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Abstract
The topics of Cloud Computing and Big Data Analytics dominate today’s
IT landscape. This dissertation considers the combination of both and the
resulting challenges. In particular, it addresses executing data intensive jobs
efficiently on public cloud infrastructure, with respect to response time, cost,
and reproducibility. We present an extensive study of performance variance
in public cloud infrastructures covering various dimensions including micro-
benchmarks and application-benchmarks, different points in time, and different
cloud vendors. It shows that performance variance is a problem for cloud users
even at the application level. It then provides some guidelines and tools on how
to counter the effects of performance variance. Next, this dissertation addresses
the challenge of efficiently processing dynamic datasets. Dynamic datasets, i.e.,
datasets which change over time, are a challenge for standard MapReduce Big
Data Analytics as they require the entire dataset to be reprocessed after every
change. We present a framework to deal efficiently with dynamic datasets inside
MapReduce using different techniques depending on the characteristics of the
dataset. The results show that we can significantly reduce reprocessing time
for most use-cases. This dissertation concludes with a discussion on how new
technologies such as container virtualization will affect the challenges presented
here.

Zusammenfassung
Cloud Computing und die Verarbeitung großer Datenmengen sind allge-
genwärtige Themen in der heutigen IT Landschaft. Diese Dissertation befasst
sich mit der Kombination dieser beiden Technologien. Insbesondere werden die
Problematiken mit effizienter und reproduzierbarer Verarbeitung von großen
Datenmengen innerhalb von Public Cloud Angeboten betrachtet. Das Prob-
lem von variabler Rechenleistung bei Public-Cloud-Angeboten wird in einer
ausführlichen Studie untersucht. Es wird gezeigt, dass sich die Varianz der
Rechenleistung auf verschiedenen Leveln bis zur Applikation auswirkt. Wir
diskutieren Ansätze um diese Varianz zu reduzieren und präsentieren ver-
schiedene Algorithmus um homogene Rechenleistung in einem Rechnerverbund
zu erreichen. Die Verarbeitung von großen, dynamischen Datenmengen mit
heutigen MapReduce basierten Systeme ist relativ aufwändig, weil Änderun-
gen der Daten eine Neuberechnung des gesamten Datensatzes erfordert. Solche
Neuberechnungen können insbesondere in Cloud Umgebungen schnell zu hohen
Kosten führen. Diese Dissertation präsentiert verschiedene Algorithmen zum
effizienten Verarbeiten solcher dynamischen Datensets und ein System welches
automatisch den fü das Datenset passenden optimalen Algorithmus auswählt.
Wir schließen mit einer Diskussion welchen Einfluss neue Technologien wie
Docker auf die hier präsentierten Probleme haben.
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1 Introduction

1.1 Motivation

Cloud Computing is an omnipresent topic in today’s IT landscape. Cloud com-
puting platforms change the economics of computing by allowing users to pay
only for the capacity that their applications actually need (the pay-as-you-go
model) while letting vendors exploit the economic benefits of scale. Another
important advantage for users is the enormous scalability of such cloud in-
frastructure. These characteristics allow users to spawn several thousand new
servers within a few minutes, but also to tear down servers quickly once the
the demand shrinks. The demand for such scalable infrastructures is grow-
ing especially for the problem of Big Data Analytics. In the past, companies
have collected massive volumes of data including user related data, log data,
sales data, and sensor data. Deriving the value from such data collections usu-
ally requires the use of large amounts of distributed computing resources such
as storage, CPU and memory. Using such distributed infrastructures can be
challenging as a developers has to deal with a number of problems, including
data distribution, scheduling compute tasks or resources failing. MapReduce
frameworks such as Hadoop offer a solution to these problems by abstracting
these problems from the user and offering a simple to use interface. Amazon
Elastic MapReduce is one prominent example of the successful combination of
Cloud Computing and MapReduce by offering a simple to use service to users.
For researchers the combination is equally attractive for running large scale
experiments or analyses. However, there are still a number of challenges when
performing MapReduce data analyses in a cloud environment:

1. Most cloud services rely on virtualized resources and therefore the same
virtual machine can be executed on different physical hardware with dif-
ferent performance characteristics. Also cloud services usually serve mul-
tiple tenants on a single physical host. As a result performance vari-
ance is a common problem for users as it makes performance measure-
ments hard to interpret and estimating the required amount of resources
for a given task becomes very challenging.
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2. MapReduce is especially sensitive to performance variance between dif-
ferent nodes in the cluster. Hence, the performance variance of different
virtual machines cannot only lead to a variance in the actual MapReduce
job runtime, but also slow down the MapReduce job in general. Also
the upload times while transferring data into Hadoop’s Distributed File
System HDFS can suffer from such performance variance.

3. Typically, data is dynamic: it grows (appending new records) or it is
altered (altering existing records). Using MapReduce, users typically
have to run their jobs again over the entire dataset (often including several
terabytes of data) every time the dataset is changed. Especially in a cloud
setting this manner of processing changing datasets can lead to long
response times and high costs.

1.2 Problem Definition

This thesis addresses the question “How can users execute data intensive jobs,
especially MapReduce jobs on public cloud infrastructure (e.g., Amazon EC2)
efficiently with respect to response time, cost, and reproducibility?”. To answer
this question we focus on the following problems:

1. How large is the performance variance on a micro-level (i.e., CPU, mem-
ory, I/O, and network performance) between different virtual machines
of the same specification? Is this variance different between different
cloud vendors? How much does performance of a single instance vary
over time?

2. How much does this micro level variance result in application level per-
formance variance?

3. Does the cluster heterogeneity caused by this performance variance effect
the actual MapReduce job response time?

4. How can we process MapReduce jobs over a growing and changing (i.e.,
incremental) dataset efficiently in a cloud setting?
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1.4 Outline

In this thesis we examine the interaction between two trends in modern Infor-
mation Technology: Cloud Computing and Big Data Analysis in particular the
MapReduce framework.

First in Chapter 2 we provide the reader with the necessary background knowl-
edge for the remainder of this thesis.

Next, we present the general problem of performance variance in Infrastruc-
ture as a Service (IaaS) Cloud Computing in Chapter 3. In this Section we
measure the amount of variance by executing a number of micro and system
level benchmarks on virtual machines provided by different cloud providers. In
Chapter 3.6.1 we examine how this performance variance effects the actual re-
sponse time of MapReduce jobs. We measure the effect of cluster heterogeneity
caused by performance variance on the actual MapReduce job response time
and HDFS upload times. In Chapter 4 we propose and evaluate different tech-
niques for reducing the performance variance and obtain more homogeneous
cluster.

In Chapter 5 we look at the problem of processing growing and changing
datasets in MapReduce. Each dataset and job has different characteristics and
so requires different techniques for efficient processing appends and changed in
such datasets. We propose a system which can automatically choose the best
of three different techniques for incremental processing.

1.5 Contributions.

Following the outline of this thesis, we can group our contributions into three
different areas:

• Study of performance variance in cloud settings and its effects on work-
loads.

• Dealing efficiently with performance variance.

• Effective processing of dynamic datasets.

For each of these three areas we give in the following a detailed overview of our
contributions.
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1. Study of performance variance in cloud settings and its effects
on workloads. In Section 3, we focus on the issue of performance vari-
ance in today’s cloud systems, and exhaustively evaluate the performance
of Amazon EC2 and other major cloud vendors.

The major contributions are as follows.
a) An exhaustive study of cloud performance variance. We perform

performance measurements at different granularities:
• single instances, which allow us to estimate the performance

variance of a single virtual node

• multiple instances, which allow us to estimate the performance
variance of multiple nodes

• different locations, which allow us to estimate the performance
variance of different data centers

• different vendors, which allow us to classify performance vari-
ance across different platforms (and therefore also across differ-
ent virtualisation techniques)

• different points in time (2010 and 2013), which allow us identify
potential improvement over time

• different parts of the cloud stack (IaaS and PaaS)

b) We identify that performance can be divided in different bands and,
among other factors, the heterogenous underlying physical hardware
is a major source of performance variance. When considering poten-
tial reduction in performance variance between our measurements
in 2010 and 2013 we can see improvements in some aspects, but
actually an increase in variance in other aspects. The performance
variance problem is present across all major vendors. We provide
some hints to users to reduce the performance variability of their
experiments.

Section 3.6.1 considers the effects of the prior measured performance
variance on MapReduce jobs. Here we can clearly identify a significant
correlation between cluster heterogeneity (How much does performance
differ between different cluster nodes?) and MapReduce job runtime.
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2. Dealing with performance variance. In Chapter 4 we propose dif-
ferent techniques of how to obtain more homogenous clusters. We start
by allocating a larger cluster and then successively terminate instances
in order to reduce overall cluster heterogeneity. We show that especially
for long running batch jobs the initial overhead of allocating more nodes
is justified by reduced runtimes on a more homogene cluster.

For selecting which instance to terminate we propose three different al-
gorithms:

• Variance Driven Optimization uses a set of micro-benchmarks to
compute a heterogeneity score and then terminates the instance con-
tributing most to this score.

• System Driven Optimization avoids the expensive execution of the
micro-benchmarks and uses information about systems instead. The
strategy is to terminate instances having a different underlying sys-
tem (e.g., processor or storage).

• Performance Driven Optimization again uses micro-benchmarks to
determine relative performance of cluster nodes. But instead of com-
puting a heterogeneity score as the Variance Driven Optimization
would do, it simply selects to terminate the node with the lowest
relative performance.

We show that with these techniques we can reduce the cluster variance
and improve MapReduce job runtimes.

3. Efficient incremental processing of changing datasets. In Chap-
ter 5 we address the challenge of processing growing and changing
datasets in MapReduce. The problem with current MapReduce based
systems is that they require the entire dataset to be reprocessed after
any potentially minor change. We present Itchy, a framework to deal effi-
ciently with dynamic datasets inside MapReduce. The main goal of Itchy
is to execute incremental jobs by processing only relevant parts from the
input of the initial job together with the input of incremental-jobs. Here
we make the following contributions:

a) We first identify different classes of incremental MR jobs. Each
of these classes allows for different optimizations while processing
growing datasets. We then propose three different techniques to ef-
ficiently process incremental-jobs, namely Itchy QMC (which stores
provenance information), Itchy MO (which stores the Map Output,
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hence intermediate data), and Itchy Merge (which combines the out-
put of MapReduce jobs).

b) We show that choosing between Itchy QMC and Itchy MO is ba-
sically a tradeoff between storage overhead and runtime overhead.
Thus, we present a decision model that allows Itchy to balance au-
tomatically the usage of QMCs and intermediate data to improve
query performance. In this way Itchy can decide the best option
for each incoming MapReduce job considering both job runtime and
storage overhead.

c) We present a framework that implements the Itchy concepts in a
manner invisible to users. This framework uses Hadoop and HBase
to store and query both QMCs and intermediate data. The Itchy im-
plementation includes many non-trivial performance optimizations
to make processing incremental jobs efficient. In particular, Itchy
runs map tasks in two map waves: one map wave to process the in-
cremental dataset (containing the appended records) and one map
wave to process the initial dataset (the input dataset to the first job).
This allows Itchy to perform incremental-jobs in a single MapReduce
job instead of two MapReduce jobs. As a result, Itchy avoids read-
ing, writing, and shuffling growing datasets twice.

d) We present an extensive experimental evaluation of Itchy against
the Hadoop MapReduce framework and Incoop. Our results demon-
strate that Itchy significantly outperforms both Hadoop MapReduce
and Incoop when dealing with incremental-jobs. We also show that
Itchy incurs only negligible overhead when processing the first-job.
Finally, we provide a detailed comparison between using QMCs or
intermediate data in different settings.
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2 Background

In this chapter we provide the reader with the necessary background knowledge
for the remainder of this thesis. Therefore, we first give an overview of Cloud
Computing in Section 2.1 followed by a discussion of the different virtualiza-
tion techniques used in cloud computing in Section 2.2. Next, we provide an
overview of the MapReduce framework in Section 2.3.

2.1 Cloud Computing

2.1.1 Overview

The services offered today by cloud providers are quite heterogeneous and range
from entire infrastructures to specialized applications. In fact, the cloud market
is growing rapidly in the number of vendors, but also in the number of concepts
being marketed as cloud products. Judging from announcements for new IT
products and services, it seems cloud computing can be found in almost any
product today including Telekom Cloud, Amazon Cloud Player, Google Cloud
Connect, Apple Cloud, Cloud Ready, SAP Cloud Solutions, or Datev Cloud
Computing. As each vendor has a different understanding of the term Cloud
Computing there exits no generally agreed-upon definition, but the following
definition by NIST [60] covers most aspects:

”Cloud computing is a model for enabling ubiquitous, convenient, on-demand
network access to a shared pool of configurable computing resources (e.g., net-
works, servers, storage, applications, and services) that can be rapidly provi-
sioned and released with minimal management effort or service provider inter-
action.”

In the following, we look at certain aspects of this definition in more detail:

On-demand. Users can dynamically allocate and release the cloud resources
as their application requires. This flexibility together with the pay-per-use
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principle of most cloud vendors allows especially small companies to scale their
IT infrastructure according to their current demand.

Network access. Cloud resources are usually provisioned via network and
standard protocols. As a result users are often unaware of the exact location
(i.e., data center, cluster or node) where the resources are actually allocated.

Shared resources. Cloud providers usually employ a multi-tenant model,
where several users share the same physical machine. One common practice
for such sharing of resources is the use of virtualized resources.

2.1.2 Classification of Cloud Systems

Nowadays, cloud services are frequently categorized into pyramid with three
layers depending on the type of the provided capability [60]:

Infrastructure as a Service (IaaS). At this level, providers offer an entire
virtual on-demand infrastructure such as virtual computing nodes, storage, or
network. Thus, through virtualization, providers are able to split, assign and
dynamically resize these resources to build ad-hoc systems as demanded by
users. This is why it is referred to as infrastructure as a service. Users can
then configure their requested infrastructure at a low level (OS, programs, and
security among others). Amazon Web Services [2], Rackspace Cloud Sites [68],
IBM Blue Cloud [46], and AppNexus Cloud [14] are just some examples of
IaaS.

Platform as a Service (PaaS). Instead of supplying virtualized resources,
cloud providers can offer software platforms to developers where they can de-
velop and deploy their applications inside the cloud. Similar to IaaS, the un-
derlying infrastructure is hidden from developers and can be scaled it in a
transparent manner. PaaS offerings include, among others, the Google App
Engine [39], Microsoft Azure [58], Facebook Platform [37], Salesforce.com [70],
and Sun Cloud [75].

Software as a Service (SaaS). Cloud providers can also supply applica-
tions of potential interest to users and relief them from the burden of local
software installation and configuration. These applications can be anything
from Web based email to applications like Twitter or an online word proces-
sor. Examples at this level are Google Apps [41], Salesforce.com [70], and SAP
On-Demand [71].
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In addition to the above listed categories, there exists a growing number of
other XaaS offers. For example the International Telecommunication Union
considers also Network as a Service (NaaS) as a separate category [127]. NaaS
includes network related offers such as VPN connection or dynamic bandwidth
allocation. Also Database as a Service (DaaS) is a common concept [123].
DaaS offers include standard relational databases such MySQL or Oracle at
AWS RDS, but also NoSQL databases such as AWS’s Dynamo DB.

Besides this classification according to the offered service level, there is also
another dimension considering the different deployment model of cloud ser-
vices [60, 127].

Private cloud infrastructures are operated and used by a single organiza-
tion. Often this deployment model is used in cases, where sensible data has to
processed.

Community cloud infrastructures are shared among several organizations
for a common usage scenario. One example in this category is the British
G-Cloud [38], which offers a number of cloud services to the public sector.

Public cloud infrastructures can be used the general public. Usually public
cloud are offered by vendors such as AWS, Google, or Rackspace on a pay-per-
use basis.

Hybrid cloud infrastructures are a mix of several cloud deployment model.
Often public cloud services are used to support the private cloud infrastructure
in cases of performance bursts.

Cloud APIs The downside of this growing number of cloud providers is that
the number of cloud APIs grows almost in the same rate. As such different
APIs are partially a consequence off the different types of services offered. Still,
different APIs often result in a vendor-lockin, which makes changing a cloud
provider very difficult as it might require re-factoring large parts of the applica-
tions. There are several projects, such as Apache deltacloud [6], libcloud [50],
or simplecloud [72], trying to offer a unified interface on top of the individual
APIs. Besides these IaaS API abstractions, there also exist some projects pro-
viding service abstractions for specific applications. For example Apache Whirr
is able to allocate, configure, and manage a Hadoop Map Reduce Cluster on
several cloud vendors. Even though the AWS API is most commonly used,
there exists no common standard API which could enable a number of other
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beneficial side-effects [89]. For example, a standard cloud API would enable
users to freely move their workloads across clouds and private clusters.

2.1.3 Cloud Provider

The number of cloud providers offering different services in a public cloud
infrastructure has exploded over the last years. Many large IT vendors such
as Microsoft, Google, Apple, SAP, HP, or Oracle offer products in the Cloud.
Besides these large players, Cloud Computing has also enabled many small
startups such as Salesforce, ProfitBricks, Coursera and many more to offer
innovative services in the cloud. Next, we will describe a few prominent cloud
offers:

Amazon Web Services (AWS) [2] is probably the best known cloud provider.
When AWS EC2 was released in 2006, it was the first commercial large scale
public cloud offering. Nowadays, Amazon offers a wide range of cloud services
besides EC2: S3, SimpleDB, RDS, ECS, and Elastic MapReduce. Amazon EC2
is also very popular among researchers and enterprises requiring instant and
scalable computing power. Actually, the Amazon Elastic Computing Cloud
(EC2) was not initially designed as a cloud platform. Instead, the main idea
at Amazon was to increase the utilization of their servers, which only had a
peak around Christmas.

Microsoft Azure [56] offers IaaS (computing and storage) as well as PaaS (web
application hosting) services. Azure’s IaaS offer focuses on Windows based
virtual machines but also includes Linux based virtual machines. In addition,
Microsoft also offers a number of other SaaS cloud offers including Microsoft
Office 365 [57] offering the traditional office programs and storage space in the
cloud.

Google App Engine [40] is Google’s PaaS offer, it allows user to create Java,
Python, Go, or PHP based web applications which can be scaled automati-
cally. Since 2012 Google also offers IaaS services with the Google Compute
Engine [42]. In 2014 Google introduced one additional IaaS offer Google Con-
tainer Engine [43] allowing easy deployment of docker containers.

SalesForce.com [70] was one of first successful offers of SaaS around 2000. The
inital SaaS offer Salesforce.com is a cloud based software for Customer Rela-
tionship Management (CRM) is today used even by many larger companies.
Their product platform has since been extended by a PaaS offer Heroku [70]
for web application hosting.
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Coursera [34] and Udacity are among the first companies offering Education
as a Service in the Cloud. Students can follow lectures, submit exercises and
participate in forums from all over the world and the time best for them.

Table 2.1 presents different other cloud providers with their classification and
some examples of their offered services.

Cloud Provider Category Major Offer(s)
3tera IaaS VPD
Amazon AWS IaaS, PaaS EC2, S3, EMR ...
AppNexus IaaS AppNexus Cloud
IBM IaaS Blue Cloud
Rackspace IaaS Cloud Server
VMWare IaaS vCloud Express
Facebook PaaS Development Platform
Google PaaS App Engine
Google IaaS Compute Engine
Microsoft PaaS Windows Azure
Sun PaaS Sun Cloud
Google Apps SaaS Gmail, Google Docs
Salesforce.com SaaS Custom Cloud
SAP On-Demand SaaS SAP CRM
ProfitBricks IaaS virtual data center
Coursera SaaS Education as a Service

Table 2.1: Cloud Providers

Amazon EC2 Infrastructure The Amazon Elastic Computing Cloud (EC2)
was not initially designed as a cloud platform. Instead, the main idea at Ama-
zon was to increase the utilization of their servers, which only had a peak
around Christmas. When EC2 was released in 2006 it was the first commer-
cial large scale public cloud offering. Nowadays, Amazon offers a wide range
of cloud services besides EC2: S3, SimpleDB, RDS, and Elastic MapReduce.
Amazon EC2 is very popular among researchers and enterprises requiring in-
stant and scalable computing power. This is the main reason why we focus
our analysis study on this platform. Amazon EC2 provides resizable compute
capacity in a computational cloud. This platform changes the economics of
computing by allowing users to pay only for the capacity that their applica-
tions actually need (pay-as-you-go model). The servers of Amazon EC2 are
Linux-based virtual machines running on top of the Xen virtualization engine.
Amazon calls these virtual machines instances. In other words, it presents a
true virtual computing environment, allowing users to use web service inter-
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faces to acquire instances for use, load them with their custom applications,
and manage their network access permissions. Amazon EC2 is AWS’s IaaS
offer and provides resizable compute capacity in a cloud environment. The
servers of Amazon EC2 are Linux-based virtual machines running on top of
the Xen virtualization engine. Amazon calls these virtual machines instances.
In other words, it presents a true virtual computing environment, allowing
users to use web service interfaces to acquire instances for use, load them
with their custom applications, and manage their network access permissions.
Instances are classified into different classes: standard instances (which are
well suited for most applications), high-memory instances (which are espe-
cially for high throughput applications), high-cpu instances (which are well
suited for compute-intensive applications), cluster-compute instances (which
are well suited high performance compute cluster requiring high network per-
formance), high-memory-cluster instances (which are well suited for compute
clusters requiring both high network and memory performance), cluster GPU
instances (which in addition to the cluster-compute instances provide access to
GPUS for highly parallel programs), high I/O instances (which offer increased
I/o performance), and high storage instances (which offer a high storage den-
sity per instance). In each of these classes AWS offers a number of instance
types, which specifies the concrete virtual hardware and performance charac-
teristics. As of March 2013 AWS offers total of 18 different instance types. In
the following we give the specification of a selection of these instance types.
(1.) small instance (Default), corresponding to 1.7 GB of main memory, 1 EC2
Compute Unit (i.e., 1 virtual core with 1 EC2 Compute Unit), 160 GB of local
instance storage, and 32-bit platform.

(2.) large instance, corresponding to 7.5 GB of main memory, 4 EC2 Com-
pute Units (2 virtual cores with 2 EC2 Compute Units each), 850 GB of local
instance storage, 64-bit platform, and 10 Gigabit Ethernet.

(3.) extra large instance, corresponding to 15 GB of main memory, 8 EC2
Compute Units (4 virtual cores with 2 EC2 Compute Units each), 1690 GB of
local instance storage, 64-bit platform, and 10 Gigabit Ethernet.

(4.) cluster compute eight extra large instance, corresponding to 60.5 GB of
main memory, 88 EC2 Compute Units, 3370 GB of local instance storage,
64-bit platform, and 10 Gigabit Ethernet.

(5.) high memory cluster eight extra large instance, correspond to 244 GB of
main memory, 88 EC2 Compute Units, 240 GB of local instance storage, 64-bit
platform, and 10 Gigabit Ethernet.
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(6.) high I/O quadruple extra large instance, corresponding to 60.5 GB of main
memory, 35 EC2 Compute Units, 2 ∗ 1024 GB of SSD-based local instance
storage, 64-bit platform, and 10 Gigabit Ethernet.

In our performance evaluation we focus on small instances, because they are the
default instance size and frequently demanded by users. Standard instances are
classified by their computing power which is claimed to correspond to physical
hardware:

One EC2 Compute Unit is claimed to provide the “equivalent CPU capacity
of a 1.0-1.2 GHz 2007 Opteron or 2007 Xeon processor” [2]. Nonetheless, as
there exist many models of such processors in the market, it is not clear what
is the CPU performance any instance can get.

While some resources like CPU, memory, and storage are dedicated to a par-
ticular instance, other resources like the network and the disk subsystem are
shared amongst instances. Thus, if each instance on a physical node tries to
use as much of one of these shared resources as possible, each receives an equal
share of that resource. However, when a shared resource is underutilized, it
is able to consume a higher share of that resource while it is available. The
performance of shared resources also depends on the instance type which has
an indicator (moderate or high) influencing the allocation of shared resources.
Moreover, there exist currently different physical locations (three in the US,
three in Asia, one in South America, and one in Ireland) with plans to expand
to other locations. Each of these locations contains different availability zones
being independent of each other in case of failure.

In addition to the standard on-demand provisioning model, AWS also offers
reserved instances and spot instances. When using reserved instances the user
pays a one-time fee for a certain reserved capacity and in turn receives a signif-
icant discount on the hourly price when requesting an instance. In a different
model, spot instances allow users to bid on non-utilized capacity at their own
price. For this model, a so called spot price is computed every hour and all
instances for bids exceeding this spots price are allocated.

Service Level Agreements Cloud computing is rapidly gaining momentum
as an alternative to traditional IT Infrastructure. As more users delegate their
applications to cloud providers, Service Level Agreements (SLAs) between users
and cloud providers emerge as a key aspect. For example, large companies and
researchers with critical computing needs usually require well defined SLAs in
addition to the ease of use and scalability properties of clouds.
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However, cloud providers usually consider in their SLAs only the availability
of services, e.g., Amazon EC2 provides a basic SLA, which states a 99.95%
monthly uptime percentage [2]. Like Amazon, this QoS based on uptime of
services is an inherent feature of many other clouds [1, 68]. However, the
QoS attributes that are generally part of an SLA (such as response time and
throughput) are not offered by cloud providers. This is mainly because such
attributes change constantly due to the elasticity of clouds. Thus, as cloud
providers do not give such performance guarantees for their hardware, the
burden to ensure SLAs is up to the application developer.

Software for Private Cloud Infrastructure For provisioning private (or hybrid
cloud installation) there exist a number of software packages allowing users to
setup their own IaaS cloud. Eucalyptus [146] for example allows users to create
a private cloud which is API compatible to AWS. Eucalyptus is also an official
AWS partner allowing for easy setup of hybrid cloud installation across the
private datacenter and AWS: Openstack [62] is another open source tool for
creating a private cloud setup. Openstack was originally developed by NASA
and rackspace and is today supported by many large companies [62] including
IBM, HP, Intel, Cisco, and VmWare.

2.1.4 Legal Aspects and Privacy

One issue with Cloud Computing is that the user gives up control over his data
to a certain degree as it by definition stored or processed in the Cloud. Espe-
cially, with public cloud vendors this is an issue for many companies handling
sensitive data. Another issue is that most cloud vendors are based in the US
where the data privacy legislation is sometimes in conflict with the european
data privacy requirements 1. For example, the german Bundesdatenschutzge-
setz [24] (federal data privacy law) states that no person related data is allowed
to be stored on servers outside Europe. This restriction does not apply if the
cloud provider has signed the Safe-Harbor-Agreement [69] which offers certain

1”While the United States and the EU share the goal of enhancing privacy protection for
their citizens, the United States takes a different approach to privacy from that taken by
the EU. The United States uses a sectoral approach that relies on a mix of legislation,
regulation, and self-regulation. The EU, however, relies on comprehensive legislation that
requires, among other things, the creation of independent government data protection
agencies, registration of databases with those agencies, and in some instances prior ap-
proval before personal data processing may begin.” [69]
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data privacy guarantees. Still, as US based cloud vendors fall under the legis-
lation of the Patriot Act [66, 36],US law enforcement agencies can request all
data from the providers servers even if these servers are located in other coun-
tries. Users can use encrypt their data as a partial countermeasure [98]. But
as of today encryption is used in practice mostly for storage or transmitting
data. As soon as it comes to processing data the use of encryption is severely
limited. There have been recent advancements in the field of of Homomorphic
Encryption [118, 140, 87] which promises the ability to perform any opera-
tion on encrypted data. But as of today, such operations are limited to very
basic ones such as additions or multiplications and there are still many open
challenges [140].

CryptDB [153] follows a different approach: CryptDB allows for SQL queries
over encrypted data. While the data is stored encrypted on the the server it has
to be decrypted for processing the data. As for decrypting the data the user
still has to provide the decryption key to the server, the system still requires the
user to trust the system and provider to delete the key and all plain data after
processing the query. Note that encryption by the vendor does not guarantee
privacy, especially in case the cloud provider cannot fully be trusted (e.g., if he
falls under the jurisdiction of Patriot Act).

But even though the data itself might be encrypted by the user, privacy might
still be at risk. First of all, the user’s cloud usage pattern reveals much infor-
mation in itself. For example an attacker might employ activity mining (e.g.,
identifying excessive cpu usage for simulations) to gain insight of a certain
project status of a competitor. Secondly, also the data transfer to the ven-
dor is a potential thread to privacy even when using SSL encryption. As of
autumn 2013 the NSA is believed to have obtained a number of SSL master
keys enabling them to monitor even SSL encrypted data transfers. Also in
some settings the SSL encryption keys can be retrieved even long time after
the initial communication has finished.

Hence, sensible data should be already encrypted on a secure and trusted user
controlled environment and no decryption key should be provided to any third
party including the cloud provider. Data encrypted on a safe device with a
safe encryption standard (i.e., not influenced by the NSA) is to the best of our
knowledge safe. As decryption technology (and speed) is advancing, the user
should use an established encryption scheme which is likely to be safe in the
future (e.g., Elliptic Curves [141]) and choose a large enough key length.
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2.1.5 Cloud Security

Using virtualization to share physical resources also yields several new secu-
rity risks compared to traditional in house datacenters [98]. Especially virtual
machines which are co-located on the same physical hardware experience less
security isolation than physically separated machines. Even though the hy-
pervisor tries to provide reliable isolation there exits a number of side channel
attacks for co-located virtual machines. For example usually not all cache lev-
els are isolated between virtual machines. Hence the cache usage can usage
can be used to determine co-location of virtual machines [158, 175] and [93, 85]
describe how a shared cache can be exploited to extract AES keys and Open
SSL DSA keys. Another potential security threat comes from Denial of Service
(DoS) attacks which can slow down cloud services to a state where they are
useless. This can be done for co-located virtual machines by overusing the
different cache levels or I/O devices [158], but also cloud wide attacks exits
which attack a larger part of the providers cloud services: In 2009 emails send
from addresses of a large part of EC2’s IP range where marked automatically
as spam [98]. This was because hackers had used EC2 virtual machines to send
spam and hence the IP range became blacklisted. As co-location allows for
more elaborate attacks the question of how to determine and force co-location
of virtual machines has been a topic of interest for a while. An extensive map of
the EC2 network has been performed by [158]. They also describe several tech-
niques including network placement, network routing information, ping times
and cache usage for determining co-location of instances inside EC2.Finally the
authors also examine techniques for forcing the co-location of a given virtual
machines with a victim virtual machine.

What are potential countermeasures against those techniques in particular the
ones exploiting co-location? The best solution would be to avoid co-location
of virtual machines from different customers at all. This can be done by EC2’s
dedicated instances [16] which provides dedicated physical hardware for each
customer. This service can only be used in conjunction with EC2’s Virtual Pri-
vate Cloud [21] which provides an isolated virtual network for the customer.
And of course EC2 charges additional fees for both services. For US based
government client EC2 even offers the AWS GovCloud [17] which runs on ded-
icated virtual machines inside the US and is maintained by selected US personal
only. The problem of exploiting a shared hierarchy is countered by [157]. As
potential solutions the authors propose a cache hierarchy aware scheduling and
a cache partitioning scheme.
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2.1.6 Benchmarking of Cloud Systems

Benchmarking cloud systems provides many challenges beyond the well es-
tablished techniques for benchmarking physical systems. First of all there is
the question which metrics are interesting when benchmarking a Cloud Set-
ting? Besides traditional performance metrics such as CPU performance or
I/O throughput there are are also other metrics which are relevant in a Cloud
Setting. For example [95] suggests to include fault tolerance (i.e., does the
system react to failures in an invisible way for users), peak performance (i.e.,
how does the system cope with with short performance bursts), scalability (i.e.,
to which workloads does the system scale), and cost (i.e., how expensive is a
single piece of work) as new metrics. From our experience we would suggest to
also include performance robustness (i.e., how stable is performance over time
or different instances) and the provisioning effort (i.e., how easy and costly is
it to scale up or down).

Another challenge in cloud benchmarking is that each vendor offers its own
set of products even for relatively standard offers such as IaaS. This poses a
challenges when comparing cloud products from different vendors [95].

From a technical point benchmarking also offers new challenges. During our
benchmarks we frequently encountered problems with failing infrastructure or
undesired side effects. Such effects for example include outliers in network
benchmarks due to dropped packages by the hypervisor. Therefore active
benchmarking [121] is even more important for cloud settings than it is for
benchmarking physical. Active benchmarking refers to the practice of moni-
toring whether the benchmark is measuring the desired metric and running as
expected. For example one should for example monitor whether an benchmark
which is supposed to measure network performance is not actually bound by
CPU or memory performance.

Another dimension for cloud benchmarking is the quantification of performance
isolation, i.e., whether different virtual machines on the same host affect each
other. The Isolation Benchmark [142] has a simple approach to this question:
One virtual machines runs a web server while other provide stress test for CPU,
memory, disk IO, or network IO. The degree of performance isolation is then
measured be the increase of dropped requests to the web server.

Still, with the growing importance of cloud computing in general also cloud
specific benchmarking gains importance. Therefore a number of cloud specific
benchmarks have been proposed over the last years. These benchmark do not
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focus on micro-benchmarking but rather on typical cloud applications. One of
the first cloud benchmarks was the Yahoo Cloud Serving Benchmark [103, 81].
This benchmark focuses on OLTP like cloud systems such as cloud databases
including various NoSQL database systems.

Cloud Suite [28] is a more recent cloud benchmark and also covers a wider
range of typical cloud use cases. Here a list of the use cases covered by Cloud
Suite and the respective benchmark:

• Data Analytics Mahout executing MapReduce Jobs

• Data Caching Memcached

• Data Serving Cassandra

• Graph Analytics TunkRank machine learning algorithm

• Media Streaming Darwin streaming server

• Software Testing Cloud 9

• Web Search Nutch/Lucene

Furthermore, there exists a number of companies which offer cloud bench-
marking. Notably CloudHarmony [26] and CloudSpectator [27] allow the user
to execute any from a large selection of benchmark on any of the many cloud
vendors. This can help other companies to quickly compare a selection of
different cloud systems using a benchmark relevant to their actual workload.

2.1.7 Hardware Trends for the Cloud

Cloud Computing and especially the use case for massive data analytics does
not only require new algorithms such as MapReduce but also different hard-
ware.

One of the major cost driver for large cloud vendors is often energy cost which
includes the productive energy to power to the hardware but the energy re-
quired to cool the datacenter. Facebook started early to investigate efficient
hardware and datacenter solutions in order to minimize the acquisition and
maintenance cost. As a result Facebook uses customs made chassis and moth-
erboards in their data centers [143, 115]. These results are even available to the
public by the opencompute project [61] where Facebook has made it datacenter
and hardware designs available as open source.
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So far the vendors where mostly focused on datacenter or system layout, but
new research also indicates that cloud infrastructure might require a different
micro-architecture design at processor level [113, 139].

Today’s processors like the Intel’s E7 are complex processor include many fea-
tures such as Out of Order execution, branch prediction, and large multistage
execution pipelines. Such features are mainly developed for the use cases of
typical desktop user (i.e., many different operations with a instruction level
parallelism). Unfortunately, these feature also come at the cost of die space
(which could also be used for more cores) and increased energy consumption.
Another problem for such processors is that they usually contain a complex
cache hierarchy usually consisting of a small split L1 data and instruction
cache (about 32-64 KB), a medium sized shared L2 cache (about 256 KB), and
a large L3 cache (about 12 MB). Again such design is optimized for the typical
use cases of end users.

Such processors are also used by cloud vendors. Throughout our experiments
in 2013 we found for example the following processor types for the different
cloud vendors:

• AWS EC2 Intel E5-2650 2.00GHz, Intel E5430 2.66GHz, Intel E5507
2.27GHz, and Intel E5645 2.40GHz

• Google Compute Engine Intel Xeon CPU 2.60GHz

• MS Azure AMD Opteron 4171 2.094 GHz

The issue with such processors is that typical cloud computing use cases (es-
pecially big data analytics) does not require the complex features offered by
these processors.

[113] compares the processor efficiency for different cloud use cases such as
data serving (using cassandra), data analytics (using Mahout/MapReduce),
and Web Search (using Nutch/Lucene). Their results indicate three main in-
efficiencies in modern processors for such workloads:

• High instruction-cache miss rate. The small L1 instruction cache is
too small for instruction sets used by the cloud workloads. In addition the
complex cache hierarchy makes these cache misses even more expensive.

• Low benefit of Out-of-Order executions and other features. The
cloud workloads typically incur only little instructions-level parallelism
(in contrast to data parallelism). Therefore the benefit of features such
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as multistage pipelines, branch predication, or Out-of-Order execution is
limited and the die space (and power) consumed by these features could
be spend more efficiently on for example more cores.

• Data sets exceeding L3 caches. The L3 caches are by orders of
magnitude too small for the cloud sized datasets. Here again the die space
used by the L3 cache could be used more efficiently for other components.

So it seems to be time for cloud vendors to explore different processor architec-
tures as indicated by [113, 139]. One candidate here could be the simple and
energy efficient ARM processors [119] which are even already included in the
opencompute project’s designs [61].
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2.2 Virtualization

Most cloud vendors rely heavily on virtualization, allowing the partitioning and
separation of resources for different users on a single physical machine. There
exists a large number of different virtualization techniques which we will classify
in two different categories according to the level of isolation they provide. In
Section 2.2.1, we consider different Hardware Virtualization techniques which
enable the user run his own Operating System Kernel on top of an Hypervisor.
As Hardware Virtualization provides each virtual machine with its own Oper-
ating System, one achieves good isolation between different virtual machines.
But this comes at the price of hight overhead for emulating an entire Operat-
ing System. Therefore Operating System Virtualization provides virtualization
on top of existing operating system on a process level. We discuss Operating
System Virtualization in Section 2.2.3.

2.2.1 Hardware Virtualization

Server
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Guest)Os
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(a) Native Virtualization.
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Figure 2.1: Different Hypervisor Types adapted from [121] .

Hardware virtualisation is usually rely on Hypervisors or Virtual Machine Mon-
itors to translate the logical requests from the virtual machines to physical
requests for the underlying hardware. Hypervisors [99] can classified based on
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its distance to the underlying hardware: Native Hypervisors as shown in Fig-
ure 2.1(a) work directly on top the hardware. They usually contain a special
privileged virtual machine responsible for administration purposes. Xen [90] is
one example of Native Hypervisors.
Nested hypervisor as shown in Figure 2.1(b) work on top of another Operating
System, which can also be used for administrative purposes. One example for
nested hypervisors is the Kernel Based Virtual Machine (KVM) [49].

Furthermore hypervisors can be classified into three categories based on the
underlying virtualization technique [159]:

Full Virtualization is a virtualization which fully emulates the physical hard-
ware and therefore provides a binary translation for the low level system calls.
Because of the complete emulation, full virtualization supports any unmodified
operating system but incurs a certain overhead due to the the binary translation
of low level commands. Examples of hypervisors based on full virtualization
include VmWare’s ESX Server [78], Microsoft’s HyperV [54], and Kernel Based
Virtual Machine (KVM) [49].

Para-Virtualization on the other hand requires the use of special, modified
Operating Systems which are aware of the virtualization. This is due to the
fact that the virtual hardware provided by the hypervisor is only similar to
the physical hardware emulated. Some system calls which in case of full vir-
tualization are translated, have to handled by hypervisor in case of paravir-
tualization. This requires the (guest) kernel to use the respective hypervisor
calls instead of the original system calls. For this reason, as of today Microsoft
windows does not run on para-virtualized hypervisor. But, para-virtualized
machines usually show better performance than fully virtualized machines as
it does not require binary translation of system calls. Since 2005 there is also
hardware support for Hardware-Assisted Virtualization which supports the idea
of para-virtualization on the hardware level. Intel VT-x [47] and AMD-v [5]
are the most prominent techniques enabling hardware-assisted virtualization
in the CPU. These CPU offers special commands for the low level system calls
which can be used by the virtualized Operating System directly. Examples
of hypervisors based on para-virtualization are Xen [90] (and the most promi-
nent commercial Xen based product Citrix Xen-Server [25]) and Oracle VM
Server [65].

Hosted Virtualization refers to solution which provide virtualization on top
of other operating systems. As all system calls have to be translated and
then passed on to the host operating system the performance is usually worse
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Figure 2.2: Xen Dom0 and DomU (adapted from [99]).

than with fully or paravirtualized machines. Examples in this category include
VmWare Workstation [79] and Oracle Virtual Box [64].

2.2.2 Hypervisor Implementation

The implementation of the hypervisor and especially the virtualization of de-
vices has a large effect on the virtual machine performance and performance
separation between different virtual machines. Therefore we will take a look
on how the virtualization of devices is implemented in the example of the Xen
hypervisor [90] which is the hypervisor used by AWS [3].

Recall that Xen offers paravirtualized meaning that the virtual hardware pro-
vided by the devices is only similar to the physical hardware. This allows for
more efficient handling for low level instructions.

The architecture of Xen basically differentiates between two different kinds of
virtual domains as shown in Figure 2.2. As Xen does not include any standard
device drivers by itself, the Dom0 virtual machine is responsible for providing
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the actual device drivers for the underlying physical hardware. This relieves the
Xen developers from having to develop special device drivers for all different
hardware. The Dom0 machine has usually an operating system with broad
driver support such as a Linux. As the Dom0 driver control the actual hardware
it requires special security. Therefore it should rather be considered a part of
Xen than a virtual machine exposed to users.

That is the job for the virtual machines in the unprivileged DomUs. Here
the user can choose which operating system (with paravirtualization support)
and software he wants to run on those machine. As the DomUs have usually
no direct access to the physical hardware they require special drivers. For
simplicity these drivers are quite simple. For example the hard disk driver is
not designed for specific SCSI or IDE hard disk but instead for an abstract block
device. The actual work taking care of the device specifics is done by standard
driver in the Dom0. Xen describes this concept as split driver [154, 99]. As
shown in Figure 2.3 a Xen split driver consists of 4 different parts:

• The actual driver on the Dom0 responsible for communicating with the
actual hardware.

• The left half of the split driver on the Dom0 responsible for scheduling
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and controlling the access by the different DomUs.

• The ring buffer acting as communication queue between Dom0 and Do-
mUs.

• The right half of the split driver acting as simplified device driver on the
guest DomUs.

This separation allows several different virtual machines to use the physical
devices in parallel. Especially the split driver half located on the Dom0 has
therefore great responsibility in controlling access to the underlying hardware.
For example in case of an hard disk this would mean that each virtual machine
can access its own part of the physical hard disk. In addition this part of the
split driver is also responsible for the multiplexing access between the differ-
ent virtual machine and the complete driver should not suffer from too much
performance penalty due the indirection. Therefore the implementation of the
split drivers is of great importance for the overall performance of Xen.

A Sample workflow with the example of a network driver is shown in Figure 2.4.
The network stack on the guest DomU first goes through the normal network
stack. Once it is time for the virtual network adapter (i.e., the split driver)
to transfer the package it turns control over to the Xen hypervisor which in
turn transfers control to the Dom0. Here the other half of the split driver
processes the package and then uses the real network device driver provided
by the Kernel to transmit the package.

In addition is is also possible to expose certain devices such as PCI adapters or
USB drives for exclusive use to an individual DomU. Since Xen 3 there is also
the possibility for so called isolated driver domains (IDDs) [99]. IDDs are
basically special domains which only run a certain (physical) device driver. As
this device driver is not required to run in the Dom0 anymore this approach
increases the stability of the Dom0 and therefore the entree system.

CPU: Basic CPU virtualization is quite easy compared to memory or I/O
virtualization. The hypervisor basically has to allocate a share of the physical
CPU cycles to each virtual CPU. Once a virtual CPU’s share is exhausted, the
hypervisor has to interrupt the virtual CPU, save the current CPU state and
grants the next virtual CPU access to the physical CPU. But if the virtual
CPU would be identical to the physical CPU, a virtual machine could use all
low level system call which could also influence the state of the other virtual
machine’s (e.g., by halting the entire system or power down physical CPUs).
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Figure 2.4: Xen Network Driver (adapted from [99]).

Therefore the virtual CPU offered by XEN is slightly different from the physi-
cal CPU which ensures that all such behavior sensitive instructions [99]
are handled by the hypervisor. Still, most operations are directly mapped
to physical CPU and do not require binary translation as in the case of full
virtualization.

Memory: The challenge for the hypervisor when providing memory is mostly
to partition the available main memory between different virtual machines and
ensure each virtual machine can only access its own virtual memory.

This challenge is quite similar to what a Memory Management Unit (MMU)
already does in a physical system. In modern systems the concept of virtual
memory exists already for a long time, but is not directly related a machine
virtualization. Instead the term virtual memory refers to an abstraction in
modern system which allows each process to have its own virtual address space
in main memory. The MMU is then responsible for translating these virtual
addresses to the actual physical addresses in main memory. This indirection
allows virtual memory to be paged to disk or moved in the physical main
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Figure 2.5: Xen Memory Indirection (adapted from [99]).

memory. Typically a MMU also includes a cache, the Translation Lookaside
Buffer (TLB) in order to speed up the expensive translation of virtual to
physical addresses.

The hypervisor adds yet another layer in between such that each virtual ma-
chine has its own address space which is usually referred to as protected
memory [99]. The pattern for a protected memory access in a virtual machine
is shown in Figure 2.5. This additional indirection can cause performance
problems as it requires one additional translation by the hypervisor for each
memory access. Therefore to improve the performance Xen can allow each vir-
tual machine direct read access to the MMU. Hence only operations changing
the page table inside the MMU (e.g., request for new memory pages) have to
be processed by the hypervisor [99, 80].

Still direct read access to the MMU from one virtual machine can still have
impact on the memory performance of the other machines. For example read
access from one virtual machine can cause the virtual memory from another
virtual machine to be evicted from the physical memory and be paged to disk.
The next memory access to such virtual memory by the other machine would
results in an expensive page fault and require the virtual memory to be loaded
back from disk into physical memory. Another example is the cache utilization
of the MMU’s TLB. Depending on the TLB size each virtual machine will
fill the (physical) TLB with addresses from its own virtual address space and
thereby evict TLB entries from other virtual machines. On the next memory
to such memory location this triggers an expensive calculation of the mapping

34



from virtual to physical memory.

Other Devices Other devices provide even more challenges for the hypervi-
sor. The main problem is that the hypervisor is unaware of the internal state
of the devices. This is problematic when switching between different virtual
machines as for each switch the hypervisor has to save the current state (for the
virtual machine just being halted) and then restore a previous (for the virtual
machine being loaded). This is for example especially challenging for advanced
3D graphics adapters which have a lot of internal state including large frame
buffers, which are infeasible to being unloaded and reloaded at each each time
the hypervisor switches between different virtual machines [80].

Another problem arises by the use of Direct Memory Access (DMA). In modern
systems DMA is used to allow devices to write directly to main memory with-
out going through the CPU. One example could be a network adapters which
using DMA can writes received packages to main memory without having to
interrupt the CPU. In a virtualized setting DMA becomes more challenging as
the main memory is not exclusively owned by a single physical machine, but
instead many virtual machines. One example would be the virtual network
adapter for one virtual machine wants to write a certain memory region which
the hypervisor has allocated to another virtual machine. In theory hypervisor
could examine all commands for DMA call but this would be prohibitively ex-
pensive and also quite complex.
The Xen solution for the DMA problem are I/O Memory Units (IOMMU)
which are basically the DMA equivalent of Memory Mangement Units. IOM-
MUs can translate and isolate the DMA accesses for different virtual ma-
chines [91, 80]. They can be either implemented in hardware as for example
AMD’s Gart[91] or in software as for the Unix swiotlb library which is also
used by Xen. Note that IOMMUs introduce yet another level of indirection
between physical and virtual hardware which can influence performance nega-
tively. Also the scheduling strategy of the IOMMU can affect the performance
of concurrently running machines as it is a single resources required by these
different virtual machines.

2.2.3 Operating System / Container based Virtualization

In contrast to Hardware Virtualization, where each virtual machines runs with
its own operating system, Operating System Virtualization or Container based
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Figure 2.6: OS Virtualization (adapted from [121]).

Virtualization [163] execute isolated containers on top of one common Operat-
ing System as shown in Figure 2.1.

Modern operating systems offer a number of different container techniques
including Solaris Zones [73], OpenVZ [63], Linux-VServer [52] and probably
most prominent LXC (LinuX Containers) [51] . Container enable users to
run multiple isolated systems on top of single operating system kernel. Here
each system can have its own configuration and resources. Resource isolation
(CPU, memory, block I/O, network, etc.) is achieved by kernel isolation tech-
niques. For example the Linux kernel offers cgroups [51] for resource isolation.
These cgroups enable the user to provision isolated namespaces for a given
group of processes and provide isolation on process, network, memory, user
and file system level. The new standard linux init daemon sytemd [164] also
relies heavily on cgroups for grouping and isolation between different processes.

Docker [35, 169] is built on top of Linux Containers and allows lifecycle
management of containers and enabled a similar treatment as virtual ma-
chines. Docker also enables a more fine-grained security management such as
separating the container root users from the system root user.

With the increase in management tools such as Dockers and massively reduced
performance overhead compared to hardware virtualization many companies
are moving towards container based virtualization. For example Google’s en-
tire infrastructure is based on container based virtualzation and each week
Google deploys more than 2 billion container instances [31]. With coreOS [33]
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there exits even a Linux Distribution focusing on providing a foundation for
container based virtualization. Still, one disadvantage of sharing the same ker-
nel for container based virtualization is that the kernel versions for the different
containers have to match and there is no support for the Windows operating
system. Container have also arrived in the public cloud with Amazon EC2
Container Service [15] and Google Container Engine [43]. Such offers allow the
user to easily deploy docker containers into a cloud environment.

2.2.4 Comparison of Hardware and Operating System Virtualization

Both virtualization approaches have advantages and disadvantages as shown in
Table 2.2. Basically Hardware Virtualization offers better isolation between dif-
ferent virtual machines and (as of today) better support while container based
virtualization offers much lower overhead and a growing community [110, 166].
Therefore, most public cloud vendors as for example Amazon EC2 offer Hard-
ware based virtual machines as of 2014. But there is a growing number of PaaS
cloud offers, where users usually span a large number of virtual machines using
container based virtualization including the Google Cloud Platform [32].

Hardware Container
Operating System one OS kernel per VM all VMs share common OS
Isolation (almost) complete isolation based on cgroups
Performance large overhead due to emulation very little overhead
Start Up Time minutes seconds
Storage Overhead each VM stores own OS only settings and applications
Memory Access Overhead None Some
I/O Latency None Some

Table 2.2: Virtualization Techniques Comparison [110, 121]
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2.3 MapReduce

2.3.1 Overview

MapReduce was proposed by Google in 2004 [105] as a framework to facilitate
the implementation of massively parallel applications processing large data
sets. MapReduce is inspired by functional programming where developers sim-
ply need to describe their analytical tasks using two functions map and reduce.
Everything else including parallelization, replication, and failover will then be
handled by the MapReduce framework. Usually, any computing node may run
several map and reduce processes at the same time. The MapReduce imple-
mentation of Google is not freely available, but an open source implementation
exists, coined Hadoop [44].

In a MapReduce cluster, one central process acts as the Job Tracker and coor-
dinates MapReduce jobs. All other processes act as workers, meaning that they
execute tasks as assigned by the master. A single worker can run either map or
reduce tasks. For clarity, we denote a worker designed for running map tasks
as mapper and a worker designed for running reduce tasks as reducer. Thus,
by convention, a computing node can perform both mappers and reducers at
the same time.

Let us look in detail how the following query is executed JobAVG SELECT
category, AVG(price) FROM SALES GROUP BY category over the Sales data
shown in Table 2.7.

Before starting her MapReduce job, the user uploads the SALES table (i.e., Fig-
ure 2.7) into the Hadoop Distributed File System (HDFS). Once the dataset is
uploaded to HDFS, the user can execute JobAVG using Hadoop MapReduce.
In turn, Hadoop MapReduce executes JobAVG in three main phases: the map
phase, the shuffle phase, and the reduce phase.

Map Phase. Hadoop MapReduce first partitions the input dataset into
smaller horizontal partitions, called input splits. Typically, an input split cor-
respond to an HDFS block. Hadoop MapReduce creates a map task for each
input split. Then, the Hadoop MapReduce scheduler is responsible of allo-
cating the map tasks to available computing nodes. Once a map task is allo-
cated, the map task uses a RecordReader to parse its input split into key-value
pairs. For JobAVG, the RecordReader produces key-value pairs in the form
(SALES.id;(SALES.category,SALES.price)) for each line of input data. The
map task then executes a map-call for each of key-value pair independently.
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id category price
r1 100 b 4
r2 189 b 6
r3 132 c 2
r4 73 f 9
r5 150 f 9

Figure 2.7: SALES Table
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Figure 2.8: MapReduce plan

The output of a map-call might be zero or more intermediate key-value pairs.
For JobAVG, the map output is in the form (SALES.category;SALES.price).
Hadoop MapReduce stores the map output in local disk.

Shuffle Phase. Hadoop MapReduce partitions the intermediate key-value
pairs by intermediate key and assigns each partition to a different reduce task.
The number of reduce tasks is user-defined. Then, Hadoop MapReduce shuffles
the partitions through the network to its respective reduce task. This means
that the intermediate results produced by all map tasks that have the same
intermediate key will end up in the same reduce task. Additionally, since the
input of reduce tasks can contain intermediate key-value pairs with different
intermediate keys, Hadoop MapReduce performs a sort-based group-by over
the input of each reduce task. Hence, JobAVG groups and partitions the
intermediate data by SALES.category.

Reduce Phase. The reduce task executes a reduce-call for each group of
intermediate key-value pairs. The output of a reduce-call might be zero or
more final key-value pairs. Finally, Hadoop MapReduce stores the output of
reduce tasks in HDFS. Notice that, if a user specifies zero reduce tasks, then
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Hadoop MapReduce executes only the map phase and stores the map output
directly in HDFS rather than on local disk.

MapReduce Failover Properties

As MapReduce usually processes large amounts of data using hundreds or even
thousands of nodes, tolerating task and worker failures is crucial. A major
advantage of using MapReduce [105] and Hadoop [44] is the fact, that both
frameworks deal with such failures and achieve fault-tolerance in the following
ways:

Task failures are usually caused by either bugs or bad records. Bugs in the
map or reduce function or even in an external tool (e.g., the JVM) may cause
a task to fail if the exception thrown by the bug is not handled correctly. Bad
records in input data can also cause a task failure if the implementation of user
defined functions is unable to handle this particular form of bad records. While
bugs is unlikely, bad records and contention are unpredictable and highly likely
to occur because of two main reasons: (i) MapReduce jobs typically process
data produced by other sources and thus there is no guarantee that data is
consistent; (ii) disk corruption [165] is also a cause because both map and
reduce functions do not often account for all possible forms of corrupted media,
like hard drives; (iii) MapReduce jobs usually compete for shared resources,
which increases the probability for a task to hang.

To correctly recover from task failures, whenever one of these errors occurs,
workers mark the task as failed and inform the master about the task failure.
Then, the master puts the task back in its scheduling queue. If the failed task
is a map task, it notifies reducers of the re-execution decision as soon as the
task is rescheduled. This allows reducers to fetch their required data from the
new mapper.

Worker failures are mainly due to a computing node failure, which in many
cases results from hardware failures. If the MapReduce framework notices a
worker failure it marks it as blacklisted. This means for a task tracker that
already scheduled jobs are rescheduled to other nodes and for a data node that
the data blocks residing on this node are re-replicated to other data nodes.

Master failure are caused when the master (i.e., job tracker or name node) fail.
In MapReduce, the master is a single point of failure, but this can easily be
solved by having a backup node maintaining the status of the master node.
Thus, the backup node can take over the master role in case of failure.
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MapReduce State of the Art

Over the past years MapReduce has attained considerable interest from both
the database and systems research community [138, 109, 124, 114, 155, 132,
131, 130, 128, 147, 117, 84, 167, 101, 172, 144, 102]. As a result, some DBMS
vendors have started to integrate MapReduce front-ends into their systems in-
cluding Aster, Greenplum, and Vertica. However, these systems do not change
the underlying execution system: they simply provide a MapReduce front-
end to a DBMS. Hail [109] and Hadoop++ [108] speed up the processing of
MapReduce jobs by the use of indexes. For this purpose Hail even generates
a different clustered index per HDFS replica. As the indexing done while up-
loading it incurs no to little overhead. HadoopDB [84] combines techniques
from DBMSs, Hive [167], and Hadoop. In summary, HadoopDB can be viewed
as a data distribution framework to combine local DBMSs to form a shared-
nothing DBMS. The results in [84] however show that HadoopDB improves task
processing times of Hadoop by a large factor to match the ones of a shared-
nothing DBMS. Nevertheless, above systems are still databases. Therefore, in
contrast to MapReduce, they require advanced knowledge from the user-side
on database management, data models, schemas, SQL, load distribution and
partitioning, failure handling, and query processing in general, but also on the
specific product in particular.

[131, 132] have considered different data layouts for efficiently storing relational
data. As MapReduce is usually I/O bound these approaches help to reduce
the amount of input data which has to read from disk.

Manimal [96] proposed to analyze MapReduce jobs to determine filter condi-
tions. Then, Manimal rewrites MapReduce jobs to match an previously created
index. On the other side, much work has been done on scheduling MapReduce
jobs with different goals in mind. Hadoop for example include a Fair and Ca-
pacity scheduler with the aim of sharing computing cluster among jobs [45].
However, the homogeneity assumption made by Hadoop might lead to a degra-
dation on performance in heterogenous clusters such as the Cloud. Zaharia et
al. [174] proposed a scheduler to schedule MapReduce jobs in heterogeneous
MapReduce clusters. Nonetheless, this work does not allow users to neither
dynamically change the setup of their experiments nor take into account mon-
etary costs of jobs.

Even though continuing popularity of Big Data Analytics the traditional
MapReduce is rapidly overtaken by more flexible processing models such as
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Apache Spark [10], Apache Flink [7], or Apache Tez [12]. This trend is also re-
flected by Hadoop 2.0 [44] supporting a number of different processing engines
besides the traditional MapReduce engine.
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3 Performance Variance in the Cloud

3.1 Introduction

As seen in Section 2.1.1 Cloud Computing is a model that allows users to eas-
ily access and configure a large pool of remote computing resources (i.e., a
Cloud). This model has gained a lot of popularity mainly due to its ease of use
and its ability to scale up on demand. As a result, several providers such as
Amazon, IBM, Microsoft, and Google already offer public Infrastructure as a
Services (IaaS) where users can request a certain number of virtual machines.
For many users, especially for researchers and medium-sized enterprises, the
IaaS cloud computing model is quite attractive, because it is up to the cloud
providers to maintain the hardware infrastructure. However, despite the at-
tention paid by cloud providers, some of requested nodes may attain orders of
magnitude worse performance than other nodes [89]. This indeed may consid-
erably influence performance of real applications. For example, we show the
runtimes of a MapReduce job for a 50-node EC2 cluster and a 50-node local
cluster in Figure 3.24. We can easily see that performance on EC2 varies con-
siderably. may occur. In particular, contention for non-virtualized resources
(e.g., network bandwidth) is clearly one of the main reasons for performance
unpredictability in the cloud.
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Figure 3.1: Runtime for a MapReduce job.
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This Performance unpredictability is in fact a major issue for many users and
it is considered as one of the major obstacles for cloud computing [89]. For
example, researchers expect comparable performance for their applications at
any time, independent of the current workload of the cloud; this is quite impor-
tant for researchers, because of repeatability of results. Another example are
enterprises that depend on Service Level Agreements (SLAs) (e.g., a Web page
has to be rendered within a given amount of time). Those enterprises expect
cloud providers to make Quality of Service (QoS) guarantees. Therefore it is
crucial that cloud providers offer SLAs based on performance features — such
as response time and throughput.

There is currently a clear need for users, who have to deal with this per-
formance unpredictability, to better understand the performance variance for
several cloud vendors. This chapter aims to first quantify and understand this
performance variance based on several micro benchmarks in Section 3.6.1. Fol-
lowing, we examine whether the performance variance effects the application
layer in Section 3. For these measurements we consider several different di-
mensions including time (i.e., we show results from the years 2010 and 2013)
and different cloud vendors (i.e., we compare the Amazon EC2, Google, and
Amazon public IaaS offers).

3.2 Related Work

Cloud computing has been the focus of several research works and is still gain-
ing more attention from the research community. As a consequence, many
cloud evaluations have been done with different goals in mind. Armbrust et
al. [89] mention performance unpredictability as one of the major obstacles for
cloud computing. They found that one of the reasons of such unpredictabil-
ity is that certain technologies, such as PCI Express, are difficult to virtualize
and hence to share. Lenk et al. [135] propose a generic cloud computing stack
with the aim of classifying cloud technologies and services into different lay-
ers, which in turn provides guidance about how to combine and interchange
technologies. Binnig et al. [95] claim that traditional benchmarks (like TPC)
are not sufficient for analyzing the novel cloud services as they require static
settings and do not consider metrics central to cloud computing such as ro-
bustness to node failures. Li et al. [136] discuss some QoS guarantees and
optimizations for the cloud. Ristenpart et al. focus on security aspects and
conclude that fundamental risks arise from sharing physical infrastructure be-
tween mutually distrusful users [158]. Cryans et al. [104] compare the cloud
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computing technology with database systems and propose a list of comparison
elements. Kossmann et al. [134] evaluate the cost and performance of differ-
ent distributed database architectures and cloud providers. They mention the
problem of performance variance in their study, but they do not evaluate it
further. Other authors [116, 149] evaluate the different cloud services of Ama-
zon in terms of cost and performance, but they do not provide any evaluation
of the possible impact that performance variance may have on users applica-
tions. Dejun et al. [107] also study the performance variance on EC2, but they
only focus on an application level (MySQL, Tomcat performance). Therefore,
they do not provide detailed insight to the source of the performance variance
issue.

Finally, new projects that monitor the performance of clouds have recently
emerged. For example, CloudClimate [29] and CloudKick [30] already perform
performance monitoring of different clouds. EC2 also offers CloudWatch [55]
which provides monitoring for Amazon Web Services cloud resources. How-
ever, none of the above works focuses on evaluating the possible performance
variability in clouds or even give hints on how to reduce this variability.

[145, 133] try to port the idea of hardware counters to virtual machines.

[92] provides an overview of current monitoring solutions for cloud infrastruc-
ture. Most tools focus on detecting failures or monitoring SLAs. The authors
do not discuss the impact for applications.

[88] examines the performance problems of running MapReduce on heteroge-
nous clusters. They describe two main problem: (1) Fast nodes stealing (re-
mote) map task from slow nodes resulting in network traffic. This is especially
problematic as stealing occurs at the end of the reduce phase and hence network
traffic is conflicting with shuffle network traffic. (2) Reduce key distribution is
a problem as usually each node receives the same amount of reduce keys (as-
suming a single Reduce wave). The authors also propose a prototype Tarazu
dealing of this problems by chaining the scheduling policies and reduce key
distribution. Does not consider the HDFS performance and has quite very
different node types ( 8 Xeon cores with 48GB Ram vs. 2 Core Atoms with
4GB Ram). Does not consider varying performance over time and assumes
disk performance to be stable (not necessarily true in Cloud Setting).

LATEh [174] explores Hadoop’s problem of speculative execution in hetero-
geneous environments. Hadoop assumes equal task progress across nodes. In
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order to select tasks for speculative execution 1 Hadoop compares each tasks
progress to the average progress. This behavior leads to problems in clus-
ters with varying performance across nodes as too many speculative tasks are
spawned degrading the overall performance below a scheduling policy without
speculative reexecution. A second problem is that Hadoop randomly selects
the speculative task among the slow running tasks. LATE deals with these
problems by having an upper limit on the number of speculative running tasks
and selecting the task to reexecute by the estimated remaining runtime.

[171] considers the effects of data-placement in heterogeneous clusters on
MapReduce job runtime. The distribute the data blocks according to the
compute-capicity of each node which is determined by previously executed
MapReduce jobs. The paper does neither consider runtime variance over a
clusters lifetime nor upload speed.

1Hadoop speculativly executions slow running tasks as the original task might be running
on a failed or slow straggler node.
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3.3 Experimental Setup

To evaluate the performance of a cloud provider, one can run typical cloud
applications such as MapReduce [105] jobs, which are frequently excecuted on
clouds, or databases applications. Even though these applications are a relevant
measure to evaluate how well the cloud provider operates in general, we also
wanted a deeper insight of application performance. This is why we focus
on a lower level benchmark and hence measure the performance of individual
components of the cloud infrastructure. Besides a deeper understanding of
performance, measuring at this level also allows users to predict performance
of a new application to a certain degree. To relate these results to real data
intensive applications, we analyze the impact of the size of virtual clusters
on variance and the impact on MapReduce jobs. In the following, we first
discuss the different infrastructure components and aspects we focus on and
then present the benchmarks and measures we use in our study.

3.3.1 Components and Aspects

We need to define both the set of relevant performance indicators and the
relevant dimensions. In other words, we have to answer the following two
important questions:

What are relevant indicators for performance? We focus on the fol-
lowing indicators that may considerably influence the performance of actual
applications (we discuss benchmark details in Section 3.3.2).

1. Instance startup is important for cloud applications in order to quickly
scale up during peak loads,

2. CPU is a crucial component for many applications,
3. Memory speed is crucial for any application, but it is even more important

for data-intensive applications such as DBMSs or MapReduce,
4. Disk I/O (sequential and random) is a key component because many

cloud applications require instances to store intermediate results on local
disks if the input data may not be processed in main memory or for
fault-tolerance purposes, such as MapReduce,

5. Network bandwidth between instances is quite important to consider be-
cause cloud applications usually process large amounts of data and ex-
change them through the network,
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CPU Memory Sequential Read Random Read Network
[Ubench] [Ubench] [KB/second] [seconds] [MB/second]

Mean 1,248,629 390,267 70,036 215 924
Min 1,246,265 388,833 69,646 210 919
Max 1,250,602 391,244 70,786 219 925
Range 4,337 2,411 1,140 9 6
COV 0.001 0.003 0.006 0.019 0.002

Table 3.1: Physical Cluster: Benchmark results obtained as baseline

6. S3 access from outside of Amazon is important because most users first
upload their datasets to S3 before running their applications in the cloud.

Across which dimensions do we measure these indicators? For each of
the previous performance indicators there are three important aspects that may
influence the performance. First: Do small and large instances have different
variations in performance? Second: Does the EU location suffer from more
variance performance than the US location? Do different availability zones
impact performance? Third: Does performance depend on the time of day,
weekday, or week?

Here, we study these three aspects and provide an answer to all these ques-
tions.

3.3.2 Benchmarks Details

We now present in more detail the different benchmarks we use for measuring
the performance of each component.

Instance Startup. To evaluate this component, we measure the elapsed time
from the moment a request for an instance is sent to the moment that the
requested instance is available. To do so, we check the state of any starting
instance every two seconds and stop monitoring when its status changes to
“running”.

CPU. To measure CPU performance of instances, we use the Unix Benchmark
Utility (Ubench) [76], which is widely used and stands as the definitive Unix
synthetic benchmark for measuring CPU (and memory) performance. Ubench
provides a single CPU performance score by executing 3 minutes of various
concurrent integer and floating point calculations. In order to properly uti-
lize multicore systems, Ubench spawns two concurrent processes for each CPU
available on the system. As AWS started using the new EBS backed AMIs,
the CPU component of Ubench reported wrong results. Hence for the later
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benchmark results we used unixbench a benchmark suite offering similar func-
tionality. We indicate for each reported result which of the two benchmark was
used.

Memory Speed. We also use the Ubench benchmark [76] to measure memory
performance. Ubench executes random memory allocations as well as memory
to memory copying operations for 3 minutes concurrently using several pro-
cesses. The result is a single memory performance score. As the memory
component of Ubench is also working for the new AWS AMIs, we used Ubench
for all Memory speed measurements.

Disk I/O. To measure disk performance, we use Bonnie++ benchmark which
is a disk and filesystem benchmark. Bonnie++ is a c++ implementation of
Bonnie [23]. In contrast to Ubench, Bonnie++ reports several numbers as
results. These results correspond to different aspects of disk performance,
including measurements for sequential reads, sequential writes, and random
seeks, in two main contexts: byte by byte I/O and block I/O. For further details
please refer to [23]. In our study, we report results for sequential reads/writes
and random reads block I/O, since they are the most influencing aspects in
database applications.

Network Bandwidth. We use the Iperf benchmark [48] to measure network
performance. Iperf is a modern alternative for measuring maximum TCP and
UDP bandwidth performance developed by NLANR/DAST. It measures the
maximum TCP bandwidth, allowing users to tune various parameters and UDP
characteristics. Iperf reports results for bandwidth, delay jitter, and datagram
loss. Unlike other network benchmarks (e.g., Netperf), Iperf consumes less
system resources, which results in more precise results.

S3 Access. To evaluate S3, we measure the required time for uploading a 100
MB file from one unused node of our physical cluster at Saarland University
(which has no network contention locally) to a newly created bucket on S3
(either in US or EU location). The bucket creation time and deletion time are
included in the measurement. It is worth noting that such a measurement also
reflects the network congestion between our local cluster and the respective
Amazon datacenter.

3.3.3 Benchmark Execution

We ran our benchmarks two times every hour during 31 days (from December
14th 2009 to January 12th 2010) on small and large instances. The reason
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for making such a long measurements is because we expected the performance
results to vary considerably over time. This long period of testing also allows us
to do a more meaningful analysis of the system performance of Amazon EC2.
We have even one month more of data, but we could not see any additional
patterns than those presented here2. We shut down all instances after 55
minutes, which allowed us to enforce Amazon EC2 to create new instances just
before running again all benchmarks. The main idea behind this is to better
distribute our tests over different computing nodes and hence to get a real
overall measure for each of our benchmarks. To avoid that benchmark results
were impacted by each other, we sequentially ran all benchmarks so as to ensure
that only one benchmark was running at any time. Notice that, as sometimes
a single run can take longer than 30 minutes, we ran all benchmarks only once
in such cases. To run the Iperf benchmark, we synchronized two instances
just before running it, because Iperf requires two idle instances. Furthermore,
since two instances are not necessarily in the same availability zone, network
bandwidth is very likely to be different. Thus, we ran different experiments for
the case when two instances are in the same availability zone and when they
are not.

3.3.4 Experimental Setup

In order to measure IaaS cloud variance we first ran experiments on Amazon
EC2 using one small standard instance and one large standard instance in both
locations US and EU. For both types of instances we used a Linux Fedora 8 OS.
For each instance type we created one Amazon Machine Image per location
including the necessary benchmark code. We used standard instances local
storage and mnt partitions for both types when running Bonnie++.

To compare EC2 results with a meaningful baseline, we also ran all benchmarks
— except instance startup and S3 — in our local cluster having physical nodes.
It has the following configuration: one 2.66 GHz Quad Core Xeon CPU running
64-bit platform with Linux openSuse 11.1 OS, 16 GB main memory, 6x750 GB
SATA hard disks, and three Gigabit network cards in bonding mode. As we
had full control of this cluster, there was no additional workload on the cluster
during our experiments. Thus, this represents the best case scenario, which we
consider as baseline.

2The entire dataset is publicly available on the project website [55].
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As cloud technology and platforms are changing rapidly we repeated the
measurement three years after the original experiments from 2009/2010 in
order to see whether there had been a change in performance variance. Note
that as the technology for the AWS AMIs changed in that timeframe we had
to use another CPU benchmark to rerun of the experiments.

In order to establish the best case for cloud variance, i.e., without any con-
tention on the physical machine we also executed the experiments on AWS
Dedicated Instances [16]. The physical hardware for such instances is ded-
icated to a single customer only and hence there is no contention by other
users. Note that it is still possible for a single user to allocate several vir-
tual dedicated instances on the same physical hardware. In addition to the
best case scenarios, we also allocated up to four instances on the same phys-
ical hardware and executed the benchmarks in parallel in order to simulate
contention by different users.

Next, we examined whether there are any differences in the performance vari-
ance between different IaaS providers. In addition to EC2 we allocated in-
stances at the Microsoft Azure Cloud [56] and Google Compute Cloud [42] .
In case of Microsoft Azure we used the small instance type which has a 1.6
GHz CPU and 1.75 GB of RAM in the East US region. On Google’s Compute
Engine we allocated the n1-standard-1-d instance type which has 1 virtual core
(equivalent of a single hyperthread on a 2.6GHz Xeon), 3.75GB of RAM in the
US region. Note that the different providers are using different virtualization
technologies and the results are also influenced by the different Hypersivors:
AWS uses Xen [25], Microsoft Azure uses their own Windows Azure hypervisor
(which is based on HyperV [54]) and Google Compute Engine uses KVM [49].

We used the default settings for our micro benchmarks Ubench, unixbench,
Bonnie++, and Iperf. As Ubench performance also depends on compiler per-
formance, we used gcc-c++ 4.1.2 on all Amazon EC2 instances and all physical
nodes of our cluster. Finally, as we allocate instances in different timezones we
decided to use CET as the coordinated time for presenting results.

3.3.5 Measure of Variation

Let us now introduce the measure we use to evaluate the variance in perfor-
mance. There exist a number of measures to represent this: range, interquar-
tile range, and standard deviation among others. The standard deviation is a
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(a) Startup time small instances
x =107, COV: 1.14
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(b) Startup time large instances
x =115, COV: 1.73
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(c) CPU perf. on small instances
x: 116,167, COV: 0.21
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(d) CPU perf. on large instances
x: 465,554, COV: 0.24
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(e) Memory perf. on small instances
x: 70,558, COV: 0.08
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(f) Memory perf. on large instances
x: 291,305, COV: 0.10

Figure 3.2: EC2: Benchmark results for CPU and memory.
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widely used measure of variance, but it is hard to compare for different mea-
surements. In other words, a given standard deviation value can only indicate
how high or low the variance is in relation to a single mean value. Furthermore,
our study involves the comparison of different scales. For these two reasons,
we consider the Coefficient of Variation (COV), which is defined as the ratio of
the standard deviation to the mean. Since we compute the COV over a sample
of results, we consider the sample standard deviation. Therefore, the COV is
formally defined as follows,

COV =
1
x
·

√√√√ 1
N − 1

·
N∑

i=1

(xi − x)2

Here N is the number of measurements; x1, .., xN are the measured results;
and x is the mean of those measurements. Note that we divide by N − 1 and
not by N , as only N − 1 of the N differences (xi− x) are independent [129].

In contrast to the standard deviation, the COV allows us to compare the degree
of variation from one data series to another, even if the means are different from
each other.

3.4 Results for Microbenchmarks

We ran our experiments with one objective in mind: to measure the variance in
performance of EC2 and analyze the impact it may have on real applications.
With this aim, we benchmarked the components as described in Section 3.3.
We show all baseline results in Table 3.1. Recall that baseline results stem
from benchmarking the physical cluster we described in Section 3.3.4.

3.4.1 Startup Time

Applications have to scale quickly in order to adjust to varying workload and
thus save money. Thus, in this section, we evaluate this feature on Amazon
EC2. We illustrate the results for small instances in Figure 3.2(a) and for
large instances in Figure 3.2(b). The results show that the startup time is 107
seconds for small instances and 115 seconds for large instances, respectively.
This is acceptable for several applications. The minimum startup time is about
50 seconds. Probably, Amazon uses the same allocation procedure for different
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instances and what changes is only the amount of resources that EC2 has to
allocate. The COV results strengthen this: the COV is 114% for small and
173% for large instances. A reason for this could be that it is simply harder
for EC2 to allocate a virtual large instance having four times the computing
power of a small instance. Notice that for these experiments we do not report
baseline results because our cluster does not allocate virtual nodes and hence
there is no startup time to measure.
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(a) Seq.block read small instances, x:
60,544, COV: 0.17
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(b) Seq. block read large instances, x:
81,186, COV: 0.20
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(c) Random read small instances, x: 219,
COV: 0.09
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(d) Random read large instances, x: 267,
COV: 0.13

Figure 3.3: EC2: Disk IO results for sequential and random

3.4.2 CPU

The results of the Ubench benchmark for CPU are shown in Fig-
ures 3.2(c) and 3.2(d). These results show that the CPU performance for
both instances varies considerably. We identify two bands: the first band is
from 115, 000 to 120, 000 for small instances and from 450, 000 to 550, 000 for
large instances; the second band is from 58, 000 to 60, 000 for small instances
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and from 180, 000 to 220, 000 for large instances. Almost all measurements fall
within one of these bands. The COV in large instances is also higher than for
small instances: it is 24%, while for small instances it is 21%. Note that the
mean for large instances x = 465, 554 over x = 116, 167 for small instances
is 4.0076 which corresponds to the claimed CPU difference of factor 4 almost
exactly. The COV of both instances is at least by a factor 200 worse than in
the baseline results (see Table 3.1).

In summary, our results show that the CPU performance of both instances is
far less stable as one would expect.

3.4.3 Memory Speed

The results of the Ubench results for memory speed are shown in Figures 3.2(e)
and 3.2(f). Both figures show two bands of performance. Thus unlike for CPU
performance, we can see two performance bands for both instance types. Small
instances suffer from slightly less variation than large instances, i.e., a COV of
8% versus 10%. In contrast, the COV on our physical cluster is 0.3% only. In
addition, for small instances the range between the minimum and maximum
value is 26,174 Ubench memory units, while for our physical cluster it is only
2,411 Ubench memory units (Table 3.1). This is even worse for large instances:
they have a range value of 202,062 Ubench memory units. Thus, also for
memory speed the observed performance on EC2 is by at least an order of
magnitude less stable than on a physical cluster.

3.4.4 Sequential and Random I/O

We measure disk IO from three points of view: sequential reads, sequential
writes, and random reads. However, since the results for sequential writes
and reads are almost the same, we only present sequential read results in Fig-
ure 3.3. We can see that the COVs of all these results are much higher than
the baseline. For instance, Figure 3.3(a) shows the results for sequential reads
on small instances. We observe that the measurements are spread over a wide
range, i.e., a band from approximately 55,000 to 75,000. The COV is 17%,
which is much higher than baseline results (see Table 3.1). Figure 3.3 shows
an interesting pattern: the measurements for random I/O on large instances
differ considerably from the ones obtained in the EU. One explanation for this
might be different types of disk used in different data centers. Overall we ob-
serve COVs from 9% to 20%. In contrast, on our physical cluster we observe
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COVs from 0.6% to 1.9% only. So again, the difference in COV is about one
order of magnitude. We expect these high COVs to have a non-negligible ef-
fect when measuring applications performing large amounts of I/O-operations,
e.g., MapReduce.

 0

 100

 200

 300

 400

 500

 600

 700

 800

 900

Week 52 Week 53 Week 1 Week 2 Week 3

N
et

w
or

k 
P

er
fo

rm
an

ce
 [K

B
/s

]

Measurements per Hour

US location EU location

Figure 3.4: EC2: Network perf., x =640, COV: 0.19

3.4.5 Network Bandwidth

The results for network performance are displayed in Figure 3.4. The results
show that instances in US location have slightly more oscillation in performance
than in EU location. The COV for both instances is about 19% which is two
orders of magnitude larger than the physical cluster having a COV of 0.2%.
As for startup times, the performance variation of instances in US location is
more accented than that of instances in EU location. In theory, this could be
because EC2 in the EU is relatively new and the US location is more demanded
by users. As a result, more applications could be running on US location than
on EU location and hence more instances share the network. However, we do
not have internal information from Amazon to verify this theory. Again, we
observe that the range of measurements is much bigger than for the baseline
(Table 3.1): while the range is 6 KB/s in our physical cluster, it is 728 KB/s
on EC2.

3.4.6 S3 Upload Speed

As many applications (such as MapReduce applications) usually upload their
required data to S3, we measure the upload time to S3. We show these results in
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Figure 3.5: EC2: S3 upload time, x =120, COV: 0.54

Cutoff percent of measurements in
Lower Segment

CPU Large 320,000 22
Small 75,000 17

Memory Large 250,000 27
Small 65,000 36

Table 3.2: EC2: Distribution of measurements between two bands for Ubench
benchmark

Figure 3.5. The mean upload time is x =120 with a COV of 54%. As mentioned
above the COV may be influenced by other traffic on the network not pertaining
to Amazon. Therefore we only show this experiment for completeness. Observe
that during weeks 53 and 1 there is no data point for EU location. This is
because Amazon EC2 threw us a bucket3 exception due to a naming conflict,
which we fixed later on.

We observed in previous section that, in general, Amazon EC2 suffers a lot
from a high variance in its performance. In the following, we analyse this in
more detail. In addition, Section 3.5.7 contains a variability decomposition
analysis.

3Generally speaking, a bucket is a directory on the Cloud.
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(a) US small instance random I/O.
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(b) US large instance random I/O.
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(c) US large instance sequential I/O perf.
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(d) US large instance Ubench CPU perf.
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(e) EU large instance Ubench CPU perf.
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(f) US network performance.

Figure 3.6: Distribution of measurements for different benchmarks
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3.5 Analysis

After a first discussion of the micro benchmark results, let us analyse a number
of interesting points further.

3.5.1 Distribution Analysis

Bands. A number of previous results (e.g., Figure 3.2(c)) showed two perfor-
mance bands in which measurements are clustered. In this section we quantify
the size of some of those bands. Table 3.2 shows how measurements are clus-
tered when dividing the domain of benchmark results into two partitions: one
above and one below a cutoff line. The Cutoff column expresses the Ubench
unit that delimits the two bands and the Lower Segment column presents the
percent of measurements that fall into the lower segment. We can see that for
CPU on large instances 22% of all measurements instances fall into the lower
band having only 50% the performance of the upper band. In fact, several
Amazon EC2 users already experienced this problem [4]. For memory perfor-
mance we may observe a similar effect: 27% of the measurements are in the
lower band on large instances, 36% on small instances. Thus, the lower band
represents a considerable portion of the measurements.

Distributions. To analyze this in more detail, we also study the distribu-
tion of measurements of the different benchmarks. We show some represen-
tative distributions in Figure 3.6. We observe that measurements for Fig-
ures 3.6(a)& 3.6(b), US random I/O, and Figure 3.6(f), US network perfor-
mance, are normally distributed. All other distributions show two bands. Most
of these bands do not follow a normal distribution. For instance, Figure 3.6(c)
depicts sequential I/O for large US instances. We see two bands: one very wide
band spanning almost the entire domain from 45,000 to 70,000 KB/s. In addi-
tion, we see a narrow band from 87,000 to 97,000 KB/s. None of the individual
bands seems to follow a normal distribution. A possible explanation for this
distribution might be cache effects, e.g., warm versus cold cache. However, a
further analysis of our data could not confirm this. We thus carry out a further
analysis in the following sections.
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Figure 3.7: CPU Large Histogram.
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Figure 3.8: Network US Histogram.
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Figure 3.9: Sequential IO US Histogram.
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Figure 3.10: Variability of CPU perf. per processor.

3.5.2 Variability over Processor Types

As indicated in [2], the EC2 infrastructure consists of two different systems — at
least of two processor types4. We conducted an additional Ubench experiment
so as to analyze the impact on performance that these different system types
might have. To this end, we initialized 5 instances for each type of system and
ran Ubench 100 times on each instance.

We illustrate the results in Figure 3.10. These results explain surprisingly in
great part the two bands of CPU performance we observed in Section 3.4.2.

4This can be identified by examining the /proc/cpuinfo file where the processor character-
istics are listed.
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Figure 3.11: Variability of network perf. for EU.

This is surprising because both instances are assumed to provide the same
performance. Here, we observe that the Opteron processor corresponds to the
lower band while the Xeon processor corresponds to the higher band. The
variance inside these bands is then much lower than the overall variation: a
COV of 1% for Xeon and a COV of 2% for Opteron — while the COV for
the combined measurements was 35%. Furthermore, we could observe during
this experiment that the different bands of memory performance could also
be predicted using this distinction. The corresponding COV decreased from
13% for combined measurements to 1% and 6%, respectively, for Xeon and
Opteron processors. Even for disk performance we found similar evidence for
two seperate bands — again depending on processors.

3.5.3 Network Variability for Different
Locations

As described in Section 3.3.4, we did not explicitly consider the availability
zone as a variable for our experimental setup and hence we did not pay too
much attention on it in Section 3.4. Amazon describes each availability zone
as “distinct locations that are engineered to be insulated from failures in other
availability zones” [2].

In this section we analyze the impact of using different availability zones for the
network benchmark. Our hypothesis is that whenever the two nodes running
the network benchmark are assigned in the same availability zone, the network
performance should be better; vice versa when the two nodes are assigned to
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Figure 3.12: Variability of network perf. for US.

different availability zones, their network benchmark result should be worse.
If this holds, we could conclude that different availability zones correspond to
units (possibly physical units) where the network connections inside units are
better than among those units.

Figure 3.11 shows the results for the EU. Here red indicates that both nodes
run in the same availability zone, green indicates they run in different avail-
ability zones. Unfortunately, we observe that in the EU most instance pairs
get assigned to the same availability zone. This changes however if we in-
spect the data for the US (see Figure 3.12). All measurements vary consid-
erably. However, the measurements inside an availability zone have a mean
of 588, the measurements among different availability zones have a mean of
540. Thus inside an availability zone the network performance is by 9% better.
We validated this result with a t-test: the null hypotheses can be rejected at
p = 1.1853× 10−11.

We believe that the variability of network performance we could observe so
far might stem from the scheduler policy of EC2 — which always schedules
virtual nodes of a given user to different physical nodes. This is supported
by Ristenpart et al. who observed that a single user never gets two virtual
instances running on the physical node [158]. As a consequence, this results in
more network contention.
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Figure 3.13: CPU distribution over different availability zones for large
instances

3.5.4 CPU Variability for Different Availability Zones

In this section we analyze how different availability zones impact CPU perfor-
mance. Figure 3.13 shows the same data as Figure 3.2(d). However, in contrast
to the latter, we only show data from the US and depict for each measurement
its availability zone. We observe that almost none of the nodes was assigned to
us-east-1a or us-east-1b. All nodes were assigned to us-east-1c and to us-east-
1d. Interestingly, we observe that all measurements in the second lower band
belong to us-east-1c. Thus, if we ran all measurements on us-east-1d only, all
measurements would be in one band. Furthermore the COV would decrease.
These results confirm that indeed availability zones influence performance vari-
ation. In fact, we also observed the same influence for small instances and for
other benchmarks as well, such as network performance. We believe that this
is, in part, because some availability zone mainly consist of one processor type
only, which in turn decreases the performance variability as discussed in Sec-
tion 3.5.2. Hence, one should specify the availability zone when requesting its
instance.

3.5.5 Variability over Different Instance Types

In this section, we examine the impact of different instance types on perfor-
mance. Figure 3.14 shows the same data as Figures 3.2(c) and 3.2(d). However,
in contrast to the latter we do not differentiate by location. As observed in
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Figure 3.14: CPU score for different instance types

Figure 3.14 the mean CPU performance of a large instance is almost exactly
by a factor 4 larger than for small instances. The standard deviation for large
instances is about four times higher than for small instance. However, the
COVs are comparable as the factor four is removed when computing the COV.
The COV is 21% for small instances and 24% for large instances. It is worth
noting that the small and large instances are actually based on different ar-
chitectures (32/64 bit platforms, respectively), which limits the comparability
between them. However, we also learn from these results is that for both in-
stance types (small and large) several measurements may have 50% less CPU
performance. instances are in the lower band? We answer this question in the
next section.

3.5.6 Variability over Time

In previous section, we observed that, from the general point of view, most of
the performance variation is independent of time. We now take a deeper look
at this aspect by considering the COV for each individual weekday. Figure 3.15
illustrates the COV for individual weekdays for the Ubench CPU benchmark.
As the COV values for other components, such as memory and network, are
quite similar to those presented here, we do not display those graphs. At
least for the US instances we observe a lower variation in CPU performance of
about 19% on Mondays and weekends. From Tuesday to Friday the COV is
above 26%. For the EU this does not hold. The small COV for US location
on Monday strengthen this assumption since in Unite States it is still Sunday
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Figure 3.15: Variability of CPU perf. per weekday

(recall we use CET for all measurements). We believe the reason for this is that
users mainly run their applications during their working time. An alternative
explanation could be that people browse and buy less on Amazon and therefore
Amazon assigns more resources to EC2.

3.5.7 Variability Decomposition

We have seen so far that Amazon EC2 suffers from a high variation in its per-
formance. In this section, we decompose the performance variability in order to
better understand such a variation in performance. For this, we decompose the
COV analysis into two parts with the aim of identifying from where the variance
arises. To this end, we analyze the data using four different aggregation-levels:
(i) day, (ii) hour, (iii) hour of the day, (iv) day of the week. We partition our
measurements x1, .., xN into disjoint and complete groups G1, .., Gk, k ≤ N
where each group corresponds to an aggregate of an aggregation level (i)–(iv).
Then, we analyze the aggregates in two ways:
(1.) between aggregation-levels. We compute the mean for each aggregate;
then we compute the COV of all means. In other words, for each group Gi

we compute its mean xGi . For all means xGi we then compute the COVxGi
.

The idea of this analysis is to show the amount of variation among different
aggregation-levels. For instance, we may answer questions like ‘does the mean
change from day to day?’. Table 3.3 gives an overview of the results.

(2.) in aggregation-levels. We compute the COV for each aggregate; then
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Small instances
COVxGi

All Day HourOfDay DayOfWeek
US EU US EU US EU US EU

Startup Time 1.399 0.439 0.306 0.263 0.211 0.121 0.122 0.079
S3 Upload Time 0.395 0.481 0.132 0.210 0.448 0.147 0.371 0.094
Bonnie Seq. Out 0.199 0.136 0.080 0.055 0.049 0.029 0.030 0.015
Bonnie Ran Read 0.102 0.085 0.043 0.018 0.037 0.017 0.019 0.002
CPU 0.237 0.179 0.075 0.033 0.031 0.004 0.032 0.028
Memory 0.097 0.070 0.036 0.028 0.014 0.015 0.013 0.011
Iperf 0.201 0.124 0.045 0.028 0.044 0.026 0.026 0.021

Large instances
COVxGi

All Day HourOfDay DayOfWeek
US EU US EU US EU US EU

Startup Time 2.022 0.479 0.330 0.231 0.292 0.087 0.163 0.094
S3 Upload Time 0.395 0.481 0.132 0.210 0.448 0.147 0.371 0.094
Bonnie Seq Out 0.226 0.191 0.091 0.069 0.060 0.038 0.070 0.037
Bonnie Ran Read 0.043 0.056 0.043 0.056 0.027 0.030 0.019 0.031
CPU 0.230 0.243 0.078 0.079 0.031 0.033 0.032 0.028
Memory 0.108 0.097 0.038 0.032 0.020 0.016 0.014 0.021
Iperf 0.201 0.124 0.045 0.028 0.044 0.026 0.026 0.021

Table 3.3: between aggregation-level analysis: COV of mean values

we compute the mean of all COVs. In other words, for each group Gi we
compute its COVGi . For all COVGi we then compute the mean xCOVGi

. The
idea is to show the mean variation inside different aggregation-levels. For
instance, we may answer questions like ‘what is the mean variance within a
day?’ Table 3.4 shows the results.

For better readability, all results in-between 0.2 and 0.4 are shown in orange
text color, and all results greater equal 0.4 are shown in red text color.

We first discuss results in Table 3.3 focussing on some of the numbers marked
red and orange. The results for small and large instances are very similar.
Therefore we focus on discussing small instances. For small instances we ob-
serve that the mean startup time varies considerably for both US and EU:
respectively 139% and 43.9% of the mean value. When aggregating by HourOf-
Day S3 upload times vary by 44.8% in the US but only 14.7% in the EU. When
aggregating by DayOfWeek we observe that mean S3 upload times also vary
by 37.1% in the US but only by 9.4% in the EU. Thus, the weekday to week-
day performance is more stable in the EU. CPU performance for a particular
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Small instances
xCOVGi

All Day HourOfDay DayOfWeek
US EU US EU US EU US EU

Startup Time 1.399 0.439 0.468 0.357 0.636 0.429 0.914 0.436
S3 Upload Time 0.395 0.481 0.356 0.406 0.371 0.448 0.383 0.472
Bonnie Seq Out 0.199 0.136 0.177 0.123 0.199 0.132 0.198 0.135
Bonnie Rand In 0.102 0.085 0.091 0.074 0.096 0.081 0.019 0.085
CPU 0.237 0.179 0.207 0.162 0.229 0.173 0.228 0.174
Memory 0.097 0.070 0.085 0.050 0.096 0.065 0.097 0.068
Iperf 0.201 0.124 0.204 0.121 0.196 0.122 0.205 0.123

Large instances
xCOVGi

All Day HourOfDay DayOfWeek
US EU US EU US EU US EU

Startup Time 2.022 0.479 0.330 0.330 0.812 0.416 1.192 0.451
S3 Upload Time 0.395 0.481 0.356 0.406 0.371 0.448 0.383 0.472
Bonnie Seq Out 0.226 0.191 0.227 0.183 0.227 0.192 0.317 0.189
Bonnie Rand In 0.114 0.149 0.112 0.141 0.114 0.148 0.113 0.147
CPU 0.237 0.243 0.208 0.222 0.235 0.242 0.236 0.242
Memory 0.108 0.097 0.093 0.085 0.105 0.096 0.107 0.095
Iperf 0.201 0.124 0.204 0.121 0.196 0.122 0.205 0.123

Table 3.4: in aggregation-level analysis: Mean of COV values

hour of the day is much more stable: 3.1% in the US and 0.4% in the EU. In
addition, CPU performance for a particular day of the week is also remarkably
stable: 3.2% in the US and 2.8% in the EU. We conclude that means for differ-
ent hours of the day, and different days of the week show little variation. Thus
a particular hour of the day or day of the week does not influence the mean
performance value. Table 3.4 shows results of the in-aggregation-level analysis.
Here the results for small and large instances differ more widely. We focus
again on small instances. For Startup Time we observe that the mean COV for
Day is 46.8% in the US and 35.7% in the EU. If we aggregate by HourOfDay
or DayOfWeek, we observe very high means of the COVs for both locations,
for example up to 91.4% for DayOfWeek in the US. Thus, the mean variance
for hours of the day and days of the week is very high. Still, the results in
Table 3.3 show that the variance among the means of a particular hour of the
day or day of the week is far less.

For CPU performance we observe that in the US the mean COV is above 20%
when aggregating by Day, HourOfDay, or DayOfWeek. In other words, CPU
performance varies considerably inside each aggregate over all aggregation-
levels. The variation among different aggregation-levels is not that high any-
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more as observed in Table 3.3. This indicates a certain stability of the results:
the measurements inside a single aggregate may be enough to predict the mean
CPU performance with little error. However, recall that for our data each ag-
gregate consists of several individual measurements: Day: 84, HourOfDay: 62,
and DayOfWeek: 96 measurements.

3.5.8 Revisiting Cloud Performance Variance

As the original variance measurements were taken in 2010 we were curious
whether the variance situation had changed. So we measured the variance
again between end of march and beginning of may 2013. Using the same setup
as before, we allocated a small instance every hour at AWS. The results for
CPU and IO performance are shown in FIgure 3.16 and the respective COV
measures in Table 3.7. When comparing to the 2010 results we see that the
variance for CPU and Write performance performance has decreased from a
COV of 0.237 to 0.05 in case of the CPU performance and from 0.199 to 0.110
for the IO write performance. But the the IO read performance incurs with
the new measurement even more variance than in 2010 (the COV increased
from 0.154 to 0.45). Despite the lower CPU performance variance we can still
clearly see different performance bands in Figure 3.16(a). For both the IO read
in Figure 3.16(b) and write performance in Figure 3.16(c) there is a clear per-
formance baseline and other measurements being spread around this baseline.
Having identified the machine type5 explaining a large factor of the variance
in Section 3.5.2 we examined how different systems affected the performance
for our new measurements. By checking the processor type we found a total
of 4 different system configurations using the following processor types: E5-
2650 with 2.00GHz, E5430 with 2.66GHz, E5507 with 2.27GHz , and E5645
with 2.40GHz. As shown in Table 3.6 the distribution between these different
types is fairly uniform. We show the benchmark results by different processor
type in Figure 3.17. In Table 3.7 we show the COV and average values for
each processor type. For the CPU performance in Figure 3.17(a) the differ-
ent processor types perfectly explain the three performance bands. The upper
band contains only measurements of E5645 processor type.The medium band
contains both measurements from the E5430 and E5507 processor type. All
measurements from the E5-2650 processor type fall in the lower band. Consid-
ering the different processor types also decreases the CPU variance even more;
when considering the different processor types the COV values are between

5The machine type is identified by the CPU type.
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COV
COV CPU Seq. Block Write Seq Block Read
2010 0.237 0.199 0.154
2013 0.05 0.11 0.45

Table 3.5: Variance in 2010 and 2013

Processor Types
CPU GHz Percentage

E5-2650 2.00 20.2%
E5430 2.66 25.2%
E5507 2.27 26.4%
E5645 2.40 27.8%

Table 3.6: Distribution of Processor Types

0.002 and 0.0033 as compared to an overall COV of 0.05. As we view the
processor type as an identifier for the entire system we also look at the effect
the clustering by processing type has on the IO read and write variance. We
show the measurement by processor type in Figure 3.17(b) and Figure 3.17(c).
Recall that in the IO read variance is higher for the 2013 measurement s than
for the 2010 measurements. Using Figure 3.17(b) we can easily explain this
behavior: For the E5-2650, E5507, and E5645 system the read performance is
relative uniform (COVs between 0.06 and 0.11), but the E5430 measurements
have a quite different characteristic. First of all the variance is much higher
with a COV of 0.366 when compared to the other systems. As a second factor
also the average performance is quite different. We can see in Table 3.7 that
the average read performance is about twice as large as for the other systems.
The likely explanation for this observation is that the E5430 systems use SSDs
instead of HDDs. The performance variance in this case would result from the
fact that the bonnie++ accesses a lot of individual blocks which can reduce
the performance of SSDs.

Next, we look at the network bandwidth variability between two different in-
stances. This is especially important for distributed processing frameworks
such as MapReduce as they need to shuffle large amounts of data between
nodes. In Figure 3.18 we show the results of measuring the network band-
width among two different nodes. These nodes are for both providers always
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allocated in the same region. The bandwidth measurements from AWS show
a common performance band between 300 to 400 Mbit/sec but also a large
number of outliers. Note that most outliers have a higher bandwidth than
the common performance band. On the other hand the measurements from
Azure look more randomly distributed. This intuition is also confirmed by
the COV measurements in Table 3.8. AWS’s new COV value (0.355) are also
much higher than the COV value from Azure (0.177) and also higher than the
COV value (0.201) from the initial benchmarks in 2010. In order to under-
stand this strange behavior we have to look into the definition of a region. For
AWS a region consists of different Availability Zone which are equivalent to
the notion of data center [20]. For Microsoft on the other hand a region is
currently (as of autumn 2013) not further divided and hence corresponds to a
datacenter [22]. This means in the case of AWS we are sometimes measuring
the network bandwidth between different datacenter while in the case of Azure
we are always measuring network bandwidth inside a single datacenter. If we
only consider AWS measurements where both instances are located inside the
same datacenter we obtain a COV of 0.169 which comparable to Azures COV
value. Considering traffic between different datacenter also explains the com-
mon band we saw in Figure 3.18 for the AWS measurements. The common
band between 300 to 400 Mbits is actually the traffic between two different
datacenter while the measurements above are measurements inside the same
datacenter. Still, why is AWS’s COV value from the 2013 measurements higher
than the ones from 2010. The most likely explanation is that Amazon simply
build more datacenter [20] and hence the chance for two instance being allo-
cated in different availability zones/datacenter inside the same region is much
higher.
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Figure 3.16: AWS rerun measurements
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Figure 3.17: AWS rerun measurements by Processor Type
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COV Network Bandwitdth
AWS 2013 (region) 0.355
Azure 2013 (region) 0.177
AWS 2010 (region) 0.201
AWS 2013 (availability zone) 0.169

Table 3.8: Network Bandwidth Variance
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Figure 3.18: Network bandwidth performance
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3.5.9 Long-Running Instance Variance over Time

In this section we examine the variance of a single long-running instance in
contrast to the previous experiments where we looked at the variance between
different instances. Therefore we allocated a small EC2 instance and measured
continuously executed the standard set of benchmarks (see Section 3.3.2) every
two hours over the timespan of one month from 13th of march to 13th of april
2013. The results for CPU performance are shown in Figure 3.19(a). The
CPU performance is very homogeneous. This is also evident when looking at
the COV measures in Table 3.9 directly. Here we can see that the COV for
CPU performance is only at 0.002. This indicates that once a user acquires
an instance the CPU performance is quiet reliable. This is mostly due to the
fact that the CPU itself can be easily split between different virtual instances
by either physical partitioning (each virtual instance receives a fixed number
of cores) or by time wise splitting of CPU cycles. The performance CPU
variance we saw in Section 3.4.2 is mostly caused the between-instance variance
of different instances which can be partially explained by different hardware,
especially processors (see Section 3.5.2).

The results for I/O read and write performance shown in Figure 3.19(c) and
Figure 3.19(b) are slightly different. Also here we have a smaller COV of 0.065
and 0.045 when compared to the between-instance variance with a COV of 0.199
and 0.154, but the difference is not several orders of magnitude as in the CPU
case. A potential explanation for this difference is, that I/O devices (either
hard-disks directly or network attached storage) is shared between different
instances. Hence, the I/O contention is a cause for performance variance.

When observing the I/O Write pattern over time one recognize again two dif-
ferent bands of performance. Recall that these bands cannot be explained by
different underlying platforms we consider the same running instance 6. The
most likely cause here is I/O contention of other co-located instances. Inter-
estingly we do not observe such distinct bands of performance for i/O read
performance, despite a large variance of read performance. Note, that we omit
the results for memory performance as there was little performance variance
(COV of 0.097) in the initial experiments.

We repeated the same setup with a small instance allocated at Microsoft Azure.
Here the timeframe was only a week from 13th to 19th of march 2013 as in

6Some virtualization solutions such Vmware Esx [78] allow the movement of running in-
stances between nodes, but as of summer 2013 no major cloud vendor is known to move
running instances.
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Single instance COV
COV CPU Seq. Block Read Seq Block Write
AWS EC2 0.002 0.065 0.045
Microsoft Azure 0.001 0.375 0.105

Across instance COV for comparison
AWS EC2 0.237 0.199 0.154

Table 3.9: COV for different measures

contrast to EC2 where we used a research we incurred actual cost here. The
results for CPU, I/O Write performance and I/O Read performance are shown
in Figure 3.20. We present the COV measures again in Table 3.9. When looking
at the CPU variance the results for Azure are similar to those from AWS EC2.
The COV is with 0.001 even lower. The picture changes when looking at the
I/O performance: Here Azure offers an overall higher throughput, but at the
cost of increased variance. The COV measures for I/O performance are 2-6
times larger than the same measures from AWS EC2. Its seems that Azure
is employing a best effort approaches as we sometimes see outliers in both
directions. For Azure we can recognize two different performance bands for
the I/O Read performance in Figure 3.20(b). Similar the explanation for this
behavior is most likely contention from other co-located instances. Recall that
again we are dealing with two different Hypervisors, each having different I/O
scheduling policies [148].
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Figure 3.19: AWS fixed instance long term measures
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Figure 3.20: Azure fixed instance long term measures
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Figure 3.21: CPU Performance Variance across Vendors

3.5.10 Different Cloud Provider

As today there exists a large number of cloud providers, the reader might ven-
dor whether the performance variance is solely a problem of Amazon EC2 or is
present across all cloud providers. Therefore we examine Microsofts Azure [58]
and Google Compute Engine [42] using the same set of benchmarks as described
in Section 3.3.4. We present the CPU performance variance in Figure 3.21. As
the reader might notice, Google’s Compute Engine seems to incur a higher
variance in CPU performance. This is confirmed by the COV measurement in
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COV CPU
AWS EC2 (total) 0.05
AWS EC2 (by CPU Type) 0.003
Microsoft Azure 0.0034

Google CE 0.0264

Table 3.10: CPU Performance Variance across Vendors

Table 3.10. Here the GCE CPU performance COV is an order of magnitude
higher than for Microsoft’s Azure. When comparing these COV values to the
ones obtained at AWS we notice that the GCE CPU performance variance is
comparable with the variance at AWS across all CPU types. On the other
hand the MS Azure CPU performance variance is comparable to the AWS
CPU performance variance when considering the different CPU types. Does
that imply that GCE is using different CPU types while MS Azure is not?
Unfortunately it is not that easy. As far as we can tell from inspecting of the
/proc/cpu files both vendors use the same CPU type across all instances we
allocated. GCE’s CPU type is the Intel Xeon CPU with 2.60GHz and MS
Azure’s CPU type is the AMD Opteron 4171 with 2.094 GHz. Does this imply
Microsoft and Google are more consistent than AWS by giving the user always
the same system configuration? Not necessarily, because one has to consider
the age of all three vendors. While both Google and Microsoft started their
IaaS cloud services in June 2006, AWS is running publicly since 2006. There-
fore AWS has gone though a number of upgrades for their existing data centers
and also build new data centers equipped with the state of the art systems at
the time of construction. Recall that the different providers are using different
virtualization technologies and the results are also influenced by the different
Hypersivors: AWS uses Xen [25], Microsoft Azure uses the Windows Azure
hypervisor (which is based on HyperV [54]) and the Google Compute Engine
uses KVM [49].
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Figure 3.22: 50 Nodes Mean CPU Performance.

3.6 Impact on a Real Application

So far, we ran microbenchmarks in small clusters of virtual nodes. Thus, natu-
ral next steps are to analyze (1) whether the performance variability observed
in previous sections will average out when considering larger clusters of virtual
nodes and (2) to which extent this micro variances influences actual data-
intensive applications. As MapReduce applications are frequently performed
on the Cloud, we found them to be a perfect candidate for such analysis.

For a random variable such as measurement performance one would expect
that the average cluster performance will have less variance due to the larger
number of ‘samples’. Therefore we experimented with different virtual cluster
sizes up to 50 nodes. However, we could not observe a significant relationship
among the number of nodes and the variance. Note however, that also for
the cluster 20%-30% of the measurements fall into the low performance band.
Here we only show results for the largest cluster of 50 nodes we tried. As for
previous experiments, we reallocated the cluster every hour. We performed
this measurement for 35 hours in a row. For each hour we report the mean
CPU performance of the cluster.

Figure 3.22 shows the results. As we may observe from the figure even when
running 50 instances concurrently, the mean performance still varies consider-
ably. Thus, a large cluster does not necessarily cancel out the variance in a way
that the performance results become stable (see Figure 3.23). This is because
performance still depends on the number of Xeon processors that composes
a cluster of virtual nodes as discussed above for single virtual instances (Fig-
ure 3.10). It might of course be that the variance of the means will be reduced
for larger clusters of several hundred nodes. Whether the means are then use-
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Figure 3.23: CPU Performance for variable Cluster Size.

ful for any practical purposes or realistic applications for smaller systems as
Yahoo! or Google is left to future work.

A natural question at this point is: How does all this variance impact per-
formance of applications? To answer this question we use a MapReduce job
as benchmark for two main reasons. First, MapReduce applications are cur-
rently one of the most executed applications on the cloud and hence we believe
this benchmark results would be of great interest for the community. Second,
a MapReduce job usually makes intensive use of I/O (reading large datasets
from disk), network (shuffling the data to reducers), CPU and main memory
(parsing and sorting the data).

For this, we consider the following relation (as suggested in [150]),
UserVisits(UV)=(sourceIP, visitedURL, visitDate, adRevenue), which
is a simplified version of a relation containing information about the revenue
generated by user visits to webpages. We use an analytic MapReduce job that
computes the total sum of adRevenue grouped by sourceIP in UserVisits
and executed it on Hadoop 0.19.2. We consider two variations of this job: one
that runs over a dataset of 100GB and other that runs over a dataset of 25GB.
We ran 3 trials for each MapReduce job every 2 hours over 50 small virtual
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Figure 3.24: Runtime for a large MapReduce job.

nodes (instances). For EC2, we created a new 50-virtual nodes cluster for each
series of 3 trials. In our local cluster, we executed it on 50 virtual nodes running
on 10 physical nodes using Xen.

As results for the small and large MapReduce jobs follow the same pattern,
we only illustrate the results for the large MapReduce job. We showed in fact
these results in Figure 3.24 as motivation in the introduction. We observe
that MapReduce applications suffer from much more performance variability
on EC2 than in our cluster. More interesting, we could again observe during
these experiments that both MapReduce jobs perform better on EC2 when
using larger percentage of Xeon-based systems than Opteron-based systems.
For example, when using more than 80% Xeon-based systems the runtime for
the large MapReduce job is 840 seconds on average; when using less than 20%
Xeon-based systems the runtime is 1, 100 seconds on average. This amounts
to an overall COV of 11%, which might significantly impact experiments re-
peatability. However, even if we consider a single system type, performance
variability is by an order of magnitude higher than on our local cluster.

3.6.1 MapReduce and Cluster Heterogeneity

One of the main benefits of using Hadoop is that users can easily execute
their jobs on large clusters without having to worry about the challenges of
distributed computing such as scheduling, network communication, or syn-
chronization. The Hadoop framework hides the fact that the computation is
executed on several nodes. Unfortunately, the Hadoop framework assumes
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that the performance of the cluster nodes is relatively homogeneous. This as-
sumption is for example reflected in the scheduler and the straggler detection
components of Hadoop [122, 174]. While this assumption of homogeneous node
performance might hold to certain degree in the data centers of Google or Face-
book it is certainly not valid for cloud settings as we have seen in Chapter 3.
In Section 3.6.2 we examine how the observed variance effects the runtime of
MapReduce. Note that here we are not concerned with the question of the
runtime variation of MapReduce jobs but rather with the question whether
cluster heterogeneity can cause a general slowdown of MapReduce jobs. In
addition, we also examine the effects of cluster variance on HDFS performance
in Section 3.6.6. For this purpose we consider several aspects: On the one hand
we consider effects on the HDFS upload performance. On the other hand we
also consider how heterogeneity in node performance affects the block place-
ment which basically defines the data locality for the later running Map Reduce
jobs.

Next, we examine how the observed performance degradation is effected by the
performance variance in several subcomponents, i.e., we try to analyze how
much of the slow down is due to heterogeneity in I/O performance, CPU per-
formance and network performance respectively. After quantifying the effects of
cluster heterogeneity on MapReduce performance, we are interested in how one
can reduce the cluster heterogeneity in a cloud computing environment where
we cannot control the co-placement of virtual instances on physical hardware in
Section 4.1. Our solution aims at directly allocating a more homogeneous clus-
ter instead of modifying the Hadoop framework and is hence usable for other
applications. Our solution is based on Whirr [13] which allows for a cloud
neutral way to run Hadoop. In order to provide a more homogeneous cluster
we allocate a slightly higher number of nodes than actually required and then
select the subset of nodes having the least performance variance among them.
We show that especially for long running MapReduce jobs the initial over-
head of allocating more nodes and benchmarking the performance is actually
negligible compared to the improved query runtimes.

3.6.2 Variance Problems for MapReduce

Let us first examine how the performance heterogeneity of a seemingly homo-
geneous cluster (consisting of nodes having the same instance type) effects the
runtime of MapReduce jobs in a cloud setting. To answer this question we
allocate several clusters of 25 small instances each at Amazon EC2. We then
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use the same micro-benchmarks as in Chapter 3 (unixbench [77] for measur-
ing CPU performance and bonnie++ [23] for measuring I/O performance) to
measure the performance of each node. Next, we measure the response times
of MapReduce jobs implementing TPC-Query 6 [82] over a 100GB dataset on
each of cluster.

We show the resulting runtimes averaged over three runs in Figure 3.25. As
one can see the average runtimes are varying from 2,996 seconds up to 3,403
seconds.
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Figure 3.25: MR Job Runtime.

As we would like to examine the relation of cluster heterogeneity to MapRe-
duce performance we first have to establish a measure HETcluster for cluster
heterogeneity. Note that, while so far we considered the performance variance
of individual nodes, HETcluster measures the performance variance between
different nodes in a cluster. In Chapter 3 we already used the Coefficient of
Variation (COV), which is defined as the ratio of the standard deviation to the
mean to quantify the heterogeneity of a single performance characteristic (e.g.,
CPU performance). In order to extend this to the notion of cluster heterogene-
ity we use a linear combination of the individual performance characteristics:
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HETcluster = a1 ∗ COVCP U + a2 ∗ COVIO−Read + a3 ∗ COVIO−W rite + a4 ∗ COVNetwork

where COVCP U is the COV of the CPU performance, COVIO−Read the COV of
the IO Read performance and COVIO−W rite the COV of IO Write performance
respectively. The definition of COVNetwork is a little more challenging in a clus-
ter setting: As in Hadoop each worker potentially has to share intermediate
results with all workers we would have to consider the pointwise network perfor-
mance between all nodes in the cluster. As this is quite expensive (for example
a 25 node cluster this would require (n−1)∗n

2 measurements of network perfor-
mance. Instead we measure the network performance between the name node
and all other nodes (this approach only requires 24 measurements of network
performance). Note that we did not include the heterogeneity in memory per-
formance into HETcluster. This is because our measurements from Chapter 3
indicate that memory performance is relatively stable across instances. First
we consider the influence of all performance characteristics as equal, meaning
that a1 = a2 = a3 = a4 = 1. We return to this question in Section 3.6.4 and
examine the influence of different application characteristics (e.g., IO bound
application vs CPU bound application) on these weights.

Also we want to differentiate between the influence of the cluster heterogeneity
HETcluster as defined above and the cluster performance. Therefore we have
to define a measure for the average cluster performance PERFcluster. We
define PERFcluster as the sum of the average performance indicators (CPU,
IO-Read, IO-Write, and Network) over all cluster nodes. We normalize each of
the average values in order to give each indicator an equal influence despite its
relative magnitude. As normalization constant GAV G(indicator) we use the
average for the given performance indicator across all clusters i.e., across all
measurements. Hence

P ERFcluster =
AV GCP U

GAV G(CP U)
+

AV GIO−Read

GAV G(IO −Read)
+

AV GIO−W rite

GAV G(IO −W rite)
+

AV GNetwork

GAV G(Network)

Figure 3.26 and Figure 3.27 provide an overview of the distributions for
HETcluster and PERFcluster for each cluster. Here we see that both measures
vary significantly between different clusters. So the question remains which
influence these measures have on the MapReduce runtime.
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Figure 3.26: Distribution of HETcluster.

Next, we want to quantify the correlation between PERFcluster and average
MapReduce runtime, between HETcluster and average MapReduce runtime,
and between PERFcluster and HETcluster . As a measure of correlation we
use pearson’s coefficient of correlation. Pearson’s coefficient of correlation r is
defined to be the covariance of two variables normalized by the product of their
standard deviations, see also Equation 3.1. Note that pearson’s coefficient of
correlation is always between −1 and 1, where −1 indicates a perfect negative
correlation, 0 indicates no (linear) correlation at all, and 1 indicates a perfect
positive correlation.

r =

∑n

i=1(Xi − X̄)(Yi − Ȳ )√∑n

i=1(Xi − X̄)2
√∑n

i=1(Yi − Ȳ )2
(3.1)

Figure 3.28 shows the distribution of average MapReduce runtime across
the different PERFcluster measurements. As one would expect the corre-
lation between PERFcluster and average MapReduce job runtime is with
r = −4.007036503 ∗ 10−1 significantly negative: hence a better cluster per-
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Figure 3.27: Distribution of PERFcluster.

formance indicates less runtime. The correlation also validates our choice for
PERFcluster to be a good indicator for the overall cluster performance.

Next we consider the correlation between HETcluster and average MapReduce
job runtime as an indicator for how the heterogeneity affects application per-
formance. We measure a coefficient of correlation of r = 2.096194253 ∗ 10−1.
This positive correlation confirms our assumption that cluster heterogeneity
results in longer MapReduce job runtimes. We examine this phenomena in
more detail in more detail throughout this chapter.
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Figure 3.28: Average Runtime versus PERFcluster .

Interestingly, if we look at the correlation between PERFcluster and HETcluster

in Figure 3.29, we obtain a significant negative correlation with r =
−4.084864569 ∗ 10−1. This means that a high cluster heterogeneity is an indi-
cator for low cluster performance. A first intuitive explanation could be that
this correlation might be caused to different system types as discussed in Sec-
tion 3.3. But when examining the system distribution in these clusters we
found that most clusters had a pretty equal distribution of system with around
95 percent of the nodes running with the E5-2650 2.00GHz processor. The
reason for the significant negative correlation is more likely the influence of co-
located instances on the same physical node. The more instances are sharing
the same physical hardware (this can even be a network switch and is hence not
constrained to a single physical node) the less performance each single virtual
instance receives. A cluster containing such underperforming nodes also incurs
then a higher heterogeneity as the performance varies more between different
instances.

As we are considering the correlation between PERFcluster, HETcluster, and
MapReduce runtimes, it is an interesting questions whether PERFcluster and
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Figure 3.29: Distribution PERFcluster over HETcluster .

HETcluster are stable measures over time. We have already seen in Section 3.5.9
that the individual performance measure are relatively stable over time. Only
I/O performs might suffer a little bit due to contention from co-located in-
stances, but is still an order of magnitude less then between instance I/O
performance variance. But what about HETcluster? Is the heterogeneity also
stable over time?
To answer this question we reran the measurements and recomputed HETcluster

for the same cluster. In order to simulate a very long running job, we started
one measurement run per hour for a total of 10 runs. As we can see from Fig-
ure 3.30 HETcluster is quite stable over time for a given cluster. Note that for
comparison we also show measurements for HETcluster for 10 different clusters.
There is one notable outlier with a much lower HETcluster. This was actually
caused by an overall drop in I/O read performance, which was then equally low
on all nodes. Hence the assumption that an initial performance measurement
is also a good predictor for later points in time is justified by these numbers.

So far we have looked at the high level effects of cluster heterogeneity onto
MapReduce performance. Here we have seen a significant positive correlation
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Figure 3.30: Stability of HETcluster.

between HETcluster and MapReduce runtimes. In the following sections we
will examine this effect in more detail.
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3.6.3 CPU Steal Time

Let us consider another interesting metric for instances running in virtualized
environments: cpu steal. According to the mpstat manpage, cpu steal is the
percentage of time spent in involuntary wait by the virtual cpu(s) while the
hypervisor was servicing another virtual processor. So basically how much of
the cpu wait time was caused by the hypervisor choosing not to schedule the
respective virtual cpu(s). Note that on a physical system running without
hypervisor this metric will always be 0.

But what are the causes for a high cpu steal percentage? The first one is
due to contention with other virtual instances running on the same hypervisor
(i.e., usually same physical hardware). In such cases the sum of requested
cpu capacity across all instances is higher than the actual cpu capacity of the
physical hardware. This causes involuntary wait states for the virtual cpu(s)
and hence a high cpu steal percentage. Still a high cpu steal percentage is
not always due to contention by other virtual instances. In many virtualized
settings there is a maximum limit for the cpu usage for each instance, for
example the instance is assigned 30% of the overall cpu capacity for that system.
Then if the instance tries to use more cpu cycles the hypervisor might force the
virtual cpu to wait despite whether there might be actual free capacity or not.
So in this case the high cpu steal percentage is caused by the instance trying
to use more cpu capacity than its assigned share.

Netflix [59], a large online video provider uses the cpu steal metric in order to
determine virtual instances which perform poorly due to contention with other
collocated virtual instances. Netflix actually kills such virtual instances and
recreates them on a hopefully different physical machine.

So the question arises whether the cpu steal percentage might also be an indi-
cator for variance caused by contention with other collocated virtual instances.
To examine this question we first consider the cpu steal percentage across differ-
ent instance types. In particular we consider the m1.micro, m1.small, m1.large,
and m1.xlarge as they are the most commonly used instance types and repre-
sent a wide range of performance and isolation guarantees. Recall that smaller
instance types have less performance and a higher probability of other collo-
cated instances on the same physical machine. This holds especially for the
micro instance types, where AWS specially states that cpu cores are likely to
shared among instances to provide additional performance bursts [19].

We used the unix top command to measure the user based user based cpu
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utilization and the cpu steal percentage. For this we allocated one instance
per instance type and measured both values 1000 times in each instance. The
resulting resolution is about one measurement every two seconds.

In Figure 3.32 we show these measurements on otherwise empty instances,
not running any additional workload. As we would expect both the user cpu
percentage in Figure 3.32(b) and steal time in Figure 3.32(a) are close two zero.
This is because there no potential for involuntary waiting for cpu capacity (and
therefore cpu steal) if there is no demand for cpu capacity.

More interestingly are the results in Figure 3.32. Here we created demand
for cpu capacity by running a cpu intensive benchmark on each instance. We
choose uBench [76] for this purpose, mainly because uBench has two distinct
phases. First uBench generates a cpu intensive workload with one thread per
core. This ensures that we fully utilize several virtual cpu cores available on
the large instance types. After this first phase uBench generates a memory I/o
intensive workload in order to measure the memory performance. This phase
requires also a fair amount of cpu capacity but less compared to first phase.
These two distinct phases of cpu utilization allow us to differentiate between
the two causes for cpu steal. During the cpu intensive phase it might be that
the steal time is simply caused by demanding more cpu capacity than assigned
to the virtual instance. During the memory I/O intensive phase the instance
demands some cpu capacity but due to the I/O bound characteristic of the
workload this will usually be less than the maximum cpu capacity assigned to
the virtual instance. Hence we can observe contention related cpu steal times
in this case.

These two phases of uBench can nicely be observed in Figure 3.31(b) which
shows the user cpu utilization. We can see that there are phases of mostly
100% cpu utilization (e.g., the first 80 measurements) followed by phases with
lower cpu utilization (e.g., measurements 80 to 120). Interestingly the spread
of potential percentage values is quite high during the cpu intensive phases
and quite stable during the memory intensive phases. Moreover during the cpu
intensive phase the smaller the instance type the more and lower percentage
values we measure. This is an indicator that the cpu has maximum assigned
cpu capacity. Hence once the instance or virtual cpu has exceeded it assigned
share, the cpu will be idle if not required by another virtual instance. As for
the m1.xLarge instance type only one virtual instance is scheduled per physical
machine, the maximum assigned cpu capacity is equal to the maximum physical
cpu capacity. Hence there is no need to have a virtual cpu idle because it
exceeded its maximum share on the m1.xLarge instance type. In the second
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memory intensive uBench phase we usually require less cpu capacity than the
assigned maximum capacity. Therefore the cpu utilization is stable across all
instance types as no virtual cpu exceeds it maximum assigned share.

In Figure 3.31(a) we show the corresponding cpu steal percentage measure-
ments. First we observe that the smaller the instance type the higher the cpu
steal percentage. This is an indicator that there is either a smaller assigned
maximum share or a higher contention for smaller instance types. For the
m1.xLarge the cpu steal percentage is almost always 0 as a m1.xLarge virtual
instance corresponds to a physical machine, Again, we observe the two distinct
phase. During the cpu intensive phase (i.e., measurement 0-80) we observe a
high variance between measurements per instance types. The reason for this
that the virtual cpu attempt to allocate as much CPU capacity as possible.
During the memory I/O intensive phase (i.e., measurement 80-120) the cpu
steal percentages per instance type are more stable. This is caused by the
lower overall cpu consumption.
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Figure 3.31: top measurements while running uBench
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Figure 3.32: top measurements on otherwise empty instance
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So the question is whether a high steal CPU percentage might be an indicator
for performance problem. To answer this question we collected steal CPU per-
centages in addition to our other benchmarks. As before we distinguish three
different phases for collecting the CPU steal percentage: while CPU bench-
marking where the CPU load is very high, while memory benchmarking where
CPU load is medium, and while no additional load is on the system. As before
we used uBench [76] for both the CPU benchmark and memory benchmark.
During each of these three phases we take a total of 50 measurements on each
node and then consider the average. Note that while no additional load was
on the system the CPU steal percentage was as expected always below one
percent. Therefore we do not show detailed graphs for this phase.

In Figure 3.33 we show the steal percent numbers for the individual nodes of
three sample clusters Here we see that the average performance while running
the uBench CPU benchmark is between 50 and 60 percent which is similar
to our initial measurements in Figure 3.31. The difference between individual
nodes is not very high, so there are no nodes experiencing massive contention
with other nodes. More surprisingly the CPU steal percentage in Figure 3.33(b)
while running the uBench memory benchmark is slightly higher.

Next we want to take a look how the cpu steal percentage correlates with the
measured CPU performance. Therefore we plotted the same data (i.e., averaged
cpu steal measurements for each node of the three sample cluster) against the
measured CPU performance in Figure 3.34. Unfortunately there is no signifi-
cant correlation between the two values for both the CPU benchmark phase in
Figure 3.34(a) and also the memory benchmark phase in Figure 3.34(b). These
results indicate that a higher cpu steal percentage does not result in an overall
less CPU performance.

Last, we take a quick look on whether between clusters there are difference in
the average cpu steal percentage (i.e., taking the average of all nodes in a given
cluster). This could result if a certain cluster is allocated on a highly utilized
rack of physical machines. But the measurements in Figure 3.35 indicate that
this is not the case, as the cluster-level average values for both phases are very
close to each other.

One problem with measuring CPU steal percentage is the problem to distin-
guish between the two causes: exceeding the CPU share and actual contention
with co-located virtual instances. We would recommend to monitor steal per-
formance and drop instances from a cluster which experience a very high cpu
steal percentage compared to comparable instances. Comparable instances
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refers here to other instances of the same instance type running a compara-
ble workload. Those instances are likely to to experience cpu contention with
other co-located instances. As also cpu steal percentage would cause primarily
variance in a single node performance (which we saw to be relatively stable
in Section 3.5.9). Therefore CPU steal percentage is not useful for measuring
the heterogeneity of an cluster. Hence we will continue using Hetcluster for
measuring heterogeneity.
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Figure 3.33: Average Steal CPU Percentage Measurements for individual
Nodes.
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Figure 3.34: Average Steal CPU Percentage Measurements for individual Nodes
by CPU Performance.
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Figure 3.35: Average Steal CPU Percentage Measurements for Cluster.
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Coefficient of Correlation Performance COV
CPU -0.6492 0.0735
Network -0.461 0.4245
IO-Read 0.1393 0.6500
IO-Write -0.52815 0.2640

Table 3.11: Correlation of individual components and average MapReduce job
runtime.

3.6.4 Application Characteristic

Next, let us revisit the assumption that each single characteristic in HETcluster

and PERFcluster has an equal effect on the MR runtime.

We therefore consider the correlation between the different performance com-
ponents (such as CPU performance) and the average MapReduce runtime.
We again do this considering two dimensions: performance (i.e., the individual
components of PERFcluster) and heterogeneity (i.e., the individual components
of HETcluster). As before we normalize the performance measurements in order
to obtain comparable values for the coefficient of correlation. Again we use the
global average, meaning the average of all measurements across all clusters as
normalization constant. Table 3.11 shows pearson’s coefficient of correlation
for each of these individual measures with the average MapReduce job run-
time. Recall that a negative coefficient of correlation between a performance
measure and average job runtime means that higher performance indicates less
job runtime (which is what we would expect). On the other hand a positive
correlation between a COV measurement and average job runtime means that
a higher COV measurement indicates also longer running jobs.

Let us first look at the correlation of the individual performance components
with the average job runtime. We see that CPU, Network, and IO-Write have
a significant negative correlation. The correlation between CPU performance
and runtime seems to be the most significant, quickly followed by IO-Write per-
formance and then Network performance. This is in line with our expectations
and the measured correlation between PERFcluster and average job runtime.
What is more surprising is the less significant and positive correlation between
IO-Read performance and average job runtime. This would mean that a higher
IO-Read performance actually corresponds to slower job runtimes. But looking
at the significance of this correlation we quickly see that it is way less significant
compared to the other performance components. The most likely explanation
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for this strange behavior (especially when compared to the significant negative
correlation coefficient for the IO-Write performance) can be found in the Ama-
zon storage structure: As the default IO storage device is EBS mapped storage,
meaning it is attached via network. Now when all nodes start start reading
large amounts data at the beginning of the MapReduce job these attached stor-
age quickly becomes a bottleneck. The writing of the result to disk is stretched
over a longer timeframe and also the output of a MapReduce job is usually
smaller than its input (roughly factor of 10 in our benchmark job). Next, we
consider the correlation of the individual heterogeneity components (i.e., COV
for a given component) with the average job runtime. We notice that all co-
efficients are positive and the variance in IO-Read and network performance
have the most significant positive correlation with the average job runtime.
This means that the given MapReduce job is especially sensitive to variance
in these two performance characteristics. On the other hand variance in CPU
performance has no significant correlation with the job runtime. Note, that
this behavior might be different for another MapReduce job. Another MapRe-
duce job performing K-means clustering [112] which has a CPU intensive Map
function will be more sensitive to variance in CPU performance.

3.6.5 Cluster Heterogeneity and Runtime Variance

Another interesting question is how the the cluster heterogeneity HETcluster

effects the variance of our MapReduce job runtimes. This is not directly related
to our initial question of how the heterogeneity effects the overall runtime.
Still, when considering predictable and robust query performance the runtime
variance is a valuable measure for cloud users. For quantifying the runtime
variance we use two different measurements: First, we use again compute the
COV . But as we only have three runtime measurements for each cluster the
standard deviation in the COV computation is limited in its statistical value.
Therefore, we also consider the absolute difference between the minimal and
maximal runtime Diff as a measure for runtime variance. Note, that Diff
is also a relevant measure for the users as it specifies the time range in which
they can expect the query to finish. We again use pearson’s coefficient of
correlation as defined in Section 3.6.2 to quantify the correlation between both
values. Note that we use the same set of measurements as in Section 3.6.2.
When considering the correlation between HETcluster (i.e., a combination of
the COV s for the different performance measurements for the specific cluster)
and the COV of the three MapReduce runtimes measurements, we see a rather
small correlation with r = 0.132. This means that a high cluster heterogeneity
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does not directly coincides with a high runtime variance measured by with the
COV . We assume this is partly due to the small number of data points used
to compute the standard deviation.

On the other hand when considering the Diff (i.e., the longest job runtime for
a given cluster minus the fastest job runtime) we obtain a significant positive
correlation with r = 0.423. This means that for more heterogeneous clusters
also the absolute deviation in runtimes is larger. Therefore the user has to deal
with less predictable and robust performance.

3.6.6 Variance Problems for HDFS

Next, we consider the effects of performance variance on HDFS performance.
Herefore, we also measure the HDFS upload time for a 10GB dataset which
was previously partitioned on the different nodes in each cluster (i.e., parallel
upload).

As we can see in Figure 3.36 there is also variance the HDFS upload times.
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Figure 3.36: HDFS Upload Variance for 100GB Data on 10 Node cluster.

In order to explain the variance further we take a detailed look at a single HDFS
upload on a 100 node cluster. Recall that we upload data in parallel from each
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Figure 3.37: HDFS per Node Upload Time on 100 Node cluster .

node in the cluster. Figure 3.37 shows the local upload times per node. As
one can see, the overall runtime is dominated by a few outlier nodes which
basically limit the overall runtime. The surprising fact is that nodes finishing
last are actually the nodes having the best I/O performance. This behavior is
a result of the HDFS block placement strategy: When the namenode realizes
that a given node takes longer to store blocks, it will eventually stop placing
HDFS data blocks on these slow nodes. Hence, the fast nodes have to store
more remote HDFS data blocks (i.e., HDFS data blocks from other nodes) and
hence take longer to finish their local uploads.

Another important factor for HDFS read performance and therefore MapRe-
duce job runtime is the placement of blocks. HDFS tries to locate the blocks
as equally between nodes as possible in a homogeneous cluster, but this is not
anymore true for heterogeneous clusters.
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3.7 Performance Variance for Software as a Service

So far we focused in IaaS Cloud service offer (i.e., we allocate virtual machines
and execute benchmarks on top of these virtual machines). As Cloud vendors
also offer Software as a Service (SaaS) such as AWS Elastic MapReduce [18],
the question arises whether these services suffer from the same performance
variance. In theory an SaaS provider has more potential to reduce the variance
in SaaS offers as compared to IaaS offers. First the vendor has more control over
the environment as he is responsible for most of the application stack including
operating system and settings and application settings. Secondly, the workload
can be more easily estimated for a given self-controlled software than for the
more general IaaS setting where the user might issue any kind of workload. In
order to answer this question we execute the same MapReduce job UV used
in Section 3.3 using AWS Elastic MapReduce. The UV MapReduce job uses
the following relation UserVisits (sourceIP, visitedURL, visitDate, adRevenue)
as input and computes the total sum of adRevenue grouped by sourceIP in
UserVisits. On AWS EMR we used 5 small instances in the US East region
and 25 GB of UV data uploaded to S3 buckets located in US East. We used
the EMR provided Hadoop version 1.03 and otherwise the default settings of
EMR. The setup was launched every three hours for a total of 80 runs. Recall
that the Job in Section 3.3 was executed over 100GB UV on a 50-virtual cluster
with small instances and a custom deployment of Hadoop 0.19.

The end-to-end job runtimes are shown in Figure 3.38. Note that these end-to-
end job times include setup and shutdown of the EMR cluster. The variance
with COV of 12.5% for the end-to-end job runtimes is comparable to the COV
of 10% for the MapReduce job runtimes in Section 3.3. As the reader might
have noticed the comparison is not quite fair as we are comparing end-to-end
runtimes to MapReduce job runtimes. To make the comparison we decompose
the end-time-end job runtimes into the MapReduce job runtimes in Figure 3.39
and the overhead time including cluster setup and shutdown in Figure 3.40.
With this decomposition we can see that the MapReduce job runtime incurs a
smaller COV of 12.0% compared to the overhead COV of 17.7%. This difference
in variance is due to the availability of nodes: As for EMR cluster EC2 tries to
allocate the nodes close to each other (similar as if a user request a cluster of
nodes) the time until such cluster can be allocated varies. The difference when
comparing the MapReduce only COVs (10% for the IaaS self-allocated cluster
and 12% for the SaaS cluster) can be partially explained by data loading. In
case of the self-allocated cluster the data is stored in the clusters HDFS, while
for the SaaS cluster it has to be loaded from S3. The difference in how the data
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is loaded is a result of the SaaS nature of EMR. Overall we can see how the
architecture of such SaaS influences the response time variance. EMR creates
a new virtual cluster for each job. Another option would be to keep a set of
virtual or physical nodes and use those nodes to setup the requested Hadoop
cluster. An even more extreme option would be to use a large multi tenant
MapReduce cluster for all jobs. Besides the privacy concerns of these solutions,
the variance profile would look different for each solution. For example the
setup time would be reduced in both solutions.
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Figure 3.38: EMR overall job runtime including setup
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Figure 3.39: EMR MapReduce only runtime
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Figure 3.40: EMR Overhead (Cluster Setup)
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3.8 Conclusion

Performance variance is a major issue when using cloud infrastructure or ap-
plications in the cloud. The promise of cloud computing that users do not
have to know about the specifics such as place or system where their applica-
tion is executed unfortunately also implies a loss of control about performance
relevant criteria. We saw in Section 3.3 that when allocating instances having
the same specification users can still experience a large performance variance
between these ”equal” instances. This variance is visible for almost all relevant
performance characteristics including CPU, I/O, and network. The only per-
formance characteristics which is relatively stable—also due to the fact that it
can be easily virtualized and shared among users—is the memory performance.
Also related metaservices such as provisioning or shutdown of instances suffer
from performance variance. One can understand and lower the performance
variance by not accepting the cloud as a black box but considering the actual—
in contrast to the specified—system. This is due to the fact that most cloud
providers use internally a mix of different systems which have different perfor-
mance characteristics.

These differences not only affect low level performance characteristics only cap-
tured by performance benchmark tools but also effects real application perfor-
mance. In Section3.6 we saw that even large cluster systems and applications
running on such large clusters are affected by such performance variance.

As for such applications there also exist direct SaaS/PaaS offerings the next
step for us was to examine the performance variance of AWS Elastic MapRe-
duce as an example for such offering. In Section 3.7 we show that the per-
formance variance with a COV of 12.5% is comparable to the performance
variance in the previous case where we deploy the same application on an IaaS
cluster.

We only considered variance between single instances, so the question we con-
sider in Section 3.5.9 is how the performance varies for a single long running
instance over time. Here we see that even in such setting performance variance
one experiences performance variance with a COV up to 37.5%.

Next in Section 3.5.10, we look at the question whether performance variance
is just a problem of Amazon AWS. Therefore we ran a subset of the same
experiments on Google’s Cloud Service and Microsoft’s Azure Cloud. It turns
out that performance variance is a problem present across all providers. The
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only advantage of new and smaller cloud providers might be that they have
less heterogeneity in their systems and data center.

As our initial experiments date back to 2010 we asked ourselves in 2013 whether
the situation has changed. In Section 3.5.8 we show that performance variance
is still a problem. The most noticeable difference is that today there exits
even more different underlying system configuration each having different per-
formance characteristics. So the approach to understanding and lowering per-
formance variance by inspecting the underlying system has become even more
important. This holds especially for the placement of instances and applica-
tions being sensitive to network I/O performance variance as the number of
data centers has grown.

To summarize we would give the following guidelines for cloud users working
with performance critical system:

• Be aware of performance variance as it is a consequence of using cloud
systems.

• Be aware that the low level system variance affects applications as well.

• In order to reduce the performance variance consider as much information
as possible about the underlying systems.

• Keep your systems and applications as close together (at best in the same
datacenter) as possible considering your availability constraints.
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4 Reducing Cluster Heterogeneity

4.1 Introduction

As we have seen performance heterogeneity between different nodes can pro-
long the runtimes of MapReduce jobs. So how can we obtain a better, more
homogeneous cluster?

One way is to allocate more nodes than actually required, and then remove
nodes one by one. Especially for long running jobs in the order of several hours
the overhead cost of allocating a few additional nodes is quickly amortized. For
the removal process we explore three different approaches: the variance driven
approach, the system driven approach, and the performance driven approach.
Using the variance driven approach we first remove the node contributing most
heterogeneity to the cluster. The system driven approach on the other hand
uses the cpu type information and tries to achieve a homogeneous cluster in
respect to these CPU types (and the other physical system parameters tied to
the CPU). The performance driven approach tries not to optimize the hetero-
geneity directly, but rather always removes the node with least performance
first.

4.1.1 Variance driven Cluster Optimization

For the variance driven approach we execute our established set of micro
benchmarks and then terminate the instances contributing most heterogeneity.
Hence, after measuring the individual COV and MapReduce job runtime for
the entire cluster, we terminate the instance having the largest impact onto
HETcluster, i.e.,: argmininstance(HETcluster/instance). By repeating this pro-
cess, we obtain a more homogeneous cluster with each step.

To investigate this approach we again used the clusters of 25 instances
and ran the above described micro benchmarks. After determining
argmininstance(HETcluster/instance) we terminated the identified instance.
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Next, we measured the MapReduce job runtime on this reduced cluster. Note,
that prior to this measurement we rebalance the data in HDFS. This means
that all data blocks will have again the same replication factor and each data
node will have roughly the same number of blocks. We repeat this removal of
instances and measure MapReduce performance until our cluster consists of 20
nodes. In general we do not have to remove nodes individually. Instead after
collecting all performance measurements one can simply remove the all desired
nodes at once.

One problem with this approach is how to determine the best target clus-
ter size? In theory a cluster with a single node will have the minimal value
HETcluster but then MapReduce runtime will be awful for large datasets. So
how many nodes should we drop for optimal performance? We have to consider
several factors to answer this question:

• Do we only consider the performance or also the price ration? If we would
not care about the price we would allocate a very large cluster and then
drop a large percentage of the nodes. But in a realistic setting this would
be too expensive.

• The relative performance difference between nodes. If all nodes have by
chance a similar performance one does not have to reduce the cluster size
at all.

• How is the distribution of performance between nodes? For example,
what is the best solution in cases where in a 20 node cluster we have 10
nodes of processor type a and 10 nodes of processor type b?

To deal with these problems our approach considers the relative decline in
HETcluster if we remove an instance from the cluster. Consider a cluster with
n nodes, where all nodes have almost equal performance and hence contribute
the same amount of heterogeneity to HETcluster. When removing a random
node x, we would expect: HETcluster−HETcluster/x ≈ HETcluster

n . In such case
we should not remove the node as it is too similar to all other nodes. The
above experiments showed that a node should be removed if its contribution
to HETcluster is more than twice the expected value, hence: HETcluster −
HETcluster/x > HETcluster

n . We continue to remove nodes until there is no node
fulfilling this criteria anymore.
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4.1.2 System driven Cluster Optimization

As a second strategy we try to reduce the heterogeneity in the cluster by con-
sidering the underlying CPU type. As we saw in Section 3.3 a virtual instance
might run on different CPU types (and overall systems) each having different
performance characteristics. Therefore this approach tries to obtain a more
homogeneous cluster in respect to underlying systems. To achieve this goal we
determine the dominant system types (i.e., the CPU types which has the largest
share across all instances in the given cluster). When removing instances we
choose instances from the least frequent group(s). A central advantage of this
approach is that one does not have to run costly benchmarks as for the variance
driven approach.

4.1.3 Performance driven Cluster Optimization

As baseline for the improvement of MapReduce performance we also use the
performance driven approach. Here one always removes the least performant
node. This could for example be a node having a lot contention with co-
located instances. As a measure of node performance we choose PERFcluster

as a simple linear combination of the individual performance characteristics.
Note, that this definition is corresponding to the definition of PERFcluster in
Section 3.6.2.

P ERFnode =
CP U

GAV G(CP U)
+

IO −Read

GAV G(IO −Read)
+

IO −W rite

GAV G(IO −W rite)
+

Network

GAV G(Network)

4.1.4 Comparison

In order to evaluate these approaches we start with 30 nodes cluster and then
iteratively remove nodes until the cluster consists of 20 nodes. At each step we
recompute HETcluster and measure the average MapReduce job runtime (as
before we report the average of three runs). We repeated this procedure for a
total of five different initial clusters and the three different approaches.

In Figure 4.1 we show the decrease of HETcluster for each iteration. We
can see that the variance driven optimisation achieves the fastest decrease of
HETcluster across all clusters. This is expected as we choose the node to drop
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according to this criterium. The other two approaches are only close seconds,
at many cluster sizes achieving the same HETcluster score.

Especially, if we look at the HETcluster for the 20 node clusters we see a
comparable performance between the three approaches. So for a larger set
of dropped nodes the approach does not matter too much.
This is confirmed when comparing the removal decision (i.e., nodes which have
been dropped by one approach but not the other). The variance driven and
system driven approach differ by only one to three decisions (with an average
of 1.8 decisions). When comparing the performance driven approach to the
variance driven approach the difference is only slightly worse with one to four
dropped nodes and an average of 2 nodes differing between both approaches.

Next, let us compare the MapReduce job performance in Figure 4.2. Here
the average runtime does not differ significantly between the three approaches.
But interestingly, if we consider the average performance for each cluster size,
we obtain the minimum average runtime for a cluster size of 28 nodes with
an average improvement of 134 seconds compared to the 30 node initial clus-
ter. This confirms our hypothesis that smaller, but more homogeneous cluster
have a better MapReduce performance. The additional overhead we had to
allocate is only at six percent of the initial cluster size, especially if we con-
sider that many MapReduce jobs run for several hours and one can schedule
several MapReduce jobs on a given cluster this overhead quickly pays off. Allo-
cating more additional nodes—and hence terminating more nodes—decreases
the overall MapReduce performance, but the the performance per node i.e.,
number nodes
job runtime still improves.
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(a) Variance Driven Optimisation.
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(b) System Driven Optimisation.
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(c) Performance Driven Optimisation.
Figure 4.1: Cluster Heterogeneity when Reducing the Cluster Size.

116



 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 20  22  24  26  28  30
M

R
 R

un
tim

e 
[s

ec
]

Number of Cluster Nodes

Cluster 1
Cluster 2

Cluster 3
Cluster 4

Cluster 5

(a) Variance Driven Optimisation.
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(b) System Driven Optimisation.
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(c) Performance Driven Optimisation.
Figure 4.2: Average MR Job Runtimes when Reducing the Cluster Size.
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4.2 Conclusion

As we have seen in Section 3.6 Performance variance among different nodes in
a cluster has a negative impact on MapReduce performance at different levels
including HDFS upload and job runtime. This is caused by the assumption
of homogeneous node performance which is inbuilt into the various scheduling
components.

In this Chapter, we considered three different algorithms for reducing the clus-
ter performance. All were based on the idea of allocating a larger cluster than
required for a brief period of time and then select the optimal subset of nodes.
Variance Driven Optimisation select this subset by trying to reduce HETcluster

directly. Variance Driven Optimisation yields the best performance, measured
by MapReduce runtime, but requires the upfront execution of benchmarks on
each node.
Performance Driven Optimisation also requires the prior execution of bench-
marks, but then selects the nodes with the best performance. Still the resulting
MapReduce performance is comparable to Variance Driven Optimisation. Both
approached can also optimise for more specialised setting, such as IO bound
jobs requiring a focus on IO performance.
System Driven Optimisation instead uses the observation made in Chapter 3.6
that the performance variance for a given underlying system type is much low
lower than the variance across different system types. This has the advantage
that we do not have to run expensive benchmarks upfront but only have to
check the /etc/proc file on each node. As the MapReduce runtimes are com-
parable to the other two approached, we would recommend this approach to
settings without additional requirements such as IO bound jobs.

Overall we saw that by acquiring just a few additional nodes in the beginning,
we can improve the MapReduce performance by five to ten percent compared
to the initial larger cluster. Especially for long running MapReduce jobs or
MapReduce cluster executing several jobs the overhead of the additional nodes
at start up time can become negligible. The number of additional nodes to
allocate is a tradeoff between cost and overall runtime of the cluster, we have
seen performance per node, i.e., number nodes

job runtime improves even if we drop 1/3 of
the initial nodes.
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5 Processing Incremental Data using
MapReduce

MapReduce has become quite popular to analyse very large datasets. Nev-
ertheless, users typically have to run their MapReduce jobs over the whole
dataset every time the dataset is appended by new records. Some researchers
have proposed to reuse the intermediate data produced by previous MapRe-
duce jobs. However, these existing works still have to read the whole dataset
in order to identify which parts of the dataset changed. Furthermore, storing
intermediate results is not suitable in some cases, because it can lead to a very
high storage overhead.

In this Section, we propose Itchy, a MapReduce-based system that employes a
set of different techniques to efficiently deal with growing datasets. The beauty
of Itchy is that it uses an optimizer to automatically choose the right technique
to process a MapReduce job. In more detail, Itchy keeps track of the provenance
of intermediate results in order to selectively recompute intermediate results
as required. But, if intermediate results are small or the computational cost of
map functions is high, Itchy can automatically start storing intermediate results
rather than the provenance information. Additionally, Itchy also supports the
option of directly merging outputs from several jobs in cases where MapReduce
jobs allow for such kind of processing. We evaluate Itchy using two different
benchmarks and compare it with Hadoop [44] and Incoop [94]. The results
show the superiority of Itchy over both baseline systems. In terms of upload
time, Itchy has the same performance as Hadoop and it is ∼1.6 times faster
than Incoop. In terms of job runtime, Itchy is more than order of magnitude
faster than Hadoop (up to ∼41 times faster) and Incoop (up to ∼11 times
faster).
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Table 5.1: Example Data for running Example

(a) Input to the first-job (SALES)

id category price
r1 100 b 4
r2 189 b 6
r3 132 c 2
r4 73 f 9
r5 150 f 9

(b) Appended records (SALES’)

id category price
r6 208 g 3
r7 205 c 6

5.1 Introduction

The MapReduce paradigm and especially the open source implementation
Hadoop have become the de facto standard for large scale data processing
[106, 168, 170, 167]. This success is mainly based on the ease-of-use of MapRe-
duce, which enables non-expert users to process terabyte-sized datasets. In
practice, these large datasets frequently change over time, usually by having
new data appended. One example for such changing dataset is Google’s in-
verted search index: webpages are added, updated, and deleted all the time.
Still, the ratio of changed data is typically only a small fraction compared to
the total dataset size [151]. Using the standard Hadoop MapReduce frame-
work, one has to process all the web pages again in order to update a single
page in the inverted search index. Indeed, this is not suitable for large datasets
as it requires a lot of computing resources and also time until the new search
index becomes available.

Let us see through the eyes of a typical Hadoop user (say Alice). Alice
is a data analyst at a company and executes queries over several terabytes
of data every day. A typical job for her could be similar to the follow-
ing aggregation query: SELECT category, AVG(price) FROM SALES GROUP
BY category. Alice runs this query over the data shown in Table 5.1(a). For
simplicity, we only consider very few records, but in reality such datasets can
have many gigabytes to terabytes of data.

To answer this query with MapReduce, Alice writes a MapReduce job (say
JobAvg) in which the map function simply emits the category attribute as in-
termediate key and the price attribute as intermediate value. The reduce func-
tion then just takes the average over the list of intermediate values it received
as input. Alice executes JobAvg for the first time on SALES (which takes a while
for large input datasets) and receives the correct output: {(b,5),(c,2),(f,9)}. We
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denote the first run of a given MapReduce job as first-job from here on. After
a few days, Alice appends the records in SALES’ Table 5.1(b) to the SALES
Table 5.1(a). Again, we only consider very few records for simplicity. As Alice
wants to retrieve the correct output: {(b, 5),(c, 4),(f, 9),(g, 3)}, she has to run
JobAvg over both the SALES table and the appended records in SALES’. We
denote such later run of a MapReduce job on the grown dataset as incremental-
job. The main problem for appending data in MapReduce is that typically one
has to reconsider some records of the SALES table when processing the records
in the SALES’ table. In Alice’s example this would be the record (132, c, 2)
in the SALES table. This record belongs to the same category c as the newly
appended record (205, c, 6) and hence Alice has to consider it for computing
the correct average for category c. However, using Hadoop MapReduce, Alice
has to read the entire SALES table again to recompute the correct average for
category c. This takes a while as SALES is typically very large. In fact, this
was one of the main reasons for Google to move away from MapReduce to a
new system coined Percolator [151]. Nonetheless, moving to a different system
requires Alice to adopt a new programming paradigm and adapt her applica-
tions accordingly. Thus, Alice still wonders if there exists a way in MapReduce
to process the new records in SALES’ without reading the entire SALES table
again.

Some existing works (e.g., Incoop [94] and DryadInc [152]) address this problem
by applying memoization to map and reduce tasks. A memoized task caches
the intermediate results for the given input while executing a MapReduce job
for the first time. When executing an incremental-job, each map task checks
whether its input has changed with respect to the first-job. If the input did
not the change, the map task from the incremental-job simply returns the
cached results without actually processing its input. A disadvantage of these
approaches is that they still have to read the entire input dataset in order to
identify which parts of the dataset changed. This means that each map task
expects to receive the same data input in order to reuse previously produced
intermediate results. Furthermore, storing intermediate results can lead to a
very high storage overhead. For example, in case of Incoop the overhead can
be up to 9 times the initial input size [94]. As datasets usually have several
terabytes of data, storing all intermediate results for many jobs is not an option
in most Hadoop clusters.

Therefore, Alice still has the problem of dealing with her growing datasets in
an efficient manner.

121



5.1.1 Idea

To make Alice’s life easier, we propose Itchy (Incremental TeCHniques for Yel-
low elephants): a MapReduce framework to efficiently process incremental-jobs.
The main observation behind Itchy is that different MapReduce jobs require
different approaches for processing incremental-jobs. Therefore, in contrast to
previous works, Itchy provides an optimiser to automatically choose the best
technique for performing each MapReduce job. The main idea of Itchy is to
identify the characteristics of each incoming job and accordingly store addi-
tional information that allows for executing incremental-jobs efficiently. This
additional information can either be the provenance of intermediate results,
i.e., which input record produces which intermediate key, or the intermediate
results themselves, i.e., the output produced by map tasks.

For MapReduce jobs producing large-size intermediate results or having map
functions that are not CPU intensive, Itchy stores a mapping from intermediate
keys to input records in the form of Query Metadata Checkpoints (QMCs) [156].
However, in contrast to RAFT [156] that stores QMCs at a map task level (for
failover purposes), Itchy stores QMCs at a intermediate key level. Hence, Itchy
can recompute a given individual record independently of the map task that
originally processed the individual record.

Still, QMC information might be larger than intermediate results themselves.
Thus, for MapReduce jobs producing very small-size intermediate results or
having CPU intensive map functions, Itchy stores intermediate results. This is
similar to the memoization approaches presented in [94, 152]. However, Itchy
differs from these previous works in that it keeps track of intermediate results
at the intermediate-key level rather than at the task level. Again, this allows
Itchy to selectively recompute any given intermediate key.

Itchy can also decide to not store any additional information regarding inter-
mediate results in cases that MapReduce jobs allow for merging final outputs.
For example, consider a MapReduce job computing the total revenue of selling
a given product. In this case, Itchy can merge the final outputs of the first-job
and an incremental-job. As a result, Itchy does not have to process again any
record in the map phase or intermediate results in the reduce phase.
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5.1.2 Research Challenges

The idea behind Itchy triggers many interesting challenges when running a
first-job and an incremental-job:

• First-Job. Which different kinds of QMCs can be used for improving
MapReduce jobs over growing datasets? What is the tradeoff between
storing QMCs and intermediate results? How can we efficiently store
QMCs or intermediate results during the first-job without any changes
to users’ jobs?

• Incremental-Job. How can we efficiently utilize QMCs or intermediate
results to recompute only some records of the SALES table? How can
we do so with minimal changes to users? How can we process both the
SALES’ table and parts of the SALES table in a single MapReduce job for
efficiency? How can we efficiently merge the outputs of the first-job and
an incremental-job?

5.1.3 Contributions

We present Itchy, a framework to efficiently deal with growing datasets. The
main goal of Itchy is to execute incremental-jobs by processing only relevant
parts from the input of the first-job (e.g., the SALES table) together with the
input of incremental-jobs (e.g., the SALES’ table). We make the following
contributions:

• We first identify different classes of incremental MR jobs. Each of
these classes allows for different optimizations while processing growing
datasets. We then propose three different techniques to efficiently process
incremental-jobs, namely Itchy QMC (which stores provenance informa-
tion), Itchy MO (which stores the Map Output, hence intermediate data),
and Itchy Merge (which combines the output of MapReduce jobs).

• We show that deciding between Itchy QMC and Itchy MO is basically
a tradeoff between storage overhead and runtime overhead. Thus, we
present a decision model that allows Itchy to automatically balance the
usage of QMCs and intermediate data to improve query performance.
Thereby, Itchy can decide the best option for each incoming MapReduce
job considering both job runtime and storage overhead.
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• We present a framework that implements the Itchy ideas in an invisible
way to users. This framework uses Hadoop and HBase to store and
query both QMCs and intermediate data. The Itchy implementation
includes many non-trivial performance optimizations to make processing
incremental-jobs efficient. In particular, Itchy runs map tasks in two map
waves: one map wave to process the incremental dataset (containing the
appended records) and one map wave to process the initial dataset (the
input dataset to the first-job). This allows Itchy to perform incremental-
jobs in a single MapReduce job instead of two MapReduce jobs. As a
result, Itchy avoids reading, writing, and shuffling growing datasets twice.

• We present an extensive experimental evaluation of Itchy against Hadoop
MapReduce framework and Incoop. Our results demonstrate that Itchy
significantly outperforms both Hadoop MapReduce and Incoop when
dealing with incremental-jobs. We also show that Itchy incurs only neg-
ligible overhead when processing the first-job. Furthermore, we provide
a detailed comparison between using QMCs or intermediate data in dif-
ferent settings.

5.2 Hadoop MapReduce Recap

Let us first provide some background knowledge for the remainder of this Chap-
ter. First of all, since Itchy is based on Hadoop MapReduce, we discuss the
Hadoop MapReduce workflow in more detail. Then, we discuss the main prob-
lem of processing incremental-jobs with Hadoop MapReduce.

5.2.1 Hadoop MapReduce Workflow

Let us look in detail at what happens when Alice executes her MapReduce job
JobAVG, which is shown below in pseudocode:

map(Key k, value v):
emit(v.category, v.price);

reduce(IntermediateKey ik, values v[]):
emit(ik, avg(v));

Before starting her MapReduce job, Alice uploads the SALES table (i.e., Ta-
ble 5.1(a)) into the Hadoop Distributed File System (HDFS). Once her dataset
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is uploaded to HDFS, Alice can execute JobAVG using Hadoop MapReduce.
In turn, Hadoop MapReduce executes JobAVG in three main phases: the map
phase, the shuffle phase, and the reduce phase.

Map Phase. Hadoop MapReduce first partitions the input dataset into
smaller horizontal partitions, called input splits. Typically, an input split
correspond to an HDFS block. Hadoop MapReduce creates a map task for
each input split. Then, the Hadoop MapReduce scheduler is responsible of
allocating the map tasks to available computing nodes. Once a map task is
allocated, the map task uses a RecordReader to parse its input split into key-
value pairs. For Alice’s MapReduce job, the RecordReader produces key-value
pairs in the form (SALES.id;(SALES.category,SALES.price)) for each line
of input data. The map task then executes a map-call for each of key-value pair
independently. The output of a map-call might be zero or more intermediate
key-value pairs. For Alice’s MapReduce job, the map output is in the form
(SALES.category;SALES.price). Hadoop MapReduce stores the map output
in local disk.

Shuffle Phase. Hadoop MapReduce partitions the intermediate key-value
pairs by intermediate key and assigns each partition to a different reduce task.
The number of reduce tasks is user-defined. Then, Hadoop MapReduce shuffles
the partitions through the network to its respective reduce task. This means
that the intermediate results produced by all map tasks that have the same
intermediate key will end up in the same reduce task.

Reduce Phase. The reduce task executes a reduce-call for each group of
intermediate key-value pairs. The output of a reduce-call might be zero or
more final key-value pairs. Finally, Hadoop MapReduce stores the output of
reduce tasks in HDFS.

5.2.2 Incremental-Jobs in Hadoop MapReduce

A few days after Alice executed JobAvg, business continues and Alice receives
additional SALES’ records shown in Table 5.1(b)). At this point, Alice’s boss
wants to see the output of JobAvg including the records in Sales’. In an attempt
to update the output from her first-job processing SALES, Alice tries to run an
incremental-job only over the SALES’ table. The result for category g from
her incremental-job is correct since SALES contains no records for category g.
However, the result for category c is incorrect as her incremental-job did not
consider the record (132, c, 2) from the SALES table. Therefore, using normal
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Hadoop MapReduce, Alice has to run again her incremental-job over both the
SALES and SALES’ tables. This is because she has no way to specify the records
from SALES that are relevant when processing SALES’. Notice that, records from
the SALES table are only relevant, if they produce same intermediate key as
some records from the SALES’ table. Indeed, performing again an incremental-
job over the input dataset of a first-job (the SALES table in Alice’s example) is
not a good idea since such dataset is typically in the order of terabytes.

5.3 Classes of Incremental-Jobs

After a while, Alice notices that there are different classes of incremental-
jobs. First, appended records can contain inserts (i.e., new records) or updates
(i.e., overwritten records). While inserts have a previously unseen primary key,
which in Alice’s dataset is the id attribute, updates overwrite previously seen
records having the same primary key. We classify incremental-jobs whose input
datasets contain updates as being in the Update Class. For datasets contain-
ing only inserts, we have first to know if we can simply merge the output of
an incremental-job (incremental output) processing only the appended records
with the output of the first-job (base output). If so, we can then process the
first- and incremental-jobs independently and merge the base output with the
incremental output. Therefore, whenever an incremental-job allows for such
processing, we classify it as being in the Merge Class. Otherwise, we have to
consider records from the SALES table when processing the appended records.
We classify such incremental-jobs as being in the Recompute Class. In the fol-
lowing, we discuss each of these three different classes in more detail as each
allows for different ways to process incremental-jobs.
(1.) Recompute Class. When running MapReduce jobs in the Recompute
class, we have to consider records in the original input (SALES table) while
processing appended records in Sales’. For example, consider we append the
record (7, c, 6) to Alice’s SALES table, which belongs to the same category c as
the record (3, c, 2) in the SALES table. Hence, we have to consider the record
(3, c, 2) when computing the correct result {(c, 4)}. Then, Alice has to be aware
that the incremental output might overwrite some values from the base output.
In this example, the incremental output overwrites the base output for category
c.

(2.) Merge Class. MapReduce jobs in this class allow us for merging the
incremental output directly with the base output. This means that, for this
kind of MapReduce jobs, we do not have to reconsider the input of the first-job.
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Instead, we directly access the base output. Itchy Merge requires users to spec-
ify a merge function to combine the differential output with the base output.
For example, assume we vary the query of JobAvg from Section 5.1 as follows:
SELECT category, SUM(price) FROM SALES GROUP BY category. Here, we
can simply add the base output and the differential output for each intermedi-
ate key. In general, we can specify such a merge function, if the reduce function
is a distributive aggregation function [120]. In other words, the reduce function
should have have the following property:

∃ function G() : reduce({Xi}) = G(reduce({Xi,j})|j = 1, ..J)
Where {Xi} is the set of all intermediate values, and {Xi,j} is the set of inter-
mediate values in partition j for a given partitioning of intermediate values.

(3.) Update Class. Similar to the Recompute Class, for the MapReduce jobs
in the Update Class, we have to consider records from the input of the first-job
in order to update the output produced by such records. However, in contrast
to MapReduce jobs in the Recompute Class, we also have to consider that
results computed from overwritten records need to be changed. For example,
assume we append the record (132, b, 10) to the SALES table. This appended
record overwrites the record with key 132 in SALES. Since the category b of the
newly appended record is different from the old category c, the output for both
categories b and c changes and hence we have to update both outputs. Again,
the incremental output overwrites the categories b and c from the base output.

5.4 Itchy

In this section, we present the ideas for efficient incremental processing in Itchy
(Incremental TeCHniques for Yellow elephants). The central idea of Itchy is
to store additional data while running a MapReduce job for the first time
(i.e., when running the first-job). Then, Itchy uses this stored data to speed
up incremental-jobs when processing appended records. The type of additional
stored data varies among different incremental-jobs. We discuss in detail how
Itchy processes incremental-jobs that are in the Recompute Class and in the
Merge Class. Discussing how Itchy deals with updates is out of the scope of
this thesis.

In the following, we first discuss the two techniques Itchy uses for incremental-
jobs in the Recompute Class: Itchy QMC and Itchy MO. Generally speaking,
while Itchy QMC stores Query Metadata Checkpoints (QMC) to recompute only
a part of the input to the first-job, Itchy MO stores fine-granular intermediate
results (i.e., Map Outputs) to not have to touch at all the input to the first-job.
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Then, we present how Itchy supports merging different outputs for incremental-
jobs in the Merge Class. Since Itchy can use all these three techniques for
processing incremental-jobs, we thus discuss the tradeoffs among them. Based
on these observations, we present a model that allows Itchy to automatically
decide which of the three techniques to use for a given incoming MapReduce
job.

5.4.1 Itchy QMC

Alice’s problem is that using Hadoop she has to reprocess the entire terabyte-
sized SALES table each time she appends a few records. Recomputing the
entire terabyte-sized dataset is a serious performance overhead. Hence, the
challenge is to identify those records from the SALES table that are relevant
when processing the appended records. With this in mind, Itchy exploits the
fact that relevant records in the SALES table can be identified by the interme-
diate key they produce. Indeed, records in the SALES table are only relevant to
an incremental-job if they produce an intermediate key that is also produced by
some appended record. Therefore, Itchy first processes the appended records
using the map function. This allows Itchy to obtain the set of intermediate keys
IKinc produced by the appended records. Then, Itchy uses QMC to identify
the relevant records from the input to the first-job. Notice that, RAFT [156]
uses QMC to selectively recompute failed tasks. In contrast, here we show how
Itchy generalises QMC to deal with incremental-jobs. Itchy introduces a map-
ping QMCik that maps each intermediate key ik to offsets in the input to the
first-job (i.e., QMCik: ik → {offsets}). An offset identifies a record in a dataset
and consists of two parts: (1) an identifier of the dataset1 and (2) the actual
offset in the dataset. Thus, an offset requires 12 bytes of storage in total.

Figure 5.1 shows how Itchy collects the QMCik mapping when running the
first-job. First, Itchy processes the SALES table using the user-defined map
function as in standard Hadoop MapReduce 1 . Next, Itchy stores a QMCik

mapping for each intermediate key ik 2 . For simplicity, we consider just the
line number as offset in this example. Hence, the complete QMCik mapping for
the SALES table looks as follows {(b→ r1, r2), (c→ r3), (f → r4, r5)}. Then,
as in Hadoop MapReduce, Itchy processes the intermediate results using the
user-defined reduce function in order to produce the output of the MapReduce
job 3 .

1Itchy assigns an increasing integer value whenever a new dataset is encountered for the first
time.
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Now, let us focus on how Itchy processes the appended records in the SALES’
table (incremental-job). Figure 5.2 shows how Itchy processes an incoming
incremental-job using previously collected QMCik. Notice that, Itchy uses the
QMCik for identifying the relevant records in SALES. Thus, as a first step,
Itchy executes the user-defined map function over the additional records in
SALES’ and computes the set of relevant intermediate keys IKinc 1 . This
allows Itchy to identify the set of relevant records in SALES for processing the
incoming incremental-job. In our example, the map output when processing
only the records in Sales’ MOinc is {(g, 3), (c, 6)} and IKinc is {g, c}. Then,
Itchy retrieves the associated offsets from the QMCik for each intermediate
key ikx in IKinc 2 . Notice that, the intermediate key g ∈ IKinc is not part
of QMCik, because g is not produced by any record in SALES. In contrast, the
record (132, c, 2) in the SALES table produces the intermediate key c, which is
in IKinc. Therefore, Itchy retrieves only the relevant offset {r3} from QMCik.
This means that Itchy additionally has to process the record at position r3
in the SALES table. Itchy processes this relevant record (132, c, 2) using again
the user-defined map function and produces one map output from the orig-
inal SALES table, MOadd = {(c, 2)} 3 . Notice that, the user-defined map
function might produce several intermediate keys for a single record. Thus,
Itchy might end up with non-relevant intermediate keys in the reduce phase.
This is because Itchy is actually only interested in one of the emitted inter-
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mediate keys. To avoid this problem, Itchy post-filters the MOadd output so
as to consider only relevant intermediate keys in the reduce phase. At this
point, we already have all the intermediate results required for the correct
result. Thus, Itchy just has to execute the user-defined reduce function over
MOinc ∪MOadd = {(g, 3), (c, 6), (c, 2)} 4 . As a result, the reduce phase yields
the correct differential output: {(g, 3), (c, 4)}.

5.4.2 Itchy MO

As discussed in the previous section, Itchy QMC recomputes some records from
the SALES table when processing incremental-jobs. This is not suitable for jobs
having expensive map functions, for example K-means clustering [112].

An alternative solution for these cases is to store the intermediate values di-
rectly instead of the offsets. For this, Itchy can also store the intermediate
values for each intermediate key while processing the SALES table. The set
of all mappings from intermediate keys to intermediate values is the map
output (MO) itself, i.e., ik → {intermediate values}. In our running ex-
ample, the map output contains the following values for the SALES table:
MObase = {(b → {4, 6}), (c → {2}), (f → {9, 9})}. Then, when processing
the appended records in SALES’, Itchy retrieves the required intermediate val-
ues from MObase.

Algorithm 1 shows how Itchy processes incremental-jobs using previously
computed intermediate values. Like Itchy QMC, Itchy MO first computes
the output of the map phase for the records in SALES’, i.e., MOinc =
{(g, 3), (c, 6)} (line 2). Next, Itchy retrieves the relevant intermediate val-
ues from MObase, previously computed by the first-job (lines 3-7). Recall
that the intermediate key g was not produced by any record in SALES. Thus,
Itchy MO only retrieves the intermediate value (c, 2) from MObase and add
it to MOadd. Thus, after this operation, MOadd = {(c, 2)}. Then, Itchy
can execute the user-defined reduce function over the MOinc ∪ MOadd =
{(g, 3), (c, 6), (c, 2)} (line 8). As a result, Itchy again yields the correct dif-
ferential output: {(g, 3), (c, 4)} (line 9).

An important design decision of Itchy is that, in contrast to other systems such
as Incoop [94], Itchy stores intermediate results at an intermediate key level
rather than at a task level. This allows Itchy to avoid the all-or-nothing prob-
lem of other systems: other systems require running tasks from incremental-
jobs to have exactly the same input as previous tasks from the first-job to be
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Algorithm 1: MO-based processing of incremental-jobs
1 MOadd = {};
2 compute MOinc;
3 forall the ik in MOinc do
4 if ik ∈ MObase then
5 MOadd.add(MObase.getIntermediateValues(ik))

6 execute reduce phase for MOinc ∪ MOadd;
7 output differential file ;

able to reuse previously computed results; Itchy can selectively reuse only those
parts of the previously computed results having the required intermediate keys.
Furthermore, Itchy is also flexible in terms of task scheduling as it can reuse
previously computed results from any task regardless of where previous tasks
were executed.

5.4.3 Itchy Merge

Let us now focus on how Itchy deals with jobs in the Merge Class (see Sec-
tion 5.3). As an example of such job, we vary JobAvg from Section 5.1
to the following query JobSum2: SELECT category, SUM(price) FROM SALES
GROUP BY category. Here, Itchy merges the output from processing only the
appended records (i.e., the differential output) with the output of the first-
job (i.e., the base output) using a user-defined merge function. For JobSum,
this merge function simply adds, for each intermediate key, the results in the
differential output with the results in the base output.

The problem here is to identify the parts in the base output to merge with
while processing the appended records. Since the base output can have a
size of several hundreds gigabytes, scanning all base output would indeed hurts
performance. Dryad [152] uses for this purpose a Cache Server, which allows for
key-value access. However, caching to this Cache Server in addition to writing
to HDFS results in a higher cost for each storage operation. Therefore, Itchy
uses another type of QMC for identifying the relevant parts in the base output,
called QMCout. QMCout is a mapping from intermediate keys to offsets in the
base output (i.e., ik → {offsets}). Notice that, an offset in QMCout represents
the location of the final output produced by a given intermediate key.

Figure 5.3 shows the workflow when running JobSum for the first time (i.e., the
first-job). Itchy first uses the user-defined map 1 and reduce 2 functions to

2The AVG() function in JobAvg is not suitable for merging.
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obtain the base output. When writing the base output to HDFS, Itchy also
persists QMCout 3 . In this example, the QMCout mappings are {(b → o1),
(c → o2), (f → o3)}. Again, we show only the line number as offset for
simplicity.

Figure 5.4 shows Itchy’s workflow when processing the appended records in
SALES’ (incremental-job). First, Itchy again uses the user-defined map 1
and reduce 2 functions to obtain the temporary output. Next, Itchy needs
to merge the temporary output with the relevant parts of the base output.
Therefore, for each intermediate key in MOinc, Itchy retrieves the offset of the
output record that was produced by the same intermediate key 3 . For ex-
ample, consider the intermediate key c in the incremental-job (see Figure 5.4):
As the intermediate key c also occurred during the first-job, Itchy retrieves the
entry (c → o2) from QMCout. Next, Itchy needs to retrieve the actual output
produced by the first-job for each offset in the retrieved QMCout. For this,
Itchy directly retrieves the record at the relevant offsets in the base output 4 .
In our example, this is the record (c, 2) at offset o2. Itchy then uses the user-
defined merge function to merge the retrieved records from the base output
and the temporary output 5 . In our example, the merge function receives
the record (c, 2) from the base output and the records (g, 3) and (c, 6) from
the temporary output as input. The merge function then computes the sum
outputs the merged output records (g, 3) and (c, 8). The output of Itchy Merge
is again a differential file.
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5.4.4 Decision Model

At this point, the reader might have one natural question in mind: which of
these three techniques (Itchy QMC, Itchy MO, or Itchy Merge) should Itchy use
for a given job? As Itchy Merge requires a user-defined merge function, let us
first look at the main differences between Itchy QMC and Itchy MO. On the one
hand, Itchy QMC implies that we have to recompute values, while Itchy MO
allows us to simply retrieve those values. On the other hand, the intermediate
results stored by Itchy MO can become quite large, while Itchy QMC only
requires storing the intermediate key and an offset of 12 bytes size. Thus,
Itchy has to trade storage overhead with recomputation time.

Let us first consider the storage overhead in more detail. The storage size over-
head for intermediate results depends on the size of the attributes we require in
the reduce phase. For example, Alice’s example in Section 5.1 requires only the
category and price attribute in the reduce phase. To show the impact of the
size of attributes on the storage overhead, we vary the number of attributes in
the reduce phase. Therefore, we extend the SALES table 5.1(a) by ten additional
text attributes (att 1, att 2, ..., att 10). We assume that each text attribute
has an average size of 25 bytes and the total dataset size is 1TB. We also modify
the MapReduce Job JobAvg from Section 5.1 to include these ten new attributes
as follows: SELECT category, AVG(price), COUNT(DISTINCT att 1),...,
COUNT(DISTINCT att 10) FROM SALES GROUP BY category. As the counting
of distinct values is performed in the reduce phase, the attributes are included
in intermediate results. Then, we vary the number of attributes we included in
the query. Figure 5.5 shows the resulting storage overhead for storing interme-
diate results when running the modified JobAvg job over the extended SALES
table. For comparison, the purple line indicates the required storage size for
Itchy QMC, which is independent of the number of included attributes. As
one can see, the space overhead for storing intermediate results can be several
orders of magnitude higher than for Itchy QMC.

The second factor impacting Itchy’s tradeoff is the time for recomputing rele-
vant records, which mainly depends on the average map runtime. The longer
it takes the map function to process one record, the higher is the runtime over-
head for recomputing relevant records in Itchy QMC. In contrast, Itchy MO
avoids such recomputation costs by directly retrieving the respective values.

In contrast to both Itchy QMC and Itchy MO, Itchy Merge requires neither to
recompute relevant records nor to store intermediate results. Thus, Itchy Merge
seems to be the best option for processing incremental-jobs. However, it is not
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Figure 5.5: Storage overhead for intermediate results when varying the number
of additionally included attributes

always possible to provide a merge function, e.g., for a join query. Therefore,
we overall observe that all three techniques have their entitlement for existence
as it is not always possible to specify a merge function and there is a tradeoff
between storage overhead and runtime overhead.

This is the reason why Itchy uses all three techniques and includes a deci-
sion model to choose among them. Generally speaking, Itchy decides to use
Itchy Merge whenever users specify a merge function, otherwise Itchy decides
between Itchy QMC and Itchy MO based on the following measurements col-
lected while running a MapReduce job for the first time:
• Average Map Function Runtime (avgRuntime). How long does the map func-
tion take to process an individual record? This is an estimate for the cost of
recomputing a given intermediate key-value pair for Itchy QMC.

• Average Intermediate Value Size (avgValSize). How large is each intermediate
value? This estimates the storage overhead when storing intermediate results.

• Average Map Selectivity (avgSelectivity). How many input records produce
intermediate results? Not every input record necessarily produces intermediate
results (e.g., a selection predicate in a SQL like query). Highly selective queries
will reduce the amount of intermediate results to store. Hence, this measure-
ment improves Itchy’s estimates for storage overhead and runtime overhead.

Algorithm 2 describes in detail how Itchy decides which technique to apply.
For each incoming MapReduce job, Itchy samples the input variables (average
value size, average map selectivity and average map runtime) when process-
ing the first map task. Itchy first checks, if the Itchy’s third technique Itchy
Merge (see Section 5.4.3) can be used. Therefore, the decision model considers
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Algorithm 2: Itchy’s Decision Model
1 if isMergeFunctionSpecified() then
2 Itchy Merge
3 else if avgValSize <=sizeof(QMC ENTRY) then
4 Itchy MO
5 else
6 intermediateResultSize = avgValSize * avgSelectivity * #input records ;
7 if (avgValSize ) / avgRuntime < threshold then
8 Itchy MO
9 else

10 Itchy QMC

whether a merge function was specified by the user (line 1). If so, Itchy uses
Itchy Merge (line 2). The rational for this decision is that Itchy Merge has to
store no intermediate values (as in Itchy MO), but at the same time it requires
no recomputation of relevant records (as in Itchy QMC see Section 5.4.3 for
details). If no merge function is specified, the decision model checks whether
the estimated storage size for intermediate results is smaller than or equal as
for QMCik (line 3). This is the case when the intermediate value is only an
integer value. In such a case, Itchy uses the Itchy MO technique (line 4). Oth-
erwise, Itchy estimates the storage size for storing intermediate results (line 6).
Then, Itchy bases its decision on the ratio of average intermediate value size
and average map function runtime (line 7). If such a ratio is smaller than a
given threshold and hence intermediate results are small compared to the map
function runtime, Itchy uses the Itchy MO technique (line 8). Otherwise, Itchy
uses the Itchy QMC technique (line 10). Notice that, users can specify this
threshold according to their needs.

5.4.5 Applicability to other MapReduce Jobs

So far we discussed the applicability of Itchy to individual single relational
queries. Naturally the question arises the question how Itchy ’s ideas extend
to more more complex MapReduce jobs such as multiple relation as input or
multistage jobs. Itchy can process MapReduce jobs having multiple relations
without any alterations. Itchy MO and Itchy Merge work with the intermediate
results or the final output respectively and hence are not effected by having
multiple input relations. Itchy QMC considers offsets in the input, but as Itchy
QMC stores a file identifier along with each offset it can handle multiple input
relations. Another question is how Itchy supports Multistage MapReduce jobs
consisting of several individual MapReduce jobs (usually because the require
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disjoint shuffle phases). When dealing with such jobs Itchy faces the problem
that usually in between job results are not persisted (or deleted after the job has
finished). Hence Itchy QMC can only access the input data for the first job and
Itchy Merge can only access of the last job’s output. This leaves us with Itchy
MO for dealing with such workloads as here we persist the intermediate results
for each job. Itchy MO then processes the first job in the chain as is, next
Itchy MO takes the differential output of the previous stage as the incremental
input to the next stage until it outputs the final differential output.

5.5 Correctness

We now prove that Itchy produces indeed the correct differential output when
processing incremental-jobs. We focus on incremental-jobs in the Recompute
Class, i.e., we focus on proving the correctness of Itchy QMC and Itchy MO.
It is worth noting that we do not prove the correctness of Itchy Merge as
it depends on the user-defined merge function. We compare the differential
output with Hadoop’s output when processing both the input to the first-job
(in the following denoted as base input) and the input to incremental-jobs (in
the following denoted as incremental input) in a single MapReduce job. We
denote the output of this single Hadoop job as outHadoop−merged, the base
output produced by Itchy as outbase, and the differential output produced by
Itchy as outinc. Respectively, we denote the input to the reduce phase as
RIHadoop−merged (for Hadoop processing the merged input) and RIItchy−inc (for
Itchy processing the incremental input).

In the following, we first show in Lemma 1 that Itchy produces the correct
intermediate values. Next, we show in Lemma 2 that Itchy also produces the
correct set of intermediate keys. We then combine both lemmas to show the
overall correctness of Itchy when processing MapReduce jobs in the Recompute
Class.

Lemma 1. For each intermediate key ik in the intermediate results produced
by Itchy (i.e., RIItchy−inc), the associated intermediate values are the same as
in Hadoop (i.e., RIHadoop−merged).

Sketch. Let us consider an arbitrary intermediate key ikx ∈ RIItchy−inc.
Now, depending on the technique used by Itchy, there are two different options
to obtain the intermediate values:
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(1.) Itchy QMC recomputes all records from the base input that produce the
same intermediate key ikx. Itchy then combines these intermediate values with
intermediate values produced by the incremental input to obtain RIItchy−inc.
The intermediate values for intermediate key ikx in RIHadoop−merged are com-
puted by processing all records (in particular, all records producing ikx). There-
fore, in both cases, the same set of records produces the same intermediate
values for ikx. Hence, a deterministic map function will produce the same set
of intermediate values.

(2.) In case of Itchy MO, RIItchy−inc is the union of the stored intermediate
results from processing the base input and from processing only the incremen-
tal input. On the other hand, the records producing RIHadoop−merged are the
union of records from the base input and the incremental input. Hence, the
intermediate values for ikx ∈ RIItchy−inc and ikx ∈ RIHadoop−merged are pro-
duced by the same records. Thus, assuming a deterministic map function, the
intermediate values for ikx ∈ RIItchy−inc and ikx ∈ RIHadoop−merged are equal.

Lemma 2. Let IKchanged be the subset of intermediate keys in RIHadoop−merged

for which the intermediate values differ from the output produced by process-
ing the base input. The set of intermediate keys RIItchy−inc and the set of
intermediate keys IKchanged are equal. Formally, ikx ∈ RIItchy−inc ⇐⇒ ikx ∈
IKchanged.

Sketch. To demonstrate ikx ∈ RIItchy−inc ⇐⇒ ikx ∈ IKchanged, we show
that each sides of the equation implies each other.
(1.) ikx ∈ IKItchy−inc =⇒ ikx ∈ IKchanged: if ikx ∈ RIItchy−inc, then there
exists at least one appended record rx that produces ikx. Recall that Itchy
applies post-filtering to emit only relevant intermediate keys. As the record rx

is an appended record and not part of the base input, the produced intermediate
key ikx will be part of IKchanged.

(2.) ikx ∈ IKchanged =⇒ ikx ∈ IKItchy−inc: if ikx ∈ IKchanged, then
outHadoop−merged and outbase contain different intermediate values for ikx.
Hence, there must exists at least one appended record rx producing ikx. As rx

is part of the Itchy’s incremental input, the produced intermediate key ikx is
then also part of IKItchy−inc.

Now, we combine both lemmas to show that outItchy−inc = outHadoop−merged \
outbase. Recall that the reduce phase, which further processes these interme-
diate key-value pairs to obtain the output, is the same for Itchy and Hadoop.
Therefore, for the same set of intermediate key-value pairs given as input to
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the reduce phase, Itchy and Hadoop produce the same output. Thus, the com-
bination of both lemmas yields: outItchy−inc = outHadoop−merged \ outbase.

5.6 Implementation

We now discuss, how the ideas from Section 5.4 are implemented in Itchy.
The implementation follows two goals: (i) hiding the incremental processing
from users and (ii) providing high efficiency in terms of runtime and storage
overhead. In the following, we present the nontrivial changes to the Hadoop
MapReduce framework for implementing Itchy’s ideas. First, we discuss where
and how to persist the QMC mappings or respective intermediate results. Then,
we present the implementation for Itchy QMC and Itchy MO in detail. For
this, we show the workflow for processing the first- and incremental-jobs for
both techniques. Then, we give details of Itchy Merge for merging different
outputs.

5.6.1 Persisting incremental Data

One key design decision for Itchy, is where and how to persist the incremental
data, meaning the QMCik, MOs, or QMCout efficiently. One crucial aspect
is that Itchy should be able to retrieve the incremental data from all nodes
in the cluster. Otherwise, Itchy would have to consider the storage locations
of the incremental data for task scheduling. This is because, the scheduler
would have to allocate each task on the node storing the incremental data
required by the task. Thus, to make the data highly available, we evaluated
a number of alternatives allowing for distributed data access including plain
HDFS files and different NoSQL systems (such as MongoDB [100], Project
Voldemort [67], and HBase [8]). We decided to use HBase as it offers reliable
and scalable performance in combination with MapReduce jobs.

Itchy’s HBase layout contains a single table for storing all incremental data.
The table uses a binary representation of the intermediate key as row key, al-
lowing for efficient lookups based on the intermediate key. In addition, the lay-
out defines for each of the three techniques a single column family3. This layout
allows Itchy to store all incremental data for a single intermediate key in a sin-
gle row. In case of Itchy QMC, the column family only contains two attributes:
offset and datasetID. The offset attribute stores a concatenated list of all

3A logical and physical grouping of several attributes.
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the offsets in the dataset for the specific intermediate key. The datasetID at-
tribute stores the concatenated binary representation of the dataset identifier
for each offset. The column family for Itchy MO also contains two attributes:
intermediateValue and length. Here, the intermediateValue attribute is
a binary concatenation of all intermediate values for that intermediate key. As
intermediate values can have variable lengths, the length attribute stores the
lengths of the intermediate values. For storing QMCout the respective column
family looks similar to the case for storing QMCik and contains two attributes:
offset and datasetID. These attributes again store a list of offsets and dataset
ids. In contrast to Itchy QMC, the offset and datasetID both refer to the
output of the first-job.
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Figure 5.6: Itchy QMC
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5.6.2 Itchy QMC

Processing the first-job. While processing the first-job, Itchy has to store
the QMCik mappings to HBase for each intermediate key. The challenge here
is to do this efficiently by minimising the number of storage operations. Recall
that Itchy can obtain the intermediate key as well as the current offset in the
input dataset during the map phase. Therefore, the reader might think that the
right time to store the QMCik mappings is during the map phase. However,
this approach requires many HBase storage operations as each intermediate
key-offset pair would be stored individually. In addition, this approach re-
quires HBase to concatenate the offsets for each given intermediate key, which
also increases the cost of each storage operation. Instead, Itchy QMC proceeds
as shown in Figure 5.6(a). Itchy concatenates the offsets at the end of the in-
termediate values during the map phase. Itchy then utilises the shuffle phase to
piggy back the offsets on top of the data send from the map tasks to the reduce
tasks. The shuffle phase automatically groups and partitions the intermediate
values and offsets by intermediate key. When deserializing the intermediate
values before calling the reduce function, Itchy extracts the offsets from the
intermediate values. In this way Itchy has all offsets for a given intermediate
key and can store them in a single HBase storage operation. The remainder of
the reduce function is then executed as in the Hadoop MapReduce workflow.

Processing the incremental-job. When processing incremental-jobs, Itchy
uses the QMCik mappings to identify the records in the base input as discussed
in Section 5.4. Itchy requires two steps to do so. First, Itchy has to retrieve
the relevant offsets from the QMCikmappings. Second, Itchy has to process the
appended records together with the relevant records in the base input. Itchy
identifies the relevant records using the previously retrieved offsets as discussed
in Section 5.4.1. A simple and naive implementation can achieve this by using
two separate MapReduce jobs. Unfortunately, this approach is not efficient as
it incurs the overhead of initialising and running two MapReduce jobs. There-
fore, Itchy processes the appended records and parts of the base input in a
single MapReduce job. This is challenging as Itchy only knows which parts
of the original input it has to process after processing all appended records.
In the standard Hadoop MapReduce framework all map tasks are scheduled
independently and there is no control for such scheduling conditions.

Therefore, to deal with this requirement, Itchy introduces the concept of map
waves as shown in Figure 5.6(b). The idea is to assign each map task to a
map wave. In particular, Itchy assigns all map tasks processing the appended

140



records to map wave 1 and all map tasks processing relevant records from
the base input to map wave 2. During the map phase Itchy only schedules
those tasks that belong to the current map wave. Only after all task of a
map wave have finished, Itchy moves to the next map wave. Hence, both
datasets are processed strictly sequential. Note, that the concept of map waves
is independent of the scheduling policy (such as Delay [173] scheduler) used
by Hadoop as map waves are implemented on a per Job basis (i.e., in the
JobInProgress class).

When a map task processing the appended records (in map wave 1) finishes,
Itchy looks up the offsets in HBase for the intermediate keys produced by
this map task. One problem here is that several map tasks can produce the
same intermediate key ikx. Thus, looking up the offsets for all intermediate
keys in every map task can lead to a large number of unnecessary HBase
lookups. To reduce the number of unnecessary HBase calls, Itchy caches the
set of already seen intermediate keys between several map tasks. For this,
Itchy reuses the Java Virtual Machine (JVM) in one node across several map
tasks. This allows all map tasks running in the same JVM to share a cache
for already seen intermediate keys. As a result, a map task queries HBase only
for intermediate keys that did not occur before in any previous map task that
ran inside the same JVM. Itchy then sorts the retrieved offsets and partitions
them into HDFS files according to the blocks of the base input. This means
that Itchy writes all offsets from a map task that belong to a specific block in
the base input into a single file. Notice that each map task could potentially
produce one file for each block in the base input.

When Itchy starts the second map wave, we face another challenge: Itchy
should schedule only map tasks for those blocks containing at least one rel-
evant offset; the other map tasks points to blocks containing only irrelevant
records. However, Hadoop MapReduce (and therefore Itchy as well) creates
map tasks when initialising a MapReduce job and Itchy does not know the rel-
evant records till it finishes executing all map tasks in map wave 1. Therefore,
to deal with this problem, Itchy will unschedule all map tasks that are not
required. Unscheduling means directly marking a map task as finished without
executing it. Itchy also ensures that no intermediate results from unscheduled
map tasks are expected in the reduce phase. Thus, during the shuffle phase,
Itchy only copies the map output from scheduled map tasks. For scheduled
map tasks in map wave 2, Itchy reads, merges, and sorts all files containing
relevant offsets. With this sorted set of offsets, the RecordReader of a map task
can pass only relevant records to the map function. Notice that, as a map-call
might emit several intermediate keys for one record, the map function can emit
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intermediate keys that are not produced by the appended records. These inter-
mediate keys are not required by reduce tasks to produce the correct results. In
fact, these intermediate keys can actually lead to incorrect results for the such
intermediate keys. Therefore, Itchy applies post-filtering of the not required
intermediate keys at the end of each map task in map wave 2. As post-filtering
is expensive, Itchy keeps track whether a MapReduce job on a specific dataset
has multiple emits (i.e., if one record produces several intermediate keys). As a
result, Itchy applies post-filtering only if the first job produces multiple emits.
Then, the shuffle and reduce phase will progress as in the standard Hadoop
MapReduce framework.

5.6.3 Itchy MO

Processing the first-job. In case of storing map outputs, Itchy has to persist
the intermediate results while processing the first-job. The intermediate results
are grouped and partitioned during the shuffle phase by default. Thus, the only
difference from the standard Hadoop MapReduce workflow is that Itchy persists
the intermediate results to HBase before starting each reduce task.

Processing the incremental-job. When processing the incremental-job,
Itchy uses only the appended records as input. Itchy retrieves the required
intermediate values just before each reduce-call. Notice that, each reduce-call
is responsible for a single intermediate key. Therefore, Itchy requires only one
HBase query to retrieve the intermediate values per intermediate key. Itchy
appends the retrieved intermediate values to the intermediate values produced
by the appended records. The reduce function processes all these intermediate
values as in the standard Hadoop MapReduce workflow.

5.6.4 Itchy Merge

In contrast to Itchy QMC and Itchy MO, Itchy Merge requires users to spec-
ify a merge function. This is because the specification of such merge func-
tion requires some knowledge about the semantics of the MapReduce job. As
the map and reduce functions are usually user-defined functions, these func-
tions are black boxes to Itchy . Hence, the user-defined merge function signals
Itchy (i) that a job is in the merge class and (b) how the base and incremen-
tal outputs can be merged. Users specify the merge function by using the
job.setMerge(class) function when specifying their MapReduce jobs.
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Processing the first-job. If Itchy encounters a job in the merge class, it will
process the first-job almost as in the standard MapReduce framework. Except
at the point where reduce tasks emit the output: Itchy additionally persists
the QMCout mappings to HBase. Recall, that QMCout is a mapping from
intermediate key to offset in the output.

Processing the incremental-job. When processing the incremental-job,
Itchy again behaves as the standard Hadoop MapReduce workflow up to the
point where reducers emit the final output. Here, Itchy retrieves the offsets in
the base output using QMCout for each intermediate key. Then, Itchy reads the
corresponding parts from the base output at those offsets. Next, Itchy merges
the retrieved parts of the base output with the just produced temporary output.
Finally, Itchy writes the merged differential output to HDFS.

5.7 Experiments

We now evaluate whether Itchy can efficiently solve Alice’s incremental data
problem. We mainly perform this evaluation in order to answer the following
four questions: (i) What is the runtime for processing the incremental jobs?,
(ii) What is the performance overhead when processing the first job?, (iii) What
is the tradeoff between storing Itchy MO and Itchy QMC?, and (iv) How does
Itchy deal with this tradeoff?.

5.7.1 Experimental Setup

Hardware. We use a local 10 node cluster where each node has one 2.66GHz
Quad Core Xeon processor running 64-bit platform Linux openSuse 11.1 OS,
4x4GB of main memory, 6x750GB SATA hard disks, and three Gigabit network
cards. The advantage of running our experiments on this local cluster, rather
than on the cloud, is that the amount of runtime variance is limited [161].

Datasets. We use two different datasets: 300GB of Lineitem data as spec-
ified in the TPC-H benchmark [82] and 300GB of Wikipedia dumb files as
described by [53]. Notice that for the lineitem dataset, we use our own data
generator as we wanted to vary certain characteristics, such as the cardinality
of intermediate keys. We generate 300GB of base input and 1GB of incremental
input for both datasets.
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Systems. In our experiments, we use Hadoop [106] as the standard MapRe-
duce system baseline and Incoop [94] as baseline for dealing with incremental
data. We evaluate Itchy in all its three modes to operate, namely: Itchy QMC,
Itchy MO, and Itchy Merge. Notice that, we use Itchy Merge only for the
Wordcount job, because Job1 and Job2 are not in the Merge Class.

MapReduce Jobs. We use two different jobs for lineitem. The first job
(Job1) is similar to Alice example query, while the second job (Job2) is based
on the first query of TPC-H [82]. In other words, Job1 and Job2 implement
the following SQL queries:

Job1 (in SQL)

SELECT l_partykey, AVG(l_extendedprice)
FROM lineitem
GROUP BY l_partid

Job2 (in SQL)

SELECT l_returnflag,
l_linestatus, sum(l_quantity), sum(l_extendedprice),
sum(l_extendedprice*(1-l_discount)),
sum(l_extendedprice*(1-l_discount)*(1+l_tax)),
avg(l_quantity), avg(l_extendedprice),
avg(l_discount), count(*)
FROM lineitem
WHERE l_shipdate <= date ’1998-12-01’
GROUP BY l_returnflag, l_linestatus

For the Wikipedia dataset, we use the WordCount job, which is frequently used
for benchmarking MapReduce systems [106, 94]. Notice that, since Incoop
requires the use of combine functions for its contraction phase, Job1 and Job2
then use a combine function as well (see Appendix 5.9). For all experiments,
we run the jobs three times and report the average.

5.7.2 Upload Time

The first thing users have to do to run their MapReduce jobs is to upload their
datasets to HDFS. In this respect, Itchy works in the same way as Hadoop,
i.e., no special or extra process is required at upload time. In contrast, Incoop
requires a special upload pipeline as it split the datasets in a content-wise man-
ner. Thus, we benchmark the upload process for each of the three systems.
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Figure 5.8: Job Runtimes: (a)-(b) execution times for running the first-job;
(c)-(d) execution times for running the incremental-job.

Figure 5.7 illustrates the upload times for all three systems when uploading
300GB of Lineitem data. Notice that, we plot one bar for Hadoop and Itchy
since Itchy performs the same process to as Hadoop to upload a dataset. In
these results, we observe that both Hadoop and Itchy are ∼1.6 times faster than
Incoop. This is because while Hadoop and Itchy performs a simple byte copy
of the input dataset, Incoop have apply a content-wise splitting of data blocks.
To do so, Incoop computes fingerprints to identify the boundaries between data
blocks, which slow down the upload process.
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Figure 5.9: Tradeoff between QMC and MO while varying the size of interme-
diate values for Lineitem.

5.7.3 First-job Performance

Once their datasets are uploaded to HDFS, users can run their MapReduce
jobs. When running MapReduce jobs for the first time, Itchy has to some store
additional information: either QMC or MO information. In this section, we
measure the overhead for storing such additional information.

Figure 5.8(a) illustrates the execution times for Job1 and Job2 when processing
300GB of Lineitem base input data. As expected, we observe that both Itchy
and Incoop incur some overhead over the execution time of Hadoop as they have
to store additional information. In particular, we observe that Itchy QMC has
an overhead of ∼29% for Job1 and and overhead of ∼15% Job2. Interestingly,
we observe that Itchy QMC incurs a higher overhead than Incoop for Job1,
but it has a lower overhead for Job2. This is because the intermediate data
size for Job1 is smaller than the QMC information, while the intermediate
data size for Job2 is bigger. This is why Itchy MO also has a lower overhead
(∼10%) than Itchy QMC for Job1 and a higher overhead (∼28%) for Job2.
Here, we observe that Itchy MO has roughly the same performance as Incoop
for Job1, but Itchy MO performs slightly slower than Incoop for Job2. This is
because Itchy MO stores the intermediate data at the intermediate key level
while Incoop does it at the task level.

Figure 5.8(b) shows the execution times for WordCount when processing 300GB
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of Wikipedia base input data. Notice that, we also plot the results for
Itchy Merge as WordCount allows for merging different outputs. On the one
hand, we observe that Itchy QMC incurs an overhead of ∼23% over Hadoop,
but Itchy QMC is slightly faster than Incoop. On the other hand, we observe
that Itchy MO is ∼1.6 slower than Hadoop and ∼1.2 slower than Incoop. This
is because the WordCount job produces a large number of intermediate keys4.
In contrast, we observe that Itchy Merge performs 1.22 faster than Incoop,
1.13 faster than Itchy QMC, and 1.5 faster than Itchy MO. Still, Itchy Merge
is slightly slower than Hadoop, because it has to store the mapping of inter-
mediate keys to offsets in the output (QMCout) to HBase.

5.7.4 Incremental-job Performance

We now focus on evaluating how well Itchy can help Alice with her problem,
i.e., we evaluate the performance of Itchy when performing incremental-jobs.
For this, we consider that the Lineitem and Wikipedia datasets have been
appended 1GB new data. Note, that for Itchy and Hadoop we only have to
upload the 1GB of new records, while for Incoop we have to upload a 301GB
dataset including all input from the first-job. This is because, Incoop can
currently handle only a single file as input to a job while Itchy and Hadoop
can use several files as input to a job.

Figure 5.8(c) shows the results for Lineitem. We observe that Hadoop performs
quite similar as when running the first-job. This is because Hadoop has to
reprocess the entire 300GB base input in addition to the 1GB of appended
records. In contrast, Itchy does not have to recompute the entire 300GB base
input. As a result, we observe that Itchy is up to ∼ 20 times faster than
Hadoop and ∼10 times faster than Incoop. In particular, we observe that the
performance gap between Itchy and both Hadoop and Incoop is higher for Job2.
This is because the intermediate data produced by Job2 has a larger size. This
is why Itchy QMC also slightly outperforms Itchy MO for Job2. Moreover, we
also observe during our experiments that Itchy is close to the performance of
Hadoop when performing only 1GB incremental input (e.g., Itchy MO incurs
an overhead of only ∼12%). This shows the high efficiency of Itchy to deal
with incremental data.

Figure 5.8(d) illustrates the results for WordCount when processing 1GB of
new Wikipedia data. In these results, we plot the results for Itchy Merge as

4One could apply dictionary compression to reduce the intermediate data size, but this is
out of the scope of this thesis.
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WordCount is in the Merge class. Again, Hadoop reprocess the entire 300GB
input to the first-job in addition to the 1GB appended records. As a result,
Hadoop has a similar performance as when performing the first-job. For Itchy,
we observe that Itchy QMC and Itchy MO are ∼4.6 times faster than Hadoop
and ∼1.3 times faster than Incoop. However, recall, that Incoop requires the
user to upload the entire 301GB of data while Itchy only requires the user to
upload the 1GB of new records. Here, the reader can observe that the rela-
tive performance difference between Incoop and Itchy QMC and Itchy MO is
not as large as in the Lineitem benchmark. This is because the WordCount
incremental-job requires many intermediate values to be recomputed as a sin-
gle frequent word can occur in a large number of documents. In contrast,
Itchy Merge exploits the fact that WordCount performs a simple sum of fre-
quencies per word to simply add the incremental output with the base output.
This results in an improvement factor of ∼41 over Hadoop and of ∼11 over
Incoop.

5.7.5 Varying intermediate Value Size

In the previous two Sections, we show that high superiority of Itchy over
Hadoop and Incoop. From now, we study the tradeoff between Itchy QMC
and Itchy MO, using only Hadoop as baseline. Recall from Section 5.4.4 that
Itchy QMC requires a higher cost for recomputing some records from the first-
job, while Itchy MO might require a lot of space for storing the intermediate
values. To examine this tradeoff in more detail, we first look at runtime over-
head when processing the first-job while varying the intermediate value size.
For this, we alter Job1 to include additional attributes in the intermediate
values.

Figure 5.9(a) shows the results for the first-job when varying the intermediate
value size. We observe that the job runtime for both Hadoop and Itchy QMC
does not increase by much when increasing the intermediate value size. The in-
crease in runtime from the job projecting 2 to the job projecting 10 attributes in
the intermediate values is of 4% for Hadoop and of 3% for Itchy QMC. In con-
trast, Itchy MO incurs a 25% increase in runtime from projecting 2 attributes
to projecting 10 attributes. This is because Itchy MO cost for storing the MO
mappings strongly depends on the of intermediate values, while Itchy QMC
cost for storing the QMC mappings is independent of the intermediate value
size.
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Figure 5.9(b) shows the results for the incremental-job when varying the in-
termediate value size. In contrast to previous results, we observe that the job
runtime for all three systems in consideration does not vary much. This is
because the number of intermediate values is far less than for the first-job. As
a result, the additional effort for storing larger intermediate values is hidden by
the overhead of Hadoop framework. Overall, we see that Itchy MO performs
about 4% faster than Itchy QMC, because it does not have to recompute the
intermediate values but it can retrieve them directly.

5.7.6 Storage Overhead

After looking at the runtime characteristics between Itchy QMC and Itchy MO,
we now consider the other side of the tradeoff, i.e., the storage overhead. Recall
that both systems have to store additional information: while Itchy QMC stores
QMC mappings, Itchy MO stores the intermediate results. Here, we consider
as storage overhead the size of the entire HBase table storing either the QMC
or MO mappings.

Figure 5.9(c) illustrates the storage overhead incurred by both systems when
varying again the size of intermediate values. As expected, we observe that the
overhead incurred by Itchy QMC does not vary with respect to intermediate
value size. This is because Itchy QMC stores offsets and hence the QMC
storage does only depend on the number of intermediate keys and not on the
size of intermediate values. In contrast, Itchy MO stores the intermediate values
directly and hence we can see the storage size for MO increase when including
additional attributes in the intermediate values. Notice that, for 2 attributes
the storage size for Itchy QMC is actually larger than for Itchy MO. This is due
the fact that Itchy QMC has to store the filename identifier and offset which is
larger than the size of the two attributes Itchy MO has to store as intermediate
value. However, as soon as Job1 start to project more attributes, the overhead
incurred by Itchy MO starts getting larger than Itchy QMC.

5.7.7 Effectiveness of Itchy’s Decision Model

Let us now consider how well the Itchy’s decision model (see Section 5.4.4) deals
with the different benchmarks. Table 5.2 shows sampled values for the average
runtime to process a record in the map function (avgRuntime), the average size
for an intermediate value (avgValSize), and the average map selectivity (avgS-
electivity) together with the output of the decision model for each benchmark.
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Job avgRuntime
[msec]

avgValSize
[B]

avg
Selectivity

Decision

Job1 0.008 16 1 MO
Job2 0.016 113 0.83 QMC
WordCount 0.021 18 9 Merge

Table 5.2: Decision Model for Benchmark Queries

Recall that these values are sampled while running the first wave of map tasks
in the first-job. We observe that in Job1 the average intermediate value size
(consisting of two long values) is as large as the size for storing a QMC mapping
(also two long values). Therefore, the decision model decides to use Itchy MO
as for the same storage requirements it expects a better performance for the
incremental-job. As we can see from Figure 5.8(c) this assumption holds true.
For Job2, we see that the average intermediate value size is much larger as it
contains more and larger attributes. In such case, the decision model considers
the ratio avgV alSize

avgRuntime , Since this ratio is above the given threshold, Itchy decides
to use the Itchy QMC technique. Again, we see in Figure 5.8(c) that this holds
true. For the WordCount job, Itchy has the option to execute the user defined
merge function, Thus, Itchy decides for using Itchy Merge. As we can see in
Table 5.2, both the average map function runtime and required storage size5

are not favorable for Itchy QMC and Itchy MO. The results presented in Fig-
ure 5.8(d) confirms that this decision was once more again the right decisions
to take.

5.8 Related Work

MapReduce was originally proposed by Google for building their inverted
search index [106]. However, Google faced problems with the incremental na-
ture of their web index and hence moved on to Percolator [151]. Percolator
operates on top of BigTable [97] and has departed from the idea of MapRe-
duce. Most other works, such as Incoop [94] and DryadInc [152], propose the
idea of memoization. Here, the idea is to cache outputs of map and reduce
tasks. These cached intermediate results can be returned when the same task
is later run over the same input. However, these two approaches has to read
the entire dataset every time the dataset changes in order to identify the parts

5Even if the average intermediate value size is not very high, the selectivity is such that each
input record (line of text) produces an average of nine intermediate values
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of the dataset that changed. DryadINC additionally proposes the idea of Mer-
gable Computation similar to idea of Itchy Merge. However, in contrast to
DryadINC can merge the output stored in standard HDFS.

Another approach is Restore [111], which considers workflows of several MapRe-
duce jobs as produced by high-level languages, such as Pig [117]. Restore per-
sists the outputs of individual jobs in such a workflow and can reuse these
outputs for later jobs in cases where the physical plans match. However, a
previous plan (and therefore its stored output) is only considered a match for
a new plan if both input datasets are unchanged. Hence, it is not applicable
to Alice’s problem of growing datasets. Ramp [126] considers the related prob-
lem of selective refresh. Here, the focus is on a particular output record. In
other words, given some changed input data, how can we update this single
output tuple efficiently? Itchy focuses on a different problem: given a set of
appended records, how can we update the entire result set?. [125] also explores
the concepts of provenance in MapReduce similarly to Itchy and measure the
overhead for capturing provenance. However they do not apply the concept to
the idea of incremental computation. CBP [137] implements incremental bulk
processing on top of MapReduce by considering stateful grouping operators.
Nevertheless, users has to decide and specify which state should be persisted
and used.

One can view the result of a MapReduce job as a materialized view on the
input data. Therefore, we also consider the literature on relational incremental
materialized view maintenance [86, 83]. Here, the problem is slightly different:
usually the materialized views are specified by declarative SQL queries. Hence,
the semantics of queries are known and used for view maintenance. This is
not the case for MapReduce, where queries are usually specified by black box
map and reduce functions. Still, some of the ideas of relational incremental
materialized view maintenance could be applied when working with high-level
query languages on top of MapReduce such as HiveQL [167] or PigLatin [117].

5.9 Combiners

In practice, users can specify a combine function for some of their MapReduce
jobs in order to reduce the amount of intermediate data to shuffle. Typically,
users use the reduce function itself as a combine function. For example, one can
do so for MapReduce jobs computing a sum or a count aggregation. However, in
many other cases, the combine function is not as straight forward. For instance,
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for our JobAvg example in Section 5.1, a combine function has to keep track of
the count of records in addition to the sum of all price values. In some other
cases, it is even impossible to specify a combine function, e.g., for a reduce side
join [170]. In the following, we describe how Itchy supports combine functions
for the different techniques: Itchy QMC, Itchy MO, and Itchy Merge.

Itchy QMC. When using combine functions with Itchy QMC, the combine
function has to ensure that all offsets of intermediate values in the input to
this combiner are kept. Itchy QMC keeps a list of all offsets in addition to the
intermediate data and persist this list of offsets to HBase in the reducer.

Itchy MO. Here, we have two different options to exploit combiners: either
we (i) store the intermediate values directly to HBase or (ii) keep a list of all
intermediate values. While the first option requires a combine function to per-
form a higher number of HBase write operations, the second option requires a
combine function to simply appends the different intermediate values. There-
fore, Itchy uses the second option as the standard way to support combiners
in Itchy MO. Figure 5.10 shows that, for JobAVG, the second option indeed
performs better than the first option.
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Figure 5.10: Itchy MO processing 300GB for JobAVG

Itchy MERGE. Itchy Merge does not require any changes for supporting
combiners, as Itchy Merge works with the final output which does not change
when using combiners.
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5.10 Conclusion

Many current applications produce large amounts of data in a daily basis that
has to be analysed as new data arrive. Thus, analytical tasks have to deal with
incremental datasets in an efficient manner. We presented Itchy (Incremental
TeCHniques for Yellow elephants) for supporting MapReduce jobs over grow-
ing datasets. As we identified that different MapReduce jobs require different
approaches to deal with incremental datasets, Itchy contains a suite of three
different techniques: Itchy QMC, Itchy MO, and Itchy Merge. Itchy QMC
maintains a mapping from intermediate keys to input records while running
a MapReduce job for first time over a given dataset (base input). If new
records arrive, Itchy QMC then uses this mapping to selectively recompute
records from the base input in order to produce the right output when run-
ning consecutive MapReduce jobs. Itchy MO avoids recomputing records from
the base input (which can be costly) by storing a different kind of mapping.
Itchy MO stores a map from intermediate keys to intermediate values directly.
However, we showed that this advantage is outweighed by large intermediate
values. Therefore, we presented a cost-based decision model that allows Itchy
to automatically chooses the right technique between Itchy QMC and Itchy MO
for each incoming MapReduce job. In contrast to Itchy QMC and Itchy MO,
Itchy Merge merges whenever it is possible the output two MapReduce jobs
using a user-defined merge function. On of the beauties of Itchy is that it
chooses the right technique to use in an almost invisible ways for users. Hence,
Itchy does not require users to change their MapReduce jobs.

We evaluated Itchy using two different benchmarks and compared it with
Hadoop (the most popular MapReduce framework) and Incoop (a state-of-
the-art system to deal with incremental datasets). The results showed the
superiority of Itchy over both Hadoop and Incoop: Itchy runs up to ∼20 times
faster than Hadoop and up to ∼10 times faster than Incoop. In cases where
users can specify a merge function, Itchy can improve the performance up to a
factor of ∼41 compared to Hadoop up to a factor of ∼11 compared to Incoop.
Still, in terms of data upload, Itchy performs exactly as Hadoop and up to 1.6
times faster than Incoop. A series of additional experiments also showed the
high effectiveness of the Itchy decision model.
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6 Conclusion

In this thesis we considered two important topics in todays IT landscape:
Cloud Computing and Big Data Analyses. Especially the combination of both
techniques allows a large group of users to solve previously impossible big
data problems, but also yields new problems. In this thesis we showed that
performance variance between different nodes in an IaaS Cloud Setting is a
severe problem. IaaS cloud providers such as Amazon EC2, Microsoft Azure,
or Google offer instance types with different performance. But, when looking
at the performance among equal instances (i.e., having the same instance
types) in Chapter 3 we experienced large performance variance between them.
Using micro-benchmarks we measured the Coefficient of Variance (COV) for
CPU, IO Read, IO Write, Memory, and Network performance. We identified
significant performance variance where the COVs ranged from 0.15 for IO
Write performance to 0.35 for CPU performance. Such high performance
variance makes it very difficult for users to repeat experiments measuring
performance or predict the performance of their given IaaS cloud instance.

Next, we identified the underlying hardware for the same virtual instance
type had huge impact on performance in Section 3.5.2. When considering
the performance variance per system type of underlying hardware we could
reduce the COV from 35% to 1% to 2%. We saw similar reductions in
performance variance for memory and even disk performance. These re-
sults how important it is for users to not blindly rely on the cloud notion of
virtual instance, but where possible check for the underlying physical hardware.

Even considering the underlying physical system, IaaS virtual instances incur
a high performance variance compared to our baseline measurements on a
physical system. We confirmed this by measuring the performance for a single
long running instance over a time period of one month. We saw very low
CPU variance, but a very high variance for IO performance (especially for the
Azure cloud). This remaining variance can be understood when considering
that in an IaaS setting usually several virtual instances are executed on the

154



same physical hardware. Resource isolation, i.e., the illusion that each virtual
machines owns the physical hardware is an important goal for the hypervisors
managing the virtual machines. But this is more or less challenging for
different hardware components. While resource isolation for CPU performance
(excluding the caches) is quite simple, the isolation for IO is more chal-
lenging. The actual isolation properties differ between different hypervisors
(for example between Amazon EC2 and Microsoft Azure), unfortunately as
we did not have direct access to the underlying physical hardware we could
not further evaluate such effects by for example measuring the cache miss rates.

As we first published these finding in 2010, we wondered whether the situation
had changed in 2013. By then IaaS cloud computing had become a valuable
tool for many users and also the cloud vendors included other well known
companies such as Google and Amazon. The result show that performance
variance is still at he same level as in 2010 or even slightly above. For Amazon
EC2 we saw a growing variety of underlying system types ( four as compared to
only two in 2010). The growing physical system diversity is logical considering
their growing number of new data centres while older hardware is still used
for a certain time period.

Next, we examined whether the performance variance we measured would
effect to application performance, especially Big Data Analytics using MapRe-
duce. Here we saw that the cluster heterogeneity (i.e., how different are
nodes in a cluster with nodes having the same instance type) has a significant
impact on MapReduce job performance. As MapReduce—similar to many
other distributed systems—makes the assumption of homogeneous node
performance, we saw a performance degradation for increasing performance
difference between virtual nodes in the cluster. We proposed three different
techniques for reducing the cluster heterogeneity of a cluster by shortly
allocating more nodes than required and then choose an optimal subset of
nodes for the actual job. Here we saw that considering simply the system
type achieves a similar reduction variance compared to the more complex
measuring of the cluster heterogeneity directly which involves running several
benchmarks on each of the cluster nodes.

As cloud computing also has different offers besides IaaS, we also the per-
formance variance for Amazon’s Elastic Map Reduce (EMR) Platform as a
Service (Paas) offer. Here we saw that on our EMR cluster we achieved a
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similar performance variance consider job runtimes than on a similar cluster
in an IaaS setting.

Next, in Section 5 we considered another problem for large scale data analyt-
ics: dealing with incremental datasets in an efficient manner. Many current
applications produce large amounts of data in a daily basis that has to be
analysed as new data arrive. We proposed ITCHY (Incremental TeCHniques
for Yellow elephants) for supporting MapReduce jobs over growing datasets
including three different approached: Itchy QMC, Itchy MO, and Itchy Merge.
We presented a cost-based decision model that allows Itchy to automatically
chooses the right technique between Itchy QMC and Itchy MO for each incom-
ing MapReduce job. In contrast to Itchy QMC and Itchy MO, Itchy Merge
merges whenever it is possible the output two MapReduce jobs using a user-
defined merge function. Hence, Itchy does not require users to change their
MapReduce jobs. Our results showed the superiority of Itchy over both Hadoop
and Incoop(a state-of-the-art system to deal with incremental datasets): Itchy
runs up to ∼20 times faster than Hadoop and up to ∼10 times faster than
Incoop. In cases where users can specify a merge function, Itchy can improve
the performance up to a factor of ∼41 compared to Hadoop up to a factor of
∼11 compared to Incoop. Still, in terms of data upload, Itchy performs exactly
as Hadoop and up to 1.6 times faster than Incoop.

6.1 Outlook

With the increasing relevance of cloud computing also understanding the ef-
fects of performance variance becomes more and more important. As we have
seen with Amazon EC2, the number of underlying physical systems increases
over the lifetime of cloud vendors due as new physical systems are introduced.
As we have seen this effects the performance of the IaaS virtual instances and
hence customer experience.
Another interesting development is the growing shift towards container based
virtualization [164] (please refer to Section 2.2.3 for details). Amazon EC2
Container Service [15] and Google Container Engine [43] are already offering
such container based virtualization Cloud infrastructures. As with container
based virtualization we have even less performance isolation compared to tra-
ditional virtual machines, it will become important for distributed applications
to drop the assumption of homogeneous performance across all cluster nodes.
The good news is the growing ecosystem around such container virtualization
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includes Operating Systems such as CoreOs [33] and special scheduler such as
Apache Mesos [9]. As these system have the control of the Operating System
in case of CoreOs or the Cluster in case of Mesos, they can already consider
performance interference in their scheduling decisions.

Even though continuing popularity of Big Data Analytics the traditional
MapReduce is rapidly overtaken by more flexible processing models such as
Apache Spark [10], Apache Flink [7], or Apache Tez [12]. This trend is also re-
flected by Hadoop 2.0 [44] supporting a number of different processing engines
besides the traditional MapReduce engine. Use cases for big data analytics such
as shift from read only datasets towards more dynamic datasets. This trend is
also reflected by the number of streaming system such as Spark Streaming [74]
or Apache Storm [11]. Such highly dynamic datasets make incremental pro-
cessing even more important.
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