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Abstract

We introduce a sequential subspace optimization (SESOP) method for the iterative solution of
nonlinear inverse problems in Hilbert spaces, based on the well-known methods for linear prob-
lems. The key idea is to use multiple search directions per iteration. Their length is determined by
the nonlinearity and the local character of the forward operator. This choice admits a geometric
interpretation after which the method is originally named: The current iterate is projected sequen-
tially onto (intersections of) stripes, which emerge from affine hyperplanes whose respective normal
vectors are given by the search directions and contain the solution set of the unperturbed inverse
problem. We prove convergence and regularization properties and present a fast method using two
search directions, which is evaluated by solving a simple nonlinear problem.
Furthermore, we extend our methods for complex Hilbert spaces and apply it to solve the in-
verse problem of terahertz tomography, a nonlinear parameter identification problem based on the
Helmholtz equation, which consists in the nondestructive testing of dielectric media. The tested
object is illuminated by an electromagnetic Gaussian beam and the goal is the reconstruction of the
complex refractive index from measurements of the electric field. We conclude with some numerical
reconstructions from synthetic data.

Zusammenfassung

In der vorliegenden Arbeit stellen wir eine Erweiterung der sequentiellen Unterraum-Optimierung
(SESOP) zur Lösung nichtlinearer inverser Probleme in Hilberträumen vor, welche auf den bereits
bekannten Verfahren für lineare Probleme basiert. Dabei handelt es sich um eine iterative Meth-
ode, bei der in jedem Schritt mehrere Suchrichtungen verwendet werden. Die Berechnung der
Schrittweite berücksichtigt die Nichtlinearität des Vorwärtsoperators und lässt eine anschauliche
geometrische Interpretation zu, welche dem Verfahren ursprünglich ihren Namen gab: Die aktuelle
Iterierte wird sequentiell auf (den Schnitt von) Streifen projiziert. Diese Streifen gehen aus affinen
Hyperebenen hervor und enthalten die Lösungsmenge des inversen Problems bei exakten Daten.
Wir zeigen Konvergenz- und Regularisierungseigenschaften des Verfahrens. Insbesondere geben
wir ein schnelles Verfahren mit zwei Suchrichtungen an und evaluieren die Methode anhand eines
einfachen Beispiels.
Anschließend weiten wir die Methode auf komplexe Hilberträume aus und verwenden diese zur
Lösung des inversen Problems der Terahertz-Tomographie. Dabei wird ein nichtleitendes, nicht-
magnetisches Objekt mithilfe eines elektromagnetischen Gaußstrahls abgetastet. Das Ziel ist die
Rekonstruktion des komplexen Brechungsindex aus Messungen des elektrischen Feldes. Dieses
inverse Problem modellieren wir als Parameteridentifikationsproblem mithilfe der Helmholtzglei-
chung. Schließlich erzeugen wir für verschiedene Objekte synthetische Daten und rekonstruieren
daraus den komplexen Brechungsindex.

xiii





Introduction

In the wide field of inverse problems, the class of nonlinear inverse problems has seen a great
development in recent years. Nonlinear inverse problems are not only of theoretical interest, they
arise naturally in science and technology and solutions to these problems constitute a major concern
in many fields from engineering and physics to finance. Generally, an inverse problem refers to the
determination of a source function x from information about the source’s impact y. Mathematically,
these problems are modeled by operator equations of the form

F (x) = y,

where F : D(F ) ⊂ X → Y is the forward operator that maps a function x ∈ X to the respective
data y ∈ Y . The space X is called the source space and Y the data space.
The direct problem consists in the calculation of the data y ∈ Y from the knowledge of the function
x ∈ X and it usually corresponds to the (physical) model of the underlying process. Conversely,
the inverse problem is the reconstruction of the source x ∈ X from the given data y ∈ Y .

Depending on their mathematical nature, inverse problems are assigned to special classes of prob-
lems, of which we want to mention two important ones. First of all, we distinguish between linear
and nonlinear inverse problems. Inverse problems are called linear, if the forward operator F is
linear. In that case, we write

Fx = y

to emphasize this property. If F is nonlinear, the respective inverse problem is called nonlinear.
This distinction is essential, as a solution of an inverse problem is strongly dependent on the (non-)
linearity of the forward operator, which we will discuss in some more detail in this work.
Second, the properties of the underlying source and data spaces give rise to a further classification.
The most prominent spaces in inverse problems are Hilbert and Banach spaces, of which a Hilbert
space setting allows a greater variety of tools that are helpful for the recovery of a solution x.
In this work, the focus lies on nonlinear inverse problems in Hilbert spaces.

In applications, the data y are usually subject to noise of a certain noise level δ, such that it
is necessary to develop solution techniques that take into account noisy data yδ and still yield a
useful solution, as a direct inversion of the above operator equation mostly leads to bad results.
This effect is due to the ill-posedness of such mathematical problems and has been classified by
Hadamard for linear forward operators [35]: The (linear) problem is well-posed, if the equation
Fx = y has a solution for each y ∈ Y , if this solution is unique and if the inverse operator F−1 is
continuous, such that the solution x depends continuously on the data y. If one of these properties
is not fulfilled, the problem is called ill-posed.
In the case of nonlinear forward operators, the ill-posedness is defined as a local property, see,
e.g., [63]: The (nonlinear) operator equation F (x) = y is locally ill-posed in x+ ∈ X, if in each ball
centered at x+ there is a sequence xk that does not converge to x+, whereas the corresponding
sequence of images F (xk) converges to F (x+).

In order to reconstruct an appropriate approximation x+ to a solution x of an ill-posed operator
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equation F (x) = y from noisy data yδ, it is essential to develop a suitable, stable regularizing
method, i.e., an approximation of the inverse mapping by continuous operators, such that the re-
constructed source depends continuously on the noise level δ. The choice of a regularization is
closely related to the nature of the inverse problem we discussed above. A good understanding of
the problem is thus fundamental for the solution.
Taking a closer look at the difference between linear and nonlinear problems and the corresponding
definitions of ill-posedness, we see that the character of nonlinear problems has to be regarded lo-
cally, whereas it is possible to formulate and prove global statements for linear problems. Generally,
information about a nonlinear operator F is given only in a neighborhood of some element x ∈ X,
but not on the whole domain D(F ). Regularization algorithms have to take this into account,
for example by choosing the initial value in an iterative method close enough to the (estimated)
solution, which can be realized by using a priori information.

There is a great range of (regularizing) methods that have been developed for the solution of linear
inverse problems both in Hilbert and Banach spaces, see, e.g., [25, 52, 63]. Many of these have been
adapted for an application in nonlinear inverse problems. An overview can be found in [43, 63].
Popular regularization methods are for example the Tikhonov regularization [26, 43, 58, 67] or the
Landweber iteration, see [39, 42, 44]. The latter one is a standard method in nonlinear inverse
problems, which is known to be extremely stable, but comparatively slow. It thus serves as a
reasonable reference method for a comparison with the subspace methods we develop in this work.
Further regularization techniques are the method of approximate inverse [53], Newton-type methods
such as the iteratively regularized Gauss-Newton method [44] or the inexact Newton method [42,
44, 62], and the conjugate gradient method [38]. In fact, most regularizing techniques for nonlinear
problems are iterative methods, see also [22].

When dealing with practical applications, such as medical imaging or nondestructive testing, re-
construction methods are additionally required to be fast. For this reason, it is highly relevant to
develop faster algorithms that speed up the solution of an inverse problem and enable an economic
evaluation of the respective data.

The sequential subspace optimization (SESOP) and regularizing sequential subspace optimization
(RESESOP) method for the solution of nonlinear inverse problems we present in this work is
designed to reduce computation time. It is inspired by the subspace methods that have first been
presented in [23, 56] for linear problems in finite-dimensional vector spaces and later generalized to
linear inverse problems in Banach spaces [68, 69].
In the development as well as in the analysis of our method, we have to include the local character of
the forward operator F . While the Landweber method is based on the method of steepest descent,
i.e., the new iterate is sought in the search space that is spanned by the gradient of the least squares
functional

Ψ(x) :=
1

2
‖F (x)− y‖2Y ,

the SESOP method can be regarded as an extension of this method towards larger search spaces.
We will see that in both the linear and the nonlinear case the use of the gradient of the least squares
functional as a search direction plays an important role, guaranteeing convergence and, in the case
of noisy data, regularization.
The underlying idea of sequential subspace optimization is to project onto suitable hyperplanes
or stripes, which contain the solution set of the original problem F (x) = y. This originates from
the fact that in the linear case, the solution set itself is a hyperplane. When only noisy data are
available, this is taken into account by regarding stripes instead of hyperplanes. The width of the
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stripes is chosen in the order of the noise level δ. The sequential projection onto these stripes yields
a regularizing method, which has been studied in [69] for linear problems in Banach spaces. When
proceeding to nonlinear problems, we will basically apply two adaptions to the search spaces. First,
as the solution space of a nonlinear problem is in general no longer a hyperplane, we move on to
using stripes already in the unperturbed case, such that the nonlinearity of the forward operator,
measured by the constant ctc in the tangential cone condition∥∥F (x)− F (x̃)− F ′(x)(x− x̃)

∥∥
Y
≤ ctc ‖F (x)− F (x̃)‖Y , 0 ≤ ctc < 1,

determines the width of the stripes. Second, the stripes need to be defined in such a way that
the local properties of the nonlinear operator F are respected. This is realized by relating the
shape of the stripes to the current iterate and the properties of F in and around this iterate.
This will be discussed in detail in Chapter 1. We will give a detailed discussion of the underlying
ideas and finally prove convergence and regularization results for our proposed algorithms. The
methods are evaluated by solving a well-known two-dimensional parameter identification problem
and comparing their performance to a standard Landweber method.

Furthermore, we want to apply our method to a more complex inverse problem, which has seen
a growing importance in research and industry in the last years: the inverse problem of terahertz
(THz) tomography, which is a relatively new imaging technique that is, amongst others, applied in
the nondestructive testing of plastics and ceramics [14, 30, 33, 73]. The tested object is illuminated
by an electromagnetic beam in different positions. The main goal is to reconstruct the object’s
complex refractive index ñ from measurements of the beam’s electric field E around the tested
object. In recent years, there has been great progress in the generation and detection of THz beams,
such that THz radiation has become more and more attractive as a tool in nondestructive testing
[79]. So far, the mathematical methods used in THz tomography are mainly inspired by existing
imaging methods such as computed tomography or ultrasound tomography [28, 29, 61, 74, 77, 78].
The second part of this thesis deals with the mathematical modeling of the direct problem arising
in THz tomography and the solution of the respective inverse problem.

Various further tomographic techniques allow the testing and imaging of objects with different
physical properties for multiple purposes. The most prominent tomographic imaging technique is
the computed tomography or X-ray tomography, where the density of the tested object is recon-
structed from measurements of the intensity of the transmitted rays [57]. Due to the high frequency
of X-rays, the resolution of the reconstructed image is very high, such that even small defects or
structures can be detected. Consequently, this method is well established in medical imaging, for
example in tumor diagnostics, despite the ionizing effect of X-radiation.
Another commonly used imaging technique is ultrasonic tomography [20]. In this case, ultrasonic
radiation is used to gain information about the refractive index and inner boundaries of an object
by measuring the reflected and refracted wave. The relatively long wavelength of the sound waves
limits the resolution of this imaging technique. Yet, it is often applied in medical testing, as ultra-
sound does not affect the structure of human tissue.
Other examples are electrical impedance tomography [10, 15] or magnetic particle imaging [46].
Finally, THz tomography allows the use of different types of measured data (intensities, time-of-
flight measurements) to reconstruct dielectric properties of non-magnetic materials. For the testing,
THz radiation can be generated for example as a continuous wave or in the form of THz pulses.

The knowledge of the complex refractive index of an object allows several conclusions about the
state of the object [30, 55, 79]. First of all, defects such as cracks, holes, or inclusions of air and
other impurities can be identified, as their complex refractive index differs from the surrounding
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medium. For these purposes, it is usually sufficient to reconstruct only the refractive index, i.e.,
the real part of the complex refractive index, to obtain the relevant information. However, in the
nondestructive testing of plastics and ceramics, we are confronted with the problem that it is hard
to distinguish between the refractive indices of different plastics. The imaginary part, which is
proportional to the respective absorption coefficient, thus yields information about an additional
physical property of the materials in question. The absorption coefficient is hard to determine
experimentally, such that a THz tomographic analysis is not only used to identify qualitative, but
also quantitative material properties. Also, it is desirable to draw conclusions about the moisture
content of an object, which affects in particular the absorption coefficient and, consequently, the
imaginary part of the complex refractive index, see [55].

THz radiation is especially suited for the nondestructive testing of plastics and ceramics [30], as
these materials are almost opaque for electromagnetic radiation in this frequency range, resulting
in a high penetration depth. Consequently, THz tomography is not restricted to the testing of thin
objects and is suited to obtain depth information. Due to the relatively long wavelength of THz
radiation in comparison to X-radiation, the wave character of the electromagnetic THz radiation is
more prominent and needs to be taken into account in the modeling. On the other hand, in contrast
to microwave radiation or ultrasound, THz beams have a preferred direction of propagation and a
finite beam width. The intensity peaks around the axis given by the direction of propagation. We
are thus dealing with a beam geometry which combines certain characteristics of rays and spherical
waves. We will discuss the geometry of THz beams in more detail in Section 2.2. This phenomenon
clearly distinguishes the physical modeling of THz tomographic imaging from X-ray and ultrasound
tomography as we are dealing with transmission and absorption (X-ray tomography) as well as
refraction and reflection at boundaries (ultrasound imaging). For this reason, the application of
reconstruction techniques that are suited for either X-ray or ultrasound tomography neglects one
of these aspects, leaving some room for improvements, e.g., in the resolution.

The second part of this thesis complements the work of Tepe et al. [51, 71], who addressed the inverse
problem of THz tomography within the project Entwicklung und Evaluierung der Potenziale von
Terahertz-Tomographie-Systemen (IGF-457 ZN), a joint project together with the Plastics Center in
Würzburg (SKZ) and financed by the AiF (Allianz Industrie und Forschung). An adapted algebraic
reconstruction technique (ART) has been developed, which takes into account the laws of geometric
optics and absorption losses. The forward problem is based on the Radon transform over refracted
ray paths and can be interpreted as a model that is based on the ray character of THz beams. The
results have been published in [71].
We now aim at an approach which mainly focuses on the wave character of THz radiation, such
that the inverse problem in THz tomography that is derived in this work is to be related to the
wide field of scattering problems (see for example [7, 19, 20, 47, 48, 75]). The radiation that has
been used in the tomograph at the SKZ emits continuous wave THz radiation with a frequency
range of 0.07-0.11 THz, such that we are dealing with frequencies at the limits of microwave and
THz radiation. This supports a scattering theoretical approach.

Our underlying physical model is derived from Maxwell’s equations, which represent the most
general model for the mathematical description of the propagation of electromagnetic radiation in
time and space. The specification of the respective physical conditions allows us to derive a simpler
and yet sufficient model to describe a THz beam in vacuum as well as in the presence of objects with
certain physical properties. In our setting, where we are dealing with plastic or ceramic objects
that are neither magnetic nor conductive, the dielectric permittivity inside the area of interest can
be regarded as almost everywhere constant, such that Maxwell’s equations can be combined to
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obtain the wave equation. We use a continuous wave THz source emitting a time-harmonic electric
field E with a fixed wave number k0. Consequently, the wave equation simplifies to the Helmholtz
equation

∆E(x) + k2
0ñ

2(x)E(x) = 0,

where the complex refractive index ñ appears as a parameter in this partial differential equation.
Together with the superposition principle and the analytically given incident field, which is de-
scribed as a Gaussian beam, we obtain an inhomogeneous Helmholtz equation as the basis for the
direct problem of THz tomography. This demonstrates a major benefit of the model presented in
this thesis: The rather complex geometry of the beam is fully taken into account in the calculation
of the resulting total field. These physical basics are to be found in Chapter 2, along with a detailed
analysis of the full problem and the definition of the observation operator to describe the measuring
process. For simplicity we will work with a linear observation operator and restrict ourselves to
synthetic data.

The direct problem in THz tomography is thus modeled by a composition of a nonlinear parameter-
to-solution operator, mapping the complex refractive index ñ to the corresponding solution of
a boundary value problem based on the Helmholtz equation combined with the superposition
principle, and a linear observation operator. The nonlinearity of the forward operator suggests
an iterative solution of the corresponding inverse problem, consisting in the reconstruction of the
parameter ñ from measurements of the total electric field. By means of the nonlinear Landweber
method, we solve the inverse problem of THz tomography, given synthetic (noisy) data. However,
at this point the numerical disadvantage of our model becomes obvious: Each step of the Landweber
iteration requires two computationally expensive evaluations of boundary value problems, the direct
problem and the adjoint problem. The latter turns out to be again a boundary value problem based
on the Helmholtz equation. An application of a faster reconstruction method, such as the sequential
subspace optimization, is thus highly desirable.

The inverse problem we are dealing with in THz tomography is a nonlinear inverse problem in
complex Hilbert spaces. However, the SESOP methods we introduce in Chapter 1 are designed for
applications in real Hilbert spaces and need some further adaption for an application in complex
Hilbert spaces. We discuss the necessary adaptions in Chapter 3 and present an algorithm with
two search directions that meets these requirements.
In Chapter 2, we solve the inverse problem of THz tomography numerically with the nonlinear
Landweber method. We use a low wave number k0 in the microwave spectrum to illuminate an
object with two different inclusions and generate synthetic noisy data for the reconstruction.
Further numerical examples are presented in Chapter 3. For an object with two smaller inclusions
than in the previous test we generate noisy synthetic data, first for the frequency 0.1 THz and
subsequently again for the microwave frequency we used in the Landweber experiment. For the
reconstructions, we use the adapted RESESOP algorithm with two search directions to iteratively
solve the respective inverse problem. We compare the results and give some interpretations of our
methods.

The thesis is concluded by giving a short overview and discussion of the results and an outlook to
future research.

An explanation of the notation and some useful statements from functional analysis are to be found
in the appendix.
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1. Sequential subspace optimization

There are many ways to find a stable solution of an inverse problem when noisy data are given.
Depending on the nature of the problem, a method can be more or less suited for the solution of
a specific problem when it comes to the time that is needed for a reconstruction. Based on the
sequential subspace optimization (SESOP) methods that are discussed in [56] and [68, 69] we want
to present a similar method for nonlinear inverse problems in real Hilbert spaces.
To begin with, we summarize the SESOP methods for linear inverse problems, based on the results
presented in [56, 68, 69]. The theoretical findings of this chapter, dealing with the nonlinear case,
have been published in [72]:

A. Wald, T. Schuster. Sequential subspace optimization for nonlinear inverse problems.
Journal of Inverse and Ill-posed Problems. 25(1), pp. 99-117, 2016.
DOI:10.1515/jiip-2016-0014.

In order to keep the notation as simple as possible, we abstain from denoting the occurring norms
and inner products according to their respective domains in this chapter. As usual, norms are
denoted by ‖·‖ and inner products by 〈·, ·〉.

1.1. SESOP for linear inverse problems

Let X,Y be real Hilbert spaces and A : X → Y a continuous linear operator. The operator
A∗ : X∗ → Y ∗ is the adjoint of A. As X and Y are Hilbert spaces, we have X ∼= X∗ and Y ∼= Y ∗,
and we thus identify X and Y with their respective dual spaces.
We consider the operator equation

Ax = y (1.1)

with the solution set
MAx=y := {x ∈ X : Ax = y} . (1.2)

The range of A is defined as
R(A) := {Ax : x ∈ X} ⊆ Y.

If only noisy data yδ are available, we assume that∥∥∥y − yδ∥∥∥ ≤ δ,
where the noise level is denoted by δ > 0.
We want to utilize an iteration of the form

xn+1 := xn −
∑
i∈In

tn,iA
∗wn,i (1.3)

to calculate a solution x ∈ X, where In is a finite index set and wn,i ∈ Y for all i ∈ In. The index
n ∈ N = {0, 1, 2, ...} is called iteration index. The parameters tn := (tn,i)i∈In ∈ R|In| minimize the
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function

hn(t) :=
1

2

∥∥∥∥∥xn −∑
i∈In

tiA
∗wn,i

∥∥∥∥∥
2

+
∑
i∈In

ti 〈wn,i, y〉 . (1.4)

In [68] it was shown that the minimization of hn(t) is equivalent to computing the metric projection

xn+1 = P⋂
i∈In Hn,i

(xn)

onto the intersection of hyperplanes

Hn,i := {x ∈ X : 〈A∗wn,i, x〉 − 〈wn,i, y〉 = 0} .

Note, thatMAx=y ⊆ Hn,i for all i ∈ In. This property later motivates the approach for a regularizing
sequential subspace optimization method, where we replace the hyperplanes by stripes whose widths
are of the order of the noise level δ and which still contain the solution set MAx=y.

At this point, we give a short overview of some basic tools that are needed throughout this chapter.

Definition 1.1. The metric projection of x ∈ X onto a nonempty closed convex set C ⊆ X is the
unique element PC(x) ∈ C such that

‖x− PC(x)‖2 = min
z∈C
‖x− z‖2 .

(For later convenience, we use the square of the distance.)

The metric projection PC(x) onto a convex set C satisfies a descent property, which reads

‖z − PC(x)‖2 ≤ ‖z − x‖2 − ‖PC(x)− x‖2 (1.5)

for all z ∈ C. In the special case that C is an (affine) hyperplane of X, the metric projection onto
C corresponds to the orthogonal projection and (1.5) becomes an equality, namely an instance of
the classical Pythagorean theorem.

x

C

PC(x)

Figure 1.1.: Metric projection of x onto a convex set C.

Definition 1.2. For u ∈ X \ {0} and α, ξ ∈ R with ξ ≥ 0 we define the hyperplane

H(u, α) := {x ∈ X : 〈u, x〉 = α} ,

the halfspace
H≤(u, α) := {x ∈ X : 〈u, x〉 ≤ α}

and analogously H≥(u, α), H<(u, α) and H>(u, α). Finally, we define the stripe

H(u, α, ξ) := {x ∈ X : |〈u, x〉 − α| ≤ ξ} .

8



Obviously we can write H(u, α, ξ) = H≤(u, α + ξ) ∩ H≥(u, α − ξ) and H(u, α, 0) = H(u, α), i.e.,
the stripe corresponding to u and α with width given by ξ contains the hyperplane H(u, α).

Remark 1.3. The sets defined in Definition 1.2 are convex, and due to u 6= 0 they are nonempty.
In addition, the hyperplane H(u, α), the halfspaces H≤(u, α) and H≥(u, α), and the stripe H(u, α, ξ)
are closed.

Definition 1.4. Let H(u, α, ξ) ⊆ X be a stripe in the Hilbert space X. We call H(u, α + ξ) the
upper bounding hyperplane and H(u, α−ξ) the lower bounding hyperplane of the stripe H(u, α, ξ).

In the Hilbert space setting, the metric projection PH(u,α)(x) of x ∈ X onto a hyperplane H(u, α)
corresponds to an orthogonal projection and we have

PH(u,α)(x) = x− 〈u, x〉 − α
‖u‖2

u. (1.6)

The element u of X can be normalized, such that u/‖u‖ is the normal vector of the bounding
hyperplanes H(u, α± ξ) of the stripe H(u, α, ξ), the parameter α/‖u‖ is the offset and 2ξ/‖u‖ is the
width of the stripe. The normalization may be useful in numerical calculations, if ‖u‖ is very small.

The following statement yields some helpful tools for the analysis of the sequential subspace methods
that are discussed in this work. According to Definition 1.1, the metric (or orthogonal) projection
onto a convex set (particularly onto hyperplanes) can be treated as a minimization problem, such
that it is reasonable to make use of the tools provided by optimization theory, see, e.g., [59].

Proposition 1.5. The proof of the following statements is given in [70] for (convex and uniformly
smooth) Banach spaces and can be easily translated to the situation in Hilbert spaces.

(i) Let H(ui, αi), i = 1, ..., N , be hyperplanes with nonempty intersection

H :=

N⋂
i=1

H(ui, αi).

The projection of x onto H is given by

PH(x) = x−
N∑
i=1

t̃iui, (1.7)

where t̃ = (t̃1, ..., t̃N ) ∈ RN minimizes the convex function

h(t) =
1

2

∥∥∥∥∥x−
N∑
i=1

tiui

∥∥∥∥∥
2

+
N∑
i=1

tiαi, t = (t1, ..., tN ) ∈ RN , (1.8)

with partial derivatives

∂

∂tj
h(t) = −

〈
uj , x−

N∑
i=1

tiui

〉
+ αj . (1.9)

If the vectors ui, i = 1, ..., N , are linearly independent, h is strictly convex and t̃ is unique.
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(ii) Let Hi := H≤(ui, αi), i = 1, 2, be two halfspaces with linearly independent vectors u1 and u2.
Then x̃ is the projection of x onto H1 ∩H2 if and only if it satisfies the Karush-Kuhn-Tucker
conditions for minz∈H1∩H2‖z − x‖2, which read

x̃ = x− t1u1 − t2u2, for some t1, t2 ≥ 0,

αi ≥ 〈ui, x̃〉, i = 1, 2,

0 ≥ ti (αi − 〈ui, x̃〉) , i = 1, 2.

(1.10)

(iii) For x ∈ H>(u, α) the projection of x onto H≤(u, α) is given by

PH≤(u,α)(x) = PH(u,α)(x) = x− t+u, (1.11)

where

t+ =
〈u, x〉 − α
‖u‖2

> 0. (1.12)

(iv) The projection of x ∈ X onto a stripe H(u, α, ξ) is given by

PH(u,α,ξ)(x) =


PH≤(u,α+ξ)(x), if x ∈ H>(u, α+ ξ),

x, if x ∈ H(u, α, ξ),

PH≥(u,α−ξ)(x), if x ∈ H<(u, α− ξ).
(1.13)

Our goal is to use search directions of the form A∗wn,i in each iteration n ∈ N for some finite
index set In. We set un,i := A∗wn,i and choose the offset αn,i such that the solution set MAx=y is
contained in each hyperplane Hn,i := H(un,i, αn,i). The following algorithm provides a method to
compute the metric projection

PMAx=y
(x0)

of x0 ∈ X onto the solution set MAx=y in the case of exact data y ∈ R(A).

Algorithm 1.6. Choose an initial value x0 ∈ X. At iteration n ∈ N, choose a finite index set In
and search directions A∗wn,i with wn,i ∈ Y and i ∈ In. Compute the new iterate as

xn+1 := PHn(xn), (1.14)

where

Hn :=
⋂
i∈In

H(A∗wn,i, 〈wn,i, y〉). (1.15)

We have MAx=y ⊆ Hn as each z ∈MAx=y fulfills

〈A∗wn,i, z〉 = 〈wn,i, Az〉 = 〈wn,i, y〉

for all i ∈ In and n ∈ N. Due to xn+1 ∈ Hn we thus have

〈wn,i, Axn+1 − y〉 = 〈A∗wn,i, xn+1 − z〉 = 0 (1.16)

for all z ∈MAx=y and for all i ∈ In. We define the search space

Un := span {un,i := A∗wn,i : i ∈ In}
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as the linear span of the search directions un,i used in iteration n.
Note that (1.16) yields (xn+1 − z)⊥Un.

As stated in Proposition 1.5, the iterate xn+1 can be computed by a minimization of the convex
function h. The search directions A∗wn,i spanning the subspace in which a minimizing solution
is sought are fixed, so the minimization itself does not require any costly applications of A or its
adjoint A∗. The additional cost caused by higher dimensional search spaces is comparatively minor.

For the weak convergence of the sequence of iterates, the current gradient A∗(Axn − y) of the
functional 1

2‖Ax − y‖
2 evaluated at xn needs to be included in the search space to guarantee an

estimate of the form

‖z − xn+1‖2 ≤ ‖z − xn‖2 −
‖Rn‖2

‖A‖2
(1.17)

for all z ∈ MAx=y, where Rn := Axn − y is the current residual. This is verified by setting, for
example, wn,n := Rn, un,n = A∗wn,n, and using (1.5), as well as the estimate

‖un,n‖ = ‖A∗Rn‖ ≤ ‖A‖ · ‖Rn‖ .

A more detailed analysis of convergence results can be found again in [70].

1.1.1. Regularizing sequential subspace optimization

If only noisy data yδ ∈ Y are given, we modify Algorithm 1.6 to turn it into a regularizing method.
We define the two canonical sets of search directions

Gδn :=
{
A∗(Axδk − yδ) : 0 ≤ k ≤ n

}
(1.18)

and
Dδ
n :=

{
xδk − xδl : 0 ≤ l < k ≤ n

}
. (1.19)

The set Gδn contains the gradients of the least squares functional evaluated at the iterates xδk,
whereas Dδ

n contains the directions given by the differences between two iterates.

The following algorithm takes into account the noise level δ. The underlying idea is to proceed
to projections onto stripes instead of hyperplanes, such that the stripes have a finite width of the
order of the noise level and the solution set MAx=y is still contained in the stripes.

Algorithm 1.7. Choose an initial value xδ0 := x0 and fix some constant τ > 1. At iteration n ∈ N,
choose a finite index set Iδn and search directions A∗wδn,i ∈ Gδn ∪Dδ

n as defined above.

If the residual Rδn satisfies the discrepancy principle

‖Rδn‖ ≤ τδ, (1.20)

stop iterating. Otherwise, compute the new iterate as

xδn+1 := xδn −
∑
i∈Iδn

tδn,iA
∗wδn,i, (1.21)

choosing tδn = (tδn,i)i∈Iδn such that

xδn+1 ∈ Hδ
n :=

⋂
i∈Iδn

H
(
A∗wδn,i, 〈wδn,i, yδ〉, δ‖wδn,i‖

)
(1.22)
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and such that an inequality of the form

‖z − xδn+1‖2 ≤ ‖z − xδn‖2 − C‖Rδn‖2 (1.23)

is valid for all z ∈MAx=y and for some constant C > 0.

The choice A∗wδn,i ∈ Gδn∪Dδ
n together with the linearity of the operator A can be exploited to obtain

a recursion for the computation of the search directions. This is discussed in detail in [69, 70]. An
adaption to the case of nonlinear operators is not possible, therefore we content ourselves with the
reference at this point.
However, we note that MAx=y ⊆ Hδ

n, because for z ∈MAx=y we have∣∣〈A∗wδn,i, z〉 − 〈wδn,i, yδ〉∣∣ =
∣∣〈wδn,i, y − yδ〉∣∣ ≤ δ‖wδn,i‖.

Due to (1.23), the sequence
{
‖z − xδn‖

}
n∈N decreases for a fixed noise level δ. It is proved in [68, 69]

that the discrepancy principle yields a finite stopping index n∗ = n∗(δ) := min{n ∈ N : ‖Rδn‖ ≤ τδ}.

It is possible to prove convergence results and other interesting statements for certain choices of
search directions for the RESESOP method in the linear case. Once again, we recommend to
consult [68, 69, 70] for further details. We want to emphasize though that gradients as search
directions are of special interest already in the case of linear inverse problems. We will see that
they are also a good choice in the nonlinear case. Before looking at a suitable method for nonlinear
inverse problems, we consider an important special case of Algorithm 1.7.

1.1.2. RESESOP with two search directions

We want to summarize a fast way to compute xδn+1 according to Algorithm 1.7, using only two
search directions, such that (1.22) and (1.23) are valid. This algorithm has been suggested and
analyzed by Schöpfer and Schuster in [69] and has been successfully implemented for the numerical
solution of an integral equation of the first kind. It is based on the fact that the projection of
x ∈ X onto the intersection of two halfspaces can be computed by at most two projections, if x is
already contained in one of them.
As a stopping rule we choose the discrepancy principle. We state that this choice has the important
advantage that, as long as the discrepancy principle is not fulfilled, we are in the above described
situation: The current iterate is contained in one stripe, but not in the other one, therefore a
stepwise projection of the current iterate onto the intersection of the respective stripes is possible,
see also Remark 1.9. The following proposition provides the basic results for Algorithms 1.10 and
1.21.

Proposition 1.8. Let Hj := H≤(uj , αj), j = 1, 2, be two halfspaces with H1 ∩ H2 6= ∅. Let
x ∈ H>(u1, α1) ∩ H2. The metric projection of x onto H1 ∩ H2 can be computed by at most two
metric projections onto (the intersection of) the bounding hyperplanes by the following steps.

(i) Compute

x1 := PH(u1,α1)(x) = x− 〈u1, x〉 − α1

‖u1‖2
u1.

Then, for all z ∈ H1, we have

‖z − x1‖2 ≤ ‖z − x‖2 −
(
〈u1, x〉 − α1

‖u1‖

)2

. (1.24)

If x1 ∈ H2, we are done. Otherwise, go to step (ii).
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(ii) Compute

x2 := PH1∩H2(x1).

Then x2 = PH1∩H2(x) and for all z ∈ H1 ∩H2 we have

‖z − x2‖2 ≤ ‖z − x‖2 −

((
〈u1, x〉 − α1

‖u1‖

)2

+

(
〈u2, x1〉 − α2

γ‖u2‖

)2
)
, (1.25)

where

γ :=

1−

( ∣∣〈u1, u2〉
∣∣

‖u1‖ · ‖u2‖

)2
 1

2

∈ (0, 1]. (1.26)

Note that if 〈u1, u2〉 = ‖u1‖ · ‖u2‖ is valid, step (i) of Proposition 1.8 already yields the metric
projection of x onto H1 ∩ H2. Consequently, we have γ ∈ (0, 1]. This is quite intuitive when
considering these two cases in the illustration in Figure 1.2.

Proof. In our Hilbert space setting, equation (1.24) requires no further proof as it follows directly
from estimate (1.5) due to the convexity of H1. To obtain the descent property (1.25) in step (ii),
the statements from Proposition 1.5 are used. Consider the function h, which is associated with
the metric projection onto hyperplanes and let t̃ = (t̃1, t̃2) ∈ R2 minimize h. From ∂/∂tjh(t̃) = 0 for
j = 1, 2 we obtain the system of linear equations

0 = −
〈
u1, x1 − t̃1u1 − t̃2u2

〉
+ α1,

0 = −
〈
u2, x1 − t̃1u1 − t̃2u2

〉
+ α2.

According to the first step we have 〈u1, x1〉 = α1. This yields after some elementary calculations

t̃1 =

(
〈u1, u2〉

〈u1, u2〉2 − (‖u1‖ · ‖u2‖)2

)
·
(
〈u2, x1〉 − α2

)
and

t̃2 = −‖u1‖2
(
〈u1, u2〉2 − (‖u1‖ · ‖u2‖)2

)−1
·
(
〈u2, x1〉 − α2

)
.

Now we easily obtain the descent property (1.25) by using ‖z − x2‖2 ≤ ‖z − x1‖2−
∥∥t̃1u1 + t̃2u2

∥∥2

(see (1.5)) together with (1.24), and the above expressions for t1 and t2. Proposition 1.5 finally
yields

x2 = x1 − t̃1u1 − t̃2u2 = PH1∩H2(x).

In general, this stepwise projection does not yield the correct metric projection, if the projected
point is not included in either of the halfspaces. We have illustrated this for the two-dimensional
case in Figure 1.2 for two stripes: The point x1 is not contained in any of the stripes and the

stepwise metric projections, depending on the order of projections, yield the results y
(1,2)
1 , y

(2,1)
1

that differ from the correct metric projection y1 of x1 onto H1 ∩ H2. On the other hand, the
successive projection of the point x2 onto H1 ∩H2 coincides with the correct metric projection y2.
Note that Proposition 1.8 can easily be applied in the situation of our example in Figure 1.2 just
by defining suitable halfspaces, see also Proposition 1.5.
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x1 x2

H2

H1

H1 ∩H2

y1

y
(2,1)
1

y
(1,2)
1 y2

Figure 1.2.: Example for X = R2: Metric projections y1 = PH1∩H2
(x1) and y2 = PH1∩H2

(x2) onto the

intersection of the two stripes H1 and H2, the points y
(1,2)
1 , y

(2,1)
1 and y2 are the results of

stepwise metric projections as described in Proposition 1.8. Note that y
(1,2)
1 6= y1 6= y

(2,1)
1 .

Remark 1.9. The previous statement is essential for our methods and for the choice of the stopping
criterion. When projecting an element x ∈ X onto the intersection of two halfspaces (or stripes)
H1 and H2 by first calculating x1 = PH1(x) and afterwards x2 = PH1∩H2(x1), we might have
x2 6= PH1∩H2(x). This can occur if x is contained neither in H1 nor in H2. If x is already
contained in H1 or H2, we have equality. This has been illustrated in [69] and in Figure 1.2 for
Hilbert spaces. The reason is that the order of projection plays an important role. If we have for
example x ∈ H1, the order of projections is evident and yields the desired result. This observation
is reflected in the stepwise procedure in Algorithms 1.10 and 1.21.

In the following algorithm, Morozov’s discrepancy principle and the choices In = {n− 1, n} and
wδi := wδn,i := Axδi −yδ for i ∈ In assure that the projections in each step can be calculated uniquely
according to Proposition 1.8, which yields a fast regularizing method to compute a solution of (1.1)
using noisy data.

Algorithm 1.10. Fix an initial value xδ0 := x0 ∈ X and a constant τ > 1 for the discrepancy
principle. In Algorithm 1.7, choose the search direction uδ0 for the first iteration (n = 0) and, for
all iterations n ≥ 1, choose the search directions {uδn, uδn−1}, where

uδn := A∗wδn, wδn := Axδn − yδ.

Define Hδ
−1 := X and, for n ∈ N, the stripes

Hδ
n := H

(
uδn, α

δ
n, δ‖Rδn‖

)
with

αδn := 〈uδn, xδn〉 − ‖Rδn‖2.
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As long as ‖Rδn‖ > τδ, we have

xδn ∈ H>

(
uδn, α

δ
n + δ‖Rδn‖

)
∩Hδ

n−1, (1.27)

and thus calculate the new iterate xδn+1 according to the following two steps.

(i) Compute
x̃δn+1 := PH(uδn,α

δ
n+δ‖Rδn‖)(x

δ
n)

by

x̃δn+1 = xδn −
〈uδn, xδn〉 −

(
αδn + δ‖Rδn‖

)
‖uδn‖2

uδn = xδn −
‖Rδn‖

(
‖Rδn‖ − δ

)
‖uδn‖2

uδn.

Then, for all z ∈MAx=y we have∥∥∥z − x̃δn+1

∥∥∥2
≤
∥∥∥z − xδn∥∥∥2

−
(
‖Rδn‖(‖Rδn‖ − δ)

‖uδn‖

)2

.

If x̃δn+1 ∈ Hδ
n−1, we have x̃δn+1 = PHδ

n∩Hδ
n−1

(xδn). In that case, we define xδn+1 := x̃δn+1 and

are done. Otherwise, go to step (ii).

(ii) Depending on x̃δn+1 ∈ H≷(uδn−1, α
δ
n−1 ± δ‖Rδn−1‖), compute

xδn+1 := PH(uδn,α
δ
n+δ‖Rδn‖)∩H(uδn−1,α

δ
n−1±δ‖Rδn−1‖)

(x̃δn+1),

i.e.,
xδn+1 = x̃δn+1 − tδn,nuδn − tδn,n−1u

δ
n−1,

such that (tδn,n, t
δ
n,n−1) minimizes

h2(t1, t2) :=
1

2

∥∥∥xδn − t1uδn − t2uδn−1

∥∥∥2
+ t1(αδn + δ‖Rδn‖) + t2(αδn−1 ± δ‖Rδn−1‖).

Then we have xδn+1 = PHδ
n∩Hδ

n−1
(xδn) and for all z ∈MAx=y we have

‖z − xδn+1‖2 ≤ ‖z − xδn‖2 − Sδn
with

Sδn :=

(
‖Rδn‖(‖Rδn‖ − δ)

‖uδn‖

)2

+

(∣∣〈uδn−1, x̃
δ
n+1〉 − (αδn−1 ± δ‖Rδn−1‖)

∣∣
γn‖uδn−1‖

)2

and

γn :=

1−

(∣∣〈uδn, uδn−1〉
∣∣

‖uδn‖‖uδn−1‖

)2
 1

2

∈ (0, 1].

Remark 1.11. (a) It is easy to see that (1.27) holds as long as ‖Rδn‖ > τδ. Indeed, the definition
of αδn yields

〈uδn, xδn〉 = αδn + ‖Rδn‖2 > αδn + δ‖Rδn‖,
which represents precisely the condition for xδn to be an element of H>

(
uδn, α

δ
n + δ‖Rδn‖

)
. We

have xδn ∈ Hδ
n−1 due to the previous iteration.

(b) The advantage of this algorithm is that using the current gradient as a search direction assures
that the descent property (1.23) holds, yielding convergence, while the use of the gradient from
the previous step speeds up the descent additionally: the larger the second summand in Sδn,
the greater the descent, see also Remark 1.22 (d).

(c) Proposition 1.8 yields explicit expressions for an implementation.
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1.2. SESOP for nonlinear inverse problems

We now want to develop a method for nonlinear inverse problems based on the one we introduced
in the previous section. To this end, we consider the operator equation

F (x) = y, (1.28)

where F : D(F ) ⊆ X → Y is a nonlinear operator between Hilbert spaces X and Y and D(F ) is
its domain. Our aim is to translate the idea of sequential projections onto stripes to the context of
nonlinear operators. For that purpose, we have to make sure that the solution set

MF (x)=y := {x ∈ X : F (x) = y} (1.29)

is included in any stripe onto which we project in an effort to approach a solution of (1.28). A
simple replacement of A∗ by the adjoint F ′(xn)∗ of the Fréchet derivative F ′(xn) at the current
iterate xn, as might be the first idea given that the current gradient plays an important role in
SESOP methods, does generally not ensure that MF (x)=y is included in a hyperplane or stripe of
the form H

(
F ′(xn)∗wn,i, αn,i, ξn,i

)
as defined previously. The reason is obvious: a solution x of

the nonlinear operator equation (1.28) is in general not mapped to y by F ′(x̃) for some x̃ ∈ D(F ).
Furthermore, the fact that the linearization F ′(x) depends on the position x ∈ X shows that the
local character of nonlinear problems will need to be respected when dealing with problems like
(1.28). This is strongly reflected in the following assumptions on the properties of F .

Let F : D(F ) ⊆ X → Y be continuous and Fréchet differentiable in an open ball

Bρ(x0) := {x ∈ X : ‖x− x0‖ < ρ} ⊆ D(F )

centered at the initial value x0 ∈ D(F ) with radius ρ > 0 and let the mapping

Bρ(x0) 3 x 7→ F ′(x) (1.30)

from Bρ(x0) to the space L(X,Y ) of linear operators be continuous.
We assume the existence of a solution x+ ∈ X of (1.28) satisfying

x+ ∈ B ρ
2
(x0). (1.31)

Furthermore, we postulate that F fulfills the tangential cone condition∥∥F (x)− F (x̃)− F ′(x)(x− x̃)
∥∥ ≤ ctc ‖F (x)− F (x̃)‖ (1.32)

with a nonnegative constant ctc < 1, and the estimate

‖F ′(x)‖ < cF , (1.33)

where cF > 0, for all x, x̃ ∈ Bρ(x0). Moreover, we assume the operator F to be weakly sequentially
closed, such that for some weakly convergent sequence {xn}n∈N with xn ⇀ x and F (xn) → y, we
have

x ∈ D(F ) and F (x) = y.

As before, in the case of perturbed data we assume a noise level δ and postulate∥∥yδ − y∥∥ ≤ δ.
16



Let {xn}n∈N resp.
{
xδn
}
n∈N be the sequence of iterates generated by an iterative reconstruction

method. The residual is defined by

Rn := F (xn)− y

for exact data y and by

Rδn := F (xδn)− yδ

for noisy data yδ. For later convenience, we define the current gradient

gδn := F ′(xδn)∗
(
F (xδn)− yδ

)
(1.34)

in iteration n ∈ N as the gradient of the least squares functional

Ψ(x) :=
1

2

∥∥F (x)− yδ
∥∥2

evaluated at the current iterate xδn. In the noise-free case, the gradient gn is defined analogously.

Proposition 1.12. The validity of the tangential cone condition (1.32) implies that the Fréchet
derivative F ′ fulfills F ′(x) = 0 for some x ∈ Bρ(x0) if and only if F is constant in Bρ(x0).

Proof. Let F ′(x) = 0 for some x ∈ Bρ(x0). For all x̃ ∈ Bρ(x0) the tangential cone condition yields

‖F (x)− F (x̃)‖ ≤ ctc ‖F (x)− F (x̃)‖ ,

which can only be satisfied if F (x̃) = F (x) in Bρ(x0), i.e., F is constant in Bρ(x0).
Now let F be constant in Bρ(x0). The tangential cone condition now yields∥∥F ′(x)(x− x̃)

∥∥ ≤ 0

for all x, x̃ ∈ Bρ(x0), implying F ′(x) = 0 for x ∈ Bρ(x0).

Remark 1.13. The case that F is constant in Bρ(x0) is not interesting in this context. We thus
postulate F ′(x) 6= 0 for all x ∈ Bρ(x0). The estimate (1.33) can thus be reformulated more precisely
as

0 < ‖F ′(x)‖ < cF . (1.35)

Moreover, if we have ctc = 0 in (1.32), the operator F is linear. As we are concerned with the
nonlinear case, we will thus occasionally exclude the case ctc = 0 without any further remarks.

The projection onto hyperplanes in the linear case for exact data is convenient since the solution set
itself is an affine subspace in X, spanned by elements of the null space N (A) of A. When dealing
with nonlinear problems, this is no longer true. Our approach is to consider stripes - similar to
the ones in the RESESOP scheme for linear operators - already for unperturbed data, using the
tangential cone condition.
Due to the local character of nonlinear inverse problems, the stripes will be defined locally as
well, i.e., they will depend on the point of linearization. We will see that it is sufficient for some
assumptions to hold only locally in order to guarantee convergence and regularizing properties.
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1.2.1. The case of exact data

We formulate a sequential subspace optimization method for nonlinear operators, based on the
tangential cone condition, in the case of exact data.

Algorithm 1.14. Choose an initial value x0 ∈ X. At iteration n ∈ N, choose a finite index set In
and define

Hn,i := H(un,i, αn,i, ξn,i) (1.36)

with

un,i := F ′(xi)
∗wn,i,

αn,i := 〈F ′(xi)∗wn,i, xi〉 − 〈wn,i, F (xi)− y〉,
ξn,i := ctc‖wn,i‖ · ‖Ri‖,

(1.37)

and wn,i ∈ Y for all i ∈ In. Compute the new iterate as

xn+1 = xn −
∑
i∈In

tn,iF
′(xi)

∗wn,i, (1.38)

where tn := (tn,i)i∈In are chosen such that

xn+1 ∈
⋂
i∈In

Hn,i, (1.39)

i.e., the new iterate is given by the projection

xn+1 = P⋂
i∈In Hn,i

(xn) = argmin
x∈

⋂
i∈In Hn,i

‖xn − x‖.

The parameters un,i, αn,i and ξn,i are chosen to guarantee the validity of a descent property

‖z − xn+1‖2 ≤ ‖z − xn‖2 − C
(
‖Rn‖, ctc, cF

)
. (1.40)

Definition 1.15. We call un,i, i ∈ In, the search directions and

Un := span {un,i : i ∈ In} ⊆ X

the search space at iteration n ∈ N.

Taking a closer look at the definition of the stripes, we see that we have replaced A∗ with the
adjoint of the linearization of F in the iterate xi. The width of the stripe depends on the constant
ctc from the cone condition (1.32). The other alterations can be interpreted as a localization of
the hyperplanes subject to the local properties of F in a neighborhood of the initial value. This
becomes clear when we write the stripe Hn,i explicitly in the form

Hn,i :=
{
x ∈ X :

∣∣〈F ′(xi)∗wn,i, xi − x〉 − 〈wn,i, F (xi)− y〉
∣∣ ≤ ctc‖wn,i‖‖Ri‖

}
,

i.e., we have to work with distances xi − x and F (xi) − y to the current iterate, respectively the
point of linearization, and to the value of F in xi.

Proposition 1.16. For any n ∈ N, i ∈ In, the solution set MF (x)=y is contained in Hn,i, where
un,i, αn,i, and ξn,i are chosen as in (1.37).
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Proof. Let z ∈MF (x)=y. We then have

〈un,i, z〉 − αn,i = 〈wn,i, F ′(xi)∗(z − xi) + F (xi)− y〉.

With F (z) = y we obtain∣∣〈wn,i, F ′(xi)(z − xi)− F (xi) + F (z)〉
∣∣ ≤ ‖wn,i‖ · ‖F (xi)− F (z)− F ′(xi)(xi − z)‖
≤ ctc‖wn,i‖ · ‖F (xi)− y‖,

where we have used the tangential cone condition (1.32) in the second estimate. The definition of
the residual Ri = F (xi)− y now yields z ∈ Hn,i.

1.2.2. The case of noisy data

Of course we want to extend our method to the case of noisy data. To this end, we again have
to modify the stripes onto which we project, now incorporating the noise level. The following
definition of stripes Hδ

n,i ensures that the solution set is contained in each stripe.

Definition 1.17. For n ∈ N, i ∈ In, and wδn,i ∈ Y we define the stripes

Hδ
n,i := H

(
uδn,i, α

δ
n,i, ξ

δ
n,i

)
with

uδn,i := F ′(xδi )
∗wδn,i,

αδn,i :=
〈
F ′(xδi )

∗wδn,i, x
δ
i

〉
−
〈
wδn,i, F (xδi )− yδ

〉
,

ξδn,i :=
(
δ + ctc(‖Rδi ‖+ δ)

)
‖wδn,i‖.

(1.41)

We obtain the analogous statement as in the noise-free case.

Proposition 1.18. For n ∈ N and i ∈ Iδn, let uδn,i, α
δ
n,i, and ξδn,i be defined as in Definition 1.17.

Then the solution set MF (x)=y is contained in each stripe Hδ
n,i.

Proof. We proceed as in the proof of Proposition 1.16 and obtain∣∣∣ 〈uδn,i, z〉− αδn,i∣∣∣ =
∣∣∣ 〈wδn,i, F ′(xδi )(z − xδi ) + F (xδi )− F (z) + F (z)− yδ

〉 ∣∣∣
≤
∥∥∥wδn,i∥∥∥ · (∥∥∥F (xδi )− F (z)− F ′(xδi )(xδi − z)

∥∥∥+
∥∥∥yδ − y∥∥∥)

≤
∥∥∥wδn,i∥∥∥ · (ctc‖F (xδi )− yδ + yδ − F (z)‖+ δ

)
≤
∥∥∥wδn,i∥∥∥ · (ctc

(
‖Rδi ‖+δ

)
+ δ
)

for any z ∈MF (x)=y.

For the following algorithm we specify our choice of the function wδn,n as the current residual. This
choice guarantees the validity of the descent property, which will be analyzed in the subsequent
section.
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Algorithm 1.19. Choose an initial value xδ0 := x0 and fix some constant τ > 1. At iteration n ∈ N,
choose a finite index set Iδn and search directions F ′(xδi )

∗wδn,i. If the residual Rδn = F (xδn) − yδ
satisfies the discrepancy principle

‖Rδn‖ ≤ τδ, (1.42)

stop iterating. Otherwise, compute the new iterate as

xδn+1 = xδn −
∑
i∈Iδn

tδn,iF
′(xδi )

∗wδn,i, (1.43)

choosing tδn = (tδn,i)i∈Iδn such that

xδn+1 ∈
⋂
i∈Iδn

H(uδn,i, α
δ
n,i, ξ

δ
n,i), (1.44)

where uδn,i, α
δ
n,i, and ξδn,i are defined as in Definition 1.17, and such that an estimate of the form

‖z − xδn+1‖2 ≤ ‖z − xδn‖2 − C
(
‖Rδn‖, δ, ctc, cF

)
(1.45)

holds for all z ∈ MF (x)=y for some constant C > 0, which depends on the norm of the current
residual, the noise level δ, the cone condition and the norm of the Fréchet derivative.

Remark 1.20. The choice n ∈ In and F ′(xδn)∗wδn,n = F ′(xδn)∗(F (xδn)− yδ) turns out to be a handy
choice. By setting

τ >
1 + ctc

1− ctc
,

which assures that xδn ∈ H>

(
uδn,n, α

δ
n,n, ξ

δ
n,n

)
and projecting first onto the stripe Hδ

n,n, we obtain a
descent if the other search directions are chosen appropriately. We exploit this property and present
a regularizing method, inspired by these findings, and give the respective proof.

In the following section, we want to introduce a special case of the above algorithm, where the
choice of search directions not only provides a fast regularized solution of a nonlinear problem
as in (1.28), but also admits a good understanding of the structure of the method. We see that
the current gradient as a search direction plays an important role, as it guarantees that a descent
property holds.

1.2.3. An algorithm with two search directions

In analogy to Algorithm 1.10 we want to develop a fast method for nonlinear operator equations,
where we use only two search directions in each iteration. For linear problems, this method provides
a fast algorithm to calculate a regularized solution of (1.1), where in each step the search space is
spanned by the gradients gδn and gδn−1, see also [69]. In the first step, only the gradient gδ0 is used,
so that the first iteration is similar to a Landweber step.
We will adapt this method for nonlinear inverse problems (1.28) in Hilbert spaces. Later, we
show convergence properties for our proposed algorithm. Also we show that, together with the
discrepancy principle as a stopping rule, we obtain a regularization method for the solution of
(1.28).

The following algorithm is a special case of Algorithm 1.19, where we have chosen Iδ0 = {0} and
Iδn = {n − 1, n} for all n ≥ 1. For convenience, we skip the first index n in the subscript of the
functions and parameters we are dealing with.
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Algorithm 1.21. (RESESOP for nonlinear operators with two search directions) Choose an initial
value xδ0 := x0 ∈ X. In the first step (n = 0) choose uδ0 as the search direction. For all n ≥ 1,
choose the two search directions

{
uδn, u

δ
n−1

}
, where

uδn := F ′(xδn)∗wδn,

wδn := F (xδn)− yδ.
(1.46)

Define Hδ
−1 := X and, for n ∈ N, the stripes

Hδ
n := H(uδn, α

δ
n, ξ

δ
n) (1.47)

with

αδn :=
〈
uδn, x

δ
n

〉
− ‖Rδn‖2,

ξδn := ‖Rδn‖
(
δ + ctc(‖Rδn‖+ δ)

)
.

(1.48)

As a stopping rule choose the discrepancy principle, where

τ >
1 + ctc

1− ctc
> 1. (1.49)

As long as ‖Rδn‖ > τδ, we have

xδn ∈ H>(uδn, α
δ
n + ξδn) ∩Hδ

n−1, (1.50)

and thus calculate the new iterate xδn+1 according to the following two steps.

(i) Compute

x̃δn+1 := PH(uδn,α
δ
n+ξδn)(x

δ
n)

= xδn −
〈
uδn, x

δ
n

〉
−
(
αδn + ξδn

)
‖uδn‖

2 uδn.
(1.51)

Then the descent property

∥∥∥z − x̃δn+1

∥∥∥2
≤
∥∥∥z − xδn∥∥∥2

−

(
‖Rδn‖

(
‖Rδn‖ − δ − ctc(‖Rδn‖+ δ)

)
‖uδn‖

)2

is valid for all z ∈MF (x)=y.

If x̃δn+1 ∈ Hδ
n−1, we have x̃δn+1 = PHδ

n∩Hδ
n−1

(xδn) and we are done. Otherwise, go to step (ii).

(ii) First, decide whether x̃δn+1 ∈ H>(uδn−1, α
δ
n−1 + ξδn−1) or x̃δn+1 ∈ H<(uδn−1, α

δ
n−1 − ξδn−1).

Calculate accordingly

xδn+1 := PH(uδn,α
δ
n+ξδn)∩H(uδn−1,α

δ
n−1±ξδn−1)(x̃

δ
n+1),

i.e., determine xδn+1 = x̃δn+1 − tδn,nu
δ
n − tδn,n−1u

δ
n−1 such that

(
tδn,n, t

δ
n,n−1

)
minimizes the

function

h2(t1, t2) :=
1

2

∥∥∥x̃δn+1 − t1uδn − t2uδn−1

∥∥∥2
+ t1

(
αδn + ξδn

)
+ t2

(
αδn−1 ± ξδn−1

)
.
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Then we have xδn+1 = PHδ
n∩Hδ

n−1
(xδn) and for all z ∈MF (x)=y the descent property

∥∥∥z − xδn+1

∥∥∥2
≤
∥∥∥z − xδn∥∥∥2

− Sδn (1.52)

is satisfied, where

Sδn :=

(
‖Rδn‖

(
‖Rδn‖ − δ − ctc(‖Rδn‖+ δ)

)
‖uδn‖

)2

+

(∣∣ 〈uδn−1, x̃
δ
n+1

〉
−
(
αδn−1 ± ξδn−1

) ∣∣
γn
∥∥uδn−1

∥∥
)2

and

γn :=

1−

( ∣∣ 〈uδn, uδn−1

〉 ∣∣
‖uδn‖ ·

∥∥uδn−1

∥∥
)2
 1

2

∈ (0, 1].

Remark 1.22. The RESESOP method with two search directions allows a good insight into se-
quential subspace optimization methods.

(a) The validity of the statements made in Algorithm 1.21 are a consequence of Proposition 1.8.
The explicit forms of the parameters tδn,n and tδn,n−1 are directly obtained from the respective

proof and are given in the appendix A.2. By projecting first onto the stripe Hδ
n, we make sure

that a descent property holds to guarantee weak convergence, as we will see in the following
section.

(b) As mentioned before in Remark 1.9, calculating the projection of x ∈ X onto the intersection
of two halfspaces or stripes by first projecting onto one of them and then projecting onto the
intersection does not necessarily lead to the correct result if x is not contained in at least
one of them. In our algorithm we avoid this problem: By choosing τ according to (1.49), we
guarantee that in iteration n (provided the iteration has not been stopped yet) the iterate xδn
is an element of H>(uδn, α

δ
n + ξδn)∩Hδ

n−1, which determines the order of projection that leads
to the desired result.
As xδn is the projection of xδn−1 onto Hδ

n−1 ∩Hδ
n−2, we have xδn ∈ Hδ

n−1. To see that (1.50) is
valid as long as ‖Rδn‖ > τδ, we note that (1.49) implies

‖Rδn‖ > τδ > δ
1 + ctc

1− ctc
.

Because of 0 ≤ ctc < 1 we obtain

‖Rδn‖ − ctc‖Rδn‖ − δctc − δ > 0,

yielding

αδn + ξδn = 〈uδn, xδn〉 − ‖Rδn‖ ·
(
‖Rδn‖ − ctc‖Rδn‖ − δctc − δ

)
< 〈uδn, xδn〉.

Thus xδn ∈ H>(uδn, α
δ
n + ξδn) and we obtain (1.50).
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(c) The choice (1.49) for τ depends strongly on the constant ctc from the tangential cone condition.
The smaller ctc, the better the approximation of F by its linearization. Of course ctc = 0
implies the linearity of F . A large value of ctc, on the other hand, demands a bigger tolerance
τδ in the data fitting term (the residual), such that the algorithm has to be stopped at a larger
value of the residual’s norm and the source is possibly reconstructed with a larger error.

(d) As already stated in [69, 70], the improvement due to step (ii) might be significant, if the
search directions uδn and uδn−1 fulfill ∣∣ 〈uδn, uδn−1

〉 ∣∣
‖uδn‖ ·

∥∥uδn−1

∥∥ ≈ 1,

since in that case the coefficient γn is quite small and therefore Sδn is large. This can be
illustrated by looking at the situation where uδn⊥uδn−1: The projection of xδn onto Hδ

n is already
contained in Hδ

n−1, such that step (ii) will not lead to any further improvement.
This suggests an interesting interpretation: If the new search direction is chosen perpendicular
to the previous one, the choice is optimal in view of the steepest possible descent. This
motivates the approach of Heber et al. [40].

(e) Algorithm 1.21 is very useful for an implementation. First of all, the search direction uδn−1

has already been calculated for the preceding iteration and can be reused. Furthermore, the
residual Rδn was necessarily calculated to see if the discrepancy principle is fulfilled and can
also be reused as we have wδn := F (xδn) − yδ = Rδn. So the only costly computation is the
determination of F ′(xδn)∗Rδn. In some applications, for example in parameter identification,
this corresponds to a numerical evaluation of a (partial) differential equation. The effort is
thus comparable to Landweber type iterations, but the algorithm may be faster as discussed in
the previous point.

Proposition 1.23. Algorithm 1.21 can be transferred to the noise-free case by setting δ = 0
(however, the discrepancy principle has to be replaced by some other stopping criterion, for instance
a maximal number of iterations). In particular, (1.50) remains valid, and the metric projection onto
the intersection of the two stripes is obtained executing the two steps of the algorithm.

Proof. We have 0 < 1− ctc < 1 and thus

αn + ξn = 〈un, xn〉 − ‖Rn‖2 + ctc‖Rn‖2 = 〈un, xn〉 − (1− ctc)‖Rn‖2 < 〈un, xn〉.

The remainder of the proof follows the same lines as in the treatment of the noisy case.

1.3. Convergence and regularization properties

At this point, we want to analyze the methods presented in Section 1.2. Using the conditions
we postulated at the beginning of Section 1.2, we will show convergence results for the SESOP
respective RESESOP algorithms which we adapted to solving nonlinear inverse problems (1.28).
For a special choice of search directions in Algorithm 1.19, which includes Algorithm 1.21, we will
prove that the method yields a regularized solution of the nonlinear problem with noisy data.

We want to begin with an analysis of the methods in the case of exact data.
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Proposition 1.24. Consider exact data y ∈ Y . Let {xn}n∈N be the sequence of iterates generated by
Algorithm 1.14, where in each step n ∈ N of the iteration we let n ∈ In and choose wn,n := F (xn)−y,
such that the search direction un,n = gn is the current gradient. Then we have

xn ∈ H>(un,n, αn,n + ξn,n),

where αn,n and ξn,n are chosen as in Algorithm 1.14. By projecting xn first onto H(un,n, αn,n, ξn,n),
we obtain

‖z − xn+1‖2 ≤ ‖z − PH(un,n,αn,n,ξn,n)(xn)‖2 ≤ ‖z − xn‖2 −
(1− ctc)

2

‖F ′(xn)‖2
‖Rn‖2 (1.53)

for z ∈MF (x)=y.

Proof. The first estimate is due to an adequate choice of the stripes. According to our choice of
wn,n = F (xn)− y = Rn we have

αn,n = 〈un,n, xn〉 − ‖Rn‖2,
ξn,n = ctc‖Rn‖2,

and thus 〈un,n, xn〉 − αn,n = ‖Rn‖2 > ξn,n as 0 < ctc < 1. The descent property (i.e., the second
estimate) is easily obtained with the help of (1.11), (1.12), (1.13), and the estimate

‖F ′(xn)∗(F (xn)− y)‖ ≤ ‖F ′(xn)‖ · ‖Rn‖.

Note that ‖F ′(xn)‖ > 0, see Proposition 1.12 and the subsequent remark.

Proposition 1.25. The sequence of iterates {xn}n∈N, generated by Algorithm 1.14, fulfills

xn ∈ Bρ(x0) for all n ∈ N

and has a subsequence {xnk}k∈N that converges weakly to a solution of (1.28), if we choose n ∈ In
and wn,n = F (xn)− y for every iteration n ∈ N.

Proof. By assumption (1.31), there exists a solution x+ ∈ B ρ
2
(x0) ⊆ D(F ). We use Proposition

1.24 and obtain x1 ∈ B ρ
2
(x0) due to

‖x+ − x1‖2 ≤ ‖x+ − x0‖2 ≤
ρ2

4
.

Thus, by induction, the descent property (1.53) yields xn ∈ B ρ
2
(x+). We conclude

‖xn − x0‖ ≤ ‖xn − x+‖+ ‖x+ − x0‖ ≤ ρ,

so that xn ∈ Bρ(x0) for all n ∈ N and the sequence {‖xn − x+‖}n∈N is bounded and monotonically
decreasing.
We thus have a weakly convergent subsequence {xnk}k∈N with a limit x̂ := σ-limk→∞ xnk (see
Section A.1). It remains to show that x̂ ∈ MF (x)=y. For that purpose, we use again the descent
property (1.53) and the estimate (1.33), which is valid in Bρ(x0), to obtain

‖x+ − xnk‖
2 − ‖x+ − xnk+1

‖2 ≥ (1− ctc)
2

‖F ′(xnk)‖2
‖Rnk‖

2 ≥ (1− ctc)
2

c2
F

‖Rnk‖
2.
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Let K ∈ N be an arbitrary index. The subsequence {xnk}k∈N fulfills

K∑
k=0

‖Rnk‖
2 ≤

(
cF

1− ctc

)2 K∑
k=0

(
‖x+ − xnk‖

2 − ‖x+ − xnk+1
‖2
)

=

(
cF

1− ctc

)2

·
(
‖x+ − xn0‖2 − ‖x+ − xnK+1‖

2
)

≤
(

cF
1− ctc

)2

· ‖x+ − xn0‖2 <∞.

This remains true for the limitK →∞, yielding the absolute convergence of the series
∑∞

k=0‖Rnk‖2.
Consequently, the sequence {‖Rnk‖}k∈N has to be a null sequence, i.e., ‖F (xnk)−y‖ → 0 for k →∞.
As F is continuous and weakly sequentially closed, we have F (x̂) = limk→∞ F (xnk) = y.

Remark 1.26. If there is a unique solution x+ ∈ Bρ(x0) of (1.28), we obtain the strong convergence
of the sequence from Proposition 1.25, if X is finite-dimensional: As each subsequence of {xn}n∈N
is bounded, it contains a weakly convergent subsequence which, in a finite dimensional Hilbert space,
is strongly convergent. Thus, the whole sequence converges strongly to a solution of (1.28), because
a sequence converges to a certain point if and only if each subsequence possesses a subsequence
converging to this point. In [68], this has been discussed in some more detail for linear problems in
Banach spaces.

Theorem 1.27. Let N ≥ 1 be a fixed integer and n ∈ In for each n ∈ N. We additionally choose

In ⊆ {n−N + 1, ..., n} ∩ N

and set
wn,i := Ri = F (xi)− y

for each i ∈ In. If x+ ∈ B ρ
2
(x0) is the unique solution of (1.28) in Bρ(x0), the sequence of iterates

{xn}n∈N generated by Algorithm 1.14 converges strongly to x+, if the optimization parameters tn,i
fulfill

|tn,i| ≤ t (1.54)

for some t > 0 for all i ∈ In and n ∈ N.

Proof. Inspired by the proof of Theorem 2.3 from [39], we will show that the sequence {xn}n∈N is
a Cauchy sequence. For that purpose, it suffices to verify that {an}n∈N, given by

an := xn − x+,

is a Cauchy sequence.
Since our choices yield F ′(xn)∗wn,n = gn (i.e., the search direction un,n in Algorithm 1.14 is
the current gradient), we can apply Proposition 1.25. We have seen in the respective proof that
{‖an‖}n∈N is a bounded monotonically decreasing sequence. So we have

‖an‖ → ε as n→∞,

for an ε ≥ 0. Fix n ∈ N, let j ≥ n, and choose the index l = l(n, j) with n ≤ l ≤ j such that

‖Rl‖ = ‖F (xl)− y‖ ≤ ‖F (xm)− y‖ = ‖Rm‖ for all n ≤ m ≤ j.
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We have ‖aj − an‖ ≤ ‖aj − al‖+ ‖al − an‖ and

‖aj − al‖2 = 2 〈al − aj , al〉+ ‖aj‖2 − ‖al‖2,
‖al − an‖2 = 2 〈al − an, al〉+ ‖an‖2 − ‖al‖2.

When n → ∞, we have ‖aj‖2 → ε2, ‖al‖2 → ε2 and ‖an‖2 → ε2. To prove ‖aj − al‖ → 0 for
n→∞, we have to show that 〈al − aj , al〉 → 0 as n tends to infinity. To this end, we note that for
j > l we have

aj − al = xj − xl
= xj−1 − xl −

∑
i∈Ij−1

tj−1,iF
′(xi)

∗wj−1,i

by (1.38). Iterating this, we arrive at

aj − al = −
j−1∑
k=l

∑
i∈Ik

tk,iF
′(xi)

∗wk,i,

which is also valid if j = l. We thus obtain

|〈al − aj , al〉| =

∣∣∣∣∣∣
〈
j−1∑
k=l

∑
i∈Ik

tk,iF
′(xi)

∗wk,i, al

〉∣∣∣∣∣∣
≤

j−1∑
k=l

∑
i∈Ik

|tk,i|
∣∣〈F ′(xi)∗wk,i, al〉∣∣

≤
j−1∑
k=l

∑
i∈Ik

|tk,i| ‖wk,i‖
∥∥F ′(xi)(xl − x+)

∥∥ ,
where we have used the Cauchy-Schwarz inequality. We estimate∥∥F ′(xi)(xl − x+)

∥∥ ≤ ∥∥y − F (xi) + F ′(xi)(xi − x+)
∥∥

+
∥∥F (xi)− F (xl)− F ′(xi)(xi − xl)

∥∥+ ‖F (xl)− y‖
≤ ctc ‖F (xi)− y‖+ ctc ‖F (xi)− F (xl)‖+ ‖F (xl)− y‖
≤ 2ctc ‖F (xi)− y‖+ (1 + ctc) ‖F (xl)− y‖
≤ (3ctc + 1) ‖F (xi)− y‖ .

Notice that the last inequality is valid due to the choice of l. The choice wk,i = F (xi)− y and the
boundedness assumption (1.54) imposed on the optimization parameters tk,i yield

|〈al − aj , al〉| ≤ (3ctc + 1)

j−1∑
k=l

∑
i∈Ik

|tk,i| ‖F (xi)− y‖2

≤ (3ctc + 1)t

j−1∑
k=l

∑
i∈Ik

‖F (xi)− y‖2 .

(1.55)

Note that due to Ik ⊆ {k −N + 1, ..., k} for a fixed N ≥ 1, the sum over i ∈ Ik is a finite sum with
at most N summands. This allows us to use a similar calculation as in the proof of Proposition
1.25. According to (1.53), we have, together with our assumptions on F ,∥∥x+ − xi+1

∥∥2 ≤
∥∥x+ − xi

∥∥2 − (1− ctc)
2

‖F ′(xi)‖2
‖Ri‖2 ≤

∥∥x+ − xi
∥∥2 − (1− ctc)

2

c2
F

‖Ri‖2 ,
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such that ∥∥x+ − xi
∥∥2 −

∥∥x+ − xi+1

∥∥2 ≥ (1− ctc)
2

c2
F

‖Ri‖2 .

This yields

K∑
i=0

‖Ri‖2 ≤
c2
F

(1− ctc)2

(∥∥x+ − x0

∥∥2 −
∥∥x+ − xK+1

∥∥2
)
≤

c2
F

(1− ctc)2
ρ2

for each K > 0 and consequently, {‖Ri‖}i∈N is a null sequence. We deduce that the right-hand
side of

|〈al − aj , al〉| ≤ (3ctc + 1)t

j−1∑
k=l

∑
i∈Ik

‖Ri‖2

(see (1.55)) tends to 0 as n→∞ due to our choice of Ik. As a consequence, the sequence {‖an‖}n∈N
is a Cauchy sequence and so is the sequence {xn}n∈N, which converges due to the weak sequential
closedness of F to the unique solution x+ ∈ Bρ(x0) as the sequence of residuals tends to 0 for
n→∞.

We now want to deal with the sequences generated by Algorithms 1.19 and 1.21 for noisy data yδ

with noise level ∥∥y − yδ∥∥ ≤ δ.
Definition 1.28. For Algorithms 1.19 and 1.21 presented in Section 1.2 we define the stopping
index

n∗ := n∗(δ) := min{n ∈ N : ‖Rδn‖ ≤ τδ}

as the smallest iteration index at which the discrepancy principle is fulfilled.
(In case {n ∈ N : ‖Rδn‖ ≤ τδ} = ∅, we set n∗ :=∞.)

In Algorithm 1.21, we have postulated that the parameter τ , which is used in the discrepancy
principle, satisfies

τ >
1 + ctc

1− ctc
.

This choice has been useful as it allows a simple, stepwise calculation of the desired metric projec-
tion, which guarantees the validity of the descent property.
For simplicity, we put xδn := xδn∗ for all n > n∗.

Lemma 1.29. Let τ be chosen according to (1.49). If the gradient gδn = F ′(xδn)∗(F (xδn) − yδ) of
the functional 1

2‖F (x) − yδ‖2 in xδn is included in the search space U δn for n ∈ N in Algorithm
1.19 and the current iterate xδn is first projected onto the stripe H

(
gδn, α

δ
n,n, ξ

δ
n,n

)
, the sequence{∥∥z − xδn∥∥}n∈N with z ∈ Bρ(x0) ∩MF (x)=y decreases monotonically.

Proof. As we have seen before, in particular in Remark 1.22 (b), the choice (1.49) of τ yields
xδn ∈ H>(uδn,n, α

δ
n,n + ξδn,n) for n < n∗ if we set wδn,n := Rδn in Definition 1.17, such that the current

gradient is included in the search space due to uδn,n = gδn.

By projecting xδn first onto the stripe H(uδn,n, α
δ
n,n, ξ

δ
n,n), we use (1.13) and obtain

x̃δn+1 := PH(uδn,n,α
δ
n,n+ξδn,n)(x

δ
n) = xδn −

〈
uδn,n, x

δ
n

〉
−
(
αδn,n + ξδn,n

)
‖uδn,n‖2

uδn,n,
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and with ‖z − xδn+1‖2 ≤ ‖z − x̃δn+1‖2 the estimate

‖z − xδn+1‖2 ≤ ‖z − xδn‖2 −

(
‖Rδn‖

(
‖Rδn‖ − δ − ctc(‖Rδn‖+ δ)

)∥∥uδn,n∥∥
)2

, (1.56)

which is a result of Proposition 1.8 for the choice of the halfspaces in Algorithm 1.19. This proves
the monotonicity of the sequence

{∥∥z − xδn∥∥}n∈N, which is constant for n ≥ n∗.

Theorem 1.30. Provided the current gradient gδn is contained in the search space U δn and the
parameter τ is chosen such that

τ >
1 + ctc

1− ctc
,

the discrepancy principle yields a finite stopping index n∗ = n∗(δ) in Algorithm 1.19.

Proof. Let us assume that the discrepancy principle is not satisfied for any iteration index n ∈ N.
We then have δ < 1

τ ‖R
δ
n‖ for all n ∈ N. However, Lemma 1.29 is applicable and equation (1.56)

thus yields

‖z − xδn+1‖2 ≤ ‖z − xδn‖2 −

(
‖Rδn‖

(
‖Rδn‖ − δ − ctc(‖Rδn‖+ δ)

)
‖F ′(xδn)∗Rδn‖

)2

≤ ‖z − xδn‖2 −
(
‖Rδn‖ − δ − ctc(‖Rδn‖+ δ)

‖F ′(xδn)‖

)2

≤ ‖z − xδn‖2 −

(
1− ctc − 1

τ (1 + ctc)

cF

)2

· ‖Rδn‖2,

where we have

1− ctc −
1

τ
(1 + ctc) > 0

according to our choice of τ . By a calculation as in the proof of Proposition 1.25 we find that
{‖Rδn‖}n∈N is a null sequence. This is a contradiction to our assumption ‖Rδn‖ > τδ for all n ∈ N.
Consequently, there must be a finite stopping index n∗ fulfilling the discrepancy principle.

We now want to deal with the sequence of iterates generated by Algorithm 1.19 with the choices

Iδn ⊆ {n−N + 1, ..., n} ∩ N,
n ∈ Iδn,
wδn,i = Rδi for all i ∈ Iδn

(1.57)

for all n ∈ N, where N is a fixed integer (see also Theorem 1.27) and such that the search directions
uδn,i, i ∈ Iδn, are linearly independent for each n. In particular, we thus make use of the current

gradient (as n ∈ Iδn and wδn,n = Rδn), such that the previous statements apply to the sequence of
iterates generated by Algorithm 1.19. Most notably, we know that Algorithm 1.19 terminates after
a finite number n∗(δ) of iterations. It remains to show that the final iterate xδn∗(δ) is a regularized

solution of the nonlinear operator equation (1.28), when only perturbed data yδ are given.
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Theorem 1.31. Let x+ ∈ B ρ
2
(x0) be the unique solution of (1.28) in Bρ(x0). Algorithm 1.19

together with the choices (1.57) and the discrepancy principle yields a regularized solution xδn∗ of
the nonlinear problem (1.28), when only noisy data yδ are given, i.e., we have

xδn∗(δ) → x+ for δ → 0, (1.58)

if there is only one solution x+ ∈ Bρ(x0) and if limδ→0

∣∣∣tδn,i∣∣∣ < t for all n ∈ N and i ∈ Iδn for some

t > 0.

To prove this theorem, we need to show that for a fixed iteration index n, the iterate xδn depends
continuously on the data yδ. For that purpose, we first prove the following lemma.

Lemma 1.32. Let xδ0 = x0 be the initial value of the Algorithms 1.14 and 1.19 with the choices
(1.57), where we choose δ = 0 in Algorithm 1.14. Let

{
xn
}
n∈N and

{
xδn
}
n∈N be the respective

sequences of iterates generated by these algorithms. For a fixed index n ∈ N, the iterate xδn depends
continuously on the data yδ and we have

xδn → xn for δ → 0.

Proof. We use induction. Let n ∈ N be fixed. For k = 0 we have Iδ0 = I0 = {0} and

xδ1 = x0 − tδ0,0F ′(x0)∗
(
F (x0)− yδ

)
= x0 −

〈
uδ0,0, x0

〉
−
(
αδ0,0 + ξδ0,0

)∥∥uδ0,0∥∥2 F ′(x0)∗
(
F (x0)− yδ

)
,

which depends continuously on the data yδ (see also Definition 1.17) as the norm in Y is continuous
and thus xδ1 → x1 for δ → 0.
Let us now assume that xδi , i ≤ k, depend continuously on yδ. For xδk+1 we have

xδk+1 = xδk −
∑
i∈Ik

tδk,iF
′(xδi )

∗
(
F (xδi )− yδ

)
.

Since F is continuously Fréchet differentiable on D(F ), the inductive hypothesis implies that the
search directions F ′(xδi )

∗ (F (xδi )− yδ
)
, i ∈ Iδk , depend continuously on yδ. It remains to show that

the same holds for the optimization parameters tδk,i. By Proposition 1.5, the corresponding convex

function h (see (1.8)) is strictly convex as the search directions uδk,i, i ∈ Iδk , are linearly independent.
Consequently, the optimization parameters are uniquely determined by a regular linear system of
equations, given by (1.9), whose coefficients depend continuously on yδ, such that we have

tδk,i → tk,i

for δ → 0. This proves the induction step and we have

xδn → xn for δ → 0.

Having this result at disposal we can now prove Theorem 1.31.
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Proof. (of Theorem 1.31) We show that∥∥∥F (xδn∗(δ))− y∥∥∥→ 0 (1.59)

if the noise level δ tends to 0. For that purpose, let {δj}j∈N, δj > 0 for all j ∈ N, be a null sequence,
such that ∥∥∥yδj − y∥∥∥ ≤ δj (1.60)

for all j ∈ N. For each noise level δj , let n∗(δj) denote the corresponding stopping index.

Proposition 1.25 and Lemma 1.29 yield x
δj
n ∈ Bρ(x0) for a fixed index n ∈ N and all j ∈ N.

Hence, the sequence
{
x
δj
n∗(δj)

}
j∈N

is bounded and possesses a weakly convergent subsequence. Let

us consider the sequence {n∗(δj)}j∈N and assume that n ∈ N is a finite accumulation point of
this sequence. As in the proof of Theorem 2.4 in [39], we assume without loss of generality that
n∗(δj) = n for all j ∈ N. We thus have∥∥∥F (xδjn )− yδj∥∥∥ ≤ τδj (1.61)

for all j ∈ N. Since we have fixed the index n, the iterate x
δj
n depends continuously on yδj according

to Lemma 1.32, yielding

x
δj
n → xn and F

(
x
δj
n

)
→ F (xn)

for j → ∞. As a result, we infer F (xn) = y from (1.61). Since xn ∈ Bρ(x0) and x+ is the only
solution of (1.28) in Bρ(x0), we have∥∥∥F (xδjn∗(δj))− y∥∥∥ ≤ ∥∥∥F (xδjn∗(δj))− yδj∥∥∥+

∥∥∥yδj − y∥∥∥ ≤ (τ + 1)δj → 0

and
x
δj
n∗(δj)

→ x+

for j →∞ due to the weak sequential closedness of F .
Let us now assume n∗(δj) → ∞ for j → ∞. From Theorem 1.27 and its proof we recall that
the sequence {‖xn − x+‖}n∈N is a bounded and monotonically decreasing sequence with limit 0.
Consequently, for every ε > 0 there exists an N0 ∈ N such that

‖xN0 − x+‖2 < ε

2
.

Furthermore, there is a j0 ∈ N such that, due to the continuity of the norm, we have∣∣∣∥∥xδjN0
− x+

∥∥2 −
∥∥xN0 − x+

∥∥2
∣∣∣ < ε

2
for all j ≥ j0 (1.62)

on the one hand and also, according to our assumption,

n∗(δj) ≥ N0 for all j ≥ j0

on the other hand. We thus have (using Lemma 1.29)∥∥xδjn∗(δj) − x+
∥∥2 ≤

∥∥xδjN0
− x+

∥∥2 ≤
∥∥xN0 − x+

∥∥2
+
∣∣∣∥∥xδjN0

− x+
∥∥2 −

∥∥xN0 − x+
∥∥2
∣∣∣ < ε

for all j > j0, which completes the proof.
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From these results, we directly deduce the following corollary concerning the special case of Algo-
rithm 1.21.

Corollary 1.33. Theorem 1.31 is valid for Algorithm 1.21, where the explicit representation of
the optimization parameters (see A.2) directly shows the continuous dependence on the data yδ.
Also, in each step of Algorithm 1.21, the two search directions are either linearly independent or
the algorithm proceeds to the next iteration after executing step (i).

Proof. We make the choice N = 2 in (1.57) and apply Theorem 1.31. Due to (1.50), the projection
of xδn onto Hδ

n is also contained in Hδ
n−1 if the directions uδn−1 and uδn are linearly dependent.

Consequently, at iteration n ∈ N, the two search directions are either linearly independent or the
previous search direction uδn−1 is not used, i.e., step (ii) is not executed, as H

(
uδn, α

δ
n + ξδn

)
⊆

Hδ
n−1.

Remark 1.34. We conclude our analysis with some final remarks.

(a) The choice Un := {gn} for all n ∈ N yields a Landweber type method, where the current
iterate is projected onto a stripe corresponding to the conventional Landweber direction in
each iteration, for which we can apply our results from above. We thus obtain a regulation
of the step width. This method has been presented by Maaß and Strehlow in [54] for finite
dimensional Banach spaces.

(b) One of the major obstacles in practice is the determination of the constant ctc from the
tangential cone condition. This parameter obviously influences the algorithms significantly
and yet, for many operators, even the existence of ctc can not be determined and its value
might depend on the point of linearization. In any case, a bad choice either yields a diverging
algorithm if ctc is chosen too small or useless results if ctc is too large, as the discrepancy
principle is fulfilled too early. It is thus reasonable to find an adequate value numerically, for
example systematically with the help of a grid search. The results may give a hint about the
existence and value of ctc for a given nonlinear operator.

1.4. A first numerical example

Finally, we want to evaluate the proposed methods in terms of Algorithm 1.21 by applying it to a
well-understood nonlinear problem and compare the performance to a standard Landweber method,
see [39, 49]. Additionally, we apply the Landweber type method that is derived from the subspace
optimization techniques, see Remark 1.34 (a), and also discuss its performance. The parameter
identification problem we are considering has been used many times for similar purposes, first in
[17] as a one-dimensional problem and for example in [39, 63] in two dimensions. We begin with a
short summary of this inverse problem.

Let Ω ⊆ R2 be a bounded domain that is either a parallelepiped (e.g., Ω = (0, 1)× (0, 1)) or has a
sufficiently smooth boundary. We want to reconstruct the parameter c ∈ L2(Ω) from the knowledge
of the (noisy) field u, where

−∆u+ cu = f in Ω,

u = g on ∂Ω,
(1.63)

for given functions f ∈ L2(Ω) and g ∈ H3/2(∂Ω) (for a definition of this space, see, e.g., [27, 64]).
Let F : D(F ) ⊆ L2(Ω)→ L2(Ω) be the parameter-to-solution mapping satisfying

F (c) = u, (1.64)
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where u fulfills the elliptic boundary value problem (1.63). As stated in [17, 39], there exists a
γ > 0 such that F is well-defined on

D(F ) :=
{
c ∈ L2(Ω) : ‖c− ĉ‖ ≤ γ for a ĉ ∈ L2(Ω) with ĉ ≥ 0 a.e.

}
.

We define the operator L(c) : H2(Ω) ∩H1
0 (Ω)→ L2(Ω) by

L(c)u = −∆u+ cu. (1.65)

Also, F is Fréchet differentiable in c ∈ Bρ(c0) ⊆ D(F ), where ρ ≤ γ, and c0 ∈ D(F ). The Fréchet
derivative F ′(c) in c and its adjoint F ′(c)∗ are given by

F ′(c)v = −L(c)−1 (v · u) (1.66)

and
F ′(c)∗w = −u · L(c)−1w (1.67)

for v, w ∈ L2(Ω), see [39].
In case u has no zeros in Ω, the parameter c is uniquely determined by

c =
∆u+ f

u
,

but it does not depend continuously on u. Therefore, the above formula is not useful for the
reconstruction of c from noisy data.

1.4.1. Discretization

As in [63], we choose Ω = (0, 1) × (0, 1) and use finite differences for the discretization, see for
example [3, 34] for the basics. We define the grid

Ωh :=
{

(xi, yj) ∈ Ω : xi = ih, yj = jh, 0 ≤ i, j ≤ N + 1
}
,

where N + 1 is the number of equidistant steps in x- and in y-direction and

h :=
1

N + 1

is the respective step width. The (discretized) interior Ωh of Ωh is thus given by

Ωh := {(xi, yj) ∈ Ωh : xi = ih, yj = jh, 1 ≤ i, j ≤ N} .

By uh, ch, fh and gh we denote the respective discretized functions on the grid Ωh and on the
discretized boundary ∂Ωh := Ωh \ Ωh. The Laplace operator ∆ is discretized as usually, see for
instance [3, 34], by a two-dimensional difference quotient. Let ∆h denote the discretized Laplace
operator. Then we have

∆huh(ih, jh) =
1

h2

(
uh
(
(i− 1)h, jh

)
+ uh

(
ih, (j − 1)h

)
+ uh

(
(i+ 1)h, jh

)
+ uh

(
ih, (j + 1)h

)
− 4uh

(
ih, jh

)) (1.68)

for all 1 ≤ i, j ≤ N . The grid points
(
(i− 1)h, jh

)
,
(
ih, (j − 1)h

)
,
(
(i+ 1)h, jh

)
, and

(
ih, (j + 1)h

)
are called the nearest neighbors of the point

(
ih, jh

)
.

32



At this point, it is important to remark that the boundary values of uh contribute to the above
expression, if the Laplace operator is evaluated in a grid point that has boundary points as nearest
neighbors.

We represent the discretized function uh by a vector with (N + 2)2 components,

(uh)l(i,j) = uh(xi, yj), (1.69)

where l(i, j) = i ·(N+1)+j for 0 ≤ i, j ≤ N+1, such that the indices are ordered lexicographically.
Analogously, we obtain the vector ch. This allows us to reformulate the discretized boundary value
problem

−∆huh + chuh = fh in Ωh,

uh = gh on ∂Ωh

(1.70)

as a linear system of equations

Mh(ch) · uh = f [g]h in Ωh, (1.71)

where Mh(ch) ∈ R(N+2)2×(N+2)2
. The information about the boundary values is included in the

matrix Mh and in the vector f [g]h.
As the boundary values are given, it is possible to reduce the above system of equations to an
N2 ×N2 system by separating the boundary values into a vector and shifting it to the right-hand
side of (1.71). As a result, we obtain the reduced system of equations

M̃h(ch) · ũh = f̃h in Ωh, (1.72)

where (ũh)k(i,j) = (ũh)(i−1)·N+j and M̃h(ch) ∈ RN2×N2
. In case g = 0, we have f̃h = fh.

The matrix that corresponds to the discretized Laplace operator −∆h now has a simple block
structure: Define the tridiagonal matrix

A :=



4 −1 0 · · · 0

−1
. . .

. . .
. . .

...

0
. . .

. . .
. . . 0

...
. . .

. . .
. . . −1

0 · · · 0 −1 4


∈ RN×N

and B := −IN , where IN is the N -dimensional unit matrix. Then −∆h has the form

−∆h =


A B

B . . .
. . .

. . .
. . . B
B A

 ∈ RN
2×N2

. (1.73)

For the reduced matrix M̃h(ch) we obtain

M̃h(ch) = −∆h + diag(ch) ∈ RN
2×N2

. (1.74)

The norm on Ωh is given by the weighted Euklidian norm

∥∥(vl)1≤l≤N2

∥∥
h

= h ·

 N2∑
l=1

(vl)
2

1/2

= h ·

 N∑
i,j=1

(
v(ih, jh)

)21/2

, (1.75)
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which approximates the standard L2-norm on the equidistant grid Ωh with step width h = 1
N+1 .

We are interested in the numerical solution of the parameter identification problem that corresponds
to (1.63), where the parameter c is reconstructed from the knowledge of the noisy function uδ, the
exact function f and boundary values g, for which we make use of the above discretization.

1.4.2. Reconstructions with Landweber and RESESOP

In order to have a precise representation of the exact solution u and the parameter c of (1.63), we
provide u and c analytically, such that f and the boundary values g are uniquely determined by

f = −∆u+ cu, g = u|∂Ω. (1.76)

Let

u : Ω→ R, u(x, y) = 16x(x− 1)y(1− y) + 1

and

c : Ω→ R, c(x, y) =
3

2
sin(2πx) sin(3πy) + 3

((
x− 1

2

)2

+

(
y − 1

2

)2
)

+ 2.

We have uh(ih, jh) = u(ih, jh) for all indices 0 ≤ i, j ≤ N + 1 and gh(ih, jh) = uh(ih, jh) ≡ 1 for
all (ih, jh) ∈ ∂Ωh. In our iterations, we will use the function

c0 : Ω→ R, c0(x, y) = 3
(
(x− 0.5)2 + (y − 0.5)2

)
+ 2 + 8x(x− 1)y(1− y)

as an initial value. This choice allows us to make use of the reduced matrix M̃h to determine f̃h
and to calculate the search directions during the iteration: The initial value c0 coincides with the
exact values of c on the boundary. An iteration that is based on the reduced system of equations,
working only on the inner grid points, does not change the boundary values. Consequently, we set

f̃h := M̃h · uh, (1.77)

where uh = (uh)l(i,j) for 1 ≤ i, j ≤ N .
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Figure 1.3.: Surface plot of (a) exact function uh and (b) exact parameter ch on the grid Ωh.
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For our reconstructions, we use synthetic noisy data uδh, which is obtained by adding a noise vector
v to the exact data vector uh. To this end, we generate a vector with random, equally distributed
entries vl ∈ [−1, 1] for all l = 1, ..., N2 and set

uδh = uh + δ · v

‖v‖h
, (1.78)

which ensures that
∥∥uδh − uh∥∥h = δ.

The reconstructions are performed iteratively by

cδk+1 = cδk − dδk,

where k is the iteration index,
{
cδk
}
k∈N is the sequence of iterates and dδk is calculated according to

(A) the standard Landweber method with a relaxation parameter ω, i.e., dδk = ω · gδk,
(B) a Landweber type iteration that is based on the successive projection onto stripes, i.e., Algo-

rithm 1.19 with a single search direction (the current gradient gδk) per iteration and

(C) the RESESOP method 1.21 with two search directions, the current gradient and the gradient
from the previous step.

Method Number of iterations k∗ Execution time Relative error in reconstruction

(A) 287 123.65s 13.41%

(B) 11 7.1s 12.83%

(C) 8 5.71s 13.13%

Table 1.1.: Some key data to evaluate the performance of the methods (A), (B) and (C) in the case of noisy
data uδh

All iterations are stopped by the discrepancy principle, where τ > 1+ctc/1−ctc is chosen according
to Algorithms 1.19 and 1.21. For both methods, we set (see also [39, 54])

N = 49, ctc = 0.01, τ = 1.005 · 1 + ctc

1− ctc
, δ = 0.005. (1.79)

We denote the stopping index by k = k∗, which is the first iteration index that fulfills ‖Rk∗‖h ≤ τδ.
The exact function uh and the exact parameter ch are plotted in Figure 1.3. In order to compare
the methods, we measure the iteration steps until the iteration is stopped, the time that is needed
for the reconstruction and the relative error in the resulting solution ck∗ . The results are presented
in Table 1.1. Plots of the respective residuals are to be found in Figure 1.5.

Remark 1.35. It is important to remark that the results concerning the three different methods,
which are listed in Table 1.1, depend on the available data. Experiments show that the values we
have measured to quantify the performance of the proposed methods vary slightly due to the random
noise that is added to the exact value of uh in order to obtain noisy data uδh. However, the method
with two search directions is in all experiments faster than the method with one search direction.
The Landweber method is significantly slower than the other methods, as there is no regulation of
the step widths in the iterations in contrast to the RESESOP methods.

Also, we remark that the above methods yield, in the case of exact data, sequences of iterates that
converge to the exact solution uh. We make use of exact data to further test the performance of
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Figure 1.4.: Reconstruction with the standard Landweber method (A), the Landweber type method (B)
and the RESESOP method (C): surface plots of the respective reconstructed parameter ck∗
((a), (c), (e)) and of the deviations from the exact solution ch ((b), (d), (f)).

the SESOP method with two search directions in comparison to the other two methods. For that
purpose, we set T := 2 · 10−4 and stop the iteration, when the residual Rk fulfills ‖Rk‖h ≤ T .
We use the same parameters as in the case of noisy data. Again, we measure the total number of
iterations k∗, the time that is needed for the iteration and the relative error in the reconstruction.
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Figure 1.5.: Plots of the respective residuals ‖Rδk‖h = ‖F (cδk) − uδ‖h versus the iteration index k for (a)
the Landweber method, (b) the RESESOP method with a single search direction and (c) the
RESESOP method with two search directions

The results are summarized in Table 1.2.

The plots of the relative error

erel,k :=
‖ck − ch‖h
‖ch‖h

in the reconstruction and the norm of the residual ‖Rk‖h are illustrated in Figure 1.6. Note that
these plots indicate that the descent property (1.52) is fulfilled.

Method Number of iterations k∗ Execution time Relative error in reconstruction

(A) 742 306.18s 10.65%

(B) 44 21.03s 9.65%

(C) 23 12.03s 8.69%

Table 1.2.: Some key data to evaluate the performance of the methods (A), (B) and (C) in the case of exact
data uh

It is interesting to observe the difference between the two methods that are based on the findings in
this chapter, i.e., the methods that are based on the successive projection onto stripes. First of all,
method (B) with one search direction takes about twice the time that is required for the iteration
with the RESESOP method (C). This is due to the fact that during the reconstruction with the
RESESOP method, an iteration may consist of only one projection onto the stripe Hk given by the
current gradient, which is the case if this projection is already contained in the stripe that belongs
to the previous search direction. Let us denote this case by Case 1. The other two cases that
may occur in the second step of Algorithm 1.21 are Case 2, where the projection is situated above
the stripe that corresponds to the previous gradient, and Case 3, where the projection is situated
below this stripe.
In our experiment, Case 1 occurred four times, while Case 2 occurred 17 times and Case 3 occurred
only once. In the case of noisy data, some further tests have suggested that a higher noise level leads
to an increase of iterations in which Case 1 occurs. This is plausible as a higher noise level directly
leads to broader stripes. Also, this effect is observed when the constant ctc from the tangential
cone condition is chosen larger.

All in all, we have been able to demonstrate that the developed SESOP and RESESOP methods
are suitable to solve nonlinear inverse problems. In the case of noisy data, the RESESOP method
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Figure 1.6.: Plots of the behavior of the respective norm of the residuals and the relative errors during the
iterations

yields a regularized solution. In both cases, our methods are significantly faster than the standard
Landweber method, such that it is desirable to exploit this method for the solution of more complex
inverse problems, such as the inverse problem of THz tomography.
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1.4.3. A first outlook

The results of this chapter are valid for real Hilbert spaces, which is a suitable setting for many
nonlinear inverse problems such as the inverse medium problem [6, 7] or the three inverse problems
that Haltmeier et al. have analyzed in [36] regarding their Landweber-Kaczmarz methods for solving
systems of ill-posed operator equations [37].
However, the subspace methods we presented so far rely on the total order of the ground field of
the Hilbert space we are working in: In order to decide how to project an element of X onto the
intersection of hyperplanes, the ground field of the Hilbert space X needs to be totally ordered.
This becomes obvious when we look at the SESOP method with two search directions. In the
second step, we have to decide whether the iterate x̃n+1 is inside, above or below the stripe that
belongs to the former search direction. For this, we need the ground field to be an ordered field.

The performance of our sequential subspace methods for nonlinear inverse problems suggests that
an application in the solution of a more complex inverse problem may considerably speed up
the reconstruction, which is of major importance in industrial applications. A relatively novel
application in imaging is THz tomography, which aims at the reconstruction of dielectric properties
(i.e., the complex refractive index) from measurements of the electric field around the tested object.
In complement to the work of Tepe et al. [51, 71], we formulate and analyze the inverse problem in
THz tomography in the following chapter, where we choose an approach that is motivated by lower-
frequency methods such as microwave tomography and scattering problems. In short, the inverse
problem we will deal with is a nonlinear parameter identification problem in complex Hilbert spaces,
such that we have to refine our (RE)SESOP methods to meet the requirements for an application
in complex Hilbert spaces, which is the topic of Chapter 3.
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2. Terahertz tomography

The overall goal in terahertz (THz) tomography is the nondestructive testing of objects that con-
sist of dielectric materials, especially plastics. The corresponding physical quantity that contains
information about defects such as cracks or impurities is the complex refractive index ñ, which
allows conclusions about the dielectric permittivity ε and therefore about the refractive index n as
well as the absorption coefficient α.
The inverse problem of THz tomography is thus the reconstruction of the complex refractive index
from measurements of the electric field of the THz beam, which interacts with the tested object in
a way that is described by the model we derive in this chapter.
THz radiation is particularly suited for the testing of plastics and ceramics, as these materials
are nearly opaque to electromagnetic waves in this frequency range, leading to a high penetration
depth. This property is reflected in the relatively low values of the absorption coefficient.

We will start with an introduction into the fundamental physics that are required for the modeling
of the direct problem in THz tomography. Due to its frequency of around 0.1 to 10 THz (or 1011 to
1013 Hz), THz radiation is located between microwave and infrared radiation in the electromagnetic
spectrum. Accordingly, it is sometimes referred to as submillimeter waves. In comparison to X-
radiation, which is used in computerized tomography, the frequency of THz radiation is significantly
smaller. The propagation of THz beams in the lower frequency range of the THz spectrum through
media is thus comparable to the propagation of microwaves rather that X-rays. Physical effects such
as refraction or reflection cannot be neglected and need to be taken into account in the modeling. In
particular, THz waves are not propagating along straight lines, such that the modeling differs from
the modeling in computerized tomography. As we have remarked before, we will focus on radiation
with a frequency in the limits of microwave (roughly 3 ·108 to 3 ·1011Hz) and THz radiation, which
motivates our approach from scattering theory.

In the following, we present the physical basics for the modeling and an analysis of the direct prob-
lem. In particular, we derive all necessary tools for a numerical solution of the inverse problem with
a Landweber iteration and, in the subsequent chapter, with the sequential subspace optimization
methods we introduced before.

We remark that we make use of the analytic representation of the occurring electromagnetic fields,
such that these quantities are regarded as complex valued functions. This is a well-established tool
in the theory of electromagnetic waves, which allows a simpler mathematical handling of the fields.

2.1. Propagation of electromagnetic waves

Electromagnetic waves consist of interacting, usually time-dependent electric and magnetic three-
dimensional vector fields. The electric field at time t in position x ∈ R3 is denoted by E(t,x) and
the induction field by B(t,x). The electric field E is associated with the electric displacement field
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D via
D(t,x) = εE(t,x)

and the induction field B via
B(t,x) = µH(t,x)

with the magnetic field H. The parameter ε(x) depends on the position x and is called the
dielectric permittivity. It describes the dielectric properties of a medium. Similarly, the magnetic
permeability µ(x) describes the magnetic properties. In anisotropic media, both functions are
second rank tensors. In isotropic media, both functions are reduced to scalars.

2.1.1. Maxwell’s equations

The propagation of electromagnetic waves in space is generally described by Maxwell’s equations.
They consist of four partial differential equations (Gauss’s law for magnetism (2.1), Faraday’s law
of induction (2.2), Gauss’s law (2.3), and Ampère’s circuital law (2.4)) and provide, together with
the Lorentz force law, the basis of electromagnetism. In the local formulation, they read

∇ ·B(t,x) = 0, (2.1)

∇×E(t,x) = − ∂

∂t
B(t,x), (2.2)

∇ ·D(t,x) = ρ(t,x), (2.3)

∇×H(t,x) =
∂

∂t
D(t,x) + j(t,x). (2.4)

The quantity ρ in Gauss’s law (2.3) is the electric charge density and j in Ampère’s circuital law

(2.4) is called the electric current density. The differential operator ∇ :=
(
∂
∂x ,

∂
∂y ,

∂
∂z

)T
is called the

Nabla operator and is denoted as a vector whose entries are the first partial derivatives with respect
to the (cartesian) coordinates. (Note that the above notation has been adopted from physics, where
it is common to denote the inner product in R3 by the dot · and the vector product by ×.)

For our purposes, we assume that the media we are dealing with are isotropic and not magnetic,
i.e., we have µ = µ0, where µ0 is the permeability of free space, and ε(x) = ε0εr(x) is a scalar
function, where ε0 is the permittivity of free space and εr is the relative permittivity. Furthermore
we assume that the value of ε does not vary strongly, such that we can neglect terms containing
∇ε, i.e., we assume that

∇ · (ε(x)E(x)) ≈ ε(x)∇ ·E(x)

holds almost everywhere (this corresponds to the limit of geometrical optics, see also [60]). We can
thus restrict ourselves to the use of the fields E and B and obtain

∇ ·B(t,x) = 0, (2.5)

∇×E(t,x) = − ∂

∂t
B(t,x), (2.6)

∇ ·E(t,x) =
1

ε(x)
· ρ(t,x), (2.7)

∇×B(t,x) = ε(x)µ0
∂

∂t
E(t,x) + µ0j(t,x). (2.8)

For specific physical settings, we can derive further partial differential equations that describe the
propagation of electromagnetic radiation in the respective special situation. One example is the
wave equation.
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2.1.2. The wave equation

Let us assume there are no electric sources, such that we have no charge density and no current
density,

ρ(t,x) ≡ 0, j(t,x) ≡ 0.

We make use of the Laplace operator ∆ := ∂2

∂x2 + ∂2

∂y2 + ∂2

∂z2 and apply the curl to equation (2.6).
Together with the identity

∇× (∇×A) = ∇ (∇ ·A)−∆A

for three-dimensional vector fields A, Gauss’s law (2.7), and Ampère’s law (2.8) we obtain the wave
equation

∆E(t,x)− ε(x)µ0
∂2

∂t2
E(t,x) = 0 (2.9)

for the electric field E. Analogously, we can derive a wave equation describing the induction field
B.
In vacuum, where we have ε(x) ≡ ε0, the wave equation is

∆E(t,x)− 1

c2

∂2

∂t2
E(t,x) = 0,

where c =
√
ε0µ0

−1 is the speed of light in free space.
Obviously, the wave equation describes the temporal behavior of the electric field E. In the case
of time-harmonic waves, we can further simplify the wave equation (2.9), obtaining the time-
independent Helmholtz equation.

2.1.3. The Helmholtz equation

A time-harmonic wave E(t,x) can be separated into a factor that depends on the position x and a
factor that is a harmonic function of the time t, i.e., we can apply a separation of variables of the
form

E(t,x) = u(x)eiωt, (2.10)

where ω is the frequency of the wave. The second partial derivative with respect to the time t is

∂2

∂t2
E(t,x) = −ω2E(t,x).

Inserting this into the wave equation (2.9), we obtain

(∆u(x)) eiωt + ω2ε(x)µ0u(x)eiωt = 0.

We have thus derived the Helmholtz equation

∆u(x) + k̃2u(x) = 0 (2.11)

with the wave number k̃, which fulfills

k̃2(x) = ω2ε(x)µ0. (2.12)

Remark 2.1. A very simple solution of the Helmholtz equation (2.11) is the planar wave

u(x) = aeik̃k·x, (2.13)

where a is a constant amplitude and k is the normalized wave vector.
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2.1.4. Absorbing, isotropic media and the complex refractive index

As already mentioned at the beginning of this chapter, the materials we are dealing with are
absorbing. A wave propagating through an absorbing medium loses energy, which corresponds
to a loss in intensity. This loss is taken into account by using a complex electric permittivity
ε̃(x) = ε1(x) + iε2(x). We write

k̃ = k0ñ,

where k0 is the wave number of the radiation in vacuum and ñ is the complex refractive index. We
have

ñ(x) =

(
ε1(x) + iε2(x)

ε0

)1/2

= n(x) + iκ(x).

The real part n is the refractive index, i.e., the ratio of the propagation speed c0 in vacuum and the
propagation speed c inside the medium. The imaginary part κ is called the extinction coefficient
and is linked to the absorption coefficient α via

κ =
k0c0

4π
α (2.14)

(see [21], Chapter 8.2).

Remark 2.2. By setting k̃ = k0ñ in the planar wave in Remark 2.1, we obtain

u(x) = aeik0(n+iκ)k·x = aeink0k·x · e−k0κk·x.

The imaginary part κ of the complex refractive index is contained in the term e−k0κk·x, which is
monotonically decreasing in the direction of the wave vector k and causes the attenuation of the
amplitude.

Depending on the type of data that is to be used in THz tomography, the THz beam is either a
short electromagnetic pulse or a time-harmonic wave. Pulses allow conclusions on the run-time
of the radiation through the tested medium, whereas the testing with a time-harmonic wave is
mostly used to measure transmittivities or intensities of the electromagnetic field. In this work,
we will restrict ourselves to the use of time-harmonic fields. Consequently, the propagation of THz
radiation through plastics or ceramics can be described by the Helmholtz equation

∆u + k2
0ñ

2u = 0. (2.15)

It is well suited for our purposes, as the complex refractive index appears in a coefficient of this
linear partial differential equation. The inverse problem in THz tomography belongs therefore to
the class of parameter identification problems.

The Helmholtz equation (2.15) is an adequate choice for the modeling of the propagation of THz
radiation, describing reflection and refraction of the waves on interfaces as well as the absorption
of the beam when it travels through the medium. Another important principle that we use for the
model is the superposition principle, which allows us to neglect source terms in our calculations.

2.1.5. The superposition principle

The shape or geometry of an electromagnetic wave that propagates through space is determined by
the properties of the incident wave, which can be interpreted as the source, and the scattered field,
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which results in the interaction of the wave with the obstacles. According to the superposition
principle, the total electromagnetic field ut is a superposition of the incident field ui and the
scattered field usc. This means that the total field can be expressed as the sum

ut = ui + usc. (2.16)

This is a very important statement, as it allows us to treat our problem as described in this chap-
ter: Assuming the incident field is given, there is no additional source of electromagnetic radiation,
yielding ρ = 0 and j = 0 in Maxwell’s equations. As we are using time-harmonic waves, the total
field is described by the Helmholtz equation (2.15).
However, the superposition principle applies only approximately when the medium is a weak ab-
sorber, which is the case for the objects we are interested in.

2.1.6. The inhomogeneous Helmholtz equation for the scattered field

The total field ut and consequently each of its components u fulfill the homogeneous Helmholtz
equation (2.15). Applying the superposition principle, we obtain

∆(ui + usc) + k̃2 (ui + usc) = 0.

We replace k̃ by its representation k̃ = k0ñ and use that the incident wave ui (approximately)
solves the Helmholtz equation in vacuum,

∆ui + k2
0ui = 0.

A reformulation of the above equation yields

0 = ∆ui + k2
0ui + k2

0

(
ñ2 − 1

)
ui + ∆usc + k2

0ñ
2usc

= k2
0

(
ñ2 − 1

)
ui + ∆usc + k2

0ñ
2usc.

In other words, the scattered field usc is determined by the inhomogeneous Helmholtz equation

∆usc + k2
0ñ

2usc = k2
0

(
1− ñ2

)
ui. (2.17)

Note that the right-hand side of (2.17) contains the spacial factor 1− ñ2, which vanishes in vacuum
and is nearly zero in air. In the context of THz tomographic testing, this function is zero outside
the object and can therefore be interpreted mathematically as a function with compact support.
Also, the well-known incident field ui now only appears on the right-hand side as an inhomogeneity,
whereas the left-hand side only depends on the unknown scattered field usc.

This mathematical description makes it easy to take into account the rather complex geometry of
the incident field. The THz beams used in THz tomography combine certain elements of ray and
wave character. This is reflected in their description as a Gaussian beam.

2.2. Gaussian beams

The incident field used in THz tomography, the THz beam, usually has a preferred direction of
propagation and a certain spacial width. We use this information to find a mathematical description
of a THz beam. This section is mainly based on Section 4.5 from [66].
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In vacuum, the beam propagates according to the Helmholtz equation (2.11), where we have k̃ = k0.
Let us assume that the direction of propagation is the y-axis, such that each component u of the
electric field u is given by

u(x) = a(x)eik0y

with an amplitude a(x). Our assumption motivates the following approximation: The change in
the amplitude of the electric field in the direction of propagation is small compared to orders of
the wave length, such that we can neglect the second partial derivative of a with respect to y, i.e.,
we assume that

∂2

∂y2
a(x) ≈ 0.

This yields

∂2

∂y2
u(x) =

(
−k2

0a(x) + 2ik0
∂

∂y
a(x) +

∂2

∂y2
a(x)

)
eik0y

≈
(
−k2

0a(x) + 2ik0
∂

∂y
a(x)

)
eik0y

= −k2
0u(x) + 2ik0

∂

∂y
u(x) + 2k2

0u(x)

= 2ik0
∂

∂y
u(x) + k2

0u(x),

where we have used (
∂

∂y
a(x)

)
eik0y =

∂

∂y
u(x)− ik0u(x).

Inserting this into the original Helmholtz equation (2.11), we obtain the paraxial Helmholtz equation(
∂2

∂x2
+ 2ik0

∂

∂y
+

∂2

∂z2
+ 2k2

0

)
u(x) = 0. (2.18)

The amplitude a(x) consequently fulfills(
∂2

∂x2
+ 2ik0

∂

∂y
+

∂2

∂z2

)
a(x) = 0.

In cylindric coordinates, the above equation transforms to(
∂2

∂r2
+

1

r

∂

∂r
+ 2ik0

∂

∂y

)
a(r, y) = 0, (2.19)

where r =
√
x2 + z2 is the radial component.

A solution of the paraxial Helmholtz equation (2.18) is obtained when the spacial variable R :=
(x2 + y2 + z2)1/2 of a spherical wave

u(r, y) = a
1

R
eik0R

with a constant amplitude a ∈ C is kept close to the optical axis, i.e., the y-axis. Using the
approximation

R = y

√
1 +

r2

y2
≈ y +

r2

2y
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for |x| � |y| and |z| � |y|, we obtain an asymptotic solution

uP(x) := a
1

y
eik0ye

ik0
r2

2y

of the paraxial Helmholtz equation, which is invariant under translation of y. By shifting y → y−s
for some s ∈ C, we obtain additional solutions, of which the solution for s := iy0, y0 ∈ R, is of
special interest (the detailed derivation is to be found in [66]). This solution is called the Gaussian
solution or Gaussian beam. The most prominent representation of a Gaussian beam centered in
y = 0 is

uG(x) = a0
W0

W (y)
exp

(
− r2

W 2(y)

)
exp

(
i
k0y − φ(y) + k0r

2

2R(y)

)
, (2.20)

where we have the original amplitude a0 at the origin, the beam waist W0 = W (0), the Gouy phase
φ(y) = arctan (y/y0) and y0 ∈ R. The factor

R(y) = y

(
1 +

y2
0

y2

)
defines the radius of curvature of the wavefronts. The function

W (y) = W0

√
1 +

y2

y2
0

is called the spot size parameter and represents the radius at which the field’s amplitude a falls to
e−1 of its value a(0, y, 0) on the y-axis. For increasing values of y, the value of W (y) increases, which
demonstrates that the beam is widening when it propagates away from the focal plane y = 0. When
y � y0, the wavefronts of the Gaussian beam can be interpreted as the wavefronts of a spherical
wave. For y = 0, the curvature of the wavefronts is zero and the area −y0 ≤ y ≤ y0, where the
wavefronts are almost planar, is called the Rayleigh zone. Inside this zone, the Gaussian beam can
be regarded as a planar wave with a finite width.
Note that uG is continuously differentiable in R3.
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Figure 2.1.: Real part of the electromagnetic field (z-component) of a Gaussian beam with frequency
f = 4 · 1010 Hz, beam waist W0 = 0.013 m and a Rayleigh zone of length 2y0 = 0.146 m in the
x-y-plane (left) and as a three-dimensional plot (right).
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According to our assumption (2.10), the time-dependent electromagnetic Gaussian beam can be
written as

Ez(t,x) = uG(x) · eiωt.

For further reading and a derivation of the above description of Gaussian beams, there is a wide
range in literature, for example [66].

2.3. Boundary values for the Helmholtz equation

In the previous sections, we have derived a physical model for the propagation of THz radiation
through a medium. In order to find a unique solution of the Helmholtz equation (2.11) or rather
the inhomogeneous Helmholtz equation (2.17), we have to establish suitable boundary conditions.
As long as the radiation is not absorbed or reflected at some finite boundary, we have to consider
the whole space R3 or R2, depending on the setting, as a domain for the solution. In that case, the
standard boundary condition that applies is the Sommerfeld radiation condition

lim
%→∞

%

(
∂u

∂%
− ik0u

)
= 0 (2.21)

in R3 and

lim
%→∞

√
%

(
∂u

∂%
− ik0u

)
= 0 (2.22)

in R2, where we have used % = |x|.

The Helmholtz equation together with the Sommerfeld radiation condition is a well-known and
established mathematical model for scattering problems. This boundary value problem has not
only been applied in the scattering theory of electromagnetic waves. It is also fundamental in the
scattering theory of acoustic waves (in particular ultrasound) and has been an important topic
of research. The existence and uniqueness of a solution of the scattering problem (2.11), (2.21) is
discussed in [20] and can be shown also for the two-dimensional case [6]. The proofs make use of the
fundamental solution of the Helmholtz equation, which is why the proof in the two-dimensional case
has to be modified due to the more complex shape of the fundamental solution in two dimensions.

For numerical purposes, the Sommerfeld radiation condition is of course not very useful, as the
domains on which we need to calculate a solution of the Helmholtz equation are usually bounded.
Our goal is to find boundary conditions that can be applied on the boundary of a bounded domain
and approximate the Sommerfeld radiation condition well enough for our purposes.
One method to realize the radiation condition when dealing with bounded domains is the method
of perfectly matched layers (see, e.g., [9], [80]). The basic idea is to add an additional layer around
the domain and calculate the solution inside this layer such that there is no reflection of the field
into the domain at the inner boundary.
Another option are the Robin boundary conditions or first order scattering boundary conditions

∂u

∂n
− ik0u = 0. (2.23)

These boundary conditions approximate the Sommerfeld radiation condition and have been devel-
oped to minimize the back scattering of outgoing waves by the boundary of the domain. They
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represent a condition on the normal derivative ∂u/∂n of the field u. In the literature ([7], [64]) they
are sometimes referred to as generalized Neumann conditions.
Both types of boundary conditions have been studied regarding their numerical implementation.
A comparison can be found in the COMSOL blog [31].

Inspired by the work of Bao and Li, who analyzed the inverse medium problem [7, 8], which
consists in the reconstruction of the refractive index n from the knowledge of the boundary data of
the electric field influenced by the tested object, and in view of a solution of the inverse problem
of THz tomography, the Robin boundary conditions turn out to be particularly useful. Their
advantage concerns the calculation of the adjoint of the forward operator, as we will see in the
following section. To avoid too strong back reflections from the boundary, which occur when
the angle of incidence of the wave onto the boundary approaches π/2, we will choose the domain
accordingly, i.e., large enough, such that the beam’s angle of incidence with the boundary does not
differ significantly from zero.

supp(1− ñ2)

Ω
∂Ω

Figure 2.2.: Domain Ω with boundary ∂Ω, containing the support of 1− ñ2.

Summing up the results of this chapter so far, the first part of the direct problem in THz tomography
is given by the following boundary value problem. On a finite domain Ω with C1-boundary ∂Ω we
want to solve the scattering problem

∆usc + k2
0ñ

2usc = k2
0(1− ñ2)ui in Ω,

∂usc

∂n
− ik0usc = 0 on ∂Ω,

usc + ui = ut in Ω

(2.24)

for a known complex refractive index ñ. By ∂
∂n we denote the partial directional derivative in the

direction of the outward normal vector n of the boundary, which exists as we require the boundary
to be a C1-boundary. As the incident field ui and the total field ut fulfill the boundary condition,
the scattered field usc fulfills them automatically by the superposition principle.

2.4. An analysis of the inverse problem of THz tomography

The aim of this section is to establish the well-definedness of the scattering map S and the definition
of the observation operator. We give a full description of the forward operator and analyze its
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Figure 2.3.: Real part of the electromagnetic field (z-component) of a Gaussian THz beam with frequency
f = 0.1 THz, beam waist W0 = 0.013 m and a Rayleigh zone of length 2y0 = 0.146 m, refracted,
reflected, and attenuated by a plastic cuboid with complex refractive index ñ = 1.5 + i · 0.005
and quadratic cross-section of the size 4 cm × 4 cm. The THz emitter is situated in the first
quadrant outside the domain.

properties, also in view of a numerical solution of the inverse problem. This includes a derivation
of the Fréchet derivative and the adjoint operator, which play an important role in regularization
techniques (e.g., the Landweber iteration and particularly in the SESOP and RESESOP methods
we want to apply later).

The parameter identification problem analyzed by Bao, Chen, and Ma in [6] using the Sommerfeld
radiation condition and by Bao and Li in [7] together with Robin boundary conditions is called
the inverse medium problem, in which the refractive index of an object is reconstructed from the
boundary data. The scattering, penetrable object is illuminated by a one-parameter family of time-
harmonic electromagnetic plane incident waves, where the parameter refers to the spatial frequency
of the wave. The scattering object is considered a pure scatterer, i.e., the absorption is neglected.
Consequently, the refractive index n is real-valued. The mathematical description of the inverse
medium problem is also based on the Helmholtz equation and the superposition principle.
The inverse problem of THz tomography can likewise be interpreted as an inverse medium problem.
However, the goal of THz tomography is the reconstruction of the full complex refractive index
from (discrete) boundary measurements of the electric field, which is the result of a superposition
of an incident Gaussian beam and the respective scattered, refracted, and attenuated beam. For
an analysis of the forward operator of our parameter identification problem, we will use similar
methods as in [7]. A more general description of the procedure can be found in [65].

So far, we have described how to obtain the total electric field from the knowledge of the complex
refractive index given on a domain Ω. The complex refractive index ñ can be defined as a piecewise
continuous complex function on Ω. The jumps in ñ occur at the boundaries between different
materials, for example at the outer surface of the object. We assume that within one material, the
value of ñ changes continuously or is constant. Gradients in the complex refractive index can occur
for example if the material has a certain moisture content. Porous materials such as sponges or
foams often show this phenomenon. Objects that consist of one single material may have inclusions
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of air or impurities that have a different complex refractive index. Not only the classification of
inclusions is of interest, but also the detection of the resulting inner interfaces. Their knowledge
alone can be exploited in the adapted algebraic reconstruction technique that has been developed
for THz tomography by Tepe et al., see [71].

In this work, we want to discuss a method to reconstruct the complex refractive index from discrete
measurements of the total electric field on the boundary of the bounded domain Ω. We want to
restrict ourselves to the two-dimensional case, i.e., we only consider objects that fulfill

ñ(x) = ñ(x, y, z) = ñ(x, y, 0)

for all z ∈ R and thus neglect the change in ñ in z-direction.

Regarding our scattering problem (2.24), we note that instead of ñ, we are dealing with its square,
which is accordingly a piecewise continuous function on Ω and fulfills ñ2(x) = 1 outside the object.
This motivates the following definition:

Definition 2.3. Let D ⊆ Ω be the domain on which the complex refractive index ñ is different
from 1, i.e.,

D := supp(1− ñ2). (2.25)

Furthermore, we define the complex valued function

m : Ω→ C, m(x) := 1− ñ2(x). (2.26)

In Definition 2.3, the support

supp(f) := Ω \
⋃{

U ⊆ Ω : U open, f |U = 0 a.e.
}

of a function f : V → C (or f : V → R) is defined as the complement of the union of all open
subsets of Ω, on which f = 0 almost everywhere. Hence, the support of f is closed.

The function m describes the same physical properties of the respective object as ñ. For this
reason, it is specially suited for our modeling and later for the reconstruction. Since the support
of m : Ω→ C is bounded, the Heine-Borel theorem yields that m has a compact support.

Remark 2.4. As ñ is a bounded function on Ω, the function m = 1− ñ2 is also bounded. For our
purposes, we use that m is square-integrable over Ω, such that

m ∈ L2
comp(Ω) :=

{
f ∈ L2(Ω) : supp(f) ⊆ Ω

}
.

This allows us to work in a Hilbert space setting, where

m ∈ L∞(Ω) ∩ L2
comp(Ω) ⊆ L2(Ω).

The receivers used in a tomographic measurement setup detect only the z-component Ez(x) of the
THz beam’s electric field E(x) = (Ex(x), Ey(x), Ez(x))T . As already stated, we are interested in
reconstructing cross-sections of the tested object that are embedded in the x-y-plane. We treat
our problem accordingly as a two-dimensional problem and aim at the reconstruction of a complex
valued, bounded function supported in Ω ⊆ R2 from discrete measurements of the corresponding
scalar field, the z-component of the electric field, on the boundary of Ω. The underlying boundary
value problem (2.24) holds for each component of the electric field. Together with the following
definition, we can reduce the direct problem of THz tomography (in our setting) to a scalar two-
dimensional boundary value problem.

51



Definition 2.5. We define the z-component Ez(x) in the x-y-plane by the scalar field ut, i.e.,

ut(x, y) := Ez(x, y, 0) for all (x, y) ∈ Ω ⊆ R2, (2.27)

which is, according to the superposition principle, the sum

ut(x, y) = ui(x, y) + usc(x, y)

of the z-components of the electric field of the incoming wave, denoted by ui, and the scattered
wave, denoted by usc.

Before taking a closer look at the measuring process and its mathematical modeling, we first want
to establish the existence and uniqueness of the total electric field ut, which is given by (2.24).

2.4.1. Existence and uniqueness of a weak solution of the Helmholtz equation using
scattering boundary conditions

From now on, we will consider the complex refractive index m as an element of L∞(Ω)∩L2
comp(Ω) ⊆

L2(Ω), where the bounded domain Ω has a C1-boundary ∂Ω.

We want to establish the existence and uniqueness of a weak solution of the scattering problem we
derived in the previous sections, given by the boundary value problem

usc + ui = ut in Ω, (2.28)

∆usc + k2
0(1−m)usc = k2

0mui in Ω, (2.29)

∂usc

∂n
− ik0usc = 0 on ∂Ω. (2.30)

The partial derivative ∂
∂n is the directional derivative along the outside normal vector n of the

boundary of the domain Ω. The boundary condition is well-defined due to our choice of Ω.

A useful setting for the analysis of boundary value problems are the Sobolev spaces W k,p(Ω),
which are subspaces of Lp-spaces and whose elements have a k-th weak derivative. The definition of
Sobolev spaces, weak differentiability and some important properties can be found in the appendix,
see B.2.1. We make use of the variational formulation of our boundary value problem (2.29),
(2.30) in order to prove the existence and uniqueness of a weak solution. These methods are well-
established and discussed in many standard references, see, e.g., [3, 12, 27, 50]. In the context of
boundary value problems, a shorter overview of this theory together with a great variety of typical
problems is presented in [64]. As we are working in an L2 setting (i.e., in Hilbert spaces), we will
only use the Sobolev spaces Hk(Ω) := W k,2(Ω), which are Hilbert spaces as well.

The techniques and proofs we present are inspired by the methods discussed in [65] and specifically
in [7].

Before we establish the variational formulation of the boundary value problem given by the equa-
tions (2.29) and (2.30) for the existence and uniqueness proofs, we need some definitions to be able
to work in an appropriate setting.
We define the standard inner products

(u, v) :=

∫
Ω
uv dx
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on L2(Ω), and

〈u, v〉 :=

∫
∂Ω
uv dsx

on L2(∂Ω). Note that the integral
∫
∂Ω uv dsx is to be understood in the context of traces, which

makes sense if ∂Ω is at least of class C1 (for reference, see, e.g., [27], chapters 5.4 and 5.5). We
define the trace operator, which is discussed in detail in, e.g., [3, 5, 12, 27]. Some more statements
are also to be found in the appendix in Section B.13.

Definition 2.6. The operator

γ : H1(Ω)→ L2(∂Ω), u 7→ u|∂Ω (2.31)

is called the trace operator.

Remark 2.7. (a) The trace operator is a bounded, linear operator if ∂Ω is of class C1. In that
case, we have

‖γu‖L2(∂Ω) ≤ c ‖u‖H1(Ω) ,

where the constant c depends on Ω, see, e.g., [3, 27].

(b) The above estimate will play a role in the proof of the existence of a weak solution, i.e., in
the proof of Theorem 2.12.

At this point, we define the parameter-to-solution operator S, which plays an integral part in the
direct and inverse problem of THz tomography.

Definition 2.8. Let ui ∈ H1(Ω) and m ∈ L∞(Ω) ∩ L2
comp(Ω). We define the mapping

S : D(S) ⊆ L∞(Ω) ∩ L2
comp(Ω)→ H1(Ω), m 7→ S(m) := ut,

as the operator, that maps a function m ∈ L∞(Ω) ∩ L2
comp(Ω) to the field ut ∈ H1(Ω), such that

ut = ui + usc and usc is the solution of the boundary value problem (2.29), (2.30).

Remark 2.9. (a) In our setting, ui ∈ H1(Ω) represents the incident field as defined in Section
2.1 and m ∈ D(S) the complex refractive index, see Definition 2.3. As ui solves the paraxial
Helmholtz equation and is continuously differentiable, the statement ui ∈ H1(Ω) is valid.
However, for most of our statements, we only use ui ∈ L2(Ω).

(b) By proving the existence and uniqueness of a weak solution of (2.29), (2.30), we obtain the
well-definedness of the operator S.

(c) The operator S can be interpreted as a mapping from
(
D(S)

)
×H1(Ω) to H1(Ω), when the

incident field ui ∈ H1(Ω) is considered as a variable, as it is done in [7]. In that case, S is
linear with respect to ui and nonlinear with respect to m. To emphasize this statement, we
write

S (m,ui) = S(m)ui.

The linear operator S(m) is bounded and, by consequence, continuous as an operator from
H1(Ω) to H1(Ω), see [7]. In our case, the incident field is not changed during the measuring
process apart from the shifts due to the change in the position of the emitter and receivers.
We will thus focus on the nonlinear mapping S as defined before.

(d) In the proof of the existence and uniqueness of usc, the superposition principle (2.28) does not
play a role.

53



Let the wave number k0 > 0 be a fixed positive real number. To establish the variational formulation
of the boundary value problem given by the equations (2.29) and (2.30), we multiply both sides of
(2.29) with (the complex conjugate of) a test function v ∈ H1(Ω) and integrate over the domain
Ω, obtaining ∫

Ω
∆usc · v dx +

∫
Ω
k2

0(1−m)usc · v dx =

∫
Ω
k2

0mui · v dx.

Partial integration of the first term on the left-hand side yields∫
∂Ω

∂usc

∂n
· v dsx −

∫
Ω
∇usc · ∇v dx +

∫
Ω
k2

0(1−m)usc · v dx =

∫
Ω
k2

0mui · v dx.

We insert the boundary condition (2.30) into the first term and obtain

ik0

∫
∂Ω
usc · v dsx −

∫
Ω
∇usc · ∇v dx + k2

0

∫
Ω

(1−m)usc · v dx = k2
0

∫
Ω
mui · v dx. (2.32)

Accordingly, we define the sesquilinear form

a : H1(Ω)×H1(Ω)→ C

by
a(u, v) := (∇u,∇v)− k2

0 ((1−m)u, v)− ik0〈u, v〉, (2.33)

and the linear functional b : H1(Ω)→ C by

b(v) := −k2
0(mui, v), (2.34)

where (·, ·) and 〈·, ·〉 are the L2 inner products as defined earlier. However, for the sake of a better
understanding, we will label the occurring norms and inner products in some proofs in this chapter.
In the following, we show that there is a unique u ∈ H1(Ω), such that

a(u, v) = b(v) (2.35)

for all v ∈ H1(Ω).

Important tools in the analysis of variational problems such as (2.35) are the Lax-Milgram lemma
(B.3), the Riesz representation theorem (B.5), and the Fredholm alternative (B.6). First of all, we
want to prove that there is at most one solution of our boundary value problem. In contrast to
the inverse medium problem, we are now dealing with a complex valued coefficient function. The
proof has to be adapted accordingly.

Lemma 2.10. For some m ∈ D(S) with real part mr := Re(m) and imaginary part mi := Im(m) ≤
0 there is at most one solution to the variational scattering problem (2.35).

Proof. We consider the variational problem (2.35) for v = u, such that a(u, u) = b(u). Due to the
linearity of the elliptic partial differential equation it suffices to show that u = 0 in case there is no
incident field, i.e., ui = 0. We then have

a(u, u) =

∫
Ω
∇u · ∇udx− k2

0

∫
Ω

(1−m)u · udx− ik0

∫
∂Ω
u · udsx = 0.

We represent the complex refractive index m = mr + imi by its real and imaginary part and obtain

ik2
0

∫
Ω
miu · u dx = ik0

∫
∂Ω
u · udsx
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for the imaginary part of the previous equation. We thus have

‖u‖2L2(∂Ω) = k0

∫
Ω
mi|u|2 dx ≤ 0,

as mi(x) ≤ 0 for all x ∈ Ω. We thus have u|∂Ω = 0, such that our boundary condition now reads
∂u
∂n = 0 (Neumann boundary conditions). Hence, it remains to show that there is at most one
solution of the Neumann boundary value problem

∆u+ k2
0(1−m)u = 0 in Ω,

∂u

∂n
= 0 on ∂Ω.

(2.36)

Corollary 8.2 from [32] yields u = 0 in (2.36) on Ω and consequently, we have u = 0 on Ω.

Remark 2.11. The condition mi ≤ 0 holds naturally due to m = 1−(n+iκ)2 = 1−n2 +κ2−i ·2nκ
and n ≥ 1, κ ≥ 0. More precisely, it suffices that mi ≤ 0 almost everywhere in Ω.

Having established the uniqueness of a solution of the variational problem (2.35), we now have to
prove its existence. In the following, we will always assume that the complex refractive index m
fulfills

Im(m) ≤ 0,

such that we can apply Lemma 2.10.
Throughout this section, let cj > 0, j ∈ N, be positive constants.

Theorem 2.12. Let Ω be a bounded domain with C1-boundary ∂Ω, k0 ∈ R+ a nonnegative constant
and ui ∈ H1(Ω) the incident field. If m ∈ D(S), the variational problem (2.35), respectively the
boundary value problem

∆u+ k2
0(1−m)u = k2

0mui in Ω,

∂u

∂n
− ik0u = 0 on ∂Ω,

possesses a unique weak solution u ∈ H1(Ω), which fulfills

‖u‖H1(Ω) ≤ C1‖m‖L∞(Ω) ‖ui‖L2(Ω) (2.37)

for some constant C1 = C1(k0,Ω) > 0.

Proof. We split the sesquilinear form a into two sesquilinear forms a1, a2 : H1(Ω) × H1(Ω) → C,
where

a1(v1, v2) = (∇v1,∇v2)L2(Ω) − ik0〈v1, v2〉L2(∂Ω),

and
a2(v1, v2) = −

(
(1−m)v1, v2

)
L2(Ω)

,

such that
a = a1 + k2

0a2.

Note that a2 can be defined on L2(Ω)× L2(Ω) as well.
We first show that a1 is bounded and coercive. From

|a1(v1, v2)| =
∣∣∣(∇v1,∇v2)L2(Ω) − ik0 〈v1, v2〉L2(∂Ω)

∣∣∣
≤ |v1|H1(Ω) · |v2|H1(Ω) + k0 ‖v1‖L2(∂Ω) · ‖v2‖L2(∂Ω)

≤ ‖v1‖H1(Ω) · ‖v2‖H1(Ω) + c1k0 ‖v1‖H1(Ω) · ‖v2‖H1(Ω)

≤ c2k0‖v1‖H1(Ω) · ‖v2‖H1(Ω)
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we obtain the boundedness of a1. We have used the semi-norm |·|H1(Ω) on H1(Ω), given by

|v|2H1(Ω) =

∫
Ω
∇v · ∇v dx

and satisfying |v|H1(Ω) ≤ ‖v‖H1(Ω), and the trace theorem (for reference, see, e.g., [3, 27] and also
B.13). The constant c2 > 0 depends only on Ω.
The coercivity of a1 is obtained by estimating∣∣(a1(v, v)

)∣∣ =
∣∣∣|v|2H1(Ω) − ik0‖v‖2L2(∂Ω)

∣∣∣
=
(
|v|4H1(Ω) + k2

0‖v‖4L2(∂Ω)

)1/2

≥ c3

(
|v|2H1(Ω) + k0‖v‖2L2(∂Ω)

)
≥ c4k0

(
|v|2H1(Ω) + ‖v‖2L2(∂Ω)

)
≥ c5k0‖v‖2H1(Ω),

using the equivalence of the Euklidian norm and the `1-norm on R2,∥∥(|v|2H1(Ω), k0‖v‖2L2(∂Ω)

)T∥∥
2
≥ c3

∥∥(|v|2H1(Ω), k0‖v‖2L2(∂Ω)

)T∥∥
1
,

and an estimate that can be found in [5], p. 214, which is another norm equivalence result. The
constant c5 depends only on Ω (also [5], p. 214).
In the following, we denote by

Φ : H1(Ω)→ (H1(Ω))∗, v 7→ (v, ·)H1(Ω)

the isometric Riesz isomorphism (see, e.g., [12] and [76], Theorem V.3.6). The Lax-Milgram lemma
yields the existence of an isomorphism T : H1(Ω) → H1(Ω) with ‖T‖H1(Ω)→H1(Ω) ≤ c2k0 and
‖T−1‖H1(Ω)→H1(Ω) ≤ (c5k0)−1, which satisfies

a1(u, v) = (Tu, v)H1(Ω)

for all u, v ∈ H1(Ω) (this operator is associated to a1, see [12, 64]). Now consider the mapping

B : L2(Ω)→ (H1(Ω))∗, p 7→ a2(p, ·),

which is well-defined and for p ∈ L2(Ω), the mapping a2(p, ·) is antilinear. For w ∈ H1(Ω), we
write Bp[w] = a2(p, w). For all p ∈ L2(Ω) and v ∈ H1(Ω), we have

|a2(p, v)| =
∣∣((1−m)p, v

)
L2(Ω)

∣∣ ≤ ‖1−m‖L∞(Ω)‖p‖L2(Ω)‖v‖L2(Ω)

≤ ‖1−m‖L∞(Ω)‖p‖L2(Ω)‖v‖H1(Ω).

Consequently, a2(p, ·) is continuous and we have ‖a2(p, ·)‖(H1(Ω))∗ ≤ ‖1 −m‖L∞(Ω)‖p‖L2(Ω). This
estimate also yields the boundedness of the linear mapping B with

‖B‖L2(Ω)→(H1(Ω))∗ ≤ ‖1−m‖L∞(Ω).

We now define the linear operator

Ã := T−1Φ−1B : L2(Ω)→ H1(Ω).
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Consider the operator
A : L2(Ω)→ H1(Ω) ↪→ L2(Ω), p 7→ Ãp.

Since H1(Ω) is compactly embedded in L2(Ω), the operator A : L2(Ω) → L2(Ω) is compact as
a composition of a compact and a bounded linear operator. Note that A(L2(Ω)) ⊆ H1(Ω). We
obtain for every p ∈ L2(Ω) the estimate

‖Ap‖H1(Ω) = ‖Ãp‖H1(Ω) ≤ ‖T−1‖H1(Ω)→H1(Ω) · ‖Φ−1Bp‖H1(Ω)

≤ (c5k0)−1‖Bp‖(H1(Ω))∗ ≤ (c5k0)−1‖1−m‖L∞(Ω)‖p‖L2(Ω)

and we compute

a1(Ap, w) = a1

(
Ãp, w

)
= a1

(
T−1Φ−1Bp, w

)
=
(
Φ−1Bp, w

)
H1(Ω)

=
(
Φ(Φ−1Bp)

)
[w] = Bp[w] = a2(p, w).

Furthermore, the operator A is unique: Let C : L2(Ω)→ L2(Ω) be another bounded linear operator
with C(L2(Ω)) ⊆ H1(Ω) and a1(Cp, w) = a2(p, w) for every p ∈ L2(Ω) and w ∈ H1(Ω). This yields

ΦTCp = (TCp, ·)H1(Ω) = a1(Cp, ·) = a2(p, ·) = Bp,

and consequently
Cp = T−1Φ−1Bp = Ãp = Ap.

By I : L2(Ω) → L2(Ω), we denote the identity mapping in L2(Ω). In the next step, we show that
for every k0 > 0 the operator I + k2

0A is injective.
Let p ∈ N

(
I + k2

0A
)
⊆ L2(Ω). Then we have p = −k2

0Ap ∈ H1(Ω) and thus

a1(p, p) + k2
0a2(p, p) = a1

(
− k2

0Ap, p
)

+ k2
0a2(p, p)

= −k2
0a1

(
Ap, p

)
+ k2

0a2(p, p)

= −k2
0a2(p, p) + k2

0a2(p, p) = 0.

Our uniqueness result, Lemma 2.10, now yields p = 0. Hence, the operator I + k2
0A is injective.

Consider now the (antilinear) functional b ∈ (H1(Ω))∗ and let u ∈ H1(Ω). Using the definitions of
a1, a2 and the operator A, we see that our original variational problem of finding u ∈ H1(Ω) which
satisfies

a1(u, v) + k2
0a2(u, v) = b(v)

for all v ∈ H1(Ω) is equivalent to finding u ∈ H1(Ω), such that

b(v) = a1

(
u+ k2

0Au, v
)

=
(
T
(
u+ k2

0A
)
, v
)
H1(Ω)

for all v ∈ H1(Ω). This yields Φ
(
T
(
I+k2

0A
)
u
)

= b and we finally obtain u =
(
I+k2

0A
)−1

T−1Φ−1(b),
such that our variational problem has at least one solution u ∈ H1(Ω). Now put

ũ := T−1Φ−1(b)

and we see that
b(v) =

(
ΦT ũ

)
[v] = (T ũ, v) = a1(ũ, v)

for all v ∈ H1(Ω). Since A is compact and I + k2
0A is injective, the Fredholm alternative is

applicable and yields the existence of a unique u ∈ H1(Ω), such that(
I + k2

0A
)
u = ũ, (2.38)
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and the boundedness of the inverse of I + k2
0A, i.e.,∥∥(I + k2

0A
)−1∥∥

H1(Ω)→H1(Ω)
≤ c6, (2.39)

where c6 = c6(k0) depends on the wave number k0. We estimate

‖u‖H1(Ω) ≤
∥∥I + k2

0A
∥∥−1

H1(Ω)
‖ũ‖H1(Ω)

≤ c6

∥∥T−1
∥∥
H1(Ω)→H1(Ω)

∥∥Φ−1b
∥∥
H1(Ω)

≤ c6(c5k0)−1
∥∥Φ−1b

∥∥
H1(Ω)

and together with the boundedness of b, which we derive from

‖b‖(H1(Ω))∗ = sup
‖v‖H1(Ω)=1

|b(v)| = sup
‖v‖H1(Ω)=1

|k2
0(mui, v)|

≤ sup
‖v‖H1(Ω)=1

k2
0‖m‖L∞(Ω)‖ui‖L2(Ω)‖v‖L2(Ω)

≤ sup
‖v‖H1(Ω)=1

k2
0‖m‖L∞(Ω)‖ui‖L2(Ω)‖v‖H1(Ω)

≤ k2
0‖m‖L∞(Ω)‖ui‖L2(Ω),

we finally arrive at

‖u‖H1(Ω) ≤ c6(c5k0)−1 · k2
0‖m‖L∞(Ω)‖ui‖L2(Ω) = C1‖m‖L∞(Ω)‖ui‖L2(Ω), (2.40)

where c5 is independent of k0, whereas C1 = C1(k0,Ω) := c−1
5 c6 · k0.

Lemma 2.13. If k0 is sufficiently small, we obtain the more explicit estimate

‖u‖H1(Ω) ≤ C̃1k0‖m‖L∞(Ω) ‖ui‖L2(Ω) , (2.41)

where C̃1 = C̃1(Ω), for the weak solution u ∈ H1(Ω), replacing the estimate (2.37) from Theorem
2.12.

Proof. In the proof of Theorem 2.12 we have derived the operator equation (2.38). At this point,
if k0 is small enough, we conclude that the operator Ak0 := I + k2

0A = I − (ik0)2A has a uniformly
bounded inverse: Define Tk0 := −k0

2A, such that ‖Tk0‖H1(Ω)→H1(Ω) = k0
2‖A‖H1(Ω)→H1(Ω). Let

q ∈ (0, 1). Consequently, if k0 <
√
q‖A‖−1, we have ‖Tk0‖H1(Ω)→H1(Ω) < q < 1, and the operator

Ak0 is invertible with inverse

A−1
k0

=

∞∑
j=0

T jk0
,

which is a Neumann series (for reference, see, e.g., [76]). According to∥∥∥A−1
k0

∥∥∥
H1(Ω)→H1(Ω)

≤
∞∑
j=0

‖Tk0‖
j
H1(Ω)→H1(Ω)

<
∞∑
j=0

qj =
1

1− q
,

the inverse is uniformly bounded.
We thus have

‖u‖H1(Ω) ≤ (1− q)−1 ‖ũ‖H1(Ω) , (2.42)
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where 1− q is independent of k0.
We now continue as in the proof of Theorem 2.12, keeping in mind the new bound of (I + k2

0A),
and obtain

‖u‖H1(Ω) ≤ C̃1k0‖m‖L∞(Ω) ‖ui‖L2(Ω)

by setting C̃1 = C̃1(Ω) := (1− q)−1c5.

We specify the domain of the scattering operator S by

D(S) ⊆
{
m ∈ L∞(Ω) ∩ L2

comp(Ω) : ‖m‖L∞(Ω) ≤M, Im(m) ≤ 0
}

for some M > 0 and conclude our analysis by proving a continuity result for S on Ω.

Lemma 2.14. Let m1,m2 ∈ D(S). Then we have

‖S(m1)− S(m2)‖H1(Ω) ≤ C2 ‖m1 −m2‖L∞(Ω) ‖ui‖L2(Ω) , (2.43)

where C2 = C2 (k0,Ω,M) > 0 and ui ∈ H1(Ω) is the incident field, i.e., S is Lipschitz-continuous.

Proof. We set u(1) := S(m1)− ui and u(2) := S(m2)− ui, such that

∆u(j) + k2
0 (1−mj)u(j) = k2

0mjui, j = 1, 2. (2.44)

From Theorem 2.12 we deduce that∥∥u(j)

∥∥
H1(Ω)

≤ C1‖mj‖L∞(Ω) ‖ui‖L2(Ω) . (2.45)

By subtracting equation (2.44) for j = 2 from the one for j = 1 and by setting w := u(1) − u(2) we
obtain

∆w + k2
0 (1−m1)w = k2

0(m1 −m2)
(
ui + u(2)

)
. (2.46)

Note that w satisfies the Robin boundary condition of our scattering problem, such that we can
apply Theorem 2.12. We thus have

‖w‖H1(Ω) ≤ C1‖m1 −m2‖L∞(Ω)

∥∥ui + u(2)

∥∥
L2(Ω)

.

Combining this estimate with
∥∥u(2)

∥∥
L2(Ω)

≤
∥∥u(2)

∥∥
H1(Ω)

and (2.45) for j = 2 yields

‖S(m1)− S(m2)‖H1(Ω) =
∥∥u(1) − u(2)

∥∥
H1(Ω)

≤ C1‖m1 −m2‖L∞(Ω)

∥∥ui + u(2)

∥∥
L2(Ω)

≤ C1‖m1 −m2‖L∞(Ω)

(
‖ui‖L2(Ω) +

∥∥u(2)

∥∥
L2(Ω)

)
≤ C2‖m1 −m2‖L∞(Ω) ‖ui‖L2(Ω) ,

where C2 = C2 (k0,Ω,M) := C1(1 + C1M).

Before we move on to the linearized scattering problem, we want to summarize our previous results.
We have considered the scattering map S, which is a nonlinear operator that maps m ∈ D(S) to
the electric field (or rather its z-component) u ∈ H1(Ω). This mapping is well-defined and S is
continuous as an operator from D(S) to H1(Ω).
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2.4.2. The linearized scattering problem

The following considerations are to be understood in the weak sense, even though we formulate the
occurring boundary value problems in the classical sense.

The mathematical model of the direct problem in THz tomography is described by the scattering
map S, which we discussed in the previous section, and some observation operator that maps the
electric field u to the measured values in the data space. Due to the nonlinearity of the parameter-
to-solution mapping S, the corresponding inverse problem belongs to the class of nonlinear inverse
problems (in Hilbert spaces). These are usually solved iteratively, for example with a Landweber
iteration. For these methods, the knowledge of the linearization of the forward operator is essential.
In the proof of the continuity result for the scattering map S, we have deduced a boundary value
problem which gives rise to the following definition.

Definition 2.15. For some fixed m ∈ D(S) and the respective solution ut := S(m) of the scattering
problem (2.28)-(2.30), let Tm : L∞(Ω) ∩ L2

comp(Ω) → H1(Ω) be the operator that maps some
h ∈ L∞(Ω) ∩ L2

comp(Ω) to the solution of the boundary value problem

∆w + k2
0(1−m)w = k2

0h · ut in Ω, (2.47)

∂w

∂n
− ik0w = 0 on ∂Ω. (2.48)

Let us for now assume that S is Gâteaux differentiable in an open neighborhood around m ∈ D(S).
The Gâteaux differentiability in m yields the existence of the limit

lim
α→0

(
S(m+ αh)− S(m)

)
α

. (2.49)

The boundary value problem (2.47), (2.48) is obtained from the original scattering problem (2.28)-
(2.30) by considering, for some m ∈ D(S), the perturbed boundary value problem

∆usc,h + k2
0

(
1− (m+ αh)

)
usc,h = k2

0(m+ αh)ui in Ω,

∂usc,h

∂n
− ik0usc,h = 0 on ∂Ω,

where usc,h := S(m+ αh)− ui. As before, we define usc := S(m)− ui and note that both fields usc

and usc,h fulfill the Robin boundary condition (2.30).
Note that usc, usc,h ∈ H1(Ω), which follows from our analysis of the scattering map S. We subtract
the Helmholtz equation for usc from the one for usc,h and obtain

∆
(
usc,h − usc

)
+ k2

0(1−m)
(
usc,h − usc

)
= k2

0(usc,h + ui)αh,

which can be reformulated as

∆
(
S(m+ αh)− S(m)

)
+ k2

0(1−m)
(
S(m+ αh)− S(m)

)
= k2

0

(
S(m+ αh)

)
αh.

We divide this expression by α and consider the weak formulation (2.35) of this partial differential
equation,∫

Ω
∇uα · ∇v dx− k2

0

∫
Ω

(1−m)uα · v dx− ik0

∫
∂Ω
uα · v dsx = −k2

0

∫
Ω
mui · v dx, (2.50)
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where we have replaced u by

uα :=

(
S(m+ αh)− S(m)

)
α

.

We have postulated the existence of the limit limα→0 uα and assume |α| ≤ α for some α > 0. Note
that due to our previous findings, we estimate

‖∇uα‖L2(Ω) = |uα|H1(Ω) ≤ ‖uα‖H1(Ω) ≤ c(k0, α,Ω, ‖m‖L∞(Ω))‖h‖L∞(Ω)‖ui‖L2(Ω).

As a consequence,
sup
|α|≤α

(
∇uα · ∇v

)
∈ L1(Ω).

Obviously, our previous analysis also yields

sup
|α|≤α

(
(1−m)uα · v

)
∈ L1(Ω), sup

|α|≤α

(
uα · v

)
∈ L1(∂Ω), sup

|α|≤α

(
mui · v

)
∈ L1(Ω).

We let α tend to zero in (2.50). The dominated convergence theorem (see, e.g., [24]) now allows us to
interchange limit and integration. Additionally, the continuity of the operator ∇ : H1(Ω)→ L2(Ω),
which follows from ‖∇u‖L2(Ω) = |u|H1(Ω) ≤ ‖u‖H1(Ω), allows a further interchange of limit and
differentiation. We thus have derived a variational formulation of

∆ lim
α→0

(
S(m+ αh)− S(m)

)
α

+ k2
0(1−m) lim

α→0

(
S(m+ αh)− S(m)

)
α

= k2
0 lim
α→0

(
S(m+ αh)

)
h

with Robin boundary conditions. Since S is continuous, the right-hand side converges to k2
0S(m)h

for α→ 0. Now define

w := lim
α→0

uα = lim
α→0

(
S(m+ αh)− S(m)

)
α

,

which fulfills the inhomogeneous Helmholtz equation (2.47) from the definition of the linear operator
Tm. This yields a candidate for the Fréchet derivative of the scattering map S in m. We will further
investigate the linear mapping Tm, prove that S is Fréchet differentiable and show that its Fréchet
derivative coincides with the operator Tm.

Remark 2.16. (a) In the following, we will restrict ourselves to formulating the occurring bound-
ary value problems in the classical formulation, but consider only the weak solutions. The
statements are therefore to be understood in the weak sense.

(b) Note that the linear operator Tm depends on the complex refractive index, i.e., m is not a
variable in Definition 2.15, but rather a parameter. In fact, m corresponds to the point in
which the nonlinear operator S is linearized, as the calculation above shows.

(c) The superposition principle does no longer play a role in the linearized scattering problem.

Similar techniques as applied in the previous section allow us to prove the existence of a weak
solution w ∈ H1(Ω) of the boundary value problem (2.47), (2.48), such that Tm is well-defined on
L∞(Ω) ∩ L2

comp(Ω). Also, we can deduce that Tm is bounded and therefore continuous. We will
skip the proof as it is similar to the proof of Theorem 2.12 and the subsequent statements.

Lemma 2.17. Let m ∈ D(S) and ui ∈ H1(Ω) be fixed. The operator

Tm : L∞(Ω) ∩ L2
comp(Ω)→ H1(Ω), Tm(h) := w,

where w is the unique solution of (2.47), (2.48), is linear and bounded. For h ∈ L∞(Ω)∩L2
comp(Ω),

we have
‖Tmh‖H1(Ω) ≤ C3 ‖h‖L∞(Ω) · ‖ui‖L2(Ω) , (2.51)

where C3 := C1(1 + C1M) is a constant that depends on k0, M , and the domain Ω.
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Let us now consider the mapping T̃ : D(S) → L
(
D(S), H1(Ω)

)
, where m 7→ T̃ (m) := Tm. This

operator maps a bounded, compactly supported function m to the respective linear operator Tm.
We can formulate a continuity result for this mapping.

Lemma 2.18. Let m1,m2 ∈ D(S), h ∈ L∞(Ω) ∩ L2
comp(Ω), and ui ∈ H1(Ω). The mapping T̃

fulfills ∥∥∥T̃ (m1)h− T̃ (m2)h
∥∥∥
H1(Ω)

≤ C4 ‖m1 −m2‖L∞(Ω) · ‖h‖L∞(Ω) · ‖ui‖L2(Ω) , (2.52)

where C4 = C4

(
k0,M,Ω

)
.

Proof. For wj := T̃ (mj)h = Tmjh, j = 1, 2, we have

∆wj + k2
0(1−mj)wj = k2

0h · S(mj).

By subtracting these two equations from each other, we obtain

∆(w1 − w2) + k2
0(1−m1)(w1 − w2) = k2

0h
(
S(m1)− S(m2)

)
+ k2

0(m1 −m2)w2.

Using the previously applied methods again, we obtain

‖w1 − w2‖H1(Ω) ≤ k0

(
‖h‖L∞(Ω) · ‖S(m1)− S(m2)‖H1(Ω) + ‖m1 −m2‖L∞(Ω) · ‖w2‖H1(Ω)

)
Finally, we use Lemma 2.14 and Lemma 2.17 to further estimate

‖w1 − w2‖H1(Ω) ≤ k0(C2 + C3) ‖h‖L∞(Ω) · ‖m1 −m2‖L∞(Ω) · ‖ui‖L2(Ω)

and set C4 := k0(C2 + C3).

Theorem 2.19. The operator S from Definition 2.8 is Fréchet differentiable with respect to m ∈
D(S). The Fréchet derivative in m ∈ D(S) is the linear parameter-to-solution operator

S′(m) : L∞(Ω) ∩ L2
comp(Ω)→ H1(Ω), h 7→ S′(m)h = w, (2.53)

where w ∈ H1(Ω) solves the linearized boundary value problem

∆w + k2
0(1−m)w = k2

0ut · h in Ω, (2.54)

∂w

∂n
− ik0w = 0 on ∂Ω. (2.55)

The function ut := S(m) is the solution of the scattering problem (2.28)-(2.30).
We thus have S′(m)h = Tmh for all h ∈ L∞(Ω) ∩ L2

comp(Ω) and S′(m) is continuous.

Proof. If there is a positive constant C5 = C5(k0,M,Ω), such that the estimate

‖S(m+ h)− S(m)− Tmh‖H1(Ω) ≤ C5‖h‖2L∞(Ω) · ‖ui‖L2(Ω) (2.56)

holds for m,m+ h ∈ D(S), we are done.
Define the functions

usc := S(m)− ui,

usc,h := S(m+ h)− ui,

w := Tmh,
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which fulfill the Robin boundary condition and

∆usc + k2
0

(
1−m

)
usc = k2

0mui,

∆usc,h + k2
0

(
1− (m+ h)

)
usc,h = k2

0

(
m+ h

)
ui,

∆w + k2
0

(
1−m

)
w = k2

0h
(
usc + ui

)
.

From these equations, we obtain for v := usc,h − usc −w = S(m+ h)− S(m)− Tmh the Helmholtz
equation

∆v + k2
0(1−m)v = k2

0h
(
usc,h − usc

)
,

and, noting that v fulfills the Robin boundary condition (2.30), we estimate

‖v‖H1(Ω) ≤ C1 ‖h‖L∞(Ω) · ‖usc,h − usc‖L2(Ω)

≤ C1 ‖h‖L∞(Ω) · ‖usc,h − usc‖H1(Ω)

≤ C1C2 ‖h‖2L∞(Ω) · ‖ui‖L2(Ω) ,

where we have used Lemma 2.14. Resubstituting v again, we finally have shown

‖S(m+ h)− S(m)− Tmh‖H1(Ω) ≤ C5 ‖h‖2L∞(Ω) · ‖ui‖

with C5 = C5(k0,M,Ω) = C1C2 > 0. The continuity of S′(m) is a direct result of the boundedness
of Tm.

Lemma 2.20. For m1,m2 ∈ D(S), the operator S fulfills the estimate

‖S(m1)− S(m2)− S′(m1)(m1 −m2)‖L2(Ω) ≤ C6‖S(m1)− S(m2)‖L2(Ω), (2.57)

where C6 = C6

(
k0,M,Ω

)
.

Proof. Let u1 := S(m1)− ui, u2 := S(m2)− ui and w := S′(m1)(m1 −m2), which fulfill

∆u1 + k2
0(1−m1)u1 = k2

0m1ui,

∆u2 + k2
0(1−m2)u2 = k2

0m2ui,

∆w + k2
0(1−m1)w = k2

0(m1 −m2)(u1 + ui).

Additionally, u1, u2, w, and consequently u1 − u2 − w fulfill the Robin boundary condition. In
particular, we have u1, u2, w ∈ H1(Ω) ⊆ L2(Ω) according to our previous results.
Subtracting the equations for u2 and w from the one for u1 yields

∆(u1 − u2 − w) + k2
0(1−m1)(u1 − u2 − w) = k2

0(m1 −m2)(u2 − u1).

As before, we now estimate

‖u1 − u2 − w‖L2(Ω) ≤ ‖u1 − u2 − w‖H1(Ω)

≤ C1‖m1 −m2‖L∞(Ω) · ‖u1 − u2‖L2(Ω)

≤ C1 · 2M · ‖u1 − u2‖H1(Ω),

which is equivalent to (2.57) for C6 := 2C1M due to our definitions of u1, u2, and w.
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Remark 2.21. For the constant C6 in the estimate (2.57) holds

C6

(
k0,M,Ω

)
< 1 (2.58)

for M sufficiently small. Lemma 2.20 then states the validity of the tangential cone condition (1.32)
in the ball Bρ(m1), which we postulated for the analysis of the sequential subspace optimization
methods in Chapter 1. Assuming the tangential cone condition holds, the choice of ctc in (1.32)
depends in particular on the wave number k0 and has to be adapted when working with different
frequencies.
Note that the estimate (2.57) is valid in H1(Ω) as well, according to the proof of Lemma 2.20.

With Lemma 2.20 we conclude our analysis of the scattering map S. We now proceed to a complete
description of the forward operator and its adjoint (which is an important tool for the numerical
solution of the inverse problem), most of which is related to the measuring process and, as a
consequence, the definition of the observation operator.
In many tomographic methods, the radiation that is used to scan the object is measured on some
curve around the object, usually a circle. In these cases, it is suitable to define the domain of
interest, i.e., the domain in which a parameter is supposed to be reconstructed, by the positions of
the receivers that generate the data.
In THz tomography, the electric field ut is measured by a fixed number of receivers that are
arranged on a circle. During the measuring process, the tomograph, consisting of one emitter and
the receivers, is rotated around the object with a certain step size, such that the tomograph defines
the domain Ω as the interior of the corresponding circle. Consequently, we assume the surfaces of
the sensors in the receivers to be a subset of the boundary of Ω, i.e., the data is generated purely
on ∂Ω.
The observation operator, which models the measuring process and will be discussed later, is defined
as a function on ∂Ω. This means we first have to restrict the total field ut to the boundary, before
we apply the observation operator. The restriction of a (weakly differentiable) function u to the
boundary of a domain Ω is the well-known trace operator, which we introduced at the beginning
of this section in Definition 2.6.

Remark 2.22. A linear operator T is Fréchet differentiable, if and only if T is continuous, see
[76]. Consequently, the trace operator γ is Fréchet differentiable.

Corollary 2.23. The composition γS : D(S) → L2(∂Ω) is Fréchet-differentiable with Fréchet-
derivative γS′(m), which fulfills

γS′(m)h = w|∂Ω (2.59)

for h ∈ L∞(Ω) ∩ L2
comp(Ω) and w = S′(m)h.

To complete the forward model of THz tomography, it remains to define the observation operator
Q, which maps the restricted field γut to the data. The forward operator F will be defined as the
composition of the scattering map S, the trace operator γ and the observation operator Q. Finally,
we aim at solving the nonlinear operator equation

F (m) = y.

We mentioned before that nonlinear inverse problems are usually solved iteratively. A standard
method is the nonlinear Landweber method. In each step of the Landweber iteration, the new
iterate is located on a half-line that is spanned by the negative gradient

− g(m) := −
(
F ′(m)

)∗
(F (m)− y) (2.60)
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of the least squares functional

Ψ(m) :=
1

2
‖F (m)− y‖2 ,

evaluated at the current iterate, where (F ′(m))∗ is the adjoint of the forward operator’s linearization
in m. As we have seen in Chapter 1, the above gradient also plays an important role in sequential
subspace optimization methods. Hence, the knowledge of the adjoint of the linearized operator
F ′(m) is essential.

For simplicity, we will choose a continuous linear observation operator Q. In that case, we have

F : D(S)→ CN , F (m) = QγS(m)

for m ∈ D(S). As both Q and γ are linear and continuous, the forward operator F is Fréchet
differentiable in m and we obtain for the linearized forward operator

F ′(m) : L∞(Ω) ∩ L2
comp(Ω)→ CN , F ′(m)h = QγS′(m)h

for h ∈ L∞(Ω) ∩ L2
comp(Ω). The adjoint of F ′(m) is thus given by(

F ′(m)
)∗

= S′(m)∗γ∗Q∗ : CN → L2(Ω),

see [76]. Our choice of the observation operator Q will allow an explicit form of Q∗.

Before moving on to the definition of the observation operator, we calculate the operator S′(m)∗γ∗.
Instead of finding descriptions for both operators separately, we will, as it has been done in [7],
consider the composition of the two operators γ and S′(m) to determine the adjoint operator of
this composition.

2.4.3. The adjoint linearized problem

While the Fréchet derivative γS′(m) of the composition γS in m ∈ D(S) maps a bounded, complex
valued function with compact support in Ω to a function on ∂Ω, the adjoint operator (S′(m))∗ γ∗

maps an element of
(
L2(∂Ω)

)∗ ∼= L2(∂Ω) to a function δm ∈ L2(Ω).

We define the composition of the operators γ and S′(m), m ∈ D(S), by

Tm : L∞(Ω) ∩ L2
comp(Ω)→ L2(∂Ω), h 7→ γS′(m)h.

Let b ∈ L2(∂Ω). We want to find a function δm ∈ L2(Ω), such that

T ∗mb = δm. (2.61)

For that purpose, we will consider the standard L2 inner product, such that for η ∈ L2(Ω) we have

(δm, η)L2(Ω)×L2(Ω) = (T ∗mb, η)L2(Ω)×L2(Ω) = (b, Tmη)L2(∂Ω)×L2(∂Ω) .

Theorem 2.24. There exists a φ ∈ H1(Ω), such that

T ∗mb = k2
0 · S(m) · φ, (2.62)

where m ∈ D(S). The function φ is uniquely determined as the solution of the adjoint problem

∆φ+ k2
0(1−m)φ = 0 in Ω, (2.63)

∂φ

∂n
+ ik0φ = −b on ∂Ω. (2.64)
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Proof. Let w := S′(m)h = Tmh. Consider the inner product (·, ·)L2(Ω)×L2(Ω) of equation (2.54)
with some φ ∈ H1(Ω), ∫

Ω
∆wφ dx + k2

0

∫
Ω

(1−m)wφ dx = k2
0

∫
Ω
h · utφ dx, (2.65)

where ut := S(m) denotes the solution of the direct scattering problem (2.28) - (2.30).
With partial integration, we obtain from the first term∫

Ω
∆wφ dx =

∫
∂Ω

∂w

∂n
φ dsx −

∫
Ω
∇w∇φ dx

=

∫
∂Ω

∂w

∂n
φ dsx −

∫
∂Ω
w
∂φ

∂n
dsx +

∫
Ω
w∆φ dx.

By applying the boundary condition (2.48) of the linearized problem, this yields∫
Ω

∆wφ dx =

∫
∂Ω
ik0w · φ dsx −

∫
∂Ω
w
∂φ

∂n
dsx +

∫
Ω
w∆φ dx

=

∫
∂Ω
w ·
(
ik0φ−

∂φ

∂n

)
dsx +

∫
Ω
w∆φ dx

=

∫
∂Ω
w ·
(
−ik0φ−

∂φ

∂n

)
dsx +

∫
Ω
w∆φ dx.

The second term of (2.65) is rewritten as

k2
0

∫
Ω

(1−m)wφ dx =

∫
Ω
w
(
k2

0(1−m)φ
)

dx.

By setting T ∗mb = k2
0utφ, the right-hand side of (2.65) yields

k2
0

∫
Ω
h · utφ dx =

∫
Ω
h · k2

0utφ dx

=
(
h, k2

0utφ
)
L2(Ω)×L2(Ω)

= (h, T ∗mb)L2(Ω)×L2(Ω)

= (Tmh, b)L2(∂Ω)×L2(∂Ω)

= (w, b)L2(∂Ω)×L2(∂Ω)

=

∫
∂Ω
wb dsx.

All in all, by merging the above results we obtain∫
Ω
w ·
(
∆φ+ k2

0(1−m)φ
)

dx = 0

and ∫
∂Ω
w ·
(
−ik0φ−

∂φ

∂n
− b
)

dsx = 0.

As the solution w of the linearized scattering problem does generally not vanish on either Ω or its
boundary ∂Ω, φ fulfills the postulated boundary value problem from Theorem 2.24. The existence
and uniqueness of φ can be derived by similar calculations as in the preceding section.
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Remark 2.25. The above calculations yield the adjoint of the operator Tm = γS′(m). The advan-
tage of this approach is that the calculation of the adjoint of the trace operator is included in the
adjoint operator of Tm. We are interested in the evaluation of expressions of the form

F ′(m)∗z = T ∗mQ∗z,

where Q is the observation operator and z ∈ CN contains information about the data y ∈ Y . In the
following section, we will discuss the observation operator Q and give an explicit representation of
its adjoint, such that we can easily obtain an expression of the form b = Q∗z, where b ∈ L2(∂Ω), and
we can apply Theorem 2.24 for the numerical solution of our inverse problem of THz tomography.

2.4.4. The observation operator in THz tomography

So far, we have discussed the mathematical description of the scattering map S and the trace
operator γ. To complete the mathematical description of the direct problem of THz tomography,
we have to deal with the measuring process, representing the generation of the data.
The observable is the electric field of the THz radiation. In the previous sections, we have discussed
the choice of the domain Ω, which is defined by the arrangement of the measuring devices, i.e., the
surfaces of the receivers. We assume they are segments of this circle and choose the boundary ∂Ω
such that the surfaces of the receivers are contained in ∂Ω. The domain Ω is defined as the interior
of the circle, such that the closure of the support of the function m, which represents the complex
refractive index, is contained in Ω.

Consequently, we first of all assume that the measured data are generated purely on ∂Ω. Second, we
assume the observation operator to be linear, as our main purpose in this work is the evaluation of
the physical model, which is given by the scattering problem we analyzed in the previous sections.
However, we take into account that the receivers have a certain width. We will not model the
measuring process as a point evaluation, but rather take into account that each receiver generates
a mean value of the electric field ut over its surface. This definition allows an easy inclusion of
the sensor characteristic, which refers to the property that different areas of the receiver register
different, characteristic ratios of the field. For example, it is plausible that a receiver does not
register the field around its sensor’s edges as strongly as in the middle. This effect can be caused
by reflections or other influences of the receiver. The generated data can thus be interpreted as
weighted means over the sensors’ surfaces.

In tomographic measurements, the object is usually illuminated from different positions to increase
the number of data points and, by consequence, the information about the tested object. In the
case of two-dimensional THz tomography, the tested object is fixed on a pivotable support, which
moves along a rail in x-direction and rotates the object around a fixed axis. For the numerical
reconstruction of a tested object’s complex refractive index, we will assume that instead of the
object, the measurement set-up is rotated and shifted around the object.

Remark 2.26. During one measuring process, the set-up is shifted and rotated stepwise with step
size ∆x in x-direction, and ∆ϑ around the rotation axis. Let J1 be the number of angular positions
ϑj1, j1 = 0, ..., J1 − 1, and 2J2 + 1 be the number of positions dj2 = j2 ·∆x, j2 = −J2, ..., J2 on the
x-axis.

In an effort to keep the notation as simple as possible, we make the following definition.
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Definition 2.27. The position of the measurement set-up is described by the tuple

(ϑj1 , dj2) , ϑj1 ∈ [0, 2π], dj2 ∈ [−xm, xm], (2.66)

where xm ≥ 0 is the maximal distance to x = 0. The quantities that depend on the J1 · (2J2 + 1)
different positions are indexed by elements of the set

J :=
{

j := (j1, j2) : j1 ∈
{

0, ..., J1 − 1
}
, j2 ∈

{
− J2, ..., J2

}}
.

The rotation and shifting of the emitter-receiver set-up implicates in particular that the incident
field depends on the current position (ϑj1 , dj2) of the set-up. To keep the notation as simple
as possible, we will denote the shifted incident field ui(ϑj1 , dj2) and the resulting scattered field
usc(ϑj1 , dj2) by

uji := ui(ϑj1 , dj2),

ujsc := usc(ϑj1 , dj2).

Both emitter and receivers are not only situated at the boundary of the domain Ω. They rather
define Ω, on which the complex refractive index m is supposed to be reconstructed. Thus, the
whole domain Ω is shifted during a tomographic measurement and we write Ωj to underline the
dependence on the position of the set-up.
For each j ∈ J we have supp(m) ⊆ Ωj, and consequently

supp(m) ⊆
⋂
j∈J

Ωj.

Accordingly, by
Sj : D(Sj)→ H1(Ωj) (2.67)

we will denote the operator that maps m to the resulting electric field ujt = uji + ujsc in Ωj, where

uji is the incident field generated by the emitter and ujsc solves the boundary value problem

∆ujsc + k2
0(1−m)ujsc = k2

0mu
j
i in Ωj, (2.68)

∂ujsc
∂n
− ik0u

j
sc = 0 on ∂Ωj. (2.69)

Furthermore, we define the respective trace operator γj by

γj : H1(Ωj)→ L2(∂Ωj), γjujt = ujt|∂Ωj . (2.70)

For the definition of the observation operator, which depends likewise on the position of the tomo-
graph, we will introduce the following notation. Furthermore, we assume that the emitter, which
generates the incident THz radiation, not only serves as a source, but also as a receiver.

Definition 2.28. Let N ∈ N denote the number of receivers. By

Ej
ν ⊆ ∂Ωj, ν = 1, ..., N,

we denote the surfaces of the N receivers. The sensor characteristic of the receiver Ej
ν is a real

valued function
ejν : ∂Ωj → R+
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Figure 2.4.: Schematic representation of a THz tomograph with six receivers Ej
ν , ν = 1, ..., 6, where the

receiver Ej
1 also serves as an emitter.

with

supp(ejν) ⊆ Ej
ν

and

ejν(x) ≤ 1 for all x ∈ ∂Ωj.

Using this notation, we define the observation operator Qj.

Definition 2.29. For each j ∈ J, the observation operator Qj maps the (restricted) electric field

γjuj ∈ L2(∂Ωj) to the measured values
(
yjν
)
ν=1,...,N

∈ CN by

Qj : L2(∂Ωj) → CN ,

γjuj 7→ yj :=

(∫
∂Ωj

ejν(x)γjuj(x) dsx

)
ν=1,...,N

.
(2.71)

Remark 2.30. The observation operator Qj from Definition 2.29 is a continuous linear operator.
Therefore, Qj is Fréchet differentiable (see, e.g., [76]) with Fréchet derivative

(
Qj
)′

(b) : L2(∂Ωj)→ CN , q 7→
(
Qj
)′

(b)q = Qjq =

(∫
∂Ωj

ejν(x)q(x) dsx

)
ν=1,...,N

(2.72)

in b ∈ L2(∂Ωj), evaluated at q ∈ L2(∂Ωj).

Lemma 2.31. The adjoint of the observation operator

Qj : L2(∂Ωj)→ CN , q 7→
(∫

∂Ωj

ejν(x)q(x) dsx

)
ν=1,...,N
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is given by (Qj)∗ : CN → L2(∂Ωj), where

β = (βν)ν=1,...,N 7→ (Qj)∗β =
N∑
ν=1

βνe
j
ν . (2.73)

Proof. Let β := (βν)ν=1,...,N ∈ CN and (L2(∂Ω))∗ ∼= L2(∂Ω). For q ∈ L2(∂Ωj) we have〈
Qjq, β

〉
CN×CN

=
〈
q, (Qj)∗β

〉
L2(∂Ωj)×L2(∂Ωj)

, (2.74)

using (CN )∗ ∼= CN . From

〈
Qjq, β

〉
CN×CN

=
N∑
ν=1

(Qjq) · βν

=
N∑
ν=1

(∫
∂Ωj

ejν(x)q(x) dsx

)
· βν

=

∫
∂Ωj

q(x)

(
N∑
ν=1

βνe
j
ν(x)

)
dsx

=

∫
∂Ωj

q(x)

(
N∑
ν=1

βνe
j
ν(x)

)
dsx

=

〈
q,

N∑
ν=1

βνe
j
ν

〉
L2(∂Ωj)×L2(∂Ωj)

we deduce

(Qj)∗β =
N∑
ν=1

βνe
j
ν .

Remark 2.32. Possible choices for the sensor characteristic are characteristic functions

ejν := χ
Ej
ν

for all ν = 1, ..., N and j ∈ J, which will be our choice in the upcoming numerical experiments.
Point evaluations are realized by setting

ejν := δ(x− x
Ej
ν
),

where the point x
Ej
ν

corresponds to the position of the respective receiver (see, e.g., [8]).

2.5. Terahertz tomography: direct and inverse problem

The previous sections have been dedicated to a thorough analysis of the forward operator. Before
proceeding to a numerical experiment, we want to summarize our findings and formulate the direct
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as well as the inverse problem explicitly, using the same notation as before. For all positions j ∈ J
of the tomograph, the forward operator

F j : D(F j)→ CN , F j(m) = yj =
(
yjν

)
ν=1,...,N

, (2.75)

where D(F j) := D(Sj), is the composition

F j = Qj ◦ γj ◦ Sj

of the scattering map Sj, the trace operator γj, and the observation operator Qj.

Direct Problem 2.33. Let m ∈ D(F j) represent the given complex refractive index with supp(m) ⊆
Ωj for all positions j ∈ J. The direct problem consists in the determination of the data

yj := F j(m) =
(
yjν

)
ν=1,...,N

(2.76)

from the knowledge of the complex refractive index m (and the incident field uji), where N is the
number of receivers of the tomograph, for all j ∈ J.

In the context of nondestructive testing, we are mainly interested in the respective inverse problem,
which is the reconstruction of the function m, where

supp(m) ⊆
⋂
j∈J

Ωj,

from measurements of the total electric field ut on the respective boundary of Ωj for different
positions j ∈ J of the tomograph (emitter and receivers). In particular, we assume the given data
to be perturbed.

Definition 2.34. We denote noisy data by yj,δ, where δ refers to the noise level given by∥∥∥yj − yj,δ∥∥∥ ≤ δ (2.77)

for all j ∈ J.

Inverse Problem 2.35. Given exact data yj =
(
yjν
)
ν=1,...,N

or noisy data yj,δ =
(
yj,δν
)
ν=1,...,N

from the tomograph’s N receivers in the positions j ∈ J, we want to recover the complex refractive
index m such that

F j(m) = yj. (2.78)

Regarding a numerical solution of the inverse problem, particularly with a Landweber method or
via sequential subspace optimization, we are required to evaluate the gradient gj of the least squares
functional

Ψj,δ(m) :=
1

2

∥∥∥F j(m)− yj,δ
∥∥∥2
, (2.79)

which is given by

gj(m) :=
(
F j
)′

(m)∗
(
F j(m)− yj,δ

)
, (2.80)

in the current iterate mδ
n. We have derived all the tools we need to calculate gj(m) for some

m ∈ D(F j). For the adjoint
(
F j
)′

(m)∗ of the linearized forward operator
(
F j
)′

(m), we first want
to state the following lemma.
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Lemma 2.36. The Fréchet derivative of the forward operator F j in m ∈ D(F j) fulfills[
(F j)′(m)

]
h =

(
Qjγj(Sj)′(m)

)
h (2.81)

for all h ∈ L∞(Ωj) ∩ L2
comp(Ωj).

Proof. We apply the chain rule ([76], Theorem III.5.4(d)) for the Fréchet derivative. Together with
the linearity of the observation operator Qj and the trace operator γj we obtain[

(F j)′(m)
]
h =

[
(QjγjSj)′(m)

]
h

=
[
(Qj)′

(
γjSj(m)

)
◦ (γj)′

(
Sj(m)

)
◦ (Sj)′(m)

]
h

=
[
Qj ◦ γj ◦ (Sj)′(m)

]
h

for all h ∈ L∞(Ωj) ∩ L2
comp(Ωj).

Consequently, the adjoint of the linearization of the forward operator in m ∈ D(F j) is an operator
of the form (

(F j)′(m)
)∗

: CN → L2(Ωj), β 7→
[(

(Sj)′(m)
)∗
γ∗
(
Qj
)∗]

β. (2.82)

Lemma 2.37. Let β = (βν) ∈ CN , N ∈ N, and δmj ∈ L2(Ωj) with

δmj :=
((
F j
)′

(m)
)∗
β.

Then we have

δmj = k2
0S

j(m) · φj, (2.83)

where φj ∈ H1(Ωj) is the weak solution of the boundary value problem

∆φj + k2
0(1−m)φj = 0 in Ωj,

∂φj

∂n
+ ik0φ

j = −
N∑
ν=1

ejν · βν on ∂Ωj.
(2.84)

Proof. Theorem 2.24 together with Lemma 2.31 directly yields the desired statement.

Consider the residual

Rj,δ(m) =
(
Rj,δ
ν (m)

)
ν=1,...,N

:=
(
F j(m)ν − yj,δν

)
ν=1,...,N

(2.85)

in m ∈ D(F j). We obtain the gradient

gj(m) =
((
F j
)′

(m)
)∗
Rj,δ(m)

by solving the partial differential Helmholtz equation

∆φj + k2
0(1−m)φj = 0 in Ωj (2.86)
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with the Robin boundary condition

∂φj

∂n
+ ik0φ

j = −
N∑
ν=1

ejν ·
(
Rj,δ

)
ν

on ∂Ωj (2.87)

and setting
gj(m) = k2

0S
j(m) · φj. (2.88)

Remark 2.38. We conclude the theory by some remarks.

(a) The noise free case is treated analogously by setting δ = 0.

(b) In order to calculate the gradient, two boundary value problems have to be solved: the forward
problem F j(m) to obtain the residual Rj,δ, and the adjoint problem. The forward problem
basically consists of calculating Sj(m), which should be reused in the evaluation of the adjoint
problem (see (2.88)) to avoid unnecessary numerical cost. However, for this reason the nu-
merical effort to calculate

(
(F j)′(m)

)∗
β for an arbitrary β ∈ CN is comparable to the effort

for the calculation of gj(m).

The inverse problem of THz tomography is treated as a nonlinear ill-posed problem. The ill-
posedness of scattering type problems has been discussed multiple times, see, e.g., [18, 20, 41, 45].
Both Landweber and SESOP methods, in combination with Morozov’s discrepancy principle, yield
regularization techniques to compensate the instability of a direct inversion of the forward operator.

In preparation of a first numerical example, it is important to discuss our approach in THz to-
mography. We have mentioned before that we restrict ourselves to the lower frequency range of
the THz spectrum in order to complement the research that has been conducted by Tepe et al. in
cooperation with the Plastics Center in Würzburg ([51, 71]). Due to the relatively low frequencies
of 0.07 - 0.1 THz, the wave character of the THz radiation is more prominent than in the higher
frequency range, such that it is convenient to consider a model based on electromagnetic scattering.
In the following section, we will discuss the numerical solution of the inverse problem of THz to-
mography from the knowledge of noisy synthetic data using the Landweber method. However,
in our example we use an electromagnetic Gaussian beam with a frequency f = 2.5 · 1010, which
belongs to the microwave spectrum. The reason is the high numerical cost when evaluating the
two boundary value problems in order to obtain the gradient gj for each position j ∈ J of the
tomograph. In a Landweber iteration, each step thus requires 2 · |J| such evaluations per iteration.
For higher frequencies, it is thus reasonable to use a faster reconstruction method.
In a further numerical experiment in Chapter 3, we use electromagnetic radiation in the THz range
(0.1 THz) for the testing and sequential subspace optimization methods for the reconstruction.
However, it is necessary to adapt our SESOP methods for applications in complex Hilbert spaces,
which is also done in Chapter 3.

2.6. Numerical reconstructions with the Landweber method

Now we have all ingredients to solve the inverse problem of THz tomography, we will continue with
a first numerical test. To begin with, the forward problem is implemented to generate synthetic
data with a known noise level δ. These data are used to find a solution of the inverse problem with
the nonlinear Landweber method.

The Landweber method is one of the most commonly used methods in inverse problems. In the
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following, we give a short overview of the nonlinear Landweber method. Consider a nonlinear
inverse problem

F (x) = y,

where F : D(F ) ⊆ X → Y is a nonlinear, continuous and Fréchet differentiable operator between
Hilbert spaces X and Y . We assume that only noisy data yδ with a noise level δ are given. If F
and its Fréchet derivative F ′ fulfill some additional properties (similar to the ones we postulated
for the analysis of the SESOP methods in Section 1.2), the Landweber iteration, together with a
suitable stopping criterion, is a regularizing method to reconstruct the source x, see [39, 43, 63] for
a detailed analysis. In particular, the discrepancy principle yields a finite stopping index [39]. The
nonlinear Landweber iteration is given by

xδn+1 = xδn − ωF ′
(
xδn
)∗ (

F
(
xδn
)
− yδ

)
, (2.89)

where ω > 0 is a relaxation parameter. The discrepancy principle is fulfilled at iteration n∗, when∥∥∥F (xδn∗)− yδ∥∥∥ ≤ τδ < ∥∥∥F (xδn)− yδ∥∥∥ (2.90)

for all n < n∗, where τ > 1 is fixed.

In the case of exact data, we set δ = 0 and use the same iteration as for noisy data. An analysis is
found in [39].

Instead of (2.89), we write

xδn+1 = xδn − ωF ′
(
xδn

)∗
Rδn

= xδn − ωgδn,
(2.91)

where we denote the current residual by

Rδn := F
(
xδn

)
− yδ

and the current gradient (i.e., the gradient of the least squares functional evaluated at the current
iterate xδn) by

gδn := ∇
(1

2

∥∥F (x)− yδ
∥∥2
)∣∣∣
x=xδn

.

The gradient gδn can be interpreted as a search direction: The new iterate is found in the half-line
that is spanned from the current iterate xδn by −gδn.

Obviously, in each step of the Landweber iteration two major evaluations are necessary: first of all
the evaluation of the direct problem F

(
xδn
)
, which in turn yields the residual Rδn, and subsequently

the application of the adjoint of the Fréchet derivative F ′
(
xδn
)∗

in Rδn. Regarding the inverse
problem of THz tomography, each of these evaluations consists of the solution of a boundary value
problem. A standard method to solve boundary value problems is the Finite Element Method
(FEM), where the solution is calculated on a triangularization of the domain Ω. The triangles, or
finite elements, have a maximal element size hmax that depends on the radiation’s wave length. A
general rule is to choose hmax in the range of a tenth of the wave length to obtain a solution with a
sufficient accuracy [1]. A higher frequency of the radiation that is used for testing involves a finer
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mesh and, consequently, a higher computational cost for the numerical solution of the boundary
value problem.

In order to reduce the computational cost, we will restrict ourselves to a purely rotating tomograph,
such that we can work with a fixed domain Ω ≡ Ωj for all j ∈ J that is independent of the
tomograph’s position. We simplify our notation from the previous section by

J = {j = 1, ..., J} ,

where J is the total number of (angular) positions ϑj = (j − 1) · hϑ of the tomograph, which is
rotated in equidistant steps hϑ := 2π

J . The incident field uji depends on the angle ϑj and is obtained
from the initial position (2.20) by the rotation transformation

tϑj :

(
x
y

)
7→
(

cos(ϑj) sin(ϑj)
− sin(ϑj) cos(ϑj)

)
·
(
x
y

)
,

such that
uji (x, y) = u0

i

(
tϑj (x, y)

)
.

The dependence of the forward operator F j on the position of the tomograph has to be taken into
account before we proceed to the implementation. There is a variety of problems where the forward
operator depends on an additional parameter, which is not necessarily a position. An alternative
is for example the frequency of the respective radiation, see [7], where the spatial frequency of the
radiation is varied during the measurements.
In any case, the result is a system of (nonlinear) operator equations

F j(x) = yj , j = 1, ..., J. (2.92)

There are several methods that take into account the dependence of F on some additional discrete
parameter. A well-known method is Kaczmarz’s method, which has been applied successfully
in computerized tomography [57]. The combination of Kaczmarz’s method with the Landweber
method for the solution of nonlinear inverse problems has been addressed by Haltmeier et al. in
[36, 37], a combination with Newton methods is presented by Burger and Kaltenbacher in [13].
In this work, we are dealing with parameter-to-solution operators, whose evaluation is numerically
expensive. For this reason, we are interested in a parallel evaluation of the occurring operators.
Methods based on the Kaczmarz method are not suited for parallelization, such that we apply a
different approach.

For each position j ∈ J, we obtain one gradient gj,δ belonging to the respective equation (2.92).
As the data yj,δ from each position j ∈ J should contribute in equal measure to the reconstruction
of the function x, it is sensible to use the average (or mean) of all available gradients in each
Landweber step. We thus define

gδn :=
1

J

J∑
j=1

gj,δn =
1

J

J∑
j=1

(
F j
)′(

xδn
)∗ (

F j
(
xδn
)
− yj,δ

)
(2.93)

and obtain a search direction for the Landweber iteration (2.89).

Remark 2.39. The approach to use the average of the gradients can be interpreted as a numerical
integration of the search directions gj,δn over the angle ϑ of rotation. Apart from the factor 2π, the
above sum corresponds to the approximation of this integral by the trapezoidal rule, which is specially
suited for the numerical integration of trigonometric functions. Solutions of the Helmholtz equa-
tions depend on the boundary values. Yet, in many cases, they are combinations of trigonometric
functions, which motivates the use of the trapezoidal rule.
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We now return to the inverse problem of THz tomography. The data that are generated by the
tomograph during one measurement are assembled in a matrix. We have

yδ =
(
yj,δ
)
j=1,...,J

=

y
1,δ
1 · · · yJ,δ1
...

. . .
...

y1,δ
N · · · yJ,δN

 ∈ CN×J .

It is essential to combine the norm in the data space Y with the procedure of averaging over the
search directions corresponding to the tomograph’s positions. First, each data point is afflicted by
noise with a fixed noise level, ideally independent of the current position. The noise level is not,
however, dependent on the number of different positions of the tomograph, such that the norm
that is used to determine the noise level should not be influenced by J . Second, the norm in the
data space Y is induced by the inner product, which in CN is the standard scalar product. We
postulate that the noise level fulfills

max
j=1,...,J

∥∥∥yj,δ − yj∥∥∥
CN
≤ δ.

For the discrepancy principle, we set∥∥∥Rδn∥∥∥ =
∥∥∥F (xδn)− yδ

∥∥∥ := max
j=1,...,J

∥∥∥F j(xδn)− yj,δ
∥∥∥
CN

, (2.94)

in accordance with our averaged Landweber method.

For the generation of synthetic data yj =
(
yjν
)
ν=1,...,N

, the direct problem has to be solved for a
known complex refractive index m. We thus want to calculate

yj = F j(m) ∈ CN

numerically. The operator F j is evaluated in two steps. The first step is to determine Sj(m) = ujt ,
i.e., to solve the scattering problem

∆ujsc + k2
0(1−m)ujsc = k2

0mu
j
i in Ω,

∂ujsc
∂n
− ik0u

j
sc = 0 on ∂Ω,

ujsc + uji = ujt = Sj(m),

(2.95)

with the help of the Finite Element Method (FEM), see for example [11, 34] for reference. In this
work, we use a FEM solver which is available in Matlab (elliptic partial differential equations are
solved with assempde in version R2015a; this solver uses linear basis functions). The FEM mesh
is generated by a Matlab function and the maximal element size of the triangles is determined
by the wave number k0: In order to get a decent solution, the maximal element size must not be
larger than a tenth of the wavelength of the electromagnetic radiation (the Gaussian beam). As
a consequence, the effort that is needed to solve two-dimensional problems such as (2.95) grows
quadratically with the wave number.

In the course of the measurement, the emitter and the receivers are rotated on a circle around the
object. Accordingly, Ω is chosen as a two-dimensional disk and the surfaces Ejν of the receivers in
position j ∈ J are thus parameterized as arcs on ∂Ω. The value that is measured by receiver Ejν
in position j ∈ J is obtained by a numerical integration over Ejν of the restriction of the total field
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ujt to ∂Ω (i.e., we choose the sensor characteristic ejν := χ
Ejν

). This corresponds to the numerical

realization of the observation operator Qj in combination with the trace operator γj , see also
Definition 2.29. For that purpose, we use the trapezoidal rule. We define an equidistant grid in
the respective arc for the numerical integration, where the step size is chosen of the same order
as the maximal element size of the FEM mesh. The values on the grid points are obtained by
interpolation from the total field on the FEM mesh.
The adjoint problem is solved in a similar way on the same FEM mesh as the forward problem.

Remark 2.40. The numerical evaluation of the observation operator naturally yields a certain
noise level: The numerical integration of ujt over a sensor Ejν is realized with the help of the
trapezoidal rule. The respective grid points thus have to be located within the triangularized domain.
Accordingly, we choose the domain’s radius slightly larger (about a half of the maximal element size)
than the radius of the circle that contains the receivers, such that we have to accept a certain error
in the data and a consideration of exact synthetic data is not possible. The use of finite elements
also causes the smoothed outer interfaces of the tested object, which is clearly visible in Figure
2.7. This smoothing becomes less prominent when finer meshes are used, which is necessary when
dealing with higher frequencies in the THz range.

m1

m4m3

m2

m

(a) (b) (c)

m

Figure 2.5.: Schematic representation of relevant test objects; (a) objects with unknown outer boundaries,
(b) objects with known outer boundaries and an unknown defect inside, (c) objects that consist
of different materials

We have remarked before that there are various properties of objects we would like to identify with
the help of a THz tomographic examination. In Figure 2.5, a selection of possible test objects is
given, representing the identification of (inner or outer) interfaces, defects, and compositions of
materials.

As a representative test object for our numerical example, we choose a plastic block with quadratic
cross section and known outer boundaries. The object has two inhomogeneities, a hole and an
inclusion of some material with a higher refractive index and a higher absorption coefficient. Fur-
thermore, the complex refractive index of the block itself is unknown. For the reconstruction, we
use the knowledge of the object’s outer interfaces, but assume that no information about the inside
of the object is given. By recovering m we want to identify and classify the inclusions and also the
material of the block.

Remark 2.41. There are many parameters (geometry of the receivers, beam parameters such
as beam waist or Rayleigh zone) in the forward model and also in the reconstruction algorithm
(relaxation parameter) that need to be chosen. For this reason, a lot of testing is necessary to
determine reasonable values for these parameters. The costly evaluations of the two boundary value
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problems and the relatively small wave length turn this into a time-consuming process. The following
results might thus be improved by researching the parameters extensively.

The goal of this numerical experiment is to obtain a first impression of the performance of a standard
reconstruction technique (the Landweber method) when applying it to the inverse problem of THz
tomography. As we have remarked before, the computational cost to numerically calculate the
gradient increases quadratically with the reciprocal of the maximal element size of the FEM mesh.
As the Landweber method is known to be relatively slow, we choose a low frequency f = 2.5·1010 Hz
for the Gaussian beam that we use in this experiment. The tested object is a plastic block with
two inclusions. Re(m) and Im(m) of the original block’s material is presented in Figure 2.6. The
block itself has the complex refractive index

m1 = 1− (1.5 + i · 0.005)2 = −1.249975− i · 0.015.

The inclusion in the top right corner is a hole filled with air, such that we can assume that its
complex refractive index is identical to m2 ≡ 0. The other inclusion in the middle of the lower half
is some unknown material with a higher optical density, we choose

m3 = 1− (1.8 + i · 0.02)2 = −2.2396− i · 0.072.

Parameter Value

Frequency f 2.5 · 1010 Hz

Beam waist W0 0.015 m

Rayleigh zone y0 0.02 m

Number of receivers N 20

Number of positions J 180

Relaxation parameter ω 0.08

Table 2.1.: Parameters of the numerical Landweber experiment

This example includes the localization and identification of unknown inner interfaces and different
values of m.
For the reconstruction, we generate perturbed data with a signal-to-noise ratio of 2 %. In order
to take into account the interpolation error from the evaluation of the observation operator, see
Remark 2.40, we choose the noise δ slightly larger than maxj=1,...,J‖yj − yj,δ‖. The other relevant
parameters are listed in Table 2.1.

We work on the domain
Ω :=

{
x ∈ R2 : ‖x‖22 ≤ (0.04m)2

}
.

As we assume the outer boundaries of the object to be known, we set the starting value as

m0(x) = (−1− i · 0.001) · χD(x),

where
D := {x ∈ Ω : −0.015 m ≤ x, y ≤ 0.015 m}

represents the cross section and ∂D the known outer interfaces of the tested block. The function
m of the tested object is plotted in Figure 2.6.

The Landweber iteration is stopped at iteration n∗ by the discrepancy principle (2.94). For later
convenience, we choose τ = 20. In Table 2.2, the key data of this reconstruction is presented.
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(a) (b)

Figure 2.6.: Real (a) and imaginary (b) part of the test object’s complex refractive index m.

The approximated solution mδ
n∗ is presented in Figure 2.7. We note that the real part of m is

reconstructed quite satisfactorily, with a relative error of 9.18 %, while the reconstruction of the
imaginary part is rather bad with a relative error of over 100 %. The reason will be discussed in
the following chapter. Yet, it is possible to draw qualitative conclusions from the reconstructed
imaginary part Im(mδ

n∗): The peaks in the plot of the reconstructed imaginary part indicate the
position of the inclusions. It is however not possible to draw any conclusions on the materials of
the inclusions, particularly not on the hole filled with air.

Number of iterations n∗ 155

Execution time 6 h 38 min 49 s

Relative error in reconstructed real part Re(m) 9.18 %

Relative error in reconstructed real part Im(m) 164.31 %

Table 2.2.: Some key data to evaluate the performance of the nonlinear Landweber method at the iden-
tification of the complex refractive index of the tested object using a Gaussian beam with a
microwave frequency f = 2.5 · 1010 Hz.

This experiment shows that it is possible to draw conclusions on the properties of some dielectric
object from synthetic measurements of the resulting electric field on the boundary of the respective
domain Ω. The real part of m is well reconstructed, whereas the reconstruction of the imaginary
part allows only the localization of defects. The Landweber method as a reconstruction technique
has been proven to be a stable regularizing method for our inverse problem. Nevertheless, this
method is comparatively slow, keeping in mind that we used a frequency well below the THz range.
In fact, it is important to note that an evaluation of our inverse problem with the Landweber
method as above takes several days, if not weeks, when the frequency of the used radiation is at
least 0.1 THz. Numerical tests with the Landweber method at f = 0.1 THz were stopped after
three weeks of calculating without reasonable results. A better choice of the occurring parameters,
such as the relaxation parameter, might lead to better results, but the reconstruction time will
remain roughly in the range of several days.
In order to economically evaluate our model with respect to the parameter choice and particu-
larly for the testing with THz radiation, a faster algorithm is highly desirable. We have seen in
Section 1.4 that sequential subspace optimization methods yield promising results regarding their
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(a) (b)

(c) (d)

Figure 2.7.: Reconstruction mδ
n∗

of real (a) and imaginary (b) part of the complex refractive index m after
155 Landweber steps and the respective error in the reconstruction m−mδ

n∗
((c) real part and

(d) imaginary part).

performance in comparison to the Landweber method. We therefore adapt our SESOP methods
to solve nonlinear inverse problems in complex Hilbert spaces and give a numerical example for a
tomographic testing of a similar object with a Gaussian beam of frequency f = 0.1 THz.
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3. Sequential subspace methods in complex
Hilbert spaces and numerical reconstructions
of the complex refractive index

In the previous section, we have seen that a reconstruction of m from noisy (discrete) boundary
data with a nonlinear Landweber method yields promising results. The time that is needed to
perform such a reconstruction is however quite long due to the expensive evaluations of the two
boundary value problems per iteration and per position of the tomograph. In addition, the relax-
ation parameter ω has to be chosen very small to obtain useful results for the imaginary part of
m. A thorough evaluation of our model to determine the optimal tomographic setup regarding the
minimal number of receivers, their placement, or the optimal beam geometry would be facilitated
by using a faster algorithm.
In Section 1.4 we have seen that our sequential subspace optimization methods significantly reduce
the computation time to perform reconstructions, such that we will transfer these ideas to develop
a method that is suited for the solution of inverse problems in complex Hilbert spaces. The main
obstacle at a direct implementation of our subspace methods is the lack of a total order in the
ground field C of the Hilbert spaces we consider. This becomes obvious when looking at Algorithm
1.21 with two search directions: In step (ii) we have to determine whether the intermediate iterate
x̃δn+1 is situated above, below, or inside the stripe that belongs to the previous gradient. For this,
we need the ground field to be ordered.

We begin with a discussion of the necessary adaptions and introduce a method based on Algorithm
1.21. The methods are analyzed and later applied to solve the inverse problem of THz tomography
as modeled in the previous chapter.

3.1. Sequential subspace optimization in complex Hilbert spaces

Let X,Y be real Hilbert spaces with ground field R. Define the complex Hilbert spaces Xc and
Y c as complexifications of X resp. Y with ground field C. Now let F : Xc → Y c be a nonlinear
operator with domain D(F ) ⊆ Xc. We consider the inverse problem

F (x) = y (3.1)

and assume that noisy data fulfill
∥∥y − yδ∥∥ ≤ δ. Furthermore, we assume that F is continuous and

Fréchet differentiable in a ball Bρ(x0) ⊆ D(F ) with radius ρ > 0 around x0 ∈ Xc.
For each function x ∈ Xc and y ∈ Y c, we have Re(x), Im(x) ∈ X and Re(y), Im(y) ∈ Y .

In the following, we will consider only noisy data. The respective methods and statements for
noise-free data are obtained by setting δ = 0. We will use the discrepancy principle as a stopping
rule. In the noise-free case, it can be replaced by defining a maximal number of iterations. In
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addition, we restrict ourselves to the use of gradients as search directions.

The inverse problem (3.1) is to be solved iteratively by

xδn+1 = xδn −
∑
l∈Iδn

(
tr,δn,l · Re

(
gδl
)

+ ti,δn,l · Im
(
gδl
))
, (3.2)

where tr,δn,l, t
i,δ
n,l ∈ R are optimization parameters and

gδl := F ′
(
xδl
)∗ (

F
(
xδl
)
− yδ

)
∈ Xc

with l ∈ Iδn and Iδn ⊆ {n−N + 1, ..., n} for some fixed N ≥ 1 are again the gradients of the least
squares functional, evaluated at the respective iterates. We define the residual

Rδn := F
(
xδn
)
− yδ ∈ Y c

for each step n ∈ N.
We split the iterates xδl ∈ Xc, l = 0, ..., n+ 1, into real part xr,δ

l ∈ X and imaginary part xi,δ
l ∈ X

and define the stripes

Hr,δ
n,l := H

(
ur,δ
n,l, α

r,δ
n,l, ξ

δ
l

)
⊆ X,

H i,δ
n,l := H

(
ui,δ
n,l, α

i,δ
n,l, ξ

δ
l

)
⊆ X

(3.3)

with their respective offsets

αr,δ
n,l :=

〈
ur,δ
n,l, x

r,δ
l

〉
αi,δ
n,l :=

〈
ui,δ
n,l, x

i,δ
l

〉 (3.4)

and width
ξδl :=

∥∥Rδl ∥∥ · (δ + ctc

(∥∥Rδl ∥∥+ δ
))

(3.5)

for all l ∈ Iδn. Here, we choose the search directions as the real and imaginary part of the respective
gradients by setting

ur,δ
n,l := Re

(
gδl
)
,

ui,δ
n,l := Im

(
gδl
)
.

(3.6)

In the iteration (3.2), we choose the parameters tr,δn,l and ti,δn,l such that

xr,δ
n+1 ∈

⋂
l∈Iδn

Hr,δ
n,l (3.7)

and
xi,δ
n+1 ∈

⋂
l∈Iδn

H i,δ
n,l. (3.8)

This is again accomplished by calculating the metric projection of xr,δ
n+1 and xi,δ

n+1 onto the respective
above intersection, which is a convex subset of X.

Remark 3.1. By splitting the iterates and search directions into real and imaginary part we obtain,
together with the above definitions, basically the same methods as for real Hilbert spaces. We thus
refrain from explicitly formulating the analogues of Algorithms 1.14, 1.19 and discuss a fast method
with two search directions in more detail.

82



However, it is important to remark that the (complex valued) search directions uδn,l are calculated
without any separations of real and imaginary parts of the current iterate. Consequently, they are
still determined by the full forward model without neglecting any mutual influences. By optimizing
the parameters tr,δn,l and ti,δn,l separately, we even hope to gain accuracy in the reconstructions due to
the individual treatment of the iterate’s real and imaginary part. This can be an asset if they differ
significantly in their (absolute) values.

The following algorithm yields an iterative (regularizing) method to solve nonlinear inverse problems
F (x) = y from given (noisy) data yδ.

Algorithm 3.2. (RESESOP for nonlinear operators on complex Hilbert spaces with two search
directions) As in Algorithm 1.21, choose an initial value xδ0 := x0 ∈ Xc. In the first step (n = 0)
take uδ0 and then, for all n ≥ 1, choose the search directions

{
uδn, u

δ
n−1

}
, where

uδn = ur,δ
n + i · ui,δ

n := F ′
(
xδn
)∗
wδn,

wδn := F
(
xδn
)
− yδ.

(3.9)

Define Hr,δ
−1 := H i,δ

−1 := X and, for n ∈ N, the stripes

Hr,δ
n := H

(
ur,δ
n , α

r,δ
n , ξ

δ
n

)
,

H i,δ
n := H

(
ui,δ
n , α

i,δ
n , ξ

δ
n

) (3.10)

with

αr,δ
n :=

〈
ur,δ
n , x

r,δ
n

〉
−
∥∥Rδn∥∥2

,

αi,δ
n :=

〈
ui,δ
n , x

i,δ
n

〉
−
∥∥Rδn∥∥2

,

ξδn :=
∥∥Rδn∥∥(δ + ctc

(∥∥Rδn∥∥+ δ
))
.

(3.11)

As a stopping rule choose the discrepancy principle, where

τ >
1 + ctc

1− ctc
. (3.12)

As long as
∥∥Rδn∥∥ > τδ, we have

xr,δ
n ∈ H>

(
ur,δ
n , α

r,δ
n + ξδn

)
∩Hr,δ

n−1 (3.13)

and

xi,δ
n ∈ H>

(
ui,δ
n , α

i,δ
n + ξδn

)
∩H i,δ

n−1, (3.14)

and thus calculate the new iterate xδn+1 = xr,δ
n+1 + i · xi,δ

n+1 according to the following two steps.

(i) Compute

x̃r,δ
n+1 := P

H(ur,δ
n ,αr,δ

n +ξδn)

(
xr,δ
n

)
= xr,δ

n −

〈
ur,δ
n , x

r,δ
n

〉
−
(
αr,δ
n + ξδn

)
∥∥ur,δ

n

∥∥2 ur,δ
n .

(3.15)
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Compute x̃i,δ
n+1 analogously and set x̃δn+1 = x̃r,δ

n+1 + i · x̃i,δ
n+1.

Then the descent property∥∥z − x̃δn+1

∥∥2 ≤
∥∥z − xδn∥∥2 −

(∥∥Rδn∥∥(∥∥Rδn∥∥− δ − ctc

(∥∥Rδn∥∥+ δ
)))2

·
(
‖ur,δ

n ‖−2 + ‖ui,δ
n ‖−2

)
is valid for all z ∈MF (x)=y.

If x̃r,δ
n+1 ∈ H

r,δ
n−1, we have x̃r,δ

n+1 = P
Hr,δ
n ∩Hr,δ

n−1

(
xr,δ
n

)
. Analogously, if x̃i,δ

n+1 ∈ H
i,δ
n−1, we have

x̃i,δ
n+1 = P

Hi,δ
n ∩Hi,δ

n−1

(
xi,δ
n

)
. If both conditions are fulfilled, we are done. Otherwise, go to step

(ii).

(ii) First, in case the condition from step (i) is not fulfilled for x̃r,δ
n+1, decide whether x̃r,δ

n+1 ∈
H>

(
ur,δ
n−1, α

r,δ
n−1 + ξδn−1

)
or x̃r,δ

n+1 ∈ H<

(
ur,δ
n−1, α

r,δ
n−1 − ξδn−1

)
. Calculate accordingly

xr,δ
n+1 := P

H(ur,δ
n ,αr,δ

n +ξδn)∩H(ur,δ
n−1,α

r,δ
n−1±ξδn−1)

(
x̃r,δ
n+1

)
,

i.e., determine xr,δ
n+1 = x̃r,δ

n+1 − tr,δn,nu
r,δ
n − tr,δn,n−1u

r,δ
n−1 such that

(
tr,δn,n, t

r,δ
n,n−1

)
minimizes the

function

hr,2
(
tr1, t

r
2

)
:=

1

2

∥∥∥x̃r,δ
n+1 − t

r
1u

r,δ
n − tr2u

r,δ
n−1

∥∥∥2
+ tr1

(
αr,δ
n + ξδn

)
+ tr2

(
αr,δ
n−1 ± ξ

δ
n−1

)
.

Proceed analogously with x̃i,δ
n+1.

Then we have xr,δ
n+1 = P

Hr,δ
n ∩Hr,δ

n−1

(
xr,δ
n

)
as well as xi,δ

n+1 = P
Hi,δ
n ∩Hi,δ

n−1

(
xi,δ
n

)
and we set xδn+1 =

xr,δ
n+1 + i · xi,δ

n+1. For all z ∈MF (x)=y the descent property∥∥z − xδn+1

∥∥2 ≤
∥∥z − xδn∥∥2 −

(
Sr,δ
n + Si,δ

n

)
(3.16)

is fulfilled, where

Sr,δ
n :=

(∥∥Rδn∥∥(∥∥Rδn∥∥− δ − ctc

(∥∥Rδn∥∥+ δ
))∥∥ur,δ

n

∥∥
)2

+

(∣∣〈ur,δ
n−1, x̃

r,δ
n+1

〉
−
(
αr,δ
n−1 ± ξδn−1

)∣∣
γr,δ
n

∥∥ur,δ
n−1

∥∥
)2

with

γr,δ
n :=

1−

( ∣∣〈ur,δ
n , u

r,δ
n−1

〉∣∣∥∥ur,δ
n

∥∥ · ∥∥ur,δ
n−1

∥∥
)2
 1

2

∈ (0, 1]

and analogously defined Si,δ
n and γi,δ

n .

Remark 3.3. As before, we give a few interpretations of the above method.

(a) The statements (3.13) and (3.14) are again a consequence of our choice (3.12) and can be
derived in exactly the same way as for the respective statement in Algorithm 1.21. Here we
also see that we need - or rather must - not adapt the width of the stripes.

(b) The descent properties follow directly from∥∥z − xδn+1

∥∥2
=
∥∥Re

(
z − xδn+1

)∥∥2
+
∥∥Im

(
z − xδn+1

)∥∥2

and the descent properties that hold for the metric projection in real Hilbert spaces.

84



(c) Splitting up the iterates and defining separate stripes for real and imaginary part yields an
interesting advantage. By optimizing real and imaginary part separately, the optimization
parameters t are calculated independently of the respective other part of the iterate, i.e., the
imaginary part of the new iterate is calculated without having to take into account the real
part and vice versa. This is a further option to accelerate the method in comparison to the
Landweber iteration, where the relaxation parameter ω is chosen as a constant. In the case
of the inverse problem of THz tomography, numerical experiments have shown that ω has to
be chosen very small to get good reconstructions for both the real and the imaginary part. To
reconstruct only the real part, which is mainly determined by the refractive index n, the value
of ω can be chosen larger, yielding a faster reconstruction.

(d) The calculation of the search direction uδn contains both the real and the imaginary part,
which reflects the underlying physical model, where the complex refractive index is treated as
one parameter. In the case of THz tomography, we consequently do not have to increase the
number of evaluations of the Helmholtz equation by splitting up the subspace optimization,
such that the additional computational cost is limited to the additional calculations of the
optimization parameters t. As we have mentioned before, the computational effort in this case
is comparatively low. The expressions for the optimization parameters are given explicitly for
Algorithm 1.21, see Section A.2, and can be directly adapted to the complex case.

3.2. Reconstruction of the complex refractive index from simulated
data

To conclude this work, we will present numerical reconstructions of m from synthetic noisy data,
using a Gaussian beam with a frequency within the lower THz spectrum.

Again, we will restrict ourselves to a purely rotating THz tomograph, i.e., the object is fixed in
the middle of the domain defined by the receivers. During the measuring process, the receivers are
rotated around the object in equidistant steps 2π/J, where J = |J| is the number of positions. The
receivers are arranged in a circle with a fixed distance to their neighbors. By neglecting the shifting
of the object, we can work with only one domain Ω = Ωj for all j ∈ J during the whole process.
For the later reconstruction, this means that we can again rotate the receivers and fix the object’s
position.

Parameter Value

Frequency f 0.1 · 1011 Hz

Wave length λ 2.998 · 10−3 m

Beam waist W0 0.015 m

Rayleigh zone y0 0.02 m

Number of receivers N 40

Number of positions J 180

ctc 0.9

τ 20

Table 3.1.: Parameters of the numerical RESESOP experiment

For our first reconstruction, we choose an object similar to the one we used before in Section 2.6.
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The tested object is again a plastic block with complex refractive index

m1 = 1− (1.5 + i · 0.005)2 = −1.249975− i · 0.015.

Inside the object, there are two inclusions. One is a hole filled with air (m2 ≡ 0), the other one is
a material with a higher optical density, its complex refractive index is

m3 = 1− (1.8 + i · 0.02)2 = −2.2396− i · 0.072.

Both inclusions are circular, now with a smaller defect in the range of the beam’s wave length.
We now use radiation in the low THz frequency range,

f = 0.1 THz,

which corresponds to the wave number k0 = 2πf/c0 ≈ 2095.8 m−1, and generate synthetic data for
the reconstruction with Algorithm 3.2. We note that the higher frequency calls for a refinement
of the finite element mesh, such that a reconstruction using the RESESOP method is especially
interesting in order to reduce the number of iterations. Also, we increase the number of receivers
(in practice, when only a small number of receivers is available, this can be realized by rotating the
receivers while fixing the position of the emitter).

(a) (b)

Figure 3.1.: Real (a) and imaginary (b) part of m.

As an a priori information, we use the knowledge of the object’s outer interfaces and set the starting
value to m0(x) = (−1 − i · 0.001) · χD(x) as before. The key data of the reconstruction are listed
in Table 3.2, the reconstructions from synthetic data obtained with Algorithm 3.2 are displayed in
Figure 3.2

Number of iterations n∗ 30

Execution time 14 h 13 min 51 s

Relative error in reconstructed real part Re(m) 7.98 %

Relative error in reconstructed imaginary part Im(m) 456.33 %

Table 3.2.: Some key data to evaluate the performance of the RESESOP method (Algorithm 3.2) at the
identification of m of the tested object using a Gaussian beam with a frequency f = 0.1 THz.
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(a) (b)

(c) (d)

Figure 3.2.: Reconstruction mδ
n∗

of real (a) and imaginary (b) part of m after n∗ = 30 iterations with the
RESESOP method (using two search directions, Algorithm 3.2) and the respective error in
the reconstruction m −mδ

n∗
((c) real part and (d) imaginary part). The object was scanned

by a Gaussian beam of frequency f = 0.1 THz.

Similar to the results from the Landweber experiment, the real part Re(m) is reconstructed much
more accurately than the imaginary part Im(m). The error plots indicate that the reconstructed
real part allows quantitative and qualitative conclusions, while the reconstructed imaginary part
yields at most some qualitative information about the position of the unknown defects.
Let us consider only the reconstruction of the real part of m. We note that the upper defect - the
hole filled with air - is identified almost accurately, the minor difference is due to the discretization.
The inclusion of the denser material in the middle of the object’s lower part shows an offset in the
reconstruction. The absolute value of Re(m3) is reconstructed too small. The reason could be the
relatively high absorption coefficient, which causes a lower penetration depth of the radiation into
the inclusion.

Remark 3.4. This numerical experiment yields some insight into the application of Algorithm 3.2
in THz tomography:

(a) The importance of an adequate choice for the parameter ctc from the tangential cone condition
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(1.32) becomes apparent. Several tests indicate the divergence of Algorithm 3.2 for a lower
value of ctc. Since the constant τ from Morozov’s discrepancy principle has to be chosen such
that τ > (1 + ctc) · (1− ctc)

−1, we have to settle for a higher tolerance in the data fitting term
‖Rδn‖.

(b) The choice of ctc may depend on the multiple other parameters, such as the number of re-
ceivers, the size of the receivers, and most of all on the incident beam, in particular the wave
number k0.

(c) These findings might give a hint that the tangential cone condition (1.32) is indeed valid for
ctc close to 1.

To conclude, we present the results of two further experiments. In both experiments, we use
synthetic data with additional 2% noise as before. First, we want to compare the performance of
our RESESOP method 3.2 to the Landweber method from the previous chapter. To this end, we
generated synthetic noisy data as before, using the frequency f = 2.5 · 1010 Hz, for the object we
already used in the example in Chapter 2 with the larger inclusions. For the reconstruction, we now
use Algorithm 3.2. We choose the same parameters for the setup as in the Landweber experiment,
see Table 2.1, and choose ctc and τ as in our previous RESESOP experiment. The performance is
illustrated in Table 3.3.

Number of iterations n∗ 20

Execution time 1 h 12 min 40 s

ctc 0.9

τ 20

Table 3.3.: Some key data to evaluate the performance of the RESESOP method (Algorithm 3.2) in com-
parison with the Landweber method at the identification of m of the object from Chapter 2,
using the microwave frequency f = 2.5 · 1010 Hz.

We are mainly interested in the execution time, which is significantly lower than in the Landweber
experiment. This complements the results from the numerical experiment in Chapter 1, underlining
the main advantage of our subspace methods. The reconstructions are presented in Figure 3.3.

However, it is important to remark that the performance of the RESESOP method can be improved
by choosing a smaller constant ctc, keeping in mind that this constant depends on the wave number
k0. Numerical experiments have shown that it is sufficient to choose ctc = 0.6 for f = 2.5 · 1010 Hz,
which allows a smaller parameter τ in the discrepancy principle.

Second, we generated synthetic data yδ by illuminating the object presented in Figure 3.1 with a
Gaussian beam, now at a frequency of 2.5 · 1010 Hz. All other parameters are preserved. For a
better comparability and given the small size of the inclusions, we have not adapted the maximal
element size of the triangularization to the larger wave length. The performance is illustrated in
Table 3.4, the plots of the reconstructions in Figure 3.4.

A comparison with the results that were obtained with the THz frequency f = 0.1 THz shows the
advantage of using a Gaussian beam with a higher frequency. As expected, the resolution increases
with the frequency, which is well visible in our experiments. When testing the object with THz
radiation, we are able to reconstruct the refractive index quantitatively and qualitatively, permitting
a precise identification of the defects without any a priori information about them. The results we
obtained with the microwave radiation now hardly enable a characterization of the object’s state.
The inclusions are barely visible and we can expect that smaller defects are not detectable at all
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(a) (b)

Figure 3.3.: Reconstruction mδ
n∗

of real (a) and imaginary (b) part of m after n∗ = 20 iterations with the
RESESOP method (using two search directions, Algorithm 3.2). The object was scanned by
a Gaussian beam of frequency f = 2.5 · 1010 Hz.

Number of iterations n∗ 32

Execution time 13 h 36 min 13 s

Relative error in reconstructed real part Re(m) 9.43 %

Relative error in reconstructed imaginary part Im(m) 473.63 %

Table 3.4.: Some key data to evaluate the performance of the RESESOP method (Algorithm 3.2) at the
identification of the complex refractive index of the tested object using a Gaussian beam with
a microwave frequency f = 2.5 · 1010 Hz.

(a) (b)

Figure 3.4.: Reconstruction mδ
n∗

of real (a) and imaginary (b) part of the complex refractive index m after
32 iterations with the RESESOP method (using two search directions, Algorithm 3.2 and the
frequency f = 2.5 · 1010 Hz).

when using microwave radiation. Regarding the imaginary part of m, the defect in the lower part
of the object is visible as a peak, allowing a localization, whereas the hole in the top right corner
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is not visible in the reconstruction.

For both frequencies, we see that a reconstruction of the imaginary part is not satisfactory. This
suggests that a model, which is inspired by electromagnetic scattering, is not suitable to describe the
absorption of an electromagnetic beam by dielectric materials. In our case, we are interested in the
nondestructive testing of objects consisting of materials with a very low absorption coefficient, such
that these objects are almost opaque for the electromagnetic radiation. One of the approximations
we made in the modeling is the use of the superposition principle. This physical law fails if the
illuminated objects are absorbing: If an electromagnetic wave travels through an absorbing medium,
it loses energy. This medium has to be considered as a sink term in Maxwell’s equations, which
are, in that case, no longer linear partial differential equations. For this reason, an application of
the superposition principle (i.e., the property that if two functions solve a linear equation, their
sum also solves it) yields at most an approximation, as it is no longer strictly valid.

Reflection or refraction on the other hand are well modeled by our approach. These effects are
determined by the refractive index, for which we have assumed that it fulfills the limit of geometrical
optics. As we have

Re(m) = Re
(
1− (n+ iκ)2

)
= 1− n2 + κ2 ≈ 1− n2

due to the low attenuation coefficient κ of the relevant objects, it is not surprising that the real
part of m is reconstructed nicely, whereas the imaginary part is not reconstructed satisfactorily at
all.

An alternative is a separate reconstruction of the refractive index n and the attenuation coefficient
κ according to different physical models. Our findings show that the scattering approach is well
suited for the reconstruction of the refractive index. The knowledge of the refractive index yields
a geometric description of the beam’s propagation through the medium. Hence, we obtain good
estimates for the ray paths of the electromagnetic beam. The absorption coefficient causes the
attenuation of the beam while it travels along these ray paths through the medium, such that
the total attenuation of the ray by the object can be modeled with the help of an adapted Radon
transform, which has been done by Tepe et.al. in [71] and yields far better results for the absorption
coefficient than our approach. A combination of both methods in the shape of a hybrid reconstruc-
tion method, which exploits both models, is likely to increase the quality of the reconstructions and
also the resolution.
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Conclusion and outlook

In the first part of this thesis, we have developed a novel iterative reconstruction method for non-
linear inverse problems based on the sequential subspace optimization method for linear problems
[56, 68, 69]. The basic idea is a sequential projection onto stripes for both exact and noisy data.
The position and geometry of these stripes are designed to contain the solution set of the underly-
ing nonlinear operator equation by taking into account the local character of nonlinear operators
and the tangential cone condition. By using the current gradient of the least squares functional
as a search direction in each step of the SESOP iteration, we obtain at least a weakly convergent
subsequence. For a special choice of search directions, we have been able to prove convergence and
stability results. In particular, we obtain a regularization method for the solution of the inverse
problem, when only noisy data are given. Furthermore, we have presented a fast algorithm that
uses two search directions per iteration. This algorithm particularly yields a good understanding
of our subspace methods and is well suited for implementation. Our findings have been published
in [72]. We have applied our SESOP and RESESOP methods to solve a well-understood nonlinear
parameter identification problem from the knowledge of exact and noisy data. In comparison to a
standard Landweber method, we have observed a significant increase in the speed of reconstructions
by applying Algorithm 1.21, were we have used the current and the previous gradient as the two
search directions in each iteration.
Additionally, we have obtained a Landweber type method with step size adaption, based on Al-
gorithm 1.19 with a single search direction, which is also significantly faster than the standard
Landweber method, but not as fast as Algorithm 1.21. A direct comparison of the two subspace
methods underlines that the additional computational cost per iteration due to the second search
direction reduces the total number of iterations (until the algorithm is stopped by the discrepancy
principle) and also the total reconstruction time. The reason is the expensive calculation of a new
search direction.

The performance of our methods suggested an application for the solution of a more challenging
inverse problem, in particular the reconstruction of the complex refractive index m from THz tomo-
graphic measurements. In this context, we have discussed a model for THz tomography based on
the Helmholtz equation. The forward operator, a nonlinear parameter-to-solution mapping com-
bined with a linear observation operator, has been analyzed regarding boundedness, continuity and
differentiability properties. In addition, we have obtained representations of the Fréchet derivative
and its adjoint, such that we are able to calculate the gradient of the least squares functional, which
plays a central role in the reconstruction techniques we employ.

In order to apply SESOP methods to solve the inverse problem of THz tomography, we made
some adjustments to fit the requirements of complex Hilbert spaces. In Algorithm 3.2, these
considerations have been taken into account and we have obtained an adapted fast reconstruction
method, based on Algorithm 1.21. This algorithm has been implemented to recover the complex
refractive index of test objects from noisy synthetic data. The resulting reconstructions of Re(m)
are suitable for the detection and identification of defects and material properties, whereas the
respective imaginary part Im(m) merely allows conclusions on the existence and position of defects.
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Future research

A natural continuation of our work regarding sequential subspace optimization for nonlinear inverse
problems, and also of the results presented in [68, 69], is the extension to Banach spaces. Banach
spaces are usually not equipped with an inner product, such that orthogonality, orthogonal projec-
tions and distances have to be replaced by appropriate alternatives such as Bregman distances and
Bregman projections. As a Banach space is in general not isomorphic to its dual space, duality
mappings, which correspond to the identity mapping in Hilbert spaces, become a basic tool in the
theory of inverse problems. The underlying functional analytic theory can be found in [16, 70],
along with an extensive overview of regularization methods in Banach spaces.

Using Banach spaces as source (or data) space may yield advantages in some situations: In the
case that the source x ∈ X is an element of some Lp space (p > 2), we also have x ∈ L2(Ω),
but at the same time we neglect available information about x, i.e., its regularity. Banach space
methods make it possible to pay respect to these properties. Specifically in our inverse problem of
THz tomography, an expansion of our SESOP methods to Banach spaces may be reasonable: We
know that m ∈ L∞(Ω), which is not a reflexive Banach space, but by using m ∈ Lp(Ω) we can use
Banach space methods and approximate the essential boundedness of m by letting p→∞. In [70]
some examples are presented that illustrate the advantages of using Banach spaces.

Regarding THz tomography, a reconstruction from real data is the next step. To this end, several
adaptions are necessary. First of all, the object is usually not only rotated, but also shifted during
the measuring process. This is a minor adaption mostly based on the integration of the respective
transformation (

x
y

)
7→
(

cos(θj1) sin(θj1)
− sin(θj1) cos(θj1)

)
·
(
x
y

)
+

(
dj2
0

)
,

where we have used the notation from Section 2.4.4. However, the implementation of the direct
and adjoint problem have to be altered in order to take into account the changing domains Ωj.
The second adaption refers to the type of data that are generated by the receivers. For our purposes,
we are mainly interested in an evaluation of intensity data or transmittivities. To this end, the
measuring process has to be well understood and the resulting observation operator Qj has to be
defined and analyzed. In any case, a suitable observation operator is nonlinear, which demands
some further analysis regarding for example the adjoint of the forward operator’s linearization. A
possible choice for the observation operator is

Qj(γjuj) =
1

K

(∫
Ej
ν

ejν(x)
∣∣∣γjuj(x)

∣∣∣2 dsx

)
ν=1,...,N

,

where K is a constant that is obtained by calibrating the tomograph, such that the data are related
to the measured intensities in vacuum. This value might also depend on the receiver Ej

ν and could
yield a basis to evaluate the model for the measuring process.

Given the high numerical effort that has to be invested in order to obtain quantitative reconstruc-
tions, an alternative approach might be to stop the iteration as soon as the shape of the defects
become visible. By means of image analysis, the interfaces inside the object can be extracted. For a
reconstruction of the complex refractive index with the adapted algebraic reconstruction technique
(adapted ART), see [71], the knowledge of the object’s outer interfaces is necessary. The additional
knowledge of inner interfaces can also be used as a priori information and is likely to increase the
accuracy of the results with the adapted ART.
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Interfaces can be characterized for example by applying a differential operator such as the Lapla-
cian to the reconstruction: If ∆m(x) is large in x, it is probable that x is an interface point. By
defining

Int(x) :=

{
1, if |∆m(x)| ≥ C,
0, else

for all x ∈ supp(m) and some suitable threshold C > 0, we obtain a characteristic function, which
is equal to 1 only at the interfaces. Depending on the artifacts, more elaborate techniques from
image analysis may yield better results.

From a more theoretical point of view, a generalization of the statements from Chapter 2 regarding
the properties of the scattering map and the occurring boundary value problems is of interest.
In particular, the use of Robin boundary conditions instead of the more common Dirichlet or
Neumann boundary conditions is a major concern. Arendt et al. (see, e.g., [3, 4]) have addressed
these questions, in addition to boundary value problems in connection to inverse problems [2]. An
analysis in the context of their methods might yield interesting results, also for applications.

A final goal is the development of a hybrid model and an according hybrid algorithm for the
numerical solution of the inverse problem of THz tomography. In the previous chapter, we have
already mentioned the deficit of the model we used in this work, which is the attenuation of the
electromagnetic radiation by the tested object. In computerized tomography, the attenuation is
computed from its Radon transform. A similar approach in THz tomography is possible, if the
propagation of the THz radiation along refracted lines is taken into account. We are thus dealing
with a Radon transform along refracted lines. These could be obtained by the knowledge of the
object’s refractive index n, which is well reconstructed by the methods we have used so far. The
approach via a generalized Radon transform has already been successfully addressed by Tepe et
al. in [71]. A combination of the two models is likely to yield promising results for the inverse
problem of THz tomography.
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A. Notation and formulas

A.1. Notations

The following notation is used throughout the thesis.

N = {0, 1, 2, ...} the natural numbers
‖·‖X a norm in the space X
(·, ·)X , 〈·, ·〉X inner products on X
‖·‖X→Y the operator norm of a mapping X → Y
‖·‖X∗ the norm of a functional X → K
(·, ·)X∗×X the dual pairing in X
lim the limit of a strongly convergent sequence
σ- lim the limit of a weakly convergent sequence
D(F ) the domain of an operator F
N (F ) the null space of an operator F
R(F ) the range of an operator F

A.2. Optimization parameters for the RESESOP algorithm with two
search directions

In Algorithm 1.21, the current iterate is projected onto the intersection of the two given stripes in
two steps. We have

xδn ∈ H>

(
uδn, α

δ
n + ξδn

)
∩Hδ

n−1

which implicates

xδn ∈ H>

(
uδn, α

δ
n + ξδn

)
∩H≤

(
uδn−1, α

δ
n−1 + ξδn−1

)
,

such that Proposition 1.8 can be applied. By substituting u1 := uδn, u2 := uδn−1, and

x1 := x̃δn+1, α1 := αδn + ξδn, α2 := αδn−1 ± ξδn−1,

the same calculations as in the proof of Proposition 1.8 yield the optimal parameters

tδn,n =

( 〈
uδn, u

δ
n−1

〉〈
uδn, u

δ
n−1

〉2 −
(
‖uδn‖ · ‖uδn−1‖

)2
)
·
(〈
uδn−1, x̃

δ
n+1

〉
−
(
αδn−1 + ξδn−1

))
=

( 〈
uδn, u

δ
n−1

〉〈
uδn, u

δ
n−1

〉2 −
(
‖uδn‖ · ‖uδn−1‖

)2
)

·
(〈
uδn−1, x̃

δ
n+1 ∓ xδn−1

〉
+
(
‖Rδn‖2 ∓ ‖Rδn‖

(
δ + ctc(‖Rδn‖+ δ)

)))
(A.1)
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and

tδn,n−1 = −
∥∥∥uδn∥∥∥2

(〈
uδn, u

δ
n−1

〉2
−
(
‖uδn‖ · ‖uδn−1‖

)2
)−1

·
(〈
uδn−1, x̃

δ
n+1

〉
−
(
αδn−1 + ξδn−1

))
= −

∥∥∥uδn∥∥∥2
(〈

uδn, u
δ
n−1

〉2
−
(
‖uδn‖ · ‖uδn−1‖

)2
)−1

·
(〈
uδn−1, x̃

δ
n+1 ∓ xδn−1

〉
+
(
‖Rδn‖2 ∓ ‖Rδn‖

(
δ + ctc(‖Rδn‖+ δ)

)))
.

(A.2)

These parameters can be used directly for an implementation of Algorithm 1.21 and, of course, of
Algorithm 3.2, were the optimization parameters are calculated separately for real and imaginary
part of the iterates according to the respective definitions.
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B. Some supplementary mathematical theory

B.1. Functional analytic tools

The following definitions and statements can be found in many textbooks concerning partial dif-
ferential equations and functional analysis (e.g. [5], [27], [32], [64]).

Throughout this thesis, we deal with K-Hilbert spaces X, where K = R or K = C is the ground
field of X. We usually use the norm that is induced by the inner product (·, ·) : X ×X → K.

Definition B.1. A mapping a : X ×X → C is called a sesquilinear form, if

a(u1 + λu2, v1) = a(u1, v1) + λa(u2, v1),

a(u1, v1 + λv2) = a(u1, v1) + λa(u1, v2)

for all u1, u2, v1, v2 ∈ X and all λ ∈ C.

Definition B.2. A sesquilinear form is called X-elliptic, if there exist γ > 0 and σ ∈ C with
|σ| = 1, such that

Re(σa(u, u)) ≥ γ‖u‖2X
for all u ∈ X.

Lemma B.3. ( Lax-Milgram lemma, [64]) Let X be a Hilbert space. If the sesquilinear form
a : X ×X → C is X-elliptic and bounded, the variational problem

a(u, v) = ψ(v) for all v ∈ X

has a unique solution u ∈ X for all functionals ψ ∈ X∗ and

‖u‖X ≤
1

γ
‖ψ‖X∗ ,

where γ is chosen as in Definition B.2.

Remark B.4. The condition of the X-ellipticity of the sesquilinear form a in the Lax-Milgram
lemma can be replaced by the coercivity condition

|a(u, u)| ≥ γ‖u‖2X for all u ∈ X, (B.1)

see [64].

Theorem B.5. ( Riesz representation theorem, [5, 64]) For every bounded linear functional ψ on
X there is a uniquely determined w ∈ X such that

a(w, v) = ψ(v)

for all v ∈ X, where a is a coercive bounded sesquilinear form.
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Theorem B.6. ( Fredholm alternative, [12, 64, 76]) Let T : X → X be a compact linear operator
and λ ∈ C \ {0} a constant. The homogeneous operator equation

λx− Tx = 0

either has only the trivial solution and the inhomogeneous equation

λx− Tx = x̃

is uniquely solvable for each x̃ ∈ X, or there are n = dim
(
N (λ − T )

)
< ∞ linearly independent

solutions of the homogeneous equation (the space N (λ− T ) is the kernel of the operator λ− T ).

B.2. Partial differential equations

B.2.1. Some theory for linear elliptic partial differential equations

Definition B.7. A linear elliptic differential operator L has the form

Lu = aij(x)Diju+ bi(x)Diu+ c(x)u,

where x = (x1, ..., xn) ∈ Ω ⊆ Rn, n ≥ 2, and the matrix A(x) = (aij(x))i,j=1,...,n is symmetric and
positive definite. The differential operators Dij and Di are given by

Dij =
∂2

∂xi∂xj
and Di =

∂

∂xi
.

For a function f on Ω, we consider linear elliptic partial differential equations of the form

Lu = f.

Given the function f in some suitable function space on Ω, we are interested in the existence and
uniqueness of solutions u, in particular in solutions of the Helmholtz equation.

Remark B.8. By setting aij(x) = δij, bi(x) = 0 and c(x) = k2(1 −m(x)) for all x ∈ Ω, where
m ∈ L∞(Ω) and supp(m) ⊆ Ω, we obtain the Helmholtz equation

∆u+ k2(1−m)u = f.

Definition B.9. Let u ∈ Lp(Ω) for some p ≥ 1 and α := (α1, ..., αn) be a multiindex, such that

Dαϕ :=

(
∂α1

∂xα1
1

)
· · ·
(
∂αn

∂xαnn

)
ϕ

for ϕ ∈ C |α|(Ω). A p-integrable function g : Ω→ R is called the α-th weak derivative of u, if∫
Ω
ϕg dx = (−1)|α|

∫
Ω
uDαϕdx

for all ϕ ∈ C |α|0 (Ω), and we write

g = Dαu.
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The functions ϕ are called test functions.
The Sobolev spaces W k,p(Ω) are defined for k ∈ N and 1 ≤ p <∞ by

W k,p(Ω) := {u ∈ Lp(Ω) : Dαu ∈ Lp(Ω) for all |α| ≤ k}

and are equipped with the norm

‖u‖Wk,p(Ω) :=

∑
|α|≤k

∫
Ω
|Dαu|p

1/p

.

Remark B.10. The Sobolev spaces W k,p(Ω) are Banach spaces (see [27]). For p = 2 we obtain
the Hilbert spaces

Hk(Ω) := W k,2(Ω),

which are equipped with the inner product

(u, v)Hk(Ω) :=
∑
|α|≤k

(Dαu,Dαv)L2(Ω) .

We thus have H0(Ω) = L2(Ω).

The following definition and statements are essential for the estimates in Chapter 2.

Definition B.11. Let X1 and X2 be two Banach spaces with X1 ⊆ X2. The space X1 is continu-
ously embedded in X2, if

‖x‖X2 ≤ c‖x‖X1 (B.2)

for all x ∈ X1. The space X1 is compactly embedded in X2, if it is continuously embedded in X2

and if each bounded sequence in X1 has a convergent subsequence in X2.

Proposition B.12. The space H1(Ω) is continuously embedded in L2(Ω), such that

‖u‖L2(Ω) ≤ c‖u‖H1(Ω) (B.3)

for all u ∈ H1(Ω) (see e. g. [64]). Note that we can choose c = 1 due to the definition of the norm
‖·‖H1(Ω).

The trace operator has been defined in Chapter 2. The trace theorem along with the subsequent
statement is to be found for example in [3, 27].

Theorem B.13. ( Trace theorem) Let ∂Ω be of class C1. The trace operator γ : H1(Ω)→ L2(∂Ω)
is the unique continuous, linear operator such that γu = u|∂Ω for all u ∈ C(Ω) ∩H1(Ω).

Proposition B.14. As the space C(Ω)∩H1(Ω) is dense in H1(Ω), there is a constant c ≥ 0 such
that

‖u|∂Ω‖L2(∂Ω) ≤ c‖u‖H1(Ω) (B.4)

for all u ∈ C1(Ω) (see [27]) and thus for all u ∈ H1(Ω).

Remark B.15. The existence and uniqueness of the Poisson problem −∆u = f on a bounded
domain Ω with C1-boundary and Robin boundary conditions is treated in connection with the trace
operator in [3].
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