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Abstract

Modern image classification methods are based on supervised learning algorithms
that require labeled training data. However, only a limited amount of annotated
data may be available in certain applications due to scarcity of the data itself or high
costs associated with human annotation. Introduction of additional information
and structural constraints can help improve the performance of a learning algorithm.
In this thesis, we study the framework of learning using privileged information
and demonstrate its relation to learning with instance weights. We also consider
multitask feature learning and develop an efficient dual optimization scheme that
is particularly well suited to problems with high dimensional image descriptors.
Scaling annotation to a large number of image categories leads to the problem

of class ambiguity where clear distinction between the classes is no longer possible.
Many real world images are naturally multilabel yet the existing annotation might
only contain a single label. In this thesis, we propose and analyze a number of loss
functions that allow for a certain tolerance in top k predictions of a learner. Our
results indicate consistent improvements over the standard loss functions that put
more penalty on the first incorrect prediction compared to the proposed losses.
All proposed learning methods are complemented with efficient optimization

schemes that are based on stochastic dual coordinate ascent for convex problems
and on gradient descent for nonconvex formulations.
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Zusammenfassung

Moderne Bildklassifizierungsmethoden basieren auf überwachten Lernalgorith-
men, die annotierte Trainingsdaten erfordern. In bestimmten Anwendungen steht
aufgrund der Knappheit der Daten selbst oder der hohen Kosten, die durch Anno-
tationen durch Menschen entstehen, jedoch vielleicht nur eine begrenzte Anzahl
von annotierten Daten zur Verfügung. Die Einführung zusätzlicher Informatio-
nen und struktureller Nebenbedingungen kann dazu beitragen, die Leistung eines
Lernalgorithmus zu verbessern. In dieser Arbeit untersuchen wir das Lernen mit
privilegierten Informationen und zeigen eine Beziehung zum Lernen mit gewich-
teten Beispielen. Wir betrachten auch das Lernen von Merkmalen für Multitask
Klassifikation und entwickeln eine effiziente duale Optimierungsmethode, die sich
besonders gut für Probleme mit hochdimensionalen Bilddeskriptoren eignet.
Skalierung von Annotationen zu einer großen Anzahl von Bildkategorien führt

zum Problem der Klassen-Ambiguität, wo eine klare Unterscheidung zwischen den
Klassen nicht mehr möglich ist. Viele natürliche Bilder sind Teil mehrer Klassen,
aber die vorhandene Annotation könnte möglicherweise nur ein einziges Label
enthalten. In dieser Arbeit schlagen wir eine Reihe von Verlustfunktionen vor, die
eine gewisse Toleranz in Top k Vorhersagen eines Klassifikators ermöglichen, und
analysieren diese. Unsere Ergebnisse zeigen konsequente Verbesserungen gegenüber
den üblichen Verlustfunktionen, die die erste falsche Vorhersage stärker bestrafen.

Wir ergänzen alle vorgeschlagenen Lernmethoden durch effiziente Optimierungs-
algorithmen, die auf dualem Koordinatenanstieg für konvexe bzw. auf Gradienten-
verfahren für nichtkonvexe Probleme basieren.
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1Introduction

One way to motivate our work is to imagine the immense impact of machine
learning and computer vision on our daily life. While specific contributions of
this thesis are discussed in § 1.2, let us briefly consider the cumulative long-term
effect of the research in these fields. Automation of human labor is ubiquitous in
modern society while handmade products are rare and becoming increasingly exotic.
Automated machinery is employed in production of virtually all materials and
tangible goods, it has alleviated the burden of hard physical tasks, and dramatically
transformed the nature of manual work increasing the value of knowledge, creativity,
and analytical skills. Yet, however mundane and routine, the intellectual work has
been traditionally difficult, if not impossible, to automate.
Today, we observe a rapid advance of the frontier for automation enabled by

artificial intelligence (AI). An increasing amount of tasks that require some form of
perception, reasoning, or recognition can now be executed by machines. The key
technology behind the recent progress in AI is machine learning, which is concerned
with the study of algorithms that can “learn”, i.e. extract useful patterns, from
data. This is an exciting area of research riddled with hard scientific problems that
will have a profound social and economic impact when solved.

1.1 Teaching Machines to See
A high level problem that we are interested in is how to teach a machine to see.
In § 1.1.1, we elaborate on what it means to “teach a machine” and cover some
of the basics of machine learning, while in § 1.1.2 we explain what it means for
a machine to “see” with a short historical tour of image recognition in computer
vision. Towards the end of each section, we also discuss the challenges of the
respective field that we address in the present dissertation.

1.1.1 Machine Learning
A traditional way to address a challenge in computer science is to (i) analyze it,
(ii) recognize an underlying computing problem, and (iii) develop an algorithm
that solves it or finds a useful approximation. For example, we can efficiently sort
a list of objects or compute a reasonably short path for a traveling salesman1.
Many more seemingly hard mathematical, logical, and engineering problems can
be approached that way. However, there are also numerous tasks that are routinely

1 The traveling salesman problem (TSP) is an NP-hard problem, however, a large number of
efficient heuristics and (exponential) exact algorithms are known. For example, the World
TSP instance with over 1.9M cities has been solved to within 0.05% of the optimal tour, see
http://www.math.uwaterloo.ca/tsp/world/.

1

http://www.math.uwaterloo.ca/tsp/world/


2 Introduction

performed by humans and often seem effortless to us, yet are notoriously difficult
to program. As Moravec, (1988, p. 15) writes,

. . . it is comparatively easy to make computers exhibit adult level
performance on intelligence tests or playing checkers, and difficult or
impossible to give them the skills of a one-year-old when it comes to
perception and mobility.

Moving around in space, recognizing a voice, recognizing a face, judging people’s
intentions and motivations are all examples of some of the oldest human skills that
we have perfected over time. Yet, as they are largely unconscious, our understanding
of such skills is not elaborate enough to implement them in a well defined program.
Machine learning, or automated learning, attempts to bypass the need to ex-

plicitly enumerate and consider all potential minute details and tiniest variations
of the possible inputs. Instead, it is focused on developing a framework for learn-
ing algorithms that enable computers to automatically extract knowledge from
“experience”, i.e. training data, and apply it in solving a given task on previously
unseen, test data. In contrast to the classical programming, a learning algorithm
is expected to change and adapt to the given input examples – a process known
as training or learning. Moreover, a successful learner should abstract away the
irrelevant details and generalize beyond the training examples, which allows it to
perform well on unseen data and surpasses learning by memorization. The process
of learning general principles from observations is known as inductive inference,
and it is precisely the process that machine learning is trying to automate.
The decision which information in the input is relevant and which is irrelevant

for the given task is the fundamental problem in machine learning. It turns out,
that the incorporation of the prior knowledge that biases the learning algorithm
is essential to the success of learning. Without the prior knowledge there would
be no way to decide which correlations in the input signal are spurious and which
correspond to a useful pattern. This is formally defined and proved in the statistical
learning theory, particularly in a series of “no free lunch” theorems that show that
there exists no universally superior learning algorithm (Devroye et al., 2013). If
one learning rule performs well on a certain task, then there must be another task
where an alternative algorithm performs better.

The development of tools and techniques for incorporating the prior knowledge
and translating it into an inductive bias is one of the central themes in the theory
of machine learning. A specific example of introducing the prior knowledge is
through the use of regularization, which is also a way to control the complexity
of a learned model. Regularization allows one to impose certain restrictions on
the learner which limits its ability to fit the training data exactly. A common
phenomenon is often observed by machine learning practitioners: a method works
great on the training data, but the results on the test data are poor. This situation
is known as overfitting and suggests that the learner has fitted the training data
too well failing to abstract away the irrelevant details. The opposite situation
known as underfitting is also possible, and happens when the learned model is too
simplistic to obtain good performance even on the training data. Regularization
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provides a way to tradeoff between over- and underfitting, and is one of the most
important areas of research in machine learning (Duda et al., 2012).

Supervised Learning. Machine learning is a broad field of computer science and is
concerned with different types of learning. For example, one differentiates between
supervised and unsupervised learning, batch and online learning, active learning,
and reinforcement learning. In this thesis, we consider supervised learning in the
batch regime, which means that we are given a set, i.e. a batch, of n training pairs
{(xi, yi)}ni=1, where xi ∈ X is a training example and yi ∈ Y is its label, and the
goal is to construct a function f : X → Y optimizing a certain learning objective.
The sets X and Y are usually referred to as the input space and the output space
respectively. We only work with discrete finite output spaces, which corresponds
to classification (or categorization), and distinguish between binary, multiclass,
and multilabel classification depending on the set Y .

The study of learning objectives is the main topic of this dissertation. We focus
on regularized empirical risk minimization defined as follows (Hein, 2016).
Definition 1.1. Let {(xi, yi)}ni=1 be a training sample, F a class of functions,
L(y, f(x)) a loss function, and Ω : F → R+ a regularization functional. The
regularized empirical risk minimization (RERM) is defined as

f ∗ = arg min
f∈F

1
n

n∑
i=1

L(yi, f(xi)) + λΩ(f),

where λ ∈ R+ is called the regularization parameter.
Our goal is to find a classifier f ∈ F that predicts reasonably good labels for any

input x ∈ X , not necessarily from the training set. First, we establish a measure of
goodness using a loss function L which quantifies the level of discrepancy between
the ground truth label y and our predicted label f(x). The expected loss on unseen
data is known as risk. Next, we introduce the prior knowledge by selecting an
appropriate class of functions F and a suitable regularization functional Ω. Finally,
we are confronted with the tradeoff between fitting the training data well (the first
term) and having a simple, well-behaved model (the second term). This tradeoff is
controlled using the regularization parameter λ, which is tuned on a holdout set or
using cross-validation (Friedman et al., 2001).

In this thesis, we mainly use `2 regularization, but consider `p norms and other
regularizers in (Jawanpuria et al., 2015). We also study extensions of the objective
above in Chapters 3 and 4, where additional loss and regularization terms are
introduced.

The main focus of this dissertation is on the analysis of loss functions and deriva-
tion of efficient optimization techniques for the corresponding learning objectives.
We consider a wide range of different losses, including the classical hinge, logistic,
and the softmax loss, as well as introduce novel loss functions in Chapters 5 and 6.

Surrogate Loss. Machine learning is a field of science that shares certain traits with
statistics, optimization, information theory, and the general field of AI. However,
we are more concerned with the practical aspects such as efficient algorithmic



4 Introduction

implementation and scalability to large datasets. When we develop learning
algorithms, they have to work on real world data and produce meaningful results.
An elaborate model, however elegant in theory, is of no practical use unless it
can be trained efficiently. To this end, we need to consider the computational
complexity of learning.

From the optimization point of view, the difficulty of solving the RERM problem
directly depends on the participating objects: the function class F , the loss function
L, and the regularizer Ω. Our choices here are primarily governed by what is “easy”
to optimize, in the sense that they lead to a convex optimization problem (Boyd
and Vandenberghe, 2004). For example, we mainly work with linear classifiers of
the form f(x) = 〈w, x〉+ b and `2 regularization, as mentioned above.
A good choice of the loss function, however, also takes into account how the

classifier is evaluated in the end. For example, a natural measure for classification
is the error count, which is also known as the 0-1 loss. Unfortunately, that loss is a
discrete nonconvex function that leads to NP-hard combinatorial problems (Ben-
David et al., 2003), which are intractable for our purposes. Instead, we consider
continuous convex surrogate loss functions that can be optimized efficiently.

In the following, we distinguish between the target performance measure, which
may be a discrete function like the 0-1 loss, and the surrogate loss function, which
is actually used in the learning objective. An important question is whether
anything can be said about the target performance of a classifier trained with a
surrogate loss. To answer that, we introduce the notion of the Bayes classifier
as the optimal classifier that minimizes the expected (discrete) loss. If X and
Y are the random variables corresponding to a pair of observations in binary
classification with the label encoding given by ±1, then we can define the regression
function η(x) = E[Y |X = x] and obtain the Bayes classifier for the 0-1 loss as
f ∗B(x) = sign η(x). Somewhat surprisingly, if we ignore the restrictions of the
function class F and optimize the expected loss pointwise,

f ∗L(x) = arg min
α∈R

EY |X [L(Y, α) |X = x],

then under relatively mild assumptions on the loss L, we obtain the Bayes classifier:
sign f ∗L(x) = f ∗B(x) = sign η(x). Such loss functions are known in the statistical
learning theory as classification calibrated (Bartlett et al., 2006), and we come
back to them in Chapter 6, extending the notion of calibration to a different loss.

Curse of Dimensionality. Let us now consider the input space X , also known as
the feature space. As hinted by the form of the linear classifier above, we mainly
assume that the examples xi are (feature) vectors in a d-dimensional Euclidean
space, i.e. X = Rd. While there is no intrinsic limitation on the admissible range
for d, an important phenomenon called the curse of dimensionality is recognized
in the theory of machine learning. It can be illustrated with the following example
taken from (Hein, 2016). Let X = [0, 1]d be the unit cube in Rd, and partition
every dimension into k parts, we obtain kd bins in the cube. If we use simple
majority vote classifiers, each restricted to their own bin, then we need n ≥ kd

training examples to classify in every bin. If the points are uniformly distributed
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and we classify e.g. only 95% of the volume, then it can be shown that we still
need an exponential number of training examples. Moreover, even if consider the
classical nearest neighbor (NN) method, it can still be shown that the 1-NN rule
fails on some distributions unless we have exponentially many data points in the
training set (Shalev-Shwartz and Ben-David, 2014).

A similar problem can be associated with the output space Y when the latter is
complex (Tsochantaridis et al., 2005). For example, consider multilabel learning,
where the task is to predict a set of labels for every x ∈ X . The cardinality of
Y increases exponentially with the number of classes, |Y| = 2m, and it quickly
becomes unreasonable to expect to see every combination of the labels in the
training set. Even for m = 30 classes, there are 230 > 109 possible subsets Y ⊂ Y .
The only practical way to confront the curse of dimensionality is to make

assumptions about the data and incorporate them as prior knowledge.

Challenges Addressed

We have provided a brief overview of the field of machine learning and the
issues that arise in applications. In this section, we summarize some of the most
important challenges that we aim to address in the present thesis.

Introduction of Prior Knowledge. Controlling the tradeoff between over- and
underfitting and overcoming the curse of dimensionality are some of the
most important aspects of a successful learner. Classifiers are particularly
susceptible to overfitting when the amount of training data is limited or the
dimensionality of the space X is high. Prior knowledge becomes extremely
valuable in these situations, and we will consider different approaches that
incorporate various forms of knowledge into the learning problem.

Scalable Optimization. Algorithmic aspects play a major role in machine learning
applications, and the importance of utilizing large amounts of data has been
highlighted by many authors (Banko and Brill, 2001; Halevy et al., 2009).
In this thesis, we aim to develop efficient learning algorithms that scale well
with respect to all three main dimensions: the number of training examples
n, the number of classes m, and the number of features d.

Analysis of Loss Functions. Two factors complicate the choice of a learning objec-
tive: diversity of available methods, loss functions, and regularizers, and the
discrepancy between the surrogate loss and the target performance measure.
While the no-free-lunch theorem suggests that it is impossible to tell a priori
which loss works best for the given problem, we still gain useful insights and
guiding statistics from an experimental evaluation on real world datasets.

1.1.2 Computer Vision
Let us now consider what it means for a machine to “see”. We start with a quick
retrospective look at the early vision algorithms and then fast-forward to the
present days. This allows us to appreciate the challenges in the field as well as the
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tremendous progress over the last decades. We mainly focus on the recognition
aspect of vision, but acknowledge that many more tasks are being addressed by
the community and refer the interested reader to the books by Forsyth and Ponce,
(2003) and Szeliski, (2010).

Parts and Shape. Computer vision is a broad interdisciplinary field of science that
is generally concerned with the perception and understanding of the physical world
around us. As Ballard and Brown, (1982) write (emphasis added),

Computer vision is the construction of explicit, meaningful descriptions
of physical objects from images. Image understanding is very different
from image processing, which studies image-to-image transformations,
not explicit description building. Descriptions are a prerequisite for
recognizing, manipulating, and thinking about objects.

Differentiating itself from image processing, early computer vision attempted to
directly construct the “descriptions” of objects and recover their 3D structure. The
modeling of nonrigid objects naturally involved elastic arrangements of parts or used
cylinders to represent the human body. From the perspective of machine learning,
we recognize that such models incorporated strong prior knowledge assumptions
and required no training in the modern sense2. In fact, the idea that an object can
be decomposed into a constellation of parts has been particularly influential in the
field. Following Burl et al., (1998) and Weber et al., (2000), an object is composed
of parts that form a shape, where the shape describes the mutual position of the
parts. The shape can be modeled explicitly in a probabilistic framework (Fergus
et al., 2003), or implicitly by considering which local appearances are consistent
with each other (Leibe and Schiele, 2003). The part based models have been
successful in combination with a maximum margin classifier (Felzenszwalb et al.,
2010), and remain popular in the present days.

While a lot has been achieved by careful development of sophisticated structural
models, one has to realize important limitations of this approach. First, it is hard to
give a precise definition of a part. One faces an interesting tradeoff between having
parts that are too instance specific, which would not generalize well, and parts
that are too generic, which would undermine the ability to discriminate the object
classes or lead to unreasonably complex models. Second, many visual categories
do not naturally decompose into parts, at least they may not decompose into
parts that are semantically meaningful to us. Third, the shape model is typically
restricted to a tree or a star-graph to enable efficient inference (Felzenszwalb and
Huttenlocher, 2005). Finally, the main challenge remains to identify the parts in
the image, which is, in essence, a recognition task on its own.

Invariant Features. An established approach to object recognition assumes the
existence of certain invariant features, or properties, that are common to a given
category and remain stable under a variety of transformations, including translation,

2 Marr and Nishihara, (1978) write (emphasis added) “We view recognition as a gradual process
proceeding from the general to the specific, that overlaps with, guides, and constrains the derivation
of a description from the image”. In contrast, inductive inference in modern learning systems
proceeds from specific examples to the general concept.
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(limited) rotation, scaling, and even certain appearance variations. This approach
can be traced back to Pitts and McCulloch, (1947)3 and the early computer vision
work of Hu, (1962), which used 2D moment invariants to recognize characters.

The study of invariants in vision can be arranged into two large groups of
approaches: the ones based on geometry (Besl and Jain, 1985; Ullman et al., 1996)
and appearance (Murase and Nayar, 1995; Schmid and Mohr, 1997). A notable
example from the first group is the concept of geometric invariance (Mundy, 2006),
which studies the properties of an object that do not vary with viewpoint, e.g. the
ratio of collinear segment lengths. Unfortunately, it was shown that there exist
no viewpoint invariant features in the general case, there are only special-case
invariants for restricted configurations of 3D points (Burns et al., 1992).

Geometric invariants reveal an important issue in practical recognition systems:
sensitivity to noise (Meer et al., 1998). In hindsight, one could argue that hand-
crafted features tend to use the minimal number of measurements and, therefore,
are lacking the redundancy to be robust against outliers. In the context of ma-
chine learning, the insensitivity of a learning algorithm to small changes in the
input is known as stability, and was shown to be both necessary and sufficient
for learning (Bousquet and Elisseeff, 2002). While regularization is an established
technique to ensure classifier stability in the RERM framework, one has to appreci-
ate the challenge of obtaining good features that maintain stability under various
transformations and noise conditions.

In contrast to the geometry based approach, appearance methods enforce little or
no geometric constraints. Early approaches include, for example, histogram match-
ing (Schiele and Crowley, 1996; Swain and Ballard, 1991) and eigenspace matching
(Turk and Pentland, 1991). Instead of constructing semantically interpretable
parts and geometry-inspired models, the focus is shifted towards computing noise
resistant holistic image descriptors. When a set of images of an object is obtained
by varying pose and illumination in small increments and then projected onto the
dominant eigenvectors, Murase and Nayar, (1995) observed that the corresponding
points lie on a low dimensional manifold. Notably, small variations in the input
now cause limited variations in the output and lead to a robust recognition system.

The assumption that data lies on a low dimensional manifold has been very pop-
ular in the machine learning community (Belkin and Niyogi, 2003; Hein and Maier,
2006). While it may be an adequate tool to handle viewpoint and illumination
variations, real world images pose further challenges, such as scale change, partial
visibility, occlusion, and background clutter. A multi-scale representation is often
employed to reduce sensitivity to scale changes (Lindeberg, 2013), whereas local
features provide robustness against partial occlusion (Schmid and Mohr, 1997).

Bag of Words. The use of dense local features sampled at a large number of
locations has lead to efficient object recognition in cluttered real world scenes. A
particularly successful feature generation method called the Scale Invariant Feature

3 Interestingly, a contemporary goal in computer vision some 70 years later is still quite accurately
summarized by Pitts and McCulloch, (1947): “We seek general methods for designing nervous
(sic) nets which recognize figures in such a way as to produce the same output for every input
belonging to the figure”.
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Transform (SIFT) was developed by Lowe, (1999). The SIFT features demonstrate
invariance to changes in illumination, scale, viewpoint, affine distortion, and
additive noise. As such, they allow matching between different views of the same
instance (Lowe, 2004) and enable object classification (Mikolajczyk et al., 2005).
Inspired by the bag of words representation for text categorization (Joachims,

1998), Csurka et al., (2004) and Sivic and Zisserman, (2003) introduced visual
analogies of words and vocabularies that are computed from local descriptors.
Following their methodology, an image is characterized by a histogram of visual
word counts, which yields a global feature vector suitable for training a classifier.
While technical specifics of each step in the recognition pipeline have changed
significantly in the last decade (Chapter 2), the general idea of aggregating a
large number of relatively simple local measurements into a more complex global
representation has endured to the present day.
Extraction of invariant features and computation of the feature vector repre-

senting an image are important ingredients in the classification pipelines that
we consider in Chapters 4–6. Although we focus on the learning objectives and
mainly consider the input space fixed, the choice of an image descriptor and cer-
tain engineering decisions in a pre-processing phase often play a decisive role in
achieving state of the art recognition performance. Furthermore, the adoption of
deep learning methods (Krizhevsky et al., 2012) and end-to-end training, where
features and the classifier are learned jointly, blurs the distinction between the
feature extraction and classifier training steps.

Kernel Methods. The performance of machine learning algorithms depends heavily
on the representation of the data they are given. The kernel methods (Lampert,
2009; Schölkopf and Smola, 2002), which we mainly employ in the thesis, require
every image4 x ∈ X to be embedded in a dot product space H, also called
the feature space, using a feature map Φ : X → H. Once we have a vectorial
representation of images, we can focus on training classifiers and the analysis of
different learning algorithms. However, the choice of the feature map remains
largely unspecified. Moreover, the focus has been traditionally rather on designing
the kernel, k(x, x′) = 〈Φ(x),Φ(x′)〉, which induces the feature map implicitly.
The freedom to define the notion of similarity between images using a kernel

function, as well as the freedom to design the corresponding feature maps, has fueled
research in the computer vision community for decades. We have already mentioned
the study of invariant features and the emergence of the bag of words model as
notable examples from that era. However, there is an important limitation to that
approach. When the individual steps in the classification pipeline are designed,
or hand crafted, separately using manual supervision at each stage, there is no
guarantee that local decisions lead to an improvement in the overall recognition
performance. Just like it is virtually impossible for humans without specialized
tools to write down a good classifier for high dimensional data, it is difficult to
design a good feature extraction method. Furthermore, manual design that relies
on strong prior knowledge assumptions inevitably introduces a strong bias as well.

4 In the following, we omit the explicit mention of images and use x, X to denote a feature vector
and the feature space respectively.
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Neural Networks. An alternative approach based on the concept of artificial neural
networks, which can be dated back to the early works of McCulloch and Pitts,
(1943) and Rosenblatt, (1958), has become a de facto standard in modern computer
vision. The main idea relevant to our discussion is that of representation learning
(Bengio et al., 2013). Instead of designing features, the focus is on designing
algorithms that learn useful features from raw input, such as directly from image
pixels5. As before, lower-level patterns are progressively combined into a higher-
level representation. However, in contrast to the previous approach, the parameters
of every processing module at each layer are now subject to joint training via error
backpropagation (Rumelhart et al., 1986). As a result, the emerging features are
tailored to the given task and generally outperform their hand-crafted counterparts.
A particularly successful idea in the context of neural networks for image

recognition is based on the basic understanding of the topological structure of
images and the introduction of local receptive fields (Hubel and Wiesel, 1959).
The idea of sweeping a local feature extractor over the image corresponds to a
convolution, which is at the heart of convolutional networks (ConvNets). The
Neocognitron of Fukushima and Miyake, (1982) was, perhaps, the first ConvNet
to demonstrate invariance to shifts in position and shape distortion, while LeCun
et al., (1989) were the first to train the convolutional filters using backpropagation.

Semantic Interpretation. So far, we have mainly focused on the description of
image content in terms of feature vectors which correspond to the elements of the
input space X . Next, we consider the issues associated with the output space Y .

Image recognition aims at understanding the semantic content of images. More
specifically, it aims at capturing semantic interpretations of images that are relevant
to the application. Naturally, such interpretations form only a subset of all possible
interpretations of the image, which is known as weak semantics (Smeulders et al.,
2000). Therefore, one can already anticipate that image categorization is necessarily
inexact in many real world applications. To highlight the disconnect between an
automated image representation and possible human interpretations, Smeulders
et al., (2000) introduced the concept of the semantic gap:

The semantic gap is the lack of coincidence between the information
that one can extract from the visual data and the interpretation that
the same data have for a user in a given situation.

Striving to bridge the gap, a significant portion of research has been focused on
the introduction of learning algorithms and the design of better image descriptors
(Lew et al., 2006). For example, Li and Wang, (2003) developed automatic linguistic
indexing of pictures, where a collection of concept classifiers was used to tag images
with the relevant labels. Vogel and Schiele, (2007) introduced a semantic image
representation based on the histogram of local concept occurrences. Lampert
et al., (2009) established an approach to high-level image description based on
attributes. Finally, Li et al., (2009) made significant strides towards semantic

5 However, there is still a pre-processing step that usually involves rescaling and mean subtraction,
but may be also followed by PCA/ZCA whitening (Krizhevsky, 2009).
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scene understanding with a unified framework for classification, annotation, and
segmentation of images.

Today, advances in training deep neural networks demonstrate impressive results
on many visual recognition tasks (He et al., 2016). With the sufficient amount of
annotated training data, the learned representations have been able to accommodate
most of the tasks that have been formalized so far. While that observation has
sparked interest in pursuing new tasks that have not been considered before, it is
also important to revisit the general problem of image recognition and understand
which limitations of the classical tasks can be addressed today.

The issue, of course, is that recognition in the broad sense is an ill-posed problem.
When defining a task for a particular application, the main challenge is to capture
the relevant image semantics in a convenient, compact form, and formulate the
prediction goal precisely. One of the most successful and well studied approaches
relies on a linguistic description of images in terms of keywords and captions,
which, in particular, leads to the multiclass and multilabel classification problems
considered in this dissertation.

Class Ambiguity. However natural, image tagging suffers from two well-known
limitations: the annotation cost and incomplete labeling. Often, image datasets
provide only a single label per image, which means there is just one “correct”
associated category. Increasing the number of classes makes it more difficult to
discriminate between them, while attempting to cut the annotation costs introduces
label noise. Together, these issues lead to what we call the class ambiguity problem.
Figure 1.1 illustrates the problem on a modern dataset of scene images, where

the task is to predict the ground truth label associated with the scene. One can
appreciate that this exercise is difficult for humans, since there are multiple labels
that could be reasonably associated with every picture. Moreover, the choice of the
label often seems random as it does not always correspond to the most dominant
or salient object in the image. Naturally, a human would need several guesses to
enumerate suitable labels before naming the “right” one.

While class ambiguity could be conceivably reduced by investing into obtaining
a better, richer annotation, we argue that a certain level of ambiguity is inevitable
due to the fundamental difficulty of assigning a unique, or enumerating all possible
semantic interpretations of an image. Therefore, the main challenge that we aim
to address in the context of computer vision is to enable object and scene image
categorization in the presence of class ambiguity in the ground truth annotation.

1.2 Contributions
In this section, we briefly discuss the main contributions of this thesis. Most of the
learning methods that we consider are based on the soft margin support vector
machine (SVM) of Cortes and Vapnik, (1995), multiclass SVM of Crammer and
Singer, (2001), logistic regression and maximum entropy methods (Berger et al.,
1996; Friedman et al., 2001), and their extensions.



1.2 Contributions 11

Figure 1.1.: Class ambiguity with a single label on the Places 205 (Zhou et al., 2014).
Labels: Valley, Pasture, Mountain (top); Ski resort, Chalet, Sky (bottom).
Note that multiple labels apply to each image and k guesses may be required
to guess the ground truth label.

Analysis of Loss Functions and Learning Objectives

We analyze the following learning algorithms, the associated optimization prob-
lems, and the asymptotic property of classification calibration for the top-k error.

SVM+. We analyze uniqueness of SVM+ solutions and establish its close con-
nection to the SVM with instance weights (WSVM). In particular, we show
that any SVM+ solution can be reproduced by a WSVM with appropriately
chosen weights. This observation enables the interpretation of privileged
information in SVM+ as the guiding prior knowledge about which training
examples are “easy” and which are “hard”.

WSVM. We show how the weights for WSVM can be set from an SVM+ dual
solution in such a way that WSVM reproduces the same solution. That
demonstrates that the WSVM algorithm is at least as flexible as the SVM+.
Furthermore, we reveal a constraint on the admissible SVM+ solutions which
leads to the conclusion that not every WSVM solution can be constructed by
SVM+, and we provide a specific counter example. Therefore, the WSVM
algorithm is strictly more flexible and there may be interesting choices of the
weights that are not covered by SVM+.

Top-k SVM. We introduce top-k SVM as a novel method to optimize for the
top-k error performance metric, which allows k guesses instead of one. We
elaborate on the connection between the proposed top-k hinge loss, a family
of ranking losses by Usunier et al., (2009), and the general problem of learning
to rank. Overall, we consider 4 versions of the top-k hinge loss: α/β and
smooth/nonsmooth, where the α version is a tight convex upper bound on
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the top-k error, the β version belongs to the family of Usunier et al., (2009),
and smoothing is done using Moreau-Yosida regularization.

Softmax and Top-k Entropy. We introduce the top-k entropy and the truncated
top-k entropy loss functions as extensions of the classical softmax loss for
the purpose of top-k error optimization.

Top-k Calibration. We introduce the notion of top-k calibration and analyze which
of the multiclass methods, including the one-vs-all reduction schemes, are
calibrated for the top-k error. In particular, we highlight that the softmax
loss is uniformly top-k calibrated for all k ≥ 1, which could explain its strong
performance in top-k error for multiple values of k.

Optimization and Projection Algorithms

We develop efficient optimization schemes for the learning algorithms considered
in the thesis. Most of the optimization algorithms are based on stochastic dual
coordinate ascent (SDCA) method of Shalev-Shwartz and Zhang, (2013b).

Weight Learning. We develop a method to learn the instance weights for WSVM
directly from data when there is a large validation sample available in addition
to the training set. Our experiments demonstrate significant performance
improvements if the split between the training and the validation sets favors
the latter. These results prove the existence of nontrivial instance weights
that are particularly helpful when the training data is limited.

Multitask Learning. We develop a multitask representation learning method with
stochastic optimization in the dual space based on SDCA. All updates of the
dual variables are computed in closed form, which makes the optimization
scheme efficient. The approach is particularly attractive in the situations
where the number of training examples is limited, but the dimensionality
of the feature space is large. A linear mapping into a lower dimensional
subspace that is jointly learned with the individual classifiers, provides
additional regularization and enables the inter-class information sharing,
which ultimately improves the recognition performance. The source code of
our implementation is publicly available6.

Multiclass, Top-k, and Multilabel Learning. We employ the SDCA framework
for vector valued loss functions to develop algorithms for multiclass, top-k,
and multilabel learning. Furthermore, we use Moreau-Yosida regularization
to introduce smoothed formulations of multiclass, top-k, and multilabel
SVMs. At the heart of our optimization schemes are efficient algorithms for
computing the Euclidean and a biased projection onto the effective domain
of the convex conjugate of the corresponding loss function. The source code
of our implementation is publicly available7.

6 http://github.com/mlapin/cvpr14mtl
7 http://github.com/mlapin/libsdca

http://github.com/mlapin/cvpr14mtl
http://github.com/mlapin/libsdca
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Multitask Output Kernel Learning. Our work on efficient output kernel learning
(Jawanpuria et al., 2015) is not included in this thesis, however the author
contributed towards the implementation of the SDCA based method for
learning the output kernel matrix with `p-norm regularizers. The source code
of our implementation is publicly available8.

The main ingredient in the SDCA framework is the update of the dual variables,
which, for the vector valued loss functions, corresponds to a biased projection onto
the effective domain of the conjugate loss. We develop efficient algorithms for
computing the Euclidean and a biased projection onto the following convex sets.

Top-k Simplex (α) is as an interesting extension of the standard simplex, where
every variable is upper bounded by 1/k of the total sum of all variables. It is
the effective domain of the convex conjugate of the top-k hinge loss (α).

Top-k Cone is obtained by removing the upper bound on the sum of the variables
in the top-k simplex (α), but keeping the bounds on each individual variable.
The set is analogous to the positive orthant in the definition of the standard
simplex, but has a more complicated structure.

Top-k Simplex (β) corresponds to the effective domain of the convex conjugate
of the top-k hinge loss (β). The Euclidean (non-biased) projection reduces
to the well-known continuous quadratic knapsack problem.

Bipartite Simplex emerges as the effective domain of the convex conjugate of
the multilabel SVM loss of Crammer and Singer, (2003). We offer the
term bipartite simplex as it appears in multilabel learning, where the labels
are partitioned into positive and negative, and, therefore, correspond to a
bipartite label ranking graph. Our novel projection algorithm based on the
variable fixing scheme is particularly efficient compared to the prior work.

Entropic Projections onto the top-k simplex (α) arise in our optimization schemes
with the softmax loss and the top-k entropy loss. In these cases, the presence
of the entropy function complicates computation of SDCA updates and
one usually resorts to an approximation. Instead, we propose to use the
Lambert W function, which is evaluated efficiently, and develop an algorithm
to directly compute the corresponding entropic projections.

Empirical Evaluation and Engineering Decisions

We perform extensive empirical evaluation of the proposed methods, compare
them to prior work, and share our insights and observations.

Scalability. We demonstrate the efficiency of our learning methods and the pro-
posed projection algorithms. In particular, we report the running times and
present scalability plots with respect to the input dimension.

8 http://www.ml.uni-saarland.de/code/FMTL-SDCA/FastMTL-SDCA.zip

http://www.ml.uni-saarland.de/code/FMTL-SDCA/FastMTL-SDCA.zip
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OVA vs Multiclass. Although often comparable, the performance of direct mul-
ticlass methods is found in our experiments to be generally superior to
the one-vs-all (OVA) scheme with binary classifiers. The differences are
particularly noticeable for the OVA SVM, and in top-k error for k > 1.

Top-k Error Optimization. We show that our proposed top-k SVM outperforms
competing ranking based methods in top-k error, especially for k > 1.
Softmax loss and smooth multiclass SVM are shown to perform remarkably
well in top-k error uniformly for all k, while further improvements are possible
with the proposed top-k extensions.

Multiclass to Top-k to Multilabel. We explore the transition from multiclass to
multilabel learning by comparing the performance on multilabel datasets
between multiclass, top-k, and multilabel methods. The multiclass and top-k
methods use only a single label of the most prominent object for training.
As expected, the top-k methods outperform their multiclass counterparts in
the presence of class ambiguity.

Finally, we confirm the previous observations regarding data augmentation and
feature engineering decisions.

Data Augmentation. We demonstrate in a handwritten digit recognition experi-
ment that data augmentation by horizontal and vertical translation helps
and can be successfully combined with other forms of prior knowledge, such
as the learned instance weights.

Feature Engineering. We explore a number of feature engineering decisions for
scene classification using the Fisher Vector representation (Chapter 2). Our
observations demonstrate the importance of careful feature design and com-
plement similar findings of Sánchez et al., (2013).

1.3 Outline
The dissertation is arranged in two parts which are summarized below.

Part I consists of Chapters 3 and 4, and is primarily concerned with learning in
the regime of limited training data. We explore two learning frameworks
that have been developed to improve the predictive performance of learning
algorithms by introducing additional prior knowledge, such as the privileged
information and the task relatedness.

Part II consists of Chapters 5 and 6, and addresses the challenge of class ambiguity
in modern large scale datasets. We note that multiple labels often apply to
any given image, while the ground truth annotation contains only a single
label. In this part, we explore learning using such singleton labels when the
examples are multilabel in nature, and advocate for an adjusted performance
metric, the top-k error, which allows k prediction attempts instead of one.

Next, we briefly summarize the content of each chapter.
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Chapter 2 reviews related research and prior work with the goal of providing the
context for the topics considered in this thesis. In particular, we are interested
in establishing interdisciplinary links and highlighting the connections that
exists between different research directions.

Chapter 3 considers the framework of learning using privileged information, which
was introduced by Vapnik and Vashist, (2009), and explores its relation to
learning with instance weights. We investigate the effect of correcting the loss
on training data by adjusting the instance weights and observe performance
improvements when the weights are learned on a large validation sample.

Chapter 4 presents an algorithm for multitask representation learning, where we
examine if learning a representation that is shared across a large number of
classes improves the classification of scene images. Moreover, we investigate
scalability of multitask learning to high dimensional feature spaces and
propose an efficient optimization scheme based on SDCA.

Chapter 5 discusses the problem of class ambiguity that arises in large scale
datasets, and suggests that the top-k error is an appropriate target perfor-
mance measure. We propose top-k multiclass SVM as a suitable learning
algorithm for the top-k objective, and discuss an efficient algorithm for the
Euclidean and a biased projection onto the top-k simplex. The latter enables
top-k SVM optimization within the SDCA framework.

Chapter 6 extends the analysis of class ambiguity and top-k error optimization
along multiple directions. In particular, we introduce smooth top-k SVM and
top-k extensions of the softmax loss, analyze top-k calibration of multiclass
methods, consider the transition from multiclass to multilabel learning, and
propose smooth multilabel SVM. We discuss SDCA optimization of the
considered methods, contribute novel projection algorithms, and perform an
extensive empirical evaluation on multiclass and multilabel datasets.

Chapter 7 summarizes this dissertation, discusses the insights and conclusions,
highlights certain limitations, and provides an outlook for further research.

Appendix A covers the basics of convex analysis and the necessary mathematical
background. In particular, we recall the Lagrangian and Fenchel duality,
define the convex conjugate, recap its properties, and give examples of convex
functions that are used in the thesis.

Appendix B provides additional details are further results from Chapter 4.
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In this chapter, we place the contributions of this thesis in the broad context of
related research. We aim to give a brief summary of the prior work, discuss the
novelty of our contributions, and review how the field has advanced since then.
We start with a review of image classification pipelines in Section 2.1 with

the focus on image representation. Section 2.2 surveys the literature on learning
using privileged information, while Section 2.3 covers the optimization framework.
Section 2.4 is concerned with the research on multitask learning, and finally
Section 2.5 covers top-k and multilabel classification. Moreover, the last section
establishes a connection to label ranking and discusses theoretical analysis of
consistency and calibration of surrogate loss functions.

2.1 Image Classification
In this section, we consider three specific examples of the general image classifica-
tion problem: handwritten digit recognition, visual object recognition, and scene
categorization. The first problem, recognition of handwritten digits, is the most
basic among the three in the sense that the classifiers can be trained directly on
vectors of pixel values. It is the running example of Chapter 3, where we focus on
learning using privileged information.
Recognition of visual objects and scene categories in real world images is a far

more challenging task due to the challenges discussed in Chapter 1, such as the
variability in appearance, viewpoint, and scale, the presence of background clutter,
partial visibility and occlusion. Moreover, real world images are high dimensional
(on the order of 105 and more), which rules out classifier training directly on
pixel values due to the problems associated with the curse of dimensionality.
Instead, we review approaches that exploit prior knowledge to build successful
image representations: the bag of words (BOW) model, the Fisher vector (FV)
encoding, and the convolutional neural networks (ConvNets). We consider object
recognition in Chapters 5–6 and scene categorization in Chapters 4–6.

Handwritten Digit Recognition and the more general optical character recognition
(OCR) have been extensively studied in the literature, see the reviews e.g. by Liu
et al., (2003), Suen et al., (1992), and Trier et al., (1996). It was one of the early
successful applications of neural networks (LeCun et al., 1989, 1998, 1995), until
support vector machines (SVMs) became competitive on this task using the methods
for incorporating prior knowledge (Decoste and Schölkopf, 2002; Schölkopf et al.,
1996), such as engineering of invariant kernel functions and generation of artificially
transformed examples, i.e. data augmentation. The latter was also explored in the

17
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context of convolutional neural networks, where Simard et al., (2003) introduced
elastic distortions outperforming the previous SVM based approaches.
MNIST (LeCun et al., 1998) is the classical dataset for handwritten digit

recognition which will become relevant in Chapters 3 and 4. The state of the
art error rate on this dataset is well below 1% – Cireşan et al., (2012) and Wan
et al., (2013) report respectively 0.23% and 0.21% error rate – which makes it a
popular “toy” benchmark for novel learning methods and regularization techniques.
In particular, it is relatively common to deviate from the established evaluation
protocol on MNIST, which makes the performance numbers not directly comparable.
In Chapter 3, we follow Vapnik and Vashist, (2009), who consider the problem
of classifying the digits 5 and 8 from the MNIST dataset, which are additionally
downsized from 28× 28 to 10× 10 pixels to make the problem more challenging.
In Chapter 4, we follow the protocol of Kang et al., 2011, where a subset of the
MNIST and USPS (Hull, 1994) examples are selected and preprocessed with PCA
reducing the dimensionality to retain about 95% of the variance.

Bag of Words. The early work on appearance based object recognition, which
may be considered the precursor to the bag of words model, utilized global image
descriptors based on color and texture histograms (Niblack et al., 1993; Schiele
and Crowley, 1996; Swain and Ballard, 1991). While the initial approaches were
sensitive to the natural sources of appearance variability, the methods based on local
invariant features increased the robustness to partial occlusion (Schmid and Mohr,
1997), scale changes (Fergus et al., 2003), and affine deformations (Lazebnik et al.,
2004). Scale invariant feature transform (SIFT) of Lowe, (2004) and histograms
of oriented gradients (HOG) of Dalal and Triggs, (2005) are notable examples
of methods for local feature extraction that were particularly popular before the
resurgence of convolutional neural networks.
The orderless bag of words (BOW) model originates in the domain of text

document classification (Joachims, 1998; McCallum, Nigam, et al., 1998). Sivic
and Zisserman, (2003) introduced the visual analogy of words and applied the
obtained model to object matching in videos. Csurka et al., (2004) proposed the
related bag of keypoints method for generic image categorization, while Sivic et al.,
(2005) further popularized the approach demonstrating a successful application of
probabilistic topic modeling in the visual domain.
With the increased popularity of support vector machines in computer vision,

a related research direction explored the design of invariant kernels based on
local feature sets (Wallraven et al., 2003). In particular, Chapelle et al., (1999)
considered a specialized form of radial basis function (RBF) kernel tailored to
high dimensional histograms, while Barla et al., (2003) demonstrated the use
of histogram intersection as an SVM kernel function for image classification.
Subsequently, Grauman and Darrell, (2005) proposed the pyramid match kernel
that approximates the partial matching between two feature sets. That idea was
further developed by Lazebnik et al., (2006), who introduced the spatial pyramid
image representation and demonstrated its superiority in recognizing natural scenes.
The kernel view of low-level image features, such as SIFT and HOG, was

highlighted by Bo et al., (2010), who proposed match kernel descriptors based on
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gradient, color, and shape information. In (Bo et al., 2011), the approach was
developed further to hierarchical feature learning, where the kernel descriptors are
applied recursively. Their method is reminiscent of a three layer neural network
and is one of many examples where one can recognize a connection between deep
learning and approaches based on kernel methods (Cho and Saul, 2009; Perronnin
and Larlus, 2015; Sydorov et al., 2014).

Finally, a parallel line of research investigated scalability of kernel SVMs to large
image classification problems. Maji and Berg, (2009) introduced an explicit feature
map approximating the histogram intersection kernel, which enabled significant
reductions in training and test times compared to the corresponding kernel SVM.
Vedaldi and Zisserman, (2012) generalized computation of explicit feature maps to
a family of additive positive definite kernels, which includes the intersection, χ2,
and Hellinger’s kernels. We use their method in Chapter 4 along with the Fisher
vector representation discussed next.

Fisher Vector. The classical bag of words model computes a histogram of words
by averaging the occurrence counts represented as one-hot vectors. This aspect
of the BOW model, known as local feature encoding, seemed suboptimal and
generated interest in finding better coding techniques. Soft assignment replaces the
binary one-hot vector with a real-valued distribution over the closest words from
the dictionary and models a neighborhood around the local feature (Perronnin
et al., 2006; Van Gemert et al., 2010; Winn et al., 2005). While soft assignment
typically outperforms the classical hard assignment corresponding to the mode
of that distribution, the method does not make the most efficient use of the
dictionary. Chatfield et al., (2011) observed that recognition performance increased
with diminishing returns as they increased the size of the dictionary, but was
likely not saturated even at 25K visual words in dictionaries for soft assignment
methods. Sparse coding, in contrast, finds the closest subspace spanned by a linear
combination of a few words from the dictionary which represent the local feature
well (Boureau et al., 2010; Wang et al., 2010; Yang et al., 2009). Still, the use
of large over-complete dictionaries has been found to be important for improved
performance (Chatfield et al., 2011), leading to increased computational costs of
the encoding step. Boureau et al., (2010), Wang et al., (2010), and Yang et al.,
(2009) also demonstrated performance improvements using max pooling instead
of average pooling. Finally, Mairal et al., (2012) studied supervised dictionary
learning and considered loss functions alternative to the `2 distance criterion.
Sánchez et al., (2013) demonstrated strong performance improvement over the

previous methods using a feature encoding scheme based on the Fisher kernel.
Combining the benefits of generative and discriminative approaches, the Fisher
kernel (Jaakkola, Haussler, et al., 1999) characterizes an input vector by its
deviation from the generative model. Specifically, it computes the gradient of the
empirical log-likelihood with respect to the parameters of a generative model, such
as a Gaussian mixture model. The approach is known as the Fisher vector (FV)
encoding and was popularized in computer vision by Perronnin and Dance, (2007)
and Perronnin et al., (2010). The FV encoding was instrumental to achieving
state of the art performance in visual object and scene classification (Chatfield
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et al., 2011; Juneja et al., 2013), yet one of its major shortcomings is that the
obtained descriptors are dense and high dimensional. To address the issue of
high computational costs, Sánchez et al., (2013) compressed the FVs significantly
reducing their dimensionality using the product quantization technique (Gray and
Neuhoff, 1998; Jégou et al., 2010). While that reduces the memory footprint and
the computational costs for training linear SVMs (solving the primal problem),
it also has a negative effect on the recognition performance. Instead, we use
dual optimization in Chapter 4 and work with Gram matrices that are computed
directly from high dimensional Fisher vectors (up to 260K dimensions), which is
well justified for small and moderately sized training samples.

Convolutional Neural Networks (ConvNets) have led to a series of breakthroughs
in image classification starting with a leap in recognition accuracy achieved by
Krizhevsky et al., (2012) on a large scale ImageNet dataset (Russakovsky et al.,
2015). Originally introduced by LeCun et al., (1989) for the problem of handwritten
character recognition, ConvNets have been successfully applied to various vision
tasks, including categorization of textureless toys (LeCun et al., 2004), classification
of house number digits (Sermanet et al., 2012), recognition of Chinese characters
and traffic signs (Cireşan et al., 2012), and object recognition (Jarrett et al., 2009).

Improving upon the original architecture of Krizhevsky et al., (2012), Sermanet
et al., (2014) and Zeiler and Fergus, (2014) utilized smaller receptive fields and
used denser strides in convolutional layers. However, Simonyan and Zisserman,
(2015) demonstrated using an architecture with very small (3× 3) convolutional
filters that depth may be an even more important factor in designing ConvNets –
their VGGNet architectures show consistent increase in performance as the network
becomes deeper, from 11 to 16 to 19 layers. A similar result advocating the use of
deep architectures is due to Szegedy et al., (2015) whose GoogLeNet (Inception-v1)
has 22 layers. More recently, He et al., (2016) proposed a residual network (ResNet)
architecture with 152 (and even with over 1000) layers, which utilizes residual
learning with shortcut connections.

Image representations learned by ConvNets on large datasets have been observed
to transfer well (Oquab et al., 2014; Razavian et al., 2014). In our multiclass and
multilabel image classification experiments, we employ a relatively simple image
recognition pipeline following Simonyan and Zisserman, (2015), where feature
vectors are extracted from a convolutional network, such as VGGNet or ResNet,
and are then used to train a linear classifier with the different loss functions. The
ConvNets that we use for object classification are pre-trained on the ImageNet
dataset (Russakovsky et al., 2015), where there is a large number of object categories
(1000), but relatively little variation in scale and location of the dominant object.
For scene recognition, we also use a VGGNet-like architecture of Wang et al.,
(2015a) that was trained on the Places 205 dataset (Zhou et al., 2014).

Deep learning architectures in general and convolutional networks in particular
are introduced in (Bengio, 2009; Goodfellow et al., 2016), while Schmidhuber,
(2015) provides a historical survey of the relevant work.
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2.2 Learning Using Privileged Information
In this section, we set the stage for Chapter 3 by reviewing research on learning
using privileged information (LUPI). As we demonstrate a connection to learning
with instance weights, we also discuss the literature on weighted learning.

LUPI Framework. Since the introduction of the new learning paradigm and the
corresponding SVM+ algorithm originally by Vapnik, (2006) and later by Vapnik
and Vashist, (2009) and Vapnik et al., (2009), there is a steady interest in the
LUPI framework. Liang and Cherkassky, (2008) and Liang et al., (2009) studied
the relation between SVM+ and multitask learning. Pechyony and Vapnik, (2010)
considered a generalized version of the SVM+ algorithm and analyzed the corre-
sponding risk bound. Pechyony and Vapnik, (2011) adapted the sequential minimal
optimization (SMO) algorithm of Platt, (1999) for SVM+ training. Niu et al.,
(2012) used `1 regularizer instead of `2 in SVM+, Liu et al., (2013) developed a
multiclass SVM algorithm exploiting privileged information, while Ji et al., (2012)
adopted privileged information in training multitask multiclass SVMs. Fouad et al.,
(2012) applied the LUPI framework to metric learning, Chen et al., (2012) extended
it to boosting algorithms, and Yang and Patras, (2013) trained regression forests
for facial feature detection. Feyereisl and Aickelin, (2012) used the privileged
information for data clustering and Levy and Wolf, (2013) proposed an SVM	
method to compute similarity scores in video face recognition. Note, however,
that the latter method is not related to the SVM− algorithm we have in mind in
§ 3.4.5. In particular, SVM	 reduces to SVM with a pre-processing step, similar
to (Schölkopf et al., 1998), while in our case the optimization problem as well as
the motivation are entirely different.
Sharmanska et al., (2013) applied the LUPI paradigm in learning to rank and

proposed a Rank Transfer maximum margin method which utilizes privileged
information to adjust the margins when ranking pairs of training examples. This
line of work was developed further in (Sharmanska et al., 2014), where a Margin
Transfer method is applied to multiclass object classification with three types of
privileged information: attributes, bounding boxes, and image tags. Hernández-
Lobato et al., (2014) proposed a Bayesian method based on the framework of
Gaussian process classifiers where the privileged data enters the model of the
noise term and influences the confidence of the classifier on every training example.
Li et al., (2014b) exploited privileged information in multiple instance learning
extending the method of Bunescu and Mooney, (2007), and Chen and Kamarainen,
(2014) developed a learning to count method with back-propagated information.

Developing the LUPI framework further, Vapnik and Izmailov, (2015) considered
a general concept of intelligent teacher who transfers knowledge to a student.
While SVM+ is a particular instantiation of that approach, the key idea models an
asymmetric interaction between a teacher, who has access to privileged information,
and a student, who is learning a decision rule. Subsequently, Lopez-Paz et al.,
(2015) pointed out a similarity with the distillation approach to knowledge transfer
of Hinton et al., (2015), and proposed a unified view of generalized distillation.
Concurrently, Xu et al., (2015) proposed a novel formulation for metric learning
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with privileged information, Ren et al., (2015) considered multitask learning, while
Wang and Ji, (2015) introduced the loss inequality and relationship preserving
regularization techniques based on the use of privileged information.

Finally, Li et al., (2016) developed a fast optimization scheme for SVM+ based on
dual coordinate ascent, Motiian et al., (2016) adapted the information bottleneck
method of Slonim et al., (2006) to utilize privileged information, and You et al.,
(2017) introduced a privileged multilabel learning method.

Weighted Learning. As we demonstrate a relationship between SVM+ and SVM
with instance weights in Chapter 3, we give here a brief overview of the research
directions where learning with instance weights is a natural technique.

Cost-sensitive learning is one of the most prominent examples of weighted learning
and is concerned with the situation where misclassification costs are nonuniform.
While stratification, i.e. changing the frequency of classes in the training data
in proportion to their cost, is one of the early attempts to obtain cost-sensitive
classifiers (Breiman et al., 1984), the MetaCost method of Domingos, (1999) used
nonuniform instance weights directly in the learning objective. Domingos, (1998)
provides a brief overview of the early cost-sensitive learning approaches, while Elkan,
(2001) and Sun et al., (2007) give a more recent outlook. In particular, Margineantu,
(2002) developed a procedure for confidence based probability estimation, while
Zadrozny et al., (2003) proposed a rejection sampling technique to obtain cost-
sensitive classifiers. A closely related setting is that of learning with imbalanced
data where certain classes are underrepresented. Chawla et al., (2004) and He and
Garcia, (2009) provide a comprehensive survey of the literature complemented by
López et al., (2013) and Sun et al., (2009).

Sample bias correction (Cortes et al., 2010; Dudík et al., 2005; Huang et al., 2007)
and domain adaptation (Bickel et al., 2007; Shimodaira, 2000; Sugiyama et al.,
2008) are further examples of challenges that can be addressed with importance
weighting. Perhaps the most related in terms of the learning algorithm (SVM) and
the interpretation of instance weights are the works on fuzzy SVM by Lin and
Wang, (2002), where each data point has a fuzzy class membership represented by
a weight between 0 and 1, weighted margin SVM of Wu and Srihari, (2004), where
again each label has a confidence score between 0 and 1, and weighted SVM with
an outlier detection pre-processing step of Yang et al., (2005), where a kernel-based
clustering algorithm is used to generate instance weights.

2.3 Multitask, Top-k, and Multilabel Optimization
To facilitate experimental evaluation, we implement the necessary optimization
routines for the learning methods proposed throughout Chapters 4–6. In this
section, we provide a brief overview of the related literature on stochastic dual
optimization, evaluation of projections and proximal maps, and discuss optimization
of the logistic loss, which requires special care compared to the hinge loss.

SDCA. We mainly work with the stochastic dual coordinate ascent (SDCA) frame-
work of Shalev-Shwartz and Zhang, (2013b) due to its ease of implementation,
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strong convergence guarantees, and the possibility to compute certificates of opti-
mality with the duality gap. While Shalev-Shwartz and Zhang, (2013b) describe
the general SDCA algorithm that we implement, their analysis is limited to scalar
loss functions (both Lipschitz and smooth) with `2 regularization, which is only
suitable for binary problems. A more recent work (Shalev-Shwartz and Zhang,
2014) extends the analysis to vector valued smooth and Lipschitz functions and
general strongly convex regularizers, which is better suited to our multiclass and
multilabel loss functions. A detailed comparison of recent coordinate descent
algorithms is given by Fercoq and Richtárik, (2015) and Shalev-Shwartz and Zhang,
(2014). Interesting extensions of the SDCA scheme include, for example, mini-batch
optimization (Takác et al., 2013), importance sampling (Qu et al., 2015; Zhao and
Zhang, 2015), and distributed optimization (Richtárik and Takác, 2016).

Euclidean Projection. Following Shalev-Shwartz and Zhang, (2014), the main step
in the SDCA algorithm for vector valued loss functions performs an update of the
dual variables by computing a projection or, more generally, the proximal operator
of an appropriate function (Parikh and Boyd, 2014). The proximal operators that
we consider can be equivalently expressed as instances of a continuous nonlinear
resource allocation problem which has a long research history, see the surveys by
Patriksson, (2008) and Patriksson and Strömberg, (2015). Most related to our
setting is the Euclidean projection onto the unit simplex or the `1-ball in Rn, which
can be computed via breakpoint searching (Kiwiel, 2008a) and variable fixing
(Kiwiel, 2008b; Michelot, 1986). The former can be done in O(n log n) time with a
simple implementation based on sorting (Held et al., 1974), or in O(n) time with an
efficient median finding algorithm (Brucker, 1984; Kiwiel, 2007). In Chapters 5–6,
we choose the variable fixing scheme which does not require sorting and is easy to
implement. Although its complexity is O(n2) on pathological inputs with elements
growing exponentially (Condat, 2014), the typical observed complexity in practice
is linear and is competitive with breakpoint searching algorithms (Condat, 2014;
Kiwiel, 2008b).
Projection algorithms have been also studied in the context of learning sparse

models using projected gradient methods (Beck and Teboulle, 2009; Nesterov, 2014;
Schmidt et al., 2011), since sparsity inducing norms often lead to problems with
simple constraints, which are well addressed by optimization schemes involving
projection subroutines (Bertsekas, 1982). In particular, efficient learning algorithms
have been developed for the following norms: `2 by Shalev-Shwartz and Singer,
(2006), `2,1 by Liu et al., (2009), `1,∞ by Quattoni et al., (2009), and `1,q by Sra,
(2011). Finally, Yu et al., (2012) considered regularization with an intersection of
norm balls.

Logistic Loss and the Lambert W Function. While there are efficient projection
algorithms for optimizing the SVM hinge loss and its variations, the situation is a bit
more complicated for logistic regression, both binary and multiclass. There exists
no analytical solution for an update with the logistic loss, and Shalev-Shwartz and
Zhang, (2014) suggest a formula in the binary case which computes an approximate
update in closed form. Multiclass logistic (softmax) loss is optimized in the
SPAMS toolbox (Mairal et al., 2010) using the fast iterative shrinkage-thresholding
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algorithm (FISTA) of Beck and Teboulle, (2009). Alternative optimization methods
are considered by Yu et al., (2011) who also propose a two-level coordinate descent
method in the multiclass case. Different from these works, we propose to follow
closely the same variable fixing scheme that is used for SVM training and use the
Lambert W function (Corless et al., 1996) in the resulting entropic proximal map.
Our runtime compares favorably with SPAMS, as we show in § 6.5.2.

The key ingredient in our approach is fast evaluation of the Lambert W function
of the exponent, which is closely related to evaluation of the principal W0(z)
branch of the multivalued W function. Early algorithms have been proposed by
Barry et al., (1995) and Fitsch et al., (1973). Analytical approximations of the
function along with a literature survey are given by Barry et al., (2000), while
Chapeau-Blondeau and Monir, (2002) propose a rational function approximation
scheme. Our implementation is based on the more recent works by Fukushima,
(2013) and Veberič, (2012).

2.4 Multitask Learning
This section provides the context for Chapter 4 where we propose a multitask
feature learning method for scene classification. We review some of the classical
and most related papers on this topic, discuss the novelty of our approach, and
explore more recent research directions.

MTL Foundations. In multitask learning (MTL), relevant information is shared
among the related tasks during training with the goal of improving the prediction
performance of one or each of those tasks compared to training them independently
(Baxter et al., 2000; Thrun and Pratt, 2012). Caruana, (1997) demonstrated
the concept of multitask learning by training a neural network using supervision
from several related tasks which shared a common representation. The idea is
particularly befitting deep neural networks where weight sharing occurs naturally
in hidden layers. One of the early examples is a deep convolutional network of
Collobert and Weston, (2008) for multitask feature learning in the domain of
natural language processing.
On the theoretical side, Ben-David and Schuller, (2003) analyzed the notion of

task relatedness and derived generalization error bounds for multitask learning,
Evgeniou et al., (2005) extended the MTL framework to kernel methods, Ando and
Zhang, (2005) developed a method for structured and semi-supervised multitask
learning, Maurer, (2006) analyzed the Rademacher complexity of linear multitask
learning, Pentina and Lampert, (2014) derived a PAC-Bayesian generalization
bound for the expected loss on a future learning task in the lifelong learning
scenario. The problem of learning the underlying structure between the tasks was
investigated by Amit et al., (2007) and Kang et al., (2011). Moreover, convex
formulations for multitask feature learning have been proposed by Amit et al.,
(2007), Argyriou et al., (2008), Chen et al., (2013), Jawanpuria and Nath, (2012),
and Zhong and Kwok, (2012). Unrelated (orthogonal) tasks have been exploited
by Romera-Paredes et al., (2012).
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MTL-SDCA. Most related to our method in Chapter 4 is the work of Maurer et al.,
(2013) which investigates the application of sparse coding and supervised dictionary
learning to multitask learning. In the optimization schemes that alternate between
feature encoding and dictionary learning, the latter step is usually computationally
more demanding. For regression problems, where the loss function is the squared
Euclidean norm, there are efficient algorithms for learning the codebook, e.g.
the K-SVD (Rubinstein et al., 2010, 2008). For classification problems with the
hinge loss and the logistic regression loss, a common approach is a variation of
(stochastic) gradient descent (Jenatton et al., 2011b; Mairal et al., 2012; Roux et al.,
2012), which is not scalable to extremely high feature dimensions. We address
this issue in Chapter 4, where we consider an MTL formulation and propose an
efficient stochastic optimization algorithm optimizing the dual problem. Following
a common approach (Ando and Zhang, 2005), we interpret OVA classifiers in a
multiclass problem as individual related tasks and demonstrate superiority of our
MTL method in scene classification compared to independent single task learning.

Deep Learning. The general concept of multitask learning is being successfully
applied in various deep learning architectures. Zhang et al., (2014) developed
a deep MTL method for facial landmark detection where auxiliary tasks helped
improve the performance of the main task, Wang et al., (2015b) designed a deep
network for surface normal estimation utilizing the auxiliary tasks of predicting a
room layout and edge labels (convex, concave, occluding, no edge), Misra et al.,
(2016) investigated how to control the degree of sharing between the tasks in a
deep ConvNet using cross-stich units, Dai et al., (2016) developed a network for
instance-aware semantic segmentation by decomposing the main task into the
subtasks of bounding box estimation, pixel-level mask segmentation, and mask
categorization. Most recently, there are interesting attempts to learn a “universal”
representation that would accommodate a larger selection of seemingly less related
tasks spanning multiple datasets (Bilen and Vedaldi, 2017; Kokkinos, 2016).
Finally, we note that multitask learning is closely related to numerous other

learning frameworks including, in particular, representation learning (Argyriou
et al., 2007), transfer learning (Pan and Yang, 2010), lifelong learning (Thrun and
Mitchell, 1995), and curriculum learning (Pentina et al., 2015).

2.5 Top-k and Multilabel Classification
We consider top-k and multilabel classification in Chapters 5–6, where the classifier
is trained to produce a set of labels rather than a single label. Depending on
the number of labels in the available annotation, we distinguish between top-k
classification (1 label) and multilabel classification (many labels). Here, we draw
connections to the general problem of learning to rank, and in particular to label
ranking. We start with a brief review of ranking in the context of information
search and retrieval, then we focus on label ranking and top-k classification, and
finally conclude with a discussion of multilabel classification. Towards the end of
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the section, we also review related research on the theoretical analysis of surrogate
losses, which provides the necessary context for our analysis of top-k calibration.

Learning to Rank. Ranking is a supervised learning problem that arises whenever
the structure in the output space admits a (partial) order (Tsochantaridis et al.,
2005). The classical example is ranking in information retrieval (IR), see e.g. (Liu,
2009) for a recent review. There, a feature vector Φ(q, d) is computed for every
query q and every document d, and the task is to learn a model that ranks the
relevant documents for the given query before the irrelevant ones. Three main
approaches are recognized within that framework: the pointwise, the pairwise,
and the listwise approach. Pointwise methods cast the problem of predicting
document relevance as a regression (Cossock and Zhang, 2006) or a classification
(Li et al., 2007) problem. Instead, the pairwise approach is focused on predicting
the relative order between the pairs of documents (Burges et al., 2005; Freund
et al., 2003; Joachims, 2002). Finally, the listwise methods attempt to optimize
a given performance measure directly on the full list of documents (Taylor et al.,
2008; Xu and Li, 2007; Yue et al., 2007), or propose a loss function on the predicted
and the ground truth lists (Cao et al., 2007; Xia et al., 2008). More recent research
is focused on the top of the ranked list (Agarwal, 2011; Boyd et al., 2012; Li et al.,
2014a; Rakotomamonjy, 2012; Rudin, 2009). However, they are mainly interested
in search and retrieval, where the number of relevant documents by far exceeds
what users are willing to consider. That setting suggests a different trade-off for
recall and precision compared to our setting with only a few relevant labels.
Ranking objectives have been also considered for training convolutional archi-

tectures (Gong et al., 2013), most notably with a loss on triplets (Wang et al.,
2014a; Zhao et al., 2015), that considers both positive and negative examples, and
in learning a hash function for multilabel image retrieval (Zhao et al., 2015).

Label Ranking. Different from ranking in IR, our main interest in this thesis is
label ranking which generalizes the basic binary classification problem to multiclass,
multilabel, and even hierarchical classification, see (Vembu and Gärtner, 2010) for
a survey. A link between the two settings is established if we consider queries to
be examples (e.g. images) and documents to be class labels. The main contrast,
however, is in the employed loss functions and performance evaluation at test
time (§ 6.2, page 110). To contrast the two, we note that (i) the actual ranking
of labels is often used only to compute a partition, which is also reflected in the
corresponding performance measures (see § 6.2.1); (ii) the number of relevant
documents per query is usually much larger than the number of class labels per
example, which suggests different trade-offs (e.g. precision vs. recall); (iii) feature
vectors in classification are typically fixed and do not depend on the class label.

Most related to our work presented in Chapters 5–6 is a general family of convex
loss functions for ranking and classification introduced by Usunier et al., (2009).
One of the loss functions that we consider (top-k SVMβ) is a member of that family.
Other examples are Wsabie of Weston et al., (2011) and Wsabie++ of Gupta
et al., (2014), which learn a joint embedding model optimizing an approximation
of a loss from (Usunier et al., 2009).
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Top-k classification in our setting is directly related to label ranking as the task
is to place the ground truth label in the set of top k labels as measured by their
prediction scores. An alternative approach is suggested by McAuley et al., (2013)
who use structured learning to aggregate the outputs of pre-trained OVA binary
classifiers and directly predict a set of k labels, where the labels missing from the
annotation are modeled with latent variables. That line of work is pursued further
by Xu et al., (2016c). The task of predicting a set of items is also considered
by Ross et al., (2013), who frame it as a problem of maximizing a submodular
reward function. A probabilistic model for ranking and top-k classification is
proposed by Swersky et al., (2012), while Guillaumin et al., (2009) and Mensink
et al., (2013) use metric learning to train a nearest neighbor model. An interesting
setting related to top-k classification is learning with positive and unlabeled data
considered by Kanehira and Harada, (2016) and Plessis et al., (2014), where the
absence of a label does not imply it is a negative label, and also learning with label
noise (Frénay and Verleysen, 2014; Liu and Tao, 2016).

Multilabel Classification. Label ranking is closely related to multilabel classifi-
cation, which we consider in Chapter 6, and to tag ranking (Wang et al., 2012).
Madjarov et al., (2012) and Zhang and Zhou, (2014) provide a comprehensive
review of the literature on multilabel learning. Recent works extend the traditional
approaches along multiple directions. In particular, Zhang and Wu, (2015) propose
multilabel learning with class specific features, Xu et al., (2016b) explore learning
with a large (104) number of classes, Luo et al., (2013) and Zhu et al., (2016)
consider multi-view multilabel learning, while Aggarwal et al., (2017) and Pham
et al., (2017) study multi-instance multilabel learning. Finally, Xu et al., (2016a)
explore truncated trace norm regularization for low rank predictors.

There is also substantial amount of work on multilabel classification using deep
learning architectures. Gong et al., (2013) use approximate top-k ranking objec-
tives in training convolutional networks for multilabel classification, Zhao et al.,
(2016) exploit object proposal generation, which is supervised with a localization
loss, to produce rich image representations tailored to classifying images contain-
ing multiple objects, Wang et al., (2016a) augment a convolutional architecture
with a recurrent neural network (RNN) which models labels’ dependency and
co-occurrence. However, as argued by Vinyals et al., (2015), RNNs might not be
well suited to problems where there is no natural order either in the input or in the
output. Rezatofighi et al., (2016) address that issue by deriving a loss for learning
the parameters of the negative binomial distribution which models the label set
cardinality and demonstrate promising results in multilabel classification.

Consistency and Calibration Chapter 6 provides theoretical analysis of surrogate
loss functions and OVA schemes investigating their calibration with respect to
the top-k error. In this section, we discuss the related research on the analysis of
consistency and calibration.
Loss functions are central in machine learning as they provide the means to

evaluate the prediction quality and guide the learning algorithm during training.
In this thesis, we focus on classification, which is a discrete prediction problem
where minimizing the expected 0-1 error is known to be computationally hard
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(Ben-David et al., 2003). Instead, it is common to minimize a surrogate loss that
leads to efficient learning algorithms. An important question, however, is whether
the minimizers of the expected surrogate loss also minimize the expected error.
Loss functions which have that property are called calibrated or consistent with
respect to the given discrete error measure.
Consistency in binary classification is well understood (Bartlett et al., 2006;

Steinwart, 2005, 2007; Zhang, 2004), and significant progress has been made
in the analysis of methods for multiclass classification (Pires and Szepesvári,
2016; Ramaswamy and Agarwal, 2012; Tewari and Bartlett, 2007; Zhang, 2004),
multilabel classification (Gao and Zhou, 2011; Koyejo et al., 2015), and learning to
rank (Buffoni et al., 2011; Calauzenes et al., 2012; Cossock and Zhang, 2008; Duchi
et al., 2010; Ramaswamy et al., 2013). In Chapter 6, we investigate calibration
of a number of surrogate losses with respect to the top-k error, which generalizes
previously established results for consistency of multiclass methods.

Reid and Williamson, (2010b), Vernet et al., (2011), and Williamson et al., (2016)
relate classification calibration to the notion of proper losses used in probability
estimation. In particular, classification calibration is shown to be a weaker analog
of properness suitable for classification problems. Williamson, (2014) discuss the
geometry of losses and characterize proper losses in terms of convexity of a so-called
superprediction set S. Interestingly, they also propose a procedure to construct
novel losses starting with the definition of a new set S and then deriving the loss.
While their approach is technically different, it is close in spirit to the technique we
discuss in Chapter 6, where novel losses are constructed starting from a modified
effective domain of the conjugate loss.
Consistency of algorithms optimizing complex performance measures, such as

the F -measure, has been studied by Agarwal, (2013), Dembczynski et al., (2011),
Narasimhan et al., (2015, 2014), and Ye et al., (2012). Theoretical analysis beyond
consistency involves derivation of generalization error bounds that measure model
performance on unseen data. Recent advances for multiclass, multilabel, and
structured prediction are reported in (Cortes et al., 2016; Kuznetsov et al., 2014;
Lei et al., 2015; Van Erven et al., 2015; Xu et al., 2016a).



Part I

Learning with Limited Training Data

When the number of training examples is small, learning becomes
particularly challenging. In this part, we explore two techniques that
can be used to improve the predictive performance of learning algorithms
in the small sample regime.

• In Chapter 3, we consider the framework of learning using privi-
leged information, which was introduced by Vapnik and Vashist,
(2009), and explore its relation to learning with instance weights.
Furthermore, we investigate the effect of correcting the loss on
training data by adjusting the instance weights and observe sub-
stantial performance improvements when the weights are learned
on a large validation sample.

• In Chapter 4, we look at multitask learning and see if learning
a representation that is shared across a large number of classes
improves classification of scene images. Moreover, we investigate
if multitask learning is scalable to high dimensional feature spaces
and propose an efficient optimization scheme based on stochastic
dual coordinate ascent (SDCA).





3Learning Using Privileged Information:
SVM+ and Weighted SVM

When the amount of training data is limited, learning algorithms have to rely on
prior knowledge more than would be required otherwise. An additional informa-
tion that is available at training time could be used to improve the predictive
performance. The idea of utilizing such privileged information during training
was explored by Vapnik and Vashist, (2009). They introduced a novel learning
using privileged information (LUPI) framework and proposed an SVM+ learning
algorithm that exploits the privileged features during training.
In this chapter, we relate the privileged information to importance weighting

and show that the prior knowledge expressible with privileged features can also
be encoded by weights associated with every training example. We show that
weighted SVM can always replicate an SVM+ solution, while the converse is not
true and we construct a counterexample highlighting the limitations of SVM+.
Finally, we touch on the problem of choosing weights for weighted SVMs when
privileged features are not available.
The material in this chapter is based on the following publication:

• M. Lapin, M. Hein, and B. Schiele (2014a). “Learning Using Privileged
Information: SVM+ and Weighted SVM.” in: Neural Networks 53.

3.1 Introduction
Classification is a well-studied problem in machine learning, however, learning still
remains a challenging task when the amount of training data is limited. Hence,
information available in addition to the training sample – the prior knowledge – is
the crucial factor in achieving further performance improvement.

Prior knowledge comes in different forms and its incorporation into the learning
problem depends on a particular setting as well as the algorithm. This chapter
focuses on introducing prior knowledge into a support vector machine (SVM)
for binary classification. Lauer and Bloch, (2008) provide a review of different
ways to incorporate prior knowledge into SVMs and give a categorization of the
reviewed methods based on the type of prior knowledge they assume; see also
(Schölkopf and Smola, 2002). We will mainly consider the scenario where the
additional information is about the training data rather than about the target
function. A loosely related setting is the semi-supervised learning framework
(Chapelle et al., 2006), where unlabeled data carries certain information about the
marginal distribution in the input space.

31
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Vapnik and Vashist, (2009) introduced the learning using privileged information
(LUPI) paradigm which aims at improving predictive performance of learning
algorithms and reducing the amount of required training data. The additional
information in this framework comes in the form of privileged features, which
are available at training time, but not at test time. These features are used to
parametrize the upper bound on the loss function and, essentially, are used to
estimate the loss of an optimal classifier on the given training example. Higher
loss may be seen as an indication that a given point is likely to be an outlier, and,
hence, should be treated differently than a non-outlier. This simple idea has been
extensively explored in the literature as we discussed in Chapter 2. The additional
information about which training examples are likely to be the outliers can be
encoded via instance weights. Therefore, one can already anticipate a close relation
between the LUPI framework and importance weighting which is discussed next.
In the weighted learning scenario, each training example comes with a non-

negative weight which is used in the loss function to balance the cost of errors. A
typical example where instance weights appear naturally is cost-sensitive learning
(Elkan, 2001). If the representation of classes in the training sample is unbalanced
or different misclassification errors incur different penalties, one can encode that
knowledge in the form of instance weights. Assigning high weight to a data point
suggests that the learning algorithm should classify that point correctly, possibly
at the cost of misclassifying “less important” points. In this chapter, however,
we do not make the cost-sensitive learning assumption, i.e., we do not assume
that different errors incur different costs on the test set. Instead, we decouple
importance weighting on the training and on the test sets, and we only focus on
the training data. This allows us, in particular, to also assign a high weight to an
outlier if that ultimately leads to a better model.
As mentioned above, there are different forms of prior knowledge that can be

encoded differently. In this chapter, we show that instance weights can express the
same type of prior knowledge that is encoded via privileged features. In particular,
this allows one to interpret the effect of privileged features in terms of the incurred
importance weights. Remarkably, the resulting weights do emphasize outliers,
which also happen to be the support vectors in SVMs.

Our focus in this work is on the study of the SVM+ algorithm, which is an
extension of the support vector machine to the LUPI framework (Vapnik and
Vashist, 2009). Using basic tools of convex analysis, we investigate uniqueness of
the SVM+ solution and its relation to solutions of the weighted SVM (WSVM).
It turns out there is a simple connection between an SVM+ solution and WSVM
instance weights, moreover, that relation can be used to better understand the
SVM+ algorithm and to study its limitations. Having realized that instance weights
in WSVMs can serve the same purpose as privileged features in SVM+, we turn
to the problem of choosing weights when privileged features are not available.

Contributions

Below is a summary of contributions of this chapter.
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• We show that any non-trivial SVM+ solution is unique (in the primal), which
is a stronger result than the one available for SVM and WSVM, where the
offset b may not be unique and requires an ad hoc selection procedure.

• By reformulating the SVM+ dual optimization problem, we reveal its close
connection to the WSVM algorithm. In particular, we show that any SVM+
dual solution can be used to construct weights for the WSVM which, in turn,
produce exactly the same primal solution up to the non-uniqueness of b. This
implies that WSVM with the appropriate weights can effectively mimic the
SVM+ algorithm.

• We also study whether it is possible to go in the opposite direction which
would imply that the two algorithms are equivalent. We give the necessary
and sufficient condition for such an equivalence to hold and reveal that the
SVM+ solutions are a strict subset of the WSVM solutions. We construct a
simple counterexample where a WSVM solution cannot be found by SVM+
regardless of the privileged features and the values of the hyperparameters.
This implies that the WSVM algorithm is strictly more general than SVM+
and that not every WSVM solution can be constructed by SVM+.

• Finally, we turn to the problem of choosing weights in the absence of privileged
features. We show that the weights can be learned directly from data by
minimizing an estimate of risk similar to standard procedures of hyper-
parameter tuning and model selection via cross-validation.
If a large validation set is available, we show that WSVM with the learned
weights outperforms both the SVM and the SVM+ algorithms. This high-
lights the potential of weighted learning and should motivate further work
on the choice of weights when the amount of validation data is limited.

The rest of the chapter is organized as follows.

• In § 3.2, we introduce the SVM+ and the weighted SVM (WSVM) algorithms
as well as discuss our notation.

• In § 3.3, we study uniqueness of SVM+ and WSVM solutions. Surprisingly,
we discover that SVM+ solutions are unique unlike the SVM or WSVM
solutions. We also introduce the notion of equivalent weights that all lead to
the same WSVM solution.

• In § 3.4, we present our main findings: (i) Theorem 3.3 shows that any
SVM+ solution is also a WSVM solution with appropriately chosen weights;
(ii) Theorem 3.4 gives the necessary and sufficient condition for equivalence
between the SVM+ and WSVM problems; (iii) § 3.4.4 presents a counterex-
ample where a WSVM solution cannot be found by SVM+, no matter which
privileged features are used; (iv) § 3.4.5 discusses whether it is possible to
complement SVM+ with an SVM– algorithm.
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• In § 3.5, we consider the problem of choosing the instance weights for WSVM.
In particular, a weight learning method is proposed in § 3.5.3, which exploits
a validation sample to select the instance weights automatically.

• In § 3.6, we present our experimental results on synthetic data as well as on
a number of publicly available data sets from the UCI repository.

3.2 SVM+ and Weighted SVM
In this section, we introduce our notation and describe the SVM+ and WSVM
learning algorithms. Our technical contributions mainly rely on basic results from
convex analysis which we recall in § A. Specifically, we employ Lagrangian duality
and the Karush-Kuhn-Tucker (KKT) conditions to study the SVM+ algorithm.
The KKT conditions for SVM+ and WSVM problems can be found in § A.1.3.

3.2.1 Binary Classification
We consider binary classification with a feature space X and the label set Y =
{−1, 1}. Let S = {(xi, yi)}ni=1 be a training sample drawn i.i.d. from an unknown
distribution P on X ×Y , and L be a convex margin-based loss function L : R→ R+,
e.g. the hinge loss L(yf(x)) = max{0, 1− yf(x)}. The task is to learn a prediction
function f : X → R that classifies a given example x via sign f(x) and minimizes
the expected loss, also called risk, R(f) , EL(Y f(X)).
We use X̃ to denote the space of privileged information and let {x̃i}ni=1 be

the privileged features supplied along with the training sample S. The privileged
features are used in SVM+ to “correct” the loss on the given training examples,
therefore, the space X̃ is also called the correcting space. The ? symbol is reserved
to indicate optimal points associated with an optimization problem.

The derivations are generally easier with Euclidean spaces. However, we would
like to highlight that our results generalize beyond linear classification. To that
end, we recall that in the nonlinear setting the input data is mapped into a feature
space endowed with an inner product. In our example, the decision space X is
mapped into a feature space Z via a feature map Φ:

X 3 x 7→ z , Φ(x) ∈ Z,

and the correcting space X̃ is mapped into Z̃ via Φ̃:

X̃ 3 x̃ 7→ z̃ , Φ̃(x̃) ∈ Z̃.

It is known (Schölkopf et al., 2001) that every inner product corresponds to a
positive definite kernel function1 k as follows:

〈zi, zj〉Z = 〈Φ(xi),Φ(xj)〉Z = k(xi, xj).

1 A function k : X × X → R which for all n ∈ N, x1, . . . , xn ∈ X gives rise to a positive definite
kernel matrix K is called a positive definite kernel.
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Note that the same kernel trick applies to the privileged space X̃ as well, which
allows us to formulate algorithms with general kernels in mind. Since the corre-
sponding space should be clear from the context, we omit the subscripts when
dealing with inner products and the induced norms.
We let y = (y1, . . . , yn)> and Y = diag(y). The kernel matrices K and K̃ are

defined entrywise via Kij = k(xi, xj) and K̃ij = k̃(x̃i, x̃j) for all i, j = 1, . . . , n.
The null space and the column space of a matrix A are denoted N (A) and R(A)
correspondingly. The orthogonal complement of a is a⊥, and 0 (respectively 1) is
the vector of all zeros (ones).

3.2.2 Support Vector Machine with Privileged Information (SVM+)
In the framework of learning using privileged information (LUPI), the decision
space X is augmented with a correcting space X̃ of privileged features x̃ that
are available at training time only and are essentially used to estimate the loss
L(yif ?(xi)) of an optimal classifier f ? , arg minf∈H L(f) on the given training
sample. The SVM+ algorithm (Pechyony and Vapnik, 2011) is a generalization
of the support vector machine that implements the LUPI paradigm. The slack
variables ξi are parametrized as a function of privileged features:

ξi(w̃, b̃) , 〈w̃, z̃i〉+ b̃,

where (w̃, b̃) are the additional parameters to be learned. The following optimization
problem defines the SVM+ algorithm.

min
w,b,w̃,b̃

1
2(‖w‖2 + γ ‖w̃‖2) + C

n∑
i=1

ξi(w̃, b̃)

s.t. yi(〈w, zi〉+ b) ≥ 1− ξi(w̃, b̃)
ξi(w̃, b̃) ≥ 0

(3.1)

Note that there are two hyper-parameters, γ and C, that control the trade-off
between the three terms of the objective, where the second term limits the capacity
of the set of correcting functions ξi(w̃, b̃).

3.2.3 Support Vector Machine with Instance Weights (WSVM)
The weighted support vector machine (WSVM) is a well-known generalization of
the standard SVM. Each instance (xi, yi) is assigned an importance weight ci ∈ R+
and in place of the standard empirical risk estimator R̂(f) , n−1∑n

i=1 L(yif(xi))
its weighted version is employed:

R̂w(f) ,
n∑
i=1

ciL(yif(xi)).
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The WSVM optimization problem is given below.

min
w,b,ξ

1
2 ‖w‖

2 +
n∑
i=1

ciξi

s.t. yi(〈w, zi〉+ b) ≥ 1− ξi,
ξi ≥ 0.

(3.2)

At first glance, it may appear that the two generalizations of SVM are unrelated.
As will become clear in the following, however, there is a relation between the
two and the solution space of WSVMs includes SVM+ solutions. This is not very
surprising as soon as one realizes that re-weighting allows to alter the loss function
to a large extent and, in particular, one can mimic the effect of privileged features.
The close relationship can already be seen when comparing the dual problems.

3.2.4 SVM+ and WSVM Lagrange Dual Problems
In this section, we derive the the Lagrange dual problems for the SVM+ and WSVM
formulations (3.1) and (3.2). Technical details can be found in Appendix A.1 (page
179) and in (Schölkopf and Smola, 2002; Vapnik et al., 2009).

Let α and β be the Lagrange dual variables of the SVM+ or the WSVM problem
corresponding respectively to the first and the second inequality constraints. Define
α̃ , α + β − C1, and note that β can be eliminated using β ≥ 0, which leads to
the constraint αi ≤ C + α̃i for all i = 1, . . . , n. Let

F (α) , (1/2)α>Y KY α− 1>α, F̃ (α̃) , (1/2) α̃>K̃α̃.

It is not hard to see that the following optimization problem is equivalent to the
dual of the SVM+ problem (3.1).

min
α,α̃

F (α) + 1
γ
F̃ (α̃)

s.t. y>α = 0, 1>α̃ = 0, 0 ≤ αi ≤ C + α̃i.

(3.3)

Likewise, the problem below is equivalent to the dual of the WSVM problem (3.2).

min
α

F (α)

s.t. y>α = 0, 0 ≤ αi ≤ ci.
(3.4)

Note that the constraint αi ≤ C + α̃i is the crucial part of the SVM+ problem
as it introduces a coupling between the decision space X and the correcting space
X̃ . Recall from the representer theorem (Schölkopf et al., 2001) that an SVM
solution has the form f = ∑n

i=1 αiyik(xi, ·). Correcting features thus control the
maximum influence a data point (xi, yi) can have on the resulting classifier, just
like the weights in WSVMs.
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3.3 Uniqueness Results
The connection between SVM+ and WSVM explored in Section 3.4 relies on the
analysis of uniqueness of their solutions. Effectively, the statements can only be
made with respect to the classes of equivalent solutions and equivalent weights,
hence, it is imperative to first obtain a better understanding of different sources of
non-uniqueness in these optimization problems.

In this section, we show that every non-trivial SVM+ solution is unique, unlike
WSVM solutions that may have a non-unique offset b. Furthermore, we describe a
set of equivalent weights that yield the same WSVM solutions. The latter will be
used to prove equivalence between the SVM+ and the WSVM algorithms under
additional constraints.

3.3.1 Uniqueness of WSVM and SVM+ Solutions
We begin with a known result due to Burges and Crisp, (1999) that characterizes
uniqueness of the weighted SVM solution. Essentially, it states that if there is
an equilibrium between instance weights of support vectors, then the separating
hyperplane can be shifted within a certain range without altering the total cost in
the WSVM problem. In that case, a WSVM solver has to rely on some additional
information or an ad hoc heuristic to choose a value for b in the allowed range.
Theorem 3.1 (Burges and Crisp, 1999). Define the following index sets:

I± , {i : yi ≷ 0}, I0 , {i : yif(xi) < 1}, I1 , {i : yif(xi) ≤ 1}.

The solution to the problem (3.2) is unique in w. It is not unique in b and ξ iff
one of the following two conditions holds:∑

i∈I−∩I0
ci =

∑
i∈I+∩I1

ci,
∑

i∈I+∩I0
ci =

∑
i∈I−∩I1

ci.

Note that in practice it may happen that one of the two conditions holds and
the WSVM problem (3.2) does not have a unique solution. This is not the case for
the SVM+ as shown next.
Theorem 3.2. For any C > 0, γ > 0, the solution to the problem (3.1) is unique
in (w, w̃, b̃). If there is a support vector, then b is unique as well, otherwise:

max
i∈I+

{
1− 〈w̃, z̃i〉 − b̃

}
≤ b ≤ min

i∈I−

{
〈w̃, z̃i〉+ b̃− 1

}
.

Proof. Following Burges and Crisp, (1999), let F be the objective function:

F = 1
2 ‖w‖

2 + γ

2 ‖w̃‖
2 + C

n∑
i=1

(〈w̃, z̃i〉+ b̃),

and define u , (w, w̃, b̃)>. Suppose u1 and u2 are two solutions, then, since the
problem is convex, a family of solutions is given by ut = (1− t)u1 + tu2, t ∈ [0, 1],
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and F (u1) = F (u2) = F (ut). Expanding F (ut) − F (u1) = 0 and differentiating
with respect to t yields:

(t− 1) ‖w1‖2 + (1− 2t) 〈w1, w2〉+ t ‖w2‖2

+γ
[
(t− 1) ‖w̃1‖2 + (1− 2t) 〈w̃1, w̃2〉+ t ‖w̃2‖2

]
+tC

n∑
i=1

(
〈w̃2 − w̃1, z̃i〉+ b̃2 − b̃1

)
= 0,

‖w1 − w2‖2 + γ ‖w̃1 − w̃2‖2 = 0.

Since γ > 0 it follows that w1 = w2 and w̃1 = w̃2. Plugging that into the first
equation yields b̃2 = b̃1. Uniqueness of b now follows from the complementary
slackness condition (see page 180). If all αi = 0, i.e. there are no support vectors,
then w = 0 and the result follows from the KKT conditions (A.8) (page 182).

This result is interesting on its own, since it shows that the SVM+ is formulated
in a way that privileged features always give enough information to choose the
unique solution (if there are no support vectors, then the constant classifier can be
given by b = ±1 depending on the class balance).

Uniqueness of the Dual Solution

Next, we consider uniqueness of dual solutions, which becomes relevant when
the SVM+ or WSVM algorithms are implemented in the dual. These results are
included for completeness and do not play a major role in the rest of this chapter.
Proposition 3.1. If (α1, α̃1) and (α2, α̃2) are two solutions to the SVM+ dual
optimization problem (3.3), then

(α1 − α2) ∈ N (Y KY ) ∩ 1⊥ ∩ y⊥,
(α̃1 − α̃2) ∈ N (K̃) ∩ 1⊥.

If α1 and α2 are two solutions to the WSVM dual problem (3.4), then

(α1 − α2) ∈ N (Y KY ) ∩ 1⊥ ∩ y⊥.

Proof. The proof employs the same method as in the proof of Theorem 3.2 and we
only provide the part concerning the WSVM problem.

Let K ′ = Y KY and consider a family of solutions αt = (1− t)α1 + tα2, t ∈ [0, 1].
Note that (α1 − α2) ∈ y⊥ follows directly from the optimization constraints.
Expanding F (αt)− F (α1) = 0 and differentiating with respect to t yields:

(t− 1)α>1 K ′α1 + (1− 2t)α>1 K ′α2 + tα>2 K
′α2 + 1>(α1 − α2) = 0,

(α1 − α2)>K ′(α1 − α2) = 0.

It follows that (α1 − α2) ∈ N (K ′). Let α1 = α2 + v, v ∈ N (K ′), then from the
first equation 1>v = 0, which completes the proof.
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Corollary 3.1. If K has full rank, then solution to the problem (3.4) is unique. If
K and K̃ have full rank, then solution to the problem (3.3) is unique.
Perhaps it is not surprising that when the Gram matrix K (respectively K̃) is

full rank, then the dual solution is unique both for SVM+ and WSVM.

3.3.2 Equivalent Weights
Apart from the conditions discussed in the previous section, another source of non-
uniqueness is that any given WSVM solution corresponds, in general, to multiple
weight vectors c. In this section, we give a characterization of all such vectors.
Definition 3.1. A family of equivalent weights W is defined for a given WSVM
solution (w?, b?, ξ?, α?, β?) as

W , {µ+ ν |µ ∈ U , ν ∈ V},

where we define the two subspaces U and V as

U , {µ ∈ Rn
+ |1>(µ− α?) = 0, ∑i µiyizi = w?, µ>y = 0, µi(ξ?i − hi) = 0 ∀i},

V , {ν ∈ Rn
+ | νiξ?i = 0 ∀i},

with hi , max{0, 1− yi(〈w?, zi〉+ b?)} being the hinge loss at (xi, yi) for all i.
The following simple statement shows that the set W defined above contains all

weights that correspond to a given WSVM solution.
Proposition 3.2. Let (w?, b?, ξ?) and (α?, β?) be primal and dual optimal points
for the WSVM problem (3.2). The point (w?, b?, ξ?) is primal optimal for any
weight vector c ∈ W , and all such weights are contained in W .

Proof. The proof consists in a straightforward application of the KKT condi-
tions (A.5) (page 181). The additional constraint 1>(µ − α?) = 0 follows from
Proposition 3.1 since it must hold that (µ− α?) ∈ 1⊥.

By definition, the set V suggests that there is freedom to assign any nonnegative
weight on the points (xi, yi) where the optimal slack variable ξ?i is zero, which
implies that the optimal loss on such examples is zero. Another way to express
this fact is given below.
Corollary 3.2. There exists a vector c′ ∈ W such that c′ = α′ = α? and β′ = 0.

It is not surprising that a posteriori all weight could be concentrated on support
vectors as suggested by Corollary 3.2. As will become clear in the following, this is
close to what the SVM+ algorithm is constrained to do.

3.4 SVM+ and WSVM Relationship
In this section, we reveal a connection that exists between the SVM+ and WSVM
algorithms. We also present our main theoretical results, in particular, the condi-
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tions under which SVM+ and WSVM are equivalent. The content of this section
is summarized below.

• In § 3.4.1, we show that it is always possible to find weights from an SVM+
solution such that WSVM constructs the same solution.

• In § 3.4.2, we discuss when it is possible to go in the opposite direction and
reveal a fundamental constraint of the SVM+ algorithm. Together with the
previous result, it implies that the set of SVM+ solutions is a proper subset
of all WSVM solutions.

• In § 3.4.3, we state the necessary and sufficient condition for the equivalence
between SVM+ and WSVM. The condition is given in terms of the WSVM
instance weights and the optimal loss on training data. It is our attempt
to provide a description of the subset of all WSVM solutions that coincides
with the set of all SVM+ solutions.

• In § 3.4.4, we present an illustrative counterexample violating that condition.

• In § 3.4.5, we give our preliminary ideas about existence of the complement
of SVM+ which we call SVM–.

3.4.1 SVM+ Solutions Are Also WSVM Solutions
The following theorem shows that any SVM+ solution is also a solution to the
WSVM problem with appropriately chosen weights. Moreover, such a choice of
weights can always be given by the SVM+ dual variables.
Theorem 3.3. Let (w?, b?, w̃?, b̃?) and (α?, β?) be primal and dual optimal points
for the SVM+ problem (3.1). There exists a choice of ξ? and instance weights c,
namely c = α? +β?, such that (w?, b?, ξ?) and (α?, β?) are primal and dual optimal
points for the WSVM problem (3.2) with weights c.

Proof. Given any fixed feasible α̃, the SVM+ problem (3.3) is equivalent to the
WSVM problem (3.4) with c = α̃ + C1. In particular, if (α?, α̃?) is a solution to
(3.3), then α? is a solution to (3.4) with c = α̃?+C1 = α?+β?. Let ξ?i = 〈w̃?, z̃i〉+b̃?,
then the points (w?, b?, ξ?) and (α?, β?) verify the KKT conditions (A.5) (page
181) for the WSVM problem (3.2).

Pechyony and Vapnik, (2010) argue that a good choice of privileged features
leads to improved predictive performance of the SVM+ algorithm. Therefore, a
direct corollary of Theorem 3.3 above is that a good choice of weights leads to
improved performance of WSVM. We verify that claim empirically in a set of
experiments (§ 3.6, page 55) where the weights are learned using a large validation
sample. Although idealized, that experiment is close in spirit to the Oracle SVM
setting of Vapnik and Vashist, (2009).

Figure 3.1 shows a toy binary classification example in R. The optimal decision
boundary is at x0 = 3.5, and we let the points x2 = 2 and x5 = 5 be the support
vectors on the margin. From that, we can compute the optimal slack variables for
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Figure 3.1.: An example of equivalence between SVM+ (top) and WSVM (bottom). The
privileged features coincide with the optimal slack variables ξ?i , as motivated
by the LUPI paradigm, and instance weights ci are given by the sum of
SVM+ dual variables (Theorem 3.3). Note that since the WSVM solution
replicates an SVM+ solution, the weighted average loss is greater than the
non-weighted one, i.e. ρ(c, ξ?) ≥ 0 (Theorem 3.4).

the misclassified points x3 and x4 as follows: ξ?3 = ξ?4 = 2, and the remaining ξ?i
are at zero. Using the optimal slack variables as privileged features, x̃i = ξ?i , we
obtain the SVM+ solution at the top of Figure 3.1.
Next, we use the SVM+ solution to compute instance weights as c = α? + β?

and run the WSVM algorithm which finds exactly the same solution shown at the
bottom. Note that the outliers (points x3 and x4) receive relatively high weight, so
that the weighted average loss is greater than the non-weighted one. We investigate
that phenomenon in § 3.4.3 where further details are provided.

3.4.2 Which WSVM Solutions Are SVM+ Solutions?
We now consider the opposite direction and characterize the SVM+ solutions in
terms of the induced instance weights. The following Lemma 3.1 highlights the
bias of the SVM+ algorithm as it establishes that every solution must satisfy a
certain relation between the dual variables (respectively the weights) and the loss
on the training sample. This is the key to showing that the SVM+ and the WSVM
algorithms are not equivalent, and that the latter is strictly more generic as it does
not impose that additional constraint.
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Lemma 3.1. Let C > 0, γ ≥ 0 be the SVM+ regularization parameters, and let
(w?, b?, w̃?, b̃?) and (α?, β?) be the corresponding primal and dual optimal points
for the SVM+ problem (3.1). The following inequality holds:∑n

i=1(α?i + β?i )hi∑n
i=1(α?i + β?i )

≥ 1
n

n∑
i=1

hi, (3.5)

where hi , max{0, 1− yi(〈w?, zi〉+ b?)} is the hinge loss at a point (xi, yi) for all
i = 1, . . . , n. If γ = 0, then (3.5) is satisfied with equality.

Proof. It follows from the KKT conditions (A.8) (page 182) that

〈w̃?, z̃i〉+ b̃? = hi + δi,

with δi ≥ 0 for all i = 1, . . . , n, and

(α?i + β?i )δi = 0,
α?i > 0 ∨ β?i > 0⇒ δi = 0.

Multiplying by (α?i + β?i − C) and summing up yields

γ 〈w̃?, w̃?〉 =
n∑
i=1

(α?i + β?i )hi − C
n∑
i=1

(hi + δi).

Note that C = 1
n

∑n
i=1(α?i + β?i ) > 0, hence

γ 〈w̃?, w̃?〉 =
n∑
i=1

(α?i + β?i )hi −
1
n

n∑
i=1

(α?i + β?i )
n∑
i=1

(hi + δi).

Since γ 〈w̃?, w̃?〉 ≥ 0, it must hold that
n∑
i=1

(α?i + β?i )hi ≥
1
n

n∑
i=1

(α?i + β?i )
n∑
i=1

(hi + δi)

≥ 1
n

n∑
i=1

(α?i + β?i )
n∑
i=1

hi. (3.6)

Division by ∑n
i=1(α?i + β?i ) completes the proof.

Taking into account that the corresponding weights in WSVM are given by the
sum of the SVM+ dual variables, the above inequality can be re-written in a more
compact form.
Corollary 3.3 (The Necessary Condition). Let (w?, b?, w̃?, b̃?) and (α?, β?) be primal
and dual optimal points for the SVM+ problem (3.1). Define instance weights
c = α? + β?, and let (w?, b?, ξ?) and (α?, β?) be primal and dual optimal points for
the WSVM problem (3.2) with weights c. Then the following holds:

〈c− c̄1, ξ?〉 ≥ 0,
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where ξ?i = max{0, 1− yi(〈w?, zi〉+ b?)} and c̄ , (1/n)∑n
i=1 ci.

Proof. Follows from Theorem 3.3 and Lemma 3.1.

Note that this result suggests a simple way to interpret the effect of privileged
features – they impose a re-weighting of the input training data. Moreover, at the
end of training more emphasis will be on points with positive loss and less on easy
points, in particular, the non-support vectors may end up with zero weight.

SVM+ Reduction to Standard SVM

In this section, we slightly deviate from the main subject to show that when there
is an equality in the previous lemma, then SVM+ reduces to the standard SVM.
For simplicity, we only state this result for x̃i ∈ Rd.
Proposition 3.3. Assume the setting of Lemma 3.1 and let (3.5) be satisfied with
equality, then

〈w̃?, x̃i〉+ b̃? = hi, i = 1, . . . , n.
Furthermore, the following holds:

1. If γ > 0, then w̃? = 0 and b̃? = hi for all i = 1, . . . , n, i.e. the loss on all data
points is the same. Hard margin SVM is a special case with b̃? = 0.

2. If γ = 0, then X̃α̃? = 0, where X̃ is the matrix obtained by stacking all x̃i.
If additionally rank(X̃) = n, then α?i + β?i = C for all i = 1, . . . , n and any
vector in Rn can be represented via 〈w̃?, x̃i〉+ b̃?, hence the soft margin SVM
is recovered with ξ?i = 〈w̃?, x̃i〉+ b̃?.

Proof. It follows from (3.6) that δi = 0 and 〈w̃?, x̃i〉+ b̃? = hi for i = 1, . . . , n. If
γ > 0, then γ 〈w̃?, w̃?〉 = 0 implies w̃? = 0 and thus b̃? = hi for all i.
If γ = 0, then the KKT conditions (A.8) (page 182) imply X̃α̃? = 0, where

α̃? = α? + β? − C1, as before. If rank(X̃) = n, then X̃α̃? = 0 yields α̃? = 0, and
so α?i + β?i = C for i = 1, . . . , n. Since (x̃i)ni=1 forms a basis in Rn and there is
no penalty on ‖w̃‖2 in the objective function, then SVM+ does not impose any
additional constraints compared to the soft margin SVM. The primal and dual
optimal points for SVM+ are thus also optimal for SVM with ξ?i = 〈w̃?, x̃i〉+ b̃?.

3.4.3 SVM+ and WSVM Equivalence
We now state the main result of this chapter which gives the necessary and sufficient
condition for the equivalence between SVM+ and WSVM.
Theorem 3.4. Let (w?, b?, ξ?) and (α?0, β?0) be primal and dual optimal points for
the WSVM problem (3.2) with instance weights c0 ∈ Rn

+, not all zero. There exists
a choice of parameters C, γ, and correcting features {x̃i}ni=1 such that (w?, b?) is
optimal for the SVM+ problem iff:

∃ c ∈ W : ρ(c, ξ?) , 〈c− c̄1, ξ?〉 ≥ 0, (3.7)
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where c̄ , (1/n)∑n
i=1 ci. If ρ(c, ξ?) ≥ 0, one such possible choice is as follows:

C = c̄, γ = ρ(c, ξ?), x̃i = ξ?i − b̃?, ∀i (3.8)

moreover, the optimal w̃? and b̃? in that case are:

w̃? = 1, b̃? = 〈c, ξ?〉 / 〈c,1〉 . (3.9)

Proof. (3.7) is necessary. Assume primal and dual optimal points for the SVM+
problem (3.1) are (w?, b?, w̃?, b̃?) and (α?, β?), and let c = α? + β? (note that
(α?, β?) and (α?0, β?0) may be different). Theorem 3.3 states that there exists a
ξ?0 such that (w?, b?, ξ?0) and (α?, β?) are primal and dual optimal for the WSVM
problem with the weights c. We need to show that ξ?0 = ξ?. This follows directly
from the KKT conditions (A.5) (page 181) when all c0,i > 0 and ci > 0, since
hi = max{0, 1− yi(〈w?, xi〉+ b?)} are the same for both problems. If some of the
weights are zero, then the corresponding ξ?i is not uniquely defined (it is unbounded
from above) and we assume that the algorithm returns the value at the lower bound,
i.e. ξ?i = hi. Now, given that ξ?0 = ξ?, we have that c ∈ W by Proposition 3.2 and
ρ(c, ξ?) ≥ 0 by Corollary 3.3.
(3.7) is sufficient. First, consider the case ρ(c, ξ?) > 0, and let (w?, b?, ξ?) and

(α?, β?) be primal and dual optimal points for the WSVM problem with the weights
c. We now construct the privileged features {x̃i}ni=1 and provide C > 0, γ > 0, w̃?,
and b̃? such that (w?, b?, w̃?, b̃?) and (α?, β?) are primal and dual optimal for the
corresponding SVM+ problem.

It is sufficient to find one dimensional correcting features that additionally satisfy∑n
i=1 cix̃i = 0. The KKT conditions in this case imply that

w̃? = −C
γ

n∑
i=1

x̃i, C = 1
n

n∑
i=1

ci = c̄. (3.10)

We require for all i = 1, . . . , n that

w̃?x̃i + b̃? = max{0, 1− yi(〈w?, xi〉+ b?)} = ξ?i . (3.11)

Multiplying both sides by ci and summing up yields

b̃? = 〈c, ξ?〉 / 〈c,1〉 .

Plugging (3.10) into (3.11) and solving for x̃i one gets:

x̃i = ±(b̃? − ξ?i )
√
γ/ρ(c, ξ?). (3.12)

Choosing γ = ρ(c, ξ?) and the plus sign in (3.12) for convenience, we have that
(3.10) leads to w̃? = ρ(c, ξ?)/γ = 1.
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Now, consider ρ(c, ξ?) = 0. Let X̃ = [x̃1 · · · x̃n] be the matrix obtained by
stacking {x̃i}, and let γ = 0. Proposition 3.3 and the KKT conditions imply:

C = c̄, X̃(c− c̄1) = 0, X̃>w̃? + b̃?1 = ξ?.

Hence, the matrix X̃ must satisfy

(c− c̄1) ∈ N (X̃), (ξ? − b̃?1) ∈ R(X̃>).

The above requirements translate to

〈c− c̄, ξ? − b̃?1〉 = 0,

which holds for (3.8), (3.9), and ρ(c, ξ?) = 0.

Let us make a few remarks. First, the condition (3.7) can be rewritten in terms
of the averages as

n∑
i=1

ωiξ
?
i ≥

1
n

n∑
i=1

ξ?i , (3.13)

where ωi , ci/
∑n
i=1 ci is the normalized weight. Hence, any SVM+ solution has an

equivalent WSVM setting that puts more weight on hard examples, i.e. the points
with higher loss.

Further, it is clear from the definition of equivalent weights (Definition 3.1) that
the weight of points with yif(xi) > 1 can be changed arbitrarily without altering
the f since in that case ξ?i = 0, α?i = 0 and β?i = ci, i.e. these points are not support
vectors and they have no influence on the final classifier. Hence, their weight – the
upper bound on the influence – does not matter.
This reasoning leads us to a condition that is much easier to check in practice

than the one in Theorem 3.4. Note that condition (3.7) involves the set of equivalent
weights and it is possible to check it directly using the definition of W as will be
discussed below. However, if the kernel matrix is non-singular, as is often the case
with the Gaussian kernel, then one can simply take c = α? and check (3.7) for that
particular weight vector only.
Proposition 3.4. Let (w?, b?, ξ?) and (α?, β?) be primal and dual optimal points
for the WSVM problem (3.2) with instance weights c ∈ Rn

+, not all zero. If

N (Y KY ) ∩ 1⊥ ∩ y⊥ = {0},

then there exists a choice of C, γ, and privileged features {x̃i}ni=1, such that (w?, b?)
is primal optimal for the SVM+ problem (3.1) iff:

ρ(α?, ξ?) = ξ?>
(
I− (1/n)11>

)
α? ≥ 0. (3.14)

Proof. Sufficiency follows directly from Theorem 3.4 since c = α? is a valid choice of
weights (see Definition 3.1). For necessity, note that α? is unique by Proposition 3.1
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and all the weights in W are of the form c = α? + β, for β ∈ V . The maximum in
(3.7) corresponds to

max
β≥0

n∑
i=1

ξ?i βi − (1/n)
n∑
i=1

ξ?i

n∑
i=1

βi,

which is attained at β = 0 since ξ?i βi = 0 for all i = 1, . . . , n.

Intuitively, the SVM+ algorithm maximizes the margin 2 ‖w‖−1 by minimizing
F (α), as in the standard SVM, and also gradually shifts focus to hard examples
by minimizing F̃ (α̃). As long as there are sufficiently many points on the “correct”
side of the margin, (3.13) can be achieved by reducing the weight of such non-
support vectors, and so the SVM+ solution space is often as rich as that of the
WSVM. In general, however, (3.13) may not be attainable without altering the f
as demonstrated by the counter example below.

3.4.4 WSVM Solution Not Found by SVM+
We now consider the case when misclassified training points have low weight, i.e.
ρ(c, ξ?) < 0, and construct an instance where SVM+ fails to find the corresponding
WSVM solution. Consider the following example (Figure 3.2):

S = {(1,+1), (2,−1), (3,+1)}, c = (4, 6, 2)>.

The corresponding primal and dual optimal points are

w? = −2, ξ? = (0, 0, 4)>, α? = (4, 6, 2)>,
b? = 3, β? = (0, 0, 0)>.

Since ρ(c, ξ?) = −2
3 < 0, this solution does not correspond to any of the SVM+

solutions (Lemma 3.1). Note that one can easily verify that N (Y KY ) ∩ 1⊥ ∩ y⊥
contains only 0, hence, Proposition 3.4 already completes the claim.
Similarly, one can show using Definition 3.1 that U = {α?} and that other

equivalent weights can only increase the weight of points 1 and 2, which would
only decrease ρ(c, ξ?). Therefore, there are no instance weights c′ ∈ W for which
ρ(c′, ξ?) ≥ 0 and, by Theorem 3.4, there is no correcting space that would make
(w?, b?) = (−2, 3) an SVM+ solution.

Figure 3.2 shows the learned WSVM and SVM+ models, where we use

x̃i = ξ?i − 〈c, ξ?〉 / 〈c,1〉 , C = c̄, γ = 1.

A different choice of C and γ could make SVM+ return, for example, a constant
classifier, which is the solution of the standard SVM on that data, but there is no
setting that would make it return (w?, b?) = (−2, 3).

Note that in this example an even stronger result can be shown: SVM+ cannot
reproduce the same type of dichotomy, i.e. even if we allowed it to return a line
with any negative slope going through the same point, the SVM+ would still fail.
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Figure 3.2.: An example of a WSVM solution (bottom) that cannot be found by SVM+.
The instance weights ci are chosen in a way to avoid a zero norm constant
classifier (f = +1). The resulting weighted average loss is less than the
non-weighted one, hence the SVM+ cannot find this solution. Computing
the privileged features as in (3.8) leads to an SVM+ solution with the
opposite prediction and a higher value of the weighted average loss.

This shows that there are settings where WSVM performs significantly better than
SVM+ due to a fundamental constraint of the latter.

3.4.5 Is There an SVM–?
We have seen that SVM+ has a more constrained solution space than WSVM.
Lemma 3.1 gives an exact characterization of that constraint in terms of the relation
between the SVM+ dual variables and the optimal loss on the training sample.
The WSVM solution space can thus be partitioned into solutions that can be found
by SVM+ and the rest. We are now interested if there is a modification to the
SVM+ algorithm that would yield solutions from that second part.
Theorem 3.4 suggests that γ = ρ(c, ξ?) ≥ 0, so, intuitively, if we now require

ρ(c, ξ?) < 0, the corresponding γ has to be with a minus:

min
w,b,w̃,b̃

1
2(‖w‖2 − γ ‖w̃‖2) + C

n∑
i=1

ξi(w̃, b̃)

s.t. yi(〈w, zi〉+ b) ≥ 1− ξi(w̃, b̃)
ξi(w̃, b̃) ≥ 0

(3.15)

This problem is clearly non-convex as the objective is now a difference of convex
functions. If there was a finite (local) minimizer (w?, b?, w̃?, b̃?), the KKT conditions
would still hold (Borwein and Lewis, 2000, Theorem 2.3.8) for a Lagrange multiplier
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vector (α?, β?), and one could show a result similar to Lemma 3.1, but with the
reverse inequality.
Unfortunately, however, the problem (3.15) is unbounded from below, which is

easy to see: the quadratic term ‖w̃‖2 grows faster than the linear term ξi(w̃, b̃) and
the feasible set is unbounded. This shows that it is not trivial to modify the SVM+
algorithm to obtain solutions from its complement, and it is an open question if
such a modification (with non-degenerate solutions) exists at all.

The phenomenon we observe here is that some of the WSVM solutions, namely the
ones where ρ(c, ξ?) ≥ 0, can be computed easily within the LUPI framework, while
others (ρ(c, ξ?) < 0) may be completely out of reach. What are the implications of
this observation in terms of learning a classifier?

Consider any training sample S of size n for a problem P. Let fc,S be a classifier
constructed by WSVM with weights c, and let ξ?c,S be the corresponding loss vector.
The set of all instance weights Rn

+ is partitioned into two subsets, W+ and W−,
depending on the sign of ρ(c, ξ?c,S). Define the “best” weight vectors in each of
the two classes as c± = arg minc∈W± L(fc,S). If L(fc−,S) < L(fc+,S), then the best
classifier corresponds to the weights that are out of reach for the SVM+, hence,
there are no privileged features that will yield an SVM+ classifier as good as fc−,S.
This reasoning motivated us to consider schemes for learning the weights that

are unrelated to SVM+ and are not restricted by the above constraint.

3.5 How to Choose the Weights
Recall that we are interested in ways of incorporating prior knowledge about the
training data. In the SVM+ approach, the role of additional information is played
by the privileged features which are used to estimate the loss on the training sample.
The same effect, as we have established, can be achieved by importance weighting
in WSVM. Taking into account vast amount of work on weighted learning, it
seems that re-weighting of misclassification costs is a very powerful method of
incorporating prior knowledge. We would like to stress, however, that a critical
difference to, for example, the cost-sensitive learning is that we are ultimately
interested in minimizing the non-weighted expected loss and the weights are only
used to impose a bias on the learning algorithm.

We also note that even though SVM+ solutions are contained within WSVM
solutions, there is no implication that any of the two algorithms is “better”. If
privileged features are available, then SVM+ is a reasonable choice. On the other
hand, if there are no privileged features or if one has concerns outlined at the end
of § 3.4.5, then one may want to consider a more general WSVM method with
some problem specific scheme for computing the instance weights.

In the following, we investigate two approaches that make different assumptions
about what is additionally available to the learning algorithm at training time.
The methods operate in a somewhat idealized setting and are mainly aimed at
motivating further research on how to choose the weights. They may be thought of
as the empirical counterparts of a more theoretical discussion involving the Oracle
SVM in (Vapnik and Vashist, 2009). In particular, the weight learning method of
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§ 3.5.3 can be thought of as a way of extracting additional information about the
given problem from a validation sample, which is used as a reference.

3.5.1 Why Instance Weighting Is Important?
Let us first motivate the importance of instance weighting with two examples.
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Figure 3.3.: Instance weighting helps against outliers on a toy problem in 2D. The two
outliers in the training set have significant negative effect on the SVM model,
which has a near chance level performance as a result (horizontal dashed
line). In contrast, assigning zero weight to the outliers allows WSVM to
recover a near optimal solution (vertical solid line).

Consider the toy problem shown in Figure 3.3. The data comes from two linearly
separable blobs, so it is possible to achieve zero test error on them. However, the
training sample is contaminated with two outliers that lie extremely far from the
optimal decision boundary. Since SVM uses a surrogate loss and not the discrete
0-1 loss, the cost of a point is higher the further the point is from the separating
hyperplane. Hence, SVM prefers to keep the two outliers close to the decision
boundary, which leads to a near chance level performance on this data set.

Instance weighting, on the other hand, allows one to alter the cost of each point.
In particular, if the two outliers are assigned zero weight, then WSVM is able to
find a near optimal classifier as illustrated by the vertical solid line.

The second toy problem shown in Figure 3.4 suggests that instance weights can
improve the predictive performance even in the nonlinear case, where the problem
of extreme outliers is less likely to happen. As before, the issue evolves around the
points that lie either too close to or even on the wrong side of the true decision
boundary. We use the standard Nadaraya-Watson estimator,

η(x) =
∑n
i=1Kh(x− xi)yi∑n
i=1Kh(x− xi)

,

with the Gaussian kernel and the bandwidth parameter h tuned on the validation
set, to obtain an estimate of the conditional probability P(Y = 1 |X = x). Our
estimate is shown as a heatmap in the background and is used to compute instance
weights (reflected by the size of points) as

ci ∝ P(Y = yi |X = xi).
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Figure 3.4.: Instance weighting leads to a more stable estimate of the decision boundary
in a nonlinear 2D toy problem. The size of a data point corresponds to its
weight, which is computed from an estimate of P(Y = 1 |X = x) shown in
background. WSVM (solid line) is less influenced by outliers than SVM
(dashed line) since the outliers are downweighted.

Note that the outliers are downweighted and have less influence on the WSVM
decision boundary (solid line) compared to SVM (dashed line). We provide further
details on this experiment, including the classification results, in § 3.6.2 (page 56).

3.5.2 Access to an Estimate Of P(Y = 1 |X = x)
Having full access to the conditional probability P(Y = 1 |X = x) is clearly
a hypothetical scenario, since in this case the classification problem is solved.
However, it is interesting to see how this type of information could be used in
construction of good weights. First, note that if P(Y = yi |X = xi) is available
at least for the training sample S = {(xi, yi)}, then one can directly compute the
conditional expectation and employ the following estimator:

R′(f) , 1
n

n∑
i=1

[
L(f(xi))P(Y = 1 |X = xi) + L(−f(xi))P(Y = −1 |X = xi)

]
,

which is an unbiased estimator of R(f):

ER′(f) = EX [L(f(X))P(Y = 1 |X) + L(−f(X))P(Y = −1 |X)]
= EX EY |X [L(Y f(X)) |X] = EX,Y L(Y f(X)) = R(f).
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The property of being biased or not is of asymptotic nature and is arguably
of lesser interest in the small sample regime. Following this line of argument, we
consider a conservative weighted risk estimator given by:

R̂w(f) , 1
n

n∑
i=1

w(xi, yi)L(yif(xi)), (3.16)

w(xi, yi) , P(Y = yi |X = xi). (3.17)

It is not hard to check that R̂w(f) is biased:

E R̂w(f) = EX EY |X [w(X, Y )L(Y f(X)) |X]
= EX

[
L(f(X))P(Y = 1 |X)2 + L(−f(X))P(Y = −1 |X)2

]
≤ EX [L(f(X))P(Y = 1 |X) + L(−f(X))P(Y = −1 |X)]
= EX EY |X [L(Y f(X)) |X] = R(f).

More precisely, R̂w(f) is conservative in the sense that the points far from the
decision boundary are weighted more, while the points with P(Y = 1 |X) ≈ 0.5
receive relatively low weight. This behavior is due to the p 7→ p2 transform being
monotonically increasing and strictly convex on [0, 1]. The monotonicity also
ensures the following important property of the obtained weighted estimator when
L is the discrete 0-1 loss:

arg min
f

E R̂w(f) = f ∗ = arg min
f

R(f),

that is, R̂w(f) is minimized by the Bayes optimal classifier and, therefore, the
learning problem is not altered.
If the bias of R̂w(f) is a concern, one can tune the weights as the size of the

training sample increases. To this end, we consider the following generalization of
the weight function in (3.17):

cτ (xi, yi) , wτ (xi, yi), (3.18)

where τ ∈ [0,∞) is tuned along with the standard regularization parameter. Note
that SVM is recovered when the weights are given by c0(xi, yi) ≡ 1.

When P(Y = 1 |X) is estimated from a training sample, then WSVM with the
weights given by (3.18) will mainly serve as a baseline for the method introduced in
the following section. However, it is conceivable that an estimate of the conditional
probability could be available from a different source, e.g. from annotations provided
by humans. That setting is evaluated later in § 3.6.4 (page 58).
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3.5.3 Learning the Weights
Given a training sample S, the weights in WSVM parametrize the set of hypotheses
that the algorithm can choose from. As we show next, the weights can also be
learned along with the classifier f , which will depend on the weights implicitly:

c? = arg min
c∈Rn+

EL(Y f ?c (X)), (3.19)

f ?c = arg min
f∈H

1
2 ‖f‖

2 +
n∑
i=1

ciL(yif(xi)). (3.20)

The optimization problem (3.19), as formulated above, cannot be solved in
practice since the underlying probability distribution is unknown. Instead, we
replace the true risk R(f) in (3.19) with an empirical risk estimator. To avoid
overfitting, however, we require independent data samples in (3.19) and in (3.20).
Specifically, we assume that a validation sample S ′ is available at training time
and the weights c? are learned as follows:

c? = arg min
c∈Rn+

N∑
i=1

L(y′if ?c (x′i)).

Our idea is inspired by the method of Chapelle et al., (2002) who suggested to
tune hyper-parameters of SVM with the squared hinge loss by minimizing certain
estimates of the generalization error using gradient descent. The squared hinge
loss allows them to additionally assume the hard margin case with a modified
Gram matrix K ← (K + (1/C) I), where C is the regularization parameter; see
also (Cortes and Vapnik, 1995). That leads to a very specific derivation of the
gradient with respect to the hyper-parameters, which is not directly applicable to
other loss functions. Instead, we develop a more general scheme that applies to any
convex and twice differentiable loss. Our method is instantiated with a smooth
version of the hinge loss given below in (3.26), which is constructed to be twice
continuously differentiable. Furthermore, while Chapelle et al., (2002) perform
optimization in the dual, we optimize (3.20) in the primal, following a more recent
line of work by Chapelle, (2007).
The WSVM weights and classifier learning problem is defined as

c? = arg min
c∈Rn+

N∑
i=1

L
(
y′i
[
K̄>i α

?(c) + b?(c)
])
, (3.21)

(α?(c), b?(c)) = arg min
α, b

1
2α
>Kα +

n∑
i=1

ciL
(
yi
[
K>i α + b

])
, (3.22)

where the classifier f is expressed as

f(x) =
n∑
i=1

αik(xi, x) + b,
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the matrix K̄ is defined as K̄ij = k(xi, x′j) for i = 1, . . . , n, j = 1, . . . , N , and the
vectors Ki, K̄i are the ith columns of K and K̄ respectively.

Note that f depends on the weights c implicitly via the second optimization
problem and the main challenge in applying gradient descent is the computation of
∂α?/∂c and ∂b?/∂c. These derivatives can be computed via implicit differentiation
from the optimality conditions as we show below.
Theorem 3.5. Let the loss function L be convex and twice continuously differen-
tiable and let the Gram matrix K be (strictly) positive definite. Define vectors u
and v componentwise for i = 1, . . . , n as

ui , yiL
′
(
yi
[
K>i α

? + b?
])
, vi , ciL

′′
(
yi
[
K>i α

? + b?
])
,

where L′ and L′′ are respectively the first and second derivatives of L, and (α?, b?)
is a solution of (3.22) for the given weights c. If v 6= 0, then the solution is unique,
the points α? and b? are continuously differentiable in c, and the corresponding
derivatives can be computed as∂α?∂c

∂b?

∂c

 = −
I + diag(v)K v

1> 0

−1 diag(u)
0>

 . (3.23)

Proof. Uniqueness is established using the same argument as in Theorem 3.2.
Uniqueness of α follows from (strict) positive definiteness of K. For b, let b?1 and
b?2 be two optimal points and define b?t = (1− t)b?1 + tb?2. Considering the difference
of the objective function at b?t and b?1, and differentiating twice in t, we get

(b?2 − b?1)1>v = 0 ⇒ b?2 = b?1.

The optimality conditions of (3.22) yield

K(α? + diag(u)c) = 0, u>c = 0.

Since K is non-singular it can be dropped from the first equation. Computation of
the total derivatives yields the linear system below.I + diag(v)K v

v>K 1>v

∂α?∂c
∂b?

∂c

 = −
diag(u)

u>

 (3.24)

Note that (3.24) is equivalent to (3.23) since the last equation can be equivalently
replaced by the sum of the first n equations minus the last one. To apply the
implicit function theorem, it remains to show that the matrix in (3.23) is invertible.
Recall that the determinant of a block matrix factors as the determinant of a

block and its Schur complement. It is thus sufficient to show that

det (I + diag(v)K) 6= 0,
1> (I + diag(v)K)−1 v 6= 0.
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Assume w.l.o.g. that the first m components of v (m ≤ n) are non-zero and define
M , I + diag(v)K. We have

M =
A B

C D

 =
Im + diag(vm)Km B

0n−m,m In−m

 ,
where the B block is irrelevant for our purposes. It now follows that

det(M) = det(D) det(A−BD−1C) = det(A)
= det(diag(vm)) det(diag(vm)−1 +Km) 6= 0,

where we use that diag(vm)−1 is positive definite since vm � 0m due to convexity
of L and the assumption v 6= 0. To complete the proof, we have

1>M−1v = 1>
 A−1 −A−1BD−1

0n−m,m D−1

−1

v

= 1>m
(
diag(vm)−1 +Km

)−1
1m > 0.

Note that this scheme directly applies to many popular loss functions including
the squared hinge loss and the logistic loss. Moreover, for the logistic loss it always
holds that v 6= 0 for any c 6= 0 due to strict convexity of the loss.
If v = 0, it can be seen that α? is still uniquely defined and is continuously

differentiable in c for any fixed b. The “gradient” in this case is given by

∂α?/∂c = diag(u), ∂b?/∂c = 0>. (3.25)

Theorem 3.5 applies to convex and twice differentiable loss functions. Since the
standard hinge loss employed in SVM+ and WSVM is not smooth, we consider
an approximation that is twice continuously differentiable and preserves certain
desirable properties of the hinge loss. Specifically, we have chosen the loss function
defined as (see Figure 3.5)

Lδ(t) ,


1− t− δ if t ≤ 1− 2δ,
(1−t)3(t−1+4δ)

16δ3 if 1− 2δ < t < 1,
0 if t ≥ 1.

(3.26)

Note that other differentiable approximations of the hinge loss have been considered
in the literature, however, they either produce superlinear costs on extreme outliers,
or have only the first derivative while we require two. In contrast, the function
(3.26) is twice continuously differentiable and exhibits certain similarities to the
hinge loss: (i) it does not penalize points with the margin t , yif(xi) ≥ 1, and (ii)
it grows linearly for t ≤ 1− 2δ.
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Figure 3.5.: The 0-1 loss, the hinge loss, and the twice differentiable loss Lδ with its
derivatives. Note that Lδ approaches the hinge loss as δ → 0.

With the approximate hinge loss Lδ defined above, v 6= 0 means that at least
one of the data points has to fall into the strictly convex region of the loss where
L′′δ(t) > 0. Clearly, this presents us with a trade-off between having a good
approximation of the hinge loss (small δ) and a higher chance of being able to
compute “correct” gradients using Theorem 3.5 (large δ). To address this issue in
our experiments, we tune δ ∈ [0.01, 1] on a validation set.

3.6 Experiments
In this section, we present empirical evaluation of the algorithms introduced in
this chapter. In our experiments, we use the WSVM implementation by Chang
and Lin, (2011) and the code for the SVM+ provided by Pechyony and Vapnik,
(2011). The weight learning problem is solved using our implementation of the
BFGS algorithm (Nocedal and Wright, 2006). The general experimental setup
is similar to that of Vapnik and Vashist, (2009): parameters are tuned on the
validation set, which is not used for training, and performance is evaluated on the
test set. Training subsets are randomly sampled from a fixed training set, and
results over multiple runs are aggregated showing the mean error rate as well as
the standard deviation. Depending on the experiment, the validation set is either
fixed or subsampled randomly as well. The Gaussian RBF kernel is used in all
experiments and features are rescaled to be in [0, 1]. The weights in (3.17) are
computed from η(x) = 2P(Y = 1 |X = x)− 1, which is either given directly by
human experts or estimated using the Nadaraya-Watson technique:

η(x) =
∑n
i=1Kh(x− xi)yi∑n
i=1Kh(x− xi)

, (3.27)

where Kh is the Gaussian kernel with bandwidth h.
Note that in all experiments each algorithm has access to exactly the same data,

and the only difference between different splits is which data is used to construct a
classifier (training) and which is used to tune the hyper-parameters (validation).
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Figure 3.6.: SVM, SVM+, and WSVM comparison on MNIST (left) and synthetic data.
Left: WSVM replicates SVM+ in our reproduction of the experiment by
Vapnik and Vashist, (2009). Middle: Weight learning leads to significant
performance improvement on synthetic data when a large validation set is
available. Right: The same setting, but the training-to-validation splits
are 1-to-2 and 2-to-1, which is more realistic in practice.

3.6.1 WSVM Replicates SVM+
We begin with an experimental verification of our theoretical findings from § 3.4.
We reproduce the handwritten digit recognition experiment of Vapnik and Vashist,
(2009), where the task is to discriminate between 5’s and 8’s, which are taken
from the MNIST database and downsized to 10× 10 pixels. We use the features
provided by the authors and obtain the error rates shown in Figure 3.6, left. Our
results are averaged across 100 runs and range from 10 to 100 training examples.
Following Theorem 3.3 (page 40), the weights for WSVM are computed as

c = α? + β?, where α? and β? come from the SVM+ solution. We observed that
indeed the solvers compute α?WSVM ≈ α?SVM+. However, we also observed that in
general b?WSVM 6= b?SVM+, which is explained by non-uniqueness of b (Theorem 3.1).
If b?SVM+ from the SVM+ model is used (WSVM-b in the plot), then the two
classifiers are identical. However, if b is tuned within the constraints imposed by
the KKT conditions (plain WSVM in the plot), then minor differences appear.

3.6.2 Synthetic Data
We now turn to the problem of choosing the weights for WSVM and evaluate the
two weight generation schemes introduced in § 3.5. In this experiment, data comes
from a mixture of 2D Gaussians that form a nonlinear shape resembling the letter
W, see Figure 3.4 (page 50). Similar to the previous setting, we sample training
subsets of different size from a fixed training set of 400 examples; then tune the
hyper-parameters, estimate the P(Y = 1 |X = x) using (3.27), and perform weight
learning on a validation set of size 4000, and finally test on a separate set of size
2000. The results are averaged over 50 runs and reported in Figure 3.6, middle.
Note that, just like in the experiment of Vapnik and Vashist, (2009), this is an
idealistic setting where the validation set is so large that model selection is close
to optimal. In practice, one would never split the available sample as 1-to-40,
therefore, we also evaluate more realistic splits 1-to-2 and 2-to-1 next.
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Figure 3.7.: SVM and WSVM error rates on UCI datasets with training-to-validation
splits of 1-to-2 and 2-to-1. Left: Breast Cancer Wisconsin. Middle:
Mammographic Mass. Right: Spambase.

Figure 3.6, right, shows results of a similar experiment where the validation
sample is not fixed, but rather obtained by splitting the available training data.
Since validation samples are now small, the estimation of P(Y = 1 |X = x)
fails and the corresponding WSVM performs on par with the standard SVM.
Weight learning, however, still yields performance improvement on the 1-to-2 splits.
Moreover, WSVM with weight learning is able to achieve similar error rates as
SVM trained on twice as much data. On the 2-to-1 splits, however, we observe
that weight learning overfits and we omit that setting in further experiments.

Note that it is not surpsing that for the weight learning to succeed, the amount
of validation data should be at least comparable to or even exceed the number of
weights ci that are to be learned.

3.6.3 UCI Data
In this set of experiments, we evaluate weight learning on three publicly available
datasets from the UCI repository (Frank and Asuncion, 2010). For every dataset,
we first remove any records with missing values and then split the remaining data
randomly into training and test sets of roughly equal size approximately preserving
the initial class distribution.

Dataset Features Training Test
Breast Cancer Wisconsin 9 351 332
Mammographic Mass 4 420 410
Spambase 57 2430 2171

Table 3.1.: Statistics of datasets from the UCI repository.

Table 3.1 summarizes the statistics of the obtained UCI datasets. Smaller subsets
are sampled from the training data, and split further into training and validation
sets as 1-to-2 and 2-to-1. The subsets sampling process is repeated 20 to 50 times
depending on the amount of data. The rest of the experimental setup is the same
as before. Next, we briefly discuss the results presented in Figure 3.7.
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Figure 3.8.: Error rate comparison in the handwritten digit recognition experiment of
Vapnik and Vashist, (2009). P(Y = 1 |X = x) was estimated from human
rankings. Left: The original setting. Right: The extended setting where
each digit is translated by one pixel in each of the eight directions.

Breast Cancer Wisconsin. Weight learning on the 1-to-2 split in this experiment
performs on par or better than SVM trained on either of the two splits. SVM
performs worse on the 2-to-1 split, which we attribute to overfitting. This is not
too surprising considering the small amount of data and the capacity of the RBF
kernel, which makes the weight learning result even more remarkable.

Mammographic Mass. On this dataset, weight learning performs on par or better
than SVM on all splits and all subsets, except for the last one. Even though the
variance is quite large on the small samples, one can see that the improvement
is consistent across all the subsets from 60 to 360 examples. On the last subset
(420 examples), weight learning did not yield any improvement and the amount of
training data was sufficient for SVM to achieve comparable performance.

Spambase. Here, the benefit of weight learning is more prominent, as WSVM with
the learned weights achieves the performance comparable to SVM that is trained
on twice as much data. Note that the variance is now much smaller and we see,
for example, 2% improvement over the SVM trained on the same data, when the
sample size is 486. Therefore, the additional knowledge about the importance of
each training data point, which is represented as instance weights, results in more
efficient use of the limited training sample.

3.6.4 Handwritten Digit Recognition
In this section, we consider the handwritten digit recognition experiment of Vapnik
and Vashist, (2009) and evaluate our weight generation schemes on that data.

The first scheme is described in § 3.5.2 (page 50) and is based on the assumption
that digit ranking is available as additional information. Specifically, the confidence
scores η̂i ∈ [−1, 1] are provided along with the class labels yi = ±1, and are used
as the estimates of the true regression function:

η̂i ≈ EY |X [Y |X = xi] = 2P(Y = 1 |X = xi)− 1.
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Such confidence scores may be available on the datasets where robust annotation
is obtained by aggregating labelings from several human experts. In fact, that is
exactly how we collected these scores as we describe next.
We collected additional annotation in the form of rankings from three human

experts. The humans were presented with random samples of the 10×10 pixel digits
and were asked to label them using one of 5 possible labels, which we translated
into a score in {−1,−0.5, 0, 0.5, 1}. Each of the 100 digits from the training set
was ranked 16 times and the average score was then used. Finally, the weights
for WSVM were computed using (3.18) (page 51). A similar in spirit setting was
previously considered by Wu and Srihari, (2004).

Figure 3.8 shows the experimental results. We observe that additional information
from human experts helps on small subsets, but its influence diminishes on larger
subsets. This might be in part due to the difference in image representation used
by SVMs and humans. In particular, humans’ recognition of digits is translation
invariant, while the pixelwise representation is not. This leads us to our final
experiment on the extended version of that dataset.
We extend the original training sample of 100 digits by shifting each digit by

one pixel in all eight directions, thus obtaining 9 times the initial sample size.
We assume that both the human rankings and the privileged features from the
experiment of Vapnik and Vashist, (2009) are unaffected by such translations and
we simply replicate them. The experimental results are presented in Figure 3.8,
right. Note that WSVM with human rankings is now consistently on par or better
than SVM and is somewhat comparable to SVM+.

Remarkably, weight learning gives significant performance boost on the extended
version of the dataset, which shows that it can be successfully combined with other
sources of additional information, like the hint about translation invariance in
this case. Interestingly enough, Lauer and Bloch, (2008) discussed the possibility
of combining the virtual sample method, which we used to extend the training
set, with instance weighting where each virtual point is given a confidence score
ci. Our weight learning algorithm does exactly that, but without trying to model
the measure of confidence explicitly. Instead, it attempts to directly optimize an
estimate of the expected loss R(f).

3.7 Conclusion
In this chapter, we explored the framework of learning using privileged information
that was recently introduced by Vapnik and Vashist, (2009). In particular, we
studied certain properties of the SVM+ algorithm, such as uniqueness of its
solution, and showed that it is closely related to the well-known weighted SVM
(WSVM). Furthermore, we revealed that all SVM+ solutions are constrained to
have a certain dependency between the dual variables and the incurred loss on the
training sample, and that the prior knowledge from the SVM+ framework can be
encoded via instance weights in WSVM.

Privileged information is not the only source of additional information that could
be used to improve the performance when training data is limited. In particular, we
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proposed a weight learning method in § 3.5.3 which allows one to learn the WSVM
weights directly from data using a validation set. Experimental results confirmed
our intuition that importance weighting is a powerful technique of incorporating
prior knowledge which can lead to significant performance improvements.

In the next chapter, we consider another approach – multitask learning – which
can also be used to improve the generalization performance of learning algorithms
when the amount of training data is limited.



4Scalable Multitask Representation Learning
for Scene Classification

We continue our exploration of techniques that improve classification performance
of learning algorithms in the regime of limited training data. In Chapter 3, we
considered binary classification problems and saw that privileged features as well as
importance weighting can help in training classifiers that are more robust against
outliers and outperform the classical SVM when the number of training examples
is small. Here, we consider multiclass problems and use a multitask learning
framework to learn an effective low dimensional image representation that is shared
across multiple classes.

The underlying idea of multitask learning is that learning tasks jointly is better
than learning each task individually. In particular, if only a few training examples
are available for each task, sharing a jointly trained representation improves
classification performance. Here, we view classifiers for each class as separate tasks
and propose to train them jointly with the shared representation. Consequently,
the classifiers are able to exploit latent inter-class correlations that may exist
between closely related tasks, which ultimately improves the performance.
Our method employs dual optimization and is scalable with respect to the

original feature dimension. In particular, it can be used with high dimensional
image descriptors based on the Fisher Vector encoding (Sánchez et al., 2013).
We consistently outperform the current state of the art on the SUN 397 scene
classification benchmark with varying amounts of training data.
The material in this chapter is based on the following publication:

• M. Lapin, B. Schiele, and M. Hein (2014b). “Scalable Multitask Repre-
sentation Learning for Scene Classification.” In: The IEEE Conference on
Computer Vision and Pattern Recognition (CVPR).

4.1 Introduction
Recently, Sánchez et al., (2013) showed that feature encoding based on the Fisher
kernel yields significantly better results compared to the bag of visual words (BOW)
model. The Fisher kernel was introduced by Jaakkola, Haussler, et al., (1999) as
a model that combines the benefits of generative and discriminative approaches,
and was later popularized in computer vision by Perronnin et al., (2010), who
proposed an encoding scheme based on visual vocabularies: the Fisher Vector
(FV). FV encoding was instrumental to achieving state of the art performance in
scene classification, as shown by Juneja et al., (2013). However, one of the major
shortcomings of FV compared to BOW is that FV descriptors are dense and high
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dimensional. In our experiments, for example, we work with features that have
over 260K dimensions, which obviously presents a scalability problem.
The de facto standard to address image, object, and scene classification today

is to train separate classifiers in a one-vs-all (OVA) regime. However, it has long
been argued that joint learning of class representations and knowledge transfer
across classes are the key ingredients to solving the following outstanding problems
in computer vision: (i) scaling classification to a large number of categories, and
(ii) learning from a small number of training examples. This calls for a multitask
learning framework where each binary classifier becomes a separate task and all
classifiers as well as the shared representation are learned jointly. In contrast to
the independent OVA training, this enables the classifiers to exploit inter-class
correlations that may exist between related classes.
While there has been significant progress in the area of multitask learning in

the last decade both on the theoretical as well as the algorithmic side (Argyriou
et al., 2008; Caruana, 1997; Kang et al., 2011; Maurer et al., 2013; Romera-Paredes
et al., 2012), most of the proposed methods do not scale well to very large feature
dimensions encountered in computer vision problems. To enable inter-class transfer
using modern image representations, we propose, as our first main contribution, a
new scalable formulation of multitask representation learning. Our method jointly
learns a linear mapping into a lower dimensional space which is then used to build
the classifiers for each class.
To address the large scale of the resulting optimization problem, we adapt the

stochastic dual coordinate ascent (SDCA) optimization scheme recently developed
by Shalev-Shwartz and Zhang, (2013b). The SDCA algorithm can be applied to
smooth as well as Lipschitz losses (e.g. the hinge loss), it has a clean stopping
criterion (the duality gap), and fast convergence rate which is superior to that of
the vanilla stochastic gradient descent. Importantly, the algorithm operates on
dual variables which is a significant advantage in our setting with the number of
training examples being much smaller than the feature dimension. Our method,
which we call MTL-SDCA, is efficient since variable updates for the hinge loss can
be computed in closed form.
Finally, we would like to highlight a connection between multitask learning of

Maurer et al., (2013) and supervised dictionary learning of Mairal et al., (2012).
Both methods learn a set of vectors, called the dictionary, that defines a subspace
that is shared across tasks. However, dictionary learning is usually formulated
to optimize the reconstruction error in image processing applications, while our
primary goal is to find a new representation where the classes are well separated.

As a second contribution, we apply our MTL-SDCA method to the challenging
problem of scene classification on the SUN 397 benchmark (Xiao et al., 2010). In
line with previous findings, we observe that an important ingredient for the best
performance on this dataset is the high dimensional FV encoding. Surprisingly,
it achieves excellent performance even with a single image descriptor based on
SIFT (Lowe, 2004). We also confirm that the state of the art performance in scene
classification is a result of a carefully engineered feature extraction pipeline, which
we design following the established best practices (Chatfield et al., 2011; Juneja
et al., 2013; Sánchez et al., 2013).
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We improve upon the state of the art1 on SUN 397, which asserts efficiency
and effectiveness of our MTL-SDCA method. Furthermore, we validate that the
approach performs well even in the case where only little training data is available,
as it is expected from a multitask learning method.

4.2 Multitask Learning
In this section, we introduce the multitask representation learning framework and
develop a scalable optimization scheme based on SDCA. We discuss a general
multitask setting first, and then specialize to multiclass problems, where the shared
representation and the classifiers are learned jointly.

Here, we introduce our notation and the learning problem. Let T be the number
of tasks (classes), and consider a training sample {(xi, yti) | 1 ≤ t ≤ T, 1 ≤ i ≤ n},
where xi ∈ Rd and yti ∈ {±1}. We assume that all tasks have the same training
examples (but different labels), even though this can be easily generalized. The
setting we have in mind is that the feature space is high dimensional, but the
sample size is limited, that is d� n. This is quite common in modern computer
vision problems: one can easily have d ≥ 105 with the FV encoding, while n is at
most on the order of 104 in the SUN 397 challenge, see § 4.4 (page 69).
We learn a matrix U in Rd×k with k � d, which is used to generate the low

dimensional representation of the data, zi = U>xi. Moreover, we learn linear
predictors wt in Rk that operate on the data in the low dimensional space. Let
X ∈ Rd×n be the matrix of stacked feature vectors xi, W ∈ Rk×T the matrix of
stacked predictors wt, K = X>X the Gram matrix, and M = W>W . Note that
since 〈wt, U>xi〉 = 〈Uwt, xi〉, the matrix U can be interpreted as a dictionary and
vectors wt as the corresponding decomposition coefficients (Maurer et al., 2013).

Multitask Representation Learning

Our multitask representation learning problem is formulated as

min
U∈Rd×k

1
T

T∑
t=1

min
wt∈Rk

PU,t(wt) + µ

2 ‖U‖
2
F , (4.1)

where the objective for task t given a fixed U is

PU,t(wt) = 1
n

n∑
i=1

Lti
(
〈wt, U>xi〉

)
+ λ

2 ‖wt‖
2
2 , (4.2)

and λ > 0, µ > 0 are the regularization parameters, Lti is a convex margin-based
loss function, and ‖·‖F denotes the Frobenius norm. For the hinge loss, which we
consider in our experiments, we let

Lti
(
〈wt, U>xi〉

)
, max

{
0, 1− yti〈wt, U>xi〉

}
.

1 At the time of publication of (Lapin et al., 2014b).
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Here, we keep the general notation for the loss function, but instantiate it with the
hinge loss when we discuss our optimization algorithm and experiments.
Note that the inner subproblems are standard OVA SVMs trained in a lower

dimensional subspace, which is determined by the matrix U ∈ Rd×k. The latter is
learned jointly for all tasks which facilitates knowledge transfer across the classes.
This is of particular interest when the amount of training examples per class is
limited and at least some of the classes are related.
Let us now discuss the relation to an alternative multitask feature learning

formulation proposed by Argyriou et al., (2008):

min
U∈Rd×d,UUT=I

W∈Rd×T

T∑
t=1

n∑
i=1

Lti
(
〈wt, U>xi〉

)
+ γ ‖W‖2

2,1 , (4.3)

where ‖W‖2
2,1 = ∑d

i=1 ‖w(i)‖2 and w(i) ∈ RT are the rows of W . The key difference
to our approach is that we work with a low dimensional representation U ∈ Rd×k,
whereas the method above works with a square matrix U ∈ Rd×d and enforces
certain features to be discarded via the sparsity inducing penalizer ‖W‖2

2,1, which
also couples the tasks. While (4.3) is convex and, therefore, has a strong theoretical
guarantee of convergence to the global optimum, it does not scale to a high
dimensional feature representation, since U ∈ Rd×d is a dense matrix that requires
O(d2) memory. Our approach is scalable since our matrix requires only O(k d)
memory with k � d. Moreover, we enforce the coupling of the tasks directly by
requiring that U maps to a low dimensional subspace. Therefore, we do not need
to additionally enforce the coupling of tasks via a sparsity enforcing regularizer
on the predictors wt. This allows to formulate the optimization problem in a way
that it reduces to standard OVA SVMs when µ = 0, which is not possible in the
framework of Argyriou et al., (2008).

4.2.1 MTL-SDCA Algorithm
The optimization problem (4.1) of our multitask representation learning framework
is biconvex: it is convex in W ∈ Rk×T for a fixed U and vice versa. It is not
jointly convex in U and W , which is prevalent to most multitask formulations. A
common optimization method in that case is block coordinate descent, see e.g.
(Gorski et al., 2007, Algorithm 4.1). We alternate between fixing U and optimizing
W , and then fixing W and optimizing U . Each subproblem is convex and one
achieves monotonic descent in each iteration. This guarantees convergence to a
critical point of the objective (4.1), see (Gorski et al., 2007), which is a standard
convergence result for nonconvex problems. For the two convex subproblems, we
propose specialized variations of SDCA, which is currently among the state of the
art algorithms in large scale optimization (Shalev-Shwartz and Zhang, 2013b). We
summarize our MTL-SDCA method in Algorithm 4.1.
Scalability of our approach crucially depends on the algorithm for learning

U ∈ Rd×k. The choice of an algorithm that solves the dual problem is primarily
motivated by our experiments on the SUN 397 benchmark. We use dense high
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Algorithm 4.1 MTL-SDCA
1: Input: data {(xi, yti)}, initial U (0), parameters λ, µ, ε
2: Let: W (0) = 0.
3: repeat {s = 1, . . .}
4: for t = 1 to T do
5: Train OVA SVMs on zi = U (s−1)>xi (using SDCA):

w
(s)
t ← arg minw (1/n)∑n

i=1 Lti
(
〈wt, U (s−1)>xi〉

)
+ (λ/2) ‖wt‖2

2

6: end for
7: Update the shared representation U (using SDCA with updates (4.7)):

U (s) ← arg minU∈Rd×k (1/nT )∑i,t Lti
(
〈w(s)

t , U>xi〉
)

+ (µ/2) ‖U‖2
F

8: until change in variables is below ε

dimensional feature vectors with the number of dimensions d being an order of
magnitude larger than the number of training examples n, which makes dual
optimization a natural choice.

For simplicity, we describe the algorithm in terms of primal variables U and W .
However, to be computationally efficient, our implementation works only with the
corresponding dual variables α and precomputed kernel matrices K and M , which
in our setting fit into memory. The actual U and W are never computed at any
stage. Further technical details can be found in § B.1 (page 187).

Learning W . Note that learning the predictor matrix W ∈ Rk×T when U is fixed
is the easier subproblem as the problems for each task decouple. Thus they can be
trained in parallel using any SVM solver and the choice of SDCA here is more a
matter of convenience.

Learning U . We now show that the matrix U can be learned efficiently via an
adaptation of the SDCA algorithm of Shalev-Shwartz and Zhang, 2013b. If W is
fixed, the problem (4.1) reduces to

min
U∈Rd×k

1
nT

∑
i,t

Lti
(
〈wt, U>xi〉

)
+ µ

2 ‖U‖
2
F . (4.4)

The analogy to SVM now comes from the fact that

〈wt, U>xi〉 = 〈U, xiw>t 〉.

Therefore, we can interpret U as the weight vector of an SVM model with the
feature representation xiw

>
t . Moreover, note that the Frobenius norm of U is

nothing else but the Euclidean norm of the matrix U rearranged as a vector. This
analogy allows us to rely on SDCA convergence results that were developed for
SVM and expect the same convergence guarantees when learning the matrix U .
However, as the correspondence may not be obvious, we derive efficient SDCA
updates specifically for the case of learning U with the hinge loss. Our derivation
is based on Fenchel duality which is briefly covered in Appendix A.2 (page 183).
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The Fenchel dual problem associated with (4.4) is

max
α∈RT×n

DW (α), (4.5)

DW (α) = 1
nT

∑
i,t

−L∗ti (−αti)−
µ

2

∥∥∥∥ 1
µnT

∑
i,t

αtixiw
>
t

∥∥∥∥2

F
,

where L∗ti is the convex conjugate of Lti, and for the hinge loss we have

L∗ti(−b) =

−ytib 0 ≤ ytib ≤ 1,
∞ otherwise.

Note that α is a T by n matrix of dual variables, where the ith column is associated
with the training example (xi, yi), and the row t is associated with the task t. Let

U(α) , 1
µnT

∑
i,t

αtixiw
>
t , (4.6)

then, from the optimality conditions, we have U∗ = U(α∗), where U∗ is the solution
of the primal problem (4.4) and α∗ is the solution of the dual problem (4.5).

We solve the dual problem using SDCA. At every step s, an index i in {1, . . . , n}
and a task t in {1, . . . , T} are chosen uniformly at random. The update of α(s)

ti is
then computed as

α
(s)
ti = α

(s−1)
ti + ∆αti,

where ∆αti is the stepsize that is chosen to achieve maximal ascent of the dual
objective DW (α) when all other variables are fixed. We have

∆αti = arg max
a∈R

−L∗ti
(
− (α(s−1)

ti + a)
)
− a

〈
U(α(s−1)), xiw>t

〉
− a2

2µnT
∥∥∥xiw>t ∥∥∥2

F
,

which for the hinge loss can be computed in closed form.

Efficient updates of α. Following Shalev-Shwartz and Zhang, (2013a), we provide
a closed form solution for ∆αi when Lti(a) = φγ(ytia) is the smooth hinge loss,
with φγ defined as

φγ(a) ,


1− a− γ/2 a ≤ 1− γ,
1

2γ (1− a)2 1− γ < a < 1,

0 a ≥ 1.
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In our experiments, we set γ = 0 which recovers the standard (non-smooth) SVM
hinge loss. The formula for the update ∆αti is given below:

∆αti = yti max
(
− ytiα(s−1)

ti ,min
(

1− ytiα(s−1)
ti ,

1− ytix>i U(α(s−1))wt − γytiα(s−1)
ti

1
µnT
‖xi‖2

2 ‖wt‖
2
2 + γ

))
.

(4.7)

Note that the norms ‖xi‖2
2 and ‖wt‖2

2 are directly available from the precomputed
matrices K and M , and the inner product x>i U(α(s−1))wt can be computed using
(4.6). We provide further technical details in § B.1 (page 187).

Initialization. In all the experiments, we let k = T . This choice is motivated by a
two-layer architecture, where the output of OVA SVMs is fed into a second layer
of OVA classifiers. In this case, we have a natural initialization for U , which is
required by our MTL-SDCA algorithm. Specifically, we let U (0) = WSVM, where
WSVM ∈ Rd×T is the matrix of stacked predictors w̃t that have been trained using
the original features xi. This initialization worked well in our experiments.

Stopping criterion. We use the relative duality gap as a stopping criterion in our
SDCA algorithms that solve the two subproblems of learning W and U . Let P
and D be the primal and dual objectives, the condition we check is(

P (U(α))−D(α)
)
/max

{
|P (U(α))| , |D(α)|

}
< ε,

with ε = 10−3. In the master problem, we stop when the change in dual variables
of the two subproblems is below ε as measured by the root mean square error
(RMSE), which is defined as RMSE(∆) =

√
(∑m

i=1 ∆2
i )/m.

4.2.2 MTL-SDCA Extensions
Our method fully benefits from the generality of the SDCA framework which can
be applied to different loss functions and different regularizers (Shalev-Shwartz
and Zhang, 2013b, 2014). We discuss a few examples below.

Other scalar losses: The method can be applied to other convex loss functions,
e.g. the squared loss, for which SDCA updates are also computed in closed
form. If there is no closed form solution (e.g. there is none for the logistic
loss), then ∆αi can be computed via a few iterations of the Newton method.

Other regularizers: Another straightforward generalization would be the intro-
duction of `1/`2 regularization, also known as the elastic net (Zou and Hastie,
2005). That would require keeping a copy of the primal variable and per-
forming `1-shrinkage after every update.

Structured losses: Finally, SDCA can be applied to structured loss functions,
such as the ones used in Multiclass SVM of Crammer and Singer, (2001) and
in Latent SVM of Felzenszwalb et al., (2008).
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Method Dataset nclass = 5 nclass = 10 nclass = 20 nclass = 50 nclass = 100

Kang et al. 91.6 (0.3)
STL-SDCA USPS 69.4 (0.6) 76.3 (1.1) 83.7 (0.2) 88.5 (0.5) 90.8 (0.3)
MTL-SDCA 71.4 (0.7) 77.2 (0.5) 84.6 (0.4) 90.0 (0.5) 90.6 (0.2)

Kang et al. 84.8 (0.3)
STL-SDCA MNIST 65.6 (0.7) 73.6 (0.8) 79.8 (1.0) 83.1 (0.6) 85.7 (0.4)
MTL-SDCA 66.2 (0.7) 74.0 (1.0) 79.7 (0.9) 83.4 (0.6) 86.0 (0.2)

Table 4.1.: Mean accuracy across 5 splits on two handwritten digit recognition datasets
(numbers in parenthesis show standard deviation scaled by 1/

√
5, as reported

in Kang et al., 2011), nclass indicates the number of training examples per
class. Original images were preprocessed with PCA reducing dimensionality
to d = 87 (USPS) and d = 64 (MNIST) retaining 95% of the variance.

4.3 Handwritten Digit Recognition
Before delving into scene classification on a challenging SUN 397 benchmark, we
begin with a first set of experiments on two handwritten digit recognition datasets,
where direct comparison to other multitask learning methods is readily available.
Our algorithm is compared against two baselines:

Kang et al.: multitask feature learning method of Kang et al., (2011), which
recently outperformed established multitask methods on the same data;

STL-SDCA: single task learning approach based on OVA SVM.

The main goal of these experiments is twofold: (i) compare the proposed approach
to a state of the art multitask learning algorithm, and (ii) experimentally verify
that classification using the shared representation z = U>x is superior to single
task learning in the original feature space.

We use two handwritten digit recognition datasets that are based on the subsets
of USPS and MNIST. The data is provided by Kang et al., (2011), and we follow
their evaluation protocol: parameters are tuned on a validation set, which is not
used for training, and performance is evaluated on a fixed test set of 500 examples.
Training and validation subsets are sampled randomly 5 times from a fixed set of
1500 examples. Experimental results are reported in Table 4.1.

On the USPS dataset (upper part of Table 4.1), single task and multitask
learning algorithms perform on par when we use 100 training examples per class,
and Kang et al. outperforms our methods in this case. When the amount of
training data is successively reduced from 100, over 50, 20, 10, to 5 examples,
the performance of STL-SDCA, as well as MTL-SDCA, decreases as expected.
A similar trend is observed on the MNIST dataset, where both STL-SDCA and
MTL-SDCA outperform Kang et al. with nclass = 100. However, the advantage of
multitask over single-task learning becomes apparent as MTL-SDCA consistently
outperforms STL-SDCA in every setting, with a single exception at nclass = 20
on MNIST data. As expected, multitask learning is particularly helpful when the
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amount of training data is extremely limited, e.g. we observe strong improvements
with nclass = 5 and 10 training examples per class.

Discussion. Experimental results on the two small scale datasets suggest that our
approach is competitive with the state of the art multitask learning method of
Kang et al., (2011). The benefit of multitask learning is more pronounced on
smaller training sets, which agrees both with the general intuition behind multitask
learning and the related theoretical results of Maurer et al., (2013).

4.4 Scene Classification on SUN 397
In this section, we report our main experimental results on the challenging SUN
397 benchmark (Xiao et al., 2010), where the task is to classify real world images
into one of the 397 scene categories that cover both indoor and outdoor sites. Our
multitask learning method consistently outperforms single-task learning baselines
and advances the current state of the art by over 2% in accuracy. The structure of
this section is summarized below.

• In § 4.4.1, we provide details about the SUN dataset and describe the general
experimental setup.

• In § 4.4.2, we concentrate on the feature extraction pipeline for images
and investigate the effect of various engineering decisions, such as PCA
preprocessing, normalization, and application of nonlinear feature maps.

• In § 4.4.3, we establish a strong baseline for further comparison by reproducing
the state of the art results of Sánchez et al., (2013).

• In § 4.4.4, we provide an in-depth evaluation and analysis of our MTL-SDCA
method. We compare against the single-task learning baselines, as well as
against a two-layer architecture mentioned in § 4.2.1. We also highlight the
advantage of multitask learning as measured by top-k accuracy, where k
guesses are allowed, and discuss the runtime analysis of our pipeline.

4.4.1 Experimental Setup
We follow the evaluation protocol proposed by Xiao et al., (2010) in all experiments:
we use nclass ∈ {5, 10, 20, 50} images per class for training and nclass = 50 images
per class for testing. We use the 10 splits provided on the website of the dataset2
and report mean accuracy and standard deviation over the 10 splits. We consider
every training subset in each split as an independent dataset and run the whole
experimental pipeline – including the feature extraction, codebook learning, and
model selection – on each of them separately.
Our feature extraction pipeline follows closely the one described by Sánchez

et al., (2013): images are resized to 100K pixels, if larger, and approximately 10K

2 http://people.csail.mit.edu/jxiao/SUN

http://people.csail.mit.edu/jxiao/SUN
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descriptors are extracted per image from 24× 24 patches on a regular grid every 4
pixels at 5 scales 2−2:.5:0. We use 128-dim SIFT descriptors of Lowe, (2004) and
96-dim local color statistic (LCS) descriptors of Clinchant et al., (2007).
The descriptors are processed by PCA as discussed below and we use on the

order of 106 descriptors to learn the PCA projections. Finally, descriptors are
encoded using the Fisher Vector (FV) encoding and pooled over a spatial pyramid
with 4 regions (the entire image and three horizontal stripes). The codebook for FV
is given by a GMM with 256 Gaussians, which is learned using the EM algorithm.
This yields the following feature dimensions of the final descriptor: d = 131, 072
(SIFT) and d = 262, 144 (SIFT+LCS).

We use the VLFeat library of Vedaldi and Fulkerson, (2008) for feature extraction
and FV encoding. To facilitate reproduction of our results, we publish all the
necessary code3, including the solvers for STL-SDCA and MTL-SDCA that are
implemented in C++ and have an interface to Matlab.

4.4.2 Feature Engineering

nclass = 5 nclass = 10 nclass = 20 nclass = 50
LCS PN L2 PCA Lin Sqr Chi Lin Sqr Chi Lin Sqr Chi Lin Sqr Chi

64 18.5 20.6 20.8 26.0 28.8 28.8 33.6 35.8 36.0 43.2 45.1 45.7

� 64 18.6 20.8 20.8 27.0 29.3 29.1 35.2 37.6 37.5 45.0 47.2 47.2
� � 64 18.6 20.5 20.6 27.2 29.2 29.3 35.3 37.3 37.4 45.0 47.4 47.3
� � 64 18.2 19.4 19.5 26.4 28.8 28.7 36.7 39.2 39.1 44.0 45.9 46.0
� � � 64 18.5 20.4 20.3 26.7 29.1 29.2 34.1 36.8 36.7 44.4 46.1 46.1

� 128 19.0 21.4 21.4 26.9 29.6 29.8 35.8 39.1 39.0 44.7 47.4 47.6
� � 128 18.6 21.0 21.1 26.8 29.5 29.5 35.3 38.3 38.0 44.3 47.0 47.2
� � 128 19.5 21.8 21.8 28.0 30.6 30.8 35.9 38.2 38.2 45.8 48.0 48.3
� � � 128 20.0 22.3 22.5 28.5 31.2 31.2 36.1 38.6 38.6 46.2 48.3 48.4

Table 4.2.: STL-SDCA accuracy on the first split of SUN 397 (Xiao et al., 2010). See
§§ 4.4.1 and 4.4.2 for further details. LCS: local color statistic descriptor;
PN: power normalization; L2: `2-normalization; PCA: independent PCA
of SIFT and LCS to 64-dim each vs. joint PCA to 128-dim; Lin/Sqr/Chi:
linear/Hellinger/χ2 kernel; nclass: the number of training examples per class.

In this section, we explore the impact of several implementation details on the final
classification performance. Sánchez et al., (2013) provide an extensive evaluation
of the effects of PCA, `2-normalization, power normalization (z ← sign(z) |z|ρ,
0 < ρ ≤ 1), and other parameters on the PASCAL VOC 2007 dataset. While their
findings suggest that these details have significant effect on the final performance,
a similar evaluation was not done on SUN 397. It is not clear which combination

3 https://github.com/mlapin/cvpr14mtl

https://github.com/mlapin/cvpr14mtl
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of the engineering decisions performs best, in particular for the LCS descriptor.
We aim to fill this gap in this section.

To save computation time and avoid overfitting to other splits, we perform all
experiments in this section on the first split only. We set the SVM parameter
C = (1/λn) by 2-fold cross-validation and retrain models with the best parameter
on the full training subsets. Our results are summarized in Table 4.2.

Impact of PCA. When both SIFT and LCS descriptors are used, there are two
ways to perform PCA preprocessing: (i) reduce each descriptor to 64 dimensions
independently and then concatenate, (ii) perform PCA on the combined descriptor
reducing it to 128 dimensions. We observe that performing PCA on the combined
descriptor is generally better and we use this strategy in our further experiments.

Impact of power normalization. Power normalization, also called square rooting,
can be motivated in a number of ways (Sánchez et al., 2013). For example, it can
be interpreted as a variance stabilizing transform (Jegou et al., 2012), and is often
used with the BOW model (Vedaldi and Zisserman, 2012). In our experiments, we
observe that performing power normalization with ρ = 0.5 on the LCS descriptor
improves the performance when it is combined with `2-normalization and joint
PCA. This setting yields the best accuracy in our experiments.

Impact of `2-normalization. The results for `2-normalization seem to depend on
the way PCA preprocessing is done and generally improve the performance when
dimensionality reduction is performed jointly.

Impact of the kernel map. We compare three SVM kernels: linear, Hellinger,
and the χ2 kernel. The Hellinger kernel in our setting is equivalent to performing
power normalization with ρ = 0.5 on the combined SIFT+LCS feature vector.
We observe that the Hellinger kernel performs better than the linear one and is
comparable to the χ2 kernel at significantly lower computational cost. Therefore,
we avoid the χ2 kernel in further experiments.

4.4.3 Baseline Methods
In this section, we mainly pursue two goals: (i) establish a strong single task
learning baseline by reproducing the results of Sánchez et al., (2013), which is the
current state of the art method on the SUN 397 benchmark; (ii) show that we
can achieve further performance improvements using the feature tuning techniques
discussed in § 4.4.2. Our experimental results, which we discuss next, are given in
Table 4.3. As before, the SVM parameter C for single task learning is selected by
2-fold cross-validation and the final model is retrained on the full training subset.
The results are obtained using the Hellinger kernel, PCA on the combined SIFT
and LCS descriptor, with power- and `2-normalization on the LCS feature.

We make a few interesting observations. First, we confirm that the FV encoding
exhibits striking performance even when only a single type of descriptor (SIFT)
is used to represent images. For example, consider the last column in Table 4.3
that corresponds to nclass = 50. Our single task learning baseline, STL-SDCA,
yields an average of 45.1% accuracy across 10 splits using only the SIFT descriptor,
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Method Features nclass = 5 nclass = 10 nclass = 20 nclass = 50

Xiao et al., (2010) 12 combined 14.5 20.9 28.1 38.0
Su and Jurie, (2012) Context+Semantic 35.6 (0.4)
Donahue et al., (2013) DeCAF6 40.9 (0.3)

Sánchez et al., (2013) SIFT 19.2 (0.4) 26.6 (0.4) 34.2 (0.3) 43.3 (0.2)
STL-SDCA, Lin SIFT 17.4 (1.5) 25.8 (0.2) 33.6 (0.3) 43.2 (0.2)
STL-SDCA, Sqr SIFT 20.4 (0.3) 28.2 (0.3) 35.9 (0.3) 45.1 (0.3)
STL-SDCA-Stacked, Sqr SIFT 20.6 (0.4) 28.4 (0.3) 36.1 (0.3) 45.3 (0.3)
MTL-SDCA, Sqr SIFT 20.8 (0.4) 28.9 (0.4) 37.6 (0.3) 46.9 (0.3)

Sánchez et al., (2013) SIFT+LCS 21.1 (0.3) 29.1 (0.3) 37.4 (0.3) 47.2 (0.2)
STL-SDCA, Sqr SIFT+LCS 21.0 (0.5) 29.2 (0.3) 37.8 (0.6) 47.2 (0.4)
STL-SDCA-Stacked, Sqr SIFT+LCS 21.1 (0.4) 29.3 (0.3) 37.9 (0.6) 47.3 (0.4)
MTL-SDCA, Sqr SIFT+LCS 21.2 (0.2) 29.4 (0.4) 38.5 (0.5) 47.9 (0.5)

STL-SDCA, Sqr SIFT+LCS+PN 20.4 (0.6) 29.0 (0.4) 37.4 (0.4) 47.1 (0.3)
STL-SDCA-Stacked, Sqr SIFT+LCS+PN 20.8 (0.3) 29.1 (0.4) 37.5 (0.4) 47.2 (0.4)
MTL-SDCA, Sqr SIFT+LCS+PN 20.9 (0.4) 29.2 (0.4) 38.2 (0.4) 48.1 (0.4)

STL-SDCA, Sqr SIFT+LCS+L2 21.4 (0.4) 29.8 (0.5) 38.2 (0.4) 47.9 (0.3)
STL-SDCA-Stacked, Sqr SIFT+LCS+L2 21.6 (0.3) 30.0 (0.5) 38.3 (0.4) 48.0 (0.4)
MTL-SDCA, Sqr SIFT+LCS+L2 21.7 (0.3) 30.3 (0.5) 39.0 (0.4) 49.0 (0.5)

STL-SDCA, Sqr SIFT+LCS+PN+L2 22.1 (0.6) 30.5 (0.6) 38.8 (0.3) 48.4 (0.2)
STL-SDCA-Stacked, Sqr SIFT+LCS+PN+L2 22.3 (0.6) 30.7 (0.6) 38.9 (0.3) 48.5 (0.2)
MTL-SDCA, Sqr SIFT+LCS+PN+L2 22.4 (0.5) 31.0 (0.7) 39.5 (0.3) 49.5 (0.3)

Table 4.3.: Mean accuracy and standard deviation across 10 splits on SUN 397. STL-
SDCA: single task learning (OVA SVM); STL-SDCA-Stacked: two layer
architecture described in § 4.4.4; MTL-SDCA: our proposed multitask
learning method; Lin/Sqr/Chi: linear/Hellinger/χ2 kernel; LCS: local
color statistic descriptor; PN: power normalization; L2: `2-normalization;
nclass: the number of training examples per class.

and is further improved to 48.4% when color information is added, see the results
with LCS+PN+L2. Similar improvements are also obtained with fewer training
examples, nclass = 5, 10, and 20.

The STL-SDCA baseline outperforms the best published result of Sánchez et al.,
(2013), who obtained 43.3% accuracy using SIFT only and 47.2% accuracy using
SIFT+LCS. It also exceeds the initial results published by the authors of the
dataset (Xiao et al., (2010) reports 38.0% accuracy), as well as the more recent
work (Donahue et al., 2013; Su and Jurie, 2012) that reports 35.6% and 40.9%
respectively. We note that the DeCAF features used by Donahue et al., (2013) were
learned on ImageNet data which may explain why a deep ConvNet is outperformed
in our experiments.
The question we ask next is whether a shared low dimensional representation

can exploit commonalities across scene classes to further improve the performance.
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Figure 4.1.: Illustration of class ambiguity on SUN 397 (Xiao et al., 2010). Labels
(left to right): art school, art studio, art gallery. Visual differences
between these classes are rather subtle and are likely to be dominated by
non-discriminative information in the high dimensional image descriptor.

4.4.4 Multitask Learning
Apart from the obvious scalability issues, the downside of having a dense high
dimensional image descriptor is that it also captures significant amounts of noise
irrelevant to the given object category. When the number of training examples
is small, it is difficult to identify features that generalize well and separate them
from noise. The situation becomes even worse when there are highly related tasks
that are trained using the one-vs-all approach.

The nature of the SUN dataset is such that there are intrinsically related classes
that have very similar visual appearance. For example, consider the illustration
given in Figure 4.1. There are three different categories related to art: “art school”,
“art studio”, and “art gallery”. Visual differences between these classes are rather
subtle and are likely to be dominated by non-discriminative information in the high
dimensional image descriptor. A classifier trained using the one-vs-all technique is
likely to pick a random subset of features that just happen to discriminate between
these related classes on few examples and will not generalize well. Our multitask
learning approach, on the other hand, addresses this issue by forcing all classifiers
to first agree on a significantly lower dimensional subspace of features and only
then attempt to discriminate between the classes.
One natural baseline for comparison in this case is a two layer feed-forward

architecture where the outputs of SVMs from the first layer are used as features
(inputs) to the SVMs in the second layer. We refer to this approach as STL-SDCA-
Stacked. Note that the matrix of the first layer predictors in this case is fixed and
the resulting subspace cannot be influenced by the second layer predictors. On
the contrary, our MTL method allows the matrix U to be iteratively updated thus
propagating information from the second layer back to the first layer.

We tune the regularization parameters for STL-SDCA-Stacked and MTL-SDCA
on the first split of the SUN 397 benchmark and then keep them fixed on the other
9 splits. Our results are reported in Table 4.3. Looking at the STL-SDCA-Stacked
performance, it is evident that the improvement over the single task learning
approach is minor (on the order of .1%–.2%), yet consistent. That gives us hope
that there are inter-class correlations that could be exploited, even though the
stacked architecture with a fixed first layer may be suboptimal in this case.
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(b) SIFT + Color

Figure 4.2.: Mean top-k accuracy and standard deviation across 10 splits on the SUN 397
dataset. The number of guesses k is varied between 1 and 20. STL-SDCA:
single task learning (OVA SVM); MTL-SDCA: multitask learning method
described in Algorithm 4.1; Human: estimated top-1 human accuracy
from AMT workers. LCS: local color statistic descriptor; PN: power
normalization; L2: `2-normalization; Sqr: Hellinger kernel; Ntrain: the
number of training examples per class.

Let us now discuss the results of our multitask learning approach, MTL-SDCA.

Top-1 accuracy. Results in Table 4.3 clearly indicate superiority of a learned
representation that is shared across multiple classes. MTL-SDCA is consistently
better for every training subset and all choices of image descriptors. Furthermore,
the improvement is more significant when using the multitask learning approach
compared to the stacked single task learning method.
Take for example the performance for nclass = 50. MTL-SDCA achieves 46.9%

accuracy using only the SIFT descriptor and 49.5% using SIFT with LCS+PN+L2.
That is better than the best published results as well as our strong baselines
reported above. While the improvement is not overwhelming (correspondingly,
1.6% and 1% when compared to the stacked classifier), it is consistent across all
settings: using SIFT vs. SIFT+LCS, and training with different amounts of data.

Top-k accuracy. Because there are intrinsically ambiguous classes like the art
scenes mentioned above, or a factory and assembly line scenes, or different types
of shops, we believe that the top-1 accuracy is a suboptimal performance measure
on this dataset. We thus extend our evaluation and report mean top-k accuracy
for each k = 1, . . . , 20 in Figure 4.2. The top-k accuracy assumes that the method
outputs a set of k labels and counts the prediction as correct if the ground truth
label is included in that set. As our methods produce a ranking of labels, we obtain
the top k labels by sorting the prediction scores in descending order.

Again, we observe that MTL-SDCA consistently improves the performance not
only for every image descriptor and every training subset, but also for every number
of allowed guesses k. Moreover, the improvement is more significant for k ≥ 3.
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For example, using SIFT only and nclass = 20 examples per class, MTL-SDCA
improves the top-5 accuracy by 3.7% and top-15 accuracy by 5%.
Finally, we explore how multitask learning on this dataset compares to the

human performance, which is estimated based on the confusion matrix of “good”
AMT4 workers provided by Xiao et al., (2010). The estimated top-1 accuracy of
humans is 68.48%, and we observe that already 3–4 guesses are generally sufficient
to reach human performance on that data.

Runtime analysis. The overhead of multitask learning is relatively small (approxi-
mately a factor of 4) if the cost for computing the kernel matrices is taken into
account, and is close to negligible (6%–12%) when complete image classification
pipeline is considered, since most of the time is spent on computation of image
descriptors. Further details can be found in § B.1 (page 187).

4.5 Conclusion
In this chapter, we considered the problem of learning in the regime of limited
training data from the perspective of multitask learning. Specifically, we proposed
a multitask representation learning scheme that jointly learns a set of linear
classifiers and a shared low dimensional representation. Our method employs dual
optimization and scales to high dimensional dense image descriptors, such as the
ones based on the FV encoding.
The principle idea and the main motivation of our method is that a shared

representation allows to leverage task relatedness, which is ubiquitous in computer
vision. The running example of this chapter is scene classification, where different
types of scenes, e.g. art schools and art studios, share common elements of visual
appearance. Therefore, joint learning of a shared representation seems like a
reasonable step towards training the classifiers from relatively small samples.
Our multitask approach outperforms the state of the art on SUN 397 and

consistently improves classification performance over the respective single task
baselines. Moreover, the improvement is particularly evident in top-k accuracy for
k > 1, which we interpret as the ability of multitask learning to discover groups of
related classes. Motivated by that observation, as well as by the fact that certain
scene categories are inherently ambiguous or multilabel in nature, we take a closer
look at top-k performance optimization in the following part of this thesis.

4 AMT – Amazon Mechanical Turk.
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This chapter concludes our exploration of learning with limited training data. We
have considered two important frameworks, learning using privileged information
(LUPI) in Chapter 3, and multitask learning (MTL) in this chapter. Both method-
ologies facilitate introduction of prior knowledge into the learning problem, but do
so in different ways. The LUPI paradigm asserts the existence of privileged features
that are related to the learning problem and can be used during training. Such
features could come from a teacher that guides the learning process. Alternatively,
the prior knowledge may be provided in the form of instance weights that describe
the relative importance or hardness of the training examples.

The MTL framework explores an orthogonal direction. Here, the motivation is to
increase the efficiency of existing training examples by exploiting task relatedness.
We have considered a basic formulation where there is no prior knowledge about
the exact groups of related tasks, although that knowledge could also be included,
e.g. using structured sparsity-inducing norms (Jenatton et al., 2011a). The latter
hints at the important role that regularizers play in the learning problem – a
direction that we explored independently of this thesis in the context of output
kernel learning with multiple tasks in (Jawanpuria et al., 2015).

In the following, we pivot to focus on the analysis and optimization of loss
functions. In particular, we consider top-k error minimization and scalability to
large data sets, as motivated by recent advances in computer vision.



Part II

Learning with Class Ambiguity

Collecting high quality ground truth annotation in modern large scale
datasets requires significant effort and is not always feasible. Trading
off quality and rigor for scale leads to a new challenge that we seek to
address in this part.

• In Chapter 5, we discuss the problem of class ambiguity that
arises in large scale datasets, and recognize the top-k error as
an appropriate target performance measure. We propose top-k
multiclass SVM as a suitable learning algorithm for the top-k
objective, and discuss an efficient algorithm for the Euclidean
projection onto the top-k simplex. The latter enables top-k SVM
optimization within the SDCA framework.

• In Chapter 6, we extend our analysis of class ambiguity and
top-k error optimization along multiple directions. In particular,
we introduce smooth top-k SVM and top-k extensions of the
softmax loss, analyze top-k calibration of multiclass methods,
consider the transition from multiclass to multilabel learning, and
propose smooth multilabel SVM. We discuss SDCA optimization
of the considered methods, contribute novel projection algorithms,
and perform an extensive empirical evaluation on multiclass and
multilabel datasets which leads to interesting insights.
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Chapters 3 and 4 were primarily concerned with learning in the regime of limited
training data. The difficulty of collecting the ground truth annotation motivated
us to consider the LUPI and MTL learning frameworks which improved the
performance while using just 5 to 50 training examples per class. In this chapter,
we tackle a different challenge that exists in modern large scale image classification.
Recent datasets have 200 to 1000 image categories and millions of training examples,
which is a significant advancement compared to the older benchmarks. However,
another issue related to the ground truth annotation arises.
Image classification on large scale is naturally susceptible to class ambiguity.

As the number of classes increases, they become more fine-grained and less easy to
discriminate; they may overlap or exhibit a hierarchical structure. Furthermore,
most real-world images are multilabel in nature as they usually depict multiple
objects or visual categories. These are inherent limitations of single label annotation,
where every image is tagged with a single class label.

One way to address class ambiguity is to improve the annotation by collecting
a complete and consistent list of labels for every training example. However
attractive, that approach is not cost-effective on large scale. Instead, we set
to explore ways that improve learning with class ambiguity using single label
annotation. We recognize that the top-k error is a better performance metric in
that case, as it allows k attempts to guess the ground truth label. We propose
top-k multiclass SVM as a direct method to optimize for top-k performance, and a
fast optimization scheme based on the stochastic dual coordinate ascent (SDCA)
framework of Shalev-Shwartz and Zhang, (2013b). The key component of our
optimization scheme is an efficient algorithm to compute projections onto what
we call the top-k simplex, which is of its own interest. Our experiments show
consistent improvements in top-k accuracy compared to various baseline methods.
The material in this chapter is based on the following publication:

• M. Lapin, M. Hein, and B. Schiele (2015). “Top-k Multiclass SVM.” in:
Advances in Neural Information Processing Systems 29 (NIPS).

5.1 Introduction
As the number of classes increases, two important issues emerge: class overlap and
multilabel nature of examples (Gupta et al., 2014). That phenomenon asks for
adjustment of both the evaluation metrics as well as the loss functions employed.
When a predictor is allowed k guesses and is not penalized for k− 1 mistakes, such
an evaluation measure is known as the top-k error. It is an important metric that
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is particularly well suited to performance evaluation with class ambiguity, as the
illustration in Figure 5.1 indicates.

How obvious is it that each row of Figure 5.1 shows examples of different classes?
Can we imagine a human to predict the ground truth label correctly on the first
attempt? Does it even make sense to penalize a learning system for predicting the
label “River” instead of “Park” for the first image? While the problem of class
ambiguity is apparent in computer vision, similar problems arise in other domains
when the number of classes becomes large.

To address that problem, we propose top-k multiclass SVM as a generalization
of the well-known multiclass SVM of Crammer and Singer, (2001). Our proposed
loss function, which we call the top-k hinge loss, is based on a tight convex upper
bound of the discrete top-k error. A closely related loss function can be found in
the general family of ranking based losses that was recently proposed by Usunier
et al., (2009). We show that our top-k hinge loss is a lower bound on their version
and is thus a tighter bound on the top-k error. As both loss functions are intended
to optimize the top-k error, we refer to them as the top-k hinge loss, and use the
suffixes α and β to differentiate between our and their versions correspondingly.

To facilitate classifier training with the two loss functions, we propose an efficient
optimization scheme based on the stochastic dual coordinate ascent (SDCA) frame-
work of Shalev-Shwartz and Zhang, 2013b. A key ingredient in our optimization
method is an algorithm to efficiently compute projections onto what we call the
top-k simplex. That projection turns out to be an interesting generalization of
the continuous quadratic knapsack problem and the Euclidean projection onto the
standard simplex. The proposed algorithm computes the projection of a point
x ∈ Rd in time O(d log d+ kd) using a procedure based on sorting.
Our top-k multiclass SVM, or simply top-k SVM, scales to large datasets like

Places 205 (Zhou et al., 2014) and ImageNet 2012 (Russakovsky et al., 2015)
featuring 200 to 1000 image categories and millions of training examples. An
extensive experimental evaluation shows that top-k SVM consistently improves the
performance in top-k error over the baseline multiclass SVM, which is equivalent
to our top-1 SVM, as well as over the one-vs-all (OVA) SVM, and other methods
based on ranking losses: SVMPerf of Joachims, (2005), TopPush of Li et al., (2014a),
and Wsabie++ of Gupta et al., (2014).

5.2 Top-k Multiclass SVM
In this section, we consider the general multiclass classification problem, introduce
our top-k SVM, compute the convex conjugate losses for the optimization algorithm,
and finally discuss the related methods. First, we introduce our notation and
formally define the top-k error, and then we proceed as follows.

• In § 5.2.1, we recall the classical multiclass SVM of Crammer and Singer,
(2001), the corresponding (primal) loss function and its convex conjugate,
which is used in the optimization method.



5.2 Top-k Multiclass SVM 81

Figure 5.1.: Class ambiguity in the SUN 397 benchmark dataset (Xiao et al., 2010).
Top: Park, River, Pond. Bottom: Park, Campus, Picnic area.

• In § 5.2.2, we introduce our novel top-k SVM and the corresponding top-k
hinge loss. We also compute its conjugate and define the top-k simplex as
the effective domain of the conjugate loss.

• In § 5.2.3, we elaborate on the connection between our top-k hinge loss (α)
and the top-k hinge loss (β) from the family of losses by Usunier et al., (2009).
We also discuss a reduction scheme that converts multiclass classification into
binary classification, and which is different from the standard OVA approach.
We use that scheme in our experiments with the SVMPerf of Joachims, (2005).

Notation. Let S = {(xi, yi) | i = 1, . . . , n} be a set of n training examples xi ∈ X
along with the corresponding labels yi ∈ Y , let X = Rd be the feature space, and
Y = {1, . . . ,m} the set of labels. The task is to learn a set of m linear predictors
wy ∈ Rd such that the expected loss of the classifier f̂(x) = arg maxy∈Y 〈wy, x〉 is
minimized for a given loss function L. The loss L is usually chosen to be a convex
upper bound on a discrete performance metric, such as the misclassification error
(a.k.a. the zero-one loss), and the top-k error. Although we mainly consider linear
classifiers of the form f(x) = (〈wy, x〉)y∈Y , the approach that we discuss is general
and can be extended to nonlinear classifiers using kernels.
Classification is challenging in the presence of a large number of ambiguous

classes. As the scale of the problem increases, the standard zero-one error becomes
excessively stringent, and it is natural, therefore, to extend the evaluation protocol
to allow k guesses instead of one. That leads us to the top-k error and the top-k
accuracy performance measures, which are well recognized in the computer vision
community following the popular ImageNet benchmark (Russakovsky et al., 2015).
Consider a ranking of labels induced by the prediction scores 〈wy, x〉. Let π be

a permutation such that πj is the index of the jth largest score, i.e.

〈wπ1 , x〉 ≥ 〈wπ2 , x〉 ≥ . . . ≥ 〈wπm , x〉.
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The top-k error, denoted errk, is defined as

errk(f(x), y) = J〈wπk , x〉 > 〈wy, x〉K,

where f(x) = (〈w1, x〉 , . . . , 〈wm, x〉)>, and JP K = 1 if P is true and 0 otherwise.
Note that the standard zero-one loss is recovered when k = 1, and errk(f(x), y) is
always 0 for k = m. Therefore, we are interested in the regime 1 ≤ k < m.

5.2.1 Multiclass Support Vector Machine
In this section, we review the multiclass SVM of Crammer and Singer, (2001)
which will be the basis for the top-k multiclass SVM in the following.

The multiclass hinge loss on a training example (xi, yi) is defined as

L(yi, f(xi)) = max
y∈Y

{
Jy 6= yiK + 〈wy, xi〉 − 〈wyi , xi〉

}
, (5.1)

where Jy 6= yiK plays the same role as the function ∆(yi, y) in structured SVM
(Nowozin and Lampert, 2011; Tsochantaridis et al., 2005) that measures a distance
in label space between yi and y.
Next, we compute the convex conjugate of the loss function (5.1) for the op-

timization scheme that is based on Fenchel duality (see § A.2.2, page 184). In
the following, we adopt the notation of Shalev-Shwartz and Zhang, (2014): let
c , 1− eyi , where 1 is the all ones vector and ej is the jth standard basis vector
in Rm, let a ∈ Rm be defined componentwise as aj , 〈wj, xi〉 − 〈wyi , xi〉, and let

∆ , {x ∈ Rm | 〈1, x〉 ≤ 1, 0 ≤ xi, i = 1, . . . ,m}

be the unit simplex. Note that we can re-write the loss L in (5.1) equivalently as
φ(a) = max{0, (a+ c)π1}, where thresholding with 0 is actually redundant in this
case as (a+ c)π1 = maxy(a+ c)y ≥ (a+ c)yi = 0. It is introduced here to enhance
similarity to the top-k version of the loss defined later.
Proposition 5.1 (Shalev-Shwartz and Zhang, 2014, § 5.1). A primal-conjugate pair
for the multiclass SVM loss (5.1) is

φ(a) = max{0, (a+ c)π1}, φ∗(b) =

−〈c, b〉 if b ∈ ∆,
+∞ otherwise.

(5.2)

The original proof can be found in the respective paper; we follow a similar
argumentation in the proof of Proposition 5.2 below.
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5.2.2 Top-k Support Vector Machine
The main motivation for the top-k loss is to relax the penalty for making an error
in the first (k−1) predictions. Looking at the function φ in (5.2), a direct extension
to the top-k setting would be

ψk(a) = max{0, (a+ c)πk},

which incurs a loss if and only if (a + c)πk > 0. Since the ground truth score
(a+ c)yi = 0, we conclude that

ψk(a) > 0 ⇐⇒ 〈wπ1 , xi〉 ≥ . . . ≥ 〈wπk , xi〉 > 〈wyi , xi〉 − 1,

which directly corresponds to the top-k error errk, with a margin of 1. Note that
the function ψk ignores the values of the first (k − 1) scores. Some of those top
prediction scores could be quite large if there are very similar classes, and that
would be fine in this model as long as the correct prediction is still within the first
k guesses. However, the function ψk is unfortunately nonconvex as the function
fk(x) = xπk returning the kth largest coordinate is nonconvex for k ≥ 2. Therefore,
finding a globally optimal solution is computationally intractable.

Instead, we propose the following convex upper bound on ψk, which we call the
top-k hinge loss (α):

φk(a) = max
{

0, 1
k

k∑
j=1

(a+ c)πj
}
, (5.3)

where the sum of the k largest components is known to be convex (§ A.3, page 185).
We have that

ψk(a) ≤ φk(a) ≤ φ1(a) = φ(a),

for any k ≥ 1 and a ∈ Rm. Moreover, φk(a) < φ(a) unless all k largest scores
are the same. This extra slack can be used to increase the margin between the
current and the (m− k) remaining least similar classes, which should then lead to
an improvement in the top-k metric.

Top-k Simplex

Here, we define a set ∆k that arises naturally as the effective domain1 of the
conjugate of the top-k hinge loss (5.3). By analogy, we call it the top-k simplex
as for k = 1 it reduces to the standard simplex with the inequality constraint,
∆ = {x ∈ Rm | 〈1, x〉 ≤ 1, xi ≥ 0, 1 ≤ i ≤ m}.
Definition 5.1. The top-k simplex is a convex polytope defined as

∆k(r) , {x ∈ Rm | 〈1, x〉 ≤ r, 0 ≤ xi ≤ (1/k) 〈1, x〉 , 1 ≤ i ≤ m} ,

1 A convex function f : X → R ∪ {±∞} has an effective domain dom f = {x ∈ X | f(x) < +∞}.
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Figure 5.2.: Top-k simplex ∆k ∈ R3 for k = 1, 2, 3. Note that ∆1 = ∆ and ∆k ( ∆ for
all k > 1. Moreover, the top-k simpex has

(m
k

)
+ 1 vertices in Rm, as there

can be at most k elements xi for which xi = (1/k) 〈1, x〉.

where the radius r ≥ 0 is the bound on the sum 〈1, x〉. We let ∆k , ∆k(1).
The crucial difference between the standard simplex and the top-k simplex is

the upper bound on xi, which now introduces a coupling between all the elements
in x. The bound limits the maximal contribution of any xi to the total sum 〈1, x〉
thus reducing the set ∆k compared to ∆, see Figure 5.2 for an illustration. As will
become clear in the following, the top-k simplex is the feasible set for the dual
variables of top-k SVM. Our intuition is that such a bound on xi prevents the
classifier to unequivocally commit to a single class (represented by a vertex of the
standard simplex), and instead the classifier has to concentrate the weight on at
least k classes (represented by a vertex of the top-k simplex).

Convex Conjugate of the Top-k Hinge Loss (α)

Next, we derive the convex conjugate of the proposed top-k hinge loss (5.3). We
begin with a known result that is used later in the derivation of the conjugate.
Lemma 5.1 (Ogryczak and Tamir, 2003, Lemma 1). For any h ∈ Rm, 1 ≤ k ≤ m,

k∑
j=1

hπj = min
t∈R

{
kt+

m∑
j=1

max{0, hj − t}
}
,

where π reorders (hj)mj=1 in nonincreasing order, i.e., hπ1 ≥ hπ2 ≥ . . . ≥ hπm .
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Proof. For a t0 ∈ [hπk+1 , hπk ], we have

min
t

{
kt+

m∑
j=1

max{0, hj − t}
}
≤ kt0 +

m∑
j=1

max{0, hj − t0}

= kt0 +
k∑
j=1

(
hπj − t0

)
=

k∑
j=1

hπj .

On the other hand, for any t ∈ R, we have

k∑
j=1

hπj = kt+
k∑
j=1

(
hπj − t

)
≤ kt+

k∑
j=1

max{0, hπj − t}

≤ kt+
m∑
j=1

max{0, hj − t}.

Now, we are ready to compute the conjugate loss. The derivation follows the
proof of Proposition 5.1 and relies on the Lagrangian duality (§ A.1, page 179).
Proposition 5.2. A primal-conjugate pair for the top-k hinge loss (5.3) is

φk(a) = max
{

0, 1
k

k∑
j=1

(a+ c)πj
}
, φ∗k(b) =

−〈c, b〉 if b ∈ ∆k,

+∞ otherwise.
(5.4)

Moreover, φk(a) = max{〈a+ c, λ〉 |λ ∈ ∆k}.

Proof. We use Lemma 5.1 and write

φk(a) = min
{
s | s ≥ t+ 1

k

m∑
j=1

ξj, s ≥ 0, ξj ≥ aj + cj − t, ξj ≥ 0
}
.

The Lagrangian is given as

L(s, t, ξ, α, β, λ, µ) = s+ α
(
t+ 1

k

m∑
j=1

ξj − s
)
− βs

+
m∑
j=1

λj (aj + cj − t− ξj)−
m∑
j=1

µjξj.

Minimizing over (s, t, ξ), we get

α + β = 1, α =
m∑
j=1

λj, λj + µj = 1
k
α.
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As β ≥ 0 and µj ≥ 0, it follows that 〈1, λ〉 ≤ 1 and 0 ≤ λj ≤ 1
k
〈1, λ〉. Since the

duality gap is zero, we finally get

φk(a) = max{〈a+ c, λ〉 |λ ∈ ∆k}.

The conjugate φ∗k(b) can now be computed as

max
a
{〈a, b〉 − φk(a)} = max

a
min
λ∈∆k

{〈a, b〉 − 〈a+ c, λ〉}

= min
λ∈∆k

{− 〈c, λ〉+ max
a
〈a, b− λ〉}.

Since maxa 〈a, b− λ〉 =∞ unless b = λ, we get φ∗k(b) as in (5.4).

We see that the proposed formulation (5.3) naturally extends the multiclass
SVM of Crammer and Singer, (2001), which is recovered when k = 1. We have
also obtained an interesting extension (or rather contraction, since ∆k ⊂ ∆) of the
standard simplex. The set ∆k plays an important role in our optimization scheme
as a feasible set for the dual variables of top-k SVM.

5.2.3 Ranking Based Losses
In this section, we discuss how the proposed top-k hinge loss (α) relates to existing
ranking based losses as well as to the SVMPerf method of Joachims, (2005), which
is designed to optimize multivariate performance measures. We introduce the top-k
hinge loss (β), compute its conjugate, and define the top-k simplex (β). We also
discuss a multiclass to binary reduction scheme that we use in the experiments
with SVMPerf , as well as the related precision@k, recall@k measures.

Recently, Usunier et al., (2009) formulated a general family of convex losses for
ranking and multiclass classification. They proposed the ordered weighted pairwise
classification (OWPC) loss, which in our notation can be written as

Lω(a) =
m∑
j=1

ωj max{0, (a+ c)πj},

where ω1 ≥ . . . ≥ ωm ≥ 0 is a nonincreasing sequence of nonnegative weights. The
relation to the top-k hinge loss becomes apparent if we choose ωj = 1

k
if j ≤ k, and

0 otherwise. In that case, we obtain another version of the top-k hinge loss, which
we call the top-k hinge loss (β):

φ̃k
(
a
)

= 1
k

k∑
j=1

max{0, (a+ c)πj}. (5.5)

It is straightforward to check that

ψk(a) ≤ φk(a) ≤ φ̃k(a) ≤ φ1(a) = φ̃1(a) = φ(a).
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The bound φk(a) ≤ φ̃k(a) holds with equality whenever there are no classification
mistakes ((a + c)π1 = 0) or when all top k guesses are wrong ((a + c)πk ≥ 0).
Otherwise, there is a gap between the α version φk(a) and the β version φ̃k(a), and
our top-k loss φk(a) is a strictly better upper bound on the discrete top-k error.
We perform extensive evaluation and comparison of both losses in § 5.5.

To train a classifier with the OWPC loss, Usunier et al., (2009) used LaRank
(Bordes et al., 2007), while Gupta et al., (2014) and Weston et al., (2011) optimized
an approximation of Lω(a). Instead, we show that the top-k hinge loss (5.5) can
be directly and efficiently optimized within the SDCA framework without the need
of an approximation.

Convex Conjugate of the Top-k Hinge Loss (β)

Here, we derive the convex conjugate of the top-k hinge loss (5.5), which will be
used later in the optimization framework in § 5.3. We obtain a similar statement
to that of Proposition 5.2, with the main difference being the effective domain of
the conjugate loss. By analogy, we introduce the following set.
Definition 5.2. The top-k simplex (β) is a convex polytope defined as

∆̃k(r) , {x ∈ Rm | 〈1, x〉 ≤ r, 0 ≤ xi ≤ r/k, 1 ≤ i ≤ m} ,

where the radius r ≥ 0 is the bound on the sum 〈1, x〉. We let ∆̃k , ∆̃k(1).
Note that unlike in the top-k simplex ∆k, the upper bound on xi is now a fixed

constant r/k. This has two important implications:

• ∆k(r) ⊂ ∆̃k(r) for all r ≥ 0 and 1 ≤ k ≤ m, which is directly related to the
fact that φk(a) ≤ φ̃k(a), i.e. the top-k hinge loss (α) is a tighter bound on
the top-k error than the top-k hinge loss (β);

• the Euclidean projection onto the set ∆̃k(r) is easier to compute, as we
discuss in § 5.4. This is useful for the computation of the dual loss, but not
for the SDCA optimization itself, as we require a biased projection there.
These details are covered in §§ 5.3 and 5.4.

We are now ready to formulate the convex conjugate of the top-k hinge loss (β).
Proposition 5.3. A primal-conjugate pair for the top-k hinge loss (5.5) is

φ̃k(a) = 1
k

k∑
j=1

max
{

0, (a+ c)πj
}
, φ̃∗k(b) =

−〈c, b〉 if b ∈ ∆̃k,

+∞ otherwise.
(5.6)

Moreover, φ̃k(a) = max{〈a+ c, λ〉 |λ ∈ ∆̃k}.

Proof. The proof is similar to the proof of Proposition 5.2; the main step is

φ̃k(a) = min
t,ξ,h

{
t+ 1

k
〈1, ξ〉 | ξj ≥ hj − t, ξj ≥ 0, hj ≥ aj + cj, hj ≥ 0

}
= max

λ

{
〈a+ c, λ〉 | 〈1, λ〉 ≤ 1, 0 ≤ λj ≤ 1

k
, 1 ≤ j ≤ m

}
.
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As before, we observe that the loss (5.5) naturally reduces to the multiclass hinge
loss of Crammer and Singer, (2001) for k = 1. We also would like to highlight the
relation ∆k(r) ⊂ ∆̃k(r) ⊂ ∆, where the inclusion is proper for k > 1.

Multiclass to binary reduction

Next, we show that it is possible to compare top-k multiclass SVM to methods that
solve a binary ranking problem, which is more prevalent in information retrieval.
We use this reduction scheme in our experiments to compare top-k SVM with
SVMPerf of Joachims, (2005) and TopPush of Li et al., (2014a). The trick that we
use is to augment the training set by embedding each xi ∈ Rd into Rmd using a
feature map Φy for each y ∈ Y. The mapping Φy places xi at the yth position in
Rmd and puts zeros everywhere else. The example Φyi(xi) is labeled +1 and all
Φy(xi) for y 6= yi are labeled −1. Therefore, we have a new training set with mn
examples and md dimensional (sparse) features. Moreover, 〈w,Φy(xi)〉 = 〈wy, xi〉
which establishes the relation to the original multiclass problem.

Precision@k and Recall@k

The structured SVMPerf of Joachims, (2005) optimizes general multivariate per-
formance measures that are based on the confusion matrix. In particular, it can
optimize a convex upper bound on the recall@k measure, which is defined as the
recall, i.e. the fraction of all positive examples retrieved, of a classifier that predicts
the top k examples as positive. If we consider the reduction scheme discussed
above with m classes and n training examples, then we have a set of mn examples
with binary labels where exactly n examples are positive and (m−1)n are negative.
Therefore, we have that recall@n = 1 if and only if every training example is clas-
sified correctly, i.e. the ground truth class is ranked above the (m− 1) remaining
classes for every example, and thus err1 = 0 for the original multiclass problem.
Similarly, we conclude that for all 1 ≤ k ≤ m, recall@kn = 1 if and only if errk = 0.
That motivated us to compare the proposed top-k SVM with SVMPerf optimizing
recall@kn on the associated binary problem. We have also experimented in § 5.5.2
with the precision@kn metric, which computes the fraction of positive examples in
the top kn results. For convenience, we use the notation Prec@k and Recall@k for
precision@kn and recall@kn respectively.
Note, however, that the SVMPerf loss function is not directly comparable to

our top-k hinge loss, as it is not decomposable into a sum of instance based
losses. Moreover, while the method of Joachims, (2005) is theoretically elegant,
the corresponding implementation did not scale to very large datasets.

5.3 Optimization Framework
In this section, we describe an optimization framework based on Fenchel duality
for a general `2-regularized multiclass classification problem.
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• In § 5.3.1, we define j-compatible loss functions and obtain primal and
Fenchel dual optimization problems for them. In particular, our Theorem 5.1
allows one to quickly obtain dual problems for the multiclass SVM and the
top-k SVM considered next.

• In § 5.3.2, we discuss specific instantiations with the multiclass SVM and
the top-k SVM loss functions, and show how they can be optimized using
the SDCA framework.

5.3.1 Fenchel Duality for `2-Regularized Multiclass Classification
In this section, we introduce the notion of a j-compatible function, formulate a
dual optimization problem for such functions, and prove that the multiclass SVM
loss as well as the proposed top-k hinge loss are j-compatible. The main technical
results are based on Fenchel duality, which is covered in appendix § A.2 (page 183).
Let X ∈ Rd×n be the matrix of training examples xi ∈ Rd, let W ∈ Rd×m be

the matrix of primal variables obtained by stacking the vectors wy ∈ Rd, and
A ∈ Rm×n the matrix of dual variables. Before we prove our main result of this
section (Theorem 5.1), we first impose a technical constraint on a loss function to
be compatible with the choice of the ground truth coordinate.
Definition 5.3. A convex function φ is j-compatible if for any y ∈ Rm with yj = 0,

sup{〈y, x〉 − φ(x) |xj = 0} = φ∗(y).

This is a technical constraint that is needed to prove the equality in the following
lemma. It applies to the multiclass SVM loss and the top-k hinge loss, as we show
in Proposition 5.4, but it does not apply to the softmax loss. Next, we prove an
auxiliary lemma that is used in the proof of Theorem 5.1.
Lemma 5.2. Let φ be j-compatible, Hj , I− 1e>j , and Φ(x) , φ(Hjx), then

Φ∗(y) =

φ
∗(y − yjej) if 〈1, y〉 = 0,

+∞ otherwise.

Proof. We have that KerHj = {x |Hjx = 0} = {t1 | t ∈ R} and its orthogonal
complement is Ker⊥Hj = {x | 〈1, x〉 = 0}.

Φ∗(y) = sup{〈y, x〉 − Φ(x) |x ∈ Rm}
= sup{〈y, x‖〉+ 〈y, x⊥〉 − φ(Hjx

⊥) |x = x‖ + x⊥},
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where x‖ ∈ KerHj and x⊥ ∈ Ker⊥Hj. It follows that Φ∗(y) can only be finite if
〈y, x‖〉 = 0, which implies y ∈ Ker⊥Hj . LetH†j be the Moore-Penrose pseudoinverse
of Hj. For a y ∈ Ker⊥Hj, we can write

Φ∗(y) = sup{〈y,H†jHjx
⊥〉 − φ(Hjx

⊥) |x⊥ ∈ Ker⊥Hj}
= sup{〈(H†j )>y, z〉 − φ(z) | z ∈ ImHj}
≤ sup{〈(H†j )>y, z〉 − φ(z) | z ∈ Rm} = φ∗((H†j )>y),

(5.7)

where ImHj = {Hjx |x ∈ Rm}. Using rank-1 update of the Moore-Penrose
pseudoinverse (Petersen, Pedersen, et al., 2008, § 3.2.7), we can compute

(H†j )> = I− eje>j −
1
m

(1− ej)1>.

Since y ∈ Ker⊥Hj, the last term is zero and we have (H†j )>y = y − yjej. Finally,
we use the fact that φ is j-compatible to prove that the inequality in (5.7) is
satisfied with equality. We have that ImHj = {z | zj = 0} and (y − yjej)j = 0.
Therefore, when 〈1, y〉 = 0,

Φ∗(y) = sup{〈y − yjej, z〉 − φ(z) | zj = 0} = φ∗(y − yjej).

Lemma 5.2 can be used to easily compute the convex conjugate of a j-compatible
loss function. Next, we use it in the derivation of the dual objective for a general
multiclass classification problem.
Theorem 5.1. Let φi be yi-compatible for each i = 1, . . . , n, let λ > 0 be a
regularization parameter, and let K = X>X be the Gram matrix. The primal and
Fenchel dual objective functions are given as

P (W ) = 1
n

n∑
i=1

φi
(
W>xi − 〈wyi , xi〉1

)
+ λ

2 tr
(
W>W

)
,

D(A) =

−
1
n

∑n
i=1 φ

∗
i (−λn(ai − ayi,ieyi))− λ

2 tr
(
AKA>

)
if 〈1, ai〉 = 0 ∀i,

+∞ otherwise.

(5.8)

Moreover, the primal variables W can be computed as W = XA>, and the
prediction scores on xi can be computed as f(xi) = W>xi = AKi, where Ki is the
i-th column of the Gram matrix K.

Proof. We use Fenchel duality (see § A.2.2, page 184), to write

P (W ) = g(X>W ) + f(W ),
D(A) = −g∗(−A>)− f ∗(XA>),
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for the functions g and f defined as

g(X>W ) = 1
n

n∑
i=1

Φi

(
W>xi

)
= 1
n

n∑
i=1

φi
(
HyiW

>xi
)
,

f(W ) = λ

2 tr
(
W>W

)
= λ

2 ‖W‖
2
F ,

where Hyi = I− 1e>yi . One can easily verify that

g∗(−A>) = 1
n

n∑
i=1

Φ∗i (−nai), f ∗(XA>) = λ

2

∥∥∥∥1
λ
XA>

∥∥∥∥2

F
.

From Lemma 5.2, we have that

Φ∗i (−nai) =

φ
∗(−n(ai − ayi,ieyi)) if 〈1,−nai〉 = 0,

+∞ otherwise.

To complete the proof, we redefine A← 1
λ
A for convenience, and use the first order

optimality condition (Theorem A.1) for the W = XA> formula.

Finally, we show that Theorem 5.1 applies to the loss functions that we consider.
Even though the next proposition is formulated for the top-k hinge loss, it also
applies to the multiclass SVM loss as the latter is a special case with k = 1.
Proposition 5.4. The top-k hinge losses (α) and (β) are yi-compatible.

Proof. Let c = 1− eyi and consider the loss φk. As in Proposition 5.2, we have

max
a, ayi=0

{〈a, b〉 − φk(a)} = min
λ∈∆k

{− 〈c, λ〉+ max
a, ayi=0

〈a, b− λ〉} = φ∗k(b),

where we used that cyi = 0 and byi = 0 (see Definition 5.3), i.e. the yi-th coordinate
has no influence in the conjugate. The same holds for the top-k hinge loss (β).

We have repeated the derivation from § 5.7 in (Shalev-Shwartz and Zhang, 2014)
as there is a typo in their optimization problem (20) leading to the conclusion that
ayi,i must be 0 at the optimum. Lemma 5.2 fixes this by making the requirement
ayi,i = −∑j 6=yi aj,i explicit. Note that this modification is already mentioned in
their pseudo-code for Prox-SDCA.

5.3.2 SDCA Optimization for Top-k SVM
In this section, we describe how to apply the stochastic dual coordinate ascent
(SDCA) framework of Shalev-Shwartz and Zhang, (2013b) to optimize the proposed
top-k hinge loss. SDCA is a well developed optimization scheme that has various
extensions covering scalar and vector valued loss functions, nondifferentiable Lips-
chitz and smooth loss functions, as well as the vanilla and the accelerated schemes
(Shalev-Shwartz and Zhang, 2014). It also enjoys strong convergence guarantees
and is easy to adapt to our problem. We use the vanilla optimization scheme for
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vector valued Lipschitz losses. In particular, we iteratively update a batch ai ∈ Rm

of dual variables corresponding to the training pair (xi, yi), so as to maximize the
dual objective D(A) from Theorem 5.1. We also maintain the primal variables
W = XA> and stop when the relative duality gap is below ε. This procedure is
summarized in Algorithm 5.1.

Algorithm 5.1 Top-k Multiclass SVM
1: Input: training data {(xi, yi)ni=1}, parameters: 1 ≤ k < m and λ > 0, ε > 0
2: Output: W ∈ Rd×m, A ∈ Rm×n

3: Initialize: W ← 0, A← 0
4: repeat
5: randomly permute training data
6: for i = 1 to n do
7: si ← W>xi {prediction scores}
8: aold

i ← ai {cache previous values}
9: ai ← update(k, λ, ‖xi‖2 , yi, si, ai) {see Propositions 5.5 and 5.6}
10: W ← W + xi(ai − aold

i )> {rank-1 update}
11: end for
12: until relative duality gap is below ε

Let us make a few comments on the advantages of the proposed method. First,
apart from the update step which we discuss below, all main operations can be
computed using a BLAS library, which makes the overall implementation efficient.
Second, the update step in Line 9 is optimal in the sense that it yields maximal
dual objective increase jointly over m variables. This is opposed to SGD updates
with data-independent step sizes, as well as to maximal but scalar updates in
scalar SDCA variants. Finally, we have a well-defined stopping criterion as we
can compute the duality gap. The latter is especially attractive if there is a time
budget for learning; see also the discussion on the tradeoffs of large scale learning
by Bousquet and Bottou, (2008). Finally, we note that top-k SVM can be easily
kernelized since f(xi) = W>xi = AKi (see Theorem 5.1).

Dual Variables Update (α)

In this section, we derive an SDCA update step for the proposed top-k hinge loss
(5.3) from § 5.2.2. Specifically, we show that optimization of the dual objective
D(A) over ai ∈ Rm given other variables fixed is an instance of a regularized
(biased) projection problem onto the top-k simplex ∆k( 1

λn
).

Let a\j be obtained by removing the j-th coordinate from a vector a ∈ Rm.
Proposition 5.5. Given a sample (xi, yi), let c , 1− eyi , and let the loss function
φi in (5.8) be the top-k hinge loss (α),

φi(a) = max
{

0, 1
k

k∑
j=1

(a+ c)πj
}
.
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The following two problems are equivalent with a\yii = −x and ayi,i = 〈1, x〉,

max
ai
{D(A) | 〈1, ai〉 = 0} ≡ min

x
{‖b− x‖2 + ρ 〈1, x〉2 |x ∈ ∆k( 1

λn
)},

where b = 1
〈xi,xi〉

(
q\yi + (1− qyi)1

)
, q = W>xi − 〈xi, xi〉 ai, and ρ = 1.

Proof. Using Proposition 5.2 and Theorem 5.1, we write

max
ai

{
− 1
n
φ∗i (−λn(ai − ayi,ieyi))−

λ

2 tr
(
AKA>

)
| 〈1, ai〉 = 0

}
.

For the loss function, we use that 〈1, ai〉 = 0 and get

− 1
n
φ∗i (−λn(ai − ayi,ieyi)) = −λ 〈c, ai − ayi,ieyi〉 = λayi,i,

with −λn(ai−ayi,ieyi) ∈ ∆k. One can verify that the latter constraint is equivalent
to −a\yii ∈ ∆k( 1

λn
), ayi,i = 〈1,−a\yii 〉. Similarly for the regularization term,

tr
(
AKA>

)
= Kii 〈ai, ai〉+ 2

∑
j 6=i

Kij 〈ai, aj〉+ const,

where the const does not depend on ai. Note that

q =
∑
j 6=i

Kijaj = AKi −Kiiai

can be computed using the “old” ai. Let x , −a\yii , we have

〈ai, ai〉 = 〈1, x〉2 + 〈x, x〉 , 〈q, ai〉 = qyi 〈1, x〉 − 〈q\yi , x〉.

Plugging everything together and multiplying with −2/λ, we obtain

min
x∈∆k( 1

λn
)
−2 〈1, x〉+ 2

(
qyi 〈1, x〉 − 〈q\yi , x〉

)
+Kii

(
〈1, x〉2 + 〈x, x〉

)
.

Collecting the corresponding terms finishes the proof.

Dual Variables Update (β)

By analogy, we derive an SDCA update step for the top-k hinge loss (5.5) from
§ 5.2.3. We show that optimization of the dual objective D(A) over ai ∈ Rm given
other variables fixed is an instance of a regularized (biased) projection problem
onto the top-k simplex ∆̃k( 1

λn
).

Proposition 5.6. Given a sample (xi, yi), let c , 1− eyi , and let the loss function
φi in (5.8) be the top-k hinge loss (β),

φi(a) = 1
k

k∑
j=1

max
{

0, (a+ c)πj
}
.
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The following two problems are equivalent with a\yii = −x and ayi,i = 〈1, x〉,

max
ai
{D(A) | 〈1, ai〉 = 0} ≡ min

x
{‖b− x‖2 + ρ 〈1, x〉2 |x ∈ ∆̃k( 1

λn
)},

where b = 1
〈xi,xi〉

(
q\yi + (1− qyi)1

)
, q = W>xi − 〈xi, xi〉 ai, and ρ = 1.

Proof. The proof is analogous to the proof of Proposition 5.5.

Propositions 5.5 and 5.6 effectively cast the problem of finding the “best” ai
given other dual variables fixed as an equivalent problem of projecting a certain
vector b, computed from the prediction scores f(xi), onto the top-k simplex
∆k( 1

λn
), respectively the set ∆̃k( 1

λn
), which are also the effective domains of the

corresponding conjugate losses. Next, we propose efficient algorithms to compute
these biased projections for any 1 ≤ k < m and ρ ≥ 0.

5.4 Efficient Projection Algorithms
One of the main technical contributions of this chapter is an algorithm for efficient
projection onto the top-k simplex which we develop in this section. The optimization
problem was introduced in Proposition 5.5, and we note that it reduces to the
Euclidean projection onto ∆k(r) for ρ = 0, while for ρ > 0 it biases the solution to
be orthogonal to 1. Finally, we consider the biased projection onto ∆̃k(r).

• In § 5.4.1, we highlight that the set ∆k(r) is substantially different from the
standard simplex and none of the existing methods can be used.

• In § 5.4.2, we consider the projection onto the top-k cone, which is obtained
by dropping the constraint 〈1, x〉 ≤ r in the definition of ∆k(r).

• In § 5.4.3, we discuss the complete algorithm for computing the projection
onto the top-k simplex ∆k(r), which is used for the top-k hinge loss (α).

• In § 5.4.4, we consider the biased projection onto the set ∆̃k(r), which is
used in SDCA optimization of the top-k hinge loss (β).

5.4.1 Continuous Quadratic Knapsack Problem
Finding the Euclidean projection onto the standard simplex is an instance of the
general optimization problem

min
x∈Rd
{‖a− x‖2

2 | 〈b, x〉 ≤ r, l ≤ xi ≤ u, 1 ≤ i ≤ d},

known as the continuous quadratic knapsack problem. For example, to project
onto the unit simplex we set b = 1, l = 0 and r = u = 1. This is a well examined
problem and several highly efficient algorithms are available, e.g. see the surveys by
Patriksson, (2008) and Patriksson and Strömberg, (2015). A common modification
considered in the literature is to enforce the equality constraint, 〈b, x〉 = r, which
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generally leads to simpler algorithms. In our approach, the equality constraint is
considered as a special case and is handled separately.
Let us now discuss why projecting onto ∆k(r) is substantially different from

solving the knapsack problem. The problem that we seek to solve is

min
x∈Rd
{‖a− x‖2

2 + ρ 〈1, x〉2 | 〈1, x〉 ≤ r, 0 ≤ xi ≤ 1
k
〈1, x〉 , 1 ≤ i ≤ d}. (5.9)

The first main difference is the upper bound on xi. All existing algorithms expect
that u is a fixed constant, which allows one to consider the decompositions

min
xi∈R
{(ai − xi)2 | l ≤ xi ≤ u}, 1 ≤ i ≤ d,

and solve them in closed-form. In our case, the upper bound 1
k
〈1, x〉 introduces

coupling across all variables, which makes the existing algorithms not applicable.
The second main difference is the bias term ρ 〈1, x〉2. The additional difficulty
introduced by this term is relatively minor and, even though we only need ρ = 1
in Proposition 5.5, we develop an algorithm for the general case ρ ≥ 0, which also
includes the Euclidean projection as a special case with ρ = 0.
The only situation where (5.9) reduces to the knapsack problem is when the

constraint 〈1, x〉 ≤ r is satisfied with equality. In that case, we let u = r/k and
note that any algorithm for the knapsack problem can be used. We choose the
variable fixing algorithm of Kiwiel, (2008b) since it is easy to implement, does not
require sorting, and scales linearly in practice. The bias in the projection problem
reduces to a constant ρr2 in this case and has, therefore, no effect.

5.4.2 Projection onto the Top-k Cone
Let us now consider the case where the constraint 〈1, x〉 ≤ r in the problem (5.9)
is satisfied with strict inequality, i.e. 〈1, x∗〉 < r for the optimal point x∗. In that
case, the constraint has no influence on the solution and can be removed, which
leads us to the (biased) projection onto the top-k cone addressed next.
Lemma 5.3. Let x∗ ∈ Rd be the solution to the following optimization problem

min
x
{‖a− x‖2 + ρ 〈1, x〉2 | 0 ≤ xi ≤ 1

k
〈1, x〉 , 1 ≤ i ≤ d},

and let U , {i |x∗i = 1
k
〈1, x∗〉}, M , {i | 0 < x∗i <

1
k
〈1, x∗〉}, L , {i |x∗i = 0}.

1. If U = ∅ and M = ∅, then x∗ = 0.

2. If U 6= ∅ and M = ∅, then U = {π1, . . . , πk} and

x∗i = 1
k + ρk2

k∑
i=1

aπi (5.10)

for all i ∈ U , where πi is the index of the ith largest component in a.
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3. Otherwise (M 6= ∅), the following system of linear equations holds
u =

(
|M |∑i∈U ai + (k − |U |)∑i∈M ai

)
/D,

t′ =
(
|U | (1 + ρk)∑i∈M ai − (k − |U |+ ρk |M |)∑i∈U ai

)
/D,

D = (k − |U |)2 + (|U |+ ρk2) |M | ,

(5.11)

together with the feasibility constraints on t , t′ + ρuk

max
i∈L

ai ≤ t ≤ min
i∈M

ai, max
i∈M

ai ≤ t+ u ≤ min
i∈U

ai, (5.12)

and we have x∗ = min{max{0, a− t}, u}.

Proof. We consider an equivalent problem

min
x,s
{1

2 ‖a− x‖
2 + 1

2ρs
2 | 〈1, x〉 = s, 0 ≤ xi ≤ s

k
, 1 ≤ i ≤ d}.

Let t, µi ≥ 0, νi ≥ 0 be the dual variables, and let L be the Lagrangian:

L(x, s, t, µ, ν) = 1
2 ‖a− x‖

2 + 1
2ρs

2 + t(〈1, x〉 − s)− 〈µ, x〉+
〈
ν, x− s

k
1
〉
.

From the KKT conditions (§ A.1.2, page 180), we have that

x− a+ t1− µ+ ν = 0, ρs− t− 1
k
〈1, ν〉 = 0, µixi = 0, νi(xi − s

k
) = 0.

We also obtain

xi = min{max{0, ai − t}, sk}, νi = max{0, ai − t− s
k
}, s = 1

ρ
(t+ 1

k
〈1, ν〉).

Let p , 〈1, ν〉. We have t = ρs− p
k
and, using the definition of U and M ,

s =
∑
i∈U

s

k
+
∑
i∈M

(ai − t) =
∑
i∈M

ai − |M | (ρs−
p

k
) + |U | s

k
,

p =
∑
i∈U

(ai − t−
s

k
) =

∑
i∈U

ai − |U | (ρs−
p

k
)− |U | s

k
.

In the case U 6= ∅ and M = ∅ we get the simplified equations

s =
∑
i∈U

s

k
= |U | s

k
=⇒ |U | = k,

p =
∑
i∈U

ai − kρs+ p− s =⇒ xi = s

k
= 1
k + ρ k2

∑
i∈U

ai, i ∈ U.

In the remaining case, solving this system for u , s
k
and t′ , − p

k
, we get exactly

the system in (5.11). The constraints (5.12) follow from the definition of the sets
U , M , L, and ensure that the computed thresholds (t, u) are compatible with the
corresponding partitioning of the index set.
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The above lemma suggests that the projection onto the top-k cone can be
computed by considering distinction into three cases. The first special case is when
the resulting projection is zero, and we focus on this case next. For the standard
simplex, where the cone is simply the positive orthant Rd

+, it is easy to see that
the projection is 0 if and only if all ai ≤ 0. For the ∆k, however, the situation is
slightly more involved.
Lemma 5.4. The biased projection x∗ onto the top-k cone is zero if ∑k

i=1 aπi ≤ 0
(sufficient condition). If ρ = 0 this is also necessary.

Proof. Let K , {x | 0 ≤ xi ≤ 1
k
〈1, x〉} be the top-k cone. It is known, (e.g., see

(Dattorro, 2010)) that the Euclidean projection of a onto K is 0 if and only if

a ∈ NK(0) , {y | ∀x ∈ K, 〈y, x〉 ≤ 0},

i.e. a is in the normal cone to K at 0. Therefore, we obtain as an equivalent
condition that maxx∈K 〈a, x〉 ≤ 0. Take any x ∈ K and let s = 〈1, x〉. If s > 0, at
least k components in x must be positive. To maximize 〈a, x〉, we need exactly k
positive xi = s

k
corresponding to the k largest components in a. That would result

in 〈a, x〉 = s
k

∑k
i=1 aπi , which is nonpositive if and only if ∑k

i=1 aπi ≤ 0.
For ρ > 0, the objective function has an additional term ρ 〈1, x〉2 that vanishes

at x = 0. Therefore, if x = 0 is optimal for the Euclidean projection, it must also
be optimal for the biased projection.

The second special case corresponds to another extreme situation where the k
largest components of a are all set to a constant, while the remaining elements are
set to zero. This case is also considered separately as we discuss next.

Projection onto the top-k cone. Lemmas 5.3 and 5.4 suggest a simple algorithm
for the (biased) projection onto the top-k cone based on case distinction.

• In case 1, we check if ρ = 0 and ∑k
i=1 aπi ≤ 0, then set x∗ = 0. For the biased

projection (ρ > 0), we leave x∗ = 0 as the fallback case in the end.

• In case 2, we compute x∗ using (5.10) and check if it is compatible with the
corresponding sets U and L, using the constraints (5.12). Here, we note that
M = ∅, and the threshold t can be computed from (5.12) as

t = min
i∈U

ai − u = aπk −
1

k + ρk2

k∑
i=1

aπi .

• In case 3, we suggest a simple exhaustive search strategy. We sort a and
loop over the feasible partitions U , M , L until we find a solution to (5.11)
that satisfies (5.12). Since we know that 0 ≤ |U | < k and k ≤ |U |+ |M | ≤ d,
we can limit the search to k(d− k + 1) = O(kd) iterations in the worst case,
where each iteration requires a constant number of operations.

• For the biased projection (ρ > 0), we leave x∗ = 0 as the fallback case since
Lemma 5.4 gives only a sufficient condition.
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The proposed algorithm has the runtime complexity of O(d log d+ kd), which
for small k is comparable to simplex projection algorithms based on sorting.

5.4.3 Projection onto the Top-k Simplex
In this section, we combine the results from §§ 5.4.1 and 5.4.2 to obtain a complete
algorithm for the (biased) projection onto the top-k simplex ∆k(r). As we argued
above, the problem (5.9) becomes either the knapsack problem or the (biased)
projection onto the top-k cone depending on the constraint 〈1, x〉 ≤ r at the
optimum. We already have the algorithms for both problems, but we need a way
to check which of the two cases apply. The following lemma will be useful.
Lemma 5.5. Let x∗ ∈ Rd be the solution to the problem (5.9), let (t, u) be the
optimal thresholds such that x∗ = min{max{0, a− t}, u}, let U be defined as in
Lemma 5.3, and let p , ∑i∈U ai − |U | (t+ u), then λ = t+ p

k
− ρr ≥ 0.

Proof. As in Lemma 5.3, we consider the equivalent problem:

min
x,s
{1

2 ‖a− x‖
2 + 1

2ρs
2 | 〈1, x〉 = s, s ≤ r, 0 ≤ xi ≤ s

k
, 1 ≤ i ≤ d}.

Let t, λ ≥ 0, µi ≥ 0, νi ≥ 0 be the dual variables, and let L be the Lagrangian,

L(x, s, t, λ, µ, ν) = 1
2 ‖a− x‖

2 + 1
2ρs

2 + t(〈1, x〉 − s)
+λ(s− r)− 〈µ, x〉+

〈
ν, x− s

k
1
〉
.

From the KKT conditions, we have that

∂xL = x− a+ t1− µ+ ν = 0, ∂sL = ρs− t+ λ− 1
k
〈1, ν〉 = 0,

µixi = 0, νi(xi − s
k
) = 0, λ(s− r) = 0.

If s < r, then λ = 0 and we recover the top-k cone problem of Lemma 5.3.
Otherwise, we have that s = r and λ = t + 1

k
〈1, ν〉 − ρr ≥ 0. The fact that

νi = max{0, ai − t− u}, where u = r
k
, completes the proof.

Projection onto the top-k simplex. We can now use Lemma 5.5 to compute the
(biased) projection onto ∆k(r) as follows.

• First, we check the special cases of zero and constant projections, as we did
before in § 5.4.2 (cases 1 and 2).

• If that fails, we proceed with the knapsack problem using the variable fixing
algorithm of Kiwiel, (2008b), since it is the faster alternative.

• Having the thresholds (t, u) and the partitioning into the sets U , M , L from
the knapsack problem, we compute the value of λ as given in Lemma 5.5. If
λ ≥ 0, we are done, the projection onto the top-k simplex coincides with the
solution of the knapsack problem.
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• Otherwise, we know that 〈1, x〉 < r and use the algorithm for the (biased)
projection onto the top-k cone from § 5.4.2 (case 3).

The proposed algorithm is generally fast in practice and has runtime comparable
to common algorithms for the Euclidean projection onto the standard simplex.
As described above, the worst case runtime is dominated by the algorithm of
Kiwiel, (2008b), which has the complexity of O(d2) on pathological inputs with
elements growing exponentially (Condat, 2014). In practice, however, the observed
complexity is linear and is competitive with the breakpoint searching algorithms
based on sorting (Condat, 2014; Kiwiel, 2008b). Given that the knapsack problem
can also be solved in time O(d log d) (Kiwiel, 2008a), the overall complexity for
solving the (biased) projection onto the top-k simplex is O(d log d+ kd).

5.4.4 Biased Continuous Quadratic Knapsack Problem
In this section, we derive an algorithm to compute the biased projection onto ∆̃k,
which is used in SDCA optimization of the top-k hinge loss (β). The resulting
algorithm is similar in spirit to the one derived in § 5.4.3 above.
Recall that the upper bound on xi in the set ∆̃k(r) is a fixed constant r/k.

Therefore, the Euclidean projection onto ∆̃k(r) is an instance of the continuous
quadratic knapsack problem from § 5.4.1. However, the update step in the SDCA
framework corresponds to a biased projection, as we saw above, where the added
bias ρ 〈1, x〉2 comes from the `2-regularizer in the training objective. To address
this issue, we follow the proofs of Lemmas 5.3, 5.5, and derive an algorithm to
compute the biased projection onto ∆̃k(r).
We know from Proposition 5.6 that the SDCA update step for the top-k hinge

loss (5.5) is equivalent with l = 0 and u = r/k to the following problem:

min
x,s

{
1
2 ‖a− x‖

2 + 1
2ρs

2 | 〈1, x〉 = s, s ≤ r, l ≤ xi ≤ u, 1 ≤ i ≤ d
}
.

Let t, λ ≥ 0, µi ≥ 0, νi ≥ 0 be the dual variables, and let L be the Lagrangian,

L(x, s, t, λ, µ, ν) = 1
2 ‖a− x‖

2 + 1
2ρs

2 + t(〈1, x〉 − s)
+ λ(s− r)− 〈µ, l1− x〉+ 〈ν, x− u1〉 .

From the KKT conditions, we have that

∂xL = x− a+ t1− µ+ ν = 0, ∂sL = ρs− t+ λ = 0,
µi(l − xi) = 0, νi(xi − u) = 0, λ(s− r) = 0,

which then leads to

x = a− t1 + µ− ν = min{max{l, x− t}, u}, λ = t− ρs.

Now, we can do case distinction based on the sign of λ. If λ > 0, then 〈1, x〉 = s = r
and t > ρr. In this case 1

2ρs
2 = 1

2ρr
2 ≡ const, therefore this term can be ignored
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and we get the knapsack problem from § 5.4.1. Otherwise, if s < r, then λ = 0
and t = ρs. Using the index sets U , M and L as in Lemma 5.3, we have

t = ρ
(∑

L

l +
∑
M

(ai − t) +
∑
U

u
)

= ρ
(
l |L|+ u |U | − t |M |+

∑
M

ai

)
.

Solving for t with ρ > 0, we obtain that

t =
(
l |L|+ u |U |+

∑
M

ai
)
/
(
(1/ρ) + |M |

)
. (5.13)

Biased continuous quadratic knapsack problem. To compute the biased projec-
tion onto ∆̃k(r), we follow the same steps as in § 5.4.3.

• First, we solve the knapsack problem using the algorithm of Kiwiel, (2008b),
which also computes the dual variable t. If t > ρr, then we are done.

• Otherwise, we sort a and loop over the feasible index sets U , M , and L.
We stop once we find a t that satisfies (5.13) and is compatible with the
corresponding index sets.

5.5 Experiments
This section is concerned with the experimental evaluation of the proposed top-k
SVM and the algorithm for computing the projection onto the top-k simplex.

• In § 5.5.1, we show that the (biased) projection onto the top-k simplex is
scalable with respect to the input dimension, and is comparable in runtime
to an efficient variable fixing algorithm of Kiwiel, (2008b), which can be used
to solve the continuous quadratic knapsack problem and find the Euclidean
projection onto the standard simplex.

• In § 5.5.2, we show that the top-k multiclass SVM with both versions of
the top-k hinge loss, (5.3) and (5.5), denoted top-k SVMα and top-k SVMβ

respectively, leads to improvements in top-k accuracy consistently over all
datasets and choices of k. In particular, we note improvements compared to
the multiclass SVM of Crammer and Singer, (2001), which corresponds in
our notation to top-1 SVMα, top-1 SVMβ.

5.5.1 Scaling of the Projection onto the Top-k Simplex
In this section, our goal is to demonstrate effectively linear scaling that is observed
in practice for the variable fixing algorithms that we employ in our SDCA training
procedure. We follow the experimental setup of Liu and Ye, (2009). We sample
1000 points from the normal distribution N (0, I) in Rd for increasing values of d,
and solve the corresponding projection problems using: (i) the algorithm of Kiwiel,
(2008b) denoted as Knapsack, and (ii) using our proposed method from § 5.4.3 for
projecting onto the set ∆k for different values of k = 1, 5, 10.
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Figure 5.3.: Scaling of the proposed algorithm from § 5.4.3 for projecting onto the top-k
simplex ∆k(r) compared to the algorithm of Kiwiel, (2008b) for solving the
continuous quadratic knapsack problem.

We report the total CPU time taken on a single Intel(R) Xeon(R) 2.20GHz
processor. We plot the respective runtimes in Figure 5.3, and observe that the
scaling in the problem dimension is essentially the same both for the knapsack
problem and for the proposed projection onto the top-k simplex.

5.5.2 Image Classification Experiments
In this section, we present an extensive experimental evaluation of the proposed
top-k multiclass SVM on real world data. We evaluate the method on five publicly
available image classification datasets of different scale and complexity, please refer
to Table 5.1 for the basic statistics.

Dataset m n d

Caltech 101 Silhouettes (Swersky et al., 2012) 101 4100 784
MIT Indoor 67 (Quattoni and Torralba, 2009) 67 5354 4096
SUN 397 (Xiao et al., 2010) 397 19850 4096
Places 205 (Zhou et al., 2014) 205 2448873 4096
ImageNet 2012 (Russakovsky et al., 2015) 1000 1281167 4096

Table 5.1.: Statistics of the image classification benchmarks that we use in our experi-
ments (m: # classes, n: # training examples, d: # feature dimensions).

Methods. We consider the following baseline methods in our experiments.

SVMOVA: the classical one-vs-all (OVA) SVM using LibLinear of Fan et al., (2008).
Prec@k, Recall@k: the SVMPerf method of Joachims, (2005) with the correspond-

ing loss function, as described in § 5.2.3 (page 86).
TopPush: we use the code provided by Li et al., (2014a).
W++, Q/m: our implementation of the Wsabie++ algorithm based on the pseudo

code by Gupta et al., (2014).

We cross-validate the hyperparameters in the range 10−5 to 103, and extend it
when the optimal value is at the boundary. The parameter m in the W++, Q/m
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method is set m = 101 for Caltech 101 and m = 67 for Indoor 67. When a ranking
method, like the Recall@k and the TopPush, does not scale to a particular dataset
using the multiclass to binary reduction discussed in § 5.2.3, we use the OVA
version of the corresponding method. Among the baselines that we tried, only
TopPushOVA scaled to the Places and the ImageNet datasets both in terms of
runtime and memory2. Additionally, we also report the published results from the
literature. In the interest of space, we use the encoding given in Table 5.2 when
we refer to a particular method in the following tables.

Features. For the Caltech 101 Silhouettes, we use the features provided by Swersky
et al., (2012). For the other datasets, we use a relatively simple image recognition
pipeline following Simonyan and Zisserman, (2015). Specifically, we extract the
FC7-layer features (after ReLU) using a pre-trained ConvNet. For the scene
recognition datasets, we use the Places 205 ConvNet of Zhou et al., (2014), while
for the ImageNet experiment we use the Caffe reference model of Jia et al., (2014).

Discussion. Our experimental results are grouped by the scale of the datasets into
three tables, which we discuss next.

On Caltech 101 Silhouettes and MIT Indoor 67 (Table 5.3), we make the following
observations. First, our proposed top-k SVM consistently outperforms the baseline
methods in all top-k metrics. For k = 1, we effectively recover the multiclass SVM
of Crammer and Singer, (2001), which shows strong performance in top-1 accuracy.
However, as we increase k = 2, 3, 4, 5, 10 in top-k SVMα and top-k SVMβ, we
observe an emerging “diagonal” pattern in the respective top-k performance. The
correspondence may be not one to one, but the general tendency is that top-k SVM
with k > 1 produces better top-k accuracy. On Indoor 67, that improvement comes
at the cost of a decreased top-1 accuracy, which is in line with our expectations.
On Caltech 101 Silhouettes, on the other hand, there is a noticeable increase in
top-1 accuracy, e.g. with the top-10 SVMβ, which may indicate that the top-k
error is a better target performance measure on datasets with a large number of
classes and possible label noise.
On SUN 397 (Table 5.4), we observe a prominent diagonal pattern in top-

k performance for top-k SVMα, while for top-k SVMβ we see that even larger
values (k > 20) may need to be considered to achieve peak top-k results. These

2 LibLinear required too much memory due to non-sparse features in our experiments.

BLH (Bu et al., 2013) RAS (Razavian et al., 2014)
BVLC (Jia et al., 2014) SFT (Swersky et al., 2012)
DGE (Doersch et al., 2013) SP (Sun and Ponce, 2013)
GWG (Gong et al., 2014) SPM (Sánchez et al., 2013)
JVJ (Juneja et al., 2013) XHE (Xiao et al., 2010)
KL (Koskela and Laaksonen, 2014) ZLX (Zhou et al., 2014)
LSH (Lapin et al., 2014b)

Table 5.2.: Encoding of the reference methods for the results from the literature.
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Caltech 101 Silhouettes MIT Indoor 67
Method Top-1 Top-2 Top-3 Top-4 Top-5 Top-10 Method Top-1 Method Top-1 Method Top-1

SFT (Top-1) 62.1 - 79.6 - 83.1 - BLH 48.3 DGE 66.87 RAS 69.0
SFT (Top-2) 61.4 - 79.2 - 83.4 - SP 51.4 ZLX 68.24 KL 70.1
SFT (Top-5) 60.2 - 78.7 - 83.4 - JVJ 63.10 GWG 68.88

Method Top-1 Top-2 Top-3 Top-4 Top-5 Top-10 Top-1 Top-2 Top-3 Top-4 Top-5 Top-10

SVMOVA 61.81 73.13 76.25 77.76 78.89 83.57 71.72 81.49 84.93 86.49 87.39 90.45
TopPush 63.11 75.16 78.46 80.19 81.97 86.95 70.52 83.13 86.94 90.00 91.64 95.90

Prec@1 61.29 73.26 76.12 77.76 79.11 83.27 69.03 80.67 85.00 87.16 88.21 91.87
Prec@5 61.73 73.99 76.90 78.50 79.63 84.22 69.18 81.42 85.45 87.61 88.43 91.87
Prec@10 61.90 73.95 76.68 78.46 79.67 84.14 69.18 81.42 85.45 87.61 88.43 91.87

Recall@1 61.55 73.13 77.03 79.41 80.97 85.18 71.57 83.06 87.69 90.45 92.24 96.19
Recall@3 61.51 72.95 76.55 78.72 80.49 84.74 71.42 81.57 85.67 87.39 88.43 92.24
Recall@5 61.60 72.87 76.51 78.76 80.54 84.74 71.49 81.49 85.45 87.24 88.21 92.01
Recall@10 61.51 72.95 76.46 78.72 80.54 84.92 71.42 81.49 85.52 87.24 88.28 92.16

W++, 0/m 62.33 74.95 78.59 81.45 83.66 89.08 69.33 83.06 88.66 91.72 93.43 97.54
W++, 1/m 59.69 65.97 68.92 71.61 73.82 80.88 67.39 80.15 85.22 88.88 90.90 95.90
W++, 2/m 57.39 64.33 67.88 70.13 71.95 77.59 62.61 76.57 82.39 86.19 88.36 93.81
W++, 4/m 56.78 63.94 67.36 70.05 72.08 78.76 63.13 76.87 82.24 85.67 88.43 94.63

W++, 0/192 62.29 76.25 79.71 81.40 83.09 88.17 69.78 82.99 88.36 91.49 93.51 97.31
W++, 1/192 59.56 65.97 69.44 71.65 73.91 79.45 67.24 81.34 85.60 89.03 91.19 95.75
W++, 2/192 56.78 63.29 67.10 69.87 71.69 78.37 63.28 77.61 84.03 87.99 89.93 94.85
W++, 4/192 58.13 64.37 67.62 69.92 71.56 78.15 62.54 76.79 84.10 87.61 89.18 94.03

W++, 0/256 62.68 76.33 79.41 81.71 83.18 88.95 70.07 84.10 89.48 92.46 94.48 97.91
W++, 1/256 59.25 65.63 69.22 71.09 72.95 79.71 68.13 81.49 86.64 89.63 91.42 95.45
W++, 2/256 55.09 61.81 66.02 68.88 70.61 76.59 64.63 78.43 84.18 88.13 89.93 94.55
W++, 4/256 56.52 62.29 65.76 68.01 70.13 76.59 60.90 75.97 82.84 86.79 89.63 94.63

top-1 SVMα 62.81 74.60 77.76 80.02 81.97 86.91 73.96 85.22 89.25 91.94 93.43 96.94
top-2 SVMα 63.11 76.16 79.02 81.01 82.75 87.65 73.06 85.67 90.37 92.24 94.48 97.31
top-3 SVMα 63.37 76.72 79.67 81.49 83.57 88.25 71.57 86.27 91.12 93.21 94.70 97.24
top-4 SVMα 63.20 76.64 79.76 82.36 84.05 88.64 71.42 85.67 90.75 93.28 94.78 97.84
top-5 SVMα 63.29 76.81 80.02 82.75 84.31 88.69 70.67 85.75 90.37 93.21 94.70 97.91
top-10 SVMα 62.98 77.33 80.49 82.66 84.57 89.55 70.00 85.45 90.00 93.13 94.63 97.76
top-20 SVMα 59.21 75.64 80.88 83.49 85.39 90.33 65.90 84.10 89.93 92.69 94.25 97.54

top-1 SVMβ 62.81 74.60 77.76 80.02 81.97 86.91 73.96 85.22 89.25 91.94 93.43 96.94
top-2 SVMβ 63.55 76.25 79.28 81.14 82.62 87.91 74.03 85.90 89.78 92.24 94.10 97.31
top-3 SVMβ 63.94 76.64 79.71 81.36 83.44 87.99 72.99 86.34 90.60 92.76 94.40 97.24
top-4 SVMβ 63.94 76.85 80.15 82.01 83.53 88.73 73.06 86.19 90.82 92.69 94.48 97.69
top-5 SVMβ 63.59 77.03 80.36 82.57 84.18 89.03 72.61 85.60 90.75 92.99 94.48 97.61
top-10 SVMβ 64.02 77.11 80.49 83.01 84.87 89.42 71.87 85.30 90.45 93.36 94.40 97.76
top-20 SVMβ 63.37 77.24 81.06 83.31 85.18 90.03 71.94 85.30 90.07 92.46 94.33 97.39

Table 5.3.: Top: Results from the literature. Middle: Our results using the baseline
methods. Bottom: Our proposed top-k SVM.
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SUN 397 (10 splits)
XHE 38.0 LSH 49.48± 0.3 ZLX 54.32± 0.1Top-1 accuracy
SPM 47.2± 0.2 GWG 51.98 KL 54.65± 0.2

Method Top-1 Top-2 Top-3 Top-4 Top-5 Top-10

SVMOVA 55.23± 0.6 66.23± 0.6 70.81± 0.4 73.30± 0.2 74.93± 0.2 79.00± 0.3
TopPushOVA 53.53± 0.3 65.39± 0.3 71.46± 0.2 75.25± 0.1 77.95± 0.2 85.15± 0.3

Recall@1OVA 52.95± 0.2 65.49± 0.2 71.86± 0.2 75.88± 0.2 78.72± 0.2 86.03± 0.2
Recall@2OVA 52.80± 0.2 64.18± 0.2 68.81± 0.2 71.42± 0.2 73.17± 0.2 77.69± 0.3
Recall@3OVA 40.50± 0.3 56.01± 0.2 64.96± 0.2 70.95± 0.2 75.26± 0.2 86.32± 0.2
Recall@4OVA 46.59± 0.4 59.87± 0.6 66.77± 0.5 70.95± 0.4 73.75± 0.3 79.86± 0.2
Recall@5OVA 50.72± 0.2 64.74± 0.3 70.75± 0.3 74.02± 0.3 76.06± 0.3 80.66± 0.2
Recall@10OVA 50.92± 0.2 64.94± 0.2 70.95± 0.2 74.14± 0.2 76.21± 0.2 80.68± 0.2

top-1 SVMα 58.16± 0.2 71.66± 0.2 78.22± 0.1 82.29± 0.2 84.98± 0.2 91.48± 0.2
top-2 SVMα 58.81± 0.2 72.71± 0.2 79.33± 0.2 83.29± 0.2 85.94± 0.2 92.19± 0.2
top-3 SVMα 58.97± 0.1 73.19± 0.2 79.86± 0.2 83.83± 0.2 86.46± 0.2 92.57± 0.2
top-4 SVMα 58.95± 0.1 73.54± 0.2 80.25± 0.2 84.20± 0.2 86.78± 0.2 92.82± 0.2
top-5 SVMα 58.92± 0.1 73.66± 0.2 80.46± 0.2 84.44± 0.3 87.03± 0.2 92.98± 0.2
top-10 SVMα 58.00± 0.2 73.65± 0.1 80.80± 0.1 84.81± 0.2 87.45± 0.2 93.40± 0.2
top-20 SVMα 55.98± 0.3 72.51± 0.2 80.22± 0.2 84.54± 0.2 87.37± 0.2 93.62± 0.2

top-1 SVMβ 58.16± 0.2 71.66± 0.2 78.22± 0.1 82.29± 0.2 84.98± 0.2 91.48± 0.2
top-2 SVMβ 58.80± 0.2 72.65± 0.2 79.26± 0.2 83.21± 0.2 85.85± 0.2 92.14± 0.2
top-3 SVMβ 59.14± 0.2 73.21± 0.2 79.81± 0.2 83.77± 0.2 86.36± 0.2 92.51± 0.2
top-4 SVMβ 59.24± 0.1 73.58± 0.2 80.18± 0.2 84.15± 0.2 86.71± 0.2 92.73± 0.2
top-5 SVMβ 59.28± 0.2 73.78± 0.2 80.45± 0.3 84.36± 0.3 86.96± 0.3 92.93± 0.2
top-10 SVMβ 59.32± 0.1 74.13± 0.2 80.91± 0.2 84.92± 0.2 87.49± 0.2 93.36± 0.2
top-20 SVMβ 58.65± 0.2 73.96± 0.2 80.95± 0.2 85.05± 0.2 87.70± 0.2 93.64± 0.2

Table 5.4.: Top: Results from the literature. Middle: Our results using the baseline
methods. Bottom: Our proposed top-k SVM.

results suggest that, in general, one has to tune the k parameter in top-k SVM
independently of the k′ in top-k′ accuracy. We also see that top-k SVMβ performs
slightly better compared to top-k SVMα, although the differences are small.

On Places 205 and ImageNet 2012 (Table 5.5), we see that our method is one of
the few that are scalable to large datasets with millions of training examples. We
also observe that optimizing the top-k hinge loss (both α and β versions) yields
consistently better top-k performance, and produces the familiar diagonal pattern
of peak top-k results.
Overall, top-k SVM obtains systematic increase in top-k accuracy over the

datasets that we examined. We discover a diagonal pattern of peak top-k per-
formance suggesting that it is beneficial to optimize for the top-k error if that is
the target metric. Moreover, top-k SVM with k > 1 may even improve the top-1
performance on datasets with a large number of classes and ambiguities in the
ground truth annotation. The most promising results, however, are obtained in
the top-k performance with k > 1.
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Places 205 (val) ImageNet 2012 (val)

Method Top-1 Top-2 Top-3 Top-4 Top-5 Top-10 Top-1 Top-2 Top-3 Top-4 Top-5 Top-10

ZLX / BVLC 50.0 - - - 81.1 - 57.4 - - - 80.4 -

TopPushOVA 38.45 47.33 53.25 57.29 60.30 69.91 55.49 68.05 73.89 77.34 79.72 85.99

top-1 SVMα 50.63 64.47 71.44 75.50 78.54 86.17 56.61 67.31 72.43 75.45 77.67 83.71
top-2 SVMα 51.05 65.74 73.10 77.49 80.74 88.43 56.60 68.09 73.25 76.36 78.62 84.55
top-3 SVMα 51.31 66.17 73.23 77.86 81.26 89.37 56.56 68.27 73.60 76.76 79.03 84.96
top-4 SVMα 51.24 66.30 73.48 78.08 81.40 89.74 56.52 68.36 73.80 77.06 79.30 85.25
top-5 SVMα 50.80 66.23 73.67 78.19 81.43 89.95 56.46 68.40 73.85 77.20 79.39 85.41
top-10 SVMα 50.10 65.76 73.38 78.30 81.62 90.14 55.89 68.16 73.80 77.31 79.75 85.77
top-20 SVMα 49.25 64.85 72.62 77.67 81.14 89.99 54.94 67.53 73.50 77.08 79.59 85.88

top-1 SVMβ 50.63 64.45 71.45 75.50 78.54 86.17 56.61 67.31 72.43 75.45 77.67 83.71
top-2 SVMβ 51.03 65.58 72.73 77.40 80.55 88.40 56.91 67.98 73.19 76.23 78.50 84.43
top-3 SVMβ 51.27 65.98 73.37 77.91 81.25 89.30 57.00 68.27 73.51 76.68 78.89 84.84
top-4 SVMβ 51.38 66.20 73.56 78.04 81.40 89.78 56.99 68.39 73.62 76.86 79.15 85.09
top-5 SVMβ 51.25 66.25 73.66 78.26 81.42 89.91 57.09 68.45 73.68 76.95 79.27 85.24
top-10 SVMβ 50.94 66.13 73.52 78.36 81.69 90.19 56.90 68.42 73.95 77.31 79.53 85.62
top-20 SVMβ 50.50 65.79 73.38 78.17 81.60 90.12 56.48 68.29 73.83 77.32 79.60 85.81

Table 5.5.: Top: Results from the literature. Middle: Our results using the baseline
methods. Bottom: Our proposed top-k SVM.

5.6 Conclusion
In this chapter, we moved the focus from learning with limited training data towards
a challenge that is particularly prominent in modern large scale learning – handling
the increased class ambiguity. We argued that categorizing real world images by
tagging them with a single label is suboptimal and leads to confusion that is often
difficult to overcome even for humans. In the case of scene categorization, for
example, the issue is evidently seen in Figure 5.1, which illustrates class ambiguity
in the SUN 397 dataset. Looking at the images of a body of water, it can be
difficult to decide whether they depict a river or a pond, as we only get to see a
small part of the full scene. Furthermore, the same image may as well be labeled
as ‘park’, or even a ‘picnic area’, since a real world scene is inherently multilabel.
Finally, it is known that the ground truth annotation in large scale datasets, such
as the ImageNet for example, contains a certain level of label noise. That issue is
naturally the result of the great effort required to annotate millions of images, but
may be even more pertinent to fine-grained categorization where the differences
between the classes are more subtle and may require expert domain knowledge.
While it is interesting to consider long term solutions for the issues outlined

above (e.g., by fixing the label noise, enriching the annotations, or using additional
modalities with discriminative information), we have focused on a solution that is a
reasonable first step and is directly applicable in modern benchmarks. Specifically,
we argue that the top-k error, which allows one to make k guesses instead of one,
is a natural target performance metric in the presence of class ambiguity. It is
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also a well recognized metric commonly used in popular benchmarks, such as the
ImageNet and Places (Russakovsky et al., 2015; Zhou et al., 2014).
Our contributions are twofold. First, we proposed top-k multiclass SVM as

a method to directly optimize for top-k performance. The underlying idea is
to use a tight convex upper bound on the discrete top-k error as the surrogate
loss in the training objective. We have explored two formulations for the top-k
hinge loss and demonstrated consistent improvements in top-k performance on
five image recognition datasets. Second, we implemented an efficient optimization
scheme based on the SDCA framework of Shalev-Shwartz and Zhang, (2013b).
Our algorithm is scalable to large datasets and can be used to train the proposed
top-k SVMα, top-k SVMβ, as well as the well known multiclass SVM of Crammer
and Singer, (2001). At the heart of the employed optimization method are efficient
algorithms for the Euclidean and the biased projections onto the top-k simplex
∆k(r) and the set ∆̃k(r), which are of independent interest.

In the next chapter, we continue the exploration of top-k performance opti-
mization and provide an in-depth study that broadens the scope along multiple
directions, including the introduction of smooth top-k hinge losses, top-k exten-
sions of the softmax loss, theoretical analysis of top-k calibration, and a study of
multilabel classification in relation to multiclass and top-k classification.



6Analysis and Optimization of Loss
Functions for Multiclass, Top-k, and
Multilabel Classification

In Chapter 5, we introduced the problem of class ambiguity, which is present in
modern large scale image classification benchmarks, and proposed to consider the
top-k error as the target performance measure. To optimize the top-k error, we
formulated top-k SVM with two versions of the top-k hinge loss, and developed
efficient optimization algorithms for them.
In this chapter, we extend the study of class ambiguity and top-k performance

optimization. We recognize a connection that exists between top-k multiclass and
multilabel classification, and organize the chapter to highlight that relationship.
Our main goal is to provide an in-depth analysis of the established as well as
the proposed classification methods, both multiclass and multilabel.

We start with an overview of the target performance measures that are accepted
in the literature for multiclass and multilabel classification, and then consider the
surrogate losses that are used in the training objectives. Here, we contribute a
number of novel functions: smooth top-k hinge loss, top-k extensions of the softmax
loss, and smooth multilabel SVM loss. We finally conclude with a theoretical
analysis of top-k calibration for the multiclass methods.

To facilitate training, we develop efficient SDCA-based optimization schemes for
the considered methods, where our technical contribution is a number of algorithms
for computing SDCA updates. Here, we would like to highlight the entropic
projections using the Lambert W function for the softmax loss and the Euclidean
projection onto the bipartite simplex for the multilabel SVM.

Finally, we perform an extensive empirical evaluation on a wide range of multiclass
and multilabel datasets which reveals a few interesting insights. First, our results
indicate that the softmax loss and the smooth multiclass SVM are surprisingly
competitive in top-k error uniformly across all k, which can be explained by our
analysis of multiclass top-k calibration. Further improvements for a specific k are
possible with the proposed top-k loss functions. And second, we use the top-k
methods to explore the transition from multiclass to multilabel learning. Here, we
find that it is possible to obtain effective multilabel classifiers using a single label
per image for training, and that the gap between the multiclass and multilabel
methods depends on label cardinality.
The material in this chapter is based on the following publications:

• M. Lapin, M. Hein, and B. Schiele (2016a). “Analysis and Optimization
of Loss Functions for Multiclass, Top-k, and Multilabel Classification.” In:
arXiv preprint arXiv:1612.03663 (submitted to PAMI).
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• M. Lapin, M. Hein, and B. Schiele (2016b). “Loss Functions for Top-k Error:
Analysis and Insights.” In: The IEEE Conference on Computer Vision and
Pattern Recognition (CVPR).

6.1 Introduction
Real world images are often multilabel in nature and maintaining a single label per
image while increasing the number of classes generally amplifies class ambiguity.
As we discussed in the previous chapter, the standard classification error becomes
too stringent and is not a well suited performance metric in this case.
Allowing k guesses instead of one leads to what we call the top-k error, which

is one of the main subjects of this part. While previous literature is focused on
minimizing top-1 error, we consider k ≥ 1. We are mainly interested in two cases:
(i) achieving small top-k error for all k simultaneously; and (ii) minimization of a
specific top-k error. These goals are pursued in the first part of the chapter which
is concerned with single label multiclass classification.
Following the general theme of the previous chapter, we propose extensions of

the established multiclass loss functions to address top-k error minimization and
derive appropriate SDCA-based optimization schemes. Extending the material of
Chapter 5, we introduce smooth top-k SVM and two top-k versions of the softmax
loss: top-k entropy and truncated top-k entropy. We also analyze which of the
multiclass methods are calibrated for the top-k error and perform an extensive
empirical evaluation to better understand their benefits and limitations.

Moving forward, we see top-k classification as a natural transition step between
multiclass learning with a single label per training example and multilabel learning
with a complete set of relevant labels. Multilabel learning forms the second part of
this chapter, where we introduce a smoothed version of the multilabel SVM loss of
Crammer and Singer, (2003), and contribute two novel projection algorithms for
efficient optimization of multilabel losses in the SDCA framework. Furthermore,
we compare all multiclass, top-k, and multilabel methods in a novel experimental
setting, where we want to quantify the utility of multilabel annotation. Specifically,
we want to understand if it is possible to obtain effective multilabel classifiers from
single label annotation.
The contributions of this chapter are summarized below.

• In § 6.2, we introduce the multiclass and multilabel learning problems, and
discuss the respective performance metrics. We propose 4 novel loss functions
for minimizing the top-k error and a smooth multilabel SVM loss. A brief
summary of the methods that we consider is given in Table 6.1.

• In § 6.3, we introduce the notion of top-k calibration and analyze which of
the multiclass methods are calibrated for the top-k error. In particular, we
highlight that the softmax loss is uniformly top-k calibrated for all k ≥ 1.

• In § 6.4, we develop efficient optimization schemes based on the SDCA
framework. Specifically, we contribute a set of algorithms for computing
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Method Name Loss function Conjugate Update Top-k calibrated

SVMOVA One-vs-all (OVA) SVM max{0, 1− yf(x)} (Shalev-Shwartz
and Zhang, 2014)

no† (Prop. 6.8)

LROVA OVA logistic regression log
(
1 + exp(−yf(x))

)
yes (Prop. 6.9)

SVMMulti Multiclass SVM max
{

0, (a+ c)π1

}
Prop. 5.2 Prop. 5.5 no (Prop. 6.11)

LRMulti Softmax (cross entropy) log
(∑

j∈Y exp(aj)
)

Prop. 6.3 Prop. 6.15 yes (Prop. 6.12)

top-k SVMα Top-k SVM (α) max
{

0, 1
k

∑k

j=1(a+ c)πj

}
Prop. 5.2 Prop. 5.5

open

question

top-k SVMβ Top-k SVM (β) 1
k

∑k

j=1 max
{

0, (a+ c)πj

}
Prop. 5.3 Prop. 5.6

top-k SVMα
γ Smooth top-k SVM (α) Lγ in Prop. 6.2 w/ ∆α

k Prop. 6.2 Prop. 6.14
top-k SVMβ

γ Smooth top-k SVM (β) Lγ in Prop. 6.2 w/ ∆β
k

top-k Ent Top-k entropy L in Prop. 6.4 Prop. 6.3 Prop. 6.15

top-k Enttr Truncated top-k entropy log
(
1 +
∑

j∈Jk
y

exp(aj)
)

n/a (nonconvex) yes (Prop. 6.13)

SVMML Multilabel SVM max
y, ȳ

max{0, 1 + uȳ − uy} Prop. 6.5 Prop. 6.18
see, e.g., (Gao
and Zhou, 2011)SVMML

γ Smooth multilabel SVM Lγ in Prop. 6.6 Prop. 6.6 Prop. 6.18

LRML Multilabel Softmax 1
|Y |
∑

y
log
(∑

ȳ
e(uȳ−uy)

)
Prop. 6.7 Prop. 6.20

Let a , (fj(x)− fy(x))j∈Y , u , (fy(x))y∈Y , c , 1− ey ; π: aπ1 ≥ . . . ≥ aπm ; J ky is defined in § 6.2.2.

Note that SVMMulti ≡ top-1 SVMα ≡ top-1 SVMβ and LRMulti ≡ top-1 Ent ≡ top-1 Enttr.
† However, smooth SVMOVA

γ is top-k calibrated, see Prop. 6.10.

Table 6.1.: Overview of the methods considered in this chapter and our contributions.

the proximal maps that can be used to train classifiers with the specified
multiclass, top-k, and multilabel loss functions.

• In § 6.5, the methods are evaluated empirically in three different settings:
on synthetic data (§ 6.5.1), on multiclass datasets with a single label per
example (§ 6.5.2), and on multilabel datasets (§ 6.5.3).

• In § 6.5.2, we perform a set of experiments on 11 multiclass benchmarks
including the ImageNet 2012 (Russakovsky et al., 2015) and the Places 205
(Zhou et al., 2014) datasets. Our evaluation reveals, in particular, that
the softmax loss and the proposed smooth SVMMulti

γ loss are competitive
uniformly in all top-k errors, while improvements for a specific k can be
obtained with the proposed top-k losses.

• In § 6.5.3, we evaluate the multilabel methods on 10 datasets following Mad-
jarov et al., (2012), where our smooth multilabel SVMML

γ shows particularly
encouraging results. Next, we perform experiments on Pascal VOC 2007
(Everingham et al., 2010) and Microsoft COCO (Lin et al., 2014), where
we train multiclass and top-k methods using only a single label of the most
prominent object per image, and then compare their multilabel performance
on test data to that of multilabel methods trained with full annotation. Sur-
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prisingly, we observe a gap of just above 2% mAP on Pascal VOC between
the best multiclass and multilabel methods.

6.2 Loss Functions for Classification
When choosing a loss function, one may want to consider several aspects. First,
at the basic level, the loss function depends on the available annotation and the
performance metric one is interested in, e.g. we distinguish between (single label)
multiclass and multilabel losses in this thesis. Next, there are two fundamental
factors that control the statistical and the computational behavior of learning.
For computational reasons, we work with convex surrogate losses rather than
with the performance metric directly. In that context, a relevant distinction is
between the nonsmooth Lipschitz functions (SVMMulti, top-k SVM) and the smooth
functions (LRMulti, SVMMulti

γ , top-k SVMγ) with strongly convex conjugates that
lead to faster convergence rates. From the statistical perspective it is important
to understand if the surrogate loss is classification calibrated as this attractive
asymptotic property leads to Bayes consistent classifiers. Finally, one may exploit
duality and introduce modifications to the conjugates of existing functions that
have desirable effects on the primal loss (top-k Ent).

The rest of this section covers the technical background that is used later in the
chapter. We discuss our notation, introduce multiclass and multilabel classification,
recall the standard approaches to classification, as well as our proposed top-k SVM
from Chapter 5.

• In § 6.2.1, we discuss multiclass and multilabel performance evaluation
measures that are used later in our experiments.

• In § 6.2.2, we review established multiclass approaches and introduce our
novel top-k loss functions; we also recall Moreau-Yosida regularization as a
smoothing technique and compute convex conjugates for SDCA.

• In § 6.2.3, we discuss multilabel classification methods, introduce the smooth
multilabel SVM, and compute the corresponding convex conjugates.

Notation. We consider classification problems with a predefined set of m classes.
We begin with multiclass classification, where every example xi ∈ X has exactly
one label yi ∈ Y , {1, . . . ,m}, and later generalize to the multilabel setting,
where each example is associated with a set of labels Yi ⊂ Y. In this chapter, a
classifier is a function f : X → Rm that induces a ranking of class labels via the
prediction scores f(x) =

(
fy(x)

)
y∈Y

. In the linear case, each predictor fy has the
form fy(x) = 〈wy, x〉, where wy ∈ Rd is the parameter to be learned. We stack
the individual parameters into a weight matrix W ∈ Rd×m, so that f(x) = W>x.
While we focus on linear classifiers with X ≡ Rd in the exposition below and in
most of our experiments, all loss functions are formulated in the general setting
where the kernel trick (Schölkopf and Smola, 2002) can be employed to construct
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nonlinear decision surfaces. In fact, we have a number of experiments with the
RBF kernel as well.

At test time, prediction depends on the evaluation metric and generally involves
sorting / producing the top-k highest scoring class labels in the multiclass setting,
and predicting the labels that score above a certain threshold δ in multilabel
classification. We come back to performance metrics shortly.

We use π and τ to denote permutations of (indexes) Y . Unless stated otherwise,
aπ reorders components of a vector a in descending order, aπ1 ≥ aπ2 ≥ . . . ≥ aπm .
Therefore, for example, aπ1 = maxj aj. If necessary, we make it clear which
vector is being sorted by writing π(a) to mean π(a) ∈ arg sort a and let π1:k(a) ,
{π1(a), . . . , πk(a)}. We also use the Iverson bracket defined as JP K = 1 if P is
true and 0 otherwise; and introduce a shorthand for the conditional probability
py(x) , Pr(Y = y |X = x). Finally, we let a\y be obtained by removing the yth
coordinate from a.

We consider `2-regularized objectives in this chapter, so that if L : Y ×Rm → R+
is a multiclass loss and λ > 0 is a regularization parameter, classifier training
amounts to solving

min
W∈Rd×m

1
n

n∑
i=1

L(yi,W>xi) + λ

2 ‖W‖
2
F .

Binary and multilabel classification problems only differ in the loss L.

6.2.1 Performance Metrics
Here, we briefly review performance evaluation metrics employed in multiclass and
multilabel classification.

Multiclass. A standard performance measure for classification problems is the
zero-one loss, which simply counts the number of classification mistakes (Duda
et al., 2012; Friedman et al., 2001). While that metric is well understood and
inspired such popular surrogate losses as the SVM hinge loss, it naturally becomes
more stringent as the number of classes increases. An alternative to the standard
zero-one error is to allow k guesses instead of one, as discussed in § 5.2 (page 80).
Formally, the top-k zero-one loss (top-k error) is

errk(y, f(x)) , Jfπk(x) > fy(x)K. (6.1)

That is, we count a mistake if the ground truth label y scores below k other
class labels. Note that for k = 1 we recover the standard zero-one error. Top-k
accuracy is defined as 1 minus the top-k error, and performance on the full test
sample is computed as the mean across all test examples.

Multilabel. Several groups of multilabel evaluation metrics are established in the
literature and it is generally suggested that multiple contrasting measures should
be reported to avoid skewed results. Here, we give a brief overview of the metrics



112 Loss Functions for Multiclass, Top-k, and Multilabel Classification

that we report and for further details refer the interested reader to (Koyejo et al.,
2015; Madjarov et al., 2012; Zhang and Zhou, 2014).

Ranking based. This group of performance measures compares the ranking of the
labels induced by fy(x) to the ground truth ranking. We report the rank loss

RLoss(f) = 1
n

∑n
i=1 |Di| /(|Yi|

∣∣∣Ȳi∣∣∣),
where Di = {(y, ȳ) | fy(xi) ≤ fȳ(xi), (y, ȳ) ∈ Yi× Ȳi} is the set of reversely ordered
pairs, and Ȳi , Y \ Yi is the complement of Yi. This is the loss that is implicitly
optimized by all multiclass / multilabel loss functions that we consider since they
induce a penalty when fȳ(xi)− fy(xi) > 0.
Ranking class labels for a given image is similar to ranking documents for a

user query in information retrieval (Liu, 2009). While there are many established
metrics (Manning et al., 2008), a popular measure that is relevant to our discussion
is precision-at-k (P@k), which counts the fraction of relevant items within the
top k retrieved (Joachims, 2005; McFee and Lanckriet, 2010). We have already
encountered the precision-at-k metric in § 5.2.3 (page 86), where it was used for a
binary problem obtained through a reduction scheme. Here, instead, we consider
the multilabel setting and compute the precision-at-k on each example separately.
Although this measure makes perfect sense when k � |Yi|, i.e. there are many
more relevant documents than we possibly want to examine, it is not very useful
when there are only a few correct labels per image – once all the relevant labels
are in the top k list, P@k starts to decrease as k increases. A better alternative in
our multilabel setting is a complementary measure, recall-at-k, defined as

R@k(f) = 1
n

∑n
i=1

(
π1:k(f(xi)) ∩ |Yi|

)
/ |Yi| ,

which measures the fraction of relevant labels in the top k list. Note that R@k is a
natural generalization of the top-k error to the multilabel setting and coincides
with that multiclass metric whenever Yi is singleton.

Finally, we report the standard Pascal VOC (Everingham et al., 2010) per-
formance measure, mean average precision (mAP), which is computed as the
one-vs-all AP averaged over all classes.

Partition based. In contrast to ranking, partition based measures assess the
quality of the actual multilabel prediction which requires a cut-off threshold
δ ∈ R. Several threshold selection strategies have been proposed:

(i) setting a constant threshold prior to experiments (Dembczynski et al., 2010);
(ii) selecting a threshold a posteriori by matching label cardinality (Madjarov

et al., 2012; Read et al., 2009);
(iii) tuning the threshold on a validation set (Koyejo et al., 2015; Yang, 1999);
(iv) learning a regression function (Elisseeff and Weston, 2001);
(v) bypassing threshold selection altogether by introducing a (dummy) calibration

label (Fürnkranz et al., 2008).

We have experimented with options (ii) and (iii), as discussed in § 6.5.3.
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Let h(x) , {y ∈ Y | fy(x) ≥ δ} be the set of predicted labels for a given threshold
δ, and let

t̂pi,j = Jj ∈ h(xi), j ∈ YiK, t̂ni,j = Jj /∈ h(xi), j /∈ YiK,
f̂pi,j = Jj ∈ h(xi), j /∈ YiK, f̂ni,j = Jj /∈ h(xi), j ∈ YiK,

be a set of m · n primitives defined as in (Koyejo et al., 2015). One can use
any performance measure Ψ that is based on the binary confusion matrix, but,
depending on where the averaging occurs, the following three cases are recognized.

Instance-averaging. The binary metrics are computed on the averages over labels
and then averaged across examples:

Ψinst(h) = 1
n

∑n
i=1 Ψ

(
1
m

∑m
j=1 t̂pi,j, . . . , 1

m

∑m
j=1 f̂ni,j

)
.

Macro-averaging. The metrics are averaged across labels:

Ψmac(h) = 1
m

∑m
j=1 Ψ

(
1
n

∑n
i=1 t̂pi,j, . . . , 1

n

∑n
i=1 f̂ni,j

)
.

Micro-averaging. The metric is applied on the averages over both labels and
examples:

Ψmic(h) = Ψ
(

1
mn

∑
i,j t̂pi,j, . . . , 1

mn

∑
i,j f̂ni,j

)
.

Following Madjarov et al., (2012), we consider the F1 score as the binary metric
Ψ with all three types of averaging. We also report multilabel accuracy, subset
accuracy, and the hamming loss defined respectively as

Acc(h) = 1
n

∑n
i=1(|h(xi) ∩ Yi|)/(|h(xi) ∪ Yi|),

SAcc(h) = 1
n

∑n
i=1Jh(xi) = YiK,

HLoss(h) = 1
mn

∑n
i=1 |h(xi)4Yi| ,

where 4 is the symmetric set difference.

6.2.2 Multiclass Methods
In this section, we switch from performance evaluation at test time to how the
quality of a classifier is measured during training. In particular, we introduce the
loss functions that are used in established multiclass methods as well as our novel
loss functions for optimizing the top-k error (6.1).

OVA. A multiclass problem is often solved using the one-vs-all (OVA) reduction
to m independent binary classification problems. Every class is trained versus
the rest which yields m classifiers {fy}y∈Y . Typically, each classifier fy is trained
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with a convex margin-based loss function L(ỹfy(x)), where L : R→ R+, ỹ = ±1.
Simplifying the notation, we consider

L(yf(x)) = max{0, 1− yf(x)}, (SVMOVA)
L(yf(x)) = log(1 + e−yf(x)). (LROVA)

The hinge (SVMOVA) and logistic (LROVA) losses correspond to the SVM and
logistic regression methods respectively.

Multiclass. An alternative to the OVA scheme above is to use a multiclass loss
L : Y × Rm → R+ directly. All multiclass losses that we consider only depend
on pairwise differences between the ground truth score fy(x) and all the other
scores fj(x). Loss functions from the SVM family additionally require a margin
∆(y, j), which can be interpreted as a distance in the label space (Tsochantaridis
et al., 2005) between y and j. To simplify the notation, we use vectors a (for the
differences) and c (for the margin) defined for a given (x, y) pair as

aj , fj(x)− fy(x), cj , 1− Jy = jK, j = 1, . . . ,m.

We also write L(a) instead of the full L(y, f(x)).
We consider two generalizations of SVMOVA and LROVA:

L(a) = max
j∈Y
{aj + cj}, (SVMMulti)

L(a) = log
(∑

j∈Y exp(aj)
)
. (LRMulti)

Both the multiclass SVM loss (SVMMulti) of Crammer and Singer, (2001) and the
softmax loss (LRMulti) are common in multiclass problems.
The OVA and multiclass methods were designed with the goal of minimizing

the standard error. Now, if we consider the top-k error (6.1) which does not
penalize (k − 1) mistakes, we discover that convexity of the above losses leads
to phenomena where errk(y, f(x)) = 0, but L(y, f(x)) � 0. That happens, e.g.,
when fπ1(x) � fy(x) ≥ fπk(x), and creates a bias if we are working with rigid
function classes such as linear classifiers. Next, we introduce loss functions that
are modifications of the above losses with the goal of alleviating that phenomenon.

Top-k SVM. We introduced top-k SVM in the previous chapter (page 79), where
two modifications of the multiclass hinge loss (SVMMulti) were proposed. The first
version (α) is motivated directly by the top-k error while the second version (β)
falls into a general family of ranking losses introduced earlier by Usunier et al.,
(2009). The two top-k SVM losses are

L(a) = max
{

0, 1
k

∑k
j=1(a+ c)πj

}
, (top-k SVMα)

L(a) = 1
k

∑k
j=1 max

{
0, (a+ c)πj

}
, (top-k SVMβ)

where π reorders the components of (a+ c) in descending order. We have shown
in § 5.2 that top-k SVMα offers a tighter upper bound on the top-k error than
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top-k SVMβ. However, both losses perform similarly in our experiments with only
a small advantage of top-k SVMβ in some settings. Therefore, when the distinction
is not important, we simply refer to them as the top-k hinge or the top-k SVM
loss. Note that they both reduce to SVMMulti for k = 1.

Top-k SVM losses are not smooth which has implications for their optimization
(§ 6.4) and top-k calibration (§ 6.3.1). Following Shalev-Shwartz and Zhang, (2014),
who employed Moreau-Yosida regularization (Beck and Teboulle, 2012; Nesterov,
2005) to obtain a smoothed version of the binary hinge loss (SVMOVA), we apply
the same technique and introduce the smooth top-k SVM.

Moreau-Yosida regularization. We follow Parikh and Boyd, (2014) and give the
main points here for completeness. The Moreau envelope or Moreau-Yosida regu-
larization Mf of the function f is

Mf (v) , inf
x

(
f(x) + (1/2) ‖x− v‖2

2

)
.

It is a smoothed or regularized form of f with the following nice properties: it is
continuously differentiable on Rd, even if f is not, and the sets of minimizers of f
and Mf are the same1. To compute a smoothed top-k hinge loss, we use

Mf =
(
f ∗ + (1/2) ‖ · ‖2

2

)∗
,

where f ∗ is the convex conjugate of f . A classical result in convex analysis (Hiriart-
Urruty and Lemaréchal, 2001) states that a conjugate of a strongly convex function
has Lipschitz smooth gradient, therefore, Mf is indeed a smooth function.

Top-k hinge conjugate. Here, we recall the conjugates of the top-k hinge losses α
and β. As shown in § 5.2, their effective domains are given by the top-k simplex
(α and β respectively) of radius r defined as

∆α
k (r) ,

{
x | 〈1, x〉 ≤ r, 0 ≤ xi ≤ 1

k
〈1, x〉 , ∀i

}
, (6.2)

∆β
k(r) ,

{
x | 〈1, x〉 ≤ r, 0 ≤ xi ≤ 1

k
r, ∀i

}
. (6.3)

We let ∆α
k = ∆α

k (1), ∆β
k = ∆β

k(1), and note the relation ∆α
k ⊂ ∆β

k ⊂ ∆, where
∆ =

{
x | 〈1, x〉 ≤ 1, xi ≥ 0

}
is the unit simplex and the inclusions are proper for

k > 1, while for k = 1 all three sets coincide.
Proposition 6.1 (Prop. 5.2, page 85). The convex conjugate of top-k SVMα is

L∗(v) =

−
∑
j 6=y vj if 〈1, v〉 = 0 and v\y ∈ ∆α

k ,

+∞ otherwise.

The convex conjugate of top-k SVMβ is defined in the same way, but with the set
∆β
k instead of ∆α

k .

1 That does not imply that we get the same classifiers since we are minimizing a regularized sum
of individually smoothed loss terms.



116 Loss Functions for Multiclass, Top-k, and Multilabel Classification

Note that the conjugates of both top-k SVM losses coincide and are equal to
the conjugate of the SVMMulti loss with the exception of their effective domains,
which are ∆α

k , ∆β
k , and ∆ respectively. Recall that the effective domain of the

conjugate loss is the feasible set for the dual variables. Therefore, as we move from
SVMMulti to top-k SVMβ, to top-k SVMα, we introduce more and more constraints
on the dual variables thus limiting the extent to which a single training example
can influence the classifier.

Smooth top-k SVM. We apply the smoothing technique introduced above to
top-k SVMα. Smoothing of top-k SVMβ is done similarly, but the set ∆α

k (r) is
replaced with ∆β

k(r).
Proposition 6.2. Let γ > 0 be the smoothing parameter. The smooth top-k hinge
loss (α) and its conjugate are

Lγ(a) = 1
γ

(
〈(a+ c)\y, p〉 − 1

2‖p‖
2
)
, (top-k SVMα

γ )

L∗γ(v) =


γ
2‖v
\y‖2 − 〈v\y, c\y〉 if 〈1, v〉 = 0, v\y ∈ ∆α

k ,

+∞ otherwise,

where p = proj∆α
k

(γ)(a+ c)\y is the Euclidean projection of (a+ c)\y onto ∆α
k (γ).

Moreover, Lγ(a) is 1/γ-smooth.

Proof. We take the convex conjugate of the top-k hinge loss, which was derived
in Proposition 5.2, and add a regularizer γ

2 〈v, v〉 to obtain the γ-strongly convex
conjugate loss L∗γ(v). Note that since vy = −∑j 6=y vj and ay = fy(x)− fy(x) = 0,
we only need to work with (m− 1)-dimensional vectors where the yth coordinate is
removed. The primal loss Lγ(a), obtained as the convex conjugate of L∗γ(v), is 1/γ-
smooth due to a known result in convex analysis (Hiriart-Urruty and Lemaréchal,
2001) (see also (Shalev-Shwartz and Zhang, 2014, Lemma 2)). We now derive a
formula to compute it based on the Euclidean projection onto the top-k simplex.
By definition,

Lγ(a) = sup
v′∈Rm

{〈a, v′〉 − L∗γ(v′)} = max
v∈∆α

k
(1)

{
〈a\y, v〉 − γ

2 〈v, v〉+ 〈v, c\y〉
}

= − min
v∈∆α

k
(1)

{
γ
2 〈v, v〉 − 〈(a+ c)\y, v〉

}
= − 1

γ
min

v
γ
∈∆α

k
(1)

{
1
2 〈v, v〉 − 〈(a+ c)\y, v〉

}
.

For the constraint v
γ
∈ ∆α

k (1), we have

〈1, v/γ〉 ≤ 1, 0 ≤ vi/γ ≤ 1
k
〈1, v/γ〉 ⇐⇒

〈1, v〉 ≤ γ, 0 ≤ vi ≤ 1
k
〈1, v〉 ⇐⇒ v ∈ ∆α

k (γ).



6.2 Loss Functions for Classification 117

The final expression follows from the fact that

arg min
v∈∆α

k
(γ)

{
1
2 〈v, v〉 − 〈(a+ c)\y, v〉

}
≡ arg min

v∈∆α
k

(γ)
‖(a+ c)\y − v‖2 ≡ proj∆α

k
(γ)(a+ c)\y.

While there is no analytic formula for the top-k SVMα
γ loss, it can be computed

efficiently via the projection onto the top-k simplex (§ 5.4, page 94). We can also
compute its gradient as

∇Lγ(a) = (1/γ)
(
Iy − ey1>y

)
proj∆α

k
(γ)(a+ c)\y,

where Iy is the identity matrix w/o the yth column, ey is the yth standard basis
vector, and 1y is the (m − 1)-dimensional vector of all ones. This follows from
the definition of a, the fact that Lγ(a) can be written as 1

2γ (‖x‖2 − ‖x− p‖2) for
x = (a+ c)\y and p = proj∆α

k
(γ)(x), and a known result

∇x
1
2 ‖x− projC(x)‖2 = x− projC(x),

which holds for any closed convex set C, see Proposition A.5 (page 186).

Smooth multiclass SVM (SVMMulti
γ ). We also highlight an important special

case of top-k SVMα
γ that performed remarkably well in our experiments. It is a

smoothed version of SVMMulti and is obtained with k = 1 and γ > 0.

Softmax conjugate. Before we introduce a top-k version of the softmax loss
(LRMulti), we need to recall its conjugate.
Proposition 6.3. The convex conjugate of the LRMulti loss is

L∗(v) =


∑
j 6=y vj log vj + (1 + vy) log(1 + vy) if 〈1, v〉 = 0 and v\y ∈ ∆,

+∞ otherwise,
(6.4)

where ∆ =
{
x | 〈1, x〉 ≤ 1, xj ≥ 0

}
is the unit simplex.

Proof. Here, we use the notation u , f(x) as we need to take special care of the
differences fj(x)− fy(x) when computing the conjugate. The softmax loss is

L(u) = log
(∑

j∈Y exp(uj − uy)
)

= log
(∑

j∈Y exp(aj)
)
,

where a = Hyu as before and Hy , I− 1e>y . Define

φ(u) , log
(∑

j∈Y exp(uj)
)
,
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then L(u) = φ(Hyu) and the conjugate is computed similar to Lemma 5.2:

L∗(v) = sup{ 〈u, v〉 − L(u) |u ∈ Rm}
= sup{ 〈u, v〉 − φ(Hyu) |u ∈ Rm}
= sup{〈u‖, v〉+ 〈u⊥, v〉 − φ(Hyu

⊥) |u‖ ∈ KerHy, u
⊥ ∈ Ker⊥Hy},

where KerHy = {u |Hyu = 0} = {t1 | t ∈ R} and Ker⊥Hy = {u | 〈1, u〉 = 0}. It
follows that L∗(v) can only be finite if 〈u‖, v〉 = 0, which implies

v ∈ Ker⊥Hy ⇐⇒ 〈1, v〉 = 0.

Let H†y be the Moore-Penrose pseudoinverse of Hy. For a v ∈ Ker⊥Hy, we write

L∗(v) = sup{〈H†yHyu
⊥, v〉 − φ(Hyu

⊥) |u⊥}
= sup{〈z, (H†y)>v〉 − φ(z) | z ∈ ImHy},

where ImHy = {Hyu |u ∈ Rm} = {u |uy = 0}. Using rank-1 update of the
pseudoinverse (Petersen, Pedersen, et al., 2008, § 3.2.7), we have

(H†y)> = I− eye>y −
1
m

(1− ey)1>,

which together with 〈1, v〉 = 0 implies (H†y)>v = v − vyey.

L∗(v) = sup{〈u, v − vyey〉 − φ(u) |uy = 0}
= sup

{
〈u\y, v\y〉 − log

(
1 +∑

j 6=y exp(uj)
)}
.

The function inside sup is concave and differentiable, hence the global optimum is
at the critical point. Setting the partial derivatives to zero yields

vj = exp(uj)/
(
1 +∑

j 6=y exp(uj)
)

for j 6= y, from which we conclude, similar to (Shalev-Shwartz and Zhang, 2014,
§ 5.1), that 〈1, v〉 ≤ 1 and 0 ≤ vj ≤ 1 for all j 6= y, i.e. v\y ∈ ∆. Let

Z ,
∑
j 6=y

exp(uj),

we have at the optimum

uj = log(vj) + log(1 + Z), ∀j 6= y.
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Since 〈1, v〉 = 0, we also have that vy = −∑j 6=y vj, hence

L∗(v) = ∑
j 6=y ujvj − log(1 + Z)

= ∑
j 6=y vj log(vj) + log(1 + Z)

(∑
j 6=y vj − 1

)
= ∑

j 6=y vj log(vj)− log(1 + Z)(1 + vy).

Summing vj and using the definition of Z,
∑
j 6=y vj = ∑

j 6=y e
uj/
(
1 +∑

j 6=y e
uj
)

= Z/(1 + Z).

Therefore,

1 + Z = 1/
(
1−∑j 6=y vj

)
= 1/(1 + vy),

which finally yields

L∗(v) = ∑
j 6=y vj log(vj) + log(1 + vy)(1 + vy),

if 〈1, v〉 = 0 and v\y ∈ ∆ as stated in the proposition.

Note that the conjugates of both the SVMMulti and the LRMulti losses share
the same effective domain, the unit simplex ∆, and differ only in their functional
form: a linear function for SVMMulti and a negative entropy for LRMulti. While we
motivated top-k SVM directly from the top-k error, we see that the only change
compared to SVMMulti was in the effective domain of the conjugate loss. This
suggests a general way to construct novel losses with specific properties by taking
the conjugate of an existing loss function, and modifying its effective domain in
a way that enforces the desired properties. The motivation for doing so comes
from the interpretation of the dual variables as forces with which every training
example pushes the decision surface in the direction given by the ground truth
label. Therefore, by reducing the feasible set we can limit the maximal contribution
of any given training example.

Top-k entropy. As hinted above, we first construct the conjugate of the top-k
entropy loss (α) by taking the conjugate of LRMulti and replacing ∆ in (6.4) with
∆α
k , and then take the conjugate again to obtain the primal loss top-k Ent. A β

version can be constructed using the set ∆β
k instead.

Proposition 6.4. The top-k entropy loss is defined as

L(a) = max
{
〈a\y, x〉 − (1− s) log(1− s)

− 〈x, log x〉 | x ∈ ∆α
k , 〈1, x〉 = s

}
.

(top-k Ent)

Moreover, we recover the LRMulti loss when k = 1.
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Proof. The convex conjugate of the top-k entropy loss is

L∗(v) ,


∑
j 6=y vj log vj + (1 + vy) log(1 + vy) if 〈1, v〉 = 0 and v\y ∈ ∆α

k ,

+∞ otherwise.

The (primal) top-k entropy loss is defined as the convex conjugate of the L∗(v)
above. We have

L(a) = sup{ 〈a, v〉 − L∗(v) | v ∈ Rm}
= sup{ 〈a, v〉 −∑j 6=y vj log vj − (1 + vy) log(1 + vy) | 〈1, v〉 = 0, v\y ∈ ∆α

k}
= sup{〈a\y, v\y〉 − ay

∑
j 6=y vj −

∑
j 6=y vj log vj

− (1−∑j 6=y vj) log(1−∑j 6=y vj) | v\y ∈ ∆α
k}.

Note that ay = 0, and hence the corresponding term vanishes. Finally, we let
x , v\y and s , ∑j 6=y vj = 〈1, x〉.
Next, we discuss how this problem can be solved and show that it reduces to

the softmax loss for k = 1. Let a , a\y and consider an equivalent problem below.

L(a) = −min
{
〈x, log x〉+ (1− s) log(1− s)− 〈a, x〉 |x ∈ ∆α

k , 〈1, x〉 = s
}
.

(6.5)
The Lagrangian for (6.5) is

L(x, s, t, λ, µ, ν) = 〈x, log x〉+ (1− s) log(1− s)− 〈a, x〉
+t(〈1, x〉 − s) + λ(s− 1)− 〈µ, x〉+

〈
ν, x− s

k
1
〉
,

where t ∈ R and λ, µ, ν ≥ 0 are the dual variables. Computing the partial
derivatives of L w.r.t. xj and s, and setting them to zero, we obtain

log xj = aj − 1− t+ µj − νj, ∀j
log(1− s) = −1− t− 1

k
〈1, ν〉+ λ.

Note that xj = 0 and s = 1 cannot satisfy the above conditions for any choice of
the dual variables in R. Therefore, xj > 0 and s < 1, which implies µj = 0 and
λ = 0. The only constraint that might be active is xj ≤ s

k
. Note, however, that in

view of xj > 0 it can only be active if either k > 1 or we have a one dimensional
problem. We consider the case when this constraint is active below.
Consider xj’s for which 0 < xj <

s
k
holds at the optimum. The complementary

slackness conditions imply that the corresponding µj = νj = 0. Let p , 〈1, ν〉 and
re-define t as t← 1 + t. We obtain the simplified equations

log xj = aj − t,
log(1− s) = −t− p

k
.
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If k = 1, then 0 < xj < s for all j in a multiclass problem as discussed above,
hence also p = 0. We have

xj = eaj−t, 1− s = e−t,

where t ∈ R is to be found. Plugging that into the objective,

−L(a) = ∑
j(aj − t)eaj−t − te−t −

∑
j aje

aj−t = e−t
[∑

j(aj − t)eaj − t−
∑
j aje

aj

]
= −te−t

[
1 +∑

j e
aj
]

= −t
[
e−t +∑

j e
aj−t

]
= −t

[
1− s+ s

]
= −t.

To compute t, we note that∑
j e

aj−t = 〈1, x〉 = s = 1− e−t,

from which we conclude

1 =
(
1 +∑

j e
aj
)
e−t =⇒ −t = − log(1 +∑

j e
aj).

Taking into account the minus in front of the min in (6.5) and the definition of a,
we finally recover the softmax loss

L(y, f(x)) = log
(
1 +∑

j 6=y exp(fj(x)− fy(x))
)
.

While there is no closed-form solution for the top-k Ent loss when k > 1, we can
compute and optimize it efficiently as we discuss later in § 6.4.

Truncated top-k entropy. A major limitation of the softmax loss for top-k error
optimization is that it cannot ignore the (k − 1) highest scoring predictions. This
can lead to a situation where the loss is high even though the top-k error is zero.
To see that, let us rewrite the LRMulti loss as

L(y, f(x)) = log
(
1 +∑

j 6=y exp(fj(x)− fy(x))
)
. (6.6)

If there is only a single j such that fj(x)− fy(x)� 0, then L(y, f(x))� 0 even
though err2(y, f(x)) is zero.

This problem is also present in all top-k hinge losses considered above and is an
inherent limitation due to their convexity. The origin of the problem is the fact
that ranking based losses (Usunier et al., 2009) are based on functions such as

φ(f(x)) = (1/m)∑j∈Y αjfπj(x)− fy(x).

The function φ is convex if the sequence (αj) is monotonically nonincreasing (Boyd
and Vandenberghe, 2004). This implies that convex ranking based losses have to
put more weight on the highest scoring classifiers, while we would like to put less
weight on them. To that end, we drop the first (k − 1) highest scoring predictions
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from the sum in (6.6), sacrificing convexity of the loss, and define the truncated
top-k entropy loss as follows

L(a) = log
(
1 +∑

j∈J ky exp(aj)
)
, (top-k Enttr)

where J k
y are the indexes corresponding to the (m− k) smallest components of

(fj(x))j 6=y. This loss can be seen as a smooth version of the top-k error (6.1), as it is
small whenever the top-k error is zero. We show a synthetic experiment in § 6.5.1,
where the advantage of discarding the highest scoring classifier in top-k Enttr
becomes apparent.

6.2.3 Multilabel Methods
In this section, we introduce natural extensions of the classical multiclass methods
discussed above to the setting where there is a set of ground truth labels Y ⊂ Y
for each example x. We focus on the loss functions that produce a ranking of
labels and optimize a multilabel loss L : 2Y × Rm → R+. We let u , f(x) and use
a simplified notation L(u) = L(Y, f(x)). A more complete overview of multilabel
classification methods is given in (Madjarov et al., 2012; Tsoumakas and Katakis,
2007; Zhang and Zhou, 2014).

Binary relevance (BR). Binary relevance is the standard one-vs-all scheme applied
to multilabel classification. It is the default baseline for direct multilabel methods
as it does not consider possible correlations between the labels.

Multilabel SVM. We follow the line of work by Crammer and Singer, (2003) and
consider the multilabel SVM loss below:

L(u) = max
y∈Y

max
j∈Ȳ

max{0, 1 + uj − uy}

= max{0, 1 + max
j∈Ȳ

uj −min
y∈Y

uy}.
(SVMML)

This method is also known as the multiclass multilabel perceptron (Fürnkranz
et al., 2008) and the separation ranking loss (Guo and Schuurmans, 2011). It can
be contrasted with another SVMMulti extension, the RankSVM of Elisseeff and
Weston, (2001), which optimizes the pairwise ranking loss:

1
|Yi||Ȳi|

∑
(y,j)∈Y×Ȳ max{0, 1 + uj − uy}.

Note that both the SVMML that we consider and RankSVM avoid expensive
enumeration of all the 2Y possible labellings by considering only pairwise label
ranking. A principled large margin approach that accounts for all possible label
interactions is structured output prediction (Tsochantaridis et al., 2005).

Multilabel SVM conjugate. Now, we compute the convex conjugate of the SVMML

loss which is used later to define a smooth multilabel SVM. Note that the SVMML

loss depends on the partitioning of Y into Y and Ȳ for every given (x, Y ) pair.
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This is reflected in the definition of a set SY below, which is the effective domain
of the conjugate:

SY ,
{
x | −∑y∈Y xy = ∑

j∈Ȳ xj ≤ 1, xy ≤ 0, xj ≥ 0
}
.

In the multiclass setting, the set Y is singleton, therefore xy = −∑j∈Ȳ xj has no
degrees of freedom and we recover the unit simplex ∆ over (xj), as in (6.4). In
the true multilabel setting, on the other hand, there is freedom to distribute the
weight across all the classes in Y .
Proposition 6.5. The convex conjugate of the SVMML loss is

L∗(v) =

−
∑
j∈Ȳ vj if v ∈ SY ,

+∞ otherwise.
(6.7)

Proof. We compute the convex conjugate of SVMML as

L∗(v) = − inf
u∈Rm
{max{0, 1 + max

j∈Ȳ
uj −min

y∈Y
uy} − 〈u, v〉}.

When the infimum is attained, the conjugate can be computed by solving the
following optimization problem, otherwise the conjugate is +∞. The corresponding
dual variables are given on the right.

min
u,α,β,ξ

ξ − 〈u, v〉

ξ ≥ 1 + β − α, (λ ≥ 0)
ξ ≥ 0, (µ ≥ 0)
α ≤ uy, ∀ y ∈ Y, (νy ≥ 0)
β ≥ uj, ∀ j ∈ Ȳ . (ηj ≥ 0)

The Lagrangian is given as

L(u, α, β, ξ, λ, µ, ν, η) = ξ − 〈u, v〉+ λ(1 + β − α− ξ)
−µξ +∑

y∈Y νy(α− uy) +∑
j∈Ȳ ηj(uj − β).

Computing the partial derivatives and setting them to zero,

∂uyL = −vy − νy, νy = −vy, ∀ y ∈ Y,
∂ujL = −vj + ηj, ηj = vj, ∀ j ∈ Ȳ ,
∂αL = −λ+ 〈1, ν〉 , λ = 〈1, ν〉 ,
∂βL = λ− 〈1, η〉 , λ = 〈1, η〉 ,
∂ξL = 1− λ− µ, λ = 1− µ.
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After a basic derivation, we arrive at the solution of the dual problem given by

λ = −∑y∈Y vy = ∑
j∈Ȳ vj,

where v must be in the following feasible set SY :

SY ,
{
v ∈ Rm | −∑y∈Y vy = ∑

j∈Ȳ vj ≤ 1,

vy ≤ 0, vj ≥ 0, ∀ y ∈ Y, ∀ j ∈ Ȳ
}
.

To complete the proof, note that L∗(v) = −λ if v ∈ SY .

Note that when |Y | = 1, (6.7) naturally reduces to the conjugate of SVMMulti

given in Proposition 6.1 with k = 1.

Smooth multilabel SVM. Here, we apply the smoothing technique, which worked
very well for multiclass problems to the multilabel SVMML loss.

As with the smooth top-k SVM, there is no analytic formula for the smoothed
loss. However, we can both compute and optimize it within our framework by
solving the Euclidean projection problem onto what we call a bipartite simplex.
It is a convenient modification of the set SY above:

B(r) , {(x, y) | 〈1, x〉 = 〈1, y〉 ≤ r, x ∈ Rm
+ , y ∈ Rn

+}. (6.8)

Proposition 6.6. Let γ > 0 be the smoothing parameter. The smooth multilabel
SVM loss and its conjugate are

Lγ(u) = 1
γ

(
〈b, p〉 − 1

2 ‖p‖
2 +

〈
b̄, p̄

〉
− 1

2 ‖p̄‖
2
)
, (SVMML

γ )

L∗γ(v) =


1
2

(∑
y∈Y vy −

∑
j∈Ȳ vj

)
+ γ

2 ‖v‖
2 , v ∈ SY ,

+∞, otherwise,

where (p, p̄) = projB(γ)(b, b̄) is the projection onto B(γ) of b =
(

1
2 − uy

)
y∈Y

,
b̄ =

(
1
2 + uj

)
j∈Ȳ

. Lγ(u) is 1/γ-smooth.

Proof. The convex conjugate of the SVMML loss is

L∗(v) =


∑
y∈Y vy, if v ∈ SY ,

+∞, otherwise.

Before we add γ
2 ‖v‖

2, recall that ∑y∈Y vy = −∑j∈Ȳ vj, and so
∑
y∈Y

vy = 1
2

(∑
y∈Y vy −

∑
j∈Ȳ vj

)
.
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We use the average instead of an individual sum for symmetry and improved
numerical stability. The smoothed conjugate loss is then

L∗γ(v) =


1
2

(∑
y∈Y vy −

∑
j∈Ȳ vj

)
+ γ

2 ‖v‖
2 , if v ∈ SY ,

+∞, otherwise.

To derive the primal loss, we take the conjugate again:

Lγ(u) = sup
v
{〈u, v〉 − L∗γ(v)}

= max
v∈SY

{
〈u, v〉 −∑y∈Y vy − γ

2 ‖v‖
2
}

= − min
v∈SY

{
γ
2 ‖v‖

2 +∑
y∈Y vy − 〈u, v〉

}
= − 1

γ
min
v
γ
∈SY

{
1
2 ‖v‖

2 +∑
y∈Y vy − 〈u, v〉

}
= − 1

γ
min
v
γ
∈SY

{
1
2 ‖v‖

2 + 1
2

( ∑
y∈Y

vy −
∑
j∈Ȳ

vj
)
− 〈u, v〉

}
= − 1

γ
min
v
γ
∈SY

{
1
2 ‖v‖

2 −∑y∈Y (1
2 − uy)(−vy)−

∑
j∈Ȳ (1

2 + uj)vj
}
.

Next, we define the following auxiliary variables:

xj = −vj, bj = 1
2 − uj, ∀ j ∈ Y,

yj = vj, b̄j = 1
2 + uj, ∀ j ∈ Ȳ ,

and rewrite the smooth loss Lγ(u) equivalently as

Lγ(u) = − 1
γ

min
x,y

1
2 ‖x‖

2 − 〈x, b〉+ 1
2 ‖y‖

2 −
〈
y, b̄

〉
〈1, x〉 = 〈1, y〉 ≤ γ,

x ≥ 0, y ≥ 0,

which is the Euclidean projection onto the set B(γ).

Note that the smooth SVMML
γ loss is a nice generalization of the multiclass

smooth SVMMulti
γ loss, and we naturally recover the latter when Y is singleton. In

§ 6.4, we extend the variable fixing algorithm of Kiwiel, (2008b) and obtain an
efficient method to compute Euclidean projections onto B(r).

Multilabel cross-entropy. Here, we discuss an extension of the LRMulti loss to
multilabel learning. We use the softmax function to model the distribution over the
class labels py(x), which recovers the well-known multinomial logistic regression
(Krishnapuram et al., 2005) and the maximum entropy (Yu et al., 2011) models.
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Assume that all the classes given in the ground truth set Y are equally likely.
We define an empirical distribution for a given (x, Y ) pair as p̂y = (1/ |Y |)Jy ∈ Y K,
and model the conditional probability py(x) via the softmax:

py(x) = (expuy)/
(∑

j∈Y expuj
)
, ∀ y ∈ Y .

The cross-entropy of the distributions p̂ and p(x) is given by

H(p̂, p(x)) = − 1
|Y |

∑
y∈Y

log
( expuy∑

j expuj

)
,

and the corresponding multilabel cross entropy loss is:

L(u) = 1
|Y |
∑
y∈Y log

(∑
j∈Y exp(uj − uy)

)
. (LRML)

Multilabel cross-entropy conjugate. Next, we compute the convex conjugate of
the LRML loss, which is used later in our optimization framework.
Proposition 6.7. The convex conjugate of the LRML loss is

L∗(v) =


∑
y∈Y (vy + 1

k
) log(vy + 1

k
) +∑

j∈Ȳ vj log vj if v ∈ DY ,

+∞ otherwise.
(6.9)

where k = |Y | and DY is the effective domain defined as:

DY ,
{
v | ∑y∈Y (vy + 1

k
) +∑

j∈Ȳ vj = 1, vy + 1
k
≥ 0, vj ≥ 0, y ∈ Y, j ∈ Ȳ

}
.

Proof. The conjugate loss is given by L∗(v) = sup{〈u, v〉 − L(u) |u ∈ Rm}. Since
L(u) is smooth and convex in u, we compute the optimal u∗ by setting the partial
derivatives to zero, which leads to vj = ∂

∂uj
L(u). We have

∂
∂ul
L(u) = 1

|Y |

∑
y∈Y

∂ul
(∑

j exp(uj − uy)
)

∑
j exp(uj − uy)

,

∂ul
(∑

j exp(uj − uy)
)

=

exp(ul − uy), l 6= y,

−∑j 6=y exp(uj − uy), l = y.

Therefore,

∂
∂ul
L(u) = 1

|Y |

∑
y∈Y

1∑
j expuj

expul, if l 6= y,

−∑j 6=y expuj, if l = y.
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Let Z , ∑j∈Y expuj, then

∂
∂ul
L(u) = 1

|Y |

∑
y∈Y

1
Z

expul, if l 6= y,

expul − Z, if l = y.

Let k , |Y |, we have

l /∈ Y =⇒ ∂
∂ul
L(u) = 1

k

∑
y∈Y

1
Z

expul = 1
Z

expul,

l ∈ Y =⇒ ∂
∂ul
L(u) = 1

kZ

(
expul − Z + (k − 1) expul

)
= 1

Z
expul − 1

k
.

Thus, for the supremum to be attained, we must have

vj =


1
Z

expuj − 1
k
, if j ∈ Y,

1
Z

expuj, if j ∈ Ȳ ,
(6.10)

which means vj ≥ − 1
k
if j ∈ Y , and vj ≥ 0 otherwise. Moreover, we have

〈1, v〉 = ∑
j∈Y

(
1
Z

expuj − 1
k

)
+∑

j∈Ȳi
1
Z

expuj = 1
Z

∑
j∈Y expuj − 1 = 0

and ∑
j∈Y vj = ∑

j∈Y

(
1
Z

expuj − 1
k

)
≤ 1

Z

∑
j expuj − 1 = 0,∑

j∈Ȳi vj = ∑
j∈Ȳi

1
Z

expuj ≤ 1
Z

∑
j expuj = 1.

Solving (6.10) for u, we get

u∗j =

log(vj + 1
k
) + logZ, if j ∈ Y,

log vj + logZ, otherwise.

Plugging the optimal u∗, we compute the conjugate as

L∗(Y, v) = 〈u∗, v〉 − 1
|Y |
∑
y∈Y log

(∑
j exp(u∗j − u∗y)

)
=∑

y∈Y vy log(vy + 1
k
) +∑

j∈Ȳ vj log vj +∑
j vj logZ

− 1
k

∑
y∈Y (logZ − u∗y)

=∑
y∈Y vy log(vy + 1

k
) +∑

j∈Ȳ vj log vj + 1
k

∑
y∈Y log(vy + 1

k
)

=∑
y∈Y (vy + 1

k
) log(vy + 1

k
) +∑

j∈Ȳ vj log vj,

where 〈1, v〉 = 0 and∑
y∈Y vy ≤ 0, vy + 1

k
≥ 0, y ∈ Y,∑

j∈Ȳ vj ≤ 1, vj ≥ 0, j ∈ Ȳ .



128 Loss Functions for Multiclass, Top-k, and Multilabel Classification

This leads to the definition of the effective domain DY , since

0 = 〈1, v〉 = ∑
y∈Y vy +∑

j∈Ȳ vj = ∑
y∈Y (vy + 1

k
) +∑

j∈Ȳ vj − 1.

The conjugates of the multilabel losses SVMML and LRML no longer share the
same effective domain, which was the case for multiclass losses. However, we still
recover the conjugate of the LRMulti loss when Y is singleton.

6.3 Bayes Optimality and Top-k Calibration
This section is devoted to the theoretical analysis of multiclass losses in terms of
their top-k performance. We establish the best top-k error in the Bayes sense,
determine when a classifier achieves it, define the notion of top-k calibration, and
investigate which loss functions possess this property.

Bayes optimality. Recall that the Bayes optimal zero-one loss in binary classifica-
tion is simply the probability of the least likely class (Friedman et al., 2001). Here,
we extend this notion to the top-k error (6.1) introduced in § 6.2.1 for multiclass
classification and provide a description of top-k Bayes optimal classifier.
Lemma 6.1. The Bayes optimal top-k error at x is

min
g∈Rm

EY |X [errk(Y, g) |X = x] = 1−∑k
j=1 pτj(x),

where pτ1(x) ≥ pτ2(x) ≥ . . . ≥ pτm(x).
A classifier f is top-k Bayes optimal at x if and only if{

y | fy(x) ≥ fπk(x)
}
⊂
{
y | py(x) ≥ pτk(x)

}
,

where fπ1(x) ≥ fπ2(x) ≥ . . . ≥ fπm(x).

Proof. For any g = f(x) ∈ Rm, let π be a permutation such that gπ1 ≥ gπ2 ≥ . . . ≥
gπm . The expected top-k error at x is

EY |X [errk(Y, g) |X = x] = ∑
y∈YJgπk > gyKpy(x) = ∑

y∈YJgπk > gπyKpπy(x)
= ∑m

j=k+1 pπj(x) = 1−∑k
j=1 pπj(x).

The error is minimal when ∑k
j=1 pπj(x) is maximal, which corresponds to taking

the k largest conditional probabilities ∑k
j=1 pτj(x) and yields the Bayes optimal

top-k error at x. Since the relative order within {pτj(x)}kj=1 is irrelevant for the
top-k error, any classifier f(x), for which the sets {π1, . . . , πk} and {τ1, . . . , τk}
coincide, is Bayes optimal.

Note that we assumed w.l.o.g. that there is a clear cut pτk(x) > pτk+1(x) between
the k most likely classes and the rest. In general, ties can be resolved arbitrarily
as long as we can guarantee that the k largest components of f(x) correspond to
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the classes (indexes) that yield the maximal sum ∑k
j=1 pπj(x) and lead to top-k

Bayes optimality.

Another way to write the optimal top-k error is ∑m
j=k+1 pπj(x), which naturally

leads to an optimal prediction strategy according to the ranking of py(x) in
descending order. However, the description of a top-k Bayes optimal classifier
reveals that optimality for any given k is better understood as a partitioning,
rather than ranking, where the labels are split into π1:k and the rest, without
any preference on the ranking in either subset. If, on the other hand, we want a
classifer that is top-k Bayes optimal for all k ≥ 1 simultaneously, a proper ranking
according to py(x) is both necessary and sufficient.

Top-k calibration. Optimization of the zero-one loss and the top-k error leads to
hard combinatorial problems. Instead of tackling a combinatorial problem directly,
an alternative is to use a convex surrogate loss which upper bounds the discrete
error. Under mild conditions on the loss function (Bartlett et al., 2006; Tewari
and Bartlett, 2007), an optimal classifier for the surrogate yields a Bayes optimal
solution for the zero-one loss. Such loss functions are called classification calibrated,
which is known in statistical learning theory as a necessary condition for a classifier
to be universally Bayes consistent (Bartlett et al., 2006). We introduce now the
notion of calibration for the top-k error.
Definition 6.1. A loss function L : Y × Rm → R+ is called top-k calibrated if
for all possible data generating measures on X × Y and all x ∈ X

arg min
g∈Rm

EY |X [L(Y, g) |X = x] ⊆ arg min
g∈Rm

EY |X [errk(Y, g) |X = x].

If a loss is not top-k calibrated, it implies that even in the limit of infinite data,
one does not obtain a classifier with the Bayes optimal top-k error from Lemma 6.1.
It is thus an important property, even though of an asymptotic nature. Next, we
analyse which of the multiclass methods covered in § 6.2.2 are top-k calibrated.

6.3.1 Multiclass Top-k Calibration
In this section, we consider top-k calibration of the standard OVA scheme, estab-
lished multiclass classification methods, and the proposed top-k Enttr loss. First,
we state a condition under which an OVA scheme is uniformly top-k calibrated, not
only for k = 1, which corresponds to the standard zero-one loss, but for all k ≥ 1
simultaneously. The condition is given in terms of the Bayes optimal classifier
for each of the corresponding binary problems and with respect to a given loss
function L, e.g. the hinge or logistic losses.
Lemma 6.2. The OVA reduction is top-k calibrated for any 1 ≤ k ≤ m if the
Bayes optimal function of a convex margin-based loss L is a strictly monotonically
increasing function of py(x) = Pr(Y = y |X = x) for every class y ∈ Y .

Proof. Let the Bayes optimal classifier for the binary problem corresponding to a
y ∈ Y have the form

fy(x) = g
(

Pr(Y = y |X = x)
)
,
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where g is a strictly monotonically increasing function. The ranking of fy corre-
sponds to the ranking of py(x) and hence the OVA reduction is top-k calibrated
for any k ≥ 1.

Next, we use Lemma 6.2 and the corresponding Bayes optimal classifiers to check
if the one-vs-all schemes employing hinge and logistic regression losses are top-k
calibrated.
Proposition 6.8. OVA SVM is not top-k calibrated.

Proof. First, we show that the Bayes optimal function for the binary hinge loss is

f ∗(x) = 2JPr(Y = 1 |X = x) > 1
2K− 1.

We decompose the expected loss as

EX,Y [L(Y, f(X))] = EX [EY |X [L(Y, f(x)) |X = x]].

Thus, one can compute the Bayes optimal classifier f ∗ pointwise by solving

arg min
α∈R

EY |X [L(Y, α) |X = x],

for every x ∈ Rd, which leads to the following problem

arg min
α∈R

max{0, 1− α}p1(x) + max{0, 1 + α}p−1(x),

where py(x) , Pr(Y = y |X = x). It is obvious that the optimal α∗ is contained
in [−1, 1]. We get

arg min
−1≤α≤1

(1− α)p1(x) + (1 + α)p−1(x).

The minimum is attained at the boundary and we get

f ∗(x) =

+1 if p1(x) > 1
2 ,

−1 if p1(x) ≤ 1
2 .

Therefore, the Bayes optimal classifier for the hinge loss is not a strictly monotoni-
cally increasing function of p1(x).

To show that OVA hinge is not top-k calibrated, we construct an example problem
with 3 classes and p1(x) = 0.4, p2(x) = p3(x) = 0.3. Note that for every class
y = 1, 2, 3, the Bayes optimal binary classifier is −1, hence the predicted ranking
of labels is arbitrary and may not produce the Bayes optimal top-k error.

Proposition 6.9. OVA logistic regression is top-k calibrated.
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Proof. First, we show that the Bayes optimal function for the logistic loss is

f ∗(x) = log
(

p1(x)
1− p1(x)

)
.

As above, the pointwise optimization problem is

arg min
α∈R

log(1 + exp(−α))p1(x) + log(1 + exp(α))p−1(x).

The logistic loss is known to be convex and differentiable and thus the optimum
can be computed via

− exp(−α)
1 + exp(−α)p1(x) + exp(α)

1 + exp(α)p−1(x) = 0.

Re-writing the first fraction we get

−1
1 + exp(α)p1(x) + exp(α)

1 + exp(α)p−1(x) = 0,

which can be solved as α∗ = log
(

p1(x)
p−1(x)

)
and leads to the formula for the Bayes

optimal classifier stated above.
We check now that the function φ : (0, 1) → R defined as φ(x) = log( x

1−x) is
strictly monotonically increasing.

φ′(x) = 1− x
x

( 1
1− x + x

(1− x)2

)
= 1− x

x

1
(1− x)2 = 1

x(1− x) > 0, ∀x ∈ (0, 1).

The derivative is strictly positive on (0, 1), which implies that φ is strictly monoton-
ically increasing. The logistic loss, therefore, fulfills the conditions of Lemma 6.2
and is top-k calibrated for any 1 ≤ k ≤ m.

The hinge loss is not calibrated since the corresponding binary classifiers, being
piecewise constant, are subject to degenerate cases that result in arbitrary rank-
ings of classes. Surprisingly, the smoothing technique based on Moreau-Yosida
regularization (§ 6.2.2) makes a smoothed loss more attractive not only from the
optimization side, but also in terms of top-k calibration. Here, we show that
a smooth binary hinge loss from (Shalev-Shwartz and Zhang, 2014) fulfills the
conditions of Lemma 6.2 and leads to a top-k calibrated OVA scheme.
Proposition 6.10. OVA smooth SVM is top-k calibrated.



132 Loss Functions for Multiclass, Top-k, and Multilabel Classification

Proof. In order to derive the smooth hinge loss, we first compute the conjugate of
the standard binary hinge loss,

L(α) = max{0, 1− α},

L∗(β) = sup
α∈R

{
αβ −max{0, 1− α}

}
=

β if − 1 ≤ β ≤ 0,
∞ otherwise.

(6.11)

The smoothed conjugate is

L∗γ(β) = L∗(β) + γ

2β
2.

The corresponding primal smooth hinge loss is given by

Lγ(α) = sup
−1≤β≤0

{
αβ − β − γ

2β
2
}

=


1− α− γ

2 if α < 1− γ,
(α−1)2

2γ if 1− γ ≤ α ≤ 1,

0, if α > 1.

(6.12)

Lγ(α) is convex and differentiable with the derivative

L′γ(α) =


−1 if α < 1− γ,
α−1
γ

if 1− γ ≤ α ≤ 1,

0, if α > 1.

We compute the Bayes optimal classifier pointwise.

f ∗(x) = arg min
α∈R

L(α)p1(x) + L(−α)p−1(x).

Let p , p1(x), the optimal α∗ is found by solving

L′(α)p− L′(−α)(1− p) = 0.

Case 0 < γ ≤ 1. Consider the case 1− γ ≤ α ≤ 1,

α− 1
γ

p+ (1− p) = 0 =⇒ α∗ = 1− γ 1− p
p

.

This case corresponds to p ≥ 1
2 , which follows from the constraint α∗ ≥ 1 − γ.

Next, consider γ − 1 ≤ α ≤ 1− γ,

−p+ (1− p) = 1− 2p 6= 0,
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unless p = 1
2 , which is already captured by the first case. Finally, consider

−1 ≤ α ≤ γ − 1 ≤ 1− γ. Then

−p− −α− 1
γ

(1− p) = 0 =⇒ α∗ = −1 + γ
p

1− p,

where we have −1 ≤ α∗ ≤ γ − 1 if p ≤ 1
2 . We obtain the Bayes optimal classifier

for 0 < γ ≤ 1 as follows:

f ∗(x) =

1− γ 1−p
p

if p ≥ 1
2 ,

−1 + γ p
1−p if p < 1

2 .

Note that while f ∗(x) is not a continuous function of p = p1(x) for γ < 1, it is still
a strictly monotonically increasing function of p for any 0 < γ ≤ 1.
Case γ > 1. First, consider γ − 1 ≤ α ≤ 1,

α− 1
γ

p+ (1− p) = 0 =⇒ α∗ = 1− γ 1− p
p

.

From α∗ ≥ γ − 1, we get the condition p ≥ γ
2 . Next, consider 1− γ ≤ α ≤ γ − 1,

α− 1
γ

p− −α− 1
γ

(1− p) = 0 =⇒ α∗ = 2p− 1,

which is in the range [1−γ, γ−1] if 1− γ
2 ≤ p ≤ γ

2 . Finally, consider −1 ≤ α ≤ 1−γ,

−p− −α− 1
γ

(1− p) = 0 =⇒ α∗ = −1 + γ
p

1− p,

where we have −1 ≤ α∗ ≤ 1− γ if p ≤ 1− γ
2 . Overall, the Bayes optimal classifier

for γ > 1 is

f ∗(x) =


1− γ 1−p

p
if p ≥ γ

2 ,

2p− 1 if 1− γ
2 ≤ p ≤ γ

2 ,

−1 + γ p
1−p if p < 1− γ

2 .

Note that f ∗ is again a strictly monotonically increasing function of p = p1(x).
Therefore, for any γ > 0, the one-vs-all scheme with the smooth hinge loss (6.12)
is top-k calibrated for all 1 ≤ k ≤ m by Lemma 6.2.

An alternative to the OVA scheme with binary losses is to use a multiclass loss
L : Y × Rm → R+ directly. First, we consider the multiclass hinge loss SVMMulti,
which is known to be not calibrated for the top-1 error (Tewari and Bartlett, 2007),
and show that it is not top-k calibrated for any k.
Proposition 6.11. Multiclass SVM is not top-k calibrated.



134 Loss Functions for Multiclass, Top-k, and Multilabel Classification

Proof. Let y ∈ arg maxj∈Y pj(x). Given any c ∈ R, we will show that a Bayes
optimal classifier f ∗ : Rd → Rm for the SVMMulti loss is

f ∗y (x) =

c+ 1 if maxj∈Y pj(x) ≥ 1
2 ,

c otherwise,
f ∗j (x) = c, j ∈ Y \ {y}.

Let g = f(x) ∈ Rm, then

EY |X [L(Y, g) |X] =
∑
l∈Y

max
j∈Y

{
Jj 6= lK + gj − gl

}
pl(x).

Suppose that the maximum of (gj)j∈Y is not unique. In this case, we have

max
j∈Y

{
Jj 6= lK + gj − gl

}
≥ 1, ∀ l ∈ Y

as the term Jj 6= lK is always active. The best possible loss is obtained by setting
gj = c for all j ∈ Y , which yields an expected loss of 1. On the other hand, if the
maximum is unique and is achieved by gy, then

max
j∈Y

{
Jj 6= lK + gj − gl

}
=

1 + gy − gl if l 6= y,

max
{

0, maxj 6=y{1 + gj − gy}
}

if l = y.

As the loss only depends on the gap gy − gl, we can optimize this with βl = gy − gl.

EY |X [L(Y, g) |X = x] =
∑
l 6=y

(1 + gy − gl)pl(x) + max
{

0, max
l 6=y
{1 + gl − gy}

}
py(x)

=
∑
l 6=y

(1 + βl)pl(x) + max
{

0, max
l 6=y
{1− βl}

}
py(x)

=
∑
l 6=y

(1 + βl)pl(x) + max{0, 1−min
l 6=y

βl}py(x).

As only the minimal βl enters the last term, the optimum is achieved if all βl are
equal for l 6= y (otherwise it is possible to reduce the first term without affecting
the last term). Let α , βl for all l 6= y. The problem becomes

min
α≥0

∑
l 6=y

(1 + α)pl(x) + max{0, 1− α}py(x) ≡ min
0≤α≤1

α(1− 2py(x))

Let p , py(x) = Pr(Y = y |X = x). The solution is

α∗ =

0 if p < 1
2 ,

1 if p ≥ 1
2 ,
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and the associated risk is

EY |X [L(Y, g) |X = x] =

1 if p < 1
2 ,

2(1− p) if p ≥ 1
2 .

If p < 1
2 , then the Bayes optimal classifier f ∗j (x) = c for all j ∈ Y and any c ∈ R.

Otherwise, p ≥ 1
2 and

f ∗j (x) =

c+ 1 if j = y,

c if j ∈ Y \ {y}.

Moreover, we have that the Bayes risk at x is

EY |X [L(Y, f ∗(x)) |X = x] = min{1, 2(1− p)} ≤ 1.

It follows, that the multiclass hinge loss is not (top-1) classification calibrated at
any x where maxy∈Y py(x) < 1

2 as its Bayes optimal classifier reduces to a constant.
Moreover, even if py(x) ≥ 1

2 for some y, the loss is not top-k calibrated for k ≥ 2
as the predicted order of the remaining classes need not be optimal.

Tewari and Bartlett, (2007) provide a general framework to study classification
calibration that is applicable to a large family of multiclass methods. However,
their characterization of calibration is derived in terms of the properties of the
convex hull of {(L(1, f), . . . , L(m, f)) | f ∈ F}, which might be difficult to verify in
practice. In contrast, our proofs of Propositions 6.11 and 6.12 are stratightforward
and based on direct derivation of the corresponding Bayes optimal classifiers for
the SVMMulti and the LRMulti losses respectively.
Proposition 6.12. Multiclass softmax loss is top-k calibrated.

Proof. The multiclass softmax loss is (top-1) calibrated for the zero-one error in
the following sense. If

f ∗(x) ∈ arg min
g∈Rm

EY |X [L(Y, g) |X = x],

then for some α > 0 and all y ∈ Y

f ∗y (x) =

log(α py(x)) if py(x) > 0,
−∞ otherwise,

which implies
arg max

y∈Y
f ∗y (x) = arg max

y∈Y
Pr(Y = y |X = x).
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We now prove this result and show that it also generalizes to top-k calibration for
k > 1. Using the identity

L(y, g) = log
(∑

j∈Y e
gj−gy

)
= log

(∑
j∈Y e

gj
)
− gy

and the fact that ∑y∈Y py(x) = 1, we write for a g ∈ Rm

EY |X [L(Y, g) |X = x] =
∑
y∈Y

L(y, g)py(x) = log
(∑
y∈Y

egy
)
−
∑
y∈Y

gypx(y).

As the loss is convex and differentiable, we get the global optimum by computing
a critical point. We have

∂

∂gj
EY |X [L(Y, g) |X = x] = egj∑

y∈Y egy
− pj(x) = 0

for j ∈ Y . We note that the critical point is not unique as multiplication g → κg
leaves the equation invariant for any κ > 0. One can verify that egj = αpj(x)
satisfies the equations for any α > 0. This yields a solution

f ∗y (x) =

log(αpy(x)) if py(x) > 0,
−∞ otherwise,

for any fixed α > 0. We note that f ∗y is a strictly monotonically increasing function
of the conditional class probabilities. Therefore, it preserves the ranking of py(x)
and implies that f ∗ is top-k calibrated for any 1 ≤ k ≤ m.

The implicit reason for top-k calibration of the OVA schemes and the softmax
loss is that one can estimate the probabilities py(x) from the Bayes optimal classifier.
Loss functions which allow this are called proper. We refer to (Reid and Williamson,
2010a) and references therein for a detailed discussion.

We have established that the OVA logistic regression and the softmax loss are
top-k calibrated for any k, so why should we be interested in defining new loss
functions for the top-k error? The reason is that calibration is an asymptotic
property since the Bayes optimal functions are obtained by pointwise minimization
of EY |X [L(Y, f(x)) |X = x] at every x ∈ X . The picture changes if we use linear
classifiers, since they cannot be minimized independently at each point. Indeed,
the Bayes optimal classifiers, in general, cannot be realized by linear functions.
Furthermore, convexity of the softmax and multiclass hinge losses leads to

phenomena where errk(y, f(x)) = 0, but L(y, f(x))� 0. We discussed this issue
§ 6.2.2 and motivated modifications of the above losses for the top-k error. Next,
we show that one of the proposed top-k losses is also top-k calibrated.
Proposition 6.13. The truncated top-k entropy loss is top-s calibrated for any
k ≤ s ≤ m.
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Proof. Given any g = f(x) ∈ Rm, let π be a permutation such that gπ1 ≥ gπ2 ≥
. . . ≥ gπm . Then, we have

Jy =

{πk+1, . . . , πm} if y ∈ {π1, . . . , πk−1},

{πk, . . . , πm} \ {y} if y ∈ {πk, . . . , πm}.

Therefore, the expected loss at x can be written as

EY |X [L(Y, g) |X = x] = ∑
y∈Y L(y, g) py(x)

= ∑k−1
r=1 log

(
1 +∑m

j=k+1 e
gπj−gπr

)
pπr(x) +∑m

r=k log
(∑m

j=k e
gπj−gπr

)
pπr(x).

Note that the sum inside the logarithm does not depend on gπr for r < k. Therefore,
a Bayes optimal classifier will have gπr = +∞ for all r < k as then the first sum
vanishes.

Let p , (py(x))y∈Y and q , (L(y, g))y∈Y , then

qπ1 = . . . = qπk−1 = 0 ≤ qπk ≤ . . . ≤ qπm

and we can re-write the expected loss as

EY |X [L(Y, g) |X = x] = 〈p, q〉 = 〈pπ, qπ〉 ≥ 〈pτ , qπ〉 ,

where pτ1 ≥ pτ2 ≥ . . . ≥ pτm and we used the rearrangement inequality. Therefore,
the expected loss is minimized when π and τ coincide (up to a permutation of the
first k − 1 elements), which already establishes top-s calibration for all s ≥ k.
We can also derive a Bayes optimal classifier following the proof of Proposi-

tion 6.12. We have

EY |X [L(Y, g) |X = x] = ∑m
r=k log

(∑m
j=k e

gτj−gτr
)
pτr(x)

= ∑m
r=k

(
log

(∑m
j=k e

gτj
)
− gτr

)
pτr(x).

A critical point is found by setting partial derivatives to zero for y ∈ {τk, . . . , τm},

egy∑m
j=k e

gτj

∑m
r=k pτr(x) = py(x).

We let gy = −∞ if py(x) = 0, and obtain finally

g∗τj =


+∞ if j < k,

log
(
αpτj(x)

)
if j ≥ k and pτj(x) > 0,

−∞ if j ≥ k and pτj(x) = 0,

as a Bayes optimal classifier for any α > 0.
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Note that g∗ preserves the ranking of py(x) for all y in {τk, . . . , τm}, hence, it is
top-s calibrated for all s ≥ k.

Top-k calibration of the remaining top-k losses is an open problem, which is
complicated by the absence of a closed-form expression for most of them.

6.4 Optimization Framework
This section is mainly devoted to efficient optimization of the multiclass and
multilabel methods from § 6.2 within the stochastic dual coordinate ascent (SDCA)
framework of Shalev-Shwartz and Zhang, (2013b). A portion of the material
presented here has been covered already in § 5.3 (page 88). However, we make a
few important extensions in this section: (i) we no longer assume that multiclass
loss functions are j-compatible; (ii) we use the Lambert W function for entropic
projections; (iii) we cover multiclass and multilabel methods in a unified framework.

The core reason for efficiency of the optimization scheme is the ability to formulate
variable updates in terms of projections onto the effective domain of the conjugate
loss, which, in turn, can be solved in time O(m logm) or faster. These projections
fall into a broad area of nonlinear resource allocation (Patriksson and Strömberg,
2015), where we already have a large selection of specialized algorithms. For
example, we use an algorithm of Kiwiel, (2008b) for SVMMulti and top-k SVMβ,
and contribute analogous algorithms for the remaining losses. In particular, we
propose an entropic projection algorithm based on the Lambert W function for
the LRMulti loss, and a variable fixing algorithm for projecting onto the bipartite
simplex (6.8) for the SVMML. We also discuss how the proposed loss functions
that do not have a closed-form expression can be evaluated efficiently, and perform
a runtime comparison against FISTA (Beck and Teboulle, 2009) using the SPAMS
optimization toolbox of Mairal et al., (2010).

• In § 6.4.1, we state the primal and Fenchel dual optimization problems, and
introduce the Lambert W function.

• In § 6.4.2, we consider SDCA update steps and loss computation for multiclass
methods, as well as present our runtime evaluation experiments.

• In § 6.4.3, we cover multilabel optimization and present our algorithm for
the Euclidean projection onto the bipartite simplex.

6.4.1 Technical Background
We briefly recall the main facts about the SDCA framework (Shalev-Shwartz and
Zhang, 2013b), Fenchel duality (Borwein and Lewis, 2000), and the Lambert W
function (Corless et al., 1996).
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The primal and dual problems. Let X ∈ Rd×n be the matrix of training examples
xi ∈ Rd, K = X>X the corresponding Gram matrix, W ∈ Rd×m the matrix
of primal variables, A ∈ Rm×n the matrix of dual variables, and λ > 0 the
regularization parameter. The primal and Fenchel dual (§ A.2, page 183) objective
functions are given as

P (W ) = + 1
n

n∑
i=1

L
(
yi,W

>xi
)

+ λ

2 tr
(
W>W

)
,

D(A) = − 1
n

n∑
i=1

L∗ (yi,−λnai)−
λ

2 tr
(
AKA>

)
,

(6.13)

where L∗ is the convex conjugate of the loss L and yi is interpreted as a set Yi if L
is a multilabel loss.
SDCA proceeds by sampling a dual variable ai ∈ Rm, which corresponds to a

training example xi ∈ Rd, and modifying it to achieve maximal increase in the
dual objective D(A) while keeping other dual variables fixed. Several sampling
strategies can be used, e.g. (Qu et al., 2015), but we use a simple scheme where
the set of indexes is randomly shuffled before every epoch and then all ai’s are
updated sequentially. The algorithm terminates when the relative duality gap
(P (W )−D(A))/P (W ) falls below a predefined ε > 0, or the computational budget
is exhausted, in which case we still have an estimate of suboptimality via the
duality gap.
Since the algorithm operates entirely on the dual variables and the prediction

scores f(xi), it is directly applicable to training both linear f(xi) = W>xi as
well as nonlinear f(xi) = AKi classifiers (Ki being the ith column of the Gram
matrix K). When d� n, which is often the case in our experiments, and we are
training a linear classifier, then it is less expensive to maintain the primal variables
W = XA> and compute the dot products W>xi in Rd. In that case, whenever ai
is updated, we perform a rank-1 update of W .
The SDCA update step ai ← maxai D(A) turns out to be equivalent to the

proximal operator2 of a certain function and can also be seen as a projection onto
the effective domain of L∗.

The conjugate loss. An important ingredient in the SDCA framework is the
conjugate loss L∗. We show that for all multiclass loss functions that we consider
the fact that they depend on the differences fj(x) − fy(x) enforces a certain
constraint on the conjugate function.
Lemma 6.3. Let Hy = I − 1e>y and let L(u) = φ(Hyu) for a loss φ : Rm → R+,
then L∗(v) = +∞ unless 〈1, v〉 = 0.

Proof. The proof follows directly from Lemma 5.2 and is partially reproduced
in the proof of Proposition 6.3. This generalized lemma drops the constraint of
y-compatibility as the latter does not apply to the softmax loss.

2 The proximal operator, or the proximal map, of a function f is defined by
proxf (v) = arg min

x

(
f(x) + 1

2 ‖x− v‖
2 ).
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Figure 6.1.: Behavior of the Lambert W function of the exponent (V (t) = W (et)).
(a) Log scale plot with t ∈ (−10, 0). (b) Linear scale plot with t ∈ (0, 10).

This has an implication that we need to enforce 〈1, ai〉 = 0 during optimization,
which translates into ayi = −∑j 6=yi aj for all multiclass losses. Therefore, the
update steps are actually performed on the (m−1)-dimensional vectors obtained by
removing the coordinate ayi . For multilabel losses, we have ∑y∈Yi ay = −∑j∈Ȳi aj,
which leads to the definition of the bipartite simplex (6.8) and a specialized
projection algorithm.

Lambert W function. The Lambert W function is defined as the inverse of the
mapping w 7→ wew. It is widely used in many fields of computer science (Corless
et al., 1996; Fukushima, 2013; Veberič, 2012), and can often be recognized in
nonlinear equations involving the exp and the log functions. Taking logarithms
on both sides of the defining equation z = WeW , we get log z = W (z) + logW (z).
Therefore, if we are given an equation of the form x+ log x = t for some t ∈ R, we
can directly “solve” it in closed-form as x = W (et). The crux of the problem is
that the function V (t) , W (et) is transcendental (Fukushima, 2013) just like the
logarithm and the exponent. There exist highly optimized implementations for the
latter and we argue that the same can be done for the Lambert W function. In
fact, there is already some work on this topic (Fukushima, 2013; Veberič, 2012),
which we also employ in our implementation.

To develop intuition about the function V (t) = W (et), which is the Lambert
W function of the exponent, we look at how it behaves for different values of t.
An illustration is provided in Figure 6.1. One can see directly from the equation
x + log x = t that the behavior of x = V (t) changes dramatically depending on
whether t is a large positive or a large negative number. In the first case, the linear
part dominates the logarithm and the function is approximately linear; a better
approximation is x(t) ≈ t − log t, when t � 1. In the second case, the function
behaves like an exponent et. To see this, we write x = ete−x and note that e−x ≈ 1
when t� 0, therefore, x(t) ≈ et, if t� 0.

To compute V (t), we use these approximations as initial points in a 5-th order
Householder method (Householder, 1970). A single iteration is already sufficient
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to get full float precision and at most two iterations are needed for double, which
makes the function V (t) an attractive tool for computing entropic projections.

6.4.2 Multiclass Methods
In this section, we cover optimization of the multiclass methods from § 6.2.2 within
the SDCA framework. We discuss how to efficiently compute the smoothed losses
that were introduced via conjugation and do not have a closed-form expression. Fi-
nally, we evaluate SDCA convergence in terms of runtime and show that smoothing
with Moreau-Yosida regularization leads to significant improvements in speed.

As mentioned in § 6.4.1 above, the core of the SDCA algorithm is the update
step ai ← arg maxai D(A). Even the primal objective P (W ) is only computed for
the duality gap and could conceivably be omitted if the certificate of optimality is
not required. Next, we focus on how the updates are computed for the different
multiclass methods.

SDCA update: SVMOVA, LROVA. SDCA updates for the binary hinge and logistic
losses are covered in (Hsieh et al., 2008) and (Shalev-Shwartz and Zhang, 2014).
We highlight that the SVMOVA update has a closed-form expression that leads
to scalable training of linear SVMs (Hsieh et al., 2008), and is implemented in
LibLinear (Fan et al., 2008).

SDCA update: SVMMulti, LRMulti, SVMMulti
γ . Although SVMMulti is also covered

in (Shalev-Shwartz and Zhang, 2014), they use a different algorithm based on
sorting, while we do a case distinction (§ 5.4.3, page 98). First, we solve an easier
continuous quadratic knapsack problem using a variable fixing algorithm of Kiwiel,
(2008b) which does not require sorting. This corresponds to enforcing the equality
constraint in the simplex and generally already gives the optimal solution. The
computation is also fast: we observe linear time complexity in practice, as shown
in Figure 5.3. For the remaining hard cases, however, we fall back to sorting and
use a scheme similar to (Shalev-Shwartz and Zhang, 2014). In our experience,
performing the case distinction offers significant time savings.

For the SVMMulti and SVMMulti
γ , note that they are special cases of top-k SVMα

γ

and top-k SVMβ
γ with k = 1, as well as LRMulti is a special case of top-k Ent.

SDCA update: top-k SVMα/β, top-k SVMα/β
γ . Here, we consider the update step

for the smooth top-k SVMα
γ loss. The non-smooth version is directly recovered by

setting γ = 0, while the update for top-k SVMβ
γ is derived similarly using the set

∆β
k in (6.14) instead of ∆α

k .
We show that performing the update step is equivalent to projecting a certain

vector b, computed from the prediction scores f(xi) = W>xi, onto the effective
domain of L∗, the top-k simplex, with an added regularization ρ 〈1, x〉2, which
biases the solution to be orthogonal to 1.
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Proposition 6.14. Let L and L∗ in (6.13) be respectively the top-k SVMα
γ loss and

its conjugate as in Proposition 6.2. The dual variables ai corresponding to (xi, yi)
are updated as:a

\yi
i = − arg minx∈∆α

k
(1/(λn))

{
‖x− b‖2 + ρ 〈1, x〉2

}
,

ayi,i = −∑j 6=yi aj,i,
(6.14)

where b = 1
〈xi,xi〉+γλn

(
q\yi + (1− qyi)1

)
, q = W>xi − 〈xi, xi〉 ai, and ρ = 〈xi,xi〉

〈xi,xi〉+γλn .

Proof. We follow the proof of Proposition 5.5 (page 92). Choose an i ∈ {1, . . . , n}
and update ai to maximize

− 1
n
L∗ (yi,−λnai)− λ

2 tr
(
AKA>

)
.

For the nonsmooth top-k hinge loss, it was shown in Proposition 5.5 that

L∗ (yi,−λnai) = 〈c, λn(ai − ayi,ieyi)〉

if −λn(ai − ayi,ieyi) ∈ ∆α
k and +∞ otherwise. Now, for the smoothed loss, we add

regularization and obtain

− 1
n

(
γ
2 ‖−λn(ai − ayi,ieyi)‖

2 + 〈c, λn(ai − ayi,ieyi)〉
)

with −λn(ai − ayi,ieyi) ∈ ∆α
k . Using c = 1− eyi and 〈1, ai〉 = 0, it simplifies to

−γnλ
2

2
∥∥∥a\yii ∥∥∥2

+ λayi,i,

and the feasibility constraint can be re-written as

−a\yii ∈ ∆α
k ( 1

λn
), ayi,i = 〈1,−a\yii 〉.

For the regularization term tr
(
AKA>

)
, we have

tr
(
AKA>

)
= Kii 〈ai, ai〉+ 2

∑
j 6=i

Kij 〈ai, aj〉+ const.

We let q = ∑
j 6=iKijaj = AKi −Kiiai and x = −a\yii :

〈ai, ai〉 = 〈1, x〉2 + 〈x, x〉 ,
〈q, ai〉 = qyi 〈1, x〉 − 〈q\yi , x〉.

Now, we plug everything together and multiply with −2/λ.

min
x∈∆α

k
( 1
λn

)
γλn ‖x‖2 − 2 〈1, x〉+ 2

(
qyi 〈1, x〉 − 〈q\yi , x〉

)
+Kii

(
〈1, x〉2 + 〈x, x〉

)
.

Collecting the corresponding terms finishes the proof.



6.4 Optimization Framework 143

We solve (6.14) using the algorithm for computing a (biased) projection onto the
top-k simplex, which we introduced in § 5.4.3 (page 98), with a minor modification
of b and ρ. Similarly, the update step for the top-k SVMβ

γ loss is solved using a
(biased) continuous quadratic knapsack problem, which we discussed in § 5.4.4.

Smooth top-k hinge losses converge significantly faster than their nonsmooth
variants as we show in the scaling experiments below. This can be explained by
the theoretical results of Shalev-Shwartz and Zhang, (2014), where they also had
similar observations for the smoothed binary hinge loss.

SDCA update: top-k Ent. Finally, we derive an optimization problem for the
proposed top-k entropy loss.
Proposition 6.15. Let L in (6.13) be the top-k Ent loss and L∗ be its convex
conjugate as in (6.4) with ∆ replaced by ∆α

k . The dual variables ai corresponding
to (xi, yi) are updated as:

a
\yi
i = − 1

λn
arg min
x∈∆α

k

{
α
2 (〈x, x〉+ s2)− 〈b, x〉+ 〈x, log x〉
+(1− s) log(1− s) | s = 〈1, x〉

}
,

ayi,i = −∑j 6=yi aj,i,

(6.15)

where α = 〈xi,xi〉
λn

, b = q\yi − qyi1, q = W>xi − 〈xi, xi〉 ai.

Proof. Let v , −λnai and y = yi. Using Proposition 6.3,

L∗(v) = ∑
j 6=y vj log vj + (1 + vy) log(1 + vy),

where 〈1, v〉 = 0 and v\y ∈ ∆α
k . Let x , v\y and s , −vy. We have s = 〈1, x〉 and

from tr
(
AKA>

)
we get

Kii(〈x, x〉+ s2)/(λn)2 − 2
〈
q\y − qy1, x

〉
/(λn),

where q = ∑
j 6=iKijaj = AKi −Kiiai. Finally, we plug everything together as in

Proposition 6.14.

Problems (6.14) and (6.15) have similar structure, but the latter is considerably
more difficult to solve due to the presence of logarithms. We propose to tackle this
problem using the function V (t) introduced in § 6.4.1 above.
Our algorithm is an instance of the variable fixing scheme with the following

steps: (i) partition the variables into disjoint sets and compute an auxiliary variable
t from the optimality conditions; (ii) compute the values of the variables using
t and verify them against a set of constraints (e.g. an upper bound in the top-k
simplex); (iii) if there are no violated constraints, we have computed the solution,
and otherwise examine the next partitioning.
There can be at most k partitionings that we need to consider for ∆α

k and ∆β
k .

To see this, let x ∈ ∆α
k be a feasible point for (6.15), and define the subsets

U , {j |xj = s
k
}, M , {j |xj < s

k
}. (6.16)
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Clearly, |U | ≤ k must hold, and |U | = k we consider as a degenerate fall back
case. Therefore, we are interested in the k partitions when 0 ≤ |U | < k. Due to
monotonicity in the optimality conditions, one can show that U always corresponds
to the largest elements bj of the vector being projected. Hence, we start with an
empty U and add indexes of the largest bj’s until the solution is found.
Next, we show how to actually compute t and x, given a candidate partition

into U and M .
Proposition 6.16. Let x∗ be the solution of (6.15) and let the sets U and M be
defined for the given x∗ as in (6.16), then

x∗j = min
{

1
α
V (bj − t), sk

}
, ∀ j,

and the variables s, t satisfy the nonlinear systemα(1− ρ)s−∑j∈M V (bj − t) = 0,
(1− ρ)t+ V −1

(
α(1− s)

)
− ρV −1(αs

k
) + A− α = 0,

(6.17)

where ρ , |U |
k
, A , 1

k

∑
j∈U bj, V −1 is the inverse of V .

Moreover, if U is empty, then x∗j = 1
α
V (bj − t) for all j, and t can be found from

V (α− t) +∑
j V (bj − t) = α. (6.18)

Proof. The Lagrangian of (6.15) is given by

L(x, s, t, λ, µ, ν) = α
2 (〈x, x〉+ s2)− 〈b, x〉+ 〈x, log x〉+ (1− s) log(1− s)

+ t(〈1, x〉 − s) + λ(s− 1)− 〈µ, x〉+
〈
ν, x− s

k
1
〉
,

where t ∈ R, λ, µ, ν ≥ 0 are the dual variables. Computing partial derivatives of L
w.r.t. xj and s, and setting them to zero, we obtain

αxj + log xj = bj − 1− t+ µj − νj, ∀j,
α(1− s) + log(1− s) = α− 1− t− λ− 1

k
〈1, ν〉 , ∀j.

Note that only xj > 0 and s < 1 satisfy the above constraints, which implies µj = 0
and λ = 0. We re-write the above as

αxj + log(αxj) = bj − 1− t+ logα− νj,
α(1− s) + log

(
α(1− s)

)
= α− 1− t+ logα− 〈1,ν〉

k
.

These equations correspond to the Lambert W function of the exponent, V (t) =
W (et), discussed in § 6.4.1. Let p , 〈1, ν〉 and re-define t← 1 + t− logα.

αxj = W
(

exp(bj − t− νj)
)
,

α(1− s) = W
(

exp(α− t− p
k
)
)
.
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Finally, we obtain the following system:

αxj = V (bj − t− νj), ∀j
α(1− s) = V (α− t− p

k
),

s = 〈1, x〉 , p = 〈1, ν〉 .

Note that V (t) is a strictly monotonically increasing function, therefore, it is
invertible and we can write

bj − t− νj = V −1(αxj),
α− t− p

k
= V −1

(
α(1− s)

)
.

Next, we use the definition of the sets U and M ,

s = 〈1, x〉 = ∑
U
s
k

+∑
M

1
α
V (bj − t),

p = 〈1, ν〉 = ∑
U bj − |U |

(
t+ V −1(αs

k
)
)
.

Let ρ , |U |
k

and A , 1
k

∑
U bj, we get

(1− ρ)s = 1
α

∑
M V (bj − t),

p
k

= A− ρ
(
t+ V −1(αs

k
)
)
.

Finally, we eliminate p and obtain the system:

α(1− ρ)s−∑M V (bj − t) = 0,
(1− ρ)t+ V −1

(
α(1− s)

)
− ρV −1(αs

k
) + A− α = 0.

Moreover, when U is empty, it simplifies into a single equation

V (α− t) +∑
M V (bj − t) = α.

We solve (6.17) using the Newton method (Nocedal and Wright, 2006), while
for (6.18) we use a 4-th order Householder method (Householder, 1970) with a
faster convergence rate. The latter is particularly attractive, since the set U can
be assumed empty for k = 1, i.e. for the LRMulti loss, and is often also empty for
the general top-k Ent loss. As both methods require the derivatives of V (t), we
note that ∂tV (t) = V (t)/(1 + V (t)) (Corless et al., 1996), which means that the
derivatives come at no additional cost. Finally, we note that V −1(v) = v + log v.

Loss computation: SVMMulti
γ , top-k SVMα/β

γ . Here, we discuss how to evaluate
smoothed losses that do not have a closed-form expression for the primal loss.
Recall that the smooth top-k SVMα

γ loss is given by

Lγ(a) = 1
γ

(
〈(a+ c)\y, p〉 − 1

2‖p‖
2
)
,
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where aj = fj(x)− fy(x), cj = 1− Jy = jK for all j ∈ Y , and p = proj∆α
k

(γ)(a+ c)\y

is the Euclidean projection of (a+ c)\y onto ∆α
k (γ). We described an O(m logm)

algorithm to compute the projection p in § 5.4.3. For the special case k = 1, i.e.
the SVMMulti

γ loss, the algorithm is particularly efficient and exhibits essentially
linear scaling in practice. Moreover, since we only need the dot products with p in
Lγ(a), we exploit its special structure, p = min{max{l, b− t}, u} with b = (a+ c)\y,
and avoid explicit computation of p. The same procedure is done for top-k SVMβ

γ .

Loss computation: top-k Ent. Next, we discuss how to evaluate the top-k Ent
loss that was defined via the conjugate of the softmax loss as

max
x∈∆α

k
, s=〈1,x〉

{
〈a\y, x〉 − (1− s) log(1− s)− 〈x, log x〉

}
. (6.19)

Note that (6.19) is similar to (6.15) and we use a similar variable fixing scheme, as
described above. However, this problem is much easier: the auxiliary variables s
and t are computed directly without having to solve a nonlinear system, and their
computation does not involve the V (t) function.
Proposition 6.17. Let x∗ be the solution of (6.19) and let the sets U and M be
defined for the given x∗ as in (6.16), then

x∗j = min
{

exp(aj − t), sk
}
, ∀ j,

and the variables s, t are computed froms = 1/(1 +Q),
t = logZ + log(1 +Q)− log(1− ρ),

(6.20)

where ρ , |U |
k
, A , 1

k

∑
j∈U aj, Z ,

∑
j∈M exp aj, and

Q , (1− ρ)(1−ρ)/(kρZ(1−ρ) expA).

The top-k Ent loss is then computed as

L(a) = (A+ (1− ρ)t− ρ log( s
k
))s− (1− s) log(1− s).

Moreover, if U is empty, then x∗j = exp(aj − t) for all j, and we recover the
softmax loss LRMulti as

L(a) = t = log(1 + Z) = log(1 +∑
j exp aj).
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Proof. We continue the derivation started in the proof of Propostion 6.4. First, we
write the system that follows directly from the KKT conditions.

xj = min{exp(aj − t), sk}, ∀j,
νj = max{0, aj − t− log( s

k
)}, ∀j,

1− s = exp(−t− p
k
),

s = 〈1, x〉 , p = 〈1, ν〉 .

(6.21)

Next, we define the two index sets U and M as follows

U , {j |xj = s
k
}, M , {j |xj < s

k
}.

Note that the set U contains at most k indexes corresponding to the largest
components of aj . Now, we proceed with finding a t that solves (6.21). Let ρ , |U |

k
.

We eliminate p as

p =
∑
j

νj =
∑
U

aj − |U |
(
t+ log( s

k
)
)

=⇒ p
k

= 1
k

∑
U

aj − ρ
(
t+ log( s

k
)
)
.

Let Z , ∑M exp aj, we write for s

s =
∑
j

xj =
∑
U

s
k

+
∑
M

exp(aj − t) = ρs+ exp(−t)
∑
M

exp aj = ρs+ exp(−t)Z.

We conclude that

(1− ρ)s = exp(−t)Z =⇒ t = logZ − log
(
(1− ρ)s

)
.

Let A , 1
k

∑
U aj. We further write

log(1− s) = −t− p
k

= −t− A+ ρ
(
t+ log( s

k
)
)

= ρ log( s
k
)− A− (1− ρ)

[
logZ − log

(
(1− ρ)s

)]
,

which yields the following equation for s

log(1− s)− ρ(log s− log k) + A+ (1− ρ)
[

logZ − log(1− ρ)− log s
]

= 0.

Therefore,

log(1− s)− log s+ ρ log k + A+ (1− ρ) logZ − (1− ρ) log(1− ρ) = 0,

log
(1− s

s

)
= log

(
(1− ρ)(1−ρ) exp(−A)

kρZ(1−ρ)

)
.

We finally get
s = 1/(1 +Q),
Q , (1− ρ)(1−ρ)/(kρZ(1−ρ)eA).
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We note that: a) Q is readily computable once the sets U and M are fixed; and b)
Q = 1/Z if k = 1 since ρ = A = 0 in that case. This yields the formula for t as

t = logZ + log(1 +Q)− log(1− ρ).

As a sanity check, we note that we again recover the softmax loss for k = 1, since
t = logZ + log(1 + 1/Z) = log(1 + Z) = log(1 +∑

j exp aj).
To verify that the computed s and t are compatible with the choice of the sets

U and M , we check if this holds:

exp(aj − t) ≥ s
k
, ∀j ∈ U,

exp(aj − t) ≤ s
k
, ∀j ∈M,

which is equivalent to

max
M

aj ≤ log( s
k
) + t ≤ min

U
aj.

To compute the actual loss (6.19), we have

〈a, x〉 − 〈x, log x〉 − (1− s) log(1− s)
=
∑
U

aj
s
k

+
∑
M

aj exp(aj − t)−
∑
U

s
k

log( s
k
)

−
∑
M

(aj − t) exp(aj − t)− (1− s) log(1− s)

= As− ρs log( s
k
) + t exp(−t)Z − (1− s) log(1− s)

= As− ρs log( s
k
) + (1− ρ)st− (1− s) log(1− s).

As before, we only need to examine at most k partitions U , adding the next
maximal aj to U until there are no violated constraints. Therefore, the overall
complexity of the procedure to compute the top-k Ent loss is O(km).

The efficiency of the outlined approach for optimizing the top-k Ent loss crucially
depends on fast computation of V (t) in the SDCA update. Our implementation
was able to scale to large datasets as we show next.

Runtime evaluation. Figure 6.2 compares the wall-clock training time of SVMMulti

with a smoothed SVMMulti
γ and the LRMulti objectives. We plot the validation accu-

racy (6.2a) and the relative duality gap (6.2b) versus time for the best performing
models on the ImageNet 2012 benchmark. We obtain substantial improvement
of the convergence rate for the smooth SVMMulti

γ compared to the non-smooth
baseline. Moreover, we see that the top-1 accuracy saturates after a few passes
over the training data, which justifies the use of a fairly loose stopping criterion
(we use ε = 10−3). For the LRMulti loss, the cost of each epoch is significantly
higher compared to SVMMulti, which is due to the difficulty of solving (6.15). This
suggests that the smooth top-1 SVMα

1 loss can offer competitive performance (see
§ 6.5) at a lower training cost.
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Figure 6.2.: SDCA convergence on ImageNet 2012. (a-b) Convergence of the LRMulti,
SVMMulti, and smooth SVMMulti

γ methods. (c) SDCA vs. FISTA as imple-
mented in the SPAMS toolbox of Mairal et al., (2010).

Finally, we also compare our implementation of LRMulti (marked SDCA in 6.2c)
with the SPAMS optimization toolbox (Mairal et al., 2010), which provides an
efficient implementation of FISTA (Beck and Teboulle, 2009). We note that the
rate of convergence of SDCA is competitive with FISTA for ε ≥ 10−4 and is
noticeably better for ε < 10−4. We conclude that our approach for training the
LRMulti model is competitive with the state-of-the-art, and faster computation of
V (t) can lead to a further speedup.

6.4.3 Multilabel Methods
This section covers optimization of the multilabel objectives introduced in § 6.2.3.
First, we reduce computation of the SDCA update step and evaluation of the
smoothed loss SVMML

γ to the problem of computing the Euclidean projection onto
what we called the bipartite simplex B(r), see Eq. (6.8). Next, we contribute a
novel variable fixing algorithm for computing that projection. Finally, we discuss
SDCA optimization of the multilabel cross-entropy loss LRML.

SDCA update: SVMML, SVMML
γ . Here, we discuss optimization of the smoothed

SVMML
γ loss. The update step for the nonsmooth counterpart is recovered by

setting γ = 0.
Proposition 6.18. Let L and L∗ in (6.13) be respectively the SVMML

γ loss and its
conjugate as in Proposition 6.6. The dual variables a , ai corresponding to the
training pair (xi, Yi) are updated as (ay)y∈Yi = p and (aj)j∈Ȳi = −p̄, where

(p, p̄) = projB(1/λn)(b, b̄),

b = ρ
(

1
2 − qy

)
y∈Yi

, b̄ = ρ
(

1
2 + qj

)
j∈Ȳi

, q = W>xi − 〈xi, xi〉 ai, and ρ = 1
〈xi,xi〉+γλn .
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Proof. We update the dual variables a , ai ∈ Rm corresponding to the training
example (xi, Yi) by solving the following optimization problem.

max
a∈Rm

− 1
n
L∗γ(Yi,−λna)− λ

2 tr(AKA>),

where λ > 0 is a regularization parameter. Equivalently, we can divide both the
primal and the dual objectives by λ and use C , 1

λn
> 0 as the regularization

parameter instead. The optimization problem becomes

max
a∈Rm

− CL∗
(
Yi,−

1
C
a
)
− 1

2 tr(AKA>). (6.22)

Note that

tr(AKA>) = Kii 〈a, a〉+ 2
∑
j 6=i

Kij 〈aj, a〉+ const,

where the const does not depend on a. We ignore that constant in the following
derivation and also define an auxiliary vector q , ∑

j 6=iKijaj = AKi − Kiiai .
Plugging the conjugate from Proposition 6.6 into (6.22), we obtain

max
a∈Rm

− C
( 1

2C
(
−∑y∈Yi ay +∑

j∈Ȳi aj
)

+ γ

2C2 ‖a‖
2
)
− (1/2)

(
Kii ‖a‖2 + 2 〈q, a〉

)
s.t. − 1

C
a ∈ SYi

We re-write the constraint − 1
C
a ∈ SYi as∑

y∈Yi ay = −∑j∈Ȳi aj ≤ C

ay ≥ 0, ∀ y ∈ Yi; aj ≤ 0, ∀ j ∈ Ȳi;

and switch to the equivalent minimization problem below.

min
a∈Rm

1
2

(
Kii + γ

C

)
‖a‖2 − 1

2
∑
y∈Yi ay −

1
2
∑
j∈Ȳi(−aj) + 〈q, a〉∑

y∈Yi ay = ∑
j∈Ȳi −aj ≤ C

ay ≥ 0, ∀ y ∈ Yi; −aj ≥ 0, ∀ j ∈ Ȳi.

Note that

−1
2
∑
y∈Yi ay −

1
2
∑
j∈Ȳi(−aj) + 〈q, a〉 = −∑y∈Yi(

1
2 − qy)ay −

∑
j∈Ȳi(

1
2 + qj)(−aj),

and let us define

x , (ay)y∈Yi ∈ R|Yi|, b , 1
Kii+γ/C (1

2 − qy)y∈Yi ∈ R|Yi|,

y , (−aj)j∈Ȳi ∈ R|Ȳi|, b̄ , 1
Kii+γ/C (1

2 + qj)j∈Ȳi ∈ R|Ȳi|.
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The final projection problem for the update step is

min
x,y

1
2 ‖x− b‖

2 + 1
2

∥∥∥y − b̄∥∥∥2

〈1, x〉 = 〈1, y〉 ≤ C

x ≥ 0, y ≥ 0.

(6.23)

Let us make two remarks regarding optimization of the multilabel SVM. First,
we see that the update step involves exactly the same projection that was used
in Proposition 6.6 to define the smoothed SVMML

γ loss, with the difference in the
vectors being projected and the radius of the bipartite simplex. Therefore, we
can use the same projection algorithm both during optimization as well as when
computing the loss. And second, even though SVMML reduces to SVMMulti when
Yi is singleton, the derivation of the smoothed loss and the projection algorithm
proposed below for the bipartite simplex are substantially different from what we
proposed in the multiclass setting. Most notably, the treatment of the dimensions
in Yi and Ȳi is now symmetric.

Loss computation: SVMML
γ . The smooth multilabel SVM loss SVMML

γ is

Lγ(u) = 1
γ

(
〈b, p〉 − 1

2 ‖p‖
2 +

〈
b̄, p̄

〉
− 1

2 ‖p̄‖
2
)
,

where b =
(

1
2 − uy

)
y∈Y

, b̄ =
(

1
2 + uj

)
j∈Ȳ

, u = f(x), and (p, p̄) = projB(γ)(b, b̄).
Below, we propose an efficient variable fixing algorithm to compute the Euclidean
projection onto B(γ). We also note that we can use the same trick that we used
for top-k SVMα

γ and exploit the special form of the projection to avoid explicit
computation of p and p̄.

Euclidean projection onto the bipartite simplex B(ρ). The optimization problem
that we seek to solve is:

(p, p̄) = arg min
x∈Rm+ , y∈R

n
+

1
2 ‖x− b‖

2 + 1
2

∥∥∥y − b̄∥∥∥2

〈1, x〉 = 〈1, y〉 ≤ ρ.
(6.24)

This problem has been considered by Shalev-Shwartz and Singer, (2006), who
proposed a breakpoint searching algorithm based on sorting, as well as by Liu
and Ye, (2009), who formulated it as a root finding problem that is solved via
bisection. Next, we contribute a novel variable fixing algorithm that is inspired by
the algorithm of Kiwiel, (2008b) for the continuous quadratic knapsack problem
(a.k.a. projection onto simplex).
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1. Initialization. Define the sets Ix = {1, . . . ,m}, Lx = {}, Iy = {1, . . . , n},
Ly = {}, and solve the independent subproblems below using (Kiwiel, 2008b).

p = arg min
x∈Rm+

{
1
2 ‖x− b‖

2 | 〈1, x〉 = ρ
}
,

p̄ = arg min
y∈Rn+

{
1
2

∥∥∥x− b̄∥∥∥2
| 〈1, y〉 = ρ

}
.

Let t′ and s′ be the resulting optimal thresholds, such that p = max{0, b− t′}
and p̄ = max{0, b̄− s′}. If t′ + s′ ≥ 0, then (p, p̄) is the solution to (6.24); stop.

2. Restricted subproblem. Compute t as

t =
(∑

Ix bj −
∑
Iy b̄j

)
/(|Ix|+ |Iy|),

and let xj(t) = bj − t, yj(t) = b̄j + t.

3. Feasibility check. Compute

∆x = ∑
ILx

(bj − t), where ILx = {j ∈ Ix |xj(t) ≤ 0},
∆y = ∑

ILy
(b̄j + t), where ILy = {j ∈ Iy | yj(t) ≤ 0}.

4. Stopping criterion. If ∆x = ∆y, then the solution to (6.24) is given by p =
max{0, b− t} and p̄ = max{0, b̄+ t}; stop.

5. Variable fixing. If ∆x > ∆y, update Ix ← Ix \ ILx , Lx ← Lx ∪ ILx . If ∆x < ∆y,
update Iy ← Iy \ ILy , Ly ← Ly ∪ ILy . Go to step 2.

Proposition 6.19. The algorithm above solves (6.24).

Proof. We sketch the main parts of the proof to show correctness of the algorithm.
A complete derivation would follow the proof given in Kiwiel, 2008b.

The Lagrangian for the optimization problem (6.24) is

L(x, y, t, s, λ, µ, ν) = 1
2 ‖x− b‖

2 + 1
2

∥∥∥y − b̄∥∥∥2

+t(〈1, x〉 − r) + s(〈1, y〉 − r) + λ(r − ρ)− 〈µ, x〉 − 〈ν, y〉 ,

and it leads to the following KKT conditions

xj = bj − t+ µj, µjxj = 0, µj ≥ 0,
yk = b̄k − s+ νk, νkyk = 0, νk ≥ 0,
λ = t+ s, λ(r − ρ) = 0, λ ≥ 0.

(6.25)

If ρ = 0, the solution is trivial. Assume ρ > 0 and let

x(t) = max{0, b− t}, y(s) = max{0, b̄− s},
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where t, s are the dual variables from (6.25) and we have

(t+ s)(r − ρ) = 0, t+ s ≥ 0, 0 ≤ r ≤ ρ.

We define index sets for x as

Ix = {j | bj − t > 0}, Lx = {j | bj − t ≤ 0}, mx = |Ix| ,

and similar sets Iy, Ly for y. Solving a reduced subproblem

min{1
2 ‖x− b‖

2 | 〈1, x〉 = r},

for t and a similar problem for s, yields

t = 1
mx

(∑
j∈Ix bj − r

)
, s = 1

my

(∑
j∈Iy b̄j − r

)
. (6.26)

We consider two cases: r = ρ and r < ρ. If r = ρ, then we have two variables t
and s to optimize over, but the optimization problem (6.24) decouples into two
simplex projection problems which can be solved independently.

min{1
2 ‖x− b‖

2 | 〈1, x〉 = ρ, xj ≥ 0},

min{1
2

∥∥∥y − b̄∥∥∥2
| 〈1, y〉 = ρ, yj ≥ 0}.

(6.27)

Let t′ and s′ be solutions to the independent problems (6.27). If t′ + s′ ≥ 0, we
have that the KKT conditions (6.25) are fulfilled and we have, therefore, the
solution to the original problem (6.24). Otherwise, we have that the optimal
t∗ + s∗ > t′ + s′ and so at least one of the two variables must increase. Let t∗ > t′,
then 〈1, x(t∗)〉 < 〈1, x(t′)〉 = ρ, therefore r∗ < ρ.
If r < ρ, then t+ s = 0. We eliminate s, which leads to

1
mx

(∑
j∈Ix bj − r

)
= − 1

my

(∑
j∈Iy b̄j − r

)
.

This can now be solved for r as

r =
(
my

∑
Ix bj +mx

∑
Iy b̄j

)
/(mx +my). (6.28)

One can verify that r < ρ if r is computed by (6.28) and t′ + s′ < 0. Plugging
(6.28) into (6.26), we get

t =
(∑

Ix bj −
∑
Iy b̄j

)
/(mx +my). (6.29)

One can further verify that t > t′ and −t > s′, where t is computed by (6.29), t′,
s′ are computed by (6.26) with r = ρ, and t′ + s′ < 0. Therefore, if xj(t′) = 0
for some j ∈ Lx(t′), then xj(t) = 0, and so Lx(t′) ⊂ Lx(t). The variables that
were fixed to the lower bound while solving (6.27) with r = ρ remain fixed when
considering r < ρ.
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Dimension d 103 104 105 106 107

Sorting based (Shalev-Shwartz and Singer, 2006) 0.07 0.56 6.92 85.56 1364.94
Variable fixing (ours) 0.02 0.15 1.48 16.46 169.81

Improvement factor 3.07 3.79 4.69 5.20 8.04

Table 6.2.: Runtime (in seconds) for solving 1000 projection problems onto B(ρ) with
ρ = 10 and m = n = d/2, see Eq. (6.24). The data is i.i.d. N (0, I).

The proposed algorithm is easy to implement, does not require sorting, and
scales well in practice, as demonstrated by our experiments in § 6.5.3.

Runtime evaluation. We also compare the runtime of the proposed variable fixing
algorithm and the sorting based algorithm of Shalev-Shwartz and Singer, (2006).
We perform no comparison to (Liu and Ye, 2009) as their code is not available.
Furthermore, the algorithms that we consider are exact, while the method of
Liu and Ye, (2009) is approximate and its runtime is dependent on the required
precision. The experimental setup is the same as in § 5.5.1 (page 100), and our
results are reported in Table 6.2.

We observe consistent improvement in runtime over the sorting based implemen-
tation, and we use our algorithm to train SVMML

γ in further experiments.

SDCA update: LRML. Finally, we discuss optimization of the multilabel cross-
entropy loss LRML. We show that the corresponding SDCA update step is equivalent
to a certain entropic projection problem, which we propose to tackle using the V (t)
function introduced above.
Proposition 6.20. Let L and L∗ in (6.13) be respectively the LRML loss and its
conjugate from Proposition 6.7. The dual variables a , ai corresponding to the
training pair (xi, Yi) are updated as (ay)y∈Yi = − 1

λn

(
p− 1

k

)
and (aj)j∈Ȳi = − 1

λn
p̄,

where

(p, p̄) = arg min
x≥0, y≥0

α
2 ‖x− b‖

2 + 〈x, log x〉+ α
2 ‖y − b̄‖

2 + 〈y, log y〉 ,

s.t. 〈1, x〉+ 〈1, y〉 = 1,
(6.30)

k = |Yi|, α = 〈xi,xi〉
λn

, b =
(

1
α
qj + 1

k

)
j∈Yi

, b̄ =
(

1
α
qj
)
j∈Ȳi

, and q = W>xi − 〈xi, xi〉 ai.
Moreover, the solution of (6.30) is given by

pj = 1
α
V (αbj − t), ∀ j, p̄j = 1

α
V (αb̄j − t), ∀ j,

where t is computed from∑
j∈Yi V (qj + α

k
− t) +∑

j∈Ȳi V (qj − t) = α. (6.31)
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Proof. Let q , ∑j 6=iKijaj = AKi −Kiiai and C , 1
λn
, as before. We solve

max
a∈Rm

− CL∗
(
Yi,−

1
C
a
)
− 1

2

(
Kii ‖a‖2 + 2 〈q, a〉

)
.

Let x and y be defined as
x =

(
− 1

C
aj + 1

k

)
j∈Yi

y =
(
− 1

C
aj
)
j∈Ȳi

,
=⇒

aj = −C
(
xj − 1

k

)
,

aj = −Cyj.

We have that

Kii ‖a‖2 + 2 〈q, a〉 = KiiC
2
(∥∥∥x− 1

k
1
∥∥∥2

+ ‖y‖2
)
− 2C

(〈
qYi , x− 1

k
1
〉

+ 〈qȲi , y〉
)
.

Ignoring the constant terms and switching the sign, we obtain

min
x≥0, y≥0

〈x, log x〉+ 1
2KiiC ‖x‖2 −KiiC

1
k
〈1, x〉 −

〈
qYi , x

〉
〈y, log y〉+ 1

2KiiC ‖y‖2 −
〈
qȲi , y

〉
s.t. 〈1, x〉+ 〈1, y〉 = 1

Let α , KiiC and define

bj = 1
α
qj + 1

k
, j ∈ Yi, b̄j = 1

α
qj, j ∈ Ȳi.

The final proximal problem for the update step is given as

min
x≥0, y≥0

〈x, log x〉+ α
2 ‖x− b‖

2 + 〈y, log y〉+ α
2

∥∥∥y − b̄∥∥∥2

〈1, x〉+ 〈1, y〉 = 1.

Next, we discuss how to solve (6.30). The Lagrangian for this problem is

L(x, y, λ, µ, ν) = 〈x, log x〉+ α
2 ‖x− b‖

2 + 〈y, log y〉+ α
2 ‖y − b̄‖

2

+λ(〈1, x〉+ 〈1, y〉 − 1)− 〈µ, x〉 − 〈ν, y〉 .

Setting the partial derivatives to zero, we obtain

log xj + αxj = αbj − λ− 1 + µj,

log yj + αyj = αb̄j − λ− 1 + νj.

We xj > 0 and yj > 0, which implies µj = 0 and νj = 0.

log(αxj) + αxj = αbj − λ− 1 + logα,
log(αyj) + αyj = αb̄j − λ− 1 + logα.
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Let t , λ+ 1− logα, we have

αxj = W (exp(αbj − t)) = V (αbj − t),
αyj = W (exp(αb̄j − t)) = V (αb̄j − t),

where W is the Lambert W function. Let

g(t) =
∑
j∈Yi

V (bj + α
k
− t) +

∑
j∈Ȳi

V (bj − t)− α,

then the optimal t∗ is the root of g(t) = 0, which corresponds to the constraint
〈1, x〉+ 〈1, y〉 = 1.

We use a 4-th order Householder method (Householder, 1970) to solve (6.31),
similar to the top-k Ent loss above. Solving the nonlinear equation in t is the
main computational challenge when updating the dual variables. However, as this
procedure does not require iteration over the index partitions, it is generally faster
than optimization of the top-k Ent loss.

6.5 Experiments
This section provides a broad array of experiments on 24 different datasets com-
paring multiclass and multilabel performance of the 13 loss functions from § 6.2.
We look at different aspects of empirical evaluation: performance on synthetic and
real data, use of handcrafted features and the features extracted from a ConvNet,
targeting a specific performance measure and being generally competitive over a
range of metrics.

• In § 6.5.1, we show on synthetic data that the top-k Enttr loss targeting the
top-2 error outperforms all competing methods by a large margin.

• In § 6.5.2, we focus on evaluating top-k performance of multiclass methods
on 11 real-world benchmark datasets including ImageNet and Places.

• In § 6.5.3, we cover multilabel classification in two groups of experiments:
(i) a comparative study following Madjarov et al., (2012) on 10 popular
multilabel datasets; (ii) image classification on Pascal VOC and MS COCO
in a novel setting contrasting multiclass, top-k, and multilabel methods.

6.5.1 Synthetic Example
In this section, we demonstrate in a synthetic experiment that our proposed top-2
losses outperform the top-1 losses when the aim is optimal top-2 performance. The
dataset with three classes is shown in the inner circle of Figure 6.3.
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(a) top-1 SVMα
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Figure 6.3.: Synthetic data in R2 (color markers inside of the black circle) and visualiza-
tion of top-1 and top-2 predictions (outside of the circle).
(a) top-1 SVMα

1 optimizes the top-1 error which increases its top-2 error.
(b) top-2 Enttr ignores the top-1 and optimizes directly the top-2 error.

Sampling scheme. First, we generate samples in [0, 7] ⊂ R which is subdivided
into 5 segments. All segments have unit length, except for the 4-th segment which
has length 3. We sample in each of the 5 segments according to the following
distribution: (0, 1, .4, .3, 0) for class 1; (1, 0, .1, .7, 0) for class 2; (0, 0, .5, 0, 1) for
class 3. Finally, the data is rescaled to [0, 1] and mapped onto the unit circle.
Samples of different classes are plotted next to each other for better visibility

as there is significant class overlap. We visualize top-1/2 predictions with two
colored circles outside of the black circle. We sample 200/200/200K points for
training/validation/test and tune C = 1/(λn) in the range 2−18 to 218. Results are
shown in Table 6.3.

Circle (synthetic)

Method Top-1 Top-2 Method Top-1 Top-2

SVMOVA 54.3 85.8 top-1 SVM1 65.7 83.9
LROVA 54.7 81.7 top-2 SVM0/1 54.4 / 54.5 87.1 / 87.0
SVMMulti 58.9 89.3 top-2 Ent 54.6 87.6
LRMulti 54.7 81.7 top-2 Enttr 58.4 96.1

Table 6.3.: Top-k accuracy (%) on synthetic data. Left: Baseline methods.
Right: Top-k SVM (nonsmooth / smooth) and the top-k entropy losses.

In each column, we provide the results for the model (as determined by the
hyperparameter C) that optimizes the corresponding top-k accuracy. First, we
note that all top-1 baselines perform similar in top-1 performance, except for
SVMMulti and top-1 SVM1 which show better results. Next, we see that our top-2
losses improve the top-2 accuracy and the improvement is most significant for the
nonconvex top-2 Enttr loss, which is close to the optimal solution for this dataset.
This is because top-2 Enttr provides a tight bound on the top-2 error and ignores
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Dataset m n d Dataset m n d

ALOI (Rocha and
Goldenstein, 2014)

1K 54K 128 Indoor 67 (Quattoni and
Torralba, 2009)

67 5354 4K

Caltech 101 Silhouettes
(Swersky et al., 2012)

101 4100 784 Letter (Hsu and Lin, 2002) 26 10.5K 16

CUB (Wah et al., 2011) 202 5994 4K News 20 (Lang, 1995) 20 15.9K 16K
Flowers (Nilsback and
Zisserman, 2008)

102 2040 4K Places 205 (Zhou et al.,
2014)

205 2.4M 4K

FMD (Sharan et al., 2009) 10 500 4K SUN 397 (Xiao et al., 2010) 397 19.9K 4K
ImageNet 2012
(Russakovsky et al., 2015)

1K 1.3M 4K

Table 6.4.: Statistics of multiclass classification benchmarks (m: # classes, n: # training
examples, d: # feature dimensions).

the top-1 errors in the loss. Unfortunately, similar significant improvements are
not observed on the real-world datasets that we tried. This might be due to the
high dimension of the feature spaces, which yields well separable problems.

6.5.2 Multiclass Experiments
The goal of this section is to provide an extensive empirical evaluation of the loss
functions from § 6.2.2 in terms of top-k performance. To that end, we compare
multiclass and top-k methods on 11 datasets ranging in size (500 to 2.4M training
examples, 10 to 1000 classes), problem domain (vision, non-vision), and granularity
(scene, object, and fine-grained classification). The statistics of the datasets is
given in Table 6.4. We also report the reference performance from the literature,
and use the encoding scheme given in Table 6.5 in the interest of space.

C (Cimpoi et al., 2015) HL (Hsu and Lin, 2002)
RA (Razavian et al., 2014) R (Rennie, 2001)
RG (Rocha and Goldenstein, 2014) S (Swersky et al., 2012)
SZ (Simonyan and Zisserman, 2015) WG (Wang et al., 2015a)

Table 6.5.: Encoding of the reference methods for the results from the literature.

Solvers. We use LibLinear (Fan et al., 2008) for the one-vs-all baselines SVMOVA

and LROVA; and our code from Chapter 5 for top-k SVM. We extended the latter to
support the smooth top-k SVMγ and the top-k Ent losses. The multiclass baselines
SVMMulti and LRMulti correspond respectively to top-1 SVM and top-1 Ent. For the
nonconvex top-k Enttr, we use the LRMulti solution as an initial point and perform
gradient descent with line search (Nocedal and Wright, 2006). We cross-validate
hyper-parameters in the range 10−5 to 103, extending it when the optimal value is
at the boundary.
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ALOI Letter News 20 Caltech 101 Sil
Reference: Top-1: 93± 1.2 RG Top-1: 97.98 HL Top-1: 86.9 R 62.1 79.6 83.4 S

Top-k: 1 3 5 10 1 3 5 10 1 3 5 10 1 3 5 10

SVMOVA 82.4 89.5 91.5 93.7 63.0 82.0 88.1 94.6 84.3 95.4 97.9 99.5 61.8 76.5 80.8 86.6
LROVA 86.1 93.0 94.8 96.6 68.1 86.1 90.6 96.2 84.9 96.3 97.8 99.3 63.2 80.4 84.4 89.4

SVMMulti 90.0 95.1 96.7 98.1 76.5 89.2 93.1 97.7 85.4 94.9 97.2 99.1 62.8 77.8 82.0 86.9
LRMulti 89.8 95.7 97.1 98.4 75.3 90.3 94.3 98.0 84.5 96.4 98.1 99.5 63.2 81.2 85.1 89.7

top-3 SVM 89.2 95.5 97.2 98.4 74.0 91.0 94.4 97.8 85.1 96.6 98.2 99.3 63.4 79.7 83.6 88.3
top-5 SVM 87.3 95.6 97.4 98.6 70.8 91.5 95.1 98.4 84.3 96.7 98.4 99.3 63.3 80.0 84.3 88.7
top-10 SVM 85.0 95.5 97.3 98.7 61.6 88.9 96.0 99.6 82.7 96.5 98.4 99.3 63.0 80.5 84.6 89.1

top-1 SVM1 90.6 95.5 96.7 98.2 76.8 89.9 93.6 97.6 85.6 96.3 98.0 99.3 63.9 80.3 84.0 89.0
top-3 SVM1 89.6 95.7 97.3 98.4 74.1 90.9 94.5 97.9 85.1 96.6 98.4 99.4 63.3 80.1 84.0 89.2
top-5 SVM1 87.6 95.7 97.5 98.6 70.8 91.5 95.2 98.6 84.5 96.7 98.4 99.4 63.3 80.5 84.5 89.1
top-10 SVM1 85.2 95.6 97.4 98.7 61.7 89.1 95.9 99.7 82.9 96.5 98.4 99.5 63.1 80.5 84.8 89.1

top-3 Ent 89.0 95.8 97.2 98.4 73.0 90.8 94.9 98.5 84.7 96.6 98.3 99.4 63.3 81.1 85.0 89.9
top-5 Ent 87.9 95.8 97.2 98.4 69.7 90.9 95.1 98.8 84.3 96.8 98.6 99.4 63.2 80.9 85.2 89.9
top-10 Ent 86.0 95.6 97.3 98.5 65.0 89.7 96.2 99.6 82.7 96.4 98.5 99.4 62.5 80.8 85.4 90.1

top-3 Enttr 89.3 95.9 97.3 98.5 63.6 91.1 95.6 98.8 83.4 96.4 98.3 99.4 60.7 81.1 85.2 90.2
top-5 Enttr 87.9 95.7 97.3 98.6 50.3 87.7 96.1 99.4 83.2 96.0 98.2 99.4 58.3 79.8 85.2 90.2
top-10 Enttr 85.2 94.8 97.1 98.5 46.5 80.9 93.7 99.6 82.9 95.7 97.9 99.4 51.9 78.4 84.6 90.2

Table 6.6.: Top-k accuracy evaluation. We compare the OVA and multiclass baselines
with the top-k SVMα from Chapter 5, as well as the proposed smooth
top-k SVMα

γ , top-k Ent, and the nonconvex top-k Enttr.

Features. For ALOI, Letter, and News 20 datasets, we use the features provided
by the LibSVM (Chang and Lin, 2011) datasets. For ALOI, we randomly split
the data into equally sized training and test sets preserving class distributions.
The Letter dataset comes with a separate validation set, which we used for model
selection only. For News20, we use PCA to reduce dimensionality of sparse features
from 62060 to 15478 preserving all non-singular PCA components3.
For Caltech101 Silhouettes, we use the features and the train/val/test splits

provided by Swersky et al., (2012).
For CUB, Flowers, FMD, and ImageNet 2012, we use MatConvNet (Vedaldi

and Lenc, 2015) to extract the outputs of the last fully connected layer of the
VGGNet-16 model (Simonyan and Zisserman, 2015).

For Indoor 67, SUN 397, and Places 205, we perform the same feature extraction,
but use the VGGNet-16 model of Wang et al., (2015a) trained on Places 205.

Discussion. The results are given in Tables 6.6, 6.7, and we can make several
interesting observations. First, while the OVA schemes perform quite similar to
the multiclass approaches (OVA LR vs. softmax, OVA SVM vs. multiclass SVM),
which confirms earlier observations in (Akata et al., 2014; Rifkin and Klautau,

3 Our SDCA-based solvers are designed for dense inputs.
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Indoor 67 CUB Flowers FMD
Top-1: 82.0 WG 62.8 C 86.8 RA 77.4 C

Top-k: 1 3 5 10 1 3 5 10 1 3 5 10 1 3 5

SVMOVA 81.9 94.3 96.5 98.0 60.6 77.1 83.4 89.9 82.0 91.7 94.3 96.8 77.4 92.4 96.4
LROVA 82.0 94.9 97.2 98.7 62.3 80.5 87.4 93.5 82.6 92.2 94.8 97.6 79.6 94.2 98.2

SVMMulti 82.5 95.4 97.3 99.1 61.0 79.2 85.7 92.3 82.5 92.2 94.8 96.4 77.6 93.8 97.2
LRMulti 82.4 95.2 98.0 99.1 62.3 81.7 87.9 93.9 82.9 92.4 95.1 97.8 79.0 94.6 97.8

top-3 SVM 81.6 95.1 97.7 99.0 61.3 80.4 86.3 92.5 81.9 92.2 95.0 96.1 78.8 94.6 97.8
top-5 SVM 79.9 95.0 97.7 99.0 60.9 81.2 87.2 92.9 81.7 92.4 95.1 97.8 78.4 94.4 97.6
top-10 SVM 78.4 95.1 97.4 99.0 59.6 81.3 87.7 93.4 80.5 91.9 95.1 97.7

top-1 SVM1 82.6 95.2 97.6 99.0 61.9 80.2 86.9 93.1 83.0 92.4 95.1 97.6 78.6 93.8 98.0
top-3 SVM1 81.6 95.1 97.8 99.0 61.9 81.1 86.6 93.2 82.5 92.3 95.2 97.7 79.0 94.4 98.0
top-5 SVM1 80.4 95.1 97.8 99.1 61.3 81.3 87.4 92.9 82.0 92.5 95.1 97.8 79.4 94.4 97.6
top-10 SVM1 78.3 95.1 97.5 99.0 59.8 81.4 87.8 93.4 80.6 91.9 95.1 97.7

top-3 Ent 81.4 95.4 97.6 99.2 62.5 81.8 87.9 93.9 82.5 92.0 95.3 97.8 79.8 94.8 98.0
top-5 Ent 80.3 95.0 97.7 99.0 62.0 81.9 88.1 93.8 82.1 92.2 95.1 97.9 79.4 94.4 98.0
top-10 Ent 79.2 95.1 97.6 99.0 61.2 81.6 88.2 93.8 80.9 92.1 95.0 97.7

top-3 Enttr 79.8 95.0 97.5 99.1 62.0 81.4 87.6 93.4 82.1 92.2 95.2 97.6 78.4 95.4 98.2
top-5 Enttr 76.4 94.3 97.3 99.0 61.4 81.2 87.7 93.7 81.4 92.0 95.0 97.7 77.2 94.0 97.8
top-10 Enttr 72.6 92.8 97.1 98.9 59.7 80.7 87.2 93.4 77.9 91.1 94.3 97.3

SUN 397 Places 205 ImageNet 2012
Reference: Top-1: 66.9 WG 60.6 88.5 WG 76.3 93.2 SZ

Top-k: 1 3 5 10 1 3 5 10 1 3 5 10

SVMMulti 65.8 85.1 90.8 95.3 58.4 78.7 84.7 89.9 68.3 82.9 87.0 91.1
LRMulti 67.5 87.7 92.9 96.8 59.0 80.6 87.6 94.3 67.2 83.2 87.7 92.2

top-3 SVM 66.5 86.5 91.8 95.9 58.6 80.3 87.3 93.3 68.2 84.0 88.1 92.1
top-5 SVM 66.3 87.0 92.2 96.3 58.4 80.5 87.4 94.0 67.8 84.1 88.2 92.4
top-10 SVM 64.8 87.2 92.6 96.6 58.0 80.4 87.4 94.3 67.0 83.8 88.3 92.6

top-1 SVM1 67.4 86.8 92.0 96.1 59.2 80.5 87.3 93.8 68.7 83.9 88.0 92.1
top-3 SVM1 67.0 87.0 92.2 96.2 58.9 80.5 87.6 93.9 68.2 84.1 88.2 92.3
top-5 SVM1 66.5 87.2 92.4 96.3 58.5 80.5 87.5 94.1 67.9 84.1 88.4 92.5
top-10 SVM1 64.9 87.3 92.6 96.6 58.0 80.4 87.5 94.3 67.1 83.8 88.3 92.6

top-3 Ent 67.2 87.7 92.9 96.8 58.7 80.6 87.6 94.2 66.8 83.1 87.8 92.2
top-5 Ent 66.6 87.7 92.9 96.8 58.1 80.4 87.4 94.2 66.5 83.0 87.7 92.2
top-10 Ent 65.2 87.4 92.8 96.8 57.0 80.0 87.2 94.1 65.8 82.8 87.6 92.1

Table 6.7.: Top-k accuracy evaluation. We compare the OVA and multiclass baselines
with the top-k SVMα from Chapter 5, as well as the proposed smooth
top-k SVMα

γ , top-k Ent, and the nonconvex top-k Enttr.
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Places 205 ImageNet 2012
Top-k: Top-1 Top-3 Top-5 Top-10 Top-1 Top-3 Top-5 Top-10

LRMulti 59.97 81.39 88.17 94.59 68.60 84.29 88.66 92.83

top-3 SVM1 (FT) 60.73 82.09 88.58 94.56 71.66 86.63 90.55 94.17
top-5 SVM1 (FT) 60.88 82.18 88.78 94.75 71.60 86.67 90.56 94.23

top-3 Enttr (FT) 60.51 81.86 88.69 94.78 71.41 86.80 90.77 94.35
top-5 Enttr (FT) 60.48 81.66 88.66 94.80 71.20 86.57 90.75 94.38

LRMulti (FT) 60.73 82.07 88.71 94.82 72.11 87.08 90.88 94.38

Table 6.8.: Top-k accuracy, as reported by Caffe (Jia et al., 2014), after fine-tuning (FT)
for approximately one epoch on Places and 3 epochs on ImageNet. The first
line (LRMulti) is the reference performance w/o fine-tuning.

2004), the OVA schemes performed worse on ALOI and Letter. Thus, we generally
recommend the multiclass losses instead of the OVA schemes.
Comparing the softmax loss and multiclass SVM, we see that there is no clear

winner in top-1 performance, but softmax consistently outperforms multiclass SVM
in top-k performance for k > 1. This might be due to the strong property of
softmax being top-k calibrated for all k. Note that this trend is uniform across all
datasets, in particular, also for the ones where the features are not coming from
a ConvNet. Both the smooth top-k SVM and the top-k entropy losses perform
slightly better than softmax if one compares specific top-k errors. However, the
good performance of the truncated top-k entropy loss on synthetic data did not
transfer to the real world datasets.

Fine-tuning experiments. We also performed a number of fine-tuning experiments
where the original network was trained further for 1-3 epochs with the smooth
top-k hinge and the truncated top-k entropy losses4. The motivation was to see if
the full end-to-end training would be more beneficial compared to training just
the classifier. Results are reported in Table 6.8. We should note that the setting is
now slightly different: there is no feature extraction step with the MatConvNet
and there is a non-regularized bias term in Caffe (Jia et al., 2014). We see that the
top-k specific losses are able to improve the performance compared to the reference
model, and that, on Places 205, the smooth top-5 SVM1 loss achieves the best
top-1..5 performance. However, in this set of experiments, we also observed similar
improvements when fine-tuning with the standard softmax loss, which achieves the
best performance on ImageNet 2012. Further training beyond 3 epochs did not
change the results significantly.

Conclusion. We see that a safe choice for multiclass problems seems to be the
LRMulti loss as it yields reasonably good results in all top-k errors. A competitive
alternative is the smooth SVMMulti

γ loss which can be faster to train (see the runtime
experiments in § 6.4.2). If one wants to optimize directly for a top-k error at the

4 Code: https://github.com/mlapin/caffe/tree/topk

https://github.com/mlapin/caffe/tree/topk
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Dataset m n d lc Dataset m n d lc

bibtex (Katakis et al.,
2008)

159 5K 2K 2.40 enron (Klimt and Yang,
2004)

53 1K 1K 3.38

bookmarks (Katakis
et al., 2008)

208 60K 2K 2.03 mediamill (Snoek
et al., 2006)

101 31K 120 4.38

corel5k (Duygulu et al.,
2002)

374 4.5K 499 3.52 medical (Read et al.,
2009)

45 645 1.5K 1.25

delicious (Tsoumakas
et al., 2008)

983 13K 500 19.02 scene (Boutell et al.,
2004)

6 1.2K 294 1.07

emotions (Trohidis
et al., 2008)

6 391 72 1.87 yeast (Elisseeff and
Weston, 2001)

14 1.5K 103 4.24

VOC 2007 (Everingham
et al., 2010)

20 5K 2K 1.46 MS COCO (Lin et al.,
2014)

80 83K 2K 2.91

Table 6.9.: Statistics of multilabel benchmarks (m: # classes, n: # training examples,
d: # feature dimensions, lc: label cardinality).

cost of a higher top-1 error, then further improvements are possible using either
the smooth top-k SVM or the top-k entropy losses.

6.5.3 Multilabel Experiments
The aim of this section is threefold. First, we establish competitive performance of
our multilabel classification methods from § 6.2.3 comparing them to the top 3
methods from an extensive experimental study by Madjarov et al., (2012) on 10
multilabel benchmark datasets of varying scale and complexity. Next, we discuss an
interesting learning setting when top-k classification methods emerge as a transition
step between multiclass and multilabel approaches. Finally, we evaluate multiclass,
top-k, and multilabel classification methods on Pascal VOC 2007 (Everingham
et al., 2010) and the more challenging Microsoft COCO (Lin et al., 2014) image
classification benchmarks.

Multilabel classification. Here, establish a solid baseline to evaluate our imple-
mentation of the multilabel SVMML, smooth SVMML

γ , and the LRML methods. We
follow the work of Madjarov et al., (2012) who provide a clear description of the
evaluation protocol and an extensive experimental comparison of 12 multilabel
classification methods on 11 datasets reporting 16 performance metrics. We limit
our comparison to the 3 best performing methods from their study, namely: (i) the
random forest of predicting clustering trees (Kocev et al., 2007), (ii) the hierarchy
of multilabel classifiers (Tsoumakas et al., 2008), and (iii) the binary relevance
method using SVMOVA. We report results on 10 datasets as there was an issue with
the published train/test splits on the remaining benchmark5. The datasets vary
greatly in size and label cardinality (the average number of labels per example),

5 See https://github.com/tsoumakas/mulan/issues/4 for details.

https://github.com/tsoumakas/mulan/issues/4
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bibtex bookmarks
Method RLoss HLoss Acc SAcc Fmic

1 Fmac
1 Finst

1 RLoss HLoss Acc SAcc Fmic
1 Fmac

1 Finst
1

RF-PCT 0.093 0.013 16.6 9.8 23.0 5.5 21.2 0.104 0.009 20.4 18.9 23.6 10.1 21.3
HOMER 0.255 0.014 33.0 16.5 42.9 26.6 42.6 - - - - - - -
BR (RBF) 0.068 0.012 34.8 19.4 45.7 30.7 43.3 - - - - - - -

LRML 0.053 0.013 30.9 14.2 42.5 35.0 38.8 0.079 0.009 22.5 16.5 29.5 21.7 27.0
SVMML 0.094 0.013 28.6 13.2 40.6 31.5 36.1 0.140 0.009 24.0 19.8 27.5 18.4 26.7
SVMML

γ 0.073 0.013 31.4 16.2 43.5 33.5 39.3 0.091 0.009 28.0 20.7 34.0 22.6 32.4

LRML (RBF) 0.054 0.013 33.8 14.6 45.4 31.8 42.0 0.072 0.009 25.1 19.7 33.1 24.6 29.0
SVMML (RBF) 0.067 0.013 36.2 19.0 46.5 37.1 44.6 0.103 0.009 30.3 22.9 35.8 26.0 34.9
SVMML

γ (RBF) 0.067 0.012 36.6 18.4 46.5 37.2 44.6 0.079 0.008 31.8 23.0 38.0 28.0 36.7

corel5k delicious
Method RLoss HLoss Acc SAcc Fmic

1 Fmac
1 Finst

1 RLoss HLoss Acc SAcc Fmic
1 Fmac

1 Finst
1

RF-PCT 0.117 0.009 0.9 0.0 1.8 0.4 1.4 0.106 0.018 14.6 0.7 24.8 8.3 24.4
HOMER 0.352 0.012 17.9 0.2 27.5 3.6 28.0 0.379 0.022 20.7 0.1 33.9 10.3 34.3
BR (RBF) 0.117 0.017 3.0 0.0 5.9 2.1 4.7 0.114 0.018 13.6 0.4 23.4 9.6 23.0

LRML 0.101 0.009 17.5 0.0 27.1 6.4 27.3 0.123 0.019 11.6 0.3 21.4 10.9 19.5
SVMML 0.205 0.009 9.9 0.8 18.5 5.0 17.5 0.184 0.019 6.9 0.2 11.1 6.6 12.2
SVMML

γ 0.174 0.009 18.8 1.0 29.4 5.9 26.3 0.163 0.019 14.9 0.3 27.1 12.1 23.6

LRML (RBF) 0.101 0.009 18.0 1.0 28.5 6.0 27.8 0.096 0.019 22.1 1.5 37.2 12.4 34.5
SVMML (RBF) 0.107 0.009 18.1 1.8 28.8 6.7 27.2 0.137 0.018 17.8 1.7 32.4 16.7 26.4
SVMML

γ (RBF) 0.105 0.009 19.3 1.8 30.2 6.8 28.8 0.099 0.018 23.1 1.6 39.0 18.2 35.7

emotions enron
Method RLoss HLoss Acc SAcc Fmic

1 Fmac
1 Finst

1 RLoss HLoss Acc SAcc Fmic
1 Fmac

1 Finst
1

RF-PCT 0.151 0.189 51.9 30.7 67.2 65.0 61.1 0.079 0.046 41.6 13.1 53.7 12.2 55.2
HOMER 0.297 0.361 47.1 16.3 58.8 57.0 61.4 0.183 0.051 47.8 14.5 59.1 16.7 61.3
BR (RBF) 0.246 0.257 36.1 12.9 50.9 44.0 46.9 0.084 0.045 44.6 14.9 56.4 14.3 58.2

LRML 0.186 0.239 53.6 22.8 66.9 66.6 64.0 0.074 0.055 38.5 7.8 53.0 21.9 50.4
SVMML 0.217 0.238 50.4 23.3 63.4 65.2 63.9 0.136 0.055 38.9 10.5 50.3 21.6 50.9
SVMML

γ 0.178 0.230 54.0 23.3 67.3 66.7 65.5 0.095 0.050 42.8 10.5 56.2 23.2 54.9

LRML (RBF) 0.225 0.266 47.2 19.3 61.1 62.0 58.4 0.070 0.047 46.3 13.0 58.4 20.3 57.9
SVMML (RBF) 0.186 0.224 53.0 21.3 65.5 64.3 64.1 0.090 0.047 46.6 15.0 58.1 26.8 58.4
SVMML

γ (RBF) 0.187 0.224 49.3 21.3 65.5 64.2 61.1 0.076 0.047 48.6 16.1 59.5 26.9 59.9

Table 6.10.: Multilabel classification results (part 1). The best 3 methods from the
study by Madjarov et al., (2012) are compared to our multilabel methods.
RF-PCT: random forest of predicting clustering trees (Kocev et al., 2007);
HOMER: hierarchy of multilabel classifiers (Tsoumakas et al., 2008); BR:
binary relevance method using SVMOVA. HOMER and all the methods
marked with (RBF) use an RBF kernel. The threshold δ for our methods
is chosen by cross validation.
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mediamill medical
Method RLoss HLoss Acc SAcc Fmic

1 Fmac
1 Finst

1 RLoss HLoss Acc SAcc Fmic
1 Fmac

1 Finst
1

RF-PCT 0.047 0.029 44.1 12.2 56.3 11.2 58.9 0.024 0.014 59.1 53.8 69.3 20.7 61.6
HOMER 0.177 0.038 41.3 5.3 55.3 7.3 57.9 0.090 0.012 71.3 61.0 77.3 28.2 76.1
BR (RBF) 0.061 0.032 40.3 8.0 53.3 5.6 55.7 0.021 0.077 20.6 0.0 34.3 36.1 32.8

LRML 0.042 0.033 41.2 7.8 54.8 17.1 54.4 0.024 0.013 68.7 56.9 76.2 35.1 75.2
SVMML 0.102 0.034 35.6 7.9 47.2 16.5 49.2 0.026 0.013 72.9 62.8 78.4 34.8 77.5
SVMML

γ 0.058 0.032 41.8 8.4 56.1 17.7 54.7 0.023 0.012 73.1 60.2 78.7 36.7 77.4

LRML (RBF) 0.042 0.033 42.0 10.0 56.2 21.8 53.3 0.031 0.016 64.9 46.5 72.6 28.0 71.4
SVMML (RBF) 0.072 0.031 43.3 11.8 57.6 25.9 55.3 0.027 0.012 72.5 61.7 78.9 36.6 76.6
SVMML

γ (RBF) 0.046 0.029 46.6 13.3 61.0 27.1 58.7 0.027 0.012 72.5 61.6 78.9 36.6 77.2

scene yeast
Method RLoss HLoss Acc SAcc Fmic

1 Fmac
1 Finst

1 RLoss HLoss Acc SAcc Fmic
1 Fmac

1 Finst
1

RF-PCT 0.072 0.094 54.1 51.8 66.9 65.8 55.3 0.167 0.197 47.8 15.2 61.7 32.2 61.4
HOMER 0.119 0.082 71.7 66.1 76.4 76.8 74.5 0.205 0.207 55.9 21.3 67.3 44.7 68.7
BR (RBF) 0.060 0.079 68.9 63.9 76.1 76.5 71.4 0.164 0.190 52.0 19.0 65.2 39.2 65.0

LRML 0.081 0.120 58.3 39.4 67.2 68.4 66.3 0.352 0.264 36.0 8.4 48.3 44.4 48.0
SVMML 0.082 0.114 60.7 46.0 68.7 69.5 67.7 0.424 0.280 31.3 5.8 46.7 42.9 45.6
SVMML

γ 0.081 0.114 60.4 44.1 68.7 69.5 67.6 0.366 0.261 35.6 9.5 46.6 44.7 47.3

LRML (RBF) 0.068 0.096 63.6 54.3 72.0 73.0 70.5 0.160 0.193 55.1 19.0 67.5 47.1 66.9
SVMML (RBF) 0.069 0.088 69.1 58.0 75.1 75.9 75.4 0.159 0.188 56.2 21.6 68.2 48.1 66.7
SVMML

γ (RBF) 0.064 0.088 68.0 58.0 74.7 75.2 75.0 0.157 0.187 56.2 19.8 68.4 48.2 67.0

Table 6.11.: Multilabel classification results (part 2); continuation of Table 6.10.

as can be seen in Table 6.9. Further details about each of the datasets can be
found in (Madjarov et al., 2012).
We follow closely the evaluation protocol of Madjarov et al., (2012) except for

the selection of the cut-off threshold δ (see § 6.2.1 for definition). Following Read
et al., (2009), Madjarov et al. choose δ by matching label cardinality between the
training and test data. While it is fast and easy to compute, that approach has
two drawbacks: (i) being an instance of transductive learning, the method requires
re-computation of δ every time test data changes; (ii) the choice of δ is not tuned
to any performance measure and is likely to be suboptimal. In our experiments
(not reported here), we observed generally comparable, but slightly lower results
compared to when δ is tuned as discussed next.
Instead, Koyejo et al., (2015) recently showed that a consistent classifier is

obtained when one computes δ by optimizing a given performance measure on a
hold-out validation set. While there are at most mn distinct values of δ that would
need to be considered, we limit the search to the grid {−10(−5.9:.2:1), 0, 10(−5.9:.2:1)}
of 71 values. Following Madjarov et al., (2012), we use 10-fold cross-validation to
select C = 1/(λn), the RBF kernel parameter θ = 1/(2σ2), and the threshold δ, as
described above. We use rather large and fine-grained grids both for C (from 2−20

to 25) and θ (from 2−15 to 23). The smoothing parameter is always set γ = 1.
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Tables 6.10 and 6.11 present our experimental results. We report 7 performance
metrics previously introduced in § 6.2.1 and tune the hyper-parameters for each
metric individually. All metrics, except the rank loss and the hamming loss,
are given in percents. Since the RF-PCT method did not use the RBF kernel
in (Madjarov et al., 2012), we also report results with the linear kernel for our
methods in the middle section of each table.
Overall, experimental results indicate competitive performance of our methods

across all datasets and evaluation measures. Specifically, we highlight that the
smooth SVMML

γ with the RBF kernel yields the best performance in 38 out of 70
cases. On the two largest datasets, bookmarks and delicious, where the previous
methods even struggled to complete training, we are able to achieve significant
performance improvements both in rank loss as well as in partition-based measures.
Finally, we note that while the previous methods show rather large variability in
performance, all three of our multilabel methods tend to be more stable and show
results that are concentrated around the best performing method in each case.

Multiclass to multilabel

Collecting ground truth annotation is hard. Even when the annotation is simply an
image level tag, providing a consistent and exhaustive list of labels for every image
in the training set would require significant effort. It is much easier to provide
a weaker form of annotation where only a single prominent object is tagged. An
interesting question is then whether it is still possible to train multilabel classifiers
from multiclass annotation. And if so, how large is the performance gap compared
to methods trained with full multilabel annotation? In the following, we set to
explore that setting and answer the questions above.
We also note that top-k classification emerges naturally as an intermediate

step between multiclass and multilabel learning. Recall that top-k loss functions
operate in the multiclass setting where there is a single label per example, but that
label is hard to guess correctly on the first attempt. One could imagine that the
example is actually associated with k labels, but only a single label is revealed in
the annotation. Therefore, it is also interesting to see if our top-k loss functions
can offer an advantage over the classic multiclass losses in this setting.
To evaluate the multiclass, top-k, and multilabel loss functions on a common

task, we choose two multilabel image classification benchmarks: Pascal VOC
2007 and Microsoft COCO. Multilabel methods are trained using full image level
annotation (i.e. all class labels, but no bounding boxes or segmentation), while
multiclass and top-k methods are trained using a single label per image. Both
datasets offer object level bounding box annotations which can be used to estimate
relative sizes of objects in the scene. For multiclass training, we only keep the label
of the largest object, which is our proxy to estimating the prominent object in the
image. All methods are evaluated using full annotation at test time. Note that
except for pruning the training labels, we do not use bounding boxes anywhere
during training or testing.
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Experimental setup. We use 5K images for training and 5K for testing on Pascal
VOC 2007, and 83K for training and 40K for testing on the MS COCO validation
set. We split the training data in half for parameter tuning, and re-train on the
full set for testing. We tune the regularization parameter C = 1/(λn) in the range
from 2−20 to 215, and the top-k parameter k in the range {2, 3, 4, 5}. For the
partition-based measures, we also tune the threshold δ in the range [0.1, 10] with
100 equally spaced points. That range was chosen by observing the distribution of
δ as computed by matching the label cardinality between training and test data.
All parameters are tuned for each method and performance metric individually.

To isolate the effect of loss functions on classifier training from feature learning,
we follow the classic approach of extracting features as a pre-processing step and
then train our classifiers on the fixed image representation. We use our own
implementation of SDCA based solvers for all of the methods considered in this
section. That offers strong convergence guarantees due to (i) convexity of the
objective and (ii) having the duality gap as the stopping criterion.

Our feature extraction pipeline is fairly common and follows the steps outlined by
Simonyan and Zisserman, (2015) and Wei and Hoai, (2016). We compute multiple
feature vectors per image. Every original image is resized isotropically so that
the smallest side is equal to Q ∈ {256, 384, 512} pixels, and then horizontal flips
are added for a total of 6 images at 3 scales. We use MatConvNet (Vedaldi and
Lenc, 2015) and apply the ResNet-152 model (He et al., 2016) which has been
pre-trained on ImageNet. We extract features from the pool5 layer and obtain
about 500 feature vectors of dimension 2048 per image on Pascal VOC (the exact
number depends on the size of the original image). To reduce computational costs
on COCO, we increase the stride of that layer to 2 for Q ∈ {384, 512}, which yields
about 140 feature vectors per image and a total of n = 12M training examples.
Unlike Wei and Hoai, (2016), we do not compute an additional global descriptor and
also perform no normalization. Our preliminary experiments showed no advantage
in doing so, and we keep the pipeline close to the original ResNet network.
Every feature vector can be mapped to a region in the original image. For

training, we simply replicate the same image labels effectively increasing the size
of the training set. At test time, we obtain a single ranking of class labels per
image by max pooling the scores for each class. We follow this basic setup, but
note that a 1− 2% improvement is possible with a more sophisticated aggregation
of information from the different image regions, e.g., as done by Wei and Hoai,
(2016) and Zhao et al., (2016).

Pascal VOC 2007. Here, we discuss the results presented in Tables 6.12 and 6.14.
We start with the first table which reports the standard VOC evaluation measure,
the mean AP, on the Pascal dataset. First, we compare top-1 (multiclass) and
top-k classification methods. As before, although the differences are small, we
see consistent improvements in each of the three groups: LRMulti to top-k Ent,
SVMMulti to top-k SVMβ, and SVMMulti

γ to top-k SVMβ
γ . The best top-1 method

is SVMMulti with 89.3% mAP, which is outperformed by top-k SVMβ reporting the
overall best multiclass result of 89.5% mAP.
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Labels Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike prsn plant sheep sofa train tv mAP

multi-
class

LRMulti 99.2 95.0 92.5 92.3 61.9 86.6 93.4 95.8 55.3 85.8 82.0 92.1 97.2 91.5 93.2 70.8 82.1 82.6 97.8 81.1 86.4
top-k Ent 99.1 96.0 92.3 95.4 62.1 89.2 93.9 95.3 58.5 88.1 72.8 94.2 97.3 93.8 93.0 67.9 87.7 83.4 97.6 85.3 87.1

SVMMulti 99.5 94.0 97.0 96.8 62.1 93.4 94.6 97.5 65.0 89.9 85.1 97.4 97.8 95.5 93.7 71.0 90.2 84.4 98.7 82.3 89.3
top-k SVMα 99.3 95.5 94.7 95.5 61.5 91.9 94.6 97.4 66.7 89.0 80.8 97.1 97.7 95.4 95.3 70.7 90.2 84.3 98.5 84.8 89.0
top-k SVMβ 99.4 95.5 96.0 95.9 63.5 92.6 94.6 97.4 66.1 90.2 84.1 97.1 97.8 95.5 95.0 70.9 91.7 84.6 98.5 83.9 89.5

SVMMulti
γ 99.4 95.4 95.0 95.5 64.3 91.9 94.4 97.0 64.0 90.0 84.7 96.1 97.7 94.8 94.2 70.6 89.7 84.6 98.3 83.3 89.0

top-k SVMα
γ 99.3 96.0 93.2 95.0 63.6 90.7 94.3 97.0 62.4 89.3 79.7 96.0 97.6 95.0 95.0 70.2 89.5 84.4 98.3 83.9 88.5

top-k SVMβ
γ 99.3 95.6 94.7 95.2 64.4 91.8 94.5 97.1 65.1 89.8 84.2 96.3 97.7 94.9 94.8 70.6 89.7 84.6 98.4 84.0 89.1

multi-
label

LRML 98.8 94.2 92.3 90.6 56.6 83.3 92.1 95.8 65.0 85.3 84.0 93.9 96.5 93.6 92.5 69.4 83.8 81.2 97.7 78.2 86.2
SVMML 99.5 96.5 97.5 96.7 71.8 93.6 95.3 97.8 79.3 92.0 87.6 98.4 98.2 96.6 97.9 73.1 93.3 83.8 98.7 88.5 91.8
SVMML

γ 99.6 96.3 97.1 96.4 69.5 93.3 94.9 97.5 76.7 91.3 88.0 98.0 98.3 96.6 98.1 72.6 93.2 83.7 98.6 88.0 91.4

Table 6.12.: Pascal VOC 2007 classification results. Evaluation of multiclass, top-k, and multilabel classification methods. Methods in the
“multiclass” section above use only a single label per image, while methods in the “multilabel” section use all annotated labels.
Please see the section Multiclass to multilabel for further details on the learning setting.
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Labels Method mAP P@1 P@2 P@3 P@5 R@1 R@3 R@5 R@10 RLoss HLoss Acc SAcc Fmic
1 Fmac

1 Finst
1

multi-
class

LRMulti 54.6 92.6 66.9 52.2 37.0 44.8 65.8 73.9 82.9 0.066 0.028 43.4 15.9 52.4 41.1 55.8

SVMMulti 54.2 92.8 66.9 51.9 36.6 44.9 65.6 73.4 83.5 0.057 0.025 48.3 20.7 55.6 43.3 60.1
top-k SVMα 58.3 92.8 68.1 53.2 37.5 44.9 66.8 74.8 83.7 0.054 0.025 48.8 20.8 56.8 44.4 59.9
top-k SVMβ 59.0 93.2 68.4 53.2 37.5 45.0 66.9 74.7 84.0 0.053 0.025 49.7 21.2 57.5 44.5 61.3

SVMMulti
γ 58.1 93.0 67.7 52.8 37.2 45.0 66.5 74.3 83.6 0.056 0.025 48.9 20.2 56.5 44.6 60.6

top-k SVMα
γ 58.4 92.8 68.1 53.2 37.5 44.9 66.8 74.8 83.7 0.055 0.025 48.4 20.4 57.0 44.5 60.3

top-k SVMβ
γ 59.1 93.2 68.4 53.3 37.4 45.0 66.9 74.7 83.7 0.054 0.025 49.3 20.9 57.2 44.4 60.9

multi-
label

LRML 58.2 92.8 76.3 61.8 44.2 44.9 75.5 84.6 93.2 0.021 0.030 43.7 16.9 52.9 49.6 55.6
SVMML 63.0 92.1 72.9 57.4 40.6 44.1 70.8 78.9 89.1 0.040 0.024 49.5 25.6 58.3 50.6 60.5
SVMML

γ 71.0 95.7 79.5 63.4 44.6 46.2 77.1 85.3 93.2 0.020 0.021 57.4 29.8 65.5 58.9 67.9

Table 6.13.: MS COCO multilabel classification results. Methods in the “multiclass” section use only a single label per image, while methods
in the “multilabel” section use all annotated labels. Please see the section Multiclass to multilabel for further details on the
learning setting, and § 6.2.1 for details on the evaluation measures.
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Method R@1 R@3 R@5 RLoss HLoss Acc SAcc Fmic
1 Fmac

1 Finst
1

LRMulti 76.2 94.3 98.0 0.016 0.029 73.2 54.4 78.1 75.0 80.0
top-k Ent 76.1 94.3 97.8 0.016 0.038 48.1 44.0 59.8 72.1 61.7

SVMMulti 76.5 94.1 97.6 0.017 0.025 76.0 60.6 80.3 77.5 81.9
top-k SVMα 76.4 94.6 98.0 0.015 0.025 76.6 61.3 81.4 77.9 81.7
top-k SVMβ 76.8 95.2 98.1 0.014 0.024 77.3 62.0 82.0 78.6 83.1

SVMMulti
γ 76.6 94.7 98.0 0.015 0.025 75.9 60.0 81.2 78.3 82.3

top-k SVMα
γ 76.4 95.0 98.2 0.015 0.025 76.2 59.3 81.2 76.7 81.5

top-k SVMβ
γ 76.7 95.2 98.1 0.014 0.024 76.7 60.5 82.2 78.1 82.8

LRML 76.5 96.3 98.9 0.010 0.027 75.2 59.8 81.3 77.4 80.7
SVMML 78.0 96.8 98.9 0.008 0.019 81.6 69.8 85.8 81.9 86.1
SVMML

γ 77.9 97.3 99.1 0.008 0.018 82.4 70.8 86.8 83.0 86.4

Table 6.14.: Pascal VOC 2007 multilabel classification results.

Next, we look at the performance gap between multiclass and multilabel settings.
The best mAP of 91.8% is achieved by the multilabel SVM, SVMML, which exploits
full annotation to boost its performance. However, the gap of just above 2%
suggests a non-trivial trade-off between the additional annotation effort and the
resulting classification performance. One limitation of the results on VOC 2007
is the relatively low label cardinality of only 1.5 labels per image. The picture
changes on MS COCO where the label cardinality is about 3 labels per image.
Comparing the smooth and nonsmooth losses, we see that nonsmooth loss

functions tend to perform better on this dataset. Moreover, SVM seems to perform
significantly better than softmax. While this is a somewhat surprising result, it
has been observed previously, e.g. with the R-CNN detector (Girshick, 2015; Lenc
and Vedaldi, 2015), and with deeply-supervised CNNs (Lee et al., 2015a), even
though their comparison was to OVA SVM.
Finally, we note that the current state of the art classification results on VOC

2007 are reported in (Wang et al., 2016b; Wei and Hoai, 2016; Zhao et al., 2016).
Our 91.8% mAP of SVMML matches exactly the result of LSSVM-Max by Wei
and Hoai, (2016), which operates in the setting closest to ours in terms of image
representation and the learning architecture. Their proposed PRSVM method
performs additional inference (as opposed to the simple max pooling that we use)
and achieves 92.9% mAP. Multiscale orderless pooling by Zhao et al., (2016) is
directly comparable to our setting and yields 90.8% mAP. Performing inference on
the extracted image regions, they too report around 93% mAP, while additionally
exploiting bounding box annotations boosts the performance to 93.7%.
While mAP is the established performance measure on Pascal VOC datasets,

it does not evaluate how well a method captures inter-class correlations since the
AP is computed for each class independently. To address this limitation, we also
report a number of multilabel performance metrics from § 6.2.1 in Table 6.14.
The best performing method in the multiclass category is again top-k SVMβ, but
the improvement over the baseline SVMMulti is more pronounced. Furthermore,
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the smooth SVMML
γ now clearly outperforms its nonsmooth counterpart also

significantly increasing the gap between multiclass and multilabel methods.

MS COCO. Table 6.13 presents our results on the MS COCO benchmark. The
general trend is similar to that observed on VOC 2007: top-k methods tend to
outperform top-1 multiclass baselines, but are outperformed by multilabel methods
that exploit full annotation. However, the differences between the methods are
more meaningful on this dataset. In particular, smooth top-k SVMβ

γ achieves
59.1% mAP, which is a 1% improvement over SVMMulti

γ , while multilabel SVMML
γ

boosts the performance to 71%. The improvement of over 10% highlights the
value of multilabel annotation, even though this result is subject to the bias of our
label selection procedure for multiclass methods: small objects may have not been
repesented well. That class imbalance could be also the reason for relatively poor
mAP performance of SVMMulti and LRMulti methods in these experiments.

The current state of the art classification results on COCO are reported by Zhao
et al., (2016). A comparable architecture achieved 69.7% mAP, while performing
inference on the multiple regions per image and exploiting the bounding box
annotations boosted the performance to 73% mAP.
Looking at multilabel evaluation measures, we can also make a few interesting

observations. First, the rank loss seems to correlate well with the other performance
measures, which is good since that is the metric that our loss functions are designed
to optimize. Second, strong performance at P@1 suggests that a single guess is
generally sufficient to guess a correct label. However, due to high class imbalance
this result is not too impressive and is humbled by the performance of R@k: even
10 attempts may not suffice to guess all relevant labels. The difficulty of properly
ranking the less represented classes is also highlighted by the relatively low accuracy
and subset accuracy results, although the latter metric may be too stringent for a
large scale benchmark.

6.6 Conclusion
Modern large scale image classification benchmarks are subject to the problem of
increased class ambiguity to the extent that the classical error rate becomes too
stringent and may not be an adequate performance measure. In Chapter 5, we
proposed to consider the top-k error as the target performance measure instead,
and formulated the corresponding top-k SVM algorithm.
In this chapter, we continued the study of class ambiguity and carried out an

extensive experimental study of multiclass, top-k, and multilabel performance
optimization. We observed that the softmax loss and the smooth hinge loss are
competitive across all top-k errors and should be considered the primary candidates
in practice. Our new surrogate losses include the smooth top-k hinge loss and the
top-k entropy loss. These novel methods can further improve the top-k results,
especially if one is targeting a particular top-k error as the performance measure,
or if the training examples are multilabel in nature.
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We have also considered an interesting transition from multiclass to top-k to
multilabel classification, and observed that effective multilabel classifiers can be
trained from single label annotation. Our results indicate, in particular, that the
classical multilabel SVM is competitive in mAP on Pascal VOC 2007, however,
the proposed smooth multilabel SVM outperforms the competing methods in other
metrics on Pascal VOC, and in all metrics on MS COCO.
Finally, we would like to highlight our optimization schemes for top-k Ent,

top-k SVMγ , and SVMML
γ , which include the softmax loss and multiclass, multilabel

SVM as special cases. Our optimization algorithms are based on the SDCA
framework of Shalev-Shwartz and Zhang, (2013b) and use efficient projection
subroutines which are of independent interest.
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In this chapter, we present a brief summary of the thesis highlighting some of the
conclusions and insights, and offer an outlook for further research directions.
We started the dissertation with an intriguing problem: how do we teach a

machine to see? We discussed that the statistical learning theory offers a sound
platform to build algorithms that learn from data. From the computer vision
perspective, we understood the specific representations of data and attempted
to capture invariances to certain irrelevant transformations. Furthermore, we
formalized a concrete perceptual task of being able to classify and categorize
images. Having reviewed the related work, we identified and contributed towards
overcoming two major challenges in the automated learning approach: limited
amount and ambiguity in the training data.

7.1 Conclusions and Insights
In this section, we draw conclusions from our results and offer some insights which
could be useful to a practitioner or, perhaps, even inspire further research. The
section is organized into two parts following the structure of the thesis.

Learning with Limited Training Data
In Part I, which covers learning with limited training data, we considered two
frameworks that incorporate additional prior knowledge: learning with privileged
information (Chapter 3) and multitask learning (Chapter 4). Below, we summarize
some of the main insights and conclusions related to that line of research.

Privileged Information is related to instance weighting, or importance weighting,
and, therefore, can be interpreted as a way to introduce guidance on the
difficulty of the individual training examples.

SVM+ realizes an interesting constraint that forces it to concentrate more weight
on the difficult, even misclassified, examples. This is an artifact of the
formulation that offers an upper bound on the loss on the given example,
which is based on the assumption that the loss in the decision space should
not exceed the loss in the correcting space.

Weight Learning is demonstrated to be both beneficial and hard in practice. We
obtained substantial performance improvements when the instance weights
were learned on a large validation sample, which proves the existence of
weighting schemes that perform significantly better than uniform weighting.
That could motivate further research to find such schemes, in particular,

173
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exploiting the privileged information. On the other hand, we observed that
adjusting the loss function, or, even more generally, learning a loss function,
can lead to severe overfitting and has to be carefully controlled.

Multitask Learning is an effective method to exploit task relatedness and it gener-
ally outperforms single task learning where every task is learned independently.
In our experiments, we observed consistent, although limited, improvements
over the OVA baseline. Moreover, multitask learning is scalable to modern
datasets and feature vectors if an efficient optimization scheme is used.

Learning with Class Ambiguity
In Part II, we introduced the problem of class ambiguity and recognized the top-k
error as an appropriate target performance measure. We proposed top-k multiclass
SVM (Chapter 5) as a suitable learning algorithm and developed an efficient
optimization scheme based on SDCA. Furthermore, we proposed smooth top-k
SVM, top-k versions of the softmax loss, and smooth multilabel SVM along with
the corresponding optimization algorithms (Chapter 6). Our theoretical analysis
and extensive empirical evaluation leads to the following insights and conclusions.

Top-k Error is an interesting performance measure that offers nontrivial tradeoffs
depending on the target value of k. In particular, our proposed top-k SVM and
top-k entropy methods demonstrate consistent improvements in top-k error
for k > 1 at the cost of a higher top-1 error, which reveals a “diagonal” pattern
in the results table. However, there is no direct correspondence between the
k in the loss and the k′ in the performance metric, which suggests that the
value of k should be cross-validated for the target performance measure.

Softmax Loss and smooth multiclass SVM demonstrate surprisingly strong perfor-
mance on multiclass datasets uniformly across all values of k. Therefore, we
recommend these two methods as the primary candidates in practice if there
is only limited ambiguity in the labels and no budget to tune the k in top-k
SVM. However, our experiments on multilabel datasets, in particular on MS
COCO, show that the proposed top-k methods outperform their multiclass
counterparts in the presence of significant class ambiguity.

Top-k Calibration is our extension of the concept of classification calibration for
the top-k error as the target performance measure. Notably, we have shown
that the softmax loss is not only classification calibrated for the standard
(top-1) error, but is uniformly top-k calibrated for all k ≥ 1. This is a strong
property, although of an asymptotic nature, which may offer an explanation
for the strong top-k performance of the softmax loss.

OVA vs Multiclass is an old dispute among researchers and we do not aim to
settle it here. In our experience, OVA scheme offers hardly any advantage
in terms of training time over an efficiently implemented multiclass method,
unless the training is massively parallelized. On the other hand, we observed
that multiclass methods tend to perform on par or better compared to the
OVA scheme, particularly in top-k error for k > 1.
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Efficient Projection algorithms enable scalable optimization with vector valued
loss functions, such as the ones used for multiclass, top-k, and multilabel
learning. SDCA updates based on projections are optimal in the sense that
they yield maximal increases of the dual objective over small batches of
dual variables given other variables fixed. Moreover, the same projection
algorithms can be used to compute the gradients of the corresponding loss
functions, and may be integrated into a deep learning architecture. The
downside of the SDCA framework, however, is that one has to maintain
the dual variables which requires memory that scales linearly both with the
number of classes and training examples.

Novel Losses can be defined via the conjugate of an existing loss function, as
we have demonstrated with the introduction of the top-k entropy loss. In
particular, the effective domain of the conjugate can be modified to introduce
the desired properties of the loss, while the primal loss function is then
obtained by computing the conjugate of the modified conjugate loss. The
procedure is reminiscent of the Moreau-Yosida regularization discussed next.

Smoothed Loss can be obtained from a nonsmooth loss using Moreau-Yosida
regularization which adds an `2 regularizer to the conjugate loss. We used
that technique to obtain smooth multiclass, top-k, and multilabel SVMs,
which demonstrated significantly faster training times, and often improved
the generalization performance.

7.2 Future Perspectives
This final section gives a brief outlook on further research directions.

Learning Using Privileged Information

We start with the framework of learning using privileged information (LUPI)
and list some ideas that are motivated by our results.

SVM– We have already considered the question whether it is possible to formulate
an SVM– algorithm in § 3.4.5. There, we considered a rather intuitive, yet
naive, modification which was quickly dismissed as it leads to a nonconvex
problem. Instead, we can develop the insight discussed above and realize
that the asymmetric constraint between the losses in the decision and the
correcting spaces can be reversed. That is, one could consider an alternative
formulation where the loss in the correcting space gives a lower bound, similar
to the loss inequality regularization method of Wang and Ji, (2015).
developed a fast optimization scheme for SVM+ based on dual coordinate
ascend, and You et al., (2017)

Multiclass, Multilabel SVM+ Research so far has mainly focused on the binary
SVM+ algorithm, and used the classical OVA scheme for multiclass problems
(Sharmanska et al., 2014). There are only limited attempts to develop
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multiclass algorithms that would utilize the privileged information without
resorting to binary classifiers: the M2PiSVM of Ji et al., (2012), the ν-K-
SVCR+ model of Liu et al., (2013) and the SVM+MTL method of Ren et al.,
(2015). A multilabel formulation was proposed by You et al., (2017). It
would be interesting to further investigate the use of privileged information in
multiclass and multilabel algorithms, such as the ones developed by Crammer
and Singer, 2001, 2003; Elisseeff and Weston, 2001.

LR+, Softmax+ The adoption of the logistic loss in the LUPI paradigm is some-
what limited (Wang and Ji, 2016; Wang et al., 2014b), while the softmax
loss, to the best of our knowledge, has not been considered yet. In particular,
Wang et al., (2014b) proposed an LR+ method, where the agreement between
predictions in the decision and the correcting spaces is enforced with the `2
distance. While computationally tractable, the method is not quite in line
with the original Vapnik’s idea, since the dependency between the spaces
is now symmetric. Instead, it might be interesting to consider enforcing an
asymmetric constraint between the losses, and it might be more elegant if
done in the dual space.

Efficient Optimization Finally, there is only limited work on developing efficient
optimization algorithms for SVM+ and the related methods (Li et al., 2016;
Pechyony and Vapnik, 2011; You et al., 2017), which limits their applicability
in modern large scale datasets. One could extend the work of Li et al., (2016)
adapting the SDCA framework to the proposed SVM+ variations, as well as
consider the Moreau-Yosida smoothing technique.

Multitask Representation Learning

We have already listed a number of possible MTL-SDCA extensions in § 4.2.2
(page 67), which mainly consider the adoption of different loss functions and
regularizers. In hindsight, our formulation can be interpreted from the perspective
of deep learning, where there is already a substantial amount of ongoing work.
Although MTL-SDCA in its current form is closer related to supervised dictionary
learning and matrix factorization methods, the introduction of a nonlinear transform
on top of the lower dimensional representation U>x turns our method into a classical
two layer neural network.
One idea, which is inspired by the iterative SDCA optimization scheme, might

be worth exploring. Recall that we use a form of block coordinate descent to
find a local minimum of a biconvex objective. In doing so, we perform decoupled
iterative updates of the two matrices, U and W , and maintain monotonic descent
of the global objective. The latter may be desirable for the diagnostic purposes. In
contrast, stochastic backpropagation performs joint updates of all the layers at every
iteration and does not guarantee monotonicity. Moreover, it requires full forward
and backward passes, which is hard to parallelize and can be computationally
expensive in very deep networks. An interesting ongoing research direction is
based on the idea that the optimization of individual layers can be decoupled
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(Carreira-Perpiñán and Wang, 2014; Jaderberg et al., 2016; Lee et al., 2015b). We
believe this is a promising avenue for further research.

Top-k Optimization and Label Ranking

Finally, we provide a brief outlook from the perspective of our most recent work
on top-k error optimization.

Top-k Calibration The calibration of smooth and nonsmooth top-k hinge loss is,
unfortunately, an open question, as Table 6.1 in Chapter 6 shows. We know
that top-1 multiclass SVM is not calibrated, while smooth OVA SVM is. It
would be nice to provide a definitive answer regarding top-k calibration of
smooth and nonsmooth top-k SVMs for k > 1.

Generalization Bounds Theoretical analysis of the proposed top-k SVM would
be incomplete without a measure of its generalization performance. Lei et al.,
(2015) have recently obtained a data-dependent generalization error bound
with a logarithmic dependency on the number of classes. In particular, their
analysis applies to the multiclass SVM of Crammer and Singer, (2001), and
it should be possible to extend it to the top-k SVM as well.

Multilabel Softmax One limitation of the multilabel softmax loss (LRML) consid-
ered in Chapter 6 is that the summation inside the logarithm goes over all the
classes, including both positive and negative labels. While that formulation
followed from a natural model of the conditional probability, an alternative
loss function might be interesting to consider:

L(u) = 1
|Y |
∑
y∈Y log

(∑
j∈Ȳ exp(uj − uy)

)
,

where the inner sum goes over the negative labels only.
Ranking Losses When we introduced the top-k hinge loss (α), we argued that it

offers a tighter convex upper bound on the discrete top-k error compared to
the top-k hinge loss (β). Following that line of thought, one could study if
our construction can be generalized to the family of ranking losses considered
by Usunier et al., (2009), which would lead to tighter convex upper bounds
on the corresponding discrete losses.

Smooth Ranking Shalev-Shwartz and Singer, (2006) considered an interesting
generalization of label ranking where the ground truth is given in the form of
a graph of preferences, with nodes being the labels and edges expressing the
ranking of labels. In their approach, the graph is decomposed into bipartite
subgraphs which enforce pairwise label ranking and are used to define the
overall loss. Being quite general, their framework includes as special cases
the multiclass SVMs of Weston, Watkins, et al., (1999) and Crammer and
Singer, (2001), as well as the multilabel SVM of Elisseeff and Weston, (2001).
However, their framework could be extended in a number of ways. First, their
loss functions are nonsmooth, and it should be possible to obtain a smoothed
version using Moreau-Yosida regularization. Second, it might be possible to
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extend their framework to the softmax loss, and develop the corresponding
optimization scheme. Finally, as Shalev-Shwartz and Singer, (2006) note
themselves, one could consider k-partite decompositions, which would model
higher order label dependencies.



AConvex Analysis

Here, we recall some of the well-known results from convex analysis that are used
throughout the dissertation.

A.1 Lagrangian Duality
Duality equips us with a rigorous framework to handle constrained optimization
problems that often arise in machine learning. Here, we cover the Lagrangian
duality that is traditionally popular in research on support vector machines.

The material presented in this section is based on the Convex Optimization book
by Boyd and Vandenberghe, (2004).

A.1.1 The Lagrange Dual Problem
Consider an optimization problem below, which we will call the primal problem,

minimize f0(x)
subject to fi(x) ≤ 0, i = 1, . . . ,m,

hi(x) = 0, i = 1, . . . , p,
(A.1)

where x ∈ Rn and the domain D = ⋂m
i=0 dom fi ∩

⋂p
i=1 dom hi is nonempty.

The Lagrangian L : Rn × Rm × Rp → R associated with the problem (A.1) is
defined as

L(x, λ, ν) = f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

νihi(x),

with domL = D × Rm × Rp. The vectors λ and ν are called the dual variables,
while the vector x is called the primal variable. Throughout the thesis, we often
omit explicit enumeration of the domain and all the variables of the Lagrangian.
The Lagrange dual function g : Rm × Rp → R is defined as the minimum value

of the Lagrangian over x:

g(λ, ν) = inf
x∈D
L(x, λ, ν).

The Lagrange dual problem associated with the problem (A.1) is defined as

maximize g(λ, ν)
subject to λi ≥ 0, i = 1, . . . ,m.

(A.2)
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The Lagrange dual problem (A.2) is a convex optimization problem even when the
primal problem is not convex.
Let p? and d? be the optimal values of the primal and the dual problems

respectively. The following inequality, known as weak duality, always holds:

d? ≤ p?.

Often, in particular for convex optimization problems, strong duality holds:

d? = p?,

and we say that the optimal duality gap is zero. Strong duality can be written as

sup
λ≥0, ν

inf
x
L(x, λ, ν) = inf

x
sup
λ≥0, ν

L(x, λ, ν),

which is known as the strong max-min property or the saddle-point property.
Strong duality holds for all convex optimization problems in this thesis where

we consider dual optimization.

A.1.2 KKT Optimality Conditions
The Karush-Kuhn-Tucker (KKT) conditions, which we introduce in this section,
are known to be necessary and sufficient for the points x? and (λ?, ν?) to be primal
and dual optimal if the optimization problem is convex and strong duality holds.
The KKT conditions associated with the problem (A.1) are defined as:

∇f0(x?) +∑m
i=1 λ

?
i ∇fi(x?) +∑p

i=1 ν
?
i ∇hi(x?) = 0,

fi(x?) ≤ 0, i = 1, . . . ,m,
hi(x?) = 0, i = 1, . . . , p,

λ?i ≥ 0, i = 1, . . . ,m,
λ?i fi(x?) = 0, i = 1, . . . ,m.

(A.3)

The first condition states that the gradient of the Lagrangian vanishes at x?, which
implies that x? minimizes L(x, λ?, ν?) over x. The next two constraints state that
x? is primal feasible, while λ?i ≥ 0 states that λ? is dual feasible. Finally, the
condition λ?i fi(x?) = 0 is known as complementary slackness. It means that the
ith optimal dual variable is zero unless the ith constraint is active at the optimum.
The KKT conditions are important for a number of reasons: (i) optimization

algorithms often solve (A.3) to find the optimal points; (ii) it may be possible to
solve the KKT conditions analytically or obtain useful formulas, such as expressing
the primal variables in terms of the dual variables; (iii) analysis of machine learning
algorithms from the optimization perspective, e.g. our analysis of the SVM+
method in Chapter 3, largely relies on the optimality conditions.
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A.1.3 Examples
We consider two examples that demonstrate application of Lagrangian duality to
the following learning methods: (i) weighted support vector machine (WSVM) and
(ii) support vector machine with privileged information (SVM+). In particular, we
state the primal problem, the KKT conditions, and the associated dual problem.

Weighted Support Vector Machine

Binary weighted support vector machine (WSVM) with the linear kernel solves
the following convex optimization problem:

minimize (1/2) ‖w‖2 +∑n
i=1 ciξi

subject to yi(〈w, xi〉+ b) ≥ 1− ξi, i = 1, . . . , n,
ξi ≥ 0, i = 1, . . . , n,

(A.4)

with variables w ∈ Rd, b ∈ R, ξ ∈ Rn, feature vectors xi ∈ Rd, ground truth labels
yi ∈ {±1}, and nonnegative instance weights (or costs) c ∈ Rn

+.
Let (w?, b?, ξ?) and (α?, β?) be the optimal primal and dual points respectively.

The KKT conditions associated with the problem (A.4) are given below.∑n
i=1 α

?
i yixi = w?,∑n

i=1 α
?
i yi = 0,

α?i + β?i = ci,

α?i [ξ?i − 1 + yi(〈w?, xi〉+ b?)] = 0,
β?i [ξ?i ] = 0,

ξ?i − 1 + yi(〈w?, xi〉+ b?) ≥ 0,
α?i ≥ 0, β?i ≥ 0, ξ?i ≥ 0.

(A.5)

The Lagrange dual problem associated with the WSVM problem (A.4) is

maximize ∑n
i=1 αi − (1/2)∑n

i,j=1 yiαiyjαj 〈xi, xj〉
subject to ∑n

i=1 yiαi = 0,
0 ≤ αi ≤ ci, i = 1, . . . , n.

The problem above can be rewritten equivalently as

minimize (1/2)α>Y KY α− 1>α
subject to y>α = 0,

0 ≤ αi ≤ ci, i = 1, . . . , n,
(A.6)

where we let y = (y1, . . . , yn)>, Y = diag(y), Kij = 〈xi, xj〉 for i, j = 1, . . . , n.
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Support Vector Machine with Privileged Information

Binary support vector machine with privileged information (SVM+) solves the
following convex optimization problem:

minimize (1/2)(‖w‖2 + γ ‖w̃‖2) + C
∑n
i=1(〈w̃, x̃i〉+ b̃)

subject to yi(〈w, xi〉+ b) ≥ 1− (〈w̃, x̃i〉+ b̃), i = 1, . . . , n,
〈w̃, x̃i〉+ b̃ ≥ 0, i = 1, . . . , n,

(A.7)

with variables w ∈ Rd, b ∈ R, w̃ ∈ Rp, b̃ ∈ R, feature vectors xi ∈ Rd, privileged
features x̃i ∈ Rp, ground truth labels yi ∈ {±1}, and nonnegative parameters
γ ∈ R+ and C ∈ R+ that control the trade-offs in the objective.
The KKT conditions associated with the problem (A.7) are given below.∑n

i=1 α
?
i yixi = w?,∑n

i=1 α
?
i yi = 0,∑n

i=1(α?i + β?i − C)x̃i = γw̃?,∑n
i=1(α?i + β?i − C) = 0,

α?i [〈w̃?, x̃i〉+ b̃? − 1 + yi(〈w?, xi〉+ b?)] = 0,
β?i [〈w̃?, x̃i〉+ b̃?] = 0,

〈w̃?, x̃i〉+ b̃? − 1 + yi(〈w?, xi〉+ b?) ≥ 0,
α?i ≥ 0, β?i ≥ 0, 〈w̃?, x̃i〉+ b̃? ≥ 0,

(A.8)

where (w?, b?, w̃?, b̃?) and (α?, β?) are the optimal primal and dual points.
The Lagrange dual problem associated with the SVM+ problem (A.7) is equiva-

lent to the following simplified problem:

minimize (1/2)
(
α>Y KY α + (1/γ) α̃>K̃α̃

)
− 1>α

subject to y>α = 0,
1>α̃ = 0,
0 ≤ αi ≤ C + α̃i, i = 1, . . . , n,

(A.9)

where we let α̃i = αi + βi − C for all i = 1, . . . , n.
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A.2 Fenchel Duality
We have seen in § A.1 that the KKT optimality conditions are invaluable in convex
optimization as they characterize primal and dual optimal points. Furthermore,
the KKT conditions can be used to derive the Lagrange dual problem, which may
be computationally more attractive in certain applications.
In this section, we consider an alternative way to arrive at a dual problem.

The Fenchel duality theory presented here is attractive for the two reasons: (i)
we extend the theory to also include nonsmooth (non-differentiable) functions
which may take the value +∞; and (ii) we focus on the objectives that are given
by a sum of two functions. The latter is particularly well suited to the learning
problems in this thesis where the objectives are given by a sum of the loss and
the regularization terms. That last property also allows one to work with the loss
and the regularizer independently, which makes it easy to derive (Fenchel) dual
problems for an arbitrary combination of different losses and regularizers.

The material in this section is based on the book by Borwein and Lewis, (2000).
A close connection (essentially, equivalence) between the Lagrangian and Fenchel
duality is discussed in (Hiriart-Urruty and Lemaréchal, 1993; Magnanti, 1974).

A.2.1 Subgradients and the Fenchel Conjugate
In this section, we recall some of the basic definitions and results from convex
analysis that become relevant in the following.
The (effective) domain of a function f : Rn → R ∪ {+∞} is the set

dom f = {x ∈ Rn | f(x) < +∞}.

The function f is proper if its domain is nonempty. The core of a set C ⊂ Rn is

core(C) = {x ∈ C | ∀ d ∈ Rn ∃ t > 0 : x+ td ∈ C}.

In particular, the core of C contains the interior of C, and if C is convex, then the
core and the interior are identical (Borwein and Lewis, 2000, Theorem 4.1.4).

The idea of the derivative is that it allows to approximate a given function using
a linear function. The same concept can be extended to nonsmooth functions. As
we consider minimization problems, one-sided approximation is sufficient and leads
to the following definition. A subgradient of f at x0 is a vector g ∈ Rn such that

〈g, x− x0〉 ≤ f(x)− f(x0) ∀x ∈ Rn.

The subdifferential of f at x0 is the set ∂f(x0) of all subgradients of f at x0.
Proposition A.1 (Subgradient at optimality). Let f be a proper function. The point
x0 is a (global) minimizer of f if and only if the condition 0 ∈ ∂f(x0) holds.
Proposition A.2 (Differentiability of convex functions). Let f be a convex function
and x0 ∈ core(dom f). If f is differentiable at x0, then ∂f(x0) = {∇f(x0)}.
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The Fenchel conjugate (the convex conjugate) of a function f : Rn → R∪ {±∞}
is the function f ∗ : Rn → R ∪ {±∞} defined by

f ∗(y) = sup
x∈Rn
{〈y, x〉 − f(x)}.

Note that f ∗ is a convex function as it is the pointwise supremum of affine functions
of y. The subgradient and conjugation are related via the following inequality.
Proposition A.3 (Fenchel-Young inequality). Let f : Rn → R ∪ {+∞} be a proper
function. Any points x ∈ dom f and y ∈ Rn satisfy the inequality

f(x) + f ∗(y) ≥ 〈y, x〉 .

Equality holds if and only if y ∈ ∂f(x).

A.2.2 Fenchel Duality
In this section, we state the main theorem that defines the Fenchel primal and
dual problems as well as provides a useful optimality condition. Let cont f be the
set of points where the function f is finite and continuous.
Theorem A.1 (Fenchel duality). For given functions f : Rn → R ∪ {+∞} and
g : Rm → R ∪ {+∞}, and a linear map A ∈ Rm×n, let p and d be primal and dual
values defined, respectively, by the Fenchel problems

p = inf
x∈Rn
{f(x) + g(Ax)},

d = sup
y∈Rm
{−f ∗(A>y)− g∗(−y)}. (A.10)

These values satisfy the weak duality inequality d ≤ p. If f and g are convex and
satisfy Adom f ∩ cont g 6= ∅, then d = p and

∂(f + g ◦ A)(x) = ∂f(x) + A>∂g(Ax).

The points x? ∈ Rn and y? ∈ Rm are respectively primal and dual optimal for
(A.10) if and only if they satisfy

A>y? ∈ ∂f(x?), −y? ∈ ∂g(Ax?). (A.11)

Let us briefly discuss the implications of Theorem A.1. First, note that the
functions f and g need not be smooth. That allows us to have a unified optimization
framework that works equally well for smooth and nonsmooth loss functions and
regularizers.

Second, note that both the primal and the dual objectives are given by the sum
of two functions which can be interpreted as the loss and the regularization terms,
see examples in § A.2.3 below. More importantly, the functions f , g are decoupled
in the sense that their conjugates can be computed and plugged into the dual
independently, making it easy to combine different losses and regularizers.
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Finally, note that whenever we use Fenchel duality in the thesis, the functions f
and g are convex, and the technical condition Adom f ∩ cont g 6= ∅ is satisfied,
therefore, the optimality condition (A.11) holds.

A.2.3 Basic Properties
The results in this section can be found in many textbooks on convex analysis, see
e.g. in (Borwein and Lewis, 2000; Boyd and Vandenberghe, 2004).

Conjugate of the Conjugate

The epigraph of a function f : Rn → R is defined as

epi f = {(x, t) |x ∈ dom f, f(x) ≤ t}.

A function f : Rn → R is closed if epi f is a closed set.
Proposition A.4. If f is a closed convex function, then f ∗∗ = f .

For example, if dom f = Rn and f is convex, then f ∗∗ = f , i.e. the biconjugate
of a closed convex function coincides with the function itself.

Scaling

For a > 0 and b ∈ R, the conjugate of g(x) = af(x) + b is g∗(y) = af ∗(y/a)− b.

Sum of Independent Functions

If f(u, v) = f1(u) + f2(v) is a sum of two convex functions, then

f ∗(w, z) = f ∗1 (w) + f ∗2 (z),

where f ∗1 and f ∗2 are the conjugates of f1 and f2 respectively.

A.3 Examples of Convex Functions
Here, we highlight a few examples of convex functions that appear in the thesis.

Sum of k Largest Components

For x ∈ Rn we denote by xπi the ith largest component of x, i.e.

xπ1 ≥ xπ2 ≥ . . . ≥ xπn

are the components of x sorted in nonincreasing order. Then the function

fk(x) =
k∑
i=1

xπi ,
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i.e., the sum of the k largest elements of x, is a convex function. This can be seen
by writing it as the maximum of all possible sums of k different components of x,

fk(x) = max{xi1 + . . .+ xik | 1 ≤ i1 ≤ . . . ≤ ik ≤ n}.

Moreover, it can be shown (Boyd and Vandenberghe, 2004) that

gk(x) =
k∑
i=1

wixπi

is convex for w1 ≥ w2 ≥ . . . ≥ wk ≥ 0.

Distance Function and the Euclidean Projection

Let C ⊂ Rn be a nonempty closed convex set. The distance function is defined as

dC(x) , min
y∈C
‖x− y‖ ,

and the Euclidean projection is defined as

projC(x) , arg min
y∈C

‖x− y‖ ,

where ‖·‖ is the `2 (Euclidean) norm.
Proposition A.5. If C ⊂ Rn is a nonempty closed convex set, then

∇dC(x) = dC(x)−1(x− projC(x)), ∀x 6∈ C,

∇1
2d

2
C(x) = x− projC(x), ∀x ∈ Rn.

The last equation in Proposition A.5 is important as it allows us to compute the
gradient of the function

f(x) , 1
2d

2
C(x) = 1

2 ‖x− projC(x)‖2 ,

if we know how to compute the projection projC(x). This is useful in optimization
of the loss functions that are defined in terms of the distance functions.
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The material in this chapter provides additional technical details and experimental
results that extend the main content of the thesis.

B.1 Multitask Representation Learning
In this section, we give further details on the implementation of our solvers from
Chapter 4 (page 61), detailed runtime analysis, and visualization of selected results.

B.1.1 Implementation Details
Here, we discuss implementation details of our STL-SDCA and MTL-SDCA
solvers. In particular, we derive closed form SDCA updates and discuss dual
optimization based on the Gram matrices. In contrast to § 4.2.1, where for
convenience our algorithm is presented using the primal variables, we now discuss
our implementation that operates entirely on the dual variables and is, therefore,
computationally efficient with high dimensional image descriptors.

First, let us recall some notation. The single task learning (STL) approach learns
T linear predictors wt for each task t which can be thought of as a matrix of primal
variables W ∈ Rd×T . The proposed multitask learning (MTL) method, on the
other hand, learns a matrix U ∈ Rd×k for the shared feature space, and another
matrix W ∈ Rk×T for the linear predictors in a low dimensional subspace. We let
X ∈ Rd×n be the matrix of the original (high dimensional) features, Y ∈ {±1}n×T
the matrix of labels, and Z = U>X the matrix of new features in the shared
representation. We also define the following Gram matrices: K = KX = X>X,
KZ = Z>Z, and M = KW = W>W , where the W in the last formula is for the
MTL method. Note that the main expensive operation here is the computation of
KX on the original features, which is done only once. Finally, let A ∈ Rn×T be the
matrix of stacked dual variables α. When necessary, we use the subscript ASTL to
distinguish the dual variables of STL and MTL methods.
Next, we derive efficient SDCA updates for the STL and MTL approaches.

STL-SDCA. The STL optimization problem for a task t is defined as follows:

min
wt∈Rd

1
n

n∑
i=1

max (0, 1− yit 〈wt, xi〉) + λ

2 ‖wt‖
2
2 ,

187
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where λ > 0 is the regularization parameter. This yields the following dual problem,
see (Shalev-Shwartz and Zhang, 2013b).

max
αt∈Rn

1
n

n∑
i=1

yitαit −
λ

2
∥∥∥ 1
λn

n∑
i=1

αitxi
∥∥∥2

2
s.t. 0 ≤ yitαit ≤ 1 for all i = 1, . . . , n.

At step s, a dual variable is updated via α(s)
it = α

(s−1)
it + ∆αit, where the update

∆αit can be computed as:

∆αit = yit max
(
−yitα(s−1)

it ,min
(

1− yitα(s−1)
it ,

1− yit 〈wt, xi〉
1
λn
‖xi‖2

2

))
. (B.1)

Note that ‖xi‖2
2 = Kii = KX [i, i] and, since

wt = 1
λn

n∑
i=1

αitxi = 1
λn
Xαt, W = 1

λn
XA, (B.2)

one obtains

〈wt, xi〉 = 1
λn

n∑
j=1

αjt 〈xi, xj〉 = 1
λn
K>i αt = K>i α̃t,

where Ki = KX [:, i] is the ith column of KX and we apply a change of variables
α̃it = 1

λn
αit. From now on, we always use the transformed α̃it variables and drop

the ˜ notation for convenience.
The vector Kαt ∈ Rn can be precomputed using the initial α(0)

t and then updated
whenever ∆αit 6= 0 as follows:

Kα
(s)
t = Kα

(s−1)
t + ∆αitKi. (B.3)

Note that this update, as well as the Kαt itself, can be computed efficiently using
BLAS routines xAXPY and xGEMV. Let

h = 1− yitK>i αt
Kii

and C = 1
λn
, (B.4)

where K>i αt is the ith element of the precomputed vector Kαt. Then α(s)
it can be

computed directly as follows:

α
(s)
it =

max
(
0,min

(
C, α

(s−1)
it + h

))
if yit = +1,

max
(
−C,min

(
0, α(s−1)

it − h
))

if yit = −1.
(B.5)

Based on (B.5), the update (B.1) can be shown to be 0, i.e. ∆αit = 0, in the
following two cases which typically hold for most of the data points after the first
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few epochs. Note that if the update is zero, then computation of (B.3) and (B.4)
is avoided:

∆αit = 0 if
(
α

(s−1)
it = 0 ∧ h ≤ 0

)
∨
(
α

(s−1)
it = yitC ∧ h ≥ 0

)
.

The intuition here is that if a point is not a support vector (α(s−1)
it = 0) and there

is no loss on this example (h ≤ 0), then there is no incentive for the data point to
become a support vector. Similarly, if there is some non-negative loss (h ≥ 0), but
the point already exerts the maximum force (α(s−1)

it = yitC), then it will not be
updated.
Since Kii > 0 (we skip examples with Kii = 0), the conditions h R 0 can be

simplified and one obtains

∆αit = 0 if
(
α

(s−1)
it = 0 ∧ yitK

>
i αt ≥ 1

)
∨
(
α

(s−1)
it = yitC ∧ yitK

>
i αt ≤ 1

)
.

(B.6)

U-SDCA. Our MTL-SDCA algorithm alternates between learning the predictors
wt via STL-SDCA on Z and learning the matrix U via an algorithm that we call
U-SDCA. Let W be fixed. The problem of learning U is formulated as

min
U∈Rd×k

1
nT

n∑
i=1

T∑
t=1

max
(
0, 1− yit

〈
wt, U

>xi
〉)

+ µ

2 ‖U‖
2
F ,

where µ > 0 is the regularization parameter and ‖·‖F is the Frobenius norm. The
corresponding dual problem is given below.

max
A∈Rn×T

1
nT

∑
i,t

yitαit −
µ

2

∥∥∥∥ 1
µnT

∑
i,t

αitxiw
>
t

∥∥∥∥2

F

subject to 0 ≤ yitαit ≤ 1 for all i = 1, . . . , n, t = 1, . . . , T.

Similar to STL-SDCA, an update ∆αit can be computed as follows:

∆αit = yit max
(
− yitα(s−1)

it ,min
(

1− yitα(s−1)
it ,

1− yit
〈
wt, U

>xi
〉

1
µnT
‖xi‖2

2 ‖wt‖
2
2

))
,

Note that ‖xi‖2
2 = Kii = KX [i, i], ‖wt‖2

2 = Mtt = KW [t, t] and, since

U = 1
µnT

∑
i,t

αitxiw
>
t = 1

µnT
XAW>, (B.7)

one obtains〈
wt, U

>xi
〉

= 1
µnT

∑
j,s

αjs 〈xi, xj〉 〈ws, wt〉 = 1
µnT

K>i AMt = K>i ÃMt,
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Algorithm B.1 MTL-SDCA (implementation details)
Input: labels Y , matrices KX and KZ , parameters λ, µ, and ε
Let: A,Aold, B,Bold = 0 // A, B are the dual variables for U , W respectively
loop
Update B via STL-SDCA(Y , KZ , λ)
Let KW = B>KZB // since W = ZB, see (B.2)
Update A via U-SDCA(Y , KX , KW , µ)
if RMSE ((A,B)− (Aold, Bold)) < ε then
break

end if
Let KZ = KXAKWA

>KX // since Z = U>X and U = XAW>, see (B.7)
Let Aold = A, Bold = B

end loop
return A, KW

where Ki = KX [:, i] is the ith column of KX , Mt = KW [:, t] is the tth column of
KW and we apply a change of variables α̃it = 1

µnT
αit. As before, we always use the

transformed α̃it variables and drop the ˜ notation.
Note that the matrix A now introduces coupling between all tasks and all

examples, hence every non-zero update ∆αit affects all scores
〈
wt, U

>xi
〉
. We

experimented with one approach where the whole matrixKAM is precomputed and
then updated via rank-1 updates ∆αitxiw>t (using BLAS routine xGER). However,
this strategy seemed inferior in terms of runtime when compared to the approach
we present next (most likely due to less efficient memory access pattern).

Instead of sampling both i and t at every iteration, we proceed as follows. At
each epoch, we iterate over all tasks in random order (task IDs are permuted at
the beginning of the epoch) and precompute KAMt for a given task t. Then we
iterate over all examples in random order and update the vector KAMt in Rn

similar to (B.3):

KA(s)Mt = KA(s−1)Mt + ∆αitKiMtt.

The formula (B.5) for α(s)
it remains unchanged, while the h and C are now computed

differently:

h = 1− yitK>i AMt

KiiMtt

and C = 1
µnT

,

where K>i AMt is the ith element of the precomputed vector KAMt. Similarly, the
condition (B.6) becomes

∆αit = 0 if
(
α

(s−1)
it = 0 ∧ yitK

>
i AMt ≥ 1

)
∨
(
α

(s−1)
it = yitC ∧ yitK

>
i AMt ≤ 1

)
.

MTL-SDCA. We now describe the master problem of the MTL-SDCA algorithm.
Recall that the joint problem is nonconvex and we use an STL solution as the initial
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Routine STL MTL MTL/STL

Prepare image encoder (fit GMM for FV) 1.4 hours –
Compute FV descriptors (train and testsubsets) 9.3 hours –
Compute train and test kernels 11.1 mins –

Training time (SDCA optimization problem) 2.2 mins 24.9 mins 11.23
+ compute kernels + compute the initial point 8.0 mins 32.9 mins 4.13
+ compute descriptors for training images 6.2 hours 6.7 hours 1.07

Table B.1.: Runtime comparison for the STL and MTL methods (wall-clock time).

Routine STL MTL MTL/STL

Prepare image encoder (fit GMM for FV) 7.3 hours –
Compute FV descriptors (train and testsubsets) 3.3 days –
Compute train and test kernels 2.8 hours –

Training time (SDCA optimization problem) 15.8 mins 5.8 hours 22.00
+ compute kernels + compute the initial point 1.7 hours 7.5 hours 4.43
+ compute descriptors for training images 2.0 days 2.3 days 1.12

Table B.2.: Runtime comparison for the STL and MTL methods (CPU time).

point, i.e. U (0) = WSTL = XASTL, where ASTL are the dual variables computed by
STL-SDCA on X (using the kernel KX). It follows that

Z = U (0)>X = A>STLKX and KZ = Z>Z.

MTL-SDCA takes Y , KX , KZ , λ, and µ as input and outputs A and KW . Since
U = XAW>, the test scores are given as:

W>Ztst = W>U>Xtst = KWA
>Ktst,

where Ktst = X>Xtst. The procedure is summarized in Algorithm B.1.
Note that both STL-SDCA and U-SDCA support warm restart, hence the dual

variables A and B are actually updated rather than recomputed from scratch.

B.1.2 Runtime Analysis
To estimate the overhead of the proposed MTL method relative to the standard
STL approach, we perform a single run of the full pipeline for the best performing
setting: SIFT+LCS+PN+L2 features, nclass = 50 examples per class. Both solvers
are compiled using GCC version 4.4 with the -O3 option and linked to the Intel
MKL library version 11.1 for the BLAS subroutines. The experiment is run on a
32 core 64 bit 2.7 GHz Intel CPU machine with 256 GB of RAM.
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Tables B.1 and B.2 report respectively the elapsed wall-clock and CPU time for
the different steps of the pipeline excluding the model selection step. Note that
most of the time (over 9 hours) is spent in the computation of image descriptors,
where the Fisher Vector encoding is the most expensive operation compared to
SIFT and LCS feature extraction. MTL-SDCA training takes more time than
STL-SDCA, but is faster than training an encoder, where most of the time is spent
in SIFT and LCS extraction and in learning a visual words vocabulary. Moreover,
the MTL time also includes the STL-SDCA training on the original features to
obtain the initial point for the MTL-SDCA algorithm.

We conclude from the presented runtime comparison that the relative overhead
of the proposed multitask learning method is rather small when other steps of
the pipeline are taken into account (roughly a factor of 4 when all features are
precomputed and about 12% otherwise).
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Figure B.1.: Top-5 prediction results modulo human confusions. For each method,
the top-5 predictions are intersected with human predictions to count
“reasonable” confusions, denoted fSTL/MTL. The plots show the distribution
of fMTL − fSTL over all 10 splits of SUN 397. Left: counts on the log10
scale. Right: normalized distribution. The highlighted (red) bar shows
that MTL results agree with the human predictions more often than STL.

B.1.3 Top-5 Predictions Modulo Human Confusions
Next, we show that the proposed MTL method not only improves the top-k
accuracy for different k, but also tends to produce more reasonable confusions
in the following sense. Let P 5

STL(xi) be a set of top-5 prediction results for the
baseline STL method on a given image xi, similarly, let P 5

MTL(xi) be a set of top-5
predictions of the proposed MTL approach, finally, let Phuman be a set of all classes
that AMT workers confused with the given class based on the confusion matrix of
“good workers”. Let

fSTL(xi) =
∣∣∣P 5

STL(xi) ∩ Phuman

∣∣∣ , fMTL(xi) =
∣∣∣P 5

MTL(xi) ∩ Phuman

∣∣∣ ,
where |A| is the cardinality of a set A. Figure B.1 shows the distribution of
∆f = fMTL− fSTL on the test sets across all 10 splits of the SUN 397 dataset. Note
that ∆f > 0 for more test examples than ∆f < 0, which means there is a tendency
for the MTL method to produce more human-like confusions.
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B.1.4 Selected Prediction Results on SUN 397
Finally, we visualize top-5 predictions of STL and MTL methods on a few selected
examples where MTL produces more human-like confusions. Human performance
is estimated based on the confusion matrix of “good workers” provided by Xiao
et al., (2010). Classifiers are trained using the SIFT descriptor with the Hellinger
kernel and nclass = 20 images per class.
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Figure B.2.: Multitask learning improves upon single task learning in top-k accuracy
and in agreement with human predictions. STL: top-5 OVA SVM predic-
tions. MTL: top-5 predictions of our method. Human: estimated human
predictions and confidence scores based on the provided confusion matrix.
Labels marked bold indicate agreement with human predictions.



194 Further Details and Results

Test image

Ground truth:
pharmacy

ST
L

pharmacy restaurant
kitchen videostore assembly line cubicle (office)

M
T
L

pharmacy restaurant
kitchen drugstore gift shop chemistry lab

H
um

an

pharmacy
(conf.: 0.55)

drugstore
(conf.: 0.27)

chemistry lab
(conf.: 0.09)

gift shop
(conf.: 0.09)

Test image

Ground truth:
theater (indoor

procenium)

ST
L

movie theater
(indoor) sauna discotheque ball pit shower

M
T
L

movie theater
(indoor)

theater
(indoor

procenium)
auditorium stage (indoor) wrestling ring

(indoor)

H
um

an

theater
(indoor

procenium)
(conf.: 0.46)

auditorium
(conf.: 0.31)

stage (indoor)
(conf.: 0.15)

theater (indoor
seats)

(conf.: 0.08)

Figure B.3.: Continuation of Figure B.2.
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