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Zusammenfassung
Die Sprachen prägen die Denkweise. Das ist die Tatsache für die gesprochenen
Sprachen aber auch für die Programmiersprachen. Da die Computer immer
wichtiger in jedem Aspekt des menschlichen Lebens sind, steigt der Bedarf um
entsprechend neue Konzepte in den Programmiersprachen auszudrücken.

Jedoch, damit unsere Denkweise sich weiterentwicklen könnte, müssen sich
auch die Programmiersprachen weiterentwickeln. Aber welche Hilfsmittel gibt
es um die Programmiersprachen zu schaffen und aufzurüsten? Wie kann man
Entwickler ermutigen damit sie eigene Sprachen definieren, die dem Bereich in
dem sie arbeiten am besten passen?

Heutzutage gibt es zwei Methoden. Die erste Methode: es gibt spezifische
Werkzeuge und Parser-Generatoren, die zum Schaffen der unabhängigen Pro-
grammiersprache von Anfang an dienen. Die zweite Methode: man kann die
ausreichend flexiblen exisitierenden Hostsprachen ausnutzen, um in sie kleine
DSL einzubetten.

Die beiden Methoden haben eigene Beschränkungen. Einerseits braucht man
viel Aufwand um die unabhängige Programiersprache zu schaffen. Diese Sprache
ist es schwer mit den anderen Sprachen zu verbinden.

Andererseits sind die eingebetteten DSLs durch Syntax der Hostsprache
eingeschränkt. Außerdem wenn die eingebetteten DSLs einmal definiert sein
werden, sind sie ständig gegenwärtig.

Es gibt keine Abgrenzung zwischen den eingebetteten DSLs und der Host-
sprache. Wenn man viele eingebettete DSLs verwendet, führt es zur Sprachen-
mischung, die Syntax durcheinander hat. Diese Sprachenmischung hat auch
unerwartete Interaktionen zwischen den Sprachen.

In der vorliegenden Arbeit wird die alternative Lösung dargestellt: ManyDSL.
Das ist ein einzigartiger Interpreter und Compiler, die aus diesen Lösungen Kraft
schöpft und meidet die Schwächen dieser Lösungen.

ManyDSL hat den eigegen LL1 Parser-Generator, der die Beschränkungen
meidet, die von der Hostsprache aufgedrängt sind. Beschreibung der Grammatik
ist definiert in derselben Programmiersprache wie die anderen Teile des Pro-
gramms. Die Fragmente der Grammatiken können parametrisiert werden und
aus diesen Fragmenten können Funktionen geschaffen werden. Diese Funktionen
können zum Schaffen der nächsten Sprachen benutzt werden. Die Sprachen
werden während des Interpretationsprozesses geschaffen und sie können benutzt
werden um nächste Fragmente des Quellecodes zu parsen.

Ähnlich den eingebetteten DSLs übersetzt ManyDSL alle Sprachen in die
Hostsprache. Die Hostpsprache verwendet Continuation-Passing Style (CPS)
mit der neuartigen, dynamischen Methode für Staging. Staging erlaubt Partial
Evaluation und Ausführung von Quellecode in vielen Phasen. Das kann zum
Definieren der Optimierung und der ’zusätzlichen Berechnung’ benutzt werden —
alles das in der Funktionalen Methode, ohne Abstrakten Syntaxbaum (ASTs) zu
benutzen.

Mit der Hilfe von ManyDSL kann der Benutzer neue Sprachen mit der
erkennbaren Syntax bauen. Außerdem kann er viele Sprachen innerhalb eines
Projektes verwenden. Diese Sprachen haben genaue Grenzen und der Benutzer
kann zwischen diesen Sprachen umschalten. Dank diesen Grenzen treten diese
Sprachen miteinander in die Interaktion auf kontrollierte Art und Weise.



ManyDSL ist der erste Schritt zum Sprachwechsel in den Programmier-
sprachen. Mit der Hilfe von ManyDSL möchte ich die Entwickler zum Schaffen
der Sprachen, die denen am besten passen, ermutigen. Ich hoffe, dass jeder
Entwickler mit der Zeit mit der Hilfe von grammatischen Bibliotheken neue
Sprachen schaffen kann.



Abstract

Languages shape thoughts. This is true for human spoken languages as much as
for programming languages. As computers continue to expand their dominance
in almost every aspect of our lives, the need to more adequately express new
concepts and domains in computer languages arise.

However, to evolve our thoughts we need to evolve the languages we speek
in. But what tools are there to create and upgrade the computer languages?
How can we encourage developers to define their own languages quickly to best
match the domains they work in?

Nowadays two main approaches exists. Dedicated language tools and parser
generators allows to define new standalone languages from scratch. Alternatively,
one can “abuse” sufficiently flexible host languages to embed small domain-
specific languages within them.

Both approaches have their own respective limitations. Creating standalone
languages is a major endeavor. Such languages cannot be combined easily with
other languages. Embedding, on the other hand, is limited by the syntax of the
host language. Embedded languages, once defined, are always present without
clear distinction between them and the host language. When used extensively, it
leads to one humungous conglomerate of languages, with confusing syntax and
unexpected interactions.

In this work we present an alternative: ManyDSL. It is a unique interpreter
and compiler taking strength from both approaches, while avoiding the above
weaknesses.

ManyDSL features its own LL1 parser generator, breaking the limits of the
syntax of the host language. The grammar description is given in the same
host language as the rest of the program. Portions of the grammar can be
parametrized and abstracted into functions, in order to be used in other language
definitions. Languages are created on the fly during the interpretation process
and may be used to parse selected fragments of the subsequent source files.

Similarly to embedded languages, ManyDSL translates all custom languages
to the same host language before execution. The host language uses a continuation-
passing style approach with a novel, dynamic approach to staging. The staging
allows for arbitrary partial evaluation, and executing code at different phases of
the compilation process. This can be used to define domain-specific optimiza-
tions and auxiliary computation (e.g. for verification) — all within an entirely
functional approach, without any explicit use of abstract syntax trees and code
transformations.

With the help of ManyDSL a user is able to create new languages with
distinct, easily recognizable syntax. Moreover, he is able to define and use many
of such languages within a single project. Languages can be switched with a
well-defined boundary, enabling their interaction in a clear and controlled way.

ManyDSL is meant to be the first step towards a broader language pluralism.
With it we want to encourage developers to design and use languages that best
suit their needs. We believe that over time, with the help of grammar libraries,
creating new languages will become accessible to every programmer.
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Chapter 1

Introduction

1.1 Motivation

Language and Thought

In the first half of the XX century two linguists, Edward Sapir and Benjamin
Lee Whorf, stated that the language used by humans affects how they view the
world [150, 120]. In short — languages shape thoughts.

This Sapir-Whorf Hypothesis refers to human-speaking languages and the per-
ception of the real world. However, the hypothesis can be easily extended to
programming languages and the human view on algorithms and computation.
The concepts provided by the language we use determine on how we try to solve
problems. Moreover, the programming languages we learn early can have a
profound influence on how we think about algorithms in general, beyond just the
actual implementation. A language style, such as procedural, object-oriented,
or functional can inadvertently put us in one mindset, sometimes preventing us
from seeing a different, simpler solution [34].

For that reason, we believe it is important to know a wide range of languages and
to know which one to choose for a particular problem. Using SQL for physics
simulations and FORTRAN for database operations is certainly possible, but
inefficient and impractical.

Evolution of Languages

The converse of this hypothesis is also true: Thoughts shape languages. Human
spoken languages grow to reflect new concepts we encounter. This way our
language and our understanding of the world naturally evolves in small steps
to better fit the actual, ever-changing world. New terms, constructs, or even
grammar rules are invented to represent new concepts. This evolution of a
language can occur on a global scale when the new construct becomes commonly
accepted by all its users. However, the change may also occur at a smaller scale,
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1. Introduction

e.g. in a scientific community. Additions to a language can even be made by a
single author for the purpose of a single work or paper.

Programming languages cannot evolve as easily as spoken languages. Any change
must be well-defined and then incorporated into the corresponding compiler
or interpreter. Users of a language cannot easily change it to fit their needs.
Instead, they must refer to compiler experts to apply such a change. The compiler
experts on the other hand often lack sufficient domain-specific knowledge to fully
understand what is actually needed.

The problem is further compounded by the fact that changes to well adopted
languages must fit the needs of all programmers simultaneously. Only then is it
likely for the change to be supported by every compiler of that language, and
the code written in such language to remain portable among them.

On the other side, a change needed only by a small group of developers appears
as unwanted noise to others. Such change would likely not receive much attention
by most compiler vendors. Ultimately, such isolated changes lead to incompatible
dialects, making source code hard to port between them.

Consider briefly the history of C++: The first C++ reference book was released
in 1985 [130]. In the next few years the language received many important
additions, such as member pointers, multiple inheritance, or templates [129].
However, as the language became more popular and was widely adopted, the
evolution stagnated. The language received only minor improvements and polish,
leading to the first international standard only in 1998 [113]. The focus shifted
towards supporting libraries and improved compilers, while keeping the language
constant. Attention was made to actively prevent it from fragmenting into
dialects [128]. Only a decade later a major addition of new features was added
in the form of C++11 [60].

Despite the efforts, C++ dialects appeared in the past, some even not having
their own name. We had different kinds of C++ supported by GCC, clang,
Visual Studio, and others. Writing libraries, such as Boost, with an intention to
be used in any of those platforms, soon become a major challenge.

Another problem is backward compatibility. Programmers naturally seek lan-
guages that are stable: Code written today should remain valid for many years to
come. As a result, it is hard to remove features from languages even if they seem
irrelevant by today’s standards. For example, the C/C++ syntax for function
pointer types is often frowned upon, yet it remained the same throughout all
revisions.

To summarize – the language needed two decades to make a major step, and even
now as the C++ standard is actively being worked on, changes come only every
few years. This is a long time, compared to how fast new concepts may appear in
everyday development, when their usability scope is limited to a narrow domain
and few developers. We would like to be able to adjust the language to the needs
of a developer in a matter of days, and not wait years until the language catches
up to their demands!

2



Motivation 1.1

The Need for Languages

When we ask for adjusting a language in a matter of days, surely we do not mean
that C++ should change every week. Instead, we advocate that application or
domain experts should have the tools to adjust the language of their choosing to
meet their needs.

The simplest form of adjusting the programming environment is done simply by
writing or adopting a proper set of libraries. These do not change the actual
language, but introduce functions, classes, or objects to convey the domain
concepts. However, not every concept can be captured in such way. For example,
in software development, many design patterns have been identified [43] that
remain only as general coding rules that are written verbatim in the source
each time they are used. This can easily lead to excess of boilerplate code. The
underlying logic of the program becomes hard to comprehend, as the reader
must identify these patterns while reading the source code.

Consider for example an observer pattern [43, Chap. 5] — so called subject
objects maintain a list of dependencies – observers – that are notified when
the subject is modified. A considerable amount of code needs to be written,
spread across several classes to realize this simple concept. Both subject and
observer classes must agree on how they interact. Moreover, attention must be
taken in the implementation as naive approach can lead to hard to track errors.
For example, when observers or subjects are destroyed additional notification
must be sent to avoid dangling references or memory leaks known as the lapsed
listener problem.

The pattern as a whole refers to multiple classes and cannot be encapsulated by
a single function. If a language would support the pattern through a dedicated
construct, the code would be shorter, easier to comprehend, and the potential
pitfalls could be permanently avoided.

The search for further patterns is part of ongoing research, having their reflection
in conferences such as “Pattern Languages of Programs”. The programming
environment must often be adjusted on the language level in order to capture
these patterns in a concise way.

Language adjustments are not only about adding new constructs. The converse is
almost equally important: restricting a language, preventing unwanted patterns
from appearing at all. While general-purpose languages must support multiple
coding styles and use scenarios, a language adjusted to a specific project or
domain can and should forbid uses that violate their rules. This would allow
project architects, following examples from [12]:

• Define and enforce coding style: Does one enforce functional approach, or
permit unpure operations? Is using global variables permitted, and if so
are there any restrictions accessing them?

• Control resource utilization for performance or security reasons. For
example, should program have access to the file system or network?

• Prevent environment-specific API usage in favor of generic libraries to

3



1. Introduction

ensure portability and prevent vendor lock-in.

These rules imposed by the architect would no longer be unwritten rules that
the developers of the project must willingly abide to, but an actual language
design that enforces proper use and locates mistakes if the rules are violated.

The languages and the set of rules set by project architects may be different
between domains, between different applications or even between different parts
of the same project. For example, the same project if built in layers, can have
different set of rules at each level. Moreover, we expect the project leaders to be
able to further adjust and change the languages over time if such need arises.

1.2 Solutions Today

What languages and tools are available to developers today that allow to cover
all the use cases described above?

First, if the feature list is the primary concern, one could try using languages
that encompass as many possible concepts and paradigms as possible. This
however leads to languages that are difficult to learn. Such monstrosities, like
PL/1, are overloaded with constructs and keywords [35]. It becomes difficult to
create and maintain compilers for such languages and the code is hard to follow
by a human as well. Moreover, as future requirements are impossible to predict,
such languages still need to evolve over time, increasing their complexity even
further.

Building Languages

We accept that there is no single ultimate language to handle all possible user
requirements. Instead, we shift our attention towards tools that allow developers
to create their own Domain-Specific Language (DSL) as needed. Such tools would
simplify the evolution of languages and permit more fine-grained adjustments to
match the need of smaller groups of programmers.

First major aid for language creation comes in the form of parser generators,
such as YACC [65] or ANTLR [106]. These create independent parsers which,
upon reading the input, generate code pieces based on user-supplied actions.
These pieces are then connected together, ready to be compiled or interpreted
by other tools.

Parser generators mainly focus on the creation of independent compilers from
scratch. Even with their help, it still requires a considerable effort to make a
functioning compiler: Tasks such as managing names and scopes, type checking,
Abstract Syntax Tree (AST) transformation, or code generation need to be
explicitly defined by the language creator. Moreover, combining or extending
existing languages is not within the scope of these tools. When a user program
should cover multiple domains, a different solution is needed that would permit
using multiple languages interchangeably.
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Solutions Today 1.2

Embedding Languages

Combining different domains is possible through language embedding. In this
approach a single host language is used, which is flexible enough for the user
to define their own small Embedded Domain-Specific Language (EDSL). This
approach is often much easier for the DSL designer, but it struggles in areas
where independent languages do not:

• Host language imposes limitation on the syntax of the custom language.

• Embedded languages introduce an additional overhead because of the
additional layer of abstraction tied to the syntax of the DSL.

Since we address these problems in our work, let us explain them in a bit more
detail here, and show how they are typically addressed:

The host language almost always has a fixed syntax and additional semantics
can be introduced only in specific constructs. This is typically achieved through
operator and function overloading coupled with a carefully crafted types for a
specific domain. Although some languages support higher order functions that
allow for a more flexible syntax, there are always boundaries that cannot be
broken. These boundaries lead to a syntactic “noise”, i.e. code fragments and
symbols that must always appear that provide no additional information with
respect to the EDSL. A language obfuscated in such a way is harder to use,
compared to a stand-alone DSL with its own, separate grammar. In Section 2.6.1
we give detailed examples of that happening.

Only a few metamorphic languages permit extensive alteration to the syntax,
such as Racket [141] or SugarJ [37]. These systems, however, are complex,
requiring the user to manually inspect or modify an AST generated for the host
language. Secondly, metamorphs usually extend the host language, instead of
creating a new separate one. Without clear separation between host and many
custom DSLs the user may once again get trapped with a monstrous syntax that
is hard to learn and follow. Moreover, the plenitude of extensions may lead to
unexpected interactions and conflicts, something we face for example in the TeX
language [78].

The second problem is the performance of the generated code that is tied with
how the semantics of the DSL is defined. Traditionally, one distinguish two
categories of embedding with respect to semantic definition [16, 44]:

1. In shallow embedding the DSL semantic is specified directly in the definition
of the language, e.g. in the form of functions.

2. In deep embedding a code object, e.g. in a form of AST is created, and the
semantic meaning is added later.

In a typical shallow embedding the semantics is defined directly via well crafted
functions in the host language. The EDSL code is the program, and it is up to the
host’s compiler to remove any overhead caused by it. Sometimes, the compiler
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is not able to elide the extra complexity completely. Moreover, domain-specific
optimizations may be impossible to express, as the compiler of the host language
lacks the higher-level knowledge to recognize them.

In the alternative solution, the deep embedding approach, the EDSL code in the
host language generates a new program. Executing the EDSL code, the host
creates a program structure, for example in a form of AST. Then, the EDSL
provides additional tools in the form of support library to optimize and finally
compile such structure into an actual runnable program.

Deep embedding solves the problem of overhead of embedded languages, but at
a cost of manual AST manipulation known from standalone language building
we described earlier. Moreover, the communication between multiple EDSLs
and the host language is restricted as this execution pipeline needs two steps,
with a clear separation between host code and each separate EDSL.

Staging in Language Embedding

Staging is a form of partial evaluation, guided explicitly by the programmer.
A staged code typically consists of immediate and deferred parts of code. The
immediate part performs symbolic computation, specializing the deferred section.
The specialized version of the deferred code is executed only at a later phase,
e.g. at run-time.

Deep embedding is a form of embedding that uses staging: The deferred part is
represented as the AST, and immediate code handles its creation and transfor-
mation. The DSL acts as a generic program, which is specialized for a particular
input. The deferred part is the program that the DSL produces.

However, such a structural approach that involves AST creation is not the only
way to define staged programs. For example, MetaML [136] and Impala [85]
provide means for partial evaluation through staging annotations of a regular
source code. With these techniques it is possible to use shallow embedding, but
with partial evaluation to reduce the overhead. This is in contrast to the more
typical plain shallow embedding that does not use any form of staging at all.

In our work we explore a novel, more flexible form of staging: Dynamic staging.
Especially, we show how it can be used in the context of language embedding.
Through staging, our shallow embedding approach is actually brought very close
to deep embedding, blurring the line between these two categories.

1.3 Our Work

In this work we present a new solution for multi-domain programing: ManyDSL.
It is a comprehensive approach, dealing with both problems stated above at the
same time: Syntactic flexibility and program efficiency.
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Goals

The main goal of our project is to provide a tool for language creation and
manipulation that can be used by programmers, especially in a multi-domain
project. Through multiple customizable languages, we want to let programmers
achieve a higher degree of expressiveness and abstraction. Custom constructs
can capture both domain-specific constructs and algorithms as well as hardware-
dependent implementation details.

We want to design a tool with the following properties:

G1 Languages can be defined easily by non-experts, for the purpose of a very
narrow domain or even a single project.

G2 Separate languages may have their own syntax. The tool should empose
as few syntactic constrain as possible. On the other hand, the custom DSL
should be able to define its own restrictions if so desired.

G3 The tool should impose as few syntactic or semantic constraints as possible
on the user-defined languages.

G4 Language definitions should be modular and composable.

G5 ManyDSL should support and aid the use of many small DSLs.

G6 Languages should be easily shared between developers, ensuring portability
of the code.

G7 It should be possible to specify domain-specific optimization strategies
specified within the DSL definitions.

G8 The tool should produce efficient machine code despite the additional
language layers.

We discuss these goals in detail in Section 3.1.

Design

With these goals in mind we made the following design decisions:

D1 We use language embedding as a mean to specify languages (G1, G6).

D2 We use a single flexible host language for language embedding. The
language is in Continuation Passing Style (CPS) [69, 6], allowing its user
to specify arbitrary control flow (G3). With the host language acting as a
base, communication between different languages can be achieved (G5).

D3 We use shallow embedding with a functional approach to language def-
initions. Shallow embedding, compared to deep embedding, is easier to
comprehend by an average programmer and produces less programming
artefacts. (G1)
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D4 We let the programmer define its own grammars to break the limitations
of the host language syntax (G3)

D5 Grammar components of the language are to be represented as objects in
the host language, allowing for parametrization and composability (G4,
G6)

D6 We provide a way to clearly separate different DSLs from each other and
from the host language. Each DSL may have its own rule set without
interference from other languages (G2)

D7 We use partial evaluation as a way to specify optimization and reduce the
overhead coming from the embedding (G7, G8)

At present, no tool satisfying our goals and design decisions exist. We are limited
by both the theory as well as existing software:

• The staging mechanism as of now is still inflexible (Section 2.3). In
Section 4.1 we show how it can be improved by intuitively and formally
defining a dynamic staging approach, where staging may be a result of
computation rather than a fixed annotation in the code.

• As we show in Section 2.6 only a few languages that permit language
embedding allow for a custom grammar to be used. These solutions
either operate on the AST of the host language or use plain shallow
embedding. We provide the first solution for shallow embedding with
grammar specification and staging.

Potential Problems

P1 It may be tempting for each developer to define their own language,
containing their own syntactic sugars that they deem convenient. In a
team project involving multiple developers it may lead to a mixture of
languages, each doing the same thing but with a slightly different syntax.
Software designers and architects will have to control such misuse of our
tool.
It is theoretically possible, for the purpose of such a project, to explicitly
define which languages are to be used and combined. The tool itself
however does not impose any such constraints — it is up to the architect
to define them.

P2 While out tool provide means for inter-language communication, it does
not automatically translate the messages. Different languages need to
understand each other. To achieve that some standardization of the data
representation may be needed, but our tool does not enforce any such
format. We hope that over time a proper protocol for such communication
will emerge.

P3 Some optimization strategies that require careful analysis of the code,
beyond its execution, may be hard or impossible to specify in a system
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that relies solely on partial evaluation (D7). It is a design compromise
between deep and shallow embedding approaches favoring the latter (D3).

We believe that higher-level, domain-specific optimizations can be defined
by partial evaluation and code analysis needs to be performed only for
low-level optimization — but this is not in our focus.

P4 Interpreting programs represented directly in CPS, especially when coupled
with a flexible staging mechanism, may be inefficient. Our focus is on
usability and efficiency of the generated machine code, but not on the
speed of interpretation or compilation into that code. We hope that the
actual implementation of our solution will improve over time.

ManyDSL Structure

ManyDSL is an interpreter and a compiler created with the goals and design
decisions described above.

At the core of ManyDSL lies a functional language DeepCPS with novel dynamic
staging, that we introduce in Section 4.1. In Section 4.3.2 and Section 6.4 we
show that with staging provided as a first-class citizen of the language, the
partial evaluation mechanism can be triggered multiple times for different layers
of the program: Staging can be used to peel off the overhead of language layers,
it can control the domain-specific optimizations, and finally the DSL itself can
expose staging to its user.

In Section 4.2.2 we introduce the Syntax Directed Execution (SDE) scheme for
language definition. While similar to tranditional translation grammars [88, 104],
we focus on functional execution of the language grammar and its actions. We
avoid AST creation, tree grammars, and do not perform any code transformation
that are typical for standalone generators or deep embedding. Instead, the
action code is executed immediately without any explicit code objects, and uses
dynamic staging as means for code generation.

The action code with dynamic staging represents all phases of compilation
as executable code. This may include for example syntax dispatching, name
resolution, and type checking. With the help of dynamic staging all these phases
can, but do not have to be, resolved early to produce efficient and practical code.
Any language feature may be static, i.e. resolved in an early stage, or dynamic
such that it is executed at late stage or becomes part of the final compiled code.
Consequently, our flexible approach to staging blurs the distinction between the
terms “static” and “dynamic”.

A ManyDSL interpreter is coupled with its parser, allowing bi-directional ex-
change of data. The parser builds a program that in turn can alter the parser
again. These changes allow the user to control the grammar that is being used
for parsing.

ManyDSL includes a mechanism for interleaved parsing and execution of partially
built programs, happening across a single source. Thanks to this, custom DSLs
can be included as source libraries, together with the actual program source.
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All custom languages defined in ManyDSL are translated into DeepCPS, but the
input of each language is a separate entity with its own syntax and semantics.
This allows the developer to draw clear lines between domains that are being
addressed in the program. The user is encouraged to use several small DSLs
rather than a single big language that tries to address all domains simultaneously.

Contributions

Our main contributions of this thesis are:

• A new formal definition of staging at the lambda-calculus level (Sec-
tion 4.1.3). The staging may be dynamic and value-dependent. The
lambda abstraction may encapsulate not only computation but also any
staging strategy.

• Introduction of a convenient syntax for writing programs in Continuation-
Passing Style (Section 4.1.2). With its help we are able to write and reason
about long CPS programs with ease.

• New functional view on parsing using a Syntax-Directed Execution scheme,
both formally and practically (Section 4.2.2). The parser itself, together
with its input becomes an executable program, rather than a source code
translation. In this view, the act of parsing is merely a specialization of
the parser with respect to the input.

• Design and implementation of the DeepCPS parser and interpreter (Sec-
tion 5.1). This includes the built-in partial evaluator needed to realize the
dynamic staging.

• Realization of interleaved parsing and interpretation with bi-directional
communication between the program and the parser (Section 5.7).

• Design of code building blocks that allow creation of programs piece by
piece (Section 4.3). The blocks are entirely functional and use staging to
remove the overhead in the final program.

1.4 The Structure of this Work

The following chapters are structured as follows:

In Section 2 we lay down the background of our work. In Section 2.1 and
Section 2.2 we start by giving a broad classification of the languages, the
compilation process and typical work associated with it. In Section 2.3 we then
explain the concept of staging and how it is realized in different languages today.

In the second part of the background chapter we focus on the problem of
language creation. In Section 2.5 we detail the language embedding techniques
and their relation to staging. Finally, in Section 2.6 we discuss the languages
that can manipulate their own grammar and syntax. Within it, as a motivation
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in Section 2.6.1 we provide examples how syntax limitations can negatively affect
the usability of the embedded languages.

In Section 3 we give the oveview of ManyDSL: listing the design goals and
decissions and the general structure. We then follow in Section 4 with an in-
depth description of the main ManyDSL components. First, in Section 4.1, we
describe the theory and application of dynamic staging and define our language
DeepCPS. In Section 4.2 we explain how language grammars can be defined in
ManyDSL. Finally, in Section 4.3 we show how dynamic staging in the context
of language grammar actions allows us to specify language semantics, specify
optimization and remove any overhead.

In the Section 5 we focus more on the technical aspect of ManyDSL. We explain
the underlying software and algorithms that make ManyDSL possible. In
addition, in Section 5.8 we also report on our attempts to implement ManyDSL
in a different way that ultimately we had to abandon.

With the theory and implementation of ManyDSL explained, in Section 6 we
follow with extensive examples on how to actually use ManyDSL. We give exam-
ples to all aspects of the language: direct DeepCPS programming (Section 6.1,
Section 6.2), as well as language creation (Section 6.4). In Section 6.3 we explain
how DeepCPS can be compiled and what performance of the produced code
to expect. Finally, in Section 6.5 we combine the knowledge of all previous
examples to define a new language in ManyDSL from scratch.

At the end of the thesis, in Section 7 we evaluate the goals laid out at the
beginning and hint on how the project may evolve in the future.
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Chapter 2

Background

2.1 Language Clasification

The main subject of this work are programming languages. In order to put our
ManyDSL system into perspective, let us first show how languages came into
being and how they are classified.

2.1.1 Language Generations

Since the dawn of computing machinery humans searched for a way to describe
their algorithms to the computer more concisely and readably. The first pro-
gramming languages were closely coupled with the computers upon which the
algorithms were implemented. Over time languages were capable to encapsulate
and hide more and more hardware and implementation details, allowing their
users to describe the problems at higher levels of abstraction. Depending on the
level of encapsulation, we clasify languages into five generations [103].

The first electronic, general-purpose, Turing-complete computer – ENIAC[47]
– was originally programmed by manual manipulation of its switches and con-
nectors. Mapping an abstract algorithm onto the machine was not an easy
assignment. It was followed by equally difficult task of maintaining the program
or finding and fixing any errors. To make the matter worse, the machine itself
was unreliable and tended to break down every day. As a result, the whole
process of writing a single small program onto ENIAC typically took several
weeks [102].

The situation improved with the introduction of instruction sets. A program
consisted of a sequence of elementary instructions, where each was given a unique
number. The sequence, known as machine code could be stored in binary form
in the machine memory, and reused at a later time when needed [64].

Programming was no longer a matter of closing the right circuits. Instead, it was
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a translation from the abstract algorithm into the binary machine code. This
concept remains in use in almost all computers today. The binary encoding of
programs is referred as a first-generation programming language.

The next step was the introduction of textual assembly languages, marking
the second generation of languages. These languages aim to encapsulate the
arbitrary numeric values assigned to instructions. In this form, instructions and
their arguments are represented as short textual mnemonics. This eases the
programming effort as the code is more humanly readable, but the code remains
machine dependent. The execution process is usually two-step: translation of
assembly into the machine code, and then its actual execution on the hardware.

As the number of different computer architectures and program complexity grew,
the need for portability arose. This was delivered, at least partially, with the
introduction of third generation languages. The first hardware-independent
language was Plankalkül [152] in 1945 but it did not draw much attention at
the time. Only later, languages such as FORTRAN [10] or ALGOL [108, 9] and
later C [71] made third generation languages popular. These general purpose
languages allow the programmers to express the intended sequence of instructions
independently of the machine it is run on. Each architecture, in turn, provides
a compiler or and interpreter that translates this source code into the machine
dependent assembly code and eventually the machine code that is ready for
execution.

Forth-generation languages step even further towards human readability and
productivity: The programmer specifies the task that needs to be performed,
without actually providing an algorithm. It is up to the language interpreter
to decide how the task has to be done. By its very nature, these languages
are designed to solve specific problems rather than providing general purpose
functionality. One of the common examples is the Structure Query Language
(SQL), taking its origins from SEQUEL [22], which facilitates data manipulation
in relational databases. The user specifies a query, and the interpreter decides
— based on the database scheme, its indexes, caches, profiling etc. — which
strategy or algorithm is the best to fetch or modify the data.

Languages that focus on specific domains – the Domain Specific Languages
(DSLs) – try to abstract implementation details away from its user, letting
them focus solely on the domain specific problems. As such, most DSLs are
considered forth-generation languages. Their user specify the task, and the DSL
implementation chooses the best algorithm to realize it. DSLs however, as they
mature, tend to gain some of the capabilities of general purpose language.

Finally, fifth-generation languages allow the programmer to specify problem
constraints, letting the computer find the solution on its own. The most notable
example is Prolog [119, 18, 25], which is used for logic programming, theorem
proving, and natural language processing by applying basic logical rules. While
powerful, fifth-generation languages are used today to solve only a small set of
tasks because of their limitations and slow performance. Today, most focus is
on 3rd and 4th generation languages.
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2.1.2 Language Paradigms

The third generation of languages allow programs to be specified independently
of the hardware. This gives unprecedented freedom in how actually programs
are formulated, giving birth to multiple ways of expressing oneself – multiple
programming paradigms [38]. Many of such paradigms can be identified, each
of varying scope and impact. We can identify broad paradigms such as struc-
tured programming, dynamic programming, rule-based paradigm, state-machine
paradigm, but also identify simple ones – the simultaneous assignment paradigm
for example.

For each of these concepts we can ask how a programming language can support
them: What paradigms are encouraged in the language by having a simple syntax
to express them? In other words, we ask what kind of thinking is stimulated by
a given language? Let us give the most common top-level paradigms of third
generation of languages.

Imperative Programming

The imperative language treats a program as a sequence of statements evaluated
in the order of their appearance. Each statement acts as a command that changes
the overall state of the machine.

It is the traditional view on programming, stemming from the lower generation
languages, but having a generic, hardware-independed meaning. The instruction
may ask, for example, to allocate memory, store data, and modify it afterwards,
but abstract away how the allocation and modification is performed by any given
machine.

The earliest imperative high-level languages, such as FORTRAN [8, 10] or
COBOL 60 [62] are unstructured, often consisting of long monolithic sequences
of statements operating on global variables. The execution flow is controlled
through simple conditionals and jump instructions. These programs are difficult
to maintain because of their size, execution flow is hard to follow and any change
in the code may have unexpected influence on the behavior of other parts.

Over time, these problems were gradually resolved by introducing subroutines
and procedures, giving birth to procedural programming. Later on introducing
more advanced control-flow structures and introducing local variables gave birth
to structured programming paradigm. In this approach programs are still seen
as a sequence of operations, but most procedures can be treated as separate
modules, limiting unwanted interaction between them.

Object-Oriented Programming

An object-oriented language groups the data and code that affects this data in
the form of objects and classes. An object can represent a physical or conceptual
entity that has a set of attributes and can be acted upon. A class acts as a
template for objects, defining their behavior, initial value, and acting as a type
classification.

15



2. Background

A typical class consists of:

• A set of attributes defining objects of this class. Typically, these are
object’s local and private data values that are inaccessible from the rest of
the program.

• A set of methods – program code acting on the object of given class. These
methods act as the interface of the object and modify its internal state in
a controlled way.

Object Oriented Programming (OOP) can be seen as a special case of imperative
and structured programming. Each class method can be seen as a self-contained
imperative program. However, OOP defines strict rules on how data can be
accessed that were lacking in imperative programming. With these rules it is
easier for both human and compiler to understand when values are changed and
what invariants are maintained.

OOP also introduces class inheritance as a form of subtyping. A derivative class
inherits all the attributes and methods of its parent class, but may extend it
with additional set of parameters and functions. OOP also introduce dynamic
dispatch through virtual procedures, currently more commonly known as virtual
methods.

The first language to introduce many of the object-oriented concepts is Simula
67 [29, 100], which later had a strong influence on other languages such as C++,
Java, and C#.

Functional Programming

A completely different approach to programing is seen in functional languages: A
program is not a sequence of statements executed in the specified order, but as a
function with its solely goal to compute a final result. The necessary computation
to obtain the result is formulated as a mathematical expression over immutable
values.

Functional languages treat functions as first-class citizens of the language. Func-
tions can be created and passed as parameters the same way as any data values.
This higher-order functional programming gives a level of expressiveness that
cannot be easily achieved in a pure imperative or object-oriented programs.

In pure functional programming there is no global state and functions do not
have any side effects. The compiler can freely choose the order of evaluation.
Some subexpressions can be lazily evaluated – delaying their computation in
hope that their result is ultimately not needed. Through lazy evaluation it is
possible to define structures that are infinite, knowing that only the part that is
actually needed is ever computed.

Multi-Paradigm Programming

The most generic programming languages try to combine several top-level
paradigms described above. This is because more complex problems can be split
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into subproblems where each benefit from different kind of thinking. For example,
the C and later C++ languages initially embrace imperative and object-oriented
programming. However, with the introduction of C++11 standard some aspects
of functional programming has been enabled through built-in support for lambda
functions and garbage collection.

The ManyDSL core language is also a 3rd generation language with higher-
order functional programming in mind. However, we forgo lazy evaluation in
favor of granting the user explicit information on the order of evaluation. We
permit memory operations and functions having side effects in the style of
imperative programming. Finally, the ManyDSL core language supports the
staging paradigm, which we discuss separately in Section 2.3.

2.2 Compilation and Interpretation

2.2.1 Compilation Phases

Programs written in every language have to be translated or interpreted before
any execution can be actually performed. In a way, it is true even in the case of
a machine code — the instruction code has to be interpreted by the hardware
and appropriate circuit selected to perform a desired operation. In some cases,
complex machine instructions may be actually slower than a set of simpler
instructions performing the same action, even on the same processor [107]. The
only programs not needing interpretation are those which have been translated
to a physical circuit. Such circuit programming was common in the early
computers (Section 2.1.1), but remains relevant today when designing new
hardware, especially where speed or security are important.

Starting from the second-generation languages, the source code needs to be first
translated into machine code. This translation is almost always performed in
software, although some machines are specifically designed to support a specific
higher-level language – for example the Symbolics 3600 had hardware support
for executing Lisp code [99].

The translation to machine code can be done on the fly, by an interpreter,
for every instruction that is about to get executed. Alternatively, a two-step
approach is used: First, the source code is translated by a compiler, producing a
machine code that later can be executed fast and multiple times. Compilation
often involves additional optimization in order to maximize the efficiency of the
produced code.

Some compilers, such as Java, do not produce code for any physical machine.
Instead, they target an idealized, Virtual Machine (VM) [127]. The produced
code remains portable, yet a VM interpreter has a much easier work translating
it to actual machine instructions during run-time.

Virtual machine representation is also used for online just-in-time (JIT) compi-
lation.
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In modern compilers, the compilation step can be split into even more steps,
such as preprocessing, parsing, linking, optimizing, and translating between
different representations. Some languages adopt even more intermediary steps,
each using different code representation suited for different kind of operations.
For example, GCC 5.0 parses the C source into GENERIC trees, which are then
translated to GIMPLE representation. Then, after various optimization passes,
control flow graphs (CFG) are produced representing the code in Static Single
Assignment (SSA) form [124]. After that the code is yet again transformed into
Register Transfer Language (RTL) where another set of optimizations is applied.
Ultimately, with that many steps, it is hard to directly relate pieces of initial
source code and the final machine code that they produce.

2.2.2 Type Checking

Let us define the terms type checking and type system by first describing the
problem it tries to solve:

The plain lambda calculus [24] is a formal system and a language for expressing
computation through function abstraction and application. Every value in the
lambda calculus is either a symbolic parameter, or a concrete function. Any such
value can be bound to any parameter through function application. Numerical
values such as boolean and integers are also represented as functions, e.g. through
a Church encoding [24].

Such encoding however is impractical, as they are hard to interpret by a human,
and incur an additional processing cost for a machine. For that reason, lambda
calculus is often extended by explicit primitive terms with an intrinsic meaning.
Such terms, such as literal integers, cannot be decomposed further and often
have a restricted use. For example, it makes no sense to invoke a literal integer
value, as opposed to a lambda of a Church-encoded number. Such an invalid
construct cannot be further reduced. When the program cannot be reduced in
any way, we say that a program is stuck.

In order to prevent this kind of mistakes, type checking has been invented to
statically analyze lambda expressions before they are evaluated. In a typed
lambda calculus [23] each term is annotated with a special value called a type.
The type holds information about what kind of value the term may hold, without
actually evaluating the value. For example, if we can deduce that at one point
of the evaluation an integer is bound to a parameter x, we annotate x as int. If
we can then find that the x of type int is invoked at some point, we can flag it
as an error — all without actually evaluating what x is.

A type system is a set of type values and inference rules which allow to reason
about the types. The rules specify how types can be deduced and which constructs
are valid. A type checking is a process of evaluating the program with respect to
a type system.

The above theoretical problem is resembled in real-life programming languages
as well. Values, variables and whole expressions are assigned a type – either
directly by the programmer, or indirectly through the type deduction. Any
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expression that misuses its components, that could potentially lead to a program
getting stuck, is recognized as a type error. This way, in the type checking phase,
compilers try to detect statically, without actually executing a program, if it can
get stuck.

In practice, the type system can be seen as arbitrary annotation explaining the
meaning of given data. The type specifies if some given binary data should be
interpreted as a number, a string, or some more complex object. Types can be
more detailed, for example specifying the physical units that the given quantity
is measured with. Lack of such annotation can lead to misinterpretation of data,
which in the most extreme cases can lead to disastrous effects such as the crash
of the Mars Climate Orbiter in 1999 — where a value given in a pound-force
units was treated as if it was given in Newtons instead [91]. If the value had
been properly annotated with a type describing the units, the problem would
have been found early by the compiler.

Types can be either explicitly specified by the programmer, or the y can be
inferred by the compiler statically from other terms. If at some point, the type
of an expression cannot be deduced, or types are in conflict, this is considered
an error. The type system helps the compiler to statically reject programs that
could get stuck. However, at the same time, depending on the constraints of
the system — other, possibly meaningful programs can be rejected as well. A
wide branch of computer science research is focused on type theory, looking for
solutions which successfully find most errors, but are permissive enough for one’s
needs.

Examples

Simply typed lambda calculus is one of the simplest and most basic example of
type systems [23, 53]. Each value is either an atomic type T or a function type
of the form α→ β, where α and β are also types (atomic or function types).

At the same time, the simply typed lambda calculus imposes many restrictions
severely limiting the language. Most notably, many generic combinators –
functions without free variables – even as simple as generic identity are forbidden.
Instead, we need an array of identity functions, specific for a each type.

A particularly important combinators are the fix-point combinators [109]. These
are higher-order functions f that for any function argument x, yield x(fx):

fx = x(fx)

The expression fx is a fix point of the function x, i.e. it does not change after
applying to x. These kind of combinators pay a central role in defining recursion
in lambda calculus. However, in a simple-typed lambda calculus these cannot
be typed in their generic way. For that reason, languages using just the simple
typing must support recursion through different means, usually by explicitly
introducing a special construct.

The simply typed lambda calculus can be expanded in various ways. The most
common extensions are:
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• Parametric Polymorphism — various type systems that allows func-
tions to be parametrized by a type. For example, the identity function can
be defined as:

Λα.λxα.x

where:

– Λ indicates a distinct category of functions operating on types
– α is the type parameter
– λ indicates a regular lambda function
– xα is a regular parameter with a type annotation α

One example is the Hindley-Milner type system [54] that is used in Standard
ML with great success [97]. This particular type checker is capable to
deduct all the type annotations without any input from the user [31, 96].
Another example of parametric polymorphism is the type system System
F [45, 115] that formulates parametric polymorphism through introduction
of universal quantification.

• Type Construction — allows new types to be constructed from other
types. The so called type constructors are n-array type operator taking
n types as an argument. The constructors are integral part of each type
system. Some examples of such usage are:

– Tuple type for defining a type of arbitrary structures having members.
– Pointer and reference types

• Recursive Types— allows type definitions to be recursive [20]. With this
mechanism, every lambda calculus expression can be typed. In particular,
it is useful for defining recursive combinators. Taking a simple lambda
function as an example:

ω = λx.xx

can be typed as
µα.α→ T

with any type T . The notation µα means that we assign the name α to
the whole type that follows the dot, permitting recursion in the definition.
In our case it names the whole type that we are just defining. Thus, the
above is equivalent to:
(µα.α→ T )→ T
((µα.α→ T )→ T )→ T
and so on.
In practice recursive types are used to define recursive data types, such as
lists, trees, or other graphs.

• Subtyping — introduces a partial order among types. We say that T is
a subtype of U , i.e. T <: U when T is considered a special case of U . In
practice it is often seen in object-oriented languages, for example through
inheritance, where a derived class is a special case of the parent class.
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• Dependent Types — one of the most flexible systems, allowing the type
value be dependent on arbitrary expression. Dependent typing is hard
to capture in a programming language however, thus many mainstream
languages do not support it. A few examples that do give such possibility
are: Coq [13], Epigram [5], or Matita [7]. Languages with such complex
type systems often act as theorem provers or allow the programmer to
define program specifications for additional compiler checks.

Each of the type systems described above extend the basic system in a different,
ortogonal direction. The systems can be combined together, for example we
identify:

• System Fω – parametric polymorphism combined with type construction

• System F< – parametric polymorphism with subtyping

Most programming languages adopt one of the systems above, a combination
of them, or introduce their own type system, treating the above examples as a
starting point.

Dynamic Typing

So far we discussed types in the context of compile-time verification. However,
run-time type information may be useful to further strengthen the verification
and increase the expresiveness of the language.

Dynamic languages that avoid extensive static type checking often annotate
run-time values. Every computation step is preceded by checks of the supplied
arguments. Dynamic typing allows for using simpler type systems while per-
mitting highly complex constructs, at a cost of delayed checks. For example,
type-checking polymorphic types at run-time is as simple as checking a regular
simply-typed language. This is because, when a polymorphic type is used in a
check, it is already given as a concrete type constant. The type-checker must
verify this single use instance, rather than consider all possible types that may
fit the given polymorphic definition.

Annotating data with additional information at runtime allows to realize some
advanced concepts, such as dynamic dispatching. Even languages known for
their static typing and run-time efficiency do that occasionally. For example,
most C++ compilers store a pointer to a table of virtual functions within every
instance of a given class in order to manage the virtual functions of that. This
pointer is a form of additional information, acting as a type identification.

Type Checking as Computation

Type checking in general can be seen as an additional computation performed by
the compiler or interpreter [52]. Such auxiliary computation is a second stream
of instructions focused primarily on data properties, aiming at providing early
proofs on the correctness of the program. The computation is performed at
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compile time (static typing), but may also be a part of the code that is generated
(dynamic typing).

Traditionally, the type system is given as an integral part of a language. However,
in most languages the computation on types is significantly different than the
regular code. This is a highly specialized DSL in disguise, defining the auxiliary
computation necessary for checking the program correctness.

2.3 Staging

Traditionally, a staged execution is an iterative execution process of a program
under the programmer’s direct control. In each iteration, called stage, only a part
of the program is executed. As a result of such stage, a new partially-evaluated
version of the program is produced. The new program is specialized with respect
to some of the parameters, and is often able to perform the remaining work
faster than the original, generic version.

Such execution strategy is a realization of the S-mn theorem [76]. The theorem
says that there exists an algorithm that can specialize a function f with m +
n parameters, into fm with known m values and taking only the remaining
n arguments. Formally the theorem is defined and proven using the Gödel
numbering [46]; in practice, it is applicable to any programming language in use.

The term staging refers to any mechanism in the language which allows the user
to explicitly control the aforementioned staged execution process.

In Sections 2.3.7 and 4.1.3 we provide a more generic definition of staging, that
does not stem from the S-mn theorem. Our approach however does encapsulate
the current, more traditional view on staging and the practical techniques remain
relevant.

Staged execution should not be confused with automatic partial evaluation,
where parts of some code are executed early due to optimization, rather than
explicit language specification. For example, one of the common optimizations
done by compiler is constant propagation, also known as constant folding [74,
148]. While the technique itself is much more powerful, one of its effects is
that expressions that are recognized as constant, are actually evaluated and
reduced to a single value. In such situation, the compiler acts as an interpreter,
executing parts of the code at compile-time, instead of translating it to code
that would run at run-time. This may seem as an example of staged execution,
but the user does not have a full control over it: the compiler may choose to
avoid constant folding or perform it only partially, e.g. to reduce the register
pressure of the produced code. As such, when the mechanism is not part of the
language semantics, but just an optional compiler optimization – it cannot be
regarded as staging.

With ongoing research, automatic partial evaluation becomes increasingly pow-
erful. Nevertheless, automatic optimization cannot be exhaustive. Due to the
halting problem, the compiler cannot always predict if a given optimization is
feasible: For example, attempting to evaluate a given expression at compile-time
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would actually terminate [70]. On the practical side, too aggressive optimization
may also be slow or produce large amounts of code.

The programmer often has a better, high-level understanding about the underly-
ing algorithm that their code represents and how it is intended to be used. They
may know that a particular function is safe to run at compile-time, while the
compiler itself may not be able to deduce that. For that reason, user-guided
staging remains relevant regardless of how extensive the automatic optimization
may be.

As we will show in this chapter, deferring an execution of a piece of code is central
to defining staging. This is however not equivalent to function abstraction. In
a call-by-value or call-by-name λ-calculus, a function has a static body that
is never reduced before the said function is invoked [111, Chap 5.1]. Staged
code on the other hand can be algorithmically constructed, where parts within
the generated code are reduced in an early stage. Such mechanism that allows
the user precisely control when such reductions happen requires fundamentally
different mechanism than abstraction.

2.3.1 Fixed Staging

As we have shown in Section 2.2.1, the process of compilation and execution
consists of several phases. Many modern languages provide ways to explicitly
instruct the compiler to execute a piece of code at some of these phases. For
example, C++ templates metaprogramming allows arbitrary computation to
be staged in the type-checking phase [144, 145]. Similarly, C++11 constexpr
keyword ensures compile-time evaluation. We refer to these approaches as fixed
staging as they allow the user to assign additional work to an already existing,
fixed stage provided by the compilation pipeline. The user is unable to create a
completely new, separate stage this way.

Thanks to this fixed kind of staging, generic libraries emerged. One of the early
adoption of it is the Standard Template Library for C++ [126]. The library
provides a generic set of algorithms and containers for any data type T. When T
is specified, the library’s functions are specialized at compile-time. The produced
code often remains within a few percent of the efficiency of the corresponding
hand-written routines.

While early adoption of C++ templates focused on specialization with respect
to types, it can be used for any computation [144]. Such template C++ pro-
gramming is refered as template metaprogramming. To give a concrete, simple
example consider the integer power function written in C in Listing 2.1. Each
time the function is called, the recursion is resolved at run-time. As long as the
arguments remain unknown a good compiler may, at best, try to replace the
recursion with a loop or reduce the amount of recursive calls e.g. by inlining once
power within itself. In the end however, the depth of the recursion is unknown
and must be controlled by a conditional expression over the run-time exponent
value.

However, if the programmer knows beforehand that the power function is going
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int power( float base , int exp) {
if (n==0) return 1;
if (odd(n)) /* n%2 */

return power(base ,exp -1)*base;
else {

float part = power(base ,exp /2)
return part*part;

}
}

Listing 2.1: An unstaged power function. Every time the function is called, the
recursion is executed in full..

template <int N, bool isOdd > struct rpow {};

template <int N> struct rpow <N, true > {
static inline float value( float base) {

return base*rpow <N-1, false >:: value(base);
} };
template <int N> struct rpow <N, false > {

static inline float value( float base) {
float part = rpow <N/2, (N/2) & 1>:: value(base);
return part*part;

} };
template <> struct rpow <0, false > {

static inline float value( float base) {
return 1;

} };

template <int exp > float pow(float base) {
return rpow <exp , exp & 1>:: value(base);

}
...
float pow10( float base) {

return pow <10 >( base); //transforms at compile-time to:
//float partA = base*1;
//float partB = partA*partA;
//float partC = base*partB*partB;
//return partC*partC;

}
...
pow10 (2); //returns 1024

Listing 2.2: A staged power function in C++. The template parameter exp is known
at compile time. C++ will unroll the recursion at compile time, creating a sequence of
plain multiplications to be executed at run-time.

to be invoked often for a certain constant exponent, he may be interested in a
specialized version of this function. When the exponent is known, the recursion,
looping, or branching is not needed and the whole expression can be represented
as a set of multiplication operators. In order to avoid manual implementation
of each specialized copy of the function, staging can be used to generate the
necessary code from a generic version. As in example Listing 2.2, with the help
of template metaprogramming, we guide the compiler to resolve the recursion at
compile time. The multiplication instruction remains in the code to be executed
at run-time.

Templates of C++ were originally intended merely for generic programming with
respect to unknown types, and became a tool for staging only by accident [144].
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sub powgenrec {
if ($_[0] == 0) { return "my \$part = 1;\n"; }
if ($_[0] % 2) {

return powrec ($_[0] -1) . "\$part = \$part * \$_[0];\n";
} else {

return powrec ($_ [0]/2) . "\$part = \$part * \$part ;\n";
}

}
sub powgen {

return "sub pow$_[0] {\n" . powrec ($_[0]) . " return \$part ;\n}\n";
}
eval powgen (10);
...
pow10 (2); # returns 1024
print powgen (10) # prints the code:
# sub pow10 {
# my $part = 1;
# $part = $part * $_[0];
# $part = $part * $part;
# $part = $part * $part;
# $part = $part * $_[0];
# $part = $part * $part;
# return $part;
# }

Listing 2.3: Textual staging with PERL, assembling code for power computation for
a fixed exponent. After invoking eval a specialized version of the function is available

Consequently, such method of staging is cumbersome in practice. For example,
as in Listing 2.2, we need to create several partial specializations of a struct
over an additional helper boolean parameter just to realize a template-based
conditional – something that in normal code is realized through a simple if
statement.

Let us explore other methods of staging, with mechanisms specifically designed
for that purpose.

2.3.2 Textual Staging

The simplest way to add an additional stage, is to make a program produce
source code of another program, which would be then compiled or executed
later.

Many scripting languages allow new code to be pieced together at run-time from
character string fragments. Such code encapsulated in a string is then passed
into an eval function, where it is interpreted, such as in Listing 2.3. Thus,
conceptually, the code within this string can be seen as a deferred fragment, that
gets executed at a later stage — namely when eval is used.

The above, “eval” approach usually uses the same language for both the quoted
fragment, and the surrounding code. This is not the only way of doing textual
staging though. Sometimes completely different languages are combined. For
example, the C compiler actually contains two languages within itself: the actual
C, and a preprocessor language [114, Chap. 6.10]. While the C preprocessor
is part of the standard, it can actually be supplemented or even replaced by
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Expression ( Apply( Variable (f), Add( Variable (x), Variable (y))))

Listing 2.4: Explicit structural staging of an expression "f(x+y)". Each term of the
staged language is represented as a structure node with arguments.

another preprocessing languages, such as M4 [72]. The preprocessing language
acts as a first stage, typically performing string manipulations and producing C
source as an input to the actual C parser.

Apart from general-purpose preprocessors, there are also domain-specific ones.
For instance, tools like lex or yacc read special user input files and generate
C/C++ source code [87].

This approach is inelegant for several reasons:

• The language provides no guarantee that the character string produced
in the first stage actually represents a type-checking or even syntactically
correct code for the second stage. Any errors are detected late — when
attempting to actually parse or compile it. It may also happen that
such a composition is exploited through code injection, directing second-
stage program to perform different actions than intended by the original
author [112].

• Since second-stage variables are created and referred by their names, it is
easy to create faulty references or fall victim of name conflicts.

• The syntax and semantics of the first-stage language is often different
from the subsequent ones. Even if both stages are technically in the same
language, some symbols in the second stage must be escaped because of
the string context. For example, in Listing 2.3, we had to introduce \
in front of every $ symbol that we produced. This prevents any form of
code reusability between different stages. Same functionality has to be
reimplemented twice for each language or stage.

• Even if the staged code is semantically correct, it may still fail in type-
checking phase. Values produced in the early stage may not match the
types used in the following stages.

• There is little communication possible between the different stages. If x
represents a complex object, it is not enough to put the string "x" in the
generated code, because at that time the variable is no longer available.
Instead, x has to be serialized as text and put verbatim in the code of the
subsequent stage.

2.3.3 Structured Staging

One step towards a more secure staging is to represent the second-stage code in
a more structured way, for example as an Abstract Syntax Tree (AST). This way
the staged code no longer needs to be parsed, and the first language controls
what code is actually being produced. For example, a fragment code "f(x+y)"
could be represented as in Listing 2.4. This way the code of the first stage can
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trait Pow { this: Arith =>
def pow(base:Rep[Int], exp:Int) : Rep[Int] = {

if (exp==0) 1
else if (( exp % 2) == 0) {

val part = pow(base , exp /2);
part * part

} else
base * pow(base , exp -1)

}
}
val o = new Pow with ArithExp
val pow72 = o.pow(fresh[Int ] ,72)
...
val res = pow72 (3)

Listing 2.5: Staging in LMS. The argument base as well as the result value are of
type Rep[Int]. Consequently, any operations on these variables produces code rather
instead of performing the actual computation. The ArithExp component that is used
with the trait class Pow holds the definition of the arithmetic performed on the Rep[Int]
type. The fresh[Int] creates a new Int node with a fresh, unique symbol that can be
later used for identification and referencing, e.g. when binding a value to a function
argument. The pow72 becomes a specialized version of pow, containing only the code
operating on what was before a Rep[Int].

ensure that the produced second stage is syntactically correct. However, when
code is assembled in such an explicit way, such solution is not reusable between
different stages and is hard to read. This becomes even more problematic when
stages are nested, i.e. the produced code constructs yet another code piece.

Building of the structure can also be hidden behind overloaded functions and
operators. For example, in C++ an expression tree can be built with templates,
where each object represents a separate node of the produced AST [143]. That
approach however cannot easily handle control flow structures and the supporting
template library is complex to use.

A more practical approach was shown recently in Scala, with the introduction
of Lightweight Modular Staging (LMS) [116]. A higher-kinded type Rep[T] is
introduced that denotes a computation that evaluates to T in the next stage.
With this approach, a code fragment "f(x+y)" often can be represented as
"f(x+y)", but x and y need to be declared of type Rep[_]. Moreover, the
binary + and the function f must be overloaded for Rep types. These overloaded
operators hold the generation of the code, and when invoked they produce the
result similar to Listing 2.4. Moreover, if f is intended to be specialized with
respect to its non-Rep types, it first needs to be put in a special trait class, as in
example Listing 2.5.

The LMS provides an extensive library already containing overloaded operators
for common types. That is why in typical use-cases of LMS, only the actual
implementation of the intended algorithm is needed.

Unfortunately, the nature of deep embedding is not entirely hidden. First and
foremost, LMS requires a change in function signature, using Rep types instead
of normal ones. More complex code generators need to use advanced typing
techniques such as type tagging [68].
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Moreover, since staging is guided by the type system, any change to the default
staging behavior requires the programmer to define new types. For example,
prohibiting computation even when operands are known one can achieve by
introducing dummy types such as NoRep, or deriving a new type that would
handle both Rep[T] and T cases [101]. It is neither simple nor intuitive as the
programmer must alter staging indirectly, through type manipulation.

2.3.4 Dynamic Code Generation

It is much easier to write staged code when all stages are written using the same
syntax and semantics. The compiler is then able to track the relationship between
variables used in different stages, in addition to normal semantic verification.

One example of such addition to a widely adopted language is ‘C (Tick-C) —
an extension to ANSI C supporting dynamic generation of code [36]. In this
approach, the staged program is actually compiled to machine code, and at
run-time it dynamically produces new pieces of code. For example, in Listing 2.6
the function pow for a given exponent produces a new function at run-time. The
newly produced function is given as a pointer and can be invoked in the same
way as any regular function.

A backquote unary operator ‘ creates code for its argument. The argument
may be a value, a function call, but also an arbitrary code block put within
curly braces. Two fragments of code can be pieced together with the @ operator.

typedef int (* powtype )();
powtype pow(int exp) {

int vspec base = param (int , 0); /* Parameter : the base */
int vspec result = local (int); /* Local temporary value */
void cspec code = ‘{ result =1; };
int bit = 1;
while (bit <= exp) {

code = ‘{ @code; base *= base; };
if (bit & exp) code = ‘{ @code; result *= base; };
bit <<= 1;

}
return compile ( ‘{ @code; return result ; }, int);

}
...
powtype pow10 = pow (10);

/* generates and compiles a code for:
int pow10(int base) { // param (...)

int result ; // local (...)
result = 1; // code = ...
base *= base; // bit =1
base *= base; result *= base ;// bit =2
base *= base; // bit =4
base *= base; result *= base ;// bit =8
return result ; // compile (...)

} */

Listing 2.6: Building code piece-by-piece in ‘C. The generated function signature is
assembled in declerative way using a built-in API. In each step of the loop, another piece
of code is appended to the code. Finally, the complete code is compiled and returned as
a function pointer.
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Constant values of the surrounding early stage can be used within the code
through the $ operator.

All the code of Tick-C, both the main code and the dynamically created pieces,
is type-checked at compile-time. Code fragments have a type T cspec, where T
is the type returned by the fragment. Dynamically created l-values are of type
T vspec and can be used to control the variables between multiple code sections.
In the Listing 2.6, for example, the int vspec values base and result are used
to reference the parameter and local variable of the function being generated.
These values are seamlessly accessed within all of the quoted code fragments.

It is possible to receive a symbolic value from one code section and pass it as a
parameter into another code section. Unfortunately, it is not a simple operation.
Tick-C provides a set of C library functions to build more complex relationships
between code sections and pass the necessary arguments in between them.

Code sections can build a new, complete function F . Through library functions
calls, a list of parameters for F can be built incrementally. This creates local
variables of F that can be referenced within the code sections. Ultimately, one
produces a function pointer that can be immediately used.

However, Tick-C does not support nesting of ‘ operators. It is not possible
to generate dynamic code that would, in turn, generate another dynamic code.
Effectively, ‘ provides a single additional level of staging.

2.3.5 Code as a First Class Citizen

Dynamic code generation adds a single additional stage. Ideally, code fragments
should not differ from ordinary values, making them the first class citizen of the
language. Same as any other compound value, one should allow code composition,
nesting, and allow them to be passed freely between functions.

Lisp

In fact, such flexible solution existed for much longer than ‘C in the Lisp family
of languages. The original Lisp language [93] — List Processing — serves both
as a programming language and as a formalism for recursive function theory [92].
It is a unique functional language representing the program structure as well as
data in the form of nested lists. Any program can be represented as data by a
simple quote operator ’( ... ) and evaluated through an eval function. The
eval function itself, is relatively easy to define in Lisp itself.

The above mechanism is further supplemented through a quasiqotation [11].
The mechanism was originally introduced as part of one of Lisp’s dialect, the
Conniver language [94], but was later adopted by other dialects as well, including
the mainstream Standard Lisp and Common Lisp.

The quasiquotation ‘( ... ), similary to normal quotation, treats the list not
as a program, but as a data value. However, within the context of quasiquotation,
an unquote operator may appear: ,x which causes x to be evaluated again and
the result is placed into the quasiquoted list. Furthermore, a convenience syntax
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( define odd
( lambda (x) (= ( modulo x 2) 1))

)
( define powgen ( lambda (exp)

‘( lambda (base)
,(if (= exp 0) 1

(if (odd exp)
‘(let (( part (,( powgen (- exp 1)) base)))

(* part base))
‘(let (( part (,( powgen (/ exp 2)) base)))

(* part part))
)

)
)

))
( define pow72 (eval ( powgen 72)))

Listing 2.7: Staging through backquoting and unquoting in Scheme — one of the well
adopted dialects of Lisp.

,@x evaluates x to a list which is then spliced into the containing quasiquoted
list.

With these operators staging can be easily achieved, as shown in example
Listing 2.7. Quasiquotations can be arbitrary nested and can be freely passed
between functions as values, although deeply nested quotations can be hard to
read by humans. It is also easy to introduce errors due to staging, e.g. trying to
use a symbol with a yet unknown value. As an example, if in the Listing 2.7
we would remove ‘ before the let statements, invoking powgen would cause an
attempt to multiply with part and base values, which are not specified at that
point in time.

MetaML

Despite these difficulties, quasiquotation – in different forms – became the
dominant method for staging. One of the most successful adoption of Lisp’s
quasiquotations is MetaML [136]. It adds 4 basic operators to handle staging to
the standard ML language:

• The angular brackets < ... > indicate a piece of code that is deferred,
defining the next stage.

• The unary escape operator ~ allows splicing multiple pieces of code into
one. The escape operator can appear only with the angular brackets. If
the argument is a variable representing a piece of code, it is inserted as-is.
However, if it is a more complex expression, it is evaluated first before
splicing.

• The lift function converts any value to a piece of code representing that
value.

• The run function executes a piece of code.

Similar as with quasiquotation, the pieces of code can be arbitrarily nested.
MetaML introduces a notion of level of staging. The level at the beginning of
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fun sqr(x) = <let val y = ~x in y*y end >

fun pow(base ,exp) =
if exp =0 then <1.0>
else if even exp then

sqr(pow(base , exp div 2))
else

<~base * ~( pow(base ,exp -1) >

val pow72 = <fn base => ~( pow(<base > ,72))>

Listing 2.8: Staging in MetaML. Pieces of code quoted in <...> are deferred in
execution, but fragments followed by the ∼ are executed and the value is spliced into
the generated code.

the program is 1, each opened angular bracket increases the level of staging,
while an escape operator reduces it. Level 1 code is executed immediately, while
higher levels remain intact as pieces of code. Only run can dynamically reduce
the level of staging by striping off the outher < ... > of its argument.

Variables set in one stage can be directly used in another stage without any
special mechanism. Only the typical scoping rules define where a variable is
visible and where it is not. The ability to refer to variables across stages is
referred as cross-stage persistence [134, Chap 2.3.1] and is one of the highlights
of MetaML.

MetaML is strongly typed. A considerable effort has been made to ensure that
any program that type-checks — would execute. Apart from standard type
checks, as discussed in Section 2.2.2, it has to ensure that staging is resolved in
the correct order. The MetaML type system has to ensure that:

1. No variable is used before it is bound.

2. run and escape operator operate on pieces of code.

3. The invocation of run does not cause the violation of rule 1.

In a functional language, such as the original ML, the first requirement is trivial
since variables are used only within the scope of their definition – a value
assignment precedes its usage. With staging this is no longer the case: Names
can be used before their assignment. Some operations can still be performed
through symbolic evaluation, but other require concrete values. For example
fn a => <fn b => ~(a+b)> is invalid, as the addition a+b is spliced at the stage level
1, before the anonymous function fn b is invoked.

The third requirement has shown to be challenging to enforce by the static type
system. The run operator essentially reduces the level of staging of the piece of
code passed as an argument. As a result, a free variable may reach a staging level
that would be lower than the stage at which it is being bound, thus violating
the requirement 1.

The original MetaML paper [136] allowed run to be executed only on pieces of
code not having free variables at all. This was shown to be too strong a restriction.
For instance, the term fn x => run x was rejected. It was observed that run
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fn pow(base ,exp) {
if exp == 0 { 1 }
else if exp % 2 == 0 {

let part = pow(base , exp /2);
part * part

} else {
base * pow(base , exp -1)

}
}
fn pow72(base) {

@pow(base ,72);
}

Listing 2.9: Staging in Impala. The @pow triggers the partial evaluation of pow for
the known exponent. The interpreter automatically selects which operations may be
performed given incomplete information. As a result, only the multiplication instructions
that take the symbolic values base and part remain and are spliced into the context of
pow72.

can be used freely in a top level bindings, at the first staging level [135]. Later,
the type checker was improved further, by conservatively estimating possible
run-time staging levels and allowing free variables to appear at sufficiently high
staging levels [137].

In order to make run more flexible while maintaining type safety, MetaML was
extended to AIM (An Idealized MetaML) [98]. AIM expands on the idea of
pieces of code and makes a distinction between closed code that has no free
variables, and open code that may contain free variables. An execute command
(counterpart of MetaML’s run) operates only on the closed code, but its use is
no longer limited as it was in MetaML. The downside of AIM is that its use is
more verbose than of MetaML.

2.3.6 Automated Staging

MetaML is very verbose: the user must explicitly annotate both the staged
section of the code, as well as any expressions within it that should be evaluated
and spliced. Manually staging the spliced values is error-prone. Moreover, as we
discussed above, the splicing is problematic for the type checker as well. In most
cases however, splicing should simply occur whenever it is possible to perform.

Such automated staging is available for example in Impala [85]. Partial evaluation
is triggered by putting a @ in front of a function call. The function is then executed,
but sections that depend on symbolic values (e.g. a branch with yet-unknown
condition) are automatically skipped. Symbols annotated explicitly by the user
through $ are also skipped.

Consider the example Listing 2.9. The pow function looks exactly as a non-staged
version and can be used as such. Staging is triggered only at the call site, by
putting @ within the context of pow72. Consequently, a symbolic value base and
a known constant 72 is passed into the generic pow and the partial evaluator
computes as much as possible, leaving only those operations that need a concrete
value of base.
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Since Impala partial evaluator explicitly skips over operations that would fail
during staging, the type system does not need to perform any additional checks.
More importnantly however, Impala partial evaluator guarantees that the staged
section of the program halts as long as the original, unstaged version of it halts
as well. Infinite execution can be induced through staging only when a recursive
call is annotated with @ — something that is detected statically by Impala and
raised as a warning.

Automatic staging easily enables staging polymorphism – a single function can
be partially evaluated in different ways, depending on which parameters are
known and which are not.

The ease of use of Impala comes at a cost. Impala imposes only 2 levels of
staging, that means the result produced by the partial evaluator cannot contain
any staging annotations anymore. Moreover, while Impala staging is automated,
it is static: the decision if given instruction is executed early or late cannot be
made as a result of a computation.

2.3.7 Staging in ManyDSL

All the solutions we presented so far treat staging as layers of code. The
interpreter performs a complete pass over a function, producing a new, specialized
one. We find this mechanism not robust enough, however. In a more complex
staging scenarios, such as in Listing 2.10, treating staging as complete passes
makes programming and reasoning about the code needlessly difficult. When
several stages are involved, the programmer must track which level of stage is at
any given point and include the corrent number of splice and lift operators, to
move between the levels, one by one. If, for example, a code block needs to be
put in another staging level, it often does not suffice to put < ... > around it.
The programmer must inspect all its contents to ensure if the splicing remains
correct. Ultimately, as in this example, the amount of stage-related code may
actually exceed the amount of regular code, making it hard to understand what
is the underlying arithmetic logic of the given function.

For that reason throughout our work we define staging differently. It is no longer
a transformation of a function f into its specialized form fm. Staging is any
explicit method that allows symbolic computation “under a lambda”, that is:
performing β-reduction within bodies of functions that have not been invoked
yet.

fun back2 f = <fn x => <fn y => ~~(f <x> <<y>>) >>
fun dotF2 n v w =

if n ‘>‘ 0
then <<(~( lift (nth ~v ~( lift n)))

* (nth ~~w ~( lift (~ lift n))))
+ ~~( dotF2 (n -1) v w)>>

fun dot n = back(dotF2 n)

Listing 2.10: The staged dot product function in MetaML [135]. The function can be
specialized over the size of the vectors (n), as well as over the actual value of the second
vector (w). Several escape and lift operators are needed to correctly switch between
different levels of staging.

33



2. Background

Staging defined in such a way can still be used for function specialization.
However, the way it is achieved is not so rigid: It is not required to specify which
function is being specialized or which staging level is currently being evaluated.

In Section 4.1.3 we define dynamic staging. It is an extension of the plain lambda
calculus at the lowest formal level. Staging is defined through a relation between
lambda headers and their bodies, without introducing the concepts of staging
levels. With it the user is able to explicitly control the execution order.

2.4 Language Construction

With the increasing amount and complexity of programming languages, an
important question is how those languages are created. Naturally, the early
compilers had to be written directly in machine code, but this is no longer the
case with modern languages.

With the advent of general-purpose languages, compilers could use those lan-
guages to build on top of them. In fact, many of the compilers became self-hosted
— that is, the compiler was written in the language that it was defining. This
trend began with a dialect of ALGOL — NELIAC [58] and later with Lisp 1.5
compiler [50]. Today, many general-purpose languages are self-hosted. This is
beneficial for practical reasons:

• Upgrades to the compiler back-end may improve not only the normal
programs produced by it, but also the compiler itself.

• It serves as a major test of the compiler correctness and language usability.

• Using high-level language to describe the compiler makes it easier to
maintain it.

Let us fist inspect the tools available to the programmer to define custom
languages.

2.4.1 Parser Generators

The process of compilation or interpretation can be split into a sequence of tasks,
such as scanning (lexical parsing), parsing, semantic analysis, optimization, code
generation, etc. [3]. Each task, treated separately, can benefit from a description
using a higher level of abstraction than the level provided by a general purpose
language.

In particular, the description of the front-end of the language – it’s syntax
and semantics – is often represented in a Backus-Naur form [9]. Instead of
implementing a new parser from scratch, the grammar of the language represented
in BNF can be used directly as an input for a parser generator. The generator
transforms its input, detects any potential ambiguity in the grammar, and
produces code — realizing a pushdown automaton either as an executable or as
a source code of another language.
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One of the first examples of such an approach is the META II language [121].
It accepts a language grammar given as a set of rewrite rules. While it is not
explicitly stated, it is using a top-down parser generator, similar to LL(1) [88,
118]. Ambiguities are resolved by a simple backtracking strategy, referred as
“back-up”.

In addition, the rules contain output commands that are produced whenever the
given rule is used during the parsing process. The output command can generate
an arbitrary character string.

A more robust parser generator that gained popularity is YACC [65]. Based on
the grammar description in a format similar to BNF, it produces an LALR(1)
parser [2] – a practical approach to parsing of a subset of LR(1) grammars [77].

YACC can parse text input directly, but it is also possible to use it on an already
tokenized stream. The tokenization can be done manually by the user, or with
the help of another tool, such as lex [86].

Each grammar rule can contain an action – a piece of code that is executed each
time the rule is taken during the parsing process. Actions are given either in
Ratfor or C programming languages. The latter became the dominant use of
the tool. YACC often acts as an early stage preprocessor, producing C files that
are then used within bigger projects.

After the initial YACC success, further tools were developed, supporting more
powerful classes of grammars. We have bottom-up parsers using Generalized LR
(GLR) [142] that in worst case perform their task in cubic time but often are
able to achieve near-linear parse times. We also have top-down parsers, such as
packrat parses [40] using Parser Expression Grammars [41], and LL(*) parsers –
used for example in ANTLR [106].

While the classes of grammars change, the basic principle remains: The languages
are specified as a set of rules, together with their semantic action.

2.4.2 Parser Combinators

Instead of using a dedicated tool, a parser can be defined in a functional language
using parser combinators [147, 39, 59]. In this approach, a language is constructed
by first defining simple, basic parsers represented as ordinary functions. Then,
so called combinators are used to take one or more parser functions and combine
them to create more complex parsers. In this way, the parsers are gradually
enriched until the whole language is denoted by a single parser function.

Because such parsers are created in a general-purpose functional language, the
compiler has no insight into the purpose of these functions and does not process
them in any special way. It is easy for the user to create a parser that is
ambiguous, highly redundant, and possibly backtracking many times. Moreover,
if there is an actual error in the input, the parser is slow to recognize it — it
first tries to exhaust all possible parsing alternatives in search for a successful
solution.
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It is impossible to analyze the functions the same way as it is done with a grammar
description using a dedicated tool. However, other solutions are available to the
language designer, as he can embed arbitrary support code within the parsing
functions. For example it is common for the functions to memorize the tokens
as they are being consumed. This way, the first/follow sets for LL(1) grammars
can be computed dynamically, without analyzing the grammar structure [133].

Other solutions try to explicitly forbid or limit the ambiguities. For example,
in the Parsec combinator parser [82], the alternative operator x <|> y will try
parsing with y only if parsing with x fails without consuming any tokens. On
the other hand if x consumes anything, it is assumed that this is the correct
path and any further errors do not cause backtracking. If both x and y can
potentially start with the same prefix, it must be left-factored or an explicit try
keyword has to be used explicitly allowing for backtracking in this particular
spot.

Finally, parser combinators can be specialized. Often, when the arguments to
the combinators are known, a simpler parsing function can be created through
staging and partial evaluation [67]. This results in a parser with less function
calls and fewer situations where backtracking may occur.

Unfortunately, all these approaches need to be explicitly implemented by the
language designer. There is no support from the language to automatically
realize the optimization strategies described above.

2.4.3 Code Generation

Regardless of the approach to parsing, whether through generation or combi-
nation, the semantic meaning has to be provided as well. We do not want to
just read the input, but also perform some action based on it. This is typically
defined by mixing pieces of executable code into the grammar. This pieces,
typically referred to as actions, can be executed immediately, during parsing, but
more often than not they generate code that is to be executed at some later time.
In fact, performed action usually spans into multiple stages. We can distinguish
for example:

• A generation stage, when the generation creates the parser and its actions.

• An early stage, such as compile-time, when tasks such as variable lookup
or type checking are performed by the actions.

• A late stage, e.g. run-time, when the algorithm described by the parsed
code is executed.

For that reason staging, as defined in Section 2.3 pays an important role when
defining actions.

Many parser generators, such as yacc and most of its derivatives [65], realize the
generatoin stage through textual staging (Section 2.3.2). Only few special con-
structs within actions are treated specially and are substituted by the generator,
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the rest is used as-is to generate code for the following stages. Early and late
stages are compiled by a different language, e.g. C, and only then action code is
actually parsed in a syntactically correct way.

Parser combinators, as well as more advanced parser generators, such as ANTLR
v4, typically create a parse tree. Such abstract syntax tree is then later combined
with a user-defined visitors or listeners [105]. By doing so, the description of
semantics is in the visitor, separate from the grammar description, making the
whole language definition more robust. Moreover, the user-defined visitors and
listeners are fully parsed in the language of choice and do not suffer from the
drawbacks of the textual staging.

The code for the late stage is harder to define. It often depends on the backend,
and usually involves calling appropriate API functions, building the target code
piece by piece. This resembles the structured staging approach described in
Section 2.3.3.

Today, one of the most popular backends is LLVM [80]. It defines a common,
low-level code representation for an abstract machine. The user can then
specify further transformations within the framework. Many useful optimization
strategies and further backends for concrete machines are already available in
LLVM itself. This makes the framework a particularly convenient backend for
parsers of higher-level languages.

2.5 Language Embedding

We have shown representative examples of tools allowing a programmer to define
a new language completely from scratch. However, even with their help it can
be a costly process. All aspects of the language must be defined, even if the
overall shape closely resembles that of general purpose language maybe with
the exception of a few key features for a specific domain. As a result, language
building requires time and people who are experts both in compiler construction
and the specific domain.

To circumvent this problem, a different approach can also be used. A sufficiently
flexible host language is used to define all the terms of the new language within
itself – usually as a mix of functions, overloaded operators, or special types and
generics. When all the definitions are given, the new constructs can be used
immediately, as a part of the single program. This kind of language is typically
referred as Embedded Domain Specific Language (EDSL) or, in different order:
Domain Specific Embedded Language[56].

Examples of languages defined this way date back before the concept itself had
been defined. For example Haskell has been used to define geometric operations
for naval military applications [57], and later for other domains such as COM
component scripting [66], hardware design [15], server-side web scripting [95,
140], etc.

As already mentioned in Section 1.2, language embedding has numerous benefits
compared to a standard parser generators, most importantly the cost of pro-
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gramming an EDSL is much lower [56]. The listed benefits become even more
relevant when multiple embedded languages are used together.

• The complete host language is available at all times. No special handling
is needed to switch between host and embedded languages, and back.

• Variables defined in one language can be directly used in the another.

• The host compiler is able to verify the correctness of all constructs, even
across multiple languages.

• The embedded languages can benefit from all optimizations available for
the host language.

Depending on the implementation, when the EDSL construct is used, two things
can happen:

• In shallow embedding, the associated semantics is represented entirely
within the action. We further subdivide this category into plain shallow
embedding and staged shallow embedding. The plain subcategory does not
incorporate staging and the action code is executed immediately during
parsing. In staged embedding, the execution of the action or its part may
be delayed through staging.

• In deep embedding, the action specifies only how a program structure is
created. Independently of the grammar, separate programs define how to
traverse the structure, how to optimize and transform, and finally how to
interpret it.

Let us evaluate these approaches in detail.

2.5.1 Plain Shallow Embedding

Typical shallow embedding does not use staging and is often easy to implement:
it does not differ much from defining a library. A set of functions is designed to
serve a specific domain. The main difference from a straightforward API is that
the functions use the features of the language to increase readability.

Common techniques involve function and method chaining, or consistent over-
loading of operators for domain-specific types. Consider for example the C++
standard I/O stream library. In native C++ the “<<” and “>>” operators signify
shift-left and shift-right bit operations on integers. However, for the purpose of
the library these are used as streaming operators, allowing the user to read or
write a sequence of data. The library is not just a set of functions to achieve a
certain goal – it incorporates a new syntax, through operator overloading, to
make the library easier to use.

Shallow embedding is an extension to the host language. New constructs often
can be easily intermixed with the native code of the host language.
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The downside of plain shallow embedding is that the additional language layer
may lead to suboptimal performance. The execution order matches the order of
the invocations, which for an EDSL may be suboptimal.

Consider for example a problem of multiplying a chain of matrices of statically
known dimensions. Finding the optimal order of multiplications is a classic
problem that can be solved through dynamic programming [26, Chap. 15.2]. The
goal of such optimization is the reduce the dimensionality of the intermediate
results. In a plain shallow EDSL this can be solved in two ways:

• Load all matrices into memory, find the optimal sequence and then perform
the multiplication.

• Ignore the optimization and multiply the matrices in the order of their
appearance.

Both approaches are suboptimal. The first one requires all matrices to be held
in memory at the same time and the algorithm itself is performed at run-time.
The second approach requires only two matrices to be held in memory at a time,
but their dimensions may be higher than necessary due to suboptimal order of
multiplication.

Ideally, the dimensions and the optimal order should be computed in an early
stage. This would produce instructions in the right sequence for loading and
multiplying the matrices at a later stage. This however is a solution that uses
staging and is not within reach of plain shallow embedding.

2.5.2 Deep Embedding

In order to circumvent the problems of plain shallow embedding, a different
approach is typically proposed [151, 116, 143]. The embedded language does not
execute the intended semantics immediately, instead, a structure of computation
is created in a form of an Abstract Syntax Tree (AST) or some other intermedi-
ate representation (IR). It is a kind of structural staging and domain-specific
optimizations can be expressed in two ways:

• As a computation that is performed when the IR is being created.

• As IR transformations.

The dynamic creation of the IR, resulting of an arbitrary computation, is a form
of structured staging that we described in Section 2.3.3, with all its benefits and
limitations.

On the other hand, IR transformations provide a whole new way of doing
optimization. As the language can include additional algorithms that can
explore the IR in any way, it has a better chance to deduct the programmer’s
intention. The optimization can be expressed as an offline algorithm, possibly
taking even more time to execute, but producing a highly-efficient final code.
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Let us consider the same example as before: The chained matrix multiplication
problem. The DSL parser produces an AST representing a sequence of matrix
multiplications in the order of their appearance. Then, the language runs an
algorithm that inspects the matrices in the AST and transforms the tree to
represent the optimal order of the multiplication. Finally, the optimized AST is
transformed into a runnable code, that can later be executed or be compiled to
machine code.

Typical embeddings with explicit AST creation and transformation are done in
functional languages due to their flexibility. Prime examples are Haskell [81] and
Scala [55]. It is not uncommon however to encounter embedded DSLs creating
an AST in other languages as well, such as C++ [143].

However, one should carefully approach the topic of IR transformations. Speci-
fying them can be compared to imperative programming (Section 2.1.2): It is
a sequence of operations that changes the overall state of a machine — where
“state” in this context means the current IR of the program. The order of the
transformation steps, similarly to imperative programming, can have a huge
impact on the end result. When introducing a new optimization one must
always investigate how it interacts with other, already existing transformations.
Consequently, as the number of transformations grows, introducing new ones for
a custom DSL becomes increasingly difficult.

Delite

Consider the usage of LMS for embedded DSL creation [116]. Recall from
Section 2.3.3 that LMS is a form of structural staging, hidden from the user
through overloaded operators for Rep types. These operators construct a program
representing the intended computation.

The definition of these operators can be separated from the interface. By
swapping different definitions, the same DSL program can produce different IRs
and be used with different optimization engines.

One such engine, Delite [117], provides optimization, compilation, runtime
support for parallelism, and execution on heterogeneous targets, such as multi-
core CPUs and GPUs. Delite is performing several standard optimizations such
as common subexpression elimination, dead code elimination, constant folding,
code motion, as well as more specialized ones such a loop fusion. Moreover,
Delite framework permits usage of higher level IR nodes that encode DSL-specific
information. For example, OptiML [21] treats some of the IR nodes as linear
algebra operations and may perform simplifications based on the algebraic rules.

The Delite framework assume that all actions are pure by default, that means
they do not affect the state of the machine. Imperative operation that modify
the state, either globally or locally, must be manually defined by the DSL creator.
In particular, to reach maximum performance, the DSL creator must track the
possible aliasing of pointers. In OptiML, more advanced optimization strategies
are immediately skipped when an unpure function is encountered [132].
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Polly

As another example of a typical IR transformation pipeline, consider the Polly
tool for polyhedral optimizations [49]. Polly, similarly to Delite, is not a complete
language and provides no front-end DSL. It is an an infrastructure for the the
IR transformation, operating on a LLVM-IR.

Polly can perform polyhedral optimization only on so called static control parts
(SCoP) of a function. Several requirements must be met to constitute a block as
SCoP, some of which are:

• The only looping control flow is realized through for loops, using single
integer induction variable incremented by a constant stride.

• An if conditional is permitted, comparing two affine expressions with
respect to induction variables and block parameters (values immutable
within the SCoP).

• All operations may only perform computation using induction variables,
block parameters, and values read from arrays.

• All array subscripts must be affine expressions with respect to induction
variables and block parameters.

• Arrays represented in memory must not alias

Several transformations on LLVM-IR are performed to produce a block that
is equivalent to the requirements of SCoP. However, if the transformations fail
to create a code part with the desired properties, it is excluded from further
optimization. Unfortunately, there is no mechanism for the programmer to
identify the problems and possibly guide the transformations to successfully
obtain a SCoP.

Once a SCoP is identified, it is translated from LLVM-IR into its own Polyhedral
Representation. Only in this form, the actual polyhedral optimizations are
performed. When completed,the old code is replaced by new LLVM-IR code.

Evaluation

Let us identify common properties of the tools described above. Both perform
optimizations by recognizing special structures in the IR and transforming them.
Unfortunately, many complex transformations assume certain properties of the
representation, which if cannot be met, prevent the optimization from occurring.
Even an attentive developer aware of these limitations may accidentally cause
it to fail. When that happens, tracking the cause may be difficult due to the
amount of transformations performed in the pipeline.

In order to prevent such mistakes from happening, a DSL must be designed such
that is prevents these situations from happening, or provide a way to track the
issues to minimize their impact on the underlying optimization.
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Moreover, any domain-specific optimization requires usage of domain-specific IR,
either through an extension of the basic representation (Delite) or as a complete
replacement and translation (Polly).

Effectively, for a successful DSL, its creator must:

• Extend the default IR, or create a new one from scratch

• Define the intended optimization pass over the IR

• Correctly order the transformation passes over the IR to satisfy all the
requirements of each

Recall from the beginning of Section 2.5 that the motivation for language
embedding is to make DSL creation accessible for non-experts. However, the
tasks needed for IR-based optimization are not easy and the overarching goal of
embedded language is missed.

2.5.3 Shallow Embedding with Staging

So far we discussed two of the canonical approaches to language embedding:
The plain shallow embedding (typically referred to just as “shallow embedding”)
where the semantic action is directly represented in the language and executes
as soon as the given language construct is encountered. On the other end of
the spectrum we have deep embedding where a language constructs a program
representation, that is to be transformed and executed at a later stage.

In between those two extreme approaches lies a less explored solution – expressing
the semantic action directly in the host language, but using staging to optimize
the produced program through partial evaluation. No explicit program structure
is created and as a result no IR transformations are possible. However, domain-
specific optimizations can still be expressed as a staged specialization. This
approach for EDSL construction has been used both with MetaML [28] and
Impala [85].

Consider the loop fusion optimization: A set of loops are recognized to iteratve
over the same range, and the operations within the loop are either independent or
have very specific dependency. This kind of loops are very typical, for example, in
component-wise array expressions. In those conditions, if an IR-based compiler
recognizes this pattern, it may choose to replate the loops by a single one.

In a specialization-based EDSL one tries to avoid creating separate loops in
the first place. In Impala, for example, language constructs are defined as a
higher-order functions. This way the DSL is able to define its own control-flow
constructs, such as a loop with several bodies. By passing body arguments to
such a loop, the DSL creates a single fused-loop that can be simplified through
specialization.

This way of defining an EDSL requires attention by the language developer: As
in the example above, actions may need to be defined differently, compared to
how they are typically specified. The domain-level information must be encoded
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in a form of abstractions, rather than a set of augmented IR nodes. However,
once this is done, it is more natural to reason about the behavior of the DSL.
The DSL definition is given as a functional library, rather than as an imperative
set of IR transformations.

In our work, we employ a flexible staging mechanism, as mentioned in Sec-
tion 2.3.7. This direclty improves the staged shallow embedding approach we
use in Section 4.3. Together with grammar-based language definitions, explained
in Section 4.2, we achieve both syntactic and semantic flexibility.

2.6 Metamorphic Languages

Most programming languages have an immutable grammar and its is definition
hidden from the user. Doing otherwise – allowing the user to inspect and modify
the grammar, especially on the fly from the source code, is both challenging
from the compiler’s design perspective and often not deemed necessary.

A metamorphic language is a language that may have its grammar modified
dynamically. The source code can, during its interpretation, modify or even
replace the grammar. Usually, as a result of such change, the later parts of
the source can be parsed with the grammar containing user-defined constructs.
It is also possible for a metamorphic language to define island grammars [33]
which describe only some general properties of source in areas where no definite
language is yet known. For example, an island grammar may specify that
within a specified block of code parenthesis must match and otherwise ignore the
contents of that block. Only later, when a user-defined grammar is established,
these sections of source code are reparsed.

2.6.1 The Importance of Syntax

Metamorphic languages naturally become good candidates for host languages for
DSL embedding: The ability to change the grammar allow embedded languages
to have their own, unique syntax.

However, before exploring what metamorphic languages are available, let us first
argue if they are needed. Most articles on the embedded DSLs focus on the
semantics and correctness of the program [56]. The actual syntax of these DSLs
is often secondary or given just as an afterthought. Some articles take a one step
further, arguing that a lack of a unique syntax is a positive trait of a language:
The most common argumentation is that reusing the known syntax lowers the
learning curve of the EDSL.

Is that really the case? We agree that when a DSL can be concisely embedded
with the concepts provided by the host language, no new distinct syntax is
needed. As we will show in a moment, however, for many DSLs this is not
true. Often, DSLs introduce new paradigms that cannot wasily be captured
by the host language syntax. Moreover, additional syntax is needed for the
host language to distinguish its native code from the domain-specific code. This
syntactic noise has to be repeatedly injected into the DSL, but it serves no
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Embedding Host Example

SQL SELECT Name , Surname FROM Members
WHERE Age = 18

Haskell/DB Haskell
do r <- table Members ;

restrict $ r!Age .==. constant 18
project $ Name << r!Name

# Surname << r! Surname

LINQ C#
Members

.Where(row => row.Age == 18)

. Select (row => new {row.Name , row. Surname });

jOOQ Java

create
. select ( MEMBERS .NAME , MEMBERS . SURNAME )
.from( MEMBERS )
.where( MEMBERS .AGE.eq (18))
.fetch ();

Slick Scala for {m <- Members if m.Age === 18}
yield (m.Name , m. Surname )

Table 2.1: Comparison of different SQL embeddings into general-purpose languages.

additional semantic meaning. Such code becomes less readable, harder to learn,
and more prone to mistakes, e.g. when these constructs are omitted.

SQL Embedding

Consider for example a common problem of embedding SQL into a general-
purpose language. This scenario is very common in applications that use
relational databases in any way.

Many attempts have been made to do so, some of which we show in Table 2.1.
Let is explain each entry of that table:

In Haskell/DB [81] the main problem is that additional keywords are needed
to distinguish between native Haskell code and embedded code. For example
constants in the context of database statement have to be preceded by a keyword
constant. Moreover, any operator within the database query uses additional
dots at the beginning and the end, e.g. “.==.” instead of “==”.

The C# language integrates SQL queries through LINQ [14]. Such queries can
be written in two forms:

• Through query expressions which are an actual extension of the C#
grammar, specific for SQL.

• Through standard C# syntax.

When using LINQ with normal C# syntax, SQL statements are represented as
chained method calls. Each method represents a single construct such as SELECT
or WHICH. The contents of these are encoded as lambda function parameters.
The lambda syntax row => ... provides no additional meaning with respect of
the domain, but must be written anyway for native C# to process it correctly.

In Java, one can create queries through EDSLs such as jOOQ [138], using similar
approach of chaining methods. This time no lambda functions are used, but the
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content is no longer arbitrary host code. Instead, special predefined values based
on the database structure must be used, combined with special operators where
needed.

An interesting approach of integrating SQL into Scala is provided by Slick [30].
Instead of trying to mimic SQL closely, it tries to use Scala’s own syntax to
represent queries. This however effectively means that those familiar with SQL
would have to completely relearn how to access a database using this tool.
Despite this approach, pitfalls still exist due to limitations of the host language.
For example, a regular equality operator == cannot be used in the context of the
query, and a new === operator is used instead. Similarly, a not-equal operator is
written as =!= instead of !=.

In all these cases we obtain a DSL showing some similarity to SQL, but with
additional syntactic noise coming from the fact that the language is embedded.
These additional constructs add nothing meaningful to the language but need to
be learned by the user. In order to overcome these problems it is not uncommon
for a language to actually extend its own grammar in order to explicitly support
an SQL syntax.

For example, the query expressions introduced with LINQ, alter the C# grammar
to support query syntax which is very similar to native SQL [14]. It is possible
to write:
from row in Members

where row.Age == 18
select new {row.Name , row. Surname };

Another approach is to have SQL statements preprocessed, before they are
included in a general-purpose language. For example PostgreSQL features a
preprocessor ECPG for the C language1. The user writes C code, together with
SQL statements within it. Such .pcg file is then preprocessed into a plain C
file, where the SQL statements are converted to C function calls working with
PostgreSQL API.

C# query expressions and ECPG preprocessor are examples of how much effort
compiler experts can put to introduce a custom syntax into a language that is
not metamorphic. Unfortunately, this is a one-time solution specific for SQL. If
one wants to introduce another DSL with its own syntax, the same hard work of
altering the existing compiler has to be repeated.

Regular Expression Embedding

So far we discussed only the problem of embedding SQL in other languages. This
is probably the most common problem, but it is not the only one. For example, a
regular expression can be seen as a small DSL for describing a regular automaton
over characters. Many scripting languages support regular expressions natively.
Other languages introduce regular expressions through some form of library.

Most implementations take the regular expression hidden in a text string. This
bypasses the problem of syntactic embedding, but defers any form of correctness

1https://www.postgresql.org/docs/current/static/ecpg-concept.html, retrieved on
01.06.2016
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checking and optimization until runtime. The expression provided in a string
may be incorrect, but the compiler has no way of knowing it.

Moreover, embedding regular expressions in a string can actually interfere with
the host language syntax of the string itself. Consider for example a regular
expression for a C string:

"(\\.|[^\\"\n])*"

The formula finds any double-quoted sequence of entries, where each entry is
either:

• A single character, with an exception of backslash, double-quotation mark
or end-line character

• An escape sequence starting with backslash, followed by any single charac-
ter, including quotation mark or end-line character

However, if the above formula is put into a literal string as part of some general-
purpose language, e.g. C/C++, it becomes much more complicated. The formula
must handle the escaping mechanism of the string it is contained in:

"\" (\\\\. | [^\\\\\ "\\n])*\""

Some libraries try to provide their own syntax embedded in the host language.
For example, the boost::xpressive2 library introduces its own set of regular
expression operators embedded in C++. In such setting, the above formula can
be written as:

’"’ >> *(( ’\\’ >> _ ) | ~( set=’\\’,’"’,’\n’)) >> ’"’

As it can be seen in this example, when a language does not support regular
expressions on the grammar level, it is hard to reintroduce it through other
means. We obtain a DSL with a complex and long syntax to something that is
supposed to be short.

SIMD Computing

Another domain we would like to draw attention to is SIMD programming.
While it is a general-purpose paradigm, it is still not well adopted in existing
languages. The simplest approach is to simply introduce a series of hardware-
specific, intrinsic functions for SIMD programming. This kind of programming
however is very difficult to write as it effectively lowers the language generation
down to low-level assembly programming. In addition to inconvenient syntax,
the user must manually handle divergent branches in the form of masking.

Some of the intrinsic SIMD functions can be hidden behind overloaded opera-
tors, e.g. for vector computation. However, more advanced problems such as
efficient memory organization and diverging branches require changes both on
the syntactic and semantic level.

2http://www.boost.org/doc/libs/1_61_0/doc/html/xpressive/user_s_guide.html,
retrieved on 02.06.2016
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kernel <<<grid_dim , block_dim >>>( args)
(a)

var worker = Worker . Default ;
var lp = new LaunchParam (grid_dim , block_dim );
worker . Launch (kernel , lp , args);
(b)

Listing 2.11: Comparison between kernel calls in native CUDA (a), and CUDA
embedded in C# (b). The native CUDA call uses a clear specialized syntax which can
be reused in dynamic parallelism. The embedded CUDA syntax is more verbose but
adds no information. Moreover it cannot be used for GPU-side subsequent kernel calls.

These changes cannot be done through a simple embedding. However, standalone
languages such as ISPC [110] or Sierra [83] show that with a single new concept
suffices to provide higher-level support for SIMD programming on top of C++.
These languages introduce the varying and uniform type specifier. Variables
which are varying may hold a different value for each SIMD thread (typically
referred as lane). On the other hand, uniform variables are always the same
between across all lanes.

With such information, the compiler has enough information to identify when to
generate SIMD code. It can identify which conditionals may branch within the
SIMD and how to apply necessary masks.

At the same time, this type extension allows the compiler to reorganize the data
in structure-of-arrays (SoA) layout, or a hybrid arrays of short SoA. In plain C it
is also possible to define such structures, but are cumbersome to define and use.

While neither ISPC nor Sierra are embedded DSLs, these examples show how
C++ syntax with just a few adjustments can convey a new programming
paradigm in a concise way.

SIMD programming is not limited just to CPUs. While hardware differences
exist, GPU programs can be regarded as SIMD as well. Most GPU-oriented
programs are standalone languages, however. This includes highly specialized
shading languages such as the RenderMan Shading Language (RSL) [139, part II]
or the OpenGL Shading Language (GLSL) [73], which both includes many types
and operators specific for graphics processing. A general-purpose programming
languages also exist, such as CUDA [27] and OpenCL [17].

However, even the general-purpose languages introduce special syntax to repre-
sent parallel computation. For example, in CUDA, when launching a function
on the GPU, called a kernel, it is invoked with a special syntax as shown in
Listing 2.11a.

Such a call launches a kernel on the GPU, and assigns a series of threads organized
in an array to execute it. The new syntax <<< ... >>> typically appears as part
of the CPU code and invokes the necessary driver functions to launch the kernel.
However, with the introduction of dynamic parallelism in CUDA 5.03, the same

3http://developer.download.nvidia.com/assets/cuda/files/CUDADownloads/
TechBrief_Dynamic_Parallelism_in_CUDA.pdf, retrieved on 07.06.2016
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syntax may appear as part of the GPU code, spawning additional threads in
effect. The syntax hides all the differences between CPU and GPU invocation of
that kind.

There are a few examples where the CUDA programming model has been adopted
as an embedded DSL into other higher-level language. For example, the Alea
GPU language embeds CUDA programs into the .NET family of languages,
such as C#4. Such embedding cannot use the kernel call syntax and has to
rely on manual function calls that achieve the goal as in Listing 2.11b. Once
again, we obtain more verbose code that does not actually convey any additional
domain-specific information over the shorter version provided by native CUDA.
Furthermore, such an approach with a Worker object cannot be used in the GPU
code for the CUDA dynamic parallelism.

Conclusion

We have given examples where domain-specific programming benefits from using
its own unique syntax. Every time a language brings a new concept or tries to
establish a new paradigm, support from the syntax helps to convey the meaning.
The code becomes shorter, easier to maintain, and understand.

Furthermore, recent studies show that syntax matters among novices learning
a new programming language [125]. For any potentially new DSL – with or
without custom syntax – every programmer has to learn the language and can
be considered novice. For that reason, the easier, more intuitive syntax of that
DSL, the lower its learning curve and a higher chance for the language to be
actually used in any given project.

For these reason we claim that using the same homogeneous syntax in all DSLs
is counterproductive. Instead, in a multi-domain project, it is actually beneficial
to use many languages with different syntax. At each point in the code it is clear
which domain one is dealing with and can program with ease in an environment
that is suited specifically for that domain.

Now that we have stated the reasons why we claim that syntax is important, let
us look at some languages that permit syntax manipulation. This property of a
host language is necessary to embed DSLs with arbitrary syntax.

2.6.2 Macro Languages

One of early approaches for syntax manipulation is in the form of macros – small
source-to-source transformation patterns. Simplest macro languages, such as the
C-preprocessor [114, Chap. 6.10] and m4 [72] operate lexically. That means, the
definition of a macro is treated as a sequence of characters or tokens. Macros
can have parameters, that are used as a placeholders within the definition. A
recognized macro invocation is replaced by its definition “as-is” and arguments
replace the placeholders without checking if the produced code is syntactically
correct. Often, the macro languages are not Turing complete and recursion is

4http://www.aleacubase.com/temp/manual/compilation-overview.html,
retrieved on 24.02.2017
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limited or not possible at all. TeX [78] is a notable exception of a macro language
that is fully programmable.

More advanced macro systems however can operate with additional syntax
knowledge, for example by transforming Abstract Syntax Trees. For example
Lisp and Scheme introduced the concept of hygenic macros [1, 79], which are
referentially transparent and prevent accidental name capturing. These advanced
macro language can also be combined with already well adopted languages, such
as C [149].

One of the more powerful macro languages is the macro system of the <bigwig>
compiler [19]. New syntactic constructs are defined by:
syntax <context > id params ::= { body }

• context — The name of the host language nonterminal for which the
macro can be invoked. The macro evaluates to a node of a parse tree
matching this nonterminal.

• id — The macro identifier, acting as the first terminal allowing the parser
to recognize the invocation

• params — A sequence of parameters which may be a mix of terminals and
host language’s nonterminals.

• body — The body of the macro, which is a code snippet, with references
to the macro parameters put in angular brackets.

All nonterminals of the host grammar can be used, and can be extended with
the macro system. In addition, macros can be grouped into packages, which can
be used selectively or be individually extended. Each package can be seen as a
different DSL extension of the host language.

Moreover, the macro system allows for the creation of its own nonterminals and
grammar rules, through so called metamorphs. Metamorphs direct the process
of macro expanding and parsing. They can be used only within the context of
other metamorphs and macros. They are never used directly as an extension of
the host language.

However, the <bigwig> macro system is not programmable and recursion is
explicitly rejected. While macros are hygenic, metamorphs that define their own
nonterminals are not — when using multiple metamorphs, names of one can be
captured by another.

In general, macros are not considered first-class citizens of the language and are
non-compositional. Their arguments and body are treated differently than the
normal code. For example in Scheme when evaluating a macro with nested macro
arguments, the arguments will expand only if placed at certain positions while at
others they remain as literal invocations. As a result functional composition and
higher-level combinators do not easily apply. A careful study and a proposed
solution was given, but it requires writing macros in a continuation passing
style [75].
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Macros can be even more powerful when using semantic knowledge. Semantically-
sensitive macroprocessing has been explored in the experimental language XL [90].
XL resembles Scheme but is statically-typed, allowing for the language to provide
better assistance, finding possible errors or providing optimizations. With
semantic macros, the user can define for example:

• Custom classes of types with their own rules for instantiation, destruction,
and type equivalence.

• Atypical control structures (e.g. resembling a finite-state machine)

• Custom resource types, with their own accessibility rules.

The XL language can be enriched semantically, but its syntax is fixed and
cannot be altered. While a custom DSL can be embedded in XL, it faces similar
problems to other language embedding strategies as described in Section 2.5.

2.6.3 Racket

There are only a few metamorphic languages that allow such extensive mod-
ification as Racket [141]. The Racket, a descendant of Scheme, allows for
the manipulation of all aspects of the programming language: Its syntax and
semantic, type system, linking, and optimizations.

The parsing process of Racket is two-step.

• The reader transforms the input characters into syntax objects, which act
as Racket’s internal representation.

• The expander repeatedly process the syntax objects, using user-defined
and built-in macros, until the produced code consists only of Racket’s core
expressions.

Both steps can be customized by the programmer.

A reader can be redefined from scratch by defining all the lexing rules through
a combination of regular expressions and other built-in functions. Readers can
also be extended by readtables, akin to macros, but working on the lexical level.
Effectively, this defines the syntax of the user’s language.

The expander can be extended through pattern-based macros or general macro
transformers. In both cases, macros operate on syntax objects, transforming
it to other syntax objects. By supplying a set of custom macros, the user can
define or modify the semantics of the language.

Different languages can be put into modules, which can be used directly or be
installed as a package. This allows them to be used the same way as a regular
library. A special syntax at the beginning of a file #lang myDSL allows the
remainder of the file to be parsed using the myDSL syntax.
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Racket employs numeric phases, similar to staging [141]. The run-time is Phase
0, but compile-time computation — that is, a computation at a higher phase
level — is needed when defining custom macros. Since macros can generate
further macros, phases of even higher level may be needed. This resembles the
staging of MetaML, as described in Section 2.3.5, but it employs different rules
of accessing identifiers. The only means of communication between phases is
through macro expansion. The output of a macro in one phase, becomes the
code executed in the next phase.

While Racket is powerful, it is big and cumbersome. The user needs a deep
understanding on the behavior of the Racket parser and its internal representation
in order to avoid mistakes. Building custom languages also requires familiarity
with the big set of functions provided by the core Racket. For example, there
are 41 core procedures specific for macro syntax transformers5.

Furthermore, composing languages and building new ones on top of previous
ones can create additional challenges. For example, pattern matching – the
primary mechanism of Racket – can be affected by the amount of macros and
the order of their expansion. Thus, the amount and order of language layers
can influence how they work. The order of expansion can be manually guided
through core functions, such as local-expand. Their proper usage however
assumes deep understanding of all the expansion steps, and the implementation
of all language layers. It can be used as a “quick-fix” when expansion order
becomes a problem, but it is not necessarily a methodological solution to the
problem in general.

2.6.4 Grammar Extension

A less explored route is to let the source of the program alter the behavior of
the parser in a more direct way, by manipulating the grammar via which the
language is being parsed. The user defined rules become indistinguishable from
the native constructs.

Fortress

The prime and often cited example of grammar-extending language is Fortress [4].
It allows the user to use template-like constructs to define nearly arbitrary syn-
tactic constructs, which become indistinguishable from the core language. The
grammar rules are given using the formalism of Parsing Expression Gram-
mars [41].

The parsing is performed in two steps. In the first step, all grammar rules are
parsed but their actions are loaded as raw character strings. The new rules
modify the original grammar, using the Rats! tool [48] to produce packrat
parsers [40]. In the second step, the new extended grammar is used to parse all
the actions. This way, actions can use all the new grammar constructions, even
if it leads to recursion.

The grammar rules are grouped into grammar objects, which can be indepen-
5http://docs.racket-lang.org/reference/stxtrans.html, retrieved on 23.03.2015
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dently extended, inherited into new grammars, or even combined together. Each
grammar can represent a different aspect of the same domain specific language,
or of a completely different language. In the end, however, the program has to
choose a single grammar that is used to parse it. There is no mechanism to
switch from one DSL to another within the program code.

The downside of this approach is that macros and rules (similarly to <bigwig>
from Section 2.6.2) are not first-class citizens of the language and may appear
at global scope only. Also, macros cannot be formed dynamically as a result of
some computation.

The grammar transformations are performed on the AST level. The authors
argue that transformations could be performed by a multi-staged system, using
arbitrary computation, but that would prevent the compiler from confirming
the correctness of the produced AST nodes. Since the authors do not want to
abandon the AST, they choose to use a template mechanism, where user-defined
portions of the grammar are represented by placeholder items that are replaced
with concrete nodes during parsing.

Finally, Fortress faces syntactic limitations. Some macros must be split into two
to be correctly parsed. For example, in some scenarios the way ellipsis arguments
are expanded prevent pattern matching used in Fortress to correctly recognize
the macro usage [4]. This can erroneously leading to a syntax error.

SugarJ

A more recent solution is SugarJ [37] – a language build on top of Java, SDF [51],
and Stratego [146]. It is capable of extending the Java syntax and semantics with
a user-defined grammar through sugar libraries. As soon as a sugar library is
imported, the new extensions are merged with the original parser of the SugarJ
language. After that, the extensions can immediately be used. Sugar libraries
can be composed and the definition of new ones can already use the extended
syntax provided by preceeding ones.

New grammar is defined in three parts:

• The specification of syntax is described in SDF, typically in a context-free
syntax section. An existing nonterminal is extended with a new syntax
production, generating a new AST node.

• The specification of semantics is described in a Stratego section, referred
as desugaring rules. These rules, specified as templates, define how the
new AST nodes should be handled. During the process of desugaring the
node is replaced by the template construct.

• In the final section, the desugaring entry-points are specified.

With the templated approach, the user does not have to deal with the AST
explicitly. On the other hand, similarly as in Fortress, templates prevent arbitrary
computation at compile-time and manipulation of the generated code. SugarJ
also does not provide any advanced staging mechanism. This prevents any custom
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languages from expressing complex compile-time domain-specific reasoning or
optimization.

2.6.5 Grammar replacement

Grammar extensions provide no clear distinction between the host language and
the custom DSL. Instead of creating a collection of useful small languages, one
obtains a single language overloaded with potentially many features. Let us
investigate systems that permit a complete grammar replacement.

OMeta

OMeta is an embedded language in Cola6 and Squeak Smalltalk[61] designed for
pattern-matching. It adopts an object-oriented methodology to define Parsing
Expression Grammars [41]. Grammars are put into classes and use a similar
extension mechanism to classes known from other object-oriented languages.

OMeta use a single inheritance mechanism. When combining multiple grammars,
inheritance cannot be used. Instead, a foreign production invocation (FPI) is
used. When using a FPI during parsing, the forein grammar of the target
production completely replaces the current grammar. From that point onward,
the parser operates in a new language. Foreign functions allow the grammars to
remain separate, preventing any unwanted interactions and ambiguities.

OMeta rules and grammars can be used as parameters to further rules, creating
higher-order rules. OMeta also supports semantic predicates in the grammar
productions.

Unfortunately, the grammar actions must be implemented in the host language
(COLA or Squeak Smalltalk). Any staging mechanism is limited by those
languages. While shallow embedding is directly possible, deep embedding is not
supported by those languages – if desired, it must be done manually by the user.

Katahdin

Katahdin is another example of an object-oriented programming language that
let programmers define their own grammars [122]. As in other similar solutions,
grammar rules and productions are represented as classes. Fixed, pragmatic
keywords are introduced to handle typical problems, such as left recursion and
rule precedence. Different languages can be used explicitly through the language
identification, e.g. a simple keyword python can trigger parsing in python-like
language:
python {

... python code ...
}

Grammars can also be augmented. By doing so, special constructs can be made
enabled in the context of objects of that class.

For example, consider a possible implementation of an SQLite class. Objects of
6Cola homepage as of 24.03.2015: http://www.cola-lang.org
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class SqliteExpression : Expression {
pattern {

option recursive = false ;
database : Expression "?" statement : Sqlite . Statement

}
method Get () {

... the semantic of the "?" operator ...
}

}
precedence SqliteExpression > CallExpression ;

Listing 2.12: Katahdin definition of a new ? operator designed to be used with a
database object. The Sqlite.Statement defines the grammar for an SQL statement.

database = new Mono.Data. SqliteClient . SqliteConnection (...);
database .Open ();
database ? insert into films values (

" Indiana Jones and the Last Crusade ",
1989 , " Steven Spielberg ");

print database ? select director from films
where title = " Indiana Jones and the Last Crusade ";

Listing 2.13: Example usage of a different DSL associated with an object in Katahdin.
Example given in [122], orange SQL fragments highlighted for clarity.

such a class represent an SQL connection to a database. However, in addition
to typical methods of such class, in Katahdin one can define a new pattern
that switches to the SQL language in order to represent a query, as shown in
Listing 2.12. This allows to write a query directly, as in example Listing 2.13.
Compared to traditional approaches where a query is represented as a string,
the Katahdin approach is much safer: The query is parsed before it is submitted
and any variable arguments are passed as objects and do not rely on string
concatenation.

As a result of parsing, Katahdin creates an AST, with each node being an object
of some class representing the grammar rule. No code is being executed during
parsing. The AST can be traversed afterward, performing the intended actions.
The actions must be defined in the host language, which provides no built-in
staging mechanism.

2.6.6 Metamorphism in ManyDSL

In our work we want to extend the capabilities of the metamorphic languages
described above.

The problem that is prevalent in the previous approaches is that the grammar
rules or macros are not first-class citizens of the language. Instead they are
treated in a special way by a language. In particular, they cannot be put in a
separate scope or function or be created dynamically. In ManyDSL we want
new language constructs – both on syntax and semantics level – to be defined as
regular functions, removing these limitations.

With grammar rules expressed as functions, it becomes simple to combine them
or dynamically create them. Moreover, the grammars and languages themselves
can be parametrized – a property we have not seen in any other approach.
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The DSL-defining functions should be capable of specifying nearly all aspects
of the language, including lookup rules, type checking, or unique control flow
routines. We also want to permit a custom DSL to specify its own syntax for
staging. We approach this, by defining staging itself as a fist-class citizen of
the language, rather than a fixed construct in Section 4.1. Then, we let the
DSL designer create the parameters controlling staging. This is one of the most
unique goals of ManyDSL not present in any other metamorphic language.

55



2. Background

56



Chapter 3

ManyDSL Overview

3.1 The Main Goal

Consider a group of developers that is working on a highly-specialized program-
ming project. As general-purpose languages lack expressivity of their domain,
they consider creating a Domain Specific Language (DSL) to match their criteria.
However, if they choose to create one from scratch, they need a person who
is both an expert in their domain, knows techniques of compiler construction,
and preferably understands the target architecture that the program is going to
be run on. Finding such a person with all these traits simultaneously may be
difficult.

These requirements are reduced when using tools for language construction.
Ideally, with their help, the language designer no longer needs to be a compiler
expert. In Section 2.4 we reviewed the most common tools and approaches.
Unfortunately neither is satisfactory:

• Plain shallow embedding of a DSL is limited in terms of syntax and the
produced program is often inefficient (Section 2.5.1).

• Deep embedding still requires good understanding of IR transformations
and compiler technology in general. At the same time, the syntax is still
limited by the host language (Section 2.5.2).

• Shallow embedding with staging simplifies DSL creation and the produced
code is efficient. Unfortunately, not many tools exist and they still remain
limited by the host language’s syntax (Section 2.5.3).

• Metamorphic languages give freedom in terms of syntax, but require the
DSL developer to dwell even deeper in AST representations and their
transformations (Section 2.6).

ManyDSL tries to address this issue. We want to simultaneously:
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• Make the tool accessible for non-experts.

• Provide freedom of syntax.

• Produce an efficient code in the end.

The ManyDSL system aims at bridging the gap between hardware, programming
languages, scientific domains, and application creation. ManyDSL itself is
not trying to specify how any of these aspects should look like, as they are
continuously growing and changing. Instead, it is a platform allowing different
kinds of developers to specify those aspects independently, and then use them or
abstra ‘ct them away into other parts of software development.

Ideally, ManyDSL should allow different people to focus independnetly on a
different aspects of a project built in this platform. The complete set of developers
that lead to creation of an application would consist of three kinds of people:

• The core compiler programmer: The maintainer of ManyDSL and any
underlying compilers with deep knowledge of this process and machines
that the produced programs are intended to be run on. All hardware-
specific or standard optimizations would be handled by the ManyDSL
itself, without any user interaction. The work of the compiler programmer
would only be done once, after which the ready tool is released to public.

• DSL programmer: Uses ManyDSL to create new languages suitable for
a specific domain. ManyDSL itself should allow for abstracting away
the difficult aspects of creating languages from scratch, letting the DSL
programmer focus on the domain aspect. The DSL creator should be
able to define any domain-specific optimizations that are not handled
automatically by the ManyDSL itself.
The DSL programmer may be specific to a single project, who fine-tunes the
constraints and capabilities of languages in use to best suit their concrete
project.

• Application programmer: A programmer writing concrete applications
using the DSLs provided. Typical projects span over multiple domains.
ManyDSL should provide mechanisms to connect between the languages of
the multiple domains without requiring deep understanding of their inner
workings.

Finally, at the end we have the end user of the application. At this point any
overhead of using ManyDSL should be resolved and the application should behave
comparatively to one written in another way. No ManyDSL knowledge should
be required to run the application, unless the nature of the project demands it.

Today, many language tools do not allow for splitting between the roles of “DSL
programmers” and “Core compiler programmers”. Even when a tool abstracts
away from the hardware, e.g. by targeting Java Virtual Machine, its efficient
usage still requires deep understanding of compiler construction, such as:

• Abstract Syntax Tree construction, manipulation and traversing.
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• Default and alternative macro expansion orders.

• Name substitution and capturing.

• Typing rules and inference.

3.2 Properties

Recall, in Section 1.3 we briefly listed the properties we want ManyDSL to have
in order to achieve the aforementioned main goal. Let us bring up the list again
and explain each point in detail.

G1 Languages can be defined easily by non-experts, for the purpose of even a
very narrow domain or even a single project.

G2 Languages should have their own syntax. The tool should empose as few
syntactic constrain as possible. On the other hand, the custom DSL should
be able to define its own syntactic restrictions if so desired.

G3 The tool should impose as few semantic constraints as possible on the
custom-defined languages.

G4 Language definitions should be modular and composable.

G5 ManyDSL should support and aid the use of many small DSLs.

G6 Languages should be easily shared between developers, ensuring portability
of the code.

G7 It should be possible to specify domain-specific optimization strategies
specified within DSL definitions.

G8 The tool should produce efficient machine code despite the additional
language layers.

G1: Simplicity of DSL Definitions

We want to provide a tool for language construction that does not require deep
compiler knowledge in order to use it. Language definition should use such
constructs that are easy to comprehend, follow, and later maintain for an average
programmer.

By making the DSL definition accessible, we hope to make language design more
common. Every developer or team should be able to create a new or adjust
an existing language to best match their needs. With such level of control,
the adjusted language should help the programmers enforce the project design
choices, even if they are unique to their team.

This does not mean that we expect that every language will be easy to implement.
Similarly to ordinary programming and algorithm design, there may be challenges
that require careful thinking and finesse. However, once the programmer finds
a solution, using ManyDSL should no longer pose additional obstacles when
implementing it.
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G2: Freedom of Syntax

As we discuss in Section 2.6.1, having an expressive but compact syntax in a DSL
is important for the application programmer. Any, even most unique concept —
if needed — should be representable in a DSL without any additional syntactical
noise.

To meet this goal, we expect that the languages defined in ManyDSL can have
its own arbitrary syntax. It should be possible for every new language construct
to be recognized as a new, unique thing simply by looking at the text, without
the need of looking things up, e.g. object types or scopes. By using a unique
syntax, it helps the reader recognize which actual DSL is being used at a given
place and what is the meaning of the code.

On the other hand, the opposite should also be possible: Sometimes it is prudent
to represent a new language construct with a familiar syntax. This is particularly
true when the logic remains similar and the difference can be derived easily from
the context.

Choosing which syntax should be overloaded and which should be made explicit
is a delicate matter that is best understood by the domain expert. For that
reason, it should be left to the designer’s capable hands, rather than being forced
upon by ManyDSL.

Freedom of syntax does not only mean adding new constructs to the language. It
also means, that we should be able to remove unwanted elements. By restricting
the language, the designer may direct the programmers to a specific way of
thinking or coding style. They may enforce coding patterns and idioms such as the
Resource Acquisition is Initialization (RAII) [131, Chap. 13.3], and discourage
practices that deem dangerous for the stability of the project. Moreover, language
restrictions ensure that concepts that the DSL is supposed to encapsulate, are
indeed hidden from the application programmer.

G3: Core Flexibility

Any language built with ManyDSL will share the constraints of what the
ManyDSL core language can do. For that reason the core itself should im-
pose as few restrictions as possible.

In particular, attention has to be paid to control flow structures. While general-
purpose language typically use if-statements and loops, the domain-specific
languages may need more specific and unique kinds of loop. The execution flow
may be guided by work queues, communication streams, grammar rules, graph
nodes, function sampling, database contents etc. It should be possible to define
such control flow in a straightforward way.

Consider a more concrete example of an array programming language that define
expressions over whole arrays. An array expression, as the one in Listing 3.1,
denotes a component-wise operation over all indices of the arrays. A naive
implementation would create a loop iterating over all array elements for each
operation. For more complex expressions this creates more loops than necessary.
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A=B*C+D

for i in 1..n temp[i] = B[i]*C[i]
for i in 1..n A[i] = temp[i]+D[i]

loop = for i in 1..n;
loop. append { temp = B[i]*C[i]; }
loop. append { A[i] = temp+D[i]; }

Listing 3.1: Two approaches for the implementation of an array-processing DSL.
Given an expression over arrays A, B, C, D, the language may convert each subexpression
into a separate loop. The produced code needs to be later processed to perform loop
fusion and remove the temporary temp array. Alternatively, a different type of control
flow object may be created, which allows pieces of code to be appended as its body. This
way the generated loop is already fused and no code analysis is needed.

These additional loops causes more time to be spent managing them, but also
has a higher intermediate memory footprint as well as worse cache utilization.

A better DSL for array programming should try to perform all computation for
a single index and discard all temporaries, before the next cell is processed. One
solution to achieve this is to create separate loops as in the naive approach and
then merge them through a careful analysis of the code – an operation known as
a “loop fusion”. Alternatively each expression can generate code that is not a
traditional loop in the first place, but allows code concatenation forming a single
loop body from the start.

The algorithm can be more complicated when a value of one cell depends on
the contents of other, neighboring cells. Not all temporaries can be immediately
discarded if their values are still needed by multiple cells. Furthermore, the
neighbor access pattern may differ between array indices, most prominently
near the border of the array. Thus, most efficient implementation would process
the data in a pipelined fashion, possibly split into a few top-level loops, each
handling a different access pattern case.

We would like the DSL programmers to be able to specify all these cases where
needed, or use libraries provided by others if that kind of optimization is not
their primary concern.

G4: Language Modularity and Composability

Even with the most powerful tools, writing a complete programming language
from scratch can be a long process. On the other hand, one can identify language
constructs that are shared between many languages. For example, basic infix
mathematical operators are common between many general-purpose as well as
domain-specific languages. For example, within a certain context, the notation
v1+v2 is valid in a wide variety of languages, such as C, SQL, CSS (calc notation1)
or LaTeX (calc package2).

ManyDSL should be able to abstract out these common constructs in the form
of language fragments, that would later be used as building blocks to form a
complete language. With their help, the basis of powerful languages would be
constructed easily from already existing fragments, requiring the DSL developer

1http://www.w3.org/TR/css3-values/#calc-notation, retrieved on 30.03.2015
2https://www.ctan.org/pkg/calc, retrieved on 30.03.2015
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to manually add only the necessary unique constructs.

Language fragments must be able to take parameters to be properly configured.
For example, consider that infixmath represents a language for infix mathe-
matical operations. For such abstraciton to be useful in many DSLs, ManyDSL
cannot limit itself to only one type of data, such as integers. The infixmath
should be able to create a part of language for different kind of objects specific
to the DSL, such as unit or unitless numeric values, strings, signals, or images. If
T names the type of data, then infixmath(T) should create part of a language
operating specifically on T. The author of infixmath may ask for even more
parameters, specifying which actual operators are available and what is their
semantics.

Languages should also be able to be built one on top of another. This way
very specific DSLs can be defined incrementally, possible by many independent
developers. Some DSL developers may focus on low-level optimization strategies,
e.g. with the help of hardware reflection. Other DSL creators may include these
strategies as a basis to write higher-level languages. Finally, application pro-
gramers may fine-tune these DSL definitions to precisely meet the requirements
of their specific project.

G5: DSL Interoperability

Since we expect projects written in ManyDSL to comprise multiple languages,
care has to be taken to handle the transition between these languages as fluently
as possible.

The application developer should be able to change the language whenever the
domain changes. This may happen not only between files, or at the top level of a
file. Domain change may be needed within a construct of another language, such
as within a subexpression or a fragment of a procedure body, like in example
Listing 3.2. Allowing a language change anywhere is an unrealistic requirement
though. Instead, we expect DSLs to define points in their syntax where a change
is possible.

Secondly, ManyDSL should provide a mechanism to reference entities defined in
one language within the context of another. This may refer to simple variables,
regular objects or types, but also objects characteristic to a particular DSL
should be available from the context of another language. Names should respect

SQL sql;
sql.open (...);
SQL :: Result result = sql. SELECT * FROM Films WHERE Year =1989;
foreach (auto row : result ) {

printhtml <tr ><td >row.title </td ><td >row.director </td ></tr >;
}

Listing 3.2: An example of how DSL mixing could be used in ManyDSL. Within
the C++11 code, using a method SELECT on an object of type SQL triggers DSL switch
into actual SQL syntax. Later on, in order to show the results in a tabular way, a
function printhtml is used, which switches the DSL into actual HTML syntax. Within
the HTML code, existing variables can be used. Moreover, each row of the result is
an object with fields corresponding to the fields of the table Films
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scoping rules, even when they differ between DSLs.

G6: Language Sharing

Languages must be be easily shared. This will permit DSL programmer to work
independently from application programmers. When a DSL is ready, it can be
used by many developers in different projects.

Multi-language programming also creates a potential danger when distributing
source-code libraries. Suppose a library is defined using a custom language, or
a combination of several such languages. If another person tries to use such a
library, they must first obtain all the necessary languages.

Ideally, we would like languages to be shared as easily as libraries. This way
languages could be simply part of libraries without any special distinction.

G7: Domain-Specific Optimization

Domain Specific Languages not only help the programmer write more concise
code. The code can also convey more information to the compiler about the
programmer’s intend, letting the compiler perform much more aggressive op-
timizations. It is up to the DSL designer to specify those optimizations and
ManyDSL must provide means to specify them. This must be achieved without
exposing the inner compiler workings in order to maintain the separation between
the compiler and domain experts.

The domain specific optimization may depend not only on the domain itself,
but also on the hardware the code is ultimately compiled for. We do not want
the hardware characteristics to be entirely hidden from the language or the
application programmer. At the same time, we do not want the programemrs to
tediously rewrite code for any new machine he targets to achieve the maximum
performance.

Instead, ManyDSL should provide hardware reflection – a description of the
hardware provided as a set of data structures. The language and application
programmers may use this information to fine-tune and specialize the code
without source duplication. Such reflection should be simple enough for the DSL
developer with limited hardware knowledge to successfully harness the power of
the specific hardware.

The code produced by the DSL would be hardware generic. Given a specific
hardware description, it would be specialized for it, possibly in some early stage
of the compilation process.

G8: Generation of Efficient Code

Finally, we want the code produced by multiple DSL layers to be efficient. In
particular, we need to ensure that the fact of mixing languages and dynamic
treatment of syntax and semantics does not cause overhead in the code we
produce. At runtime there should be no visible distinction between different
origins of the code.
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Moreover, ManyDSL should feature a compiler, capable of producing machine
code that would be competitive with hand-written code.

3.3 Design Decisions

DSL Interoperability through Embedding

How should ManyDSL support custom DSLs? Through what means should
different DSLs communicate, e.g. share variable values, permit cross-language
function calls, etc?

We have chosen to embed custom DSLs in a single, flexible host language. The
language acts as a bridge, achieving the degree of interoperability that we require
(G5).

Moreover, the language descriptions themselves are expressed in the host language.
With it, parts of language descriptions can be abstracted out or can interact
with each other in the same way as two regular pieces of code (G3). It is also
possible to define custom DSLs specifically designed for the domain of designing
new languages, hiding inconvenient intrinsics of the host language. As we show
in Section 4.2.4 we use this mechanism to define one such language-defining
language – LangDSL. Our solution does not prevent other programmers from
designing another, possibly better, DSL with similar purpose in the future.

Having language definitions embedded in the host language also satisfies our
language sharing goal (G7). The language description does not differ from other
normal code and can be shared as any other regular library.

Metamorphism of ManyDSL

Embedding languages may potentially limit the allowed syntax of custom DSLs.
We believe that the answer lies in metamorphic languages (Section 2.6) as they
can provide full syntactical and semantic flexibility (G6). Using them requires
certain knowledge of formal language theory, but other aspects of compiler
construction can be hidden (G1).

However, unlike some of existing solutions, we do not want to gradually extend
a single host language, but to create grammatically separate languages. While
we permit language switching at predefined locations, we want to avoid creation
of huge languages trying to encompass everything. By working with different
languages, each can be as flexible or as restrictive as its creator wants, without
any unexpected interaction from other languages (G6).

Core Language

One of the fundamental decisions is the choice of the core language. As we
explained in the previous chapter, the core should be flexible to support a wide
array of constructs. It should be sufficiently low-level so that it does not limit
the DSL built on top of it (G4).
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r = (2+3) *(4 -5)
...

(a)

+ 2 3 (λx.
- 4 5 (λy.

* x y (λr. ... )))

(b)

Listing 3.3: Representing nested expression(3.3a) in CPS(3.3b). Each mathematical
binary expression takes 3 arguments, the last one being the continuation. Subexpressions
must be explicitly computed before their partial results are used.

We have decided that the core to be a functional language in a Continuation
Passing Style (CPS)[69, 42, 6]. CPS imposes addition constraints to functional
programming:

• Functions never return. Instead, they typically take an additional param-
eter – a continuation – representing the rest of the program. When the
function finishes its main computation task, it invokes the continuation so
that the rest of the program can execute.

• Functions cannot return values. Instead, the result is passed as an argument
to the continuation, so that it can be used in the rest of the program.

• Subexpressions are disallowed. Having them would be pointless, since
such subexpression – being another function call – cannot return. Instead,
subexpressions have to be explicitly computed earlier and the partial result,
given as a concrete value, used later.

• The order of execution is well-defined in CPS – it follows the order of
nesting. There is no ambiguity, for example, coming from the order of
function arguments, since the arguments must be concrete values and
cannot be subexpressions.

CPS can be formally defined with very few rules [111, Chap. 5]. All built-in
operations and control flow structures can be represented as functions. A branch
instruction can be defined as a core intrinsic function and it is the only one
needed to define more advanced constructs. High-level language flows, such as
exceptions, can be represented as a continuation function.

Programming directly in CPS directly can be hard. In order to reduce the entry
level difficulty and increase readability, we have chosen to use our own syntax to
represent CPS programs. A full description of the syntax of our core language
DeepCPS is given in Section 4.1. The key aspect is that while a complex function
body must be put in curly braces, it can be skipped for the last argument, which
– in case of CPS programming – is typically the continuation. This allows to
reduce the apparent nesting. Consequently, DeepCPS code looks like a functional
assembly language.

Code Generation through Staging

Another question requiring an answer is: How to generate code? We believe
that efficiently using Abstract Syntax Trees requires deep compiler knowledge.
Defining optimization as tree transformations is imperative in nature, as we
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discussed in Section 2.5.2. For that reason, such approach can be difficult and
unreliable when the tree is constructed from multiple languages. It is generally
impossible to predict all DSL combinations that the application developer may
use. ASTs can also be a limiting factor: New language constructs require either
new AST node types, or subtree patterns, or both.

For that reason, we decided to forgo the AST approach completely. Instead,
language definition contains action code that is executed immediately by the
interpreter. We rely on staging to have the actions create pieces of code. We
originally looked at MetaML-like approach (Section 2.3.5), but then explored a
more flexible solution, giving birth to dynamic staging (Section 4.1). Dynamic
staging, defined as a part of our core language DeepCPS, treats all staging
information as a first-class citizens of the language. This property allows for
passing staging information as parameters between grammar actions, as well as
letting the custom language define its own explicit or implicit staging constructs.
It is a powerful and intuitive approach, albeit verbose.

As we show in Section 4.3.1, dynamic staging can be used to define so called
builder functions. These builders can be used to construct code piece by piece.
Staging can then resolve any glue code overhead, and produce a program as if it
was written in native DeepCPS.

The builders themselves bare similarity to structured staging again, but their
semantic meaning is defined entirely in a functional way within themselves. No
external visitor patterns or manipulation of the tree is needed. Domain-specific
optimizations are defined by the contents of the nodes, using dynamic staging
(G2).

Type System for the Core Language

The type system of a language may greatly improve the productivity of a
programmer, but may also be a great limiting factor. Therefore, a flexible core
language needs a type system that is most robust, so that no DSL is limited by
it. We would need to support the dependent types (explained in Section 2.2.2
together with other typing solutions, or have no static typing at all.

We choose the latter. We treat type checking as an auxiliary computation,
provided as a library or in the code of a custom DSL. This way the language
designer may define its own typing rules without any negative interference from
the core language’s type system. In the examples in Section 6.4.4 we show how
simple typing can be defined in ManyDSL. In general, however, any of the type
system models described in Section 2.2.2 can be adopted by custom DSLs and
languages focused on type checking can be created.

Note that by using staging, this custom-defined type checking can be performed
in any stage of the compilation process. The code may act as static or dynamic
checking or any mixture of both. In particular, such additional computation
can be staged for early execution and have no negative impact on the runtime
performance of the final code.
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Compilation

The whole ManyDSL approach will not be useful if it is not equipped with a
compiler capable of producing a highly efficient code. Staging can help produce
highly specialized functions and hardware reflection allows the code to adapt to
a given hardware. That is not enough however: The host language, even when
specialized, remains in continuation-passing style. It is a representation relying
heavily on higher-order functions with no explicit distinction between different
control flow structures. While it is a highlight of the host language, it may be
potentially difficult to translate to efficient binary code.

Fortunately, there exist translators that can achieve just that. Rather than
reinventing the wheel, we decided to use existing solutions, such as the Thorin
compiler [84]. This allows us to focus primarily on the front-end of the host
language as discussed in this section.

3.4 Separation of Concerns

Having our design decisions explained, let us ask briefly if they fulfill our
ultimate goal, allowing a new kind of programmers – the DSL creators – to
emerge, separately from compiler experts. We give a full answer to this question
in the conclusions (Section 7), but let us address most pressing concerns that
one may have at the moment.

Some may view CPS and Dynamic Staging programming too complex for an
average programmer. It is true, that understanding these is necessary for
developing custom DSLs at the lowest level, directly in ManyDSL’s host language.
This does not mean that all DSLs have to be written this way:

• Languages can build on top of each other. A higher-level, more restrictive
but simpler language can be used to define new DSLs, leaving the host
language merely as a fallback solution.

• Since Dynamic Staging is a first-class citizen in the ManyDSL core language,
the way of doing staging can also be abstracted or restricted by custom
DSLs. A programmer using the custom DSL instead of DeepCPS would
be exposed to a less verbose staging mechanism.

• Common language constructs, e.g. arithmetic expressions, can be given as
functions in a library to be included into any custom-built language. This
way, the major part of DSL development can be spent on these parts of
language which are truly unique.

• Similarly, common type systems, expressed as an auxiliary computation,
can be given as libraries for the DSL creator to choose from. The creator
may focus just on extending these type systems, or using them as they are,
without changes.

With sufficient support in DSL-building libraries and languages we believe that
the verbosity of the host language is not an issue.
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3.5 Structure

The ManyDSL structure and its workflow are sketched in Figure 3.1. The first
step is parsing the source code into ManyDSL Target Representation (TR).
This process can be interrupted however. The parser halts, and the interpreter
executes the part that is already in TR format. When the execution process hits
the interruption spot, parsing resumes. This interleaved parsing and execution
puts ManyDSL at unique position where code and the parser can communicate
with each other.

The interpreter and the parser can communicate and affect each other’s behavior.
TR code can define new grammar constructs and whole languages which can
entirely replace the original parser language. The parser also has access to all
the values and variables of the partially executed program, allowing the process
to be further parametrized by the code. This interaction as well as the language
creation process is further described in Section 5.7 and Section 4.2.

The source code – at least the beginning of it – must be written in DeepCPS,
which is a low-level functional continuation-passing style language. DeepCPS is
almost a direct textual representation of TR. Once new languages are loaded into
the parser, the rest of the source code can be written in a completely different
language. New languages do not have to hold any resemblance to DeepCPS. In
the future one will be able to start with another parser preloaded.

TR code can be interpreted or compiled. As a result of interpretation, a new
optimized TR code can be produced. This is particularly true when dynamic
staging is used [32], which is supported by TR. We explain in detail how DeepCPS
is defined and how dynamic staging works in Section 4.1.

Alternatively, a fragment of TR can be compiled. We translate TR to Thorin [84]
which is another language that uses continuation-passing style, making the

source TR

parser

Thorin

LLVM

interpret

compile

Figure 3.1: The structure of ManyDSL. Source code is parsed into ManyDSL Target
Representation (TR). TR can be interpreted and partially evaluated, producing a more
efficient TR code. It can also modify the parser of ManyDSL, so that different DSLs
can be read. Finally, TR code can be translated to Thorin[84] and then compiled to
LLVM[80].

68



Structure 3.5

translation process easy. Thorin transforms the code to eliminate the overhead
caused by higher-order functions, and then compiles into LLVM bytecode [80].
From there, one can use one of many LLVM backends to produce machine code
for different architectures supported by LLVM.

In the following chapters we discuss each part of ManyDSL. First, in Section 4.1
we provide a formal and practical view DeepCPS and dynamic staging. In
Section 4.2 we show how new grammar can be defined in ManyDSL. Finally,
in Section 4.3 we combine dynamic staging with grammar actions, allowing
user-defined DSLs to generate code.

The actual implementation details of ManyDSL, including its Target Represen-
tation and caveats of dynamic staging are given in Section 5.

Finally, in Section 6 we provide more practical examples of how each of the
ManyDSL components can be used. We start with plain DeepCPS and staging
examples, but follow it with more advanced challenges typically encountered
when creating languages. In the end, we include an example how languages can
actually be switched, marking one of the main goals of our work.
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Chapter 4

ManyDSL Components

In this chapter we describe in detail the main contribution of our work, which
constitute the core of ManyDSL. First we describe the core language – DeepCPS,
a functional language with dynamic staging. This allows the programmer to
define partial evaluation strategies and produce specialized versions of functions.

We then describe the parsing and execution process of ManyDSL. We show how
grammars can be redefined on the fly to produce different DSLs.

Finally, we show how DeepCPS can be used to specify actions which are executed
when the language constructs are recognized. We define builders, functions which
incrementally build code. We show how dynamic staging removes any overhead
coming from the builders.

4.1 Dynamic Staging

ManyDSL relies heavily on functions defining language semantics and building
code (Section 4.3). Every syntactic construct, control flow, domain-specific
optimization strategy, or simple variable lookup routine, is a function that
potentially can be defined or redefined by different DSLs. This makes ManyDSL
flexible, but also potentially slow.

For that reason, partial evaluation and staging plays a central role, not only
in custom DSL optimization, but in almost every language definition within
ManyDSL. Let us then focus on this core host language – DeepCPS – that
everything in ManyDSL is translated into, and which enables partial evaluation
through the dynamic staging.

4.1.1 Continuation Passing Style

Dynamic Staging is defined on top of the Continuation Passing Style (CPS)
functional language [6]. We have briefly explained what is CPS and why we have
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int power( float base , int exp) {
...
float part = power(base ,exp /2)
return part*part;
...

}
...

(a) C code

letrec power = λbase exp .
...
let part = power base

(div exp 2) in
mul part part
...

in ...

(b) Standard functional code
letrec power = λbase exp cont .

...
div exp 2 (λexph .

power base exph (λpart .
mul part part cont

)
)
...

in ...

(c) Continuation-passing style

let power(base , exp , cont) {
...
div . exp 2 (exph)
power . base exph (part)
mul . part part cont
...

} ...

(d) DeepCPS code

Listing 4.1: Comparison of the same code (“else” branch of power function, given in
Listing 2.1) implementation between C, standard lambda calculus, continuation-passing
style and our language DeepCPS.

chosen this style (Section 3.3). Let us reiterate them once again, in more detail
and in the context of dynamic staging.

What is CPS?

The CPS-based lambda calculus is similar to the ordinary lambda calculus [24]
with a single, yet important, restriction: In CPS functions never return. As a
result the following typical lambda constructs are not possible:

• Functions cannot return any value. Formally, an application term is not a
value.

• Currying is not possible. Partial application can be achieved only in a
more verbose and explicit way.

• The body of a lambda consists of a single application term.

What is then possible with such restriction? How can any meaningful computa-
tion be represented in CPS?

Note, that it is not necessary to return from a function when the function body or
at least one of its arguments represents the complete remainder of the program.
We name a continuation any function that contains the remaining computation.
In CPS programming all functions are either continuations or take a continuation
as an argument. Note, that there is no formal distinction between continuations
and regular functions, it is merely an informal term indicating what a given
function represents.

Typically, CPS functions take one more argument compared to normal functions.
After the primary operation of the function is performed, it invokes its continua-
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tion. In the context of CPS program, we informally say “return a value” when a
value is passed to the continuation.

Consider, for example, the division operator in the example Listing 4.1. In
normal lambda calculus, div is a binary function and its invocation is used as a
subexpression. In CPS it actually takes 3 arguments: exp, 2 and λexph. When
the division is computed, the continuation is invoked and the result is bound to
its exph parameter.

Why CPS?

From the theoretical standpoint, the order of execution bares no impact on the
program in purely functional programming, as long as the execution terminates.
However, when discussing efficiency the execution order is crucial. Functional
language semantics provides freedom for the interpreters and compilers to use
heuristics to find an optimal execution plan. For example, the order of evaluation
of function arguments is often not defined, or it is defined only in a few selected
cases (e.g. Boolean operators).

In DeepCPS we let the programmer to specify the most suitable order. For
that to accomplish, however, DeepCPS must have general unambiguous rules
describing the execution order; not based up on special cases and ad-hoc solutions.
Continuation Passing Style satisfies this requirement. The canonical order of
execution in a CPS program is well defined. There is always exactly a single
application at the top level, containing no subexpressions. In a single execution
step (formally: single β-reduction of the top application), we obtain a new
program with another, single application at the top level. At no times is there
an ambiguity on which subexpression to execute first.

Secondly, in standard CPS every lambda function contains a single application
building up its complete body. Vice-versa, every instruction (application) is
contained within its own lambda function. The existence of this one-to-one
relation between applications and lambdas is important for the definition of
dynamic staging. In canonical CPS, when a lambda function is invoked, its
body is executed in the next step. Dynamic staging allows for manipulating this
relation.

Finally, in a programming language represented in CPS, any control flow can
be expressed as a function. This is in contrast to most other programming
languages where control flow structures are given as special constructs, having
their own syntax and semantics. In CPS no new syntax is needed.

Formal CPS

The syntax and semantics of an untyped lambda calculus is defined as in
Figure 4.1 [111, Chap. 5]. For practical reasons, we include an additional
category of values: Constants, which may be numbers, but also Boolean values,
intrinsic functions, etc. For the sake of simplicity of the rules, we restrict lambdas
to include a single parameter. Multi-parameter functions can be represented
through higher-order functions with currying.
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t ::= (term)
x (parameter)
t t (application)
v (value)

v ::= (value)
c ∈ {0, 1, 2, . . . , } (constant)
λx.t (function)

t1 → t′1
t1t2 → t′1t2

(Con1)

t2 → t′2
v1t2 → v1t′2

(Con2)

(λx.t3)v3 → [x 7→ v3] t3 (Comp1)

c v → tcv (Comp2)

Figure 4.1: Syntax and semantics of untyped lambda calculus.

v ::= (value)
x (parameter)
c ∈ {0, 1, 2, . . . , } (constant)
λx.b (function)

b ::= (body)
v v (application)
fix x = λx.b in b (fix)

(λx.b) v →

 x1 7→ v1
...

xn 7→ vn

 b (CPS1)

fix xf = λx.b in bf →
→ [xf 7→ λx.fix xf = λx.b in b] bf

(CPS2)

c v → bcv (CPS3)

Figure 4.2: Syntax and semantics of Continuation Passing Style lambda calculus.

The congruence rules Con1, Con2 are used to compute subexpressions of the
top-level application term. Once all terms are reduced to values, the top level
application can be computed through Comp1 or Comp2 rules.

The main computation rule Comp1 takes the body of the lambda t3 and replaces
all occurrences of the parameter x with the value v3. We use the standard
capture-avoiding substitution, with renaming of bound variables where necessary.

The Comp2 represent the case where an intrinsic function, represented as a
constant, is invoked. It is up to that function to produce a new, correct tcv term.
Listing all possible intrinsic functions and their rules is beyond the scope of this
formal definition.

Let us now compare the standard to CPS-based lambda calculus, given in
Figure 4.2. Arguments must be variable names, constants, or lambdas, but
cannot contain subexpressions. That is because syntactically, an application is
no longer a value. An application may appear only as a body of a lambda. The
body of the lambda is a single application, or — for convenience reasons — an
explicit fixed-point combinator construct fix. Moreover, since currying is no
longer possible, we allow lambdas to have multiple parameters, indicated by the
x which denotes a list x1, x2, ..., xn for any natural n.

The semantics of CPS is arguably simpler: It does not have congruence rules.
Those are not needed, because the top-level application – as any other – must
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Basic syntax:
λx.b (x1, x2, ...){b} (function)
x typename (parameter)
v v v . v1 v2 ... (application)
fix x = v in b fix x v in b (fix)

Syntactic sugar:
(λx.b) v let x v b (let construct)
v v (λx.b) v . v1 v2 ...

(x1, x2, ...)b
(function as last argument)

(λx.b) p β−→ (λx.b) v p . (x) b (non-CPS expression p)

Figure 4.3: Syntax of lambda calculus and DeepCPS.

be built from concrete values and not subexpressions. The main computation
rule (CPS1) substitutes the tuple of lambda parameters, with the tuple of actual
arguments given in the application. The arity of both tuples must match. Failing
to do so is an error, but this constraint cannot be specified on the syntactic level.
A type system would be the best place to enforce it.

For convenience and performance reasons, we include explicit semantics for
the fix-point combinator. In Appendix C we show how a CPS version of a
Y-combinator can be defined in plain CPS without fix. The fix construct
defines a λx.b under the name xf . By using xf in the body b one can specify
recursion. When fix is evaluated through the CPS2 rule, a single recursion step
is unrolled: xf is replaced with another λx containing the same fix construct
with a replicated body b.

CPS3, similar to Comp2, is given for completeness, representing a call to an
intrinsic function. The intrinsic function too must be in CPS form. That means,
it is expected to take a continuation as one of the arguments and invoke it
with the computed value. As a result, the call cv reduces to the body of such
continuation bcv with the result substituting the parameters of the continuation.
The syntax and semantics of the language impose no further constraint on what
c actually does. It may accept several continuations, or even somehow create a
new one based on the arguments, in which case bcv may not even appear initially
in the source code.

4.1.2 Stageless DeepCPS

DeepCPS Syntax

As we have shown in Listing 4.1c, lambda calculus syntax is impractical to
express CPS programs. As the program grows, the nesting of lambdas increases.
Since most of our discussion in this work uses CPS, and ManyDSL requires CPS
source to be written by a programmer, we decided that a more suitable syntax
is needed.

The changes are summarized in the Figure 4.3. First, we redefine the use of
parenthesis. Contrary to standard lambda calculus, expressions no longer need to
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be disambiguated through parenthesis. Instead, we now require to put parenthesis
around the lambda function parameter list. Not only does this allow to forgo
the actual λ and dot symbols, it also emphasizes the arity of the function.

The body of the function can be a complex expression, thus it is put in a
separate pair of parenthesis. To avoid confusion with the lambda header, we
use curly braces instead, known from C-style languages. These can be skipped
however if the whole lambda is used as the last argument of an application.
Thus: f . g (h)i j is equivalent to f . g (h){i j}.

This particular use case is very frequent in CPS programming. Many functions
take a lambda as the last parameter, acting as a continuation and representing
the rest of the program. In our syntax, by avoiding the curly braces for the last
argument, we significantly reduce the nesting compared to the standard lambda
notations.

We have decided to use a dot in the application syntax to separate callee from
its arguments, even though formally it is not needed. In practice we found
that it adds clarity to the program structure. It also helps accurately localize
syntactic errors in program sources. Note that the dot was not used in the
original Dynamic Staging paper [32].

Apart from functions, we use the usual integer and floating-point values, Boolean
values (true, and false), and string constants. We support aggregate values
in a form of tuples [...]. Each value has a type. Basic types include bool,
int, and float, aggregate type tuple[...] and function type fn[...]. We
also permit a special type any when basic typing is impossible to specify. When
the type can be easily deduced from the context or is irrelevant for the given
example, we choose to omit it.

DeepCPS supports the following tuple operations:

• Creation, by simply listing all its elements: e.g. [1, 2, 3]. This is a
value an may be used as an argument.

• Concatenation of two existing tuples, e.g.
$cat . [1, 2] [3] ( result ) ...

The produced result is [1, 2, 3].

• Extracting a single element of a tuple (projection), e.g.
$proj . 0 [1, 2, 3] ( result ) ...

The result is 1 – the first element of the tuple, which has an index 0.

• Splitting a tuple into components, each passing as a separate argument to
a function. This is done through a special syntax !arg. For example:
let args [3, 72]
power . !args ( result )

invokes the function power from Listing 4.1d which expects three arguments:
base, exponent and the continuation. The tuple [3, 72] is split into two
arguments, passing 3 as base, and 72 as the exponent.

• Aggregating excessive arguments into a tuple. This is done through a
special syntax !pars appearing in the lambda header. For example:
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fix power (float base , int exp , fn[float ] cont) {
exp ==0 . (bool b)
if . b () {

cont . 1
} ()
exp mod 2 == 1 (bool odd)
if . odd () {

exp -1 . (em)
power . base em (part)
part*base . ( result )
cont . result

} () {
exp /2 . (eh)
power . base eh (part)
part*part . ( result )
cont . result

}
} in ...

Listing 4.2: An integer power function in DeepCPS.

let create (!args , return ) { return . !args }
create . 1 2 3 ( result ) ...

The function create accepts 1 or more arguments. The last argument
is the returning continuation. All other arguments are aggregated into a
single tuple args. In this example, result becomes [1, 2, 3]. There
can be at most one aggregating tuple in each lambda.

Finally, for the sake of readability of the examples in this work, we permit
non-CPS sections to appear. These are used where CPS does not convey any
significant information and transformation into CPS is straightforward. Most
frequently it is limited to arithmetic expressions. These fragments are represented
in blue, and must reduce to a single value. The obtained value is then passed
into an unary continuation lambda that follows it.

DeepCPS syntax puts no requirements on the use of whitespace. It helps however,
when the code is written in a consistent style. We found that the code is most
readable when every application starts a new line. This may be confusing at
first, since the lambda header becomes separated from its body between two
lines. In practice however the body has little to do with its header: The variables
used in the body often refer to earlier headers, which are merely captured by
the lambda the body belongs to. On the other hand, the parameter list is much
more important in the context of the application where the lambda is actually
being used.

Example Usage: The Power Function

Let us have a look on a DeepCPS implementation of the power function in
Listing 4.2. As with many other CPS functions, power now takes three arguments:
the base, the exponent, and the continuation cont which should be invoked with
the final result.

First, we check whether the exponent is zero. To create a branch, we invoke
an intrinsic function if, which is of type fn[bool,fn[],fn[]]. This functions
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fix for (int from , int to , fn[int ,fn []] body , fn [] end) {
from <to . (bool b)
if . b () {

body . from ()
from +1 . (next)
for . next to body end

} end
} in ...

Listing 4.3: Definition of the for looping function, with the help of built-in if.

takes a Boolean value acting as a condition and two continuations. Depending
on the value of the condition, either the first or second continuation is invoked.
In our case, the first continuation is the short function () {cont 1}, the other is
the rest of the power function.

When using if one does not specify where the branches converge. In fact the
continuations may be completely independent from that point forward. Typically,
however, at some point all branches invoke the same continuation, implicitly
ending the divergent section. In our case, this is the invocation of cont that
appears at the end of all branches.

If the exponent is nonzero, we then check whether it is odd or even. We use
another if function to handle each case separately.

When the exponent is odd, we take the first continuation. We subtract 1 from
the exponent and perform a recursive call to power. Subsequent power returns,
by passing its partial result baseexp−1 through its continuation (part).... Then,
by multiplying it with base, we obtain the final result, which we return back by
calling the continuation: cont . result.

When the exponent is even, we take the second continuation of the if call, but
otherwise the executed code is very similar.

Control Flow Functions

In the power function example in Listing 4.2 we use the intrinsic function if,
which creates a branch. All control flow structures in CPS programming can
be represented as functions. Even atypical flow operations, such as switch,
static gotos, or exceptions can be handled with functions. There is no need for
additional built-in constructs to generate that control flow.

Moreover, if is the only built-in function in DeepCPS. Other control flow
functions can be defined as an ordinary higher-order function with the help of
if. For example Listing 4.3 is the simplest kind of a for loop.

The for looping function takes the iteration range from .. to, and for each
integer in between invokes the body function. The body is expected to invoke
its continuation at some point to return the control back to the for looping
function. When the loop is complete, the for function return by invoking its
final continuation end.

Note, however, that the author of the body may choose to break the loop, simply
by not invoking the passed continuation.
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λ(x)

λ(y)

f . x

instigator lambda

target application

staging connection

...

...

Figure 4.4: The staging mechanism of Dynamic Staging: a staging connection
between lambda header (instigator) and application (target) located somewhere within
the body of the instigator. When the instigator is invoked, the target is scheduled for
the execution in the next step of the program evaluation.

In Section 6.1.1 we show how to define other, more generic flow functions. We
also show how to have one or more values change within each iteration of the
loop.

4.1.3 Definition of Dynamic Staging

In each execution step of a traditional CPS program, the beta reduction is
applied on the top-most application. This causes the program to be evaluated
in a natural order from top to bottom. We are interested in a mechanism that
would allow to change this order, permitting reductions somewhere in the middle
of the code.

In purely functional languages this can be achieved by redefining the semantics
in a way that the execution order is arbitrary. Unfortunately, with such arbitrary
execution order, no guarantees can be made on the execution complexity of
almost any algorithm. It could happen, for example, that arbitrarily many
reduction steps are performed in a branch that ultimately is not taken.

Other solutions involve enriching the language with staging. In in Section 2.3
we give examples how staging can be defined and what are the drawbacks of
these definitions. Now, let us introduce dynamic staging – our novel approach
to staging.

Intuitive Definition

Conceptually, as depicted in Figure 4.4, dynamic staging is specified by connecting
lambda headers and parameter names on one end, and applications on the other.
Connected headers and parameters are instigators of this staging connection.
Connected application (or a fix construct) are targets. When a lambda is invoked,
or a constant bound to a parameter, the instigator become active. An active
instigator triggers all its targets, so that they are executed in the next step.

A target may be located deep within the body of another, yet uninvoked lambda.
When that happens, the execution process jumps over a section of code, leaving it
intact, and performs a reduction “under the lambda” of the targeted application.
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v ::= (value)
x (parameter)
y (staging parameter)
c ∈ {0, 1, 2, . . .} (constant)
λ[y]x.b (function)

e ::= (staging expression)
> (true)
⊥ (false)
v (value)
e and e (and expression)
e or e (or expression)
not e (not expression)

b ::= (body)
[e]v v (application)
[e]fix [y]x = λ[y]x.b in b (fix)

Figure 4.5: Syntax of staged CPS-based lambda calculus.

Staging connections may appear anywhere in the code. The only requirement is
that the targets are within the body of the instigator lambda, possibly deeply
nested.

Syntax

Syntactically, dynamic staging is just a small change to CPS lambda calculus. It
specifies the connection between instigators and their targets. We achieve that
by introducing a new syntactic category staging expressions (see Figure 4.5).

A lambda value is augmented to include exactly one special staging parameter
y. Throughout the body of the lambda, y can be used as an ordinary value.
Parameters and staging parameters are separated syntactically only for clarity.

Changes to a body (application or fix construct) are more involved. Each body
is now prefixed with a staging expression, which controls when the given target
is invoked. A staging expression is an arbitrary Boolean expression over normal
and staging values. When the staging expression evaluates to true, the body is
meant to be executed. There are two staging constants: > equivalent to “true”
and ⊥ equivalent to “false”. Note that staging constants > and ⊥ are separate,
different kind of symbols than the regular Boolean values which belong to c.

Semantics

The semantics of dynamic staging is a bit more involved. Formal definition of
executing “under the lambda” requires a bit more rules to dig into the nested
body that was chosen to be executed. Moreover, the case when multiple bodies
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become triggered at the same time has to be handled. To handle this we define
two supporting relations: Active and Waiting.

Active. A staging expression is considered active when it evaluates to >. For
the purpose of staging expression evaluation, all bound values (constants and
lambda functions) are considered > while unbound values are ⊥.

A(>) A(c) A(λ[y]x.b)

A(e1) A(e2)
A(e1 and e2)

A(e1) ∨A(e2)
A(e1 or e2)

¬A(e)
A(not e)

Expression that evaluates to ⊥ is inactive, thus not a member of A relation.
There are also no rules for x or y — these terms are considered inactive as long
as they are not resolved. When x or y is substituted by a constant, lambda, or
>, the staging subexpression using it becomes active.

A(t)
A([x 7→ t]x)

This is the main mechanism that triggers the execution of new applications.

In short, we say that an application or fix-construct is active, when its staging
expression [e] is active. However, formally the A relation is defined only on
staging expressions.

Waiting. When multiple bodies are active at the same time we choose to execute
the one, that does not contain any other active bodies. To check this property,
we introduce a second relation waiting. A value or body is called waiting (Wv,
Wb) when it does not contain any arbitrarily nested active staging expression.

Wv(c) Wv(x) Wv(y)
Wb(b)

Wv(λ[y]x.b)

¬A(e) Wv(v) Wv(v)
Wb([e]v v)

¬A(e) Wb(b) Wb(bf )
Wb([e]fix [yf ]xf = λ[y]x.b in bf )

Looking at the CPS program from the bottom of its expression tree, all leafs and
their ancestors are considered waiting, until an active application or fix construct
is found (that is: its staging expression is in A). From that point onward, up to
the root of the expression tree, all bodies and lambdas are non-waiting.

Execution. With the help of active and waiting relations, we can now specify that
only the terms that are active while all their subterms are waiting are allowed
to execute. We call it the active-waiting requirement. A transformation that is
an actual execution step is indicated by →p.
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A(e) Wv(v) Wv(v) [e]v v → b′

[e]v v →p b′

A(e) Wb(b) Wb(bf ) [e]fix xf = λ[y]x.b in bf → b′

[e]fix [yf ]xf = λ[y]x.b in bf →p b′

Rebuilding. When a nested body is executed, all terms on the path from the
root to it need to be rebuilt to include the resulting body b′ of the execution.

c→p c x→p x

b→p b
′

λ[y]x.b→p λ[y]x.b′

¬(A(e) ∧Wv(v) ∧Wv(v)) v →p v
′ v →p v′

[e]v v →p [e]v′ v′

¬(A(e) ∧Wb(b) ∧Wb(bf )) b→p b
′ bf →p b

′
f

[e]fix [yf ]xf = λ[y]x.b in bf →p [e]fix [yf ]xf = λ[y]x.b′ in b′f

Evaluation. Finally, we define how the actual evaluation is performed. These
rules correspond to those provided in standard CPS Figure 4.3. We enhance the
original evaluation rules by including staging expressions. Same as before, when
invoking a function through the application expression, the number of actual
arguments must match the normal parameter count of the lambda function.
There is no argument given for the staging parameter [y]. Instead, it is always
replaced by >, indicated that the lambda has been called. Consequently, in the
context of staging expressions y becomes active. Since no explicit argument is
given to replace y, we often refer to y as an implicit staging parameter.

[e] (λ[y]x.b) v →


x1 7→ v1

...
xn 7→ vn
y 7→ >

 b
[e] fix [yf ]xf = λ[y]x.b in bf →

→
[
xf 7→ λ[y′]x.[y′] fix [y]xf = λ[y]x.b in b

yf 7→ >

]
bf

A bit of attention has to be paid to the fix-point combinator. Conceptually, every
occurence of xf within body bf should be replaced by the function definition
λ[y]x.b. However, it is an error to simply write xf 7→ λ[y]x.b, because the body
of the definion most likely contains recursive uses of xf . Such notation would
lead to infinite unrolling of xf .
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Basic syntax:
λ[y]x.b (x1, x2, ...)[y]{b} (function)
x type name (parameter)
> ⊥ always never (staging constants)
and or not & | ! (staging operators)

[e]v v @e: v . v1 v2 ... (application)
[e]fix [y]x = v in b @e: fix [y]x v in b (fix)

Syntactic sugar:
λ[y]x.[y]vv (x1, x2, ...)

{ v . v1 v2 ... }
(natural staging)

[e] (λ[y]x.b) v @e: let [y] x v b (let construct)
@e: fix [y]x1 v1
x2 v2 x3 v3 ... in b

(polyvariadic fix)

[e]v v (λ[y]x.b) @e: v . v1 v2 ...
(x1, x2, ...)[y]b

(last argument)

(λ[y]x.b) p β−→ (λ[y]x.b) v p . (x)[y] b (non-CPS expression p)

Figure 4.6: Syntax of DeepCPS with dynamic staging.

What we want instead, is to expand xf only once. All recursive calls should
remain as a fix until they are actually reached by the program. Since fix itself
is not a value, it must be put into its own lambda λ[y′]x.[y′]. The body of
that lambda is the recursive definition of the fix, with the original body of xf
placed in the in clause.

Also note that we introduce a completely new name y′ for the staging parameter
of the lambda replacing xf . The original name y appears only later, as a staging
parameter of the fix. This way, instructions staged upon y in the in clause may
assume that xf is already expanded and may be called.

4.1.4 Staging in DeepCPS

We need to update the syntax of DeepCPS, previously given in Figure 4.3. In
order to maintain code readability, all staging expressions and implicit staging
parameter are written in orange. The new syntax of DeepCPS is given in
Figure 4.6.

We have chosen a slightly different syntax for staging expressions to differentiate
them from the implicit staging parameter.

Formally, all applications and fix construct are annotated by a staging expression.
In DeepCPS we allow the annotation to be omitted when the body is staged
upon the lambda it is directly contained in.

Similarly, every lambda should define its own implicit staging parameter [y]. The
parameter declaration can be skipped, however, if it is used only in the body of
that lambda or if it is not used at all.

We call natural staging when the only target for a lambda is its body, and that
body is staged only upon its lambda. This is because the execution at that
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fix power ( float base , int exp , fn[ float ] cont) {
exp ==0 . (bool b)
if . b () {

cont . 1
} ()
exp mod 2 == 1 . (bool odd)
if . odd () {

exp -1 . (em)
power . base em (part)
part*base . ( result )
cont . result

} () {
exp /2 . (eh)
power . base eh (part)
part*part . ( result )
cont . result

}
} in
let power72 (float base , fn[float ] cont) {

power . base 72 ( result )
cont . result

} ...

Listing 4.4: An integer power function and a special case where the input base value is
raised to the power of 72. Without staging, there is no benefit of calling power72 . base
over power . base 72.

location matches normal execution of unstaged program. In fact, any unstaged
code can be considered a special case of staged code where only natural staging
is being used.

4.1.5 Using Dynamic Staging

With just the definition of the dynamic staging it may be unclear how one can
actually use it. Let us use the running example of the power function again,
and use dynamic staging to generate a specialized version of it. In the first step,
we define all the functions without staging: The generic power function and a
specialized version which raises the base to the constant exponent 72. Using
the specialized version power72, as given in Listing 4.4, gives no performance
benefit. This is because it is merely a wrapper around the generic version. When
the specialized version is invoked, it just calls the generic one with the constant
exponent 72.

Static Staging

Let us now assume that powergen names a function with the following properties.
Same as power, it takes three arguments: the base, exponent and a returning
continuation. However, when base is an unknown (unbound) value, it generates
a simplified piece of code. The generated code computes the desired value of the
power when the base is finally specified.

In the next subsection we will provide the definition of powergen, but for the
moment let us assume that the function is already given. With it, we can now
define a new version of power72 as in Listing 4.5. Let us examine step by step
what happens:
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fix [def] powergen ( float base , int exp , fn[float ] cont) { ... } in
@def: let power72 (float base , fn[float ] cont)[call] {

@def: powergen . base 72 ( result )
@call cont . result

} ...

Listing 4.5: Example use of static staging. The powergen call within power72 is
invoked as soon as powergen is defined (def). When power72 is called (call) the body
of the function will already contain the specialized code generated by powergen.

1. The powergen is defined through the fix construct. When the initial
binding is resolved, def becomes active.

2. There are two targets for def: let power72 and the invocation of powergen.
The latter is nested deeper than the former, thus it is invoked first.

3. powergen is invoked. At this point base is unbound, since we are executing
under the lambda. The value of power cannot be computed, but partial
evaluation — with the known exponent — is possible. As a result, a
specialized code is spliced into the body of power72.

4. The function powergen finishes its execution by invoking its continuation
(result){@call: cont . result}. There is no application that is staged upon
this lambda. The lambda body is staged on something else.

5. The only remaining active application is the let statement of power72.
The already specialized version of the function becomes bound to that
name.

6. Later on, when power72 is invoked, the staging variable call becomes
active. The powergen is no longer invoked. The execution control jumps
over, and follows directly to the continuation call, where now-concrete
result can be returned.

The last step is not entirely accurate. When power72 is invoked, the partially
evaluated code generated by powergen should be evaluated, before calling the
returning continuation. This is an error which we introduced for the sake of
simplicity of the example, and we are about to fix it.

Staging on Parameters

Let us now define the powergen function. The computational logic of the
function does not differ from the original power function, but care has to be
taken when instructions are executed. We expect that the exponent and the
continuation are always known, but base may remain unknown at the time of
the call. Consequently, all mathematical operations that directly or indirectly
depend on base must be deferred. Observe that only the multiplication falls into
that category. All conditions and the recursion itself can be resolved without
base being known. By specifying this knowledge in the code we obtain powergen
as in Listing 4.6a.

We now have a function that behaves very similarly to a normal power function,
up to the point when multiplication is performed. At that point, the [jmp]
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fix powergen (base , exp , cont) {
exp ==0 . (b)
if . b () {

cont . 1
} ()
exp mod 2 == 1 . (odd)
if . odd () {

exp -1 . (em)
powergen . base em (part)[jmp]
@base & part:
part*base . ( result )
@jmp:
cont . result

} () {
exp /2 . (eh)
powergen . base eh (part)[jmp]
@part:
part*part . ( result )
@jmp:
cont . result

}
} in
@powergen :
let power72 (base , cont) {

@powergen :
powergen . base 72 ( result )
@result :
cont . result

} ...

(a)

let power72 (base , cont) {
@base & always :
1* base . ( result )
@result :
result * result . ( result )
@result :
result * result . ( result )
@result :
result * result . ( result )
@base & result :
result *base . ( result )
@result :
result * result . ( result )
@result :
result * result . ( result )
@result :
result * result . ( result )
@result :
cont . result

}
...

(b)

Listing 4.6: Staged power function in DeepCPS and its use to specialize power72
(a). When powergen is defined, it is immediately invoked from within the body of
power72. Code that depends on the unknown value base is spliced back into the context
of power72, producing the result (b)
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staging directs the execution to jump over the multiplication instruction, and
immediately invoke the returning continuation. As a result, the function does
not return any concrete value, but a symbol result. The symbol cannot be
used for further mathematical operations, but can be used in further symbolic
substitutions. In particular, when the recursion is unrolled, the symbol is
representing the partial result and substitutes the part variables that appear in
both branches of the conditional.

Ultimately, when powergen function finishes its execution, we obtain a new,
specialized code for power72 as shown in Listing 4.6b.

Finally, we fix the problematic power72. We no longer use the implicit staging
parameter [call]. Instead, result is passed to cont only when it is actually a
known value. While the implicit staging parameter associated with power72 is
never used, it does not mean that nothing happens when the function is called.
When a concrete value substitutes base, it triggers the execution of the first
instruction produced by powergen. This begins the chain of instructions that
ultimately produce the final result.

4.1.6 Staging as a Graph

So far we have looked at CPS programming and dynamic staging from the
perspective of lambda calculus. A less formal, but more intuitive approach is to
view the CPS program as a form of a directed graph. The actual implementation,
which we discuss in Section 5.1, also resembles the graph interpretation.

Graph Primitives

The primitives used to represent a CPS program as a graph are summarized in
Figure 4.7. Consider a graph with two kind of nodes: values and bodies. A value
node can be a constant, a name, or a lambda header. If a value node represents
a lambda header, it has a single outgoing edge connecting it to the body node.

The body node can represent an application of a fix construct. An application
can have multiple outgoing edges, each for an argument in an application. For
the sake of simplicity however, values which are not actual lambdas are written
as a part of the label of the application node in which they are used.

Formally a fix construct and a let construct are very different. Pragmatically

lambda: body

application
with continuation:

let/fix x v in b: let

value: v body: b

(x)

func (x)

(x) v

b

Figure 4.7: Graph primitives for representing a CPS program.
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however, they do the same thing: bind a value to a new name which can be used
in the following part of the program. For that reason, we represent those two
construct in a similar way:

A fix or let is a body node with two lambda arguments. One argument is the
subject value that gets a name. The other, is the context lambda where the name
is going to be used. In the graph representation we connect the subject to the
context through a dashed edge.

Example Program as a Graph

Let us now show how a stageless DeepCPS program can be represented with
the primitives sketched above. In Figure 4.8a we take the power/power72
function example given in Listing 4.2 and represent its structure as a graph.
By representing lambda headers and their bodies as separate nodes, the CPS
program no longer looks as a monolithic, deeply nested structure of entities.
Instead, the code becomes a path in the graph. Occasional branches appear only
at fix/let constructs, or when a function takes multiple continuations (such as
if).

fix (base, exp, cont)power

let (power72)

...

(base, cont)

power . base 72 (result)

cont . result

power72 . 3 (final)

...

exp == 0 (b)

if . b ()T cont . 1

exp mod 2 == 1

()F

(odd)

if . odd ()T ...

()F

exp/2 (eh)

power . base eh (part)

part*part (result)

cont . result

(a)

fix (base, exp, cont)power

let (power72)

...

(base, cont)

power . base 72 (result)

cont . result

power72 . 3 (final)

...

exp == 0 (b)

if . b () cont . 1

exp mod 2 == 1

()F

(odd)

if . odd () ...

()F

exp/2 (eh)

power . base eh (part)

part*part (result)

cont . result

(b)

Figure 4.8: The structure graph (a) and run paths (b) of the power and power72
functions without staging. Green edges are followed when defining the functions, and
blue edges, when the function is invoked. Most of the work happens at call-time.
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When one connects the nodes in the order in which they are executed, one
obtains the run path, like the one shown in Figure 4.8b. In our example we
highlight two run paths: The green path is taken when functions are being
defined, and the blue path occurs when power72 is being invoked.

The run paths are actually similar to the structure graph of the program. This
is because the code is executed by following the edges in the structure graph.
Jumps appear only when dereferencing a name that maps to a lambda.

Altering the Run Paths

We now introduce a new kind of edges: staging connection – the same it was
done intuitively in Section 4.1.3. These kind of edges connect from lambda nodes
(instigators) to arbitrarily nested body nodes (targets). Staging connections can
also originate from particular parameters of the lambda.

In order to be strictly formal, one would put each lambda parameter as a separate,
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Figure 4.9: The structure graph (a) and run paths (b) of the power and power72
functions with staging. Staging connections are colored in red. Staging connections
corresponding to natural staging are skipped. Green edges are followed when defining
the functions, but because of the staging, a major part of the power function is executed
at that time. At call-time there is significantly less work remaining, indicated by the
blue path.
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new kind of node so that edges can originate from them. For the sake of brevity
we keep parameters as sub-labels in a single lambda node.

When an instigator lambda is reached during execution, the staging connections
are followed instead of the normal structural edges. This way we can create new
run paths, while keeping the original program structure.

Furthermore, new staging connections may appear as a result of execution,
reflecting the dynamic nature of our solution. Consider a staging parameter
s that is used in a staging expression. Suppose an argument t substitutes s
([s 7→ t]) as a result of an invocation. When that happens, the new parameter t
inherits all the targets of the old one (s). In other words, all staging connections
originating from parameter s are reconnected so that they originate from t
instead.

As an example, let us again represent the power/power72 functions, but this time
the version using dynamic staging (Listing 4.6a). We obtain a structure graph
as shown in Figure 4.9a. The solid red edges represent all staging connections
that appear in the code. The dashed red edges mark connections that appear at
some point during the execution of the program, due to staging inheritance that
happens during substitution.

The run paths of the staged program are now different (Figure 4.9b). A major
part of the computation within the power function occurs early, in the (green)
definition path. The call-time path (blue) now contains only the multiplication
operations which require the base value to be known.

In our opinion, this graph representation of code and staging compared to the
formal definition provides better intuition on how our method works and how it
can be used. As we have shown, staging changes the paths of execution acting
as a railroad switch on tracks defined by the program structure.

4.1.7 Programing Patterns

We have formally defined and gave basic usage example of dynamic staging.
Staging is realized by a simple construct connecting instigators with their targets.
The construct can be used as a basis to define bigger, more specialized staging
patterns. Let us now show those patterns and relate them to constructs available
in other languages.

Early and Late Blocks

The most basic pattern is to select a block of code to be executed at a different
time: Either earlier or later than the surrounding code. This is similar to staging
through quotation, such as one in MetaML discussed in Section 2.3.5.

Assume that we have two stages represented by variables p and q. We are given
a piece of code that should execute at p. However, there is a block within that
code, starting from the instruction B and ending with E, that should be staged
upon q.

90



Dynamic Staging 4.1

let foo(p, q) {
@p:

...

... ()[p1]
@q: B ...

...

... ()[q1]
@p1: E ...

...
}

λB

λE

(a)

let foo(q)[p] {
@p:

...

... ()[p1]
@q: B ...

...

... ()[q1]
@p1: E ...

...
}

(b)

... ()[q]
let foo ()[p] {

@p: ...
... ()[p1]

@q: B ...
...
... ()[q1]

@p1: E ...
...

}

(c)

Listing 4.7: Selecting a fragment of code to be executed at a different stage. (a)
a generic staging on two stage variables p and q. Either of them may be executed
first. (b) late execution stage. Surrounding code is executed when foo is invoked, but
fragment staged upon q is deferred. (c) early execution stage. The fragment staged
upon q is executed early, before the lambda is even bound to foo.

p

q

p

() {
...
... ()
B ...
...
... ()
E ...
...

}

We implement such scenario in DeepCPS in Listing 4.7. Naturally, we start by
staging the beginning of the code upon p. However, upon reaching an instruction
B the execution should “jump over” and resume at a further instruction E.
Therefore, when stage p is triggered, the fragment of the code between instructions
B and E remains intact.

Consider a lambda λB for which B is its whole body. In CPS programming such
λB always exists. We take the implicit staging parameter of λB, naming it p1
and stage the instruction E upon it. Then, we stage B on the new stage q.

When stage p is triggered, all code up to λB is executed. Then, p1 is triggered,
which directs the execution to jump to the instruction E, leaving the contents
between B and E intact. On the other hand, when q is triggered, the execution
jumps into B and executes everything until λE . Then, the q stage ends because
the body E is not targeted by the implicit staging parameter of λE .

This way we obtain a block that is executed at a different time than the
surrounding code. The pattern however does not specify the actual order of
execution. Either p or q can be triggered first, causing the block to be executed
either late or early.

Staging Chain

The pattern of having a block executed at a different stage can be repeated
arbitrarily many times. Effectively, a program can consists of interleaved instruc-
tions to be executed in 2 or more stages: When a given stage becomes active
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we expect instructions associated with that stage to be executed in sequence,
jumping over parts which are scheduled with another stage.

Consider, for example, a code consisting of interleaved blocks to be executed
in stage p and q Each q block starts with an instruction Bn and ends with
instruction En, where n ∈ N. The p blocks are in between, starting with En−1
and ending with Bn.

p

q

p

q

p

q

() {
...
... ()
B1 ...
... ()
E1 ...
... ()
B2 ...
... ()
E2 ...
... ()
B3 ...
...

}

A naive approach would be to stage each Bn upon q and each En upon p.
However, this will cause blocks to execute in the reverse order, bottom-up. When
q becomes active, all instructions Bn become scheduled for execution at the
same time, and the deepest one, which starts the last block, is executed first.

Instead, we use repeatedly the early/late block pattern. As in Listing 4.8 we
define a series of staging parameters: pn and qn, with p0 and q0 being equivalent
to p and q respectfully. The n-th p block is staged upon pn and the last lambda
of the block defines the next staging parameter pn+1 to be used in the next p
block. The same pattern is used for q blocks.

This effectively connects, through staging, blocks of the same type in a chain.
Staging formed by the sequence si used in such pattern we call a staging chain
s. We refer to staging variables forming the pattern as chain staging variables.
Instructions in a staging chain s are executed in order, when s0 becomes active.
The staging chain pattern is the primary implementation of traditional execution

let foo(p, q) {
@p: ...
... ()[p1]
@q: B1 ...
... ()[q1]
@p1: E1 ...
... ()[p2]
@q1: B2 ...
... ()[q2]
@p2: E2 ...
... ()[p3]
@q2: B3 ...
...

}

Listing 4.8: Interleaved stage chains p and q.
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phases, such as “compile-time” and “run-time” phases.

Fragment Chain Pattern

In the previous example of the staging chain, the pattern is used within a single
sequence of instructions. However, since staging variables can be passed as
arguments, the pattern can be used across function calls. Typically, a chain
stage variable is passed into the function, and its further instance is returned
through the continuation. A call to a stageless function of the form

F . args (ret)...

becomes

F . s_i args (s_j, ret)...

Within F the staging argument s_i can be used to chain arbitrary many blocks.
The chaining stage variable from the last block is returned through the continu-
ation as s_j. Naturally, within F the s_i or following chain stage variables can
be also used for nested function calls, or in other ways beyond the limits of the
pattern.

Using chains in this way is particularly useful in the context of building code.
Chaining through functions gives DeepCPS an ability to connect two initially
unrelated blocks of code, so that in the next staging chain they are executed
one after another.

Consider a set of functions f1, f2, . . . , fn, each taking and returning (through a
continuation) a chain staging variable. Each function contains a code fragment
staged with respect to its stage parameter, creating the late block pattern as
described before. Therefore, we call such functions container functions.

We then define a master function fM that invokes all the container functions in
any order of our choosing. We use the staging chain pattern to connect the late
blocks of the container functions. When fM is invoked, all the containers are
executed but their late blocks remain intact. These late blocks become connected
together, as if they were written one after another.

For example, the master function in Listing 4.9 (a) invokes functions f1, . . . , fn
in that order. When fM is invoked, all the fi are executed whereby the staging
parameters get resolved. As a result, all code fragments in fi become connected
through staging as shown in Listing 4.9 (b).

We refer to such pattern as fragment chaining, as it allows fragments of code
to be specified in independent container functions. When staging is resolved
these fragments become connected forming a new program. Naturally, container
functions can be reused multiple times, in which case the late blocks become
replicated. Such pattern can be used, for example, in recursion and loop unrolling
as we show in Section 6.2.
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let f1( stage sin , fn[stage ] cont) {
... normal code ... [jmp]
@sin: ... fragment 1 code ... [sout]
@jmp: cont . sout

}
let f2( stage sin , fn[stage ] cont) {

... normal code ... [jmp]
@sin: ... fragment 2 code ... [sout]
@jmp: cont . sout

}
let f3 ...
let f4 ...
let fM( stage start , fn[stage ] ret) {

f1 . start (s1)
f2 . s1 (s2)
f3 . s2 (s3)
f4 . s3 (s4)
ret . s4

}

(a) Unconnected code fragments.

@start : ... fragment 1 code ... [s1]
@s1: ... fragment 2 code ... [s2]
@s2: ... fragment 3 code ... [s3]
@s3: ... fragment 4 code ... [s4]
...

(b) Generated code after fragment chaining.

Fragment 1

inf1

@in:

ret

[s1]()
ret

fM start ret

Fragment 2

inf2

@in:

ret

[s2]()
ret

(c) Graphical representation.

Listing 4.9: Fragment chaining pattern:
(a) Function f1 and f2 contain a code fragment that is staged upon the stage parameter
in and the stage of the fragment’s last instruction is returned. These functions are
invoked in a sequence, chaining the code fragments by passing the result of one function
as an input for the next one.
(b) The result of the invocation of the master function fM.
(c) Graphical representation of the fragment chaining pattern. Blue blocks represent
the code being executed immediately, orange blocks are the deferred fragments chained
together.
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... ()[p]
@p:
()[q] {

... rest of the program ...
@p: ...
@q: ...

} .

(a)

... ()[p]
@p:
let [q];
... rest of the program ...
@p: ...
@q: ...

(b)

Listing 4.10: Stage Branch pattern: A let-like construct naming an implicit staging
parameter. Note the invocation dot at the very end of (a). Within the body of let,
instructions staged directly or indirectly upon p are executed before stage q becomes
active. Example (b) is a syntactic sugar of the same construct.

Stage Branch

A counterpart of a stage chain is a stage branch. It is a small function where we
create two or more stage variables, marking the beginning of multiple chains.
Stage branches are particularly useful when an endpoint of a chain is difficult or
impossible to specify.

The Stage Branch pattern is a parameter-less anonymous function, containing
the remaining program, as depicted in Listing 4.10a. The function is invoked in
some stage p and defines a new implicit staging variable q. Within the body of
the function, both p and q can be used.

Recall, that an action can be executed only when no nested actions are active – a
property formally explained in Section 4.1.3. That is why, a prerequisite for the
construct to be executed is that no other action is staged upon p. This means,
stage q becomes active only when all instructions staged directly or indirectly
upon p are already completed.

In other words, when such construct is encountered the DeepCPS interpreter
executes everything under stage p first, and then proceeds with the stage q.

The stage branch function is very similar to a let construct: A let is a lambda
containing the remainder of the program, invoked immediately with a single
argument. The argument is given a name within the let lambda, and can
be referred through that name within the program. A stage branch takes no
arguments, but gives a name to an implicit stage parameter.

In order to reflect this similarity and avoid braces encapsulating a reminder of
the program we support a special let construct, as shown in Listing 4.10b. A
typical let binds a value to a normal parameter. However, if the let is cut
short by a semicolon, it is simply a parameter-less let lambda. Both normal let
constructs or parameter-less let lambda can explicitly name its implicit staging
parameter. This way let [s];, with the semicolon at the end, defines the stage
branch pattern in a concise way.
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4.2 Language Creation

In Section 2.6 we explained two main approaches for language manipulation. The
simpler and more common approach is through macro processing. A less explored
route is to provide the programmer direct access to the parser. ManyDSL uses
the second approach, providing unprecedented flexibility.

As we briefly explain in Section 3.5, source code is being parsed in fragments by
a mutable parser, initially in DeepCPS. The produced Target Representation
(TR) code is then interpreted or compiled to LLVM. Interpreted code may affect
the parser, changing how the next fragment of the source file is processed.

4.2.1 Interleaved Parsing

A typical interpreter pipeline consists of 2 sequential steps: First, the source
code is parsed, forming some internal representation of the code. In the second
step, the code is executed. ManyDSL cannot follow this typical setup because
we want the second step to affect the first — the code may modify the parsing
process.

Our solution is to interleave parsing and interpretation. ManyDSL is able to
parse only a portion of the code into TR, up to what we call a halt marker and
then freeze the parsing state. The available TR is interpreted, possibly affecting
the parser state. Finally when parsing resumes it may already work in a different
setup or with different language.

There are numerous design considerations to be made in order to ensure that
interleaved parsing is possible.

First, it is important to ensure that when the halt marker is reached, all the
code preceding it is actually processed to produce TR. For a bottom-up parser
this is a major problem, especially in the context of continuation-passing style
where the parse tree is deeply nested. A single incomplete node, caused by the
halt marker, prevents all nodes in the path to the root to be built. With such
an incomplete parse tree and missing nodes in the TR structure, the interpreter
cannot run. A top-down parser on the other hand can create TR nodes before
descending it their children. All program structure up to the halt marker can be
complete at the moment when the parser is interrupted.

Another design consideration is the amount of lookahead of the parser. Since
the grammar and lexing tokens can change during execution phase, the parsing
cannot rely on tokens that appear after the halt marker. Moreover, as we will
show shortly, any custom language semantic may involve altering the parser in a
similar way, further restricting the permitted lookahead.

Taking these constraints into the account, we have chosen to limit ourselves to
LL(1) grammars. Note, that languages can still be made powerful and expressive
in this grammar class. Most notably, Python is explicitly restricted to LL(1) for
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Program ::= Expr { print Expr.val }
Expr ::= Diff { Expr.val = Diff.val }
Diff ::= Diff1 "-" Quot { Diff.val = Diff1.val - Quot.val }
Diff ::= Quot { Diff.val = Quot.val }
Quot ::= Quot1 "/" Value { Quot.val = Quot1.val / Value.val }
Value ::= "(" Expr ")" { Value.val = Expr.val }
Value ::= Number { Value.val = Number .val }

Listing 4.11: A grammar for left-associative subtract-and-divide expression using the
SDT scheme, taking operator precedence into account.

simplicity sake1.

4.2.2 Syntax-Directed Execution

A syntax-directed translation (SDT) scheme [88, 104] is a method for specifying
parsers that read the source code and translate it to some other representation.
The parser is specified by a context-free grammar augmented with semantic
actions. The semantic actions are arbitrary pieces of code that may appear at
any position within the body of a production. In addition, each symbol within
the productions can have arbitrarily many associated attributes. The actions
read and modify these attributes. This way actions can communicate and form
meaningful programs.

Parsing using a SDT scheme, in the most general approach, is performed in two
steps. First, the source is parsed forming a parse tree, containing the actions
as separate nodes. Attributes are stored as mutable record fields within each
node. Then, the tree is traversed in a left-to-right, depth-first order, executing
all the action nodes in the order that they are encountered. A more common
approach is to execute the semantic actions on the fly, during parsing, without
ever creating a parse tree.

Consider an example grammar of binary mathematical operations: subtraction
and division. Such “MinusDiv” grammar which we will use throughout this
chapter, uses two left-associative operators. In addition, care has to be taken
for the operator precedence. A simple solution in SDT scheme, is given in
Listing 4.11. This version of the grammar is left-recursive and cannot be used
as-is in an LL(1) parser. We address this problem briefly, near the end of this
section.

In the example Listing 4.11, the expression is evaluated and the parser prints a
single value at the end. In practice however, SDT are designed with translation
in mind – the semantic actions create a custom representation of code based on
the input syntax. This usually is an explicitly built AST resembling the parse
tree.

We propose a Syntax-Directed Execution (SDE) scheme. Formally, it is equivalent
to the SDT scheme explained above. SDE however puts emphasis on the execution
of the code, rather than translation to another representation. Productions are
treated as syntax-directed functions, containing local variables, further function
calls, and snippets of code. We replace attributes with an equivalent notion

1https://www.python.org/dev/peps/pep-3099/, retrieved on 26.02.2017
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of production-local variables, which are passed into and out of the terms as
arguments.

More formally, a language in SDE scheme is defined by an L-attributed LL(1)
grammar [89] augmented by semantic actions that may appear at any position
in the production body. In other words, the grammar is a set of productions of
the form N→ (Σ ∪N ∪A)∗, where:

• Σ is a set of terminals.

• N is a set of nonterminals.

• A is a set of all possible actions, which are arbitrary DeepCPS functions.

Each nonterminal N ∈ N can take an arbitrary number of input parameters
iN and return any number of values oN . Whenever N is used as a term t
within a body of a production, it takes input arguments it which must match
the parameters iN . Similarly, term t output parameters, ot, must match the
returned values oN . We represent each attributed term as (it) → t → (ot) to
indicate the flow of the data — input arguments (it) are passed into the term t
and the results are returned into (ot). A complete parametrized production of
the form N ::= t1t2t3 looks as:

(iN )→ N → (oN ) ::= (it1)→ t1 → (ot1)
(it2)→ t2 → (ot2)
(it3)→ t3 → (ot3)

The (red) parameters are lists of names defining new local variables and can
be used at any later position. If the same name is used multiple times, the
new variable hides the previous one. The (green) values are lists of arguments
which refer to previously declared parameters. The final output values (oN in
the example) can refer to all parameters in the production, as if it was written
at the very end. Unlike in SDT scheme, references are plane names without
naming the term that it originates from.

Terminals take no arguments and may return a single string value representing
the actual token that has been read. This is useful when a token is not a single
string constant but is given in a form of regular expression.

Semantic actions in SDE are functions with their own, independent scope.
Production local variables have to be explicitly passed and returned from the
action.

In SDE scheme a grammar must be L-attributed. That means, that the hypo-
thetical parse tree can be evaluated with a single depth-first left-to-right traversal
(Figure 4.10). This put restrictions on the values that can be used as arguments:

• Attributes itx may only depend on iN as well as oty for y < x.

• Attributes within the tuple oN may depend on iN as well as any oty .
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() ->Program ->() ::= () ->Expr ->(val) (val)->{ print val } ->();
() ->Expr ->(val) ::= () ->Diff ->(val);
() ->Diff ->(val) ::= () ->Diff ->(left) "-" () ->Quot ->(right)

(left ,right)->{ return left -right } ->(val);
() ->Diff ->(val) ::= () ->Quot ->(val);
() ->Quot ->(val) ::= () ->Quot ->(left) "/" () ->Value ->(right)

(left ,right)->{ return left/right } ->(val);
() ->Value ->(val) ::= "(" () ->Expr ->(val) ")";
() ->Value ->(val) ::= Number ->(str)

(str)->{ return str2int (str) } ->(val);

Listing 4.12: A grammar for left-associative subtract-and-divide expression using the
SDE syntax, taking operator precedence into account. This grammar however cannot be
parsed by a predictive LL(1) parser due to left recursion.

The L-attributed restriction is what enables us to treat attributes as local
variables.

L-attributed LL parsers do not need an explicit parse tree. Instead, a parser can
behave as an interpreter of a low-order functional language. Nonterminals can
be viewed as functions which take input arguments and return output values. In
that view, a production p→ t1t2...tn becomes a definition of a function, with the
terms tx forming a sequence of instructions to be performed when p is invoked.

The direct translation of the SDT-based “MinusDiv” grammar from Listing 4.11
into SDE is givesn in Listing 4.12. The grammar, however, contains left recursion
in both Diff and Quot rules. As such it is not an LL(1) grammar and does not
satisfy the SDE requirements. A well-known solution to left recursion is to take
the offending production:

A ::= Aα

A ::= β

and replace it with right recursive grammar, such as:

A ::= βC

C ::= ε

C ::= αC

The new grammar can parse the same input, but is LL(1). The new grammar
produces a different parse tree, but the SDE does not rely on that. The position

N(iN )→ → (oN )

t1(it1)→ → (ot1) t2(it2)→ → (ot2) t3(it3)→ → (ot3)

Figure 4.10: A fragment of attributed parse tree for a production N → t1t2t3. An
L-attributed tree can be traversed in a depth-first left-to-right fashion (green path). Each
attribute along the path can be evaluated based on the values encountered earlier.

99



4. ManyDSL Components

() ->Left ->(val) ::= () ->Number ->(val) (val)->LeftCont ->(val);
(val)->LeftCont ->(val) ::= epsilon ;
(val)->LeftCont ->(val) ::= Operator () ->Number ->(val2)

(val ,val2)->action ->(val)
(val)->LeftCont ->(val);

() ->Right ->(val) ::= () ->Number ->(val) (val)->RightCont ->(val);
(val)->RightCont ->(val)::= epsilon ;
(val)->RightCont ->(val)::= Operator () ->Number ->(val2)

(val2)->RightCont ->(val2)
(val ,val2)->action ->(val);

Listing 4.13: Left and right associative binary operators. The action takes 2 values
and performs the intended operation. The action of the left-associative operator is
performed before the recursion, while for the right-associative operator it is performed
after the recursion.

of semantic actions is what matters and differentiates left and right-recursive
languages.

Let us consider an implementation of left and right associative infix binary
operators as an example of left and right recursion. In SDE these binary
operators look the same, with an exception on the position of the semantic
actions, as shown in Listing 4.13. For the left-associative operator, the action
is performed before the recursion. The value val is passed recursively and
combined with consecutive values val2 in the order they appear in the input.
In the right-associative operator, the action is performed after the recursion.
Consequently, a recursive subexpression RightCont is reduced to a single value
val2 before it is combined with the left value val.

4.2.3 SDE: Formal Definition

Syntax

We define the complete Syntax-Directed Execution scheme in two parts. First,
we specify how the language syntax is defined, i.e. the syntax of language
specification. Then, in a method similar to small-step semantics we define how
the parser operates.

A syntax of the language specification in SDE scheme is given in Figure 4.11. A
complete language is a set of productions p.

Each production uses a nonterminal n as its (not unique) name. A production
can take any number of input (x) and output (z) parameters. If two productions
use the same nonterminal as their name, they must match their signatures. That
means, the number of input and output parameters must match between the
productions.

The production body is a sequence of attributed terms. Each term refers to
either a terminal, nonterminal, or a DeepCPS function. A terminal reference
has a single output parameter. Nonterminal and function references can take
multiple input and output parameters.
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n ∈ N (nonterminal)
σ ∈ Σ (terminal)
L ::= {p} (language)
p ::= (x)n(z) ::= b (production)
b ::= a (production body)
a ::= (attributed term)

σ(z) (attributed terminal)
(x)n(z) (attributed nonterminal)
(x){λy.b}(z) (attributed action)

x, y, z (parameter)
x (list of parameters)

Figure 4.11: Syntax of language specification in SDE scheme. A language is a set
of productions, each defining a transformation of a nonterminal n to a sequence of
attributed terms. Each attributed term refers to terminal, nonterminal, or a DeepCPS
function, providing a set of input and output parameters.

Support Function

Before we define the formal semantics, let us define a support function: FIRST .
The function computes the set of terminals that may begin a given sequence of
terms after they have been expanded. This is the function one typically computes
when creating a normal LL(1) parser[3, Chapter 4.4.2]. We define the function
recursively as follows:

FIRST (σ) = {σ}
FIRST (λx.b) = {ε}

FIRST (n) =
⋃
{FIRST (p) : p ∈ L, p = (n ::= b)}

FIRST (p) =FIRST (n ::= b) = FIRST (b) = FIRST (a)
FIRST (a) =FIRST (a1ar) =

=

 {ε} a = ε
FIRST (a1) ε /∈ FIRST (a1)
(FIRST (a1) \ {ε}) ∪ FIRST (ar) ε ∈ FIRST (a1)

Typical LL(1) parsers also use a FOLLOW function to compute which terminals
can appear after the epsilon rules. We do not do this as it may work incorrectly
for a source containing multiple languages – a problem we discuss further in
Section 5.2. Instead, we treat ε as a wildcard production, which is taken when
all other productions fail.

All languages recognized by the traditional LL(1) can be parsed by ours as well,
but some languages that could be considered incorrect for LL(1) parsing are
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accepted by ours. Our parser silently gives non-epsilon productions a higher
priority. In case of a conflict between epsilon and non-epsilon production, the
latter is taken.

Finally, similarly to LL(1) we define the PREDICT function. For a given
terminal σ and nonterminal n, the PREDICT function finds the production
p that expands from n and σ ∈ FIRST(p). If no p satisfies the constrain,
PREDICT chooses an epsilon rule of n. Finally, if no such rule exists, it returns
a special error value E, indicating an error in parsing. During parsing the
PREDICT function helps find the right production to expand to, based on the
input.

In the formal definition of PREDICT we use a helper function N(p) which gives
the nonterminal n that the given production expands for.

PREDICT (σ, n) =

 p : σ ∈ FIRST (p) ∧N(p) = n σ ∈ FIRST (n)
p : ε ∈ FIRST (p) ∧N(p) = n σ /∈ FIRST (n) ∧ ε ∈ FIRST (n)
E σ /∈ FIRST (n) ∧ ε /∈ FIRST (n)

Semantics

Let us now define the semantics of the Syntax-Directed Execution (SDE) scheme.
In SDE the language specification acts like a program. However, the program is
not executed alone, in the void. Instead, as it executes, it consumes an input
sequence of terminals I ::= σ. For that reason, the execution state is represented
by a pair: 〈I, P 〉, where:

• I is the input string of the terminals I = σ.

• P is the parser state, given as a sequence of attributed terms. At the
beginning, the parser is set to a single starting nonterminal S, taking and
returning no arguments.

In each step, the state transforms according to the rules given in Figure 4.12.

• The (Term) rule accepts and consumes a terminal when it appears both in
the input and in the program.

• The (NTerm) rule is used when a nonterminal n is encountered in the
program. We use previously defined PREDICT function to find a produc-
tion that contains the next input symbol σ1 in its FIRST set, or – if no
production can satisfy the constraint – the wildcard epsilon production.

• The (ActCall) rule is used when an action, represented as a DeepCPS func-
tion, is encountered. The input parameters are passed into the DeepCPS
lambda, together with a special returning continuation τ .

• With the help of (ActRun), the underlying DeepCPS program is allowed
to execute freely, without any interference from the parser.
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σ1 = σt
〈σ1σ, σt(z)a〉 → 〈σ, [z 7→ str(σ1)] a〉 (Term)

PREDICT (σ1, n) = p = ((x′)n(z′) ::= bp)
〈σ1σ, (x)n(z)a〉 →

〈
σ1σ, (

[
x′ 7→ x

]
bp)
[
z 7→ z′

]
a
〉 (NTerm)

〈σ, (x){λy.b}(z)a〉 →
〈
σ, {


y1 7→ x1

...
yn 7→ xn
yn+1 7→ τ

 b}(z)a
〉

(ActCall)

b→ b′

〈σ, {b}(z)a〉 → 〈σ, {b′}(z)a〉 (ActRun)

〈
σ, {τz′}(z)a

〉
→
〈
σ,
[
z 7→ z′

]
a
〉

(ActRet)

Figure 4.12: The semantics of SDE

• Finally, by the rule (ActRet), when τ is invoked from within the DeepCPS
program, control is returned back to the parser. The arguments received
by τ are forwarded to the output parameters of the initial action call.

4.2.4 LangDSL

We have realized the SDE concept in a new language LangDSL as a part of
ManyDSL. The LangDSL itself is built on top of DeepCPS, using the mechanism
that we are describing right now.

At the top level of LangDSL a language name is defined, followed by its contents
within curly braces. The language definition uses the syntax similar to the SDE
scheme, summarized in Figure 4.13. It also includes lexing rules such as keywords
or regular expression lexemes.

Semantic actions are DeepCPS functions. When a parser reaches a semantic
action, the execution control is passed temporarily to the DeepCPS interpreter,
employing the interleaved parsing explained in Section 4.2.1. The execution
control is released back to the parser when the special return continuation τ is
invoked.

The input and output action arguments must match the parameters of the
DeepCPS function. Consider an action of the form (iA)→ A→ (oA) containing
n input and m output arguments. A DeepCPS function used in A must have
n+1 parameters: p1, p2, ..., pn+1. When A is invoked, the arguments are mapped
as follows

• For x ≤ n, oAx is mapped to px.
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Parser rules:
L : p grammar L { p1 p2 ... } (language)
p : (x)n(z) ::= b (x1,x2,...)->

n->(z1,z2,...)::=b;
(production)

b : a a1 a2 ... (production body)
a : σ(z) σ->(z) (attributed terminal)
a : (x)n(z) (x1,x2,...)->n->(z1,z2,...) (attributed nonterminal)
a : (x){λy.b}(z) (x1,x2,...)->(z1,z2,...)

{ (y1,y2,...) b }
(attributed action)

Terminals:
σ: token σ regexp (regular expression terminal)
σ: keyword σ identifier (keyword)
σ: symbol σ str (symbol)

Figure 4.13: Syntax of LangDSL in relation to SDE scheme. LangDSL also defines
the actual terminals through token (any regular expression), keyword (alphanumeric
identifier, recognized only as a whole word) and symbol (any sequence of characters
matched in verbatim).

• An implicitly defined return continuation τ is mapped to px+1.

• The return continuation τ expects m arguments r1, r2, ..., rm. When in-
voked, the values rx are mapped to oAx and the execution control is released
back to the parser.

For example, an action with 3 input and 2 output parameters would look as:
(i1 , i2 , i3) ->(o1 ,o2) {

(p1 , p2 , p3 , return )
... DeepCPS code ...
return . r1 r2

}

We renamed the parameter p4 as return to better indicate its functionality. It
should be pointed however that return is a parameter name, not a keyword.

For convenience additional syntactic sugars are available, summaried in Fig-
ure 4.14:

1. We omit the header of a lambda which becomes the semantic action. We
assume that the input names px have the same name as the arguments ix.
The returning continuation is always named return.

2. When no arguments are passed in or out from a term, the empty tuple
indicating it can be completely omitted.

3. Simple renaming can be achieved with input-output argument syntax
without any action body.

4. If a sequence of last input or output values have the same name as the
corresponding parameters in the nonterminal definition, then they can be
omitted as well.

5. A free variable within a production body is treated as if it was the input
parameter of the production.

104



Language Creation 4.2

Omitting the lambda header:
(i1 , i2 , ...) ->(o1 , o2 , ...) {
(i1 , i2 , ..., return )
...DeepCPS function body ...
}

(i1 , i2 , ...) ->(o1 , o2 , ...) {
...DeepCPS function body ...
}

Omitting empty argument lists:
() ->N ->(o) N ->(o)

Renaming:
(in) ->(out) { return . in } (in) ->(out)

Default arguments:
Left ->(val) ::= Number ->(val)

(val)->LeftCont ->(val);
(val)->LeftCont ->(val) ::= ...

Left ->(val) ::= Number ->(val)
LeftCont ;

(val)->LeftCont ->(val) ::= ...

Free variable as input parameter:
(val)->RightCont ->(val) ::=

Operator Number ->(val2)
(val2)->RightCont ->(val2)
(val ,val2) ->(val) {...};

RightCont ->(val) ::= Operator
Number ->(val2)
(val2)->RightCont ->(val2)
(val ,val2) ->(val) {...};

Figure 4.14: A summary of syntactic sugars used in LangDSL. Each pair is equivalent.
On the left is the canonic LangDSL and the right is the version with syntactic sugar
used.

The last two syntactic sugars are the most involved and require an explanation.
The automatic insertion of additional parameters and arguments is not performed
during parsing, but rather when a grammar definition is complete and the parser
is being compiled. It is an iterative process: adding default arguments within a
production body may introduce free variable names, causing an addition to the
parameter list of the production header. The process is maintained until a fixed
point is reached.

This mechanism is useful when a deeply nested grammar subexpression requires
a specific value which originates from a much higher level rule. Let us consider
the MinusDiv grammar, given in Listing 4.14. Let us assume that the Value
rule may be an identifier. It uses a lookup map env to convert a name to an
actual value (we discuss the lookup map usage in detail in Section 6.4.3):
(env)->Value ->(val) ::= Id ->(str)

(str ,env) ->(val) {
"env. lookup (str)" . (val)
return . val

};

With such a change, the top level Expr must take the env as an argument and
propagate it into all rules which may ultimately use Value. However, this process
can be automated by using the the default arguments and parameters. It suffices
to just pass env to Expr, without changing any of the nonterminals on the path
between Expr and Value.
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grammar MinusDiv {
token Number [[: digit :]]+;
Program ::= Expr (val) ->() { print . val return };
Expr ->(val) ::= Diff;
Diff ->(val) ::= Quot ->(left) DiffCont ;
(left)->DiffCont ->(val) ::= epsilon (left) ->(val);
(left)->DiffCont ->(val) ::= "-" Quot ->(right)

(left ,right) ->(val) {
left -right . (val) return . val

}
(val)->DiffCont ->(val);

Quot ->(val) ::= Value ->(left) QuotCont ;
(left)->QuotCont ->(val) ::= epsilon (left) ->(val);
(left)->QuotCont ->(val) ::= "/" Value ->(right)

(left ,right) ->(val) {
left/right . (val) return . val

}
(val)->QuotCont ->(val);

Value ->(val) ::= "(" Expr ")";
Value ->(val) ::= Number ->(str)

(str) ->(val) {
str2int . str return

};
}

Listing 4.14: A grammar for left-associative subtract-and-divide expression using
LangDSL syntax with syntactic sugars. The grammar replaces left recursion with right
recursion while the operators are still left-associative.

Grammar function definition:
function f<x> { p return n; }
x – list of parameters
p – sequence of productions
n – nonterminal (appearing in p)

Grammar function usage:
f<a>
a – list of attributed terms

Invocation semantics:

f<a>→

 x1 7→ a1
x2 7→ a2
· · ·

 p
 .n

where p.n denotes nonterminal n defined by the set of productions p.

Figure 4.15: The syntax and semantics of grammar function definition and invocation.
A grammar function defines a portion of grammar p with parameters x acting as
placeholders. When invoked, the function returns a single nonterminal n which can be
used in the same context as a regular nonterminal, i.e. within the production definitions.
Rules for other nonterminals defined within the function are private and cannot be
referenced from the outside.

4.2.5 Grammar Composition

Some grammar constructs can be repetitive, appearing in many languages. Some
can even reappear in different contexts within the same language. For exam-
ple, comma-separated parameter lists, infix binary expressions, parenthesized
instruction blocks, etc. The removal of the left recursion, and the left-associative
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function lassoc <elem , op , action > {
N ->(val) ::= elem ->(val) (val)->NCont ->(val);
(val)->NCont ->(val) ::= epsilon ;
(val)->NCont ->(val) ::= op elem ->(right)

(val ,right)->action ->(val) (val)->NCont ->(val);
return N;

}
function rassoc <elem , op , action > {

N->( val) ::= elem ->(val) (val)->NCont ->(val);
(val)->NCont ->(val) ::= epsilon ;
(val)->NCont ->(val) ::= op elem ->(right) (right)->NCont ->(right)

(val ,right)->action ->(val);
return N

}
grammar MinusDiv {
token Number [[: digit :]]+;
Program ::= Expr (val) ->() { print . val return };
Expr ->(val) ::= Diff;
Diff ->(val) ::= lassoc <Quot ,"-", (left ,right) ->(val) {

left -right . (val) return . val
} >;

Quot ->(val) ::= lassoc <Value ,"/", (left ,right) ->(val) {
left/right . (val) return . val

} >;
Value ->(val) ::= "(" Expr ")";
Value ->(val) ::= Number ->(str)

(str) ->(val) {
str2int . str return

};
}

Listing 4.15: A left- and right-associative binary operator abstractions in LangDSL.
The following MinusDiv grammar takes advantage over the generic lassoc.

binary operator are also examples of repetitive grammar constructs.

LangDSL permit abstractions over portions of grammars, as shown in Figure 4.15.
Such a grammar function takes an arbitrary number of values, lexemes, and
nonterminals and creates a grammar fragment represented as a set of productions
as a result. These productions can be used as a part of a concrete grammar
definition. The production names within the function have only a local scope and
cannot be referenced from outside. However, nonterminals which are returned
from such function can be bound to names at the call site, and used in other
parts of the grammar.

Consider an example in Listing 4.15, which defines the same “MinusDiv” grammar
as in Listing 4.14. This time however, the left-recursion construct is abstracted
out within the functions lassoc and rassoc for left- and right-associative
operators. The abstractions can be used multiple times within a grammar
without interference. They can also be used in multiple languages. In the
LangDSL implementation, we provide grammar libraries, including the lassoc
and rassoc functions, allowing the user to immediately use them to define their
own languages.
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4.2.6 Abstraction over Parameters

The parameters of a regular function are of certain types (integers, reals, complex,
etc...). A statically-typed higher-order function accepts or returns functions of
certain type. The arguments which are functions themselves must have a fixed
set of parameters. Grammar functions on the other hand may take nonterminals
with unspecified number of input and output parameters. This capability is
essential, because the same grammar constructs are often needed with different
kind of terms.

Consider the MinusDiv grammar handling values in a different ways:

• A number may be a quotient represented by a pair of integers. A Value
would return a pair: ->(num, denom).

• A number may be actually an identifier naming a value defined earlier. A
Value would require an environment map env which maps identifiers to val-
ues in order to obtain a literal constant. We have (env)->Value->(val).

• Expression values may be kept in a single stack structure S rather than
represented as explicit local grammar parameters. We would then have
a production (S)->Value->(S’), where the new stack S’ contains the
parsed value on top of the old S.

In all these scenarios we would like to be able to reuse the same lassoc and
rassoc abstractions to define the MinusDiv grammar.

LangDSL abstractions help achieve that kind of flexibility in three ways.

First, the default arguments and parameters that we described in Section 4.2.4
help define abstractions polymorphic with respect to the nonterminal parameters.
For example, if Value nonterminal expects env as an input, this does not need
to be spelled out within the function. It would be added as the default argument
once the function is invoked.

Secondly, the function syntax has been extended to support a name list object as
an argument. A name list is a parenthesised tuple of identifiers. The parameter
accepting a name list n can appear within the function body in the context
of any regular parameter/argument list l. When the function is invoked, the
contents of n are spliced into l. To avoid potential name conflicts, each use of
the name list can be given a prefix name. To clarify, consider a simple example:
function invoke <N, ins , outs > {

(ins)->a ->(pref.outs) ::=
(ins)->N ->(pref.outs)
(pref.outs) ->(outs);

return a;
}
(env)->Expr ->(num , denom) ::= invoke <Value ,(env),(num , denom) >;

causes substitution ins 7→ env and outs 7→ num, denom within all parameter/ar-
gument lists appearing within the grammar function body. This example reduces
to:
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function lassoc <elem , val , op , action > {
N ->(val) ::= elem ->(val) (val)->NCont ->(val);
(val)->NCont ->(val) ::= epsilon ;
(val)->NCont ->(val) ::= op

elem ->( right.val)
(val ,right.val)->action ->(val)
(val)->NCont ->(val);

return N;
}
lassoc <Value , (num ,denom), "/", action > =

N ->(num ,denom) ::= elem ->(num ,denom)
(num ,denom)->NCont ->(num ,denom);

(num ,denom)->NCont ->(num ,denom) ::= epsilon ;
(num ,denom)->NCont ->(num ,denom) ::= op

elem ->( right.num , right.denom)
(num ,denom ,right.num ,right.denom)->action ->(num ,denom)
(num ,denom)->NCont ->(num ,denom);

return N;
}

Listing 4.16: LangDSL abstraction taking a nonterminal argument list as an addi-
tional parameter val. The contents of the parameter val are spliced every time it is
used in the parameter list. For example, by passing a pair num,denum we obtain a set
of productions exchanging such a pair in between them.

(env)->Expr ->(num , denom) ::=
(env)->Value ->(pref.num , pref.denom)
(pref.num , pref.denom) ->(num , denom);

In the example Listing 4.16 the lassoc grammar function uses a name list object
val. In the last production, in order to differentiate between the operands, the
right value is given a separate name right which becomes the prefix for all val
elements. The elements of val are still spliced into the argument list and do not
form a separate tuple. Doing otherwise would be problematic as argument count
would not match the parameters.

Finally, to avoid excessive and repetitive name list passing, input and output
parameter lists can be extracted for every argument term. If a parameter t
receives an argument of the form (i)->n->(o) a special value t:in gives the (i)
tuple, and t:out gives the (o) tuple. This allows abstractions to be polymorphic
with respect to term argument lists without explicitly requiring the caller to
specify these lists. For example, the same invoke function can be rewritten as:
function invoke <N> {

(N:in)->a ->(pref.N:out) ::=
(N:in)->N ->(pref.N:out)
(pref.N:out) ->(N:out);

return a;
}
(env)->Expr ->(num , denom) ::= invoke <Value >;

When invoked, this example reduces to the same result as before, assuming that
the nonterminal Value takes (in) as input and (num, denom) as output.

As an additional syntactic sugar, any term or expression can be bound to a
new name using the alias keyword. With it the example lassoc can be made
polymorphic with only a single additional line, as shown in Listing 4.17.
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function lassoc <elem , op , action > {
alias val = elem:out;
N ->(val) ::= elem ->(val) (val)->NCont ->(val);
(val)->NCont ->(val) ::= epsilon ;
(val)->NCont ->(val) ::= op

elem ->(right.val)
(val ,right.val)->action ->(val)
(val)->NCont ->(val);

return N;
}

Listing 4.17: LangDSL abstraction taking a polymorphic elem nonterminal. All of
its output arguments elem:out are used by the productions in the abstraction

A different approach to parameter passing could involve declaring variables
having a scope over multiple productions. We have decided, however, not to take
that route. Such design of captured, mutable variables known from imperative
languages has proven confusing in the past. It creates a parser state which can
be hard to track by the programmer.

4.3 Parser Actions

In the Section 4.2.4 we have shown how Syntax Directed Execution scheme is
realized in LangDSL, which is a mixture of grammar specification and DeepCPS
code. We have then shown how grammar fragments can be abstracted and
combined. In this chapter we focus on the semantic actions: Explain how exactly
the execution process works. We give examples how DeepCPS, and dynamic
staging in particular, can be used not only to execute code during parsing, but
also to produce refined code to be executed at a later time.

What is unique for SDE scheme and DeepCPS staging, is that no additional
intermediate representation is used. We do not create node objects that would
need to be explicitly visited later on to produce code. Instead, an action is
invoked as if it was an ordinary DeepCPS function. The function may, through
dynamic staging, produce code, but it is not obliged to do so.

In Section 4.2 we included examples with only the simplest semantic actions
which perform the actual computation immediately during parsing. However,
since DeepCPS is a higher-order language, a semantic action can produce a
function holding a piece of code. Dynamic staging can be then used to resolve
any kind of overhead resulting from that kind of functional encapsulation.

Throughout this chapter we will refer to the function that is being generated
as program or simply as a P function. This is to distinguish the code we build,
from other functions and code pieces that are executed during parsing.

4.3.1 Building Code

DeepCPS with staging can be used to build a program piece-by-piece without
any overhead in the generated code. Each piece is represented in the most generic
way as a regular function, taking arbitrary many arguments, performing some
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operation, and returning through a continuation:
let code

(! args1 , return ) {
...do something...
return . ! args2

}

Recall from Section 4.1.2, !arg1 is tuple aggregation, permitting code function
to accept any number of arguments. At the same time !args2 is tuple separation,
splitting its contents as separate arguments to return continuation function.
Pieces of code of that form can be connected together in a chain:
code1 . !args1 (! args2)
code2 . !args2 (! args3)
code3 . !args3 (! args4) ...

This piece of code effectively performs all the instructions within the code
functions. The actual body of each code function is provided by the DSL creator.
They can freeerly access the contents of the args1 tuple and form any args2
tuple of their choosing. It is up to them to ensure that the code pieces are
assembled in such a way that the arguments are correctly passed between them,
i.e. arity of code2 corresponds to what code1 is producing.

It remains challenging to:

• Automate the process of creating and connecting code.

• Allow code to be incrementally glued together, producing bigger code
pieces.

• Ensure that the above pattern introduces no overhead.

This is achieved with what we name builder functions. The most basic builder,
without staging for now, is given in Listing 4.18. It consists of 3 layers of
functions:

• The blue is a builder function. It accepts arbitrary code, represented in
a function code and creates a green fragment function. The fragment is
immediately returned through return continuation.

• The green fragment function represents a fragment of the program we
constructed with a yet to be specified continuation next.

builder
fragment
body

let build
(code , return ) { return .

(next , return ) { return .
(! args)

code . !args (! args2) next . !args2
}

}

Listing 4.18: The basic builder function (blue) without staging. When invoked with
a specified user code, it returns the code encapsulated in a fragment function (green).
The fragment awaits for a continuation next to continue the user code (brown)
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• The brown body function forms a fragment of a program. It contains the
code specified by the DSL developer, followed by the continuation next.

The builder calls its continuation return with a newly created fragment function.
By invoking the fragment with a specified continuation next we create a body.
The body takes arbitrary many parameters and passes them to user-defined code.
Therefore, in simple terms, the complete user program is created by combining:

program = builder(code) + fragment(next) + body(args)

Builder functions can be invoked directly by the user, or as a part of a semantic
action. This however just creates a series of fragments without any flow or
coherence. Two or more fragment functions can be combined together by glue
functions forming a single, bigger fragment.

The simplest glue example, in Listing 4.19, puts two fragment functions, one after
another: It takes two fragments Fprev and Fnext, concatenates them within its
new body and produces a new single fragment function. Fragments are invoked
in the reverse order: Fnext is invoked first, with an unknown continuation
next, and producing the body body_next. The body_next is then treated
as a continuation for the previous fragment Fprev. This way the produced
body_glued contains the code of Fprev and Fnext, in that order.

The basic builders and glue functions as presented here assume a single continu-
ation chain. Sometimes however, there are different case needed. The code may
require no continuation when it represents an exit or a continuation call on its
own. The code may require multiple continuations or follow paths when it repre-
sents a branching construct. Finally, multiple code fragments may continue into
the same followup, for example when representing a branch convergence point.
Such convergence is implicit in CPS programming, but it may be convenient
to distinguish such a case when using builders to describe a more traditional
non-CPS language.

As branching is a bit more involved topic we discuss it later in Section 4.3.3.
Building a fragment function without continuation, and gluing it to a previous
fragment is easier, and can be achieved with functions in Listing 4.20.

With these tools we are now able to present a simple use case. Consider the
MinusDiv language we were using in Section 4.2 that we repeat in Listing 4.21.

let glue
(Fprev , Fnext , return ) { return .

(next , return ) {
Fnext . next ( body_next )
Fprev . body_next ( body_glued )
return . body_glued

}
}

Listing 4.19: The basic glue function without staging. It invokes fragment func-
tions Fnext and Fprev, putting the body of the former after the latter. The result is
encapsulated within a new fragment function.
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let buildEnd
(code , return ) { return .

( return ) { return .
(! args)

code . !args
}

}
let glueEnd

(Fprev , Fnext , return ) { return .
( return ) {

Fnext . ( body_next )
Fprev . body_next ( body_glued )
return . body_glued

}
}

Listing 4.20: Builder and glue function for ending a sequence of fragments. Fragment
functions produced by these do not expect any further continuations.

grammar MinusDiv {
token Number [[: digit :]]+;
Program ::= Starting Expr Ending Finalize ;
Expr ->(val) ::= Diff;
Diff ->(val) ::= lassoc <Quot ,"-", Operator (-) >;
Quot ->(val) ::= lassoc <Value ,"/", Operator (/) >;
Value ->(val) ::= "(" Expr ")";
Value ->(val) ::= Number ->(str) Number ;
}

Listing 4.21: MinusDiv language that we defined in Listing 4.15. We now focus on
supplying actions for this grammar. The actions are highlighted in blue. These are not
part of LangDSL, but will be replaced by an actual code in this section.

We want the language to parse an expression and build a program P piece by
piece. When P is invoked, it should perform the arithmetic operations and
return a single integer as a result.

We create P from pieces, each being a lambda function of the form (numbers,
end, cont){ ... }, where

• numbers is a list of numbers that are parsed. We represent the list as a
recursive tuple, that is:

– [] — an empty tuple, representing an empty list.
– [N,numbers] — a pair containing a single number N and another

tuple representing the remainder of the list.

It is a common way of representing lists in functional languages.

• end is an actual parameter of P . It is an ending continuation, telling the
program what to do after P finishes its execution.

• cont is a parameter accepting a continuation next provided by the fragment
function, which becomes the next piece of our program.

We create P with five semantic actions:
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Starting When starting an expression, we create a new P function represented
as a lambda (end, cont):
build .

(end , cont) {
cont . [] end

}
(F) ...

The lambda function (end, cont)... is bound to the argument code and
is invoked within the body in Listing 4.18. This substitutes:

end 7→ !args

cont 7→ (!args2){next . !args2}

The lambda (end, cont)... at the moment does nothing besides calling
its continuation with an empty numbers list and end.

Number When a number N is read, it is added to the numbers tuple on the
left, at position 0:
build .

(numbers , end , cont) {
cont . [N, numbers ] end

}
(Fnext)
glue. F Fnext (F)

The numbers list arity increases by one.

Operator When a minus or divide operator is read and its right argument is
accepted the computation action should be performed. We take two first
elements of numbers, in the reversed order, and perform the operation on
them:
build .

(numbers , end , cont) { // numbers = [R, [L, rest ]]
numbers [0] . (R)
numbers [1] . ( second )
second [0] . (L)
second [1] . (rest)
L-R . ( result )
cont . [result ,rest] end result

}
(Fnext)
glue. F Fnext (F)

Ending Finally, when the whole expression is computed, we finish the function:
buildEnd .

(numbers , end) {
numbers [0] . ( result )
end . result

}
(Fend)
glueEnd . F Fend (F)

At that point the list must be reduced to a single last value. The parameter
end is the ending continuation provided by the DSL developer that was
defined in the starting fragment and has been carried through all fragments
in between.
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Finalize After gluing the end, we obtain the fragment F that encapsulates a
complete program P. In order to peel off the encapsulation, one simply
invokes F and obtains P in the returning continuation:
F . (P) ...

To see how these actions interact, consider an example input "1-4/2". Given the
position of actions in the grammar, particular tokens are processed in the postfix
order: S 1 4 2 / - E F, with S indicating the starting and E, F ending/finalize
actions. Parsing such an input executes code equivalent to the one shown in
Listing 4.22. Note however, that each build call is actually originating from
different locations within the grammar.

In the above example building is interleaved with gluing. This pattern is not
a must: Gluing can happen at any later moment. This allows fragments to be
rearranged, or used multiple times if needed.

By executing the builders in the example, we obtain a program P that is
equivalent to:
(end , cont) {

4/2 . ( result1 )
1- result1 . ( result2 )
end . result2

}

We say equivalent because what we actually obtain is a tree of fragment function
calls. Only by performing a beta reduction on all the fragment function calls, and
performing partial evaluation of their bodies, the above code for P is obtained.
In the next section, we show how to achieve that through dynamic staging,
without any overhead coming from gluing and building.

4.3.2 Removing the Overhead

The presented solution shows how the code can be built piece by piece, but
the produced program is not very efficient. The program contains bodies of all
builder functions and the calls to code functions specified by the DSL developer.
Transitioning from one piece to another and managing the !args argument is
performed at run time, when the generated program is executed. With the help
of dynamic staging, as presented in Section 4.1, we can force the interpreter to
perform the necessary reductions early.

For the purpose of our discussion we define two staging chains (defined in
Section 4.1.7).

• The build-time staging chain represents work that should be done during
building. It is represented by the bt stage variables. The chain is triggered
at the final step of the build process. In this chain, all calls to code are
resolved, packing and unpacking the !args parameters. Afterwards, values
coming from one code function are used directly in other code functions.

• The function-time staging chain represents the moment when the produced
program P is actually called. It is controlled by ft stage variables.
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starting

number

number

number

operator

operator

ending

build .
(end , cont) {

cont . [] end
}
(F1)

build .
(numbers , end , cont) { // numbers = []

cont . [1, numbers ] end
}
(Fnext)

glue . F1 Fnext (F2)
build .

(numbers , end , cont) { // numbers = [1, []]
cont . [4, numbers ] end

}
(Fnext)

glue . F2 Fnext (F3)
build .

(numbers , end , cont) { // numbers = [4, [1, []]]
cont . [2, numbers ] end

}
(Fnext)

glue . F3 Fnext (F4)
build .

(numbers , end , cont) { // numbers = [2, [4, [1, []]]]
numbers [0] . (R) //R = 2
numbers [1] . ( second )
second [0] . (L) //L = 4
second [1] . (rest)
L/R . ( result )
cont . [result ,rest] end result

}
(Fnext)

glue . F4 Fnext (F5)
build .

(numbers , end , cont) { // numbers = [2, [1, []]]
numbers [0] . (R) //R = 2
numbers [1] . ( second )
second [0] . (L) //L = 1
second [1] . (rest)
L-R . ( result )
cont . [result ,rest] end result

}
(Fnext)

glue . F5 Fnext (F6)
buildEnd .

(numbers , end) { // numbers = [-1, []]
numbers [0] . ( result )
end . result

}
(Fend)

glueEnd . F6 Fend (F7)
F7 . (P)

Listing 4.22: All actions that are executed when evaluating the input "1-4/2".

116



Parser Actions 4.3

Both build-time and function-time staging chains are available to the DSL
developer when they specify the code functions. It is up to them to decide which
part of their code should be executed when.

Consider an updated builder function in Listing 4.23. The functionality remains
the same: The builder encapsulates a fragment, which encapsulates the body
function containing user code. This time however, the body function uses the
fragment chaining pattern twice for the build-time and function-time staging
chains. In addition we stage the call to the continuation next upon the parameter
next itself. This means, that as soon as next is a concrete function rather than
a symbolic name, it is invoked.

The glue function in Listing 4.24 is updated as well. As soon as glue is invoked
with concrete Fnext and Fprev fragment functions, these are invoked. This peels
off the fragment function encapsulation around the body functions. Bodies are
connected and placed in the context of the (next, return) lambda function.
When completed, glue returns a new fragment function with no nested fragments
inside — just the body functions staged upon bt.

In addition to build and glue we also need a finalize function, as the one in
Listing 4.25. This is to be called on a fragment containing a complete program.
It triggers the build-time chain, calling all the code functions in sequence, and
leaving only those pieces that are actually staged upon the ft chain.

Notice that in this discussion we avoid the terms “compile-time” and “run-time”
on purpose. The mechanism we describe does not put any requirements on
when the generated program is actually called. The program may be used at
compile-time, parse-time, as a part of another, more complex builder or at any
other moment of interpretation. The mechanism also does not prevent the DSL
designer from incorporating more staging variables within its program. These
may be hidden within !args or be captured in some other way.

In order to see how to use the staged builders, let us revisit the MinusDiv actions
again. As before, we use 5 semantic actions:

Starting As before, when starting an expression, we create a new P function.
This time however, we add the additional function-time staging variable
ft:
build .

(ft, end , cont) {

builder
fragment
body

let build
(code , return ) { return .

(next , return ) { return .
(bt, ft, !args)

@bt: code . ft !args (ft, !args2)[bt]
@next: next . bt ft !args2

}
}

Listing 4.23: The basic builder function (blue) with staging. At build-time (bt) !args
are properly expanded and calls to user code are resolved. Only pieces within user code
staged on function-time (ft) remain, leaving no trace of this building process.
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let glue
(Fprev , Fnext , return )[g] { return .

(next , return ) {
@g: Fnext . next ( body_next )

Fprev . body_next ( body_glued )
@return : return body_glued

}
}

Listing 4.24: The basic glue function with staging. Fragment functions Fnext and
Fprev are invoked immediately, under the (next, return) lambda. The result of the
reduction is encapsulated within a new fragment function.

let finalize
(F, return ) {

F . (P)[bt]
return .

(! args)[ft] {
@bt: P . bt ft !args

}
}

Listing 4.25: The finalize function, where build-time and function-time chains
begin. The program P is invoked early, with yet-unspecified ft (equivalent to ⊥) and
unknown !args. All instructions within P that are staged upon ft remain as code and
are spliced together as the body of the lambda (!args)[ft]....

cont . ft [] end
}

(F)

This additional parameter is removed at the very last step of the building
process, in the Finalize action.

Number A number N is added to the numbers tuple. No instruction is staged
upon ft, thus this code piece produces no code at function-time.
build .

(ft, numbers , end , cont) {
cont . ft [N, numbers ] end

}
(Fnext)
glue. F Fnext (F)

Operator As before, when an operator is encountered, the operands are ex-
tracted from the numbers list. All tuple operations are performed when the
code is invoked from within the fragment function — that is, at build-time
bt (the code invocation in Listing 4.23). Only the actual operation is
performed at function-time.
build .

(ft, numbers , end , cont) { // numbers = [R, [L, rest ]]
numbers [0] . (R)
numbers [1] . ( second )
second [0] . (L)
second [1] . (rest)[bt]
@ft: L-R . ( result )[ft]
@bt: cont . ft [result ,rest] end result

}
(Fnext)
glue. F Fnext (F)
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Ending When the whole expression is computed, the function finishes at
function-time:
buildEnd .

(ft, numbers , end) {
numbers [0] . ( result )
@ft: end . result

}
(Fend)
glueEnd . F Fend (F)

Finalize After gluing the ending, we obtain the fragment F that encapsulates
a complete program. We use the finalize function to obtain an actual
program, which no longer contains any overhead.
finalize . F (P)

Using the above semantic actions with the input "1-4/2" gives us exactly the
desired result:
(end , cont)[ft] {

@ft: 4/2 . ( result1 )[ft]
@ft: 1- result1 . ( result2 )[ft]
@ft: end . result2

}

A detailed simulation of all the interpreter steps leading to this result is given in
the Appendix A.

4.3.3 Branching

So far we focused on the simplest fragment functions where the code uses only a
single continuation. In short, we say that these fragment functions are of arity 1.
However, if more continuations are needed in the code we need to adjust the
builder as well. For example, if we were using a branch instruction in the code
we build, we would be needing two continuations.

A naive approach would be to create a new builder suited for branching, as
shown in Listing 4.26. The user code accepts not one but two continuations and
uses both in some way.

The produced fragment however is different: it expects not one but two Fnext
functions, i.e. it is of arity 2. This makes the fragment incompatible with the
simple glue function we used so far. As we incrementally build our code, we
need to attach other fragment functions to this one. A straightforward approach

let build2
(code , return ) { return .

(next1 , next2 , return ) { return .
(bt, ft, !args)

@bt: code . ft !args
(ft , !args2)[bt] { @next1 : next1 . bt ft !args2 }
(ft , !args2)[bt] { @next2 : next2 . bt ft !args2 }

}
}

Listing 4.26: A builder for a code which takes two continuations.

119



4. ManyDSL Components

let glue2_1
(Fprev2 , Fnext1 , idx , return )[g] { return .

(next1 , next2 , return ) {
@g: idx ==0 . (first)

ifelse . first
(endif) { Fnext1 . next1 (body1)

Fprev2 . body1 next2 endif }
(endif) { Fnext1 . next2 (body2)

Fprev2 . next1 body2 endif }
(body)
@return : return . body

}
}

let glue1_2
(Fprev1 , Fnext2 , return )[g] { return .

(next1 , next2 , return ) {
@g: Fnext2 . next1 next2 ( body1 )

Fprev1 . body1 (body)
@return : return . body

}
}

let glue2_0
(Fprev2 , Fnext0 , idx , return )[g] { return .

(next , return ) {
@g: Fnext0 . (body)

idx ==0 . (first )
ifelse . first

(endif) { Fprev2 . body next endif }
(endif) { Fprev2 . next body endif }

(body)
@return : return . body

}
}

Listing 4.27: A naive approach to gluing: a set of glue functions needed for connecting
fragment functions of different arity. The number after the names Fprev and Fnext
indicates the expected arity of the argument fragment function.
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let build
(arity , code , return ) { return .

(neli , return ) {
for . neli [] 0 arity

(neli , lambda_tuple , i, break , continue )[g] {
@neli: unfold (neli) . (next , neli_remain )
@g:
let lambda_i = (ft, !args2)[bt] {

@next: next . bt ft !args2
}
concatenate ( lambda_tuple , [ lambda_i ]) . ( lambda_tuple )
continue . neli_remain lambda_tuple

}
( neli_remain , lambda_tuple ) return .

[ (bt, ft, !args) { @bt: code . ft !args ! lambda_tuple }
, neli_remain ]

}
}

let glue
(Fprev , Fnext , return )[g] { return .

(neli1 , return ) {
@g: Fnext . neli1 (neli2)

Fprev . neli2 (neli3)
@return : return . neli3

}
}

Listing 4.28: A generic build and glue

would be to create a set of glue functions to connect our arity-2 fragment in
various combinations. For example, in Listing 4.27 we include:

• glue2_1 allows to connect an arity-1 fragment to either of the branches of
our arity-2 fragment function. The parameter idx signifies which branch
we connect to. The result is a new arity-2 fragment.

• glue1_2 allows to put our arity-2 fragment as a follow-up of another arity-1
fragment, producing a new arity-2 fragment function.

• glue2_0 sets an arity-0 fragment as a continuation of one of the branches
of arity-2 fragment. When an arity-0 fragment is attached to one of the
branches, it ends this branch. The result is a new fragment with arity 1.

The situation gets more complicated when the number of branches increases.
When code needs even more continuations or when the branches are nested, we
may produce fragments with arbitrarily high arity. For that reason we need a
more generic solution to builders, so that the DSL developer is not confused by
many different versions of those functions.

We want a single generic glue function that can handle any number of next
continuations. To that end, we put all these continuations in a single structure
and pass that between the builders. Each fragment function can consume as
many next continuations as needed and provide any number back into the struct
as well. Only the builders need to explicitly specify the arity.

In our solution, we keep the next continuations in a list neli (next list). This

121



4. ManyDSL Components

is similar to how we kept numbers in our MinusDiv language. The list is defined
in a typical functional way, with each element being either an empty tuple []
signifying the end of the list, or a pair containing a value and the remainder of
the list [value, list].

The build function takes an integer argument arity that must be provided
by the DSL developer. The value specifies the number of continuations needed
by the user code that are being constructed incrementally with the fragments.
The builder then unfolds arity number of elements from the list and builds a
regular lambda_tuple tuple containing all the continuations. With it, the call
to user-defined code is possible. The new resulting code fragment is put on top
of the remaining neli and returned.

With this setting, the glue function is as simple as its original arity-1 version in
Listing 4.24. The only difference is that it now passes lists between the fragment
functions, and not a singular next/body function. In this version we do not
give the parameter idx to let the user specify to which branch to attach. Such
index is hard to track in a multi-branched scenario. Instead, we require that the
follow-up fragments are provided in the left-to-right order. A fragment can be
glued as a part of the second branch only when the first branch is finished (i.e.
is sealed with an arity-0 fragment).

We do not think that this limitation is a problem. It keeps the function usage
simple. In most scenarios, parsers read the code in a depth-first left-to-right
order and that specific order can be easily incorporated using these generalized
builders. If this sequence cannot be maintained, fragment functions that build
up each branch can be glued separately, before attaching them to the high-arity
fragment where the branching occurs. The DSL designer may choose to glue
pieces to construct a complete branch, expressing it as a single fragment and
only then glue it to the code that actually creates the branch.

The generalized builder also needs an explanation of its staging. In general, the
whole fragment is executed when invoked in a glue function. The arity for
loop is unrolled and the continuation lambda_i functions are created. The only
exception is the the unfolding of the list, that is delayed until the value neli is
known. It is important to note that this does not mean that we need the whole
list to be known. The contents of the known neli pair may again be symbolic.
All needed next values can be retrieved as soon as they are available, even when
working on an incomplete list.

It suffices that the neli pair is provided, even if its elements next and neli_remain
remain as symbolic values. This means, all next operations can be resolved even
when operating on the incomplete list.

In fact, neither build nor glue ever specify the list end. This reflects the fact,
that any fragment, even the one representing the whole program, may be used
as a piece to build something bigger. The end is provided only in the finalize
function (Listing 4.29) which seals the list with an empty tuple, and makes the
program ready to be executed.

In the later examples whenever we use build, glue, and finalize we refer
to these generalized versions of functions. Their behavior for a non-branched
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let finalize
(F, return ) {

F . [] (list)
unfold (list) . (P, empty)[bt] // empty is []
return .

(! args)[ft] {
@bt: P . bt ft !args

}
}

Listing 4.29: The finalize function adjusted to work with the generalized build
and glue. This is the only place where we specify the end of the neli list.

fragments is exactly the same as their simple counterparts we introduced earlier.
These three functions: build, glue, and finalize suffice to construct a complete
program.

4.3.4 Converging

As we discuss in Section 4.1.2 and Section 6.1.1, branches in CPS do not converge
explicitly. Typically, such convergence is achieved implicitly by having both
branches call the same continuation at some point. For example, consider a
DeepCPS definition of ifelse given in Listing 6.1, which we repeat here:
let ifelse (cond , tb , fb , endif) {

if . cond
() { tb . endif }
() { fb . endif }

}

The intrinsic if creates a branch that by default never converges. However,
both tb and fb branches take the same endif continuation as an argument. By
calling it, both branches converge on the same path.

When building branching code, one may try the similar solution. One would
create a fragment function endif representing the rest of the program. Then,
one would provide the endif twice, as a continuation of both branches.

Recall however, that fragments are invoked during gluing, at construction time.
As a result, endif fragment would be invoked twice, replicating the code that
is produced. Overall, the created program behaves as intended, but the code
becomes exponentially large with the number of branches. If a loop was created,
this strategy could infinitely unroll the loop at code building time. Such behavior
is required formally (Section 4.1.1) but it is also the actual behavior of the
interpreter as described in Section 5.1.2

The key observation is that the converging continuation endif is effectively
invoked at build-time, before the function-time condition is resolved. Even when
using dynamic staging without builders at all, such a thing should be avoided
unless the code replication is the intended behavior, e.g. when unrolling a loop.

In our case we want the actual call to the converging continuation to be performed
when executing the program that we produce. It can be achieved in the following
way:
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build . 3
(ft, end , tb , fb , converge )[bt] {

@ft: ifelse . <condition >
(endif)[ft] { @bt: tb . ft endif }
(endif)[ft] { @bt: fb . ft endif }
()[ft] { @bt: converge . ft end }

}
( F_tb_fb_conv )

build . 0
(ft, endif) {

<true branch body > . ()
@ft: endif .

}
(F_tb)

glue . F_tb_fb_conv F_tb ( F_fb_conv )
build . 0

(@ft: endif) {
<false branch body > . ()
@ft: endif .

}
(F_fb)

glue . F_fb_conv F_fb ( F_conv )
... //( F_conv ) is now a normal , non - branched fragment

Listing 4.30: Building a branch that converges using the generalized build and glue

• Specify the converging continuation as a separate, third continuation of
the branching fragment.

• Pass the converging continuation as an actual parameter into the true- and
false- branches.

• From the perspective of each branch, treat the converging continuation as
an end parameter that ends the branch.

• Finish building each branch with an arity-0 fragment and its body calling
the end.

The need for a third continuation may be surprising at first. Notice however
that we are building a construct more similar to ifelse given above rather than
the non-converging, generic if. The ifelse takes three continuations instead of
two, and that is the arity of branching that we need.

In the example Listing 4.30 we show this solution. The first fragment we
build, F_tb_fb_conv) contains the ifelse call within the code we produce.
The fragment requires three continuations: tb, fb and converge. Each of the
continuations is called at the build-time stage, before the condition is actually
resolved. This is needed in order to actually build the code.

The branches tb and fb are created separately in the following build calls. In
our example, a single build is used for a complete branch, but it could be created
incrementally from multiple fragments, as if a separate program was constructed.
Each branch ends with a function-time call to endif. Notice, that endif is
a regular code parameter originating from ifelse, and not a code reference
produced by a fragment function.
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let code
(! args_1 , loop_body ) {

fix rec (! args_n ) {
loop_body . ! args_n rec

}
in

rec . ! args_1
}

Listing 4.31: A code for a simple loop to be used with stageless builders

let code (ft, !args_1 , loop_body ) {
rec - static ( args_1 ) ( sargs_1 )
rec - dynamic ( args_1 ) ( dargs_1 )[bt]
@ft:
fix rec (! dargs_n )[ft] {

@bt:
concatenate (sargs_1 ,dargs_n ,[ rec ]) . ( dargs_n )
loop_body . ft ! dargs_n

}
in

rec . ! dargs_1
}

Listing 4.32: A code for a simple loop to be used with builders with staging.

As soon as each branch is complete, it is glued to the ifelse branching fragment.
Each time the arity of the fragment is reduced. At the end of the snippet, the
F_conv function can be used as a simple fragment of arity 1. New fragments
can be connected to the front or back of it, producing a bigger construct.

4.3.5 Loops and Recursion

Loops and recursion pose an additional challenge in DeepCPS. They require a
fix-point combinator. This, however, can be provided within the user code, and
requires no change in the builders. The simplest, potentially infinite loop without
staging is given by Listing 4.31. This code function is designed to be used with
an unstaged build. All we do within its body is to invoke a recursive function
rec, which in turn invokes the user-defined loop_body. The last parameter
provided to loop_body is again the rec, allowing the user-defined function to
loop. The code provides no direct means to break the loop, but a breaking
continuation may be available among !args_1 parameters.

When introducing staging or building, attention has to be made to recursive and
looping functions. As we explained in last section, these should not be called
unconditionally at build-time as it may lead to infinite unroll. Instead, in most
cases both the definition and call should appear at function-time.

The change in Listing 4.32 is a little bit more involved though. It must be
decided which arguments remain static with respect to the loop, and which
change with each iteration. For the purpose of the example we assume that the
recurring argument !args contains both and that it can be split into a static
(sargs) and a dynamic (dargs) part. The static part is directly captured by the
recursive function and does not change with each loop iteration. The dynamic
part is passed as a tuple argument dargs.
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let code (ft, !args , f1_body , f2_body , in_body ) {
rec - static (args) (sargs)[bt]
@ft:
fix

f1 = (! fargs)[ft] {
@bt:
cont1 . ft !sargs !fargs f1 f2

}
f2 = (! fargs)[ft] {

@bt:
cont2 . ft !sargs !fargs f1 f2

}
in

let [ft];
@bt:
in_body . ft !args f1 f2

}

Listing 4.33: Defining two mutually recursive functions with builders and staging.

Consider the following, more practical example: In Listing 4.33 we have a series
of mutually-recursive functions. Assuming the DSL developer knows upfront
how many functions are there, this can be built using the polyvariadic fix of
DeepCPS.

As before, the arguments !args provided to the initial code are split into static
and dynamic parts. Within the fix we define two functions, named f1 and
f2. Each has an unspecified body represented as a continuation f1_body and
f2_body, which are provided later on through the generic glue function.

Both functions take a generic !fargs tuple as an argument list, but if the actual
arguments are known to the DSL developer those can be specified explicitly.
Function arguments are passed to the continuation, together with the static part
of !args. Unlike the previous example, the dynamic part of !args does not
have to reach the functions f1, f2. The functions can have different parameters.

In addition to !fargs and !sargs the continuations take the functions themselves
as arguments. This way, from within the bodies of these functions, f1 and f2
can be called recursively.

Finally, at the very end of the fix construct, an additional continuation in_body
is used. This represents the normal code that follows up the function declarations,
within which those functions can be referenced for the first call.

Unfortunately, the above piece of code cannot be abstracted out easily with the
respect of the number of functions. This is because the DeepCPS fix construct
is not flexible in that respect. It cannot be built in pieces or created in a generic
way. In practice, it is still possible to achieve that through careful manipulation
of ManyDSL nodes, which we show in Section 6.4.3.

4.4 Conclusion

In this chapter we have shown the novel, dynamic approach to staging. We
have explained how new language grammars are defined in LangDSL. Finally,
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we explained how actions, written in staged DeepCPS, can be used to construct
new code free from any overhead coming from this building process.

When explaining the language construction we had a running example of a small
MinusDiv language. Let us, once again, bring that example, in its most complete
form in Listing 4.34.

For the readability sake, we have defined all the actions before the grammar,
using only their names within the language definition. The logic of the produced
code has been explained in Section 4.3.1: Whenever we parse a number, we add
it to numbers list, while each operator takes its two arguments and puts the
result there.

As explained in Section 4.3.2 we use two staging chains: build-time (bt) and
function-time (ft). Code staged upon build-time is executed during the con-
struction. Function-time chain begins in finalize function (Listing 4.25) and
represents all computation that should be performed when the function is in-
voked. In our case, the only function-time computation is the actual subraction
and division. Everything else is resolved during building.

The order of action invocation is controlled by the grammar of the language.
As explained in Section 4.2.5 we use a grammar function lassoc to define a
left-associative operators - and /.

Because throughout the language we operate on a single fragment function F,
incrementally adding code to it, that is the only parameter that is passed around
between the terms of the grammar.

The MinusDiv language is intentionally minimal, explaining the underlying
mechanisms. In Section 6.4 we move upwards, showing how more complex
structures and domain-specific optimization can be defined. Finally, in Section 6.5
we show a more complex array-processing DSL implemented using the techniques
shown here. In those examples we focus only on the work of a DSL developer –
we no longer inspect or alter LangDSL or the builder functions explained in this
section.
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let starting ( return ) {
build . 1 (ft, end , cont) {

cont . ft [] end
} return

}
let number (F, str , return ) {

str2int . str (N)
build . 1 (ft, numbers , end , cont) {

cont . ft [N, numbers ] end
} (Fnext)

glue . F Fnext return
}
let operatorDiff (F, return ) {

build . 1 (ft, numbers , end , cont) {
$proj . 0 numbers (R) $proj . 1 numbers ( second )
$proj . 0 second (L) $proj . 1 second (rest)[bt]
@ft: L-R . ( result )[ft]
@bt: cont . ft [result , rest] end

} (Fnext)
glue . F Fnext return

}
let operatorQuot (F, return ) {

build . 1 (ft, numbers , end , cont) {
$proj . 0 numbers (R) $proj . 1 numbers ( second )
$proj . 0 second (L) $proj . 1 second (rest)[bt]
@ft: L/R . ( result )[ft]
@bt: cont . ft [result , rest] end

} (Fnext)
glue . F Fnext return

}
let ending (F, return ) {

build . 0 (ft, numbers , end) {
$proj . 0 numers ( result )
@ft: end . result

} (Fnext)
glue . F Fnext return

}
function lassoc <elem , op , action > {

(F)->N ->(F) ::= (F)->elem ->(F) (F)->NCont ->(F);
(F)->NCont ->(F) ::= epsilon ;
(F)->NCont ->(F) ::= op (F)->elem ->(F) (F)->action ->(F)

(F)->NCont ->(F);
return N;

}
grammar MinusDiv {
token Number [[: digit :]]+;
Program ->(P) ::= starting ->(F) Expr (F)->ending ->(F)

(F)->finalize ->(P);
(F)->Expr ->(F) ::= Diff;
(F)->Diff ->(F) ::= lassoc <Quot ,"-", (F)->operatorDiff ->(F) >;
(F)->Quot ->(F) ::= lassoc <Quot ,"-", (F)->operatorQuot ->(F) >;
(F)->Value ->(F) ::= "(" Expr ")";
(F)->Value ->(F) ::= Number ->(str) (F,str)->number ->(F) ;
}

Listing 4.34: The complete version of MinusDiv language, which for given input
produces a program that – when invoked – computes the result.
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Chapter 5

Implementation

In this chapter we focus on the implementation details of ManyDSL. We explain
the algorithms we use, practical obstacles that were encountered and how we
have chosen to resolve them.

The whole project is divided into 5 main modules, each depending on the previous
ones:

ManyDSL Core — implements the ManyDSL Target Representation and the
interpreter operating on it.

Lang module handles language specification and parsing

DeepCPS module specifies the DeepCPS language using Lang.

Executor module provides top level control on file reading and switching
between different components of ManyDSL.

Compilator module translates the ManyDSL Target Representation into Thorin
and later LLVM.

Finally, we provide a thin Application layer which allows the ManyDSL system
to be run by the user.

5.1 ManyDSL Core

The ManyDSL core defines the representation of ManyDSL programs, and
provides functionality necessary to interpret and transform it according to CPS
and dynamic staging rules. For the purpose of this section let us assume that
the whole code is given at once. In Section 5.7 we describe how the interpreter
behaves when executing an incomplete program.
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5.1.1 Target Representation

All ManyDSL programs are represented in Target Representation (TR). It is the
representation produced by the parsers and is used directly for interpretation
of the code. There is no additional intermediate representation used for other
actions, such as code optimization.

The TR is implemented entirely in C++. The main class representing the code
structure is WindNode. The name “wind” is the internal name for ManyDSL
interpreted code.

WindNode

ManyDSL programs in TR are represented as a graph. All graph nodes are
objects of the WindNode class.

Graph edges are represented as pointers within nodes. There are two categories
of edges: primary and secondary. Primary edges form a tree and define the
structure of the program, i.e. which program terms are children of other terms.
Secondary edges can connect any nodes without constraints, defining a reference
for variables and staging.

Throughout this chapter, whenever we refer to a child or parent of a given
node, we follow the primary edge. Secondary edges are denoted as references.

All outgoing edges, both primary and secondary are kept in a single array within
the WindNode object. The WindNode class provides methods to attach new edges,
reconnect elements between two branches of the program tree, or even clone
a whole subtree of a given node if necessary. The class also handles garbage
collection, which we discuss later in this section.

Every edge connecting two nodes X → Y , has a corresponding backedge
connecting Y → X. As the actual edge is stored in the source node X, the
backedge is stored in the target Y . This way, every node “knows” where it is
being used. A backedge of a primary edge is referred as parent edge and points
to the parent node. Since primary edges form a tree, each node has at most one
parent. It is possible, however, for a node to be dangling, without a parent.

A plain WindNode object holds no semantic meaning; semantics is provided by
classes that derive from WindNode.

Simple Values

A Value, derivative of WindNode, is any term that is the first-class citizen of the
language. ManyDSL supports, as derivatives of Value:

• Simple values, stored in PrimitiveValue. It is a single value, which is an
integer (32-bit or 64-bit, signed or unsigned), a floating-point value (32-bit
or 64-bit) a Boolean or a null-terminated string.

• Tuples, consisting of arbitrary number of member values.
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• Raw pointers and strong pointers. The former can point to any kind of
data. Strong pointers can be used when DeepCPS code itself operates on
ManyDSL nodes, not necessarily created as a part of the current program
code.

• Type values (Kind class and derivatives). While ManyDSL provides no
type checking, it implements a basic type annotations allowing the user
program to use them.

• Intrinsic values (functions). These provide interface to functionality na-
tively supported by ManyDSL. This includes arithmetic and Boolean
operations, comparison, string manipulation, conversion, importing C li-
braries, exiting and halting a program. It also provides simple debugging
tools, such as printing values in the console or printing the underlying
ManyDSL structure.

Closure and Parameters

The Closure class (derivative of a Value) represents a lambda function. Since
references within the function may point outside of its scope, such function
actually acts as a closure: free variables may be bound and act as an environment
for the closure.

A Closure has at least one child: its body. It may also have a staging payload
(which we explain below), and arbitrary many parameters. The Payload object
can be omitted only when using natural staging.

Each Parameter, also derivative of Value is a simple node acting as a proxy.
Initially it contains merely the parameter name for debugging purposes. Similarly
to a closure, it may also have a staging payload. Parameter also holds a reference
to a value when the parameter is bound. We discuss value-parameter binding in
detail in Section 5.1.2.

Parameters keep track of all uses of it, and know its use count. Every reference
to a given parameter causes the parameter to hold a backedge to the using node.

Action

The Action class is a WindNode that is not a Value and represents a single
computation. Most commonly, it is an application: Calling a function with a
list of arguments. However, it may also represent a fix node, branch, memory
operation, or program termination. Some of these representations do not require
any arguments or have no function to be called.

The function and its arguments can be either actual children of the action or
mere parameter references. If an argument (or callee function) is an actual child,
it means that the value is inlined at the point of its usage.

In addition, each Action may have a StageEvaluator child. If present, it
represents the staging expression that formally precedes every application and
facilitates its evaluation. The StageEvaluator object can be omitted, for
optimization reasons, only when using natural staging.
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A DeepCPS let x y construct is translated to an Action node. Such node
takes one argument: y and invokes an anonymous Closure λ. The λ has one
parameter x and its body contains the remaining part of the program.

A DeepCPS fix construct looks mostly the same as a let described above. The
only differences are:

• The Action node is flagged as FIX, but it has no actual impact on the
interpreter.

• The λ can have multiple parameters. Their count and name matches the
names defined in the fix construct in DeepCPS.

• The parameters of λ can be referred by the arguments of the FIX node,
which are not in the λ subtree. This unique behavior allows to define
recursion.

Staging and Payload

An object of type StageEvaluator is a child of every action that has nontrivial
staging. It holds the whole boolean expression of the staging and may be
evaluated to check if it has become active.

Suppose a term x is used in a staging expression. When that happens, the node
x is given an additional child of type Payload. Whenever x is used in a staging
expression, the StageEvaluator object references thy Payload of x. Backedges
of the Payload are used to find all actions that may become active when x
becomes equivalent to >. Recall from Section 4.1.3, this may happen if:

• x is a Closure object that is invoked.

• x is a Parameter object, and a known constant has been asigned to it.

Garbage Collection

ManyDSL performs garbage collection to reclaim memory owned by nodes that
are no longer reachable. A template class sp<Node> acts as a strong pointer to any
ManyDSL node of type Node. Nodes referenced in this way are reference-counted.
The reference count is stored within the WindNode class, i.e. implementing the
intrusive pointer concept. Weak pointers are synonymous to raw pointers.

The strong pointers are intended to be used in code outside of ManyDSL core
control. These act as root nodes for a mark-and-sweep garbage collection.
During the garbage collection, the program structure is inspected. All nodes
that are reachable from the roots, following both primary and secondary edges,
are marked and remain intact. Backedges are ignored in this reachability test.
Unreachable nodes are then deleted.

Example

In Figure 5.1 we give a short example how the Target Representation structure
actually looks like. This is a part of the staged pow function examples we used
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Section 4.1.5, namely:
fix pow (base , exp , return ) ... in
@pow:
let pow72 (base , return ) {

@pow: pow . base 72 ( result )
@result : return . result

}
...

Let us explain the structure, step by step. To help navigate, the numbers of our
list refer to the objects marked by those numbers.

1. At the top, we have an Action representing the FIX node. The right
subtree is a lambda that we bind to pow. The left subtree is a lambda
representing the rest of the program, appearing after the in clause.

2. The in clause is represented as a lambda (diamond shape) having a single
parameter pow — the only value defined by this fix. The body of the
lambda is the left child. It is the first action appearing after the in clause.

3. The first action after the fix ... in is a regular Action (square). It
represents the statement @pow: let pow72 (...)... ... with three chil-
dren:

• The first child is the StageEvaluator depicted as a hexagon. It holds
the Boolean expression of the staging for the parent action. In this
particular case, the action is staged upon a single value reference
@pow:, thus the StageEvaluator references the Payload (triangle)
of the pow parameter object.

pow base

x

exp return

pow72

result

base

72

return...

...

Action

Closure

Stage Evaluator

Payload

Parameter

1

2

3

4

5

6

7

Figure 5.1: Graph primitives for representing a CPS program.
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• The second child is the let lambda, containing the rest of the program
and the parameter pow72 that is being defined.
• The third child is the value that pow72 is being set to.

4. The value that we bind to pow72 is a Closure node with 3 children: a
body Action and parameters base and return.

5. The body of the lambda that we bind to pow72 is an Action with 5 children,
given in this order:

• The StageEvaluator controlling the staging. As before, it merely
references the Payload of pow parameter.
• The function that is being invoked. At this moment, it is the symbolic
value pow. Thus, a secondary edge references the pow parameter.
• The first argument, which is the parameter base, referenced through
a secondary edge.
• The second argument, a constant 72, referenced directly through the
primary edge.
• Third argument — the returning continuation passed to pow, given
as a lambda and referenced through the primary edge.

6. The returning continuation is a Closure object, containing a body and a
single parameter result.

7. The body of the returning continuation is an action with three children:

• Since the action is staged, the StageEvaluator is provided, which
refers the Payload of result parameter object.
• The callee is the return parameter object.
• The only argument passed to return is the result parameter object.

5.1.2 Interpretation

So far, we have explained how the program representation looks like. We now
focus on how the representation changes during the program execution. We use
the word interpretation because the ManyDSL representation explained above
is used as-is to perform computation, as opposed to compiling it to some other
form prior to execution. However, unlike typical interpreters, ours is destructive,
i.e. changes the code as it executes. The execution steps closely resemble the
actual formal semantic rules explained in Section 4.1.3. For example, calling a
lambda function causes the application to be actually removed from the code
and replaced by the function body.

Stageless Execution Step

Let us assume for the moment that the interpreter is executing a portion of
the code that is not using staging, i.e. only natural staging is used. We have
an Action A selected to be executed in the current interpretation step. The
algorithm does three things, as shown on Figure 5.2:
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pow

base exp return base

72

return... A

...

pow

base exp return base

72

return... A

...

base exp return...

f

f

L

base

72

returnA

...

base exp return...

L

base

72

return

...

base exp return...

1

2

3

Figure 5.2: A single interpretation step of an action A. The callee is cloned,
arguments are bound to parameters and finally the caller action is replaced by the body
of the callee.
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1. If the called function f is referenced through a parameter and is not an
actual child of A, then it is cloned: A new lambda function L (Closure
object) is created as a child of A, replacing the reference. The L is a deep
copy of f , all nodes reachable from f through primary edges are copied.
Secondary edges within L are updated accordingly: pointing to new nodes
if they were cloned in the process, or referencing originals when they are
outside of the scope of f .
If the called function is already a lambda L, an actual child of A, nothing
happens in this step.

2. The arguments vi of the action A are bound to the parameters xi of the
called lambda function L. For each argument vi we check the type of the
edge that connects it with A. If vi is connected through a secondary edge,
then a new reference edge is added, connecting the Parameter xi to vi.
On the other hand, if vi is connected through the primary edge to A, then
the said argument is “stolen” in favor of xi; that means vi is disconnected
from A and Parameter xi becomes its new parent.
There is no actual substitution at the use site of the parameters. All
references to the Parameter xi still point there, instead of the newly
acquired value vi. Sill, vi is now the child of xi making it easily reachable
from all of its uses.

3. The action A is removed from the code, and replaced with the body of
the called function L. That means, the parent of A — which must be a
Closure object — points to the body of L as its new body. The body,
which is another Action object, is scheduled for the next execution step.

Compared to a formal definition of application semantic (CPS1):

(λx.b) v →

 x1 7→ v1
...

xn 7→ vn

 b
the only difference is that parameters within the called function are not immedi-
ately replaced by the arguments. The substitution is delayed until the actual
value is needed.

Naturally, it may happen that the Action node is not an actual lambda function
call. It may be a call to some built-in functionality or a foreign C function call. In
those cases, the arguments are evaluated and passed to the corresponding C++
module handling that particular function. Typically, one or more arguments
acts as a returning continuation c. In that case the operations are similar to
those above:

• The returning values r are computed.

• If c is referenced through a parameter and is not an actual child of A, then
it is cloned as a new lambda L.

• The result r is bound to the L parameters.
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• The action A is replaced by the body of L.

If more than one continuation exists, usually only one is chosen. This is particu-
larly true when branching. The branch taken acts as c in the above algorithm.
The other continuations are discarded — they are explicitly removed from the
code.

Staging

Non-trivial staging adds complexity to the above algorithm. In a single step,
multiple actions can be queued for execution at the same time. Still, only one is
executed at a time.

To handle this, the interpreter maintains an execution queue Q referencing all
actions within the program tree that are scheduled for execution. The queue Q
is partially sorted, such that ∀i, j : j > i the action Qi is not in the subtree of
Qj . In short, we write A ⊃ B when A is an ancestor of B (thus, the subtree of
A contains B). Thus the queue Q has the property ∀i, j : j > i,Qj 6⊃ Qi.

With the queue, each step of interpretation of a program with staging looks as
follows:

• An action A, which is last in the queue Q, at position n, is selected for
execution and removed from that queue. Because the queue is partially
sorted, none of the other actions Q1..n−1 can be in a subtree of A, satisfying
the active-waiting requirement, formally specified in Section 4.1.3. The
size of the queue is reduced to n− 1.

• If the called function f within A is referenced through a parameter it is
cloned, producing an inlined lambda function L — same as in the case on
non-staged program.

• The arguments vi of the action A are bound to the parameters xi of L.
If vi is a concrete value and xi has a payload, it is consumed. This means,
all actions referencing the payload are put into a special candidate queue
Q̃ , to be potentially selected for the next execution.
On the other hand if vi is a symbolic value, i.e. another parameter value,
the payload of xi is transferred to the payload of vi instead.
Finally, if L has a payload, it is consumed into Q̃ as well. As a special
case, L may not feature a payload, but be flagged for natural staging. In
that case the body of L is put into Q̃.

• The action A is removed from the code, same as in the unstaged version.

• At this point Q̃ contains all actions for which the staging expression value
may have changed. For every action Ã we reevaluate the expression held
in its StageEvaluator object. If the staging expression yields >, the Ã is
moved from Q̃ into the actual execution queue Q. If the result is still ⊥
then Ã is simply removed from Q̃.
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The interpreter takes advantage of the fact that the stage values are used
only within L and A is their ancestor. As such every new Ã is a child of
A, thus cannot contain a child among Q1..n−1:

∀i < n A 6⊃ Qi
A ⊃ Ã

}
⇒ ∀i < n Ã 6⊃ Qi

Consequently, elements of Q̃ are compared only against each other when
adding to Q. We do this incrementally, through a simple insertion-sort, by
checking manually if Ã1 6⊃ Ã2 or Ã2 6⊃ Ã1.

After the last point, Q is partially sorted again and Q̃ is empty. The algorithm
can start the next step of the interpretation.

5.1.3 Performance Concerns

The amount of deep cloning of functions in the algorithms explained in Sec-
tion 5.1.2 raises concern if the implementation is viable for anything but the
smallest examples. The cloning problem is particularly painful for CPS program-
ming, where functions return by invoking another function representing the rest
of the program.

Consider a completely linear program, such as the one given in Listing 5.1. The
same function is invoked in sequence n times. At call i the continuation assigned
to cont contains a chain with the remaining n− i calls. When cont is invoked,
O(n− i) nodes are cloned. If we sum up all the calls in the course of the whole
program execution we obtain a value in the order of O(n2).

In theory, it is possible to hide long continuation chains under symbolic values
to prevent excessive cloning. However, in practice, we cannot expect programs
to avoid such chains.

For that reason we implemented a single-use optimization: cloning is avoided if
the parameter is referenced only once. Instead, in the inlining step, the subtree
representing the value is moved to the use site. After that, the parameter has
no more references and can be discarded.

Note, that the reference count is checked only during the inlining step and not
earlier. It is possible for the code to initially use a given symbol f multiple times
in the code. However, by the time the call to f is reached, other uses of f may
be already removed from the code. This is particularly true when branching
instructions are used which remove branches which are not taken.
let printdot (cont) {

printf . "." cont
}
printdot . () printdot . () ... printdot . ()︸ ︷︷ ︸

n times

Listing 5.1: A simple linear chain of function calls in DeepCPS. With every function
call cloned this leads to O(n2) memory and time complexity
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For example, in the power function Listing 4.2, the continuation cont is used in
two branches. Which one is called depends on whether the exponent is even or
odd. However, by the time cont is invoked, the condition is already resolved
and the if instruction is removed from the code. The whole branch that is not
taken is removed as well. At that time, cont is used in one place only and can
benefit from the move optimization.

Even in a program with complex staging it is rare for a continuation to be cloned.
It can happen when the programmer explicitly requires a condition to be delayed
in execution, but its converging continuation is executed in an early stage.

5.1.4 Binding with C/C++

ManyDSL programs can connect with existing code in two ways.

First, any C function can be imported. The function $import takes 5 arguments:

1. The string name of shared library to open.

2. The string name of C function to load from that library.

3. A tuple of types naming the types to be passed.

4. A type of the returning value

5. The continuation with a single parameter, under which the bound C
function is stored.

For example:
$ import . "libc.so" "fopen" [string , string ] *[] (fopen) ...

loads the fopen function from the standard C library. The value stored under
the symbol fopen acts as a regular function. The function takes the arguments
specified by the third argument, plus the returning continuation where it stores
the result upon completion.

This way DeepCPS can easily be made to open files. Similarly other standard
and custom libraries which feature a C API can be used.

The other way of invoking existing code is through ManyDSL-aware functions.
These are special kind of C++ functions that use the C++ interface of ManyDSL.
It not only allows to skip marshalling, but also allows the function to take
arbitrary DeepCPS arguments – even symbolic values or multiple lambdas are
permitted.

ManyDSL-aware functions are imported through $wimport with arguments
similar to $import:

1. The string name of shared library to open.

2. The string name of the C++ function to load from that library. In all our
examples we use C linkage to avoid name mangling.
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extern "C"
void ifSumPositive ( Interpreter * interpreter , Action * action ) {

anydsl_assert (action -> getArgCount () == 4,
" ifSumPositive requires 2 arguments + 2 continuations ");

int v1 = dig <int >( action -> getArg (0));
int v2 = dig <int >( action -> getArg (1));
int sum = v1+v2;
printf ("Sum is %d\n",s);
Closure * cont;
if (s >0)

cont = action -> getInlineArg (2) ->as <Closure >();
else

cont = action -> getInlineArg (3) ->as <Closure >();
interpreter -> bindArgument (cont , 0, make(sum));
interpreter -> invoke (cont);
action -> substituteWithFollowup (cont ->body ());

}

Listing 5.2: A simple higher-order ManyDSL-aware function in C++. The function
expects two Value objects holding an integer. If their sum is positive, it calls the first
continuation, otherwise the second. In either case, the sum is passed as a result into
the called continuation.

3. A type of the whole function to import

4. The continuation with a single parameter, under which the bound ManyDSL-
aware function is stored.

For example:
$ wimport . "libmy.so" " ifSumPositive " fn[int ,int ,fn[int],fn[int ]]

(ifsp) ...

imports a higher-order function taking two integers and two continuations as
arguments. Upon success, the obtained function (ifsp in the example) can be
used similarly to any other intrinsic ManyDSL function.

ManyDSL-aware functions need more attention from the programmer on the
C++ side. Consider a simple example in Listing 5.2. All ManyDSL-aware
functions hold the same signature, by taking two arguments:

• The pointer to the interpreter that is used to executed the ManyDSL code.

• The pointer to the Action object in the TR representation that was used
to make this call.

Typically, at the beginning of the ManyDSL-aware function, the arguments of
the action are inspected. The method action->getArg(n) retrieves the object
attached directly as the n-th argument. In order to retrieve the underlying C
value, a series of TR node operations need to be performed (e.g. dereferencing,
node type checking). For convenience ManyDSL provides the dig template
function to obtain the value in one go, or report an error if that was impossible.

Higher-order values are always objects of type Closure. These can be retrieved
through: action->getArgDeref(n)->as<Closure>(). However, if the closure
is the continuation that we ultimately invoke, it must be accessed through
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action->getInlineArg(n) instead. This causes inlining of the argument as
discussed in Section 5.1.2.

Once the arguments are read, the author may use them to perform any desired
operation in C++. Produced results are usually passed to one of the continuations
in three steps:

1. The values are bound to the parameters of the continuation, using the
interpreter.

2. The continuation is invoked with the interpreter.

3. The current action object is removed from the code.

The interpreter plays an active role when binding arguments to parameters.
This causes all instructions targetted by the instigators to be put into the
candidate queue. Neither binding nor invoke does not actually cause execution
of the follow-up TR code. Instead, they merely set up the interpreter to perform
the next steps of the interpretation.

Once all parameters are set, the ManyDSL-aware function may end, releasing
control back to the interpreter.

5.1.5 Pitfalls

In the above algorithm we silently skipped few less obvious scenarios that need
attention.

Payload Changes after Cloning

Attention has to be made to Payload objects when cloning a subtree. A payload
outside of the subtree may gain additional references from the clone. This means,
that when the payload is consumed, more actions may be activated than it would
seem when inspecting the original code.

Consider a lambda function L and a staged action A nested somewhere within
the body of L (thus L ⊃ A). The action A is staged upon P which is not within
the scope of L (L 6⊃ P ). The function L is bound to some name f and then
cloned when f is invoked.

As a result of such clone, the subtree of L is copied, including A, but not P .
Consequently, both the action A and its copy A′ are staged upon the same
payload P .

In our first implementation, Payload objects were referencing all actions that
were staged upon it. However, the above case complicated the cloning process.
Each staged action clone A′ had to check if its referencing payload was cloned
and act accordingly.

Since then, we decided that it is better to reverse the edge, so that the action
references the payload instead. The payload consumption relies on backedges
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( return )[ builder ] { return .
(x, end)[P] {

@builder :
let sqr( return )[call] {

@P: x*x (xsqr)
@call:
print . xsqr return

}
@P:
sqr . ()
sqr . ()
end .

}
} . (P)
...

Listing 5.3

which creation is handled by edge creation routine, simplifying the cloning
implementation. This way the routine cloning Payload references does not differ
from regular references.

Stages to Dead Code

In the previous scenario we observed that additional work can be added to a
payload in the course of interpretation. The reverse is also possible: Whenever
an if is resolved, the branch that is not taken is removed completely from the
code. If such branch contained payload references, those are removed too.

Consider a different behavior, where a skipped branch B is simply detached
from the code, without being removed. There are no edges or references from
outside B, and the whole branch may be removed by the garbage collector at
any moment. Let us assume that action A ⊂ B is staged upon some Payload P
which is not within B. This makes A reachable from P through the backedge
– that garbage collector ignores in its reachability test. If at that time P is
consumed, the action A may be scheduled for execution, although it is no longer
part of the code. We say that A is a phantom use of P .

In order to remove phantom uses, the semantic of if is to explicitly iterate over
all descendants of the skipped branch and remove the nodes. As a part of the
process the reference edges are removed, and so are the backedges from the code
into the dead section. The removal of phantom uses is also important for the
optimization described in Section 5.1.3.

Stages to Bound Values

Another interesting scenario is when a staged action A is within a lambda L
bound to another parameter f . Previously, we considered what happens when f
is invoked. It may happen, however, that A may be potentially cloned when the
whole binding to f is cloned instead.

Consider an example code in Listing 5.3. It is a lambda builder which generates
a program P. The program P takes an integer argument x and prints its squared
value twice.
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However, we use staging twice to alter the normal execution flow of the program:

• The binding of lambda (return)[call]... to the name sqr is done as
soon as the builder is called.

• The squaring of the integer x done within the function sqr is done as soon
as the program P is invoked.

If the interpreter was strictly conforming to the formal definition in Section 4.1.3,
the binding to sqr would immediately cause all uses of that name to be replaced
by the lambda (return)[call]. After evaluating the let we would obtain:
(x, end)[P] {

@P:
( return )[call] {

@P: x*x (xsqr)
@call:
print . xsqr return

} . ()
( return )[call] {

@P: x*x (xsqr)
@call:
print . xsqr return

} . ()
end .

}

The function is replicated twice, making three instructions staged upon P.

Our interpreter however delays the substitution. The code is a merely:
(x, end)[P] {

sqr . ()
sqr . ()
end .

}

The lambda (return)[call] is no longer a direct part of the code, although
it is still referenced through the sqr Parameter object. The multiplication
instruction is now the phantom use of the payload of P. It is still potentially
reachable however, when sqr is substituted. For that reason we cannot remove
this use of P.

Let us now assume that function P is invoked. There are two actions in the
payload of P: The phantom action x*x (xsqr) and the call to sqr. Neither is a
child of another thus, in theory, they can be evaluated in any order. In practice
we use a heuristic to ensure that phantom actions execute first. The solution is
not ideal and if multiple phantom uses are present may lead to a suboptimal
order of execution.

Secondly, we must consider that the function P is cloned to P’. What happens to
the lambda that is bound to sqr? The correct behavior is to clone it as well, since
the value of x may be different between P and P’. To ensure this, the original
lambda function (return)[call] must retain its context within the code. It
is achieved by maintaining phantom edges when an action is removed from the
code after execution. These phantom edges replace only the primary edges and
are used only during cloning to capture all the necessary nodes requiring a copy.
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The current implementation of these corner cases is suboptimal. For example,
many of the nodes referenced by the phantom edges do not require a copy if all
its free variables provided by the context are not copied. However, checking that
during every clone would be very inefficient. We continue to search for a better
algorithm to handle this case.

5.1.6 Hardware Reflection

The ManyDSL core provides a basic information on the environment and the
hardware that the code is running on, through the built-in objects $os and
$arch. $os informs about the operating system. $arch provides the name,
version, instruction set of the CPU. It also gives more detailed information, such
as the supported SIMD width or the cache structure: The number of levels, their
size, the cache line width, etc.

A fine-tuned program may take these values into an account in order to best
utilize the hardware. With the help of staging, functions may specialize for very
specific configuration, without producing any run-time overhead.

When compiling, the user may substitute the default values $os and $arch,
with their own values. By doing so, the underlying compiler may be directed to
generate code for a different architecture than the one ManyDSL is running on.

We do not provide any library or database of values for $os and $arch based on
the commonly accessible hardware. Creating and maintaining such a catalog
would be needed when ManyDSL becomes a commercial product. At the current
stage of the project, we decided to focus in other areas.

5.2 Lang Module

While the ManyDSL Core handles execution of the code given in the Target
Representation, the Lang module is responsible for reading the source code and
generating that representation. The module splits the work in a traditional way
between a lexer and a parser: The lexer recognizes tokes in the input character
stream. The tokens are then sent to the ManyDSL parser.

Both lexer and parser are mutable and the language grammar they operate on
may be specified by the user code. Moreover, every parser may also interact with
the ManyDSL Core as a part of the parsing process. For that reason ManyDSL
features a built-in parser generator as well as its own parsing engine.

The semantics of any custom language is given through semantic actions (see
Section 4.3). These actions are given as TR functions and are executed during
parsing. The mechanism for interleaved execution and parsing caused by this is
explained in detail in Section 5.7.2.
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5.2.1 Components

Lexer

The lexer of ManyDSL is built on top of Xpressive library, included in the
boost C++ libraries 1 . The lexing is streamed, reading at most one additional
character beyond the token that is needed by the parser.

A lexer can be defined by the user, either in C++ or as a part of a language
specification in ManyDSL. It is done in a declarative way by defining lexing
rules. A general rule is any regular expression term. For convenience, ManyDSL
also provides functions for defining:

• keywords rules — any alphanumeric word. The word is case-sensitive and
is recognized by the lexer only if it is the whole word, separated by other,
non-alphanumeric characters.

• literal rules — any sequence of characters that is read verbatim, ignoring
the regular expression syntax.

The lexer provides tokens to the parser, represented by identification integers. It
is accompanied by a string that was read to produce the token.

Parser Building

Before the lexemes can be processed by the parser, a language for that parser
must be specified. When the user creates the language, ManyDSL needs to
process its grammar. In this phase, ManyDSL computes the FIRST sets for
every production, as defined in Section 4.2.3. With it, for each nonterminal n
it creates a decision table Tn indexed by the lexemes of the language Σ. For a
given terminal σ the table points to the production of n such that σ is in its
FIRST set. As we will show shortly, the parser uses the table to make decision
which production to take when expanding the nonterminal n.

Tn : Σ→ P ; Tn(σ) = p :
{
p = n ::= a
σ ∈ FIRST (p)

If two or more productions satisfy the constraints given above, we face a conflict.
The same terminal begins two productions and the parser cannot make a decision
which one is correct. This means that the grammar is not LL(1). It is an error
that must be fixed by the language developer.

Nonterminals in a language definition are referred to by their actual names. This
allows single-pass definition of a language, with terms referring to nonterminals
that do not yet exist. It is also necessary, when referencing nonterminals from
different languages, as in the example given in Section 6.4.5.

1http://www.boost.org/doc/libs/1_60_0/doc/html/xpressive.html, retrieved on 17.03.2016
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E->(v) ::= V->(v) (v)->C->(v);

(l)->C->(v) ::= "-" V->(r) (l,r)->act->(v);

v=5

l=5 r=3

Figure 5.3: Stack of the recursive descent parser.

Parser Execution

With Tn tables ready, the language can be used for parsing. The tokens provided
by a lexer are sent to the ManyDSL parser engine. The parser follows the
user-defined grammar, handles variable passing between the rules and invokes
the underlying ManyDSL interpreter when a DeepCPS action is encountered,
following the semantics given formally in Section 4.2.3.

Parsing is performed by a predictive recursive descend parser. The state of the
parser is defined by a Parse Stack (PS) (Figure 5.3). The PS is independent
from the ManyDSL Core interpreter. Each element of PS refers to a single
parser position (PP) within a body of one of the productions in the grammar.
In addition, each element of the stack holds values of all local variables within
the production.

In each parser step the behavior of the parser depends on the next token, following
the top PP.

Encountering a terminal requires the input stream to contain a corresponding
lexeme unconditionally. If the terminal returns an argument, the matched string
is returned. Finally, the PP is advanced.

When a C or ManyDSL function call is encountered, the input stream remains
unaffected. The C function is invoked as is, and the parser work is limited to
preparing the arguments and then reading the result. In case of a ManyDSL
function, in addition to the language-defined arguments, the parser constructs a
special return continuation. The core executes the function until the continuation
is invoked. When that happens, control is returned back to the parser. The
mechanism of halding the interpreter is discussed in detail in Section 5.7.

Finally, when a nonterminal n is encountered, the parser compares the look-ahead
lexeme σ with the decision table Tn. If Tn(σ) points to a valid production, the
production is invoked similarly to a function call: A new entry is added to PS,
and the values of the arguments are bound to the parameter names.

It may happen that no production satisfies the requirements and Tn(σ) does not
give an answer. In that case, the epsilon production for n is invoked, acting as a
wildcard. Only when no such production is found, we raise an error.

As we discussed in Section 4.2.3, this behavior is different when compared to
typical LL(1) parsers. In a typical LL(1) parser, the epsilon rules are already
taken into account in Tn tables by computing the FOLLOW sets. Because we
do it differently, languages that have a shift-reduce conflict originating from
the epsilon rule are incorrect for LL(1) but are accepted by ours (giving shift a
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Block ::= Element BlockCont ;
BlockCont ::= epsilon ;
BlockCont ::= Separator Element BlockCont ;

Listing 5.4: A typical Block rule for a sequence of Elements separated by some
Separator. The last production for BlockCont is right-recursive and may be optimized
by the tail rule optimization.

higher priority). Moreover, in case of an actually incorrect input, epsilon rules
are greedily taken before an error is actually raised.

The difference may seem small, but it is a crucial property in a multi-language
environment.

Firstly, it may happen that the following token belongs to a different language.
In that case, any reliance on the FOLLOW set would be misleading.

Secondly, by continuing parsing epsilon rules, we have a chance to encounter a
user-defined action which manually changes the state of the parser, avoiding the
error. Most typically, such action changes the language in which parsing occurs,
making the next token a valid one.

For example, notice from the LangDSL specification given in Section 4.2.4 that
a DeepCPS section is put in extra curly braces that are not part of DeepCPS
syntax. If the trailing } was read by the DeepCPS parser in isolation, it would
raise an error. It does not happen however: The DeepCPS parser has a change
to unwind its parse stack gracefully, reduce the whole code that has been read
to a single value, and execute an action that switches parsing back to LangDSL.

Tail Rule Optimization

Every practical language contains recursions in its definition. LL languages
cannot contain left-recursion, because it leads to parse conflicts. Other types of
recursion however are allowed, and right-recursion is the most common one.

One such use case is when iterating over a sequence of terms. Language constructs
such as: Listing members of a tuple, providing an argument list for a function
call, enumerating members of a structure, defining a block of instructions – all
these are typically defined through a recursive productions of the form given in
Listing 5.4.

From the execution point of view, where rules are treated as functions, right-
recursion is equivalent to tail recursion. We identified that such constructs
needlessly increase the stack of the parser. As a remedy to this problem the
ManyDSL parser incorporates the following optimization. Assume that we
execute a rule X → α and the following is true:

• A nonterminal N is invoked as the last term of the production

• The values returned from N are exactly the values that are also returned
from X.

If the above is true, then upon calling N , the call to X is removed from the
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Tuple ->(t) ::=
"["
() ->(t) { return . []}
(t)-> OptTupleElements ->(t)
"]";

(t)->OptTupleElements ->(t) ::= epsilon ;
(t)->OptTupleElements ->(t) ::= (t)->TupleElements ->(t);
(t)-> MoreTupleElements ->(t) ::= epsilon ;
(t)-> MoreTupleElements ->(t) ::= "," (t)->TupleElements ->(t);
(t)->TupleElements ->(t) ::=

Element ->(v)
(v,t) ->(t) { concatenate (t,[v]) . return }
(t)-> MoreTupleElements ->(t);

Listing 5.5: A concrete example of right-recursion used for defining a tuple of the
form [a, b, c, ... ]

parse stack. Consequently, the values returned from N are passed directly into
the context where X was invoked.

Consider a concrete language example given in Listing 5.5. The nonterminal
MoreTupleElements is used exactly once, as the last term of the TupleElements
production. Similarly, the nonterminal TupleElements is used twice, always as
the last term of a production. In all these cases, the nonterminal returns a value
t that is immediately returned further back by the enclosing production. In this
scenario the tail recursion optimization triggers and the parse stack does not
grow with the length of the tuple.

5.3 Executor

An Executor is a small control module of ManyDSL, which connects the core
and the parser. Depending on its state, it performs either interpreter steps or
parser steps. It provides mechanisms for communication between the former and
the latter. The executor also maintains the stack of files opened for parsing and
handles inclusion of new files.

The executor object can be accessed and to a certain degree be modified from
the ManyDSL code. Through it, the user can modify the state of the parser or
even the interpreter that is used to process the very code that is making the
change. Typically, such low-level manipulation is needed in special events such
as including an additional source file for parsing or changing the language used
for parsing. It can potentially be used for other scenarios that we did not explore
yet, such as manipulating the parse stack in a way that is beyond the standard
LL(1) parsing.

5.4 Parsers

So far we explained the parts of ManyDSL that execute and generate code (see
page 129). However, the modules themselves provide no starting language. All
languages, including DeepCPS itself, are defined on top of the Lang module.
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5.4.1 The DeepCPS Parser

DeepCPS is the first language defined in ManyDSL and is always available to the
user. The parser is written in C++ but uses the very same Lang functionality
that is availabe for other languages. DeepCPS is defined as an LL(1) grammar,
enriched with actions which are C function calls. The actions build the TR
structure based on the input.

Since DeepCPS is defined using the Lang module, it can be used the same
way as any other user-defined language. In particular, when switching between
languages, specific DeepCPS rules can be referenced. For example, LangDSL
parser switches into DeepCPS lambda body nonterminal for the action definition.
Examples on how to perform such a switch is given in Section 6.4.5.

The DeepCPS language is unique with respect of its actions: It produces the
underlying ManyDSL structure by directly accessing TR classes in C++. As
a result, if the parser was suddenly interrupted in an unexpected moment the
structure may be incomplete and unsuitable for interpretation. This is in contrast
to languages created with LangDSL — where actions are always complete pieces
of DeepCPS code.

The DeepCPS parser is accompanied with an environment, naming all intrinsic
functions and values available to the programmer. This includes:

• Integer types (signed and unsigned): i8, i16, i32, i64, u8, u16, u32, i64

• Floating-point types of 32 and 64 bit length: f32, f64

• Other basic types: Boolean, string, stage, kind (type of a type), void.

• The generic type: any

• Arithmetic and logic functions, such as $add, $sub, ... $shl, $shr, $and,
$or, $xor, $eq, $neq, ... All these functions actually require 4 arguments:

– A kind value representing the type T of the arithmetic values.
– The first value of type T
– The second value of T
– Returning continuation

Note that in the current version, the ManyDSL typing does not support
parametric polymorphism and we use any as a fallback. These intrinsic
functions have a type fn[kind,any,any,fn[any]] or similar.

• The reference to the $executor used for parsing and interpreting.

• The built-in DeepCPS language object is available as $deepcps.

• The reflection of target operating system $os and target architecture $arch
as discussed in Section 5.1.6.

• An $include function to add additional files to the input parsing stream.
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• A function $current_environment that returns the environment held by the
parser at the time when the last halt node was encountered (Section 5.7).

• An $exit function, that terminates the program.

5.4.2 The LangDSL Parser

The Lang Module provides necessary C and ManyDSL-aware functions to build
a new language both from C or DeepCPS level. Each element of the grammar:
Nonterminals, terminals, productions with their arguments, and sequences of
actions are built incrementally using those functions. Unfortunately, using them
directly is inconvenient.

For that reason we provide the LangDSL parser that simplifies the task. The
LangDSL is loaded by ManyDSL as a DeepCPS source library.

The actual implementation of LangDSL is done in itself. A special converter
transforms ManyDSL TR back into DeepCPS source code, allowing us to boot-
strap the library so that it can be loaded directly in the following runs of
ManyDSL.

This approach allows us to incrementally upgrade LangDSL without directly
operating on the low-level Lang module API. It also acts as a test, ensuring that
LangDSL actually meets the goals we have set for a DSL-defining language.

5.5 Compiler

As we have described in the overview in Section 3.5, ManyDSL allows not only
for interpretation but also for compilation into machine code. We use Thorin as
the backend for our CPS programs. During the translation all remaining staging
information is stripped off as it is not supported by Thorin. Then, Thorin
transforms the code through its technique – lambda mangling [84] – in order
to remove higher-order CPS functions, or translate them into jumps, such that
they can be translated into assembly code.

With the code simplified, Thorin is translated into LLVM and subsequent low-
level optimization passes are triggered. The compiler produces an LLVM module,
which optionally can be compiled into actual machine code as well.

The translation is started through a ManyDSL-aware function that initializes the
process, producing a Thorin code object. Further steps are available through a
C-API of the respective tools. For convenience, we also include a few functions to
operate on Thorin and LLVM in the most typical way, e.g. to trigger optimizations
or emit LLVM bytecode into a file.

150



Application 5.6

5.6 Application

Finally, the whole ManyDSL system with its modules is accompanied with a
tiny application layer. The application takes a file as an argument and opens it
as the first DeepCPS source. With an optional parameter -r, --run it forces
interpretation after parsing is finished. However, that command is not needed to
execute if the source is interleaving parsing and execution on its own, as detailed
in Section 5.7.

When multiple languages are used, successful parsing requires execution. For
that reason there is no “dry-run” option which would simply parse the code
without execution.

5.7 Interleaved Parsing

We explained all modules of ManyDSL but we merely mention an important
property of the system: The ability for interleaved parsing and execution. The
ability to do so allows the user program to modify the parser on the fly. It
is the central property of ManyDSL, but also one that strongly influences the
implementation of all modules.

• The interpreter must be capable of running code that is incomplete. The
possibility of new code appearing at a later time opens potentially dangerous
scenarios, such as adding work to already consumed payloads, or adding
new references to parameters that already triggered single-use optimization
(Section 5.1.3).

• The parser must create a meaningful code structure even though it is
incomplete. The parser and DeepCPS, in general cannot assume that when
their work is resumed, their state remains unaltered. On the contrary: The
user, through the interpreted code, may alter the parse stack or change
the language.

• The interpreter and parser must agree on how locations where parsing was
interrupted are marked.

• DeepCPS needs an explicit construct to halt parsing.

• Finally, the executor must provide mechanism for switching between parsing
and interpreting.

5.7.1 Halting in DeepCPS

In DeepCPS, a special, parse-time operation is indicated through # and it comes
in two flavors as described below.
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Parse-time Function

In order to execute a given function at a given time during parsing, that function
is put within braces: #< ... >. The code within them should return with its
own $exit function at which point the control is returned to the parser. The
most common use of such function is to include files, for example:

#<$ include . " library .cps" () $exit . >

The code as above is completely parsed, but upon reading >, the process is halted
and the contents are executed. In the above example, we add a new source
file named library.cps into the lexer stack of opened files. Afterwards, the
parser-time function exists through $exit, and parsing resumes. However, at
that point the new file is on top of the source stack and the next token is read
from that file. Text that follows > is parsed only after the parser reached end of
library.cps file.

Since including files is the most common action for parser-time functions, Deep-
CPS comes with a simplified syntax:

#include <" library .cps">

It should be stressed however, that this is merely syntactic sugar. All parse-time
actions are handled by the same language and use the same pipeline as the actual
code that is being compiled or interpreted. There is no separate preprocessing
step.

Halt Marker

The second form of parse-time operation is indicated through a halt marker ##.
This symbol may appear only in place of a lambda body. When the DeepCPS
parser encounters this symbol, a special Halt node is put into the produced
ManyDSL core code. The Halt class is a special Action and is inserted as a
body of a Closure node. Afterwards, parsing is interrupted and the code that
has been parsed so far is executed.

The interpreter works until it executes the Halt node. By executing the Halt,
interpreter releases control back to the parser. The parser continues by parsing
the actual body of a lambda in which the halt occurred. The Action object
representing the actual body of the lambda becomes a special “replacement child”
of the Halt.

When parsing is interrupted for the first time, the interpreter starts from the
first instruction in the source code. At later interruptions — interpreter resumes
execution from the replacement child of the Halt node it encountered last.

From the interpreter point of view, halt markers are transparent and have no
impact on the execution. In most cases, adding halt nodes into DeepCPS code
has no impact on the execution. There are a few corner cases however, where
full transparency cannot be achieved. We discuss that in detail in Section 5.7.3.

Halt markers are typically used for big sections of code, or fragments that produce
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proj . $arch 2 ( ptrtype :kind)
$ typeeq . ptrtype u32 (bit32: Boolean )
ifelse . bit32

(endif) { endif . "lib32.cps" }
(endif) { endif . "lib64.cps" }

( libsrc )
##
#<$ include . libsrc () $exit . >

Listing 5.6: Using DeepCPS halting to compute the name of a file to include. At the
time of the call to $include, the value of libsrc is already known.

ifelse . bit32
(endif) { ##

endif . "lib32.cps" }
(endif) { ##

endif . "lib64.cps" }
( libsrc )

fix power (base , exp , cont) {
##

...

Listing 5.7: Invalid uses of halt marker. The marker may appear only in the trailing
continuation, passed as the last argument to all functions that precede it. Otherwise,
the interpreter will try to execute a call without all arguments parsed for it or jump
over the marker into a code that is not yet specified.

results that should be visible by the parser or the executor. In particular, a halt
marker is needed after a new language is specified.

When a parser reads a language specification, either in LangDSL or plain
DeepCPS, a TR representation of that specification is constructed. Only by
executing it, the lang module creates an actual language object that can later
be used for parsing in that new language.

Halt markers can be useful in other situations as well. For example in Listing 5.6
we compute a name of a file to inculde. All named values known at the time
when the marker is reached can be used afterwards at parse time, such as in the
parse-time call to $include.

Position of Parse-Time Constructs

The parser expects the # and ## symbols only at the beginning of a lambda
body. These symbols are part of the DeepCPS language and not a preprocessor
construct. Trying to insert parser-time construct at different location leads to a
parser error.

Moreover, when introducing the halt marker ## all DeepCPS constructs preceding
it must be complete, with an exception for the innermost lambda. That means,
## should appear only in the continuations given as the last argument to any
application. Naturally, it can also appear after let and fix constructs, but not
within them.

The example Listing 5.6 satisfies the constraint: The halt marker is put within a
lambda (libsrc)... which is the last argument of ifelse. It is also part of
the last argument to all continuations appearing earlier.

However, in the examples in Listing 5.7 the halt marker is used incorrectly. If ##
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F

a

Language definition

Each action invocation

Halt

b

c d

(a,b)-> ->(c,d)

Figure 5.4: ManyDSL node structure that is generated each time an action with
user-defined ManyDSL function F is invoked. The structure is adapted to match the
number of input and output arguments defined in the language grammar.

appears in one of the branches of ifelse the interpreter would try to execute the
call to it before the remaining arguments are even parsed. In case of a branch, a
given halt marker may not even be reached. Moreover, the instruction of calling
ifelse is removed from the code after being executed. Further parsing would
attach newly created nodes to an Action that is no longer part of the code.

Similar problems happen when ## is found within a let and fix nodes. The
semantics of those is to bind a value to its name and immediately jump to code
appearing after it. However, with the parser interrupted, there would be no
follow-up code and the interpreter would have nowhere to jump to. Moreover,
the halt marker would be within the value and would not be executed, preventing
the parser from resuming its work.

5.7.2 Action Halting

Last method of triggering interleaved execution and parsing happens when a
language action is triggered that calls a function already represented in TR. The
function is guaranteed to be complete as it was provided when the language was
defined. Still, the executor must switch from parsing mode into interpretation
mode and at the end — switch back to parsing again.

Each time a semantic action with ManyDSL code is triggered, the executor
creates a piece of surrounding code as shown in Figure 5.4. The whole piece
is put right after the halt marker where interpretation was last interrupted,
and then execution is resumed. Based on the number of the input and output
arguments, a different surrounding code is constructed. Input arguments are
passed to F , together with a returning continuation. The continuation takes the
resulting values as arguments and passes them into the halt node. The executor
then inspects the received values and passes them back to the lang module.
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5.7.3 Halt and Interpretation

The existence of the halt marker has numerous consequences on how interpreta-
tion is being done. Most prominently, it affects the cloning process as well as
staging.

Cloning

Halt markers should never be cloned.

If a halt marker was cloned it would incur problems affecting both the performance
and the validity of the underlying algorithms. In terms of performance, a cloned
halt marker would imply that the remainder of the program – as it appears within
the subtree of the halt node – is cloned as well. The single-use optimization,
which we explained in Section 5.1.3, is designed to prevent such case.

Consider a halt node created for a parser action. The executor fetches the
arguments returned through it. However, if the halt node was cloned, it would
be possible for the computed values to be stored in any of its copies. Every halt
clone would need to be tracked by the executor in order to find the actual result.

A similar issue happens when capturing values by parse-time functions. The
parse-time functions are not cloned. Doing otherwise would imply executing
them multiple times, depending of the numbers of clones.

However, parse-time functions are parsed in the context of actual DeepCPS
functions and may refer to parameters defined by them. For example, in
Listing 5.6, we refer to libsrc defined by the lambda preceding ##. If the
lambda (libsrc)... was cloned, leading to the cloning of ##, it would be
unclear which copy of libsrc is referenced within the parse-time function. The
most intuitive solution would be to refer to the original, but that one is most
likely not going to have its value assigned and $include would fail. That is
because usually when we clone, we invoke the copy, not the original. Tracking
the last copy is an uncertain solution as well because cloning in general is not
necessarily linear.

All these problems are resolved with the single-use optimization. Halt markers
appear only in continuations which are invoked only once throughout the code.
An important observation has to be made here: In the context of halting, the
single-use optimization is no longer an optional improvement of the algorithm,
but a requirement for halting to work correctly.

Use Count

When a halt node appears within a body of a lambda function, it is unclear
how many times these lambda parameters are being used. It may seem that a
given parameter p is used once, or not at all in the code that is already parsed,
appears at some later time when parsing is resumed. For that reason, all such
parameters must be exempted from the single-use optimization.

We achieve that by registering each halt node in all its ancestors. The useCount

155



5. Implementation

function for a Parameter checks if a halt node is registered in its parent Closure
object. If it is, useCount returns infinity.

Staging over Halt Nodes

It is possible for the user to try to stage an action behind the halt node on a
lambda or parameter preceding it. Unsurprisingly however, an action cannot be
executed before it is parsed, even if the stage is triggered. In such scenario, the
halt marker cannot be made completely transparent. It must execute before any
action that follows it, regardless of staging.

This scenario however requires attention from the interpreter. To handle it
gracefully, whenever a Payload is consumed by another object C (the interpreter
or another Payload), the consumed object stores a reference to C. When a
parser adds additional work to an already consumed Payload it is put into the
referenced object C instead. If C is the interpreter, the action is put into its
candidate queue Q̃ (see Section 5.1.2).

When interpretation resumes after such scenario, there is usually some work in Q̃
that needs to be processed first. After that, the deepest instruction is executed
first, following the normal rules of dynamic staging.

5.8 Roads not Taken

In order for ManyDSL to be practical, it must include an efficient interpreter. It
is used not only for execution of the actual final program, but also for parsing,
building, and specializing. For that reason we have spent considerable time
designing and implementing it efficiently and trying different approaches.

In Section 5.1 we explained that every function that is being called has its body
cloned. This does not seem as a good solution for an efficient interpreter. In
fact, in our first approach we tried to avoid that.

Code Structure in a Context

Our first version of the interpreter, designed for a stageless DeepCPS, uses the
traditional approach: The code is immutable, and the run-time values are stored
in a binding map. The map binds symbolic parameters to actual values. Each
time a function is called, new entries are added into the map for every function
parameter. Each time a parameter is read to obtain its value, the map is used
to look it up. We refer to such map as a context within which the immutable
code is being interpreted.

Since control flow can return to the context of the previous function, e.g. through
a closure or a continuation lambda, a previous map cannot be automatically
removed. Instead, a technique similar to garbage collection is used. The
interpreter periodically checks which contexts are reachable and which are
already abandoned. In some cases, a heuristic is used to reclaim the memory
immediately, e.g. when the CPS function call resembles the normal call —
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for example, when returning through a continuation without any higher-order
arguments.

In CPS programming, the same parameter may be bound multiple times. The
interpreter must maintain information which context is being used in each case.
The context can be identified simply by noting which function call instance was
used to create it.

Unfortunately, the context management becomes much more complicated when
doing staging. Each call instance may differ not only with respect to values,
but also which instructions were actually executed. In order to support that,
we extend the context such that it is able to hold ManyDSL core edges which
override those given in the original program. However, unlike value binding, these
edge overrides are mutable. The same change edge may be changed multiple
times in the same context.

Consider a function F that is partially evaluated through staging. Suppose that
F contains a loop with a body b that is unrolled n times. Each iteration of the
loop produces a piece of code. Since the code is not cloned, each piece actually
refers to exactly the same core structure. In order to distinguish one from the
other we use the context information. The context of each iteration can be
identified as 〈bi〉 which marks the i-th invocation of the body function b.

Let us assume that afterwards the partially evaluated function F is invoked
several times throughout the code. Each invocation creates a new context 〈Fj〉
but such identification is insufficient for the unrolled piece of code. Each iteration
must remain distinguishable from other iterations of the same loop, but also
remain distinguishable from other calls to F . Therefore, we identify it as 〈Fjbi〉.
This reads: i-th iteration of the body function b as part of the invocation Fj .

At this point, the string identification of the context can expand further in all
directions:

• If the call to Fj is part of another function specialization G, then calling
G will create 〈GkFjbi〉.

• If within Fj the unrolled loop is passed as a lambda to another function
G, then calling it will create 〈FjGkbi〉.

• Finally, if within given iteration bi a function G is called we create a new
context 〈FjbiGk〉

All these are possible because of staging.

At this point we realized that identifying the right context and transitioning from
one to another is not a trivial task. Moreover, since in CPS every instruction
is a function call, such identification of context would be very inefficient. Since
the code relies heavily on tail recursion the identification strings end up being
very long. The management of the names would have to be further optimized in
some way.

For that reason we decided to abandon this path and search for a different,
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simpler solution.

Lazy Cloning

With the assumption that cloning is necessary, one can still try to avoid it
through lazy cloning. Only nodes that are directly accessed in the clone are
being generated.

However, because of staging, nodes need not be accessed in the order of their
appearance. Consequently, sections of code that are and are not cloned can
be interleaved. It is necessary to memorize the cloning history so that when a
new node is cloned, the edges can be recreated accordingly. This memorization
becomes even more convoluted when the same code is cloned multiple times.

The same example as we previously used for string identification can become
problematic to properly maintain the core structure and all its partially cloned
copies. Ultimately we were unable to find a solution that would be correct and
efficient.

For example, in one of our solution we implemented a clone map. The map
contained node pairs (n, n′) wherever n′ was a clone of n. However, in many
cases the cost of maintaining such a map was greater than doing an actual
aggressive cloning operation.

In Conclusion

We do not deny the possible existence of a better solution. Indeed, further
investigation of the problem may greatly benefit the efficiency of the whole
ManyDSL approach. However, in order to continue the project, we opted for
the simplest approach: Cloning everything upon a function call, as explained in
Section 5.1.
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Chapter 6

Usage Examples

In this chapter we focus on more practical examples and use cases.

6.1 Stageless DeepCPS

One of the highlights of CPS, as we explain in Section 4.1.1, is that there is only
one type of instruction: An application. Other operational constructs, such as
branching and loops can be expressed as functions. This has numerous practical
consequences.

6.1.1 Defining Control Flow Structures

The most straightforward consequence is that the loop functions can be defined
by the user and can be passed as arguments. Representing control flow in CPS
program as functions is by no means novel, but it is an important property, and
use case for later examples. It becomes particularly significant when defining
new languages.

In DeepCPS there is only one build-in control flow function — the branching
function:
fn[bool ,fn[],fn []] if

The if function takes a Boolean argument and two parameter-less continuations.
If the Boolean argument is true, the if function calls the first continuation,
otherwise the second one is invoked.

There is no explicit converging instruction to finish the two branches of the
build-in if. Implicitly, this happens when the same continuation is invoked by
these branches. This can be done in-line or be abstracted in a separate function,
as shown in Listing 6.1.

The explicitly-converging branch function ifelse takes the Boolean condition
and three continuations: tb, fb, and endif. The first two are the regular branches
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(endif) {
if . cond () {

... true branch ...
endif .

} () {
... false branch ...
endif .

}
} . ()
... rest of the program ...

let ifelse
(bool cond , fn[any] tb ,

fn[any] fb , any endif) {
if . cond () {

tb . endif
} () {

fb . endif
}

}

Listing 6.1: The inline version of if-then-else with converging continuation endif,
and an abstracted version of the same construct.

( endwhile ) {
fix loop = () {

... condition computation ...
(cond)

if . cond () {
... loop body ...
while .

} () {
endwhile .

}
in
while .

} . ()
... rest of the program ...

let while
(! initargs , cond , body ,

endwhile ) {
fix loop = (! args) {

cond . !args (cond)
if . cond () {

body . !args (! args2)
while . !args2

} () {
endwhile . !args

}
}
in
while . ! initargs

}

Listing 6.2: The inline version of a while loop, and an abstracted version of the same
construct.

and the third is the continuation representing the code after the convergence
point. The endif is passed into both tb and fb and is called from within them
to end the branch. The type of endif is not specified: It is a function taking
arbitrary many arguments.

The type ambiguity of endif can be avoided when using the inlined version of
ifelse. In theory it could also be addressed by a dependent-type function:
let ifelse (type T, bool cond , fn[T] tb , fn[T] fb , T end) ...

but such constructs are currently not supported in DeepCPS.

Since the built-in branch does not specify how it converges, it can be used for
more complex control flow structures — for example, to specify a while loop
with a termination criteria given as a function. In the example Listing 6.2 we
define such a loop as a function containing condition computation and a body.
The condition computation function returns, through continuation, a Boolean
value cond upon which we decide if we continue with the loop or terminate it
with the continuation endwhile.

Most loops, especially in a purely functional setting, take and return arguments,
changing them with each iteration. That is why the while abstraction in the
example uses a DeepCPS extension !. The function can take arbitrary many
arguments and the excessive values are put all together into a tuple initargs.
These are passed into the first iteration of the loop, and then into both cond
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fix for = (!args , from , to , body , endfor ) {
from <to . (cond)
if . cond () {

body . !args from endfor (! args2)
from +1 . (next)
for . !args2 next to body endfor

} () {
endfor . !args

}
} in ...

Listing 6.3: A for loop iterating from from to to, incrementing the value by 1.

and body functions. The body produces a new set of arguments which is passed
into the following loop iteration. The general while suffers the same typing
problem as ifelse but otherwise behaves as desired. In the inlined version, all
additional arguments can be specified in-place.

For Loop

Naturally, more specialized loops can be defined by the programmer or built
on top of others. For example, in Listing 6.3 we define a for loop. For every
integer in the range [from .. to), iterating by 1 from the bottom we invoke
the body function. A generic argument list !args is passed into the body. The
body returns, through a continuation, a new set of arguments !args2 which is
used in the next iteration of the loop. Finally, when to is reached, the ending
continuation endfor is called.

When the body function is invoked, in addition to !args more arguments are
passed (see body invocation in Listing 6.3):

• idx – the current iteration index.

• break – the endfor continuation, permitting the code within the body to
exit the loop immediately.

• continue – the continuation leading to the next iteration of the loop.

The author of the body may choose to actually disregard the provided functional
arguments and continue in a completely different direction. That way, a multi-
level breaks or different jumps can be executed from within the loop.

Based on for, in Listing 6.4 we define a foreach loop that iterates over all
elements of a given tuple. For each index idx we extract the idx-th element of the
tuple and pass it into the body, together with break and continue continuations
given from the generic for loop function.

Multi-dimensional For Loop

The functions for and foreach can be combined further to support iterating in
multiple dimensions, as shown in Listing 6.5. In the formd function we form a
sequence of functions F , each for one dimension:
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let foreach (!args , tuple , body , endfor ) {
arity(tuple) . (size)
for . !args 0 size (!args , idx , break , continue ) {

tuple[idx] . ( element )
body . !args element idx break continue

}
}

Listing 6.4: A foreach loop iterating over all elements of a tuple.

// for multiple dimensions
let formd (!args , from , to , body , endfor ) {

let F0(! args_and_idxs , continueF ) {
body . ! args_and_idxs endfor continueF

}
foreach . !args F0 from (Fim1 , fromv , idx , break , continue ) {

to[idx] . (tov)
let Fi(! args_and_idxs , continueF ) {

for . ! args_and_idxs fromv tov
(! args_and_idxs , idx , break , continue ) {
Fim1 . ! args_and_idx idx continue

} continueF
}
continue . Fip1

} (Fd)

Fd . !args endfor
}

Listing 6.5: A multi-dimensional for loop. The arguments from and to are tuples
of the same arity, and every value in the volume between these end points is accessed
once. For each dimension i a function Fi is built, calling Fim1 (F i minus 1) in a loop.
When the final Fd is constructed, it is invoked.

• F0 packs together the user defined arguments !args and m-dimensional
coordinate that the current formd iteration represents. It passes these
arguments into the user-defined body.

• Fi handles the i-th dimension. It performs one-dimensional iteration
between values from[i] and to[i]. In each step it invokes Fim1 (F i
minus 1, Fi−1), which — by induction — handles all dimensions lower
than i.

We conclude, by induction, that Fd, where d is the dimensionality, handles the
whole volume between the corners from and to. It should be noted, that Fi−1
takes one more argument than Fi: The coordinate in i-th dimension is added to
the !args_and_idxs when invoking Fim1.

Switch Statement

Another practical construct is a switch statement, which in DeepCPS can be
defined as a function as well, for example as in Listing 6.6. In a switch statement,
a control value is compared to a series of case values. The cases argument
is a tuple, with each element being a pair: casevalue and casefunction. If
casevalue is equal to control, the casefunction continuation is invoked. If
none of the cases matches the control variable, the default continuation is
taken.
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let switch (!args , control , cases , default , endswitch ) {
foreach . !args cases
(!args , case , trynext ) { // foreach body

case [0] . ( casevalue )
case [1] . ( casefunction )
casevalue == control . (equal)
if . equal
() {

casefunction . !args case endswitch
} () {

trynext . !args
}

} (! args) { // foreach end
default . !args endswitch

}
}

Example usage:
let int2apples (int value , fn[ string ] return ) {

switch . value
[ // cases

[0, (v, endsw) { endsw . "zero" } ],
[1, (v, endsw) { return . "one apple" } ],
[2, (v, endsw) { endsw . "two" } ],
[3, (v, endsw) { endsw . "three" } ]

]
(v, endsw) { endsw . "many" } // default
( strnum ) // endswitch

strnum +" apples " . ( completestr )
return . completestr

}

Listing 6.6: A switch statement implementation iterating over all cases in a sequence.
Example usage of such switch statement

The endswitch continuation is passed to all casefunction-s and the default.
It specifies the final convergence after the switch statement. However, similarly
to all other branches, the case functions do not have to continue the normal way
using the ending continuation they are given.

It should be noted that for the purpose of this example, each case function is
independent. With this implementation, the execution cannot “fall-through“
from one case statement to another. Supporting such behavior is naturally
possible: The follow-up cases would have to be passed as continuations into the
previous case function. We skip the precise definition for the sake of brevity.

6.1.2 Extending DeepCPS

We have shown how advanced control flow structures can be defined in Deep-
CPS, using only the simplest branch instruction as a built-in function. Some
architectures may provide a more efficient implementation which is beyond the
reach of native DeepCPS. For example:

• The programmer may want a parallel for loop, to take advantage of inherent
parallelism of the device.

• The switch statement is often better handled through an associative jump

163



6. Usage Examples

table, rather than a chain of conditionals.

The precise implementation of these are hardware specific and cannot be defined
in DeepCPS alone.

Fortunately, since every language construct in DeepCPS is a function, extending
DeepCPS is easy. It boils down to defining a new built-in function and letting
the interpreter know about it. No change in the language itself is required.

In Section 5.1.4 we show how arbitrary C function can be imported to DeepCPS.
The key function is the built-in $import function which extracts a C function
from a library file, and encapsulates it such that it can be used in continuation-
passing-style.

This mechanism allows to quickly expand the DeepCPS functionality without
creating large sets of built-in functions in ManyDSL itself. For example, in
Listing 6.7 we load the necessary functions to operate on files. We use these
to load a data matrix stored in a textual form in a file. The file describes
the dimensions x and y of the matrix, followed by x · y floating-point entries
specifying the data.

The converted functions can pass and receive all numeric values or tuples. A
C ellipsis argument (the third argument of fscanf) is represented by a special
type any indicating that any type, or number of types, is accepted. Imported
functions also handle conversion from C char* to string values.

However, non-string values passed by pointers have to be treated in a special
way. Pointer values must refer to explicitly allocated memory, with data stored
in a native format. For that reason, for example in the loadInt and loadFloat
functions we explicitly allocate a single memory cell through alloc and free it
at the end.

The same functionality can be implemented using a special class of C/C++
ManyDSL-aware functions, which we also introduce in Section 5.1.4. While
the flexibility of ManyDSL-aware functions is not necessary in the file reading
example, it may significantly improve the performance of the communication
between C/C++ and DeepCPS code. In the example Listing 6.8 a single function
is given which reads the whole matrix and creates necessary Value nodes right
in the C++.

The base structure of this example does not differ much from Listing 5.2, but is a
more practical example of using this functionality. It follows the same three-step
pattern:

• We load the data from the arguments through getArg and dig helper
functions.

• We perform regular C/C++ operations: We open the file, read a matrix,
and close it.

• We represent the result as a TR Value and pass it to the continuation.
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let void [] // void type
let voidp void* // void pointer type
$ import . "libc.so" "fopen" [string , string ] voidp (fopen)
$ import . "libc.so" " fclose " [voidp] int ( fclose )
$ import . "libc.so" " fscanf " [voidp ,string ,any] int ( fscanf )

let loadInt (file , return ) {
alloc . float 1 (int* m)
fscanf . file "%d" m ( readcnt )
load . m (v)
free . m ()
return . v

}

let loadFloat (file , return ) {
alloc . float 1 ( float * m)
fscanf . file "%f" m ( readcnt )
load . m (v)
free . m ()
return . v

}

let allocMatrix (dimX , dimY , return ) {
dimX+dimY . (size)
alloc . float size (float * matrix )
return . matrix

}

let loadMatrix (filename , return ) {
fopen . filename r (file)
loadInt . file (dimX)
loadInt . file (dimY)
allocMatrix . dimX dimY ( matrix )
formd . [0 ,0] [dimX ,dimY] (x, y, break , continue ) {

loadFloat . file (value)
matrix +(y*dimX+x) . (addr)
store . addr value
continue .

} ()
fclose . file (succ)
return . dimX dimY matrix

}

Listing 6.7: Using C library functions to load a data matrix stored in a file. The
library functions are imported using $import. When C functions are used, all arguments
must be marshalled and memory pointers must refer to native data, rather than TR
objects. For that reason we use pointers (int*) and memory loading/storing (load,
store).
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DeepCPS:
$ cpsimport . "mylib" " loadMatrix " ( loadMatrix )

C++:
extern "C" void loadMatrix ( Interpreter * interpreter , Action *

action ) {
const char* filename = digString (action -> getArg (0));
Closure * continuation = action -> getInlineArg (1) ->as <Closure >();
FILE* file = fopen(filename , "r");
int dimX , dimY;
fscanf (file , "%d%d", &x, &y);
float * matrix = new float[dimX*dimY ];
for (int y = 0; y<dimY; ++y) {

for (int x = 0; x<dimX; ++x) {
fscanf (file , "%f", & matrix [y*dimX+x]);

}
}
fclose (file);
interpreter -> bindArgument ( continuation , 0, new Pointer ( matrix ));
interpreter -> invoke ( continuation );
action -> substituteWithFollowup ( continuation ->body ());

}

Listing 6.8: A single ManyDSL-aware function loading a data matrix stored in a
file. The ManyDSL API is used to read values from core nodes and pass the results at
the end through the interpreter. The actual computation, performed by the extending
function can be provided in plain C++, with or without the ManyDSL API.

While ManyDSL-aware functions are complicated to write, they provide a flexible
way of defining extensions to the core DeepCPS. Both standard C functions and
ManyDSL-aware functions appear as ordinary function value in DeepCPS. They
can be invoked or passed as arguments, indistinguishably to functions defined
directly in DeepCPS.

6.1.3 Memory Operations

In most previous examples we use DeepCPS in a purely functional way. However
DeepCPS can be used in imperative programming as well and supports memory
operations. In the previous example Listing 6.7 we represent a matrix as a
memory-allocated array.

Naturally, a matrix could be represented as a giant tuple or tuple-of-tuples to
simplify the 2-dimensional access. However, when the size is potentially big and
accessing it through dynamic indexing, an array type is better suited. DeepCPS
does not provide an array type though, since at the low level those behave
similarly to a memory region.

DeepCPS supports pointer arithmetic, explicit allocation and deallocation. Cur-
rently, it does not provide any smart pointers that would automatically provide
deallocation when the pointer is no longer referenced. This aligns with the
philosophy of DeepCPS as a low-level language that does nothing automatically.

To further exemplify imperative programming in DeepCPS, consider the example
Listing 6.9. The provided code loads a 2-dimensional, monochromatic image I,
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let matrixGet (matrix , dimX , dimY , x, y, return ) {
matrix +(y*dimX+x) . (addr)
load . addr (value)
return . value

}
let matrixSet (matrix , dimX , dimY , x, y, value , return ) {

matrix +(y*dimX+x) . (addr)
store . addr value ()
return .

}

loadMatrix . kernel (kDimX , kDimY , kernel )
(kDimX -1) /2 . ( kOffsetX )
(kDimY -1) /2 . ( kOffsetY )
-kOffsetX . ( negkOffsetX )
-kOffsetY . ( negkOffsetY )
loadMatrix . image (iDimX , iDimY , image)
allocMatrix . iDimX iDimY ( output )

// for each output image pixel
formd . [0 ,0] [iDimX ,iDimY] (outx , outy , break , continue ) {

// for each kernel element
formd . 0 [ negkOffsetX , negkOffsetY ] [kOffsetX , kOffsetY ]

(acc , kx , ky , break , continue ) {
outx+kx . (inx)
outy+ky . (iny)

// check out of bounds
inx >=0 and inx <iDimX and iny >=0 and iny <iDimY . (ok)
ifelse . ok

(endif) {
// load input image value
matrixGet . image iDimX iDimY inx iny ( inValue )

// load kernel value
kx+ kOffsetX . (kx)
ky+ kOffsetY . (ky)
matrixGet . kernel kDimX kDimY kx ky ( kernelValue )

// add to the accumulator acc
acc+ inValue * kernelValue . (acc)
endif . acc

}
(endif) {// else

endif . acc
}

(acc) // endif
continue . acc

} (acc)
matrixSet . output iDimX iDimY outx outy acc ()
continue .

} ()

Listing 6.9: 2D convolution in DeepCPS. matrixSet/matrixGet perform pointer
computation and access the memory through load and store. These are unpure func-
tions, and while they return nothing, they cannot be removed from the code. Similarly,
the outher multidimentional for loop formd (defined in Listing 6.5) has no data explicitly
exchanged between the loops, but its body is unpure as well.
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a kernel K and performs a convolution I ∗K. In this simple version we ignore
problems arising at the borders of the image.

We use the multidimensional loops defined in Listing 6.5. The outer loop
iterates over all pixels of the input image. Each iteration, for given coordinates
(outx, outy) computes the value of the convolution image ∗ kernel. The result is
stored in the image output.

The inner loop iterates over 2-dimensional kernel, in the range between corners(
−
⌊

kDimX−1
2

⌋
,−
⌊

kDimY−1
2

⌋)
and

(⌊
kDimX−1

2

⌋
,
⌊

kDimY−1
2

⌋)
. The inner formd

function takes an additional accumulator argument that is initially set to 0. This
argument is passed to all iterations of the loop. The value acc is increased by
the product between pixel value and kernel value, and the result is returned
through the loop continuation. The final result, also named acc, is stored into
the corresponding pixel of the output image.

Let us compare the outer and inner loops with respect of their effect on the
program. Each iteration of the inner loop takes an additional argument (acc),
modifies it producing a new value, and then returns it. This is how loops in
purely functional programming usually look like.

The outher loop function however takes no additional arguments and produces
no result. It would seem that each iteration of the outer loop has no effect on
the rest of the program. However, since we modify a memory within the loop by
writing to the output image, the loop cannot be simply removed.

6.2 Staging

In Section 4.1 we introduce the concept of Dynamic Staging and identify basic
patterns in Section 4.1.7 We now show more involved examples, how to use
staging and the patterns.

Loop unrolling

One of the simplest tasks for staging is loop unrolling. In this example we use
the generic for loop defined in Listing 6.3, but any other loop can be used as
well. We use the fragment chaining pattern of Listing 4.9. The loop acts as
the master function and a single code fragment — the loop body — is called
repeatedly. The loop body takes and returns a stage chain control variable.

In the example Listing 6.10 we use a chain s to unroll a simple for loop. In
each iteration the same code fragment is invoked. Its body is executed, but a
block between @sin: and [sout] is deferred. The sout chain control variable is
returned to the loop function and used as sin in the next iteration. This way,
the next instance of the sin-sout block is chained together with the previous
one.

It should be noted that no change is required to the general for loop that was
given in Listing 6.3. We merely use the general tuple !args to pass the stage
parameter in and out of the body of the loop.
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for . s from to (sin , idx , continue ) {
...
... ()[jmp]

@sin: ...
...
... ()[sout]

@jmp: ...
...
continue . sout

} ( sfinal )
...

Listing 6.10: Using staging to unroll a loop. The fragment of the loop body staged in
the s chain remains intact for every iteration of the loop.

Staging and Memory

The staging mechanism of DeepCPS is explicit and does not rely upon compiler
deciding what is and what is not safe. This puts dynamic staging in a unique
position where it allows staging over unpure functions and memory operations.
It is the programmer who defines what is and what is not safe. The programmer
has additional information about the intended behavior of the program, often
not expressed in code in any way.

While the user has more freedom compared to similar solutions, it also puts
more responsibility upon them. DeepCPS does not try to catch any misuse of
staging. Code that is correct in natural staging may lead to a crash when used
with staging. Apart from purely functional hazards induced by staging, such
as infinite execution, executing the memory operations in a different order may
lead to new kinds of problems.

• Accessing a variable before it is allocated, or after it is deleted.

• Accessing a variable allocated on different machine – when one staging
chain is interpreted and another is compiled and then executed elsewhere.

Consider an example Listing 6.11. It is a similar convolution function as given
in Listing 6.9, but uses staging to specialize itself for a specific kernel.

The function takes a file name containing a description for a kernel. With it, it
resolves the parts of the convolution function that depend only on the kernel
and not on the input image. This involves computing on the dimensions of the
kernel, unrolling the inner loop and loading values from the kernel array.

Technically, this is done with two staging chains: the function-time ft, and a
preparation prep. The inner formd uses the loop unrolling pattern explained
earlier in this chapter: The loop itself is executed in prep stage chain, but the
ft staging chain control variables are passed into each iteration of the loop. The
parts staged in the ft chain remain intact, and reappear one after another in
the produced code, shown in Listing 6.12.

The result of executing the prep chain is given in Listing 6.12. It is assumed
that a file is named, which contains a simple Sobel-Feldman Operator kernel,
typically used in image processing for edge detection [123]:
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let convolve (kernelName , return )[prep0] {
return . (inName , outName , return )[ft0]
@prep0 :
loadMatrix . kernelName (kDimX , kDimY , kernel )
(kDimX -1) /2 . ( kOffsetX )
(kDimY -1) /2 . ( kOffsetY )
-kOffsetX . ( negkOffsetX )
-kOffsetY . ( negkOffsetY )[prep1]
@ft0:
loadMatrix . inName (iDimX , iDimY , image)
allocMatrix . iDimX iDimY ( output )

// for each output image pixel
formd . [0 ,0] [iDimX ,iDimY] (outx , outy , break , continue )[ft1] {

@prep1 :
// for each kernel element
formd . ft1 0 [ negkOffsetX , negkOffsetY ] [kOffsetX , kOffsetY ]

(ft2 , acc , kx , ky , break , continue )[prep2] {
@prep2 :
let [prep3]; //Stage Branch pattern, Section 4.1.7
@ft2:
outx+kx . (inx)
outy+ky . (iny)

// check out of bounds
inx >=0 and inx <iDimX and iny >=0 and iny <iDimY . (ok)
ifelse . ok

(endif) {
// load input image value
matrixGet . image iDimX iDimY inx iny ( inValue )[ft2]

@prep2 :
// load kernel value
kx+ kOffsetX . (kx)
ky+ kOffsetY . (ky)
matrixGet . kernel kDimX kDimY kx ky ( kernelValue )

// add to the accumulator acc
@ft2:
acc+ inValue * kernelValue . (acc)
endif . acc

}
(endif) {// else

endif . acc
}

(acc)[ft3] // endif
@prep3 :
continue . ft3 acc

} (ft4 , acc)
@ft4:
matrixSet . output iDimX iDimY outx outy acc ()
continue .

} ()
return .

}

Listing 6.11: Staged convolution, specialized for a specific kernel given in a
file kernelName. We use staging despite unpure functions, such as matrixGet and
matrixSet are present (defined in Listing 6.9). Operations on the kernel matrix are
performed in prep staging chain, while image matrix is used only at ft staging chain.
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// after applying kernel 3x3:
// [ -1 0 +1 ]
// [ -2 0 +2 ]
// [ -1 - +1 ]

(inName , outName , return )
loadMatrix . inName (iDimX , iDimY , image)
allocMatrix . iDimX iDimY ( output )

// for each output image pixel
formd . [0 ,0] [iDimX ,iDimY] (outx , outy , break , continue ) {

outx -1 . (inx)
outy -1 . (iny)
inx >=0 and inx <iDimX and iny >=0 and iny <iDimY . (ok)
ifelse . ok

(endif) {
matrixGet . image iDimX iDimY inx iny ( inValue )
0+ inValue *( -1) . (acc)
endif . acc

}
(endif) { endif . 0 }

(acc)

outx . (inx)
outy -1 . (iny)
inx >=0 and inx <iDimX and iny >=0 and iny <iDimY . (ok)
ifelse . ok

(endif) {
matrixGet . image iDimX iDimY inx iny ( inValue )
acc+ inValue *0 . (acc)
endif . acc

}
(endif) { endif . 0 }

(acc)

outx +1 . (inx)
outy -1 . (iny)
inx >=0 and inx <iDimX and iny >=0 and iny <iDimY . (ok)
ifelse . ok

(endif) {
matrixGet . image iDimX iDimY inx iny ( inValue )
acc+ inValue *1 . (acc)
endif . acc

}
(endif) { endif . 0 }

(acc)

... 6 more similar blocks ...

matrixSet . output iDimX iDimY outx outy acc ()
continue .

} ()
return .

}

Listing 6.12: Result of calling convolve from Listing 6.11 with a name of a file
containing the Sobel-Feldman Operator.
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3 3
-1 0 +1
-2 0 +2
-1 0 +1

With the contents of the kernel matrix populated with the actual data, the inner
formd loop is unrolled, producing 9 copies of the body. The matrix contents
appear as constants within expressions incrementing the accumulator data acc.

Other languages that perform partial evaluation would have difficulties to per-
form such optimization, because it is generally unsafe. The compiler requires
guarantees regarding pointer aliasing and has no knowledge of what the C func-
tions in loadMatrix actually do. Only by moving the responsibility towards the
user, as it is done in DeepCPS, such an evaluation is possible.

At this point DeepCPS makes no attempts to further optimize the code. However,
when the underlying compiler is invoked, it performs the typical LLVM opti-
mizations, which include constant propagation and dead code elimination. With
it, the unrolled version can be further simplified, e.g. by completely eliminating
the code that ends up multiplying with a constant 0.

Dependent Staging

Let us now show another unique use of dynamic staging: In some scenarios it is
worth for staging to change, depending on certain conditions or as a result of some
computation. Consider for example Listing 6.13 — a recursive implementation
of a 1D Cooley-Tukey algorithm for the Fast Fourier Transform [63]. We assume
that the input size of the image is a power of 2.

It is a divide and conquer algorithm of complexity Θ(n logn). In each recursion
step recfft calls itself twice for the first and second half of the array. The
recursion is terminated when the size reaches 1. When each of the halves of the
array have their respective FFT computed, the merge step occurs, which linearly
iterates over the whole data range to compute the FFT of the combined array.

In practice the above function is slow and can be improved. The problem is, that
the recursive recfft is called several times for very small values of size. In these
calls, the same trigonometric functions are recomputed each time. Compared to
those, the actual computation on the image takes little time.

We could specialize fft for any input value size, even when the actual contents
of image remain unknown. This would unroll the recursion and compute all
the trigonometric functions beforehand. The problem is, that we obtain n logn
instructions, which for high n values may again slow down the program. What
we need is to choose whether we unroll or not depending on the size n.

To make the most informative decision for staging, we could check the properties
of the target hardware or even perform profiling. However, for the purpose of
our example let us take a simple assumption instead: We unroll the recursion
when size is at most 8. For other values of n we still specialize recfft, but
keep the recursive calls intact.

With dynamic staging, such condition can be encoded as in the example List-
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fix reindex (image , size , return ) { ... } in
fix recfft (image , size , return ) {

size =1 . (done)
if . done () { return . image } ()
size /2 . (sizeh)
recfft (image , sizeh) . ()
recfft (image+sizeh , sizeh) . ()
sin(pi/sizeh) . (wtemp)
-2 * sqr(wtemp) . (wpr)
-sin (2* pi/sizeh) . (wpi)
for . wtemp 1 0 0 sizeh (wtemp , wr , wi , idx , break , continue ) {

image[i+sizeh ]*wr - image[i+sizeh +1]* wi . (tempr)
image[i+sizeh ]*wi + image[i+sizeh +1]* wr . (tempi)
store(image[i+sh], image[i]-tempr) . ()
store(image[i+sh+1], image[i+1]- tempi) . ()
store(image[i], image[i]+ tempr) . ()
store(image[i+1], image[i+1]+ tempi) . ()
wr + wr*wpr - wi*wpi . ( nextwr )
wi + wi*wpr + wr*wpi . ( nextwi )
continue . wr nextwr nextwi

} (wtemp , wr , wi)
return . image

} in
let fft(image , size , return ) {

reindex . image size (image)
recfft . image size (image)
return .

} ...

Listing 6.13: An implementation of 1D Cooley-Tukey algorithm for FFT in DeepCPS
without staging. The reindex is a straightforward, function which reindexes the input
data according to the algorithm. We skip its implementation for the sake of brevity.
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Specialization of recfft

Decision on staging

Dependently staged recursive call

fix reindex (image , size , return ) { ... } in
fix recfft (image , size , return ) {

@size:
size =1 . (done)
if . done () { return . image } ()
size /2 . (sizeh)
let recffth (image , return ) {

@sizeh :
recfft . image sizeh (image)
@return :
return . image

}
size <=8 . ( dounroll )
ifelse . dounroll

(endif) { endif . always }
(endif) { endif . image }

( unroll )
@unroll :
recffth (image) . ( imgleft )
recffth (image+sizeh) . ( imgright )[ recdone ]
@imgleft & imgright : let [ imgrec ];
@sizeh :
sin(pi/sizeh) . (wtemp)
-2 * sqr(wtemp) . (wpr)
-sin (2* pi/sizeh) . (wpi)[const]
@const & recdone :
for . imgrec wtemp 1 0 0 sizeh

( imgrec , wtemp , wr , wi , idx , break , continue )[s] {
@imgrec :
image[i+sizeh ]*wr - image[i+sizeh +1]* wi . (tempr)
image[i+sizeh ]*wi + image[i+sizeh +1]* wr . (tempi)
store(image[i+sh], image[i]-tempr) . ()
store(image[i+sh+1], image[i+1]- tempi) . ()
store(image[i], image[i]+ tempr) . ()
store(image[i+1], image[i+1]+ tempi) . ()[ imgrec ]
@s:
wr + wr*wpr - wi*wpi . ( nextwr )
wi + wi*wpr + wr*wpi . ( nextwi )
continue . wr nextwr nextwi

} ( imgrec , wtemp , wr , wi)
return . imgrec

} in
let fftgen (image , size , return ) {

@image :
reindex . image size (image)
@size:
recfft . image size ( imgdone )
@imgdone :
return .

}
let fft1024 (image , return ) {

@fft:
fft . image 1024 return

}

Listing 6.14: An implementation of 1D Cooley-Tukey algorithm for FFT in DeepCPS
with staging. Each call to recfft causes a recursive specialization recffth of itself for
size/2. Moreover, if size is at most 8, the recursive calls are actually invoked and
the remaining code spliced into the context of parent recfft.
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ing 6.14. We define recfft function as before, but with an intent that it may
be invoked with unknown image where only its size is known.

First, within the function recfft we define a specialization recffth, that
performs the very same computation as the parent function, but for half the
image size. Through the recursive specializations, all necessary versions of
recffth are created. Note that in each step of the recursion we create exactly
one specialization, despite invoking it twice later in the algorithm. We do not
duplicate code — for each value of size there is exactly one function. We
ultimately create Θ(logn) versions of specialized recfft.

Before we invoke the specialized functions, we decide at which stage that invoca-
tion should happen. To achieve this we check the value of size and depending
on its value we invoke the continuation (unroll)..., passing either always or
image as a stage parameter.

The recursive calls return a stage parameter imgleft and imgright, indicating
that the respective halves of the image have been processed. We need these
parameters to ensure that all image operations — which are memory operations
— are actually performed in the correct order. The trailing line
@imgleft & imgright : let [ imgrec ];

defines a new staging variable imgrec which becomes active when both left and
right images are processed.

With the value size known, the trigonometric functions can be evaluated early,
incorporating constants into the body of specialized recfft. The loop however,
exactly the same as with recursive calls, is unrolled only for size at most 8. For
any higher size, the loop executes only after the recursive calls are performed.

Within the loop, when unrolling, values wr and wi – the principal roots of unity
W from the Cooley-Tukey’s algorithm – are computed early, since those do not
depend on the image data. On the other hand, the instructions that alter image
are staged to be executed in the correct order, after the previous recursive calls.

Finally, at the end, we return the last imgrec staging variable, which becomes
active only when all image operations of the function are completed.

We should note that the staging and specialization part in this example is a
little bit more involved, but is still manageable and — for the first time — uses
dependent staging. Despite the unusual additions, the core logic of the algorithm
remains the same.

Reverse Capture

Consider the following scenario: We want to specialize a generic function fgen,
defining a new, specialized version fspec. As in many examples above, including
the introductionary power72 from Listing 4.5, this is done by invoking fgen
from within the body of fspec, before fspec itself is called. The code of fgen
that is skipped over due to staging is spliced into the context of fspec.

However, as the generic fgen is executed as part of the fspec body, it may
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let fgen (... , fn[resT ,auxT] return ) {
...
return . result auxiliary

}
alloc . auxT (auxT* mem)[memAv]
@memAv : let [ memSet ];
let fspec( return ) {

@fgen: fgen . ... (result , auxiliary )
@memAv : store . mem auxiliary ()
@result : return . result

}
@memSet :
load . mem ( auxiliary )
...

Listing 6.15: The reverse capture pattern – retrieving an auxilary information from
within a body of a function. Function fgen is specialized within fspec, producing an
unknown result and known auxiliary. The auxiliary value is stored in mem and
then retrieved outside of the fspec body.

compute some other valuable information, such as the typing information. Unfor-
tunately, such auxiliary information i is spliced together with the remaining code
into the body of fspec. Consequently, outside of fspec, i cannot be accessed
easily. This may be a problem if the content of i hints on how fspec may be
used — for example, when a language implements type deduction for fspec
based on i.

In other words, we want to obtain a value from within a lambda and use it
outside of its scope. We refer to it as reverse capture, as the operation is a
reverse of an inner lambda capturing a value from its outer context.

In a pure lambda calculus, reverse capture is not possible. Instead, in a pure
functional programming, one should keep the actual f and the computation of
i separate. This may be inconvenient for the programmer, however, when the
computation flow of f and i are the same or similar. Moreover, partial results
obtained during computation of f and i may incrementally interact with each
other. Thus keeping the computation for f and i in separate functions may be
impractical.

In DeepCPS we propose an unpure but more pragmatic solution. As shown
in Listing 6.15 we use memory to obtain i, while maintaining fspec. Suppose
that the generic fgen returns two values result and auxiliary, of type resT
and auxT respectively. The value result is passed into the context of fspec
to be later passed into the continuation return. The auxiliary value however
is stored into a previously defined memory location mem, and never passed to
return. The mem can be then accessed outside of the fspec body, to retrieve
the auxiliary value.

Care has to be made to ensure that the value is actually stored into mem before
it is retrieved. For that we use a stage branch from Section 4.1.7: The stage
variable memAv ensures that the value is set before stage memSet is active. All
loads of mem are then performed after memSet.

Moreover, it is important that @fgen: is executed before memAv. Otherwise,
store would fail when trying to store a symbolic value under mem.
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let specialize (fgen , fargs , return ) {
// fgen has type fn[ ... , fn[ retT , auxT ]]

typeof (fgen).last.last . (auxT)
alloc . auxT (mem)
@mem: let [ memSet ];
let fspec (!args , return ) {

fargs . !args (! argsComb )
@fgen: fgen . ! argsComb (result , auxiliary )
@mem: store . mem auxiliary ()
@result : return . result

}
@memSet :
load . mem ( auxiliary )
return . fspec auxiliary

}

Listing 6.16: The abstraction over the reverse capture pattern. The generic fgen
takes an arbitrary set of arguments !argsComb, and a returning continuation that
accepts the result and the auxiliary result. The function fargs combines the fspec
arguments with arbitrary constants over which fgen is specialized. The type of the
auxiliary (auxT) is extracted from the type of fgen, so that proper memory is allocated.

In theory, with a small extension to alloc, it is possible to store symbolic
values in memory as well. In practice it can lead to hard-to-track bugs and in
general should be avoided. Recall from Section 5.1.2 that when a function is
invoked, a deep cloning of all nested code is performed. The node representing
the symbolic auxiliary value is cloned whenever any lambda containing it is
invoked (continuations excluded, as explained in Section 5.1.3). In particular,
any lambda encapsulating the whole section of code we are currently discussing
could potentially issue cloning. However, such cloning procedure would not alter
the values stored in mem. It would always point to the original, and not the
cloned symbolic value.

For that reason, using memory for symbolic values is safe only if it can be
guaraneed that the referred value is not cloned between storing and loading.

The above pattern for specializing a function and extracting an auxiliary infor-
mation can be abstracted out, for example the way it is done in Listing 6.16.
This specialization function takes the generic version fgen and produces its
specialization fspec. As the function fgen is partially evaluated, it produces
the auxiliary information of type auxT.

6.3 Compilation and Performance

The ManyDSL underlying compilation module uses Thorin [84] and LLVM [80]
as described in Section 5.5. Let us show how the compilation can be performed.
We also want to verify that ManyDSL can actually produce efficient machine
code.

Consider a function P representing a program that needs to be compiled. In
order to obtain an LLVM module containing the function P it suffices to write:
#include < compiler .cps >
let P(...) { ... }
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...
compiler_create . (c)
compiler_add . c P "P" ()
compiler_finalize . c ()
compiler_optimize . c ()
compiler_emitLLVM . c ("P.bc")
compiler_destroy . c ()

All compiler_* values are imported C functions, provided by the header file
compiler.cps. In the six steps we perform:

• Create a new compiler context

• Add a new closure P into the context. It also automatically adds all
dependencies that are captured by it. The string value is an arbitrary
name we assign to the function that is used for linking purposes.

• Finalize the compilation, indicating that no other functions are to be added.
At this step we translate P into Thorin.

• Invoke transformations within Thorin, so that code can be generated.

• Emit LLVM bytecode into a specified file

• Close and remove the compiler context.

In the current version of ManyDSL it is not possible to invoke the produced
code from DeepCPS. However, doing so should not impose any theoretical or
technological obstacles.

In our case, we produced a complete, standalone program. In order to evaluate
the performance of it we performed a series of tests. We have implemented 4
problems discussed in this work, namely:

• The power function of Listing 4.6a computing a value x72.

• A convolution of an unknown 1D data set of size 256 with a kernel [-1, -2, 0,
+2, +1], using an implementation similar to one discussed in Listing 6.11

• The same convolution with an additional code to handle borders. The
staged version moves the border cases outside the main loop.

• The Cooley-Tukey algorithm for FFT from Listing 6.14 applied to a 1D
signal of length 224.

Each of these problems was implemented in four different variants:

• Standard C++ dynamic code without any explicit specialization

• In C++ using metaprogramming to force partial evaluation at compile-time

• In DeepCPS but without staging

• In DeepCPS using staging

178



Language Creation Challenges 6.4

Table 6.1: Absolute execution times of different implementations of the power function and 1D
convolution. Two variants of the convolution are considered, one using mirroring as boundary
handling (BH) and one without boundary handling.

power convolution convolution FFT
BH: none BH: mirror

Number of iterations 108 106 106 1
Standard C++ 1402ms 1079ms 1171ms 2510ms
Templated C++ 192ms 419ms 421ms 551ms
CPS without staging 1685ms 1012ms 1047ms 2584ms
CPS with staging 194ms 413ms 420ms 573ms

The C++ sources have been compiled into LLVM bytecode using clang 3.3.
The CPS implementations are compiled into LLVM bytecode using Thorin [84].
Regardless of the source, C++ or CPS, all versions of the bytecode are then
compiled and linked into native code using LLVM with optimizations enabled
(opt -O3).

All produced functions have been called from the same main testing loop,
repeating the call several times. The parameters were flagged as volatile to
prevent any further optimizations between the loop iterations. Without the
volatile flag, the compiler was often able to detect that we compute the same
thing all the time and completely remove the testing loop, defeating the purpose
of the test.

The produced executables have been run on a computer equipped with an Intel
i7-2600K 3.4 GHz CPU and 8 GB of DDR3 (1333MHz) memory, running 64-bit
Ubuntu 12.04.2 LTS. Each executable was run 5 times and the average timing
was used.

From Table 6.1 we can see, unsurprisingly, that partially evaluated code can
perform significantly better than unspecialized code. What is important, however,
is that the code produced by ManyDSL is comparable in performance to the
existing and well-adopted C++ compiler.

We do not beat C++ in terms of performance, but that was never our goal.
Instead, we beat it in terms of staging mechanisms: We use highly flexible
dynamic staging, while C++ requires the inconvenient template metaprogram-
ming approach – that we discussed in Section 2.3.1. We show that despite the
additional abstraction layers and use of CPS, we remain competitive.

6.4 Language Creation Challenges

In Section 4.2 we explained what tools ManyDSL provides to facilitate language
creation. We did not explain in detail how these can be actually used. In this
chapter we show typical challenges encountered when creating a language and
how ManyDSL can be used to resolve them. We particularly seek solutions that
can be used across many languages. Such generic solutions make the language
definitions easier to maintain, but also simplify code that interacts with multiple
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languages at once.

6.4.1 Multiple Passes

DeepCPS is a single-pass language. Consequently, all names must be defined
before they are used. In a higher-level language this may be inconvenient. If in
a given scope multiple objects or functions are mutually recursive, writing all
declarations before their definitions may be cumbersome.

This raises a question, how to incorporate a multi-pass language in the Syntax
Directed Execution format? We choose to use builders, defined in Section 4.3.1,
to find a solution. Observe, that the order of builder invocations and the order in
which fragment functions are connected are independent. Builders are typically
called in the order of parsing. However, each action can contain multiple builders,
and the generated fragments are no longer constrained by the parse order.

Multiple pass language can be achieved by creating two or more series of fragment
functions. As the source is parsed, fragment functions are glued to these two
series, for example Decl and Def. Upon completion, Decl containing all the
declarations is put before Def having all the appropriate definitions.

As an example, consider a simple DSL for specifying directed graphs. Each entry
consists of a head vertex, followed by an edge list naming all adjacent vertices:
VertexName -> [VertexName [ , VertexName [ , ... ]]] ;

The DSL should read such a graph description and form an indexed tuple
describing this graph. An entry at an index i should be an adjacency list of the
vertex i. For example, given an input
graph {

Start -> X, Y;
X -> Y;
Y -> X;

}

our DSL should produce a graph-describing tuple:
[[2 ,3] , [3], [2]]

In the Listing 6.17 we present a complete implementation of such language. In
the main rule Graph we begin building not one, but two functions: Decl and
Def. These are passed to a list of entries.

Incremental fragments of Decl have 2 recurring parameters: names containing
all recorded vertex names, and exit continuation function to be invoked at the
very end. Each graph entry names a new vertex in a graph, followed by its
adjacency list. The Decl is modified only by the vertex name. A new name is
added at the end of the names tuple.

Fragments of Def have 3 recurring parameters: names and exit are the same as
in Def. The Def fragments assume that names already contains the names of all
vertices in the graph. A new parameter graph is a tuple representation of the
graph that we build. The Def function is modified when reading the adjacency
list.
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Graph ->(P) ::= "graph" "{"
() ->(Decl ,Def) { //create two fragment chains: Decl and Def

build . (exit , cont) { cont . [] exit } (Decl)
build . (names , exit , cont) { cont . [] names exit } (Def)
return . Decl Def

}
(Decl ,Def)->EntryList ->(Decl ,Def)
(Decl , Def) ->(P) { //here, as the whole graph is parsed, connect Decl to Def

build . (graph , names , exit) {
exit . graph

} (Fend)
glue . Decl Def (FMain)
glue . FMain FEnd ( FComplete )
glue . FComplete (P)
return . P

} "}";

(Decl ,Def)->EntryList ->(Decl ,Def) ::= epsilon ;
(Decl ,Def)->EntryList ->(Decl ,Def) ::= Entry EntryList ;

(Decl ,Def)->Entry ->(Decl ,Def) ::= Name ->( name)
(name ,Decl) ->(Decl) {

//new vertex name is encountered, add it to the tuple of names
build . (names , exit , cont) {

concatenate (names ,[ name ]) . (names)
cont . names exit

} (F)
glue . Decl F return

}
"->"
(Def) ->(Def) {

build . (graph , names , exit , cont) {
cont . [] graph names exit

} (F)
glue . Def F return

}
(Def)->Adj ->(Def)
(Def) ->(Def) {

build . (adj , graph , names , exit , cont) {
concatenate (graph , [adj ]) . (graph)
cont . graph names exit

} (F)
glue . Def F return

} ";" ;

(Def)->Adj ->(Def) ::= epsilon ;
(Def)->Adj ->(Def) ::= AdjElement AdjCont ;
(Def)->AdjCont ->(Def) ::= epsilon ;
(Def)->AdjCont ->(Def) ::= "," AdjElement AdjCont ;

(Def)->AdjElement ->(Def) ::= Name ->(name)
(name ,Def) ->(Def) {

//new adjacent name - look it up in names array, filled in Decl
build . (adj , graph , names , exit , cont) {

find(names ,name) . (idx) // such that names[idx ]= name
concatenate (adj ,idx) . (adj)
cont . adj graph names exit

} (F)
glue . Decl F return

}

Listing 6.17: DSL for a graph description. Multi-pass is achieved by creating two
fragment functions: Decl and Def and gluing them together only at the end of the
description.
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Within the Adj rule, an additional recurring parameter adj is temporarily added
to Def and it holds the numeric values of the adjacent vertices. For each parsed
name in the adjacent vertex list, we add new code to the Def function: The
names tuple is searched to find the specified name and obtain the corresponding
index. The result is appended at the end of adj. When, at the end, the adjacency
list of the current vertex is completed, it is appended to the graph tuple.

Finally, at the very end — that is, the last action of the Graph rule, Decl and
Def functions are glued together. This puts all the vertex naming operations
in front of all adjacency list building. This way, all insertions to names happen
before lookups. The assumption we made that names is complete within Def
fragments is in fact true. As long as the graph description is correct, all searches
in the names tuple succeed even if in the source code vertex declaration name
appears after its use.

This way, a language that originally would be considered to need two passes, is
actually built in a single pass. Multiple functions are being built while parsing,
and at the very end they are combined to form the program.

6.4.2 Building Recursive Functions

In Section 4.3.5 we have shown how fix nodes can be incorporated within builders.
Unfortunately, within native DeepCPS the fix cannot be built in a generic way,
the node cannot be split into smaller components or built incrementally. In this
section we show how this limitation can be bypassed by manipulating ManyDSL
nodes directly. We also show, how to manipulate ManyDSL nodes to form a
recursion without using fix nodes at all.

Building Fix Nodes

We use ManyDSL-aware C++ functions designed to directly manipulate fix nodes.
These functions are provided by us as a library, and their precise definition is
provided in the Appendix B.

• fixDeclare (n, return) creates a new, incomplete, fix node. The func-
tion taking 2 arguments: a number n and a returning continuation. It
creates a new ManyDSL fix node, with n functions. The functions however
have no definitions yet. The fix node is also missing the continuation code,
which normally appears after the in.

• fixDefine (fixnode, idx, definition, return) modifies the fix node
by adding a single function definition at a given integer position idx. It
returns through the parameter-less continuation.

• fixFinish (fixnode, in_caluse, return) finalizes the fix node once
all definitions are provided. The fixFinish takes the remaining fix node
continuation code (inclause), given as an parameter-less lambda. With
it, fix node is then complete. It is put into another lambda, and passed
into return continuation as a proper ManyDSL value.
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Graph ->(P) ::= "graph" "{"
() ->(Decl ,Def) {

build . (exit , cont) { cont . [] exit } (Decl)
build . (names , exit , cont) {

arity(names) . (size)
fixDeclare . size (graph , fcts)
cont . graph names fcts exit

} (Def)
return . Decl Def

}
(Decl ,Def)->EntryList ->(Decl ,Def)
(Decl , Def) ->(P) {

build . (graph , names , fcts , exit) {
fixFinish . graph () {

exit . fcts
} ( fixlambda )
fixlambda .

} (Fend)
glue . Decl Def (FMain)
glue . FMain FEnd ( FComplete )
glue . FComplete (P)
return . P

} "}";

Listing 6.18: The definition of the top grammar rules of a DSL for graph description.
In this version, each vertex corresponds to a function returning its adjacency list. All
these mutually-recursive functions are put manually into a single fix node of TR.

In order to show how to use the above functions, let us again consider the graph-
building language from before. This time however, each vertex is a function,
which returns (through continuation) the adjacency list. Thus, for the same
input:
graph {

Start -> X, Y;
X -> Y;
Y -> X;

}

we produce something equivalent to:
(graph) {

fix
f1 = ( return ) { return . [f2 ,f3] }
f2 = ( return ) { return . [f3] }
f3 = ( return ) { return . [f2] }

in
graph . [f1 ,f2 ,f3]

}

The basic grammar of the language remains the same as in the Listing 6.17. The
language changes only in terms of the actions.

Within the Graph production, in Listing 6.18, we modify the actions to initialize
and finalize fix node creation. At the beginning of Def, we create the fix node.
At that time the names tuple is already populated and we know its size. The
fixDeclare creates a fix node which is then used as the graph representation.
In this version, the Def also gets another recurring parameter: fcts which is a
tuple containing all declared functions within the fix node.

At the end of the Def we assume that the graph representation is complete
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(Def)->AdjElement ->(Def) ::= Name ->(name)
(name ,Def) ->(Def) {

build . (adj , graph , names , exit , cont) {
find(names ,name) . (idx) // such that names[idx ]= name
fcts[idx] . (fct)
concatenate (adj ,fct) . (adj)
cont . adj graph names exit

} (F)
glue . Decl F return

}

Listing 6.19: The construction of the adjacency list in a graph-describing DSL
using functions as vertices. The difference from Listing 6.17 is minimal: We use the
additional array fcts to retrieve the actual function to be put into the adjacency list.
In this version, each vertex corresponds to a function returning its adjacency list. All
these mutually-recursive functions are put manually into a single fix node of TR.

(Decl ,Def)->Entry ->(Decl ,Def) ::= Name ->( name)
...
(Def)->Adj ->(Def)
(Def ,name) ->(Def) {

build . (adj , graph , names , fcts , exit , cont) {
"find(names ,name)" . (idx)
fixDefine . graph idx

( return ) { return . adj }
()
cont . graph names fcts exit

} (F)
glue . Def F return

} ";" ;

Listing 6.20: Adding the completed adjacency list into the graph described as the fix
node.

within the fix node. We specify the in clause which returns the tuple containing
all the nodes of the graph — that is, all the functions of the fix node. The
produced, complete fix node is put into a function fixlambda by the fixFinish
which we immediately invoke.

Building the adjacency list does not differ much. We start with an empty adj
tuple as before. When a new name is encountered, we no longer add an index
into the adjacency. Instead, we reference a function of the fix node under that
index, and store that function in the adjacency tuple, as in Listing 6.19.

Finally, when the adjacency list is ready, we add the entry to the graph. Instead
of concatenating it, we use the fixDefine function to specify the entry in the
fix node (Listing 6.20).

Ultimately, as it can be seen the above example, with the fix node manipulation
functions, the changes are only superficial and the underlying algorithm for the
DSL remains unchained. The produced program contains fix node manipulation
functions, which is equivalent to what we wanted to obtain.

If one wishes to obtain the intended output exactly, with a single fix node,
staging can be used. The fix manipulation functions should be executed similarly
as it was done in Section 4.3.2. In that setting, the actual fix manipulation
would be performed in the build-time chain, while the lambda containing the fix
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Region 1: node allocation

Region 2: load references in late stage

Region 3: use references

Region 4: set symbolic references early

Region 5: return mutually-recursive functions

(graph) {
allocNode . (m1)
allocNode . (m2)
allocNode . (m3)
let [decl];
loadNode . m1 (px1)
loadNode . m2 (px2)
loadNode . m3 (px3)
let f1( return ) { return . [px2 ,px3] };
let f2( return ) { return . [px3] };
let f3( return ) { return . [px2] };
let [done];
@decl:
storeNode . m1 f1 ()
storeNode . m2 f2 ()
storeNode . m3 f3 ()
@done:
graph . [f1 , f2 , f3]

}

Listing 6.21: Creating recursive functions without using fix node. Instead, we use
memory to hold references to TR nodes. With the help of staging regions 1 and 4 (blue)
are executed first – we store symbolic f* values in the memory nodes m*. Only then,
regions 2, 3 and finally 5 (green) are executed in that order. Within them, we retrieve
the recursive references stored in the memory nodes m*.

(fixlambda) would be executed in the function-time chain.

Looping through Staging

Another way to build a series of mutually-recursive functions incrementally is to
refer to these functions without the fix node at all. While DeepCPS syntax does
not allow that, this limitation can be bypassed through staging and memory
operations. As we explained in Section 5.1.1, Target Representation does not
actually treat fix nodes in any special way and interpretation would work even if
such nodes were not present at all.

The key idea of the approach is to use staging and memory to pass references
up to early parts of the program. As before, we use three ManyDSL-aware C++
functions. This time however, they are much simpler than before:

• allocNode (return) allocates memory to store any ManyDSL value node
and returns through the continuation with the pointer to the node as a
result.

• loadNode (nodeptr, return) loads the ManyDSL value node from a
node pointer, and returns the actual value through the continuation.

• storeNode (nodeptr, value, return) takes the value and stores a ref-
erence to it under the ManyDSL node pointer nodeptr.

Consider the graph-creating DSL as in the previous examples. This time, instead
of creating a fix node we generate code as shown in Listing 6.21. It consists of
5 characteristic regions. In order of their appearance in the code, we have:
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1. For each graph vertex we declare a memory location storing a single
ManyDSL value (m1, m2, m3).

2. We load the function references that are set in region 4.

3. We use the function references to provide full function definitions.

4. We store the defined functions into the memory locations

5. We return the full graph, represented as a tuple of functions.

Because of staging, the order of execution does not match the order of appearance.
Right after the region 1 we use the stage branch pattern Section 4.1.7 and set
region 4 to execute before regions 2 and 3. While region 4 is being executed,
the values f1, f2, and f3 are not yet set and remain merely as symbolic values.
Still, these values can be stored in our special memory locations and are loaded
as proxy values px1, px2, px3 in region 2.

Since formally the above code has no recursion, building it is straightforward.
For each vertex, a line of code is added to regions 1, 2 and 4. The adjacency
list is used to build a function, referencing only proxy values px1, px2, and px3.
At the very end of the building, all regions are glued together and appropriate
staging is added.

Similarly to previous example, the whole node manipulation can be staged early,
in the build-time chain, ensuring that memory nodes and proxy values are elided.

6.4.3 Environment

One of important aspects of almost any language is name binding. What scopes
does a DSL provide and how can names be mapped to values? How can multiple
languages be combined if they provide different scoping rules?

The Syntax-Directed Execution scheme (Section 4.2.2) does not provide, nor put
any constrain on solutions. As with everything else, name lookups are defined by
arbitrary language semantics. Typically, the code handling variable naming is
staged to be executed early in order to avoid overhead later on. However, both
static and dynamic name resolution can be handled by almost the same code.

In a purely functional approach, binding can be handled by a map M em-
bedded as a closure in functions insert and lookup. We refer to such a pair
[insert,lookup] as an environment. In the example Listing 6.22, such a map is
implemented merely as a tuple containing pair of [name, value]. The insert
function adds a new element at the end of the tuple, and recursively creates a
new [insert, lookup] closure with the updated M tuple. The lookup finds
the given name in the tuple and returns the associated value.

The actual underlying implementation could be made more efficient, by employing
search trees, dictionaries or hash tables. The precise structure of M is however
completely orthogonal to the problem and we abstract away from it.

The above solution is just an example of how name binding can be realized.
Depending on the user requirements, the environment may behave differently.
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fix makeEnv = (M, return ) {
let insert (str , value , return ) {

concatenate (M ,[[ str ,value ]]) . (newM)
makeEnv . newM return

}
let lookup (str , return ) {

foreach . M (entry , idx , break , continue ) {
entry [0] . ( entryStr )
entryStr == str . (match)
if . match

() {
entry [1] . return

}
continue

} ()
return . []

}
return . insert lookup

} in
let newEnv ( return ) { makeEnv . [] return }

Listing 6.22: Simplest name binding in DeepCPS. A name-value pairs are repre-
sented in a tuple M , within the closures insert and lookup. Upon insertion, a new
insert,lookup pair is created that includes an updated tuple.

For example it may include name mangling, overloading, or automatic insertion
of new variables for names not previously encountered. In the following sections
we present how some of those features can be implemented.

It should be noted, that when the lookup fails to find an element, an empty
tuple is returned as a result. Failure to find a name in an environment does not
throw an error. This is good practice, because in some languages and contexts
it is indeed not an error and a well-defined behavior is assigned to such a case.
We make it more apparent in the next examples.

Environment in C++

Environment operations are frequent during parsing. If their implementation is
inefficient, they may noticeably increase the parsing time. In the view of this, it
may be practical to implement an environment in C++ and extend DeepCPS
with it. In Section 6.1.2 we have shown how extensions in general can be added.
Let us look how environments can be implemented as an extension.

We use an object-oriented approach: The environment is represented as a single
mutable object env with accessor functions insert and lookup. These functions
take the object as an argument, rather than capturing it as a closure. The
functions themselves are constant — they are not replaced with a newer version
whenever the map changes.

In the Listing 6.23 we define three functions for environment manipulation: Its
creation, insertion, and lookup. The environment is represented as a standard
C++ map, which in DeepCPS is encapsulated as a Pointer value. Obviously,
the map uses a string as its key, but the type of its value is problematic. Not
only the value type may be different from one entry to another, we also want
the environment to store values that are yet unknown, represented symbolically
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typedef std ::map <std :: string , sp <Value >>() EnvMap ;
extern "C" void envNew ( Interpreter * interpreter , Action * action ) {

Closure * continuation = action -> getInlineArg (0);
EnvMap * env = new EnvMap ();
Pointer * penv = new Pointer (env);
interpreter -> bindArgument ( continuation , 0, penv);
interpreter -> invoke ( continuation );
action -> substituteWithFollowup ( continuation ->body ());

}
extern "C" void envInsert ( Interpreter * interpreter , Action * action )

{
EnvMap * env = digPtr <EnvMap >( action -> getArg (0));
std :: string name = digString (action -> getArg (1));
Value* val = action -> getArg (2);
Closure * continuation = action -> getInlineArg (3);
env -> insert (name , val);
interpreter -> invoke ( continuation );
action -> substituteWithFollowup ( continuation ->body ());

}
extern "C" void envLookup ( Interpreter * interpreter , Action * action )

{
EnvMap * env = digPtr <EnvMap >( action -> getArg (0));
std :: string name = digString (action -> getArg (1));
Closure * continuation = action -> getInlineArg (2);
EnvMap :: iterator it = env ->find(name);
if (it == env ->end ())

interpreter -> bindArgument ( continuation , 0, new Tuple ());
else

interpreter -> bindArgument ( continuation , 0, it -> second ());
interpreter -> invoke ( continuation );
action -> substituteWithFollowup ( continuation ->body ());

}

Listing 6.23: Environment implementation in C++ as an extension of DeepCPS.
envNew creates a new object and packs it into TR pointer. envInsert puts a new Value
object as-is into the environment map. envLookup retrieves the value. Upon failure, it
returns an empty tuple.
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in the code. For that reason, we do not store actual values in the memory, but
pointers to the underlying nodes of the ManyDSL representation. Such pointers
may refer not only to concrete values but also to unbound parameters. In the
map such pointers are stored as sp<Value>, which are strong pointer to any
Value node. The pointer is declared as strong to ensure that the node is not
removed by the ManyDSL garbage collector, as explained in Section 5.1.1.

Storing an explicit pointer to ManyDSL node may cause an implementation-
specific pitfall that a programmer must be aware of: As we explained in Sec-
tion 5.1.2, our implementation of ManyDSL interpreter performs a full copy of a
function whenever it is invoked. However, an environment object is not aware
of this process. If an environment references a node that is cloned, it remains
pointing to the original. Depending on the situation this may or may not be a
desired effect.

To ensure correctness, one should store the reference after cloning and not
before. In the context of program building, as described in Section 4.3.1,
environment maps should be filled only after the code has been assembled from
all the semantic actions. Only then, possibly in a separate staging chain, all
environment insertions and lookups should be performed. Intermixing function
building and environment insertions may cause lookups to refer to nodes which
are part of the semantic action itself and not its instanced clone that builds up
the program.

Environment Polymorphism

Before discussing more involved examples of environments, let us ask an important
question: How to use multiple kinds of environments within a single program?
We want to abstract away how insert and lookup functions work for a given
environment object.

For example, consider two versions of the environment:

• The first one is a SimpleEnvironment, which works exactly how it was
shown in the previous example – Listing 6.23.

• The second one, MangledEnvironment, mangles the input names in some
way, e.g. to contain only alphanumeric characters.

Both versions create their own kinds of insert and lookup functions, for example
simpleEnvNew, mangledEnvLookup, etc. However, when we are given an envi-
ronment object env we do not want to manually discover, which version of these
functions should be used with it. In most cases, there is actually a single correct
one, and other may lead to some unexpected behavior.

This kind of problem can be solved through dynamic polymorphism – a key
concept in object oriented languages. In a functional language such as DeepCPS,
dynamic polymorphism can be achieved by storing the proper functions as a part
of the object – for example as it is done in functions newSimple and newEmngled
in Listing 6.24. We then define a single global dispatch function insert and
lookup which take the version stored with the environment object and call
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let newSimple ( return ) {
simpleEnvNew . envData
return . [envData , simpleEnvInsert , simpleEnvLookup ]

}
let newMangled ( return ) {

mangledEnvNew . envData
return . [envData , mangledEnvInsert , mangledEnvLookup ]

}
let insert (env , str , value , return ) {

env [0] . ( envData )
env [1] . ( envInsert )
envInsert . envData str value return

}
let lookup (env , str , return ) {

env [0] . ( envData )
env [2] . ( envLookup )
envLookup . envData str return

}

Listing 6.24: Polymorphism achieved by storing accessor functions together with
data in a single tuple. Each environment tuple consists of 3 elements: the data pointer
and the appropriate insert and lookup functions.
Do not confuse newSimple with simpleEnvNew: The former creates the appropriate
tuple; the latter initializes only the data, as it was done in the previous examples.

it. This way the use of env remains unchanged: the user invokes the dispatch
function and obtain the result. However, it is the object itself that defines which
actual function is being used.

Nested Environments

Many programming languages organize their data in a form of scopes. Certain
named variables and entities are accessible only within a certain scope, while
others may be accessible globally. Typically, scopes are nested. When a variable
name is not found in one scope, it is searched again in its parent scope.

This relation between scopes can be described as a type of environment. For
each scope in the code we create a new environment object. Each environment
performs its local lookups, but when it fails, it delegates the job to the parent
one. However, for this to work, environments need to be somehow connected.

In the example Listing 6.25 we create a special environment which connects two
existing environments named parent and child. Each lookup request is first
searched in child and if it fails, it is invoked in the parent. Both child and
parent may be another stacked object, forming an arbitrarily nested chain of
scopes.

Environment objects can also be given names and be inserted as entries into
another environment. This way, compound naming, such as in structs and
classes, can be implemented.

Environment and Recursion

In Section 6.4.2 we have shown how mutually recursive functions can be built
incrementally. Creating recursive references through staging is particularly
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let stackedEnv (parent , child , return ) {
return . [child , parent ]

}
let stackedInsert (env , str , value , return ) {

env [0] . (child)
insert . child str value return

}
let stackedLookup (env , str , return ) {

env [0] . (child)
lookup . child env str (value)
value !=[] . (found)
if . found

() { return . value }
()
env [1] . ( parent )
lookup . parent env str return

}

Listing 6.25: A stacked environment which connects two arbitrary environments in
the child-parent relation. When looking for a name, it is first searched in the child. If
it fails to find it, it repeats the process in the parent.

convenient when using an object-oriented approach for the environment, with
a C++ implementation. The allocNode, loadNode, and storeNode functions
can be completely replaced by the environment operations.

To repeat the example: We now build a graph-describing DSL. Each entry
consists of a vertex name, followed by an adjacency list. We want to convert each
vertex to a function, which returns (through a continuation) a tuple referencing
all adjacent vertices — that is, the adjacent functions. For example, for the
input:
graph {

Start -> X, Y;
X -> Y;
Y -> X;

}

we want to produce something that is equivalent to:
(graph) {

fix
f1 = ( return ) { return . [f2 ,f3] }
f2 = ( return ) { return . [f3] }
f3 = ( return ) { return . [f2] }

in
graph . [f1 ,f2 ,f3]

}

We build the structure incrementally, with the use of staging and memory as in
Listing 6.26. The role of the memory is replaced by the environment. Through
staging, the execution flow jumps into the block containing insertions. Symbolic
values f1, f2, and f3 are put into the environment before they are bound to
concrete function values. Later on, these values are looked up at an earlier
location within the program, which allows us to form recursion.

Notice, that this approach can be used for forward declarations, but also for
languages which allow functions to be used before any declaration even appeared.

It is key, however, that environment lookups are performed when the code is
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newEnv . (env)
(graph) {

let [decl];
lookup . env "f1" (px1)
lookup . env "f2" (px2)
lookup . env "f3" (px3)
let f1( return ) { return . [px2 ,px3] };
let f2( return ) { return . [px3] };
let f3( return ) { return . [px2] };
let [done];
@env:
insert . env "f1" f1 ()
insert . env "f2" f2 ()
insert . env "f3" f3 ()
@done:
graph . [f1 , f2 , f3]

}

Listing 6.26

already being built, preferably as a separate staging chain. If the lookups are
performed during actual parsing, the necessary recursive definitions may not
even be read from the source.

Auxiliary Information

An environment may store more than a mere value under a given name. It may
hold additional information, such as the type of the value. We discuss how type
system can be implemented in detail in Section 6.4.4. For now, let us assume a
simple system with atomic types only. For every value stored in an environment,
we also want to store its type. For example, in a C-like language containing a
statement:
int value = 5;

we want to remember that "value" has a value 5, and is of type int. This can
be done in three ways.

• By storing the value and type together in a tuple.

• By having two environment objects, separate for value and a type.

• By storing value and type as two entries within the same environment.

• By storing a polymorphic object which can be queried for each information
component.

The first approach changes the signature of the insert and lookup functions as
shown in Listing 6.27. The insertTyped now requires a type to be specified in
addition to the value. Within the function we pack them together in a pair and
use the previously defined insert. Similarly, lookupTyped is changed so that it
packs the tuple and provides all the information to its continuation return.

While the solution is simple and intuitive, it makes it difficult for inter-language
communication. Any language using such environment must adhere to this
standard. If a language needs even more auxiliary information components, the
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let insertTyped (env , name , value , type , return ) {
insert . env name [value , type] return

}
let lookupTyped (env , name , return ) {

lookup . env name (entry)
entry [0] . (value)
entry [1] . (type)
return . value type

}

Listing 6.27: Storing an auxiliary information (type) together with a value within a
single environment, by putting all the information within a single pair.

let insertTyped (env1 , env2 , name , value , type , return ) {
insert . env1 name value ()
insert . env2 name type return

}
let lookupTyped (env1 , env2 , name , return ) {

lookup . env1 name (value)
lookup . env2 name (type)
return . value type

}

Listing 6.28: Storing an auxiliary information (type) separately from a value, in an
additional, independent environment object.

order of their appearance in a tuple must be globally set. A language that does
not use the extra information must still be aware of the new signatures of insert
and lookup.

A second option is to keep multiple environment objects, one for every component
of the information (Listing 6.28). This partially solves the problem of inter-
language communication. A language that does not use types may simply ignore
env2 and merely use env1 for its lookups.

Unfortunately, the usage of such environment setup becomes cumbersome and
holds a high degree of redundancy. Each environment map has implicitly the
same structure and differs only in terms of its stored values. In addition, multiple
environments have to be created for each scope and passed around between the
fragment functions.

Third solution is to store components separately but within a single environment,
as in Listing 6.29. The value is stored under the name provided by the user,

let insertTyped (env , name , value , type , return ) {
name+".type" . ( typename )
insert . env name value ()
insert . env typename type return

}
let lookupTyped (env , name , return ) {

name+".type" . ( typename )
lookup . env name (value)
lookup . env typename (type)
return . value type

}

Listing 6.29: Storing an auxiliary information (type) separately from a value, in an
additional, independent environment object.
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while type (and other components) gain a name suffix, e.g. ".type". Assuming
that a dot cannot be part of a name provided by the user, there is no chance for
a name clash caused by the suffixes.

This solution is simple to use. Languages that do not support types or other
auxiliary information component simply never query for them and still get
meaningful results. A single environment object is used per scope. This is the
method we use internally for most of our typed languages.

However, the solution is not without hazards. Consider the following scenario:

• A typed language defines a variable named "x"

• An untyped language in a nested scope defines a variable under the same
name

• Then, again a typed language tries to retrieve a variable under the name
"x"

in this scenario, the variable lookup returns the second variable "x", but the
query for "x.type" may succeed as well, returning the type of the first variable.

The most robust solution is for the environment to return a polymorphic object,
with all information about the value and any associated information is retrieved
only through the accessor functions. It is up to the language that creates this
entry to decide what and how the information is stored.

The additional level of abstraction when accessing an environment entry makes
use of these values that much more complex. We have chosen not to continue on
this path, because at the current state of development we believe this would be
over-engineering. In the future however, it may be a necessity for programming
in a multi-DSL system.

Name Overloading

So far we considered environments that use the name as the only criteria for the
lookup. However, since the user has freedom of defining the environment of the
language, a more advanced system is possible that takes auxiliary information
into the account, such as the type information. In the previous section we
have shown how auxiliary information can be stored together with values in an
environment. Now, we use that information to alter the lookup procedure.

Before providing examples on how this can be implemented, let us ask an
important question: Who is responsible for resolving an overload? That means,
if we have two entries with the same name, who decides which one is to be used
in a given context?

Within a single language the above question has no real meaning. It is entirely
up to the language designer to decide where the auxiliary information is being
compared. However, in a multi-DSL environment with possibly different auxiliary
information being used, it is vital to make such decision clear. There are two
options:
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extern "C" void envInsertMulti ...
extern "C" void envLookupMulti ...
let insertMulti (env , name , value , type , return ) {

envInsertMulti . env name [value ,type] return
}
let lookupMulti (env , name , typematch , return ) {

envLookupMulti . env name ( results )
foreach . [[] ,0] results (found , result , idx , break , continue ) {

result [0] . (value)
result [1] . (type)
overloadQuality (type , typematch ) . ( quality )
quality >found [1] . ( better )
if . better () {

continue . [value , quality ]
} () {

continue . found
}

} (found)
found [0] . return

}

Listing 6.30: An example of an environment, supporting overloading with respect to
types. The overloading is resolved within the lookup function. C++ functions implement
an environment where multiple entries under the same name can be stored, without
any additional logic to it. DeepCPS implementation of lookupMulti however, iterates
over all found entries, checking how well to they match to the provided type signature.
An entry with the best match, as evaluated by some overloadQuality cost function, is
picked. Corner cases, such as ambiguous overloading is not handled.

• Overloading is resolved by the language that defines the entries.

• Overloading is resolved by the caller, i.e. the language where the name
lookup is initialized.

In the first approach, in order to resolve the overload, the necessary information
must be provided by the caller. The insert and lookup function signature must
be changed to include the auxiliary information. Within the lookup we include
the overloading logic. We do not stop searching at the first found entry, but
continue doing so until the best alternative is found (Listing 6.30).

While this works within a single language, it may become problematic when
multiple languages are connected. The auxiliary information of one language
may be incompatible with another, or worse — the calling language may provide
no such information at all.

For that reason we advocate the second solution: Deferring the overload to
the caller. In this setting, lookup does not take any additional parameters,
besides the name, as a search criterion. Instead, it returns a tuple of all possible
candidates. Then, the caller makes a decision which version to choose from.
This approach is similar to how lookup failures are handled as well, which we
discussed when we first introduced environments.

This approach is not without flaws either: It does not magically fix incompati-
bilities between languages, but gives a better setup for the user to provide such
a fix. A language X, where terms are being defined, cannot predict all languages
that these terms are going to be used in. However, a language Y which uses
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terms defined in previous language X has knowledge of such dependency and
may provide necessary code for Y to interact with X gracefully.

6.4.4 Type System

The core DeepCPS uses a very basic type system that provides only the basic
runtime type checking. However, with the power of staging, program constraints
— such as type correctness — can be checked before the actual program is run.
As we discussed at the end of Section 2.2.2, type checking can be expressed
entirely as an auxiliary computation performed by the interpreter [52].

Representing type checking as actual computable code in a multi-staged program
has many consequences:

• It bridges the gap between statically and dynamically typed languages.
The same type-checking code can be chosen to run at any stage of the
program, or not run at all.

• In general, auxiliary code is Touring complete, just as any other code.
There is no general guarantee that auxiliary program will halt and produce
a correct result. It is up to the DSL designer to ensure correctness of the
type checking program.

• Complex type interference, such as type polymorphic, recursive, or depen-
dent types is possible.

In the following, we give a few examples of how early type checking can be
implemented to enrich custom DSLs. The list is not exhaustive, as there are
many type systems known in the literature.

Simple Types

Simple types can be represented as auxiliary information stored together with
values, for example the way we discussed in Section 6.4.3. A potential type
checker is then represented as an auxiliary computation on this additional data.
The role of a typical type checker is to check if types match and make necessary
derivations.

For example, let us assume that a given language supports a binary * operator
on two integers, producing another integer as a result. We expect a type checker
to check the arguments and infer the result. Formally, it is defined as:

Γ ` t1 : int, t2 : int

Γ ` t1 ∗ t2 : int

Such derivation can be represented as a computation. To keep the actual program,
and type computation separate one can use builders to generate two separate
functions, such as Def and TC. To achieve that we can use builders as in the
example Listing 6.31.

If the executed code depends on types, e.g in a case of overloading, it is better
not to separate type checking and code completely. Instead, a separate staging
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build (ft, env , cont) {
lookup . env "t1" (t1val)
lookup . env "t2" (t2val)[bt]
@ft: t1*t2 . ( result )[ft]
@bt: cont . ft env result

} (Def)
build (env , cont) {

lookup . env "t1.type" ( t1type )
lookup . env "t2.type" ( t2type )

"t1.type"== int and "t2.type"== int . ( typesOK )
if . typesOK () {

cont . env int
} () {

print . "Type error" ()
$exit .

}
} (TC)

Listing 6.31: Code being built for expression t1 ∗ t2, with an assumption that terms
t1 and t2 and their types are given in the environment. We build actual executable
code in Def, separate from type checking code which is in TC. If both arguments to *
have the correct type, we return int as the type of the whole expression.

build (ft, tc, env , cont) {
lookup . env "t1" (t1val)
lookup . env "t2" (t2val)
lookup . env "t1.type" ( t1type )
lookup . env "t2.type" ( t2type )[bt]
@tc:

"t1.type"=="int" and "t2.type"=="int" . (ints)
ifelse . ints (endif)[tc] {

@tc&ft: t1*t2 . ( result )[ft]
@tc: endif . ft result "int"

} (endif) {
"t1.type"==" complex " and "t2.type"==" complex " . ( complexs )

if . complexs ()[tc] {
@tc&ft: [t1 [0]* t2 [0]-t1 [1]* t2[1],

t1 [1]* t2 [0]+ t1 [0]* t2 [1]] . ( result )[ft]
@tc: endif . ft result " complex "

} () {
print . Type error ()
$exit .

}
} (ft, result , resultType )[tc]
@bt:
cont . ft tc env result resultType

} (Def)

Listing 6.32: Code being built for expression t1 ∗ t2, with an assumption that terms t1
and t2 and their types are given in the environment. We support the operator for int
and complex types. Depending on types, different code is being produced. To achieve
that, both type checking and actual code are produced within the same function, but we
use separate stage chains to resolve type checking early.

chain should be used. This way, type checking does not incur any overhead in
the final code, while it may still influence it.

As an example, consider the same language with the * operator, which may
work with integers as well as complex numbers. In the example Listing 6.32,
depending on the type of the arguments, different code is produced.
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build (ft, tc, env , cont)[bt] {
@never : let myType = [];
@tc: insert . env " myType " myType ()

insert . env " myType . structure " [int ,int] ()[tc]
@bt: cont . ft tc env

}

Listing 6.33: The parameter myType is never bound to any concrete value. As a
result a ManyDSL parameter node is placed in the environment, guaranteeing that it is
never captured or mistaken with a different type with the same name. The actual type
hidden behind the myType name is a pair of two integers. However, the structure is not
checked when comparing types — just the identifier.

In the above examples we used a binary operator. However, the same approach
can be applied to any function with any number of parameters. Similar mecha-
nisms can be used to step beyond atomic types, and support compound types,
such as tuple and function types.

Named Types

Custom DSL type system does not rely on the underlying ManyDSL types.
Instead it can use any data and computation to represent it. Consequently,
types can use any kind of annotation to represent a type. This freedom, however,
enables pitfalls for the DSL developer.

Consider, for example, a problem of supporting named types. Suppose that a
DSL allows the user to give custom names to simple or compound types. Two
types with a different name are considered different even if their content is the
same.

In the previous examples, we used strings literals "int" and "complex" for the
basic types. These values were stored as an auxiliary information within the
environment. A naive implementation of custom type names would extend that
approach: custom name literals would be stored as the auxiliary information of
values.

That can be dangerous, however, if the same name is used to identify different
types in two different scopes. This can lead to type name clashes. Two unrelated
types may actually be identified as the same type by the type checker. It is a
problem similar to name capturing and a quick solution is to manually provide
necessary substitutions to avoid that.

Notice however, that DeepCPS already solves that problem for parameters. As
we explained in Section 5.1.1, in TR the parameters are not referred to by name,
but by a direct reference to the parameter object. This guarantees that all
parameters are unique, defined just by the memory address of the object. Actual
textual names are used only during parsing.

The same mechanism can be used for naming custom types, as in Listing 6.33.
Instead of using textual name to represent a type, a ManyDSL node itself can be
used, e.g. an unbound parameter. A built-in equality operator can still be used
with symbolic values, yielding true if exactly the same parameter is referenced.
With the help of staging, a parameter can remain unbound.
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(env , head)->LambdaBody ->() ::=
"{"
() ->(lang) {

$ executorGetLanguage . $ executor (lang)
$ executorSetLanguage . $ executor $ deepcps ()
return . lang

}
(env , head)->! StagedAction
(lang) ->() {

$ executorSetLanguage . $ executor lang return
}
"}"
;

Listing 6.34: Language switching in LangDSL. The language is temporarily switched
from the current one to the built-in $deepcps. In this context, the term StagedAction
refers to a nonterminal from DeepCPS.

In this example, even if a variable of type myType leaves the scope of the textual
name "myType", it remains uniquely identified by the unbound myType parameter.
The unbound parameter is cloned, effectively yielding a different type, only when
the function containing the type declaration is copied.

6.4.5 Language Switching

Throughout this work we highlight that in ManyDSL languages can be combined.
Let us give a concrete example how this can be achieved. Consider the syntax
of the semantic action in LangDSL:
( in_args ) ->( ut_args ) { ... DeepCPS action... }

Such a construct is pared by the LangDSL parser up to the opening curly brace.
Then, however, a language is changed, and the body of the semantic action is read
by DeepCPS parser instead. When the matching closing brace is encountered,
the parser switches back to LangDSL.

The semantic action syntax is defined in LangDSL as follows:

• The input and output argument list are parsed.

• Based on those, a Closure object head is created using a ManyDSL-aware
function. The closure object has no body.

• The input names are used to give names to Parameter-s building up the
head.

• Finally, the LambdaBody production is invoked where the language switch-
ing occurs.

The definition of LambdaBody is shown in Listing 6.34. After reading an opening
curly brace, an action is triggered which access the global control $executor
object (Section 5.3). Within the action, we obtain the current language object,
and replace it with the built-in $deepcps. With that change, we set the parser
to use the DeepCPS language.
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We then invoke a StagedAction nonterminal from within the DeepCPS language.
The parser reads a portion of DeepCPS source code that builds the body of the
head Closure node. Afterwards, head becomes a valid Closure, that can be
executed by the interpreter at any moment.

The final step is to invoke the $executor again and switch parsing to the previous
language, which we held in the parameter lang. The closing curly brace is read
as part of LangDSL.

6.5 Language Example: The Array Processing
DSL

In the previous section we have shown some of the problems that one can
encounter when defining a DSL and how these can be addressed in ManyDSL.
Let us now give a small but complete DSL example.

In Section 3.2, G3 we argue that an array-processing language can be created
without an explicit loop fusion transformation. Instead, when an arithemtic
expression is performed over arrays, a single loop body can be filled with
instructions incrementally. Now we have the necessary tools to explicitly define
such a language.

To reiterate what precisely we want to achieve: We want a DSL such that the
following operations are possible:

• Define a new array with its contents: A = [1, 1, 2, 3, 5, 8, 13];

• Perform arithemtic operations, component-wise, on arrays: A=B*C+D;

• Detect errors when we try to operate on arrays of different size

• Perform operations on scalars in addition to array operations

• Obtain a scalar value from an array A[3]

• Define relative indexing for array operations: A=B[-1]*C+D[+1] (which
would be equivalent to A[i]=B[i-1]*C[i]+D[i+1]).

• Support indirect addressing, e.g. A=B[C].

Array Definition

The code written in our language shall be a sequence of instructions. One of
such instruction should be a definition of a new array, in the format <name> =
<definition> ;.

First, in Listing 6.35, we define the outher shell of the program. The entry rule
of the DSL is ArrayProgram. When parsing is succesful the rule produces a
new function P that is ready to be invoked. This is a familiar pattern that we
have used in other DSLs, e.g. in Section 4.3.2: The first action creates the first
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ArrayProgram ->(P) ::=
() ->(F) {

build . 1 (ft, end , cont) {
envNew . (env) ’[bt]’
cont . ft env end

} return
}
(F)->StatementList ->(F)
(F)->( program ) {

build . 0 (ft, env , end) {
@ft: end .

} (Fend)
glue . F Fend ( Fcomplete )
finalize . Fcomplete return

};

Listing 6.35: The top level of the array DSL. The produced program P consists of a
series of statements.

(F)->StatementList ->(F) ::=
lassoc <Statement , ";",

(left , right) ->(val) { glue . left right return }
>;
(F,val) ->(F) { glue . F val return }

Listing 6.36: The statement list is defined as an expression using the binary left-
associative operator ";" over the Statement terms. This approach allows us to reuse
the previously defined lassoc grammar abstraction, instead of explicit grammar rules.

fragment function that all pieces of the program are glued to. In the last action
the finalize the function (Listing 4.29) seals the accumulated fragments and
converts them to a single program function. In between lies the StatementList
that incrementally appends new fragments to the program body.

The statement list, that defines the bulk of the produced program, is defined in
Listing 6.36 using the lassoc grammar abstraction. Recall from Section 4.2.5
that lassoc defines a binary left-associative operator, which in our case is the
semicolon. The action of the operator is to simply glue the new statement (right
argument) with the program already produced (left argument). When defined
like this, the last statement in the list does not need the trailing semicolon.

A single statement in Listing 6.37 is an assignment of the form Name =
<Expr>. The statement produces a new fragment Fstmt that is returned back to
StatementList and ultimately glued to the F. Each statement fragment takes
and returns three arguments: ft, env, end in addition to the continuation
cont:

• The ft is the function-time staging chain variable. Operations staged upon
ft are executed when the generated program is executed.

• The env is the environment object variable.

• The end is the continuation to be invoked by the genreated program in
order to end it.

When parsing an actual expression we use two additional parameters:
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token Name [[: alpha :]][[: alnum :]]*
Statement ->(Fstmt) ::= Name ->(name) "=" Expr ->(Fexpr)

(name ,Fexpr) ->(Fstmt) {
build . 1 (ft, expr , arity , env , end , cont) {

’@ft:’
let ’[ft]’ value = expr;

’@bt:’
env. insert (name ,value) . (env)
env. insert (name+".arity",arity) . (env)
cont . ft env end

} ( FExprEnd )
glue . Fexpr FExprEnd return

};

Listing 6.37: The single statement of the form Name = <Expr>. The value of
the expression is given in the fragment function FExpr which provides 2 additional
arguments: expr and arity. The action of the statement finishes the expression, by
putting its result into the environment env. In the end, we continue to cont with only
3 values that are glued to fragments from the ArrayProgram and other Statement-s.

• The expr is the array value produced at function-time.

• The arity stores the arity of the produced array at build-time. It is
used both for checking and controlling how the number of iterations that
component-wise operators need to perform.

Once the Expr rule finishes, the calling Statement puts the results expr and
arity into the environment env. The value expr is stored under the given name.
The auxiliary information arity adds a suffix ".arity" to the name and is put
into the same environment.

The expression Expr at the moment can be only a constant array value given
explicitly. In Listing 6.38 we are again using the lassoc with the comma operator
in order to incrementally build the list. The Singleton rule creates an array of
size 1, while the lassoc action connects two existing arrays into a single, bigger
one. Effectively, we glue the fragments in a tree-like fashion, where each comma
operator has two children: left, right, and a single parent.

Component-wise operations

At this point it is possible to define new arrays in our DSL. Now we would like
to define component-wise operations on these arrays. To do that, we need to
add more productions for the Expr term.

First, let us define in Listing 6.39 the barebone arithmetic operations, similarly
to how it is done in MinusDiv grammar from Section 4.2.4. We define what
operations are possible and what is their precedence, but we do not define
their semantics just yet. It is provided by the rules Connect which connects
two expression subtrees, and Reference which provides a reference to an array
name.

In Listing 6.40 we provide the actual semantics. It does not differ much from
the scalar setting: the only difference is that all fragment functions take an
additional index parameter which is used when dereferencing an array. At this
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token Number [+| -][[: digit :]]+;
Singleton ->(F) ::= Number ->(V)

(V) ->(F) {
build . 0 (ft, env , end , parent ) {

parent . ft [V] 1 env end
} return

};
Expr ->(F) ::= "["

lassoc <Singleton , ",",
(left , right) ->(val) {

build . 2 (ft, env , end , parent , left , right) {
left . ft env end (ft, Lexpr , Larity , env , end)
right . ft env end (ft, Rexpr , Rarity , env , end)
Larity + Rarity . (arity)
concatenate (Lexpr ,Rexpr) . (expr)
parent . ft expr arity env end

} (Op)
glue . Op left (Op)
glue . Op right (Op)
return . Op

}>
"]"
(val) ->(F) {

build . 1 (ft, env , end , cont) {
val . ft env end cont

} return
}
;

Listing 6.38: Parser for a constant array expression [<number>, <number>, ...
, <number>]. Each number creates a fragment of arity 0, producing a singleton array
that is returned to the continuation parent. Each comma operator combines its children
into a bigger array. At the very end, we obtain a fragment val of arity 0 that constitutes
the whole array. The last action produces a fragment of arity 1, supplying the unknown
cont as the parent to val.

Priority1 ->(op) ::= "*" () ->(op) { return . $add };
Priority1 ->(op) ::= "/" () ->(op) { return . $sub };
Priority2 ->(op) ::= "+" () ->(op) { return . $mul };
Priority2 ->(op) ::= "-" () ->(op) { return . $div };

ExprAtIndex1 ->(F) ::= lassoc < ExprAtIndex2 , Priority2 , Connect >;
ExprAtIndex2 ->(F) ::= lassoc < ValueAtIndex , Priority1 , Connect >;
ValueAtIndex ->(F) ::= ( ExprAtIndex1 );
ValueAtIndex ->(F) ::= Reference ;

Listing 6.39: The barebone grammar of math expressions in array DSL. This defines
the structure and the operator precedence, but the actual semantic operation is hidden
in Connect.
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(left ,right ,op)->Connect ->(F) ::= (left ,right ,op) ->(F) {
build . 2 (ft, env , index , parent , left , right) {

left . ft env index (ft, env , Lvalue , Larity )
right . ft env index (ft, env , Rvalue , Rarity )[bt]
@ft: op . Lvalue Rvalue (value)[ft]
@bt: parent . ft env value Larity

} (F)
glue . F left (F)
glue . F right (F)
return . F

};

Reference ->(F) ::= Name ->(name) (name) ->(F) {
build . 0 (ft, env , end , index , parent ) {

env. lookup (name) . (A)
env. lookup (name+".arity") . (arity)[bt]
@ft:
A[index] . (value)[ft]
@bt:
parent . ft env end value arity

} return
};

Listing 6.40: The semantics of the math expressions in array DSL. All fragment
function take an additional index parameter which is used to dereference each component
in the array objects.

point index is not defined anywhere, but the intention is that it is provided by
the for loop we are building around our expression.

At this point any basic mathematical expression can be parsed by the ExprAtIndex1,
producing a piece of code containing the computational code. The rule cannot
be used directly as an Expr however. An Expr represents an expression on the
whole array, while ExprAtIndex1 creates fragments for a scalar computation
under a given array index. In order to connect one to another, one must produce
the for loop, with the fragment of ExprAtIndex1 used as a body.

The function produced by ExprAtIndex1 not only performs the computation on
the components, however. Its secondary job is to check the arity of the accessed
arrays. This auxiliary information is necessary to define the limits of the for
loop. The fragment function should be invoked twice: Before the loop to define
its limits and in the loop to perform the computation.

This problem in stageless functional programming would require ExprAtIndex1
to return not one but two functions – one for arity computation, and the other
for the actual array operation. Alternatively, one would create an AST for the
underlying expression and inspect it twice, extracting a different information
each time. However, in DeepCPS, representing this two-pass computation in a
single function is possible thanks to staging.

The fragment returned by ExprAtIndex1 – the Fbody expects no further fragment
continuations, since its code is a complete evaluation of an expression. We use
the specialize function performing the reverse capture from Listing 6.16 to
finalize and execute the fragment, specializing it with respect to bt and env. As
the specialized version of the body bodySpec is created, the auxiliary information
about the arity is also computed.
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Expr ->(F) ::= ExprAtIndex1 ->(Fbody) (Fbody) ->(F) {
build . 1 (ft, expr , arity , env , end , cont) {

specialize .
(ft, end , index , return ) {

Fbody . [] (body)
body . ft env end index (ft, env , value , arity)
return . [ft, value] arity

}
(ft, index , end , return ) { return . ft env end end index }
(bodySpec , arity)[bt]

@ft:
for . [] 0 arity (array , index , continue )[ft] {

@bt: bodySspec . ft index ( result )
split( result ) . (ft, value)[bt]

@ft: concatenate (array ,[ value ]) . (array)
continue . array

} (arr)[ft]
@bt:
cont . ft arr arity env end

} (Ffor)
return . Ffor

}

Listing 6.41: The single for loop created for the whole array expression. The Fbody
fragment – complete at this stage – is specialized, leaving only the ft code intact. During
specialization the arity value is computed, that is reverse-captured to specify the size
of the for loop.

With bodySpec and arity we can now build the loop. It loops from 0 to arity
and in each step, the next component of a new array is computed. Once ready, it
is returned back through cont, presumabely, to assign a name in the Statement
rule.

Detecting Arity Errors

It is an error to try to perform the component-wise operations on arrays of
different sizes. Typically such an error is resolved by annotating the objects
with a type information. For an array-processing language the type system must
store the array size within the data types and define the necessary rules to use
this information. Then, in a separate compiler phase the types are checked to
find any misuse of the annotated data objects.

In our approach, the necessary information is already stored in the environment
env at build-time. The only change needed is to perform the actual check at
build-time when the arithmetic operation is performed. The needed changes are
highlighted in Listing 6.42.

The arity computation is abstracted in a separate function. Yet, the call to it is
explicit from within the production action.

Scalar Operations

The simplest way of handling scalar values is to immediately promote them to
an indexed value as in example Listing 6.43. The produced code fragment can be
immediately used in the ExprAtIndex rules, forming bigger scalar expressions.
The scalars are automatically replicated for each index and can be used with
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let combineArity (Larity , Rarity , return ) {
" Larity == Rarity " . (ok)
if . ok

() { return . Larity }
() {

"print error: operation on arrays of different size" . ()
$exit .

}
}

(left ,right ,op)->Connect ->(F) ::= (left ,right ,op) ->(F) {
build . 2 (ft, env , index , parent , left , right) {

left . ft env index (ft, env , Lvalue , Larity )
right . ft env index (ft, env , Rvalue , Rarity )
combineArity . Larity Rarity (arity)
@ft: op . Lvalue Rvalue (value)[ft]
@bt: parent . ft env value arity

} (F)
glue . F left (F)
glue . F right (F)
return . F

};

Listing 6.42: The change to semantics of the math expressions from Listing 6.40.
The language now checks at build-time if the left and right array arguments are of the
same size.

let combineArity (Larity , Rarity , return ) {
"( Larity == Rarity ) or ( Larity == 0) or ( Rarity == 0)" . (ok)
if . ok

() { max(Larity , Rarity ) . return }
() {

"print error: operation on arrays of different size" . ()
$exit .

}
}

ValueAtIndex ->(F) ::= Number ->(v) (v) ->(F) {
build . 0 (ft, env , end , index , parent ) {

parent . ft env end v 0
} return

};

Listing 6.43: A scalar value that can be used in an array expression. The constructed
function does not depend on index and we return an arity 0 to the parent.

arrays as well. The only attention has to be made in the arity checking to handle
a value of 0 in a special way.

Altering the Index

So far, all array operands of an expression take the same single index. We would
like to extend the language so that the index itself may be an expression. To do
that we allow an optional [] construct for each array reference. In Listing 6.44
we change the previously defined rule Reference, so that both forms A and
A[...] are allowed.

In both cases, we assume that there is a child fragment function IdxF, which for
given loop iteration, index, computes the actual index that a value is read from,
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Reference ->(F) ::= Name ->(name) OptIdx ->(IdxF) (name ,IdxF) ->(F) {
build . 1 (ft, env , end , index , parent , indexFunc ) {

indexFunc . ft env index (ft, env , indexComputed , indexArity )
env. lookup (name) . (A)
env. lookup (name+".arity") . (arity)
combineArity . arity indexArity . (arity)[bt]
@ft:
A[ indexComputed ] . (value)[ft]
@bt:
parent . ft env end value arity

} (F)
glue . F idxF return

};

OptIdx ->(F) ::= "[" IdxExpr "]";
IdxExpr ->(F) ::= ExprAtIndex1 ;

OptIdx ->(F) ::= IdentityArray ;
IdentityArray ->(F) ::= () ->(F) {

build . 0 (ft, env , end , index , parent ) {
parent . ft env end index 0

} return
};

Listing 6.44: The grammar rules for an optional square bracket index specification,
which may appear after the array name. The index is another arbitrary array expression,
allowing for nested indexing, e.g. A[B[idx]]

i.e. A[indexComputed].

Only within the rule OptIdx we detect if the [] syntax is actually used. If it is,
any indexed expression is allowed. If the square braces are omitted, an identity
array of unspecified arity is used.

The use of the rule ExprAtIndex1 makes the square bracket syntax recursive.
It allows us to use all DSL-specific syntax for the index expression as well.
For example, complex indexing patterns, including indirect indexing such as
A[B+C[D+1]] are valid expressions. Moreover, all code produced by such con-
struct is also fused under a single for loop, guided by the common arity of all
involved arrays.

To make the example complete, we also include an explicit use of the identity
array, using a keyword:
ValueAtIndex ->(F) ::= "id" IdentityArray ;

In most typical use case, we are interested in accessing a field relative to the
current index, i.e. A[id+1] or A[id*2]. To simplify this, in Listing 6.45 we
introduce a special syntax for a relative indexing, allowing id to be skipped if it
appears at the first position. The IdxExpr and IdxExprCont have a structure
very similar to a left-recursive binary operation, except that the very first value
is given by an epsilon-rule IdentityArray.

Now A[+1] or A[*2] correctly refer to a relative address. Still, more complex
expressions such as A[+B+C[+1]] are possible.
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IdxExpr ->(F) ::= IdentityArray ->(L) (L)->IdxExprCont ->(F);
(F)->IdxExprCont ->(F) ::= Priority1 ->(op) ValueAtIndex ->(R)

(L,R,op)->Connect ->(F) IdxExprCont ;
(F)->IdxExprCont ->(F) ::= Priority2 ->(op) ExprAtIndex1 ->(R)

(L,R,op)->Connect ->(F);

Listing 6.45: Grammar rule allowing relative indexing. A relative index expression
skips the first argument, which defaults to the current base index. For example, [+2] is
equivalent to [id+2], where id is the current base index.

Further Extensions to the DSL

At this point we achieved all the goals that we have set up at the beginning
of the chapter. Apart from the Expr rule that requires the call to specialize,
all other rules and actions are straightforward and intuitive once DeepCPS is
mastered.

The array DSL could be extended further, for example:

• Allow writing to an array under a computed index, instead of sequentially.

• Allow defining arrays of infinite/arbitrary size, evaluated lazily. Currently
only the id acts as such infinite array.
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Chapter 7

Conclusion

In this work we have presented a novel and comprehensive solution to language
creation. Our work is based on the following three foundations:

• Dynamic Staging — a novel approach to staging (Section 4.1)

• Syntax Directed Execution Scheme (SDE) — a functional approach for
grammar production definitions (Section 4.2), as well as functional seman-
tics specification (Section 4.3).

• Interleaved Parsing and Execution, allowing the user code to alter the
parsing process (Section 4.2.1).

All these are explained on a theoretical level, and are all realized in the project
ManyDSL.

Dynamic Staging

In Section 4.1 we have redefined staging, changing how the concept is seen.
Staging is no longer viewed as a pass over the whole program, but as a relation
between lambda headers and their bodies. This relation defines an order of
execution, possibly overriding the natural order that would follow the lambda
nesting structure in CPS.

The theoretical foundations of dynamic staging (Section 4.1.3) are more funda-
mental than the theory of MetaML [136] or LMS [116]. Built on top of CPS, we
introduce the concept of staging parameter and staging expression. With the
help of Waiting and Active relations, the operational semantics is reduced to a
handful of rules. We do not incorporate quotation nor do we need any complex
typing rules. Early/late code blocks that quotation-based staging introduces is
only one of many staging patterns possible with dynamic staging (Section 4.1.7).

Despite formal simplicity, staging is a dynamic, first-class citizen of our language.
This means, staging values can be a result of arbitrary computation and can
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be passed as parameters between functions. Depending on parametrisation,
different parts of code may execute early or late. A single generic function can
be partially evaluated producing many different forms. Each of these forms
can be compiled, producing many highly-optimized versions of the same generic
algorithm. To our knowledge, this is the first time such level of flexibility is
achieved.

It can be argued that dynamic staging lacks guarantees present in other ap-
proaches. In fact, checking correctness of dynamic staging statically can be
reduced to solving the halting problem, which is undecidable. This is because of
the dynamic nature of our approach.

We believe however that the dynamic staging as presented here can be used as
a basis to define more complex systems. We hope that the theory given here
may one day become the language we speak in when discussing staging. In the
future, a well crafted set of constraints on the staging may allow the program to
be checkable against faulty staging annotations, while remaining flexible and
useful in practice.

Syntax Directed Execution Scheme

The basic Syntax Directed Execution Scheme (SDE), we presented in Sec-
tion 4.2.2, from the theoretical standpoint does not differ much from the old
Syntax Directed Translation scheme [88, 104]. The main difference is the way
of thinking: We no longer translate the input into some structure such as AST,
but instead we execute code based on the input. The parser itself acts as an
interpreter.

Building new languages using grammars with SDE still requires a good theoretical
background from the programmer. Our approach faces the same gramatical
restrictions as any other LL1 parser. The difference lies in how the action code –
the pieces that get executed upon succesful parsing – is represented.

In our approach language semantics are represented as regular code, encapsulated
in lambda functions which we named fragment functions. These functions are
similar to AST nodes, but only on the surface: They are being built and are
connected (glued) together as such. However, unlike AST nodes their contents
can be arbitrary complex, are self-defining, and can be written in an entirely
functional manner. We forgo AST visitors, pattern matching, tree grammars, or
any other ways that can potentially alter the semantics of the original structure.
Instead, we rely solely on specialization and abstraction as the only tools for
code transformation.

Typically, the fragment functions contain not only the intended semantic of the
final program, but all other support behavior is spelled out explicitly as well.
This includes, for example, variable lookup code or language-specific checks. The
node may also include type-checking, given as an explicit computation.

The generated code is executed simply by evaluating the produced function. We
use dynamic staging to define execution phases, ensure that certain operations
are performed before others, and remove any unwanted overhead in the final
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code. It is up to DSL designer to specify the staging. Depending on the staging
context, the same piece of code can selected to run at compile-time or run-time.
Consequently, the hard distinction between static and dynamic components of
the language is removed, as it only depends on the values of staging parameters.

Such approach is more open-ended and natural for a programmer to express
oneself, compared to previous solution that rely on AST construction. Any
programming techniques and more complex algorithms can be used within the
action code. The programmer is not limited by a short list of node types and
their transformations.

Interleaved Parsing and Execution

The ability of ManyDSL to interleave parsing and execution is a unique property
of our solution. A program can be partially parsed and then executed, before
the rest is loaded. This allows the program to alter the parser on the fly. When
the parsing resumes, it may use a different language, use different input or
work in some other altered way. Effectively, this allows all operations that are
normally controlled in a preprocessing step, to be represented uniformly in the
same language (or languages) as the rest of the program.

The ability to execute a program that is only partially parsed has a profound
impact on the design of the parser and interpreter — much deeper than we orig-
inally anticipated. Consequently, what was originally merely a design problem,
had a significant impact on our choice of underlying algorithms (Section 5.7). In
the future search of better interpreter implementation this functionality must be
taken into account from the very beginning.

The ManyDSL Implementation

Last but not least, our work is accompanied with the actual implementation
of the theory laid out. We have tested ManyDSL not only with the small
examples shown here, but also with medium-sized multi-language projects, such
as LangDSL itself. While far from commercial product quality, ManyDSL needs
only a few seconds to process and interpret thousands of lines of code, spanning
among a series of different languages.

7.1 Goals Evaluation

With ManyDSL fully explained, let us evaluate our goals and desired properties
that we listed in the overview in Section 3 and check if they have been fulfilled.
First, let us iterate over the small items.

G1: Simplicity of DSL Definitions

Is ManyDSL simple enough for an average programmer to define new DSLs?

Indeed, with the SDE scheme (Section 4.2.2) and functional building of code
(Section 4.3.1) parsing resembles functional programming. Parser actions are
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pieces of code with their own self-descriptive meaning.

There is no need to investigate IR structure. No explicit AST nodes are created,
and optimization does not rely on their transformations.

However, writing a complete language from scratch is still not trivial. ManyDSL
in its core requires its user to comprehend CPS programming and dynamic
staging. The programmer must understand the limitations of LL1 parsing. He
must also understand how code pieces produced by builders must be glued
together to form the program.

We advocate higher-level DSL creation: Using preexisting language fragments,
encapsulating typical constructs and incorporating higher-level languages rather
than DeepCPS to define action bodies. All these are possible with ManyDSL,
but such libraries are very limited at the moment. Only a few such constructs are
provided and LangDSL currently supports only DeepCPS as its action language.

Therefore, we conclude that the goal G1 is achieved only partially. Further work
is needed to bring language definitions to higher-level programming. Such work,
however, no longer requires changes in ManyDSL itself, instead a proper set of
support libraries is needed. With the proper set of libraries, the user would be
able to define new languages as a combination of pre-existing building blocks,
and use a higher-level language to define semantic actions. Ideally, they would
never need to explicitly define a grammar rule, or use the underlying DeepCPS
language.

G2: Freedom of Syntax

The SDE scheme from Section 4.2.2 allows the DSL creator to specify any
set of tokens, coupled with any LL1 grammar for their language. Through
language switching, the DSL creator has full control over which features are
actually present in the language: There are no constructs imposed by ManyDSL
that must be present in any DSL. If the DSL creator chooses to forbid certain
programming practices, all they need is to skip grammar rules that lead to such
practice from their DSL definition.

This is in contrast to more common approaches of extendible languages (Sec-
tion 2.6.4), where new grammar rules may be added, but the existing ones cannot
be removed.

We continue to search for ways to extend the class of grammars, possibly
incorporating Parser Expression Grammars (PEG) [41] in ManyDSL in the future.
PEGs are used in other metamorphic languages (Section 2.6). Nevertheless,
being able to specify a LL1 grammar, independent from the host language
grammar, already provides a great degree of syntactic freedom for embedded
DSLs.

G3: Core Flexibility

The core language — DeepCPS — is designed with flexibility in mind. It uses
Continuation Passing Style allowing the user to define arbitrary control flow
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structures, as shown in Section 6.1.1. It introduces the Dynamic Staging, allowing
for flexible definitions of partial execution plans. While DeepCPS embraces
functional programming, it allows the user to break away from it, using memory
and external C functions — all without limiting the staging capabilities.

In the context of DSL definition, in Section 4.3.3 we have shown how builder
functions can be used to incrementally build programs with arbitrary control.
In Section 6.5 we have shown how one can incrementally create the body of a
for loop, needed for array-processing DSL example (Listing 3.1) we gave when
introducing G3.

For these reason we claim, that the core of ManyDSL as well as the builder
functions provide a flexible functional environment that can be used to define
complex, higher-level languages.

G4: Language Modularity and Composability

ManyDSL manages languages in the form of grammars and actions. In Sec-
tion 4.2.4 we have given an example of a DSL designed specifically to define
languages. LangDSL produces a function which, when invoked, creates such a
grammar.

However, such code — as any other — can be parametrized and pieces can be
abstracted out (Section 4.2.5, Section 4.2.6). It is possible to define fragments
of grammar to be used in multiple languages. This way the language can be
composed from several modules, rather than being written from scratch.

We believe that these tools provide a sufficient environment for allowing different
users to define reusable pieces of languages. Unfortunately, the library of such
pieces is relatively small at the moment and further research in this area is
needed to fully show that our goal is achieved.

G5: DSL Interoperability

ManyDSL can support any number of DSLs. Every language can incorporate
an action within its grammar that orders the parser to switch to a completely
different language. This way languages can be easily mixed together.

The ability to write in many DSLs is not enough to confirm DSL interoperability.
We must assert that it is possible to exchange data between two program pieces
written in different DSLs.

The fact that all DSLs translate to the same core language naturally enables
communication between the languages. However, for the communication to be
meaningful, each DSL must assume certain knowledge of the structure of the
other languages it is combined with. For example, if one language looks up
a variable name and finds one provided by another language — it must make
assumptions on how such value is represented: Is it merely a plain value? Is it a
tuple, containing a data type or some additional auxiliary information?

Different styles for naming environments were given in Section 6.4.3. The DSL
authors must agree, at least partially, how to store data for other languages to
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understand it.

In that respect, ManyDSL provides the means for the communication between
DSLs, but does not specify a single, final protocol. Instead, the style of data
representation is entirely in the hands of the DSL creators. With the help of
grammar abstractions, it is possible to define inter-DSL protocols separately,
encouraging DSL developers to use them. We hope that in the future, standard
and more convenient ways of storing and exchanging data will be found, further
facilitating the DSL interoperability.

G6: Language Sharing

With the interleaved interpretation and parsing (Section 5.7) languages can be
shared as header libraries. There is no additional installation required. While
it slows down the interpretation process as the language definition needs to be
loaded every time the program runs, it guarantees that nothing is ever missed. In
the future we hope to introduce a mechanism to precompile language definitions,
speeding up the loading process. This however is not essential with respect of
the goal G6, that we consider achieved.

G7: Domain-Specific Optimization

With the functional approach to grammar actions, the language designer has
full control how the code is being built. Actions can contain arbitrary pieces of
program, containing not only the main semantics, but any amount of auxiliary
computation as well. With the help of dynamic staging, even most complex
algorithms can be scheduled for execution during parsing or compilation, before
the actual program is run.

The DSL creator can perform domain-specific analysis of the data and choose
the best run-time code to be emitted. In Section 6.2 we have given more involved
examples of using staging to benefit image analysis and signal processing. These
were programs given in plain DeepCPS, but nothing stands against using the
very same constructs in code that is produced by other DSLs.

G8: Generation of Efficient Code

In Section 4.3.2 we have shown how additional code coming from different
language layers can be removed through dynamic staging. DSLs are able to
produce code that is indistinguishable from one produced by native DeepCPS
source. Furthermore, in Section 6.3 we have demonstrated that the underlying
compiler can produce highly efficient machine code. The use of dynamic staging
and partial evaluation is elided in the produced code.

We also introduce hardware reflection in Section 5.1.6. While the solution is
basic, it provides all the necessary means for a DSL creator to define DSL
optimizaitons for a specific hardware.
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7.1.1 The Main Goal

In Section 7.1 we have evaluated all the minor goals we have set for ManyDSL.
All of them are either fully or at least partially achieved. Does it mean that
ManyDSL achieves its main goal that we have given in Section 3.1?

We are interested if ManyDSL:

• Allows for separation of concerns between compiler and DSL programmers.

• Bridges the gap between hardware, programming languages, scientific
domains, and application creation.

The key element for separating DSL programmers from compiler experts is the
success of G1. As we stated however, that goal is achieved only partially, and
further work is needed.

The SDE scheme (Section 4.2.2) and LangDSL (Section 4.2.4) provide means
for DSL creators to express themselves in a way that is natural to functional
programmers. The success or failure of a programming language or a tool,
however, is not determined only by its own expressiveness. The supporting
libraries pay a major role as well. They allow the language to grow over time
and adapt to ever-changing requirements. At this time however ManyDSL does
not include many such libraries.

Another key aspect that is helpful for DSL creators is the ability to specify
domain-specific optimizations as programs (G7). This too, has a functional
flavor, aided by dynamic staging. Programming with staging is a new paradigm
– especially in the dynamic context – that an average developer may not be
familiar with. This mechanism, however, has strong theoretical foundations
(Section 4.1.3) and is applicable to much wider area of cases than just language
construction.

No aspect of a DSL – its syntax, nor semantics, nor domain-specific optimizaton,
nor checking has to rely on inspection and pattern-matching in IR. Still, efficient
code can be created, using only the functional DSL specification (G7,G8).

Creating a DSL in ManyDSL would be useless if it was later hard to incorporate
in new and existing projects.

For these reasons we firmly believe that the basic approach provided by ManyDSL
is the answer to the problem of language creation by non-experts. However, only
through the ongoing effort of bringing and maintaining a solid set of support
libraries and languages, ManyDSL will actually succeed.

In our discussion we repetedely name language creators as DSL developers, but
this group may not necessairly be uniform. One could identify different roles
within such a group. For example:

• Domain expert understands best what kind of problems the DSL is going
to be used to solve. With the help of ManyDSL they are able to define the
domain abstractions and incorporate them into a new language.
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• Language expert understands the relation between different languages.
They are most likely to focus on the integration of a given DSL with
other languages already used in the project, e.g. through cross-language
environments, discussed in Section 6.4.3 and G5. They may also handle
the syntactic details or type system of the DSL. Note however, that while
good understanding of how ManyDSL operates is needed, this still does
not require knowledge of core compiler construction.

• Hardware expert tunes an existing DSL for a very specific hardware. By
using hardware reflection (Section 5.1.6), one can check for hardware
specification in an ordinary ‘if‘ statement, and then remove this check-
ing overhead through staging. If a given device has a functionality not
supported by ManyDSL, an extension can be introduced in a form of a
ManyDSL-aware function (Section 6.1.2). Because these functions are
indistinguishable from existing built-in functions, in most cases ManyDSL
itself does not need to be changed to support the new hardware.

• Software engineer tunes existing DSLs to best fit the requirements of the
given project. By choosing which features of the language are present
and which are not, the engineer encourages the programmer to abide to
principles they have set up. This way the desired rules are not just written,
but actively enforced by the used languages.

Different roles require different familiarity with ManyDSL. With the right lan-
guage libraries, domain experts will not need to know the internal details of
ManyDSL, fulfilling the main goal of the project. At the same time, authors of
those libraries may need a deeper understanding of CPS programming, dynamic
staging, and DeepCPS extensions.

7.2 Future Work

The journey into the land of language pluralism is not finished. ManyDSL marks
only the beginning — a tool to make such pluralism possible. Further research
is needed to explore how ManyDSL can be used in the most efficient way.

In particular, we are asking which grammar abstractions will best facilitate
creation of new languages. In Section 4.2.5 we gave the foundation for the
grammar composition. We gave a simple example of an function for a left- and
right-associative operator. This is however a small solution, abstracting over a
few productions and hiding a limitation of LL1 grammars.

A much more interesting and practical functions would cover a bigger portion of
the language. We could cover, for example:

• All arithmetic expressions using standard operators over unspecified term
T. Perhaps a more generic version would allow the designer to choose
which operators are available and what is their behavior — all specified as
arguments, rather than grammar rules.
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• C-like scoped declarations (classes, structs, functions) followed by some
body B.

• List declarations over term T and separator S, to be used whenever a
sequence of T is needed. This could be used for example to define parameter
lists for function declaration, argument lists for function calls, or sequences
of instructions in a block.

We believe that with the right set of grammar functions, given as a library to
the user, the actual, explicit grammar rules would become seldom used. Whole,
complex languages could be created as a combination of functions, with explicit
productions used as a top-level glue or to define the most unique constructs.

Moreover, such abstractions could define a much needed standardization.This
way two DSLs would be similar enough to read them all together, but different
enough to conveniently capture the unique intrinsics of their own domains.
Standardization of how languages manage their entities such as variables or
types would further ease the complexity of exchanging such information between
different DSLs.

Ultimately, we hope that with the help of ManyDSL one will adjust languages
to solve problems, rather than adjust problems and their solutions to express
them in rigid languages.
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Appendix A

Example Execution of Staged
Builders

In Section 4.3.2 we have shown how staging can be used to eliminate builder
overhead. We use simple build and glue functions:

let build
(code , return ) { return .

(next , return ) { return .
(bt, ft, !args)

@bt: code . ft !args (ft, !args2)[bt]
@next: next . bt ft !args2

}
}

let glue
(Fprev , Fnext , return )[g] { return .

(next , return ) {
@g: Fnext . next (body)

Fprev . body (body2)
@return : return . body2

}
}

As an example on how to use these, we use a language MinusDiv to parse an
binary expression using minus and divide operators. The language runs semantic
actions given in Section 4.3.2, parsing an example input 1-4/2. This means,
that the actions are executed in the order: S 1 4 2 / - E F, where S is the
Starting action, and E, F are ending and finalize actions.

A.1 Gluing

Let us focus on a subsequence of actions 2 /, resulting in the execution of the
code:
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code1

code2

build .
(ft, numbers , end , cont) {

cont . ft [2, numbers ] end
}
( Fnext1 )

build .
(ft, numbers , end , cont)[bt] {

numbers [0] . (R)
numbers [1] . ( second )
second [0] . (L)
second [1] . (rest)[bt]
@ft: L/R . ( result )[ft]
@bt: cont . ft [result ,rest] end result

}
( Fnext2 )

glue . Fnext1 Fnext2 (F5)

In this chapter, we show step-by-step how the above code is reduced to a piece
of user program without overhead.

First, the build function is called twice. Since only natural staging is used for
the builder itself, standard substitution rules are applied. The code within the
body function is replaced by the brown sections of the user code (code1 and
code2). The complete program reduces down to the last application, calling the
glue function:

glue

Fnext1
Fnext1body

Fnext2
Fnext2body

(Fprev , Fnext , return )[g] { return .
(next , return ) {

@g: Fnext . next (body)
Fprev . body ( body2 )

@return : return . body2
}

} .
(next , return ) { return .

(bt, ft, !args)
@bt: code1 . ft !args (ft, !args2)[bt]
@next: next . bt ft !args2

}
(next , return ) { return .

(bt, ft, !args)
@bt: code2 . ft !args (ft, !args2)[bt]
@next: next . bt ft !args2

}
(F5)...

The italic values code1 and code2 are actual lambda functions. We hid it under
a name for a sake of brevity. By performing the application we obtain:

(F5) { ... } .
(next , return ) {

@>: Fnext2 . next (body)
Fnext1 . body (body2)

@return : return . body2
}

The glue function uses staging variable g, which has been activated and is
equivalent to >. As a result, the application that was staged upon g — namely
the Fnext2. next (body)... — is performed before the final call to (F5) ....
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Gluing A.1

The continuation (body) {Fnext1. body (body2)... } is mapped to return.
This return is invoked with the body of fragment function Fnext2:

Fnext2body

(F5) { ... } .
(next , return ) {

@>: (body) {
Fnext1 . body (body2)
@return : return . body2

} .
(bt, ft, !args)

@bt: code2 . ft !args (ft, !args2)[bt]
@next: next . bt ft !args2

}

Notice the next within the original Fnext2body is substituted by an symbolic
value with the same name next coming from the lambda function in our program.

Invoking the continuation leads to simple substitution

body 7→ Fnext2body

(F5) { ... } .
(next , return ) {

@>: Fnext1 . Fnext2body (body2)
@return : return . body2

}

Before continuing, let us expand the contents of Fnext1 :

Fnext1

(F5) { ... } .
(next , return ) {

@>:
(next , return ) { return .

(bt, ft, !args)
@bt: code1 . ft !args (ft, !args2)[bt]
@next: next . bt ft !args2

} .
Fnext2body (body2)

@return : return . body2
}

In the next step, we invoked Fnext1 with arguments:

next 7→ Fnext2body

return 7→ (body2)...

This time both arguments are concrete lambda values. Consequently, applications
staged upon next within Fnext1 become active.

(F5) { ... } .
(next , return ) {

@>: (body2) {
@return : return . body2

} .
(bt, ft, !args)

@bt: code1 . ft !args (ft, !args2)[bt]
@>: Fnext2body . bt ft !args2

}
}
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The invocation substitutes parameters of Fnext2body with arguments of similar
names coming from Fnext1body. All arguments are symbolic.

(F5) { ... } .
(next , return ) {

@>: (body2) {
@return : return . body2

} .
(bt, ft, !args)

@bt: code1 . ft !args (ft, !args2)[bt]
@bt: code2 . ft !args2 (ft, !args2)[bt]
@next: next . bt ft !args2

}
}

The last invocation didn’t activate any new applications. Consequently, the
execution proceeds with the invocation of (body2)... lambda function, yielding:

(F5) { ... } .
(next , return ) {

@return : return .
(bt, ft, !args) {

@bt: code1 . ft !args (ft, !args2)[bt]
@bt: code2 . ft !args2 (ft, !args2)[bt]
@next: next . bt ft !args2

}
}

}

Finally, the obtained function is passed into the (F5) ... continuation. Notice,
that the result has the same pattern as if it was build by a single build function:

fragment
body

F5 =
(next , return ) { @return : return .

(bt, ft, !args) {
@bt: code1 . ft !args (ft, !args2)[bt]
@bt: code2 . ft !args2 (ft, !args2)[bt]
@next: next . bt ft !args2

}
}

A.2 Build-time Staging Chain

Two fragments have been connected into a single one named F5. This is however
not the end of the building process. When a fragment representing an actual
complete program function P , the finalize step is performed. Recall, from
Listing 4.25 the finalize function:
let finalize

(F, return ) {
F . (P)[bt]
return .

(! args)[ft] {
@bt: P . bt ft !args

}
}
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It triggers the build-time staging chain. Suppose that a fragment function FP
contains the contents of F5:

F5

FP =
( return ) { @return : return .

(bt, ft, !args) {
@bt: ...
... preceding code invocations ...

... (ft, !args2)[bt]
@bt: code1 . ft !args2 (ft, !args2)[bt]
@bt: code2 . ft !args2 (ft, !args2)[bt]
...
... following code fragments ...
...

}
}

We invoke finalize function with the FP argument and some return continua-
tion:
FP . (P)[bt]
return .

(! args)[ft] {
@bt: P . bt ft !args

}

Calling FP returns the lambda (bt, ft, !args)... as P, and triggers the bt
staging variable:
return .

(! args)[ft] {
@>: (bt, ft, !args) {

@bt: ...
... preceding code invocations ...

... (ft, !args2)[bt]
@bt: code1 . ft !args2 (ft, !args2)[bt]
@bt: code2 . ft !args2 (ft, !args2)[bt]
...
... following code fragments ...
...

} .
> ft !args

}

The lambda is invoked with an argument bt which is already equivalent to >.
Consequently, the first instruction staged upon bt becomes activated. Note that
other bt within the lambda are not >, because those refer the implicit staging
parameters of nested continuation lambdas (ft, !args2)[bt]..., shadowing
the original name.
return .

(! args)[ft] {
@>: ...
... preceding code invocations ...

... (ft, !args2)[bt]
@bt: code1 . ft !args2 (ft, !args2)[bt]
@bt: code2 . ft !args2 (ft, !args2)[bt]
...
... following code fragments ...
...

}

As a result of fragment chaining, all preceding code functions are invoked in

233



A. Example Execution of Staged Builders

sequence. We are parsing a sequence S 1 4 2 / - E F and code1, code2
correspond to 2 / part of it. Upon finishing the preceding part we have executed
the subsequence S 1 4. At this point the arguments are:

• The bt upon which the code1 invocation is staged just became >.

• ft corresponds to continuation of the generated code

• !args2 is set to [[4, [1, []]], end] — the numbers and end recurring
parameters.

We have:
return .

(! args)[ft] {
@ft: ... preceding generated code ...
@>: code1 . ft [[4, [1, []]] , end] (ft, !args2)[bt]
@bt: code2 . ft !args2 (ft, !args2)[bt]
...
... following code fragments ...
...

}

The italic code1 is actually a lambda function and the above code reads:
return .

(! args)[ft] {
@ft: ... preceding generated code ...
@>: (ft, numbers , end , cont) {

cont . ft [2, numbers ] end
} .

ft ![[4 , [1, []]] , end] (ft, !args2)[bt]
@bt: code2 . ft !args2 (ft, !args2)[bt]
...
... following code fragments ...
...

}

By invoking it we substitute:

ft 7→ ft

numbers 7→ [4, [1, []]] (first element of ![[4, [1, []]], end])
end 7→ end (second element of ![[4, [1, []]], end])

cont 7→ (ft, !args2)[bt]@bt:code2. ...

and obtain a continuation call:
return .

(! args)[ft] {
@ft: ... preceding generated code ...
@>: (ft , !args2)[bt] {

@bt: code2 . ft !args2 (ft, !args2)[bt]
...
... following code fragments ...
...

} .
ft [2, [4, [1, []]]] end

}

Calling the continuation we arrive to a version which does not contain code1 at
all. However, the numbers tuple is updated to include a new element:
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return .
(! args)[ft] {

@ft: ... preceding generated code ...
@>: code2 . ft ![[2 , [4, [1, []]]] , end] (ft, !args2)[bt]
...
... following code fragments ...
...

}

Recall that code2 that we are about to invoke is also a concrete lambda function:
return .

(! args)[ft] {
@ft: ... preceding generated code ...
@>: (ft, numbers , end , cont)[bt] {

numbers [0] . (R)
numbers [1] . ( second )
second [0] . (L)
second [1] . (rest)[bt]
@ft: L/R . ( result )[ft]
@bt: cont . ft [result ,rest] end result

} .
ft ![[2 , [4, [1, []]]] , end] (ft, !args2)[bt]
...
... following code fragments ...
...

}

We invoke the lambda, splitting the ![[2, [4, [1, []]]], end] between
numbers and end as before:
return .

(! args)[ft] {
@ft: ... preceding generated code ...
@>: ([2, [4, [1, []]]) [0] . (R)
([2, [4, [1, []]]) [1] . ( second )
second [0] . (L)
second [1] . (rest)[bt]
@ft: L/R . ( result )[ft]
@bt: (ft, !args2)[bt]

...

... following code fragments ...

...
} . ft [result ,rest] end result

}

The 4 instructions selecting an element from a tuple are executed in a sequence,
leading to substitutions:

R 7→ 2

second 7→ [4, [1, []]

L 7→ 4

rest 7→ [1, []]

It is important to note that these substitutions are performed at build-time, and
are no longer required at function-time.
return .

(! args)[ft] {
@ft: ... preceding generated code ...
@ft: 4/2 . ( result )[ft]
@>: (ft, !args2)[bt]
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...

... following code fragments ...

...
} . ft [result ,[1, []]] end result

}

Calling the continuation triggers the remaining part of the build-time chain,
reducing the remaining part of the program to include only the function-time
code. It should be noted that the numbers tuple now contains a symbolic value.
This fact however does not harm the reduction process — all operations that
depend on numbers values are purely symbolic at build-time. Only the numbers
list itself must be concrete.

Finally, we obtain a reduced program:
return .

(! args)[ft] {
@ft: ... preceding generated code ...
@ft: 4/2 . ( result )[ft]
@ft: ... following generated code ...

}

With the help of dynamic staging, the selected actions of subsequence 2 /
reduced to a single instruction in the generated code.
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Appendix B

Manual Building of Fix Nodes

In Section 6.4.2 we have argued that generic fix nodes cannot be built incre-
mentally in native DeepCPS. This is because the fix node arity is a hidden
property of the Action node that cannot be manipulated programatically from
DeepCPS level. The solution is to do it at a lower level, by directly manipulating
the TR. Note that throughout the dissertation we actively try to avoid such
manipulation, but in this particular case we must make an exception.

We use ManyDSL-aware functions, which we introduce in Section 5.1.4, to
implement the necessary functions. First, in Listing B.1 we define the fixDeclare
ManyDSL-aware function. It creates a new empty fix node of arity n. Each
entry is represented by an unnamed parameter.

extern "C"
void fixDeclare ( Interpreter * interpreter , Action * action ) {

int count = dig <int >( action -> getArg (0));
Closure * continuation = action -> getInlineArg (1) ->as <Closure >();
Tuple* references = new Tuple ();
Fix* fix = new Fix ();
for ( size_t i=0; i<count; ++i) {

Parameter * p = new Parameter ();
fix -> addParam (p);
references ->add(p);

}
fix -> setArgCount (count);

SPointer * fixptr = new SPointer (fix);
interpreter -> bindArgument ( continuation , 0, fixptr );
interpreter -> bindArgument ( continuation , 1, references );
interpereter -> invoke ( continuation );
action -> substituteWithFollowup ( continuation ->body ());

}

Listing B.1: The fixDeclare ManyDSL-aware function creating a new fix node.
The function takes two arguments: integer cont, and a returning continuation. The
continuation receives the new fix node packed into a strong-pointer object, and a tuple
of unbound parameters that name the entries within the fix.
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extern "C" void fixDefine ( Interpreter * interpreter , Action * action )
{

SPointer * ptr = action -> getDerefArgConstant (0) ->as <SPointer >();
Fix* fix = ptr ->get () ->as <Fix >();
int idx = dig <int >( action -> getArg (1));
Value* value = action -> getDerefArg (2) ->as <Value >();
fix -> setArg (idx , value);

Closure * continuation = action -> getInlineArg (3) ->as <Closure >();
interpreter -> invoke ( continuation );
action -> substituteWithFollowup ( continuation ->body ());

}

Listing B.2: The fixDefine ManyDSL-aware function, defining one of the mutually-
recursive functions of fix. The function takes four arguments: the pointer to the fix
node we build, the index of the parameter we set, the arbitrary value as assign to it and
the parameterless continuation.

extern "C" void fixFinish ( Interpreter * interpreter , Action * action )
{

SPointer * ptr = action -> getDerefArgConstant (0) ->as <SPointer >();
Fix* fix = ptr ->get () ->as <Fix >();
Value* fixEnd = action -> getDerefArg (1) ->as <Value >();
Closure * continuation = action -> getInlineArg (2) ->as <Closure >();

fix -> addArg ( fixEnd );

Closure * fct = new Closure ();
fct -> setBody (fix);
interpreter -> bindArgument ( continuation , 0, fct);
interpreter -> invoke ( continuation );
action -> substituteWithFollowup ( continuation ->body ());

}

Listing B.3: The fixFinish ManyDSL-aware function completes the creation of the
fix node. It takes 3 arguments: the pointer to the fix node, the function representing
the in clause, and a continuation. After assembling the fix, it is put into its own
lambda and returned as a regular value.

Note that we create a Fix object, but in fact it is a special case of an Action.
We also create a tuple of all the parameters, so that they may be referred to,
forming a recursion.

Then, in Listing B.2 we set a concrete value under the specified index. The
operation fix->setArg takes the Parameter object at the specified index and
binds the value to it. It does not trigger staging associated with that parameter.

Finally, when all parameters of the fix are set, the fix node is sealed with
fixFinish in Listing B.3. It takes one last value that is set at the end of the
argument list, representing the in clause. Finally, the produced fix node is
packed into its own Closure object and returned as a value to the continuation.
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Appendix C

Y-combinator in CPS

The Y-combinator in Lambda Calculus

A fix point combinator is a construct that models recursion. In languages that
do not provide explicit recursive references, it can be defined as a higher-order
function. In lambda calculus, one of the most well-known combinators is the
Y-combinator:

Y =λf.(λx.xx)Rf ,
where Rf =λx.f(xx)

Sometimes, Y is defined as λf.RfRf . We refer to Rf as a replication term with
a free variable f , as it causes the recursive call to unroll by replicating the callee.

Suppose that with the help of Y we want to define a recursive function G = λa....
Within the body of λa we would like to be able to call G again, but the name is
not available in that context. For that reason, we define a term Gr with a free
variable r indicating the function Gr itself:

Gr = λa. ....body with r....

We then put Gr in a lambda specifying r, with its value to be supplied by the Y
combinator: We obtain:

F = λr.Gr = λr.λa. ....body with r....

We say that F is “Y-ready”, meaning that the recursion of Gr is achieved as
soon as F is applied to Y . Let us show, step-by-step how the Y combinator
works:

1. (Y F )v
1. (λf.(λx.xx)RfF )v
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We advance the step number when an actual β-reduction is performed. Repre-
sentations where a name of already bound value is replaced by its contents (or
vice-versa) are considered the same step.

2. ((λx.xx)RF )v
3. (RFRF )v
3. ((λx.F (xx))RF )v
4. (F (RFRF ))v

At this point we could reduce the subexpression RFRF again, but that would
lead to the same steps 3-4 performed as a part of the whole expression. It would
be equivalent to unrolling the recursion multiple times, before executing the
recursive function. We do not want that. For that reason, we choose to lazily
postpone the computation of RFRF and applying it as such to F , which is the
λr given earlier.

4. ((λr.λa.....body with r....)(FRFR))v
5. (λa.....body with (FRFR)....)v
6. [a 7→ v]body with (FRFR)

From this point, the body is executed as normal.

7. ...executing body...

At some point the recursive call is reached, possibly with a new argument v′.
The recursion is no longer represented as a name r, but as the replication terms
FRFR:

8. (FRFR)v′

This however is the same as point 3, except for the new argument v′. The
recursion is achieved.

The CPS Version

Let us now focus on representing the Y combinator in CPS.

First, let us specify how the recursive function looks like: Let us assume that is
takes one argument a plus a continuation ca:

Gr = λaca. ...body with r...

The free variable r is provided by the Y combinator, passed to a Y-ready function
F . The F function has also two arguments — the next step of recursion r, and
the continuation cr where the newly combined recursive function is passed for
future use.

F = λrcr.crGr = λrcr.cr(λaca. ...body with r...)
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We ignore other cases, e.g. where Gr could take more arguments.

We can now take the standard Y-combinator from the lambda calculus and
transform it to CPS. All single-argument lambdas now take two arguments, with
the second one being the continuation where the result is being returned. The
argument f of the combinator is assumed to be in the form of F . With such
straightforward approach we obtain:

Ỹ =λfcf .(λxcx.xxcx)R̃fcf ,

with R̃f =λxcx.xx(λy.fycx)

In DeepCPS notation these functions look as:
let Gr(a, ca) { ...body with r... }
let F(r, cr) cr . (a, ca) { ...body with r... }
let Rf(x, cx) {

x . x (y)
f . y cx

}
let Y(f, cf) {

(x, cx) { x . x cx } . Rf cf
}

However, the solution we obtain contains a subtle error. Consider the following
execution:

1.
Y . F (g)
g . v ( result ) ...

1.
(f, cf) {

(x, cx) { x . x cx } . Rf cf
} . F (g)
g . v ( result ) ...

2.
(x, cx) { x . x cx } . RF (g)
g . v ( result ) ...

3.
RF . RF (g)
g . v ( result ) ...

3.
(x, cx) {

x . x (y)
F . y cx

} . RF (g)
g . v ( result ) ...

4.
RF . RF (y)
F . y (g)
g . v ( result ) ...
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It becomes apparent that we are trying to unroll the recursion by endlessly
calling RF on itself, before we are ever able to invoke F. In standard lambda
calculus we could arbitrarily choose to lazily pass RFRF as a parameter to avoid
this problem. With CPS however, the order of evaluation is explicit, and in the
definition of Ỹ we have chosen not to do anything lazily.

Any expression can be made lazy by encapsulating it in its own lambda function
and passing it as a parameter. In our case we need to make the replication term
act lazily.

λxcx.xx(λy.fycx)

The replication xx needs to be encapsulated in a new lambda. The lambda shall
be invoked every time the recursion is triggered, accepting the same arguments
as Gr. Therefore, our corrected Rf looks as:

Rf = λxcx.f(λaca.xx(λy.yaca))cx

We can now spell out the correct version of Y-combinator in CPS:

Y =λfcf .(λxcx.xxcx)Rfcf ,
where Rf =λxcx.f(λaca.xx(λy.yaca))cx

And in DeepCPS notation:
let Gr(a, ca) { ...body with r... }
let F(r, cr) { cr . (a, ca) ...body with r... }
let Rf(x, cx) {

f . (a, ca) {
x . x (y)
y . a ca

} cx
}
let Y(f, cf) {

(x, cx) { x . x cx } . Rf cf
}

Let us confirm that our newly defined Y actually behaves as we intend:

1.
Y . F (g)
g . v ( result ) ...

1.
(f, cf) {

(x, cx) { x . x cx } . Rf cf
} . F (g)
g . v ( result ) ...

2.
(x, cx) { x . x cx } . RF (g)
g . v ( result ) ...

3.
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RF . RF (g)
g . v ( result ) ...

3.
(x, cx) {

F . (a, ca) {
x . x (y)
y . a ca

} cx
} . RF (g)
g . v ( result ) ...

4.
F . (a, ca) {

RF . RF (y)
y . a ca

} (g)
g . v ( result ) ...

4.
(r, cr) {

cr . (a, ca) ...body with r as recursion...
} . (a, ca) {

RF . RF (y)
y . a ca

} (g)
g . v ( result ) ...

5.
let g (a, ca) {

... body with (a’, ca’) {
RF . RF (y)
y . a’ ca’

} as recursion ...
}
g . v ( result ) ...

Now a single iteration of the recursive function g is allowed to execute normally.
The recursive step however is no longer represented as r, but as a lambda
(a, ca)RF . RF (y)y . a ca.

6.
[

a 7→ v
ca 7→ (result)...

] ... body with (a’, ca’) {
RF . RF (y)
y . a’ ca’

} as recursion ...

When the recursion is reached, with a new argument v’ and continuation
(result’)... we have:

7.
(a, ca) {

RF . RF (y)
y . a ca

} . v’ ( result ’) ...

8.

243



C. Y-combinator in CPS

RF . RF (y)
y . v’ ( result ’) ...

Which is equivalent to what we have in point 3, except for the new arguments
v’ and (result’).... The recursion has been achieved.
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