame correspondence for most roles,

fine-grain definitions of roles and frames in FrameNet, and relatively small amounts of

statistically representative data (Das and Smith, 2011; Das et al., 2010; Erk and Pado,

2006; Palmer and Sporleder, 2010). Another reason for reduced interest in predicting

FrameNet representations is the lack of annotated resources for most languages, with

annotated corpora available or being developed only for few languages, for example,

English (Ruppenhofer et al., 2006), German (Burchardt et al., 2006), Spanish (Subirats,

2009), Japanese (Ohara et al., 2004), Polish (Linde-Usiekniewicz et al., 2008), Swedish

(Borin et al., 2010), Chinese (Jihong et al., 2010), Danish (Bick, 2011) and Korean

(Kim et al., 2016). Different corpora across different languages vary in coverage and

size and are much smaller than the English FrameNet corpus.

2.3 Task Definition 18

cooksMary the broccoli in a small pan

CONTAINER

COOK FOOD

Apply_Heat

Fig. 2.1 An example of a semantic dependency graph.

Due to the scarcity of labeled data, purely unsupervised setups recently started to

receive considerable attention (Grenager and Manning, 2006; Lang and Lapata, 2010,

2011a,b; Swier and Stevenson, 2004; Titov and Klementiev, 2012). However, all these

approaches have focused on PropBank-style representations. FrameNet representations,

though arguably more powerful, are harder to learn in the supervised setting and

harder to annotate, and annotated data is available for considerably fewer languages.

This is the gap which we address in this study.

More specifically, we extend an existing state-of-the-art Bayesian model for unsu-

pervised semantic role labeling and apply it to support FrameNet-style semantics. In

other words, our method jointly induces both frames and frame-specific semantic roles.

We experiment only with verbal predicates and evaluate the performance of the model

with respect to some natural baselines. Though the scores for frame induction are not

high, we argue that this is primarily due to the very high granularity of FrameNet

frames, which is hard to reproduce for unsupervised systems, as the implicit supervision

signal is not capable of providing these distinctions.

2.3 Task Definition

In this work, we use dependency representations of frame semantics. Dependency

representations for SRL (Johansson and Nugues, 2008) were made popular by CoNLL-

2.3 Task Definition 19

2008 and CoNLL-2009 shared tasks (Hajič et al., 2009; Surdeanu et al., 2008), but for

English were limited to PropBank. Recently, English FrameNet was also released in

the dependency format (Bauer et al., 2012). Instead of predicting argument spans,

in dependency representation the goal is, roughly, to predict the syntactic head of

the argument. The semantic dependency representation for a sentence is shown in

Figure 2.1; labels on edges denote roles and labels on words denote frames. Note that

in practice the structures can be more complex as, for example, arguments can evoke

their own frames or the same arguments can be shared by multiple predicates, as in

right node raising constructions.

The SRL task or more specifically the frame-semantic parsing task consists, at least

conceptually, of four stages: (1) identification of frame-evoking elements(FEE), (2)

identification of arguments, (3) frame labeling and (4) role labeling. In this work, we

focus only on the frame labeling and role labeling stages, relying on the gold standard

(i.e. the oracle) for FEEs and argument identification. In other words, our goal is to

label (or cluster) edges and nodes in the dependency graphs (Figure 2.1). As described

in Section 2.5.1, in our work, we used a dependency-parsed FrameNet corpus (Bauer

et al., 2012). Since we focus in this study on verbal predicates only, the first stage

would be trivial and the second stage could be handled with heuristics as in much of the

previous work on unsupervised SRL (Lang and Lapata, 2011a; Titov and Klementiev,

2012).

In addition to considering only verbal predicates, we also assume that every verb

belongs to a single frame. This assumption, though restrictive, may be reasonable

in practice as (a) the distribution of verb instances across frames (i.e. senses) is

generally highly skewed, and (b) current state-of-the-art techniques for word-sense

induction hardly beat most-frequent-sense baselines in accuracy metrics (Manandhar

et al., 2010). This assumption, or its minor relaxations, is relatively standard in work

2.4 Model and Inference 20

on unsupervised semantic parsing tasks (Poon and Domingos, 2010, 2009; Titov and

Klementiev, 2011). From the modeling perspective, there are no major obstacles to

relaxing this assumption, but it would lead to a major explosion of the search space

and, as a result, slow inference.

2.4 Model and Inference

We follow previous work on unsupervised semantic role labeling (Lang and Lapata,

2011a; Titov and Klementiev, 2012) and associate arguments with their frame-specific

syntactic signatures, which we refer to as argument keys:

• Active or passive verb voice (ACT/PASS).

• Argument position relative to the predicate (LEFT/RIGHT).

• Syntactic relation to its governor.

• Preposition used for argument realization.

Semantic roles are then represented as clusters of argument keys instead of individual

argument occurrences. This representation aids our models in inducing high purity

clusters (of argument keys) while reducing their granularity. Thus, if an argument key

k is assigned to a role r (k ∈ r), all of its occurrences are labeled r.

2.4.1 Dirichlet Process and Chinese Restaurant Process

Before delving deeper into the proposed model for frame semantic parsing, we will

briefly describe some of the technical background required for understanding the model.

Most of the concepts described in this section are from Teh (2007). We explain these

concepts briefly; for full details refer to Teh (2007).

Our frame semantic model is based on non-parametric Bayesian statistics. An

important concept in non-parametric Bayesian statistics is that of a Dirichlet process.

2.4 Model and Inference 21

A Dirichlet process (DP) (Ferguson, 1973) is a stochastic process such that each draw

from the process is a probability distribution. It basically defines a distribution over

distributions. A Dirichlet process, DP (α,H), is defined by a base distribution H

and a real valued concentration parameter α. Note that the base distribution can

be continuous or discrete. Each distribution drawn from the DP is guaranteed to be

almost surely discrete. The base distribution H is the expected value of the DP. The

concentration parameter α behaves like inverse variance and controls the discretization

of the distribution drawn from the DP. As α → 0, the drawn distributions tend to

concentrate around a single value and when α → ∞, the drawn distributions tend

to the base distribution H weakly or pointwise. In our case, a DP is used to model

distributions of arguments for each role.

Formally, let Θ be the support for the base distribution H. Let A1, A2, A3, ...Ar be

a finite measurable partition of Θ and G a distribution drawn from the DP. Then,

G ∼ DP (α,H)

⇒ (G(A1), ..., G(Ar)) ∼ Dir(αH(A1), ..., αH(Ar)) (2.1)

where Dir() is the Dirichlet distribution.

Posterior Distribution: Let G ∼ DP (α,H) and let θ1, θ2, ..., θn be a sequence of

draws from G. The posterior distribution of G, given observed θ1, θ2, ..., θn, can be

shown to be a distribution drawn from a DP (Teh, 2007), i.e.:

G | θ1, θ2, ..., θn ∼ DP (α + n ,
α

α + n
H + n

α + n

∑n
i=1 δθi

n
)

The predictive distribution for a new observed value θn+1 conditioned on θ1, θ2, ..., θn

with G marginalized out can be shown to be equal to the posterior base distribution

2.4 Model and Inference 22

given θ1, θ2, ..., θn:

θn+1 | θ1, θ2, ..., θn ∼ 1
α + n

(αH +
n∑

i=1
δθi

) (2.2)

Expression (2.2) implies the clustering property of a DP. Let θ∗
1, θ

∗
2, ..., θ

∗
m be unique

values among θ1, θ2, ..., θn and nk be the frequency of θ∗
k. The predictive distribution

can be written as:

θn+1 | θ1, θ2, ..., θn ∼ 1
α + n

(αH +
m∑

k=1
nkδθ∗

k
) (2.3)

Expression (2.3) implies that θn+1 takes a value θ∗
k with probability proportional

to nk, number of times θ∗
k has been observed previously. θn+1 takes a new value with

probability proportional to α. The above phenomenon implies the rich-gets-richer

property. A new observation clusters with one of the previously existing clusters if

that cluster has a large number of observations; otherwise it creates a new cluster. The

clustering property of a DP induces partitioning of the set, [n] = {1, 2, 3,n}, such

that in each cluster k, each θi takes the same value θ∗
k.

Chinese Restaurant Process: The distribution over partitions is called the Chinese

restaurant process (CRP) (Teh, 2007). CRP derives its name from the seating arrange-

ment of customers in a Chinese restaurant. In this setting, we have a Chinese restaurant

with an infinite number of tables, each of which has infinite seats available. The first

customer who comes to a restaurant sits at one of the tables. The next customer either

sits at a new table or sits with the first customer. The n+ 1th customer either sits at

a new table with probability proportional to α or sits at one of the occupied tables k,

with probability proportional to the number of people (nk) already sitting there. After

n customers have settled in the restaurant, the distribution of customers over different

tables symbolizes a partition of [n] integers into different clusters. As we describe

2.4 Model and Inference 23

in the next section, our frame semantic parsing model employs a CRP to model the

distribution over the partition of argument keys.

2.4.2 A Model for Frame-Semantic Parsing

In the previous section, we described some of the machinery associated with non-

parametric Bayesian statistics. In this section, we describe our model, which employs

DPs and CRP described in the previous section. Our approach is similar to the models

of Titov and Klementiev (2011, 2012). Please see Section 2.6 for a discussion of the

differences.

Our model encodes three assumptions about frames and semantic roles. First,

we assume that the distribution of lexical units (verbal predicates) is sparse for each

semantic frame. Second, we enforce the selectional restriction assumption: we assume

that the distribution over potential argument fillers is sparse for every role, implying

that ‘peaky’ distributions of arguments for each role r are preferred to flat distributions.

Third, each role normally appears at most once per predicate occurrence. Our inference

will search for a frame and role clustering which meets the above requirements to the

maximal extent.

Our model associates three distributions with each frame. The first one (ϕ) models

the selection of lexical units, the second (θ) governs the selection of argument fillers

for each semantic role and the third (ψ) models (and penalizes) duplicate occurrence

of roles. Each frame occurrence is generated independently given these distributions.

Let us describe the model by first defining how the set of model parameters and an

argument key clustering are drawn, and then explaining the generation of individual

frame instances. The generative story is formally presented in Figure 2.2.

For each frame, we begin by drawing a distribution of its lexical units from a DP

prior DP (γ,H(P)) with a small concentration parameter γ, and a base distribution

2.4 Model and Inference 24

H(P), pre-computed as normalized counts of all verbs in our dataset. Next, we generate

a partition of argument keys Bf from CRP(α) with each subset r ∈ Bf representing a

single frame specific semantic role. The crucial part of the model is the set of selectional

preference parameters θf,r, the distributions of arguments x for each role r of frame

f . We represent arguments by lemmas of their syntactic heads.2 In order to encode

the assumption about sparseness of the distributions θf,r, we draw them from the

DP prior DP (β,H(A)) with a small concentration parameter β; the base probability

distribution H(A) is just the normalized frequencies of arguments in the corpus. Finally,

the geometric distribution ψf,r is used to model the number of times a role r appears

with a given frame occurrence. The decision whether to generate at least one role r is

drawn from the uniform Bernoulli distribution. If 0 is drawn then the semantic role

is not realized for the given occurrence; otherwise the number of additional roles r is

drawn from the geometric distribution Geom(ψf,r). The Beta priors over ψ indicate

the preference towards generating at most one argument for each role.

Now, when parameters and argument key clusterings are chosen, we can summarize

the remainder of the generative story as follows. We begin by independently drawing

occurrences for each frame. For each frame occurrence, we first draw its lexical unit.

Then for each role, we independently decide on the number of role occurrences. Then

we generate each of the arguments (see GenArgument in Figure 2) by generating an

argument key kf,r uniformly from the set of argument keys assigned to the cluster r,

and finally choosing its filler xf,r, where the filler is either a lemma or the syntactic

head of the argument.
2For prepositional phrases, we take as head the head noun of the object noun phrase as it encodes

crucial lexical information. However, the preposition is not ignored, but rather encoded in the
corresponding argument key.

2.4 Model and Inference 25

Parameters:

for each frame f = 1, 2, . . . :
ϕf ∼ DP (γ,H(P)) [distrib of lexical units]
Bf ∼ CRP (α) [partition of arg keys]
for each role r ∈ Bf :
θf,r ∼ DP (β,H(A)) [distrib of arg fillers] ψf,r ∼ Beta(η0, η1) [geom distr for dup roles]

Data Generation:

for each frame f = 1, 2, . . . :
for each occurrence of frame f :
p ∼ ϕf [draw a lexical unit]
for every role r ∈ Bf :
if [n ∼ Unif(0, 1)] = 1: [role appears at least once]
GenArgument(f, r) [draw one arg]
while [n ∼ ψf,r] = 1: [continue generation]
GenArgument(f, r) [draw more args]

GenArgument(f, r):
kf,r ∼ Unif(1, . . . , |r|) [draw arg key]
xf,r ∼ θf,r [draw arg filler]

Fig. 2.2 Generative story for the frame-semantic parsing model.

2.4.3 Inference

We use a simple approximate inference algorithm based on greedy search for the

maximum a-posteriori clustering of lexical units and argument keys. We begin by

assigning each verbal predicate to its own frame, and then iteratively choose a pair of

frames and merge them. Note that each merge involves inducing a new set of roles,

i.e. a re-clustering of argument keys, for the new merged frame. We use the search

procedure proposed in Titov and Klementiev (2012), in order to cluster argument keys

for each frame.

Our search procedure chooses a pair of frames to merge based on the largest

incremental change to the objective due to the merge. Computing the change involves

re-clustering of argument keys, so considering all pairs of initial frames containing single

verbal predicates is computationally expensive. Instead, we prune the space of possible

2.5 Experimental Evaluation 26

pairs of verbs using a simple but effective pre-processing step. Each verb is associated

with a vector of normalized aggregate corpus counts of syntactic dependents of the

verb (ignoring the type of dependency relation). Cosine similarity of these vectors is

then used to prune the pairs of verbs so that only verbs which are distributionally

similar enough are considered for a merge. Finally, the search terminates when no

additional merges result in a positive change to the objective.

2.5 Experimental Evaluation

2.5.1 Data

We used the dependency representation of the FrameNet corpus (Bauer et al., 2012).

The corpus is automatically annotated with syntactic dependency trees produced by

the Stanford parser. The corpus is manually annotated with frame and role information.

The data consists of 158,048 annotated sentences with 3,474 unique verbal lemmas

organized in 722 gold frames.

2.5.2 Evaluation Metrics

We cannot use supervised metrics to evaluate our models, since we do not have an

alignment between gold labels and clusters induced in the unsupervised setup. Instead,

we use the standard purity (PU) and collocation (CO) metrics as well as their harmonic

mean (F1) to measure the quality of the resulting clusters. Purity measures the degree

to which each cluster contains arguments (verbs) sharing the same gold role (gold frame)

and collocation evaluates the degree to which arguments (verbs) with the same gold

roles (gold frame) are assigned to a single cluster; see Lang and Lapata (2010). As in

previous work, for role induction, the scores are first computed for individual predicates

2.5 Experimental Evaluation 27

and then averaged with the weights proportional to the total number occurrences of

roles for each predicate.

2.5.3 Model Parameters

The model parameters were tuned coarsely by visual inspection: α = 1.e-5, β = 1.e-4,

γ = 1, η0 = 100, η1 = 1.e-10. Only a single model was evaluated quantitatively to

avoid overfitting to the evaluation set.

2.5.4 Qualitative Evaluation

Our model induced 128 multi-verb frames from the dataset. Out of 78,039 predicate

occurrences in the data, these correspond to 18,963 verb occurrences (or, approximately,

25%). Some examples of the induced multi-verb frames are shown in Table 2.1 on

page 29. As we can observe from the table, our model clusters semantically related

verbs into a single frame, even though they may not correspond to the same gold frame

in FrameNet. Consider, for example, the frame (ratify::sign::accede): the verbs are

semantically related and hence they should go into a single frame, as they all denote a

similar action.

Another result worth noting is that the model often clusters antonyms together as

they are often used in similar context. For example, consider the frame (cool::heat::warm):

the verbs cool, heat, and warm all denote a change in temperature. This agrees well

with annotation in FrameNet. Similarly, we cluster sell and purchase together. This

contrasts with FrameNet annotation, as FrameNet treats them not as antonyms but as

different views on the same situation and according to their guidelines, different frames

are assigned to different views.

Often frames in FrameNet correspond to more fine-grained meanings of the verbs,

as we can see in the example for (plait::braid::dye). The three describe a similar

2.5 Experimental Evaluation 28

activity involving hair but FrameNet gives them a finer distinction. Arguably, implicit

supervision signal present in the unlabeled data is not sufficient to provide such

fine-grained distinctions.

The model does not distinguish verb senses, i.e. it always assigns a single frame to

each verb, so there is an upper bound on our clustering performance.

2.5.5 Quantitative Evaluation

Now we turn to quantitative evaluation of both frame and role induction.

Frame Labeling. In this section, we evaluate how well the induced frames correspond

to the gold standard annotation. Because of the lack of relevant previous work, we

use only a trivial baseline which places each verb in a separate cluster (NoClustering).

The results are summarized in Table 2.2.

As we can see from the results, our model achieves a small, but probably significant,

improvement in the F1 score. Though the scores are fairly low, note that, as discussed

in Section 2.5.4, the model is severely penalized even for inducing semantically plausible

frames such as the frame (plait::braid::dye).

Role Labeling. In this section, we evaluate how well the induced roles correspond to

the gold standard annotation. We use two baselines: one is the syntactic baseline SyntF,

which simply clusters arguments according to the dependency relation to their head,

as described in Lang and Lapata (2010), and the other one is a version of our model

which does not attempt to cluster verbs and only induces roles (NoFrameInduction).

Note that the NoFrameInduction baseline is equivalent to the factored model of Titov

and Klementiev (2012). The results are summarized in Table 2.3.

First, observe that both our full model and its simplified version NoFrameInduction

significantly outperform the syntactic baseline. It is important to note that the syntactic

baseline is not trivial to beat in the unsupervised setting (Lang and Lapata, 2010).

2.5 Experimental Evaluation 29

Induced frames FrameNet frames corresponding to the verbs
(rush::dash::tiptoe) rush: [Self_motion](150) [Fluidic_motion](19)

dash: [Self_motion](100)
tiptoe: [Self_motion](114)

(ratify::sign::accede) ratify: [Ratification](41)
sign: [Sign_agreement](81) [Hiring](18)
[Text_Creation](1)
accede: [Sign_Agreement](31)

(crane::lean::bustle) crane: [Body_movement](26)
lean: [Change_posture](70) [Placing](22)
[Posture](12)
bustle: [Self_motion](55)

(cool::heat::warm) cool: [Cause_temperature_change](27)
heat: [Cause_temperature_change](52)
warm: [Cause_temperature_change](41)
[Inchoative_change_of_temperature](16)

(want::fib::dare) want: [Desiring](105) [Possession](44)
fib: [Prevarication](9)
dare: [Daring](21)

(encourage::intimidate::confuse) encourage: [Stimulus_focus](49)
intimidate: [Stimulus_focus](26)
confuse: [Stimulus_focus](45)

(happen::transpire::teach) happen: [Event](38) [Coincidence](21)
[Eventive_affecting](1)
transpire: [Event](15)
teach: [Education_teaching](7)

(do::understand::hope) do: [Intentionally_affect](6) [Intentionally_act](56)
understand: [Grasp](74) [Awareness](57)
[Categorization](15)
hope: [Desiring](77)

(frighten::vary::reassure) frighten: [Emotion_directed](44)
vary: [Diversity](24)
reassure: [Stimulus_focus](35)

(plait::braid::dye) plait: [Hair_configuration](11) [Grooming](12)
braid: [Hair_configuration](7)
[Clothing_parts](6) [Rope_manipulation](4)
dye: [Processing_materials](18)

(sell::purchase) sell: [Commerce_sell](107)
purchase: [Commerce_buy](93)

(glisten::sparkle::gleam) glisten: [Location_of_light](52)
[Light_movement](1)
sparkle: [Location_of_light](23)
[Light_movement](3)
gleam: [Location_of_light](77)
[Light_movement](4)

(forestall::shush) forestall: [Thwarting](12)
shush: [Silencing](6)

Table 2.1 Examples of the induced multi-verb frames. The left column shows the
induced verb clusters and the right column lists the gold frames corresponding to each
verb and the number in the parentheses are their occurrence counts.

2.5 Experimental Evaluation 30

PU CO F1
Our approach 77.9 31.4 44.7
NoClustering 80.8 29.0 42.7

Table 2.2 Frame labeling performance.

PU CO F1
Our approach 78.9 71.0 74.8
NoFrameInduction 79.2 70.7 74.7
SyntF 69.9 73.3 71.6

Table 2.3 Role labeling performance.

Though there is a minor improvement from inducing frames first, it is small and may

not be significant.3

Another observation is that the absolute scores of all the systems, including the

baselines, are significantly below the results reported in Titov and Klementiev (2012) on

the CoNLL-08 version of PropBank in a comparable setting (auto parses, gold argument

identification): 73.9% and 77.9% F1 for SyntF and NoFrameInduction, respectively.

We believe that the main reason for this discrepancy is the difference in the syntactic

representations. The CoNLL-08 dependencies include function tags (e.g., TMP, LOC),

and therefore modifiers do not need to be predicted, whereas the Stanford syntactic

dependencies do not provide this information and the model needs to induce it.

It is clear from these results, and also from the previous observation that only

25% of verb occurrences belong to multi-verb clusters, that the model does not induce

sufficiently rich clustering of verbs. Arguably, this is largely due to the relatively small

size of FrameNet, as it may not provide enough evidence for clustering. Given that our

method is reasonably efficient, a single experiment was taking around 8 hours on a
3There is no well-established methodology for testing statistical significance when comparing two

clustering methods.

2.6 Related Work 31

single CPU, and the procedure is highly parallelizable, the next step would be to use a

much larger and statistically representative corpus to induce the representations.

Additional visual inspection suggests that the data is quite noisy primarily due to

mistakes in parsing. The large proportion of mistakes can probably be explained by

the domain shift: the parser is trained on the WSJ newswire data and tested on more

general BNC texts.

2.6 Related Work

Aside from the original model of Titov and Klementiev (2012), the most related previous

method is the Bayesian method of Titov and Klementiev (2011). In that work, along

with predicate-argument structure, they also induce clusterings of dependency tree

fragments (not necessarily verbs). However, their approach uses a different model for

argument generation, a different inference procedure, and it has only been applied and

evaluated on biomedical data. The same shallow semantic parsing task has also been

considered in the work of Poon and Domingos (2010, 2009), but using a Markov logic

network (MLN) model and, again, only on the biomedical domain. Another closely

related vein of research is on semi-supervised frame-semantic parsing (Das and Smith,

2011; Fürstenau and Lapata, 2009).

Recently, in follow-up work, Materna (2013) proposed an unsupervised approach for

inducing semantic frames from a large unannotated corpus. They refer to such induced

frames as “LDA-frames”. They propose a generative non-parametric Bayesian model

for frame induction. In their setup, a frame is a tuple of semantic roles, connected

with grammatical relations e.g. subject, object, modifier, etc. A semantic role is

represented as a probability distribution over all its realizations in the corpus. Each

lexical unit has a distribution over all semantic frames. Parameters for the model

(e.g. number of frames, roles) is estimated using CRP and DP. The generative process

2.7 Conclusions 32

proposed by them is outlined as follows: For each a lexical unit, a frame distribution

is sampled from a Dirichlet distribution prior. For each realization of lexical unit, a

frame is generated by drawing from a multinomial distribution over the sampled frame

distribution. Then, for each slot of the frame a grammatical relation is generated by

drawing from a multinomial distribution over mappings between a semantic role and

a slot for a frame. In their model, the inference is performed using collapsed Gibbs

sampling.

In the spirit of non-parametric Bayesian unsupervised methods for learning semantic

frames, Kawahara et al. (2014) propose inducing verb (as well for each sense of the verb)

specific semantic frames. They induce the frames over a large corpus i.e. Gigaword.

The frames induced by them are similar to PropBank style SRL. In their setting,

a frame has several syntactic slots and each of these slots has a set of words (with

frequencies) which can fill the slot. In order to induce verb specific frames from

a corpus, Kawahara et al. (2014) first parse the corpus with a dependency parser,

extracting predicate-argument structure for each verb. Then, they merge predicate-

argument structures having the same meaning, to get initial frames. Finally, they

cluster the initial frames using a Chinese restaurant process (CRP) to get final semantic

frames. The general ideas proposed by Materna (2013) and Kawahara et al. (2014)

for unsupervised frame induction are quite similar to the approach proposed in our

unsupervised frame semantic model.

2.7 Conclusions

This chapter described one of the first attempts to consider the task of unsupervised

frame-semantic parsing. Though the quantitative results are mixed, we showed that

meaningful semantic frames are induced. In order to improve the model results in the

future, it would be interesting to consider the use of much larger corpora. It would

2.7 Conclusions 33

also be interesting to relax the assumption that frames are evoked only by verbal

predicates and consider a more general set-up. In the next chapter, we go one level up

and describe the concept of scripts which consider a sequence of events in a particular

scenario.

CHAPTER 3

Scripts

3.1 Introduction . 35

3.2 Scripts: Motivation . 39

3.3 Scripts: Cognitive Perspective 41

3.4 Scripts: Computational Perspective 44

3.5 Recent Work on Scripts . 49

3.6 Conclusion . 55

An investment in knowledge pays the best interest.
**

Benjamin Franklin

3.1 Introduction 35

3.1 Introduction

In Chapter 1 of the thesis, we introduced the concept of scripts. This chapter gives a

detailed description of script knowledge and a brief background about work done in

the area of script processing.

Scripts are defined as sequences of actions describing stereotypical human activities,

for example, cooking pasta, making coffee, etc. (Schank and Abelson, 1977). As

stated in the definition, scripts capture knowledge about common daily activities

and consequently incorporate common sense knowledge about the world. A typical

instantiation of a script, illustrating Baking a cake, is shown in Figure 3.1. It shows

typical activities that would take place when someone bakes a cake. Related to the

concept of the script is the concept of a scenario. A scenario refers to a specific kind

of prototypical activity, for example baking a cake, making coffee, visiting a restaurant,

etc. A script is an event structure describing the scenario.

At the linguistic level, a script may be realized in a variety of ways. In a text

instantiating a script, the lexical realization of each action/activity in the script is

referred to as an event description (ED). An event description consists of a verbal

predicate and the associated noun phrases (NP). For example, Figure 3.2 shows the

event description “Nupur added butter to the bowl”, where “added” (or simply taking

the lemma “add”) is the predicate, and “Nupur”, “butter” and “bowl” are the associated

NPs. The predicate in an event description is referred to as an event verb. An event

verb in an event description is associated with a script specific event type. NPs in an

event description are instances of different semantic roles, but in the larger context

of scripts they have a different global function, and we refer to these as participants.

Participants are specific to a script. Each of the participants is associated with a script

specific participant type.

3.1 Introduction 36

DeScript: A Crowdsourced Corpus for the Acquisition of
High-Quality Script Knowledge

Lilian D. A. Wanzare, Alessandra Zarcone, Stefan Thater, Manfred Pinkal
Universität des Saarlandes
Saarland, 66123, Germany

wanzare@coli.uni-saarland.de, zarcone@coli.uni-saarland.de, stth@coli.uni-saarland.de, pinkal@coli.uni-saarland.de

Abstract
Scripts are standardized event sequences describing typical everyday activities, which play an important role in the computational mod-
eling of cognitive abilities (in particular for natural language processing). We present a large-scale crowdsourced collection of explicit
linguistic descriptions of script-specific event sequences (40 scenarios with 100 sequences each). The corpus is enriched with crowd-
sourced alignment annotation on a subset of the event descriptions, to be used in future work as seed data for automatic alignment of
event descriptions (for example via clustering). The event descriptions to be aligned were chosen among those expected to have the
strongest corrective effect on the clustering algorithm. The alignment annotation was evaluated against a gold standard of expert anno-
tators. The resulting database of partially-aligned script-event descriptions provides a sound empirical basis for inducing high-quality
script knowledge, as well as for any task involving alignment and paraphrase detection of events.

Keywords: scripts, events, crowdsourcing, paraphrase

1. Introduction

When carrying out everyday activities, having a conver-
sation, watching movies or reading novels or newspapers,
we make abundant use of script knowledge, that is, knowl-
edge of standardized event sequences describing typical
everyday activities, such as baking a cake or eating in a
fast food restaurant (Schank and Abelson, 1977; Barr and
Feigenbaum, 1981). Script knowledge plays an important
role for the computational modeling of cognitive abilities
(in particular for natural language processing), but mak-
ing this kind of knowledge available for use in modeling is
not easy. On the one hand, the manual creation of wide-
coverage knowledge bases is infeasible, due to the size
and complexity of relevant script knowledge. On the other
hand, texts typically refer only to certain steps in a script
and leave a large part of this knowledge implicit, relying on
the reader’s ability to infer the full script in detail. Thus,
extraction of script knowledge from large text corpora (as
done by Chambers and Jurafsky (2009)) is difficult and the
outcome can be noisy.
In this work, we present a large-scale crowdsourced col-
lection and annotation of explicit linguistic descriptions
of event patterns, to be used for the automatic acquisi-
tion of high-quality script knowledge. This work is part
of a larger research effort where we seek to provide a
solid empirical basis for high-quality script modeling by
inducing script structure from crowdsourced descriptions
of typical events, and to investigate methods of text-to-
script mapping, using naturalistic texts from crowdsourced
stories, which describe real-life experiences and instanti-
ate the same scripts (Modi et al., 2016). Predecessors of
our work are the OMICS and SMILE corpora (Singh et
al., 2002; Regneri et al., 2010), containing multiple event-
sequence descriptions (ESDs) for specific activity types or
scenarios.
Figure 1 shows some example ESDs for the BAKING A
CAKE scenario. As can be seen from the examples, the
linguistic descriptions of the same event are different, but

1. Take out box of cake mix from shelf
2. Gather together cake ingredients
3. Get mixing bowl
4. Get mixing tool or spoon or fork
5. Add ingredients to bowl
6. Stir together and mix
7. Use fork to breakup clumps
8. Preheat oven
9. Spray pan with non stick or grease
10. Pour cake mix into pan
11. Put pan into oven
12. Set timer on oven
13. Bake cake
14. Remove cake pan when timer goes off
15. Stick tooth pick into cake to see if done
16. Let cake pan cool then remove cake

Figure 1: Example Event Sequence Descriptions (ESDs).

semantically similar (e.g. mixing: stir together and mix,
mix in the extra ingredients, mix well). Also, semantically
similar event descriptions tend to occur in relatively similar
positions in the ESDs.
The extraction of structured script information from these
descriptions can be viewed as the task of grouping event
descriptions into paraphrase sets exploiting semantic and
positional similarities, then inducing the script structure
from the paraphrase sets. Figure 2 shows a possible in-
duced script structure for the BAKING A CAKE scenario,
with nodes representing events in the scenario linked to
paraphrase sets of semantically similar linguistic descrip-
tions of the same event.
Regneri et al. (2010) used Multiple Sequence Alignment
(MSA, Durbin et al. (1998)) to induce script structure by
aligning semantically similar event descriptions across dif-
ferent ESDs. Roughly speaking, the resulting paraphrase
sets correspond to the script’s event types, while their de-
fault temporal order is induced from the order of the event
descriptions in the ESDs. The precision of MSA-based
script extraction is impressive, but MSA has a fundamen-
tal drawback, that is, the strict assumption of a fixed and
invariable order for events.

3494

Fig. 3.1 Event sequence for the Baking a cake scenario.

Nupur added butter into the bowl
Event Type:

Add ingredients
Participant Type:

Utensil
Participant Type:

Cook
Participant Type:

Ingredient

Fig. 3.2 An event in the Baking a cake scenario.

3.1 Introduction 37

DeScript: A Crowdsourced Corpus for the Acquisition of
High-Quality Script Knowledge

Lilian D. A. Wanzare, Alessandra Zarcone, Stefan Thater, Manfred Pinkal
Universität des Saarlandes
Saarland, 66123, Germany

wanzare@coli.uni-saarland.de, zarcone@coli.uni-saarland.de, stth@coli.uni-saarland.de, pinkal@coli.uni-saarland.de

Abstract
Scripts are standardized event sequences describing typical everyday activities, which play an important role in the computational mod-
eling of cognitive abilities (in particular for natural language processing). We present a large-scale crowdsourced collection of explicit
linguistic descriptions of script-specific event sequences (40 scenarios with 100 sequences each). The corpus is enriched with crowd-
sourced alignment annotation on a subset of the event descriptions, to be used in future work as seed data for automatic alignment of
event descriptions (for example via clustering). The event descriptions to be aligned were chosen among those expected to have the
strongest corrective effect on the clustering algorithm. The alignment annotation was evaluated against a gold standard of expert anno-
tators. The resulting database of partially-aligned script-event descriptions provides a sound empirical basis for inducing high-quality
script knowledge, as well as for any task involving alignment and paraphrase detection of events.

Keywords: scripts, events, crowdsourcing, paraphrase

1. Introduction

When carrying out everyday activities, having a conver-
sation, watching movies or reading novels or newspapers,
we make abundant use of script knowledge, that is, knowl-
edge of standardized event sequences describing typical
everyday activities, such as baking a cake or eating in a
fast food restaurant (Schank and Abelson, 1977; Barr and
Feigenbaum, 1981). Script knowledge plays an important
role for the computational modeling of cognitive abilities
(in particular for natural language processing), but mak-
ing this kind of knowledge available for use in modeling is
not easy. On the one hand, the manual creation of wide-
coverage knowledge bases is infeasible, due to the size
and complexity of relevant script knowledge. On the other
hand, texts typically refer only to certain steps in a script
and leave a large part of this knowledge implicit, relying on
the reader’s ability to infer the full script in detail. Thus,
extraction of script knowledge from large text corpora (as
done by Chambers and Jurafsky (2009)) is difficult and the
outcome can be noisy.
In this work, we present a large-scale crowdsourced col-
lection and annotation of explicit linguistic descriptions
of event patterns, to be used for the automatic acquisi-
tion of high-quality script knowledge. This work is part
of a larger research effort where we seek to provide a
solid empirical basis for high-quality script modeling by
inducing script structure from crowdsourced descriptions
of typical events, and to investigate methods of text-to-
script mapping, using naturalistic texts from crowdsourced
stories, which describe real-life experiences and instanti-
ate the same scripts (Modi et al., 2016). Predecessors of
our work are the OMICS and SMILE corpora (Singh et
al., 2002; Regneri et al., 2010), containing multiple event-
sequence descriptions (ESDs) for specific activity types or
scenarios.
Figure 1 shows some example ESDs for the BAKING A
CAKE scenario. As can be seen from the examples, the
linguistic descriptions of the same event are different, but

1. Get a cake mix
2. Mix in the extra ingredients
3. Prepare the cake pan
4. Preheat the oven
5. Put the mix in the pans
6. Put the cake batter in the oven
7. Take it out of the oven

1. Purchase cake mix
2. Preheat oven
3. Grease pan
4. Open mix and add ingredients
5. Mix well
6. Pour into prepared pan
7. Bake cake for required time
8. Remove cake from oven and cool
9. Turn cake out onto cake plate
10. Apply icing or glaze

1. Take out box of cake mix from shelf
2. Gather together cake ingredients
3. Get mixing bowl
4. Get mixing tool or spoon or fork
5. Add ingredients to bowl
6. Stir together and mix
7. Use fork to breakup clumps
8. Preheat oven
9. Spray pan with non stick or grease
10. Pour cake mix into pan
11. Put pan into oven
12. Set timer on oven
13. Bake cake
14. Remove cake pan when timer goes off
15. Stick tooth pick into cake to see if done
16. Let cake pan cool then remove cake

Figure 1: Example Event Sequence Descriptions (ESDs).

semantically similar (e.g. mixing: stir together and mix,
mix in the extra ingredients, mix well). Also, semantically
similar event descriptions tend to occur in relatively similar
positions in the ESDs.
The extraction of structured script information from these
descriptions can be viewed as the task of grouping event
descriptions into paraphrase sets exploiting semantic and
positional similarities, then inducing the script structure
from the paraphrase sets. Figure 2 shows a possible in-
duced script structure for the BAKING A CAKE scenario,
with nodes representing events in the scenario linked to
paraphrase sets of semantically similar linguistic descrip-
tions of the same event.
Regneri et al. (2010) used Multiple Sequence Alignment
(MSA, Durbin et al. (1998)) to induce script structure by
aligning semantically similar event descriptions across dif-
ferent ESDs. Roughly speaking, the resulting paraphrase
sets correspond to the script’s event types, while their de-
fault temporal order is induced from the order of the event
descriptions in the ESDs. The precision of MSA-based
script extraction is impressive, but MSA has a fundamen-
tal drawback, that is, the strict assumption of a fixed and
invariable order for events.

3494

Fig. 3.3 Different event sequence descriptions (ESDs) for the Baking a cake scenario
(Wanzare et al., 2016).

For example, in Figure 3.2, the event verb add has the event type “add ingredients”,

the participant butter has the participant type “ingredients”, the participant Nupur

has the participant type “cook” and the participant bowl has the participant type

“utensil”. In an event description, an event verb is an instantiation of an event type and

similarly, a participant is an instance of a participant type. As mentioned before, this

dissertation introduces the InScript corpus in Chapter 5, which describes and illustrates

event types and participant types for different scenarios. In this thesis, sometimes, an

event description is also referred to simply as an event, in which case it refers to both

the event verb and participants. In most of the cases, the context makes it clear what

is being referred to when the term “event” is used. When there is a possibility for

confusion, we make it explicit.

3.1 Introduction 38

choose
recipe

buy
ingred.

add
ingred.

prepare
ingred.

put cake
into oven

get
ingred.

Choose Recipe
– look up R
– find R
– get your R

Get Ingredients
– take out box of ING

from shelf
– gather all ING
– get ING

B – bowl, pan
O – oven
C – cake

ING – cake mix, cake ingredients, flour, sugar, …
R – recipe, cake recipe

Buy Ingredients
– purchase ING
– buy ING
– buy proper ING

Put cake in oven
– place C into O
– put C in O

Prepare Ingredients
– stir to combine
– mix well
– mix ING together in B
– stir ING

Add Ingredients
– pour ING in B
– add ING to B
– add ING

Fig. 3.4 Script for the Baking a cake scenario represented as a directed acyclic graph
(Wanzare et al., 2016).

At the lexical level, when describing a scenario, one may be more verbose about

an event and describe it in terms of two or more sub-events. One may verbalize an

event in different ways. For example, an event describing the activity of “adding

ingredients” can be done in multiple ways, for example, “pour ingredients to a bowl”,

“add ingredients to the mixer” or “add eggs, butter, baking soda, and flour”. Each

instantiation of a script describing the corresponding prototypical activity is referred

to as an event sequence description (ESD). An example of some of the possible

ESDs for the Baking a cake scenario are shown in Figure 3.3.

In addition to linguistic variations which are possible across different ESDs, as

evident from Figure 3.3, there are multiple ways of executing a Baking a cake

scenario. Some of the events are optional and can be skipped. For example, a cake

“icing or glazing” might not be done in some cases. Some of the events may be executed

in different order. For example, one may preheat the oven first and then mix the

ingredients, or the other way round.

Learning script structure from ESDs is challenging due to various possibilities for

variations when describing a scenario. Moreover, sometimes in a narrative text (e.g.

3.2 Scripts: Motivation 39

Figure 1.1 in Chapter 1) describing a scenario, the order of events mentioned in the

text may not be the order in which they would be executed in a script.

Scripts essentially have a non-linear structure. Figure 3.4 shows a possible script

structure for the Baking a cake scenario. In order to induce script structure from

ESDs, two main tasks need to be addressed. One of the tasks is about learning to

identify event descriptions that are paraphrases of each other. Another important task

is about learning the structure of a script by learning the prototypical order of events

in a script. In Chapter 4, we describe our approach for modeling script knowledge, by

developing a neural network based probabilistic model for event ordering and event

paraphrasing tasks.

3.2 Scripts: Motivation

As described in the previous section, scripts capture a prototypical order of events.

When instantiated in a narrative text, script knowledge affects the discourse structure

of the text in non-trivial ways. The events evoked in the beginning of the text may

affect the lexical formulation of events later in the text. Script information may affect

the lexical formulation of the noun phrases in the text. For example, when describing a

restaurant scenario, addressing a person for the first time, one may simply refer to the

person as “the waiter”, instead of more verbose description like “a person who takes

an order”. Global nature of scripts makes them important for understanding both the

linguistic and cognitive aspects of language processing.

For example, from the linguistic point of view, script knowledge plays a part in

discourse phenomena. As demonstrated in this dissertation (see Chapter 6) script

knowledge contributes to predicting an upcoming discourse referent in a narrative text.

From the application point of view, it shows that script information can be useful for

coreference resolution systems.

3.2 Scripts: Motivation 40

Nupur went to LeMéridian. She ordered a sirloin steak with French
fries. She tipped well.

Fig. 3.5 A small narrative describing a visit to a restaurant.

As explained in detail in Section 3.3, the notion of scripts has its origins in cognitive

psychology. Script knowledge is an important component of human memory and

cognition. This makes it attractive to study the role of script knowledge in human

cognition, with the help of computational models.

Script knowledge has been applied in a variety of NLP applications. Ordering

information associated with a script has been utilized in the area of information

extraction (Rau et al., 1989). In their experiments, Bower et al. (1979) have shown

script knowledge to be useful for summarization. Script knowledge has been applied in

automated storytelling systems (Schank, 1991) and in the development of intelligent

tutoring systems for educational purposes (Schank and Cleary, 1995).

Apart from linguistic and cognitive aspects, scripts find wider applications in the

area of artificial intelligence (A.I.) Since scripts capture common sense knowledge

about the world, scripts can be useful for a variety of AI applications. For example,

script knowledge can be useful for robot planning systems, guiding a robot in taking

the next possible action. Some of the scripts (corresponding to certain scenarios)

also capture procedural knowledge about the world and can be applied in systems

implementing personal digital assistants and dialog systems. Scripts can be useful for

drawing inferences from the text (Miikkulainen, 1993), which can be useful for NLP

applications, for example, question answering systems (Bower et al., 1979).

As an example, consider the small narrative described in Figure 3.5. The narrative

skips many details that would typically be part of a restaurant script, for example,

the narrative omits mention of a waiter, but still a reader can easily guess that the

3.3 Scripts: Cognitive Perspective 41

order was placed with a waiter. It also skips many events that would occur in a typical

restaurant script; for example, it does not mention about the sitting action in the

restaurant, or the eating event. In spite of skipping so many details, a reader can easily

infer them due to common sense knowledge about scripts. After reading the story, if

a reader is asked the question “Did Nupur eat food at LeMéridian?” As mentioned,

in the story where Nupur ordered food, it should not be difficult to infer that most

likely, she received her order without much delay, she ate the food, and she enjoyed

the food and the restaurant ambiance. Being happy with her overall experience, she

gave a good tip to the waiter. The above example demonstrates that script knowledge

can be crucial for a natural language understanding system.

3.3 Scripts: Cognitive Perspective

The script theory has underpinnings in cognitive psychology. Scripts are derived from

a broader concept in cognitive psychology referred to as a schema (plural schemata).

Schemata are mental frameworks or concepts used to organize and understand the

world (Rumelhart, 1978). A schema consists of a general template for the knowledge

shared by all instances and a number of slots that can take on different values for a

specific instance. For example, the concept of a dog comes with its own schema (for

example, wags tail, barks at strangers, chews bones, has four legs, etc.) Similarly, a

restaurant scenario comes with its own schema in the form of a sequence of events that

take place when you are in a restaurant (enter the restaurant, order food, eat, pay the

bill and leave).

A script is a schema for stereotypical activities, with a specific order of events in a

particular scenario. Script knowledge guides the expectations of a person in a given

scenario. For example, when you plan to go to a restaurant, you already know that you

are going to sit on a chair and eat at a table, and you are going to place an order with

3.3 Scripts: Cognitive Perspective 42

a waiter. These expectations affect our language comprehension abilities and influence

the sentence production, as the speaker is able to anticipate upcoming participants.

For example, when we are writing about a restaurant, we do not write each and every

detail, as these are assumed to be known to the comprehender.

Schemas and consequently script knowledge is related to the concept of episodic

memory (Tulving, 1985). Episodic memory refers to the part of our memory associated

with experiences and specific happenings in time in the serial form.1 Episodic memory

is the memory of autobiographical events (times, places, associated emotions, and other

contextual who, what, when, where, why knowledge) that can be explicitly stated.2

Research in cognitive psychology has indicated that events stored in episodic memory

can be activated by some particular external event (Baars and Gage, 2010; Terry,

2015). For example, when a person visits a restaurant for the first time, the whole

sequence of actions and associated participants (waiter, menu, the person himself etc)

are registered in the episodic memory of the person. Next time, when the person

visits another restaurant, this activates the old restaurant script (with its actions and

participants) stored in the episodic memory. Episodic memory activates the relevant

actions and participants for the scenario being experienced by the person.

Cognitive aspects of script theory have been extensively researched in the late

1970’s and 1980’s (see, for example, Abelson (1981); Ahn et al. (1987); Bellezza and

Bower (1982); Den Uyl and Van Oostendorp (1980); Dyer et al. (1987); Dyer (1982);

Galambos (1983); Galambos and Black (1982); Galambos and Rips (1982); Graesser

et al. (1979, 1980); Kolodner (1984); Mooney (1990); Nelson and Gruendel (1981);

Sharkey and Mitchell (1985); Sharkey and Sharkey (1987); Thorndyke and Hayes-Roth

(1979)).
1http://www.human-memory.net/types_episodic.html
2https://en.wikipedia.org/wiki/Episodic_memory

http://www.human-memory.net/types_episodic.html
https://en.wikipedia.org/wiki/Episodic_memory

3.3 Scripts: Cognitive Perspective 43

A prominent and seminal work for the understanding role of script knowledge

in human cognition was done by Bower et al. (1979) at Stanford University. They

investigated cognitive and psychological implications of the Schank and Abelson (1977)

script theory. The authors (Bower et al., 1979) performed a battery of experiments to

test various aspects of script theory.

In general, human subjects participating in these experiments mostly agreed on

the types of activity sequences and participants belonging to a script. In one set of

experiments, the authors examined how script knowledge is organized in the human

mind. The authors tested the non-linear nature of a script via psychological experiments

involving human subjects. From the experiment, the authors concluded: “The script is

not a linear chain of actions at one level but rather a hierarchically organized tree of

events with several levels of subordinate actions” (Bower et al., 1979). Furthermore,

the authors postulated the activity hierarchy as an event tree, with the main event at

the root and series of sub-events as children. Such event hierarchies can be useful for

answering “why”, “how” and “when” questions. These event hierarchies can also be

useful for summarizing texts.

In another set of experiments, Bower et al. (1979) investigated script event recall

among the subjects. In particular, the authors presented script-centric text to human

subjects with a few event descriptions removed.3 We saw an example of such a text

in Figure 3.5, where the eating event is not mentioned. Later, when subjects were

asked to recall the text, they were able to recall the stated script actions more often

than unstated script actions, which in turn were more than other actions. However,

recall of unstated script actions increased when more instances of the same script were

presented. In a related experiment, subjects were able to correctly order sequences of
3This is similar to the narrative cloze task mentioned in Chapter 1 and described in detail in

Chapter 4.

3.4 Scripts: Computational Perspective 44

events presented to them in a random order. This is indicative of implicit script event

ordering knowledge in memory.

In another interesting experiment, Bower et al. (1979) verified the local spread

hypothesis. The local spread hypothesis states that a script-centric sentence in the

text should be read and comprehended more quickly if it is preceded in the text by a

statement referring to an action that just precedes it in the actual underlying script.

The authors measured the reading times of subjects who were asked to read script

related texts. Subjects, in general, read the statements about events following each

other in a script faster than the statements which were far apart in terms of script

events.

Other researchers have tried to explain the script theory in terms of its role in

the human memory system; for example, Schank (1982) introduced script theory as a

dynamic model of memory. In their research on studying causality in scripts, Galambos

and Black (1985) found that position and importance of an event in a script affected

how quickly subjects answered questions related to a script.

In the direction of understanding cognitive aspects of the script theory, this thesis

proposes a new line of research in studying the influence of the script knowledge on

language comprehension (Modi et al., 2017). Chapter 6 describes in detail the battery

of experiments conducted to check the contribution of script knowledge to the task of

predicting upcoming discourse referents in a narrative text.

3.4 Scripts: Computational Perspective

From the computational point of view, scripts are related to the concept of frames in

artificial intelligence (Minsky, 1975). The concept of frames is a variation of the schema

concept described before. Frames are data structures used in artificial intelligence for

representing knowledge about prototypical situations. A frame comes with information

3.4 Scripts: Computational Perspective 45

about its application and possible frames that could follow the current frame. A frame

has a hierarchical structure and can be seen as a network of nodes and relations. Top

levels of the frame are fixed (being the truth about the supposed situation) and lower

levels of the frame have terminals (slots) that are filled with specific instances. Frames

are linked to each other and interact with each other based on actions.

Another concept related to script learning, modeling common sense knowledge

about the world, is case based reasoning (CBR) (Kolodner, 2014). Case based reasoning

proposes methods for computer reasoning based on the world knowledge stored in the

memory. It goes in the direction of procedural knowledge. We will not go into details

of case based reasoning, as it is beyond the scope of this dissertation.

There have been attempts to capture common sense knowledge about the world

by manually constructing ontologies and knowledge bases. One such project has been

Cyc4 (Matuszek et al., 2006). The Cyc project attempts to build a comprehensive

source of everyday common sense knowledge by incorporating all of the information

about the world in an ontology and a knowledge base (KB). In order to reason over

facts in the KB, Cyc has an inference engine based on predicate calculus. Cyc suffers

from a number of limitations and has been described as “one of the most controversial

endeavors of the artificial intelligence history”5 (Bertino et al., 2001). Cyc is an overly

complicated system due to its ambition to incorporate all the knowledge of the world

and consequently, it is difficult to add facts to it manually. There are large gaps in

knowledge related to ordinary objects. Since the Cyc system is complicated and has

limited documentation, it is difficult to work with the system. The Cyc system lacks

the ability to evolve on its own and needs an unending amount of data to produce

viable results (Domingos, 2015). The Cyc system is a huge collection of facts but does
4http://opencyc.org/
5https://en.wikipedia.org/wiki/Cyc

http://opencyc.org/
https://en.wikipedia.org/wiki/Cyc

3.4 Scripts: Computational Perspective 46

not explicitly model the temporal relations between events as they would typically

occur in a common daily activity.

Computational aspects of script theory were first addressed by Schank and Abelson

(1977) for explaining how the knowledge about stereotypical activities is used in

language processing (Schank, 1982). In the incipient stages of its conception, script

theory was primarily used for developing computer systems for story understanding

and story generation (Cullingford, 1977; Dejong, 1979; Schank and Abelson, 1977).

Initial approaches to modeling scripts for story understanding used symbolic ap-

proaches, i.e. rule based (mostly handwritten) approaches that attempt to model high

level processes in human cognition and language comprehension. There are significant

disadvantages to symbolic approaches; rules are hard-coded and are limited to a partic-

ular domain and data. Symbolic approaches lack the flexibility to adapt according to

the statistical properties of the data (Miikkulainen, 1993). Since the rules are designed

by humans, symbolic approaches are limited to the intuition and experience of the

creator.

The decade 1980-90 saw concentrated efforts towards the use of sub-symbolic

approaches for a variety of NLP applications (see e.g. Dale et al. (2000); Dorffner

et al. (1992); Dyer (1995); Elman (1991); Hinton et al. (1986); Reilly and Sharkey

(1992); Rumlehart et al. (1986)). Sub-symbolic approaches are also referred to as

connectionist approaches or artificial neural network (or simply neural network) or

more recently, deep learning approaches. Sub-symbolic approaches are based on the

concept of distributed representations (Hinton, 1984, 1986). The key idea about

distributed representations is that, instead of assigning a fixed symbol to a concept,

it is represented as a pattern of activity distributed over several basic units. These

methods draw inspiration from mechanisms that explain memory storage capability of

the human brain. Sub-symbolic approaches offer significant advantages over symbolic

3.4 Scripts: Computational Perspective 47

approaches. In particular, distributed representations are real-valued, compact and

holographic.6 Since these representations are not localized, the same set of computing

units can be used for representing several concepts. Representation for similar concepts

is similar. Unlike symbolic approaches, these representations are not hand-engineered

but are directly learned from data and capture semantic properties of the concepts.

From the cognitive point of view as well, sub-symbolic approaches appear to be plausible

models of human cognition.

Sub-symbolic approaches have also been applied to the area of script learning (e.g.

Lee et al. (1989); Lee (1991); Lee et al. (1992); Miikkulainen (1991, 1993, 1995); Miikku-

lainen and Dyer (1989); Rumlehart et al. (1986)). In particular, one of the first end to

end connectionist systems modeling script knowledge is DISCERN (DIstributed SCript

processing and Episodic memoRy Network) introduced by Miikkulainen (1993). The

DISCERN system reads narratives (in the form of stories), identifies the corresponding

script and identifies the script events in the narrative. It identifies the participants

corresponding to the script, and the script participants not mentioned in the story can

be inferred. It can answer questions related to the story and also generate expanded

paraphrases of the original story.

The DISCERN system processes a story word by word sequentially. The architecture

of the system is shown in Figure 3.6. The “lexicon” module stores distributed repre-

sentations for different words and concepts. The “sentence parser” module processes

an input sentence word by word and forms an internal representation of the sentence.

The “story parser” module composes internal representations of the sentences to get

an internal representation of the story. This representation is stored in the episodic

memory module. The “story generator” module generates sentence paraphrases one

at a time from the internal representations in the episodic memory. The “episodic
6Holographic representation refers to the fact that a partial part of the representation can be used

to reconstruct the whole.

3.4 Scripts: Computational Perspective 48

Sentence
Parser

Story
Parser

Episodic
Memory

Cue
Former

Answer
Producer

Sentence
Generator

Story
Generator

Lexicon

Input text Output text

Fig. 3.6 Architecture of the DISCERN system (Miikkulainen, 1993)

memory” module is a hierarchical self-organized map (SOM) network. Representation

storage in the episodic memory refers to the pattern of weight activities in the SOM

network. The “sentence generator” module generates corresponding words for each of

the sentences. The “cue former” and “answer producer” modules are used for retrieving

information and answering questions related to the script story. The cue former module

produces a cue pattern which is used to retrieve the correct story representation. The

answer module is used to generate answer representations for questions asked about

the story. The answer representations are input to the sentence generator module,

which in turn generates an answer word by word.

All the modules are trained separately and subsequently trained jointly as well, in

order to fine tune the modules. We will not go into details of the system and each of its

modules; interested readers are pointed to Miikkulainen (1993) for details. Although

the DISCERN system shows some degree of script understanding and inferencing

3.5 Recent Work on Scripts 49

capabilities, it is restricted to some narrow scenarios only. It is not entirely clear how

well the system generalizes to new scenarios. Perhaps it would require changes to the

module and system architecture.

Similar to the DISCERN system, Lee et al. (1992) proposed a neural-network based

DYNASTY (DYNAmic STory understanding sYstem) system for processing script

oriented stories. They demonstrated the system for a few artificially created short

stories with limited linguistic variation. The above-described connectionist systems

have been demonstrated in limited scenarios. These systems were created in the early

1990’s and also suffered from the lack of sufficient computational power at that time.

Nevertheless, these systems show the potential and advantages of such approaches for

script processing and understanding.

3.5 Recent Work on Scripts

As described before, some of the early systems in the 1980’s used small hand crafted

narrative texts for modeling scripts. In contrast, recent times have seen the emergence

of large annotated corpora for training natural language understanding systems. On the

technique side as well, there has been growth in statistical techniques for understanding

and modeling natural language.

There have been renewed interests in modeling script knowledge with the help

of available corpora and statistical techniques. Accordingly, Chambers and Jurafsky

(2009, 2008) were first to propose count based methods for learning narrative chains

and narrative schemas. Narrative chains, like scripts, are sequences of events, but with

a common protagonist as one of the participants in each event. A protagonist refers to

an entity like a person or an object, who/which is the focus of the narrative. Narrative

chains are not scripts in the conventional sense, but may be called super-scripts as

they involve a sequence of event descriptions from different scripts, with a common

3.5 Recent Work on Scripts 50

protagonist across all events. For example, a narrative chain corresponding to a

president would involve event descriptions (from different scripts) like attend meetings,

formulate policies, give speeches, etc. We go into details of the approach of Chambers

and Jurafsky (2008) and other related approaches in Chapter 4.

In count-based methods used for script learning, the key idea is to learn co-occurrence

counts of events in a large corpus. The co-occurrence counts along with a suitable

measure (for example, pointwise mutual information (PMI)) are used to learn the most

likely sequence of event descriptions. A number of count based methods have been

proposed for script learning, for example Jans et al. (2012); Manshadi et al. (2008);

Pichotta and Mooney (2014); Rudinger et al. (2015a). More details about count-based

methods and their disadvantages are discussed in detail in Chapter 4.

Regneri et al. (2010) proposed a different approach. They proposed an unsupervised

algorithm for learning script structure from crowd-sourced data. They induce a temporal

script graph (TSG) for each scenario. Formally, a TSG for a scenario s is a directed

graph G = (Vs, Es), where Vs are nodes of the graph representing events in the scenario

and Es are the directed edges representing the temporal order between events; for

example, edge (ei, ej) represents that typically, event ei happens before ej in the

scenario s. A TSG represents the script structure induced from different ESDs for a

scenario. An example of a TSG for an Eating in a fast food restaurant scenario

is shown in Figure 3.7. The algorithm proposed by Regneri et al. (2010) takes a set of

ESDs for a scenario as input and outputs a TSG, where each node is a collection of

events, which are paraphrases of each other, and directed edges represent the temporal

order in the script.

Regneri et al. (2010) collected ESD for 22 scenarios via an Amazon Mechanical Turk

(AMT) experiment. In the crowd-sourcing experiment, they asked the participants

to describe a scenario in bullet point style, with one event description per point. As

3.5 Recent Work on Scripts 51

get in line
enter restaurant

stand in line

wait in line
look at menu board

wait in line to order my food
examine menu board

look at the menu
look at menu

go to cashier
go to ordering counter

go to counter

i decide what i want
decide what to eat

decide on food and drink
decide on what to order

make selection
decide what you want

order food
i order it

tell cashier your order
order items from wall menu

order my food
place an order

order at counter
place order

pay at counter
pay for the food

pay for food
give order to the employee

pay the bill
pay

pay for the food and drinks
pay for order collect utensils

pay for order
pick up order

make payment
keep my receipt

take receipt

wait for my order
look at prices

wait
look at order number

wait for order to be done
wait for food to be ready

wait for order
wait for the ordered food

expect order
wait for food

pick up condiments
take your cup
receive food

take food to table
receive tray with order

get condiments
get the food

receive food at counter
pick up food when ready

get my order
get food

move to a table
sit down

wait for number to be called
seat at a table

sit down at table
leave

walk into the reasturant
walk up to the counter

walk into restaurant
go to restaurant

walk to the counter

Figure 3: An extract from the graph computed for EATING IN A FAST FOOD RESTAURANT

shallow dependency-style syntactic information.
We identify the first potential verb of the phrase
(according to the POS information provided by
WordNet) as the predicate, the preceding noun (if
any) as subject, and all following potential nouns
as objects. (With this fairly crude tagging method,
we also count nouns in prepositional phrases as
“objects”.)

On the basis of this pseudo-parse, we compute
the similarity measure sim:

sim = ↵ · pred + � · subj + � · obj

where pred, subj, and obj are the similarity val-
ues for predicates, subjects and objects respec-
tively, and ↵,�, � are weights. If a constituent
is not present in one of the phrases to compare,
we set its weight to zero and redistribute it over
the other weights. We fix the individual simi-
larity scores pred, subj, and obj depending on
the WordNet relation between the most similar
WordNet senses of the respective lemmas (100 for
synonyms, 0 for lemmas without any relation, and
intermediate numbers for different kind of Word-
Net links).

We optimized the values for pred, subj, and
obj as well as the weights ↵, � and � using a
held-out development set of scenarios. Our exper-
iments showed that in most cases, the verb con-
tributes the largest part to the similarity (accord-
ingly, ↵ needs to be higher than the other factors).
We achieved improved accuracy by distinguishing
a class of verbs that contribute little to the meaning
of the phrase (i.e., support verbs, verbs of move-
ment, and the verb “get”), and assigning them a
separate, lower ↵.

5.3 Building Temporal Script Graphs

We can now compute a low-cost MSA for each
scenario out of the ESDs. From this alignment, we
extract a temporal script graph, in the following
way. First, we construct an initial graph which has
one node for each row of the MSA as in Fig. 2. We
interpret each node of the graph as representing
a single event in the script, and the phrases that
are collected in the node as different descriptions
of this event; that is, we claim that these phrases
are paraphrases in the context of this scenario. We
then add an edge (u, v) to the graph iff (1) u 6=
v, (2) there was at least one ESD in the original
data in which some phrase in u directly preceded
some phrase in v, and (3) if a single ESD contains
a phrase from u and from v, the phrase from u
directly precedes the one from v. In terms of the
MSA, this means that if a phrase from u comes
from the same column as a phrase from v, there
are at most some gaps between them. This initial
graph represents exactly the same information as
the MSA, in a different notation.

The graph is automatically post-processed in
a second step to simplify it and eliminate noise
that caused MSA errors. At first we prune spu-
rious nodes which contain only one event descrip-
tion. Then we refine the graph by merging nodes
whose elements should have been aligned in the
first place but were missed by the MSA. We merge
two nodes if they satisfy certain structural and se-
mantic constraints.

The semantic constraints check whether the
event descriptions of the merged node would be
sufficiently consistent according to the similarity
measure from Section 5.2. To check whether we
can merge two nodes u and v, we use an unsuper-
vised clustering algorithm (Flake et al., 2004) to

Fig. 3.7 An example of a temporal script graph (TSG) induced from ESDs for Eating
in a fast food restaurant (Regneri et al., 2010)

explained in Section 3.1, similar events may be verbalized differently across ESDs.

Also, the order of events may differ across ESDs, with some events skipped in some

ESDs. In order to induce a TSG from crowd-sourced ESDs, Regneri et al. (2010)

apply a two step approach. Firstly, they identify similar event descriptions using the

multiple sequence alignment (MSA) algorithm. Next, the identified event paraphrases

along with certain constraints are used to induce the temporal graph structure for the

scenario.

MSA identifies event paraphrases by optimizing a cost function based on semantic

similarity between event descriptions. For the similarity measure, Regneri et al. (2010)

use a weighted sum of the predicate, subject and object similarity, where each of

the component similarities is based on WordNet senses. As the output, MSA gives

an initial noisy graph. Next, this graph is automatically post-processed taking into

account certain semantic and structural constraints, to obtain a temporal script graph

for the scenario.

Frermann et al. (2014) have proposed an unsupervised non-parametric Bayesian

model for inducing scripts. They propose a generative model for joint learning of event

ordering and event paraphrasing over the crowdsourced data of Regneri et al. (2010).

3.5 Recent Work on Scripts 52

The model proposed by them clusters similar descriptions into event types and learns

a scenario specific temporal ordering over the event types.

In the setup of Frermann et al. (2014), a set of possible event types across all

scripts is maintained. The generative story in their approach is as follows: For each

ESD, a set of script relevant event types is decided by independently drawing from a

binomial distribution. An ordering over event types is drawn from a generalized Mallows

model (GMM) (Mallows, 1957). A GMM specifies distribution over permutations and

penalizes an ordering which deviates from the canonical ordering. For each realized

event type in the generated ordering, a predicate is generated by drawing from a

language model. Similarly, a participant type for the event type is selected by drawing

from the binomial distribution. For each participant type, a participant word is

generated by another language model. Due to limited data, the model is augmented by

adding prior knowledge. This is done by including information about the semantically

similarity between words (via WordNet) in the priors for the language model. Since the

posterior distribution for the model is intractable, the inference is done via collapsed

Gibbs sampling (Griffiths and Steyvers, 2004). Unlike Regneri et al. (2010), the model

proposed by Frermann et al. (2014) learns event ordering and event paraphrasing

jointly.

Regneri et al. (2010) and Frermann et al. (2014) evaluated their model for event-

paraphrasing and event-ordering tasks. We will not go into details of these tasks as

they are described in detail in Chapter 4, where we compare our probabilistic model

with Regneri et al. (2010)’s model.

Most of the A.I. research on modeling common sense knowledge or every day

activities has focused in isolation on either Minsky’s frames or Fillmore’s frames.

However, recently, Ferraro and Van Durme (2016) have proposed a model that unifies

Minsky’s frames and Fillmore’s frames into one common framework. They posit their

3.5 Recent Work on Scripts 53

model on the hierarchical nature of frames as originally proposed by Minsky (1975).

In their framework a document is represented at different hierarchical levels, starting

from the lowest level, with surface syntactic frames (verb noun structures), followed by

surface semantic frames (these are akin to Fillmore’s frames). Thematic frames (akin

to Minsky’s thematic frames, indicative of topic, activities, and setting) are at the

next level. At the topmost level are the narrative frames (indicative of plot forms, or

stories). A narrative frame invokes different thematic frames. While surface syntactic

and semantic frames are localized to a sentence, thematic and narrative frames may

span over the whole of the document.

Ferraro and Van Durme (2016) propose a generative model based on Bayesian

techniques. In their generative framework, a document is generated by invoking a

narrative frame. A narrative frame is a mixture of thematic frames and consequently

invokes different thematic frames. Each thematic frame itself is a mixture of semantic

frames and each semantic frame invokes the syntactic verb-argument structure. We

will not delve into details of the probabilistic formulation and inference mechanism for

the model; we refer the reader to Ferraro and Van Durme (2016) for details.

Ferraro and Van Durme (2016) evaluate their model in terms of log-likelihood

and topic coherence. They experimentally demonstrate the efficacy of their model in

inferring narrative frames and thematic frames. The framework proposed by Ferraro

and Van Durme (2016) looks promising but it does not encode the temporal ordering

information associated with frames. They claim that their framework can be extended

to include ordering information, but it is not entirely clear how exactly one would

adapt their framework for modeling script knowledge.

Recently, a number of neural network based approaches have also been proposed

that address the shortcomings of count based and graph based methods. For example,

in a follow-up work to this dissertation, Pichotta and Mooney (2016a) have proposed

3.5 Recent Work on Scripts 54

RNN-LSTM (Recurrent Neural Network-Long Short Term Memory) based architecture

for modeling an event sequence in a script. Similar to Chambers and Jurafsky (2008)

(C&J), they too model super-scripts rather than conventional scripts as described

before. In their work, Pichotta and Mooney (2016a) extract event sequences by parsing

English Wikipedia. They define an event as a 5-tuple (v, es, eo, ep, p), where v is the

verb lemma, and es is the nominal argument for the subject. Similarly, eo and ep

are nominal arguments for objects and prepositional relations, respectively, and p is

the prepositional relation. They consider 4 variants of the basic RNN-LSTM model

architecture. Pichotta and Mooney (2016a) evaluated their model on the narrative

cloze task. As explained in Chapter 1, the narrative cloze task tests a model’s ability

to predict a missing event in a sequence of events. They evaluated their model against

count-based models using different variants of Recall-At-K (R@K) and accuracy metrics.

The Recall-At-K metric evaluates the percentage of missing events that fall under

top-K predictions of the model. The proposed LSTM model outperforms count-based

methods on all the metrics. Pichotta and Mooney (2016a) also evaluated the response

of different models via crowdsourcing. In this experiment, they asked human workers to

evaluate the response of a model on a 5-point scale. Human evaluations, too, confirm

the superiority of LSTM-based models over count-based baseline models.

In another interesting work, Pichotta and Mooney (2016b) compare the previously

proposed event (based on predicate-argument structure) sequence script model with a

sentence level language model. Their system works on raw text without any explicit

syntactic annotations. Their aim is to study the contribution due to the event structure

in the previously proposed models, where events are defined as a verb-arguments tuple.

They propose the RNN-LSTM encoder-decoder architecture based model for learning

sentence level language models. The model is trained on raw sentences in the text.

The input to the model, at the encoder side, is the current sentence, and generated as

3.6 Conclusion 55

an output at the decoder is the subsequent sentence. Events are extracted from the

generated sentence. Pichotta and Mooney (2016b) reported that their system, based

on extracting events from generated sentences, has performance comparable to models

based on predicting structured events.

Other neural network based approaches for script learning have also been proposed

(e.g. (Granroth-Wilding and Clark, 2015; Rudinger et al., 2015b)). We will discuss

these in detail in Chapter 4. We also describe our neural model for learning script

knowledge in Chapter 4.

3.6 Conclusion

This chapter discussed in detail script structure and motivations for research on scripts.

It traced back the history of script theory research and its origins in cognitive psychology.

It also briefly described the computational efforts in the area of script learning. In the

subsequent chapter, we will delve deeper into computational approaches for modeling

script knowledge. We describe in detail the proposed neural network model for learning

script event sequence order. Experiments show the advantages of using a neural network

based model for script processing. In Chapter 6 of the thesis, we will describe our

approach for studying the cognitive aspects of scripts. In particular, we describe our

experiments to study the effect of script knowledge on language comprehension.

CHAPTER 4

Neural Models of Script Knowledge

4.1 Introduction . 57

4.2 Event Ordering Script Model 57

4.3 Event Ordering Experiments 63

4.4 Count Based Event Prediction 74

4.5 Event Ordering Tasks Definition 78

4.6 Event Prediction Script Model 79

4.7 Event Prediction Model Evaluation 85

4.8 Related Work . 90

4.9 Conclusion . 91

All models are wrong, but some are useful.
**

George E. P. Box

4.1 Introduction 57

4.1 Introduction

In the previous chapter, we introduced the concept of scripts. We explained the role

of scripts in a natural language understanding system. We also described that early

work on scripts focused on structured representations of this knowledge (Schank and

Abelson, 1977)) and manual construction of script knowledge bases. However, these

approaches do not scale to complex domains (Gordon, 2001; Mueller, 1998).

In this chapter, we describe an alternate approach. We propose a neural network

based probabilistic model for learning event ordering in scripts in Section 4.2. As

described in Section 4.3.2, the confidence scores associated with ordering of events can

be used for event paraphrasing as well. Experiments show the advantages of the model

over existing count based and graph based approaches. We address another important

task associated with script learning, namely event prediction. We extend our neural

network based ordering model for predicting a missing event in an event sequence. We

show the advantages of this approach in Section 4.7.4.

4.2 Event Ordering Script Model

Recently, automatic induction of script knowledge from text has started to attract

attention: these methods exploit either natural texts (Chambers and Jurafsky, 2009,

2008) or crowdsourced data (Regneri et al., 2010), and, consequently, do not require

expensive expert annotation. Given a text corpus, they extract structured representa-

tions (i.e. graphs), for example, chains (Chambers and Jurafsky, 2008) or more general

directed acyclic graphs (Regneri et al., 2010). These graphs are scenario-specific; nodes

in them correspond to events (and associated sets of potential event mentions) and arcs

encode the temporal precedence relation. These graphs can then be used to inform

NLP applications (e.g., question answering) by providing information on whether one

4.2 Event Ordering Script Model 58

event is likely to precede or succeed another. Note that these graphs encode common

sense knowledge about the prototypical ordering of events rather than temporal order

of events as described in a given text.

Though representing the script knowledge as graphs is attractive from the human

interpretability perspective, it may not be optimal from the application point of view.

More specifically, these representations (1) require a model designer to choose an

appropriate granularity of event mentions (e.g., whether nodes in the graph should be

associated only with verbs, or also their arguments); (2) do not provide a mechanism

for deciding which scenario applies in a given discourse context and (3) often do not

associate confidence levels with information encoded in the graph (e.g., the precedence

relation in Regneri et al. (2010)).

Instead of constructing a graph and using it to provide information (e.g., prototypical

event ordering) to NLP applications, we advocate for constructing a statistical model

which is capable to “answer” at least some of the questions these graphs can be used

to answer, but doing this without explicitly representing the knowledge as a graph.

In our method, the distributed representations (i.e. vectors of real numbers) of event

realizations are computed based on distributed representations of predicates and their

arguments, and then the event representations are used in a ranker to predict the

prototypical ordering of events. Both the parameters of the compositional process

for computing the event representation and the ranking component of the model are

estimated from texts (either relying on unambiguous discourse clues or natural ordering

in the text). In this way, we build on recent research on compositional distributional

semantics (Baroni and Zamparelli, 2011; Socher et al., 2012), though our approach

specifically focuses on embedding predicate-argument structures rather than arbitrary

phrases, and learning these representations to be especially informative for prototypical

event ordering.

4.2 Event Ordering Script Model 59

In order to get an intuition on why the embedding approach may be attractive,

consider a situation where a prototypical ordering of events the bus disembarked

passengers and the bus drove away needs to be predicted. An approach based on

the frequency of predicate pairs (Chambers and Jurafsky, 2008) (henceforth CJ08),

is unlikely to make a right prediction, as driving usually precedes disembarking.

Similarly, an approach which treats the whole predicate-argument structure as an

atomic unit (Regneri et al., 2010) will probably fail as well, as such a sparse model is

unlikely to be effectively learnable even from large amounts of unlabeled data. However,

our embedding method would be expected to capture relevant features of the verb

frames, namely the transitive use for the predicate disembark and the effect of the

particle away, and these features will then be used by the ranking component to make

the correct prediction.

In previous work on learning inference rules (Berant et al., 2011), it has been shown

that enforcing transitivity constraints on the inference rules results in significantly

improved performance. The same is likely to be true for the event ordering task, as

scripts have largely linear structure, and observing that a ≺ b and b ≺ c is likely

to imply a ≺ c. Interestingly, in our approach, we learn the model which satisfies

transitivity constraints, without the need for any explicit global optimization on a

graph. This results in a significant boost in performance when using embeddings of

just predicates (i.e. ignoring arguments) with respect to using frequencies of ordered

verb pairs, as in CJ08 (76% vs. 61% on the natural data).

Our model is solely focusing on the ordering task and admittedly does not represent

all the information encoded by a script graph structure. For example, it cannot be

directly used to predict a missing event given a set of events (the narrative cloze

task (Chambers and Jurafsky, 2009)). Nevertheless, we believe that the framework

(a probabilistic model using event embeddings as its component) can be extended

4.2 Event Ordering Script Model 60

disembarked passengersbus

predicate embedding

event embedding

arg embedding

Ta1 Rp Ta2

f(e)

a1 = C(bus) a2 = C(passenger)p = C(disembark)
arg embedding

hidden layerh
Ah

Fig. 4.1 Computation of an event representation for a predicate with two arguments
(the bus disembarked passengers), an arbitrary number of arguments is supported by
our approach.

to represent other aspects of script knowledge by modifying the learning objective,

as described in the later part of the chapter for the narrative cloze task. In later

sections, we show how our model can be used to predict if two event mentions are

likely paraphrases of the same event.

The approach is evaluated in two set-ups. First, we consider the crowdsourced

dataset of Regneri et al. (2010) and demonstrate that using our model results in the

13.5% absolute improvement in F1 on event ordering with respect to their graph

induction method (84.1% vs. 70.6%). Secondly, we derive an event ordering dataset

from the Gigaword corpus, where we also show that the embedding method beats the

frequency-based baseline (i.e. reimplementation of the scoring component of CJ08) by

22.8% in accuracy (83.5% vs. 60.7%).

In this section, we describe the model we use for computing event representations

as well as the ranking component of our model.

4.2 Event Ordering Script Model 61

4.2.1 Event Representation

Learning and exploiting distributed word representations (i.e. vectors of real values, also

known as embeddings) have been shown to be beneficial in many NLP applications (Ben-

gio et al., 2001; Collobert et al., 2011; Turian et al., 2010). These representations

encode semantic and syntactic properties of a word, and are normally learned in the

language modeling setting (i.e. learned to be predictive of local word context), though

they can also be specialized by learning in the context of other NLP applications

such as PoS tagging or semantic role labeling (Collobert et al., 2011). More recently,

the area of distributional compositional semantics has started to emerge (Baroni and

Zamparelli, 2011; Socher et al., 2012); they focus on inducing representations of phrases

by learning a compositional model. Such a model would compute a representation of

a phrase by starting with embeddings of individual words in the phrase, often this

composition process is recursive and guided by some form of syntactic structure.

In our work, we use a simple compositional model for representing the semantics

of a verb frame e (i.e. the predicate and its arguments). We will refer to such verb

frames as events. The model is shown in Figure 4.6. Each word ci in the vocabulary is

mapped to a real vector based on the corresponding lemma (the embedding function

C). The hidden layer is computed by summing linearly transformed predicate and

argument1 embeddings and passing it through the logistic sigmoid function. We use

different transformation matrices for arguments and predicates, T and R, respectively.

The event representation f(e) is then obtained by applying another linear transform

(matrix A) followed by another application of the sigmoid function. Another point

to note in here is that, as in previous work on script induction, we use lemmas for

predicates and specifically filter out any tense markers, as our goal is to induce common
1Only syntactic heads of arguments are used in this work. If an argument is a coffee maker, we

will use only the word maker.

4.2 Event Ordering Script Model 62

sense knowledge about an event rather than properties predictive of temporal order in

a specific discourse context.

These event representations are learned in the context of event ranking: the

transformation parameters, as well as representations of words, are forced to be

predictive of the temporal order of events. In our experiments, we also consider

initialization of predicate and arguments with the SENNA word embeddings (Collobert

et al., 2011).

4.2.2 Learning to Order

The task of learning the stereotyped order of events naturally corresponds to the

standard ranking setting. We assume that we are provided with sequences of events,

and our goal is to capture this order. We discuss how we obtain this learning material

in the next section. We learn a linear ranker (characterized by a vector w) which takes

an event representation and returns a ranking score. Events are then ordered according

to the score to yield the model prediction. Note that during the learning stage we

estimate not only w but also the event representation parameters, i.e. matrices T , R

and A, and the word embedding C. Note that by casting the event ordering task as a

global ranking problem we ensure that the model implicitly exploits transitivity of the

relation, the property which is crucial for successful learning from a finite amount of

data, as we argued in the introduction and will confirm in our experiments.

At training time, we assume that each training example k is a list of events

e
(k)
1 , . . . , e

(k)
n(k) provided in the stereotypical order (i.e. e(k)

i ≺ e
(k)
j if i < j); n(k) is the

length of the list k. We minimize the L2-regularized ranking hinge loss:

∑
k

∑
i<j≤n(k)

max(0, 1−wTf(e(k)
i ; Θ)+wTf(e(k)

j ; Θ)) + α(∥w∥2 + ∥Θ∥2) (4.1)

4.3 Event Ordering Experiments 63

where f(e; Θ) is the embedding computed for event e and Θ are all embedding

parameters corresponding to elements of the matrices {R,C, T,A}. We use stochastic

gradient descent, gradients w.r.t. Θ are computed using back propagation.

4.3 Event Ordering Experiments

We evaluate our approach in two different set-ups. First, we induce the model from the

crowdsourced data specifically collected for script induction by Regneri et al. (2010);

secondly, we consider an arguably more challenging set-up of learning the model from

news data (Gigaword (Parker et al., 2011)); in the latter case we use a learning scenario

inspired by Chambers and Jurafsky (2008).2

4.3.1 Learning from Crowdsourced Data

Data and task

Regneri et al. (2010) collected descriptions (called event sequence descriptions, ESDs)

of various types of human activities (e.g., going to a restaurant, ironing clothes) using

crowdsourcing (Amazon Mechanical Turk); this dataset was also complemented by

descriptions provided in the OMICS corpus (Gupta and Kochenderfer, 2004). The

datasets are fairly small, containing 30 ESDs per activity type on average (we will

refer to different activities as scenarios), but in principle, the collection can easily

be extended given the low cost of crowdsourcing. The ESDs list events forming the

scenario and are written in a bullet-point style. The annotators were asked to follow the

prototypical event order in writing. As an example, consider an ESD for the scenario

prepare coffee :
2Details about downloading the data and models are at:

http://www.coli.uni-saarland.de/projects/smile/docs/nmReadme.txt

4.3 Event Ordering Experiments 64

{go to coffee maker} → {fill water in coffee maker} → {place the filter in holder} →

{place coffee in filter} → {place holder in coffee maker} → {turn on coffee maker}

Regneri et al. also automatically extracted predicates and heads of arguments for

each event, as needed for their MSA system and our compositional model.

Though individual ESDs may seem simple, the learning task is challenging because

of the limited amount of training data, variability in the used vocabulary, optionality

of events (e.g., going to the coffee machine may not be mentioned in an ESD), different

granularity of events and variability in the ordering (e.g., coffee may be put in the

filter before placing it in the coffee maker). Unlike our work, Regneri et al. (2010) rely

on WordNet to provide the extra signal when using the multiple sequence alignment

(MSA) algorithm. As in their work, each description was preprocessed to extract a

predicate and heads of argument noun phrases to be used in the model.

The methods are evaluated on human annotated scenario-specific tests: the goal

is to classify event pairs as appearing in a stereotypical order or not (Regneri et al.,

2010).3

The model was estimated as explained in Section 4.2.2 with the order of events

in ESDs treated as gold standard. We used 4 held-out scenarios to choose model

parameters, no scenario-specific tuning was performed and the 10 test scripts were not

used to perform model selection. The selected model used the dimensionality of 10

for an event and word embeddings. The initial learning rate and the regularization

parameter were set to 0.005 and 1.0, respectively, and both parameters were reduced

by a factor of 1.2 every epoch the error function went up. We used 2000 epochs of

stochastic gradient descent. Dropout (Hinton et al., 2012) with a rate of 20% was used

for the hidden layers in all our experiments. When testing, we predicted that the event
3The event pairs are not coming from the same ESDs, making the task harder, as the events may

not be in any temporal relation.

4.3 Event Ordering Experiments 65

pair (e1,e2) is in the stereotypical order (e1 ≺ e2) if the ranking score for e1 exceeded

the ranking score for e2.

Results and discussion

We evaluated our event embedding model (EE) against baseline systems (BL, MSA,

and BS). MSA is the system of Regneri et al. (2010). BS is a hierarchical Bayesian

model by Frermann et al. (2014). BL chooses the order of events based on the preferred

order of the corresponding verbs in the training set: (e1, e2) is predicted to be in the

stereotypical order if the number of times the corresponding verbs v1 and v2 appear

in this order in the training ESDs exceeds the number of times they appear in the

opposite order (not necessary at adjacent positions); a coin is tossed to break ties (or

if v1 and v2 are the same verb). This frequency counting method was previously used

in CJ08.4

We also compare to the version of our model which uses only verbs (EEverbs). Note

that EEverbs is conceptually very similar to BL, as it essentially induces an ordering

over verbs. However, this ordering can benefit from the implicit transitivity assumption

used in EEverbs (and EE), as we discussed in the introduction. The results are presented

in Table 4.1 on page 67.

The first observation is that the full model improves substantially over the baseline

and the previous method (MSA) in F1 (13.5% improvement over MSA and 6.5%

improvement over BS). Note also that this improvement is consistent across scenarios:

EE outperforms MSA and BS on 9 scenarios out of 10 and 8 out of 10 scenarios in the

case of BS. Unlike MSA and BS, no external knowledge (i.e. WordNet) was exploited

in our method.
4They scored permutations of several events by summing the logarithmed differences of the

frequencies of ordered verb pairs. However, when applied to event pairs, their approach would yield
exactly the same prediction rule as BL.

4.3 Event Ordering Experiments 66

We also observe a substantial improvement in all metrics from using transitivity, as

seen by comparing the results of BL and EEverb (11% improvement in F1). This simple

approach already substantially outperforms the pipelined MSA system. These results

seem to support our hypothesis in the introduction that inducing graph representations

from scripts may not be an optimal strategy from the practical perspective.

We performed additional experiments using the SENNA embeddings (Collobert

et al., 2011). Instead of randomly initializing arguments and predicate embeddings

(vectors), we initialized them with pre-trained SENNA embeddings. We have not

observed any significant boost in performance from using the initialization (average F1

of 84.0% for EE). We attribute the lack of significant improvement to the following

three factors. First of all, the SENNA embeddings tend to place antonyms / opposites

near each other (e.g., come and go, or end and start). However, ‘opposite’ predicates

appear in very different positions in scripts. Additionally, the SENNA embeddings have

a dimensionality of 50, which appears to be too high for small crowd-sourced datasets,

as it forces us to use larger matrices T and R. Moreover, the SENNA embeddings are

estimated from Wikipedia, and the activities in our crowdsourced domain are perhaps

underrepresented there.

4.3 Event Ordering Experiments 67

P
re

ci
si

on
(%

)
R

ec
al

l
(%

)
F

1
(%

)
BL

EE
ve

rb
M

SA
BS

EE
BL

EE
ve

rb
M

SA
BS

EE
BL

EE
ve

rb
M

SA
BS

EE
Bu

s
70

.1
81

.9
80

.0
76

.0
85

.1
71

.3
75

.8
80

.0
76

.0
91

.9
70

.7
78

.8
80

.0
76

.0
88

.4
C

off
ee

70
.1

73
.7

70
.0

68
.0

69
.5

72
.6

75
.1

78
.0

57
.0

71
.0

71
.3

74
.4

74
.0

62
.0

70
.2

Fa
st

fo
od

69
.9

81
.0

53
.0

97
.0

90
.0

65
.1

79
.1

81
.0

65
.0

87
.9

67
.4

80
.0

64
.0

78
.0

88
.9

R
et

ur
n

74
.0

94
.1

48
.0

87
.0

92
.4

68
.6

91
.4

75
.0

72
.0

89
.7

71
.0

92
.8

58
.0

79
.0

91
.0

Ir
on

73
.4

80
.1

78
.0

87
.0

86
.9

67
.3

69
.8

72
.0

69
.0

80
.2

70
.2

69
.8

75
.0

77
.0

83
.4

M
ic

ro
w

.
72

.6
79

.2
47

.0
91

.0
82

.9
63

.4
62

.8
83

.0
74

.0
90

.3
67

.7
70

.0
60

.0
82

.0
86

.4
Eg

gs
72

.7
71

.4
67

.0
77

.0
80

.7
68

.0
67

.7
64

.0
59

.0
76

.9
70

.3
69

.5
66

.0
67

.0
78

.7
Sh

ow
er

62
.2

76
.2

48
.0

85
.0

80
.0

62
.5

80
.0

82
.0

84
.0

84
.3

62
.3

78
.1

61
.0

85
.0

82
.1

Ph
on

e
67

.6
87

.8
83

.0
92

.0
87

.5
62

.8
87

.9
86

.0
87

.0
89

.0
65

.1
87

.8
84

.0
89

.0
88

.2
Ve

nd
in

g
66

.4
87

.3
84

.0
90

.0
84

.2
60

.6
87

.6
85

.0
74

.0
81

.9
63

.3
84

.9
84

.0
81

.0
88

.2
A

ve
ra

ge
69

.9
81

.3
65

.8
85

.0
83

.9
66

.2
77

.2
78

.6
71

.7
84

.3
68

.0
79

.1
70

.6
77

.6
84

.1

Ta
bl

e
4.

1
R

es
ul

ts
on

th
e

cr
ow

ds
ou

rc
ed

da
ta

fo
r

th
e

ve
rb

-fr
eq

ue
nc

y
ba

se
lin

e
(B

L)
,t

he
ve

rb
-o

nl
y

em
be

dd
in

g
m

od
el

(E
E v

er
b
),

R
eg

ne
ri

et
al

.(
20

10
)

(M
SA

),
Fr

er
m

an
n

et
al

.(
20

14
)(

BS
)

an
d

th
e

fu
ll

m
od

el
(E

E)
.

4.3 Event Ordering Experiments 68

Ente
r a

res
tau

ran
t

Arriv
e in

 a

res
tau

ran
t ...

Orde
r

be
ver

ag
es

Brow
se

a m
en

u

Revi
ew

 op
tion

s

in a
 m

en
u

Fig. 4.2 Events on the timeline; dotted arcs link events from the same ESD.

4.3.2 Event Paraphrasing

Regneri et al. (2010) additionally measure paraphrasing performance of the MSA

system by comparing it to human annotation they obtained: a system needs to predict

if a pair of event mentions are paraphrases or not. The dataset contains 527 event

pairs for the 10 test scenarios. Each pair consists of events from the same scenario.

The dataset is fairly balanced, containing from 47 to 60 examples per scenario.

This task does not directly map to any statistical inference problem with our model.

Instead, we use an approach inspired by the interval algebra of Allen (1983).

Our ranking model maps event mentions to positions on a timeline (see Figure 4.2).

However, it would be more natural to assume that events are intervals rather than

points. In principle, these intervals can be overlapping, to encode a rich set of temporal

relations (see (Allen, 1983)). However, we make a simplifying assumption that the

intervals do not overlap and every real number belongs to an interval. In other words,

our goal is to induce a segmentation of the line: event mentions corresponding to the

same interval are then regarded as paraphrases.

4.3 Event Ordering Experiments 69

One natural constraint on this segmentation is the following: if two event mentions

are from the same training ESD, they cannot be assigned to the same interval (as

events in ESD are not supposed to be paraphrases). In Figure 4.2 arcs link event

mentions from the same ESD. We look for a segmentation which produces the minimal

number of segments and satisfies the above constraint for event mentions appearing in

training data.

Though inducing intervals given a set of temporal constraints is known to be NP-

hard in general (see, e.g., (Golumbic and Shamir, 1993)), for our constraints a simple

greedy algorithm finds an optimal solution. We trace the line from the left maintaining

a set of event mentions in the current unfinished interval and create a boundary when

the constraint is violated; we repeat the process until we have processed all mentions.

In Figure 4.2, we would create the first boundary between arrive in a restaurant and

order beverages: order beverages and enter a restaurant are from the same ESD and

continuing the interval would violate the constraint. It is not hard to see that this

results in an optimal segmentation. First, the segmentation satisfies the constraint by

construction. Secondly, the number of segments is minimal as the arcs which caused

boundary creation are non-overlapping; each of these arcs needs to be cut and our

algorithm cuts each arc exactly once.

This algorithm prefers to introduce a boundary as late as possible. For example, it

would introduce a boundary between browse a menu and review options in a menu even

though the corresponding points are very close on the line. We modify the algorithm

by moving the boundaries left as long as this move does not result in new constraint

violations and increases margins at boundaries. In our example, the boundary would

be moved to be between order beverages and browse a menu, as desired.

The resulting performance is reported in Table 4.2. We report results of our method,

as well as results for MSA, BS and a simple all-paraphrase baseline which predict

4.3 Event Ordering Experiments 70

Scenario F1 (%)
APBL MSA BS EE

Take bus 53.7 74.0 47.0 63.5
Make coffee 42.1 65.0 52.0 63.5

Order fastfood 37.0 59.0 80.0 62.6
Return food back 64.8 71.0 67.0 81.1

Iron clothes 43.3 67.0 60.0 56.7
Microwave cooking 43.2 75.0 82.0 57.8

Scrambled eggs 57.6 69.0 76.0 53.0
Take shower 42.1 78.0 67.0 55.7

Answer telephone 71.0 89.0 81.0 79.4
Vending machine 56.1 69.0 77.0 69.3

Average 51.1 71.6 68.9 64.5

Table 4.2 Paraphrasing results on the crowdsourced data for Regneri et al. (2010)
(MSA), Frermann et al. (2014)(BS) and the all-paraphrase baseline (APBL) and using
intervals induced from our model (EE).

that all mention pairs in a test set are paraphrases (APBL)5 We can see that interval

induction technique results in a lower F1 than that of MSA or BS. This might be

partially due to not using external knowledge (WordNet) in our method.

We performed extra analyses on the development scenario doorbell. The analyses

revealed that the interval induction approach is not very robust to noise: removing a

single noisy ESD results in a dramatic change in the interval structure induced and

in a significant increase of F1. Consequently, soft versions of the constraint would be

beneficial. Alternatively, event embeddings (i.e. continuous vectors) can be clustered

directly. We leave this investigation for future work.

4.3.3 Learning from Natural Text

In the second set of experiments, we consider a more challenging problem, inducing

knowledge about the stereotyped ordering of events from natural texts. In this work,
5The results for the random baseline are lower: F1 of 40.6% on average.

4.3 Event Ordering Experiments 71

we are largely inspired by the scenario of CJ08. The overall strategy is the following: we

process the Gigaword corpus with a high precision rule-based temporal classifier relying

on explicit clues (e.g., “then”, “after”) to get ordered pairs of events and then we train

our model on these pairs (note that clues used by the classifier are removed from the

examples, so the model has to rely on verbs and their arguments). Conceptually, the

difference between our approach and CJ08 is in using a different temporal classifier, not

enforcing that event pairs have the same protagonist, and learning an event embedding

model instead of scoring event sequences based on verb-pair frequencies.

We also evaluate our system on examples extracted using the same temporal

classifier (but validated manually), which allows us to use much larger test set, and,

consequently, provide more detailed and reliable error analysis.

Data and task

The Gigaword corpus consists of news data from different news agencies and newspapers.

For testing and development, we took the AFP (Agence France-Presse) section, as it

appeared most different from the rest when comparing sets of extracted event pairs

(other sections correspond mostly to US agencies). The AFP section was not used

for training. This selection strategy was chosen to create a negative bias for our

model which is more expressive than the baseline methods and, consequently, better at

memorizing examples.

As a rule-based temporal classifier, we used high precision “happens-before” rules

from the VerbOcean system (Chklovski and Pantel, 2004). Consider “to ⟨verb-x⟩ and

then ⟨verb-y⟩” as one example of such rules. We used predicted collapsed Stanford

dependencies (de Marneffe et al., 2006) to extract arguments of the verbs, and used

only a subset of dependents of a verb.6 This preprocessing ensured that (1) clues which
6The list of dependencies not considered: aux, auxpass, attr, appos, cc, conj, complm, cop, dep, det,

punct, mwe.

4.3 Event Ordering Experiments 72

Accuracy (%)
BL 60.7
CJ08 60.1
EEverb 75.9
EE 83.5

Table 4.3 Results on the Gigaword data for the verb-frequency baseline (BL), the
verb-only embedding model (EEverb), the full model (EE) and CJ08 rules.

form part of a pattern are not observable by our model both at train and test time; (2)

there is no systematic difference between both events (e.g., for collapsed dependencies,

the noun subject is attached to both verbs even if the verbs are conjoined); and (3) no

information about the order of events in the text is available to the models. Applying

these rules resulted in 22,446 event pairs for training, and we split an additional 1,015

pairs from the AFP section into 812 for final testing and 203 for development. We

manually validated a random 50 examples and all 50 of them followed the correct

temporal order, so we chose not to hand correct the test set.

We largely followed the same training and evaluation regime as for the crowdsourced

data. We set the regularization parameter and the learning rate to 0.01 and 5.e− 4

respectively. The model was trained for 600 epochs. The embedding sizes were 30 and

50 dimensions for words and events, respectively.

Results and discussion

In our experiments, as before, we use BL as a baseline and EEverb as a verb only

simplified version of our approach. We used another baseline consisting of the verb pair

ordering counts provided by Chambers and Jurafsky (2008).7 We refer this baseline as
7These verb pair frequency counts are available at www.usna.edu/Users/cs/nchamber/data/

schemas/acl09/verb-pair-orders.gz

www.usna.edu/Users/cs/nchamber/data/schemas/acl09/verb-pair-orders.gz
www.usna.edu/Users/cs/nchamber/data/schemas/acl09/verb-pair-orders.gz

4.3 Event Ordering Experiments 73

40

50

60

70

80

90

100

Unseen Medium High

50.0

57.2

71.0

82.4

62.7

77.8

81.8

83.1

81.2

96.0

94.1

96.0

CJ08

BL

EEverb

EE

Fig. 4.3 Results for different frequency bands: unseen, medium frequency (between 1
and 10) and high frequency (> 10) verb pairs.

CJ08. Note also that BL can be regarded as a reimplementation of CJ08 but with a

different temporal classifier. We report results in Table 4.3.

The observations are largely the same as before: (1) the full model substantially

outperforms all other approaches (p-level < 0.001 with the permutation test); (2)

enforcing transitivity is very helpful (75.9 % for EEverb vs. 60.1% for BL). Surprisingly

CJ08 rules produce as good results as BL, suggesting that maybe our learning set-ups

are not that different.

However, an interesting question is in which situations using a more expressive

model, EE, is beneficial. If these accuracy gains have to do with memorizing the

data, it may not generalize well to other domains or datasets. In order to test this

hypothesis, we divided the test examples into three frequency bands according to the

frequency of the corresponding verb pairs in the training set (total, in both orders).

There are 513, 249 and 50 event pairs in the bands corresponding to unseen pairs of

verbs, frequency ≤ 10 and frequency > 10, respectively. These counts emphasize that

correct predictions on unseen pairs are crucial and these are exactly where BL would

be equivalent to a random guess. Also, this suggests, even before looking into the

4.4 Count Based Event Prediction 74

results, that memorization is irrelevant. The results for BL, CJ08, EEverb and EE are

shown in Figure 4.3.

One observation is that most gains for EE and EEverb are due to an improvement

on unseen pairs. This is fairly natural, as both transitivity and information about

arguments are the only sources of information available. In this context it is important

to note that some of the verbs are light, in the sense that they have little semantic

content of their own (e.g., take, get) and the event semantics can only be derived from

analyzing their arguments (e.g., take an exam vs. take a detour). On the high frequency

verb pairs, all systems perform equally well, except for CJ08, as it was estimated from

somewhat different data.

In order to understand how transitivity works, we considered a few unseen predicate

pairs where the EEverb model was correctly predicting their order. For many of these

pairs, there were no inference chains of length 2 (e.g., chain of length 2 was found for

the pair accept ≺ carry: accept ≺ get and get ≺ carry but not many other pairs). This

observation suggests that our model captures some non-trivial transitivity rules.

4.4 Count Based Event Prediction

In the previous sections, we described approaches to script event ordering and event

paraphrasing. Now, we focus our attention on event prediction models. We describe the

previous work on event prediction and then later, we describe our model (an extension

of our event ordering model) for event prediction.

Much of the previous work on event prediction has focused on count-based tech-

niques using, for example, either the generative framework (Frermann et al., 2014) or

relying on information-theoretic measures such as pointwise mutual information (PMI)

(Chambers and Jurafsky, 2008). Some of these techniques treat predicate-argument

structures as an atomic whole (e.g., Pichotta and Mooney (2014)); in other words,

4.4 Count Based Event Prediction 75

their probability estimates are based on co-occurrences of entire (predicate, arguments)

tuples. Clearly, such methods fail to adequately take into account the compositional

nature of expressions used to refer to events and suffer from data sparsity.

Our goal is to overcome the shortcomings of the count-based methods for event

prediction by representing events as real-valued vectors (event embeddings), with

the embeddings computed in a compositional way relying on the predicate and its

arguments. As explained earlier, these embeddings capture semantic properties of

events: events which differ in surface forms of their constituents but are semantically

similar will get similar embeddings. The event embeddings are used and estimated

within our probabilistic model of semantic scripts. We evaluate our model on predicting

left-out events (the narrative cloze task), where it outperforms existing count-based

methods.

4.4.1 Background

The general idea in the count based methods is to collect event sequences for an entity

from the corpus (we refer these as super-scripts). An entity is typically a noun/pronoun

describing a person, location or temporal construct mentioned in a document. In

this approach, a document is parsed using a statistical dependency parser. Then, the

document is processed with a coreference resolution system, linking all the mentions of

an entity in the document. Information from the parser and the coreference system

is used to collect all the events corresponding to an entity. Different systems differ

on how they represent an event. We later explain in detail these event representation

differences. The process described above is repeated for all the documents in the corpus

to collect event chains for each of the entities. The collected event sequences are used

to build different statistical script models. These script models are typically evaluated

4.4 Count Based Event Prediction 76

using a narrative cloze test as explained in Section 4.5. In the cloze test, an event is

held-out from an event sequence and the task is to predict the missing event.

As described above, different script models differ in how they represent an event.

Chambers and Jurafsky (2008), Jans et al. (2012) and Rudinger et al. (2015a) represent

an event as a verb dependency type (for example subject, object, etc.) pair. Using a

dependency parser and coreference system, they collect verbs governing entity mentions;

this chain of verbs along with the corresponding dependency forms the event chain.

Recently, Pichotta and Mooney (2014) extended the concept of an event to include

multiple arguments. In their model, an event is a tuple v(es, eo, ep), where entities

es, eo and ep are arguments with the subject, object and prepositional relation with

the governing verb v. A multi-argument event model encodes a richer representation

of events. Pichotta and Mooney (2014) empirically show the advantages of having

multiple arguments in an event. In our work, we follow the event definition of Pichotta

and Mooney (2014) and include multiple arguments in an event.

A disadvantage of the count based models described above is poor event rep-

resentations. Due to these impoverished representations, these models fail to take

into account compositional nature of an event and suffer from sparsity issues. These

models treat verb-argument pair as one unit and collect chains of verb arguments

pair observed during training. Verb-arguments combinations never observed dur-

ing training are assigned zero (or very small, if the model is smoothed) probability,

even if these are semantically similar to the ones in training. These models fail

to account for semantic similarity between individual components (verbs and argu-

ments) of an event. For example, events cook(Nupur,spaghetti,dinner) and

prepared(Jenny,pasta,dinner) are semantically very similar but count based

models would not take this into account unless both events occur in similar context.

4.4 Count Based Event Prediction 77

Nupur cooked spaghetti for dinner. Later, Nupur ate dinner with
her husband. After dinner, Nupur took the dog for a walk. After
30 minutes, Nupur came home. After a while, Nupur slept on the
bed.

Fig. 4.4 A small narrative text

Sparsity issues can result in failure of these models. This can be exemplified as follows.

Suppose the text shown in Figure 4.4 is observed during model training.

The event sequence (script) corresponding to the above story is:

cook(nupur,spaghetti,dinner)→ eat(nupur,dinner,husband)→

take(nupur,dog,walk)→come(nupur,home)→sleep(nupur,bed)

Suppose during testing the following event sequence is observed :

prepared(jenny,pasta,dinner)→eat(jenny,dinner,boyfriend)→

take(jenny,pet,walk)→ ? →sleep(jenny, couch)

The model is required to guess the missing event marked with ‘?’. A count-based model

would fail if it never encountered the same events during training. It would fail to take

into account the semantic similarity between words prepared and cook or dog and pet.

A related disadvantage of count based script models is that they suffer from the curse

of dimensionality (Bengio et al., 2001). Since these methods are based on co-occurrence

counts of events, the number of instances required to model the joint probability

distribution of events grows exponentially. For example, if the event vocabulary size

is 10 and number of events occurring in a chain is 5, in the worst case, the number

of instances required to model the joint distribution of events is 510 − 1. This is so

because the number of instances required is directly proportional to the number of free

parameters in the model.

4.5 Event Ordering Tasks Definition 78

To counter the shortcomings of count based script models, we propose a script

model based on distributed representations (Bengio et al., 2001; Collobert et al., 2011;

Turian et al., 2010). Our model is an extension of the previously described event

ordering model. Our model tries to overcome the curse of dimensionality and sparsity

by representing events as a vector of real values. Both verbs and arguments are

represented as embeddings. Verb and argument embeddings are composed to get an

event vector (an event embedding). Event embeddings are composed to get the context

embeddings. The model automatically learns these embeddings from the data itself

and in the process encodes semantic properties in the event representations.

4.5 Event Ordering Tasks Definition

One of the standard tasks used for evaluating event prediction in scripts is narrative

cloze (Chambers and Jurafsky, 2008; Jans et al., 2012; Pichotta and Mooney, 2014;

Rudinger et al., 2015a). The origins of narrative cloze lie in psychology, where it was

used to assess a child’s ability to fill in a missing word in a sentence (Taylor, 1953). In

our setting the cloze task is described as follows: given a sequence of events with an

event held-out from the sequence, guess the removed event. For example, given the

following sequence, predict the event that should be at the position marked by ?:

prepared(nupur,pasta,dinner)→eat(nupur,dinner,boyfriend)→

take(nupur,cat,walk)→ ? →sleep(nupur, couch)

The narrative cloze task evaluates models for the exact correctness of the prediction.

It penalizes predictions even if they are semantically plausible. It would be more

realistic to evaluate script models on a task that gives credit for predicting semantically

plausible alternatives as well. We propose the adversarial narrative cloze task. In

this task, the model is presented with two event sequences: one is the correct event

4.6 Event Prediction Script Model 79

sequence and another is the same sequence but with one event replaced by a random

event. The task is to guess which of the two is the correct event sequence. For example,

given two sequences below, the model should be able to distinguish the correct event

sequence from the incorrect one.

Correct:

cook(nupur,spaghetti,dinner)→eat(nupur,dinner,husband)

→take(nupur,dog,walk)→ come(nupur,home)→ sleep(nupur,bed)

Incorrect:

cook(nupur,spaghetti,dinner)→eat(nupur,dinner,girlfriend)

→take(nupur,dog,walk)→ play(nupur,tennis)→ sleep(nupur,bed)

Interestingly, Manshadi et al. (2008) also propose a similar task for evaluating event

based language model and they refer to it as event ordering task. As explained in

Section 4.7, we evaluate our model on both the tasks: narrative cloze and adversarial

narrative cloze.

4.6 Event Prediction Script Model

We propose a probabilistic model for learning a sequence of events corresponding to a

script. The proposed model predicts the event incrementally. It first predicts a verbal

predicate, followed by protagonist position (since the protagonist argument is already

known) and then followed by remaining arguments. We believe this is a more natural

way of predicting the event, as opposed to predicting the complete event, treating it as

an atomic unit. The information about the predicate influences the possible arguments

that could come next due to selectional preferences of the verb.

As in previous work, (Chambers and Jurafsky, 2008; Jans et al., 2012; Pichotta

and Mooney, 2014; Rudinger et al., 2015a), each event in a sequence of events has a

4.6 Event Prediction Script Model 80

embarked batmobilesubj

predicate embedding

event embedding

dep embedding

Ta1 Rp Ta2

e

a1 = Csubj a2 = Cbatmobilep = Cembark

arg embedding

hidden layerh
Ah

Fig. 4.5 Computation of an event representation for a predicate with dependency and
an argument (subj (batman) embarked batmobile), an arbitrary number of arguments is
supported by our approach.

common entity (the protagonist) as one of the arguments. We represent an event as

a tuple v(d, a(1), a(2)) where v is the verbal predicate, d is the position (subj, obj or

prep) of the protagonist, and a(1) and a(2) are the other dependent arguments of the

verb. We marked an absent argument as ‘NULL’.

4.6.1 Event Representation

For event representation, one could use a sophisticated compositional model based on

recursive neural networks (Socher et al., 2012); we take a simpler approach and choose

a feedforward network based compositional model as it is easier to train and more

robust to the choice of hyper-parameters. Our event representations model is inspired

from the previously described, event ordering model (Modi and Titov, 2014).

The event model is a simple compositional model representing an event. For

reference, the model is shown again in Figure 4.5. Given an event, e = (v, d, a1, a2),

4.6 Event Prediction Script Model 81

(where v is the predicate lemma, d the dependency and a1, a2 are corresponding

argument lemma), each lemma (and dependency) is mapped to a vector using a lookup

matrix C. For example, a particular row number of C, corresponding to index of a

predicate in the vocabulary, gives the embedding for the predicate. These constituent

embeddings are projected into the same space by multiplying with respective projection

matrices R (for predicates) and T (for arguments). Hidden layer h is obtained by

applying a nonlinear activation function (tanh in our case). Final event representation

e is obtained by projecting the hidden layer using a matrix A. Formally, event

representation is given by e = A ∗ tanh(T ∗ Ca1,: + R ∗ Cv,: + T ∗ Ca2,:) + b. All the

projection matrices (R, T,A) and lookup matrix C are learned during training. We

also experimented with different matrices T for subject and object positions, in order

to take into account the positional information. Empirically, this had a negligible effect

on the final results.

4.6 Event Prediction Script Model 82

e k
�

1
e k

+
1

h
id

d
en

la
y
er

s

em
b
ed

d
in

g
co

n
te

x
t

so
ft

m
ax

p
re

d
ic

ti
on

s

fu
tu

re
ev

en
ts

p
as

t
ev

en
ts

em
b
ed

d
in

gs
em

b
ed

d
in

gs

C
p

C
f

C
p

W
e

W
(i

n
)

p

{W
s
,W

o
,W

p
r
}

{W
s
,W

o
,W

p
r
}

{W
s
,W

o
,W

p
r
}

u
(p

r
e
d
)

p
e 1

u
(a

r
g
)

a
1

W
p

u
(e

n
ti

ty
)

d

p
re

d
ic

te
d

p
re

d
ic

at
e

:
p

p
re

d
ic

te
d

d
ep

en
d
en

cy
:

d
p
re

d
ic

te
d

a
rg

u
m

en
t

:
a
1

p
re

d
ic

te
d

a
rg

u
m

en
t

:
a
2

(p
re

d
ic

a
te

p
em

b
ed

d
in

g)
(d

ep
en

d
en

cy
d

em
b
ed

d
in

g)
(a

rg
u
m

en
t

a
1

em
b
ed

d
in

g
)

W
e

W
e

W
e

W
(i

n
)

p

{W
(i

n
)

s
,W

(i
n
)

o
,W

(i
n
)

p
r

}
{W

(i
n
)

s
,W

(i
n
)

o
,W

(i
n
)

p
r

}

Fi
g.

4.
6

M
od

el
fo

r
le

ar
ni

ng
ev

en
t

se
qu

en
ce

s.
H

er
e,

we
ar

e
gi

ve
n

se
qu

en
ce

of
ev

en
ts
e 1
,e

2,
..
..
.,
e k

−
1,
e k
,e

k
+

1.
Ev

en
t
e k

is
re

m
ov

ed
fro

m
th

e
se

qu
en

ce
an

d
it

is
pr

ed
ic

te
d

in
cr

em
en

ta
lly

.

4.6 Event Prediction Script Model 83

4.6.2 Event Sequence Model

A good script model should capture the meaning as well as the statistical dependencies

between events in an event sequence. More importantly, the model should be able to

learn these representations from unlabeled script sequences available in abundance.

We propose a neural network based probabilistic model for event sequences, for

learning event sequences as well as the event representations. The model is shown in

Figure 4.6 on the preceding page. The model is trained by predicting a held out event

in an event sequence. During training, a window (size = 5 = 3*2 + 1) is moved over all

events in each event sequence corresponding to each entity. The event in the window’s

center is the event to be predicted, and events on the left and right of the window are

the context events. As explained earlier, the missing event is predicted incrementally,

beginning with a predicate, followed by the protagonist position, followed by other

participants in the event.

In order to get an intuition on how our model predicts an event, consider the

following event sequence in a script, with a held-out event: (e1 → e2 · · · → ek−1 →

? → ek+1 → . . . en). We would like to predict the removed event, say ek. The event

model is used to obtain event representations for each event in the context. These

event representations are then composed into a context representation by summing the

representation for each of the event in the context. We sum the representations as this

formulation works well in practice. The desired event ek is predicted incrementally,

beginning with the predicate p for ek. The context embedding is used to predict the

verbal predicate via a hidden layer followed by a multiclass logistic regression (softmax)

classification. Next, the protagonist position d (subject, object etc) is predicted. For

predicting d, the context embedding and the predicate embedding (corresponding to

the predicate predicted in the previous step) are linearly combined to be given as

input to a hidden layer. This is followed by regular softmax prediction. Similarly,

4.6 Event Prediction Script Model 84

arguments are predicted. For each of the arguments, predicate embedding and the

previous prediction (position or argument) are linearly combined with the context

embedding. If at each prediction stage we used gold predicate/position/argument

embedding for linearly combining with context embedding, our model would not be

robust to wrong predictions during testing. Using the embeddings corresponding to

the predicted unit would make the model robust against noise and would help the

model to partially recover from wrong predictions during testing.

Θ∗ = argminΘ − J(Θ) (4.2)

J(Θ) =
N∏

i=1
p(ei | e1, ..., ei−1, ei+1, ek,Θ)︸ ︷︷ ︸

prob. of an event given context

=
N∏

i=1
p(ei | e︸︷︷︸

context
events

,Θ) (4.3)

p(ei | e,Θ) = p(vi, di, a
(1)
i , a

(2)
i | e,Θ)

= p(vi | e,Θ)︸ ︷︷ ︸
verb prob.

∗ p(di | vi, e,Θ)︸ ︷︷ ︸
dependency prob.

∗

p(a(1)
i | vi, di, e,Θ)︸ ︷︷ ︸
first arg prob.

∗

p(a(2)
i | vi, a

(1)
i , e,Θ)︸ ︷︷ ︸

second arg prob.

(4.4)

p(vi | e,Θ) =
exp(uT

vi
(Wp tanh(WeE)) + bvi

)∑
k exp(uT

k (Wp tanh(WeE)) + bk) (4.5)

We train the model by minimizing the negative likelihood function for the event

prediction. Formally, we minimize the objective function −J(Θ) as shown in Equations

4.2 and 4.3. As shown in Equation 4.4, we factorize the event distribution into

constituents, making appropriate independence assumptions as explained earlier. Each

factor is a multiclass logistic regression (softmax) function. Equation 4.5 illustrates

4.7 Event Prediction Model Evaluation 85

the probability distribution for the predicate given the context. Here, uvi
is the word

embedding for the predicate vi, E is the context embedding and bvi
is the bias.

Θ = {C, T,R,A,Cp, Cf ,We,Wp,Ws,Wo,Wpr,W
(in)
p ,W (in)

s ,W (in)
o ,W (in)

pr , B} is the

parameter vector to be learned. Parameters are learned using mini-batch (size=1000)

stochastic gradient descent with the adagrad (Duchi et al., 2011) learning schedule.

During training, the error incurred during predictions at each stage is backpropagated

to update the parameters for the model including the embeddings for predicates and

arguments (matrix C).

We regularize the parameters of the model using L2 regularization (regularization

parameter = 0.01). All the hidden layers have a dropout factor of 0.5. We trained a

word2vec model on the documents to learn word embeddings. Predicate and argument

vectors are initialized using the learned word embeddings. Predicate and argument

embeddings have a dimensionality of 50 and hidden layers have a dimensionality of 50.

All the hyper-parameters were tuned using a dev set.

4.7 Event Prediction Model Evaluation

4.7.1 Data

There is no standard dataset for evaluating event prediction in scripts. We experimented

with a movie summary corpus8 (Bamman et al., 2014). The corpus was created by

extracting 42,306 movie summaries from a November 2012 dump of Wikipedia9. Each

document in the corpus concisely describes a movie plot along with descriptions of

various characters involved in the plot. The average length of a document in the corpus

is 176 words. But more popular movies have much more elaborate descriptions going

up to a length of 1,000 words. The corpus has been processed by the Stanford Core
8http://www.cs.cmu.edu/~ark/personas/
9http://dumps.wikimedia.org/enwiki/

http://www.cs.cmu.edu/~ark/personas/
http://dumps.wikimedia.org/enwiki/

4.7 Event Prediction Model Evaluation 86

Data
Set

No. of
Scripts

No. of
Unique
Events

Train
Set

104,041 856,823

Dev Set 15,169 119,302
Test Set 29,943 231,539

Table 4.4 Data statistics

NLP pipeline (Manning et al., 2014). The texts in the corpus were tokenized and

annotated with POS tags, dependencies, NER and coreference (coref) information.

Since each of the documents in the corpus is about a movie, the scripts in this corpus

involve interesting interactions between different entities (actors/objects). In order to

study and explore rich script structure, we selected this corpus for our experiments.

Nevertheless, our model is domain agnostic; the experiments performed on this corpus

are generalizable to any other corpus as well.

As mentioned in Section 4.4.1, we extract scripts corresponding to each of the

entities using the dependency annotations and coref information. The corpus documents

are divided randomly into three parts: train (~70%), development (~10%) and test

(~20%). Data statistics about the dataset are given in Table 4.4. As a preprocessing

step, low frequency (< 100) predicates and arguments are mapped to a special UNK

(unknown) symbol. Similarly, arguments consisting of only digits are mapped to a

NUMB (number) symbol. There are 703 unique predicate lemmas and 46, 644 unique

argument lemmas in the train set. The average length of a script is 10 events. During

testing, predicate and arguments not observed during training are mapped to the same

UNK symbol.

4.7 Event Prediction Model Evaluation 87

4.7.2 Baselines Systems

We compare our model against two baseline models: the Unigram model and the

MultiProtagonist model.

A unigram model is a simple but competitive script model. This model predicts an

event by sampling from the unigram event frequency distribution of the train set. The

events are predicted independently, of the context.

MultiProtagonist (M-Pr) is the model proposed by Pichotta and Mooney (2014)

and described as a joint model. The model calculates the conditional probability of an

event given another context event (P (e2 | e1) by counting the co-occurrence counts

of the events in the corpus. The model predicts the missing event given the context

events by maximizing the sum of log conditional probabilities of an event w.r.t each of

the context events, i.e. e∗ = argmaxe

∑k−1
i=1 log P (e | ei) +

∑K
i=k+1 log P (ei | e)

For evaluation and comparison purposes, we reimplemented both baselines on our

dataset. In the experiments described next, we refer our model as NNSM (Neural

Network based Script Model).

4.7.3 Evaluation Metrics

We evaluated models for the narrative cloze task with three metrics: Recall@50, Ac-

curacy and Event Perplexity. Recall@50 is the standard metric used for evaluating

script models (Jans et al., 2012; Pichotta and Mooney, 2014). The idea here is to

evaluate top 50 predictions of a script model on a test script with a held-out event.

The metric is calculated as the fraction of the predictions containing the gold held-out

event. Its value lies in the range 0 (worst) and 1(best). Accuracy is a new metric

introduced by Pichotta and Mooney (2014). This metric evaluates the event prediction,

taking into account prediction of each constituent. Specifically, it is defined as the

4.7 Event Prediction Model Evaluation 88

Model R@50 Accuracy Event
Perplexity

Unigram 0.32 34.26% 298.45
M-Pr 0.31 35.67% 276.54

NNSMfull 0.37 44.36% 256.41

Table 4.5 Model evaluation on test set for narrative cloze task against the baselines

Model R@50 Accuracy Event
Perplexity

Unigrampred 0.27 23.79% 264.16
M-Prpred 0.27 24.04% 260.34

NNSMpred 0.49 33.40% 247.64

Table 4.6 Model evaluation on predicate only event test set for narrative cloze task
against the baselines

average of the accuracy of the predicate, the dependency, the first argument and the

second argument predictions. This is a more robust metric as it does not treat an

event as an atomic unit. This is in contrast to Recall@50, which penalizes semantically

correct guesses and awards only events which have exactly the same surface form.

The baseline models and our model are probabilistic by nature. Taking inspiration

from the language modeling community, we propose a new metric: event perplexity.

We define event perplexity as 2− 1
N

∑
i

log2 p(ei|e(context,i)). The perplexity measure, like

the accuracy, takes into account the constituents of an event and is a good indicator of

the model predictions.

4.7.4 Narrative Cloze Evaluation

As described before, previous systems for script event prediction have used the narrative

cloze task for evaluation. We also evaluated our model for the same, and the results

are shown in Tables 4.5 and 4.6. We evaluated with two versions of the cloze task. In

4.7 Event Prediction Model Evaluation 89

the first version, events are the predicate argument tuple as defined before. The second

version evaluates on predicates only, i.e. an event is not a tuple but only a predicate.

Our model, NNSM, outperforms both the unigram and M-Pr models on both the

versions of the task with all the metrics. This further strengthens our hypothesis

of having distributed representation for events rather than atomic representations.

Unigram, although a simple model, is competitive with the M-Pr model.

We evaluated using another simplistic baseline model, most frequent event. This

baseline model predicts by sampling from the top-5 most frequent predicates/arguments

in the full event narrative cloze task. Surprisingly, the accuracy reported by this simple

baseline is 45.04%, which is slightly more (though not statistically significant) than

our best performing NNSM model and much more than the M-Pr baseline. This simple

looking baseline is hard to beat by count-based methods.

We believe that the narrative cloze evaluation with the accuracy metric may not

be the best way to assess script models. As demonstrated by our experiments, any

simple, uninformed model could perform impressively well compared to a well-informed

model. None of the previous methods have been evaluated against a most frequent

event baseline.

In order to assess if the model is capturing the script structure, it might make more

sense to evaluate using event perplexity, as shown in Tables 4.5 and 4.6. Additionally,

we propose using another evaluation methodology, namely: adversarial narrative cloze.

The next section describes our experiments using these methodologies.

4.7.5 Adversarial Narrative Cloze Evaluation

Similar to narrative cloze, the adversarial narrative cloze task was evaluated on 29,943

test set scripts. In each of the event sequences, an event was replaced by a random

event. The results for the adversarial narrative cloze task are shown in Tables 4.7 and

4.8 Related Work 90

Model Accuracy
Unigram 50.07%

M-Pr 53.04%
NNSM full 55.32%

Table 4.7 Model evaluation on test set for adversarial narrative cloze task against the
baselines

Model Accuracy
Unigrampred 49.97%

M-Prpred 55.09%
NNSMpred 57.94%

Table 4.8 Model evaluation on predicate only test set for adversarial narrative cloze
task against the baselines

4.8. As evident from the results, the unigram model is as good as random. In this task

as well, our model outperforms the count based M-Pr model by 2.3% and 2.9% for the

full and pred model, respectively.

4.8 Related Work

As mentioned in Chapter 3, in the past few years a number of count based systems for

script learning have been proposed for learning script knowledge in an unsupervised

fashion. (Chambers and Jurafsky, 2008; Jans et al., 2012; Pichotta and Mooney, 2014;

Rudinger et al., 2015a). Recently, Regneri et al. (2010) and Wanzare et al. (2016)

have used crowd-sourcing methods for acquiring script knowledge. In the process, they

created script databases which are used to develop automatic script learning systems.

McIntyre and Lapata (2009) developed a system for generating stories, they learned

an object based script model on fairy tales.

4.9 Conclusion 91

Other than neural network based script models described in Chapter 3, Orr et al.

(2014) proposed a hidden markov model (HMM) approach to learning scripts. The

model clusters event descriptions into different event types and then learns an HMM

over the sequence of event types. Again, this model treats an event as an atomic unit

and the inference algorithm may not generalize well as the number of event types

increases.

Manshadi et al. (2008) proposed a language model based approach to learning

event sequences; in their approach as well, events are treated as atomic units (a

predicate-argument tuple). Recently, Rudinger et al. (2015b) have proposed a neural

network approach to learn scripts by learning a bilinear distributed representation based

language model over events. Their model is non-compositional in nature and they also

consider events as an atomic unit and directly learn distributed representation for events.

Granroth-Wilding and Clark (2015) also propose a compositional neural network based

model for events. Our model is more general than their model. They learn event

representations by modeling pairwise event scores for calculating compatibility between

two events. This score is then used to predict the missing event by selecting an event

that maximizes the average score between the event and the context events.

4.9 Conclusion

In this chapter, we developed statistical models for representing common sense knowl-

edge about prototypical event orderings and event prediction.

Our event ordering model induces distributed representations of events by composing

predicate and argument representations. These representations capture properties

relevant to predicting stereotyped orderings of events. We learn these representations

and the ordering component from unannotated data. As shown in the experiments, our

model outperforms the existing graph based and co-occurrence count based methods.

4.9 Conclusion 92

We also proposed a probabilistic compositional model for event predictions in

scripts. Experiments show the advantages of the model over conventional count-based

approaches. This further reinforces our hypothesis of having richer compositional

representations for events. Current tasks to evaluate script models are crude, in the

sense that they penalize semantically plausible events. In the future, we propose

to create a standard dataset of event sequence pairs (correct sequence vs incorrect

sequence). The replaced event in the incorrect sequence should not be a random event,

but rather a semantically close but incorrect event. Models evaluated on this dataset

would be a better indicator of the script learning capability of the model.

CHAPTER 5

InScript: Narrative Texts Annotated with

Script Information

5.1 Introduction . 94

5.2 Data Collection . 97

5.3 Annotation . 100

5.4 Data Analysis . 112

5.5 Conclusion . 118

I never guess. It is a capital mistake to theorize before one has data. Insensibly one begins to

twist facts to suit theories, instead of theories to suit facts.
**

Sir Arthur Conan Doyle

5.1 Introduction 94

5.1 Introduction

In the previous chapter, we have explained the concept of scripts and described

computational methods for learning script knowledge. We motivated script knowledge

from a cognitive perspective in Chapter 3. We would like to study the effect of script

knowledge on language comprehension. Crowdsourced script corpora, for example,

the OMICS and SMILE corpora (Singh et al. (2002), Regneri et al. (2010), Regneri

(2013)), discussed in the previous chapter, describe events in a script in telegram style.

Not being narrative texts, these have minimalistic descriptions and consequently, have

limited linguistic variation. These telegram-style descriptions may not exhibit a wide

range of discourse phenomena that contribute towards language comprehension. In

order to study the contribution of script knowledge to language understanding, one

needs to look into narrative texts instantiating script scenarios.

However, a systematic study of the influence of script knowledge in texts is far from

trivial. Typically, text documents (e.g. narrative texts) describing various scenarios

instantiate many different scripts, making it difficult to study the contribution of the

script corresponding to one particular scenario.

Previously, narrative texts from newspapers and blogs have been used for modeling

scripts knowledge (Chambers and Jurafsky, 2008; Rudinger et al., 2015a). But these

texts instantiate only rudimentary script structure corresponding to different scenarios.

As explained in Chapters 3 and 4, these narrative texts instantiate super scripts.

These narrative texts are protagonist oriented and describe all the activities that a

protagonist performs. These activities may not specifically correspond to a single

script scenario. For example, it is difficult to find narratives instantiating an eating

in a restaurant scenario in isolation. Usually, most of the available narratives

instantiating an eating in a restaurant scenario, also talk about other activities

5.1 Introduction 95

I was sitting on my couch when I decided that I hadn’t taken a
bath in a while so I stood up and walked to the bathroom where I
turned on the faucet in the sink and began filling the bath with hot
water. While the tub was filling with hot water I put some bubble
bath into the stream of hot water coming out of the faucet so that
the tub filled with not only hot water[...]

Fig. 5.1 An excerpt from a story on the taking a bath script.

(corresponding to some other scenario) happening within the eating scenario performed

by the protagonist. For example, there might be a story about a person reviewing a

research paper (corresponding to a reviewing a scientific paper scenario), while

having food in the restaurant (e.g. see the corpus created by Rudinger et al. (2015a)).

One of the possible reasons for scarcity of such scenario focused texts is lack of interest

of the writers in describing something which is quite common, mundane and lacks

unusual events.

This chapter presents the InScript1 corpus (Narrative Texts Instantiating Script

structure) (Modi et al., 2016). It is a corpus of simple narrative texts in the form of

stories, wherein each story is centered around a specific scenario. The stories have been

collected via Amazon Mechanical Turk (M-Turk)2. In this experiment, workers were

asked to write down a concrete experience about a bus ride, a grocery shopping event

etc. We concentrated on 10 scenarios and collected 100 stories per scenario, giving a

total of 1,000 stories with about 200,000 words. Relevant verbs and noun phrases in all

stories are annotated with event types and participant types, respectively. Additionally,

the texts have been annotated with coreference information in order to facilitate the

study of the interdependence between script structure and coreference.

The InScript corpus is a unique resource that provides a basis for studying various

aspects of the role of script knowledge in language processing by humans. The
1The corpus can be downloaded at: http://www.sfb1102.uni-saarland.de/?page_id=2582
2 https://www.mturk.com

http://www.sfb1102.uni-saarland.de/?page_id=2582
https://www.mturk.com

5.1 Introduction 96

get
ingred.

add
ingred.

prepare
ingred.

Get Ingredients
– gather all

ingredients
– get ingredients
– …

Prepare
Ingredients
– mix ingredients
together in bowl
– stir ingredient
– …

Add Ingredients
– pour ingredients in

bowl
– add ingredients to

bowl
– …

I gotget ingredients the cake mix ,
eggs , oil , measuring cups and a
baking pan from my pantry.

I addedadd ingredients two eggs , and
used my measuring cups to add
oil and water to the bowl.

I mixedprepare ingredients the
ingredients thoroughly until they
were smooth.

[…]

[…]

[…]

[…]

Fig. 5.2 Connecting DeScript and InScript: an example from the Baking a cake
scenario (InScript participant annotation is omitted for better readability).

acquisition of this corpus is part of a research effort that aims at using script knowledge

to model the surprisal and information density in written text (see Chapter 6).

Figure 5.1 shows the first few sentences of a story from the InScript corpus, describing

the scenario taking a bath. This narrative illustrates how script knowledge guides

the expectation of the reader and plays an important role in text understanding. For

example, once the taking a bath scenario is evoked by the noun phrase (NP) “a

bath”, the reader can effortlessly interpret the definite NP “the faucet” as an implicitly

present standard participant of the taking a bath script. Although in this story,

“entering the bathroom”, “turning on the water” and “filling the tub” are explicitly

mentioned, a reader could nevertheless have inferred the “turning on the water” event,

even if it was not explicitly mentioned in the text.

Besides InScript, there is another related corpus of generic descriptions of script

activities called DeScript (for Describing Script Structure, Wanzare et al. (2016)).

The DeScript contains a range of short and textually simple phrases (referred to as

5.2 Data Collection 97

event descriptions; see Section 3.1) that describe script events in the style of OMICS

or SMILE (Singh et al. (2002), Regneri et al. (2010)). The DeScript corpus contains a

collection of event sequence descriptions (ESD, see Section 3.1) for different scenarios.

We describe in detail the DeScript corpus and how it differs from the InScript corpus in

Section 5.4.3. Figure 5.2 shows an excerpt of a script in the baking a cake scenario.

The figure shows event descriptions for 3 different events in the DeScript corpus (left)

and fragments of a story in the InScript corpus (right) that instantiate the same event

type.

5.2 Data Collection

5.2.1 Collection via Amazon M-Turk

We selected 10 scenarios from different available scenario lists (e.g. Regneri et al. (2010)

, Raisig et al. (2009), and the OMICS corpus Singh et al. (2002)), including scripts of

different complexity (Taking a bath vs. Flying in an airplane) and specificity

(Riding a public bus vs. Repairing a flat bicycle tire). For the full scenario

list see Table 5.1.

Texts were collected via the Amazon Mechanical Turk platform, which provides

an opportunity to present an online task to humans (a.k.a. workers). In order to

gauge the effect of different M-Turk instructions on our task, we first conducted pilot

experiments with different variants of instructions explaining the task. The first set of

instructions asked workers to describe (in the form of a story) their latest experience

in a particular scenario. The second set of instructions posed the task as a memory

test. The instructions asked the workers to describe a scenario by recalling the scenario

from their memory. The workers were specifically asked to recall all the mundane and

trivial details that they performed in the scenario. The last set of instructions asked

5.2 Data Collection 98

Scenario Name #Stories Avg. Sentences
Per Story

Avg. Word
Type Per Story

Avg. Word
Count Per Story

Avg. Word
Type Overlap

Riding in a public
bus (Bus)

92 12.3 (4.1) 97.4 (23.3) 215.1 (69.7) 35.7 (7.5)

Baking a cake
(Cake)

97 13.6 (4.7) 102.7 (23.7) 235.5 (78.5) 39.5 (8.1)

Taking a bath
(Bath)

94 11.5 (2.6) 91.9 (13.1) 197.5 (34.5) 37.9 (6.3)

Going grocery
shopping

(Grocery)

95 13.1 (3.7) 102.9 (19.9) 228.3 (58.8) 38.6 (7.8)

Flying in an
airplane (Flight)

86 14.1 (5.6) 113.6 (30.9) 251.2 (99.1) 40.9 (10.3)

Getting a haircut
(Haircut)

88 13.3 (4.0) 100.6 (19.3) 227.2 (63.4) 39.0 (7.9)

Borrowing a book
from the library

(Library)

93 11.2 (2.5) 88.0 (14.1) 200.7 (43.5) 34.9 (5.5)

Going on a train
(Train)

87 12.3 (3.4) 96.3 (19.2) 210.3 (57.0) 35.3 (6.9)

Repairing a flat
bicycle tire

(Bicycle)

87 11.4 (3.6) 88.9 (15.0) 203.0 (53.3) 33.8 (5.2)

Planting a tree
(Tree)

91 11.0 (3.6) 93.3 (19.2) 201.5 (60.3) 34.0 (6.6)

Average 91 12.4 97.6 216.9 37.0

Table 5.1 Corpus statistics for different scenarios (standard deviation given in parenthe-
ses). The maximum per column is highlighted in boldface, the minimum in boldface
italics.

the workers to describe a scenario in the form of a story as if explaining it to a child. In

each of the instructions above we set a minimum word count of 150 words. During the

pilot experiment, the set corresponding to the explaining-to-a-child instructions was

selected. As during the pilot experiment, it resulted in comparably simple and explicit

scenario-related stories. In total 190 workers participated. Since Mturk provides an

option for restricting the region and the native language of the workers participating in

an experiment, we restricted the workers to those living in the USA who were native

speakers of English. We paid USD $0.50 per story to each worker. On average, the

workers took 9.37 minutes per story with a maximum duration of 17.38 minutes.

5.2 Data Collection 99

5.2.2 Data Statistics

Statistics for the corpus are given in Table 5.1. On average, each story has a length of

12 sentences and 217 words, belonging to 98 word types on average. Stories are coherent

and concentrate mainly on the corresponding scenario. Neglecting auxiliaries, modals

and copulas, on average each story has 32 verbs, out of which 58% denote events related

to the respective scenario. As can be seen in Table 5.1, there is some variation in stories

across scenarios: The flying in an airplane scenario, for example, is most complex

in terms of the number of sentences, tokens and word types that are used. This is

probably due to the inherent complexity of the scenario: Taking a flight, for example,

is more complicated and takes more steps than taking a bath. The average count of

sentences, tokens and types is also very high for the baking a cake scenario. Stories

from the scenario often resemble cake recipes, which usually contain very detailed steps,

so people tend to give more detailed descriptions in the stories.

For both flying in an airplane and baking a cake, the standard deviation is

higher in comparison to other scenarios. This indicates that different workers described

the scenario with a varying degree of detail and can also be seen as an indicator for the

complexity of both scenarios. In general, different people tend to describe situations

subjectively, with a varying degree of detail.

In contrast, texts from the taking a bath and planting a tree scenarios

contain a relatively smaller number of sentences and fewer word types and tokens.

Both planting a tree and taking a bath are simpler activities, which results in generally

less complex texts.

The average pairwise word type overlap can be seen as a measure of lexical variety

among stories: If it is high, the stories resemble each other more. We can see that

stories in the flying in an airplane and baking a cake scenarios have the highest

values here, indicating that most workers used a similar vocabulary in their stories.

5.3 Annotation 100

In general, the response quality was good. We had to discard 9% of the stories

as these lacked the quality we were expecting. Among the discarded stories, some of

the stories had gibberish written in them, as some of the workers had cheated. Some

of the workers misunderstood the instructions and wrote about some unusual events

happening in the scenario, with the main focus of the story on the unusual event. Such

stories had to be discarded as well. In total, we selected 910 stories for annotation.

5.3 Annotation

This section deals with the annotation of the data. We first describe the final annotation

schema. Then, we describe the iterative process of corpus annotation and the refinement

of the schema. This refinement was necessary due to the complexity of the annotation.

5.3.1 Annotation Schema

For each of the scenarios, we designed a specific annotation template. A script template

consists of scenario-specific event and participant labels. An example of a template for

the taking a bath scenario is shown in Table 5.2. All NP heads in the corpus were

annotated with a participant label; all verbs were annotated with an event label. For

both participants and events, we also offered the label unclear if the annotator could

not assign another label. We additionally annotated coreference chains between NPs.

Thus, the process resulted in three layers of annotation: event types, participant types

and coreference annotation. These are described in detail below.

Event Type

As a first layer, we annotated event types. There are two kinds of event type labels,

scenario-specific event type labels and general labels. The general labels are used across

all scenarios and mark general features, for example whether an event belongs to the

5.3 Annotation 101

Event Types Participant Types
ScrEv_take_clean_clothes

ScrEv_prepare_bath
ScrEv_enter_bathroom
ScrEv_turn_water_on

ScrEv_check_temp
(temperature)

ScrEv_close_drain
ScrEv_wait

ScrEv_turn_water_off
ScrEv_put_bubble_bath_scent

ScrEv_undress
ScrEv_sink_water

ScrEv_relax
ScrEv_apply_soap

ScrEv_wash
ScrEv_open_drain

ScrEv_get_out_bath
ScrEv_get_towel

ScrEv_dry
ScrEv_put_after_shower

textscScrEv_get_dressed
ScrEv_leave

ScrEv_air_bathroom

ScrPart_Bath
ScrPart_bath_means

ScrPatr_bather
ScrPart_bathroom
ScrPart_bathtub

ScrPart_body_part
ScrPart_clothes
ScrPart_drain
ScrPart_hair

ScrPart_hamper
ScrPart_in-bath_entertainment

(candles, music, books)
ScrPart_plug

ScrPart_shower
(as bath equipment)

ScrPart_tap (knob)
ScrPart_temperature

ScrPart_towel
ScrPart_washing_tools

(washcloth, soap)
ScrPart_water

Table 5.2 Bath scenario template (labels added in the second phase of annotation are
marked in bold).

scenario at all. For the scenario-specific labels, we designed a unique template for every

scenario, with a list of script-relevant event types that were used as labels. Such labels

include for example ScrEv_close_drain in taking a bath as in Example (5.1)

(see Figure 5.2 for a complete list for the taking a bath scenario):

(5.1) I start by closingSCREV_CLOSE_DRAIN the drain at

the bottom of the tub.

The general labels that were used in addition to the script-specific labels in every

scenario are listed below:

ScrEv_other. An event that belongs to the scenario, but its event type occurs too

infrequently (for details, see below, Section 5.3.4). We used the label “other” because

event classification would become too fine-grained otherwise. For example, see (5.2):

5.3 Annotation 102

(5.2) After I am dried I put my new clothes on and

clean upSCREV_OTHER the bathroom.

RelNScrEv. Related non-script event. An event that can plausibly happen during

the execution of the script and is related to it, but that is not part of the script. For

example, see (5.3):

(5.3) After finding on what I wanted to wear, I went

into the bathroom and shutRELNSCREV the door.

UnrelEv. An event that is unrelated to the script. For example, see (5.4):

(5.4) I sank into the bubbles and took UNRELEV a deep

breath.

Additionally, the annotators were asked to annotate verbs and phrases that evoke

the script without referring to a specific script event with the label Evoking, as shown

in Example (5.5).

(5.5) Today I took a bath EVOKING in my new apartment.

Participant Type

As in the case of the event type labels, there are two kinds of participant labels: general

labels and scenario-specific labels. The latter are part of the scenario-specific templates,

e.g. ScrPart_drain in the taking a bath scenario, as can be seen in Example

(5.6).

(5.6) I start by closing the drain SCRPART_DRAIN at the

bottom of the tub.

5.3 Annotation 103

The general labels that are used across all scenarios mark noun phrases with

scenario-independent features. There are the following general labels:

ScrPart_other. A participant that belongs to the scenario, but its participant

type occurs only infrequently. Example:

(5.7) I find my bath matSCRPART_OTHER and lay it on the

floor to keep the floor dry.

NPart. Non-participant. A referential NP that does not belong to the scenario.

Example:

(5.8) I washed myself carefully because I did not

want to spill water onto the floorNPART.

SuppVComp. A support verb complement. For further discussion of this label,

see Section 5.3.5. Example:

(5.9) I sank into the bubbles and took a deep breathSUPPVCOMP.

Head_of_Partitive. The head of a partitive or a partitive-like construction. For

a further discussion of this label see Section 5.3.5. Example:

(5.10) I grabbed a barHEAD_OF_PARTITIVE of soap and lathered

my body.

No_label. A non-referential noun phrase that cannot be labeled with another

label. Example:

(5.11) I sat for a momentNO_LABEL, relaxing, allowing

the warm water to soothe my skin.

5.3 Annotation 104

All NPs labeled with one of the labels SuppVComp, Head_of_Partitive or

No_label are considered to be non-referential. No_label is used mainly in four

cases in our data: non-referential time expressions (in a while, a million times better),

idioms (no matter what), the non-referential “it” (it felt amazing, it is better) and

other abstracta (a lot better, a little bit).

In the first annotation phase, annotators were asked to mark verbs and noun

phrases that have an event or participant type, that is not listed in the template,

as MissScrEv/MissScrPart (missing script event or participant, respectively).

These annotations were used as a basis for extending the templates (see Section

5.3.4) and replaced later by either newly introduced labels or ScrEv_other and

ScrPart_other labels. An example annotation of event types and participant types

in the taking a bath scenario is shown in Figure 5.3 on page 106.

Coreference Annotations

All noun phrases were annotated with coreference information indicating which entities

denote the same discourse referent. The annotation was done by linking heads of NPs

(see Example (5.12), where the links are indicated by coindexing). As a rule, we

assume that each element of a coreference chain is marked with the same participant

type label.

(5.12) I COREF1 washed my COREF1 entire body COREF2, starting

with my COREF1 face COREF3 and ending with the

toes COREF4. I COREF1 always wash my COREF1 toes COREF4

very thoroughly ...

The assignment of an entity to a referent is not always trivial, as is shown

in Example (5.13). There are some cases in which two discourse referents are

grouped in a plural NP. In the example, those things refers to the group made up

5.3 Annotation 105

of shampoo, soap and sponge. In this case, we asked annotators to introduce a new

coreference label, the name of which indicates which referents are grouped together

(Coref_group_washing_tools). All NPs are then connected to the group phrase,

resulting in an additional coreference chain.

(5.13) ICOREF1 made sure that ICOREF1 have my COREF1

shampooCOREF2 + COREF_GROUP_WASHING_TOOLS,

soap COREF3 + COREF_GROUP_WASHING_TOOLS

and sponge COREF4 + COREF_GROUP_WASHING_TOOLS ready to

get in. Once I COREF1 have those

things COREF_GROUP_WASHING_TOOLS

I COREF1 sink into the bath........

I COREF1 applied some soap COREF3 on my COREF1 body

and used the sponge COREF4 to scrub a bit. ...

I COREF1 rinsed the shampoo COREF2.

Example (5.13) thus contains the following coreference chains:

(5.14) COREF1: I → I → my → I → I → I → my → I

COREF2: shampoo → shampoo

COREF3: soap → soap

COREF4: sponge → sponge

COREF_GROUP_WASHING_ TOOLS: shampoo → soap

→ sponge → things

5.3 Annotation 106

Fi
g.

5.
3

Sa
m

pl
e

ev
en

t
an

d
pa

rt
ic

ip
an

t
an

no
ta

tio
n

fo
r

th
e

ta
ki

ng
a

ba
th

sc
rip

t.

5.3 Annotation 107

5.3.2 Development of the Schema

The templates were carefully designed in an iterated process. For each scenario, we

came up with a preliminary version of the template based on the inspection of some

of the stories. For a subset of the scenarios, preliminary templates developed at

our department for a psycholinguistic experiment on script knowledge were used as

a starting point. Subsequently, we manually annotated 5 randomly selected texts

for each of the scenarios based on the preliminary template. Necessary extensions

and changes in the templates were discussed and agreed upon. Most of the cases of

disagreement were related to the granularity of the event and participant types. We

agreed on the script-specific functional equivalence as a guiding principle. For example,

reading a book, listening to music and having a conversation are subsumed under the

same event label in the flight scenario, because they have the common function of

in-flight entertainment in the scenario. In contrast, we assumed different labels for

the cake tin and other utensils (bowls etc.), since they have different functions in the

baking a cake scenario and accordingly occur with different script events.

Note that scripts and templates as such are not meant to describe an activity as

exhaustively as possible and to mention all steps that are logically necessary. Instead,

scripts describe cognitively prominent events in an activity. An example can be found

in the flight scenario. While more than a third of the workers mentioned the event

of fastening the seat belts in the plane (buckle_seat_belt), no person wrote about

undoing their seat belts again, although in reality both events appear equally often.

Consequently, we added an event type label for buckling up, but no label for undoing

the seat belts.

5.3 Annotation 108

5.3.3 First Annotation Phase

We used the WebAnno annotation tool (Yimam et al., 2013) for the corpus. The stories

from each scenario were distributed among four different annotators. In a calibration

phase, annotators were presented with some sample texts for test annotations; the

results were discussed with the author. Throughout the whole annotation phase,

annotators could discuss any emerging issues with the authors. All annotations were

done by undergraduate students of computational linguistics. The annotation was

rather time-consuming due to the complexity of the task, and thus we decided for

single annotation mode. To assess annotation quality, a small sample of texts was

annotated by all four annotators and their inter-annotator agreement was measured

(see Section 5.4.1). It was found to be sufficiently high.

Annotation of the corpus together with some pre- and post-processing of the data

required about 500 hours of work. All stories were annotated with event and participant

types (a total of 12,188 and 43,946 instances, respectively). On average there were 7

coreference chains per story with an average length of 6 tokens.

5.3.4 Modification of the Schema

After the first annotation round, we extended and changed the templates based on the

results. As mentioned before, we used MissScrEv and MissScrPart labels to mark

verbs and noun phrases instantiating events and participants for which no appropriate

labels were available in the templates. Based on the instances with these labels (a

total of 941 and 1717 instances, respectively), we extended the guidelines to cover the

sufficiently frequent cases.

5.3 Annotation 109

In order to include new labels for event and participant types, we tried to estimate

the number of instances that would fall under a certain label. We added new labels

according to the following conditions:

• For the participant annotations, we added new labels for types that we expected to

appear at least 10 times in total in at least 5 different stories (i.e. in approximately

5% of the stories).

• For the event annotations, we chose those new labels for event types that would

appear in at least 5 different stories.

In order to avoid too fine a granularity of the templates, all other instances of

MissScrEv and MissScrPart were re-labeled with ScrEv_other and Scr-

Part_other. We also relabeled participants and events from the first annotation

phase with ScrEv_other and ScrPart_other, if they did not meet the frequency

requirements. The event label air_bathroom (the event of letting fresh air into the

room after the bath), for example, was only used once in the stories, so we relabeled

that instance to ScrEv_other.

Additionally, we looked at the DeScript corpus (Wanzare et al., 2016), which

contains manually clustered event paraphrase sets for the 10 scenarios that are also

covered by InScript (see Section 5.4.3). Every such set contains event descriptions

that define a certain event type. We extended our templates with additional labels for

these events, if they were not yet part of the template. This harmonized the InScript

annotation with DeScript gold event paraphrase clusters.

5.3.5 Special Cases

During annotation we came across certain linguistic constructions that had to be dealt

on case by case basis. We next describe these special cases:

5.3 Annotation 110

Noun-Noun Compounds. Noun-noun compounds were annotated twice with the

same label (whole span plus the head noun), as indicated by Example (5.15). This

redundant double annotation is motivated by potential processing requirements.

(5.15) I get my [wash [cloth SCRPART_WASHING_TOOLS]] SCRPART_WASHING_TOOLS

and put it under the water.

Support Verb Complements. A special treatment was given to support verb

constructions such as take time, get home or take a seat in Example (5.16). The

semantics of the verb itself is highly underspecified in such constructions; the event type

is largely dependent on the object NP. As shown in Example (5.16), we annotate

the head verb with the event type described by the whole construction and label its

object with SuppVComp (support verb complement), indicating that it does not have

a proper reference.

(5.16) I step into the tub and takeSCREV_SINK_WATER a seatSUPPVCOMP.

Head of Partitive. We used the Head_of_Partitive label for the heads in

partitive constructions, assuming that the only referential part of the construction is

the complement.

(5.17) Our seats were at the back HEAD_OF_PARTITIVE of the

train SCRPART_TRAIN.

(5.18) In the library you can always find a

couple HEAD_OF_PARTITIVE of interesting books SCRPART_BOOK.

This is not completely correct, since different partitive heads vary in their degree of

concreteness (cf. Examples (5.17) and (5.18)), but we did not see a way to make

the distinction sufficiently transparent to the annotators.

5.3 Annotation 111

Scenario Events Participants
bath 20 18

bicycle 16 16
bus 17 17

cake 19 17
flight 29 26

grocery 19 18
haircut 26 24
library 17 18
train 15 20
tree 14 15

Average 19.2 18.9

Fig. 5.4 The number of participants and events in the templates.

Mixed Participant Types. Group denoting NPs sometimes refer to groups whose

members are instances of different participant types. In Example (5.19), the first-

person plural pronoun refers to the group consisting of the passenger (I) and a

non-participant (my friend). To avoid a proliferation of event type labels, we labeled

these cases with Unclear.

(5.19) I SCRPART_PASSENGER wanted to visit mySCRPART_PASSENGER

friend NPART in New York. ... We UNCLEAR met

at the train station.

We made an exception for the Getting a Haircut scenario, where the mixed

participant group consisting of the hairdresser and the customer occurs very often,

as in Example (5.19). Here, we introduced the additional ad-hoc participant label

Scr_Part_hairdresser_customer.

(5.20) While Susan SCRPART_HAIRDRESSER is cutting my SCRPART_CUSTOMER

hair we SCR_PART_HAIRDRESSER_CUSTOMER usually talk a

bit.

5.4 Data Analysis 112

Average Fleiss’ Kappa
All Labels Script Labels

Scenario Events Participants Events Participants
Bus 0.68 0.74 0.76 0.74

Cake 0.61 0.76 0.64 0.75
Flight 0.65 0.70 0.62 0.69

Grocery 0.64 0.80 0.73 0.80
Haircut 0.64 0.84 0.67 0.86

Tree 0.59 0.76 0.63 0.76
Average 0.64 0.77 0.68 0.77

Fig. 5.5 Inter-annotator agreement statistics: Average Fleiss’ Kappa.

5.4 Data Analysis

5.4.1 Inter-Annotator Agreement

In order to calculate inter-annotator agreement, a total of 30 stories from 6 scenarios

were randomly chosen for parallel annotation by all 4 annotators after the first annota-

tion phase3. We checked the agreement on these data using Fleiss’ kappa (Fleiss, 1971).

The results are shown in Figure 5.5 and indicate moderate to substantial agreement

(Landis and Koch, 1977). Interestingly, if we calculated the kappa only on the subset

of cases that were annotated with script-specific event and participant labels by all

annotators, results were better than those of the evaluation on all labeled instances

(including also unrelated and related non-script events). This indicates one of the

challenges of the annotation task: In many cases it is difficult to decide whether a

particular event should be considered a central script event, or an event loosely related

or unrelated to the script.

For coreference chain annotation, we calculated the percentage of pairs which were

annotated by at least 3 annotators (qualified majority vote) compared to the set of
3We did not test for inter-annotator agreement after the second phase, since we did not expect the

agreement to change drastically due to the only slight changes in the annotation schema.

5.4 Data Analysis 113

Scenario %Coreference Agreement
Bus 88.9

Cake 94.7
Flight 93.6

Grocery 93.4
Haircut 94.3

Tree 78.3
Average 90.5

Fig. 5.6 Inter-annotator agreement statistics: Coreference agreement.

avg min max
event annotations in a story 15.9 1 52
event types in a story 10.1 1 23
participant annotations in a story 52.3 16 164
participant types in a story 10.9 2 25
coref chains 7.3 0 23
tokens per chain 6 2 52

Fig. 5.7 Annotation statistics over all scenarios.

those pairs annotated by at least one person (see Figure 5.6). We take the result of

90.5% between annotators to be a good agreement.

5.4.2 Annotated Corpus Statistics

Figure 5.4 gives an overview of the number of event and participant types provided in

the templates. Taking a flight and getting a haircut stand out with a large

number of both event and participant types, which is due to the inherent complexity

of the scenarios. In contrast, planting a tree and going on a train contain the

fewest labels. There are 19 event and participant types on average.

Figure 5.7 presents overview statistics about the usage of event labels, participant

labels and coreference chain annotations. As can be seen, there are usually many more

mentions of participants than events. For coreference chains, there are some chains

that are really long (which also results in a large scenario-wise standard deviation).

Usually, these chains describe the protagonist.

5.4 Data Analysis 114

0

25

50

75

100

cook
ingredients
cake
oven
cake_tin
utensil
dough
tim

e
beneficiary
kitchen/location
baking_instructions
tem

perature
store
decoration
other
recipe_source
tim

er
cabinet

16
272933

44485152546265
75828385

979797

Fig. 5.8 The number of stories in the baking a cake scenario that contain a certain
participant label.

We also found again that the flying in an airplane scenario stands out in terms

of participant mentions, event mentions and average number of coreference chains.

Figure 5.8 shows for every participant label in the baking a cake scenario the

number of stories in which they occurred. This indicates how relevant a participant is

for the script. As can be seen, a small number of participants are highly prominent:

cook, ingredients and cake are mentioned in every story. The fact that the

protagonist appears most often consistently holds for all other scenarios, where the

acting person appears in every story, and is mentioned most frequently.

Figure 5.9 shows the distribution of participant/event type labels over all appear-

ances over all scenarios on average. The groups stand for the most frequently appearing

label, the top 2 to 5 labels in terms of frequency and the top 6 to 10. ScrEv_other

and ScrPart_other are shown separately. As can be seen, the most frequently used

participant label (the protagonist) makes up about 40% of overall participant instances.

The four labels that follow the protagonist in terms of frequency together appear in

5.4 Data Analysis 115

5.3%

20.5%

26.6%

34.3%

13.3%
2.6%

8.9%

13.1%

36.4%

39.0%

top1 top 2-5 top 6-10 rest SCREV / SCRPART_OTHER

Fig. 5.9 Distribution of participants (left) and events (right) for the 1, the top 2-5, top
6-10 most frequently appearing events/participants, ScrEv/ScrPart_Other and
the rest.

37% of the cases. More than 2 out of 3 participants in total belong to one of only 5

labels.

In contrast, the distribution for events is more balanced. 14% of all event instances

have the most prominent event type. ScrEv_other and ScrPart_other both

appear as labels in at most 5% of all event and participant instantiations: The specific

event and participant type labels in our templates cover by far most of the instances.

In Figure 5.10, we grouped participants similarly into the first, the top 2-5 and

top 6-10 most frequently appearing participant types. The figure shows for each of

these groups the average frequency per story, and in the rightmost column the overall

average. The results correspond to the findings from the last paragraph.

5.4.3 Comparison to the DeScript Corpus

DeScript covers 40 scenarios, and also contains the 10 scenarios from InScript. This

corpus contains texts that describe scripts on an abstract and generic level, while

InScript contains instantiations of scripts in narrative texts. Script events in DeScript

are described in a very simple, telegram-style language (see Figure 5.2).

5.4 Data Analysis 116

0

5.00

10.00

15.00

20.00

25.00

3.72
2.55

5.61

21.93

top1 top 2-5 top 6-10 all

Fig. 5.10 Average number of participant mentions for a story, for the first, the top 2-5,
and top 6-10 most frequently appearing events/participants, and the overall average.

The InScript corpus exhibits much more lexical variation than DeScript. Many

approaches use the type-token ratio to measure this variance. However, this measure is

known to be sensitive to text length (see e.g. Tweedie and Baayen (1998)), which would

result in very small values for InScript and relatively large ones for DeScript, given the

large average difference of text lengths between the corpora. Instead, we decided to

use the Measure of Textual Lexical Diversity (MTLD) (McCarthy and Jarvis (2010),

McCarthy (2005)), which is well known in corpus linguistics. This metric measures the

average number of tokens in a text that are needed to retain a type-token ratio above a

certain threshold. If the MTLD for a text is high, many tokens are needed to lower the

type-token ratio under the threshold, so the text is lexically diverse. In contrast, a low

MTLD indicates that only a few words are needed to make the type-token ratio drop,

so the lexical diversity is smaller. We use the threshold of 0.71, which is proposed by

the authors as a well-proven value.

Figure 5.11 compares the lexical diversity of both resources. As can be seen, the

InScript corpus with its narrative texts is generally much more diverse than the DeScript

corpus with its short event descriptions, across all scenarios. For both resources, the

5.4 Data Analysis 117

bath bicycle bus cake flight grocery haircut library train tree
20

25

30

35

40

45

50

55

DeScript InScript

Fig. 5.11 MTLD values for DeScript and InScript, per scenario.

flying in an airplane scenario is most diverse (as was also indicated above by

the mean word type overlap). However, the difference in the variation of lexical

variance of scenarios is larger for DeScript than for InScript. Thus, the properties of a

scenario apparently influence the lexical variance of the event descriptions more than

the variance of the narrative texts.

We used entropy (Shannon, 1948) over lemmas to measure the variance of lexical

realizations for events. We excluded events for which there were less than 10 occurrences

in DeScript or InScript. Since there is only an event annotation for 50 ESDs per scenario

in DeScript, we randomly sampled 50 texts from InScript for computing the entropy

to make the numbers more comparable.

Figure 5.12 shows as an example the entropy values for the event types in the

going on a train scenario. As can be seen in the graph, the entropy for InScript is

in general higher than for DeScript. In the stories, a wider variety of verbs is used to

describe events. There are also large differences between events: While wait has a

really low entropy, spend_time_train has an extremely high entropy value. This

event type covers many different activities such as reading, sleeping etc.

5.5 Conclusion 118

ch
e
ck
_tim

e- tab
le

g
e
t_
train

_s
ta
tio
n

g
et_tic

k
ets

g
et_p

la
tfo
rm

w
a
it

g
et_o

n

fin
d
_
p
la
c
e

co
n
d
u
cto
r_c
h
e
ck
s

sp
e
n
d
_
tim
e
_ tra

in

arriv
e_
d
e
stin

atio
n

g
et_
o
ff

0

0.5

1

1.5

2

2.5

3

3.5

0

20

40

60

80

100

120

N(DeScript) N(InScript) H(DeScript) H(inScript)

Fig. 5.12 Entropy over verb lemmas for events (left y-axis, H(x)) in the going on a
train scenario. Bars in the background indicate the absolute number of occurrence
of instances (right y-axis, N(x)).

5.5 Conclusion

In this chapter we described the InScript corpus of 1,000 narrative texts annotated

with script structure and coreference information. We described the annotation process,

various difficulties encountered during annotation and different remedies that were

taken to overcome these. We compared the InScript corpus with another script related

corpus, i.e. DeScript. It would be interesting to explore methods for text-to-script

mapping, i.e. for the alignment of text segments with script states. We consider InScript

and DeScript together as a resource for studying this alignment. The InScript corpus

shows rich lexical variation and is a unique resource for the study of the role of script

knowledge in natural language processing, as described in the next chapter.

CHAPTER 6

Modeling Semantic Expectation:

Using Script Knowledge for Referent

Prediction

6.1 Introduction . 120

6.2 Data: The InScript Corpus 124

6.3 Referent Cloze Task . 125

6.4 Referent Prediction Model 128

6.5 Referring Expression Type Prediction Model (RE Model) 142

6.6 Conclusion . 147

When you have eliminated the impossible, whatever remains, however improbable, must be the

truth.
**

Sir Arthur Conan Doyle

6.1 Introduction 120

6.1 Introduction

Being able to anticipate upcoming content is a core property of human language

processing (Kuperberg and Jaeger, 2016; Kutas et al., 2011) that has received a lot

of attention in the psycholinguistic literature in recent years. Expectations about

upcoming words help humans comprehend language in noisy settings and deal with

ungrammatical input. In this chapter, we use a computational model to address

the question of how different layers of knowledge (linguistic knowledge as well as

common-sense knowledge) influence human anticipation.

Here we focus our attention on semantic predictions of discourse referents for

upcoming noun phrases. This task is particularly interesting because it allows us to

separate the semantic task of anticipating an intended referent and the processing of

the actual surface form. For example, in the context of I ordered a medium sirloin

steak with fries. Later, the waiter brought . . . , there is a strong expectation of a specific

discourse referent, i.e., the referent introduced by the object NP of the preceding

sentence, while the possible referring expression could be either the steak I had ordered,

the steak, our food, or it. Existing models of human prediction are usually formulated

using the information-theoretic concept of surprisal. In recent work, however, surprisal

is usually not computed for DRs, which represent the relevant semantic unit, but for

the surface form of the referring expressions, even though there is an increasing amount

of literature suggesting that human expectations at different levels of representation

have separable effects on prediction and, as a consequence, that the modeling of only

one level (the linguistic surface form) is insufficient (Kuperberg, 2016; Kuperberg and

Jaeger, 2016; Zarcone et al., 2016). The present model addresses this shortcoming

by explicitly modeling and representing common-sense knowledge and conceptually

6.1 Introduction 121

separating the semantic (discourse referent) and the surface level (referring expression)

expectations.

Our discourse referent prediction task is related to the NLP task of coreference

resolution, but it substantially differs from that task in the following ways: 1) we use

only the incrementally available left context, while coreference resolution uses the full

text; 2) coreference resolution tries to identify the DR for a given target NP in context,

while we look at the expectations of DRs based only on the context before the target

NP is seen.

The distinction between referent prediction and prediction of referring expressions

also allows us to study a closely related question in natural language generation: the

choice of a type of referring expression based on the predictability of the DR that

is intended by the speaker. This part of our work is inspired by a referent guessing

experiment by Tily and Piantadosi (2009), who showed that highly predictable referents

were more likely to be realized with a pronoun than unpredictable referents, which

were more likely to be realized using a full NP. The effect they observe is consistent

with a Gricean point of view, or the principle of uniform information density (see

Section 6.5.1). However, Tily and Piantadosi do not provide a computational model

for estimating referent predictability. Also, they do not include selectional preference

or common-sense knowledge effects in their analysis.

We believe that script knowledge represents a good starting point for modeling

conversational anticipation. This type of common-sense knowledge includes temporal

structure which is particularly relevant for anticipation in continuous language process-

ing. Furthermore, our approach can build on progress that has been made in recent

years in methods for acquiring large-scale script knowledge; see Section 6.1.1. Our

hypothesis is that script knowledge may be a significant factor in human anticipation

6.1 Introduction 122

of discourse referents. Explicitly modeling this knowledge will thus allow us to produce

more human-like predictions.

Script knowledge enables our model to generate anticipations about discourse

referents that have already been mentioned in the text, as well as anticipations about

textually new discourse referents which have been activated due to script knowledge.

By modeling event sequences and event participants, our model captures many more

long-range dependencies than normal language models are able to. As an example,

consider the following two alternative text passages:

(6.1) We got seated, and had to wait for 20 minutes.

Then, the waiter brought the

(6.2) We ordered, and had to wait for 20 minutes.

Then, the waiter brought the

Preferred candidate referents for the object position of the waiter brought the ... are

instances of the food, menu, or bill participant types. In the context of the alternative

preceding sentences, there is a strong expectation of instances of a menu and a food

participant, respectively.

This chapter represents foundational research investigating human language pro-

cessing. However, it also has the potential for application in assistant technology

and embodied agents. The goal is to achieve human-level language comprehension in

realistic settings, and in particular to achieve robustness in the face of errors or noise.

Explicitly modeling expectations that are driven by common-sense knowledge is an

important step in this direction.

In order to be able to investigate the influence of script knowledge on discourse

referent expectations, we use the InScript corpus, which contains frequent reference to

script knowledge, and provides annotations for coreference information, script events

and participants. In Section 6.3, we present a large-scale experiment for empirically

6.1 Introduction 123

assessing human expectations on upcoming referents, which allows us to quantify at

what points in a text humans have very clear anticipations vs. when they do not.

Our goal is to model human expectations, even if they turn out to be incorrect in a

specific instance. The experiment was conducted via Mechanical Turk and follows

the methodology of Tily and Piantadosi (2009). In Section 6.4, we describe our

computational model that represents script knowledge. The model is trained on the

gold standard annotations of the corpus, because we assume that human comprehenders

usually will have an analysis of the preceding discourse which closely corresponds to

the gold standard. We compare the prediction accuracy of this model to human

predictions, as well as to two baseline models, in Section 6.4.3. One of them uses

only structural linguistic features for predicting referents; the other uses general script-

independent selectional preference features. In Section 6.5, we test whether surprisal

(as estimated from human guesses vs. computational models) can predict the type of

referring expression used in the original texts in the corpus (pronoun vs. full referring

expression). This experiment also has wider implications with respect to the ongoing

discussion of whether the referring expression choice is dependent on predictability, as

predicted by the uniform information density hypothesis.

6.1.1 Scripts

As explained in detail in Chapter 3, scripts represent knowledge about typical event

sequences (Schank and Abelson, 1977), for example the sequence of events happening

when eating at a restaurant.

Modeling anticipated events and participants is motivated by evidence showing

that event representations in humans contain information not only about the current

event, but also about previous and future states, that is, humans generate anticipations

about event sequences during normal language comprehension (Schütz-Bosbach and

6.2 Data: The InScript Corpus 124

Prinz, 2007). Script knowledge representations have been shown to be useful in NLP

applications for ambiguity resolution during reference resolution (Rahman and Ng,

2012).

6.2 Data: The InScript Corpus

In Chapter 5, we explained the need for a corpus on the lines of InScript. Ordinary

texts, including narratives, encode script structure in a way that is too complex and

too implicit at the same time to enable a systematic study of script-based expectation.

They contain interleaved references to many different scripts, and they usually refer to

single scripts in a point-wise fashion only, relying on the ability of the reader to infer

the full event chain using their background knowledge.

We use the InScript corpus (Modi et al., 2016) to study the predictive effect of script

knowledge. InScript focuses on stories that are centered around a specific scenario

and that explicitly mention mundane details. The InScript corpus is labeled with

event-type, participant-type, and coreference information. Full verbs are labeled with

event-type information, and heads of all noun phrases with participant types, using

scenario-specific lists of event types (such as enter bathroom, close drain and fill water

for the “taking a bath” scenario) and participant types (such as bather, water and

bathtub). Thus, stories in InScript generally realize longer event chains associated with

a single script, which makes them particularly appropriate to our purpose.

We use gold-standard event- and participant-type annotation to study the influence

of script knowledge on the expectation of discourse referents. In addition, InScript

provides coreference annotation, which makes it possible to keep track of the men-

tioned discourse referents at each point in the story. We use this information in the

computational model of DR prediction and in the DR guessing experiment described

in the next section. An example of an annotated InScript story is shown in Figure 6.1.

6.3 Referent Cloze Task 125

(I)(1)
P_bather [decided]E_wash to take a (bath)(2)

P_bath yesterday afternoon after work-
ing out . Once (I)(1)

P_bather got back home , (I)(1)
P_bather [walked]E_enter_bathroom

to (my)(1)
P_bather (bathroom)(3)

P_bathroom and first quickly scrubbed the (bath-
room tub)(4)

P_bathtub by [turning on]E_turn_water_on the (water)(5)
P_water and rins-

ing (it)(4)
P_bathtub clean with a rag . After (I)(1)

P_bather finished , (I)(1)
P_bather

[plugged]E_close_drain the (tub)(4)
P_bathtub and began [filling]E_fill_water (it)(4)

P_bathtub
with warm (water)(5)

P_water set at about 98 (degrees)(6)
P_temperature .

Fig. 6.1 An excerpt from a story in the InScript corpus. The referring expressions are in
parentheses, and the corresponding discourse referent label is given by the superscript.
Referring expressions of the same discourse referent have the same color and superscript
number. Script-relevant events are in square brackets and colored in orange. Event
type is indicated by the corresponding subscript.

6.3 Referent Cloze Task

We use the InScript corpus to develop computational models for the prediction of

discourse referents (DRs) and to evaluate their prediction accuracy. This can be done

by testing how often our models manage to reproduce the original discourse referent

(cf. also the “narrative cloze” task by Chambers and Jurafsky (2008), which tests

whether a verb together with a role can be correctly guessed by a model). However,

we do not only want to predict the “correct” DRs in a text, but also to model human

expectation of DRs in context. To empirically assess human expectation, we created an

additional database of crowdsourced human predictions of discourse referents in context

using Amazon Mechanical Turk. The design of our experiment closely resembles the

guessing game of Tily and Piantadosi (2009) but extends it in a substantial way.

Workers had to read stories of the InScript corpus1 and guess upcoming participants:

for each target NP, workers were shown the story up to this NP excluding the NP itself,

and they were asked to guess the next person or object most likely to be referred to. In

case they decided in favor of a discourse referent already mentioned, they had to choose
1The corpus is available at : http://www.sfb1102.uni-saarland.de/?page_id=2582

http://www.sfb1102.uni-saarland.de/?page_id=2582

6.3 Referent Cloze Task 126

(I)(1) decided to take a (bath)(2) yesterday afternoon after working out . Once (I)(1)

got back home , (I)(1) walked to (my)(1) (bathroom)(3) and first quickly scrubbed the
(bathroom tub)(4) by turning on the (water)(5) and rinsing (it)(4) clean with a rag .
After (I)(1) finished , (I)(1) plugged XXXXXX

Fig. 6.2 An illustration of the Mechanical Turk experiment for the referent cloze
task. Workers are supposed to guess the upcoming referent (indicated by XXXXXX
above). They can either choose from the previously activated referents, or they can
write something new.

among the available discourse referents by clicking an NP in the preceding text, i.e.,

some noun with a specific, coreference-indicating color; see Figure 6.2. Otherwise, they

would click the “New” button, and would in turn be asked to give a short description

of the new person or object they expected to be mentioned. The percentage of guesses

that agree with the actually referred to entity was taken as a basis for estimating the

surprisal.

The experiment was done for all stories of the test set: 182 stories (20%) of the

InScript corpus, evenly taken from all scenarios. Since our focus is on the effect of

script knowledge, we only considered those NPs as targets that are direct dependents of

script-related events. Guessing started from the third sentence only in order to ensure

that a minimum of context information was available. To keep the complexity of the

context manageable, we restricted guessing to a maximum of 30 targets and skipped

the rest of the story (this applied to 12% of the stories). We collected 20 guesses per

NP for 3346 noun phrase instances, which amounts to a total of around 67K guesses.

Workers selected a context NP in 68% of cases and “New” in 32% of cases.

Our leading hypothesis is that script knowledge substantially influences human

expectation of discourse referents. The guessing experiment provides a basis to estimate

human expectation of already mentioned DRs (the number of clicks on the respective

NPs in text). However, we expect that script knowledge has a particularly strong

6.3 Referent Cloze Task 127

0
5

10
15

20

14

5

1
DR_4

(P_bathtub)
the drain
(new DR)

DR_1
(P_bather)

N
um

be
r

of
 W

or
ke

rs

Fig. 6.3 Response of workers corresponding to the story in Fig. 6.2. Workers guessed
two already activated discourse referents (DR) DR_4 and DR_1. Some of the workers
also chose the “new” option and wrote different lexical variants of “bathtub drain”, a
new DR corresponding to the participant type “the drain”.

influence in the case of first mentions. Once a script is evoked in a text, we assume

that the full script structure, including all participants, is activated and available to

the reader.

Tily and Piantadosi (2009) are interested in second mentions only and therefore

do not make use of the worker-generated noun phrases classified as “New”. To study

the effect of activated but not explicitly mentioned participants, we carried out a

subsequent annotation step on the worker-generated noun phrases classified as “New”.

We presented annotators with these noun phrases in their contexts (with co-referring

NPs marked by color, as in the M-Turk experiment) and, in addition, displayed all

participant types of the relevant script (i.e., the script associated with the text in the

InScript corpus). Annotators did not see the “correct” target NP. We asked annotators

6.4 Referent Prediction Model 128

to either (1) select the participant type instantiated by the NP (if any), (2) label the

NP as unrelated to the script or (3) link the NP to an overt antecedent in the text, in

the case that the NP is actually a second mention that had been erroneously labeled

as new by the worker. Option (1) provides a basis for a fine-grained estimation of

first-mention DRs. Option (3), which we added when we noticed the considerable

number of overlooked antecedents, serves as correction of the results of the M-Turk

experiment. Out of the 22K annotated “New” cases, 39% were identified as second

mentions, 55% were linked to a participant type, and 6% were classified as really novel.

6.4 Referent Prediction Model

In this section, we describe the model we use to predict upcoming discourse referents

(DRs).

6.4.1 Model

Our model should not only assign probabilities to DRs already explicitly introduced in

the preceding text fragment (e.g., “bath” or “bathroom” for the cloze task in Figure 6.2)

but also reserve some probability mass for ‘new’ DRs, i.e., DRs activated via the script

context or completely novel ones not belonging to the script. In principle, different

variants of the activation mechanism must be distinguished. For many participant

types, a single participant belonging to a specific semantic class is expected (referred

to with the bathtub or the soap). In contrast, the “towel” participant type may activate

a set of objects, elements of which then can be referred to with a towel or another

towel. The “bath means” participant type may even activate a group of DRs belonging

to different semantic classes (e.g., bubble bath and salts). Since it is not feasible to

enumerate all potential participants, for ‘new’ DRs we only predict their participant

6.4 Referent Prediction Model 129

type (“bath means” in our example). In other words, the number of categories in

our model is equal to the number of previously introduced DRs plus the number of

participant types of the script plus 1, reserved for a new DR not corresponding to any

script participant (e.g., cellphone). In what follows, we slightly abuse the terminology

and refer to all these categories as discourse referents.

Unlike standard co-reference models, which predict co-reference chains relying on

the entire document, our model is incremental; that is, when predicting a discourse

referent d(t) at a given position t, it can look only in the history h(t) (i.e., the preceding

part of the document), excluding the referring expression (RE) for the predicted DR.

We also assume that past REs are correctly resolved and assigned to correct participant

types (PTs). Typical NLP applications use automatic coreference resolution systems,

but since we want to model human behavior, this might be inappropriate, since an

automated system would underestimate human performance. This may be a strong

assumption, but for reasons explained above, we use gold standard past REs.

We use the following log-linear model (“softmax regression”):

p(d(t) = d|h(t)) = exp(wT f(d, h(t)))∑
d′ exp(wT f(d′, h(t))) (6.1)

where f is the feature function we will discuss in the following subsection, w are

model parameters, and the summation in the denominator is over the set of categories

described above.

Some of the features included in f are a function of the predicate syntactically

governing the unobservable target RE (corresponding to the DR being predicted).

However, in our incremental setting, the predicate is not available in the history h(t) for

subject NPs. In this case, we use an additional probabilistic model, which estimates the

probability of the predicate v given the context h(t), and marginalize out its predictions:

6.4 Referent Prediction Model 130

Feature Type
Recency Shallow Linguistic

Frequency Shallow Linguistic
Grammatical function Shallow Linguistic

Previous subject Shallow Linguistic
Previous object Shallow Linguistic

Previous RE type Shallow Linguistic
Selectional preferences Linguistic

Participant type fit Script
Predicate schemas Script

Table 6.1 Summary of feature types

p(d(t) =d|h(t))=
∑
v
p(v|h(t)) exp(wT f(d, h(t), v))∑

d′ exp(wT f(d′, h(t), v)) (6.2)

The predicate probabilities p(v|h(t)) are computed based on the sequence of preceding

predicates (i.e., ignoring any other words) using the recurrent neural network language

model estimated on our training set.2 The expression f(d, h(t), v) denotes the feature

function computed for the referent d, given the history composed of h(t) and the

predicate v.

6.4.2 Features

Our features encode properties of a DR as well as characterize its compatibility with

the context. We face two challenges when designing our features. First, although the

sizes of our datasets are respectable from the script annotation perspective, they are

too small to learn a richly parameterized model. For many of our features, we address
2We used RNNLM toolkit (Mikolov et al., 2010, 2011) with default settings.

6.4 Referent Prediction Model 131

this challenge by using external word embeddings3 and associate parameters with some

simple similarity measures computed using these embeddings. Consequently, there are

only a few dozen parameters which need to be estimated from scenario-specific data.

Second, in order to test our hypothesis that script information is beneficial for the DR

prediction task, we need to disentangle the influence of script information from general

linguistic knowledge. We address this by carefully splitting the features apart, even if

it prevents us from modeling some interplay between the sources of information. We

will describe both classes of features below; see also a summary in Table 6.1.

Shallow Linguistic Features

These features are based on Tily and Piantadosi (2009). In addition, we consider a

selectional preference feature.

Recency feature. This feature captures the distance lt(d) between the position t

and the last occurrence of the candidate DR d. As a distance measure, we use the

number of sentences from the last mention and exponentiate this number to make

the dependence more extreme; only very recent DRs will receive a noticeable weight:

exp(−lt(d)). This feature is set to 0 for new DRs.

Frequency. The frequency feature indicates the number of times the candidate

discourse referent d has been mentioned so far. We do not perform any bucketing.

Grammatical function. This feature encodes the dependency relation assigned to

the head word of the last mention of the DR or a special none label if the DR is new.

Previous subject indicator. This binary feature indicates whether the candidate

DR d is coreferential with the subject of the previous verbal predicate.

Previous object indicator. The same but for the object position.
3We use 300-dimensional word embeddings estimated on Wikipedia with the skip-gram model of

Mikolov et al. (2013): https://code.google.com/p/word2vec/

https://code.google.com/p/word2vec/

6.4 Referent Prediction Model 132

Previous RE type. This three-valued feature indicates whether the previous mention

of the candidate DR d is a pronoun, a non-pronominal noun phrase, or has never been

observed before.

Selectional Preferences Feature

The selectional preference feature captures how well the candidate DR d fits a given

syntactic position r of a given verbal predicate v. It is computed as the cosine similarity

simcos(xT
d ,xv,r) of a vector-space representation of the DR xd and a structured vector-

space representation of the predicate xv,r. The similarities are calculated using a

Distributional Memory approach similar to that of Baroni and Lenci (2010). Their

structured vector space representation has been shown to work well on tasks that

evaluate correlation with human thematic fit estimates (Baroni and Lenci, 2010; Baroni

et al., 2014; Sayeed et al., 2016) and is thus suited to our task.

The representation xd is computed as an average of head word representations of all

the previous mentions of DR d, where the word vectors are obtained from the TypeDM

model of Baroni and Lenci (2010). This is a count-based, third-order co-occurrence

tensor whose indices are a word w0, a second word w1, and a complex syntactic relation

r, which is used as a stand-in for a semantic link. The values for each (w0, r, w1)

cell of the tensor are the local mutual information (LMI) estimates obtained from a

dependency-parsed combination of large corpora (ukWaC, BNC, and Wikipedia).

Our procedure has some differences from that of Baroni and Lenci. For example, for

estimating the fit of an alternative new DR (in other words, xd based on no previous

mentions), we use an average over head words of all REs in the training set, a “null

referent.” xv,r is calculated as the average of the top 20 (by LMI) r-fillers for v in

TypeDM; in other words, the prototypical instrument of rub may be represented by

summing vectors like towel, soap, eraser, coin. . . If the predicate has not yet been

6.4 Referent Prediction Model 133

(I)(1) decided to take a (bath)(2) yesterday afternoon after working out . (I)(1) was
getting ready to go out and needed to get cleaned before (I)(1) went so (I)(1) decided to
take a (bath)(2). (I)(1) filled the (bathtub)(3) with warm (water)(4) and added some
(bubble bath)(5). (I)(1) got undressed and stepped into the (water)(4). (I)(1) grabbed
the (soap)(5) and rubbed it on (my)(1) (body)(7) and rinsed XXXXXX

Fig. 6.4 An example of the referent cloze task. Similar to the Mechanical Turk
experiment (Figure 6.2), our referent prediction model is asked to guess the upcoming
DR.

encountered (as for subject positions), scores for all scenario-relevant verbs are emitted

for marginalization.

Script Features

In this section, we describe features which rely on script information. Our goal will be

to show that such common-sense information is beneficial in performing DR prediction.

We consider only two script features.

Participant type fit

This feature characterizes how well the participant type (PT) of the candidate DR

d fits a specific syntactic role r of the governing predicate v; it can be regarded as a

generalization of the selectional preference feature to participant types and also its

specialization to the considered scenario. Given the candidate DR d, its participant

type p, and the syntactic relation r, we collect all the predicates in the training set

which have the participant type p in the position r. The embedding of the DR xp,r is

given by the average embedding of these predicates. The feature is computed as the

dot product of xp,r and the word embedding of the predicate v.

Predicate schemas

The following feature captures a specific aspect of knowledge about prototypical

sequences of events. This knowledge is called predicate schemas in the recent co-

6.4 Referent Prediction Model 134

reference modeling work of Peng et al. (2015). In predicate schemas, the goal is to

model pairs of events such that if a DR d participated in the first event (in a specific

role), it is likely to participate in the second event (again, in a specific role). For

example, in the restaurant scenario, if one observes a phrase John ordered, one is likely

to see John waited somewhere later in the document. Specific arguments are not that

important (where it is John or some other DR); what is important is that the argument

is reused across the predicates. This would correspond to the rule X-subject-of-order →

X-subject-of-eat.4 Unlike the previous work, our dataset is small, so we cannot induce

these rules directly as there will be very few rules, and the model would not generalize

to new data well enough. Instead, we again encode this intuition using similarities in

the real-valued embedding space.

Recall that our goal is to compute a feature φ(d, h(t)) indicating how likely a

potential DR d is to follow, given the history h(t). For example, imagine that the model

is asked to predict the DR marked by XXXXXX in Figure 6.4. Predicate-schema

rules can only yield previously introduced DRs, so the score φ(d, h(t)) = 0 for any new

DR d. Let us use “soap” as an example of a previously introduced DR and see how

the feature is computed. In order to choose which inference rules can be applied to

yield “soap”, we can inspect Figure 6.4. There are only two preceding predicates which

have DR “soap” as their object (rubbed and grabbed), resulting in two potential rules

X-object-of-grabbed → X-object-of-rinsed and X-object-of-rubbed → X-object-of-rinsed.

We define the score φ(d, h(t)) as the average of the rule scores. More formally, we can

write
φ(d, h(t))= 1

|N(d, h(t))|
∑

(u,v,r)∈N(d,h(t))
ψ(u, v, r), (6.3)

where ψ(u, v, r) is the score for a rule X-r-of-u → X-r-of-v, N(d, h(t)) is the set of
4In this work, we limit ourselves to rules where the syntactic function is the same on both sides of

the rule. In other words, we can, in principle, encode the pattern X pushed Y → X apologized but not
the pattern X pushed Y → Y cried.

6.4 Referent Prediction Model 135

applicable rules, and |N(d, h(t))| denotes its cardinality.5 We define φ(d, h(t)) as 0,

when the set of applicable rules is empty (i.e. |N(d, h(t))| = 0).

The scoring function ψ(u, v, r) is a linear function of a joint embedding xu,v of verbs

u and v:

ψ(u, v, r) = αT
r xu,v. (6.4)

The two remaining questions are (1) how to define the joint embeddings xu,v, and (2)

how to estimate the parameter vector αr. The joint embedding of two predicates, xu,v,

can, in principle, be any composition function of embeddings of u and v, for example

their sum or component-wise product. Inspired by Bordes et al. (2013), we use the

difference between the word embeddings:

ψ(u, v, r) = αT
r (xu − xv), (6.5)

where xu and xv are external embeddings of the corresponding verbs. Encoding the

succession relation as translation in the embedding space has one desirable property:

the scoring function will be largely agnostic to the morphological form of the predicates.

For example, the difference between the embeddings of rinsed and rubbed is very

similar to that of rinse and rub (Botha and Blunsom, 2014), so the corresponding

rules will receive similar scores. Now, we can rewrite the equation (6.3) as

φ(d, h(t))= αT
r(h(t))

∑
(u,v,r)∈N(d,h(t)) (xu − xv)

|N(d, h(t))| (6.6)

where r(h(t)) denotes the syntactic function corresponding to the DR being predicted

(object in our example).
5In all our experiments, rather than considering all potential predicates in the history to instantiate

rules, we take into account only 2 preceding verbs. In other words, u and v can be interleaved by at
most one verb and |N(d, h(t))| is in {0, 1, 2}.

6.4 Referent Prediction Model 136

As for the parameter vector αr, there are again a number of potential ways how it

can be estimated. For example, one can train a discriminative classifier to estimate

the parameters. However, we opted for a simpler approach—we set it equal to the

empirical estimate of the expected feature vector xu,v on the training set:6

αr = 1
Dr

∑
l,t

δr(r(h(l,t)))
∑

(u,v,r′)∈N(d(l,t),h(l,t))
(xu − xv), (6.7)

where l refers to a document in the training set, t is (as before) a position in the

document, and h(l,t) and d(l,t) are the history and the correct DR for this position,

respectively. The term δr(r′) is the Kronecker delta, which equals 1 if r = r′ and 0,

otherwise. Dr is the total number of rules for the syntactic function r in the training

set:

Dr =
∑
l,t

δr(r(h(l,t))) × |N(d(l,t), h(l,t))|.

Let us illustrate the computation with an example. Imagine that our training

set consists of the document in Figure 1, and the trained model is used to predict

the upcoming DR in our referent cloze example (Figure 6.4). The training document

includes the pair X-object-of-scrubbed → X-object-of-rinsing, so the corresponding term

(xscrubbed - xrinsing) participates in the summation (6.7) for αobj . As we rely on external

embeddings, which encode semantic similarities between lexical items, the dot product

of this term and (xrubbed - xrinsed) will be high.7 Consequently, φ(d, h(t)) is expected

to be positive for d = “soap”, thus predicting “soap” as the likely forthcoming DR.

Unfortunately, there are other terms (xu − xv) both in expression (6.7) for αobj and in
6This essentially corresponds to using the Naive Bayes model with the simplistic assumption that

the score differences are normally distributed with spherical covariance matrices.
7The score would have been even higher, should the predicate be in the morphological form rinsing

rather than rinsed. However, embeddings of rinsing and rinsed would still be sufficiently close to each
other for our argument to hold.

6.4 Referent Prediction Model 137

Model Name Feature
Types

Features

Base Shallow
Linguistic
Features

Recency, Frequency,
Grammatical function,

Previous subject,
Previous object

Linguistic Shallow
Linguistic
Features

+
Linguistic
Feature

Recency, Frequency,
Grammatical function,

Previous subject,
Previous object

+
Selectional Preferences

Script Shallow
Linguistic
Features

+
Linguistic
Feature

+
Script Features

Recency, Frequency,
Grammatical function,

Previous subject,
Previous object

+
Selectional Preferences

+
Participant type fit,

Predicate schemas

Table 6.2 Summary of model features

expression (6.6) for φ(d, h(t)). These terms may be irrelevant to the current prediction,

as X-object-of-plugged → X-object-of-filling from Figure 1, and may not even encode

any valid regularities, as X-object-of-got → X-object-of-scrubbed (again from Figure

1). This may suggest that our feature will be too contaminated with noise to be

informative for making predictions. However, recall that independent random vectors

in high dimensions are almost orthogonal, and, assuming they are bounded, their dot

products are close to zero. Consequently, the products of the relevant (“non-random”)

terms, in our example (xscrubbed - xrinsing) and (xrubbed - xrinsed), are likely to overcome

the (“random”) noise. As we will see in the ablation studies, the predicate-schema

feature is indeed predictive of a DR and contributes to the performance of the full

model.

6.4 Referent Prediction Model 138

6.4.3 Experiments

We would like to test whether our model can produce accurate predictions and whether

the model’s guesses correlate well with human predictions for the referent cloze task.

In order to be able to evaluate the effect of script knowledge on referent predictability,

we compare three models: our full Script model uses all of the features introduced in

section 4.2; the Linguistic model relies only on the ‘linguistic features’ and not the

script-specific ones; and the Base model includes all the shallow linguistic features.

The Base model differs from the Linguistic model in that it does not model selectional

preferences. Table 6.2 summarizes features used in different models.

The data set was randomly divided into training (70%), development (10%, 91 sto-

ries from 10 scenarios), and test (20%, 182 stories from 10 scenarios) sets. The feature

weights were learned using L-BFGS (Byrd et al., 1995) to optimize the log-likelihood.

Evaluation against original referents. We calculated the percentage of correct

DR predictions. See Table 6.3 for the averages across 10 scenarios. We can see that the

task appears hard for humans: their average performance reaches only 73% accuracy.

As expected, the Base model is the weakest system (with accuracy of 31%). Modeling

selectional preferences yields an extra 18% in accuracy (Linguistic model). The key

finding is that incorporation of script knowledge increases the accuracy by a further

13%, although it is still far behind human performance (62% vs. 73%). Besides

accuracy, we use perplexity, which we computed not only for all our models but also

for human predictions. This was possible as each task was solved by multiple humans.

We used unsmoothed normalized guess frequencies as the probabilities. As we can

see from Table 6.3, the perplexity scores are consistent with the accuracies: the script

model again outperforms other methods, and, as expected, all the models are weaker

than humans.

6.4 Referent Prediction Model 139

Sc
en

ar
io

H
um

an
M

od
el

Sc
rip

t
M

od
el

Li
ng

ui
st

ic
M

od
el

B
as

e
M

od
el

A
cc

ur
ac

y
Pe

rp
le

xi
ty

A
cc

ur
ac

y
Pe

rp
le

xi
ty

A
cc

ur
ac

y
Pe

rp
le

xi
ty

A
cc

ur
ac

y
Pe

rp
le

xi
ty

G
ro

ce
ry

sh
op

pi
ng

74
.8

0
2.

13
68

.1
7

3.
16

53
.8

5
6.

54
32

.8
9

24
.4

8
R

ep
ai

rin
g

a
fla

t
bi

cy
cl

e
ty

re
78

.3
4

2.
72

62
.0

9
3.

89
51

.2
6

6.
38

29
.2

4
19

.0
8

R
id

in
g

a
pu

bl
ic

bu
s

72
.1

9
2.

28
64

.5
7

3.
67

52
.6

5
6.

34
32

.7
8

23
.3

9
G

et
tin

g
a

ha
irc

ut
71

.0
6

2.
45

58
.8

2
3.

79
42

.8
2

7.
11

28
.7

0
15

.4
0

Pl
an

tin
g

a
tr

ee
71

.8
6

2.
46

59
.3

2
4.

25
47

.8
0

7.
31

28
.1

4
24

.2
8

B
or

ro
w

in
g

bo
ok

fr
om

lib
ra

ry
77

.4
9

1.
93

64
.0

7
3.

55
43

.2
9

8.
40

33
.3

3
20

.2
6

Ta
ki

ng
ba

th
81

.2
9

1.
84

67
.4

2
3.

14
61

.2
9

4.
33

43
.2

3
16

.3
3

G
oi

ng
on

a
tr

ai
n

70
.7

9
2.

39
58

.7
3

4.
20

47
.6

2
7.

68
30

.1
6

35
.1

1
B

ak
in

g
a

ca
ke

76
.4

3
2.

16
61

.7
9

5.
11

46
.4

0
9.

16
24

.0
7

23
.6

7
Fl

yi
ng

in
an

ai
rp

la
ne

62
.0

4
3.

08
61

.3
1

4.
01

48
.1

8
7.

27
30

.9
0

30
.1

8
Av

er
ag

e
73

.6
3

2.
34

62
.6

3
3.

88
49

.5
2

7.
05

31
.3

4
23

.2
2

Ta
bl

e
6.

3
Ac

cu
ra

cie
s

(in
%

)
an

d
pe

rp
lex

iti
es

fo
r

di
ffe

re
nt

m
od

els
an

d
sc

en
ar

io
s.

Th
e

Sc
rip

t
m

od
el

su
bs

ta
nt

ia
lly

ou
tp

er
fo

rm
s

Li
ng

ui
st

ic
an

d
B

as
e

m
od

el
s

(w
ith

p
<

0.
00

1,
sig

ni
fic

an
ce

te
st

ed
w

ith
M

cN
em

ar
’s

te
st

(E
ve

rit
t,

19
92

))
.

A
s

ex
pe

ct
ed

,t
he

hu
m

an
pr

ed
ic

tio
n

m
od

el
ou

tp
er

fo
rm

s
th

e
Sc

rip
t

m
od

el
(w

ith
p
<

0.
00

1,
sig

ni
fic

an
ce

te
st

ed
by

M
cN

em
ar

’s
te

st
).

6.4 Referent Prediction Model 140

Model Accuracy Perplexity
Linguistic Model 49.52 7.05

Linguistic Model + Predicate Schemas 55.44 5.88
Linguistic Model + Participant type fit 58.88 4.29

Full Script Model (both features) 62.63 3.88

Table 6.4 Accuracies from ablation experiments.

As we used two sets of script features, capturing different aspects of script knowledge,

we performed extra ablation studies (Table 6.4). The experiments confirm that both

feature sets were beneficial.

Evaluation against human expectations. In the previous subsection, we demon-

strated that the incorporation of selectional preferences and, perhaps more interestingly,

the integration of automatically acquired script knowledge lead to improved accuracy in

predicting discourse referents. Now we turn to another question raised in the introduc-

tion: does incorporation of this knowledge make our predictions more human-like? In

other words, are we able to accurately estimate human expectations? This includes not

only being sufficiently accurate but also making the same kind of incorrect predictions.

In this evaluation, we therefore use human guesses collected during the referent

cloze task as our target. We then calculate the relative accuracy of each computational

model. As can be seen in Figure 6.5, the Script model, at approx. 53% accuracy, is

a lot more accurate in predicting human guesses than the Linguistic model and the

Base model. We can also observe that the margin between the Script model and the

Linguistic model is a lot larger in this evaluation than between the Base model and the

Linguistic model. This indicates that the model which has access to script knowledge

is much more similar to human prediction behavior in terms of top guesses than the

script-agnostic models.

6.4 Referent Prediction Model 141

Script Linguistic Base

0
10

20
30

40
50

60 52.9

38.4
34.52

R
el

. A
cc

ur
ac

y
(in

 %
)

Fig. 6.5 Average relative accuracies of different models w.r.t human predictions.

Now we would like to assess if our predictions are similar as distributions rather

than only yielding similar top predictions. In order to compare the distributions, we use

the Jensen-Shannon divergence (JSD), a symmetrized version of the Kullback-Leibler

divergence.

Intuitively, JSD measures the distance between two probability distributions. A

smaller JSD value is indicative of more similar distributions. Figure 6.6 shows that the

probability distributions resulting from the Script model are more similar to human

predictions than those of the Linguistic and Base models.

In these experiments, we have shown that script knowledge improves predictions

of upcoming referents and that the script model is the best among our models in

approximating human referent predictions.

6.5 Referring Expression Type Prediction Model (RE Model) 142

Script Linguistic Base0.
0

0.
2

0.
4

0.
6

0.
8

0.5
0.57

0.66

JS
 D

iv
er

ge
nc

e

Fig. 6.6 Average Jensen-Shannon divergence between human predictions and models.

6.5 Referring Expression Type Prediction Model

(RE Model)

Using the referent prediction models, we next attempt to replicate Tily and Piantadosi’s

findings that the choice of the type of referring expression (pronoun or full NP) depends

in part on the predictability of the referent.

6.5.1 Uniform Information Density Hypothesis

The uniform information density (UID) hypothesis suggests that speakers tend to

convey information at a uniform rate (Jaeger, 2010). Applied to the choice of referring

expression type, it would predict that a highly predictable referent should be encoded

using a short code (here a pronoun), while an unpredictable referent should be encoded

using a longer form (here a full NP). Information density is measured using the

information-theoretic measure of the surprisal S of a message mi:

S(mi) = − logP (mi | context)

UID has been very successful in explaining a variety of linguistic phenomena;

see Jaeger et al. (2016). There is, however, controversy about whether UID affects

6.5 Referring Expression Type Prediction Model (RE Model) 143

pronominalization. Tily and Piantadosi (2009) report evidence that writers are more

likely to refer using a pronoun or proper name when the referent is easy to guess and

use a full NP when readers have less certainty about the upcoming referent; see also

Arnold (2001). But other experiments (using highly controlled stimuli) have failed to

find an effect of predictability on pronominalization (Fukumura and Van Gompel, 2010;

Rohde and Kehler, 2014; Stevenson et al., 1994). The present study hence contributes

to the debate on whether UID affects referring expression choice.

6.5.2 A Model of Referring Expression Choice

Our goal is to determine whether referent predictability (quantified in terms of surprisal)

is correlated with the type of referring expression used in the text. Here we focus on

the distinction between pronouns and full noun phrases. Our data also contains a small

percentage (ca. 1%) of proper names (like “John”). Due to this small class size and

earlier findings that proper nouns behave much like pronouns (Tily and Piantadosi,

2009), we combined pronouns and proper names into a single class of short encodings.

For the referring expression type prediction task, we estimate the surprisal of the

referent from each of our computational models from Section 6.4 as well as the human

cloze task. The surprisal of an upcoming discourse referent d(t) based on the previous

context h(t) is thereby estimated as:

S(d(t)) = − log p(d(t) | h(t)) (6.8)

In order to determine whether referent predictability has an effect on referring expres-

sion type over and above other factors that are known to affect the choice of referring

expression, we train a logistic regression model with referring expression type as a

response variable and discourse referent predictability as well as a large set of other

linguistic factors (based on Tily and Piantadosi, 2009) as explanatory variables. The

6.5 Referring Expression Type Prediction Model (RE Model) 144

model is defined as follows:

p(n(t) = n|d(t), h(t)) = exp(vT g(n, dt, h(t)))∑
n′ exp(vT g(n′, dt, h(t))) , (6.9)

where d(t) and h(t) are defined as before, g is the feature function, and v is the vector

of model parameters. The summation in the denominator is over NP types (full NP

vs. pronoun/proper noun).

6.5.3 RE Model Experiments

We ran four different logistic regression models. These models all contained exactly

the same set of linguistic predictors but differed in the estimates used for referent

type surprisal and residual entropy. One logistic regression model used surprisal

estimates based on the human referent cloze task, while the three other models used

estimates based on the three computational models (Base, Linguistic and Script). For

our experiment, we are interested in the choice of referring expression type for those

occurrences of references where a “real choice” is possible. We therefore exclude for

our analysis reported below all first mentions as well as all first and second person

pronouns (because there is no optionality in how to refer to first or second person).

This subset contains 1345 data points.

6.5.4 Results

The results of all four logistic regression models are shown in Table 6.5. We first take

a look at the results for the linguistic features. While there is a bit of variability in

terms of the exact coefficient estimates between the models (this is simply due to

small correlations between these predictors and the predictors for surprisal), the effect

of all of these features is largely consistent across models. For instance, the positive

6.5 Referring Expression Type Prediction Model (RE Model) 145

coefficients for the recency feature mean that when a previous mention happened very

recently, the referring expression is more likely to be a pronoun (and not a full NP).

The coefficients for the surprisal estimates of the different models are, however, not

significantly different from zero. Model comparison shows that they do not improve

model fit. We also used the estimated models to predict referring expression type on

new data and again found that surprisal estimates from the models did not improve

prediction accuracy. This effect even holds for our human cloze data. Hence, it cannot

be interpreted as a problem with the models—even human predictability estimates are,

for this dataset, not predictive of referring expression type.

We also calculated regression models for the full dataset including first and second

person pronouns as well as first mentions (3346 data points). The results for the

full dataset are fully consistent with the findings shown in Table 6.5: there was no

significant effect of surprisal on referring expression type.

This result contrasts with the findings by Tily and Piantadosi (2009),who reported

a significant effect of surprisal on RE type for their data. In order to replicate their

settings as closely as possible, we also included residualEntropy as a predictor in our

model (see last predictor in Table 6.5); however, this did not change the results.

6.5 Referring Expression Type Prediction Model (RE Model) 146

Es
tim

at
e

St
d.

Er
ro

r
Pr

(>
|z

|)
H

um
an

Sc
rip

t
Li

ng
ui

st
ic

Ba
se

H
um

an
Sc

rip
t

Li
ng

ui
st

ic
Ba

se
H

um
an

Sc
rip

t
Li

ng
ui

st
ic

Ba
se

(In
te

rc
ep

t)
-3

.4
-3

.4
18

-3
.2

45
-3

.0
61

0.
24

4
0.

27
9

0.
32

1
0.

79
1

<
2e

-1
6

**
*

<
2e

-1
6

**
*

<
2e

-1
6

**
*

0.
00

01
1

**
*

re
ce

nc
y

1.
32

2
1.

32
2

1.
32

4
1.

32
2

0.
09

5
0.

09
5

0.
09

6
0.

09
7

<
2e

-1
6

**
*

<
2e

-1
6

**
*

<
2e

-1
6

**
*

<
2e

-1
6

**
*

fre
qu

en
cy

0.
09

7
0.

10
3

0.
11

2
0.

11
4

0.
09

8
0.

09
7

0.
09

8
0.

10
2

0.
31

7
0.

28
9

0.
25

1
0.

26
2

pa
st

O
bj

0.
40

7
0.

39
6

0.
42

3
0.

39
5

0.
29

3
0.

29
4

0.
29

5
0.

3
0.

16
5

0.
17

8
0.

15
1

0.
18

9
pa

st
Su

bj
-0

.9
67

-0
.9

73
-0

.9
09

-0
.9

26
0.

55
9

0.
56

4
0.

56
2

0.
56

5
0.

08
38

.
0.

08
46

.
0.

10
6

0.
10

1
pa

st
Ex

pP
ro

no
un

1.
60

3
1.

61
9

1.
61

6
1.

60
2

0.
21

0.
20

7
0.

20
8

0.
24

5
2.

19
e-

14
**

*
5.

48
e-

15
**

*
7.

59
e-

15
**

*
6.

11
e-

11
**

*
de

pT
yp

eS
ub

j
2.

93
9

2.
94

2
2.

65
6

2.
41

7
0.

29
9

0.
34

7
0.

42
9

1.
11

3
<

2e
-1

6
**

*
<

2e
-1

6
**

*
5.

68
e-

10
**

*
0.

02
99

4
*

de
pT

yp
eO

bj
1.

19
9

1.
22

7
0.

97
7

0.
70

5
0.

24
8

0.
30

6
0.

38
9

1.
10

9
1.

35
e-

06
**

*
6.

05
e-

05
**

*
0.

01
19

*
0.

52
5

su
rp

ris
al

-0
.0

4
-0

.0
06

0.
00

2
-0

.1
31

0.
09

9
0.

09
7

0.
11

7
0.

38
7

0.
68

4
0.

95
1

0.
98

8
0.

73
5

re
sid

ua
lE

nt
ro

py
-0

.0
09

0.
02

3
-0

.1
41

-0
.1

28
0.

08
8

0.
12

8
0.

16
8

0.
25

8
0.

91
6

0.
85

9
0.

40
1

0.
61

9

Ta
bl

e
6.

5
C

oe
ffi

ci
en

ts
ob

ta
in

ed
fro

m
re

gr
es

sio
n

an
al

ys
is

fo
r

di
ffe

re
nt

m
od

el
s.

Tw
o

N
P

ty
pe

s
co

ns
id

er
ed

:
fu

ll
N

P
an

d
Pr

on
ou

n/
Pr

op
er

N
ou

n,
w

ith
ba

se
cl

as
s

fu
ll

N
P.

Si
gn

ifi
ca

nc
e:

‘*
**

’<
0.

00
1,

‘*
*’
<

0.
01

,‘
*’
<

0.
05

,a
nd

‘.’
<

0.
1.

6.6 Conclusion 147

6.6 Conclusion

Our study on incrementally predicting discourse referents showed that script knowledge

is a highly important factor in determining human discourse expectations. Crucially,

the computational modeling approach allowed us to tease apart the different factors

that affect human prediction, as we cannot manipulate this in humans directly (by

asking them to “switch off” their common-sense knowledge).

By modeling common-sense knowledge in terms of event sequences and event

participants, our model captures many more long-range dependencies than normal

language models. The script knowledge is automatically induced by our model from

crowdsourced scenario-specific text collections.

In a second study, we set out to test the hypothesis that uniform information

density affects referring expression type. This question is highly controversial in the

literature: while Tily and Piantadosi (2009) find a significant effect of surprisal on

referring expression type in a corpus study very similar to ours, other studies that use a

more tightly controlled experimental approach have not found an effect of predictability

on RE type (Fukumura and Van Gompel, 2010; Rohde and Kehler, 2014; Stevenson

et al., 1994). The present study, while replicating exactly the setting of T&P in terms of

features and analysis, did not find support for a UID effect on RE type. The difference

in results between T&P 2009 and our results could be due to the different corpora and

text sorts that were used; specifically, we would expect that larger predictability effects

might be observable at script boundaries, rather than within a script, as is the case in

our stories.

A next step in moving our participant prediction model towards NLP applications

would be to replicate our modeling results on automatic text-to-script mapping instead

of gold-standard data as done here (in order to approximate a human level of processing).

6.6 Conclusion 148

Furthermore, we aim to move to more complex text types that include reference to

several scripts.

CHAPTER 7

Conclusion and Future Directions

7.1 Thesis Summary . 150

7.2 Future Directions . 151

If I have seen further it is by standing on the shoulders of giants.
**

Sir Isaac Newton

7.1 Thesis Summary 150

7.1 Thesis Summary

This dissertation advocated the idea of including common sense knowledge in natural

language understanding systems. As shown by various examples in Chapter 1, common

sense knowledge would be beneficial for systems modeling natural language. In this

dissertation, we modeled common sense knowledge about everyday activities via scripts.

Script have underpinnings in cognitive psychology as described in Chapter 3. Com-

putational modeling of scripts can be traced back to the late 1970’s when Schank and

Abelson (1977) formulated the script theory and applied it within a story understanding

system. Recent work on scripts has applied probabilistic and statistical techniques for

modeling scripts.

In order to model script knowledge, three main tasks need to be addressed: event

ordering, event paraphrasing, and event prediction. In Chapter 4, we proposed a neural

network based probabilistic model for event ordering. The model learns dense vector

based representations for events. These representations capture semantic properties of

the events and achieve better generalization than conventional count based models.

The proposed model outperforms current graph based and count based approaches

for script modeling. To address the event prediction task, we proposed an extension

of the event ordering model. The model addresses the shortcomings of the current

count based methods namely, sparsity and poor atomic event representation. We also

pointed out the problems with the current accuracy metric for narrative cloze task. We

proposed another alternative metric, i.e. event perplexity. Additionally, we proposed

an alternative task (adversarial narrative cloze) for evaluating script models.

In Chapter 5, we explained the limitations of previously available corpora used

for modeling scripts. Previously, corpora used for modeling script knowledge have

consisted of narratives instantiating multiple scenarios. This makes it difficult to

7.2 Future Directions 151

study the contribution of script knowledge in isolation. We addressed this challenge

by creating a new corpus for scripts: InScript. The newly introduced corpus Inscript

is a unique resource for script research. It is a collection of 910 stories, where each

story instantiates a single scenario, e.g. baking a cake, getting a haircut, etc. The

stories are manually annotated with script specific event types and participant types.

Additionally, the stories are annotated with coreference chains. InScript would serve as

a useful resource for pursuing further research on scripts and common sense knowledge

in general.

As a final step in the dissertation, in Chapter 6, we presented our attempts to

study the influence of script knowledge on language comprehension. We experimented

with the task of predicting an upcoming discourse referent (DR) in a narrative. To

get an upper bound on the performance, we ran the DR prediction experiment with

humans. We experimented with different models, some with script related features and

some without script related features. We tested our hypothesis with the help of the

Inscript corpus. We ran a battery of experiments to study the contribution of different

features. In all the experiments, across all the metrics, we observed a significant

contribution of script knowledge in predicting the upcoming discourse referent. Our

experiments concluded that script knowledge makes a significant contribution towards

language comprehension. This is a foundational result and encourages further research

on cognitive and computational aspects of scripts.

7.2 Future Directions

In this dissertation, we explored some of the foundational questions concerning script

knowledge. We believe this is just the beginning and a lot more needs to be explored.

We highlight some of the possible directions that would be interesting from a research

7.2 Future Directions 152

point of view. Note that the ideas presented next are speculative and do not go into

details but only outline some new directions which could be explored in the future.

7.2.1 Multi-Script Modeling

The script models explored in this dissertation modeled each scenario in isolation. This

rarely happens in the typically occurring natural texts in newspapers, blog stories, etc.

Typically, most of the natural texts instantiate several scenarios. For example, a text

may describe a story of a person traveling in a bus. While doing so the person may

be reviewing a research paper and discussing it with his co-passenger. In this story,

events from two script scenarios are instantiated: Riding in a bus and Review a

research paper.

One of the ways of modeling such a mixture of scenarios could be via latent variable

models. Such natural texts can be modeled using a mixture of scenarios, where each

scenario is a latent variable. We do not explicitly propose any model but outline

the possible generative process. Text can be generated as follows: a scenario would

be sampled from a distribution over scenarios. The event would be generated from

the sampled scenario (via some scenario specific event distribution). With the help

of the sampled event, one could sample relevant verbal predicate and corresponding

participants. Since event types instantiated in the text do not occur in isolation, in

the generative model described above, one would have to model dependencies among

the events and scenarios, for example with techniques used for modeling dependencies

in topic models (or more generally, latent variable models) (Inouye et al., 2014).

7.2.2 Script Modeling via Reinforcement Learning

An ESD for the script could be generated by incrementally predicting events one by

one. This is akin to the situation wherein an agent is traversing through the space of

7.2 Future Directions 153

script events. By the space of script events, we refer to a discretized space where each

point/state is an event. The agent is at one particular point (event) in the space and

takes an action based on current and previous states. The action results in the agent

being in another state/event. Every action has a reward associated with it.

Looking from the above described perspective, scripts can be modeled in the

framework of reinforcement learning (Kaelbling et al., 1996; Sutton and Barto, 1998)

or more generally in the framework of deep reinforcement learning (Li, 2017). In the

reinforcement learning setup, an agent would be exploring all the possible states (events

in our case) in order to achieve the final goal of completing the scenario. The sequence

of actions taken by the agent is the policy for the agent. The policy corresponds

to an ESD for the script. The action taken at each state (event) would depend on

the previous state and reward for the next state. Our neural event ordering model

proposed in Chapter 4 has state of the art performance. Is it possible to approximate

the action value function via the neural event ordering model? It seems it could be

possible to learn an optimal policy (sequence of events) for a scenario by training via the

conventional reinforcement learning setup combined with the neural approximate action-

value function. Research in the area of dialogue generation using deep reinforcement

learning (Li et al., 2016) may be helpful in pursuing the above-described idea.

7.2.3 Scripts for Coreference Resolution

In Chapter 6, we empirically established that script knowledge makes a significant

contribution towards predicting an upcoming discourse referent. An obvious next step

is to include script knowledge in coreference resolution systems. This seems to be

a natural step in this direction but it comes with its own challenges. Most of the

coreference resolution systems are modeled on natural texts, which involve a mixture of

scenarios. One would need some technique which would identify the possible scenarios

7.2 Future Directions 154

invoked in the text and add appropriate script specific knowledge about participants for

coreference resolution. Recently, there has been work showing the benefits of including

semantic knowledge in an existing coreference resolution system (Peng and Roth, 2016).

We believe that script knowledge should make a significant contribution to conference

resolution.

7.2.4 Scripts and SRL

We have already described the similarities between script participant types and semantic

roles. Since scripts work at the level of discourse, is it possible to employ script

knowledge for semantic role labeling (SRL)? Intuitively, semantic roles invoked in the

current sentence should be influenced by the events and participants in the previous

sentences. SRL systems with script knowledge face similar challenges as outlined

in Section 7.2.3. Recently, there have been attempts to incorporate discourse-level

information in SRL systems (Roth and Lapata, 2015); the idea proposed here, goes in

this direction.

7.2.5 Inference via Scripts

In Section 3.2 on page 39, we outlined an example on how script knowledge could be

useful for drawing inferences. In order to test the contribution of script knowledge

to language understanding and drawing inferences, it might be interesting to create

a question answering task based on using the InScript corpus. This is similar to

currently prevalent approaches for testing machines’ ability to answer questions based

on observed text and common sense reasoning, e.g. Facebook’s bAbI1 project (Bordes

et al., 2015), SQuAD2 (Stanford Question Answering Dataset) (Rajpurkar et al.,
1https://research.fb.com/downloads/babi/
2https://rajpurkar.github.io/SQuAD-explorer/

https://research.fb.com/downloads/babi/
https://rajpurkar.github.io/SQuAD-explorer/

7.2 Future Directions 155

2016), the Winograd Schema Challenge3 (Levesque et al., 2011), etc. The proposed

question answering dataset would be different from existing ones as it would specifically

contain questions which would require drawing inferences based on script knowledge.

There could be different categories of questions that could be included in the dataset,

for example causal questions, reasoning questions, or questions about identifying

participants performing an action.

7.2.6 Multimodal Script Modeling

In this dissertation, we explored one modality for modeling script knowledge, i.e. text.

But script knowledge is not restricted to just text. Videos are also a good source of

script information. It would be interesting to complement the textual information with

information from videos. Previously, attempts (e.g. Regneri et al. (2013); Rohrbach

et al. (2012, 2013)) have been made in this direction, but they have been limited to

a single domain, i.e. cooking. As explained in the thesis, annotating script oriented

text is challenging. Is it possible to complement this with information from videos?

With great advances made in the area of deep learning and image/video processing

(Karpathy et al., 2014; Szegedy et al., 2015), today we have fairly accurate activity

recognition systems (Chen, 2010; Ji et al., 2013; Le et al., 2011; Taylor et al., 2010)

available at our disposal. It would be interesting to have models that jointly learn

event structure from actions in the videos and event descriptions in the texts.

3http://commonsensereasoning.org/winograd.html

http://commonsensereasoning.org/winograd.html

References

Robert P. Abelson. Psychological Status of the Script Concept. American Psychologist,
36(7):715, 1981.

Woo-Kyoung Ahn, Raymond J. Mooney, William F. Brewer, and Gerald F. DeJong.
Schema Acquisition from One Example: Psychological Evidence for Explanation-
Based Learning. Technical report, DTIC Document, 1987.

James F. Allen. Maintaining Knowledge about Temporal Intervals. Communications
of the ACM, 26(11):832–843, 1983.

Jennifer E. Arnold. The Effect of Thematic Roles on Pronoun Use and Frequency of
Reference Continuation. Discourse Processes, 31(2):137–162, 2001.

Bernard J. Baars and Nicole M. Gage. Cognition, Brain, and Consciousness: Introduc-
tion to Cognitive Neuroscience. Academic Press, 2010.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe. The Berkeley FrameNet Project.
In Proceedings of the Thirty-Sixth Annual Meeting of the Association for Compu-
tational Linguistics and Seventeenth International Conference on Computational
Linguistics (ACL-COLING’98), pages 86–90, Montreal, Canada, 1998.

David Bamman, Brendan O’Connor, and Noah A. Smith. Learning Latent Personas
of Film Characters. In Proceedings of the Annual Meeting of the Association for
Computational Linguistics (ACL), page 352, 2014.

Marco Baroni and Alessandro Lenci. Distributional Memory: A General Framework
for Corpus-based Semantics. Computational Linguistics, 36(4):673–721, 2010.

Marco Baroni and Robert Zamparelli. Nouns Are Vectors, Adjectives Are Matrices:
Representing Adjective-noun Constructions in Semantic Space. In Proceedings of
EMNLP, 2011.

Marco Baroni, Georgiana Dinu, and Germán Kruszewski. Don’t Count, Predict! A
Systematic Comparison of Context-counting Vs. Context-predicting Semantic Vectors.
In Proceedings of the 52nd Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 238–247, Baltimore, Maryland, June
2014. Association for Computational Linguistics.

Daniel Bauer, Hagen Fürstenau, and Owen Rambow. The Dependency-parsed FrameNet
Corpus. In International conference on Language Resources and Evaluation (LREC),
Istanbul, Turkey, 2012.

References 157

Francis S. Bellezza and Gordon H. Bower. Remembering Script-based Text. Poetics,
11(1):1–23, 1982.

Yoshua Bengio, Réjean Ducharme, and Pascal Vincent. A Neural Probabilistic Language
Model. In Advances in Neural Information Processing Systems, NIPS, 2001.

Jonathan Berant, Ido Dagan, and Jacob Goldberger. Global Learning of Typed
Entailment Rules. In Proceedings of ACL, 2011.

Elisa Bertino, Barbara Catania, and Gian Piero Zarri. Intelligent Database Systems.
Addison-Wesley, 2001. ISBN 0-201-87736-8.

Eckhard Bick. A FrameNet for Danish. Nealt Proceedings Series, 11:34, 2011.

Antoine Bordes, Nicolas Usunier, Alberto Garcia-Duran, Jason Weston, and Oksana
Yakhnenko. Translating Embeddings for Modeling Multi-relational Data. In Advances
in Neural Information Processing Systems, NIPS, 2013.

Antoine Bordes, Nicolas Usunier, Sumit Chopra, and Jason Weston. Large-scale Simple
Question Answering with Memory Networks. arXiv preprint arXiv:1506.02075, 2015.

Lars Borin, Dana Dannélls, Markus Forsberg, Maria Toporowska Gronostaj, and
Dimitrios Kokkinakis. The past Meets the Present in Swedish FrameNet++. In 14th
EURALEX International Congress, pages 269–281, 2010.

Jan A. Botha and Phil Blunsom. Compositional Morphology for Word Representations
and Language Modelling. In Proceedings of ICML, 2014.

Gordon H. Bower, John B. Black, and Terrence J. Turner. Scripts in Memory for Text.
Cognitive Psychology, 11(2):177–220, 1979.

A. Burchardt, K. Erk, A. Frank, A. Kowalski, S. Pado, and M. Pinkal. The SALSA
Corpus: A German Corpus Resource for Lexical Semantics. In LREC, 2006.

Richard H. Byrd, Peihuang Lu, Jorge Nocedal, and Ciyou Zhu. A Limited Mem-
ory Algorithm for Bound Constrained Optimization. SIAM Journal on Scientific
Computing, 16(5):1190–1208, 1995.

Xavier Carreras and Lluís Màrquez. Introduction to the CoNLL-2005 Shared Task:
Semantic Role Labeling. In CoNLL, 2005.

Nathanael Chambers and Dan Jurafsky. Unsupervised Learning of Narrative Schemas
and Their Participants. In Proceedings of ACL, 2009.

Nathanael Chambers and Daniel Jurafsky. Unsupervised Learning of Narrative Event
Chains. In Proceedings of ACL, 2008.

Bo Chen. Deep Learning of Invariant Spatio-temporal Features from Video. PhD thesis,
University of British Columbia, 2010.

Timothy Chklovski and Patrick Pantel. VerbOcean: Mining the Web for Fine-Grained
Semantic Verb Relations. In Proceedings of EMNLP, 2004.

References 158

R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu, and P. Kuksa. Natural
Language Processing (Almost) from Scratch. Journal of Machine Learning Research,
12:2493–2537, 2011.

Richard Edward Cullingford. Script Application: Computer Understanding of Newspa-
per Stories. PhD thesis, Yale University, New Haven, CT, USA, 1977.

Robert Dale, Hermann Moisl, and Harold Somers. A Handbook of Natural Language
Processing: Techniques and Applications for the Processing of Language as Text,
2000.

D. Das and N.A. Smith. Semi-supervised Frame-semantic Parsing for Unknown Predi-
cates. In Proceedings of the 49th Annual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume 1, pages 1435–1444. Association
for Computational Linguistics, 2011.

D. Das, N. Schneider, D. Chen, and N.A. Smith. Probabilistic Frame-semantic Pars-
ing. In Human Language Technologies: The 2010 Annual Conference of the North
American Chapter of the Association for Computational Linguistics, pages 948–956.
Association for Computational Linguistics, 2010.

Marie-Catherine de Marneffe, Bill MacCartney, and Christopher D. Manning. Gener-
ating Typed Dependency Parses from Phrase Structure Parses. In Proceedings of
LREC, 2006.

Gerald Francis Dejong, II. Skimming Stories in Real Time: An Experiment in Inte-
grated Understanding. PhD thesis, Yale University, New Haven, CT, USA, 1979.
AAI7925621.

Martijn Den Uyl and Herre Van Oostendorp. The Use of Scripts in Text Comprehension.
Poetics, 9(1-3):275–294, 1980.

Pedro Domingos. The Master Algorithm: How the Quest for the Ultimate Learning
Machine Will Remake Our World. Basic Books, 2015.

Georg Dorffner, R. Reilly St, and N. Sharkey. A Step toward Sub-symbolic Language
Models without Linguistic Representations. Connectionist Approaches to Natural
Language Processing, 1, 1992.

John Duchi, Elad Hazan, and Yoram Singer. Adaptive Subgradient Methods for Online
Learning and Stochastic Optimization. Journal of Machine Learning Research, 12
(Jul):2121–2159, 2011.

Michael G. Dyer. Connectionist Natural Language Processing: A Status Report.
In Computational Architectures Integrating Neural and Symbolic Processes, pages
389–429. Springer, 1995.

Michael G. Dyer, Richard E. Cullingford, and Sergio Alvarado. Scripts. Encyclopedia
of Artificial Intelligence, 2:980–994, 1987.

Michael George Dyer. In-Depth Understanding. A Computer Model of Integrated
Processing for Narrative Comprehension. Technical report, DTIC Document, 1982.

References 159

Jeffrey L. Elman. Distributed Representations, Simple Recurrent Networks, and
Grammatical Structure. Machine learning, 7(2-3):195–225, 1991.

K. Erk and S. Pado. SHALMANESER–a Toolchain for Shallow Semantic Parsing. In
Proceedings of LREC, volume 6. Citeseer, 2006.

Brian S. Everitt. The Analysis of Contingency Tables. CRC Press, 1992.

Thomas S. Ferguson. A Bayesian Analysis of Some Nonparametric Problems. The
Annals of Statistics, 1(2):209–230, 1973.

Francis Ferraro and Benjamin Van Durme. A Unified Bayesian Model of Scripts,
Frames and Language. In AAAI, pages 2601–2607, 2016.

Charles Fillmore. Frame Semantics and the Nature of Language. Annals of the New
York Academy of Sciences, 280(1):20–32, 1976.

Charles J. Fillmore. The Case for Case. In Bach E. and Harms R.T., editors, Universals
in Linguistic Theory, pages 1–88. Holt, Rinehart, and Winston, New York, 1968.

Charles J. Fillmore. The Need for a Frame Semantics in Linguistics. Scriptor, 1977a.

Charles J. Fillmore. Scenes-and-Frames Semantics. Fundamental Studies in Computer
Science. North Holland Publishing, 1977b.

Charles J. Fillmore. Frame Semantics, pages 111–137. Hanshin Publishing Co., Seoul,
South Korea, 1982.

Charles J. Fillmore. Frames and the Semantics of Understanding. Quaderni di
Semantica, 6(2):222–254, 1985.

Charles J. Fillmore and Collin F. Baker. Frame Semantics for Text Understanding. In
Proceedings of WordNet and Other Lexical Resources Workshop, Pittsburgh, June
2001. NAACL, NAACL.

Joseph L. Fleiss. Measuring Nominal Scale Agreement among Many Raters. Psycho-
logical bulletin, 76(5):378, 1971.

Lea Frermann, Ivan Titov, and Manfred Pinkal. A Hierarchical Bayesian Model for
Unsupervised Induction of Script Knowledge. In EACL, 2014.

Kumiko Fukumura and Roger P.G. Van Gompel. Choosing Anaphoric Expressions:
Do People Take into Account Likelihood of Reference? Journal of Memory and
Language, 62(1):52–66, 2010.

Hagen Fürstenau and Mirella Lapata. Graph Alignment for Semi-Supervised Semantic
Role Labeling. In EMNLP, 2009.

James A. Galambos. Normative Studies of Six Characteristics of Our Knowledge of
Common Activities. Behavior Research Methods & Instrumentation, 15(3):327–340,
1983.

References 160

James A. Galambos and John B. Black. Getting and Using Context: Functional Con-
straints on the Organization of Knowledge. In Proceedings of the Fourth Conference
of the Cognitive Science Society, 1982.

James A. Galambos and John B. Black. Using Knowledge of Activities to Understand
and Answer Questions. The Psychology of Questions, pages 157–189, 1985.

James A. Galambos and Lance J Rips. Memory for Routines. Journal of Verbal
Learning and Verbal Behavior, 21(3):260–281, 1982.

Martin Charles Golumbic and Ron Shamir. Complexity and Algorithms for Reasoning
About Time: A Graph-theoretic Approach. Journal of ACM, 40(5):1108–1133, 1993.

Andrew Gordon. Browsing Image Collections with Representations of Common-sense
Activities. JAIST, 52(11), 2001.

Arthur C. Graesser, Sallie E. Gordon, and John D. Sawyer. Recognition Memory for
Typical and Atypical Actions in Scripted Activities: Tests of a Script Pointer+ Tag
Hypothesis. Journal of Verbal Learning and Verbal Behavior, 18(3):319–332, 1979.

Arthur C Graesser, Stanley B Woll, Daniel J Kowalski, and Donald A Smith. Memory
for Typical and Atypical Actions in Scripted Activities. Journal of Experimental
Psychology: Human Learning and Memory, 6(5):503, 1980.

Mark Granroth-Wilding and Stephen Clark. What Happens Next? Event Prediction
Using a Compositional Neural Network Model. In Proceedings of AAAI, 2015.

Trond Grenager and Christoph D. Manning. Unsupervised Discovery of a Statistical
Verb Lexicon. In EMNLP, 2006.

Thomas L Griffiths and Mark Steyvers. Finding Scientific Topics. Proceedings of the
National academy of Sciences, 101(suppl 1):5228–5235, 2004.

Rakesh Gupta and Mykel J. Kochenderfer. Common Sense Data Acquisition for Indoor
Mobile Robots. In Proceedings of AAAI, 2004.

Jan Hajič, Massimiliano Ciaramita, Richard Johansson, Daisuke Kawahara, Maria An-
tònia Martí, Lluís Màrquez, Adam Meyers, Joakim Nivre, Sebastian Padó, Jan
Štěpánek, Pavel Straňák, Mihai Surdeanu, Nianwen Xue, and Yi Zhang. The CoNLL-
2009 Shared Task: Syntactic and Semantic Dependencies in Multiple Languages. In
Proceedings of the 13th Conference on Computational Natural Language Learning
(CoNLL-2009), June 4-5, 2009.

Geoffrey E. Hinton. Distributed Representations. Technical Report CMU-CS-84-157,
Carnegie Mellon University, 1984.

Geoffrey E. Hinton. Learning Distributed Representations of Concepts. In Proceedings
of the Eighth Annual Conference of the Cognitive Science Society, volume 1, page 12.
Amherst, MA, 1986.

Geoffrey E. Hinton, James L. Mc Clelland, and David E. Rumelhart. Distributed
Representations, Parallel Distributed Processing: Explorations in the Microstructure
of Cognition, Vol. 1: Foundations, 1986.

References 161

Geoffrey E. Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Improving Neural Networks by Preventing Co-adaptation of Feature
Detectors. arXiv: CoRR, abs/1207.0580, 2012.

David I. Inouye, Pradeep Ravikumar, and Inderjit S. Dhillon. Admixture of Poisson
MRFs: A Topic Model with Word Dependencies. In ICML, pages 683–691, 2014.

T. Florian Jaeger. Redundancy and Reduction: Speakers Manage Syntactic Information
Density. Cognitive Psychology, 61(1):23–62, 2010.

T. Florian Jaeger, Esteban Buz, E.M. Fernandez, and H.S. Cairns. Signal Reduction
and Linguistic Encoding. Handbook of Psycholinguistics. Wiley-Blackwell, 2016.

Bram Jans, Steven Bethard, Ivan Vulić, and Marie Francine Moens. Skip N-grams and
Ranking Functions for Predicting Script Events. In Proceedings of the 13th Conference
of the European Chapter of the Association for Computational Linguistics, EACL
’12, pages 336–344, Stroudsburg, PA, USA, 2012. Association for Computational
Linguistics. ISBN 978-1-937284-19-0. URL http://dl.acm.org/citation.cfm?id=
2380816.2380858.

Shuiwang Ji, Wei Xu, Ming Yang, and Kai Yu. 3D Convolutional Neural Networks
for Human Action Recognition. IEEE transactions on pattern analysis and machine
intelligence, 35(1):221–231, 2013.

Li Jihong, Wang Ruibo, Wang Weilin, and Li Guochen. Automatic Labeling of Semantic
Roles on Chinese FrameNet. Journal of Software, 21(4):597–611, 2010.

Richard Johansson and Pierre Nugues. Dependency-based Semantic Role Labeling of
PropBank. In EMNLP, 2008.

Daniel Jurafsky and James H. Martin. Speech and Language Processing (2nd Edition).
Prentice-Hall, Inc., Upper Saddle River, NJ, USA, 2009. ISBN 0131873210.

Leslie Pack Kaelbling, Michael L Littman, and Andrew W Moore. Reinforcement
Learning: A Survey. Journal of Artificial Intelligence Research, 4:237–285, 1996.

Andrej Karpathy, George Toderici, Sanketh Shetty, Thomas Leung, Rahul Sukthankar,
and Li Fei-Fei. Large-scale Video Classification with Convolutional Neural Networks.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 1725–1732, 2014.

Daisuke Kawahara, Daniel Peterson, Octavian Popescu, Martha Palmer, and Fon-
dazione Bruno Kessler. Inducing Example-based Semantic Frames from a Massive
Amount of Verb Uses. In EACL, pages 58–67, 2014.

Atif Khan, Naomie Salim, and Yogan Jaya Kumar. A Framework for Multi-document
Abstractive Summarization Based on Semantic Role Labelling. Applied Soft Com-
puting, 30:737–747, 2015.

Jeong-uk Kim, Younggyun Hahm, and Key-Sun Choi. Korean FrameNet Expansion
Based on Projection of Japanese FrameNet. CoLing, 2016.

http://dl.acm.org/citation.cfm?id=2380816.2380858
http://dl.acm.org/citation.cfm?id=2380816.2380858

References 162

Janet Kolodner. Case-Based Reasoning. Morgan Kaufmann, 2014.

Janet L. Kolodner. Retrieval and Organizational Strategies in Conceptual Memory : A
Computer Model, volume 16. Hillsdale, NJ, Erlbaum, 1984.

Gina R Kuperberg. Separate Streams Or Probabilistic Inference? What the N400 Can
Tell Us about the Comprehension of Events. Language, Cognition and Neuroscience,
31(5):602–616, 2016.

Gina R. Kuperberg and T. Florian Jaeger. What Do We Mean by Prediction in
Language Comprehension? Language, Cognition and Neuroscience, 31(1):32–59,
2016.

Marta Kutas, Katherine A. DeLong, and Nathaniel J. Smith. A Look around at What
Lies Ahead: Prediction and Predictability in Language Processing. Predictions in
the Brain: Using Our Past to Generate a Future, pages 190–207, 2011.

J. Richard Landis and Gary G. Koch. The Measurement of Observer Agreement for
Categorical Data. Biometrics, 33(1):pp. 159–174, 1977. ISSN 0006341X. URL
http://www.jstor.org/stable/2529310.

Joel Lang and Mirella Lapata. Unsupervised Induction of Semantic Roles. In ACL,
2010.

Joel Lang and Mirella Lapata. Unsupervised Semantic Role Induction via Split-Merge
Clustering. In ACL, 2011a.

Joel Lang and Mirella Lapata. Unsupervised Semantic Role Induction with Graph
Partitioning. In EMNLP, 2011b.

Quoc V Le, Will Y Zou, Serena Y Yeung, and Andrew Y Ng. Learning Hierarchical
Invariant Spatio-temporal Features for Action Recognition with Independent Sub-
space Analysis. In Computer Vision and Pattern Recognition (CVPR), 2011 IEEE
Conference on, pages 3361–3368. IEEE, 2011.

G. Lee, M. Flowers, and M.G. Dyer. A Symbolic/connectionist Script Applier Mecha-
nism. In Proceedings of the Eleventh Annual Conference of the Cognitive Science
Society, pages 714–721, 1989.

Geunbae Lee. Distributed Semantic Representations for Goal/plan Analysis of Narra-
tives in a Connectionist Architecture. PhD thesis, University of California at Los
Angeles, Los Angeles, CA, USA, 1991. UMI Order No. GAX91-22694.

Geunbae Lee, Margot Flowers, and Michael G. Dyer. Learning Distributed Repre-
sentations of Conceptual Knowledge and Their Application to Script-based Story
Processing. In Connectionist Natural Language Processing, pages 215–247. Springer,
1992.

Hector J Levesque, Ernest Davis, and Leora Morgenstern. The Winograd Schema
Challenge. In AAAI Spring Symposium: Logical Formalizations of Commonsense
Reasoning, volume 46, page 47, 2011.

http://www.jstor.org/stable/2529310

References 163

Jiwei Li, Will Monroe, Alan Ritter, Michel Galley, Jianfeng Gao, and Dan Ju-
rafsky. Deep Reinforcement Learning for Dialogue Generation. arXiv preprint
arXiv:1606.01541, 2016.

Yuxi Li. Deep Reinforcement Learning: An Overview. CoRR, abs/1701.07274, 2017.
URL http://arxiv.org/abs/1701.07274.

Jadwiga Linde-Usiekniewicz, Magdalena Derwojedowa, and Magdalena Zawisławska.
Verbal Aspect and the Frame Elements in the FrameNet for Polish, 2008.

Colin L. Mallows. Non-null Ranking Models. I. Biometrika, 44(1/2):114–130, 1957.

Suresh Manandhar, Ioannis P. Klapaftis, Dmitriy Dligach, and Sameer S. Pradhan.
SemEval-2010 Task 14: Word Sense Induction and Disambiguation. In Proceedings
of the 5th International Workshop on Semantic Evaluation, 2010.

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Rose Finkel, Steven
Bethard, and David McClosky. The Stanford CoreNLP Natural Language Processing
Toolkit. In ACL (System Demonstrations), pages 55–60, 2014.

M. Manshadi, R. Swanson, and A.S. Gordon. Learning a Probabilistic Model of
Event Sequences from Internet Weblog Stories. In Proceedings of the 21st FLAIRS
Conference, 2008.

Jirí Materna. Parameter Estimation for LDA-Frames. In HLT-NAACL, pages 482–486,
2013.

Cynthia Matuszek, John Cabral, Michael J. Witbrock, and John DeOliveira. An
Introduction to the Syntax and Content of Cyc. In AAAI Spring Symposium:
Formalizing and Compiling Background Knowledge and Its Applications to Knowledge
Representation and Question Answering, pages 44–49, 2006.

Philip M. McCarthy. An Assessment of the Range and Usefulness of Lexical Diversity
Measures and the Potential of the Measure of Textual, Lexical Diversity (MTLD).
PhD thesis, The University of Memphis, 2005.

Philip M. McCarthy and Scott Jarvis. MTLD, Vocd-D, and HD-D: A Validation Study
of Sophisticated Approaches to Lexical Diversity Assessment. Behavior Research
Methods, 2010.

Neil McIntyre and Mirella Lapata. Learning to Tell Tales: A Data-driven Approach
to Story Generation. In Proceedings of the Joint Conference of the 47th Annual
Meeting of the ACL and the 4th International Joint Conference on Natural Language
Processing of the AFNLP: Volume 1, pages 217–225. Association for Computational
Linguistics, 2009.

Risto Miikkulainen. A Neural Network Model of Script Processing and Memory.
Proceedings of International Workshop on Fundamental Res. for the Next Generation
of Natural Language Processing, Kyoto, Japan, 1991.

Risto Miikkulainen. Subsymbolic Natural Language Processing: An Integrated Model of
Scripts, Lexicon, and Memory. MIT press, 1993.

http://arxiv.org/abs/1701.07274

References 164

Risto Miikkulainen. Script-based Inference and Memory Retrieval in Subsymbolic
Story Processing. Applied Intelligence, 5(2):137–163, 1995.

Risto Miikkulainen and Michael George Dyer. A Modular Neural Network Architecture
for Sequential Paraphrasing of Script-based Stories. In Neural Networks, 1989.
IJCNN., International Joint Conference on, pages 49–56. IEEE, 1989.

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudan-
pur. Recurrent Neural Network Based Language Model. In INTERSPEECH 2010,
11th Annual Conference of the International Speech Communication Association,
Makuhari, Chiba, Japan, September 26-30, 2010, pages 1045–1048, 2010.

Tomas Mikolov, Stefan Kombrink, Anoop Deoras, Lukar Burget, and Jan Cernocky.
RNNLM-Recurrent Neural Network Language Modeling Toolkit. In Proc. of the
2011 ASRU Workshop, pages 196–201, 2011.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean. Distributed
Representations of Words and Phrases and Their Compositionality. In Advances in
Neural Information Processing Systems, NIPS, pages 3111–3119, 2013.

Marvin Minsky. A Framework for Representing Knowledge. New York: McGraw-Hill,
1975.

Ashutosh Modi. Event Embeddings for Semantic Script Modeling. CoNLL-2016, 2016.

Ashutosh Modi and Ivan Titov. Learning Semantic Script Knowledge with Event
Embeddings. arXiv preprint arXiv:1312.5198, 2013.

Ashutosh Modi and Ivan Titov. Inducing Neural Models of Script Knowledge. CoNLL-
2014, page 49, 2014.

Ashutosh Modi, Ivan Titov, and Alexandre Klementiev. Unsupervised Induction of
Frame-Semantic Representations. In Proceedings of the NAACL-HLT Workshop on
Inducing Linguistic Structure, Montreal, Canada, June 2012.

Ashutosh Modi, Tatjana Anikina, Simon Ostermann, and Manfred Pinkal. InScript:
Narrative Texts Annotated with Script Information. LREC-2016, 2016.

Ashutosh Modi, Ivan Titov, Vera Demberg, Asad Sayeed, and Manfred Pinkal. Modeling
Semantic Expectations: Using Script Knowledge for Referent Prediction. Transac-
tions of ACL, 5:31–44, 2017.

Raymond J Mooney. Learning Plan Schemata from Observation: Explanation-Based
Learning for Plan Recognition. Cognitive Science, 14(4):483–509, 1990.

Erik T. Mueller. Natural Language Processing with Thought Treasure. Signiform, 1998.

Katherine Nelson and Janice Gruendel. Generalized Event Representations: Basic
Building Blocks of Cognitive Development. Advances in Developmental Psychology,
1981.

References 165

K.H. Ohara, S. Fujii, T. Ohori, R. Suzuki, H. Saito, and S. Ishizaki. The Japanese
FrameNet Project: An Introduction. In Proceedings of LREC-04 Satellite Workshop
“Building Lexical Resources from Semantically Annotated Corpora” (LREC 2004),
pages 9–11, 2004.

John Walker Orr, Prasad Tadepalli, Janardhan Rao Doppa, Xiaoli Fern, and Thomas G
Dietterich. Learning Scripts as Hidden Markov Models. In AAAI, pages 1565–1571,
2014.

Ahmed Hamza Osman, Naomie Salim, Mohammed Salem Binwahlan, Ssennoga Twaha,
Yogan Jaya Kumar, and Albaraa Abuobieda. Plagiarism Detection Scheme Based
on Semantic Role Labeling. In Information Retrieval & Knowledge Management
(CAMP), 2012 International Conference on, pages 30–33. IEEE, 2012.

Alexis Palmer and Caroline Sporleder. Evaluating FrameNet-style Semantic Parsing:
The Role of Coverage Gaps in FrameNet. In COLING, 2010.

M. Palmer, D. Gildea, and P. Kingsbury. The Proposition Bank: An Annotated Corpus
of Semantic Roles. Computational Linguistics, 31(1):71–106, 2005.

Robert Parker, David Graff, Junbo Kong, Ke Chen, and Kazuaki Maeda. English
Gigaword Fifth Edition. Linguistic Data Consortium, LDC2011T07, 2011.

Haoruo Peng and Dan Roth. Two Discourse Driven Language Models for Semantics.
arXiv preprint arXiv:1606.05679, 2016.

Haoruo Peng, Daniel Khashabi, and Dan Roth. Solving Hard Coreference Problems. In
Proceedings of the 2015 Conference of the North American Chapter of the Association
for Computational Linguistics–Human Language Technologies, Denver, USA, 2015.

Karl Pichotta and Raymond J. Mooney. Statistical Script Learning with Multi-argument
Events. EACL 2014, page 220, 2014.

Karl Pichotta and Raymond J. Mooney. Learning Statistical Scripts with LSTM
Recurrent Neural Networks. In Proceedings of the 30th AAAI Conference on Artificial
Intelligence (AAAI-16), Phoenix, Arizona, 2016a.

Karl Pichotta and Raymond J. Mooney. Using Sentence-Level LSTM Language Models
for Script Inference. In Proceedings of the 54th Annual Meeting of the Association
for Computational Linguistics (ACL-16), Berlin, Germany, 2016b.

H. Poon and P. Domingos. Unsupervised Ontology Induction from Text. In Proceedings
of the 48th Annual Meeting of the Association for Computational Linguistics, pages
296–305. Association for Computational Linguistics, 2010.

Hoifung Poon and Pedro Domingos. Unsupervised Semantic Parsing. In EMNLP, 2009.

Altaf Rahman and Vincent Ng. Resolving Complex Cases of Definite Pronouns:
The Winograd Schema Challenge. In Proceedings of the 2012 Joint Conference
on Empirical Methods in Natural Language Processing and Computational Natural
Language Learning, pages 777–789. Association for Computational Linguistics, 2012.

References 166

Susanne Raisig, Tinka Welke, Herbert Hagendorf, and Elke van der Meer. Insights
Into Knowledge Representation: The Influence of Amodal and Perceptual Variables
on Event Knowledge Retrieval From Memory. Cognitive Science, 33(7):1252–1266,
2009. ISSN 1551-6709. doi: 10.1111/j.1551-6709.2009.01044.x. URL http://dx.doi.
org/10.1111/j.1551-6709.2009.01044.x.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. SQUAD:
100,000+ Questions for Machine Comprehension of Text. arXiv preprint
arXiv:1606.05250, 2016.

Lisa F. Rau, Paul S. Jacobs, and Uri Zernik. Information Extraction and Text
Summarization Using Linguistic Knowledge Acquisition. Information Processing &
Management, 25(4):419–428, 1989.

Michaela Regneri. Event Structures in Knowledge, Pictures and Text. PhD thesis,
Universität des Saarlandes, 2013.

Michaela Regneri, Alexander Koller, and Manfred Pinkal. Learning Script Knowledge
with Web Experiments. In Proceedings of ACL, Uppsala, Sweden, 2010.

Michaela Regneri, Marcus Rohrbach, Dominikus Wetzel, Stefan Thater, Bernt Schiele,
and Manfred Pinkal. Grounding Action Descriptions in Videos. Transactions of the
Association for Computational Linguistics, 1:25–36, 2013.

Ronan G. Reilly and Noel E. Sharkey. Connectionist Approaches to Natural Language
Processing. Lawrence Erlbaum Associates, Inc, 1992.

Hannah Rohde and Andrew Kehler. Grammatical and Information-structural Influences
on Pronoun Production. Language, Cognition and Neuroscience, 29(8):912–927, 2014.

Marcus Rohrbach, Michaela Regneri, Mykhaylo Andriluka, Sikandar Amin, Manfred
Pinkal, and Bernt Schiele. Script Data for Attribute-based Recognition of Composite
Activities. In European Conference on Computer Vision, pages 144–157. Springer,
2012.

Marcus Rohrbach, Wei Qiu, Ivan Titov, Stefan Thater, Manfred Pinkal, and Bernt
Schiele. Translating Video Content to Natural Language Descriptions. In Proceedings
of the IEEE International Conference on Computer Vision, pages 433–440, 2013.

Michael Roth and Mirella Lapata. Context-aware Frame-Semantic Role Labeling.
Transactions of the Association for Computational Linguistics, 3:449–460, 2015.

Rachel Rudinger, Vera Demberg, Ashutosh Modi, Benjamin Van Durme, and Manfred
Pinkal. Learning to Predict Script Events from Domain-specific Text. Lexical and
Computational Semantics (* SEM 2015), page 205, 2015a.

Rachel Rudinger, Pushpendre Rastogi, Francis Ferraro, and Benjamin Van Durme.
Script Induction as Language Modeling. In Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing (EMNLP-15), 2015b.

David E. Rumelhart. Schemata: The Building Blocks of Cognition. Center for Human
Information Processing, University of California, San Diego, 1978.

http://dx.doi.org/10.1111/j.1551-6709.2009.01044.x
http://dx.doi.org/10.1111/j.1551-6709.2009.01044.x

References 167

D. E. Rumlehart, P. Smolensky, J. L. McClelland, and G. E. Hinton. Parallel distributed
processing: Explorations in the microstructure of cognition, vol. 2. In David E.
Rumelhart, James L. McClelland, and Corporate PDP Research Group, editors,
Parallel Distributed Processing: Explorations in the Microstructure of Cognition, Vol.
2, chapter Schemata and Sequential Thought Processes in PDP Models, pages 7–57.
MIT Press, Cambridge, MA, USA, 1986. ISBN 0-262-13218-4.

Josef Ruppenhofer, Michael Ellsworth, Miriam R. L. Petruck, Christopher R. Johnson,
and Jan Scheffczyk. FrameNet II: Extended Theory and Practice. Available at http:
//framenet.icsi.berkeley.edu/index.php?option=com_wrapper&Itemid=126, 2006.

Asad Sayeed, Clayton Greenberg, and Vera Demberg. Thematic Fit Evaluation: An
Aspect of Selectional Preferences. In Proceedings of the First Workshop on Evaluating
Vector Space Representations for NLP (RepEval2016) at ACL 2016, Berlin, Germany,
August 2016. Assocation for Computational Linguistics.

R. C. Schank and R. P. Abelson. Scripts, Plans, Goals, and Understanding. Lawrence
Erlbaum Associates, Potomac, Maryland, 1977.

Roger C. Schank. Dynamic Memory: A Theory of Learning in People and Computers.
Cambridge: Cambridge University Press, 1982.

Roger C. Schank. Tell Me a Story: A New Look at Real and Artificial Intelligence.
Simon & Schuster, 1991.

Roger C. Schank and Chip Cleary. Engines for Education. Lawrence Erlbaum Associates,
Inc, 1995.

Simone Schütz-Bosbach and Wolfgang Prinz. Prospective Coding in Event Representa-
tion. Cognitive Processing, 8(2):93–102, 2007.

Claude E. Shannon. A Mathematical Theory of Communication. The Bell System
Technical Journal, 27(3):379–423, 1948.

Noel E. Sharkey and Don C. Mitchell. Word Recognition in a Functional Context: The
Use of Scripts in Reading. Journal of Memory and Language, 24(2):253–270, 1985.

Noel E. Sharkey and Amanda J.C. Sharkey. What Is the Point of Integration? The
Loci of Knowledge-based Facilitation in Sentence Processing. Journal of Memory
and Language, 26(3):255–276, 1987.

Dan Shen and Mirella Lapata. Using Semantic Roles to Improve Question Answering.
In EMNLP-CoNLL, pages 12–21, 2007.

Push Singh, Thomas Lin, Erik T Mueller, Grace Lim, Travell Perkins, and Wan Li
Zhu. Open Mind Common Sense: Knowledge Acquisition from the General Public.
In On the Move to Meaningful Internet Systems 2002: CoopIS, DOA, and ODBASE,
pages 1223–1237. Springer, 2002.

Richard Socher, Brody Huval, Christopher D. Manning, and Andrew Y. Ng. Semantic
Compositionality through Recursive Matrix-Vector Spaces. In Proceedings of EMNLP,
2012.

http://framenet.icsi.berkeley.edu/index.php?option=com_wrapper&Itemid=126
http://framenet.icsi.berkeley.edu/index.php?option=com_wrapper&Itemid=126

References 168

Rosemary J. Stevenson, Rosalind A. Crawley, and David Kleinman. Thematic Roles,
Focus and the Representation of Events. Language and Cognitive Processes, 9(4):
519–548, 1994.

Carlos Subirats. Spanish FrameNet: A Frame-semantic Analysis of the Spanish Lexi-
con. In Hans Boas, editor, Multilingual FrameNets in Computational Lexicography:
Methods and Applications, pages 135–162. Mouton de Gruyter, Berlin/New York,
2009.

Mihai Surdeanu, Adam Meyers Richard Johansson, Lluís Màrquez, and Joakim Nivre.
The CoNLL-2008 Shared Task on Joint Parsing of Syntactic and Semantic Depen-
dencies. In CoNLL 2008: Shared Task, 2008.

Richard S. Sutton and Andrew G. Barto. Reinforcement Learning: An Introduction,
volume 1. MIT press Cambridge, 1998.

Richard Swier and Suzanne Stevenson. Unsupervised Semantic Role Labelling. In
EMNLP, 2004.

Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet, Scott Reed, Dragomir
Anguelov, Dumitru Erhan, Vincent Vanhoucke, and Andrew Rabinovich. Going
Deeper with Convolutions. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 1–9, 2015.

Graham W. Taylor, Rob Fergus, Yann LeCun, and Christoph Bregler. Convolutional
Learning of Spatio-temporal Features. In European conference on computer vision,
pages 140–153. Springer, 2010.

Wilson L. Taylor. “Cloze Procedure”: a New Tool for Measuring Readability. Journal-
ism Quarterly, 30:415–433, 1953.

Yee Whye Teh. Dirichlet Process. Encyclopedia of Machine Learning, 2007.

W Scott Terry. Learning and Memory: Basic Principles, Processes, and Procedures.
Psychology Press, 2015.

Perry W. Thorndyke and Barbara Hayes-Roth. The Use of Schemata in the Acquisition
and Transfer of Knowledge. Cognitive Psychology, 11(1):82–106, 1979.

Harry Tily and Steven Piantadosi. Refer Efficiently: Use Less Informative Expressions
for More Predictable Meanings. In Proceedings of the Workshop on the Production
of Referring Expressions: Bridging the Gap Between Computational and Empirical
Approaches to Reference, 2009.

Ivan Titov and Alexandre Klementiev. A Bayesian Model for Unsupervised Semantic
Parsing. In ACL, 2011.

Ivan Titov and Alexandre Klementiev. A Bayesian Approach to Semantic Role
Induction. In Proc. EACL, Avignon, France, 2012.

Endel Tulving. Elements of Episodic Memory. New York: Oxford University Press,
1985.

References 169

Joseph Turian, Lev Ratinov, and Yoshua Bengio. Word Representations: A Simple
and General Method for Semi-supervised Learning. In Proceedings of ACL, 2010.

Fiona J. Tweedie and R. Harald Baayen. How Variable May a Constant Be? Measures
of Lexical Richness in Perspective. Computers and the Humanities, 32(5):323–352,
1998.

Lilian Wanzare, Alessandra Zarcone, Stefan Thater, and Manfred Pinkal. DeScript:
A Crowdsourced Database for the Acquisition of High-quality Script Knowledge.
In Proceedings of the 10th International Conference on Language Resources and
Evaluation (LREC 16), Portorož, Slovenia, 2016.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart de Castilho, and Chris Biemann.
WebAnno: A Flexible, Web-based and Visually Supported System for Distributed
Annotations. In ACL (Conference System Demonstrations), pages 1–6, 2013.

Alessandra Zarcone, Marten van Schijndel, Jorrig Vogels, and Vera Demberg. Salience
and Attention in Surprisal-based Accounts of Language Processing. Frontiers in
Psychology, 7:844, 2016.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Introduction
	1.2 Frame Semantics
	1.3 Script Knowledge
	1.4 Thesis Structure
	1.5 Thesis Contributions

	2 Unsupervised Induction of Frame-Semantic Representations
	2.1 Introduction
	2.2 Unsupervised SRL: Motivation
	2.3 Task Definition
	2.4 Model and Inference
	2.4.1 Dirichlet Process and Chinese Restaurant Process
	2.4.2 A Model for Frame-Semantic Parsing
	2.4.3 Inference

	2.5 Experimental Evaluation
	2.5.1 Data
	2.5.2 Evaluation Metrics
	2.5.3 Model Parameters
	2.5.4 Qualitative Evaluation
	2.5.5 Quantitative Evaluation

	2.6 Related Work
	2.7 Conclusions

	3 Scripts
	3.1 Introduction
	3.2 Scripts: Motivation
	3.3 Scripts: Cognitive Perspective
	3.4 Scripts: Computational Perspective
	3.5 Recent Work on Scripts
	3.6 Conclusion

	4 Neural Models of Script Knowledge
	4.1 Introduction
	4.2 Event Ordering Script Model
	4.2.1 Event Representation
	4.2.2 Learning to Order

	4.3 Event Ordering Experiments
	4.3.1 Learning from Crowdsourced Data
	4.3.2 Event Paraphrasing
	4.3.3 Learning from Natural Text

	4.4 Count Based Event Prediction
	4.4.1 Background

	4.5 Event Ordering Tasks Definition
	4.6 Event Prediction Script Model
	4.6.1 Event Representation
	4.6.2 Event Sequence Model

	4.7 Event Prediction Model Evaluation
	4.7.1 Data
	4.7.2 Baselines Systems
	4.7.3 Evaluation Metrics
	4.7.4 Narrative Cloze Evaluation
	4.7.5 Adversarial Narrative Cloze Evaluation

	4.8 Related Work
	4.9 Conclusion

	5 InScript: Narrative Texts Annotated with Script Information
	5.1 Introduction
	5.2 Data Collection
	5.2.1 Collection via Amazon M-Turk
	5.2.2 Data Statistics

	5.3 Annotation
	5.3.1 Annotation Schema
	5.3.2 Development of the Schema
	5.3.3 First Annotation Phase
	5.3.4 Modification of the Schema
	5.3.5 Special Cases

	5.4 Data Analysis
	5.4.1 Inter-Annotator Agreement
	5.4.2 Annotated Corpus Statistics
	5.4.3 Comparison to the DeScript Corpus

	5.5 Conclusion

	6 Modeling Semantic Expectation: Using Script Knowledge for Referent Prediction
	6.1 Introduction
	6.1.1 Scripts

	6.2 Data: The InScript Corpus
	6.3 Referent Cloze Task
	6.4 Referent Prediction Model
	6.4.1 Model
	6.4.2 Features
	6.4.3 Experiments

	6.5 Referring Expression Type Prediction Model (RE Model)
	6.5.1 Uniform Information Density Hypothesis
	6.5.2 A Model of Referring Expression Choice
	6.5.3 RE Model Experiments
	6.5.4 Results

	6.6 Conclusion

	7 Conclusion and Future Directions
	7.1 Thesis Summary
	7.2 Future Directions
	7.2.1 Multi-Script Modeling
	7.2.2 Script Modeling via Reinforcement Learning
	7.2.3 Scripts for Coreference Resolution
	7.2.4 Scripts and SRL
	7.2.5 Inference via Scripts
	7.2.6 Multimodal Script Modeling

	References

