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Abstract

Non-commutative distributions constitute the backbone of non-commutative probabil-
ity in general and free probability in particular. In the multivariate case, these objects
are mostly treated by combinatorial means, because an analytic description in terms of
measures – as one is used to in classical probability – fails due to the underlying non-
commutativity. However, the rapidly growing field of “free analysis”, which is developed
as a counterpart of classical analysis at the highest degree of non-commutativity, offers
already many powerful tools for an analytic treatment of non-commutative distributions.

Indeed, during the last years, some significant progress has been made on very fundamental
questions in that context. This thesis reports on successful attempts which follow the
common strategy that properties of the joint non-commutative distribution µX1,...,Xn of
non-commutative random variables X1, . . . , Xn can be understood by studying the single-
variable distributions µf(X1,...,Xn) of f(X1, . . . , Xn) for suitable “non-commutative test
functions” f . More precisely, we will discuss here the following topics:

Computation of analytic distributions and of Brown measures: If X1, . . . , Xn are freely
independent non-commutative random variables, then the single-variable distributions
µX1 , . . . , µXn fully determine their joint non-commutative distribution µX1,...,Xn and so
µP (X1,...,Xn) for any non-commutative polynomial P . Nevertheless, apart from a few special
cases, there was for a long time no general machinery for making this relation explicit.
We will explain how the so-called “linearization trick” in several refined versions gives in
combination with operator-valued free probability an algorithmic solution to this problem,
which applies even more to non-commutative rational expressions and is moreover easily
accessible for numerical computations. Depending on the concrete situation, µP (X1,...,Xn)

can be encoded either by the analytic distribution or (at least partially) by the Brown
measure of P (X1, . . . , Xn).

Regularity questions: Free probability has produced some deep quantities like free Fisher
information, free entropy, and free entropy dimension that can be attached to families of
non-commutative random variables. Despite the lack of a rigorous justification, it was be-
lieved that these quantities measure the regularity of the corresponding non-commutative
distributions. Following the so-called non-microstates approach, we will give evidence to
this by showing that maximality of the free entropy dimension excludes atoms in the
distribution of any non-constant self-adjoint polynomial expressions in these variables.
Furthermore, we will see that the method of this proof can be generalized such that it
also applies to free stochastic calculus. We will use this to exclude atoms in the distribu-
tion of any non-constant and self-adjoint element in the finite Wigner chaos (which is the
free counterpart of the Wiener-Itô chaos in classical probability theory).

i





Abstrakt

Nichtkommutative Verteilungen bilden eine tragende Säule in der nichtkommutativen
Wahrscheinlichkeitstheorie im Allgemeinen und der freien Wahrscheinlichkeitstheorie im
Besonderen. Im Fall mehrerer Variablen werden diese Objekte meist mit kombinatorischen
Mitteln behandelt, da eine analytische Beschreibung durch Maße – in der Form, wie man
es in der klassischen Wahrscheinlichkeitstheorie gewohnt ist – wegen der zugrundeliegen-
den Nichtkommutativität nicht möglich ist. Jedoch stellt das stark wachsende Gebiet der
“freien Analysis”, welche als ein Gegenstück zur klassischen Analysis auf der Ebene max-
imaler Nichtkommutativität entwickelt wird, bereits eine Vielzahl mächtiger Werkzeuge
zur analytischen Behandlung nichtkommutativer Verteilungen bereit.

In der Tat wurden in den letzten Jahren einige wesentliche Fortschritte bei sehr fun-
damentalen Fragestellungen in diesem Zusammenhang erzielt. Die vorliegende Arbeit
berichtet über erfolgreiche Ansätze, welche der gemeinsamen Strategie folgen, dass Eigen-
schaften nichtkommutativer Verteilungen µX1,...,Xn von nichtkommutativen Zufallsvari-
ablen X1, . . . , Xn dadurch verstanden werden können, dass man die einvariabligen
Verteilungen µf(X1,...,Xn) von f(X1, . . . , Xn) für passende “nichtkommutative Testfunk-
tionen” f untersucht. Genauer werden wir hier die folgenden Themen diskutieren:

Berechnung von analytischen Verteilungen und Brown-Maßen: Sind X1, . . . , Xn frei
unabhängige nichtkommutative Zufallsvariablen, dann bestimmen die einvariabligen
Verteilungen µX1 , . . . , µXn vollständig ihre gemeinsame Verteilung µX1,...,Xn und somit
µP (X1,...,Xn) für jedes nichtkommutative Polynom P . Dennoch gab es lange Zeit, außer in
ein paar Spezialfällen, keinen allgemeinen Apparat, mit dem man diese Beziehung ex-
plizit machen konnte. Wir werden erklären, wie der sogenannte “Linearisierungstrick”
in verschiedenen verfeinerten Versionen in Kombination mit operator-wertiger freier
Wahrscheinlichkeitstheorie eine algorithmische Lösung dieses Problems liefert, welche
sogar auf rationale Ausdrücke angewendet werden kann und die darüber hinaus auch für
numerische Berechnungen sehr gut geeignet ist. Je nach konkret gegebener Situation wird
µP (X1,...,Xn) hierbei entweder durch die analytische Verteilung oder (zumindest teilweise)
durch das Brown-Maß von P (X1, . . . , Xn) erfasst werden.

Regularitätsfragen: Die freie Wahrscheinlichkeitstheorie hat etwa mit der freien Fisher In-
formation, der freien Entropie und der freien Entropiedimension einige tiefliegende Größen
hervorgebracht, die Familien von nichtkommutativen Zufallsvariablen zugeordnet werden
können. Obwohl eine formale Bestätigung bisher fehlte, ging man davon aus, dass diese
Größen ein Maß für die Regularität der zughehörigen Verteilungen darstellen. Dem so-
genannten non-microstates Zugang folgend, werden wir dies belegen, indem wir zeigen,
dass die Maximalität der freien Entropiedimension Atome in den Verteilungen nicht-
konstanter, selbstadjungierter Polynome in diesen Variablen ausschließt. Darüber hinaus
werden wir sehen, dass diese Beweismethode derart verallgemeinert werden kann, dass sie
auch im Rahmen des freien stochastischen Kalküls angewendet werden kann. Wir verwen-
den dies, um Atome in den Verteilungen nicht-konstanter, selbstadjungierter Elemente
im endlichen Wigner Chaos (welches das freie Gegenstück zum Wiener-Itô Chaos in der
klassischen Wahrscheinlichkeitstheorie darstellt) auszuschließen.
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Introduction

The main objects which are treated in this thesis are non-commutative distributions. They
constitute the combinatorial backbone of non-commutative probability theory in general
and are therefore of particular interest in free probability theory. Our emphasis is on the
analytic aspects of their theory.

Free probability was invented around 1985 by Dan-Virgil Voiculescu; see [Voi85]. This
theory was originally intended to serve as a tool for attacking one of the most influential
open question in the theory of von Neumann algebras, namely the isomorphism problem
for the so-called free group factors L(Fn) with n ≥ 2. Recall that the free group factor
L(Fn) arises as the group von Neumann algebra associated to the free group Fn with n
generators. The problem is to decide whether this operator-algebraic object L(Fn) mem-
orizes the group Fn from which it was constructed, or in other words, the number n of
generators. More formally, the question is whether for integers n,m ≥ 2 the following
implication holds true:

L(Fn) ∼= L(Fm) =⇒ n = m

The starting point for Voiculescu’s ingenious considerations around this important and
intricate question was the observation that, loosely speaking, the free product Fn ∗ Fm ∼=
Fn+m on the group level is reflected by the relative position of L(Fn) and L(Fm) inside
L(Fn+m). In order to make this statement precise, we must involve the unique normal
tracial state τ on the type II1-factor L(Fn+m). With a bit of work, one can show then
that Fn ∗ Fm ∼= Fn+m yields some kind of factorization property for the values of τ .
This relation was ingeniously interpreted by Voiculescu in a probabilistic manner as some
kind of independence between L(Fn) and L(Fm), regarded as unital subalgebras of the
non-commutative probability space (L(Fn+m), τ). This notion of independence, which is
called free independence, makes perfectly sense not only in (L(Fn+m), τ) but in any non-
commutative probability spaces.

By definition, a non-commutative probability space is a tuple (A, φ), which consists of a
unital complex algebraA and some linear functional φ : A → C that satisfies the condition
φ(1) = 1. This nomenclature is justified by the observation that any classical probability
space (Ω,F ,P) yields by A = L∞(Ω,F ,P) and φ(X) =

∫
Ω
X(ω)dP(ω) a canonical ex-

ample of a non-commutative probability space. It might be confusing that this example
is actually commutative, but the fact that classical probability spaces fit into this frame
simply highlights that the definition of non-commutative probability spaces is designed
in such a way that it properly imitates the setting of classical probability theory as far as
this is possible without referring to the underlying structure of classical probability spaces.
This is in accordance with some common strategy by which commutative concepts are
often transferred into the non-commutative world: passing from the commutative object
(Ω,F ,P) to some suitable algebra of functions over it leads us to (L∞(Ω,P),E) and finally
to the more general framework of non-commutative probability spaces (A, φ), where the
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inherent commutativity of the algebra L∞(Ω,P) can easily be dropped, but to the price
that the underlying structure (Ω,F ,P) disappears.

With this artifice, Voiculescu put the original problem into the setting of non-commutative
probability theory, where free independence can be studied in much wider generality and
can be treated detached from the concrete case of free group factors. This opened a
completely new and very promising perspective on the original operator algebraic question
and marked the birth of free probability theory, which Voiculescu started to develop as a
counterpart of classical probability theory at the highest level of non-commutativity.

Although we must admit that free probability was not yet able to solve the isomorphism
problem for the free group factors, it gave nonetheless incredibly deep insights and has
produced striking results about the structure of von Neumann algebras in general and the
free group factors in particular.

Despite this undoubtedly great success, free probability would have probably become
known only among experts in the field of operator algebras. The reason is that for people
from outside this area, free independence might appear at first sight as a rather artificial
concept with seemingly no contact to the “real world”, in contrast to the much more
intuitive notion of independence in classical probability. However, the situation totally
changed when Voiculescu discovered some deep connections to random matrix theory. By
what later became known as the phenomenon of asymptotic freeness, he explained that free
independence governs the asymptotic behavior of many types of classically independent
random matrices as their dimension tends to infinity. This attracted the attention of
many people, both in pure mathematics and in the more applied disciplines, and started
in particular an extremely fruitful interaction between the theory of operator algebras
and random matrix theory. In the course of this active exchange of ideas, random matrix
methods found their way into the field of operator algebras, while free probability became
a very powerful tool in analyzing the asymptotic behavior of large random matrices.

It is therefore not surprising that non-commutative distributions, which arise from con-
siderations in free probability, have attracted a lot of attention since the early days of this
theory. Conversely, the desired applications have also raised their own questions.

But what actually are non-commutative distributions? Non-commutative distributions are
by definition purely combinatorial objects, which can be introduced in the generality of
non-commutative probability spaces: given any family X = (Xi)i∈I of non-commutative
random variables Xi in some non-commutative probability space (A, φ) over some (mostly
but not necessarily finite) index set I, then the non-commutative (joint) distribution µX
of X = (Xi)i∈I is defined as the collection(

φ
(
Xi1Xi2 · · ·Xik

))
k≥0

i1,...,ik∈I

of all (joint) moments φ(Xi1Xi2 · · ·Xik) with i1, . . . , ik ∈ I of any order k, including
φ(1) = 1 as the moment of order k = 0.

Like distributions in classical probability theory, non-commutative distributions are meant
for describing the family of non-commutative random variables to which they correspond.
Indeed, this strategy works well under a few natural assumptions on the underlying non-
commutative probability space. This culminates in the fascinating idea that properties of
operators, viewed as non-commutative random variables, can be encoded by their joint
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non-commutative distribution and hence by purely combinatorial data – although reading
out this information can be a highly non-trivial task.

For some purposes, one might prefer to add a more analytic component to the combi-
natorial picture of non-commutative distributions, comparable to the measure theoretic
description of distributions in classical probability theory. However, due to the underlying
non-commutativity, these classical methods fail in general and a description in terms of
measures is limited typically to the case of distributions of a single non-commutative
random variable. This was the reason why the idea came up that multivariate non-
commutative distributions should be understood via suitable “non-commutative test func-
tions”, which are evaluated in the given family of non-commutative random variables. If
the result of this evaluation is such that its distribution allows an analytic description, one
gains at least some partial information about the original non-commutative distribution,
which becomes the more accurate the larger the considered class of non-commutative test
functions is.

The still undefined term “non-commutative test functions”, which we have used above
in order to outline our strategy, raises actually two different questions, which we should
better separate now: firstly, what are non-commutative functions, and secondly, how can
we evaluate them? The first question is answered by “free analysis”, which provides an
analogue of (complex) analysis at the highest degree of non-commutativity. It originates
in the work of J. L. Taylor [Tay72, Tay73], whose ideas later were taken up and de-
veloped further by Voiculescu for applications in free probability theory; see the survey
[Voi08]. Many authors, like D. S. Kaliuzhnyi-Verbovetskyi and V. Vinnikov, worked out
free analysis as a theory in its own right with numerous applications in different fields of
mathematics; their beautiful book [KV14] presents the current state of the art. The sec-
ond question concerns the existence of some sort of functional calculus for non-commuting
operators. Indeed, non-commutative functions as considered in free analysis are natural
candidates that could lead us to an non-commutative analogue of the well-known holomor-
phic functional calculus in the commutative setting. This again goes back to the work of
Taylor [Tay72, Tay73], but is still far from its final stage. It therefore constitutes a very
active field of current research (see for instance [AM16b, AM16a]) and we leave it for
further investigation, to which extend these recent achievements could be used in study-
ing non-commutative distributions in a similar fashion like here. We will focus here on
such non-commutative functions that are induced by some “universal expression”, i.e., by
some combination of formal variables and arithmetic operations, which make sense on ev-
ery complex unital algebra, so that evaluation works here in a straightforward way. What
we have in mind are more precisely non-commutative polynomials and non-commutative
rational expressions. They will play the leading role in what follows. Let us note that
also non-commutative power series work to some extend if we assume in addition that
the algebra, on which evaluations are considered, carries a norm with respect to which it
becomes a Banach algebra.

This approach to non-commutative joint distributions was already used in [MS13], where
the speed of convergence in the multivariate free central limit theorem was measured in
terms of polynomial evaluations and their Cauchy transforms. Using results presented by
the author in the appendix of [SV12], it was possible to control this convergence even in
terms of the Kolmogorov distance. It is work in progress to strengthen the statements pre-
sented in [MS13] by inventing some non-commutative analogue of the Lindeberg method
for the setting of operator-valued free probability theory.
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In the following two sections, we will outline the precise questions that are treated in this
thesis and which are spread out over Chapters III, IV, V, VI and VII.

The rest of the thesis is organized as follows. In Chapter I, we will give a streamlined
introduction to free probability theory. For convenience of the readers, we collect here all
results which are needed in the subsequent chapters. Note that our exposition conveys
a more analytic perspective on that theory and correspondingly leaves out most of its
combinatorial aspects. It covers both the scalar-valued and the operator-valued case, as
well as a brief discussion of the Brown measure. In Chapter II, we will provide some basic
terminology from random matrix theory, where our main focus is on its connections to
free probability theory. In the appendix, Chapter A is devoted to the Schur complement
formula, Chapter B collects some facts about analytic functions between Banach spaces,
and Chapter C aims at giving an overview over different topologies on sets of Radon
measures, such as the vague or the weak topology.

Computation of analytic distributions and of Brown measures

It is a basic fact that free independence among a collection X1, . . . , Xn of non-commutative
random variables fully determines their joint distribution µX1,...,Xn in terms of the individ-
ual distributions µX1 , . . . , µXn . This particularly means that the distribution µP (X1,...,Xn)

for each non-commutative polynomial P , evaluated in X1, . . . , Xn, is completely deter-
mined by µX1 , . . . , µXn . Accordingly, we can write

µP (X1,...,Xn) = P�(µX1 , . . . , µXn),

where P�(µX1 , . . . , µXn) stands for the free polynomial convolution as introduced in
[BV93]. However, apart from the basic cases P (x1, x2) = x1 + x2 and P (x1, x2) = x1 · x2,
which can be computed by means of the free additive convolution µX1 � µX2 and the
free multiplicative convolution µX1 � µX2 , respectively, only the commutator P (x1, x2) =
i(x1x2 − x2x1) and the anti-commutator P (x1, x2) = x1x2 + x2x1 were treated in detail
(see [NS98, Vas03]). Computing µP (X1,...,Xn) for more general polynomials P was out
of reach for a long time – not to mention the analogous question with non-commutative
polynomials replaced by non-commutative rational expressions.

Clearly, we can only hope for some deeper insights going beyond the combinatorial tools
when working in some analytic setting. The precise problems thus read as follows.

Problem 1. Given a self-adjoint non-commutative rational expression r in the formal
variables x = (x1, . . . , xn). Let X1, . . . , Xn be freely independent self-adjoint elements in
some non-commutative C∗-probability space (A, φ), for which the evaluation r(X1, . . . , Xn)
is well-defined. If the distribution of each of the Xj’s is known, how can we compute the
distribution of r(X1, . . . , Xn)?

Problem 2. Given an arbitrary non-commutative rational expression r in the formal
variables x = (x1, . . . , xn). Let X1, . . . , Xn be freely independent self-adjoint elements in
some tracial W ∗-probability space (A, φ) for which the evaluation r(X1, . . . , Xn) is well-
defined. If the distribution of each of the Xj’s is known, how can we compute the Brown-
measure of r(X1, . . . , Xn)?

In Chapter IV, we will present a systematic approach to these problems, resulting in
Algorithm IV.4.1 and Algorithm IV.4.2, which provide their complete solutions and also
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some very efficient machinery for carrying out numerical computations. Lemma II.4.1 and
Lemma II.4.4 will show that our results even apply to questions in random matrix theory.

Let us point out that both of these algorithms are based essentially on two pillars, namely

• on operator-valued free probability theory, especially on Theorem I.2.18, which
allows an effective analytic treatment of the operator-valued free additive con-
volution by means of subordination functions for general operator-valued C∗-
probability spaces. Theorem I.2.18, which was obtained in [BMS13], finalized
several previous attempts [Bia98a, Voi00b, Voi02a], which were accomplished
in an operator-valued frame but under more restrictive assumptions. In addition,
it provides a fixed point iteration scheme for the involved subordination func-
tions, which is analogous to the scalar-valued case as treated in [BB07].
• on the method of linearization, which allows us to transfer by purely algebraic

means any well-defined non-commutative rational expression r(X1, . . . , Xn) into
some linear but matrix-valued expression

L(X1, . . . , Xn) = L(0) + L(1)X1 + · · ·+ L(n)Xn,

whose coefficients L(0), L(1), . . . , L(n) are complex matrices. This translates the
scalar-valued problem concerning r(X1, . . . , Xn) into an operator-valued prob-
lem about L(X1, . . . , Xn). The method of linearization, which is inside the free
probability community also known under the name “linearization trick”, will
be presented in detail in Chapter III. Our exposition relies on [BMS13] and
[HMS15], but provides in addition several refinements and generalizations of
the results that were presented therein.

Regularity questions

Non-commutative distributions are by definition purely combinatorial objects and apart
from the commutative case (including especially the case of one variable), no analytic
description in terms of measures is possible. Accordingly, there is no natural notion of
regularity for non-commutative distributions.

However, based on the analogy to the classical situation, it was commonly believed that
conditions on quantities like the free Fisher information, the free entropy, or the free
entropy dimension, which were introduced by Voiculescu in his famous series of papers
[Voi93, Voi94, Voi96, Voi97, Voi98, Voi99] (see also the survey [Voi02b]), imply
strong regularity properties of the considered distributions. But how should one make
such statements precise without having an absolute notion of regularity?

A very natural and also quite promising approach is that regularity of non-commutative
distributions µX1,...,Xn for non-commutative random variables should be understood as
regularity – in the usual measure theoretic meaning – of those one-variable distributions
µf(X1,...,Xn), which arise under evaluation of sufficiently many self-adjoint test functions
f in the given variables X1, . . . , Xn. Following this strategy, one typically imposes some
of the previously mentioned more abstract conditions on non-commutative distributions
and tries then to detect regularity in the latter sense via evaluations.

All of the papers [MSW14, MSW17, Mai15], which underlie our approach to these
regularity questions, are based on the theory of non-commutative derivatives, which arises
from the work of Voiculescu [Voi98, Voi99] and of Dabrowski [Dab10, Dab14]. This
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will be the topic of Chapter V. It aims at a uniform exposition of their results on a general
level like in [Mai15], culminating in Proposition V.6.1, which is taken in this form from
[Mai15] and which appeared before in a more specialized version in [MSW14, MSW17].
This statement is at the core of some general reduction argument, which will be essential
in Chapter VI and Chapter VII.

In Chapter VI, which is based on [MSW14, MSW17], we show that in a tracial and
finitely generated W ∗-probability space existence of conjugate variables excludes algebraic
relations for the generators; see Theorem VI.1.5. Moreover, under the assumption of max-
imal non-microstates free entropy dimension, i.e. δ∗(X1, . . . , Xn) = n, we prove that there
are no zero divisors in the sense that the product of any non-commutative polynomial in
X1, . . . , Xn with any element from the generated von Neumann algebra is zero if and only
if at least one of those factors is zero; see Theorem VI.2.1. On the one hand, this gives an
interesting connection to the work of Linnell [Lin91, Lin92, Lin93, Lin98] on analytic
versions of the zero divisor conjecture, especially in the case of the free group. On the
other hand, it shows that under the assumption δ∗(X1, . . . , Xn) = n the distribution of
any non-constant self-adjoint non-commutative polynomial P (X1, . . . , Xn) in X1, . . . , Xn

does not have atoms; see Corollary VI.2.2. Questions on the absence of atoms for polyno-
mials in non-commuting random variables (or for polynomials in random matrices) have
been an open problem for quite a while. We solve this general problem by showing that
maximality of free entropy dimension excludes atoms. This continued and generalized the
previous work [SS15] on regularity questions for polynomial evaluations and the meth-
ods investigated in [MSW14, MSW17] have already initiated an impressive variety of
follow-up research; see [CS16, Dab15, Har15].

Following [Mai15], we discuss in Chapter VII another extension of the methods of Chapter
VI, namely to the continuous setting of free stochastic calculus. Wigner integrals

ISn (f) =

∫
Rn+
f(t1, . . . , tn) dSt1 · · · dStn

for f ∈ L2(Rn
+) on R+ = [0,∞) and the corresponding Wigner chaos were introduced by

P. Biane and R. Speicher in 1998 as a non-commutative counterpart of classical Wiener-
Itô integrals and the corresponding Wiener-Itô chaos, respectively, in free probability;
see [BS98]. In the classical case, a famous result of I. Shigekawa [Shi78, Shi80] states
that non-trivial elements in the finite Wiener-Itô chaos have an absolutely continuous
distribution. We provide here a first contribution to such regularity questions for Wigner
integrals by showing that the distribution of non-trivial elements in the finite Wigner
chaos of the form

IS1 (f1) + IS2 (f2) + · · ·+ ISN(fN)

with mirror-symmetric fn ∈ L2(Rn
+) for n = 1, . . . , N and fN 6= 0 cannot have atoms.

The corresponding Theorem VII.1.4 answers a question of I. Nourdin and G. Peccati
[NP13]. Similar to the discrete case, we will deduce Theorem VII.1.4 from a more general
statement, Theorem VII.3.12, by which we exclude zero-divisors in the finite Wigner chaos.

For doing so, we establish in Subsection VII.3.1 the notion of directional gradients in
the context of the free Malliavin calculus. These directional gradients bridge between free
Malliavin calculus and the theory of non-commutative derivations presented in Chapter
V. The methods of [MSW14, MSW17], which were used for treating similar questions
in the case of finitely many variables as outlined in Chapter VI, will be extended in such
a way that they even apply to directional gradients.
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CHAPTER I

Some basics of free probability theory

Free probability theory can be seen as a counterpart of classical probability at the highest
degree of non-commutativity. It gives a special instance of non-commutative probability
theory and is therefore formulated in this general language, but it enjoys the characteristic
feature that it comes with its own notion of independence, called “free independence”.
This independence totally differs from the classical notion of independence, but it shows
many conceptional similarities, so that free probability evolves excitingly far in parallel
to the classical theory.

This theory was invented around 1985 by Voiculescu and it was intended originally to
serve as a tool for attacking the isomorphism problem for the free group factors L(Fn).
This is based on the fascinating observation that free independence reflects on the operator
algebraic side the structure that is induced by free products on the group side.

Later, Voiculescu also found a quite surprising and extremely fruitful connection to ran-
dom matrix theory. He noticed that free independence shows up very naturally for many
classes of independent random matrices in the limit when their dimension tends to infin-
ity. Based on this so-called “asymptotic freeness” phenomenon, free probability nowadays
provides a powerful machinery to understand limiting eigenvalue distributions for many
types of random matrices. This replaced, systematized, and generalized previously given
ad hoc arguments and has even more produced an impressive amount of totally new
results.

However, apart from the free product construction and the limiting behavior of certain
random matrices, there is still another important source of free independence. In fact,
it shows up among creation and annihilation operators for orthogonal vectors on the
full Fock space. We admit that this might sound like a rather artificial approach to free
independence, but since this construction is easily accessible to concrete computations, it
is of great theoretical importance. In particular, it underlies the free Malliavin calculus
as we will outline in Chapter VII.

For the seek of completeness but without going into details, we mention that free prob-
ability found applications also in the study of some asymptotic phenomena in the repre-
sentation theory of the symmetric group; see, for instance, [Bia98b] or the recent survey
paper [Spe16].

In this chapter, we will provide a brief introduction to the field of free probability. Of
course, we can only discuss here some of its basic aspects, and we will do this in a way
which is mostly streamlined to our needs. For a more detailed introduction, we refer the
interested reader to the monographs [VDN92, Voi00a, HP00b, NS06].

In Section I.1, we will first present the scalar-valued theory of free probability, and in
Section I.2, we will turn our attention to its operator-valued generalization. In each of these
cases, we will focus on the analytic aspects of that theory. Nonetheless, our discussions
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8 I.1. SCALAR-VALUED FREE PROBABILITY THEORY

will begin in most cases on a purely algebraic level and we also try to highlight whenever
we hit an important link to the combinatorial side.

I.1. Scalar-valued free probability theory

We first present the scalar-valued part of free probability theory. As we will see in Section
I.2, there exists also an operator-valued extension of free probability, which generalizes the
scalar-valued theory in the same vein as conditional expectations generalize expectations
in classical probability. For the seek of clarity, we prefer to discuss these topics separately.

I.1.1. Non-commutative probability spaces. At the basis of non-commutative
probability and free probability in particular is the notion of non-commutative probability
spaces.

I.1.1.1. The basic terminology. We are going to present the most general and purely
algebraic definition first.

Definition I.1.1. A non-commutative probability space is a pair (A, φ) consisting of a
unital complex algebra1 A and a linear functional φ : A → C that satisfies φ(1) = 1.
Elements of A are called non-commutative random variables and φ is called expectation
on A.

In order to convince the reader that this is indeed some reasonable terminology, we should
first check that the classical notion of probability spaces fits into this general frame. This
will be done in the following example.

Example I.1.2. Let us take any classical probability space (Ω,F ,P). Recall that this
means that Ω is some set, F some σ-algebra consisting of subsets of Ω, and P some prob-
ability measure, which is defined on all sets belonging to F . The complex unital algebra
L∞(Ω,P) of bounded random variables is then naturally endowed with the expectation
E : L∞(Ω,P)→ C, which is the unital linear functional that is defined by

E[X] :=

∫
Ω

X(ω) dP(ω) for any X ∈ L∞(Ω,P).

We thus see that (L∞(Ω,P),E) indeed provides an example of a non-commutative prob-
ability space.

Matrix algebras constitute another basic example of non-commutative probability spaces.
They will be discussed next.

Example I.1.3. For any positive integer N , let MN(C) denote the algebra of N × N
matrices over C. If we endow MN(C) with the normalized trace

trN(X) :=
1

N

N∑
i=1

Xi,i for all X = (Xi,j)
N
i,j=1 ∈MN(C).

1The term “algebra” is – as experience teaches us – a constant source of confusion, since different
communities typically agree on slightly different properties. Thus, let us stipulate that “a complex algebra
A” for us always means “an associative complex algebraA”, i.e., a complex vector spaceA that is endowed
with a C-bilinear mapping · : A×A → A, called the multiplication, which is associative in the sense that
X · (Y · Z) = (X · Y ) · Z holds for all X,Y, Z ∈ A. By the additional term “unital”, we indicate that A
contains a unique element 1 = 1A, called the identity element of A, which satisfies 1 ·X = X = X · 1 for
all X ∈ A.
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CHAPTER I. SOME BASICS OF FREE PROBABILITY THEORY 9

we obtain the non-commutative probability space (MN(C), trN).

We point out that a suitable combination of the previously mentioned examples will
provide us in Chapter II some appropriate framework for dealing with random matrices;
see Definition II.1.1.

Example I.1.3 motivates the following definition.

Definition I.1.4. Let A be a algebra and φ : A → C be a linear map. We call φ tracial
(or trace), if it satisfies

φ(XY ) = φ(Y X) for all X, Y ∈ A.

Well-known facts from linear algebra say that the non-commutative probability space
(MN(C), trN), which was presented in Example I.1.3, indeed comes with a tracial ex-
pectation. For more trivial reasons, namely due to the commutativity of the underlying
algebra of random variables, the classical expectation appearing in Example I.1.2 is also
tracial. Furthermore, as we will see in Chapter II, the traciality of these two examples
passes to the non-commutative probability space of random matrices.

I.1.1.2. ∗-probability spaces. All non-commutative probability spaces that we dis-
cussed in the examples above have in common that their corresponding algebras carries
some additional ∗-structure. Recall that a complex unital algebra A is called ∗-algebra, if
it is endowed with a complex anti-linear mapping ∗ : A → A, which satisfies (X∗)∗ = X
for all X ∈ A and (XY )∗ = Y ∗X∗ for all X, Y ∈ A. We will now focus on such situations.

Definition I.1.5. Let (A, φ) be a non-commutative probability space. We call (A, φ) a
∗-probability space, if A is a ∗-algebra and the expectation φ is positive, i.e., if it satisfies
φ(X∗X) ≥ 0 for all X ∈ A.

Of particular interest are ∗-probability spaces (A, φ), whose expectation φ is moreover
faithful. Loosely speaking, this means that φ can “see” all positive elements in A, which
are elements of the form X∗X for some X ∈ A.

Definition I.1.6. Let A be a ∗-algebra and φ : A → C be a linear map. We call φ
faithful , if for any X ∈ A the condition φ(X∗X) = 0 implies that X = 0.

It is easy to check that the non-commutative probability spaces introduced in Example
I.1.2 and in Example I.1.3 are indeed ∗-probability spaces with faithful expectations.

Although this definition is still of algebraic nature, the positivity constraint imposed
on the expectation brings us already close to the analytic setting. Indeed, the assumed
positivity of φ enforces many strong properties, such as (see [NS06, Remark 1.2])

φ(X∗) = φ(X) for all X ∈ A
and the Cauchy-Schwarz inequality

|φ(Y ∗X)|2 ≤ φ(X∗X)φ(Y ∗Y ) for all X, Y ∈ A.

I.1.1.3. C∗- and W ∗-probability spaces. The actual analytic setting is reached by
putting some topological structure on A, with which the expectation φ must be compat-
ible. We will focus here on two important examples, namely on C∗- and W ∗-probability
spaces.

Let us first consider C∗-probability spaces.
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10 I.1. SCALAR-VALUED FREE PROBABILITY THEORY

Definition I.1.7. A C∗-probability space is a pair (A, φ) consisting of a unital C∗-algebra
A and a state φ on A.

Recall that a state φ on a unital C∗-algebra A is a linear functional φ : A → C, which
is , i.e. satisfies φ(X∗X) ≥ 0 for all X ∈ A, and for which φ(1) = 1 holds. Therefore, a
C∗-probability space is clearly a non-commutative probability space and, with respect to
its involution ∗, it is in fact a ∗-probability space. Depending on the intended application,
we will sometimes assume in addition that the corresponding state is faithful, tracial, or
even both.

Let us continue with W ∗-probability spaces. Each von Neumann algebra is of course a C∗-
algebra andW ∗-probability spaces are correspondingly a special instance of C∗-probability
spaces, but this description does by no means meet the actual truth. Therefore, W ∗-
probability spaces should like von Neumann algebras be considered as objects of their
own right. Among several possible definitions, we choose here the following one which
perfectly suits our needs.

Definition I.1.8. A tracial W ∗-probability space is a pair (M, τ), where M is a von
Neumann algebra and τ a faithful normal tracial state on M .

Recall that a state τ on M is called normal , if limλ∈Λ τ(Tλ) = τ(T ) holds for each
monotone increasing net (Tλ)λ∈Λ of positive operators in M with least upper bound T ∈
M . We point out that normality is in fact equivalent to the statement that τ is continuous
with respect to the weak (or the strong) operator topology if it is restricted to sets in M
of bounded operator-norm; see [Bla06, Theorem III.2.1.4].

We note that the non-commutative probability space (MN(C), trN), which we know from
Example I.1.3 and which was already identified as a ∗-probability space, is in fact a
C∗-probability space (with trN being a faithful tracial state) and even more a tracial
W ∗-probability space.

It is important to note that there is a canonical tensor product for von Neumann algebras
that respects even the notion of W ∗-probability spaces.

Remark I.1.9. If (M1, τ1) and (M2, τ2) are two tracial W ∗-probability spaces, then also
their von Neumann algebra tensor product M1 ⊗M2 becomes, endowed with the tensor
product state τ1 ⊗ τ2, a tracial W ∗-probability space.

Another construction that will be used repeatedly in the subsequent considerations are
the non-commutative Lp-spaces.

Remark I.1.10. Given any tracial W ∗-probability space (M, τ), we may introduce the
non-commutative Lp-spaces Lp(M, τ) for 1 ≤ p ≤ ∞ as the completion of M with respect

to the norm ‖x‖Lp(M,τ) := τ
(
(x∗x)

p
2

) 1
p , and for p =∞ simply by L∞(M, τ) := M where we

put ‖x‖L∞(M,τ) := ‖x‖. Whenever it is not necessary to indicate explicitly the underlying
von Neumann algebra, we will abbreviate ‖ · ‖p := ‖ · ‖Lp(M,τ).

I.1.2. Non-commutative distributions. Non-commutative distributions transfer
the well-established notion of joint distributions known from classical probability theory to
the realm of non-commutative probability. It is therefore instructive to recall the classical
situation first.
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CHAPTER I. SOME BASICS OF FREE PROBABILITY THEORY 11

Example I.1.11. Let (Ω,F ,P) be a classical probability space. For any given collection
X = (X1, . . . , Xn) of finitely many random variables X1, . . . , Xn ∈ L∞(Ω,P), the (joint)
distribution of X is given as the probability measure µX , which is defined by

µX(B) = P
(
{ω ∈ Ω| (X1(ω), . . . , Xn(ω)) ∈ B}

)
for any Borel subset B of Rn. In other words, µX is nothing but the push forward measure
of P under the measurable map

X : Ω→ Rn, ω 7→ (X1(ω), . . . , Xn(ω)).

With a bit of work, one can show that the probability measure µX is compactly supported
and that

(I.1)

E
[
P (X1, . . . , Xn)

]
=

∫
Ω

P (X1(ω), . . . , Xn(ω)) dP(ω)

=

∫
Rn
P (x1, . . . , xn) dµX(x1, . . . , xn)

holds for each commutative polynomial P ∈ C[x1, . . . , xn]; see [NS06, Example 4.4 (1)].

The latter formula (I.1) turns the classical joint distribution into the linear functional

C[x1, . . . , xn]→ C, P 7→ E
[
P (X1, . . . , Xn)

]
.

It is a very important feature of this formula that it gives meaning to the classical joint dis-
tribution µX only in terms of (L∞(Ω,P),E) and hence without referring to the underlying
probability space (Ω,F ,P). The linear functional

µX : C〈x1, . . . , xn〉 → C, P 7→ φ
(
P (X1, . . . , Xn)

)
gives therefore a natural generalization of the classical joint distribution to the case of non-
commutative random variables (X1, . . . , Xn) in some non-commutative probability space
(A, φ), for which typically no underlying structure such as (Ω,F ,P) exists. Of course,
for this purpose, we should also replace the much too restrictive algebra C[x1, . . . , xn] of
commutative polynomials by the algebra C〈x1, . . . , xn〉 of non-commutative polynomials.

I.1.2.1. Non-commutative distributions in general non-commutative probability spaces.
The motivating discussion about the classical case gives justification for the terminology of
non-commutative joint distributions, which we are going to introduce now in the generality
of non-commutative probability spaces.

Definition I.1.12. Let I be some non-empty index set.

(i) By C〈xi| i ∈ I〉, we denote the free algebra over C with generators {xi| i ∈ I}.
In the following, we will refer to C〈xi| i ∈ I〉 as the algebra of non-commutative
polynomials in the formal non-commuting variables {xi| i ∈ I}.

(ii) Let X = (Xi)i∈I be a family of non-commutative random variables, over the
index set I, living in a non-commutative probability space (A, φ). Denote by
evX the evaluation homomorphism

evX : C〈xi| i ∈ I〉 → A,
which is, as a homomorphism, uniquely determined by 1 7→ 1A and xi 7→ Xi for
all i ∈ I. For any given P ∈ C〈xi| i ∈ I〉, we mostly abbreviate P (X) := evX(P ).
The non-commutative (joint) distribution µX of X = (Xi)i∈I is defined as the
linear functional µX := φ ◦ evX , i.e.

µX : C〈xi| i ∈ I〉 → C, P 7→ φ(P (X)).

11



12 I.1. SCALAR-VALUED FREE PROBABILITY THEORY

Remark I.1.13. By linearity and due to the normalization µX(1) = φ(1) = 1, the non-
commutative distribution µX of any family X = (Xi)i∈I is fully determined by its values

µX(xi1xi2 · · · xik) = φ
(
Xi1Xi2 · · ·Xik

)
on all monomials xi1xi2 · · ·xik with k ≥ 1 and i1, i2, . . . , ik ∈ I. An expression of the form

φ
(
Xi1Xi2 · · ·Xik

)
with i1, . . . , ik ∈ I,

will be called moment of order k ≥ 0, where we include φ(1) = 1 as the moment of order
k = 0. Thus, µX can be seen as the collection of all (joint) moments of (Xi)i∈I .

I.1.2.2. Non-commutative distributions in ∗-probability spaces. When working in ∗-
probability spaces, it is natural to consider non-commutative random variables at once
with their adjoints. This leads to the notion of ∗-distributions.

Definition I.1.14. Let I be some non-empty index set.

(i) By C〈xi, x∗i | i ∈ I〉, we denote the ∗-algebra of all non-commutative ∗-
polynomials in the formal variables {xi| i ∈ I}. Formally, C〈xi, x∗i | i ∈ I〉 is
nothing but the free algebra with formal generators {xi| i ∈ I} ∪ {x∗i | i ∈ I}. It
carries naturally an involution ∗ by declaring 1∗ = 1 and (xi)

∗ = x∗i for all i ∈ I.
(ii) Let (A, φ) be a ∗-probability space and let X = (Xi)i∈I be some family of

non-commutative random variables in A. We denote by evX,X∗ the evaluation
∗-homomorphism

evX,X∗ : C〈xi, x∗i | i ∈ I〉 → A,
which is, as a ∗-homomorphism, uniquely determined by 1 7→ 1A and xi 7→ Xi for
all i ∈ I. For any given P ∈ C〈xi, x∗i | i ∈ I〉, we mostly abbreviate P (X,X∗) :=
evX,X∗(P ). The non-commutative (joint) ∗-distribution of X = (Xi)i∈I is given
as the linear functional µX,X∗ := φ ◦ evX,X∗ , i.e.

µX,X∗ : C〈xi, x∗i | i ∈ I〉 → C, P 7→ φ(P (X,X∗)).

Clearly, we can view µX,X∗ as the non-commutative joint distribution of the
family (Xε

i )(i,ε)∈I×{1,∗}.

Remark I.1.15. In the same way as each non-commutative distributions µX is uniquely
determined by the collection of all joint moments of X, as it was observed in Remark
I.1.13, non-commutative ∗-distributions µX,X∗ are determined by their values

µX,X∗(x
ε1
i1
xε2i2 · · · x

εk
ik

) = φ
(
Xε1
i1
Xε2
i2
· · ·Xεk

ik

)
on all ∗-monomials xε1i1 x

ε2
i2
· · ·xεkik with k ≥ 1, i1, i2, . . . , ik ∈ I, and ε1, . . . , εk ∈ {1, ∗}. An

expression of the form

φ
(
Xε1
i1
Xε2
i2
· · ·Xεk

ik

)
with i1, . . . , ik ∈ I and ε1, . . . , εk ∈ {1, ∗},

is called ∗-moment of order k ≥ 0, where we include φ(1) = 1 as the ∗-moment of order
k = 0. Again, µX,X∗ can be seen as the collection of all (joint) ∗-moments of (Xi)i∈I .

Whenever we work with families (Xi)i∈I of self-adjoint non-commutative random vari-
ables in some ∗-probability space (A, φ), then its non-commutative ∗-distribution µX,X∗ :
C〈xi, x∗i | i ∈ I〉 → C clearly does not contain more information than just the non-
commutative distribution µX : C〈xi| i ∈ I〉 → C. We will come back to this point when
talking about analytic distributions in the case of normal and self-adjoint operators; see
Definition I.1.17 and Definition I.1.18 below. There, we will make the distinction between

12



CHAPTER I. SOME BASICS OF FREE PROBABILITY THEORY 13

measures on C and measures on R, which in our current combinatorial setting indicates
that, for self-adjoint X = (Xi)i∈I , we should think of the formal variables (xi)i∈I appear-
ing in µX : C〈xi| i ∈ I〉 → C as being self-adjoint in some appropriate sense. Let us make
this more precise.

Definition I.1.16. Let I be some non-empty index set. Then the algebra C〈xi| i ∈ I〉
carries a natural involution ∗, with respect to which it becomes a ∗-algebra. This involution
∗ is uniquely determined by the conditions that 1∗ = 1 and x∗i = xi for all i ∈ I holds.

I.1.2.3. Non-commutative distributions in C∗- and W ∗-probability spaces. The advan-
tage of working in C∗- or W ∗-probability spaces is that their underlying topological struc-
ture allows to treat non-commutative distributions by more analytic tools – at least in
the case of one variable.

Let us take any non-commutative random variable X in some C∗-probability space (A, φ)
and suppose that X is normal , i.e., that X commutes with its adjoint X∗. Then the non-
commutative ∗-distribution µX,X∗ of X, i.e. the collection of all ∗-moments of X, can be
encoded by some compactly supported Borel probability measure on the complex plane
C. Its construction proceeds as follows: the functional calculus for X yields an isometric
∗-homomorphism f 7→ f(X) from C(σ(X)), the space of all complex-valued continuous
functions on the spectrum σ(X) of X, into the C∗-algebra A. Accordingly, we obtain a
bounded linear functional

I : C(σ(X))→ C, f 7→ φ(f(X))

and the positivity of φ gives that this linear functional is also positive. Thus, the Riesz
representation theorem (see Corollary C.5) tells us that I can be written as I = IµX , i.e.

(I.2) φ(f(X)) =

∫
C
f(z) dµX,X∗(z) for all f ∈ C(σ(X)),

for some unique Borel measure µX,X∗ on C, whose support is contained in the compact set
σ(X) and which is due to φ(1) = 1 in fact a probability measure. Hence, we can record:

Definition I.1.17. Let X be a normal non-commutative random variable in a C∗-
probability space (A, φ). The (analytic) ∗-distribution µX,X∗ of X is the compactly sup-
ported Borel probability measure on C, which is uniquely determined by the condition

(I.3) φ(Xk(X∗)l) =

∫
C
zkzl dµX,X∗(z) for k, l ∈ N0.

Note that we have replaced in Definition I.1.17 the determining condition (I.2) for the
analytic distribution µX,X∗ by (I.3); this is possible since the C-linear span of all functions
z 7→ zkzl with k, l ∈ N0 is dense in C(σ(X)) by the Stone-Weierstraß theorem.

Moreover, let us point out that one can show (see [NS06, Proposition 3.15]) that in fact
supp(µX) = σ(X) holds.

In the special case of a self-adjoint non-commutative random variable X, we can specify
the construction in such a way that its representing measure becomes a Borel probability
measure on R. Like in the normal case above, the analytic distribution µX of X is based
on the functional calculus for X and on the Riesz representation theorem (see Corollary
C.5). This identifies µX as the unique Borel probability measure on R, which satisfies

(I.4) φ(f(X)) =

∫
R
f(t) dµX(t) for all f ∈ C(σ(X)).

13



14 I.1. SCALAR-VALUED FREE PROBABILITY THEORY

Definition I.1.18. Let X be a self-adjoint non-commutative random variable in a C∗-
probability space (A, φ). The (analytic) distribution µX of X is the compactly supported
Borel probability measure on R, which is uniquely determined by the condition

(I.5) φ(Xk) =

∫
R
tk dµX(t) for k ∈ N0.

Definition I.1.18 characterizes the analytic distribution µX by the condition (I.5), whereas
the stronger condition (I.4) is required in order to deduce uniqueness from the Riesz
representation theorem. That these conditions are indeed equivalent follows from the
observation that the C-linear span of all functions t 7→ tk with k ∈ N0 is dense in C(σ(X))
according to the Stone-Weierstraß theorem.

Clearly, for a self-adjoint X we can also consider µX,X∗ besides the more appropriate µX ,
but since the ∗-distribution of X contains exactly the same amount of information as its
distribution, it is not surprising that µX,X∗ is related with µX via µX,X∗(B) = µX(B ∩R)
for each Borel subset B of C.

Finally, a few words on the notation are in order. Note that the analytic distribution µX,X∗
(respectively µX) encodes all ∗-moments (respectively moments) of any normal (respec-
tively self-adjoint) non-commutative random variable X and can therefore be uniquely
identified with the distribution of X in the previous sense of Definition I.1.14 (respectively
Definition I.1.12). This excuses that we use the same symbol both for the combinatorial
and the analytic distribution.

So far, we were concerned with the case of C∗-probability spaces. Now, let us turn our
attention to W ∗-probability spaces. Here, analytic ∗-distributions for non-commutative
random variables can be connected with the spectral distribution measure. We first remind
ourselves of some background details.

Remark I.1.19. The spectral theorem for normal operators (see, for instance, [Bla06,
Theorem I.6.2.2]) tells us that for any normal operator X on some Hilbert space H, we
can find a projection-valued measure EX on the Borel subsets of the spectrum σ(X) of
X, the so-called spectral measure of X, such that

X =

∫
σ(X)

z dEX(z)

holds. Furthermore (see [Bla06, I.6.2.4]), we can use this representation to define a func-
tional calculus: for each bounded Borel measurable function f : σ(X)→ C, we put

f(X) :=

∫
σ(X)

f(z) dEX(z).

It is known that this functional calculus extends the polynomial functional calculus, i.e.
we have

(I.6) Xk(X∗)l =

∫
σ(X)

f(z) dEX(z) for k, l ∈ N0.

Now, if we take any normal non-commutative random variable in some tracial W ∗-
probability space (M, τ), the spectral measure EX takes its values in the von Neumann
subalgebra vN(X) ⊆M generated by X. Thus, we can apply τ to (I.6) in order to deduce
that

τ(Xk(X∗)l) =

∫
σ(X)

f(z) d(τ ◦ EX)(z) for k, l ∈ N0.

14
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Comparing this with (I.3), we see that the compactly supported measure given by τ ◦EX
must agree with the analytic distribution µX,X∗ . We record this important observation for
later references.

Lemma I.1.20. Let X be a normal non-commutative random variable in some tracial
W ∗-probability space (M, τ). If EX denotes its spectral measure on σ(X) ⊂ C, then the
non-commutative ∗-distribution µX,X∗ of X is given by

µX,X∗ = τ ◦ EX .

Analogously, if X is even self-adjoint, then the analytic distribution µX of X is given by

µX = τ ◦ EX ,

where EX now stands for spectral measure of X on σ(X) ⊂ R.

Consequently, an atom α of µX,X∗ (respectively of µX) implies by the spectral the-
orem, which we have recalled in Remark I.1.19, the existence a non-zero-projection
u := EX({α}) ∈ M , such that (X − α1)u = 0 holds. Note that α ∈ C (respectively
α ∈ R) is said to be an atom of a Borel probability measure µ on C (respectively on R),
if µ({α}) 6= 0.

We conclude our discussion with the following example.

Example I.1.21. An easy but very enlightening task is the computation of analytic distri-
butions in the C∗-probability space (MN(C), trN), which we already know from Example
I.1.3. Indeed, if we take any matrix X ∈ MN(C), which is self-adjoint, then basic linear
algebra tells us that we can find a unitary matrix U ∈MN(C), such that X can be written
as

X = UΛU∗ with Λ =

λ1 0
. . .

0 λN

 ,

where λ1, . . . , λN are the eigenvalues of X, listed according to their multiplicity. The
analytic distribution µX of X is then given as

µX =
1

N

N∑
i=1

δλi ,

where δλ denotes the Dirac measure with atom λ; hence, we see that µX is just the
eigenvalue distribution of X. Indeed, we can check (by using the trace property of trN)
that

trN(Xk) = trN(UΛkU∗) = trN(Λk) =
1

N

N∑
i=1

λki =

∫
R
tk dµX(t)

holds for all k ∈ N0. In particular, we obtain the Cauchy transform of µX as

GµX (z) =

∫
R

1

z − t
dµX(t) =

1

N

N∑
i=1

1

z − λi
.

15



16 I.1. SCALAR-VALUED FREE PROBABILITY THEORY

I.1.2.4. Non-commutative ∗-distributions and isomorphisms. Non-commutative ∗-
distributions that are built with respect to faithful expectation functionals have the very
nice feature that, up to isomorphism, they determine uniquely the ∗-algebra, which is gen-
erated by their corresponding family of non-commutative random variables. The following
theorem is taken from [NS06, Theorem 4.10] and explains this phenomenon.

Theorem I.1.22. Let (A, φ) and (B, ψ) be ∗-probability spaces, such that φ and ψ are
both faithful. Denote by 1A and 1B the units of A and B, respectively. Let X = (Xi)i∈I
and Y = (Yi)i∈I families of non-commutative random variables in A and B, respectively,
which are indexed by the same index set I. Assume that

(i) A is generated as a ∗-algebra by {Xi| i ∈ I} ∪ {1A},
(ii) B is generated as a ∗-algebra by {Yi| i ∈ I} ∪ {1B}, and
(iii) we have µX,X∗ = µY,Y ∗.

Then there exists a unique ∗-isomorphism Φ : A → B, such that Φ(1A) = 1B and Φ(Xi) =
Yi for all i ∈ I and ψ ◦ Φ = φ holds.

Since the proof of this important theorem is both simple and instructive, we do not want
to withhold it completely from the reader. So let us briefly sketch the beautiful ideas on
which the proof is based: given any ∗-isomorphism Φ : A → B, which satisfies Φ(Xi) = Yi
for all i ∈ I, it is clear that we must have Φ(P (X)) = P (Y ) for any P ∈ C〈xi, x∗i | i ∈ I〉,
and because A and B are generated by the variables X and Y , respectively, we see that Φ
is uniquely determined by these conditions. The following commuting diagram illustrates
this situation:

A Φ // B

C〈xi, x∗i | i ∈ I〉
evX

ffff

evY

88 88

Hence, if we want to define such Φ, the only choice that we have is to put Φ(A) := P (Y )
for each given A ∈ A, which can be written as A = P (X) for some P ∈ C〈xi, x∗i | i ∈ I〉. Of
course, if A ∈ A is given, one can always find a non-commutative polynomial P satisfying
the condition A = P (X), but this P might not be unique. This definition of Φ thus
requires to check that the assigned value P (Y ) does not depend on the actual choice of
P . For seeing this, we must involve the condition µX,X∗ = µY,Y ∗ and the faithfulness of ψ.
Indeed, if P1, P2 ∈ C〈xi, x∗i | i ∈ I〉 are given such that P1(X) = P2(X) holds, we clearly
have P (X) = 0, where P ∈ C〈xi, x∗i | i ∈ I〉 is given by P := (P1 − P2)(P1 − P2)∗. This
implies

ψ
(
(P1(Y )−P2(Y ))(P1(Y )−P2(Y ))∗

)
= ψ(P (Y )) = µY,Y ∗(P ) = µX,X∗(P ) = φ(P (X)) = 0

and finally P1(Y ) − P2(Y ) = 0, since ψ was assumed to be faithful. This proves the
existence of a ∗-homomorphism Φ : A → B satisfying Φ(Xi) = Yi for all i ∈ I and
ψ ◦ Φ = φ. Switching now the roles of X and Y and repeating the above argument
produces another ∗-homomorphism Ψ : B → A satisfying Ψ(Yi) = Xi for all i ∈ I and
φ ◦Ψ = ψ. This yields the assertion since Φ and Ψ are clearly inverses of each other.

Amazingly, in the setting of C∗- and W ∗-probability spaces, these isomorphisms even ex-
tend to the corresponding C∗-and W ∗-algebras, respectively. This means that all inherent
operator-algebraic properties are encoded by the non-commutative distribution of their
generators and hence in purely combinatorial terms.

16
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The following theorem, which is taken from [NS06, Exercise 4.20], gives the precise state-
ment in the case of C∗-probability spaces.

Theorem I.1.23. Let (A, φ) and (B, ψ) be C∗-probability spaces, such that φ and ψ are
both faithful. Denote by 1A and 1B the units of A and B, respectively. Let X = (Xi)i∈I
and Y = (Yi)i∈I families of non-commutative random variables in A and B, respectively,
which are indexed by the same index set I. Assume that

(i) A is generated as a C∗-algebra by {Xi| i ∈ I} ∪ {1A},
(ii) B is generated as a C∗-algebra by {Yi| i ∈ I} ∪ {1B}, and

(iii) we have µX,X∗ = µY,Y ∗.

Then there exists a unique isometric ∗-isomorphism Φ : A → B, such that Φ(1A) = 1B
and Φ(Xi) = Yi for all i ∈ I and ψ ◦ Φ = φ holds.

In other words, the unital C∗-algebra generated by a family of non-commutative random
variables X = (Xi)i∈I is determined, up to isomorphism, by the non-commutative ∗-
distribution µX,X∗ . This opens a completely new point of view, since it means for example
that properties of an operator of the form P (X) with P ∈ C〈xi, x∗i | i ∈ I〉, which are
invariant under isometric ∗-isomorphisms (such as norm and spectrum), only depend
on µX,X∗ and P , and hence on purely combinatorial data. Let us illustrate this by the
following proposition.

Proposition I.1.24 (Proposition 3.17 in [NS06]). Let (A, φ) be a C∗-probability space
with φ being faithful. Then, for any X ∈ A, we have

(I.7) ‖X‖ = lim
n→∞

φ
(
(X∗X)n

) 1
2n

Note that (I.7), if written in the alternative form

(I.8) ‖X‖ = lim
n→∞

µX,X∗
(
(x∗x)n

) 1
2n ,

perfectly fits the strategy explained above: according to Theorem I.1.23, the non-
commutative ∗-distribution µX,X∗ : C〈x, x∗〉 → C determines the C∗-algebra generated
by X, up to isometric ∗-isomorphisms, and so, since the quantity ‖X‖ is invariant under
isometric ∗-isomorphisms, its precise value must be contained in µX,X∗ ; this is what is
confirmed and made explicit by Formula (I.8).

For the seek of completeness, we point out that there is an analogous statement in the
context of von Neumann algebras; see [MS16, Theorem 6.2].

Theorem I.1.25. Let (A, φ) and (B, ψ) be W ∗-probability spaces. (Recall that this means
in our terminology that φ and ψ are both faithful normal tracial states; see Definition
I.1.8.) Let X = (Xi)i∈I and Y = (Yi)i∈I families of non-commutative random variables in
A and B, respectively, which are indexed by the same index set I. Assume that

(i) A is generated as a W ∗-algebra by {Xi| i ∈ I},
(ii) B is generated as a W ∗-algebra by {Yi| i ∈ I}, and

(iii) we have µX,X∗ = µY,Y ∗.

Then there exists a unique isometric ∗-isomorphism Φ : A → B, such that Φ(1A) = 1B
and Φ(Xi) = Yi for all i ∈ I and ψ ◦ Φ = φ holds.

17



18 I.1. SCALAR-VALUED FREE PROBABILITY THEORY

I.1.3. Cauchy-Stieltjes transform. This subsection is devoted to Cauchy-Stieltjes
transforms. This kind of transform plays a similarly important role in free probability
as the Fourier transform does in classical probability theory. However, Cauchy-Stieltjes
transforms appeared long before, mainly in the context of moment problems, and they
were also used in random matrix theory – a surprising fact, which one can see as a first
hint on some deeper connections between free probability and random matrix theory.

The term “Cauchy-Stieltjes transform” actually subsumes two closely related concepts,
namely Cauchy transforms and Stieltjes transforms. Let us begin with Cauchy transforms.

Definition I.1.26. Let C+ and C− denote the upper and the lower half-plane in C,
respectively, i.e.

C+ := {z ∈ C| =(z) > 0} and C− := {z ∈ C| =(z) < 0}.

The Cauchy transform Gµ of a Borel probability measure µ on R is the holomorphic
function

Gµ : C+ → C−, z 7→
∫
R

1

z − t
dµ(t).

The Stieltjes transform only differs by a minus sign from the aforementioned Cauchy trans-
form. More explicitly, for any Borel probability measure µ on R, the Stieltjes transform
Sµ is the holomorphic function Sµ : C+ → C+, which is defined by

Sµ(z) :=

∫
R

1

t− z
dµ(t) for all z ∈ C+.

Following the tradition of free probability, we will work here with Cauchy transforms
rather than with Stieltjes transforms.

Cauchy transforms attach to each Borel probability measure µ on R a certain holomorphic
function on C+. Surprisingly, one can write down a very short list of properties, which all
functions arising in this way have in common and by which they are characterized among
all holomorphic functions on C+. This is the content of the following theorem; see for
instance [GH03, Lemma 2].

Theorem I.1.27. Let G be a holomorphic function on the upper half-plane C+. Then G
is the Cauchy transform of a Borel probability measure µ on R, if and only if the following
two conditions are satisfied:

(i) All values of G lie in the lower half-plane, i.e. =(G(z)) < 0 holds for all z ∈ C+.
(ii) It holds true that lim

y→∞
iyG(iy) = 1.

Viewing the Cauchy transform abstractly as a map from the space of all Borel probability
measures on R to the space of holomorphic functions living on C+, it is natural to study
their “continuity” with respect to different topologies. The following theorem, which can
be found for instance in [GH03], says that weak convergence can be detected easily with
the help of Cauchy transforms.

Theorem I.1.28. If (µn)n∈N is a sequence of Borel probability measures on R and µ
another Borel probability measure on R, then (µn)n∈N converges weakly to µ if and only if
(Gµn)n∈N converges pointwise on C+ to Gµ.

18
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Surprisingly, one does not even need the convergence (Gµn(z))n∈N toGµ(z) at all points z ∈
C+ in order to conclude that (µn)n∈N converges weakly to µ. It is a very nice application of
the well-known Vitali-Porter Theorem that pointwise convergence on any infinite subset
K of C+, which has some accumulation point in C+, is already enough; see [GH03].

The content of the next theorem is the well-known Stieltjes inversion formula. This im-
portant theorem tells us that the measure µ can be recovered from its Cauchy transform
Gµ by a certain limit procedure.

Theorem I.1.29 (Stieltjes inversion formula). Consider the Cauchy transform Gµ : C+ →
C− of a Borel probability measure µ on R. Then

dµε(t) =
−1

π
=(Gµ(t+ iε)) dt

defines for any ε > 0 an absolutely continuous probability measure µε on R. These mea-
sures µε converge weakly to µ as ε↘ 0, i.e. we have

lim
ε↘0

∫
R
f(t) dµε(t) =

∫
R
f(t) dµ(t)

for all bounded continuous functions f : R→ C.

Cauchy transforms encode in a very nice way the moments of the corresponding probability
measure µ, supposed that moments up to so some order exist. For making this more
precise, let us consider first the simplest case of compactly supported probability measures.
If µ has compact support, it is easy to see that its Cauchy transform Gµ : C+ → C−
extends (uniquely) to a holomorphic function Gµ : C\ supp(µ) → C and hence admits a
Laurent expansion around infinity. More precisely, for any R > 0 satisfying supp(µ) ⊆
[−R,R], we have that

(I.9) Gµ(z) =
∞∑
k=0

mk(µ)

zk+1
for all z ∈ C with |z| > R,

where mk(µ) denotes the k-th moment of µ, i.e.

mk(µ) :=

∫
R
tk dµ(t).

In particular, we see that the moment sequence (mk(µ))k≥0 of a compactly supported
probability measure µ on R uniquely determines µ among all compactly supported prob-
ability measures on R. Indeed, if there would be another compactly supported probability
measure µ′, which has the same moments as µ, its Cauchy transform Gµ′ would also
admit a Laurent expansion around infinity and would by assumption agree with the Lau-
rent expansion of Gµ. Thus, by the identity principle for holomorphic functions, it follows
that Gµ = Gµ′ , which tells us due to the Stieltjes inversion formula Theorem I.1.29 that
µ = µ′, as claimed. Alternatively, we could conclude by Corollary C.5. Indeed, since com-
plex polynomials are known to be dense in C([−R,R]) with respect to the uniform norm,
where R > 0 is chosen such that the supports of µ and µ′ are both contained in [−R,R],
it follows that the two positive and continuous linear functionals Iµ and Iµ′ on C([−R,R])
must agree on C([−R,R]). Hence, by uniqueness, µ = µ′.

Surprisingly, the moment sequence (mk(µ))k≥0 of a compactly supported probability mea-
sure µ on R determines µ even among all probability measures on R, which have moments
of each order. This statement is less obvious and its validity is guaranteed by the assump-
tion that µ has compact support. However, the condition of having compact support can
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20 I.1. SCALAR-VALUED FREE PROBABILITY THEORY

be significantly relaxed, such that the same conclusion holds for a larger class of measures
µ, namely those, which are determined by their moments.

Definition I.1.30. A probability measure µ on R, not necessarily compactly supported,
but for which all moments

mk(µ) =

∫
R
tk dµ(t) with k ∈ N0

exist, is said to be determined by its moments , if for any other Borel probability measure
µ′ on R the condition mk(µ) = mk(µ

′) for all k ≥ 0 implies that µ = µ′.

Let us point out the following.

Remark I.1.31. In order to detect weak convergence of a sequence (µn)n∈N of Borel prob-
ability measures on R, which all have moments of all orders, towards a Borel probability
measure µ on R, which is determined by its moments, it is sufficient to check convergence
of all moments , i.e.

lim
n→∞

∫
R
tk dµn(t) =

∫
R
tk dµ(t) for all k ∈ N0.

There are powerful results providing sufficient conditions for a measure µ to be determined
by its moments. Typically, they formulate certain constraints on the growth of the moment
sequence (mk(µ))k≥0. As a particularly important example, let us mention here Carleman’s
condition, which says that a Borel probability measure µ on R having moments of all
orders is determined by its moments, if the series

∞∑
k=1

m2k(µ)−
1
2k

is divergent. This allows the announced conclusion that each compactly supported Borel
probability measure on R is determined by its moments.

Remark I.1.32. Consider a Borel probability measure µ on R and suppose that µ has
compact support. In analogy to (I.7), we have that

lim
k→∞

m2k(µ)
1
2k = lim

k→∞

(∫
R
t2k dµ(t)

) 1
2k

= max
t∈supp(µ)

|t| <∞

and hence limk→∞m2k(µ)−
1
2k ∈ (0,∞], which forces

∑∞
k=1m2k(µ)−

1
2k to be divergent. By

Carleman’s condition, we may conclude that µ is indeed determined by its moments.

In most cases, we will work with measures that arise as analytic distributions of non-
commutative random variables in C∗- or W ∗-probability spaces. Such measures clearly
have compact support.

Remark I.1.33. If µX is the distribution of any non-commutative random variable X =
X∗ ∈ A in a C∗-probability space (A, φ), then (I.4) tells us that we have

GµX (z) =

∫
R

1

z − t
dµX(t) = φ

(
(z −X)−1

)
for z ∈ C+.

In such cases, we will therefore often write GX instead of GµX . This holomorphic function
enjoys an analytic extension to C\ supp(µX) = C\σ(X) = ρ(X), where σ(X) = σA(X)
and ρ(X) = ρA(X) denote the spectrum and the resolvent set of X in A, respectively. On
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the set {z ∈ C| |z| > R}, where R is chosen such that supp(µX) = σ(X) ⊆ [−R,R], the
resolvent (z −X)−1 can be written as a convergent series

(z −X)−1 =
∞∑
k=0

1

zk+1
Xn.

This yields the Laurent expansion

GX(z) =
∞∑
k=0

φ(Xn)

zk+1
.

Compared with the Laurent expansion (I.9) of GµX , this gives

φ(Xk) = mk(µX) =

∫
R
tk dµX(t) for k ∈ N0,

which simply reflects the determining condition (I.5) of µX , which was given above in
Definition I.1.18.

I.1.4. Free independence. The setting that we have introduced so far is of general
nature and not at all specific for free probability theory. The actual starting point of free
probability is Voiculescu’s notion of free independence, which we will introduce next.

Definition I.1.34 (Free independence). Let (A, φ) be a non-commutative probability
space.

(i) Let (Ai)i∈I be a family of unital subalgebras2 of A with an arbitrary index set
I 6= ∅. We call (A)i∈I freely independent (or just free), if

φ(X1 · · ·Xn) = 0

holds whenever the following conditions are fulfilled:
• We have n ≥ 1 and there are indices i1, . . . , in ∈ I satisfying

i1 6= i2, . . . , in−1 6= in.

• For j = 1, . . . , n, we have Xj ∈ Aij and it holds true that φ(Xj) = 0.
(ii) Let (Xi)i∈I a family of subsets of A with an arbitrary index set I 6= ∅. We call

(Xi)i∈I freely independent (or just free), if (Ai)i∈I are freely independent in the
sense of (i), where Ai denotes for each i ∈ I the unital subalgebra of A that is
generated by the elements of Xi.

(iii) Elements (Xi)i∈I are called freely independent (or just free), if (Ai)i∈I are freely
independent in the sense of (i), where Ai denotes for each i ∈ I the unital
subalgebra of A that is generated by Xi.

Roughly speaking, free independence gives some kind of “universal rule” to compute
expectations of mixed products. The following theorem gives the precise statement.

Theorem I.1.35 (Lemma 5.13 in [NS06]). Let (A, φ) be a non-commutative probability
space and let (Ai)i∈I be a family of unital subalgebras Ai of A, which are freely independent.
Denote by B the subalgebra of A, which is generated by

⋃
i∈I Ai. Then the restriction φ|B

of φ to B is fully determined by the family of restrictions (φ|Ai)i∈I .

2We note that for us “unital subalgebra” always means “unitally embedded subalgebra”, i.e. the unit
of the smaller algebra is the unit of the larger algebra.
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22 I.1. SCALAR-VALUED FREE PROBABILITY THEORY

Since the proof of this statement is quite constructive, it might convey a better feeling for
the concept of free independence, and so we want to discuss briefly its idea. Clearly, any
element in B is a linear combination of elements of the form

X1 · · ·Xn

with Xj ∈ Aij for j = 1, . . . , n, where n ≥ 1 and i1, . . . , in ∈ I are such that i1 6=
i2, . . . , in−1 6= in holds. Hence, by linearity of φ, it suffices to show that the expectation
of such elements is determined by (φ|Ai)i∈I . For proving this, we proceed by (strong)
induction on the length n of the product. For n = 1, the statement is trivially true. If we
assume that the statement is already proven for any length < n for some n ≥ 2, we may
involve the freeness condition, which tells us that

φ
(
(X1 − φ(X1)) · · · (Xn − φ(Xn))

)
= 0.

The latter yields after expanding

φ(X1 · · ·Xn) +
n∑
k=1

∑
1≤j1<···<jk≤n

(−1)kφ(Xj1) · · ·φ(Xjk)φ(Πj1,...,jk) = 0

where Πj1,...,jk stands for the ordered product of all X1, . . . , Xn but with the factors
Xj1 , . . . , Xjk omitted, i.e.

Πj1,...,jk = X1 · · ·Xj1−1Xj1+1 · · ·Xjk−1Xjk+1 · · ·Xn.

This implies that φ(X1 · · ·Xn) is determined by expectations of products of length < n.
By the induction hypothesis, we conclude that φ(X1 · · ·Xn) is determined by (φ|Ai)i∈I .

Example I.1.36. Consider a non-commutative probability space (A, φ) and two unital
subalgebras A1,A2 of A, which are freely independent. If we chose X1, X2, X3 ∈ A1 and
Y ∈ A2 with φ(Y ) = 0, then

φ(X1Y X2Y X3) = φ(X1X3)φ(X2)φ(Y 2).

Indeed, the freeness condition yields

φ
(
(X1 − φ(X1))Y (X2 − φ(X2))Y (X3 − φ(X3))

)
= 0.

An expansion of the left hand side gives

φ
(
(X1 − φ(X1))Y (X2 − φ(X2))Y (X3 − φ(X3))

)
= φ(X1Y X2Y X3)− φ(X1)φ(Y X2Y X3)− φ(X2)φ(X1Y

2X3)− φ(X3)φ(X1Y X2Y )

+ φ(X1)φ(X2)φ(Y 2X3) + φ(X1)φ(X3)φ(Y X2Y ) + φ(X2)φ(X3)φ(X1Y
2)

− φ(X1)φ(X2)φ(X1)φ(Y 2).

Next, we study the expressions φ(Y X2Y X3), φ(X1Y
2X3) and φ(X1Y X2Y ). For the first,

we have

0 = φ
(
Y (X2 − φ(X2))Y (X3 − φ(X3))

)
= φ(Y X2Y X3)− φ(X2)φ(Y 2X3)− φ(X3)φ(Y X2Y ) + φ(X2)φ(X3)φ(Y 2),

for the second

0 = φ
(
(X1 − φ(X1))(Y 2 − φ(Y 2))(X3 − φ(X3))

)
= φ(X1Y

2X3)− φ(X1)φ(Y 2X3)− φ(X1X3)φ(Y 2)− φ(X3)φ(X1Y
2)

+ 2φ(X1)φ(X3)φ(Y 2),
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and finally for the third one

0 = φ
(
(X1 − φ(X1))Y (X2 − φ(X2))Y

)
= φ(X1Y X2Y )− φ(X1)φ(Y X2Y )− φ(X2)φ(X1Y

2) + φ(X1)φ(X2)φ(Y 2).

In the next step, we compute in the same way

φ(Y 2X3) = φ(X3)φ(Y 2), φ(Y X2Y ) = φ(X2)φ(Y 2), and φ(X1Y
2) = φ(X1)φ(Y 2),

such that the previously found relations reduce to

φ(Y X2Y X3) = φ(X2)φ(X3)φ(Y 2)

φ(X1Y
2X3) = φ(X1X3)φ(Y 2)

φ(X1Y X2Y ) = φ(X1)φ(X2)φ(Y 2)

Combining this with the very first result, we obtain

0 = φ(X1Y X2Y X3)− φ(X1)φ(Y X2Y X3)− φ(X2)φ(X1Y
2X3)− φ(X3)φ(X1Y X2Y )

+ φ(X1)φ(X2)φ(Y 2X3) + φ(X1)φ(X3)φ(Y X2Y ) + φ(X2)φ(X3)φ(X1Y
2)

− φ(X1)φ(X2)φ(X1)φ(Y 2)

= φ(X1Y X2Y X3)− φ(X2)φ(X1X3)φ(Y 2),

from which the stated formula follows.

We point out that one can significantly simplify such computations by using the powerful
combinatorial machinery of free cumulants , which was introduced to free probability by
Speicher [Spe90, Spe94]; see also[Nic96] and [NS06].

We conclude by recording an important consequence of Theorem I.1.35 for later reference.

Remark I.1.37. A direct consequence of the previous Theorem I.1.35 is, that the
non-commutative distribution µX for any family (Xi)i∈I of freely independent non-
commutative random variables in a non-commutative probability space (A, φ) is com-
pletely determined by the family of single variable distributions (µXi)i∈I .

I.1.5. Free additive convolution. From the observation recorded in Remark I.1.37
it follows in particular that the distribution µX1+X2 of the sum of two freely independent
non-commutative random variables X1 and X2 only depends on the distributions µX1

and µX2 of X1 and X2, respectively, and not on the concrete realization of X1 and X2

in a non-commutative probability space. Indeed, any moment φ((X1 +X2)n) of X1 +X2

expands as

φ((X1 +X2)n) =
∑

(i1,...,in)∈{1,2}n
φ(Xi1Xi2 · · ·Xin),

where now each mixed moment φ(Xi1Xi2 · · ·Xin) can be computed in a recursive but
universal way (which only relies on the structure of the freeness condition) out of the
moments of X1 and X2. We only mention here that these universal formulas take a much
more explicit form in terms of free cumulants. Accordingly, Voiculescu’s free additive
convolution � can be defined by as a binary operation on the set of all abstract distribu-
tions (i.e., the set of all linear functionals µ : C〈x〉 → C satisfying µ(1) = 1), such that
µX1 � µX2 = µX1+X2 .

Driven by Definition I.1.18, which identifies the combinatorial distribution of a single self-
adjoint element with a compactly supported Borel probability measure on R, we want
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24 I.1. SCALAR-VALUED FREE PROBABILITY THEORY

to extend now the free additive convolution � to a binary operation on all compactly
supported Borel probability measures on R. This, however, requires some additional ar-
guments, which we collect in the following remark.

Remark I.1.38. The main issue here is that the free additive convolution is defined
originally in terms of operators. Thus, we have to convince ourselves that for two given
compactly supported probability measures µ1, µ2 on R, we can always find operators X1

and X2 in some C∗-probability space, which are freely independent and whose distribu-
tions are given by µ1 and µ2, respectively.

(i) If µ is any compactly supported probability measure on R, we need to find
some self-adjoint non-commutative random variable X that lives in some non-
commutative C∗-probability space (A, φ), such that µ = µX . Let us consider
A = C(supp(µ)), the unital C∗-algebra of all C-valued continuous functions
on the compact support supp(µ) of µ, endowed with the uniform norm ‖ · ‖∞.
Elements from A act naturally as multiplication operators on the Hilbert space
L2(R, µ). This action leads us directly to the unital ∗-homomorphism

π : A → B(L2(R, µ)), g 7→Mg,

where Mg ∈ B(L2(R, µ)) is defined by Mgf := g · f for all f ∈ L2(R, µ) and
satisfies ‖Mg‖ = ‖g‖∞. Thus, we see that the ∗-homomorphism π is in fact
isometric. On A, we can introduce a state φ by

φ(g) = 〈π(g) 1,1〉 =

∫
R
g(x) dµ(x) for all g ∈ A,

where 1 denotes the function in L2(R, µ), that takes constantly the value 1. Due
to the commutativity of A, the state φ is trivially a trace, and since π is faithful,
we conclude that φ is also faithful. Now, if we consider X := idsupp(µ) ∈ A, we
can readily check that µX = µ. Indeed, we have

φ(Xk) = 〈π(Xk) 1,1〉 = 〈Xk,1〉 =

∫
R
xk dµ(x) for k ∈ N0,

as Definition I.1.18 requires.
(ii) There is a general construction that produces out of any given family ((Ai, φi))i∈I

of C∗-probability spaces (Ai, φi), which are endowed with faithful and tracial
states φi, some C∗-probability space (A, φ) with φ being faithful and tracial,
such that
• each Ai is unitally and isometrically embedded into A,
• φ|Ai = φi holds for all i ∈ I, and
• the subalgebras (Ai)i∈I are freely independent in (A, φ).

This C∗-probability space is called the reduced free product of the C∗-algebras
(Ai)i∈I with respect to (φi)i∈I , and it is denoted by

(A, φ) = ∗
i∈I

(Ai, φi).

The arguments given above even show that for arbitrarily many compactly supported
Borel probability measures µ1, . . . , µN on R one can find freely independent self-adjoint
non-commutative random variables X1, . . . , XN in some C∗-probability space (A, φ), such
that the analytic distribution of Xi is given by µi for i = 1, . . . , N .

The promised definition of � as a binary operation on the set of all compactly supported
Borel probability measures on R reads then as follows.
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Definition I.1.39. Let µ1, µ2 be two compactly supported Borel probability measures on
the real line R. The free additive convolution µ1�µ2 is defined as analytic distribution of
X1 + X2, where X1 and X2 are self-adjoint elements in any C∗-probability space (A, φ),
which are freely independent and whose analytic distributions are given by µX1 = µ1 and
µX2 = µ2.

We point out that the free additive convolution � can also be defined for Borel probability
measures, which are not compactly supported. The assumption of compact support was
dropped in [BV93] with the help of affiliated operators. We leave out the details here.

Of course, Definition I.1.17 is tempting to believe that � would even extend to some
binary operation on the set all compactly supported Borel probability measures on the
complex plane C, but since X1 + X2 is not necessarily normal if X1 and X2 are so, the
construction simply fails in this generality unlike the self-adjoint case.

Remark I.1.40. Without going into details, let us note that in a similar way, the free
multiplicative convolution � can be defined; see [Voi87]. It is given as a binary operation
on the space of all abstract distributions, such that µX1 � µX2 = µX1X2 holds. Like the
free additive convolution �, also � extends to the level of compactly supported Borel
probability measures, but in order to stay inside the class of Borel probability measures
on R, we need to impose the additional condition that at least one of the measures µ1

and µ2 is supported on R+ = [0,∞) in order to define µ1 � µ2.

I.1.5.1. The R-transform. The free additive convolution � is clearly the free analogue
of the classical convolution ∗ of probability measures. In classical probability, the Fourier
transform µ 7→ µ̂ can be used to compute this kind of convolution, since its logarithm
linearizes ∗ in the sense that log(µ̂1 ∗ µ2) = log(µ̂1) + log(µ̂2). In free probability, the role
of the linearizing transform is played by the so-called R-transform µ 7→ Rµ, which was
introduced by Voiculescu [Voi86]. It is determined by the equation

(I.10) Gµ

(1

z
+Rµ(z)

)
= z for all z ∈ Ω′,

for some domain ∅ 6= Ω′ ⊆ C−; see also [Haa97]. We want to give a more detailed
explanation of this important equation. For this purpose, let us recall some results from
[BV93], which notably even apply in the case of measures having unbounded support.

To begin with, let µ be any Borel probability measure on R. Let us introduce the so-called
F-transform Fµ of µ, which is the holomorphic function

Fµ : C+ → C+, z 7→ 1

Gµ(z)
.

Furthermore, for any α, β > 0, we will consider the so-called Stolz angle Γα,β as the set

Γα,β := {z ∈ Γα| |z| > β}, where Γα := {z ∈ C+| |<(z)| < α=(z)}.

If we chose now 0 < ε < α, then according to [BV93, Proposition 5.4], we can find β > 0,
such that Fµ is injective on the Stolz angle Γα,β and such that Fµ(Γα,β) ⊇ Γα−ε,β(1+ε)

holds. By gluing together different Stolz angles (see [BV93, Corollary 5.5]), we find a
domain Ω of the form Ω =

⋃
α>0 Γα,βα , such that Fµ admits a holomorphic right inverse

F−1
µ defined on Ω, i.e. F−1

µ : Ω→ C+ and

Fµ(F−1
µ (z)) = z for all z ∈ Ω.
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Properties of Fµ (see [BV93, Proposition 5.2] and [BV93, Corollary 5.3]) translate to
statements about F−1

µ , namely

=(F−1
µ (z)) ≤ =(z) for all z ∈ Ω and lim

|z|→∞
z∈Γα

F−1
µ (z)

z
= 1 for all α > 0.

Finally, if we consider the Voiculescu transform φµ, which lives on the same domain Ω
and is given by

φµ(z) := F−1
µ (z)− z for all z ∈ Ω,

we immediately get that φµ satisfies

=(φµ(z)) ≤ 0 for all z ∈ Ω and lim
|z|→∞
z∈Γα

φµ(z)

z
= 0 for all α > 0.

This is a good point to take a short rest in order to summarize what we have done so far.
Ignoring for the moment all technical details, we can summarize that we have introduced
some special function φµ, which can be attached to any Borel probability measure µ on
the real line. Although there is no universal domain on which all these functions φµ can be
defined, we know at least that each individual domain is a union of certain Stolz angles.
It might happen (and it actually happens in some important cases) that φµ enjoys an
analytic extension beyond these domains and even to the entire upper half-plane. This
feature (see [BV93, Theorem 5.10]) in fact characterizes the so-called�-infinitely divisible
probability measures. Note, if φµ1 and φµ2 for two probability measures µ1, µ2 on R are
given, we can always find some Stolz angle that belongs to both of their domains, so that
we can always compare φµ1 and φµ2 . Assume now that these functions agree on their
joint domain. Following the construction backwards, we see that in this case also F−1

µ1
and

F−1
µ2

must coincide there, such that by the identity theorem their F-transforms and finally
their Cauchy transforms must agree. Using Stieltjes inversion, we may conclude that
µ1 = µ2. This means that φµ determines µ uniquely. However, it remains unclear which
holomorphic functions φ arise as the Voiculescu transform of some probability measure
on R. The following theorem provides such a characterization.

Theorem I.1.41 ([BV93, Proposition 5.6]). Let φ be a holomorphic function, which is
defined on some Stolz angle Γα,β. Then the following statements are equivalent:

(i) There exists a probability measure µ on R and some β′ ≥ β, such that φ(z) =
φµ(z) for all z ∈ Γα,β′.

(ii) There exists β′ ≥ β, such that
• =(φ(z)) ≤ 0 for all z ∈ Γα,β′,

• lim
|z|→∞
z∈Γα,β′

φ(z)

z
= 0, and

• for any choice of finitely but arbitrarily many points z1, . . . , zn ∈ Γα,β′, the
matrix (

zk − zl
(zk + φ(zk))− (zl + φ(zl))

)n
k,l=1

is positive

But what is the actual use of these functions? The answer to this question can be found
in [BV93, Corollary 5.8]. This fundamental theorem connects the previously explained
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complex analysis construction with the operator-algebraic world of free independence by
establishing that µ 7→ φµ yields a linearizing transform for �. More precisely, it tells us
that we have for each α > 0

φµ1�µ2(z) = φµ1(z) + φµ2(z) for all z ∈ Γα,β,

if β > 0 is chosen large enough. Note that in contrast to the R-transform, which appears
in (I.10), the Voiculescu transform is determined by

Gµ

(
z + φµ(z)

)
=

1

z
for all z ∈ Ω.

The desired R-transform, which satisfies an equation of the form (I.10), is thus obtained by
putting Rµ(z) := φµ

(
1
z

)
for all z belonging to Ω′ :=

{
1
z
| z ∈ Ω

}
. Put Γ′α,β := {1

z
| z ∈ Γα,β}.

Then the above addition formula for φµ rephrases as

Rµ1�µ2(z) = Rµ1(z) +Rµ2(z) for all z ∈ Γ′α,β.

Thus, if we want to compute µ1 � µ2 for two given Borel probability measures µ1, µ2 on
R, we can proceed now as follows.

(i) Compute the Cauchy transforms Gµ1 and Gµ2 .
(ii) Solve equation (I.10) for µ1 and µ2 separately in order to obtain the R-transforms

Rµ1 and Rµ2 .
(iii) Compute the R-transform of µ1 � µ2 by Rµ1�µ2 = Rµ1 + Rµ2 on their joint

domain.
(iv) Solve (I.10) in order to obtain an expression for Gµ1�µ2 (at least locally and if

necessary extend to C+).
(v) Apply Stieltjes inversion to Gµ1�µ2 in order to get µ1 � µ2.

This algorithm sounds quite simple, but actually it is not, since it requires to deal with
equation (I.10), which is in general not an easy task. Even worse, one often arrives at
equations for which no analytic solution is known. Therefore, one would surely appreciate
an alternative approach. This will be addressed next.

I.1.5.2. Subordination. Indeed, there is the powerful concept of subordination, which
is both of great practical and theoretical use. These ideas were developed by many au-
thors, starting from Voiculescu [Voi93], and brought into its final form in [Bia98a]; see
also [CG11]. We refer to [BB07] for a beautiful proof based on the theory of Denjoy-
Wolff points, which in addition provides a fixed point iteration scheme for the desired
subordination functions.

Before giving the statement, let us introduce the so-called h-transform

hµ : C+ → C+, z 7→ Fµ(z)− z
for any Borel probability measure µ on R.

Theorem I.1.42 (see [BB07, Theorem 4.1]). Given Borel probability measures µ1 and
µ2 on R, there exist unique holomorphic functions ω1, ω2 : C+ → C+ such that

• For j ∈ {1, 2}, we have =(ωj(z)) ≥ =(z) for all z ∈ C+ and

lim
y→∞

ωj(iy)

iy
= 1;

• Fµ1�µ2(z) = Fµ1(ω1(z)) = Fµ2(ω2(z)) for all z ∈ C+;
• ω1(z) + ω2(z) = z + Fµ1�µ2(z) for all z ∈ C+.
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28 I.1. SCALAR-VALUED FREE PROBABILITY THEORY

Moreover, if z ∈ C+ is given, then ω1(z) is the unique fixed point of the map

fz : C+ → C+, w 7→ h2(h1(w) + z) + z,

and ω1(z) = limn→∞ f
◦n
z (w) for any w ∈ C+, where f ◦nz means the n-fold composition of

fz with itself. Same statements hold for ω2, with fz replaced by w 7→ h1(h2(w) + z) + z.

I.1.6. The semicircular and the Marchenko-Pastur distribution. The most
important (analytic) distribution in free probability is the semicircular distribution, which
plays here the same role as the Gaussian distribution does in classical probability.

Definition I.1.43. The semicircular distribution with mean 0 and variance t > 0 is the
compactly supported Borel probability measure σt on the real line R that is given by

dσt(x) =
1

2πt

√
4t− x2 1[−2

√
t,2
√
t](x) dx.

A non-commutative random variable living in some non-commutative C∗-probability space
is called semicircular element (of mean 0 and variance t), if its analytic distribution is
given by the semicircular distribution (with mean 0 and variance t), i.e., if we have that
µSt = σt. The following example shows that semicircular operators arise in a very natural
way.

Example I.1.44. Let H be a separable complex Hilbert space with fixed orthonormal
basis (en)n∈N0 . Consider the C∗-probability space (B(H), φ) with φ being the vector state
with respect to e0, i.e.

φ : B(H)→ C, X 7→ 〈Xe0, e0〉.
Let us denote by l the right shift on H with respect to the given orthonormal basis
(en)n∈N0 and by l∗ its adjoint, i.e. the left shift on H with respect to (en)n∈N0 . The analytic
distribution of the non-commutative random variable St =

√
t(l+ l∗) is then given by the

semicircular distribution σt. This can be shown as follows:

• It clearly suffices to prove that µS1 = σ1 holds. Indeed, as soon as µS1 = σ1 is
established, the obvious relation St =

√
tS1 gives us for all k ∈ N0

φ(Skt ) = t
k
2φ(Sk1 ) =

t
k
2

2π

∫ 2

−2

xk
√

4− x2 dx =
1

2πt

∫ 2
√
t

−2
√
t

yk
√

4t− y2 dy =

∫
R
yk dσt(y),

where we used the substitution y =
√
tx. Having this, Definition I.1.18 tells us

that µSt = σt.
• According to Definition I.1.18, we have to show that φ(Sk1 ) = mk(σ1) holds for

each k ∈ N0. This can be done by combinatorial methods: on the one hand, if
we put formally l−1 := l∗, then the moments of S1 turn out to be

φ(Sk1 ) =
∑

ε(1),...,ε(k)∈{−1,1}

〈lε(k) · · · lε(1)e0, e0〉 =
∑

ε(1),...,ε(k)∈{−1,1}
∀1≤p<k: ε(1)+···+ε(p)≥0

ε(1)+···+ε(k)=0

1,

which means that φ(Sk1 ) counts the number of Dyck paths of length k. Their
number is clearly 0, if k is odd, and is known to be the Catalan number Ck/2, if

k is even; recall that the Catalan numbers are defined by Cn = 1
n+1

(
2n
n

)
. On the

other hand, due to the symmetry of σ1, we have that the moment mk(σ1) is 0,
if k is odd, and one can prove that mk(σ1) = Ck/2 holds, if k is even.
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A generalization of this construction will play an important role in Chapter VII.

We now collect a few important properties of the semicircular distribution.

Remark I.1.45.

(i) The Cauchy transform of σt satisfies the equation

tGσt(z)2 − zGσt(z) + 1 = 0 for all z ∈ C+

and is therefore given by

Gσt(z) =
z

2t

(
1−

√
1− 4t

z2

)
for all z ∈ C+,

where the branch of the square root is chosen such that the necessary condition
limy→∞ iyGσt(iy) = 1 is satisfied (see condition (ii) of Theorem I.1.27). The
R-transform takes the very simple form Rσt(z) = tz.

(ii) We note that (σt)t≥0 forms a semi-group with respect to the free additive con-
volution, i.e. we have that

σs � σt = σs+t for all s, t ≥ 0.

This can be checked directly by using the additivity of the R-transforms.
(iii) One can formulate a free analogue of the classical central limit theorem, where

the semicircular distribution arises as the limiting distribution; see [Voi85] or
[NS06, Theorem 8.10].

Another very important distribution, which takes over in free probability the role of the
classical Poisson distribution, is the so-called free Poisson distribution. Due to its first
appearance in random matrix theory, see [MP68], the free Poisson distribution also goes
under the name of Marchenko-Pastur distribution.

Definition I.1.46. The free Poisson distribution µλ,α with rate λ ≥ 0 and jump size
α ∈ R is defined by

µλ,α =

{
(1− λ)δ0 + νλ,α, 0 ≤ λ < 1

νλ,α, λ ≥ 1
,

where νλ,α is an absolutely continuous measure (with respect to the Lebesgue measure on
R), which is given by

dνλ,α(t) =
1

2παt

√
(t− ρmin)(ρmax − t) 1[ρmin,ρmax](t) dt.

where ρmin ≤ ρmax are the two solutions t of 4λα2 − (t− α(1 + λ))2 = 0.

It is a very special feature of the free world that the free Poisson distribution µ1,t can be
realized as the distribution of an operator Wt := S2

t , where St is a semicircular element
of mean 0 and variance t, i.e. µSt = σt.

Remark I.1.47.

(i) We recall that its Cauchy transform is given by

Gµλ,α(z) =
z + α− λα−

√
(z − α(1 + λ))2 − 4λα2

2αz
for all z ∈ C+

and that its R-transform is of the form Rµλ,α(z) = λα
1−αz .
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30 I.2. OPERATOR-VALUED FREE PROBABILITY THEORY

(ii) One easily sees with the help of the R-transforms, that (µλ,α)λ≥0 forms for any
fixed α ∈ R a semigroup with respect to the free additive convolution �.

(iii) One can formulate a free analogue of the Poisson limit theorem, where µλ,α
shows up in the limit; see [NS06, Proposition 12.11].

I.2. Operator-valued free probability theory

Operator-valued free probability theory generalizes the setting of free probability theory,
which we have presented in the previous section, in the sense that the role of the complex
numbers is taken over by any another unital subalgebra of the given algebra of non-
commutative random variables. This theory was initiated by Voiculescu in [Voi95] and
the combinatorial approach was developed by Speicher in [Spe98].

I.2.1. Operator-valued non-commutative probability spaces. Strictly follow-
ing the rule that the complex numbers are replaced by more general algebras, it is natural
to adapt also the definition of non-commutative probability spaces. The main difference
between the usual setting of scalar-valued free probability theory and operator-valued free
probability theory is that expectations are replaced by conditional expectations. These
objects can be seen as the natural non-commutative analogues of conditional expectations,
which we know from classical probability.

I.2.1.1. The basic terminology. Let us begin with the purely algebraic setting, which
generalizes Definition I.1.1.

Definition I.2.1. An operator-valued non-commutative probability space (A, E,B) con-
sists of a unital complex algebra A, a unital subalgebra B ofA, which is unitally embedded
in A, and a conditional expectation E : A → B, i.e. a unital map E : A → B satisfying

• E[b] = b for all b ∈ B and
• E[b1Xb2] = b1E[X]b2 for all X ∈ A, b1, b2 ∈ B.

Example I.2.2. Like a non-commutative probability space (A, φ) can be seen as a non-
commutative analogue of (L∞(Ω,P),E) for classical probability spaces (Ω,F ,P), also
operator-valued non-commutative probability spaces (A, E,B) have their classical an-
cestor. If we take any classical probability space (Ω,F ,P) and a sub-σ-algebra F ′ of
F , then the classical conditional expectation E[X,F ′] : Ω → C of any random variable
X ∈ L∞(Ω,F ,P) is a F ′-measurable function that belongs to L∞(Ω,F ′,P|F ′) and it has
the property that

E[XY,F ′] = E[X,F ′]Y for all Y ∈ L∞(Ω,F ′,P|F ′).
Thus, the conditional expectation gives rise to a mapping

E[·,F ′] : L∞(Ω,F ,P)→ L∞(Ω,F ′,P|F ′),

for which (L∞(Ω,F ,P),E[·,F ′], L∞(Ω,F ′,P|F ′)) forms an operator-valued non-
commutative probability space in the sense of Definition I.2.1.

Example I.2.3. Let (C, φ) be any non-commutative probability space. Then

A := MN(C)⊗ C, B := MN(C), and E := idMN (C)⊗φ,
where ⊗ stands for the algebraic tensor product over C, defines an operator-valued non-
commutative probability space (A, E,B). In the following, whenever we want to distin-
guish between several dimensions N , we write more precisely EN instead of E.
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I.2.1.2. Operator-valued C∗- and W ∗-probability spaces. Since we are mostly interested
in analytic aspects of operator-valued free probability theory, we need to add some an-
alytic structure to the purely algebraic framework of operator-valued non-commutative
probability spaces. In analogy to the scalar-valued case, which was presented in Paragraph
I.1.2.3, we will mention here operator-valued C∗- and W ∗-probability spaces.

Definition I.2.4. An operator-valued C∗-probability space (A, E,B) is an operator-valued
non-commutative probability space, where A is a unital C∗-algebra and B a C∗-subalgebra
of A, which contains the unit, and where the conditional expectation E : A → B is a
positive.

Remark I.2.5.

(i) Note that E : A → B being positive simply means that E is positive as a
linear map between the unital C∗-algebras A and B. Recall that a linear map
Φ : A → B between arbitrary C∗-algebras A and B is said to be positive,
if it maps positive elements in A to positive elements in B, i.e., if it satisfies
Φ(a∗a) ≥ 0 for all a ∈ A.

(ii) Since the linear map E is positive and satisfies E[1] = 1, it follows that E is
bounded with norm 1.

(iii) As a conditional expectation, the positivity of E already implies that E is even
completely positive. Recall that a map Φ : A → B between C∗-algebras is called
completely positive, if for each n ∈ N the induced map

Φ(n) : Mn(A)→Mn(B), (ak,l)
n
k,l=1 7→

(
Φ(ak,l)

)n
k,l=1

is positive as a linear map between the C∗-algebras Mn(A) and Mn(B).

Definition I.2.6. An operator-valued W ∗-probability space (M,E,N) is an operator-
valued non-commutative probability space, where M is a von Neumann algebra and N a
unitally embedded von Neumann subalgebra of M , and where the conditional expectation
E : M → N is positive, weakly continuous, and faithful.

Remark I.2.7. It follows from results of [Ume54] (see also [Tak72] for generalizations)
that whenever (M, τ) is a W ∗-probability space and N is any (unitally embedded) von
Neumann subalgebra of M , then there exists a unique conditional expectation E : M →
N , such that (M,E,N) is an operator-valued W ∗-probability space and such that τ |N ◦
E = τ is satisfied.

I.2.2. Operator-valued non-commutative distributions. There is also an
operator-valued generalization of non-commutative distributions.

Definition I.2.8. Let I be some non-empty index set and B be a unital complex algebra.

(i) By B〈xi| i ∈ I〉, we denote the algebra of non-commutative polynomials over B
in the formal variables {xi| i ∈ I}. Formally, as a vector space, it is given by

B〈xi| i ∈ I〉 =
∞⊕
n=0

(B ⊗ X )⊗n ⊗ B,

where X is the vector space with basis {xi| i ∈ I} and with the multiplication
induced by the tensor product ⊗B with amalgamation over B.
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32 I.2. OPERATOR-VALUED FREE PROBABILITY THEORY

(ii) Let (A, E,B) be an operator-valued non-commutative probability space and
consider a family X = (Xi)i∈I of non-commutative random variables in A. We
denote by evX the evaluation homomorphism

evX : B〈xi| i ∈ I〉 → A,

which is, as a homomorphism, uniquely determined by b 7→ b for all b ∈ B and
xi 7→ Xi for all i ∈ I. For any given P ∈ B〈xi| i ∈ I〉, we mostly abbreviate
P (X) := evX(P ). The operator-valued (joint) distribution µX of X means the
B-linear functional given by µX := E ◦ evX , i.e.

µX : B〈xi| i ∈ I〉 → B, P 7→ E[P (X)].

I.2.3. Operator-valued Cauchy transform. Similar to the scalar-valued case,
Cauchy transforms play an important role in the analytic description of free independence
with amalgamation. Their generalizations to the operator-valued setting are defined as
follows.

Definition I.2.9. Let (A, E,B) be an operator-valued C∗-probability space. We call

H+(B) := {b ∈ B| ∃ε > 0 : =(b) ≥ ε1} and H−(B) := {b ∈ B| ∃ε > 0 : −=(b) ≥ ε1}

the upper and lower half-plane of B, respectively, where we use the notation =(b) :=
1
2i

(b−b∗). The B-valued Cauchy transform GX of any X = X∗ ∈ A is the Fréchet analytic
function

GX : H+(B)→ H−(B), b 7→ E[(b−X)−1]

A few comments on the analyticity of operator-valued Cauchy transforms (using the
terminology of Appendix B) are in order. It is not hard to check that

δGX(b;h) = lim
z→0

z∈U(b;h)\{0}

1

z
(GX(b+ zh)−GX(b)) = −E

[
(b−X)−1h(b−X)−1

]
holds for each b ∈ H+(B) and all h ∈ B, where we put U(b;h) := {z ∈ C| b+zh ∈ H+(B)}.
Indeed, for each z ∈ U(b;h), we have

1

z

(
((b+ zh)−X)−1 − (b−X)−1

)
= −((b+ zh)−X)−1h(b−X)−1.

Correspondingly, Definition B.1 tells us that GX : H+(B) → H−(B) is Gâteaux analytic
on H+(B). Furthermore, apart from the invertibility of b−X for b ∈ H+(B), it is known
(see [BPV12], for instance) that ‖(b−X)−1‖ ≤ ‖=(b)−1‖ holds. Therefore, we see that

δGX(b; ·) : B → B, h 7→ −E
[
(b−X)−1h(b−X)−1

]
is a bounded linear map with ‖δGX(b; ·)‖ ≤ ‖=(b)−1‖2. Definition B.1, together with Re-
mark B.2, yields that GX is in fact Fréchet analytic on H+(B). Even better, the inequality
‖(b−X)−1‖ ≤ ‖=(b)−1‖ tells us that ‖GX(b)‖ ≤ ‖=(b)−1‖ holds at any point b ∈ H+(B),
from which it follows then that GX is locally bounded. According to Definition B.3, this
means that GX must in fact be analytic.

Let us point out that operator-valued Cauchy transforms in the sense of the previous
Definition I.2.9 always enjoy an analytic extension like in the scalar-valued case; see Sub-
section I.1.3, in particular Remark I.1.33. More precisely, the B-valued Cauchy transform
GX : H+(B) → H−(B) of any non-commutative random variable X = X∗ living in some
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operator-valued C∗-probability space (A, E,B) can be extended uniquely to an analytic
function

GX : ρA/B(X)→ H−(B), b 7→ E[(b−X)−1],

where we denote by ρA/B(X) the B-valued resolvent set of X in A. It is defined as the
set of all b ∈ B, for which b − X is invertible in A. Note that H+(B) ⊆ ρA/B(X). The
analyticity can be checked by using the Taylor expansion

GX(b+ h) =
∞∑
k=0

(−1)kE
[
(b−X)−1

(
h(b−X)−1)k

]
,

which holds due to

((b+ h)−X)−1 = (b−X)−1(1 + h(b−X)−1)−1 =
∞∑
k=0

(b−X)−1
(
h(b−X)−1)k

at any fixed point b ∈ ρA/B(X) for each h ∈ B satisfying ‖h‖ < ‖(b−X)−1‖−1.

For the seek of completeness, let us mention that correspondingly the B-valued spectrum
of X in A is defined as the complement σA/B(X) = B\ρA/B(X). It is easy to see that, in
analogy to the more familiar case B = C, the B-valued resolvent set ρA/B(X) is an open
subset of B and the B-valued spectrum σA/B(X) is a closed subset of B for any X ∈ A.
Moreover, since {z1| z ∈ σA(X)} ⊆ σA/B(X), we have that σA/B(X) is non-empty, but it
fails in general to be a compact or a bounded set.

The following example will be of great importance in Chapter IV.

Example I.2.10. We have seen in Example I.2.3 that each non-commutative prob-
ability space (C, φ) induces an operator-valued non-commutative probability space
(MN(C), EN ,MN(C)) for each N ∈ N (where we used the isomorphism MN(C) ∼=
MN(C)⊗C). It is easy to check that (MN(C), EN ,MN(C)) gives an example of an operator-
valued C∗-probability space, if we start from a C∗-probability space (C, φ).

Now, if we take any non-commutative random variable X = X∗ ∈ C and any matrix
L = L∗ ∈ MN(C), the distribution of X with respect to φ determines the MN(C)-valued
distribution of LX with respect to EN . This is easy to see on the combinatorial level, but
of course, we should also be able to compute the MN(C)-valued Cauchy transform of LX
in terms of the matrix L and the scalar-valued Cauchy transform of X.

Indeed, we have the following relation

GLX(b) =

∫
R
(b− tL)−1 dµX(t)

with the matrix-valued integral understood in the Bochner sense, from which we can
deduce with the help of Stieltjes inversion formula, Theorem I.1.29, that

(I.11) GLX(b) = lim
ε↘0

−1

π

∫
R
(b− tL)−1=(GX(t+ iε)) dt.

However, from a computational point of view, the formula (I.11) given above in Exam-
ple I.2.10 is not satisfying since many expensive matrix inversions are needed in order
to reach a sufficiently accurate approximation of the integral, for instance by Riemann
sums. Several very inspiring discussions that the author had with J. W. Helton led to the
following algorithm, which significantly increases the calculation speed compared to the
former approach based on formula (I.11).
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34 I.2. OPERATOR-VALUED FREE PROBABILITY THEORY

Algorithm I.2.11. Let (C, φ) be a C∗-probability space and consider X = X∗ ∈ C with
given scalar-valued Cauchy transform GX , analytically extended to the resolvent set of X.
For any matrix L = L∗ ∈ MN(C), the matrix-valued Cauchy transform GLX of LX ∈
MN(C) at any point b ∈ H+(MN(C)) can be obtained as follows:

(i) Since the matrix L is supposed to be self-adjoint, we can find a unitary matrix
U ∈MN(C) such that

U∗LU =

(
Λ 0
0 0

)
with Λ =

λ1

. . .

λd

 ,

where λ1, . . . , λd are the non-zero eigenvalues of b0, listed with multiplicities.
(ii) For the given point b ∈ H+(MN(C)), we decompose

U∗bU =

(
b1,1 b1,2

b2,1 b2,2

)
,

such that b1,1 belongs to Md(C) and all other blocks are of appropriate size.
(iii) Since =(b2,2) > 0, we know that b2,2 must invertible. Thus, we may introduce

S = b1,1 − b1,2b
−1
2,2b2,1.

The Schur complement formula, Lemma A.1, tells us that S − ΛX is invertible
and that(
b1,1 − ΛX b1,2

b2,1 b2,2

)−1

=

(
1 0

−b−1
2,2b2,1 1

)(
(S − ΛX)−1 0

0 b−1
2,2

)(
1 −b1,2b

−1
2,2

0 1

)
.

(iv) Combining the previous observations, we deduce

GLX(b) = EN
[
(b− LX)−1

]
= UEN

[(
U∗bU − (U∗LU)X

)−1]
U∗

= UEN

[(
b1,1 − ΛX b1,2

b2,1 b2,2

)−1
]
U∗

= U

(
1 0

−b−1
2,2b2,1 1

)
EN

[(
(S − ΛX)−1 0

0 b−1
2,2

)](
1 −b1,2b

−1
2,2

0 1

)
U∗

= U

(
1 0

−b−1
2,2b2,1 1

)(
Ed[(S − ΛX)−1] 0

0 b−1
2,2

)(
1 −b1,2b

−1
2,2

0 1

)
U∗.

(v) Therefore, the initial problem is now reduced to the calculation of Ed[(S−ΛX)−1].
Here, we proceed as follows. First, let us assume that Λ−1S can be diagonalized,
i.e. there exists an invertible matrix V ∈Md(C) such that

Λ−1S = V

µ1

. . .

µd

V −1,

where µ1, . . . , µd are the eigenvalues of Λ−1S, listed according to multiplicity.
Notice that, as the invertibility of Λ and S − ΛX is guaranteed, each of the
complex numbers µ1, . . . , µd must belong to the resolvent set of X, because S −
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ΛX = Λ(Λ−1S − 1dX). Hence, the points µ1, . . . , µd belong to the domain of the
unique analytic extension of GX and we obtain

Ed
[
(S − ΛX)−1

]
= Ed[(Λ

−1S − 1dX)−1]Λ−1 = V

GX(µ1)
. . .

GX(µd)

V −1Λ−1.

Otherwise, if Λ−1S fails to be diagonalizable, we can use instead its Jordan nor-
mal form

Λ−1S = V

J1

. . .

Jp

V −1

with an invertible matrix V ∈ Md(C) and a block diagonal matrix consisting of
the Jordan blocks J1, . . . , Jp associated to the eigenvalues µ1, . . . , µp, respectively.
Proceeding like above, one easily sees that J1−X1d1 , . . . , Jp−X1dp are invertible
and that

Ed
[
(S − ΛX)−1

]
= V

Ed1 [(J1 −X1d1)
−1]

. . .

Edp [(Jp −X1dp)
−1]

V −1Λ−1.

Thus, we are done after involving Lemma I.2.12 below.

Lemma I.2.12. Let X be a self-adjoint non-commutative random variable living in some
C∗-probability space (C, φ). Fix d ∈ N and consider any matrix J ∈Md(C) of the form

J := µ1d +N =



µ 1 0 . . . 0

0 µ 1
. . .

...

0 0
. . .

. . . 0
...

. . .
. . . µ 1

0 . . . 0 0 µ


with N =



0 1 0 . . . 0

0 0 1
. . .

...

0 0
. . .

. . . 0
...
. . .

. . . 0 1
0 . . . 0 0 0


,

where µ is any complex number. Then J − X1d is invertible in Md(C) if and only if µ
belongs to the resolvent set of X. In this case, the conditional expectation of (J −X1d)

−1

can be computed, by involving the values of the extended Cauchy transform GX and of its
derivatives G(1), . . . , G(d−1) at the point µ, via the formula

Ed[(J −X1d)
−1] =

d−1∑
k=0

1

k!
G(k)(µ)Nk =


GX(µ) G

(1)
X (µ) . . . 1

(d−1)!
G

(d−1)
X (µ)

0 GX(µ)
. . .

...
...

. . .
. . . G

(1)
X (µ)

0 . . . 0 GX(µ)

 .

Proof. Consider the decomposition J = µ1d + N and note that N is a nilpotent
matrix, which satisfies Nd = 0.

Assume first that µ belongs to the resolvent set of X. In this case, we can write

J −X1d = (µ−X)1d +N = (µ−X)
(
1d + (µ−X)−1N

)
,
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where 1d + (µ−X)−1N is invertible and has the inverse

(
1d + (µ−X)−1N

)−1
=

d−1∑
k=0

(−1)k(µ−X)−kNk,

since the matrices (µ−X)1d and N commute. Therefore, also J −X1d must be invertible
and we have that

(I.12) (J −X1d)
−1 =

(
1d + (µ−X)−1N

)−1
(µ−X)−1 =

d−1∑
k=0

(−1)k(µ−X)−(k+1)Nk.

Conversely, suppose now that J − X1d is invertible in Md(A). Since in fact J − X1d ∈
Md(A0), where A0 denotes the commutative C∗-subalgebra of A generated by X = X∗,
we infer that J−X1d must be invertible also in Md(A0). Put R := (J−X1d)

−1 and write
R = (Ri,j)

d
i,j=1. From the relation R(J − X1d) = 1d, we easily obtain R1,1(µ − X) = 1

and from this (µ−X)R1,1 = 1, by the commutativity of A0. In summary, this yields the
invertibility of µ−X with (µ−X)−1 = R1,1.

In the case where J −X1d and µ−X are both invertible, we use

G
(k)
X (µ) = (−1)kk!φ

(
(µ−X)−(k+1)

)
for each k ∈ N0

in order to obtain with the help of (I.12) that

Ed[(J −X1d)
−1] =

d−1∑
k=0

(−1)kφ
(
(µ−X)−(k+1)

)
Nk =

d−1∑
k=0

1

k!
G(k)(µ)Nk.

This yields the stated formula and hence concludes the proof. �

Note that in the scalar-valued setting Cauchy transforms were defined first for Borel prob-
ability measures on R and after that for self-adjoint non-commutative random variables
via their analytic distributions. In the operator-valued setting, we have to be content with
Definition I.2.9, since there is no measure theoretic description of B-valued distributions
similar to the classical case behind the scenes. However, there is an intermediate level,
on which we can come closer to the scalar-valued situation: for any b ∈ H+(B) with
‖b−1‖ < ‖X‖, we see that the B-valued Cauchy transform GX admits a series expansion

GX(b) =
∞∑
k=0

E[(b−1X)kb−1] =
∞∑
k=0

µX
(
(b−1x)kb−1

)
,

where only the B-valued distribution µX : B〈x〉 → B is involved. This is the B-valued
analogue of (I.9). In this sense µX determines GX uniquely and we are thus allowed to
write GµX instead of GX . Accordingly, we can talk about the B-valued Cauchy transform
Gµ of µ, whenever we start with µ : B〈x〉 → B, which arises as the B-valued distribution
of a non-commutative random variable in some C∗-probability space over B. Amazingly,
these “abstract distributions” can be characterized. This works as follows.

We denote by ΣB the set of all linear mappings µ : B〈x〉 → B satisfying µ(b) = b for all
b ∈ B, which are moreover positive (i.e. they satisfy µ(PP ∗) ≥ 0 in B for all P ∈ B〈x〉)
and which have the property that

µ(b1Pb2) = b1µ(P )b2 for all b1, b2 ∈ B and P ∈ B〈x〉.
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Furthermore, we denote by Σ0
B the subset of ΣB, consisting of those µ : B〈x〉 → B, for

which some constant M > 0 exists, such that

‖µ(xb1x · · ·xbkx)‖ < Mk+1‖b1‖ · · · ‖bk‖

for all k ∈ N and b1, . . . , bk ∈ B holds. We can formulate now the following result.

Theorem I.2.13 (see [PV13, Proposition 2.2]). Let µ ∈ ΣB be given. Then µ ∈ Σ0
B if

and only if there exists a C∗-probability space (A, E,B) over B and a non-commutative
random variable X = X∗ ∈ A, such that µ = µX .

Any operator-valued C∗-probability space (A, E,B) induces naturally a family of
operator-valued C∗-probability spaces. They are given by (Mn(A), E(n),Mn(B)) for each
n ∈ N, where E(n) denotes the amplification of E (see part (iii) of Remark I.2.5) defined
by

E(n) : Mn(A)→Mn(B), (Xk,l)
n
k,l=1 7→ (E[Xk,l])

n
k,l=1.

Accordingly, for any X = X∗ ∈ A, we have a whole family of Cauchy transforms

G
(n)
X : H+(Mn(B))→ H−(Mn(B)), b 7→ E(n)

[
(b−X1n)−1

]
.

This observation was at the base of Voiculescu’s “free analysis” [Voi08] and it allows
to treat operator-valued Cauchy transforms as non-commutative functions in the sense
of [KV14]. The motivation comes from the fact that knowledge of GX is not enough

to recover the full B-valued distribution of X, whereas the tower (G
(n)
X )n∈N contains all

this information. Although we cannot formulate a precise analogue of Stieltjes inversion

formula, the following theorem should give some justification to our claim that (G
(n)
X )n∈N

fully controls the B-valued distribution of X.

Theorem I.2.14 ([BPV12, Proposition 2.11]). Let (µn)n∈N be a sequence in Σ0
B, which

is uniformly bounded in the sense that there exists a constant M > 0, such that we have

‖µn(xb1x · · ·xbkx)‖ < Mk+1‖b1‖ · · · ‖bk‖

for all n, k ∈ N and all b1, . . . , bk ∈ B. Then the following statements are equivalent:

(i) (µn)n∈N norm-converges to some µ ∈ Σ0
B, i.e., we have for all k ∈ N

lim
n→∞

sup
‖b1‖=1,...,‖bk‖=1

‖µn(xb1x · · ·xbkx)− µ(xb1x · · · xbkx)‖ = 0.

(ii) For all m ∈ N, the sequence (G
(m)
µn )n∈N converges uniformly to G

(m)
µ on balls in

H+(Mm(B)), which lay at positive distance from the boundary ∂H+(Mm(B)).

The above given formulations are adjusted to our needs and so they do not present [PV13,
Proposition 2.2] and [BPV12, Proposition 2.11] in full strength and generality.

Example I.2.15.

(i) There is an important example of an operator-valued distribution, namely
operator-valued semicircular elements. Since a description of the B-valued dis-
tribution of B-valued semicircular elements would require some combinatorial
terminology, which we did not introduce here, we stick to the following defini-
tion, which is inspired by [Spe98, Theorem 4.1.12.]: a self-adjoint element S in
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38 I.2. OPERATOR-VALUED FREE PROBABILITY THEORY

an operator-valued C∗-probability space (A, E,B) is called B-valued semicircu-
lar element (with zero mean and covariance map η : B → B), if η is completely
positive and if the B-valued Cauchy transform GS of S solves the equation

η(GS(b))GS(b)− bGS(b) + 1 = 0 for all b ∈ H+(B).

In fact, it was shown in [HFS07] as part of a more general statement that
this equation has for each completely positive map η a unique solution G :
H+(B)→ H−(B). It is an additional feature of the proof given in [HFS07] that
the pointwise inverse of this solution G, i.e. the operator-valued F-transform

F : H+(B)→ H+(B), b 7→ G(b)−1,

can be obtained by a fixed point iteration. From this, it can be deduced that G
is in fact a locally bounded Fréchet holomorphic function and hence analytic.

(ii) Operator-valued semicircular elements arise naturally by some construction
based on Remark I.2.17: if s1, . . . , sn are scalar-valued semicircular elements
(not necessarily freely independent) in some C∗-probability space (C, φ) and if
b1, . . . , bn are any self-adjoint matrices in MN(C), then

S := b1 ⊗ s1 + · · ·+ bn ⊗ sn
gives an operator-valued semicircular element in (MN(C) ⊗ C, E,MN(C)) with
mean zero and covariance map η : MN(C)→MN(C) given by

η(b) = E[SbS] =
n∑

i,j=1

φ(sisj) bibbj.

I.2.4. Free independence with amalgamation. The definition of free indepen-
dence in the general setting of operator-valued non-commutative probability spaces (see
Definition I.1.34) reads as follows.

Definition I.2.16 (Free independence with amalgamation). Let (A, E,B) be an operator-
valued non-commutative probability space

(i) Let (Ai)i∈I be a family of subalgebras B ⊆ Ai ⊆ A with an arbitrary index set
I 6= ∅. We call (A)i∈I freely independent with amalgamation over B (or just free
over B), if

E[X1 · · ·Xn] = 0

holds whenever the following conditions are fulfilled:
• We have n ≥ 1 and there are indices i1, . . . , in ∈ I satisfying

i1 6= i2, . . . , in−1 6= in.

• For j = 1, . . . , n, we have Xj ∈ Aij and it holds true that E[Xj] = 0.
(ii) Let (Xi)i∈I a family of subsets of A with an arbitrary index set I 6= ∅. We call

(Xi)i∈I freely independent (or just free), if (Ai)i∈I are freely independent in the
sense of (i), where Ai denotes for each i ∈ I the unital subalgebra of A that is
generated by B and the elements of Xi.

(iii) Elements (Xi)i∈I are called freely independent with amalgamation over B (or just
free with amalgamation over B), if (Ai)i∈I are freely independent with amalga-
mation over B in the sense of (i), where Ai denotes for each i ∈ I the subalgebra
of A that is generated by B and Xi.
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CHAPTER I. SOME BASICS OF FREE PROBABILITY THEORY 39

For our purposes, it is important to note that operator-valued non-commutative prob-
ability spaces can easily be constructed by passing to matrices over scalar-valued non-
commutative probability spaces.

Lemma I.2.17. Let (C, φ) be any non-commutative probability space. Then

A := MN(C)⊗ C, B := MN(C), and E := idMN (C)⊗φ
defines, as we noticed in Example I.2.3, an operator-valued non-commutative probabil-
ity space (A, E,B). If (Ci)i∈I is any family of freely independent subalgebras of C, then
Ai := MN(C) ⊗ Ci for i ∈ I defines a family (Ai)i∈I of subalgebras of A, which is freely
independent with amalgamation over B.

Before proceeding to the proof of Lemma I.2.17, let us introduce first the following ter-
minology: for k, l = 1, . . . , N , we denote by ek,l the (k, l)-matrix unit in MN(C), i.e., the
matrix ek,l ∈MN(C) whose entries are all zero, except for the (k, l)-entry, which is set to
be 1.

Proof of Lemma I.2.17. It is easy to check that (A, E,B) satisfies the conditions
given in Definition I.2.16. It thus only remains to show that operator-valued free inde-
pendence arises from scalar-valued free independence in the described way. For seeing
this, we take n ≥ 1 and indices i1, . . . , in ∈ I satisfying i1 6= i2, . . . , in−1 6= in, as well
as non-commutative random variables X1, . . . , Xn satisfying Xj ∈ Aij and E[Xj] = 0 for
j = 1, . . . , n. With respect to the matrix units ek,l of Mn(C), we can write

Xj =
N∑

k,l=1

ek,l ⊗X(j)
k,l , where X

(j)
k,l ∈ Cij for k, l = 1, . . . , N.

Since we have by assumption

0 = E[X(j)] =
N∑

k,l=1

ek,lφ(X
(j)
k,l ),

we can rewrite this as

Xj =
N∑

k,l=1

ek,l ⊗
(
X

(j)
k,l − φ(X

(j)
k,l )
)
.

Thus, ignoring some obvious cancellations coming from matrix products of the form
ek1,l1 · · · ekn,ln , we obtain

X1 · · ·Xn =
N∑

k1,l1=1

· · ·
N∑

kn,ln=1

(ek1,l1 · · · ekn,ln)⊗
((
X

(1)
k1,l1
−φ(X

(1)
k1,l1

)
)
· · ·
(
X

(n)
kn,ln
−φ(X

(n)
kn,ln

)
))

and after applying E on both sides

E[X1 · · ·Xn] =
N∑

k1,l1=1

· · ·
N∑

kn,ln=1

φ
((
X

(1)
k1,l1
−φ(X

(1)
k1,l1

)
)
· · ·
(
X

(n)
kn,ln
−φ(X

(n)
kn,ln

)
))

(ek1,l1 · · · ekn,ln).

The assumed free independence for (Ci)i∈I gives that

φ
((
X

(1)
k1,l1
− φ(X

(1)
k1,l1

)
)
· · ·
(
X

(n)
kn,ln
− φ(X

(n)
kn,ln

)
))

= 0

for any choice of k1, l1, . . . , kn, ln ∈ {1, . . . , n} and thus

E[X1 · · ·Xn] = 0,
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40 I.2. OPERATOR-VALUED FREE PROBABILITY THEORY

as we had to show. �

I.2.5. Operator-valued free additive convolution. Like in the scalar-valued case,
also the B-valued non-commutative distribution µX1+X2 for elements X1 and X2 living in
some operator-valued non-commutative probability space (A, E,B), which are freely inde-
pendent with amalgamation over B, only depends on µX1 and µX2 , and not on the concrete
choice of the operators X1 and X2. With respect to the universal formulas provided by
the freeness condition, we can introduce the free additive convolution � as a binary oper-
ation on the set of all abstract B-valued distributions (i.e., the set of all linear functionals
µ : B〈x〉 → B satisfying the conditions µ(b) = b for all b ∈ B and µ(b1Pb2) = b1µ(P )b2

for all b1, b2 ∈ B and P ∈ B〈x〉.), such that we can write µX1+X2 = µX1 � µX2 .

In analogy to the scalar-valued case, which was treated in [Voi86], Voiculescu introduced
in [Voi95] a linearizing transform for the B-valued free additive convolution �, the so-
called operator-valued R-transform; see [Dyk06] for an alternative description. We have
already seen in the scalar-valued case that the most convenient way to deal with the free
additive convolution is the subordination formalism. This approach is appropriate also
in the operator-valued case, but technically even more demanding. Preliminary versions
were obtained under more restrictive assumptions in [Bia98a, Voi00b, Voi02a], and
it was shown in [BMS13] that subordination even works in the more general situation
of operator-valued C∗-probability spaces. Let us point out that this approach enjoys the
additional feature that it is easily accessible for numerical computations, as it provides
a fixed point iteration scheme similar to [BB07]. This will be of great importance in
Chapter IV.

Before we give the precise statement, let us introduce the following transforms, which are
both related to Cauchy transforms, namely

• the reciprocal Cauchy transform, called F-transform, FX : H+(B)→ H+(B) by

FX(b) := E
[
(b−X)−1

]−1
= GX(b)−1,

• and the h-transform hX : H+(B)→ H+(B) by

hX(B) := E
[
(b−X)−1

]−1 −B = FX(b)− b.

Note, that these mappings are indeed well-defined since it has been shown in [BPV12]
that =(FX(b)) ≥ =(b) for all b ∈ H+(B), which implies =(hX(b)) ≥ 0 for all b ∈ H+(B).

For the relevant definitions and more details about holomorphic functions in Banach
spaces, we refer to Appendix B.

Theorem I.2.18 ([BMS13]). Assume that (A, E,B) is a C∗-operator-valued non-
commutative probability space and X1, X2 ∈ A are two self-adjoint operator-valued random
variables, which are free with amalgamation over B. Then there exists a unique pair of
Fréchet (and thus also Gâteaux) holomorphic maps ω1, ω2 : H+(B)→ H+(B) so that

(i) =(ωj(b)) ≥ =(b) for all b ∈ H+(B) and j ∈ {1, 2},
(ii) FX1(ω1(b)) + b = FX2(ω2(b)) + b = ω1(b) + ω2(b) for all b ∈ H+(B),

(iii) GX1(ω1(b)) = GX2(ω2(b)) = GX1+X2(b) for all b ∈ H+(B).

Moreover, if b ∈ H+(B) is given, then ω1(b) is the unique fixed point of the map

fb : H+(B)→ H+(B), w 7→ hX2(hX1(w) + b) + b,
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and ω1(b) = limn→∞ f
◦n
b (w) for any w ∈ H+(B), where f ◦nb means the n-fold composition

of fb with itself. Same statements hold for ω2, with fb replaced by w 7→ hX1(hX2(w)+b)+b.

We do not want to present a detailed proof of this statement, but we want to mention
that the proof given in [BMS13] is based on the Earle-Hamilton Theorem B.5. This
theorem replaces in the present operator-valued setting the Denjoy-Wolff theory, which
was crucially used in the proof of the scalar-valued version, Theorem I.1.42, as given in
[BB07].

I.3. Brown measures

The so-called Brown measure has its origins outside the area of free probability. It was
invented in 1986 by L. G. Brown [Bro86] in order to generalize Lidskii’s theorem. This
famous theorem states that the trace of any trace class operator on a separable Hilbert
space is the sum of its eigenvalues, where multiplicities are counted. In the setting of a
von Neumann algebra M , which is endowed with a faithful, normal, semi-finite trace3,
Brown proved that for any operator X ∈ L1(M, τ), there exists a unique measure νX on
σ(X)\{0}, such that

τ(log |1− zX|) =

∫
σ(X)\{0}

log |1− zw| dνX(w) for all z ∈ C

holds true. He was able to show that this measure satisfies∫
σ(X)\{0}

|w|p dνX(w) ≤ τ(|X|p) for all 0 < p <∞

and even

τ(X) =

∫
σ(X)\{0}

w dνX(w),

which completes the analogy to Lidskii’s theorem. Much later, namely in 2000, the Brown
measure was introduced to the free probability community by U. Haagerup and F. Larsen.
They took up Brown’s ingenious work in their influential paper [HL00], where they used
the Brown measure as some replacement of the analytic distribution for more general
operators beyond the self-adjoint or the normal case; see Definition I.1.18 and Definition
I.1.17. This revived Brown’s beautiful theory and attracted attention of many people, not
only from free probability but also from other areas of mathematics; see [BL01, Sni02,
Sni03, GKZ11].

Of particular interest for us is the paper [GKZ11], as it shows with the help of free
probability tools (in particular those coming from [HL00]) that the Brown measure can
be used to describe the limiting eigenvalue distribution of certain non-self-adjoint random
matrices. This kind of phenomenon is conjectured in many other cases. We will come
back to this in Chapter IV, where we will present an algorithm that allows us to compute
numerically the Brown measures for non-commutative rational expressions evaluated in
freely independent variables.

Although the Brown measure is of totally different nature than the analytic distribu-
tions, which we discussed so far, the familiar machinery of Cauchy transforms can still be

3These terms are understood in the sense of weights. Since we will only work in tracial W ∗-probability
spaces (M, τ), we omit the general definitions here. Instead, we refer the interested reader to [Bla06,
Section II.6.7]
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used to deal with this technically difficult object. For that purpose, however, the scalar-
valued theory is not sufficient and we must go over to setting of the operator-valued free
probability. This was worked out in [BSS15].

I.3.1. Background and definition. Since we are only interested in applications to
free probability, we will not present the theory in full generality. However, we point out
that in order to use this theory, we have to stay in the setting of finite von Neumann
algebras. Hence, we will in the following discussions around the Brown measure always
work in a tracial W ∗-probability space (M, τ).

Given an arbitrary element X in any tracial W ∗-probability space (M, τ), we may define
its Fuglede-Kadison determinant ∆(X) by the equation

log(∆(X)) = lim
ε↘0

1

2
τ(log(XX∗ + ε2)).

This quantity was introduced in [FK51, FK52].

It was shown in [Bro86], that the function z 7→ 1
2π

log(∆(X − z)) is subharmonic on C
and harmonic outside the spectrum of X. Thus, we may consider the associated Riesz
measure (see also the Riesz Decomposition Theorem [Ran95, Theorem 3.7.9]), which is
a Radon measure νX on C such that∫

C
ψ(z) dνX(z) =

1

2π

∫
C

(∂2ψ

∂x2
(z) +

∂2ψ

∂y2
(z)
)

log(∆(X − z)) dλ2(z)

holds for all functions ψ ∈ C∞c (C). There, we denote by λ2 the Lebesgue measure on C,
which is induced under the usual identification of C with R2. In other words, the Brown
measure νX is the generalized Laplacian of z 7→ 1

2π
log(∆(X − z)), which means that νX

of X is determined (in the distributional sense) by

(I.13) νX =
2

π

∂

∂z

∂

∂z
log(∆(X − z))

Note that we made use of the fact that, on C2-functions, the usual Laplacian ∂2

∂x2
+ ∂2

∂y2

can be rewritten as
∂2

∂x2
+

∂2

∂y2
= 4

∂

∂z

∂

∂z
in terms of the Pompeiu-Wirtinger derivatives

∂

∂z
=

1

2

( ∂
∂x
− i ∂

∂y

)
and

∂

∂z
=

1

2

( ∂
∂x

+ i
∂

∂y

)
.

I.3.2. The hermitization method. Following [BSS15] (see also [Lar99]), we will
now discuss how tools from operator-valued free probability can be used to compute
Brown measures.

Conceptually, this approach is similar to the way, how we usually deal with distributions
for self-adjoint operators: given an operator X, we must find the Cauchy transform GX ,
from which we can recover the analytic distribution µX of X by means of the Stieltjes
inversion formula as explained in Theorem I.1.29. This means more precisely that we
approximate µX by certain absolutely continuous regularizations µX,ε, which converge
weakly to µX as ε↘ 0. In order to compute the Brown measure νX of some operator X,
it is also convenient to approximate νX by certain regularizations νX,ε. But at first sight,
it is absolutely not clear, by which object we should replace the Cauchy transform in order
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CHAPTER I. SOME BASICS OF FREE PROBABILITY THEORY 43

to construct the desired regularizations. It is therefore much more intuitive to proceed the
other way around, namely, we first give a reasonable candidate for such regularizations
and then we check if there some sort of transform behind, which could replace the Cauchy
transform.

To begin with, let us take a look at the construction of the Brown measure. It crucially
relies on the Fuglede-Kadison determinant ∆, which itself involves some limit procedure.
It is therefore a very natural starting point to replace ∆ by the so-called regularized
Fuglede-Kadison determinant ∆ε, which is determined by the following equation

log(∆ε(X)) :=
1

2
τ(log(XX∗ + ε2)).

Thus, natural regularizations νX,ε of the Brown measure νX can be obtained as follows.

Definition I.3.1. The regularized Brown measures νX,ε of X are obtained by replacing
in its defining equation (I.13) the Fuglede-Kadison determinant ∆ by the regularization
∆ε. Explicitly and again in the distributional sense, this means that

(I.14) νX,ε(z) =
2

π

∂

∂z

∂

∂z
log(∆ε(X − z)).

One can show, by using for example [Ran95, Exercise 3.7 (4)], that νX,ε converges weakly
to νX as ε↘ 0.

It remains to find some kind of Cauchy transform, which will hopefully allow us to compute
these regularizations in a slightly simpler way.

Lemma I.3.2. If we consider the regularized Cauchy transform of X

GX,ε(z) = τ
(
(z −X)∗

(
(z −X)(z −X)∗ + ε2

)−1)
,

which is a C∞-function on C (but obviously not holomorphic on C), we have that

(I.15) dνX,ε(z) =
1

π

∂

∂z
GX,ε(z) dλ2(z).

The answer provided by the lemma above is surprisingly simple and looks quite appealing:
the formula for νX,ε given in (I.15) yields indeed a satisfying replacement for the Stieltjes
inversion formula, Theorem I.1.29, and the obtained regularized Cauchy transform GX,ε

(which can be seen as an analogue for the function z 7→ Gµ(z+iε) appearing in the Stieltjes
inversion formula) seems to be fairly close to being a Cauchy transform. But unfortunately,
on closer inspection, one realizes that GX,ε is – though its striking similarity to Cauchy
transforms – still a different object. Since free probability theory provides powerful tools
to deal with Cauchy transforms, this conclusion is clearly quite disappointing. However,
operator-valued free probability comes to our rescue. It turns out that GX,ε can indeed
be related to Cauchy transforms, but for this purpose, we must leave the scalar-valued
setting and work on an operator-valued level. More precisely, we must go over to the
M2(C)-valued C∗-probability space (M2(M), E,M2(C)) as introduced in Lemma I.2.17
and use the so-called hermitian reduction method . This trick, which originally comes from
random matrix theory [JNPZ97], is explained in the following lemma.

Lemma I.3.3. Consider the self-adjoint element

X :=

(
0 X
X∗ 0

)
∈M2(M).
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The value of the regularized Cauchy transform GX,ε at the point z ∈ C can then be obtained
as the (2, 1)-entry of the M2(C)-valued Cauchy transform of X, if it is evaluated at the
point

Λε(z) :=

(
iε z
z iε

)
∈ H+(M2(C)).

More precisely, we have for each z ∈ C that

(I.16) GX,ε(z) = [GX(Λε(z))]2,1.

Collecting our observations, we see that the regularized Brown measures νX,ε defined by
(I.14) (and thus the Brown measure νX in the limit ε ↘ 0) can be computed via (I.15)
from its regularized Cauchy transforms GX,ε, whereas the regularized Cauchy transform
GX,ε itself can be deduced by (I.16) from the M2(C)-valued Cauchy transform of the
self-adjoint element X. All this puts the Brown measure into the more familiar setting of
self-adjoint operators, where the analytic machinery of operator-valued free probability
theory applies. This approach will be used in Chapter IV.
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CHAPTER II

Random matrices and asymptotic freeness

While free probability theory was invented with the intention to used it as a tool for
operator algebraic questions, many surprising and fascinating connections to completely
different areas of mathematics were found later on. Most of these connections have in
common that contact to free probability is made by certain limit processes, in which
some free structure shows up.

One of the first and certainly also one of the most exciting connections of this kind was
found by Voiculescu [Voi91], namely to random matrix theory. Here, free independence
surprisingly turned out to describe the relations among many types of classically inde-
pendent random matrices in the limit when their dimension tends to infinity. In turn,
based on the free convolutions � and �, free probability allowed to understand the as-
ymptotic behavior of sums and products of independent random matrices of this type and
provided by its powerful analytic machinery an effective way to compute these limiting
distributions. In this sense, free probability can be seen as a very natural limit of classical
probability theory, so that it unquestionably leaves what some people might consider as
the “ivory tower of operator algebras”.

Nowadays, many generalizations of Voiculescu’s groundbreaking results to a wide range
of random matrices are known and beyond the case of sums and products it is even
possible to describe the limiting behavior of general polynomial and rational expressions
in independent random matrices. The latter will be outlined in Chapter IV.

This exciting applicability of free probability methods to questions of random matrix
theory – although they are located originally in the realm of classical probability theory
– is essentially due to the following two observations:

(i) The eigenvalue distributions of many types of random matrices, like Wigner or
Wishart random matrices, show a nice asymptotic behavior when the dimension
tends to infinity. In fact, the randomness disappears in the limit and the resulting
deterministic distributions can be described.

(ii) Classical independence among collections of independent random matrices often
produces free independence in the limit when the dimension of the involved
matrices goes to infinity.

The first mentioned phenomenon was well-known in random matrix theory long before
the birth of free probability theory. For instance, Wigner’s famous semicircular law (see
Theorem II.3.4 below) states that the eigenvalue distribution of self-adjoint Gaussian
random matrices, which are a special instance of Wigner matrices, converges almost surely
to the semicircular distribution as their dimension grows to infinity.

However, what might be surprising at first sight is that those limiting eigenvalue distribu-
tions agree with some prominent distributions in free probability, such as the semicircular
distribution (which is the free analogue of the normal distribution) or the free Poisson
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distribution. One could think about this just as a curious coincidence but it rather in-
dicates a deeper link between these two fields, as explained by the second phenomenon
explains. It became now known under the name “asymptotic freeness” and was one of
the big discoveries of Voiculescu, by which he opened the door for an extremely fruitful
interaction between random matrix theory and the theory of operator algebras, with a
strong impetus in both directions.

This chapter, which is devoted to the connections between free probability and random
matrix theory, is organized as follows. In Section II.1, we will introduce the terminology
and provide some basic knowledge about random matrices. We will introduce them as
elements in certain non-commutative probability spaces. This approach has the advantage
that it fits nicely to the general setting of asymptotic freeness, which will be presented
in Section II.2. Finally, in Section II.3, we turn our attention to the important case of
Wigner and Wishart random matrices.

Nevertheless, this chapter can of course only be a very tiny scratch on the surface of ran-
dom matrix theory. For a more detailed introduction, we refer the reader to the excellent
lecture notes [Kem13] and to [AGZ10].

II.1. Some basic facts about random matrices

In this section we will see that random matrices fit nicely into the general frame of
non-commutative probability spaces. But what actually are random matrices? There are
essentially two point of views: either we could say that random matrices are matrices which
are randomly chosen according to some given distribution on the space of all (mostly self-
adjoint) matrices of some fixed size, or we could think of random matrices as (again, mostly
self-adjoint) matrices whose entries are random variables. On closer inspection, these
pictures turn out to be equivalent, but both of them have advantages and disadvantages,
depending on the intended application. For our purposes, we prefer the second named
approach.

II.1.1. Non-commutative probability space of random matrices. To begin
with, let us fix some classical probability space (Ω,F ,P). Our point of view is that clas-
sical random variables over (Ω,F ,P) should constitute the entries of random matrices.
If we want to deal with random variables in such a way that the corresponding ran-
dom matrices fit into the frame of non-commutative probability theory, then Example
I.1.2 proposes the non-commutative probability space (L∞(Ω,P),E) as some reasonable
choice. The drawback, however, is that L∞(Ω,P) contains by definition only bounded
random variables, whereas the most prominent examples of random matrices are built
on unbounded ones, such as Gaussian random variables. We thus need a slight modifica-
tion of Example I.1.2 in order to bring at least some unbounded random variables in the
range of non-commutative probability theory. For this purpose, let us define the following
variant of L∞(Ω,P), namely

L∞−(Ω,P) :=
⋂

1≤p<∞

Lp(Ω,P),

which is the complex unital algebra of all random variables that have finite moments of
any order. It is not totally obvious that L∞−(Ω,P) is indeed closed under multiplication,
but this can be shown with the help of Hölder’s inequality. On L∞−(Ω,P), we finally
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introduce the expectation functional E by

E[X] :=

∫
Ω

X(ω) dP(ω) for all X ∈ L∞−(Ω,P).

With this underlying non-commutative probability space (L∞−(Ω,P),E), our definition
of random matrices reads as follows.

Definition II.1.1. A random matrix (of size n×n) is an element of the non-commutative
probability space (Mn, τn) given by

Mn := Mn(L∞−(Ω,P)) and τn := trn ◦E(n),

where trn denotes the normalized trace on Mn(C) and E(n) : Mn(L∞−(Ω,P)) → Mn(C)
the linear functional that is given as the natural amplification of E, i.e.

E(n)
[
(Xk,l)

n
k,l=1

]
:=
(
E[Xk,l]

)n
k,l=1

for all X = (Xk,l)
n
k,l=1 ∈Mn.

Note that we have the relation τn = trn ◦E(n) in the first and τn = E ◦ trn in the second
case.

Remark II.1.2. Note that under the natural (algebraic) isomorphism

Mn = Mn(L∞−(Ω,P)) ∼= Mn(C)⊗ L∞−(Ω,P),

the expectation τn on Mn = Mn(L∞−(Ω,P)) is identified with trn⊗E on Mn(C) ⊗
L∞−(Ω,P). In particular, we see that Mn induces naturally two operator-valued non-
commutative probability spaces by

(Mn,E(n),Mn(C)) and (Mn, trn, L
∞−(Ω,P)),

where in the latter one trn is understood as a linear functional trn : Mn → L∞−(Ω,P) by

trn
(
(Xk,l)

n
k,l=1

)
:=

1

n

n∑
k=1

Xk,k for all X = (Xk,l)
n
k,l=1 ∈Mn.

We have introduced above (Mn, τn) as a non-commutative probability space, ignoring that
there is a natural involution ∗ on L∞−(Ω,P). This ∗-structure goes over to Mn, which
turns both L∞−(Ω,P) and Mn into ∗-probability spaces. Indeed, for X ∈ L∞−(Ω,P), we
denote byX∗ the random variable in L∞−(Ω,P), which is determined by the condition that

X∗(ω) = X(ω) for P-almost all ω ∈ Ω. It is easy to check that (L∞−(Ω,P),E) becomes
with respect to ∗ a ∗-probability space in the sense of Definition I.1.5. Corresponding to
∗ on L∞−(Ω,P), we have a natural involution on Mn; since it extends ∗, we will denote it
by the same symbol. Given a random matrix X = (Xk,l)

n
k,l=1 ∈ Mn, the random matrix

X∗ ∈ Mn is defined by X∗ := (X∗l,k)
n
k,l=1. It is easy to see that (Mn, τn) becomes in this

way a ∗-probability space.

Remark II.1.3. Having this underlying ∗-structure, it is very natural to call a random
matrix X = (Xk,l)

n
k,l=1 ∈ Mn self-adjoint , if X = X∗ holds. This means explicitly, that

matrix X(ω) = (Xk,l(ω))nk,l=1 ∈Mn(C) is self-adjoint with respect to the usual conjugate
transpose on Mn(C) for P-almost all ω ∈ Ω.
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II.1.2. The empirical eigenvalue distribution. We consider now a self-adjoint
random matrix X ∈ Mn. As we have expounded in Remark II.1.3, X being self-adjoint
means that the matrix X(ω) is a self-adjoint non-commutative random variable in the
non-commutative C∗-probability space (Mn(C), trn) for P-almost all ω ∈ Ω. Furthermore,
we have seen in Example I.1.21 that the analytic distribution µX(ω) of X(ω) is given by
its normalized eigenvalue distribution, i.e.

µX(ω) =
1

n

n∑
j=1

δλj(ω),

where λ1(ω) ≤ · · · ≤ λn(ω) denote the eigenvalues of X(ω), listed according to their
multiplicity.

Since the measure µX(ω) depends on the outcome ω ∈ Ω, one is tempted to call ω 7→ µX(ω)

a random probability measure. However, this does not come for free, since talking in a
formally correct way about measure-valued random variables forces us to impose some
measurability condition on ω 7→ µX(ω), which itself requires to have identified some σ-
algebra on the corresponding set of probability measures. This is usually done in such
a way that being a random probability measure means for ω 7→ µX(ω) that the function
ω 7→ µX(ω)(B) is measurable for each fixed Borel subset B of R.

Definition II.1.4. Let X ∈Mn be a self-adjoint random matrix, such that the function
ω 7→ µX(ω)(B) is measurable for each Borel subset B of R.

(i) The empirical eigenvalue distribution of X is the random probability measure

µX(·) : ω 7→ µX(ω)

given by the eigenvalue distribution of X(ω) for ω ∈ Ω.
(ii) The mean empirical eigenvalue distribution of X is the Borel probability measure

µ̄X on R, which is defined by

µ̄X(B) := E
[
µX(·)(B)

]
=

∫
Ω

µX(ω)(B) dP(ω)

for each Borel subset B of R.

One easily sees that under the assumptions of the previous definition

(II.1)

∫
R
f(t) dµ̄X(t) = E

[ ∫
R
f(t) dµX(·)(t)

]
holds for each simple function f : R → C. By some standard approximation argument
(with respect to the uniform norm ‖ · ‖∞ on R) we may deduce that (II.1) even holds for
each function f ∈ C0(R). The Riesz-representations theorem C.6 guarantees that µ̄X is
uniquely determined by this condition among all positive Radon measures on R.

In particular, given z ∈ C+, we may apply (II.1) to the resolvent function fz ∈ C0(R),
which is defined by fz(t) := 1

z−t for t ∈ R. This gives

Gµ̄X (z) = E
[
GµX(·)(z)

]
,

which says that the Cauchy transform µ̄X can be obtained pointwise as the expectation of
the random variable ω 7→ GµX(ω)

(z). The measurability of ω 7→ GµX(ω)
(z) for fixed z ∈ C+

follows, since GµX(ω)
can be expressed in the following way

GµX(ω)
(z) = trn

(
(z −X(ω))−1

)
for all z ∈ C+
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and in particular without referring to the eigenvalues λ1(ω) ≤ · · · ≤ λn(ω) of X(ω).

Thus, alternatively, we could introduce µ̄X by means of Theorem I.1.27, which guarantees
that the holomorphic function Gµ̄X defined by

Gµ̄X (z) :=

∫
Ω

trn
(
(z −X(ω))−1

)
dP(ω) for all z ∈ C+

is indeed the Cauchy transform of some Borel probability measure µ̄X on R. Since the
Stone-Weierstraß theorem shows that the linear span of {fz| z ∈ C\R} is dense in C0(R),
we can conclude backwards that µ̄X satisfies the characterizing condition (II.1) for each
f ∈ C0(R).

For general random matrices X, the mean empirical eigenvalue distribution µ̄X is hard to
compute, but in some particular cases explicit formulas are known; see Remark II.3.3.

II.2. Asymptotic freeness

We will now present Voiculescu’s definition of asymptotic freeness as given in [Voi91].
Though it will be formulated in general terms, we should keep in mind that random
matrices constitute the most prominent example, according to which this definition is
actually modeled.

Definition II.2.1. Fix some non-empty index set I. For each n ∈ N, let (An, φn) be a non-

commutative probability space and let X(n) = (X
(n)
i )i∈I be a family of non-commutative

random variables in An.

(i) The sequence (X(n))n∈N is said to be convergent in distribution to X = (Xi)i∈I ,
for some familyX = (Xi)i∈I of non-commutative random variables living in some
non-commutative probability space (A, φ), if the sequence (µX(n))n∈N converges
pointwise to the non-commutative distribution µX , i.e., if we have

lim
n→∞

φn(P (X(n))) = φ(P (X)) for all P ∈ C〈xi| i ∈ I〉.

(ii) The sequence (X(n))n∈N is said to be asymptotically free, if (X(n))n∈N converges
in distribution to a family X = (Xi)i∈I in some non-commutative probability
space (A, φ), such that (Xi)i∈I are in addition freely independent in (A, φ).

In the case of random matrices, the family ((An, φn))n∈N of non-commutative probability
spaces is given by ((Mn, τn))n∈N. As explained in Remark II.1.2, the expectation τn can
be written as a composition τn = E ◦ trn, where the trace trn is understood as a linear
functional trn : Mn → L∞−(Ω,P). Therefore, it becomes possible to separate its random
part and its deterministic part. This leads us to the notion of almost sure convergence in
distribution and almost sure asymptotic freeness; see [HP00b, Section 4.3].

Definition II.2.2. Fix a classical probability space (Ω,F ,P) and some non-empty index

set I. For each n ∈ N, let X(n) = (X
(n)
i )i∈I be a family of non-commutative random vari-

ables X(n), living in the non-commutative probability space (Mn, τn) build over (Ω,F ,P).

(i) The sequence (X(n))n∈N is said to be almost surely convergent in distribution to
X = (Xi)i∈I , for some family X = (Xi)i∈I of non-commutative random variables
living in some non-commutative probability space (M, τ), if we have

lim
n→∞

trn(P (X(n)(ω))) = τ(P (X)) for P-almost all ω ∈ Ω
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for each P ∈ C〈xi| i ∈ I〉.
(ii) The sequence (X(n))n∈N is said to be almost surely asymptotically free, if

(X(n))n∈N converges almost surely in distribution to a family X = (Xi)i∈I in
some non-commutative probability space (M, τ), such that (Xi)i∈I are in addi-
tion freely independent in (M, τ).

Note that the expectation τ of the limiting space (M, τ) can be chosen to be tracial, since
we can always restrict to the subalgebra M0 of M generated by {Xi| i ∈ I}, on which
τ0 := τ |M0 must be tracial since each trn is so.

Now, let us have a look at the case of a single random matrix.

Remark II.2.3. For each n ∈ N, let X(n) be a random matrix in (Mn, τn), which is
defined over the probability space (Ω,F ,P). Furthermore, let X be a self-adjoint non-
commutative random variable living in some C∗-probability space (M, τ). Consider its
analytic distribution µX , which is a compactly supported Borel probability measure on
R and thus, in particular, determined by its moments; see Definition I.1.30 and Remark
I.1.32. We record the following useful observations:

(i) The sequence (X(n))n∈N converges in distribution to X in the sense of Definition
II.2.1, if and only if

lim
n→∞

E
[

trn
(
(X(n))k

)]
= τ(Xk) for all k ≥ 0,

or equivalently, in terms of the mean empirical eigenvalue distributions µ̄X(n) , if

lim
n→∞

∫
R
tk dµ̄X(n)(t) =

∫
R
tk dµX(t) for all k ≥ 0.

With the help of Remark I.1.31, we conclude that (µ̄X(n))n∈N converges even
weakly to µX .

(ii) The sequence (X(n))n∈N converges almost surely in distribution to X in the sense
of part (i) of Definition II.2.2, if and only if for each fixed integer k ≥ 0

lim
n→∞

trn
(
X(n)(ω)k

)
= τ(Xk) for P-almost all ω ∈ Ω,

or equivalently, in terms of the random probability measures µX(n) , if for each
fixed integer k ≥ 0

lim
n→∞

∫
R
tk dµX(n)(ω)(t) =

∫
R
tk dµX(t) for P-almost all ω ∈ Ω.

The latter means more explicitly, that we can find or each k ≥ 0 a set Ak ∈ F
with P(Ak) = 0, such that

lim
n→∞

∫
R
tk dµX(n)(ω)(t) =

∫
R
tk dµX(t) for all ω ∈ Ω\Ak.

If we put A :=
⋃
k≥0Ak, we obtain another set A ∈ F with the property P(A) =

0, which is such that for all ω ∈ Ω\A

lim
n→∞

∫
R
tk dµX(n)(ω)(t) =

∫
R
tk dµX(t) for all k ≥ 0.

Hence, we see that for P-almost all ω ∈ Ω the moments of the sequence
(µX(n)(ω))n∈N converge to the respective moments of µX . With the help of Re-
mark I.1.31, we conclude that (µX(n)(ω))n∈N converges even weakly to µX for
P-almost all ω ∈ Ω.
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In Chapter IV, we will be interested in certain non-commutative random variables X,
for which the analytic distribution µX can be computed numerically – more precisely, we
will explain how to find Borel probability measures µX,ε, which are absolutely continuous
with respect to the Lebesgue measure on R and which converge weakly to µX as ε ↘ 0.
At the same time, random matrix models X(n) for X are available, so that we can use
their eigenvalue distribution as an alternative approximation of the limiting distribution
µX . The previous observations made in (i) and (ii) now explain, why we see in most case
a striking similarity between the shape of the normalized eigenvalue histograms for X(n)

for sufficiently large n and the approximating densities of µX . In fact, while the setting of
(i) requires for this purpose to average over independent realizations of X(n), the stronger
conditions imposed in (ii) guarantee that already one “generic” realization of X(n) will be
sufficient.

II.3. Gaussian and Wishart random matrices

In Chapter IV, we will use random matrices as models for non-commutative distributions.
Our models rely mostly on two, very prominent types of random matrices, namely self-
adjoint Gaussian and Wishart random matrices. These random matrices are build out of
Gaussian random variables and accordingly on the normal distribution. Recall that the
normal distribution γσ2 of variance σ2 > 0 is the absolutely continuous Borel probability
measure on R, which is given by

dγσ2(x) =
1√

2σ2π
exp

(
− x2

2σ2

)
dx.

Let us agree on the following terminology.

Definition II.3.1. Let (Ω,F ,P) be any probability space.

(i) A random variable X ∈ L∞−(Ω,P) is called a real Gaussian random variable (of
mean 0 and variance σ2), if X(ω) is real for P-almost all ω ∈ Ω and if

E[Xk] =

∫
R
xk dγσ2(x) for all k ∈ N0.

(ii) A random variable X ∈ L∞−(Ω,P) is called a complex Gaussian random vari-
able, if <(X) and =(X) are independent real Gaussian random variables.

Note that σ2 = E[X2] holds for each real Gaussian random variable X with mean 0
and variance σ2. Thus, a Gaussian random variable with mean 0 is fully characterized
by prescribing its second moment. This fact will be used below in Definition II.3.2 and
Definition II.3.5.

Furthermore, let us recall some well-known fact from classical probability theory, saying
that the normal distribution γσ2 of each variance σ2 is determined by its moments in
the sense of Definition I.1.30. This explains why we have introduced Gaussian random
variables in terms of their moments.

II.3.1. Self-adjoint Gaussian random matrices and their asymptotic eigen-
value distribution. Let us begin with the definition of self-adjoint Gaussian random
matrices. More formally, we should call them standard self-adjoint complex Gaussian ran-
dom matrices, but for the seek of simplicity and since there is no risk of confusion, we
will suppress the terms “standard” and “complex” in the following.
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52 II.3. GAUSSIAN AND WISHART RANDOM MATRICES

Definition II.3.2. A random matrix X = (Xk,l)
n
k,l=1 ∈Mn is called a self-adjoint Gauss-

ian random matrix , if X is self-adjoint and if

{<(Xk,l)| 1 ≤ k ≤ l ≤ n} ∪ {=(Xk,l)| 1 ≤ k < l ≤ n}

are independent Gaussian random variables satisfying the following conditions:

• E[Xk,l] = 0 for k, l = 1, . . . , n.

• E[(<(Xk,l))
2] =

1

2n
and E[(=(Xk,l))

2] =
1

2n
for 1 ≤ k < l ≤ n.

• E[(Xk,k)
2] =

1

n
for 1 ≤ k ≤ n.

Note that this definition does not depend on the underlying probability space, since the
properties of these random matrices are influenced only by the distribution of their entries
and not by the concrete space on which they are realized.

As announced before, we have introduced here self-adjoint Gaussian random matrices
as matrices that are build out of classical random variables. At this point, it is worth
to take a look at the alternative picture, which describes self-adjoint Gaussian random
matrices by introducing some probability measure on the space Mn(C)sa of all self-adjoint
matrices of size n × n over C. As a real vector space, Mn(C)sa is naturally isomorphic

to Rn2
(by counting n degrees of freedom for the diagonal and n(n−1)

2
both for the real

and the imaginary part of all entries above the diagonal, which gives in total the real
dimension n2). With respect to this fixed real basis, the Lebesgue measure λn

2
on Rn2

can
be transferred to Mn(C)sa, yielding the measure

dX =
∏

1≤i≤n

dXi,i

∏
1≤i<j≤n

d<(Xi,j) d=(Xi,j).

Sometimes, it is more appropriate to rescale the chosen basis on Mn(C)sa in such a way

that the isomorphism between Mn(C)sa and Rn2
becomes isometric if Mn(C)sa is endowed

with the Hilbert-Schmidt norm and Rn2
with the usual Euclidean norm; this results then

in the measure Λn on Mn(C)sa, which is given by (see [HP00b])

dΛn(X) = 2
n(n−1)

2

∏
1≤i≤n

dXi,i

∏
1≤i<j≤n

d<(Xi,j) d=(Xi,j).

The self-adjoint Gaussian random matrices are distributed according to

Cn exp
(
− n

2
Trn(X2)

)
dX,

where Trn denotes the unnormalized trace on Mn(C) and where we abbreviate Cn :=

2−n/2
(
π
n

)−n2/2
. The important fact that with X also UXU∗ forms a self-adjoint Gaussian

random matrix for any unitary matrix U ∈ Mn(C) is reflected by the invariance of this
measures under the mapping X 7→ UXU∗.

We already mentioned earlier that computing the mean empirical eigenvalue distribution
is a challenging task in general and that explicit formulas are known only in very few
cases. One such case are self-adjoint Gaussian random matrices.

Remark II.3.3. If X(n) ∈Mn is a self-adjoint Gaussian random matrix, it can be shown
that µ̄X(n) is absolutely continuous with respect to the Lebesgue measure on R, i.e. we
have dµ̄X(n)(t) = ρn(t) dt. The density ρn can be obtained in the following way:
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(d) n = 10

Figure II.1. Plot of ρn for different values of n, compared to the normal-
ized histogram of eigenvalues for a self-adjoint Gaussian random matrix of
size n×n, averaged over 10000 independent realizations; see Remark II.3.3.

• For n ∈ N0, let Hn : R → R denote the n-th Hermite polynomial . The Hermite
polynomials are defined recursively by H0(x) = 1, H1(x) = x and

xHn(x) = Hn+1(x) + nHn−1(x) for all n ≥ 1.

As this three term recurrence relation already suggests, these polynomials are
orthogonal polynomials for some measure on R. Indeed, the Hermite polynomials
are orthogonal with respect to the Gaussian distribution γ := γ1 and more
precisely they satisfy∫

R
Hn(x)Hm(x) dγ(x) = δn,mn!.

• For n ∈ N0, we denote by ψn : R→ R the n-th Hermite function. The Hermite
functions are given by

ψn(x) := (2π)−
1
4 (n!)−

1
2 e−

1
4
x2Hn(x) for all n ≥ 0.

The normalization is such that the Hermite functions (ψn)n≥0 form an orthonor-
mal basis of L2(R, dx) with respect to the Lebesgue measure.
• For n ∈ N, we consider the n-th Hermite kernel Kn : R2 → R, which is defined

by

Kn(x, y) :=
n−1∑
k=0

ψk(x)ψk(y).
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• For n ∈ N, the density ρn is given by

ρn(x) := n−
1
2Kn

(
n

1
2x, n

1
2x
)
.

The densities ρn for the values n = 2, 3, 4, 10 are shown in Figure II.1.

The pictures shown in Figure II.1 suggest that the densities ρn of the mean empirical eigen-
value distributions converge to some limiting function as the size n of the corresponding
random matrices tends to infinity. This is indeed true and one can prove this fact for
instance by examining the asymptotic behavior of the involved Hermite kernels. Doing
this, the limiting eigenvalue distribution turns out to be the semicircular distribution.

Let us now formulate the precise statement, which goes back to Wigner [Wig55, Wig58],
but was improved to almost sure convergence in the work of Arnold [Arn67].

Theorem II.3.4 (Wigner’s semicircle law). Let (X(n))n∈N be a sequence of self-adjoint
Gaussian random matrices X(n) ∈ Mn over the probability space (Ω,F ,P). Moreover,
let S be a semicircular element in some C∗-probability space (M, τ), meaning that S is
a self-adjoint non-commutative random variable in M, whose analytic distribution µS is
given by the semicircular distribution σ1 of mean 0 and variance 1 (see Definition I.1.43).
Then the following holds true:

(i) The sequence (X(n))n∈N converges in distribution to S. In the sense of part (i)
of Definition II.2.1, this means that

lim
n→∞

E[trn((X(n))k)] = τ(Sk) for all k ≥ 0.

According to part (i) of Remark II.2.3, this means that the mean empirical eigen-
value distribution µ̄X(n) converges weakly to the semicircular distribution σ1 as
n→∞.

(ii) The sequence (X(n))n∈N almost surely converges in distribution to S. In the sense
of part (i) of Definition II.2.2, this means that for each fixed integer k ≥ 0

lim
n→∞

trn(X(n)(ω)k) = τ(Sk) for P-almost all ω ∈ Ω.

According to part (ii) Remark II.2.3, this means that for P-almost all ω ∈ Ω, the
empirical eigenvalue distributions µX(n)(ω) converges weakly to the semicircular
distribution σ1 as n→∞.

II.3.2. Wishart random matrices and their asymptotic eigenvalue distribu-
tion. Another important class of random matrices are self-adjoint Wishart matrices. A
more accurate name for them would be standard self-adjoint complex Wishart matrix,
but again for the seek of simplicity, we prefer to shorten this clumsy nomenclature.

Definition II.3.5. Let {vk,l| 1 ≤ k ≤ p, 1 ≤ l ≤ n} ⊂ L∞−(Ω,P) be given, such that

{<(vk,l)| 1 ≤ k ≤ p, 1 ≤ l ≤ n} ∪ {=(vk,l)| 1 ≤ k ≤ p, 1 ≤ l ≤ n}

are independent Gaussian random variables satisfying

• E[vk,l] = 0

• E[(<(vk,l))
2] =

1

2n
and E[(=(vk,l))

2] =
1

2n
54



CHAPTER II. RANDOM MATRICES AND ASYMPTOTIC FREENESS 55

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

(a) d = 5

-1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

(b) d = 10

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(c) d = 20

-2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

(d) d = 40

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

(e) d = 80

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(f) d = 160

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

(g) d = 320

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(h) d = 640

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

(i) d = 1280

Figure II.2. Normalized histograms of the eigenvalues of one realization
of a self-adjoint Gaussian random matrix (see Definition II.3.2) for several
dimensions d.

for k = 1, . . . , p and l = 1, . . . , n. We put

V = (vk,l)k=1,...,p
l=1,...,n

.

Then the matrix X := V ∗V ∈ Mn is called a standard self-adjoint (complex) Wishart
matrix .

The eigenvalue distribution of Wishart random matrices has like in the case of Gauss-
ian random matrices a deterministic limit. The following theorem, which goes back to
[MP68], gives the precise statement.

Theorem II.3.6 (Marchenko-Pastur law). Let (X(n))n∈N be a sequence of standard
Wishart matrices X(n) ∈ Mn, which are given as X(n) = V ∗n Vn, where Vn is a p(n) × n
matrix of elements in L∞−(Ω,P). Assume additionally that the limit

λ := lim
n→∞

p(n)

n

exists. Moreover, let W be a free Poisson element with rate λ and jump size α = 1 in some
C∗-probability space (M, τ), i.e., W is a self-adjoint non-commutative random variable in
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Figure II.3. Normalized histograms of the eigenvalues of one realization
of a self-adjoint Wishart random matrix with rate λ = 2 (see Definition
II.3.5) for several dimensions d.

M, whose analytic distribution µW is given by the Marchenko-Pastur distribution µλ,1 (see
Definition I.1.46). Then the following holds true:

(i) The sequence (X(n))n∈N converges in distribution to W . In the sense of part (i)
of Definition II.2.1, this means that

lim
n→∞

E[trn((X(n))k)] = τ(W k) for all k ≥ 0,

According to part (i) of Remark II.2.3, this means that the mean empirical eigen-
value distribution µ̄X(n) converges weakly to the free Poisson distribution µλ,1 as
n→∞.

(ii) The sequence (X(n))n∈N almost surely converges in distribution to W . In the
sense of part (i) of Definition II.2.2, this means that for each fixed integer k ≥ 0

lim
n→∞

trn(X(n)(ω)k) = τ(W k) for P-almost all ω ∈ Ω.

According to part (ii) of Remark II.2.3, this means that for P-almost all ω ∈
Ω, the empirical eigenvalue distributions µX(n)(ω) converges weakly to the free
Poisson distribution µλ,1 as n→∞.
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II.3.3. Asymptotic freeness of Gaussian and Wishart random matrices. So
far, we have seen that the eigenvalue distribution of a single Gaussian or a single Wishart
random matrix shows a nice asymptotic behavior if ifs dimension tends to infinity. How-
ever, typical questions in random matrix theory are concerned with more than only one
random matrix. For instance, we could take N independent series of Gaussian random

matrices, say (X
(n)
1 )n∈N, . . . , (X

(n)
N )n∈N, where independence for random matrices simply

means that the their entries form independent sets of classical random variables. We
know then from Wigner’s semicircle law (see Theorem II.3.4) that the semicircular dis-
tributions shows up almost surely in the limit of each of these sequences, separately. But
what happens, if we look instead at the sequence

(P (X
(n)
1 , . . . , X

(n)
N ))n∈N

for any fixed non-commutative polynomial P ∈ C〈x1, . . . , xN〉, which is supposed to be
self-adjoint? It is clear that this gives just another sequence of random matrices, but it is
rather questionable whether its empirical eigenvalue distribution still shows a controllable
behavior as n → ∞. Surprisingly, it does, and the deterministic distribution that arises
in the limit turns out to be the analytic distribution of

P (S1, . . . , SN),

for freely independent semicircular elements S1, . . . , SN . This phenomenon is explained by
the following theorem due to Voiculescu [Voi91], which complements Wigner’s semicircle
law, Theorem II.3.4.

Theorem II.3.7 (Asymptotic freeness for self-adjoint Gaussian random matrices). Let

(X(n))n∈N be a sequence of N-tuples X(n) = (X
(n)
i )1≤i≤N of independent self-adjoint Gauss-

ian random matrices X
(n)
1 , . . . , X

(n)
N ∈Mn. Then (X(n))n∈N converges in distribution to an

N-tuple S = (S1, . . . , SN) of freely independent semicircular elements S1, . . . , SN , living
in some non-commutative C∗-probability space (M, φ).

The phenomenon of asymptotic freeness is by no means limited to the case of self-adjoint
Gaussian random matrices. In fact, a similar statement is also true for self-adjoint Wishart
random matrices. This is the content of the next theorem; see [HP00b, HP00a] and
[Tho00].

Theorem II.3.8 (Asymptotic freeness for self-adjoint Wishart random matrices). Let

(X(n))n∈N be a sequence of N-tuples X(n) = (X
(n)
i )1≤i≤N of independent self-adjoint

Wishart matrices X
(n)
1 , . . . , X

(n)
N ∈ Mn. Then (X(n))n∈N converges in distribution to an

N-tuple (W1, . . . ,WN) of freely independent Poisson elements W1, . . . ,WN , living in some
non-commutative C∗-probability space (M, φ).

II.3.4. Asymptotic freeness for unitarily invariant random matrices. The
previously quoted theorems state that independent self-adjoint Gaussian random matrices
and independent self-adjoint Wishart random matrices are asymptotically free separately.
But what happens if we mix both types of matrices? Amazingly, asymptotic freeness even
shows up in this generality. The reason is that matrices of both types are unitarily in-
variant . The latter means that the considered class of random matrices is stable under
unitary conjugation X 7→ UXU∗ for an arbitrary unitary matrix U ∈Mn(C). The follow-
ing theorem, which is taken from [HP00b, Theorem 4.3.5], gives the precise statement.
Notably, it supersedes both Theorem II.3.7 and Theorem II.3.8, and it covers also the
mixed case.
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Theorem II.3.9 (Asymptotic freeness for unitarily invariant self-adjoint random matri-

ces). Let (X(n))n∈N be a sequence of families X(n) = (X
(n)
i )i∈I of independent self-adjoint

random matrices X
(n)
i ∈Mn over some fixed index set I 6= ∅, which are unitarily invari-

ant. Assume that for each i ∈ I a compactly supported Borel probability measure µi on R
exists, such that for each integer k ≥ 0

lim
n→∞

trn((X
(n)
i (ω))k) =

∫
R
tk dµi(t) for P-almost all ω ∈ Ω.

Then (X(n))n∈N is almost surely asymptotically free.

II.4. Non-commutative functions in asymptotically free random matrices

Roughly speaking, all results collected in the previous subsections tell us that free inde-
pendence arises in the limit out of classical independence for many interesting classes of
random matrices. In this sense, the concept of asymptotic freeness completes the picture
of Theorem II.3.4 and Theorem II.3.6. It bridges between random matrix theory and free
probability as it puts questions concerning the limiting behavior of random matrices of
the form

(f(X
(n)
1 , . . . , X

(n)
N ))n∈N,

with independent random matrices X
(n)
1 , . . . , X

(n)
N and some “non-commutative function”

f , into the free probability problem concerning the distribution of operators of the form

f(X1, . . . , XN),

with freely independent non-commutative random variables X1, . . . , XN . Depending on
f , we need to impose different conditions on the convergence of the random matrix en-

semble (X
(n)
1 , . . . , X

(n)
N ) towards (X1, . . . , XN). These issues will be discussed in the next

subsections.

II.4.1. Non-commutative polynomials. Let us consider first treat the case of
non-commutative polynomials. With the following lemma, we make for f being a non-

commutative polynomial the aforementioned relationship between f(X
(n)
1 , . . . , X

(n)
N ) and

f(X1, . . . , XN) more explicit.

Lemma II.4.1. For each n ∈ N, let X(n) = (X
(n)
1 , . . . , X

(n)
N ) be an N-tuple of independent

self-adjoint random matrices X
(n)
1 , . . . , X

(n)
N ∈ Mn over (Ω,F ,P). Assume that for each

i = 1, . . . , N the empirical eigenvalue distribution of the sequence (X
(n)
i )n∈N converges

almost surely to some limiting distribution in the sense that a compactly supported Borel
probability measure µi on R exists, such that for each integer k ≥ 0

lim
n→∞

trn((X
(n)
i (ω))k) =

∫
R
tk dµi(t) for P-almost all ω ∈ Ω.

Consider now any self-adjoint non-commutative polynomial P ∈ C〈x1, . . . , xN〉. If

(X
(n)
1 , . . . , X

(n)
N )n∈N are almost surely asymptotically free, then for P-almost all ω ∈ Ω,

the eigenvalue distribution of

P (X
(n)
1 (ω), . . . , X

(n)
N (ω))

converges weakly to µ = P�(µ1, . . . , µN) as n→∞.
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Proof. The assumption that the random matrices (X
(n)
1 , . . . , X

(n)
N ) are almost surely

asymptotically free tells us according to Definition II.2.2 that we can find some tuple
X = (X1, . . . , XN) of freely independent elements X1, . . . , XN in a non-commutative
probability space (M, τ), such that for each P ∈ C〈x1, . . . , xN〉

lim
n→∞

trn
(
P (X

(n)
1 (ω), . . . , X

(n)
N (ω))

)
= τ(P (X1, . . . , XN)) for P-almost all ω ∈ Ω

holds.

Consider now the non-commutative distribution µX : C〈x1, . . . , xN〉 → C of X. The
freeness condition gives us (see Remark I.1.37) that µX is completely determined by the
individual distributions µX1 , . . . , µXN : C〈x〉 → C. Furthermore, for each i = 1, . . . , N ,

µXi(x
k) =

∫
R
tk dµi(t) for each integer k ≥ 0,

since we have for P-almost all ω ∈ Ω that

µXi(x
k) = τ(Xk

i ) = lim
n→∞

trn((X
(n)
i (ω))k) =

∫
R
tk dµi(t).

This has the important consequence (see Remark I.1.38) that the non-commutative dis-
tribution µX can be realized on a C∗-probability space. More precisely, we can assume
with no loss of generality that (M, τ) is a C∗-probability space and that X1, . . . , Xn are
freely independent self-adjoint operators in M, whose analytic distributions are given by
µ1, . . . , µN .

Fix now a self-adjoint P ∈ C〈x1, . . . , xN〉 and consider the corresponding random matrices

Y (n) := P (X
(n)
1 , . . . , X

(n)
N ) ∈Mn and the operator Y := P (X1, . . . , XN) ∈M. Given any

integer k ≥ 0, we have Y (n)(ω)k = P k(X
(n)
1 (ω), . . . , X

(n)
N (ω)) for all ω ∈ Ω and hence

lim
n→∞

trn
(
Y (n)(ω)k

)
= lim

n→∞
trn
(
P k(X

(n)
1 (ω), . . . , X

(n)
N (ω))

)
= τ(P k(X1, . . . , XN))

= τ(Y k)

for P-almost all ω ∈ Ω. As the analytic distribution µY of Y has compact support and is
thus in particular determined by its moments (see Remark I.1.32), it follows by the obser-
vations made in Remark II.2.3 that the sequence of eigenvalue distributions (µY (n)(ω))n∈N
converges weakly to µY for P-almost all ω ∈ Ω. Since we have

µY = µP (X1,...,XN ) = P�(µ1, . . . , µN),

this concludes the proof. �

This is clearly both of great theoretical and practical importance. If we take for instance
the polynomial given by P = x1 + x2, then the limiting distribution can be computed by
means of the free additive convolution �, and a polynomial like P = x1x2x1 can be treated
likewise by the free multiplicative convolution �. Even for more general polynomials P ,
the abstract theory tells us that the distribution of P (X1, . . . , XN) must be determined
by P and the individual distributions of the variables X1, . . . , XN . However, there was for
a long time no general machinery available that allows to make this relation explicit and
finally computable. We will present a complete algorithmic solution with in Chapter IV.

However, while in the special case of a non-commutative polynomial P the convergence of

the eigenvalue distribution of P (X
(n)
1 , . . . , X

(n)
N ) to P (X1, . . . , XN) is an easy consequence
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of asymptotic freeness, the situation for more general test functions f , is much more
intricate, as the next subsection will show.

II.4.2. Non-commutative rational expressions. Let us now take a look at the
case of non-commutative rational expressions. We warn the reader that non-commutative
rational expressions and related notions, such as domain and evaluation, are not yet de-
fined. This will be done first in Subsection III.2.1 of the next Chapter III. We apologize for
this inconsistency, but by postponing our subsequent discussion until then, we would take
them out of their actual context. Any reader, who suspects a hidden circular reasoning,
may skip this paragraph at first reading and may return after having worked through
Subsection III.2.1, which should finally convince him of the contrary.

One of the main difficulties when trying to evaluate any non-commutative rational ex-

pression r at a given N -tuple (X
(n)
1 , . . . , X

(n)
N ) of random matrices is that (X

(n)
1 , . . . , X

(n)
N )

should almost surely belong to the domain of r if their dimension n is sufficiently large.
More precisely, if (X1, . . . , XN) belongs to the A-domain of the non-commutative rational

expression r, we want that (X
(n)
1 , . . . , X

(n)
N ) lies in the domain of r eventually, that is, for

P-almost all ω ∈ Ω, we find some nω ∈ N, such that (X
(n)
1 (ω), . . . , X

(n)
N (ω)) falls into the

Mn(C)-domain of r for all n ≥ nω. Recent results due to Yin [Yin16] constitute a suffi-

cient criterion, which is based on the notion of strong convergence of ((X
(n)
1 , . . . , X

(n)
N ))n∈N

to (X1, . . . , XN). Though it applies equally well to random matrices, which are not self-
adjoint, we restrict our attention to the self-adjoint case. The corresponding definition
reads as follows.

Definition II.4.2. For each n ∈ N, let (X
(n)
1 , . . . , X

(n)
N ) be some N -tuple of self-adjoint

random matrices X
(n)
1 , . . . , X

(n)
N in (Mn, τn), constructed over some classical probability

space (Ω,F ,P). Given a C∗-probability space (M, τ) with a faithful state τ and self-

adjoint non-commutative random variables X1, . . . , XN , we say that ((X
(n)
1 , . . . , X

(n)
N ))n∈N

converges strongly to (X1, . . . , XN), if the two following condition holds true:

(i) The sequence ((X
(n)
1 , . . . , X

(n)
N ))n∈N almost surely converges in distribution to

(X1, . . . , XN) in the sense of Definition II.2.2.
(ii) For each P ∈ C〈x1, . . . , xN〉 (not necessarily self-adjoint), we have that

lim
n→∞

‖P (X
(n)
1 (ω), . . . , X

(n)
N (ω))‖ = ‖P (X1, . . . , XN)‖ for P-almost all ω ∈ Ω.

The class of tuples of random matrices, for which strong convergence is known to hold true,
contains tuples of self-adjoint Gaussian random matrices [HT05] and tuples of Wishart
random matrices [CD07].

Let us now give the precise formulation of the beautiful results of [Yin16]. For reasons
of simplicity, we decided to present the statement only in the self-adjoint case, which is
sufficient for our purposes but does not exploit the full strength of [Yin16].

Theorem II.4.3. For each n ∈ N, let self-adjoint random matrices X
(n)
1 , . . . , X

(n)
N

in (Mn, τn) be given, where the non-commutative probability space (Mn, τn) is con-
structed over (Ω,F ,P). Moreover, let X1, . . . , XN be self-adjoint non-commutative ran-
dom variables in some C∗-probability space (M, τ) with a faithful state τ . Suppose that

((X
(n)
1 , . . . , X

(n)
N ))n∈N converges strongly to (X1, . . . , XN). If r is any non-commutative

rational expression in the formal variables x1, . . . , xN , then the following statements holds
true:
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(i) As n→∞, (X
(n)
1 , . . . , X

(n)
N ) belongs eventually to the Mn(C)-domain of r, i.e.,

for P-almost all ω ∈ Ω, we find some nω ∈ N, such that

(X
(n)
1 (ω), . . . , X

(n)
N (ω)) ∈ domMn(C)(r) for all n ≥ nω.

(ii) For P-almost all ω ∈ Ω, we have that

lim
n→∞

trn(r(X
(n)
1 (ω), . . . , X

(n)
N (ω))) = τ(r(X1, . . . , XN)) and

lim
n→∞

‖r(X(n)
1 (ω), . . . , X

(n)
N (ω))‖ = ‖r(X1, . . . , XN)‖.

Correspondingly, we have the following analogue of Lemma II.4.1.

Lemma II.4.4. For each n ∈ N, let (X
(n)
1 , . . . , X

(n)
N ) be an N-tuple of indepen-

dent self-adjoint random matrices X
(n)
1 , . . . , X

(n)
N ∈ Mn over (Ω,F ,P). Assume that

((X
(n)
1 , . . . , X

(n)
N ))n∈N converges strongly to (X1, . . . , XN) in the sense of Definition

II.4.2, where X1, . . . , XN are self-adjoint non-commutative random variables in some C∗-
probability space (M, τ) that comes with a faithful state τ . Consider any non-commutative
rational expression r in the formal variables x = (x1, . . . , xN), such that the condition

(X1, . . . , XN) ∈ domM(r)

is satisfied. Then, for P-almost all ω ∈ Ω, there exists some nω ∈ N, such that

(X
(n)
1 (ω), . . . , X

(n)
N (ω)) ∈ domMn(C)(r) for all n ∈ N with n ≥ nω

holds, and the eigenvalue distribution of

r(X
(n)
1 (ω), . . . , X

(n)
N (ω))

converges weakly to the analytic distribution µ of r(X1, . . . , XN) ∈M as n→∞.

Proof. The above mentioned results of [Yin16] show that the strong convergence

of (X
(n)
1 , . . . , X

(n)
N ) to the point (X1, . . . , XN) in the M-domain of r implies, under

the assumption that (M, τ) is a C∗-probability space with some faithful state τ , that

(X
(n)
1 , . . . , X

(n)
N ) lies in the domain of r eventually. Recall that this means that we can

find for P-almost all ω ∈ Ω some nω ∈ N, such that

(X
(n)
1 (ω), . . . , X

(n)
N (ω)) ∈ domMn(C)(r) for all n ∈ N with n ≥ nω.

For such ω ∈ Ω and n ≥ nω, we put Y (n)(ω) := r(X
(n)
1 (ω), . . . , X

(n)
N (ω)). Now, if k ≥ 1

is any integer, we clearly have Y (n)(ω)k = rk(X
(n)
1 (ω), . . . , X

(n)
N (ω)), where rk denotes

the non-commutative rational expression, which is defined recursively by r1 := r and
rk := rk−1 · r for k ≥ 2. If we put Y := r(X1, . . . , XN) ∈M, we get

lim
n→∞

trn
(
Y (n)(ω)k

)
= lim

n→∞
trn
(
rk(X

(n)
1 (ω), . . . , X

(n)
N (ω))

)
= τ(rk(X1, . . . , XN))

= τ(Y k)

for P-almost all ω ∈ Ω. As the analytic distribution µY of Y has compact support and is
thus in particular determined by its moments (see Remark I.1.32), it follows by the obser-
vations made in Remark II.2.3 that the sequence of eigenvalue distributions (µY (n)(ω))n∈N
converges weakly to µ = µY for P-almost all ω ∈ Ω. This is exactly what we had to
show. �
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In the Brown measure case, despite the amazing similarity between the output of our
algorithm and of the random matrix simulation (see Section IV.5), there is up to now no
general statement, which would give a rigorous justification of this phenomenon, neither
for non-commutative rational expression nor for the more basic case of non-commutative
polynomials. However, it is conjectured to be true at least for non-commutative polyno-
mials.
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CHAPTER III

Linearization

This chapter is devoted some powerful technique of purely algebraic nature, which has
become recently a very important tool in free probability theory. Here, it goes under
the name “linearization trick” and it was introduced to this community by the work of
Haagerup and Thorbjørnsen [HT05] and Haagerup, Schultz, and Thorbjørnsen [HST06],
but some ideas can be traced back already to the early work of Voiculescu. Later, it got
a fresh impetus by Anderson [And12, And13, And15].

All these techniques are strongly related and they have in common that they allow an
effective treatment of non-commutative polynomials in terms of matrices whose entries
are linear polynomials. More precisely, if p is any non-commutative polynomial in g formal
non-commuting variables x1, . . . , xg, the method of linearization allows us to construct in
an explicit way some linear expression of the form

L = L(0) + L(1)x1 + · · ·+ L(g)xg,

where L(0), L(1), . . . , L(g) are complex matrices of some dimension N depending on p, such
that, after evaluation of p in non-commutative random variables X1, . . . , Xg, all “relevant
information” about p(X1, . . . , Xg) is encoded in L(X1, . . . , Xg) and can be easily recovered
from it.

From the viewpoint of free probability theory, this has the important consequence that
we can reformulate questions about polynomial expressions p(X1, . . . , Xg), build in non-
commutative random variables X1, . . . , Xg, to questions about some linear expression of
the form

L(X1, . . . , Xg) = L(0) + L(1)X1 + · · ·+ L(g)Xg,

but to the price that the obtained linear expression has matricial coefficients. Therefore, at
first sight, it is not clear that passing from p(X1, . . . , Xg) to the linearization L(X1, . . . , Xg)
should cause a significant simplification in the treatment of p(X1, . . . , Xg). In order to see
why this is indeed the case, one needs to take a closer look at the way how p relates
to its linearization L. In fact, the “linearization trick” is built such that resolvents of
p(X1, . . . , Xg) and L(X1, . . . , Xg) are connected in a very explicit way. This translates
easily to some relation between the scalar-valued Cauchy transform of p(X1, . . . , Xg) and
the operator-valued (in fact, matrix-valued) Cauchy transform of L(X1, . . . , Xg), where
the latter puts the original scalar-valued problem in the setting of operator-valued free
probability. Since operator-valued free probability theory evolves quite far in parallel to
the scalar-valued theory and thus provides a similarly rich analytic toolbox, there are good
reasons to hope that the linear expression L(X1, . . . , Xg) and thus its Cauchy transform
can be understood within the operator-valued framework much easier than the initial
polynomial expression p(X1, . . . , Xg) merely by means of scalar-valued free probability.

However, for some intended applications in free probability theory, the “linearization
trick” of [HT05, HST06] showed the disadvantage that it was not able to preserve self-
adjointness. By this, we mean that applying the “linearization trick” to a non-commutative
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polynomial p ∈ C〈x1, . . . , xg〉, which is self-adjoint with respect to the canonical involution
on C〈x1, . . . , xg〉, leads in general to a linearization

L = L(0) + L(1)x1 + · · ·+ L(g)xg,

where the matrices L(0), L(1), . . . , L(g) are not self-adjoint. In [And12, And13, And15],
Anderson finally presented an improved version of the “linearization trick”, which enjoys
this additional feature. Beyond the fascinating applications, for which Anderson originally
created this new framework, his “self-adjoint version of the linearization trick” was of great
use also in the context of [BMS13]; this will be outlined in Chapter IV.

Nevertheless, as people in free probability became aware of recently, the methods, which
are summarized under the name “linearization trick”, are in fact not new, but were known
outside their community since more than fifty years ago. Moreover, it became apparent
that the method of linearization is by no means limited to non-commutative polyno-
mials, but works equally well for another class of expressions, namely non-commutative
rational expressions. Actually, it is not an easy task to locate the first appearance of
these techniques, because they were rediscovered several times in other branches of
mathematics, computer sciences, and engineering. Nevertheless, most people would ar-
guably agree that the foundations were laid in the work of Schützenberger [Sch61]
on automaton theory and non-commutative rational series, where the idea of lineariza-
tions appears in the context of recognizable rational series. Linearizations also show up
in the work of Cohn [Coh85, Coh06], Cohn and Reutenauer [CR94, CR99], and
Malcolmson [Mal78, Mal80, Mal82], on the skew-field of non-commutative rational
functions. In their context, one is typically interested in pure and linear representa-
tions, but these are often composed to so-called displays and in this form they are
pretty close to the linearizations as they appear in [And12, And13, And15]. Another
near relative of linearizations are non-commutative descriptor realizations for (matrix-
valued) non-commutative rational expressions, which are regular at zero. We refer to
[Kal63, Kal76, HMV06, KV09, KV12].

Large parts of this chapter will follow the exposition of [HMS15], but it also continuous
the work started therein, as far as its relations to the theory of non-commutative rational
functions are concerned. This approach, which goes under the name of formal linear
representations, is very much inspired by the language of linearizations [And12, And13,
And15] and descriptor realizations [HMV06], but also goes beyond the case of non-
commutative polynomials or regular non-commutative rational expressions by adapting
constructions of Cohn and Reutenauer [CR94, CR99]. This will even cover operator-
valued non-commutative rational expressions, as well as matrices of non-commutative
rational expressions.

III.1. The linearization trick of Haagerup et al.

Let us start our excursion into the history of linearization with some of its great ancestors.
Inside the free probability community, linearization found its initial spark in the work of
Haagerup and Thorbjørnsen [HT05] and Haagerup, Schultz, and Thorbjørnsen [HST06].
Their “linearization trick”, as it was presented in [HST06, Section 2], rests mainly on
two pillars.

The first one provides a multiplicative decomposition of (matrix-valued) non-commutative
polynomials into linear factors
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Theorem III.1.1 (Proposition 2.1 in [HST06]). For any matrix p ∈Mn×n′(C〈x1 . . . , xg〉)
of non-commutative polynomials of degree at most d, there exists a factorization

p = u1u2 · · ·ud
with

• matrices uj ∈ Mmj×mj+1
(C〈x1, . . . xg〉), j = 1, . . . , d, whose entries are polyno-

mials of degree at most 1, and
• appropriate dimensions m1,m2 . . . , . . . ,md,md+1 ≥ 1, subjected to m1 = n and
md+1 = n′.

The second pillar is the following result, which uses a decomposition as found in the pre-
vious theorem (in the quadratic case n = n′) in order to construct the final linearization.
Note that we will take the freedom to present a slight reformulation of their result in
order to bring it in accordance with our terminology.

Theorem III.1.2 (Proposition 2.3 in [HST06]). Let p ∈Mn(C〈x1 . . . , xg〉) be any square
matrix of non-commutative polynomials of degree at most d and consider any factorization

p = u1u2 · · ·ud
in the sense of Theorem III.1.1. Put m := m1 + · · · + md. For each λ ∈ C, we consider
the matrix

Aλ :=



λ1m1 −u1 0 0 . . . 0
0 1m2 −u2 0 . . . 0
0 0 1n3 −u3 . . . 0
...

...
...

. . .
. . .

...
0 0 0 . . . 1md−1

−ud−1

−ud 0 0 . . . 0 1md


in Mm(C〈x1, . . . , xg〉). Now, if X1, . . . , Xg are arbitrary elements in some unital complex
algebra A, then Aλ(X1, . . . , Xg) is invertible in Mm(A), if and only if λ− p(X1, . . . , Xg)
is invertible in A. In this case, the upper left n×n block of A−1

λ is the resolvent (λ−p)−1.

In the formulation of the previous theorem, we have used the natural evaluations

Aλ(X1, . . . , Xg) := ev
(m)
X (Aλ) and p(X1, . . . , Xg) := ev

(n)
X (p),

where evX : C〈x1, . . . , xg〉 → A denotes the evaluation homomorphism at the point

X = (X1, . . . , Xg), as it was introduced in part (i) of Definition I.1.12, and ev
(k)
X :

Mk(C〈x1, . . . , xg〉) → Mk(A) for any k ∈ N its canonical amplification in the sense of
part (iii) of Remark I.2.5.

The statements, which we have collected in Theorem III.1.2, incarnate the brilliant
linearization trick: it allows us to construct for each given square matrix p of non-
commutative polynomials another square matrix Aλ, which is typically of larger size but
has now the advantage that its entries are all (affine) linear polynomials; and this matrix
Aλ is constructed in such a way, that the inverse of its evaluation Aλ(X1, . . . , XN) at
(X1, . . . , Xg) contains – if it exists – the resolvent of p(X1, . . . , Xg) at λ.

Theorem III.1.2 has laid the ground to spectacular results about random matrices and
operator-algebras. Its proof, however, was based on some direct but rather tedious com-
putations. Although it was not mentioned there explicitly by the authors, the proof of
Theorem III.1.2 as given in [HST06] follows a much more general concept, the so-called

65



66 III.2. NON-COMMUTATIVE RATIONAL EXPRESSIONS AND FUNCTIONS

Schur complement formula, Lemma A.1; see Appendix A for the precise statement and
its proof. Using this tool, we can give a simplified proof of Theorem III.1.2. Indeed, de-
composing Aλ as

(III.1) Aλ =

(
λ1m1 u
v Q

)
with

u :=
(
−u1 0 . . . 0

)
, Q :=


1m2 −u2 0 . . . 0
0 1m3 −u3 . . . 0
...

...
. . .

. . .
...

0 0 . . . 1md−1
−ud−1

0 0 . . . 0 1md

 , and v :=


0
...
0
−ud


allows us to check inductively and with the help of Lemma A.1 thatQ is invertible and that
Q−1 is again an upper triangular matrix, whose (1, d− 1)-block is of the form u2 · · ·ud−1.
Thus, we have uQ−1v = u1u2 · · ·ud−1ud = p, and applying the Schur complement formula
(A.1) gives the assertion.

In the light of both Lemma A.1 and the decomposition (III.1), it becomes apparent that
the decomposition p = uQ−1v is at the heart of the linearization trick. Indeed, due to the
Schur complement formula, Lemma A.1, it is exactly this relation p = uQ−1v, which allows
us to connect the resolvent (λ−p(X1, . . . , Xg))

−1 with the inverse of Aλ(X1, . . . , Xg). Note
that, since we prefer to write Aλ(X1, . . . , Xg) also as some kind of resolvent, we will change
below the convention on the signs, such that the decomposition of p will rather look like
p = −uQ−1v.

It was kindly brought to our attention by J. W. Helton and V. Vinnikov that even
non-commutative rational functions admit the same kind of representation. Therefore,
the natural question came up whether results from [BMS13] can be extended to non-
commutative rational functions. This was the initial ignition for some of the investigations
that will be explained in the remaining part of this chapter and also in Chapter IV.

Notably, our discussion here is devoted only to the decomposition r = −uQ−1v with an
affine linear pencil Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg. The actual linearization L, which is
itself an affine linear pencil L = L(0) + L(1)x1 + · · ·+ L(g)xg given by

L :=

(
0 u
v Q

)
=

(
0 u
v Q(0)

)
+

(
0 0
0 Q(1)

)
x1 + · · ·+

(
0 0
0 Q(g)

)
xg,

will be discussed in Chapter IV.

III.2. Non-commutative rational expressions and functions

Inside the field of free probability theory, the story of the “linearizations trick” was after
[HT05, HST06] continued by the work of Anderson [And12, And13, And15], who no-
ticed the Schur complement formula, Lemma A.1, behind the scenes of [HT05, HST06]
and the relevance of the decomposition p = −uQ−1v. He used this insight to build up
a general framework for linearizations, which was flexible enough to construct even self-
adjoint linearizations for self-adjoint non-commutative polynomials. Anderson’s ideas were
taken up later in [BMS13] and developed further in [HMS15], with an eye towards ap-
plications of these methods in the realm of free probability. The aim of this section is
to present the idea of linearization in the special language of [HMS15]. This allows
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us to treat not only non-commutative polynomials but also non-commutative rational
expressions without any additional effort. Since we restrict ourselves here first to the
case of single scalar-valued rational expressions – the more general case of matrices of
non-commutative rational expressions and operator-valued non-commutative rational ex-
pressions will be discussed in Section III.3 – our approach will show strong relations to
some similar constructions, which appeared before in the literature on non-commutative
rational functions.

III.2.1. Non-commutative rational expressions and their evaluations. A ra-
tional expression is loosely speaking obtained by taking repeatedly sums, products and
inverses, starting from scalars and some formal variables, without taking care about possi-
ble cancellations or resulting mathematical inconsistencies. More formally, the definitions
reads as follows; see for instance [Vol15, Section 2].

Definition III.2.1. Let x = (x1, . . . , xg) be a g-tuple of formal variables. A (non-
commutative) rational expression in x is a syntactically valid combination of

• scalars λ ∈ C and the variables x1, . . . , xg,
• the arithmetic operations +, ·, −1, and
• parentheses (, ).

In the following, the set of all non-commutative rational expressions in x will be denoted
by RC(x).

We expect that some readers are not completely satisfied with this definition, as it re-
lies on a presumed understanding of the term “syntactically valid”. Thus, without going
into details, we refer here also to [GGOW15, Section 3.3.1] and to the references col-
lected therein (especially to [HW15]), where an alternative approach based on the graph
theoretical notion of circuits is presented.

Indeed, there is one subtlety hidden behind the term “syntactically valid”, which turns
out to be crucial in what follows: we will always assume that parentheses are placed in
such a way that sums and products of more than two rational expressions without a
prescribed order are avoided. For example, we prefer to exclude x1 · x2 · x2, because it
might stand both for (x1 · x2) · x2 and for x1 · (x2 · x2). This has the following easy but
important consequence.

Remark III.2.2. Let R be any subset of RC(x), which has the following properties:

(i) R contains all scalars λ ∈ C and the variables x1, . . . , xg.
(ii) R is closed under the operation −1 in the sense that r ∈ R implies r−1 ∈ R.

(iii) R is closed under the binary operations +, · in the sense that r1, r2 ∈ R implies
both r1 + r2 ∈ R and r1 · r2 ∈ R.

In this case, we must necessarily have that R = RC(x).

Note that even defining + and · as binary operations on RC(x) requires some care, since
one sometimes needs to insert additional parentheses in order to avoid ambiguities in the
resulting rational expressions. For example, if we consider the non-commutative rational
expressions r1 := x1 · x2 and r2 := x2, then r1 · r2 results in (x1 · x2) · x2, while r2 · r2

gives x2 · x2. It is certainly not surprising that brackets should be used when adding
and multiplying arithmetic expressions, but the difference here is that, since elements
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of the underlying object RC(x) are itself arithmetic expressions, brackets can appear in
two different meanings – and the ones that we must insert if necessary are not part of
the arithmetic over RC(x) but are rather those that are intrinsic in RC(x). Let us point
out that these operations become more transparent in the graph theoretical approach to
non-commutative rational expressions based on the aforementioned notion of circuits.

In any case, Definition III.2.1 explicitly includes rational expressions of the form 0−1 and
(x1 + (−1) · x1)−1. This might appear strange at the first sight, since 0−1 should not be
defined in any reasonable way. However, it simply highlights the crucial difference between
formal operations on the side of rational expressions and the corresponding operations in
the range of their evaluations, where inverses appearing in a rational expression may
cause an restriction of its domain. The following definition seeks to clarify this difference
by introducing domains and evaluations of rational expressions. As we will see, it is
appropriate to introduce both notions at once. Thus, conceptually, our definition is very
close to [KV09, Definition 2.1], which treats especially evaluations on matrix algebras.
Similar notions – though not formulated in this generality – were surveyed in [GR92].

Definition III.2.3. Let A be any unital complex algebra with unit 1A. For any non-
commutative rational expression r in the formal variables x = (x1, . . . , xg), we define itsA-
domain domA(r) together with its evaluation evX(r) for any X = (X1, . . . , Xg) ∈ domA(r)
by the following rules:

(i) For any λ ∈ C, we put domA(λ) = Ag and evX(λ) = λ1A.
(ii) For i = 1, . . . , g, we put domA(xi) = Ag and evX(xi) = Xi.
(iii) If r1, r2 are rational expressions in x, we have

domA(r1 · r2) = domA(r1) ∩ domA(r2)

and
evX(r1 · r2) = evX(r1) · evX(r2).

(iv) If r1, r2 are rational expressions in x, we have

domA(r1 + r2) = domA(r1) ∩ domA(r2)

and
evX(r1 + r2) = evX(r1) + evX(r2).

(v) If r is a rational expression in x, we have

domA(r−1) = {X ∈ domA(r)| evX(r) is invertible in A}
and

evX(r−1) = evX(r)−1.

In the following, for any given rational expression r and each X ∈ domA(r), we will mostly
abbreviate r(X) := evX(r).

At this point, it is worth to take a look at some important subclass of non-commutative
rational expressions, namely non-commutative polynomial expressions.

Definition III.2.4. Let x = (x1, . . . , xg) be a g-tuple of formal variables. A (non-
commutative) polynomial expression in x is a syntactically valid combination of

• scalars λ ∈ C and the variables x1, . . . , xg,
• the arithmetic operations +, ·, and
• parentheses (, ).
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In the following, the set of all non-commutative polynomial expressions in x will be de-
noted by PC(x).

Note that clearly PC(x) ⊂ RC(x) and that domA(p) = Ag for each p ∈ PC(x) and for
any unital complex algebra A.

We already know from Definition I.1.12 the unital complex algebra C〈x1, . . . , xg〉 of
non-commutative polynomials in the variables x1, . . . , xg, but there is a slight differ-
ence between non-commutative polynomials and non-commutative polynomial expres-
sions, namely that all arithmetic rules of C〈x1, . . . , xg〉 are ignored in PC(x). For example,
p1 = x1 +x2 and p2 = x2 +x1 are two different non-commutative polynomial expressions,
though they “represent” the same non-commutative polynomial in p ∈ C〈x1, . . . , xg〉.
However, the usage of the term “represent” here is – though quite intuitive – not yet
justified by a rigorous definition. Formally, we say that p ∈ C〈x1, . . . , xg〉 is represented
by p ∈ PC(z) (where we rename for the moment the variables of our non-commutative
polynomial expressions by z = (z1, . . . , zg), for reasons of clarity), if the evaluation of p at
the point x = (x1, . . . , xg) over the complex unital algebra C〈x1, . . . , xg〉 gives p = p(x).
We will come back to this in Definition III.2.46.

Due to PC(x) ⊂ RC(x), the concept of (scalar-valued) formal linear representations,
which we are going to present in Subsection III.2.3 and which was originally developed
in [HMS15], reformulates and generalizes the linearization trick for non-commutative
polynomials that was used in [BMS13]. Even more, it highlights the therein disregarded
subtlety that building a concrete linearization L in the sense of [BMS13] for some given
p ∈ C〈x1, . . . , xg〉 actually requires to choose at first – as a kind of construction plan for
L – some non-commutative polynomial expressions p ∈ PC(x) that represents p.

For later use, let us record the following observation.

Remark III.2.5. There is a natural involution ∗ on RC(x), which is (according to Remark
III.2.2) uniquely determined by the assumptions that

• λ∗ = λ for all λ ∈ C,
• x∗i = xi for i = 1, . . . , g,
• (r1 + r2)∗ = r∗1 + r∗2 and (r1 · r2)∗ = r∗2 · r∗1,
• (r−1)∗ = (r∗)−1.

Accordingly, we could agree to call a non-commutative rational expression r self-adjoint,
if r = r∗ holds in RC(x) with respect to the involution ∗ introduced in Remark III.2.5.
This notion, however, turns out to be much too restrictive as the following examples show.

Example III.2.6.

(i) Consider the non-commutative rational expression r = (x1 ·x2)·(x2 ·x1). Because

r∗ = (x2 · x1)∗ · (x1 · x2)∗ = (x∗1 · x∗2) · (x∗2 · x∗1) = (x1 · x2) · (x2 · x1) = r,

we see that r would be self-adjoint in the sense that r = r∗.
(ii) For the non-commutative rational expression r = x1 · x2 + x2 · x1, we can check

that

r∗ = (x1 · x2)∗ + (x2 · x1)∗ = x∗2 · x∗1 + x∗1 · x∗2 = x2 · x1 + x1 · x2,

which is different from r on the purely formal level of rational expressions. Hence,
r would not be self-adjoint in the sense that r 6= r∗.
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Since our intuition says that any reasonable definition should identify r = x1 · x2 + x2 · x1

as a self-adjoint non-commutative rational expression, we prefer instead the following,
slightly more sophisticated approach.

Definition III.2.7. Let r be a non-commutative rational expression in the formal vari-
ables x = (x1, . . . , xg).

(i) If A is a unital complex ∗-algebra, we denote by domsa
A(r) the subset of domA(r),

which consists of all points X = (X1, . . . , Xg) ∈ domA(r) satisfying X = X∗,
where we put X∗ := (X∗1 , . . . , X

∗
g ).

(ii) We say that the rational expression r is self-adjoint , if for any unital complex
∗-algebra A and for any X ∈ domsa

A(r) it holds true that r(X)∗ = r(X).

One easily sees that r = x1 ·x2 +x2 ·x1 becomes self-adjoint on the basis of this improved
definition. Indeed, for any unital complex ∗-algebra A and each point X = (X1, X2) ∈
domsa

A(r), we have that r(X)∗ = (X1X2 +X2X1) = X1X2 +X2X1 = r(X).

Note that Definition III.2.7 is built according to our needs, in particular in Section III.2.4.
It therefore slightly differs from the usual terminology of symmetric rational expressions
in the real case, as used for instance in [HMV06]. We will see in the next lemma that
any non-commutative rational expression r, which is self-adjoint in the naive sense that
r = r∗, remains self-adjoint in the new and final terminology of Definition III.2.7.

Lemma III.2.8. Let r be a non-commutative rational expression in the formal variables
x = (x1, . . . , xg) and consider the non-commutative rational expression r∗ obtained ac-
cording to Remark III.2.5. Then, for each unital complex ∗-algebra A, we have that

domA(r∗) = {X∗| X ∈ domA(r)}
and r∗(X∗) = r(X)∗ for any X ∈ domA(r). In particular, for any unital complex ∗-
algebra A, domsa

A(r) = domA(r) ∩ domA(r∗) = domsa
A(r∗) is satisfied and the equality

r∗(X) = r(X)∗ holds true at any point X in this joint domain.

Proof. Denote by R the subset of RC(x) consisting of all non-commutative rational
expressions in RC(x), which have the property that for each unital complex ∗-algebra A

• domA(r∗) = {X∗| X ∈ domA(r)} holds and
• r∗(X∗) = r(X)∗ at any point X ∈ domA(r).

We want to show that R = RC(x). Since obviously all scalars λ ∈ C and each of the
variables x1, . . . , xg belongs to R, it is sufficient to prove that the set R is closed under
the arithmetic operations +, ·, and −1. Indeed, according to the properties of evX and
domA collected in Definition III.2.3 and the definition of ∗ in Remark III.2.5, we see that

• if r1, r2 ∈ R are given, then r1 + r2 ∈ R holds: since we have (r1 + r2)∗ = r∗1 + r∗2,
it follows that

domA
(
(r1 + r2)∗

)
= domA(r∗1) ∩ domA(r∗2)

= {X∗1 | X1 ∈ domA(r1)} ∩ {X∗2 | X2 ∈ domA(r2)}
= {X∗| X ∈ domA(r1) ∩ domA(r2)}
= {X∗| X ∈ domA(r1 + r2)},

and hence for all X ∈ domA(r1 + r2)

(r1 + r2)∗(X∗) = r∗1(X∗) + r∗2(X∗) = r1(X)∗+ r2(X)∗ = (r1(X) + r2(X))∗ = (r1 + r2)(X)∗.
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• if r1, r2 ∈ R are given, then r1 · r2 ∈ R holds: since we have (r1 · r2)∗ = r∗2 · r∗1, it
follows that

domA
(
(r1 · r2)∗

)
= domA(r∗2) ∩ domA(r∗1)

= {X∗1 | X1 ∈ domA(r1)} ∩ {X∗2 | X2 ∈ domA(r2)}
= {X∗| X ∈ domA(r1) ∩ domA(r2)}
= {X∗| X ∈ domA(r1 · r2)},

and hence for all X ∈ domA(r1 · r2)

(r1 · r2)∗(X∗) = r∗2(X∗)r∗1(X∗) = r2(X)∗r1(X)∗ = (r1(X)r2(X))∗ = (r1 · r2)(X)∗.

• if r ∈ R is given, then r−1 ∈ R holds: by definition, we have (r−1)∗ = (r∗)−1,
and so it follows that

domA
(
(r−1)∗

)
= domA

(
(r∗)−1

)
= {X ∈ domA(r∗)| r∗(X) is invertible}
= {X∗| X ∈ domA(r), such that r∗(X∗) = r(X)∗ is invertible}
= {X∗| X ∈ domA(r), such that r(X) is invertible}
= {X∗| X ∈ domA(r−1)},

and thus for all X ∈ domA(r−1)

(r−1)∗(X∗) = r∗(X∗)−1 = (r(X)∗)−1 = (r(X)−1)∗ = r−1(X)∗.

The second assertion is now an immediate consequence. �

When dealing with evaluations of non-commutative rational expressions, the terminology
of the following definition turns out to be helpful.

Definition III.2.9. Let r1, r2 be two non-commutative rational expressions in the formal
variables x = (x1, . . . , xg). Given any unital complex algebra A, we say that r1 and r2 are
A-evaluation equivalent , written as r1 ∼A r2, if we have domA(r1) ∩ domA(r2) 6= ∅ and

r1(X) = r2(X) for all X ∈ domA(r1) ∩ domA(r2).

Remark III.2.10. If A carries some additional analytic structure, for instance, if A is a
Banach algebra with respect to a norm ‖ · ‖, it can be checked for any rational expression
r in g variables x = (x1, . . . , xg) that

(i) domA(r) is an open subset of Ag and
(ii) evaluation induces a continuous mapping

r|A : Ag ⊇ domA(r)→ A, (X1, . . . , Xg) 7→ r(X1, . . . , Xg),

where we suppose that Ag is endowed with the norm

‖(X1, . . . , Xg)‖ := max
j=1,...,g

‖Xj‖.

This was observed in recent discussions that the author had with Guillaume Cébron and
Sheng Yin. It can be checked as follows:

Consider the subset R of RC(x), consisting of all non-commutative rational expressions r,
which satisfy the above conditions (i) and (ii) for the fixed Banach algebra A. We claim
that R = RC(x) holds true. Since we clearly have C ⊆ R and x1, . . . , xg ∈ R, it remains to
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prove according to Remark III.2.2 that R is closed under the arithmetic operations +, ·,
and −1. While this is obvious for + and ·, the statement for −1 requires some explanation.

Take any r ∈ R. According to Item (v) of Definition III.2.3, the domain domA(r−1) of
r−1 is nothing but the pre-image of GL(A) under the continuous mapping r|A, where we
denote by GL(A) the set of all invertible elements in A. Since GL(A) is open in A with
respect to ‖ · ‖, we may conclude that domA(r−1) forms an open subset of domA(r) and
hence of Ag. This proves (i) for the non-commutative rational expression r−1. Let us now
check the validity of (ii) for r−1. It is well-known that a 7→ a−1 induces a continuous
mapping invA : GL(A)→ A. Thus, we may conclude that the composed mapping

r−1|A = invA ◦(r|A)|domA(r−1)

is continuous as well. In summary, we obtain r−1 ∈ R, as desired.

III.2.2. Non-commutative rational functions. In this subsection, we turn our
attention to non-commutative rational functions. Although we will mostly work here with
non-commutative rational expressions, some pieces of the rich and fascinating theory of
non-commutative rational functions will always be in the background. Thus, it is worth
to give some brief overview over these important results.

The first and certainly also one of the most important questions that arises is: what actu-
ally do we mean by non-commutative rational functions? Surprisingly, giving an answer
to this very fundamental question is much more complicated than one would expect and
presenting it in full detail would lead us much too far away from our actual topic. How-
ever, for the seek of completeness, we want to give at least the basic ideas, which are
essential in what follows.

III.2.2.1. The free field. Let us first have a look on the classical (commutative) situ-
ation. The algebraic definition of a rational functions is that they are given as elements
in the quotient field C(x1, . . . , xg) of the commutative ring C[x1, . . . , xg], which consists
of polynomials in g formal but commuting indeterminates x1, . . . , xg. It follows that we
can write each rational function r as a quotient r = p

q
= pq−1 for certain polynomials

p, q ∈ C[x1, . . . , xg] where q 6= 0.

In the non-commutative situation, one would probably try first to repeat this appealing
construction. Accordingly, one could expect that a non-commutative rational function is
given as an element in the quotient field of the ring C〈x1, . . . , xg〉 of non-commutative
polynomials – and of course, we should talk here more precisely about the “quotient skew
field”, since the commutativity condition clearly must to be dropped.

But unfortunately, because the classical construction heavily depends on the underlying
commutativity, it simply fails in this generality. We note that at least for special non-
commutative rings, namely those rings R, which are integral domains (i.e., the set R\{0}
contains 1 and is closed under multiplication) and satisfy the so-called Ore condition

∀ a, b ∈ R, b 6= 0 ∃ c, d ∈ R, d 6= 0 : ad = bc,

the classical approach can be saved to some extend. The idea behind is that in the desired
quotient field one would need to relate expressions of the form b−1a with expressions of
the form cd−1, in order to get a well-defined multiplication. But anyway, this does not
help us in our situation, since C〈x1, . . . , xg〉 does not satisfy the Ore condition.

So let us have another try. If we cannot construct our desired “quotient skew field”
for C〈x1, . . . , xg〉 in the usual way, we have to accept a more abstract construction. In
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[Coh85, Coh06], we can find the term “skew field of fractions”, which sounds quite
promising. This requires some terminology.

Definition III.2.11.

(i) Given a ring R, a R-ring (respectively, R-field) is a ring (respectively, field) K
that comes together with a homomorphism φ : R→ K.

(ii) An R-field K, which is generated by the image φ(R), is called epic.
(iii) An epic R-field K, for which φ is injective, is called skew field of fractions of R.

Note that a skew field of fractions K for a given ring R contains by φ(R) a ring that is
(due to the injectivity of φ) isomorphic to R and the assumption of being epic implies
that K is as small as possible in the sense that there is no proper skew sub-field of K
that contains φ(R).

However, the problem is that skew fields of fractions do not need to exist and if they
exist, they might not be unique – and the uniqueness even fails in the particular case
C〈x1, . . . , xg〉. For example, it is possible to construct infinitely many pairwise non-
isomorphic skew fields of fractions for C〈x1, x2〉; see [KV12].

Thus, if we want to find a distinguished “quotient skew field” for C〈x1, . . . , xg〉, we need
to go a bit further. As it turns out, the right condition for these purposes is “universality”.
The following definitions are taken from [Coh06, Section 7.2].

Roughly speaking, an epic R-field U is universal, if for any other epic R-field K, the
corresponding mapping φK factorizes over U , i.e.

R
φU //

φK   

U

��
K

.

But here we immediately run into trouble: it is not hard to show that, given two epic
R-fields K and L, any R-ring homomorphism f : K → L (namely, a ring homomorphism
f respecting the given homomorphisms φK : R → K and φL : R → L in the sense that
f ◦ φK = φL holds), must be automatically an isomorphism. Hence, we must replace this
rather canonical notion of homomorphisms by a more abstract one: a subhomomorphism
between two R-fields K and L means an R-ring homomorphism f : Kf → L, which is
defined on some R-subring Kf of K and for which all elements of {x ∈ Kf | f(x) 6= 0} are
invertible in Kf . The obvious ambiguity in choosing the domain Kf of subhomomorphisms
is resolved in the following way: two subhomomorphisms are declared to be equivalent, if
there exists an R-ringK0 ofK, on which they agree and for which their common restriction
yields again a subhomomorphism fromK to L. An equivalence class of subhomomorphisms
from K to L with respect to this equivalence relation will be called a specialization from
K to L.

Definition III.2.12.

(i) An epic R-field U , satisfying the property that for any epic R-field K a unique
specialization from U to K exists, is called universal R-field .

(ii) If U is in addition a field of fractions of R, then we call U the universal skew
field of fractions of R.
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In general, universal R-fields do not need to exists, but if they exist, its defining universal
property forces it to be unique up to isomorphism.

It is an important (but highly non-trivial) fact that the universal skew field of fractions
for C〈x1, . . . , xg〉, sometimes simply called the free (skew) field , exists. In the following,
it will be denoted by

C (<x1, . . . , xg )>.

Its first construction is due to Amitsur [Ami66], but later on, several generalizations and
simplifications of his arguments and also some very different constructions were found;
see [Ber70], for instance. Some of them underly our subsequent investigations and are
thus outlined in the next paragraphs.

III.2.2.2. Amitsur’s construction of the free field. Amitsur’s original construction of
the free field in [Ami66] as well as its generalization in [Ber70] build on non-commutative
rational expressions. In their approach, non-commutative rational functions are introduced
as equivalence classes of non-commutative rational expressions, where the corresponding
equivalence relation is induced by A-evaluation equivalence for some large auxiliary skew
field A. In this sense, non-commutative rational functions in g variables form actual
functions from their domains in Ag to A. The drawback of this approach, however, is that
such A’s are rather difficult to treat.

But what could be an alternative choice for A? While A in [Ami66, Ber70] was supposed
to be a skew field, we can simplify matters, if we drop this condition and allow A to be
an algebra. The most familiar non-commutative algebras are certainly matrix algebras
Mn(C). However, matrices of some fixed size are not sufficient to capture the high non-
commutativity that we expect among the variables x1, . . . , xg in the free field. Thus,
instead of using matrices of fixed size, we should rather work with matrices of all sizes
at once. Accordingly, the right object for this purpose – even though it does not form an
algebra itself – is

M(C) :=
∞∐
n=1

Mn(C).

Following [KV12], we outline in this paragraph how the free field can be constructed with
the help of evaluations on M(C). We begin with the following definition.

Definition III.2.13. Consider a tuple x = (x1, . . . , xg) of formal variables.

(i) Given a non-commutative rational expression r ∈ RC(x), we put

domM(C)(r) :=
∞∐
n=1

domMn(C)(r) ⊆
∞∐
n=1

Mn(C)g.

(ii) A non-commutative rational expression r ∈ RC(x) is called non-degenerate, if it
satisfies the condition that domM(C)(r) 6= ∅. The subset of RC(x) consisting of all
non-commutative rational expressions that are non-degenerate will be denoted
by R0

C(x).
(iii) Let r1, r2 be any two non-degenerate non-commutative rational expressions in

the formal variables x = (x1, . . . , xg). We call r1 and r2 M(C)-evaluation equiv-
alent , written as r1 ∼ r2, if we have

(III.2) domM(C)(r1) ∩ domM(C)(r2) 6= ∅
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and

(III.3) r1(X) = r2(X) for all X = (X1, . . . , Xg) ∈ domM(C)(r1) ∩ domM(C)(r2).

The equivalence class in R0
C(x) of any non-commutative rational expression r ∈

R0
C(x) with respect to ∼ will be denoted by [r].

Our candidate for the free field is the set R0
C(x)/∼ of all equivalence classes [r] for r ∈

R0
C(x) with respect to M(C)-evaluation equivalence. The arithmetic operations + and ·

on R0
C(x)/∼ should be defined via the corresponding operations on representatives, i.e.

(III.4) [r1] + [r2] = [r1 + r2] and [r1] · [r2] = [r1 · r2] for r1, r2 ∈ R0
C(x).

This, however, can only be well-defined if both r1 + r2 and r1 · r2 belong to R0
C(x) for any

given r1, r2 ∈ R0
C(x). In order to see, why this is the case, we need some preparation.

The definition of M(C)-evaluation equivalence as given in Item (iii) of the previous Defi-
nition III.2.13 requires besides (III.3) the as such natural comparability condition (III.2).
Surprisingly, on closer inspection, this turns out to be superfluous, since (III.2) is auto-
matically satisfied, whenever non-degenerate rational expressions are considered. This was
noted in a footnote of [KV12] and we will record this important observation in Corollary
III.2.15 below. Corollary III.2.15 builds essentially on the following result (see [KV09,
Remark 2.3]), but it requires some tricky argument, which can be found in the same
footnote of [KV12], in order to prove that it is indeed a consequence of this Theorem
III.2.14.

Theorem III.2.14. Let r be any non-degenerate non-commutative rational expression in
the formal variables x = (x1, . . . , xg). Then there exists n0 = n0(r) ∈ N, such that

domMn(C)(r) 6= ∅

holds for all integers n ≥ n0.

A proof of this interesting statement is outlined in [KV09, Remark 2.15]. Let us formulate
now the announced corollary.

Corollary III.2.15. Let r1 and r2 be non-degenerate non-commutative rational expres-
sions in the formal variables x = (x1, . . . , xg). Then there exists n0 = n0(r1, r2) ∈ N, such
that

domMn(C)(r1) ∩ domMn(C)(r2) 6= ∅
holds for all integers n ≥ n0. In particular, we have that

domM(C)(r1) ∩ domM(C)(r2) 6= ∅.

An analogue of Corollary III.2.15 for A-evaluation equivalence with respect to skew fields
A, which are infinite dimensional over their centers, can be found in [Ber70, Lemma 2].

Remark III.2.16. With the help of Corollary III.2.15, we can now verify that (III.4)
gives rise to well-defined arithmetic operations on R0

C(x)/∼. Indeed, given non-degenerate
non-commutative rational expressions r1 and r2, we have

domMn(C)(r1 · r2) = domMn(C)(r1) ∩ domMn(C)(r2) and

domMn(C)(r1 + r2) = domMn(C)(r1) ∩ domMn(C)(r2)
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according to Item (iii) and Item (iii) in Definition III.2.3 for all n ∈ N, from which it
follows that

domM(C)(r1 · r2) = domM(C)(r1) ∩ domM(C)(r2) and

domM(C)(r1 + r2) = domM(C)(r1) ∩ domM(C)(r2).

Thus, we may deduce from Corollary III.2.15 that both r1·r2 and r1+r2 are non-degenerate
non-commutative rational expressions. Having established this, it is now easy to see that
the classes [r1 · r2] and [r1 + r2] do not depend on the choice of representatives r1 and r2

of the classes [r1] and [r2], respectively.

Since R0
C(x)/∼ is supposed to form even a skew field, we need that each [r] 6= 0 is invertible

in R0
C(x)/∼. A natural candidate for the inverse of [r] is [r−1], but for seeing that this is

indeed the case we have to check that r−1 ∈ R0
C(x) holds for each r ∈ R0

C(x) under the
condition that r is not M(C)-evaluation equivalent to 0; if this is shown, then [r]−1 = [r−1]
follows, since then [r] and [r−1] form well-defined classes in R0

C(x)/∼ with the property
that both [r] · [r−1] = [r · r−1] = [1] and [r−1] · [r] = [r−1 · r] = [1]. For this purpose, let us
include first the following result, which reflects a particular case of [KV12, Proposition
2.1].

Theorem III.2.17. Let r ∈ R0
C(x1, . . . , xg) be given and suppose that

(III.5) det(r(X)) = 0 for all X = (X1, . . . , Xg) ∈ domM(C)(r),

where det : M(C) → C denotes the mapping obtained by gluing together the usual deter-
minants det : Mn(C)→ C. Then r is M(C)-evaluation equivalent to 0.

Remark III.2.18. Using Theorem III.2.17, we immediately get that domM(C)(r
−1) 6= ∅ is

satisfied for each r ∈ R0
C(x), which is not M(C)-evaluation equivalent to 0. Indeed, if we

assume to the contrary that domM(C)(r
−1) = ∅ holds, then Item (v) of Definition III.2.3

tells us that no point X ∈ domM(C)(r) exists, for which r(X) is invertible, and we infer
that r satisfies condition (III.5). The conclusion of Theorem III.2.17 then contradicts the
assumption that r is not M(C)-evaluation equivalent to 0.

All our previous discussions merge now into the following remarkable result; see [KV12,
Proposition 2.2]. For the seek of clarity, let us reserve x = (x1, . . . , xg) for the variables in
C〈x1, . . . , xg〉 ⊂ C (<x1, . . . , xg )>, while non-commutative rational expressions are built in
the formal variables z = (z1, . . . , zg).

Theorem III.2.19. Consider the set

R0
C(z)/∼ =

{
[r]
∣∣ r ∈ R0

C(z)
}

of equivalence classes of non-commutative rational expressions in the formal variables
z = (z1, . . . , zg) with respect to the equivalence relation ∼ induced by M(C)-evaluation
equivalence. If endowed with the induced operations + and ·, i.e.

[r1] + [r2] = [r1 + r2] and [r1] · [r2] = [r1 · r2] for r1, r2 ∈ R0
C(x),

it forms the universal skew field of fractions for C〈x1, . . . , xg〉 with respect to the embedding

φ : C〈x1, . . . , xg〉 → R0
C(z)/∼

determined by xi 7→ [zi] for i = 1, . . . , g.

For a proof of this theorem, we refer the interested reader to [KV12].
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III.2.2.3. A glimpse on Cohn’s approach. The construction of Cohn in [Coh85,
Coh06] generalizes the idea of localization from the commutative to the non-commutative
case. Classically, for a commutative ring R and any given set S ⊆ R\{0}, which is closed
under multiplication (i.e. s, t ∈ S implies st ∈ S) and satisfies 1 ∈ S, localization allows
to construct another ring RS together with a homomorphism φ : R → RS, such that
all elements in the image φ(R) are invertible in RS. For an integral domain R, the cor-
responding quotient field is then obtained by applying this general construction to the
particular multiplicative set S given by S = R\{0}. Cohn discovered that, in order to
adapt this construction to the non-commutative setting, one has to replace the set S of
elements in R by a set Σ of matrices over R. This is particularly remarkable since it also
fits nicely with the basic ideas of free analysis.

Let us abbreviate by M(R) :=
∐∞

n=1Mn(R) the set of all matrices of all sizes over R.
The relevant subsets Σ ⊆ M(R) are those which satisfy the condition of the following
definition.

Definition III.2.20. A subset Σ ⊆M(R) is called

(i) upper multiplicative, if 1 ∈ Σ holds and(
A C
0 B

)
∈ Σ

for all A,B ∈ Σ and each (rectangular) matrix C over R of appropriate size.
(ii) lower multiplicative, if 1 ∈ Σ holds and(

A 0
C B

)
∈ Σ

for all A,B ∈ Σ and each (rectangular) matrix C over R of appropriate size.

Given a homomorphism f : R → S between rings R and S, then the ensemble (f (n))n∈N
of all its amplifications

f (n) : Mn(R)→Mn(S), (xi,j)
n
i,j=1 7→

(
f(xi,j)

)n
i,j=1

induces naturally a mapping from M(R) to M(S). For the seek of simplicity, we denote
this mapping again by f .

Definition III.2.21. Let f : R→ S be a homomorphism between rings R and S and let
Σ ⊆M(R) be any subset.

(i) The homomorphism f is called Σ-inverting , if the image Σf ⊆M(S) of Σ under
the ensemble of amplifications of f consists only of invertible matrices.

(ii) If f is Σ-inverting, then the Σ-rational closure of R in S, usually denoted by
RΣ(S), is defined as the set of all entries appearing in matrices Q−1 for Q ∈ Σf .

(iii) If Σ is the set of all matrices in M(R), which are mapped by f to invertible
matrices over S, we call RΣ(S) the f -rational closure of R (or just the rational
closure of R) and we write Rf (S) instead of RΣ(S).

The following important theorem, which is an excerpt of [Coh06, Theorem 7.1.2], pro-
vides an interesting characterization of elements belonging to the Σ-rational closure.
In particular, it shows that the representation x = −uQ−1v, which underlies the “lin-
earization trick” in free probability [HT05, HST06], especially in its self-adjoint variant
[And12, And13, And15] (see also [BMS13]), is very natural from the algebraic point
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of view presented here. In the light of this, the question whether the methods invented
in [BMS13] for treating the case of non-commutative polynomials could be generalized
to non-commutative rational expressions imposes itself. Indeed, this was carried out in
[HMS15] and the corresponding results will be explained in detail in Chapter IV.

Theorem III.2.22 (Theorem 7.1.2 in [Coh06]). Let R and S be rings and let Σ ∈M(R)
be an upper multiplicative set. For any given Σ-inverting homomorphism f : R → S, the
Σ-rational closure RΣ(S) of R in S forms a subring of S that contains f(R). Moreover,
for any x ∈ S the following statements are equivalent:

(i) x ∈ RΣ(S).
(ii) x = −uQ−1v, where Q ∈ Σf and where u and v are a row and column vector,

respectively, with entries in f(R).

It is shown in [Coh06, Theorem 7.2.4] that for each ring R and any set Σ ⊆ M(R),
there exists a ring RΣ, which is unique up to isomorphism, with a universal Σ-inverting
homomorphism λ : R → RΣ in the following sense: the homomorphism λ : R → RΣ is
Σ-inverting and whenever f : R→ S is any other Σ-inverting homomorphism, then there
exists a unique homomorphism f̃ : RΣ → S, such that f = f̃ ◦ λ holds. We call RΣ the
universal localization of R with respect to Σ.

A particularly important instance of Σ ⊆M(R) is the set that consists of all full matrices
over R.

Definition III.2.23. Let R be a ring. A matrix Q ∈Mn(R) is called full , if it cannot be
written as a product

Q = R1R2

of rectangular matrices

R1 ∈Mn×(n−1)(R) and R2 ∈M(n−1)×n(R).

The subset of M(R) consisting of all full matrices will be denoted by Φ(R).

The brilliant idea behind the construction of the free field C (<x1, . . . , xg )> in [Coh85,
Coh06] is that the full matrices in M(C〈x1, . . . , xg〉) are exactly those that should be-
come invertible over C (<x1, . . . , xg )>. Since this criterion allows us to decide whether a
matrix in M(C〈x1, . . . , xg〉) is invertible over C (<x1, . . . , xg )> or not, even before knowing
what C (<x1, . . . , xg )> actually is, one can hope to turn this into a formal construction of
C (<x1, . . . , xg )>. For more general R, this is addressed in the following theorem.

Theorem III.2.24 (Theorem 7.5.13 in [Coh06]). Let R a non-zero ring. If the set Φ =
Φ(R) of all full matrices over R is lower multiplicative, then R has a universal skew field
of fractions, given by its universal localization RΦ.

It remains now to check that Theorem III.2.24 applies in the for us relevant case R =
C〈x1, . . . , xg〉. Unfortunately, we cannot go into details here, since this would go beyond
the scope of our exposition, but let us highlight at least the following points:

• Theorem III.2.24 is only a small excerpt of [Coh06, Theorem 7.5.13]. Among
several other things, it is proven there that our initial assumption on R, namely
the one that asks Φ(R) to be lower multiplicative, is in fact equivalent to R being
a so-called Sylvester domain. Sylvester domains are characterized by a certain
rank condition in terms of the so-called inner rank ; see [Coh06, Section 5.5] for
the precise definitions.
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• With this reformulation, we are now faced with the question, whether
C〈x1, . . . , xg〉 is a Sylvester domain. In order to find a confirmation, one needs
to delve into the copious work of Cohn [Coh06] and so we prefer to guide the
reader by a few notes. The statement, which seems to come the closest to what
we need here, is [Coh06, Theorem 5.5.4]. The setting considered there is however
much too general and, as a quick look into its proof shows, the actual argument
for C〈x1, . . . , xg〉 must be hidden somewhere else. Indeed, one finds that the first
ingredient is the law of nullity given in [Coh06, Proposition 5.5.1]. This requires
C〈x1, . . . , xg〉 to be an n-fir for each positive integer n or, equivalently, to be
a semifir . That C〈x1, . . . , xg〉 forms even a fir , is explained in [Coh06, Corol-
lary 2.5.2] and the comments made thereafter. This second ingredient relies on
a more general construction, the so-called weak algorithm; see [Coh06, Section
2.4].

Remark III.2.25. This particular construction of the free field C (<x1, . . . , xg )> immedi-
ately implies the following crucial properties:

• Any non-commutative rational function r in C (<x1, . . . , xg )> can be written in
the form r = −uQ−1v with row and column vectors u and v, respectively, of
some dimension n over C〈x1, . . . , xg〉, and a full matrix Q ∈Mn(C〈x1, . . . , xg〉).
Sometimes, we will also work with representations of the more general form
r = c− uQ−1v, where we suppose in addition that c ∈ C〈x1, . . . , xg〉.
• Conversely, any full matrix Q ∈ Mn(C〈x1, . . . , xg〉) is invertible over
C (<x1, . . . , xg )> and so all entries of Q−1 are non-commutative rational functions
in the variables x1, . . . , xg.

Despite its high non-commutativity, the free field C (<x1, . . . , xg )> contains surprisingly
many non-trivial identities, which are not easy to identify; in C (<x1, x2, x3 )>, for example,
we have that (see [CR99])

x−1
2 + x−1

2 (x−1
3 x−1

1 − x−1
2 )−1x−1

2 = (x2 − x3x1)−1.

It is the content of [CR99, Theorem 3.2] that all such identities can in fact be de-
duced by purely algebraic means, only using that r−1 is the inverse of r for any
0 6= r ∈ C (<x1, . . . , xg )>. Since it is typically quite expensive in labor to find the right
algebraic manipulations, one is interested in more handy tools for deciding whether a
given non-commutative rational function r is 0 in C (<x1, . . . , xg )>. Here, we quote the fol-
lowing result, which shows how to use the representation r = c− uQ−1v for this purpose.

Theorem III.2.26 (Proposition 7.8.1, [Coh06]). Let r ∈ C (<x1, . . . , xg )> be a non-
commutative rational function, which is written in the form r = c − uQ−1v, where
Q ∈ Mn(C〈x1, . . . , xg〉) is a full matrix, u and v are a row and column vector, respec-
tively, of dimension n with entries in C〈x1, . . . , xg〉, and c ∈ C〈x1, . . . , xg〉. Then r 6= 0 if
and only if the display (

c u
v Q

)
is full in Mn+1(C〈x1, . . . , xg〉).

III.2.2.4. The construction of Cohn and Reutenauer. We take now a closer look at
some alternative construction of the free field, namely the one that appeared in [CR99].
While the construction of [CR99] works more generally for the universal skew field of
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fractions DK (<x1, . . . , xg )> of the tensor ring R = DK〈x1, . . . , xg〉 for a skew field D with
central subfield K, we restrict ourselves to the case D = K = C yielding C (<x1, . . . , xg )>.
Note that we will slightly modify the notation of [CR99], such that it suits our purposes.

The construction of [CR99] relies like the previously discussed approach of [Coh85,
Coh06] on the notion of full matrices as introduced in Definition III.2.23, but it takes
a slightly different starting point. While the construction of [Coh85, Coh06], which
was presented in Paragraph III.2.2.3, designs C (<x1, . . . , xg )> in such a way that all full
matrices in M(C〈x1, . . . , xg〉) become invertible over C (<x1, . . . , xg )> and then obtains as a
consequence the existence of representations r = c− uQ−1v for each of its elements r (see
Remark III.2.25), the approach of [CR99] reverses the order of arguments by modeling
C (<x1, . . . , xg )> according to the desired representations.

It is appropriate to clarify first the terminology of representations as motivated by Para-
graph III.2.2.3.

Definition III.2.27. A tuple ρ = (c;u,Q, v) with

• a full matrix Q ∈Mn(C〈x1, . . . , xg〉) for some n,
• row and column vectors u and v, respectively, of dimension n over C〈x1, . . . , xg〉,
• and a non-commutative polynomial c ∈ C〈x1, . . . , xg〉,

is called a representation. If r ∈ C (<x1, . . . , xg )> is the rational function given by r =
c− uQ−1v, we say that ρ is a representation of r and we call n the dimension of ρ.

A representation ρ = (c;u,Q, v) will be called pure, if the condition c = 0 is satisfied. In
this case, we will omit c and we will simply write ρ = (u,Q, v).

As we mentioned above, each non-commutative rational function r admits a representation
ρ = (c;u,Q, v). Moreover, by enlarging Q and u, v if necessary, we can always achieve
c = 0. Indeed, if a representation ρ = (c;u,Q, v) of dimension n is given, we can define
the matrix

Q̃ :=

(
Q 0
0 −1

)
∈Mn+1(C〈x1, . . . , xg〉),

which is again full, and the following vectors of dimension n+ 1 over C〈x1, . . . , xg〉

ũ =
(
u c

)
and ṽ =

(
v
1

)
.

Obviously, ρ̃ := (ũ, Q̃, ṽ) yields a pure representation of the same non-commutative ratio-
nal function.

Among all pure representations, we are mainly interested in those being linear in the
following sense.

Definition III.2.28. We call a pure representation ρ = (u,Q, v) linear , if

• Q is of the form

Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg

for some matrices Q(0), Q(1), . . . , Q(g) ∈Mn(C),
• and if u, v are row respectively column vectors over C of dimension n.
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While passing from a general representation to a pure one is achieved by a simple algebraic
manipulation, it is by no means clear whether we can always find a pure linear representa-
tion. That this is indeed the case relies on some “process of linearization by enlargement”
(quoting [CR99]), which goes back to [Hig40] and became known among experts as Hig-
man’s trick . However, this knowledge did unfortunately not spread out widely, so that
the authors of [HT05, HST06] reinvented similar methods for their purposes.

We point out that the framework of formal linear representations, which will be presented
in Subsection III.2.3, provides an explicit algorithm for producing pure linear representa-
tions (by combining Algorithm III.2.45 with Corollary III.2.47). This gives then another
proof of the following theorem, by which we summarize our previous observations.

Theorem III.2.29 (see Section 1, [CR99]). Each non-commutative rational function
admits a pure linear representation.

If some non-commutative rational function r ∈ C (<x1, . . . , xg )> can be written as r =
−u0Q

−1
1 v0 with row and column vectors u0 and v0, respectively, over C and a full matrix

of corresponding size over C〈x1, . . . , xg〉, which is more precisely of the form Q1 = Q
(0)
1 +

Q
(1)
1 x1 + · · · + Q

(g)
1 xg with scalar matrices Q

(0)
1 , Q

(1)
1 , . . . , Q

(g)
1 , then ρ = (u0, Q1, v0) gives

a pure linear representation of r. This is exactly how pure linear representations were
defined in Definition III.2.27 and Definition III.2.28. If r is given more generally by an
expression of the form

r = (−1)ku0Q
−1
1 P1 · · ·Q−1

k−1Pk−1Q
−1
k v0

with complex matrices u0 of size 1× n1 and v0 of size nk × 1, full matrices

Qj = Q
(0)
j +Q

(1)
j x1 + · · ·+Q

(g)
j xg with Q

(0)
j , Q

(1)
j , . . . , Q

(g)
j ∈Mnj(C),

and rectangular matrices

Pj = P
(0)
j + P

(1)
j x1 + · · ·+ P

(g)
j xg with P

(0)
j , P

(1)
j , . . . , P

(g)
j ∈Mnj×nj+1

(C),

then a pure linear representation of r can be obtained by

ρ = (u,Q, v) :=

((
0 . . . 0 u0

)
,


P1 Q1

. .
.
Q2

Pk−1 . .
.

Qk

 ,


0
...
0
v0


)

with a full matrix Q of size n × n, where n := n1 + · · · + nk. This can be proven easily
with the help of Corollary III.2.47 and Lemma IV.2.4, where the latter gets applied to
A = C (<x1, . . . , xg )>. But since this will not be used in the sequel, we omit the details.

Let us come back now to the question how pure linear representations can be used to
give an alternative construction of the free field C (<x1, . . . , xg )>. So far, we have worked
inside C (<x1, . . . , xg )>, but the notion of pure linear representations makes perfectly sense
without this underlying object. According to Theorem III.2.29, it is possible to encode
each non-commutative rational functions by pure linear representations. However, if they
should serve as a proper model for C (<x1, . . . , xg )>, pure linear representations representing
the same rational functions should be identified.

Definition III.2.30. Let ρ = (u,Q, v) and ρ′ = (u′, Q′, v′) be two pure linear represen-
tations. We call ρ and ρ′ equivalent , written as ρ ∼ ρ′, if they represent the same rational
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function r ∈ C (<x1, . . . , xg )>, i.e., if

−uQ−1v = r = −u′Q′−1v′.

However, this definition of ∼ is far from being intrinsic for the setting of pure linear
representations, since it involves the object C (<x1, . . . , xg )>, for whose construction pure
linear representations were introduced. We are thus looking for an alternative description
of ∼, which does not require any previous knowledge about C (<x1, . . . , xg )>. For this
purpose, using the language of category theory turns out to be appropriate. Let us consider
the (small) category whose objects are pure linear representations and whose morphisms
are defined as follows.

Definition III.2.31. Let ρ = (u,Q, v) and ρ′ = (u′, Q′, v′) be two pure linear represen-
tations. A morphism from ρ to ρ′ is a pair (S, T ) of matrices of appropriate size over C
(and, in fact, they are of the same size), such that

u′ = uT, v = Sv′, and SQ′ = QT.

Indeed, one can easily verify that a category is obtained in this way. Note that if (S, T )
is a morphism from ρ to ρ′ and if (S ′, T ′) is a morphism from ρ′ to another pure linear
representation ρ′′, then (SS ′, TT ′) yields a morphism from ρ tho ρ′′.

The advantage of using this categorical language is that it naturally provides us with the
notion of monomorphisms, epimorphisms, and hence isomorphisms. Note that, according
to [CR99], an isomorphism in this categorical sense is nothing else than a morphism
(S, T ) with invertible matrices S, T .

However, by only identifying isomorphic pure linearizations, we would not recover the
equivalence relation ∼ introduced in Definition III.2.30, since even non-isomorphic pure
linear representation can represent the same rational functions. On closer inspection, it
turns out that morphisms itself are already enough. More precisely, if ρ = (u,Q, v) and
ρ′ = (u′, Q′, v′) are any two pure linear representations, representing rational functions
r and r′, respectively, and if we suppose that there is a morphism from ρ to ρ′, then
r = r′ follows. Indeed, given any morphism ρ to ρ′, say (S, T ), then its defining properties
u′ = uT , v = Sv′ and SQ′ = QT , with the latter one reformulated as TQ′−1 = Q−1S,
give us that

r = −uQ−1v = −uQ−1Sv′ = −uTQ′−1v′ = −u′Q′−1v′ = r′.

Thus, if two pure linear representations can be connected by some chain consisting of mor-
phisms and inverse morphisms, then they must represent the same rational function. The
following remarkable theorem tells us that even the converse is true, such that equivalence
in the meaning of Definition III.2.30 is completely characterized within this categorical
frame.

Theorem III.2.32 (Theorem 1.1 and Corollary 1.3, [CR99]). Two pure linear represen-
tations are equivalent in the sense of Definition III.2.30 if and only if there is a chain of
morphisms and inverse morphisms between them.

Accordingly, the free skew field C (<x1, . . . , xg )> can be identified with the set of equivalence
classes of pure linear representations with respect to the equivalence relation induced by
chains of morphisms. The arithmetic operations on the set of equivalence classes of pure
linear representations are defined via their representatives, according to the rules collected
in the next lemma.
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Lemma III.2.33. Within the frame of pure linear representations, the following rules hold
true.

(i) For scalars λ ∈ C and the variables xj, j = 1, . . . , g, pure linear representations
are given by

(III.6)

ρxj :=

((
0 1

)
,

(
xj −1
−1 0

)
,

(
0
1

))
and

ρλ :=

((
0 1

)
,

(
λ −1
−1 0

)
,

(
0
1

))
.

(ii) If ρ1 = (u1, Q1, v1) and ρ2 = (u2, Q2, v2) are pure linear representations of r1

and r2, respectively, then

(III.7) ρ1 ⊕ ρ2 :=

((
u1 u2

)
,

(
Q1 0
0 Q2

)
,

(
v1

v2

))
gives a pure linear representation of r1 + r2.

(iii) If ρ1 = (u1, Q1, v1) and ρ2 = (u2, Q2, v2) are pure linear representations of r1

and r2, respectively, then

(III.8) ρ1 � ρ2 :=

((
0 u1

)
,

(
v1u2 Q1

Q2 0

)
,

(
0
v2

))
gives a pure linear representation of r1 · r2.

(iv) If ρ = (u,Q, v) is a pure linear representation of r 6= 0, then

(III.9) ρ−1 :=

((
1 0

)
,

(
0 u
v −Q

)
,

(
1
0

))
gives a pure linear representation of r−1.

These formulas, which are slight modifications of Equations (4), (5), and (6) in [CR99],
can be proven readily by using the Schur complement formula (A.1) as presented in Lemma
A.1, but they will also follow from the corresponding formulas (III.10), (III.11), (III.12),
and (III.13) for formal linear representations. This will be discussed below. Furthermore,
let us note that rule (III.8) is a special case of Lemma IV.2.4.

It would lead much to far to go into the details of the proof of Theorem III.2.32. Never-
theless, we want to highlight the following result, which constitutes not only an important
step in [CR99] towards the proof of Theorem III.2.32, but which is also of independent
interest.

Lemma III.2.34 (Lemma 1.2, [CR99]). Let ρ = (u,Q, v) be a pure linear representation
of r ∈ C (<x1, . . . , xg )>. Then r = 0 holds if and only if there are invertible matrices S and
T of appropriate size over C, such that

uT =
(
u1 0

)
, SQT =

(
Q1,1 0
Q2,1 Q2,2

)
, and Sv =

(
0
v2

)
with square matrices Q1,1 and Q2,2 over C〈x1, . . . , xg〉.

For the seek of clarity, let us point out that the proof of Lemma III.2.34, as given in
[CR99], heavily relies on Theorem III.2.26.

The construction of Cohn and Reutenauer is perfectly suited for defining an involution ∗
on the free field C (<x1, . . . , xg )>, which extends the canonical involution on C〈x1, . . . , xg〉
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as introduced in Definition I.1.16. This is certainly well-known to experts, but since we
were not able to find some reference in the literature, where the same level of generality is
discussed, we include here a self-contained proof; for the case of regular non-commutative
rational functions, see [HMV06, Section A.3].

First, let us note that the involution of the ∗-algebra C〈x1, . . . , xg〉 immediately extends
to matrices over C〈x1, . . . , xg〉, corresponding to which each Mn(C〈x1, . . . , xg〉) forms a
∗-algebra. Then, in particular,

Q∗ := (Q(0))∗ + (Q(1))∗x1 + · · ·+ (Q(g))∗xg

holds for any matrix of the form Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg.

Lemma III.2.35. Given any pure linear representation ρ = (u,Q, v), then ρ∗ :=
(v∗, Q∗, u∗) is a pure linear representation as well. With respect to this notation, the fol-
lowing statements hold true:

(i) Let ρ1 and ρ2 be pure linear representations and let (S, T ) a morphism from ρ1 to
ρ2. Then (T ∗, S∗) is a morphism from ρ∗2 to ρ∗1. We will call (T ∗, S∗) the adjoint
morphism.

(ii) If ρ1 and ρ2 are equivalent pure linear representations, then also ρ∗1 and ρ∗2 are
equivalent in the sense of Definition III.2.30.

(iii) If r is a non-commutative rational function represented by a pure linear rep-
resentation ρ, then we declare r∗ to be the non-commutative rational function
induced by ρ∗. This gives rise to a well-defined involution ∗ on C (<x1, . . . , xg )>,
which satisfies the properties
• (r1 + r2)∗ = r∗1 + r∗2 and (λr)∗ = λr∗,
• (r1 · r2)∗ = r∗2 · r∗1,
• (r−1)∗ = (r∗)−1 if r 6= 0,
• we have 1∗ = 1 and x∗j = xj for j = 1, . . . , g.

In particular, we have that ∗ agrees on C〈x1, . . . , xg〉 ⊆ C (<x1, . . . , xg )> with the
canonical involution introduced in Definition I.1.16.

Proof. Given a pure linear representation ρ = (u,Q, v), the only issue that might
prevent ρ∗ := (v∗, Q∗, u∗) from being a pure linear representation is that Q∗ must be full
over C〈x1, . . . , xg〉. For seeing that this is indeed the case, assume to the contrary that
Q∗ ∈Mn(C〈x1, . . . , xg〉) is not full. By Definition III.2.23, we then could find rectangular
matrices

R1 ∈Mn×(n−1)(C〈x1, . . . , xg〉) and R2 ∈M(n−1)×n(C〈x1, . . . , xg〉),
such that Q∗ = R1R2 holds. Applying ∗ on both sides of this equation, we would obtain
that Q = R∗2R

∗
1, where now

R∗2 ∈Mn×(n−1)(C〈x1, . . . , xg〉) and R∗1 ∈M(n−1)×n(C〈x1, . . . , xg〉),
contradicting the assumption that Q is full. Hence, Q∗ must be full as well.

(i) Let (S, T ) be a morphism from ρ1 = (u1, Q1, v1) to ρ2 = (u2, Q2, v2). By Definition
III.2.31, we have that

u2 = u1T, v1 = Sv2, and SQ2 = Q1T.

Taking adjoints of all these three relations results in

v∗1 = v∗2S
∗, u∗2 = T ∗u∗1, and T ∗Q∗1 = Q∗2S

∗,

84



CHAPTER III. LINEARIZATION 85

which simply means that (T ∗, S∗) is a morphism from ρ∗2 = (v∗2, Q
∗
2, v
∗
2) to ρ∗1 = (v∗1, Q

∗
1, u
∗
1),

as we wished to prove.

(ii) Given two pure linear representations ρ1 and ρ2 of the same non-commutative rational
function, then Theorem III.2.32 tells us that there is a chain of morphisms connecting ρ1

and ρ2. Part (i) allows us to conclude that ρ∗1 and ρ∗2 are also connected by some chain
of morphisms, namely the corresponding chain of adjoint morphisms, such that Theorem
III.2.32 yields the equivalence of ρ∗1 and ρ∗2.

(iii) If r is a non-commutative rational function represented by a pure linear representa-
tion ρ, then r∗ is determined as the non-commutative rational function induced by ρ∗.
This is well-defined, since choosing another representation will result in an equivalent
representation for r∗ according to (ii).

It is therefore clear that ∗ yields an involution, because (ρ∗)∗ = ρ is satisfied for all
pure linear representations ρ. That ∗ is moreover C-antilinear, can be seen as follows: if
ρ = (u,Q, v) is a pure linear representation, then λρ := (λu,Q, v) yields obviously a pure
linear representation of λr. Thus, we deduce that λρ∗ = (λv∗, Q∗, u∗) gives a pure linear
representation of λr∗, whereas (λρ)∗ = (v∗, Q∗, λu∗) gives a pure linear representation of
(λr)∗. In order to deduce the claimed formula (λr)∗ = λr∗, we need to check that the
pure linear representations (λρ)∗ = (v∗, Q∗, λu∗) and λρ∗ = (λv∗, Q∗, u∗) are equivalent,
for which it suffices to check, according to Theorem III.2.32, that there exists a chain of
morphisms connecting them. Indeed, it is easy to see that (λ1, λ1) gives a morphism from
(λρ)∗ = (v∗, Q∗, λu∗) to λρ∗ = (λv∗, Q∗, u∗).

For proving the other stated properties, we can use the rules collected in Lemma III.2.33.
With their help, it only remains to note that (ρ1 ⊕ ρ2)∗ = ρ∗1 ⊕ ρ∗2, (ρ1 � ρ2)∗ = ρ∗2 � ρ∗1
and (ρ−1)∗ = (ρ∗)−1 holds. This concludes the proof. �

Instead of using the framework of pure linear representations, we could alternatively follow
Amitsur’s construction (see Paragraph III.2.2.2, especially Theorem III.2.19) in order to
define an involution on the free field. This is carried out in the next lemma.

Lemma III.2.36. With respect to the natural involution on RC(x1, . . . , xg), which was
considered in Remark III.2.5, the following statements hold true:

(i) If r1 and r2 are arbitrary non-commutative rational expressions, then r1 ∼ r2

implies r∗1 ∼ r∗2, where ∼ now stands for M(C)-evaluation equivalence in the
sense of Definition III.2.13.

(ii) If r is a non-commutative rational function, written as r = [r] for some non-
commutative rational expression r ∈ R0

C(x1, . . . , xg), then we declare r? to be
the non-commutative rational function given by r? := [r∗]. This gives rise to a
well-defined involution ? on C (<x1, . . . , xg )>, which satisfies the properties

• (r1 + r2)? = r?1 + r?2 and (λr)? = λr?,
• (r1 · r2)? = r?2 · r?1,
• (r−1)? = (r?)−1 if r 6= 0,
• we have 1? = 1 and x?j = xj for j = 1, . . . , g.

In particular, we have that ? agrees on C〈x1, . . . , xg〉 ⊆ C (<x1, . . . , xg )> with the
canonical involution introduced in Definition I.1.16.

(iii) The involution ? coincides on all of C (<x1, . . . , xg )> with the involution ∗, which
was introduced in Lemma III.2.35.
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Proof. (i) Suppose that r1 and r2 are M(C)-evaluation equivalent non-commutative
rational expressions in RC(x1, . . . , xg). We choose X ∈ domMn(C)(r

∗
1) ∩ domMn(C)(r

∗
2) for

any n ∈ N. Lemma III.2.8 tells us that X∗ ∈ domMn(C)(r1) ∩ domMn(C)(r2) holds with
r∗1(X) = r1(X∗)∗ and r∗2(X) = r2(X∗)∗. Furthermore, since r1 and r2 are M(C)-evaluation
equivalent, we have that r1(X∗) = r2(X∗). By combining these facts, we derive that

r∗1(X) = r1(X∗)∗ = r2(X∗)∗ = r∗2(X).

Since n ∈ N and X ∈ domMn(C)(r
∗
1) ∩ domMn(C)(r

∗
2) were arbitrarily chosen, we infer

r∗1 ∼ r∗2, as we wished to show.

(ii) In order to verify that ? is well-defined, we must check that r? does not depend on
the concrete choice of a representative r ∈ R0

C(x1, . . . , xg) of r. This is in fact the content
of (i).

In order to establish the other properties of ?, we only need to recall that ? and all of the
involved arithmetic operations, namely +, ·, and −1, are defined on representatives, thus

(r1+r2)? = ([r1]+[r2])? = [r1+r2]? = [(r1+r2)∗] = [r∗1+r∗2] = [r∗1]+[r∗2] = [r1]?+[r2]? = r?1+r?2,

and analogously

(r1 · r2)? = ([r1] · [r2])? = [r1 · r2]? = [(r1 · r2)∗] = [r∗2 · r∗1] = [r∗2] · [r∗1] = [r2]? · [r1]? = r?2 · r?1,
and

(λr)? = (λ[r])? = [λ · r]? = [(r · λ)∗] = [r∗ · λ] = [λ · r∗] = λ[r∗] = λ[r]? = λr?,

and finally

(r−1)? = ([r]−1)? = [r−1]? = [(r−1)∗] = [(r∗)−1] = [r∗]−1 = ([r]?)−1 = (r?)−1.

In general, each non-commutative rational expression r, which is self-adjoint in the sense of
Definition III.2.7, satisfies r ∼ r∗ and hence [r] = [r∗]. Accordingly, the non-commutative
rational function given by r := [r] satisfies r? = r. From this observation, it follows that
1? = 1 and x?j = xj for j = 1, . . . , g.

(iii) For seeing that ? coincides with ∗ on all of C (<x1, . . . , xg )>, we consider the subset
K ⊆ C (<x1, . . . , xg )> given by

K := {r ∈ C (<x1, . . . , xg )>| r? = r∗}.
By using the properties of ? appearing in part (ii) and the corresponding properties of ∗,
which were collected in part (iii) of Lemma III.2.35, it is easily seen that K forms a skew
sub-field of C (<x1, . . . , xg )>, which contains C〈x1, . . . , xg〉. Since C (<x1, . . . , xg )> is known
to be epic, this enforces K = C (<x1, . . . , xg )>, so that r? = r∗ for all r ∈ C (<x1, . . . , xg )>. �

Among all pure linear representations representing the same non-commutative rational
function, it is natural to consider those having minimal dimension. In fact, as we will
see in Chapter IV, working with pure linear representation of minimal (or at least small)
dimension is of great advantage if they are used for numerical computations.

Definition III.2.37. A pure linear representation ρ = (u,Q, v) of a non-commutative
rational expression r is called minimal , if the dimension of ρ is minimal among all pure
linear representations ρ′ = (u′, Q′, v′) of r.

Surprisingly, if a minimal pure linear representation ρ is given, then any other pure linear
representation ρ′ of the same non-commutative rational function can be transformed by
some base change in such a way, that ρ′ appears as a block in ρ. This is the content of
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the following theorem. In the regular case, Algorithm III.4.15 will make this construction
more transparent.

Theorem III.2.38 (Theorem 1.4, [CR99]). If ρ = (u,Q, v) and ρ′ = (u′, Q′, v′) are pure
linear representations of the same non-commutative rational function, where ρ is minimal,
then ρ′ is isomorphic (in the sense of morphisms) to a representation ρ′′ = (u′′, Q′′, v′′),
which has a block decomposition of the form

u′′ =
(
u1 u 0

)
, Q′′ =

Q1,1 0 0
Q2,1 Q 0
Q3,1 Q3,2 Q3,3

 , v′′ =

 0
v
v3

 .

Although Theorem III.2.38 tells us that we can reduce in principle any pure linear real-
ization to a minimal one, it remains unclear how this cutting down works concretely. For
the important case of non-commutative rational expressions, which are regular (at 0) (see
Definition III.4.7 below), one can give an alternative and more intrinsic characterization
of minimality – albeit its slightly different meaning within the theory of descriptor real-
izations – that results in an explicit algorithm, by which any descriptor realization can
be reduced to a minimal one; see Definition III.4.11 and Algorithm III.4.15, which are
taken from [HMS15]. Without going into details, we note that the authors of [CR99]
provide a similar characterization of minimality within their framework of pure linear
representations. The conditions given there (namely being prime and monic) seem to be
closely related to those, which are formulated in Definition III.4.11 for the case of reg-
ular non-commutative functions, but the situation for general non-commutative rational
expressions turns out to be much more complicated. Some striking progress was made
by J. Volcic in [Vol15] and we hope to address possible applications of this approach in
future work. In Paragraph III.2.3.3, where we work instead in the context of formal linear
representations (see Subsection III.2.3 below), we will come back to these questions about
reducing the size.

We record the following interesting corollary of Theorem III.2.38.

Corollary III.2.39 (Corollary 1.6 in [CR99]). Any two minimal pure linear represen-
tations of the same non-commutative rational function in C (<x1, . . . , xg )> are isomorphic.

This has the following interesting consequence: let r be a non-commutative rational func-
tion in C (<x1, . . . , xg )> and let ρ = (u,Q, v) be a pure linear representation in the sense
of Definition III.2.27 and Definition III.2.28, which is minimal (see Definition III.2.37).
Suppose now that r is self-adjoint with respect to the involution ∗ introduced in Lemma
III.2.35. Lemma III.2.35 yields then that ρ∗ = (v∗, Q∗, u∗) is a pure linear representation
of r∗ and hence of r. Since ρ∗ has the same size as the minimal pure linear representation
ρ, it must itself be minimal. Therefore, Corollary III.2.39 tells us that ρ and ρ∗ are iso-
morphic, which means in the language of Definition III.2.31 that there exists a morphism
(S, T ) from ρ to ρ∗ consisting of invertible matrices S and T over C with the same size,
such that

v∗ = uT, v = Su∗, and SQ∗ = QT

holds. Taking adjoints in all three equalities gives us

v∗ = uS∗, v = T ∗u∗, and T ∗Q∗ = QS∗,

which means that not only (S, T ) but also (T ∗, S∗) forms a morphism from ρ to ρ∗. But why
should this be an interesting fact? For seeing this, let us take a look at Remark III.4.14,
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where similar arguments will be used to prove that among all descriptor realizations of a
given self-adjoint non-commutative rational function r, which is regular (at 0) in the sense
of Definition III.4.7, one can always find a self-adjoint one. It seems to be a reasonable
guess that the same conclusion also holds in the setting of pure linear representations,
but it is not clear how one should adapt the proof from the regular case as given in
Remark III.4.14. The construction there relies on the state space similarity theorem as
stated in Item (i) of Lemma III.4.13, and on the uniqueness of the similarity transforms
between two monic minimal descriptor realizations in particular. While Corollary III.2.39
gives a suitable replacement of the state space similarity theorem within the framework
of pure linear representations, we do not know here anything about the uniqueness of the
corresponding morphisms (for which we possibly need some additional conditions) and
we also do not see how to modify the construction of Remark III.4.14 in order to get
along without having such uniqueness results. Thus, unfortunately, we cannot finalize our
arguments here, but we hope to settle this interesting problem in future work.

Let us conclude our excursion with the following remark.

Remark III.2.40. The rich theory of pure linear representations, as invented in [CR99],
provides undeniably some handy approach to the skew field C (<x1, . . . , xg )> of non-
commutative rational functions. However, for the intended applications in Chapter IV,
one would like to have some extension of that theory, which applies even to (rectangu-
lar) matrices of non-commutative rational functions. While generalizations of Definition
III.2.27 and Definition III.2.28 are pretty much straightforward, such that even Theorem
III.2.29 remains true (as the discussion in Subsection III.3.2 will show), it is not imme-
diately clear if other important results, such as Theorem III.2.32 or the characterization
of minimality, stay valid. This could possibly lead to an extension of [Vol15]. We leave
these interesting questions to future work.

III.2.3. Formal linear representations. If one is interested in evaluations of non-
commutative rational expressions, the typically nested inversions, which they involve,
might cause some high computational effort. We note that the appearance of nested
inversions leads – both for non-commutative rational expressions and functions – to the
notion of inversion height ; this quantity is treated in [Reu96]. From this point of view, the
concept of pure linear representations, which was presented in Paragraph III.2.2.4, is very
appealing, since it means that non-commutative rational functions can be brought into
matrix form, where only one inversion is needed and where, even better, the expression
that has to be inverted is linear in the considered variables. The drawback, however, is
that pure linear representations provide formulas for non-commutative rational functions,
which are equivalence classes of non-commutative rational expressions, and not for non-
commutative rational expressions itself, so that it remains questionable whether these
representations behave well under evaluations – in fact, as we will see in Section III.5, it
is necessary to impose an additional condition on the algebra, such that this works.

Here, we will present the concept of formal linear representations of non-commutative
rational expressions, which is very much inspired by pure linear representations as dis-
cussed in Paragraph III.2.2.4, but which has the additional advantage to behave well
under evaluations on every unital complex algebra without imposing further conditions.
Although Amitsur’s construction of the free field as well as several variants thereof rely on
evaluations of non-commutative rational expressions, especially on matrix algebras, such
questions were seemingly not explored in detail before. Our exposition relies on [HMS15].
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III.2.3.1. Affine linear pencils. Nested inversions in non-commutative rational func-
tions were resolved by pure linear representations, but the price that we have to pay for
this great simplification is that we need to pass over to matrix-valued expressions. In
particular, the linear expression

Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg

that comes along with the pure linear representation ρ = (u,Q, v) has matricial coefficients
Q(0), Q(1), . . . , Q(g); see Definition III.2.28. Such objects are more generally called linear
pencils and they are defined as follows.

Definition III.2.41. Let x = (x1, . . . , xg) be a g-tuple of formal variables.

(i) An expression of the form

Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg

with matrices Q(0), Q(1), . . . , Q(g) ∈ Mn×m(C) is called affine linear pencil (of
size n × m) in x. If moreover Q(0) = 0 holds, it would be appropriate to call
Q a linear pencil (of size n × m) in x, whenever we want to emphasize this
fact. However, since this case will never occur in the following, this distinction
becomes irrelevant for us and so we take the freedom to use both terms as
synonyms.

(ii) If affine linear pencils Qk,l = Q
(0)
k,l +Q

(1)
k,lx1 + · · ·+Q

(g)
k,lxg of size nk×ml are given

for 1 ≤ k ≤ K and l ≤ l ≤ L, we write

Q =

Q1,1 . . . Q1,L

...
. . .

...
QK,1 . . . QK,L


for the linear pencil

Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg

of size (n1 + · · ·+ nK)× (m1 + · · ·+mL), which is represented by the matrices

Q(j) :=


Q

(j)
1,1 . . . Q

(j)
1,L

...
. . .

...

Q
(j)
K,1 . . . Q

(j)
K,L

 , for j = 0, 1, . . . , g.

(iii) If an affine linear pencil Q = Q(0) + Q(1)x1 + · · · + Q(g)xg of size n × m and
matrices S ∈ Mn(C) and T ∈ Mm(C) are given, we denote by SQT the affine
linear pencil that is defined by

SQT := (SQ(0)T ) + (SQ(1)T )x1 + · · ·+ (SQ(g)T )xg.

(iv) If an affine linear pencil Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg of size n×m is given,
then Q∗ denotes the affine linear pencil of size m× n, which is defined by

Q∗ = (Q(0))∗ + (Q(1))∗x1 + · · ·+ (Q(g))∗xg.

Formal linear representations will like pure linear representations involve inverses of affine
linear pencils. Accordingly, we will mostly work with affine linear pencils whose coefficients
are square matrices (i.e. n = m). However, on this formal level, taking inverses of affine
linear pencils does not make any sense.
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90 III.2. NON-COMMUTATIVE RATIONAL EXPRESSIONS AND FUNCTIONS

The most obvious solution would be to view affine linear pencils simply as elements in
Mn(C〈x1, . . . , xg〉). Inverses of affine linear pencils would then be defined as inverses in
the unital complex algebra Mn(C〈x1, . . . , xg〉). This definition, however, turns out to be
much too restrictive as we are interested in the general case of non-commutative rational
functions. In fact, we would only cover non-commutative polynomials in this way, like
linearizations did in [BMS13].

In the spirit of [Coh85, Coh06], it would be more appropriate to check instead whether
an affine linear pencil of size n × n is full in Mn(C〈x1, . . . , xg〉). The general theory
[Coh85, Coh06, Mal82] tells us that such matrices become invertible as matrices over
the universal skew-field of non-commutative rational functions in the variables x; see
Subsection III.2.2. But since we are interested in evaluations, we prefer at the moment
to work with non-commutative rational expressions instead of non-commutative rational
functions.

Our expedient here is to impose some universality condition, which guarantees invertibil-
ity of the given affine linear pencil under evaluations on every unital complex algebra.
Evaluations of affine linear pencils are in fact straightforward and the question of invert-
ibility leads us directly to the notion of domains for the formal object Q−1. Notably, this
will be generalized in Section III.3, where Q−1 is considered as a particular example of
matrix-valued rational expressions.

Definition III.2.42. Let x = (x1, . . . , xg) be formal variables and let A be some unital
complex algebra.

(i) Let Q = Q(0) + Q(1)x1 + · · · + Q(g)xg be an affine linear pencil of size n×m in
the variables x. We define the evaluation Q(X) ∈Mn×m(A) of Q at some point
X = (X1, . . . , Xg) ∈ Ag by

Q(X) := Q(0)1A +Q(1)X1 + · · ·+Q(g)Xg.

(ii) Let Q be an affine linear pencil of size n× n. We put

domA(Q−1) := {X ∈ Ag| Q(X) is invertible in Mn(A)}.

III.2.3.2. Definition and construction of formal linear representations. We are pre-
pared now to introduce the main actor of this Subsection, namely formal linear represen-
tations. By formal linear representations, we encode non-commutative rational expressions
in such a way that evaluations on their domains can be computed by carrying out only
inversion, even if the rational expression itself involves several nested inversions.

Our approach, which was presented for the first time in [HMS15], is very much inspired
by the work of Cohn [Coh85, Coh06] and Malcolmson [Mal78, Mal80, Mal82] and
is furthermore closely related to constructions appearing in [CR99]. It also builds on the
well-established theory of descriptor realizations for the case of regular non-commutative
rational expressions, which was of particular interest in [HMS15]; we will come back to
this in Subsection III.4.3. The main difference between all previously developed concepts
and the approach of formal linear representations is that non-commutative rational ex-
pressions are addressed instead of non-commutative rational functions and that domains
and evaluations on arbitrary unital complex algebras are taken into account.

Definition III.2.43. Let r be any rational expression in the formal variables x =
(x1, . . . , xg). A formal linear representation ρ = (u,Q, v) of r consists of
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• an affine linear pencil Q of size n× n,
• a 1× n-matrix u (i.e. a row vector) over C,
• and a n× 1-matrix v (i.e. a column vector) over C,

and it satisfies the following property:

For any unital complex algebra A, we have that

domA(r) ⊆ domA(Q−1)

and it holds true for any (X1, . . . , Xg) ∈ domA(r) that

r(X1, . . . , Xg) = −uQ(X1, . . . , Xg)
−1v.

The main result of this paragraph is the following theorem, by which we ensure that
formal linear representations exist for each non-commutative rational expression.

Theorem III.2.44. Each non-commutative rational expression r ∈ RC(x1, . . . , xg) pos-
sesses a formal linear representation in the sense of Definition III.2.43.

Later, in Theorem III.3.11, we will present some variant of Theorem III.2.44 for the case
of self-adjoint non-commutative rational expressions. Operator-valued generalizations of
both of these results will be given in Theorems III.2.58 and III.3.20.

In a sense more important than the actual statement of Theorem III.2.44 is its proof,
since it fully relies on constructive arguments. It is provided by the following algorithm,
whose validity will be checked in Paragraph III.2.3.4.

Algorithm III.2.45. Let r be a non-commutative rational expression in the formal vari-
ables x = (x1, . . . , xg). A formal linear representation ρ = (u,Q, v) of r can be constructed
by using successively (see Remark III.2.2) the following rules:

(i) For scalars λ ∈ C and the variables xj, j = 1, . . . , g, formal linear representa-
tions are given by

(III.10)

ρxj :=

((
0 1

)
,

(
xj −1
−1 0

)
,

(
0
1

))
and

ρλ :=

((
0 1

)
,

(
λ −1
−1 0

)
,

(
0
1

))
,

respectively.
(ii) If ρ1 = (u1, Q1, v1) and ρ2 = (u2, Q2, v2) are formal linear representations for

the rational expressions r1 and r2, respectively, then

(III.11) ρ1 ⊕ ρ2 :=

((
u1 u2

)
,

(
Q1 0
0 Q2

)
,

(
v1

v2

))
gives a formal linear representation of r1 + r2.

(iii) If ρ1 = (u1, Q1, v1) and ρ2 = (u2, Q2, v2) are formal linear representations for
the rational expressions r1 and r2, respectively, then

(III.12) ρ1 � ρ2 :=

((
0 u1

)
,

(
v1u2 Q1

Q2 0

)
,

(
0
v2

))
gives a formal linear representation of r1 · r2.
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(iv) If ρ = (u,Q, v) is a formal linear representation of r, then

(III.13) ρ−1 :=

((
1 0

)
,

(
0 u
v −Q

)
,

(
1
0

))
gives a formal linear representation of r−1.

Note that the operations (III.10), (III.11), (III.12), and (III.13), which are described in
Algorithm III.2.45, have to be understood on the level of linear pencils as explained in
Definition III.2.41.

In Theorem III.2.29, we claimed existence of pure linear representations in the sense of
Cohn and Reutenauer [CR99]; see Definition III.2.27 and Definition III.2.28. Theorem
III.2.44, in combination with Algorithm III.2.45, yields an alternative and even construc-
tive proof of this important fact, as soon as we are able to relate formal linear representa-
tions with pure linear representations. This will be the content of Corollary III.2.47. But
before we can formulate the precise statement, we need some preparation.

First of all, it is appropriate to distinguish between the variables x = (x1, . . . , xg) of the
universal skew field of fractions C (<x1, . . . , xg )> and the formal variables, out of which
non-commutative rational expressions are built, say z = (z1, . . . , zg). Let us furthermore
agree on the following terminology.

Definition III.2.46. Let r ∈ C (<x1, . . . , xg )> and some rational expression r ∈ RC(z) be
given. Then we say that r is represented by r (or that r represents r), if the conditions

x = (x1, . . . , xg) ∈ domC (<x1,...,xg )>(r) and r(x) = r

are satisfied with respect to the complex unital algebra C (<x1, . . . , xg )>.

The previous definition is actually nothing but a fancy wrapping of some trivial ob-
servation, which however allows us a formally clean treatment of the relation between
non-commutative rational expressions and rational functions. Indeed, due to all the re-
lations that are valid in C (<x1, . . . , xg )>, we are used to write down a non-commutative
rational functions r by picking one concrete non-commutative rational expression r, for
which r = r(x1, . . . , xg) holds, but keeping in mind that the chosen r is far from being
unique and can be changed by applying the arithmetic rules of the free field. For instance,
one easily sees that in C (<x1, x2 )>

r := x1x2(x1x2 − x2x1)−1 = 1 + x2x1(x1x2 − x2x1)−1

holds true (this example is taken from [KV12]), such that the two non-commutative
rational expressions r1, r2 ∈ RC(z1, z2), which are given by

r1 := (z1 ·z2) ·(z1 ·z2 +(−1) ·z2 ·z1)−1 and r2 := 1+(z2 ·z1) ·(z1 ·z2 +(−1) ·z2 ·z1)−1,

both represent r in the sense of Definition III.2.46.

Now, we can formulate the promised result relating formal linear representations and pure
linear representations, by which we furthermore recover Theorem III.2.29. A self-adjoint
version will be presented in Corollary III.2.59.

Corollary III.2.47. Let r ∈ C (<x1, . . . , xg )> be a non-commutative rational function in
the variables x = (x1, . . . , xg). Then the following statements hold true:

(i) There exists a non-commutative rational expression r ∈ RC(z) in formal vari-
ables z = (z1, . . . , zg), such that r represents r in the sense of Definition III.2.46.
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(ii) If r is represented by some non-commutative rational expression r ∈ RC(z),
then each formal linear representation ρ = (u,Q, v) of r induces by (u,Q(x), v)
a pure linear representation of r in the sense of Definition III.2.27 and Definition
III.2.28.

Consequently, each non-commutative rational function has a pure linear representation.

Proof. (i) Let us denote by K the subset of C (<x1, . . . , xg )> consisting of all non-
commutative rational functions r, which are represented by some non-commutative ratio-
nal expression r ∈ RC(z). It is clearly the case that K contains all scalars λ ∈ C and the
variables x1, . . . , xg. Furthermore, one easily sees that

• if r1 and r2 are elements in K, which are represented by r1 and r2, respectively,
then r1 + r2 is represented by r1 + r2 and r1 · r2 is represented by r1 · r2, so that
r1 + r2 ∈ K and r1 · r2 ∈ K;
• if r 6= 0 belongs to K, which is represented by r, then r−1 is represented by r−1,

so that r−1 ∈ K holds.

It follows that K forms a skew sub-field of C (<x1, . . . , xg )>, which contains C〈x1, . . . , xg〉.
Since C (<x1, . . . , xg )> is epic, it follows K = C (<x1, . . . , xg )> and hence the validity of (i).

(ii) Let us consider r ∈ RC(z) and any formal linear representation ρ = (u,Q, v) of r. If
now the non-commutative rational function r ∈ C (<x1, . . . , xg )> is represented by r, we
have that x ∈ domC (<x1,...,xg )>(r) and r(x) = r, such that

x ∈ domC (<x1,...,xg )>(r) ⊆ domC (<x1,...,xg )>(Q−1)

and r = r(x) = −uQ(x)−1v holds according to the defining properties of ρ. For the desired
conclusion that ρ(x) = (u,Q(x), v) is indeed a pure linear representation of r, it is only
left to note that the invertibility of Q(x) in Mn(C (<x1, . . . , xg )>) means equivalently that
Q(x) is a full matrix over the ring C〈x1, . . . , xg〉.
The additional assertion follows now from (i), (ii), and Theorem III.2.29. �

Let us mention that there is still another canonical relation between non-commutative
rational expressions and elements in the free field. It comes from the construction of
C (<x1, . . . , xg )> as the set of equivalence classes R0

C(z1, . . . , zg)/∼, which we presented
in Paragraph III.2.2.2. Correspondingly, each non-commutative rational function r can
be written as r = [r] for some non-commutative rational expression r ∈ R0

C(z1, . . . , zg).
We are tempted to believe that these two notions are in fact equivalent, meaning that
r ∈ RC(z1, . . . , zg) represents r ∈ C (<x1, . . . , xg )> in the sense of Definition III.2.46 if and
only if the conditions r ∈ R0

C(z1, . . . , zg) (or, equivalently, domM(C)(r) 6= ∅) and [r] = r
are both satisfied; the following proposition confirms that this guess is indeed correct.

Proposition III.2.48. If we identify C (<x1, . . . , xg )> = R0
C(z1, . . . , zg)/∼, meaning that

xi = [zi] for i = 1, . . . , g, then the following statements hold true:

(a) A non-commutative rational expression r ∈ RC(z1, . . . , zg) is non-degenerate in
the sense of Definition III.2.13 if and only if (x1, . . . , xg) ∈ domC (<x1,...,xg )>(r)
holds. Whenever these equivalent conditions are satisfied, we have that

r(x1, . . . , xg) = [r].

(b) If r ∈ RC(z1, . . . , zg) and r ∈ C (<x1, . . . , xg )> are given, then the following state-
ments are equivalent:
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(i) r represents r in the sense of Definition III.2.46, i.e., we have that

(x1, . . . , xg) ∈ domC (<x1,...,xg )>(r) and r(x1, . . . , xg) = r.

(ii) We have that

domM(C)(r) 6= ∅ and [r] = r.

The proof of Proposition III.2.48 requires some preparation.

Let us first introduce some notation. If X is any subset of RC(z1, . . . , zg), we denote by 〈X〉
the closure of X with respect to + and ·, i.e., the smallest subset 〈X〉 ⊆ RC(z1, . . . , zg),
which satisfies X ⊆ 〈X〉 and which is closed under both operations + and · in the sense
that r1, r2 ∈ 〈X〉 implies r1 + r2 ∈ 〈X〉 and r1 · r2 ∈ 〈X〉.

Lemma III.2.49. Let D ⊆ RC(z1, . . . , zg) be any subset with the following properties:

(i) D is closed under the arithmetic operations + and ·, i.e., r1, r2 ∈ D implies that
r1 + r2 ∈ D and r1 · r2 ∈ D.

(ii) If r ∈ D decomposes as r = r1+r2 or r = r1·r2 for certain r1, r2 ∈ RC(z1, . . . , zg),
then necessarily r1, r2 ∈ D.

Then, for each subset X of RC(z1, . . . , zg), we have that 〈X〉 ∩D = 〈X ∩D〉.

Proof. Since X ⊆ 〈X〉 holds by definition of the closure 〈X〉, we have that X ∩D ⊆
〈X〉 ∩D, and since the properties of 〈X〉 and D guarantee that the set 〈X〉 ∩D is closed
under the arithmetic operations + and ·, it follows 〈X ∩D〉 ⊆ 〈X〉 ∩D. For the opposite
inclusion, let us consider the set R ⊆ 〈X〉, which is given by

R :=
{
r ∈ 〈X〉

∣∣ r ∈ D =⇒ r ∈ 〈X ∩D〉
}
.

We clearly have X ⊆ R and one can also show that R is closed under + and ·. We
consider only +, the argument for · is completely analogous. Let r1, r2 ∈ R be given.
Since we have r1, r2 ∈ 〈X〉, the properties of 〈X〉 imply that r1 + r2 ∈ 〈X〉. Furthermore,
whenever r1 + r2 ∈ D is satisfied, our assumptions about D enforce that r1, r2 ∈ D, from
which r1, r2 ∈ 〈X∩D〉 follows due to r1, r2 ∈ R and finally r1 + r2 ∈ 〈X∩D〉. This verifies
r1 + r2 ∈ R. From these properties of R, we infer that 〈X〉 ⊆ R must hold, so that in
total R = 〈X〉. The latter means that 〈X〉 ∩D ⊆ 〈X∩D〉, which concludes the proof. �

In Remark III.2.2, we provided some useful characterization of RC(z1, . . . , zg), by which
we made precise how RC(z1, . . . , zg) can be seen as being “generated” by z1, . . . , zg with
respect to the arithmetic operations +, ·, and −1. For the proof of Proposition III.2.48,

we will need a similar characterization for the subsets R0
C(z1, . . . , zg) and R̃0

C(z1, . . . , zg)
of RC(z1, . . . , zg), which are given by

R0
C(z1, . . . , zg) := {r ∈ RC(z1, . . . , zg)| domM(C)(r) 6= ∅},

R̃0
C(z1, . . . , zg) := {r ∈ RC(z1, . . . , zg)| (x1, . . . , xg) ∈ domC (<x1,...,xg )>(r)}.

Note that R0
C(z1, . . . , zg) already appeared in Theorem III.2.19, where we summarized

the construction of the free field C (<x1, . . . , xg )> following the approach of Amitsur. Since
these subsets are determined by certain constraints on the domains of their elements, they
have in either case some rigid structure. With the following definition, we extract now the

essential properties, which R0
C(z1, . . . , zg) and R̃0

C(z1, . . . , zg) have in common.
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Definition III.2.50. Consider a subset D ⊆ RC(z1, . . . , zg). We call D a natural domain,
if it satisfies the following three properties:

(i) D is closed under the arithmetic operations + and ·, i.e., r1, r2 ∈ D implies that
r1 + r2 ∈ D and r1 · r2 ∈ D.

(ii) If r ∈ D decomposes as r = r1+r2 or r = r1 ·r2 for certain r1, r2 ∈ RC(z1, . . . , zg),
then necessarily r1, r2 ∈ D.

(iii) If r ∈ D can be written as r = r−1
0 for some r0 ∈ RC(z1, . . . , zg), then r0 ∈ D.

With the help of Definition III.2.3, we can easily check that both R0
C(z1, . . . , zg) and

R̃0
C(z1, . . . , zg) are natural domains in the sense of the previous definition. Next, we want

to prove that natural domains enjoy a characterization similar to Remark III.2.2.

Corollary III.2.51. Let D ⊆ RC(z1, . . . , zg) be a natural domain. Suppose that R is a
subset of D, which has the following properties:

(i) We have that PC(z1, . . . , zg) ∩D ⊆ R.
(ii) The non-commutative rational expression r−1 belongs to R for each r ∈ R, which

satisfies r−1 ∈ D.
(iii) R is closed under the arithmetic operations + and ·, i.e., r1, r2 ∈ R implies that

r1 + r2 ∈ R and r1 · r2 ∈ R.

In this case, we necessarily have that R = D holds true.

Proof. Since R is supposed to be a subset of D, it suffices to prove D ⊆ R. We
consider the exhaustion (Rn)n≥0 of RC(z1, . . . , zg), i.e.

RC(z1, . . . , zg) =
⋃
m≥0

Rm ⊃ · · · ⊃ Rn+1 ⊃ Rn ⊃ · · · ⊃ R0,

which is defined inductively by R0 := PC(z1, . . . , zg) and Rn+1 := 〈Rn ∪ {r−1| r ∈ Rn}〉
for all n ≥ 0. We clearly have D =

⋃
m≥0 Dm, where we put Dm := Rm ∩D for m ≥ 0,

and we claim that

Dn+1 = 〈Dn ∪ {r−1| r ∈ Dn : r−1 ∈ D}〉
for each n ≥ 0. This follows easily with the help of Lemma III.2.49. Indeed,

Dn+1 = Rn+1 ∩D

= 〈Rn ∪ {r−1| r ∈ Rn}〉 ∩D

= 〈(Rn ∪ {r−1| r ∈ Rn}) ∩D〉
= 〈Dn ∪ ({r−1| r ∈ Rn} ∩D)〉
= 〈Dn ∪ {r−1| r ∈ Dn : r−1 ∈ D}〉,

where we used in the last step that D enjoys the property stated in Item (iii). Now, by
induction on m, we can prove that Dm ⊆ R holds for all m ≥ 0. Indeed, the initial case
m = 0 is obtained by

D0 = R0 ∩D = PC(z1, . . . , zg) ∩D ⊆ R,

and if Dm ⊆ R is already established, then the other assumptions on R guarantee that

Dn+1 = 〈Dn ∪ {r−1| r ∈ Dn : r−1 ∈ D}〉 ⊆ R.

In summary, we get D =
⋃
m≥0 Dm ⊆ R, as we wished to show. �
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96 III.2. NON-COMMUTATIVE RATIONAL EXPRESSIONS AND FUNCTIONS

Note that Corollary III.2.51 is really a generalization of Remark III.2.2, since
RC(z1, . . . , zg) forms a natural domain itself. Having Corollary III.2.51 at hand, we are
prepared to return to our actual goal.

Proof of Proposition III.2.48. The proof is carried out in three steps. In order
to simplify the notation, we will abbreviate x = (x1, . . . , xg) and z = (z1, . . . , zg) in the
sequel.

(1) Let us look at the set of all non-commutative rational expressions r ∈ R0
C(z)∩ R̃0

C(z),
which satisfy the condition r(x) = [r]. It is a trivial but nonetheless helpful observation
that this set can be viewed in two different ways, namely as a subset of R ⊆ R0

C(z) and

as a subset R̃ ⊆ R̃0
C(z). More precisely, we put

R := {r ∈ R0
C(z)| x ∈ domC (<x )>(r), r(x) = [r]},

R̃ := {r ∈ R̃0
C(z)| domM(C)(r) 6= ∅, r(x) = [r]},

where clearly R = R̃ holds true. Our goal is to show that R = R0
C(z) and R̃ = R̃0

C(z).
As soon as we have established these results, we may infer that

R0
C(z) = {r ∈ R0

C(z) ∩ R̃0
C(z)| r(x) = [r]} = R̃0

C(z),

so that the statements made in (a) and (b) become obvious.

(2) Let us first address the asserted equality R = R0
C(z). One easily confirms with the

help of Definition III.2.3 and Remark III.2.16 that the set R, which obviously contains
all scalars λ ∈ C as well as the variables x1, . . . , xg, is furthermore closed under the
arithmetic operations + and ·. Correspondingly, taking inverses is the only issue that
remains. What we need to prove is according to Corollary III.2.51 that r−1 belongs to
R for each r ∈ R, which satisfies the condition r−1 ∈ R0

C(z). Take any r ∈ R with
r−1 ∈ R0

C(z). Let us check first that x ∈ domC (<x )>(r) holds. Since r and r−1 belong both
to R0

C(z), Remark III.2.16 allows us to compute [r] · [r−1] = [r · r−1] = [1] ∈ C (<x )>,
from which [r] 6= 0 follows with [r]−1 = [r−1]. Furthermore, due to r ∈ R, we know that
x ∈ domC (<x )>(r) with r(x) = [r], so that the invertibility of [r] yields x ∈ domC (<x )>(r−1)
and finally r−1(x) = r(x)−1 = [r]−1 = [r−1]. Altogether, this implies that r−1 ∈ R, which
is exactly what we had to show.

(3) Now, let us address R̃ = R̃0
C(z). With the help of Definition III.2.3 and Remark

III.2.16, it is not hard to see that the set R̃, which clearly contains all scalars λ ∈ C as well
as the variables x1, . . . , xg, is also closed under the arithmetic operations + and ·. What

remains to check is according to Corollary III.2.51 that for each r ∈ R̃, which satisfies

r−1 ∈ R̃0
C(z), the non-commutative rational expression r−1 necessarily belongs to R̃. Let

us confirm first that domM(C)(r
−1) 6= ∅ holds true. For seeing this, assume to the contrary

that domM(C)(r
−1) = ∅. Since r ∈ R0

C(z) is satisfied by the assumption r ∈ R̃, we may
conclude with the help of Remark III.2.18 that r must be M(C)-evaluation equivalent to

0, i.e. [r] = 0. Moreover, r ∈ R̃ guarantees r(x) = [r], so that finally r(x) = [r] = 0 follows.
Let us take now any formal linear representation ρ = (u,Q, v) of r, whose existence is
guaranteed by Theorem III.2.44, and use formula (III.13) provided in Algorithm III.2.45
in order to construct an explicit formal linear representation of r−1, namely

ρ−1 = (û, Q̂, v̂) =

((
1 0

)
,

(
0 u
v −Q

)
,

(
1
0

))
.
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Since r−1 ∈ R̃0
C(z) means that x ∈ domC (<x )>(r−1), we conclude according to Definition

III.2.43 that in particular x ∈ domC (<x )>(r−1) ⊆ domC (<x )>(Q̂−1), which enforces the matrix

Q̂(x) to be full over C〈x〉. On the other hand, we have established in Corollary III.2.47
that the formal linear representation ρ = (u,Q, v) of r induces by (u,Q(x), v) a pure linear
representation of the non-commutative rational function r(x), which is 0 as we have seen
above. Obviously, (u,−Q(x), v) yields a pure linear representation of 0 as well, Theorem
III.2.26 tells us then that its display(

0 u
v −Q(x)

)
= Q̂(x)

cannot be full. This contradiction tells us that domM(C)(r
−1) 6= ∅, as we wished to show.

Finally, in order to finish the proof of r−1 ∈ R̃, we must show that r−1(x) = [r−1]
holds true. We already noticed x ∈ domC (<x )>(r−1), so that r−1(x) = r(x)−1, and since

we have r ∈ R̃, we know that r(x) = [r]. With these facts, we may derive that indeed
r−1(x) = r(x)−1 = [r]−1 = [r−1], which concludes the proof. �

III.2.3.3. Reducing the size of formal linear representations. Before we proceed to the
proof of Algorithm III.2.45 in the next Paragraph III.2.3.4, let us first illustrate its manner
of functioning by the following instructive example.

Example III.2.52. Consider the non-commutative rational expressions

r1 = (x1 · x2)−1 and r2 = x−1
2 · x−1

1 .

By applying Algorithm III.2.45, we obtain for r1 the formal linear representation

ρ1 = (ρx1 � ρx2)−1

=

((
0 0 0 1

)
,


0 0 x1 −1
0 1 −1 0
x2 −1 0 0
−1 0 0 0

 ,


0
0
0
1

)−1

=

((
1 0 0 0 0

)
,


0 0 0 0 1
0 0 0 −x1 1
0 0 −1 1 0
0 −x2 1 0 0
1 1 0 0 0

 ,


1
0
0
0
0


)

and similarly for r2 the formal linear representation

ρ2 = ρ−1
x2
� ρ−1

x1

=

((
1 0 0

)
,

0 0 1
0 −x2 1
1 1 0

 ,

1
0
0

)� ((1 0 0
)
,

0 0 1
0 −x1 1
1 1 0

 ,

1
0
0

)

=

((
0 0 0 1 0 0

)
,


1 0 0 0 0 1
0 0 0 0 −x2 1
0 0 0 1 1 0
0 0 1 0 0 0
0 −x1 1 0 0 0
1 1 0 0 0 0

 ,


0
0
0
1
0
0


)
.
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98 III.2. NON-COMMUTATIVE RATIONAL EXPRESSIONS AND FUNCTIONS

Concerning the corresponding A-domains with respect to any unital complex algebra A,
we can make the following statements:

• The A-domain domA(r1) of r1 is the set of pairs (X1, X2) ∈ A2, whose product
X1X2 is invertible in A, whereas the A-domain of r2 consists of all pairs (X1, X2)
of invertible elements X1, X2 ∈ A. Thus, clearly, domA(r2) ⊆ domA(r1).
• The defining properties of ρ1 and ρ2 guarantee the inclusions domA(r1) ⊆

domA(Q−1
1 ) and domA(r2) ⊆ domA(Q−1

2 ), but apart from this, nothing can be
said about domA(Q−1

1 ) and domA(Q−1
2 ) without additional calculations.

This example highlights the computational disadvantage of Algorithm III.2.45, that
roughly speaking the dimension of the linear pencil Q of a formal linear representation
ρ = (u,Q, v) increases rapidly with the complexity of the corresponding rational expres-
sion r. Clearly, since the rational expressions r1 and r2 given in Example III.2.52 are
rather simple, we guess that neither ρ1 nor ρ2 are minimal.

In analogy to Definition III.2.37, we call a formal linear representation ρ = (u,Q, v)
of some fixed rational expression r minimal , if the corresponding linear pencil Q has
minimal size among all linear pencils that come from other formal linear representations
ρ′ = (u′, Q′, v′) of r.

Accordingly, we expect that there are other formal linear representations of smaller di-
mensions, but how should we find them?

Unfortunately, since r1 and r2 do not fall into the setting of Subsection III.4.3, we cannot
use the machinery of descriptor realizations (see Algorithm III.4.15) to cut down these
realizations to minimal ones. One expedient could be to use the analogous but more
general machinery, which was invented recently in [Vol15]. However, due to some technical
subtleties, we did not yet succeed in formulating an implementable algorithm.

Fortunately, we can give some (albeit less sophisticated) ad hoc construction: if we arrange
any formal linear representation ρ = (u,Q, v) of a given rational expression r as

u
v Q

,

we can try to bring this array into the form

ũ u′

ṽ Q̃ 0
v′ 0 Q′

by acting by elementary row and column operations on Q, while bookkeeping their effect
in the first row and column, respectively. Note that, more generally, acting with invertible
matrices S, T ∈Mn(C) on ρ according to the rule

S · ρ · T := (uT, SQT, Sv)

always produces another formal linear representation of the same non-commutative
rational expression r. If it happens that (u′, Q′, v′) is a formal linear representation
of 0 relatively to r, meaning that for each unital complex algebra A the conditions
domA(r) ⊆ domA((Q′)−1) and −u′Q′(X)−1v′ = 0 for each X ∈ domA(r) are satisfied,

then we can remove this additional part, obtaining ρ̃ = (ũ, Q̃, ṽ). This ρ̃ gives accordingly
another formal linear representation of r.
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Example III.2.53. Consider the non-commutative rational expressions from Example
III.2.52 above. We can show by using the previously discussed method that

ρ̃1 = (ũ1, Q̃1, ṽ1) =

((
1 0

)
,

(
0 −x1

−x2 1

)
,

(
1
0

))
gives another formal linear representation of r1 and that

ρ̃2 = (ũ2, Q̃2, ṽ2) =

((
0 1

)
,

(
1 −x2

−x1 0

)
,

(
0
1

))
gives another formal linear representation of r2. Regarding their domains with respect to
any unital complex algebra A, we collect the following observations:

• It is easy to see that the formal linear representations ρ̃1 and ρ̃2 satisfy the
relation ρ̃2 = U−1 · ρ̃1 · U , i.e.

ũ2 = ũ1U, ṽ1 = Uṽ2, and UQ̃2 = Q̃1U,

with respect to the matrix

U :=

(
0 1
1 0

)
.

These formulas are analogous to those that capture the equivalence of pure

linear representations in Definition III.2.31. In particular, we have domA(Q̃−1
1 ) =

domA(Q̃−1
2 ).

• By using the Schur complement formula (A.1) given in Lemma A.1, we may
check that Q1(X1, X2) and hence Q2(X1, X2) are invertible in M2(A) for some
pair (X1, X2) ∈ A2, if and only if their product X1X2 is invertible in A.

In summary, we obtain

domA(r2) ( domA(r1) = domA(Q−1
1 ) = domA(Q−1

2 ).

III.2.3.4. Proof of Rules in Algorithm III.2.45. First of all, we examine the validity of
rule (i). This is the content of the following lemma, which gives a slightly more general
statement and allows a uniform proof for formal linear representations both of scalars
λ ∈ C and of the variables x1, . . . , xg.

Lemma III.2.54. Consider a rational expression r in the variables x = (x1, . . . , xg), which
is of the form

r = λ0 + λ1 · x1 + · · ·+ λg · xg
for some λ0, λ1, . . . , λg ∈ C with any fixed order of summation. Then a formal linear
representation of r is given by

ρ :=

((
0 1

)
,

(
λ0 −1
−1 0

)
+

(
λ1 0
0 0

)
x1 + · · ·+

(
λg 0
0 0

)
xg,

(
0
1

))
.

Proof. Write ρ = (u,Q, v). Given any unital complex algebra A, we may observe
that the matrix Q(X) is invertible for all X ∈ domA(r) = Ag with

Q(X)−1 =

(
0 −1
−1 −r(X)

)
.

Thus, X ∈ domA(Q−1) holds and furthermore −uQ(X)−1v = r(X). According to Defi-
nition III.2.43, this means that ρ is a formal linear representation of r, as we wished to
show. �
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100 III.2. NON-COMMUTATIVE RATIONAL EXPRESSIONS AND FUNCTIONS

Next, we justify the rules (ii) and (iii) of Algorithm III.2.45.

Lemma III.2.55. Let ρ1 = (u1, Q1, v1) and ρ2 = (u2, Q2, v2) be formal linear representa-
tions of rational expressions r1 and r2, respectively. Then the following statements hold
true:

• A formal linear representation of r1 + r2 is given by

ρ1 ⊕ ρ2 :=

((
u1 u2

)
,

(
Q1 0
0 Q2

)
,

(
v1

v2

))
.

• A formal linear representation of r1 · r2 is given by

ρ1 � ρ2 :=

((
0 u1

)
,

(
v1u2 Q1

Q2 0

)
,

(
0
v2

))
.

Proof. Let A be any unital complex algebra. Recall from Definition III.2.3 that

domA(r1 + r2) = domA(r1) ∩ domA(r2) = domA(r1 · r2).

We take any X ∈ domA(r1)∩ domA(r2). Since ρ1 and ρ2 are both formal linear represen-
tations, we know that X ∈ domA(Q−1

1 ) ∩ domA(Q−1
2 ) holds and furthermore

r1(X) = −u1Q1(X)−1v1 and r2(X) = −u2Q2(X)−1v1.

Let ρ = (u,Q, v) denote either ρ1 ⊕ ρ2 or ρ1 � ρ2. The invertibility of Q1(X) and Q2(X)
guarantees the invertibility of

Q(X) =

(
Q1(X) 0

0 Q2(X)

)
respectively Q(X) =

(
v1u2 Q1(X)
Q2(X) 0

)
,

and by some straightforward computation we may convince ourselves that more precisely

Q(X)−1 =

(
Q1(X)−1 0

0 Q2(X)−1

)
respectively

Q(X)−1 =

(
0 Q2(X)−1

Q1(X)−1 −Q1(X)−1v1u2Q2(X)−1

)
.

This shows in either case that X ∈ domA(Q−1) holds. Furthermore, we can check that

−uQ(X)−1v = −
(
u1 u2

)(Q1(X)−1 0
0 Q2(X)−1

)(
v1

v2

)
= −u1Q1(X)−1v1 − u2Q2(X)−1v2

= r1(X) + r2(X)

respectively

−uQ(X)−1v = −
(
0 u1

)( 0 Q2(X)−1

Q1(X)−1 −Q1(X)−1v1u2Q2(X)−1

)(
0
v2

)
= u1Q1(X)−1v1u2Q2(X)−1v2

= r1(X)r2(X).

Thus, we have confirmed that ρ1 ⊕ ρ2 and ρ1 � ρ2 are formal linear representations of
r1 + r2 and r1 · r2, respectively. �

Finally, rule (iv) of Algorithm III.2.45 is concerned in the following lemma.
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Lemma III.2.56. Let ρ = (u,Q, v) be a formal linear representation of some rational
expression r. Then

ρ−1 :=

((
1 0

)
,

(
0 u
v −Q

)
,

(
1
0

))
gives a formal linear representation of r−1.

Proof. Take any X ∈ domA(r−1), which means by Definition III.2.3 that X ∈
domA(r) holds and that r(X) is invertible in A. Since ρ is assumed to be a formal linear
representation of r, this ensures the invertibility of Q(X) and −uQ(X)−1v = r(X). Hence,
the Schur complement formula, Lemma (A.1), tells us that the matrix(

0 u
v −Q(X)

)
must be invertible since both its Schur complement, which is given by uQ(X)−1v =
−r(X), and the block Q(X) are invertible. Hence, we infer

X ∈ domA

((
0 u
v −Q

)−1 )
and the Schur complement formula (A.1) tells us that in this case

−
(
1 0

)(0 u
v −Q(X)

)−1(
1
0

)
= −(uQ(X)−1v)−1 = r(X)−1.

Thus, we see that ρ−1 is indeed a formal linear representation of r−1. �

III.2.4. Self-adjoint formal linear representations. The previous Subsection
III.2.3 provides by the concept of formal linear representations some very effective tool to
treat evaluations of non-commutative rational expressions in a universal way. Their effec-
tiveness relies more precisely on the fact that a formal linear representation ρ = (u,Q, v)
does not only resolve all nested inversions in the corresponding rational expression r, but
it also “linearizes” r in terms of the affine linear pencil Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg.
Accordingly, one might hope that these techniques can be applied to a wide range of prob-
lems, especially in free probability theory, where non-commutative rational expressions
are intended to provide a new class of “non-commutative test functions” for studying
non-commutative distributions.

For instance, regularity questions in the spirit of Chapter VI but for other classes than
non-commutative polynomials (see also Chapter VII) constitute an active topic of cur-
rent research. First partial results in this direction wing the hope that “linearization”
could provide the right techniques to settle such problems for non-commutative rational
expressions.

Another kind of problem will be addressed in Chapter IV. Following [HMS15], we will
explain there in particular how formal linear representations can be used to compute the
analytic distribution of any self-adjoint non-commutative rational expressions in freely
independent self-adjoint variables under the assumption that their individual distributions
are known. For this purpose, it is appropriate to rewrite the given ρ as an affine linear
pencil L = L(0) + L(1)x1 + · · ·+ L(g)xg according to

L :=

(
0 u
v Q

)
=

(
0 u
v Q(0)

)
+

(
0 0
0 Q(1)

)
x1 + · · ·+

(
0 0
0 Q(g)

)
xg.
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102 III.2. NON-COMMUTATIVE RATIONAL EXPRESSIONS AND FUNCTIONS

The algorithmic solution to this problem, which we are going to provide in Chapter IV,
will be based besides these algebraic techniques on more analytic results from operator-
valued free probability theory. However, in order to guarantee that the algebraic and the
analytic component fit together, we need to find for self-adjoint r some special kind of
formal linear representation ρ – in the following called “self-adjoint formal linear repre-
sentations” – for which the affine linear pencil L consists only of self-adjoint matrices.
In the free probability community, such an improvement of the “linearization trick” from
[HT05, HST06] was found by Anderson [And12, And13, And15] and was exten-
sively used in [BMS13]. His ingenious approach was, however, limited to the case of
non-commutative polynomial expressions. As we became aware of recently, similar ar-
guments were known in non-commutative control theory long before; see, for instance,
[Kal63, Kal76, HMV06, KV09, KV12] and [HMS15]. This has led to the insight,
which was worked out in [HMS15], that formal linear representations not only provide
some straightforward extension of the “linearization trick” from non-commutative poly-
nomials to rational expressions, but also constitute some very general framework, into
which many other techniques merge.

In this subsection, we want to explain how arguments similar to those of [And12, And13,
And15] (see also [BMS13]) can be used in order to construct the desired self-adjoint
formal linear representations. Let us first present their precise definition.

Definition III.2.57. Let r be any non-commutative rational expression in the formal
variables x = (x1, . . . , xg), which is self-adjoint in the sense of Definition III.2.7. A self-
adjoint formal linear representation ρ = (Q, v) consists of

• an affine linear pencil

Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg

with self-adjoint matrices Q(0), Q(1), . . . , Q(g) ∈Mn(C) of some dimension n
• and a n× 1-matrix v over C

and it satisfies the following property:

For any unital complex ∗-algebra A, we have that

domsa
A(r) ⊆ domA(Q−1)

and for any (X1, . . . , Xg) ∈ domsa
A(r) it holds true that

r(X1, . . . , Xg) = −v∗Q(X1, . . . , Xg)
−1v.

Following ideas of [And12, And13, And15] (see also [BMS13]), we can prove now the
announced self-adjoint version of Theorem III.2.44.

Theorem III.2.58. Each non-commutative rational expression r ∈ RC(x1, . . . , xg), which
is self-adjoint in the sense of Definition III.2.7, admits a self-adjoint formal linear repre-
sentation ρ = (Q, v) in the meaning of Definition III.2.57.

Proof. Given any self-adjoint non-commutative rational expression r, then Theorem
III.2.44 guarantees the existence of a formal linear representation ρ0 = (u0, Q0, v0) of r,
say of size n× n. Inspired by [And12, And13, And15], we put

(III.14) ρ = (Q, v) :=

((
0 Q∗0
Q0 0

)
,

(
1
2
u∗0
v0

))
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and we claim that ρ forms a self-adjoint formal linear representation of r. First of all, we no-
tice that the linear pencil Q consists according to Definition III.2.41 of self-adjoint matri-
ces. Thus, it only remains to check that domsa

A(r) ⊆ domA(Q−1) and r(X) = −v∗Q(X)−1v
for all X = (X1, . . . , Xg) ∈ domsa

A(r), whenever A is a unital complex ∗-algebra. Given a
unital complex ∗-algebra A, a straightforward computation confirms Q∗0(X) = Q0(X∗)∗

for arbitrary X = (X1, . . . , Xg) ∈ Ag and furthermore that Q(X) ∈M2n(A) is invertible if
and only if Q0(X) ∈Mn(A) is so. Thus, in summary, we have domA(Q−1

0 ) = domA(Q−1).
Now, since ρ0 is a formal linear representation, we have

domsa
A(r) ⊆ domA(r) ⊆ domA(Q−1

0 ) = domA(Q−1)

and for each point X ∈ domsa
A(r) we get that

−v∗Q(X)−1v = −
(

1
2
u0 v∗0

)( 0 Q0(X)−1

(Q0(X)∗)−1 0

)(
1
2
u∗0
v0

)
= −1

2
u0Q0(X)−1v0 −

1

2
v∗0(Q0(X)∗)−1u∗0

= −1

2
u0Q0(X)−1v0 −

1

2

(
u0Q0(X)−1v0

)∗
=

1

2
r(X) +

1

2
r(X)∗

= r(X).

In the last step, we have used that r(X)∗ = r(X) holds according to Definition III.2.7,
since we have X = X∗ and r is supposed to be self-adjoint. This completes the proof. �

In Corollary III.2.47, we have shown that a pure linear representation of a given non-
commutative rational function r can be obtained from a formal linear representation of any
rational expression r that represents r. In combination with Algorithm III.2.45, this gave
in particular an alternative proof of Theorem III.2.29, where the existence of a pure linear
representation in the sense of Definition III.2.27 and Definition III.2.28 was asserted. Now,
since we have established in Theorem III.2.58 (where we supplemented Algorithm III.2.45
with the rule given in (III.14)) the existence of self-adjoint formal linear representations
for self-adjoint non-commutative rational expressions and since C (<x1, . . . , xg )> forms a
∗-algebra (with respect to the ∗-structure introduced in Lemma III.2.35), it is natural
to ask for self-adjoint counterparts of Corollary III.2.47 and Theorem III.2.29. This is
answered to the affirmative by the next corollary.

Corollary III.2.59. Let r ∈ C (<x1, . . . , xg )> be a non-commutative rational function in
the variables x = (x1, . . . , xg). Then the following statements hold true:

(i) The non-commutative rational function r is self-adjoint (i.e., satisfies r∗ = r)
with respect to the involution ∗ introduced in Lemma III.2.35 if and only if there
exists a non-commutative rational expression r ∈ RC(z) in formal variables
z = (z1, . . . , zg), which is self-adjoint in the sense of Definition III.2.7, such that
r is represented by r in the sense of Definition III.2.46.

(ii) If r is represented by some self-adjoint non-commutative rational expression r ∈
RC(z), then each self-adjoint formal linear representation ρ = (Q, v) of r induces
then by (v∗, Q(x), v) a pure linear representation of r in the sense of Definition
III.2.27 and Definition III.2.28.
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104 III.3. OPERATOR-VALUED NON-COMMUTATIVE RATIONAL EXPRESSIONS

In particular, each self-adjoint non-commutative rational function r admits a pure linear
representation ρ = (u,Q, v), which is self-adjoint in the sense that u = v∗ and Q = Q∗

are satisfied.

Proof. (i) Assume first that r ∈ C (<x )> is represented by some self-adjoint non-
commutative rational expression r ∈ RC(z). According to Lemma III.2.35, C (<x )> forms
a unital complex ∗-algebra, in which the variables x1, . . . , xg are self-adjoint. Since r is
supposed to represent r, Definition III.2.46 tells us that x ∈ domC (<x )>(r) is satisfied with
r(x) = r, and we infer from x = x∗ that even x ∈ domsa

C (<x )>(r) holds true. Furthermore,
since r is self-adjoint, Definition III.2.7 enforces r(x)∗ = r(x), so that in summary r = r∗

follows.

Conversely, let us assume that r is self-adjoint. In Corollary III.2.47, we have seen
that there exists r ∈ RC(z), such that r is represented by r. Let us consider the non-
commutative rational expression given by r̃ := 1

2
· (r + r∗). Lemma III.2.8 and the rules

of Definition III.2.3 tell us that for any unital complex ∗-algebra A
domA(r̃) = domA(r) ∩ domA(r∗) = domsa

A(r)

is satisfied with r̃(X) = 1
2
(r(X) + r(X)∗) for all X ∈ domA(r̃), so that r̃ is self-adjoint

according to Definition III.2.7. Furthermore, by applying the previous observation to
A = C (<x )>, we obtain that r̃ represents r.

(ii) Suppose that r is represented by some self-adjoint non-commutative rational expression
r ∈ RC(z) and let ρ = (Q, v) be any self-adjoint formal linear representation of r. We
have then x ∈ domsa

C (<x )>(r) with r = r(x) and so we see by Definition III.2.57 that x ∈
domC (<x )>(Q−1) holds, meaning that Q(x) is full over C〈x〉, with r = r(x) = −v∗Q(x)−1v.
The latter means that (v∗, Q(x), v) is a pure linear representation of r, as desired.

The additional assertion is an immediate consequence of (i), (ii), and Theorem III.2.58. �

III.3. Operator-valued non-commutative rational expressions

Anderson’s self-adjoint version of the linearization trick – after it was successfully applied
in [BMS13] for computing distributions of self-adjoint non-commutative polynomials in
freely independent variables – was generalized further in [BSS15] for studying even Brown
measures of arbitrary non-commutative polynomials in freely independent variables. For
that purpose, the authors provided an extension of Anderson’s approach, which can be
combined with the hermitization method as explained in Subsection I.3.2.

With an eye towards such applications, it is natural to ask, to which extend the theory
presented in the previous Section III.2 can be generalized to matrices of non-commutative
rational expressions and functions. Since most of these arguments even work in the more
general operator-valued setting, which arises roughly speaking when the role of the com-
plex numbers C is taken over by any other complex unital algebra B, we find it appropriate
to present this framework first; Section III.4 is then devoted to the matricial case.

III.3.1. Operator-valued rational expressions and their evaluations. Concep-
tually, an operator-valued non-commutative rational expression is obtained in the same
way as scalar-valued non-commutative rational expressions were obtained above, but with
the scalars C replaced by some unital complex algebra B. The formal definition, which
generalizes Definition III.2.1, reads as follows.
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Definition III.3.1. Let B be a unital complex algebra and let x = (x1, . . . , xg) be a
g-tuple of formal variables. A B-valued (non-commutative) rational expression in x is a
syntactically valid combination of

• elements b ∈ B and the variables x1, . . . , xg,
• the arithmetic operations +, ·, −1, and
• parentheses (, ).

In the following, the set of all B-valued non-commutative rational expressions in x will be
denoted by RB(x).

Like in the scalar-valued case, we suppose for B-valued rational expressions that brackets
are placed in such a way that they avoid any ambiguity concerning the order of sums and
products. Accordingly, also Remark III.2.2 translates naturally to the B-valued setting.

In Definition III.2.3, we introduced domains and evaluations of scalar-valued rational
expressions. Their generalization to the operator-valued level is the content of the next
definition.

Definition III.3.2. Let A be any unital complex algebra, in which B is unitally em-
bedded. For any B-valued non-commutative rational expression r in the formal variables
x = (x1, . . . , xg), we define its A-domain domA/B(r) together with its evaluation evX(r)
for any X = (X1, . . . , Xg) ∈ domA/B(r) by the following rules:

(i) For any b, we put domA/B(b) = Ag and evX(b) = b.
(ii) For i = 1, . . . , g, we put domA/B(xi) = Ag and evX(xi) = Xi.
(iii) If r1, r2 are B-valued rational expressions in x, we have

domA/B(r1 · r2) = domA/B(r1) ∩ domA/B(r2)

and

evX(r1 · r2) = evX(r1) · evX(r2).

(iv) If r1, r2 are B-valued rational expressions in x, we have

domA/B(r1 + r2) = domA/B(r1) ∩ domA/B(r2)

and

evX(r1 + r2) = evX(r1) + evX(r2).

(v) If r is a B-valued rational expression in x, we have

domA/B(r−1) = {X ∈ domA/B(r)| evX(r) is invertible in A}

and

evX(r−1) = evX(r)−1.

In the following, for any given B-valued rational expression r and each X ∈ domA/B(r),
we will abbreviate r(X) := evX(r).

We already introduced in Definition I.2.8 the unital complex algebra B〈x1, . . . , xg〉 of
B-valued non-commutative polynomials. Like in the scalar-valued case, B-valued non-
commutative polynomials should not be confused with B-valued non-commutative poly-
nomial expressions, which constitute for their part a subset PB(x) of RB(x). Let us give
now the precise definition.
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Definition III.3.3. Let B be a unital complex algebra and let x = (x1, . . . , xg) be a
g-tuple of formal variables. A B-valued (non-commutative) polynomial expression in x is
a syntactically valid combination of

• elements b ∈ B and the variables x1, . . . , xg,
• the arithmetic operations +, ·, and
• parentheses (, ).

In the following, the set of all B-valued non-commutative rational expressions in x will be
denoted by PB(x).

Note that we have PB(x) ⊂ RB(x) and domA/B(p) = Ag for each p ∈ PB(x) and any
unital complex algebra A, into which B unitally embeds.

Again, different elements p in PB(x) may represent the same B-valued non-commutative
polynomial p ∈ B〈x1, . . . , xg〉, where “represent” is understood in complete analogy to
the scalar-valued case. Since this is of no importance for our subsequent considerations,
we omit the details.

In Section III.4, we will discuss matrices of non-commutative rational expressions. Loosely
speaking, the main difference between matrix-valued non-commutative rational expres-
sions and matrices of non-commutative rational expressions is that for the latter the
formal variables should “commute” with scalar matrices. This peculiarity makes it neces-
sary to develop a more refined terminology for domains and evaluations. In a first step, we
generalize the notion of A-domains, which was introduced previously in Definition III.3.2.

Definition III.3.4. Let r be a B-valued non-commutative rational expression. Whenever
C ⊆ A ⊇ B are a unital inclusion of unital complex algebras C and A, then we define the
C\A-domain domC\A/B(r) of r by

domC\A/B(r) := Cg ∩ domA/B(r).

Remark III.3.5. When choosing B = Mn(C), we recover the important case of matrix-
valued rational expressions. In view of this circumstance, it is worthwhile to check some
particular matricial expression, which appeared before: though not mentioned there ex-
plicitly, the definition of a linear pencil Q of size n×n identifies Q and consequently Q−1

as Mn(C)-valued rational expressions – of course, a formally correct treatment requires
to insert brackets in order to avoid ambiguities, but since the relevant properties of Q do
not change with any placement of brackets, we omit them for reasons of simplicity. Thus,
we can obtain the domain domA(Q−1), in which we were interested before, by

domA(Q−1) = Ag ∩ domMn(A)/Mn(C)(Q
−1) = domA\Mn(A)/Mn(C)(Q

−1),

where A is seen as a subalgebra of Mn(A) by X 7→ X1n =

X 0
. . .

0 X

.

III.3.2. Operator-valued formal linear representations. In this subsection, we
want to generalize the concept of formal linear representations, which was developed in
the previous Subsection III.2.3 for scalar-valued non-commutative rational expressions, to
the case of B-valued non-commutative rational expressions. Such operator-valued formal
linear representations are defined pretty much in the same way as scalar-valued formal
linear representations, but we need to pay attention to some hidden particularities.
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To begin with, let us introduce B-valued (affine) linear pencils. Keeping in mind that
most B-valued concepts arise from their scalar-valued ancestors simply by replacing the
complex numbers by B, one is tempted to define a B-valued linear pencil (of size n×m)
in the variables x = (x1, . . . , xg) as an expression of the form

Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg

with matrices Q(0), Q(1), . . . , Q(g) ∈Mn×m(B). While most of the arguments would indeed
go through, it is not clear how an operator-valued version of Theorem III.2.58 could be
obtained. The problem is that the harmless-looking observation

(III.15) Q∗(X1, . . . , Xg) = Q(X∗1 , . . . , X
∗
g )∗

relating Q and its formal adjoint

Q∗ = (Q(0))∗ + (Q(1))∗x1 + · · ·+ (Q(g))∗xg,

which was used in the proof of Theorem III.2.58 for a scalar-valued affine linear pencil
Q, fails for B-valued affine linear pencils like above, since the non-commutative random
variables X1, . . . , Xg do not necessarily commute with elements from B.

One expedient could be to work instead with B-valued (affine) linear bi-pencils, which are
defined as

Q = Q(0) + A(1)x1B
(1) + · · ·+ A(g)xgB

(g)

with a matrix Q(0) ∈ Mn×m(B) and matrices A(j) ∈ Mn×kj(B) and B(j) ∈ Mkj×m(B) for
j = 1, . . . , g, where k1, . . . , kg are arbitrary integers. It is easy to see that property (III.15)
stays valid for B-valued linear bi-pencils over any unital complex ∗-algebra B, if the formal
adjoint of Q is defined by

Q∗ := (Q(0))∗ + (B(1))∗x1(A(1))∗ + · · ·+ (B(g))∗xg(A
(g))∗.

It is beyond all question that this would provide some very natural operator-valued ex-
tension of the notion of affine linear pencils. However, working with operator-valued affine
linear bi-pencils in a way similar to Definition III.2.41 turns out to be rather cumbersome,
especially with an eye towards the intended applications.

Therefore, we take up here a more pragmatic point of view: we regard B as a collection of
additional variables, which we treat on par with x1, . . . , xg. This idea is captured by the
following definition.

Definition III.3.6. Let B be a unital complex algebra and let x = (x1, . . . , xg) be a
g-tuple of formal variables.

(i) An expression of the form

Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg

with matrices Q(0) ∈ Mn×m(B) and Q(1), . . . , Q(g) ∈ Mn×m(C), with Mn×m(C)
viewed as a subset of Mn×m(B), is called B-valued affine linear pencil (of size
n×m) in x. Like in the scalar-valued case, we will mostly omit the term “affine”,
although for the seek of a formally clean terminology, an B-valued affine linear
pencil Q should be called linear pencil (of size n × m) in x only when the
condition Q(0) = 0 is satisfied; however, since B contributes only to Q(0), this
will anyway happen very rarely.
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(ii) If B-valued affine linear pencils Qk,l = Q
(0)
k,l +Q

(1)
k,lx1 + · · ·+Q

(g)
k,lxg of size nk×ml

are given for 1 ≤ k ≤ K and l ≤ l ≤ L, we write

Q =

Q1,1 . . . Q1,L

...
. . .

...
QK,1 . . . QK,L


for the B-valued affine linear pencil

Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg

of size (n1 + · · ·+ nK)× (m1 + · · ·+mL), which is represented by the matrices

Q(j) :=


Q

(j)
1,1 . . . Q

(j)
1,L

...
. . .

...

Q
(j)
K,1 . . . Q

(j)
K,L

 , for j = 1, . . . , g.

(iii) If a B-valued affine linear pencil Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg of size n×m
and matrices S ∈ Mn(C) and T ∈ Mm(C) are given, we denote by SQT the
B-valued affine linear pencil that is defined by

SQT := (SQ(0)T ) + (SQ(1)T )x1 + · · ·+ (SQ(g)T )xg.

(iv) If B is even a ∗-algebra and Q = Q(0) + Q(1)x1 + · · · + Q(g)xg a B-valued affine
linear pencil of size n×m, then Q∗ denotes the affine linear pencil of size m×n,
which is given by

Q∗ = (Q(0))∗ + (Q(1))∗x1 + · · ·+ (Q(g))∗xg.

Definition III.3.7. Let B be a unital complex algebra and let x = (x1, . . . , xg) be a
g-tuple of formal variables. Furthermore, we consider a unital complex algebra A, into
which B unitally embeds.

(i) Let Q = Q(0) + Q(1)x1 + · · · + Q(g)xg be an B-valued affine linear pencil of size
n ×m in the variables x. We define the evaluation Q(X) ∈ Mn×m(A) of Q at
some point X = (X1, . . . , Xg) ∈ Ag by

Q(X) := Q(0) +Q(1)X1 + · · ·+Q(g)Xg.

(ii) Let Q be a linear pencil of size n× n. We put

domA/B(Q−1) := {X ∈ Ag| Q(X) is invertible in Mn(A)}.

Remark III.3.8. Note that domA/B(Q−1) = domA\Mn(A)/Mn(B)(Q
−1), if we view Q−1 as

an Mn(B)-valued non-commutative rational expression (for an arbitrary but admissible
placement of brackets in Q).

Definition III.3.9. Let r be a B-valued rational expression in the formal variables x =
(x1, . . . , xg). A B-valued formal linear representation ρ = (u,Q, v) of r consists of

• an affine linear pencil

Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg

with matrices Q(0) ∈ Mn(B) and Q(1), . . . , Q(g) ∈ Mn(C) ⊆ Mn(B) of some
dimension n,
• a 1× n-matrix u over C ⊆ B,
• and a n× 1-matrix v over C ⊆ B,
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and it satisfies the following property:

For any unital complex algebra A in which B is unitally embedded, we
have that

domA/B(r) ⊆ domA/B(Q−1)

and it holds true for any (X1, . . . , Xg) ∈ domA/B(r) that

r(X1, . . . , Xg) = −uQ(X1, . . . , Xg)
−1v.

Algorithm III.2.45 extends immediately to the framework of B-valued rational expressions.
Its validity can be checked without any problems by repeating the arguments given in
Paragraph III.2.3.4.

Algorithm III.3.10. Let r be an B-valued rational expression in the formal variables
x = (x1, . . . , xg). A formal linear representation ρ = (u,Q, v) of r can be constructed by
using successively the following rules:

(i) For scalars b ∈ B and the variables xj, j = 1, . . . , g, B-valued formal linear
representations are given by

ρxj :=

((
0 1

)
,

(
xj −1
−1 0

)
,

(
0
1

))
and

ρb :=

((
0 1

)
,

(
b −1
−1 0

)
,

(
0
1

))
,

respectively.
(ii) If ρ1 = (u1, Q1, v1) and ρ2 = (u2, Q2, v2) are B-valued formal linear representa-

tions for the B-valued rational expressions r1 and r2, respectively, then ρ1 ⊕ ρ2

defined verbatim like in (III.11) gives a B-valued formal linear representation of
the non-commutative rational expression r1 + r2.

(iii) If ρ1 = (u1, Q1, v1) and ρ2 = (u2, Q2, v2) are B-valued formal linear representa-
tions for the B-valued rational expressions r1 and r2, respectively, then ρ1 � ρ2

defined verbatim like in (III.12) gives a B-valued formal linear representation of
the non-commutative rational expression r1 · r2.

(iv) If ρ = (u,Q, v) is a B-valued formal linear representation of r, then ρ−1 defined
verbatim like in (III.13) gives a B-valued formal linear representation of r−1.

Thus, we obtain the following operator-valued analogue of Theorem III.2.44.

Theorem III.3.11. Let B be a unital complex algebra. Each B-valued rational expression
has an B-valued formal linear representation in the sense of Definition III.3.9.

We conclude this subsection by the following definition, which slightly generalizes the
concept of B-valued formal linear representations as introduced in Definition III.3.9. Like
Definition III.3.4, by which we have extended the notion of domains, the refined termi-
nology of Definition III.3.12 will become important in Section III.4, where we talk about
matrices of non-commutative rational expressions.

Definition III.3.12. Let r be a B-valued non-commutative rational expression in the
formal variables x = (x1, . . . , xg) and suppose that C ⊆ A ⊇ B is any unital embedding
of unital complex algebra. A B-valued formal linear C\A-representation ρ = (u,Q, v) of
r consists of
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• an affine linear pencil

Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg

with matrices Q(0) ∈ Mn(B) and Q(1), . . . , Q(g) ∈ Mn(C) ⊆ Mn(B) of some
dimension n,
• a 1× n-matrix u over C ⊆ B,
• and a n× 1-matrix v over C ⊆ B

and it satisfies the following property:

We have domC\A/B(r) ⊆ domA/B(Q−1) and at each given point
(X1, . . . , Xg) ∈ domC\A/B(r) it holds true that

r(X1, . . . , Xg) = −uQ(X1, . . . , Xg)
−1v.

Remark III.3.13. Let r be a B-valued non-commutative rational expression in the for-
mal variables x = (x1, . . . , xg). Clearly, whenever we have a chain of unital embeddings
C1 ⊆ C2 ⊆ A ⊇ B of unital complex algebras, then each B-valued formal linear C2\A-
representation of r is automatically a B-valued formal linear C1\A-representation of r.
Furthermore, we note that a B-valued formal linear A\A-representation of r is noth-
ing else than a B-valued formal linear representation in the sense of Definition III.3.9.
Thus, in summary, Theorem III.3.11 guarantees the existence of a B-valued formal linear
C\A-representation of r for each unital embedding C ⊆ A ⊇ B of unital complex algebras.

III.3.3. Self-adjoint operator-valued formal linear representations. Let us
assume now that the unital complex algebra B is even a ∗-algebra. In this case, we
may introduce – like it was done in Definition III.2.7 for the case of scalar-valued non-
commutative rational expressions – the notion of self-adjoint B-valued non-commutative
rational expressions. This is the aim of the following definition.

Definition III.3.14. Let r be a B-valued non-commutative rational expression in the
formal variables x = (x1, . . . , xg).

(i) If A is a unital complex ∗-algebra, into which B unitally embeds, such that
also the ∗-structure is preserved, then we denote by domsa

A/B(r) the subset of
domA/B(r), which consists of all pointsX = (X1, . . . , Xg) ∈ domA/B(r) satisfying
X = X∗, where we put X∗ := (X∗1 , . . . , X

∗
g ) as before.

(ii) We call the B-valued rational expression r self-adjoint , if it satisfies the condition
r(X)∗ = r(X) for each X ∈ domsa

A/B(r), whenever A is a unital complex ∗-
algebra, into which B unitally embeds, such that the ∗-structure is preserved.

Also the notion of self-adjoint formal linear representations, which was introduced in
Definition III.2.57, can be carried over from the scalar-valued to the B-valued setting.
This is the content of the next definition.

Definition III.3.15. Let r be a self-adjoint B-valued rational expression. A self-adjoint
B-valued formal linear representation ρ = (Q, v) consists of

• an affine linear pencil

Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg

with self-adjoint matrices Q(0) ∈ Mn(B) and Q(1), . . . , Q(g) ∈ Mn(C) ⊆ Mn(B)
of some dimension n
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• and a n× 1-matrix v over C ⊆ B

and it satisfies the following property:

For any unital complex ∗-algebra A, into which B unitally embeds,
such that the ∗-structure is preserved, we have that

domsa
A/B(r) ⊆ domA/B(Q−1)

and it holds true for any (X1, . . . , Xg) ∈ domsa
A/B(r) that

r(X1, . . . , Xg) = −v∗Q(X1, . . . , Xg)
−1v.

In order to complete the analogy to the scalar-valued case, we should provide now some
counterpart of Theorem III.2.58. It is indeed the case that each self-adjoint B-valued
non-commutative rational expression possesses a self-adjoint B-valued formal linear rep-
resentation, but the proof of this statement can readily be formulated in a more refined
framework, which we prefer to present first.

Let us begin with the following variant of Definition III.3.14.

Definition III.3.16. Let r be a B-valued non-commutative rational expression in the
formal variables x = (x1, . . . , xg).

(i) Suppose that C ⊆ A ⊇ B is a unital embedding of unital complex ∗-algebras,
both preserving the respective ∗-structures. We denote by domsa

C\A/B(r) the sub-
set of domC\A/B(r), which consists of all points X = (X1, . . . , Xg) ∈ domC\A/B(r)
satisfying the condition X = X∗, where we put X∗ := (X∗1 , . . . , X

∗
g ) as before.

(ii) The B-valued rational expression r is called C\A-self-adjoint , if it satisfies the
condition r(X)∗ = r(X) for any X ∈ domsa

C\A/B(r), whenever C ⊆ A ⊇ B is a
unital embedding of unital complex ∗-algebras, both preserving the respective
∗-structures.

Remark III.3.17. Given a B-valued non-commutative rational expression r, then the
following statements are obviously equivalent:

(i) r is self-adjoint in the sense of Definition III.3.14.
(ii) r is A\A-self-adjoint in the sense of Definition III.3.16 for each unital complex
∗-algebra A, into which B unitally embeds, such that also the ∗-structure is
preserved.

(iii) r is C\A-self-adjoint in the sense of Definition III.3.16 for each unital embedding
C ⊆ A ⊇ B of unital complex ∗-algebras, both preserving the respective ∗-
structures.

Like Definition III.3.9 was generalized by Definition III.3.12, the next definition extends
Definition III.3.15.

Definition III.3.18. Let r be a self-adjoint B-valued rational expression and suppose
that C ⊆ A ⊇ B is any unital embedding of unital complex ∗-algebra, where both em-
beddings also preserve the respective ∗-structures. A self-adjoint B-valued formal linear
C\A-representation ρ = (Q, v) consists of

• an affine linear pencil

Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg
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with self-adjoint matrices Q(0) ∈ Mn(B) and Q(1), . . . , Q(g) ∈ Mn(C) ⊆ Mn(B)
of some dimension n
• and a n× 1-matrix v over C ⊆ B

and it satisfies the following property:

We have domsa
C\A/B(r) ⊆ domA/B(Q−1) and it holds true for any given

point (X1, . . . , Xg) ∈ domsa
C\A/B(r) that

r(X1, . . . , Xg) = −v∗Q(X1, . . . , Xg)
−1v.

With the following lemma, we adapt now the crucial argument in the proof of Theorem
III.2.58 to the setting described in Definition III.3.12 and the previous Definition III.3.18.

Lemma III.3.19. Let r be a B-valued non-commutative rational expression in the formal
variables x = (x1, . . . , xg) and suppose that C ⊆ A ⊇ B is any unital embedding of unital
complex ∗-algebra, where both of these embeddings preserve the respective ∗-structures. If
r is C\A-self-adjoint in the sense of Definition III.3.16, then any B-valued formal linear
C\A-representation ρ0 = (u0, Q0, v0) of r in the sense of Definition III.3.12 induces by

(III.16) ρ = (Q, v) :=

((
0 Q∗0
Q0 0

)
,

(
1
2
u∗0
v0

))
a self-adjoint B-valued formal linear C\A-representation ρ of the B-valued non-
commutative rational expression r in the meaning of Definition III.3.18.

Proof. Apart from the sightly different terminology, the proof proceeds mainly
along the same lines as the proof of Theorem III.2.58. Given any B-valued formal lin-
ear C\A-representation ρ0 = (u0, Q0, v0) of r, say of size n × n, we must prove that
ρ = (Q, v) as defined in (III.16) yields indeed a self-adjoint B-valued formal linear C\A-
representation of r. First of all, in view of Definition III.3.6, it is obviously the case
that the linear pencil Q consists only of self-adjoint matrices. Thus, it only remains to
check that domsa

C\A/B(r) ⊆ domA/B(Q−1) and r(X) = −v∗Q(X)−1v for any given point
X = (X1, . . . , Xg) ∈ domsa

C\A/B(r). With our terminology of B-valued affine linear pencils,
it is easy to check that like in the scalar-valued case Q∗0(X) = Q0(X∗)∗ holds for arbitrary
X = (X1, . . . , Xg) ∈ Ag. By a straightforward computation we can furthermore confirm
that Q(X) ∈ M2n(A) is invertible if and only if Q0(X) ∈ Mn(A) is so. Thus, in sum-
mary, we have domA/B(Q−1) = domA/B(Q−1

0 ). Now, since ρ0 is a B-valued formal linear
representation, we have

domsa
C\A/B(r) ⊆ domA/B(Q−1

0 ) = domA/B(Q−1)

and for each point X ∈ domsa
C\A/B(r) we get that

−v∗Q(X)−1v = −
(

1
2
u0 v∗0

)( 0 Q0(X)−1

(Q0(X)∗)−1 0

)(
1
2
u∗0
v0

)
= −1

2
u0Q0(X)−1v0 −

1

2
v∗0(Q0(X)∗)−1u∗0

= −1

2
u0Q0(X)−1v0 −

1

2

(
u0Q0(X)−1v0

)∗
=

1

2
r(X) +

1

2
r(X)∗

= r(X).

112



CHAPTER III. LINEARIZATION 113

In the last step, we have used that r(X) = r(X)∗ holds according to Definition III.3.16,
since we have X = X∗ and since r was assumed to be C\A-self-adjoint. �

The following theorem states the announced B-valued analogue of Theorem III.2.58 and
provides some refined observations, which will become important in Section III.4.

Theorem III.3.20.

(i) Let C ⊆ A ⊇ B be any unital embedding of unital complex ∗-algebras, where
both of these embeddings are supposed to preserve the respective ∗-structures.
Then any C\A-self-adjoint B-valued non-commutative rational expression in the
formal variables x = (x1, . . . , xg) admits a self-adjoint B-valued formal linear
C\A-representation.

(ii) Let r be any B-valued non-commutative rational expression in the formal vari-
ables x = (x1, . . . , xg). Then there exists ρ = (Q, v), such that ρ is a self-adjoint
B-valued formal linear C\A-representation, whenever C ⊆ A ⊇ B are unital
embeddings of unital complex ∗-algebras, where both of these embeddings are
supposed to preserve the respective ∗-structures, and r happens to be C\A-self-
adjoint.

(iii) In particular, any self-adjoint B-valued rational expression admits a self-adjoint
B-valued formal linear representation in the sense of Definition III.3.15.

Proof. (i) Let r be an arbitrary B-valued non-commutative rational expression in
x. In Theorem III.3.11, we have proven the existence of a B-valued formal linear rep-
resentation ρ0 = (u0, Q0, v0) for r. Suppose now that r is C\A-self-adjoint. Since the
matrices in the affine linear pencil Q0 are not necessarily self-adjoint and since also the
condition u0 = v∗0 cannot be taken for granted, the only issue that remains is how to
find the desired self-adjoint formal linear C\A-representation. By Definition III.3.15, the
given B-valued formal linear representation ρ0 is in particular a formal B-valued linear
C\A-representation in the sense of Definition III.3.12, for which due to Lemma III.3.19
a self-adjoint B-valued formal linear C\A-representation ρ exists; this ρ = (Q, v) was
defined explicitly in (III.16). This concludes the proof of the first assertion.

(ii) The second statement follows immediately from the proof of (i), because the universal
construction of ρ in (III.16) was based on a B-valued formal linear representation ρ0. Thus,
it follows by the same arguments as above that this fixed ρ forms a self-adjoint B-valued
formal linear C\A-representation of r, whenever r happens to be C\A-self-adjoint.

(iii) The statement of Item (iii) is contained in that of Item (ii). We only must note

• that r being self-adjoint means according to Remark III.3.17 simply that r is
A\A-self-adjoint for any unital complex ∗-algebra A.
• that ρ being a self-adjoint B-valued formal linear A\A-representation for any

unital complex ∗-algebra A means that ρ is a self-adjoint B-valued formal linear
representation in the sense of Definition III.3.15.

This completes the proof. �

III.4. Matrices of non-commutative rational expressions

How does all this relate now to matrices of non-commutative rational expressions? As we
already pointed out in Remark III.3.5, the case of matrix-valued non-commutative rational
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expressions is contained in the considerations of the previous Section III.3 for the special
choice B = Mn(C). However, matrix-valued non-commutative rational expressions should
not be confused with the closely related but still different objects, which are matrices
of non-commutative rational expressions. The main difference is that matrices of non-
commutative rational expressions are built on some inherent commutativity between the
formal variables and the matricial coefficients, while any possible relation is suppressed
when working with non-commutative matrix-valued rational expressions.

III.4.1. Matrices of rational expressions and their evaluations. This crucial
difference already shows up if one compares matrix-valued non-commutative polynomials
and matrices of non-commutative polynomials. Here, it can simply be explained by the fact
that Mn(C)〈x1, . . . , xg〉 and Mn(C〈x1, . . . , xg〉) ∼= Mn(C)⊗C〈x1, . . . , xg〉 are by definition
non-isomorphic algebras. However, if we distinguish for a moment the formal variables in
both algebras, we can easily find a canonical epimorphism

Mn(C)〈x1, . . . , xg〉 →Mn(C〈x1, . . . , xg〉),

which is uniquely determined by the conditions that

1n 7→ 1n and xi 7→ xi1n =

xi 0
. . .

0 xi

 for i = 1, . . . , g.

This means that for each n × n matrix (pi,j(x))ni,j=1 of non-commutative polyno-
mials belonging to C〈x1, . . . , xg〉, there exists a canonical lifting to a matrix-valued
non-commutative polynomial P ∈ Mn(C)〈x1, . . . , xg〉, such that P (x11n, . . . , xg1n) =
(pi,j(x))ni,j=1. This observations will guide us when dealing with matrices of non-

commutative rational expressions , i.e. square1 matrices over RC(x1, . . . , xg), although
RC(x1, . . . , xg) does not carry an algebra structure.

Definition III.4.1. Let r = (ri,j)
n
i,j=1 be a matrix of non-commutative rational expres-

sions belonging to RC(x1, . . . , xg).

(i) If C is a unital complex algebra, we put

domC(r) :=
n⋂

i,j=1

domC(ri,j)

and r(X) := (ri,j(X))ni,j=1 for any given X ∈ domC(r).
(ii) If C is a unital complex ∗-algebra, then we put

domsa
C (r) :=

n⋂
i,j=1

domsa
C (ri,j).

(iii) We call r self-adjoint , if r(X)∗ = r(X) holds in Mn(C) for any unital complex
algebra C and any X ∈ domsa

C (r).

1Some of the arguments given below would even work for rectangular matrices, but for the seek of
simplicity, we restrict to the for us relevant case of square matrices.
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Lemma III.4.2. Let r = (ri,j)
n
i,j=1 be a matrix of non-commutative rational expressions

belonging to RC(x1, . . . , xg). We denote by (ei,j)
n
i,j=1 the canonical matrix-units in Mn(C).

Then (for any fixed order of summation)

r =
n∑

i,j=1

ei,jri,j(x)

yields some element in RMn(C)(x1, . . . , xg), which satisfies the following two properties:

(i) For any unital complex algebra C, we have

domC(r) = domC\Mn(C)/Mn(C)(r)

and r(X) = r(X) holds for any X ∈ domC(r).
(ii) The matrix r is self-adjoint in the sense of Definition III.4.1 if and only if r is
C\Mn(C)-self-adjoint for any unital complex ∗-algebra C.

Proof. Let us point out that each r ∈ RC(x1, . . . , xg) induces naturally r(x) ∈
RMn(C)(x1, . . . , xg), after identifying C with C1n ⊂ Mn(C). The distinction between the
formal variables x = (x1, . . . , xg) and x = (x1, . . . , xg) helps us to separate the two
meanings of r without using different letters for them. Keeping this in mind, on easily
sees that domC\Mn(C)/Mn(C)(r(x)) = domC(r) holds for any r ∈ RC(x1, . . . , xg). Thus, we
may derive by the defining properties of domMn(C)/Mn(C)(·) that

domMn(C)/Mn(C)(r(x)) =
n⋂

i,j=1

domMn(C)/Mn(C)(ri,j(x))

and hence, after intersecting both sides with Cg, that

domC\Mn(C)/Mn(C)(r(x)) =
n⋂

i,j=1

domC\Mn(C)/Mn(C)(ri,j(x)) =
n⋂

i,j=1

domC(ri,j) = domC(r),

as we claimed in (i). Clearly, if X ∈ domC(r) is given, we also have

r(X) = (ri,j(X))ni,j=1 =
n∑

i,j=1

ei,jri,j(X) = r(X).

Furthermore, according to Definition III.4.1, the matrix r is self-adjoint if and only if
r(X) = r(X)∗ holds for any unital complex ∗-algebra C and any X ∈ domsa

C (r). Because
domsa

C (r) = domsa
C\Mn(C)/Mn(C)(r) and

r(X) =
n∑

i,j=1

ei,jri,j(X) = r(X),

the latter condition is equivalent to r being C\Mn(C)-self-adjoint for any unital complex
∗-algebra C. This proves (ii). �

III.4.2. Formal linear representations of matrices of rational expressions.
In this subsection, we want to generalize the notion of formal linear representations from
Subsection III.2.3 to the present setting of matrices of non-commutative rational expres-
sions.
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Definition III.4.3. Let r be a k × k-matrix of non-commutative rational expressions in
the formal variables x = (x1, . . . , xg). A formal linear representation ρ = (u,Q, v) of r
consists of

• an affine linear pencil Q of size n× n,
• a k × n-matrix u over C,
• and a n× k-matrix v over C,

and it satisfies the following property:

For any unital complex algebra C, we have that

domC(r) ⊆ domC(Q
−1)

and it holds true for any (X1, . . . , Xg) ∈ domC(r) that

r(X1, . . . , Xg) = −uQ(X1, . . . , Xg)
−1v.

In analogy to Theorem III.2.44, we claim the following.

Theorem III.4.4. For each k×k matrix r of non-commutative rational expressions in the
formal variables x = (x1, . . . , xg) there exists a formal linear representation ρ = (u,Q, v)
in the sense of Definition III.4.3.

Before proceeding to the proof, let us treat the self-adjoint case first.

Definition III.4.5. Let r be a self-adjoint k × k matrix of non-commutative rational
expressions in the formal variables x = (x1, . . . , xg). A self-adjoint formal linear represen-
tation ρ = (Q, v) of r consists of

• an affine linear pencil

Q = Q(0) +Q(1)x1 + · · ·+Q(g)xg

for self-adjoint matrices Q(0), Q(1), . . . , Q(g) ∈Mn(C) of some dimension n
• and a n× k-matrix v over C

and it satisfies the following property:

For any unital complex ∗-algebra C, we have that

domsa
C (r) ⊆ domA(Q−1)

and it holds true for any (X1, . . . , Xg) ∈ domsa
C (r) that

r(X1, . . . , Xg) = −v∗Q(X1, . . . , Xg)
−1v.

We obtain the following analogue of Theorem III.2.58.

Theorem III.4.6. Any k × k matrix r of non-commutative rational expressions in the
formal variables x = (x1, . . . , xg), which is self-adjoint in the sense of Definition III.4.1,
admits a self-adjoint formal linear representation ρ = (Q, v) in the sense of Definition
III.4.5.

Proof of Theorem III.4.4 and of Theorem III.4.6. Given any k× k matrix r
of non-commutative rational expressions in the formal variables x = (x1, . . . , xg), then
Lemma III.4.2 tells us that we can find some Mk(C)-valued non-commutative rational
expression r in x, such that for any unital complex algebra C the conditions domC(r) =
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domC\Mk(C)/Mk(C)(r) and r(X) = r(X) at any point X ∈ domC(r) = domC\Mk(C)/Mk(C)(r)
are satisfied.

(1) Let us first prove Theorem III.4.4. For the Mk(C)-valued non-commutative rational
expression r, we can construct according to Theorem III.3.11 some Mk(C)-valued formal
linear representation ρ = (u,Q, v) of r. By Definition III.3.9, we know (if we chose A =
Mk(C)) that domMk(C)/Mk(C)(r) ⊆ domMk(C)(Q

−1) and r(X) = −uQ(X)−1v for any X ∈
domMk(C)/Mk(C)(r) holds. Combining this with the properties of r, we see that

domC(r) = domC\Mk(C)/Mk(C)(r) ⊆ domMk(C)(Q
−1)

and for any X ∈ domC(r) that

r(X) = r(X) = −uQ(X)−1v.

Since C was arbitrarily chosen, this means in the terminology of Definition III.4.3, that ρ
forms a formal linear representation of r. Note that Q is some Mk(C)-valued affine linear
pencil of size n× n and can thus be naturally identified with a scalar-valued affine linear
pencil of size (nk) × (nk). Similarly, u and v can be seen as row and column vectors
over Mk(C) and can thus be identified with matrices in Mk×(nk)(C) and M(nk)×k(C),
respectively.

(2) For proving Theorem III.4.6, we use instead Item (ii) of Theorem III.3.20. This tells
us that there exists a universal ρ = (Q, v), such that ρ is a self-adjoint Mk(C)-valued
formal linear C\A-representation, whenever C ⊆ A ⊇ Mk(C) are unital embeddings of
unital complex ∗-algebras, where both of these embeddings are supposed to preserve
the respective ∗-structures, and r happens to be C\A-self-adjoint. Since the statement
in Item (ii) of Lemma III.4.2 rephrases our assumption that r is self-adjoint into the
statement that r is C\Mk(C)-self-adjoint for any unital complex ∗-algebra C, we may
conclude that ρ is a self-adjoint Mk(C)-valued formal linear C\Mk(C)-representation
for any unital complex ∗-algebra C. In such cases, Definition III.3.18 tells us that
domsa

C\Mk(C)/Mk(C)(r) ⊆ domMk(C)/Mk(C)(Q
−1) and r(X) = −v∗Q(X)−1v holds true for any

X ∈ domsa
C\Mk(C)/Mk(C)(r). Combining this with the properties of r, yields

domsa
C (r) = domsa

C\Mk(C)/Mk(C)(r) ⊆ domMk(C)/Mk(C)(Q
−1)

and, for any X ∈ domsa
C (r), that

r(X) = r(X) = −v∗Q(X)−1v.

Since C was arbitrarily chosen, this means in the terminology of Definition III.4.5, that
ρ forms a self-adjoint formal linear representation of r. We note that Q and v (regarded
as a linear pencil and a vector over Mk(C), respectively), naturally induce a self-adjoint
formal linear representation of r in the sense of Definition III.4.5. �

III.4.3. Regular rational expressions and functions. In this section, we will
specialize our discussion to the case of regular non-commutative rational expressions and
functions, i.e. on non-commutative rational expressions and functions, whose evaluation
at zero is well-defined.

Definition III.4.7.

(i) A non-commutative rational expressions r in non-commuting variables x1, . . . , xg
is called regular (at 0), if (0, . . . , 0) ∈ domM(C)(r).
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(ii) A non-commutative rational function r ∈ C (<x1, . . . , xg )> is called regular (at
0), if there exists a regular rational expression r in the variables x1, . . . , xg,
which represents r in the sense of Definition III.2.46. According to Proposition
III.2.48, this is equivalent to saying that the equivalence class of r with respect
to M(C)-evaluation equivalence is r.

For regular non-commutative rational functions, there exists besides the concept of pure
linear representations by Cohn and Reutenauer [CR99], which we presented in Paragraph
III.2.2.4, another concept in the same spirit, which goes under the name non-commutative
descriptor realizations and originates in the work of Schützenberger [Sch61] on recog-
nizable rational series; see [Kal63, Kal76, HMV06, KV09, KV12]. The following
definitions are taken from [HMV06]; see also [HMS15].

Definition III.4.8. By a d1 × d2-descriptor system (of size d× d), we mean a collection
r = (D;C, J,A,B), where

• A = (A1, . . . , Ag) is a g-tuple of matrices A1, . . . , Ag ∈Md(C),
• B ∈Md×d2(C) and C ∈Md1×d(C),
• D ∈Md1×d2(C) a matrix, sometimes called the feed through term,
• and J is a d× d signature matrix , i.e. a matrix J ∈Md(C), which satisfies both
J = J∗ and J2 = 1.

For any unital complex algebra A, we put

domA(r) := {X ∈ Ag| J − LA(X) is invertible in Md(A)},
where LA stands for the linear pencil given by LA := A1z1 + · · ·+Agzg in formal variables
z = (z1, . . . , zg).

Remark III.4.9. Given any d1 × d2-descriptor system r = (D;C, J,A,B), say of size
d × d, then the matrix Q := J − LA(x) ∈ Md(C〈x1, . . . , xg〉) must be full. Indeed, if we
assume to the contrary that Q is not full, we can find according to Definition III.2.23
rectangular matrices R1 ∈ Md×(d−1)(C〈x1, . . . , xg〉) and R2 ∈ M(d−1)×d(C〈x1, . . . , xg〉),
such that Q = R1R2 holds. Consider now the homomorphism ev0 : C〈x1, . . . , xg〉 → C
given by evaluation at 0, i.e. ev0 is as a homomorphism determined by the conditions
ev0(1) = 1 and ev0(xj) = 0 for j = 1, . . . , g. Since this homomorphism ev0 extends

naturally to a family (ev
(d1×d2)
0 )d1,d2≥0 of linear mappings

ev
(d1×d2)
0 : Md1×d2(C〈x1, . . . , xg〉)→Md1×d2(C), (Pi,j)i=1,...,d1

j=1,...,d2

7→ (ev0(Pi,j))i=1,...,d1
j=1,...,d2

,

which are clearly compatible with matrix multiplication, we see that

J = ev
(d×d)
0 (Q) = ev

(d×d)
0 (R1R2) = ev

(d×(d−1))
0 (R1) ev

((d−1)×d)
0 (R2) = R′1R

′
2

with scalar matrices R′1 := ev
(d×(d−1))
0 (R1) ∈ Md×(d−1)(C) and R′2 := ev

((d−1)×d)
0 (R2) ∈

M(d−1)×d(C). This, of course, contradicts the invertibility of J in Md(C), so that our
assumption turns out to be wrong, meaning that Q must be full. Theorem III.2.24 and in
particular the comments collected in Remark III.2.25 show that

r(x) := D + C(J − LA(x))−1B

forms a d1 × d2-matrix of regular non-commutative rational functions in the sense of
Definition III.4.7.

This justifies the following definition.
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Definition III.4.10. Let r ∈Md1×d2(C (<x1, . . . , xg )>) be a d1× d2-matrix of regular non-
commutative rational functions in the variables x = (x1, . . . , xg). A (non-commutative)
descriptor realization means a d1 × d2-descriptor system r = (D;C, J,A,B), such that

r = r(x) = D + C(J − LA(x))−1B

holds over the free field C (<x1, . . . , xg )>; note that, in order to simplify the terminology,
we will often refer to

r(x) = D + C(J − LA(x))−1B with LA(x) = A1x1 + · · ·+ Agxg

as the descriptor realization of r. A non-commutative descriptor realization is called monic,
if we have J = 1. In the square case d1 = d2, a non-commutative descriptor realization
is called self-adjoint , if B = C∗ holds and if the matrices A1, . . . , Ag and D are all self-
adjoint.

Like before, the notion of minimality singles out some special descriptor realizations among
all descriptor realizations of a given matrix of non-commutative rational functions.

Definition III.4.11. A descriptor realization r of r like in Definition III.4.10 is called

(i) controllable, if the controllable space

S = span
{

(JAi1) · · · (JAik)JBv
∣∣ k ≥ 0, 1 ≤ i1, . . . , ik ≤ g, v ∈ Cd2

}
is all of Cd;

(ii) observable, if the observable space

Q =
{
v ∈ Cd

∣∣ ∀k ≥ 0, 1 ≤ i1, . . . , ik ≤ g : C(JAi1) · · · (JAik)v = 0
}

is {0};
(iii) minimal , if r is both controllable and observable.

Note that minimality is defined here in terms of two abstract properties, namely control-
lability and observability. Algorithm III.4.15 below shows that any descriptor realization,
which is not both controllable and observable, can be cut down to some descriptor realiza-
tion of smaller size. Hence, any descriptor realization of minimal size must be controllable
and observable, and hence minimal in the sense of the previous Definition III.4.10. One
would actually expect that the converse – even though not obvious – is also true, but as it
is explained in [HMV06, Section 4.1.1.], there are controllable and observable descriptor
realizations, which do not have minimal size. The problem is that descriptor realizations
may have non-zero feed through term D: varying D gives an additional degree of freedom
to minimize the size, while minimality in the sense of Definition III.4.11 concerns the
class of descriptor realizations with fixed feed through term D. However, given two de-
scriptor realizations of the same scalar-valued non-commutative rational function, which
are minimal in the sense of Definition III.4.11, then their dimensions differ at most by
one. Furthermore, if we stay inside the class of descriptor realizations with feed through
term D = 0, then the two notions of minimality coincide; see also [Vol15], where a more
general setting is discussed.

Remark III.4.12. Observability can be expressed as controllability for the adjoint system.
Indeed, given a descriptor realization

r(x) = D + C(J − LA(x))−1B with LA(x) = A1x1 + · · ·+ Agxg,
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with the conventions laid down in Definition III.4.10, the adjoint descriptor realization
looks like

r
∗(x) = D∗ +B∗(J − LA∗(x))−1C∗ with LA∗(x) = A∗1x1 + · · ·+ A∗gxg.

The controllability space S∗, by definition, is given as

S∗ = span
{

(JA∗i1) · · · (JA
∗
ik

)JC∗v
∣∣ k ≥ 0, 1 ≤ i1, . . . , ik ≤ g, v ∈ Cd1

}
and we may observe that (S∗)⊥ = Q, where Q denotes the observable space of r, i.e.

Q =
{
v ∈ Cd

∣∣ ∀k ≥ 0, 1 ≤ i1, . . . , ik ≤ g : C(JAi1) · · · (JAik)v = 0
}
.

For seeing this, we introduce the index set I = {(i1, . . . , ik)| k ≥ 0, 1 ≤ i1, . . . , ik ≤ g}
and for each i = (i1, . . . , ik) ∈ I the matrix T(i1,...,ik) := C(JAi1) · · · (JAik) (where the
value for i = ∅ in the case k = 0 is understood as T∅ = C). Since J is invertible and since
for any i ∈ I

JT ∗(i1,...,ik) = J(JAik)
∗ · · · (JAi1)∗C∗ = J(A∗ikJ) · · · (A∗i1J)C∗ = (JA∗ik) · · · (JA

∗
i1

)JC∗

holds, we may write S∗ =
∑

i∈I ran(T ∗i ) and Q =
⋂
i∈I ker(Ti), which makes the assertion

obvious. Likewise, controllability is the same as observability for the adjoint system.

The next lemma collects from [HMV06] some basic facts about descriptor realizations.
Note that the statements below are formulated in the complex case, whereas the version
appearing in [HMV06] covers the real case.

Lemma III.4.13 (Lemma 4.1 in [HMV06]).

(i) Any descriptor realization determines a matrix of regular non-commutative ra-
tional functions.

Conversely, each matrix r of regular non-commutative rational functions,
has a minimal descriptor realization (which could be taken to be monic) with
feed through term D = 0.

Moreover, any two monic minimal descriptor realizations

r =D + C(1− LA(x))−1B

r̃ =D + C̃(1− LÃ(x))−1B̃,

for r with the same feed through term are similar via a unique similarity trans-
form, where a similarity transform means an invertible matrix S satisfying

(III.17) SAj = ÃjS for j = 1, . . . , g, SB = B̃, and C = C̃S.

(ii) Any matrix of regular non-commutative rational functions, which admits a self-
adjoint descriptor realization, is self-adjoint2.

(iii) If r is a self-adjoint matrix of regular non-commutative rational functions, then
r has a minimal descriptor realization, which is self-adjoint as well.

These statements are translations of their real counterparts given in [HMV06, Lemma
4.1]. Since it is straightforward, how the proof for the real case goes over to the complex
case, we omit the details here. However, a comment on the statement in Item (iii) of
Lemma III.4.13 is in order.

2Recall that Lemma III.2.35 (see also Lemma III.2.36) established the existence of a canonical invo-
lution ∗ on the free field C (<x1, . . . , xg )>.

120



CHAPTER III. LINEARIZATION 121

Remark III.4.14. The statement of Item (iii) is quite remarkable, as it significantly
improves the construction (III.14), which was given in the proof of Theorem III.2.58 and
which doubled the size of the given formal linear representation by passing to a self-
adjoint one. The proof of Item (iii) in the real version presented in [HMV06] relies on
[HMV06, Lemma 4.2]. In order to convince the reader that the complex counterpart is
straightforward, we sketch their construction: suppose that

r = D + C(1− LA(x))−1B

is a monic descriptor realization of some self-adjoint non-commutative rational function r,
which satisfies D = D∗ and which is minimal. Then there exists a unique complex matrix
S, such that S is both self-adjoint and invertible and satisfies

SAjS
−1 = A∗j and SB = C∗ for j = 1, . . . , g.

If we write S = RJR∗ with a signature matrix J and some invertible matrix R, then

r̃ = D + C̃(J − LÃ(x))−1C̃∗

with

C̃ := C(R−1)∗ and Ãj := JR∗Aj(R
−1)∗ for j = 1, . . . , g

forms a self-adjoint descriptor realization of r. For proving these assertions, one considers

r
∗ = D +B∗(1− LA∗(x))−1C∗,

which gives another monic descriptor realization of r as r was assumed to be self-adjoint.
According to Item (i), the desired matrix S is then given as the unique similarity transform
between r and r

∗. The fact, that this matrix S is self-adjoint, follows by uniqueness of S,
since also S∗ gives a similarity transform between r and r

∗. Finally, since r̃ has the same
size as the initial minimal descriptor realization r, it must be minimal as well.

A construction from classical one variable system theory, which dates back at least to
Kalman [Kal63], also works well in this much more general context, cf. [BGM05]. It is
that of cutting down the descriptor realization of a rational expression r to controllability
and observability spaces thereby obtaining a minimal realization (whose existence was
claimed in Item (i) of Lemma III.4.13 above). This results in a decomposition like in
Theorem III.2.38. Accordingly, the following construction can be seen as an algorithmic
version of Theorem III.2.38 for the regular case.

Algorithm III.4.15. Given any descriptor realization

r = D + C(J − LA(x))−1B with LA(x) = A1x1 + · · ·+ Agxg,

of some matrix r of non-commutative rational functions in C (<x1, . . . , xg )>. Cutting down
r to a minimal descriptor realization proceeds as follows.

Step 0 First of all, we rewrite our given descriptor realization r in monic form as

r̃ = D + C(1− LJA(x))−1(JB) with LJA(x) = (JA1)x1 + · · ·+ (JAg)xg.

Note that, on the level of matrix-valued rational expressions, these are different
descriptor realizations, but over the free field, they represent the same matrix of
non-commutative rational functions r. Moreover, the controllability and observ-
ability spaces for r and r̃ are the same.
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122 III.5. EVALUATIONS OF NON-COMMUTATIVE RATIONAL FUNCTIONS

Step 1 Next, we cut down r̃ to its controllability space S: with respect to the subspace
decomposition Cd = S + S⊥, the system of matrices in the monic descriptor
realization r̃ has the block decomposition

C =
(
Ĉ C2

)
, JA =

(
Â A12

0 A22

)
, and JB =

(
B̂
0

)
Note that by definition of S, the range of JB is contained in S and that each
JAi leaves S invariant. Thus, we get a new descriptor realization

r̂ = D + Ĉ(1− LÂ(x))−1B̂ with LÂ(x) = Â1x1 + · · ·+ Âgxg

of r, which is controllable by construction.
Step 2 Finally, since the controllable descriptor realization r̂ obtained in Step 1 may

not be observable, we repeat the dual of the construction of Step 1 on r̂. More
precisely, we consider the adjoint system

r̂
∗ = D∗ + B̂∗(1− LÂ∗(x))−1Ĉ∗ with LÂ∗(x) = Â∗1x1 + · · ·+ Â∗gxg

and make it controllable by cutting down to its controllability space Ŝ∗, which
agrees with Q̂⊥. Thus, with respect to the decomposition S = Q̂+Q̂⊥, the system
of matrices in r̂ decomposes as

B̂∗ =
(
B̂∗1 B̌∗

)
, Â∗ =

(
Â∗11 0

Â∗12 Ǎ∗

)
, and Ĉ∗ =

(
0
Č∗

)
.

This yields a controllable descriptor realization

ř
∗ = D∗ + B̌∗(1− LǍ∗(x))−1Č∗ with LǍ∗(x) = Ǎ∗1x1 + · · ·+ Ǎ∗gxg,

which represents the same non-commutative rational function as r̂
∗. Thus, the

adjoint system

ř = D + Č(1− LǍ(x))−1B̌ with LǍ(x) = Ǎ1x1 + · · ·+ Ǎgxg,

with

Ĉ =
(
0 Č

)
, Â =

(
Â11 Â12

0 Ǎ

)
, and B̂ =

(
B̂1

B̌

)
,

which represents r as r̂ does, is observable. Since controllability was not affected
by this procedure, it results in a minimal (monic) descriptor realization ř of r.

Combining Step 1 and Step 2, the matrices appearing in the descriptor realization r̃ have
a block decomposition

C =
(
0 Č C2

)
, JA =

Â11 Â12 A1
12

0 Ǎ A2
12

0 0 A22

 , and JB =

B̂1

B̌
0

 ,

with respect to the decomposition Cd = Q̂+ Q̂⊥ + S⊥.

III.5. Evaluations of non-commutative rational functions

Although we will mostly work with non-commutative rational expressions instead of non-
commutative rational functions, the construction of the free field raises an interesting
question, which is also of great importance for our subsequent considerations:
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Given any non-commutative rational expression r, we know that we
can compute its evaluation r(X) at any point X belonging to its A-
domain. Is there also a well-defined evaluation for non-commutative
rational functions?

First of all, we observe that (like in the commutative world) passing from one represen-
tative of a rational function to another one typically changes the domain. Correspond-
ingly, “evaluation of a rational function r” can only mean evaluation of some of its rep-
resentatives r. Recall from Definition III.2.46 that a non-commutative rational function
r in C (<x1, . . . , xg )> is said to be represented by a non-commutative rational expression
r ∈ RC(z1, . . . , zg), if the conditions (x1, . . . , xg) ∈ domC (<x1,...,xg )>(r) and r(x1, . . . , xg) = r
are both satisfied. Alternatively, in the spirit of Paragraph III.2.2.2, we can view r as an
equivalence class [r] of non-degenerate non-commutative rational expressions with respect
to M(C)-evaluation equivalence, but we have seen in Proposition III.2.48 that r represents
r if and only if r is non-degenerate and r = [r] holds. Since In this sense, it is natural to
put

domA(r) :=
⋃

r represents r

domA(r).

Nevertheless, it is not clear that we can introduce a well-defined evaluation of r on
domA(r). In fact, this boils down to the question, whether two non-commutative rational
expressions r1 and r2, which both represent the same non-commutative rational function,
are A-evaluation equivalent.

III.5.1. Stably finite algebras. It is certainly not surprising – although maybe
not obvious at first sight – that this fails for general algebras A. Let us look at some
prototypical example.

Example III.5.1. Consider the two rational expressions r1, r2 ∈ RC(z1, z2) given by

r1 = z1 · ((z2 · z1)−1 · z2) and r2 = 1.

Clearly, for any unital complex algebra A, we have

domA(r1) = {(X1, X2) ∈ A2| X2X1 is invertible in A}

and domA(r2) = A2. It is clear, that r1 and r2 both represent the same non-commutative
rational function r in C (<x1, x2 )>. If we chose nowA = B(`2(N)) and for `2(N) the standard
orthonormal basis (en)n∈N for `2(N), then the corresponding right shift operator l and its
adjoint l∗ (i.e. the left shift operator) satisfy

l∗l = 1A and ll∗ = p,

where p denotes the orthogonal projection onto the orthogonal complement of e1. Accord-
ingly, we have

(l, l∗) ∈ domA(r1) ∩ domA(r2)

but r1(l, l∗) = p 6= 1A = r2(l, l∗). Thus, r1 and r2 are not A-evaluation equivalent.

In summary, the actual reason why the algebra A = B(`2(N)) considered in the previous
example does not admit well-defined evaluations for non-commutative rational functions is
that it contains by l an operator, which has a left but no right inverse. In the terminology
of the following definition, this means that A is not stably finite.
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124 III.5. EVALUATIONS OF NON-COMMUTATIVE RATIONAL FUNCTIONS

Definition III.5.2. A unital complex algebra A is called stably finite algebra A (some-
times also addressed as weakly finite) if it has the following property: for each n ∈ N, every
A ∈ Mn(A) with either a left inverse or a right inverse has an inverse. More precisely, if
we have A,B ∈Mn(A), then AB = 1A implies BA = 1A.

Surprisingly, Example III.5.1 highlights in some sense the only obstacle in getting well-
defined evaluations for non-commutative rational functions. Indeed, Theorem III.5.4 below
will confirm that A being stably finite guarantees that all non-commutative rational ex-
pressions representing the same non-commutative rational expression must yield the same
value under evaluation at X = (X1, . . . , Xg) ∈ Ag, as long as they are both defined at the
considered point X. However, it is at first sight not clear how restrictive this condition is
and how much work it requires to check its validity in concrete situations. Fortunately, for
the purposes of free probability, stably finite is not a real issue. In fact, we often work in
the setting of non-commutative C∗-probability spaces, which are equipped with faithful
tracial states, and the following lemma tells us that the condition of being stably finite is
automatically satisfied in such cases.

Lemma III.5.3. A unital C∗-algebra, on which a faithful tracial state exists, is stably finite.

The lemma is a standard fact in operator algebras and shows up for example in [RLL00]
as an exercise. The interested reader is also referred to [HMS15] for a sketch of the proof.

III.5.2. Evaluation equivalence of rational expressions. The following theo-
rem, which is a special case of [Coh06, Theorem 7.8.3], states that being stably finite
is exactly the right condition on A that we need in order to be sure that A-evaluation
equivalence holds for non-commutative rational expressions, which represent the same
non-commutative rational function.

Theorem III.5.4. Let A be a unital complex algebra.

(i) If two non-commutative rational expressions r1 and r2 represent the same non-
commutative rational function r, then they are A-evaluation equivalent, provided
A is a stably finite algebra.

(ii) If A is not stably finite then there exist rational expressions r1 and r2 in finitely
many variables z1, . . . , zg, which represent the same non-commutative rational
function in C (<x1, . . . , xg )>, and X ∈ Ag, such that X ∈ domA(r1) ∩ domA(r2)
but r1(X) 6= r2(X).

For the readers convenience we include a proof of Theorem III.5.4

Proof of Theorem III.5.4. (i) Let two non-commutative rational expressions r1

and r2 be given. According to Theorem III.2.44, we can find formal linear representations
ρ1 = (u1, Q1, v1) and ρ2 = (u2, Q2, v2) of r1 and r2, respectively. One can easily check that

ρ = (u,Q, v) :=

((
u1 u2

)
,

(
Q1 0
0 −Q2

)
,

(
v1

v2

))
gives a formal linear representation of the non-commutative rational expression r :=
r1 + (−1) · r2. Note that domA(r) = domA(r1)∩ domA(r2) for any unital complex algebra
A. If we assume now that r1 and r2 represent the same non-commutative rational function
r. Then r represents 0 in C (<x1, . . . , xg )>, and Corollary III.2.47 tells us that the formal
linear representation ρ = (u,Q, v) of r yields a pure linear representation (u,Q(x), v) of
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0 in the sense of Cohn and Reutenauer [CR99]; see Definition III.2.27 and Definition
III.2.28. Thus, Theorem III.2.26 tells us that the display(

0 u
v Q(x)

)
cannot be full in Mn+1(C〈x1, . . . , xg〉), which means by Definition III.2.23 that there are
rectangular matrices

R1 ∈M(n+1)×n(C〈x1, . . . , xg〉) and R2 ∈Mn×(n+1)(C〈x1, . . . , xg〉),
such that (

0 u
v Q(x)

)
= R1R2.

We write

R1 =

(
p1

P1

)
and R2 =

(
p2 P2

)
with P1, P2 ∈Mn(C〈x1, . . . , xg〉) and matrices p1 and p2, which are of size 1×n respectively
n × 1, with entries in C〈x1, . . . , xg〉. This matrix-valued but polynomial identity can be
evaluated at any given point in Ag, especially at X ∈ domA(r) ⊆ domA(Q−1), yielding

(III.18)

(
0 u
v Q(X)

)
= R1(X)R2(X)

=

(
p1(X)
P1(X)

)(
p2(X) P2(X)

)
=

(
0 p1(X)
0 P1(X)

)(
0 0

p2(X) P2(X)

)
.

Applying formula (A.2), which appears in the proof of the Schur complement formula in
Lemma A.1, to the evaluation of the display gives(

0 u
v Q(X)

)
=

(
1 uQ(X)−1

0 1

)(
−uQ(X)−1v 0

0 Q(X)

)(
1 0

Q(X)−1v 1

)
,

which can be reformulated as(
1 −uQ(X)−1

0 1

)(
0 u
v Q(X)

)(
1 0

−Q(X)−1v 1

)
=

(
r(X) 0

0 Q(X)

)
,

since r(X) = −uQ(X)−1v holds due to the defining properties of ρ. Finally, we get that(
1 −uQ(X)−1

0 Q(X)−1

)(
0 u
v Q(X)

)(
1 0

−Q(X)−1v 1

)
=

(
r(X) 0

0 1

)
.

Combined with the decomposition (III.18), this yields(
r(X) 0

0 1

)
=

(
1 −uQ(X)−1

0 Q(X)−1

)(
0 u
v Q(X)

)(
1 0

−Q(X)−1v 1

)
=

(
1 −uQ(X)−1

0 Q(X)−1

)(
0 p1(X)
0 P1(X)

)(
0 0

p2(X) P2(X)

)(
1 0

−Q(X)−1v 1

)
=

(
0 p1(X)− uQ(X)−1P1(X)
0 Q(X)−1P1(X)

)(
0 0

p2(X)− P2(X)Q(X)−1v P2(X)

)
,

which can be written in the form(
r(X) 0

0 1

)
=

(
0 a
0 A

)(
0 0
b B

)
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126 III.5. EVALUATIONS OF NON-COMMUTATIVE RATIONAL FUNCTIONS

for some square matrices A,B ∈ Mn(A) and with a and b of appropriate size. After
multiplying the matrices on the right hand side of this equality and comparing the result
with its left hand side we get that

r(X) = ab, aB = 0, Ab = 0, and AB = 1.

Since A is assumed to be stably finite, the equation AB = 1 implies that A and B
are both invertible. Thus, from aB = 0 and Ab = 0, it follows that a = 0 and b = 0,
which gives r(X) = ab = 0. Finally, by definition of r, we deduce r1(X) = r2(X). Since
X ∈ domA(r) = domA(r1)∩ domA(r2) was arbitrarily chosen, we conclude that r1 and r2

are A-evaluation equivalent, as stated.

(ii) If A is not stably finite then there exists square matrices Q,P over A, say of size
n× n, such that PQ = 1, but QP 6= 1. Let T and S be n× n matrices over the free field
with indeterminate entries. We have then T (ST )−1S − 1 = 0. This gives n2 equations in
the entries of S, T , and (ST )−1, all of which are 0 in the free field. However, not all of
them are true in our algebra A, though all expressions make sense there. �

III.5.3. Evaluation of pure linear representations. The proof of Item (i) of
Theorem III.5.4 suggests the following generalization to the case where non-commutative
rational expressions and their realizations are compared after evaluation.

Corollary III.5.5. Let r be a non-commutative rational function in C (<x1, . . . , xg )>,
which is represented by some non-commutative rational expression r in the formal vari-
ables z1, . . . , zg, and let (u,Q(x), v), with some linear pencil Q in z1, . . . , zg, be any pure
linear representation of r. If A is stably finite, then

r(X) = −uQ(X)−1v for all X ∈ domA(r) ∩ domA(Q−1).

Proof. For the given rational expression r, we may find according to Theorem III.2.44
a formal linear representation ρ0 = (u0, Q0, v0). By Definition III.2.43, it satisfies

domA(r) ⊆ domA(Q−1
0 )

and
r(X) = −u0Q0(X)−1v0 for all X = (X1, . . . , Xg) ∈ domA(r).

Moreover, as it was observed in Corollary III.2.47, this formal linear representation ρ0

induces a pure linear representation (u0, Q0(x), v0) of r in the sense of Definition III.2.28.
Now, since (u,Q(x), v) and (u0, Q0(x), v0) are both pure linear representations of the same
non-commutative rational rational r, we may deduce (for the most part with the help of
Rule III.7 of Lemma III.2.33) that

(ũ, Q̃(x), ṽ) :=

((
u0 u

)
,

(
Q0(x) 0

0 −Q(x)

)
,

(
v0

v

))
gives a pure linear representation of 0 in C (<x1, . . . , xg )>, where Q̃ denotes the linear pencil
in the variables z1, . . . , zg, which is given by

Q̃ :=

(
Q0 0
0 −Q

)
.

Thus, we may continue now like in the proof of Theorem III.5.4. Indeed, Theorem III.2.26
tells us that the corresponding display(

0 ũ

ṽ Q̃(x)

)
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cannot be full, which allows us to deduce that −ũQ̃(X)−1ṽ = 0 holds, whenever X belongs
to domA(Q̃−1) for any stably finite algebra A. Since

domA(Q̃−1) = domA(Q−1
0 ) ∩ domA(Q−1) ⊇ domA(r) ∩ domA(Q−1),

we obtain by using that ρ0 is a formal linear representation of r that

0 = −ũQ̃(X)−1ṽ = −u0Q0(X)−1v0 + uQ(X)−1v = r(X) + uQ(X)−1v

and hence r(X) = −uQ(X)−1v for all X ∈ domA(r) ∩ domA(Q−1), as claimed. �

The following lemma is a slight modification and generalization of [HMS15, Lemma 3.6].
Nevertheless, since it can be obtained basically in the same way, we go without giving a
proof.

Lemma III.5.6. Suppose A is a unital complex algebra. Then the following two statements
are equivalent:

(i) If a k × k block triangular matrix

Q =

Q1,1 0
...

. . .

Qk,1 . . . Qk,k


with entries Qi,j ∈Mmi×mj(A) of dimensions m1, . . . ,mk ∈ N is invertible, then
all its diagonal entries Qi,i ∈Mmi(A) are invertible.

(ii) A is stably finite.

The following proposition records an interesting consequence of the previous lemma.

Proposition III.5.7. Let r ∈ C (<x1, . . . , xg )> be any non-commutative rational function
in the variables x = (x1, . . . , xg).

(i) Two minimal pure linear representations of r have the same A-domain for any
unital complex algebra A. Furthermore, they take the same values on the inter-
section of their A-domains.

(ii) Consider two pure linear representations ρ = (u,Q(x), v) and ρ0 =
(u0, Q0(x), v0) of r, where we assume that ρ0 is minimal. Then, for any uni-
tal complex algebra A, which is stably finite, it holds true that

(III.19) domA(Q−1) ⊆ domA(Q−1
0 )

and

−uQ(X)−1v = −u0Q0(X)−1v0 for all X = (X1, . . . , Xg) ∈ domA(Q−1).

Proof. (i) Given two minimal pure linear representations ρ = (u,Q(x), v) and ρ′ =
(u′, Q′(x), v′) of the same non-commutative rational function r, then Corollary III.2.39
tells us that ρ and ρ′ are isomorphic in the sense that there exists a morphism (S, T ) from
ρ to ρ′ with invertible matrices S and T . Recall that (S, T ) being a morphism from ρ to
ρ′ means that

u′ = uT, v = Sv′, and SQ′(x) = Q(x)T

holds. Since S and T are both invertible, it follows from SQ′(x) = Q(x)T that SQ′ = QT
and hence that domA(Q−1) = domA((Q′)−1) holds for any unital complex algebra A.
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Furthermore, we see for any point X in the joint A-domain that SQ′(X) = Q(X)T and
hence Q(X)−1S = TQ′(X)−1 holds, such that finally

−uQ(X)−1v = −uQ(X)−1Sv′ = −uTQ′(X)−1v′ = −u′Q′(X)−1v′

follows as claimed.

(ii) Theorem III.2.38 tells us that we can find invertible matrices S and T , such that

uT =
(
u1 u0 0

)
, SQ(x)T =

Q1,1(x) 0 0
Q2,1(x) Q0(x) 0
Q3,1(x) Q3,2(x) Q3,3(x)

 , Sv =

 0
v0

v3

 .

If we take now any unital complex algebra A, which is stably finite, and if we assume that
the matrix Q(X) is invertible, then SQ(X)T is also invertible and Lemma III.5.6 finally
gives the invertibility of Q0(X). Thus, the stated inclusion domA(Q−1) ⊆ domA(Q−1

0 ) for
stably finite A follows. In this case, given any X ∈ domA(Q−1), it is easy to see that

−uQ(X)−1v = −(uT )(SQ(X)T )−1(Sv) = −u0Q0(X)−1v0,

as we wished to show. �

We may finalize now our observations by the following theorem.

Theorem III.5.8. Let r be a rational expression in the formal variables x = (x1, . . . , xg)
and let r ∈ C (<x1, . . . , xg )> denote the non-commutative rational function induced by r.

(i) The non-commutative rational function r admits a pure linear representation
ρ = (u,Q(x), v), which enjoys the following property:

If A is a unital complex algebra (not necessarily stably finite), then

domA(r) ⊆ domA(Q−1)

and

r(X) = −uQ(X)−1v if X = (X1, . . . , Xg) ∈ domA(r).

(ii) Any minimal pure linear representation ρ0 = (u0, Q0(x), v0) of r satisfies the
following property:

If A is a unital complex algebra, which is stably finite, then

(III.20) domA(r) ⊆ domA(Q−1
0 )

and

(III.21) r(X) = −u0Q0(X)−1v0 for all X = (X1, . . . , Xg) ∈ domA(r).

Proof. (i) The assertion in (i) is a direct consequence of Theorem III.2.44, which
shows that a formal linear representation (u,Q, v) of r exists (and hence satisfies the
requested property according to Definition III.2.43), and of Corollary III.2.47, which says
that ρ = (u,Q(x), v) is a pure linear representation.

(ii) In order to check the validity of (ii), we chose a pure linear representation ρ = (u,Q, v)
like in (i) and for any unital complex algebra A, which is stably finite, we observe

. . . by part (i) that domA(r) ⊆ domA(Q−1) holds and that we have

r(X) = −uQ(X)−1v for any X ∈ domA(r).
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. . . by Item (ii) of Proposition III.5.7 that domA(Q−1) ⊆ domA(Q−1
0 ) holds and that

−uQ(X)−1v = −u0Q0(X)−1v0 for all X ∈ domA(Q−1).

Thus, it follows that for any stably finite A
domA(r) ⊆ domA(Q−1) ⊆ domA(Q−1

0 )

holds and moreover

r(X) = −uQ(X)−1v = −u0Q0(X)−1v0 for all X ∈ domA(r).

This concludes the proof. �

Proposition III.5.7 and Theorem III.5.8 are prototypical for very similar investigations in
the setting of descriptor realizations. However, the results that we will obtain in the sequel
are not just reformulations of the previous ones. In fact, Proposition III.5.9 and Theorem
III.5.10 apply even to (rectangular) matrices of non-commutative rational functions, and
the additional Theorem III.5.11 will provide a self-adjoint version of Theorem III.5.10. As
already outlined in Remark III.2.40, we expect that the theory of pure linear representa-
tions can be extended to the case of (rectangular) matrices of non-commutative rational
functions, and that also (despite the slightly different notions of minimality) an analogue
of [HMV06, Lemma 4.2] exists. Recall that the construction of [HMV06, Lemma 4.2],
which was presented in Remark III.4.14, explained how the minimal descriptor realiza-
tions can be used to construct a self-adjoint descriptor realization of the same size, which
is therefore minimal as well.

III.5.4. Evaluations of descriptor realizations. In the previous subsection, we
have explored some applications of formal linear representations within the theory of
pure linear representations. Here, we turn our attention to the case of (matrices of) non-
commutative rational expressions, which are regular at zero, and we aim at proving similar
statements about non-commutative descriptor realizations. As it will turn out, the excel-
lent evaluation properties of formal linear representations with respect to stably finite
algebras pass on descriptor realizations under the assumption of minimality in the sense
of Definition III.4.11.

Proposition III.5.9.

(i) Any two minimal descriptor realizations of the same matrix-valued non-
commutative rational function, which both have the same feed through term,
have the same A-domain for any unital complex algebra A. Furthermore, they
take the same values on the intersection of their A-domains.

(ii) Suppose that

r(x) = D + C(J − LA(x))−1B

r̂(x) = D + Ĉ(Ĵ − LÂ(x))−1B̂,

are both (self-adjoint) descriptor realizations for the same (self-adjoint) matrix-
valued non-commutative rational expression with r̂ being minimal. If A is a
unital (∗-)algebra, which is stably finite, then

(III.22) domA
(
(J − LA)−1

)
⊆ domA

(
(Ĵ − LÂ)−1

)
and

r(X) = r̂(X) for all X = (X1, . . . , Xg) ∈ domA(r).
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130 III.5. EVALUATIONS OF NON-COMMUTATIVE RATIONAL FUNCTIONS

Proof. The proof proceeds along the same lines as the proof of Proposition III.5.7.
The only differences are

• that Corollary III.2.39 gets replaced by the state space similarity theorem stated
in Item (i) of Lemma III.4.13, where both minimal descriptor realization must
first be brought into monic form (like in Step 0 of Algorithm III.4.15), which
does not affect their minimality, and
• that Theorem III.2.38 gets replaced by Algorithm III.4.15.

We conclude by noting that the self-adjoint case of Item (ii) is clearly covered by the more
general statement that was proven above, since any minimal self-adjoint realization is in
particular a minimal realization; see Remark III.4.14. �

Now, we may proceed to the following counterpart of Theorem III.5.8.

Theorem III.5.10. Let r be a matrix of rational expressions in variables x = (x1, . . . , xg),
which are regular at zero, and denote by r the induced matrix of non-commutative rational
functions. Then the following statements hold true:

(i) The matrix r admits a monic realization of the form

r(x) = D + C(1− LA(x))−1B,

where the feed through term D ∈ Mk(C) can be prescribed arbitrarily, which
enjoys the following property:

If A is a unital complex algebra (not necessarily stably finite), then

domA(r) ⊆ domA(r)

and
r(X) = r(X) if X ∈ domA(r).

(ii) Any minimal realization

r̂(x) = D + Ĉ(Ĵ − LÂ(x))−1B̂,

of r satisfies the following property:
If A is a unital complex algebra, which is stably finite, then

(III.23) domA(r) ⊆ domA(r̂)

and

(III.24) r(X) = r̂(X) if X ∈ domA(r).

Proof. (i) For proving (i), we proceed as follows: by Theorem III.2.58 we may
find some matrix-valued formal linear representation ρ = (u,Q, v) of r − D. Since
0 ∈ domA(r) = domA(r − D) holds by the regularity assumption and since we have
domA(r − D) ⊆ domA(Q−1) due to Definition III.3.9, we see that the linear pencil Q
entails an invertible matrix Q(0). Thus, we may introduce

r0(x) := −u
(
1 + (Q(0))−1Q(1)x1 + · · ·+ (Q(0))−1Q(g)xg

)−1
(Q(0))−1v,

which is of the form C(1 − LA(x))−1B with C = −u, B = (Q(0))−1v and Aj =
−(Q(0))−1Q(j) for j = 1, . . . , n. Again by Definition III.3.9, we know that domA(r−D) ⊆
domA(r) holds for any unital complex algebra A and in addition

r(X)−D = r0(X) for all X ∈ domA(r),
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i.e.
r(X) = D + C(1− LA(x))−1B for all X ∈ domA(r).

Since this applies in particular in the case A = C (<x1, . . . , xg )>, we see that r(x) =
D + C(1− LA(x))−1B is the desired monic descriptor realization of r.

(ii) For seeing (ii), we start with any descriptor realization r of r as in part (i). For the
given minimal realization r̂, we know

. . . by part (i) that domA(r) ⊆ domA(r) holds and that we have

r(X) = r(X) for all X ∈ domA(r).

. . . by Item (ii) of Proposition III.5.9 that domA(r) ⊆ domA(r̂) holds and that

r(X) = r̂(X) for all X ∈ domA(r).

This yields the chain of inclusions domA(r) ⊆ domA(r) ⊆ domA(r̂), which proves (III.23),
and furthermore r(X) = r(X) = r̂(X) for any point X ∈ domA(r), which shows the
validity of (III.24). �

Similarly, self-adjoint representations allow us to construct self-adjoint realizations. This
will be the content of the following theorem, which can be seen as a self-adjoint counterpart
of Theorem III.5.10.

Theorem III.5.11. Let r be a self-adjoint matrix of rational expressions in formal vari-
ables x1, . . . , xg, which is regular at zero, and denote by r the induced matrix of non-
commutative rational functions. Then the following statements hold true:

(i) The matrix r admits a self-adjoint realization of the form

r(x) = D + C(J − LA(x))−1C∗,

where the feed through term D ∈ Mk(C) can be prescribed arbitrarily, which
enjoys the following property:

If A is a unital complex ∗-algebra (not necessarily stably finite), then

domsa
A(r) ⊆ domA(r)

and
r(X) = r(X) if X ∈ domsa

A(r).

(ii) Any minimal self-adjoint realization

r̂(x) = D + Ĉ(Ĵ0 − LÂ(x))−1Ĉ∗,

of r satisfies the following property:
If A is a unital complex ∗-algebra, which is stably finite, then

(III.25) domsa
A(r) ⊆ domA(r̂)

and

(III.26) r(X) = r̂(X) if X ∈ domsa
A(r).

Proof. (i) For proving (i), we need a refinement of the argument that was used in
the proof of Item (i) in Theorem III.5.10: Since r is assumed to be regular at zero, we

know that for any formal linear representation ρ0 = (u0, Q0, v0) of r−D, the matrix Q
(0)
0

appearing in the linear pencil

Q0 = Q
(0)
0 +Q

(1)
0 x1 + · · ·+Q

(g)
0 xg
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132 III.5. EVALUATIONS OF NON-COMMUTATIVE RATIONAL FUNCTIONS

has to be invertible. Thus, we may form with Q̃
(j)
0 := (Q

(0)
0 )−1Q

(j)
0 for j = 0, . . . , g the

linear pencil

Q̃0 = Q̃
(0)
0 + Q̃

(1)
0 x1 + · · ·+ Q̃

(g)
0 xg where Q̃

(0)
0 = 1.

We define in addition ũ0 := u0 and ṽ0 := (Q
(0)
0 )−1v0. By this construction, we clearly

obtain another formal linear representation ρ̃0 = (ũ0, Q̃0, ṽ0) of r −D. If we proceed now
with the construction that was presented in (III.14), this yields a self-adjoint formal linear
representation

ρ = (Q, v) :=

((
0 Q̃∗0
Q̃0 0

)
,

(
1
2
ũ∗0
ṽ0

))
.

Now, we continue like in the proof of Item (i) in Theorem III.5.10. Starting with the
self-adjoint formal linear representation ρ = (Q, v), we introduce

r0(x) := −v∗
(
Q(0) +Q(1)x1 + · · ·+Q(g)xg

)−1
v,

which is of the form r0(x) = C(J − LA(x))−1C∗ with C = v, J = −Q(0), and Aj = Q(j)

for j = 1, . . . , g. Note that indeed J∗ = J and J2 = 1. Finally, we put

r(x) := D + C(J − LA(x))−1C∗.

Thus, by construction, we have for any unital complex ∗-algebra A that

domsa
A(r) ⊆ domA(r)

and
r(X) = r(X) if X ∈ domsa

A(r).

It remains to prove that r is indeed a realization of r. For that purpose, we apply the
previous observation in the case A = C (<x1, . . . , xg )>, which is known to be a unital
complex ∗-algebra according to Lemma III.2.35 (see also Lemma III.2.36). This yields
then r = r(x) = r(x), as desired.

(ii) The assertion in (ii) can be proven as follows. Given r, which is represented by r, we
may consider besides its minimal self-adjoint realization

r̂(x) = D + Ĉ(Ĵ0 − LÂ(x))−1Ĉ∗,

any other self-adjoint descriptor realization

r(x) = D + C(J − LA(x))−1C∗.

with the prescribed feed through term D, as constructed in (i). Thus, if A is any unital
complex ∗-algebra, which is stably finite, we know

. . . by part (i) that domsa
A(r) ⊆ domA(r) holds and that we have

r(X) = r(X) for any X ∈ domsa
A(r).

. . . by Proposition III.5.9 that domA(r) ⊆ domA(r̂) holds and that moreover

r(X) = r̂(X) for any X ∈ domsa
A(r).

Combining both observation proves the stated inclusion (III.23) and also the representa-
tion given in (III.24). �
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CHAPTER IV

Distributions and Brown measures of non-commutative
polynomial and rational expression in freely independent

variables

In Chapter I, we have learned that non-commutative distributions µX1,...,Xg of freely in-
dependent elements X1, . . . , Xg are fully determined by their single-variable distributions
µX1 , . . . , µXg . This has the important consequence that for any given non-commutative
polynomial P ∈ C〈x1, . . . , xg〉 the distribution µP (X1,...,Xg) of its evaluation P (X1, . . . , Xg)
depends only on P and µX1 , . . . , µXg . Following [BV93], we denote this dependency by

µP (X1,...,Xg) = P�(µX1 , . . . , µXg).

However, making this relation more explicit remained a challenging problem for quite a
while. It was tackled only in a few special cases and a general machinery, which could
be applied uniformly to all non-commutative polynomials, seemed to be out of reach.
For instance, if we choose P (x1, x2) = x1 + x2 and P (x1, x2) = x1 · x2, we recover the
free additive convolution µX1 � µX2 and the free multiplicative convolution µX1 � µX2 ,
respectively, which can effectively be treated with the help of the R- and S-transform.
Apart from these examples, only the commutator P (x1, x2) = i(x1x2 − x2x1) and the
anti-commutator P (x1, x2) = x1x2 + x2x1 were discussed in detail; see [NS98, Vas03].

In this chapter, we finally want to close this gap. Following [BMS13, BSS15, HMS15],
we develop some systematic approach to this question, which will be based on the method
of linearization as developed in Chapter III and on tools from operator-valued free prob-
ability theory as presented in Section I.2 of Chapter I, especially on the operator-valued
subordination result given in Theorem I.2.18. Our work will merge into explicit algorithms,
which are easily accessible to numerical computations. Of course, we can only hope for
some deeper insights, which go beyond the combinatorial description of non-commutative
distributions, if the underlying non-commutative probability space carries some analytic
structure. We will work here in the general setting of C∗-probability spaces and we will
suppose in addition that the freely independent variables X1, . . . , Xn are self-adjoint. In
this case, the initial distributions µX1 , . . . , µXg can be identified with Borel probability
measures on R and they are thus conveniently encoded via their Cauchy transforms as
analytic functions on the complex upper half-plane. The type of the output µP (X1,...,Xg),
however, depends on whether the given non-commutative polynomial P is self-adjoint or
not. Correspondingly, we are faced with two different types of questions:

(i) If the non-commutative polynomial P is self-adjoint, how can we compute the
analytic distribution of P (X1, . . . , Xg)?

(ii) If the non-commutative polynomial P is not self-adjoint, how can we compute
the Brown measure of P (X1, . . . , Xg)?

These are addressed in Algorithm IV.4.1 and Algorithm IV.4.2, respectively.
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Since the linearization trick is by no means limited to the case of non-commutative poly-
nomials, but applies equally well to rational expressions, it is a very natural question
to ask whether the algorithms also extend to this case. Indeed, we will see that for any
non-commutative rational expression r in g formal variables, whose domain contains the
given non-commutative random variables (X1, . . . , Xg), the distribution µr(X1,...,Xg) of its
evaluation r(X1, . . . , Xg) is fully determined by r and µX1 , . . . , µXg and our Algorithms
IV.4.1 and IV.4.2 allow to make this relationship explicit.

IV.1. The ∗-distribution of evaluated rational expressions

Consider a C∗-probability space (A, φ) and self-adjoint non-commutative random vari-
ables X1, . . . , Xg ∈ A, which are freely independent. We have observed in Remark I.1.37
that freeness results in certain universal rules for computing mixed moments, such that
µP (X1,...,Xg) for any non-commutative polynomial P ∈ C〈x1, . . . , xg〉 depends on nothing
more than P and the individual distributions µX1 , . . . , µXg . However, if we take now any
non-commutative rational expression in formal non-commuting variables x1, . . . , xg, say
r, whose A-domain contains (X1, . . . , Xg), it is not readily clear, why the same should
hold true for µr(X1,...,Xg).

It is instructive to consider the case of faithful expectations first: if (A, φ) and (B, ψ) are
C∗-probability spaces, such that φ and ψ are both faithful, and ifX1, . . . , Xg and Y1, . . . , Yg
are freely independent self-adjoint elements in A and B, respectively, such that, as unital
C∗-algebras, A is generated by X1, . . . , Xg and B by Y1, . . . , Yg, then

µXi = µYi for i = 1, . . . , g

implies µX,X∗ = µY,Y ∗ and hence by Theorem I.1.23 the existence of a unique isometric
∗-isomorphism Φ : A → B, such that Φ(Xi) = Yi for all i = 1, . . . , g and ψ ◦ Φ = φ
holds. Then, for any given non-commutative rational expression r in g variables, we
have (X1, . . . , Xg) ∈ domA(r) if and only if (Y1, . . . , Yg) ∈ domB(r) and in this case
Φ(r(X1, . . . , Xg)) = r(Y1, . . . , Yg). This statement is confirmed by the following easy
lemma.

Lemma IV.1.1. Let A and B be unital C∗-algebras and let Φ : A → B be an isometric
and unital ∗-isomorphism. Then, for each non-commutative rational expression r in the
formal variables x = (x1, . . . , xg), we have that

(IV.1)
{

(Φ(Z1), . . . ,Φ(Zg))
∣∣ (Z1, . . . , Zg) ∈ domA(r)

}
= domB(r)

and Φ(r(Z1, . . . , Zg)) = r(Φ(Z1), . . . ,Φ(Zg)) for each (Z1, . . . , Zg) ∈ domA(r).

Proof. Consider the subset R of RC(x), which consists of all scalar-valued non-
commutative rational expressions r satisfying{

(Φ(Z1), . . . ,Φ(Zg))
∣∣ (Z1, . . . , Zg) ∈ domA(r)

}
⊆ domB(r)

and Φ(r(Z1, . . . , Zg)) = r(Φ(Z1), . . . ,Φ(Zg)) for each (Z1, . . . , Zg) ∈ domA(r). It is suf-
ficient to prove that R = RC(x) holds; the equality claimed in (IV.1) follows then by
switching the roles of A and B and by replacing Φ by its inverse Φ−1.

One easily sees that PC(x) ⊆ R holds. Thus, according to Remark III.2.2, it remains
to check that R is closed under the arithmetic operations +, ·, and −1. We leave out
the trivial cases + and · and discuss here only −1. If (Z1, . . . , Zg) ∈ domA(r−1) is
given, then we know by Definition III.2.3 that (Z1, . . . , Zg) ∈ domA(r) holds and that
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r(Z1, . . . , Zg) is invertible in A. Since r ∈ R, it follows from (Z1, . . . , Zg) ∈ domA(r)
that (Φ(Z1), . . . ,Φ(Zg)) ∈ domB(r) and Φ(r(Z1, . . . , Zg)) = r(Φ(Z1), . . . ,Φ(Zg)) holds.
Since Φ is a unital homomorphism, the latter allows to deduce the invertibility of
r(Φ(Z1), . . . ,Φ(Zg)) from the invertibility of r(Z1, . . . , Zg), where moreover

r(Φ(Z1), . . . ,Φ(Zg))
−1 = Φ(r(Z1, . . . , Zg))

−1 = Φ(r(Z1, . . . , Zg)
−1) = Φ(r−1(Z1, . . . , Zg)).

In summary, we have according to Definition III.2.3 that (Φ(Z1), . . . ,Φ(Zg)) ∈ domB(r−1)
holds with r−1(Φ(Z1), . . . ,Φ(Zg)) = Φ(r−1(Z1, . . . , Zg)). Since (Z1, . . . , Zg) ∈ domA(r−1)
was arbitrarily chosen, it follows r−1 ∈ R, as we wished to show. �

Hence, the ∗-moments of r(X1, . . . , Xg) with respect to φ coincide with the ∗-moments
of r(Y1, . . . , Yg) with respect to ψ, such that finally µr(X),r(X)∗ = µr(Y ),r(Y )∗ follows. We
conclude that the distribution of r(X1, . . . , Xg) does not depend on the concrete choice of
non-commutative random variables X1, . . . , Xg, but only on their individual distributions
µX1 , . . . , µXg . This is what was claimed above.

In this chapter, we want to present another, more explicit approach to this question: if
r is a self-adjoint non-commutative rational expression, which guarantees that the non-
commutative random variable r(X1, . . . , Xg) is self-adjoint, then we know that the (ana-
lytic) distribution of r(X1, . . . , Xg) is determined by its Cauchy transform; otherwise, if
r fails to be self-adjoint, then we know that the Brown measures of r(X1, . . . , Xg) can be
obtained from the M2(C)-valued Cauchy-transform of(

0 r(X1, . . . , Xg)
r(X1, . . . , Xg)

∗ 0

)
,

as we explained in Section I.3. This leads to the following two problems:

Problem IV.1.2. Given a self-adjoint rational expression r in formal variables x =
(x1, . . . , xg). Let X1, . . . , Xg be freely independent self-adjoint elements in some non-
commutative C∗-probability space (A, φ) for which the evaluation r(X1, . . . , Xg) is well-
defined. If the distributions of all of the Xj’s are known, how can we compute the distri-
bution of r(X1, . . . , Xg)?

Problem IV.1.3. Given an arbitrary rational expression r in formal variables x =
(x1, . . . , xg). Let X1, . . . , Xg be freely independent self-adjoint elements in some tracial
W ∗-probability space (A, φ) for which the evaluation r(X1, . . . , Xg) is well-defined. If the
distributions of all of the Xj’s are known, how can we compute the Brown-measure of
r(X1, . . . , Xg)?

In either case, we are faced with the problem to compute – at least numerically – the
(matrix-valued) Cauchy transform of certain matrices over the unital C∗-algebra, which
is generated by the variables X1, . . . , Xg, if their distributions µX1 , . . . , µXg are given. The
two main ingredients of Algorithm IV.4.1 and Algorithm IV.4.2, by which we will solve
Problem IV.1.2 and Problem IV.1.3, respectively, are the operator-valued subordination
result given in Theorem I.2.18 and the method of linearization. The next section will
supply some technical framework, which opens the rich toolbox of Chapter III and makes
these powerful tools accessible to us.
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IV.2. Linearization of rational expressions

In Chapter III, we have outlined several algebraic techniques, summarized under the
name “linearization”, which allow an effective treatment of non-commutative rational
expressions. These are:

• Formal linear representations : Each formal linear representation ρ = (u,Q, v)
for a given non-commutative rational expression r enjoys by definition the very
important feature, that it provides some universal formula for the evaluation
of r on its corresponding A-domain for each unital complex algebra A. If r
is self-adjoint, it is appropriate to work instead with self-adjoint formal linear
representations ρ = (Q, v), which enjoy on their part very similar properties. In
addition, we have seen that our arguments even extend to operator-valued non-
commutative rational expressions and to matrices of non-commutative rational
expressions, in particular. However, a not quite concealable disadvantage is that
the size of formal linear representations grows very fast with the complexity of
the considered non-commutative rational expression, while there is no effective
way to reduce the size.
• Pure linear representations : In contrast to formal linear representations, pure

linear representations concern non-commutative rational functions instead of
non-commutative rational expressions. This becomes an issue as soon as evalua-
tions are considered. Fortunately, if we restrict ourselves to stably finite algebras
A, which is actually quite natural from a free probability point of view, then ra-
tional identities are preserved under evaluations on their A-domains, so that we
can still hope to use them for our purposes. A great advantage is that pure linear
representations of minimal size can be characterized, so that it becomes possible
to formulate algorithms by which the size of arbitrary pure linear representations
can be reduced, albeit sometimes in a less explicit way.
• Non-commutative descriptor realizations : Descriptor realizations deal like pure

linear representations with non-commutative rational functions, but under the
additional condition that the rational function is regular at 0. If one is willing
to accept this restriction, one is recompensed by some very effective algorithm
that allows to cut down any descriptor realization to a minimal one.

In this section, we will develop some unifying framework, which bridges between the
algebraic setting of Chapter III and the analytic setting of Theorem I.2.18, so that all
these tools from Chapter III can readily be used to attack Problem IV.1.2 and IV.1.3.

The following definition captures the crucial idea of linearization.

Definition IV.2.1. Suppose that (A, φ) is a non-commutative C∗-probability space and
fix a point X = (X1, . . . , Xg) ∈ Agsa. With respect to these initial data, we introduce the
following terminology: a self-adjoint element Y ∈ Mk(A) is said to be linearized at X by
(∆; Λ,Ξ), if

• Λ is a affine linear pencil of the form

Λ = Λ(0) + Λ(1)x1 + · · ·+ Λ(g)xg

with self-adjoint matrices Λ(0),Λ(1), . . . ,Λ(g) ∈Mn(C) for some n ∈ N,
• Ξ ∈Mn×k(C) a rectangular matrix,
• and ∆ ∈Mk(C) a self-adjoint matrix,
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such that Λ(X) is invertible in Mn(A) and

Y = ∆− Ξ∗Λ(X)−1Ξ.

For any such (∆; Λ,Ξ), we define an affine linear pencil L(∆;Λ,Ξ) by

L(∆;Λ,Ξ) :=

(
∆ Ξ∗

Ξ Λ

)
= L

(0)
(∆;Λ,Ξ) + L

(1)
(∆;Λ,Ξ)x1 + · · ·+ L

(g)
(∆;Λ,Ξ)xg.

If Y is linearized at X by (∆; Λ,Ξ), we call

Ŷ(∆;Λ,Ξ) := L(∆;Λ,Ξ)(X) =

(
∆ Ξ∗

Ξ Λ(X)

)
the linearization of Y at X associated to (∆; Λ,Ξ). If it is clear from the context, to

which (∆; Λ,Ξ) the linearization Ŷ(∆;Λ,Ξ) and the accompanying linear pencil L(∆;Λ,Ξ) are

associated, we will often abbreviate Ŷ(∆;Λ,Ξ) by Ŷ and L(∆;Λ,Ξ) by L.

This definition is very close to the concept of self-adjoint formal linear representations,
which was introduced

• in Definition III.2.57 for the case of a scalar-valued non-commutative rational
expression,
• in Definition III.3.15 for operator-valued rational expressions, and
• in Definition III.4.5 for matrices of non-commutative rational expressions.

These notions, however, should not be confused, since Definition IV.2.1 starts with some
concrete operator Y ∈ Mk(A), whereas formal linear representations in general apply to
non-commutative rational expressions as abstract objects. We note that the terminology
of Definition IV.2.1 is in accordance with [BMS13], where a prestage of this theory,
based on [And12, And13, And15], for the case of non-commutative polynomials was
presented.

Two further remarks are in order.

Remark IV.2.2.

• Although the above definition applies to arbitrary operators Y ∈ Mk(A), it is
clear from the definition that the only elements Y ∈ Mk(A), which could in
principle be linearized at a given point X ∈ Agsa by some triple (∆; Λ,Ξ), are
those matrices Y , whose entries belong to the rational closure of C〈X1, . . . , Xg〉
in A with respect to its natural embedding; see Definition III.2.21.
• In contrast to the concept of formal linear representations, we allow (∆; Λ,Ξ) to

depend on the concrete choice of variables X1, . . . , Xg in (A, φ).

While the setting of Chapter III differs from that of Definition IV.2.1 above, these concepts
are nonetheless related in the sense that the methods provided by Chapter III fit into the
general picture of Definition IV.2.1. This important fact, which is one of the reasons, why
we have introduced the terminology of Definition IV.2.1, is the content of the next lemma.

Lemma IV.2.3. Let x = (x1, . . . , xg) be a g-tuple of formal variables.

(a) Let r be a self-adjoint k×k matrix of rational expressions in x. Consider any self-
adjoint formal linear representation ρ = (Q, v) in the sense of Definition III.4.5
(whose existence is guaranteed by Theorem III.4.6). Furthermore, let X1, . . . , Xg
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be self-adjoint elements in some C∗-probability space (A, φ), such that the con-
dition X = (X1, . . . , Xg) ∈ domA(r) is satisfied. Then r(X) is linearized at X
by (0;Q, v).

(b) Let r be a non-degenerate self-adjoint scalar-valued rational expression in x. Ac-
cording to Proposition III.2.48 and Corollary III.2.59, r induces a self-adjoint
non-commutative rational function r. Consider any self-adjoint pure linear rep-
resentation ρ = (v∗, Q(x), v) of r (whose existence is guaranteed by Corol-
lary III.2.59). Furthermore, let X1, . . . , Xg be self-adjoint elements in some
C∗-probability space (A, φ) with a faithful tracial state φ. Assume that X =
(X1, . . . , Xg) ∈ domA(r)∩domA(Q−1) is satisfied. Then r(X) is linearized at X
by (0;Q, v).

(c) Let r be a self-adjoint k × k matrix of regular rational expressions in formal
variables x = (x1, . . . , xg). Take any self-adjoint realization

r(x) = D + C(J − LA(x))−1B with LA(x) := A1x1 + · · ·+ Agxg

of the matrix r of non-commutative rational functions, which is represented by
r. Furthermore, let X1, . . . , Xg be self-adjoint elements in some C∗-probability
space (A, φ) with a faithful tracial state φ. Assume
(i) either that X = (X1, . . . , Xg) ∈ domA(r) ∩ domA(r) is satisfied,

(ii) or that r is minimal and that X = (X1, . . . , Xg) ∈ domA(r) is satisfied.
Then r(X) is linearized at X by (D; J − LA, B).

Proof. (a) Given any self-adjoint formal linear representation ρ = (Q, v) of r in the
sense of Definition III.4.5 and any X = X∗ in domA(r) (i.e. X ∈ domsa

A(r)), we know
from Definition III.4.5 that X also belongs to domA(Q−1) and moreover that r(X) =
−uQ(X)−1v holds. This means that r(X) is linearized at X by (0;Q, v).

(b) Consider any self-adjoint pure linear representation ρ = (v∗, Q(x), v) of r and take
any X ∈ domA(r) ∩ domA(Q−1). Since ρ is in particular a pure linear representation of
r, Corollary III.5.5 tells us that r(X) = −v∗Q(X)−1v holds, which means that r(X) is
linearized at X by (0;Q, v), as we wished to show.

(c) First of all, we note that the additional assumption on φ being a faithful trace guar-
antees according to Lemma III.5.3 that A is stably finite.

(i) Since X ∈ domA(r) ∩ domA(r), Corollary III.5.5 tells us that the values r(X)
and r(X) coincide, i.e.

r(X) = D + C(J − LA(X))−1B.

(ii) Since X = X∗ belongs to domsa
A(r), Theorem III.5.11 tells us that X belongs to

the domain domA(r) of our given minimal realization r and that evaluating r
and r at X yields the same result, i.e.

r(X) = D + C(J − LA(x))−1B.

In both cases (i) and (ii), we conclude that r(X) is linearized at X by (D; J−LA, B). �

When working with concrete examples like in Section IV.5, it is very helpful to have
certain shortcuts at hand, which allow a more clever construction of linearizations than
just using the general algorithms. One such observation is presented in the next lemma.
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Lemma IV.2.4. Let r ∈ RC(z1, . . . , zg) be a non-commutative rational expression. Further-
more, let k and n1, . . . , nk be positive integers, u0 and v0 scalar matrices, and P1, . . . , Pk−1

and Q1, . . . , Qk affine linear pencils, such that

• for each j = 1, . . . , k, the affine linear pencil Qj is of size nj × nj,
• for each j = 1, . . . , k − 1, the affine linear pencil Pj is of size nj × nj+1,
• u0 is of size 1× n1 and v0 of size nk × 1.

Consider the triple ρ = (u,Q, v), which is obtained by

ρ = (u,Q, v) :=

((
0 . . . 0 u0

)
,


P1 Q1

. .
.
Q2

Pk−1 . .
.

Qk

 ,


0
...
0
v0


)

with an affine linear pencil Q of size n× n, where n := n1 + · · ·+ nk. If A is some unital
complex algebra A, for which the conditions

(IV.2) domA(r) ⊆
k⋂
j=1

domA(Q−1
j )

and

(IV.3)
r(X) = (−1)ku0Q1(X)−1P1(X) · · ·Qk−1(X)−1Pk−1(X)Qk(X)−1v0

for all X ∈ domA(r)

hold true, then domA(r) ⊆ domA(Q−1) is satisfied and we have

r(X) = −uQ(X)−1v for all X ∈ domA(r).

In particular, if the conditions (IV.2) and (IV.3) are both satisfied for all unital complex
algebras A, then ρ is a formal linear representation in the sense of Definition III.2.43.

Proof. Suppose that the conditions (IV.2) and (IV.3) are satisfied for some unital
complex algebras A and take any X ∈ domA(r) (note that there is nothing to prove, if
domA(r) happens to be empty). We want to prove first that X ∈ domA(Q−1) holds, i.e.,
that Q(X) is invertible in Mn(A). For doing this, we proceed by mathematical induction
on k. In the case k = 1, there is clearly nothing to prove. Assume now that we have
verified the statement under question for any affine linear pencil that is build out of k− 1
affine linear pencils. If we consider for Q(X) the block decomposition

Q(X) =

(
P̃ (X) Q̃(X)
Qk(X) 0

)
with Q̃ :=


P1 Q1

. .
.
Q2

Pk−2 . .
.

Qk−1

 , P̃ :=


0
...
0

Pk−1

 ,

then we know by induction hypothesis that Q̃(X) must be invertible and we can easily
verify by a straightforward computation that the matrices

Q(X) =

(
P̃ (X) Q̃(X)
Qk(X) 0

)
and

(
0 Qk(X)−1

Q̃(X)−1 −Q̃(X)−1P̃ (X)Qk(X)−1

)
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are inverses of each other. In consequence, Q(X) must be invertible, as we wished to show.
This recursive construction moreover allows us to check that

−uQ(X)−1v = (−1)ku0Q1(X)−1P1(X) · · ·Qk−1(X)−1Pk−1(X)Qk(X)−1v0 = r(X)

holds. Thus, we see that ρ = (u,Q, v) satisfies the claimed properties for the given A, and
if the conditions (IV.2) and (IV.3) are both satisfied for all unital complex algebras A,
then ρ forms obviously a formal linear representation. �

IV.3. Representation of Cauchy transforms

In Lemma IV.2.3, we have seen that the concepts of Chapter III merge into the unifying
frame of Definition IV.2.1. What we want to show next, is that Definition IV.2.1 can be
connected with operator-valued free probability theory, especially with Theorem I.2.18.
Indeed, the terminology of Definition IV.2.1 is modeled according to the Schur complement
formula A.1, such that matrix-valued Cauchy transforms for elements Y ∈Mk(A), which
are linearized by some (∆; Λ,Ξ), can be computed explicitly via the matrix-valued Cauchy
transform of the linearization of Y associated to (∆; Λ,Ξ). The following theorem makes
this relation explicit; see [HMS15].

Theorem IV.3.1. Let X1, . . . , Xg be self-adjoint elements in a non-commutative C∗-
probability space (A, φ). Furthermore, let Y = Y ∗ ∈ Mk(A) be given and suppose that
Y is linearized at X = (X1, . . . , Xg) by (∆; Λ,Ξ), where the linear pencil Λ is of size n×n
and ∆, Ξ are of appropriate size. We put

Ŷ := Ŷ(∆;Λ,Ξ) =

(
∆ Ξ∗

Ξ Λ(X)

)
.

Then the following statements hold true:

(i) For all b ∈ H+(Mk(C)), the point

b̂ :=

(
b 0
0 0

)
∈Mn+k(C)

belongs to the Mn+k(C)-valued resolvent set ρMn+k(A)/Mn+k(C)(Ŷ ) of Ŷ in
Mn+k(A) and we have that

(IV.4) (b− Y )−1 =
(
1k 0

)((b 0
0 0

)
− Ŷ

)−1(
1k
0

)
.

(ii) If we consider the operator-valued C∗-probability spaces

(Mn+k(A), En+k,Mn+k(C)) and (Mk(A), Ek,Mk(C)),

which were introduced in Example I.2.10, then the Mk(C)-valued Cauchy trans-
form GY is determined by the Mn+k(C)-valued Cauchy transform GŶ via

(IV.5) GY (b) = lim
ε↘0

(
1k 0

)
GŶ

((
b 0
0 iε1n

))(
1k
0

)
for all b ∈ H+(Mk(C)).

Proof. (i) Let Y = Y ∗ ∈ C∗(X1, . . . , Xg) be given and assume that Y is linearized
at X = (X1, . . . , Xg) by (∆; Λ,Ξ) with Λ of size n × n. According to Definition IV.2.1,
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we know that Λ(X) is invertible in Mn(A). Thus, for any given b ∈ Mk(C), the Schur
complement formula (A.1) stated in Lemma A.1 tells us that the matrix

b̂− Ŷ =

(
b−∆ −Ξ∗

−Ξ −Λ(X)

)
is invertible in Mn+k(A) if and only if its Schur complement

b− (∆− Ξ∗Λ(X)−1Ξ) = b− Y
is invertible in Mk(A). Now, if we take any b ∈ H+(Mk(C)), then b−Y must be invertible,

because Y is self-adjoint. Thus, we may conclude that b̂−Ŷ is invertible, i.e., that b̂ belongs
to the Mn+k(C)-valued resolvent set ρMn+k(A)/Mn+k(C)(Ŷ ) of Ŷ in Mn+k(A), and the Schur
complement formula (A.1) yields in addition that(

1k 0
) (
b̂− Ŷ

)−1
(

1k
0

)
=
(
1k 0

)(b−∆ −Ξ∗

−Ξ −Λ(X)

)−1(
1k
0

)
= (b− Y )−1,

which is the stated formula (IV.4). This proves (i).

(ii) For seeing (IV.5), we first note that by definition

Ek

[ (
1k 0

)
W

(
1k
0

)]
=
(
1k 0

)
En+k[W ]

(
1k
0

)
for all W ∈Mn+k(A).

Thus, we get by applying Ek to both sides of (IV.4) that

Ek
[
(b− Y )−1

]
=
(
1k 0

)
En+k

[(
b̂− Ŷ

)−1](1k
0

)
and hence, by definition of GY , that

(IV.6) GY (b) =
(
1k 0

)
En+k

[(
b̂− Ŷ

)−1](1k
0

)
.

Now, we want to relate the expression En+k[(b̂− Ŷ )−1] appearing on the right hand side of

equation (IV.6) with the Mn+k(C)-valued Cauchy transform GŶ of Ŷ . Unfortunately, we
cannot do this directly, since this expression is not precisely an evaluation of GŶ . In fact,

it is rather a boundary value of it, since b̂ does not belong itself to the upper half-plane
H+(Mn+k(C)), but can be approximated in the operator norm on Mn+k(C) by

b̂ε :=

(
b 0
0 iε1n

)
∈ H+(Mn+k(C))

as ε ↘ 0. Nevertheless, we have established in Item (i) that b̂ belongs to the Mn+k(C)-

valued resolvent set ρMn+k(A)/Mn+k(C)(Ŷ ), onto which the Mn+k(C)-valued Cauchy trans-
form GŶ can be extended analytically according to Subsection I.2.3 by

GŶ : ρMn+k(A)/Mn+k(C)(Ŷ )→Mn+k(C), b 7→ En+k

[
(b− Ŷ )−1

]
.

Of course, we could be content with this observation, since it allows us to write

En+k

[(
b̂− Ŷ

)−1]
= GŶ (b),

but we prefer to work on the natural domain H+(Mn+k(C)) of GŶ , because only here the
properties of GŶ can be controlled in such a way that all our analytic tools apply. This
is the reason why the representation given in (IV.5) involves a limit procedure, which

replaces the point b̂ of ρMn+k(A)/Mn+k(C)(Ŷ ) by b̂ε ∈ H+(Mn+k(C)). In order to convince
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ourselves that the representation given in (IV.5) is indeed correct, we need to recall first
that the analytic extension of GŶ is in particular continuous (see Theorem B.4), such that

(IV.7) En+k

[(
b̂− Ŷ

)−1]
= GŶ (b) = lim

ε↘0
GŶ (b̂ε).

Due to the continuity of the map compressing Mn+k(C) to Mk(C), a combination of (IV.6)
and (IV.7) yields finally the stated formula (IV.5). This proves (ii). �

IV.4. How to calculate distributions and Brown measures of rational
expressions

According to Lemma IV.2.3 and Theorem IV.3.1, Definition IV.2.1 establishes some di-
rect connection between Chapter III and operator-valued free probability theory. In this
section, we want to explain how this connection can be used to solve Problem IV.1.2 and
Problem IV.1.3.

In either case, we will arrive at the problem how Cauchy transforms GŶ of operators of
the form

Ŷ = L(X1, . . . , Xg) = L(0) + L(1)X1 + · · ·+ L(g)Xg

with square scalar matrices L(0), L(1), L(g) and freely independent non-commutative ran-
dom variables X1, . . . , Xg can be computed. Lemma I.2.17 tells us that this is es-
sentially nothing but the operator-valued free additive convolution of the operators
L(1)X1, . . . , L

(g)Xg and so Theorem I.2.18 and Algorithm I.2.11 will allow us to conclude.

IV.4.1. An algorithmic solution of Problem IV.1.2. Let us first discuss the
solution to Problem IV.1.2. This is the content of the following algorithm.

Algorithm IV.4.1. Let r be a self-adjoint non-commutative rational expression in formal
variables x = (x1, . . . , xg) and let X1, . . . , Xg be freely independent self-adjoint elements
in some C∗-probability space (A, φ), such that X = (X1, . . . , Xg) ∈ domsa

A(r) holds. If the
scalar-valued Cauchy transforms GX1 , . . . , GXg are given, then the distribution µr(X1,...,Xg)

of r(X1, . . . , Xg) can be obtained as follows:

(i) By means of Lemma IV.2.3 find (∆; Λ,Ξ), such that Y := r(X1, . . . , Xg) is
linearized by (∆; Λ,Ξ) in the sense of Definition IV.2.1, where the affine linear
pencil Λ is of size n× n for some n.

(ii) Consider the affine linear pencil

L = L(∆;Λ,Ξ) = L(0) + L(1)x1 + · · ·+ L(g)xg,

associated to (∆; Λ,Ξ), which consists by construction of self-adjoint matrices
L(0), L(1), . . . , L(g) ∈Mn+1(C); see Definition IV.2.1.

(iii) Apply Theorem IV.3.1 in the case k = 1 and deduce from (IV.5) that the scalar-
valued Cauchy transform of r(X1, . . . , Xg) is determined by the Mn+1(C)-valued
Cauchy transform the linearization

Ŷ := Ŷ(∆;Λ,Ξ) = L(X1, . . . , Xg) = L(0) + L(1)X1 + · · ·+ L(g)Xg.

In fact, we have

Gr(X1,...,Xg)(z) = lim
ε↘0

(
1 0

)
GŶ

((
z 0
0 iε1n

))(
1
0

)
for each z ∈ C+.
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(iv) According to Lemma I.2.17, the operators L(1)X1, . . . , L
(g)Xg are freely inde-

pendent with amalgamation over Mn+1(C). Hence, the Mn+1(C)-valued Cauchy

transform of Ŷ − L(0) can be computed by means of Theorem I.2.18; note that
the matrix-valued Cauchy-transforms of L(1)X1, . . . , L

(g)Xg can be computed by

Algorithm I.2.11. The desired Mn+1(C)-valued Cauchy transform of Ŷ is then
obtained by the following shift

GŶ (b) = GŶ−L(0)(b− L(0)) for all b ∈ H+(Mn+1(C)).

(v) With Gr(X1,...,Xg), the desired distribution of r(X1, . . . , Xg) is then obtained by
Stieltjes inversion formula; see Theorem I.1.29.

IV.4.2. An algorithmic solution of Problem IV.1.3. In this subsection, we want
to discuss the algorithmic solution of Problem IV.1.3.

Algorithm IV.4.2. Let r be any non-commutative rational expression in formal variables
x = (x1, . . . , xg) and let X1, . . . , Xg be freely independent self-adjoint elements in some
C∗-probability space (A, φ), for which X = (X1, . . . , Xg) ∈ domA(r) holds. If the scalar-
valued Cauchy transforms GX1 , . . . , GXg are given, then the Brown measure νr(X1,...,Xg) of
r(X1, . . . , Xg) can be obtained then as follows:

(i) Consider the following matrix of non-commutative rational expressions

(IV.8) r :=

(
0 r
r∗ 0

)
,

where r∗ denotes the adjoint of r in the sense of Remark III.2.5. Due to Lemma
III.2.8, the matrix r is self-adjoint in the sense of Definition III.4.1.

(ii) By means of Lemma IV.2.3 find (∆; Λ,Ξ), such that Y := r(X1, . . . , Xg) is
linearized by (∆; Λ,Ξ) in the sense of Definition IV.2.1, where the affine linear
pencil Λ is of size n× n for some n.

(iii) Consider the affine linear pencil

L = L(∆;Λ,Ξ) = L(0) + L(1)x1 + · · ·+ L(g)xg,

associated to (∆; Λ,Ξ), which consists by construction of self-adjoint matrices
L(0), L(1), . . . , L(g) ∈Mn+2(C); see Definition IV.2.1.

(iv) Apply Theorem IV.3.1 in the case k = 2 and deduce from (IV.5) that the scalar-
valued Cauchy transform of r(X1, . . . , Xg) is determined by the Mn+1(C)-valued
Cauchy transform the linearization

Ŷ := Ŷ (∆;Λ,Ξ) = L(X1, . . . , Xg) = L(0) + L(1)X1 + · · ·+ L(g)Xg.

In fact, we have

Gr(X1,...,Xg)(b) = lim
ε↘0

(
12 0

)
GŶ

((
b 0
0 iε1n

))(
12

0

)
for each b ∈ H+(M2(C)).

(v) According to Lemma I.2.17, the operators L(1)X1, . . . , L
(g)Xg are freely inde-

pendent with amalgamation over Mn+2(C). Hence, the Mn+2(C)-valued Cauchy

transform of Ŷ − L(0) can be computed by means of Theorem I.2.18; note that
the matrix-valued Cauchy-transforms of L(1)X1, . . . , L

(g)Xg can be computed by
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Algorithm I.2.11. The desired Mn+2(C)-valued Cauchy transform of Ŷ is then
obtained by the following shift

GŶ (b) = GŶ−L(0)(b− L(0)) for all b ∈ H+(Mn+2(C)).

(vi) The regularized Cauchy transform Gr(X1,...,Xg),ε is then determined by (I.16), i.e.
we have

Gr(X1,...,Xg),ε(z) =
[
Gr(X1,...,Xg)(Λε(z))

]
2,1

with Λε(z) =

(
iε z
z iε

)
for all z ∈ C.

(vii) The regularized Brown measure νr(X1,...,Xg),ε can be obtained, according to (I.15),
from the regularized Cauchy transform by

dνr(X1,...,Xg),ε(z) =
1

π

∂

∂z
Gr(X1,...,Xg),ε(z) dλ2(z).

(viii) As ε ↘ 0, the regularized Brown measure νr(X1,...,Xg),ε converges weakly to the
Brown measure νr(X1,...,Xg).

We conclude by the useful observation that a self-adjoint realization of the matrix r, which
we introduced above in (IV.8), can be constructed from any realization of the involved
rational expression r. The precise statement, which in addition covers the case of rational
expressions, which are not necessarily regular at 0, reads as follows.

Lemma IV.4.3. Let r be a scalar-valued non-commutative rational expression in the for-
mal variables z = (z1, . . . , zg) and denote by r the non-commutative rational function,
which is represented by r. Consider the matrix r of non-commutative rational expres-
sions, which was introduced in (IV.8), and denote by r the matrix of non-commutative
rational functions, which is induced by r, i.e.

r =

(
0 r
r∗ 0

)
and r :=

(
0 r
r∗ 0

)
.

(i) If ρ = (u,Q, v) is any formal linear representation of r, then

ρ = (Q, v) :=
((

0 Q
Q∗ 0

)
,

(
0 v
u∗ 0

))
gives a self-adjoint formal linear representation of r.

(ii) Suppose that r is regular at 0. If

r(x) = D + C(J − LA(x))−1B with LA(x) = A1x1 + · · ·+ Agxg,

is any descriptor realization of r, then we may obtain a self-adjoint descriptor
realization of r by

r = D + C(J − LA(x))−1B with LA(x) = A1x1 + · · ·+ Agxg,

where we have D =

(
0 D
D∗ 0

)
, C∗ = B =

(
0 B
C∗ 0

)
, J =

(
0 J
J∗ 0

)
and

Aj =

(
0 Aj
A∗j 0

)
for j = 1, . . . , g.
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Proof. (i) Let A be any ∗-algebra. We clearly have that domA(Q−1) = domA(Q−1),
and since ρ is a formal linear representation of r, we have by definition domA(r) ⊆
domA(Q−1). In combination, this gives domA(r) ⊆ domA(Q−1) and in particular

domsa
A(r) ⊆ domA(Q−1). Furthermore, ρ enjoys the property that r(X) = −uQ(X)−1v

and hence by Lemma III.2.8

r∗(X∗) = r(X)∗ = (−uQ(X)−1v)∗ = −v∗Q∗(X∗)−1u∗ for any X ∈ domA(r).

Thus, if we take X ∈ domsa
A(r), we may deduce that r(X) = −uQ(X)−1v and r∗(X) =

−v∗Q∗(X)−1u∗ holds, so that

−v∗Q(X)−1v = −
(

0 u
v∗ 0

)(
0 Q(X)

Q∗(X) 0

)−1(
0 v
u∗ 0

)
= −

(
0 u
v∗ 0

)(
0 Q∗(X)−1

Q(X)−1 0

)(
0 v
u∗ 0

)
= −

(
0 u
v∗ 0

)(
Q∗(X)−1u∗ 0

0 Q(X)−1v

)
= −

(
0 uQ(X)−1v

v∗Q∗(X)−1u∗ 0

)
=

(
0 r(X)

r∗(X) 0

)
= r(X).

This shows that ρ is indeed a self-adjoint formal linear representation.

(ii) First of all, we note that J∗ = J and J2 = 12k, since by assumption J∗ = J and
J2 = 1k holds. Thus, r(x) is indeed a self-adjoint descriptor realization of some matrix of
non-commutative rational functions. It remains to prove that it forms in fact a descriptor
realization of r. Let us first check that we have, given any unital complex ∗-algebra A,

r(X) = r(X) for all X = X∗ ∈ domA(r) ∩ domA(r).

For doing so, let us take any X = X∗ ∈ domA(r) ∩ domA(r). Since

J − LA(X) =

(
0 J − LA(X)

J∗ − LA∗(X) 0

)
,

we have that X also belongs to the domain of r and furthermore

C(J−LA(X))−1B

=

(
0 C
B∗ 0

)(
0 (J∗ − LA∗(X))−1

(J − LA(X))−1 0

)(
0 B
C∗ 0

)
=

(
0 C
B∗ 0

)(
(J∗ − LA∗(X))−1C∗ 0

0 (J − LA(X))−1B

)
=

(
0 C(J − LA(X))−1B

B∗(J∗ − LA∗(X))−1C∗ 0

)
so that

r(X) = D + C(J − LA(X))−1B =

(
0 r(X)

r(X)∗ 0

)
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Moreover, since r is a realization of r and therefore r(X) = r(X) holds, we may continue

r(X) =

(
0 r(X)

r(X)∗ 0

)
=

(
0 r(X)

r(X)∗ 0

)
= r(X).

Finally, we apply this observation to the complex unital ∗-algebra A = C (<x1, . . . , xg )>;
see Lemma III.2.35 or Lemma III.2.36. This gives r = r(x) = r(x) and concludes the
proof. �

A more complicated construction underlies the minimal symmetric realization asserted in
Item (iii) of Lemma III.4.13.

IV.5. Examples

In this section, we conclude the work that was done in the last chapters by some concrete
examples. This should convince the readers that the Algorithms IV.4.1 and IV.4.2, by
which we solved in a uniform and systematic way the fundamental Problems IV.1.2 and
IV.1.3, respectively, are accessible for numerical computations.

We must confess, however, that numerical simulations are by now the only known applica-
tions of these algorithms, mainly because finding explicit solutions for the matrix-valued
equations, by which the subordination functions are determined, is typically a heavy task,
even for very basic examples. Sometimes, the special shape of these equations arouses the
guess that their solution should show a certain kind of “symmetry”, which would then
allow us to reduce the number of involved indeterminates, but a theoretical justification
for such shortcuts is still missing. Phenomena of this type are currently under investiga-
tion, as well as the question whether one can go beyond the case of freely independent
variables, for instance to the setting of Boolean independence.

The numerical computations based on Algorithm IV.4.1 and Algorithm IV.4.2 will be per-
formed in the case of freely independent elements X1, . . . , Xg, for which random matrix

models (X
(N)
1 , . . . , X

(N)
g ) are available. Therefore, we can compare the obtained analytic

distributions and Brown measures of r(X1, . . . , Xg) with the empirical eigenvalue distri-

butions of the corresponding random matrices r(X
(N)
1 , . . . , X

(N)
g ). Fascinatingly, this will

show an nice conformity in all considered cases, though this is not always theoretically
justified by now; for more details, see Chapter II. But in those cases, where the observed
conformity is already known to be true, it demonstrates in a very impressive way (namely
by only one single picture!), how different theories, such as random matrix theory, free
probability theory and Banach space-valued complex analysis, fit together. Compared to
other areas of pure mathematics, this situation is arguably quite unique.

IV.5.1. How to use Algorithm IV.4.1. Let us begin with the polynomial case.
In both Example IV.5.1 and Example IV.5.2, the impressive conformity between the
considered random matrix simulations and the outcome of Algorithm IV.4.1 as shown in
Figure IV.1 and Figure IV.2, respectively, is explained and justified by Lemma II.4.1 and
Theorem II.3.9.

Example IV.5.1 (Anti-commutator, see Figure IV.1). We consider the self-adjoint non-
commutative polynomial expression

p := x1 · x2 + x2 · x1 ∈ RC(x1, x2).
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Figure IV.1. Histogram of eigenvalues of p(X
(N)
1 , X

(N)
2 ), where p was de-

fined in Example IV.5.1, for one realization of independent random matrices

X
(N)
1 , X

(N)
2 , where X

(N)
1 is a Wishart random matrix and X

(N)
2 a Gaussian

random matrix, both of size N = 1000, compared with the distribution of
p(X1, X2) for freely independent elements X1, X2, where X1 is a free Poisson
element and X2 a semicircular element.

For given freely independent elements X1 = X∗1 and X2 = X∗2 living in some
non-commutative C∗-probability space (A, φ), the evaluation of p at (X1, X2) yields
p(X1, X2) = X1X2 + X2X1, the so-called anti-commutator of X1 and X2. We want to
use Algorithm IV.4.1 in order to compute µp(X1,X2) if the individual distributions µX1 and
µX2 are prescribed.

Fist, we must find some (∆; Λ,Ξ) by which p(X1, X2) is linearized at the point (X1, X2).
According to Lemma IV.2.3, it is sufficient to construct a formal linear representation
ρ = (Q, v) of p, because we can chose then (∆; Λ,Ξ) = (0;Q, v). For finding ρ, we
could of course just apply the algorithm that we presented in detail in Section IV.4.
Alternatively, since we can write (actually for each unital complex algebra A and all
points (X1, X2) ∈ A2)

p(X1, X2) =
(
X1 X2

)(0 1
1 0

)−1(
X1

X2

)
,

we can use Lemma IV.2.4, which leads us to the self-adjoint pure linear representation

ρ = (Q, v) :=

(
0 x1 x2 −1
x1 0 −1 0
x2 −1 0 0
−1 0 0 0

 ,


0
0
0
1


)
.
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Figure IV.2. Histogram of eigenvalues of q(X
(N)
1 , X

(N)
2 ), where the poly-

nomial q was defined in Example IV.5.2, for one realization of independent

random matrices X
(N)
1 , X

(N)
2 , where X

(N)
1 is a Wishart random matrix and

X
(N)
2 a Gaussian random matrix, both of size N = 1000, compared with

the distribution of q(X1, X2) for freely independent elements X1, X2, where
X1 is a free Poisson element and X2 a semicircular element.

Note that, strictly speaking, Lemma IV.2.4 only produces a pure linear representation,
but it happens incidentally to be self-adjoint without further modification. The associated
linear pencil L = L(∆;Λ,Ξ) looks then as follows

L =


0 0 0 0 1
0 0 x1 x2 −1
0 x1 0 −1 0
0 x2 −1 0 0
1 −1 0 0 0

 ,

which decomposes as L = L(0) + L(1)x1 + L(2)x2, where

L(0) =


0 0 0 0 1
0 0 0 0 −1
0 0 0 −1 0
0 0 −1 0 0
1 −1 0 0 0

 , L(1) =


0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 , L(2) =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 .

Finally, Ŷ := L(X1, X2) yields a linearization of the anti-commutator Y = p(X1, X2) =

X1X2 + X2X1. According to Theorem IV.3.1, the M5(C)-valued Cauchy transform of Ŷ
determines the scalar-valued Cauchy transform Gp(X1,X2) of p(X1, X2) and in consequence
the distribution of p(X1, X2).
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Figure IV.3. Histogram of eigenvalues of r(X
(N)
1 , X

(N)
2 ) for one realiza-

tion of independent Gaussian random matrices X
(N)
1 , X

(N)
2 of size N = 1000,

compared with the distribution of r(X1, X2) for freely independent semicir-
cular elements X1, X2. See Example IV.5.3.

Example IV.5.2 (Commutator, see Figure IV.2). We consider the self-adjoint non-
commutative polynomial expression

q := i(x1x2 − x2x1) ∈ PC(x1, x2).

For given freely independent elements X1 = X∗1 and X2 = X∗2 living in some non-
commutative C∗-probability space (A, φ), the evaluation of q at (X1, X2) yields the so-
called commutator of X1 and X2 (multiplied by i in order to stay inside the class of
self-adjoint operators). We want to use Algorithm IV.4.1 in order to compute µp(X1,X2)

if the individual distributions µX1 and µX2 are prescribed. Like it was done for the anti-
commutator in Example IV.5.1, we will produce the triple (∆; Λ,Ξ) linearizing q(X1, X2)
out of a self-adjoint formal linearization ρ = (Q, v) of q, following the suggestion of Lemma
IV.2.3. The latter can again be constructed by Lemma IV.2.4 and the decomposition

q(X1, X2) =
(
X1 X2

)(0 −i
i 0

)−1(
X1

X2

)
,

which yields the formal linear representation

ρ = (Q, v) =

(
0 x1 x2 −1
x1 0 i 0
x2 −i 0 0
−1 0 0 0

 ,


0
0
0
1


)
.
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Figure IV.4. Histogram of eigenvalues of r(X
(N)
1 , X

(N)
2 ) for one realization

of independent random matrices X
(N)
1 , X

(N)
2 of size N = 1000, X

(N)
1 being

a standard self-adjoint complex Gaussian and X
(N)
2 being a standard self-

adjoint complex Wishart random matrix, compared with the distribution of
r(X1, X2) for freely independent elements X1, X2, where X1 is a semicircular
and X2 a free Poisson element. See Example IV.5.4.

The associated linear pencil L = L(∆;Λ,Ξ) looks then as follows:

L =


0 0 0 0 1
0 0 x1 x2 −1
0 x1 0 i 0
0 x2 −i 0 0
1 −1 0 0 0


which decomposes as L = L(0) + L(1)x1 + L(2)x2, where now

L(0) =


0 0 0 0 1
0 0 0 0 −1
0 0 0 i 0
0 0 −i 0 0
1 −1 0 0 0

 , L(1) =


0 0 0 0 0
0 0 1 0 0
0 1 0 0 0
0 0 0 0 0
0 0 0 0 0

 , L(2) =


0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 1 0 0 0
0 0 0 0 0

 .

Finally, Ŷ := L(X1, X2) gives a linearization of the commutator Y = q(X1, X2) =
i(X1X2 − X2X1). According to Theorem IV.3.1, the M5(C)-valued Cauchy transform

of Ŷ determines the scalar-valued Cauchy transform Gq(X1,X2) of q(X1, X2) and so the
distribution of q(X1, X2).

Next, we turn our attention to the case of rational expressions. In Example IV.5.3 and
Example IV.5.4, we will again see an astounding conformity between the random matrix
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Figure IV.5. Brown measure of pg(X1, . . . , Xg) for the polynomial pg in-
troduced in Example IV.5.5 with freely independent semicircular elements
X1, . . . , Xg for different values of g.

simulations and the result of our Algorithm IV.4.1. Here, it is explained by Lemma II.4.4
and the strong convergence (see Definition II.4.2) of the considered random matrix models.

Example IV.5.3. Consider the regular non-commutative rational function

r = (4− x1)−1 + (4− x1)−1x2

(
(4− x1)− x2(4− x1)−1x2

)−1
x2(4− x1)−1 ∈ C (<x1, x2 )>.

One can check (either by some direct computation based on the Schur complement for-
mula, Lemma A.1, or by following the construction proposed in the proof of Theorem
III.5.11, namely by producing first a self-adjoint descriptor realization out of any formal
linear representations and then cutting down to a minimal one; see Algorithm III.4.15)
that r admits the self-adjoint monic descriptor realization r(x) = D +C∗(1− LA(x))−1C
with feed through term D = 0 defined by

r(x) :=
(

1
2

0
)(1− 1

4
x1 −1

4
x2

−1
4
x2 1− 1

4
x1

)−1(1
2
0

)
=
(

1
2

0
)((1 0

0 1

)
−
(

1
4

0
0 1

4

)
x1 −

(
0 1

4
1
4

0

)
x2

)−1(
1
2
0

)
.

Now, chose any non-commutative rational expression r, which represents r, and consider
some C∗-probability space (A, φ), which comes endowed with a tracial state φ, and fur-
thermore freely independent elements X1 = X∗1 and X2 = X∗2 inA, such that the condition
(X1, X2) ∈ domsa

A(r) is satisfied. Lemma IV.2.3 then tells us that Y = r(X1, X2) is lin-
earized at (X1, X2) by (∆; Λ,Ξ) = (0; 1−LA, C). The associated linear pencil L = L(∆;Λ,Ξ)

decomposes as L = L(0) + L(1)x1 + L(2)x2, where

L(0) =

0 1
2

0
1
2
−1 0

0 0 −1

 , L(1) =

0 0 0
0 1

4
0

0 0 1
4

 , and L(2) =

0 0 0
0 0 1

4
0 1

4
0

 .
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Figure IV.6. Eigenvalues of pg(X
(N)
1 , . . . , X

(N)
g ) for the polynomial pg in-

troduced in Example IV.5.5 with independent Gaussian random matrices

X
(N)
1 , . . . , X

(N)
g of size N .

Finally, Ŷ := L(X1, X2) gives a linearization of Y = r(X1, X2) and according to Theorem

IV.3.1, the M3(C)-valued Cauchy transform of Ŷ determines the scalar-valued Cauchy
transform Gr(X1,X2) of r(X1, X2) and so the distribution of r(X1, X2). In Figure IV.3, we

compare the histogram of eigenvalues of r(X
(N)
1 , X

(N)
2 ) for one realization of independent

Gaussian random matrices X
(N)
1 , X

(N)
2 of size N = 1000 with the distribution of r(X1, X2)

for freely independent semicircular elementsX1, X2, calculated according to our algorithm.

Example IV.5.4. Let us consider the non-commutative rational expression

r(x1, x2) :=
((
x1 · x2 + (−i)

)−1 · x1

)
·
(
x2 · x1 + i

)−1
.

It is not hard to see that r is self-adjoint in the sense of Definition III.2.7. Assume that X1

and X2 are freely independent self-adjoint elements in some C∗-probability space (A, φ)
with tracial state φ, where the distribution of X1 is the standard semicircular distribution
and the distribution of X2 the Marchenko-Pastur distribution with rate λ = 1 and jump
size α = 1. In Figure IV.4, the distribution of r(X1, X2) computed with the help of
Algorithm IV.4.1 is shown, together with the normalized histogram of all eigenvalues of

r(X
(N)
1 , X

(N)
2 ) for independent random matrices X

(N)
1 and X

(N)
2 of size N = 1000, where

X
(N)
1 is a self-adjoint complex Gaussian random matrix and X

(N)
2 is a self-adjoint complex

Wishart random matrix.

IV.5.2. How to use Algorithm IV.4.2. We present now tow applications of Al-
gorithm IV.4.2. Again, the chosen random matrix models will produce eigenvalue dis-
tributions being in perfect accordance with the computed Brown measures. However,
for non-commutative polynomials like in Example IV.5.5 – not to mention the case of
non-commutative rational expressions in Example IV.5.6 – we do not have a theoretical
justification of this, but the produced figures support the conjecture that this is indeed
correct.
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Figure IV.7. Brown measure of r(X1, X2) for the rational expression
r(x1, x2) defined in Example IV.5.6, evaluated in freely independent semi-
circular elements X1, X2.

Example IV.5.5. For any given g ∈ N, g ≥ 2, we denote by pg the non-commutative
polynomial in C〈x1, . . . , xg〉 that is defined by

pg = x1x2 + x2x3 + · · ·+ xg−1xg + xgx1.

Choosing any non-commutative polynomial expression pg ∈ RC(z1, . . . , zg), which rep-
resents pg, we can use Algorithm IV.4.2 in order to compute the Brown measure of
pg(X1, . . . , Xg) for freely independent semicircular variables X1, . . . , Xg. For g = 3 and
g = 4, the outcome is shown in Figure IV.5. This should be compared with the eigenval-

ues of pg(X
(N)
1 , . . . , X

(N)
g ) for one realization of independent Gaussian random matrices

X
(N)
1 , . . . , X

(N)
g as shown in Figure IV.6.

Example IV.5.6. Let us consider the non-commutative descriptor realization

r(x1, x2) :=
(
0 1

2

)(1− 1
4
x1 −ix2

−1
4
x2 1− 1

4
x1

)−1(1
2
0

)
and denote by r the non-commutative rational function in C (<x1, x2 )>, which is represented
by r. If r ∈ RC(z1, zg) represents r, then the matrix r of non-commutative rational expres-
sions introduced in (IV.8) represents the matrix r of non-commutative rational functions,
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Figure IV.8. Eigenvalues of r(X
(N)
1 , X

(N)
2 ) for the rational expression

r(x1, x2) defined in Example IV.5.6 with independent Gaussian random

matrices X
(N)
1 , X

(N)
2 of size N = 1000.

for which Lemma IV.4.3, yields the descriptor realization

r(x1, x2) =

(
0 0 0 1

2
1
2

0 0 0

)
0 0 1− 1

4
x1 −ix2

0 0 −1
4
x2 1− 1

4
x1

1− 1
4
x1 −1

4
x2 0 0

ix2 1− 1
4
x1 0 0


−1

0 1
2

0 0
0 0
1
2

0

 .

According to Theorem IV.3.1, we introduce now

L(x1, x2) =


0 0 0 0 0 1

2
0 0 1

2
0 0 0

0 1
2

0 0 −1 + 1
4
x1 ix2

0 0 0 0 1
4
x2 −1 + 1

4
x1

0 0 −1 + 1
4
x1

1
4
x2 0 0

1
2

0 −ix2 −1 + 1
4
x1 0 0

 .

Again, L(x1, x2) decomposes as L(x1, x2) = L(0) + L(1)x1 + L(2)x2, which provides the
initial data for our algorithm: if (X1, X2) is a tuple of freely independent semicircular
elements, then in (X1, X2) ∈ domA(r) and the obtained density of the Brown measure of

r(X1, X2) is shown in Figure IV.7; Figure IV.8 shows the eigenvalues of r(X
(N)
1 , X

(N)
2 ) for

one realization of independent Gaussian random matrices X
(N)
1 , X

(N)
2 of size N = 1000.
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CHAPTER V

Non-commutative derivatives and derivations

The advances of free probability and the vast improvement in our understanding of non-
commutative distributions in particular goes from its beginning hand in hand with the
development of a non-commutative analysis – often called free analysis – which provides
the right frame for analytic questions similar to the classical case and hence completes
the combinatorial picture of non-commutative distributions. It is certainly not surpris-
ing that the backbone of free analysis is a suitable notion of derivatives. But since free
analysis is built at the highest degree of non-commutativity, these derivatives are of com-
pletely different nature than their classical ancestors. Accordingly, studying the class of
all “differentiable non-commutative functions” is a rather intricate endeavor, so that one
typically restricts oneself to certain subclasses.

The most important class of functions, for which these derivations can be intro-
duced in purely algebraic terms, are non-commutative polynomials. On the ∗-algebra
C〈x1, . . . , xn〉 consisting of non-commutative polynomials in n formal non-commuting vari-
ables x1, . . . , xn (see part (i) of Definition I.1.12), the so-called non-commutative deriva-
tives are given as linear mappings

∂i : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉 for i = 1, . . . , n.

Notably, in contrast to the classical derivatives, these non-commutative derivatives take
their values in the tensor product C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉. Roughly speaking, ∂i
removes the variable xi, one after another, at each position where it appears, like the
classical derivatives do, but it memorizes in addition the former position of xi by putting
a tensor sign there instead. We will give the precise definition of ∂i in Section V.1.

Non-commutative polynomials in C〈x1, . . . , xn〉 have compared to more general classes
of non-commutative functions the advantage that they provide some kind of “universal
rule”, which allows us to evaluate them easily on arbitrary tuples of elements living in
some unital complex algebra. More precisely, as we have seen in part (ii) of Definition
I.1.12, there is a natural homomorphism

evX : C〈x1, . . . , xn〉 → A, P 7→ P (X1, . . . , Xn)

for each n-tuple X = (X1, . . . , Xn) consisting of elements in a unital complex algebra A.
In the case where the considered elements X1, . . . , Xn do not satisfy any non-trivial al-
gebraic relation, this functional calculus yields an isomorphism between C〈x1, . . . , xn〉
and the unital subalgebra C〈X1, . . . , Xn〉 of A, which is generated by the elements
X1, . . . , Xn. This allows us in particular to reinterpret the non-commutative derivatives ∂i
as C〈X1, . . . , Xn〉 ⊗C〈X1, . . . , Xn〉-valued derivations on C〈X1, . . . , Xn〉. With this point
of view, non-commutative derivatives fall into the more general class of non-commutative
derivations . We will study these objects in detail in Section V.3. This will provide some
very important tools for our considerations in the subsequent chapters.
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This chapter is organized as follows. In Section V.1, we first discuss the purely algebraic
theory of non-commutative derivatives

∂i : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉 for i = 1, . . . , n.

on the algebra C〈x1, . . . , xn〉 of non-commutative polynomials in n non-commuting vari-
ables x1, . . . , xn. The question, under which conditions ∂1, . . . , ∂n can be lifted for given
elements X1, . . . , Xn in a unital complex algebra A to derivations

∂̂i : C〈X1, . . . , Xn〉 → C〈X1, . . . , Xn〉 ⊗ C〈X1, . . . , Xn〉 for i = 1, . . . , n,

which are compatible with the evaluation map evX , will be addresses in Section V.2.
Finally, in Section V.3, we will put several results from [Voi98] and [Dab10] (see also
[Dab14]) in a uniform framework. Based on this, we will obtain Proposition V.6.1, which
is taken from [Mai15] and which provides a significant generalization of the previous
result that was obtained in [MSW17].

V.1. Non-commutative derivatives

This section is devoted to non-commutative derivatives. We introduce them here in
purely algebraic terms as linear mappings on the unital ∗-algebra C〈x1, . . . , xn〉 of non-
commutative polynomials in n formal non-commuting variables x1, . . . , xn with values in
the twofold tensor product C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉.
Definition V.1.1. For i = 1, . . . , n, the non-commutative derivative ∂i is the unique
linear map

∂i : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉,
which satisfies the Leibniz rule

(V.1) ∂i(P1P2) = (∂iP1)(1⊗ P2) + (P1 ⊗ 1)(∂iP2) for all P1, P2 ∈ C〈x1, . . . , xn〉
and the condition

(V.2) ∂ixj = δi,j1⊗ 1 for j = 1, . . . , n.

Indeed, the claimed uniqueness can be checked as follows: fix i ∈ {1, . . . , n} and assume
that there would be another linear map

∂̃i : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉,
which satisfies both the Leibniz rule (V.1) and condition (V.2). Consider the set

D := {P ∈ C〈x1, . . . , xn〉| ∂iP = ∂̃iP}.
Because ∂i and ∂̃i are both linear and satisfy the Leibniz rule, one can easily deduce that
D is in fact a subalgebra of C〈x1, . . . , xn〉. Now, since the Leibniz rule forces both ∂i and

∂̃i to vanish on scalars, we clearly have C ⊆ D. Moreover, due to (V.2), we also have that
x1, . . . , xn ∈ D. Hence, in summary, it follows D = C〈x1, . . . , xn〉, which yields the stated
uniqueness.

More naturally, non-commutative derivatives should be considered within the frame of
derivations. Recall the following definition.

Definition V.1.2. A linear mapping δ : A →M, defined on a unital complex algebra
A and taking values in an A-bimodule M, is called a M-valued derivation on A, if it
satisfies the generalized Leibniz rule

δ(a1a2) = δ(a1) · a2 + a1 · δ(a2) for all a1, a2 ∈ A.
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Note that C〈x1, . . . , xn〉⊗C〈x1, . . . , xn〉 carries naturally the structure of a C〈x1, . . . , xn〉-
bimodule by

P1 · (Q1 ⊗Q2) · P2 := (P1 ⊗ 1)(Q1 ⊗Q2)(1⊗ P2) = (P1Q1)⊗ (Q2P2).

Accordingly, we can rewrite the Leibniz rule (V.1) as

(V.3) ∂j(P1P2) = (∂jP1) · P2 + P1 · (∂jP2) for all P1, P2 ∈ C〈x1, . . . , xn〉
and we see that Definition V.1.1 identifies ∂i as a C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉-valued
derivation on C〈x1, . . . , xn〉.
Remark V.1.3. The non-commutative derivatives ∂1, . . . , ∂n are as linear mappings
uniquely determined by their values on all monomials , i.e., on any polynomial of the
form xi1 · · ·xim for m ∈ N0 and 1 ≤ i1, . . . , im ≤ n (where the monomial is understood as
the constant monomial 1 in the case m = 0). If P is any such monomial, we have for any
fixed i = 1, . . . , n

(V.4) ∂iP :=
∑

P=P1xiP2

P1 ⊗ P2,

where the sum runs over all decompositions of P in the form P = P1xiP2 with some
monomials P1, P2. The validity of this formula can be checked easily by means of the
Leibniz rule, (V.1) and (V.3), respectively.

The next remark clarifies some structure, which appears repeatedly when working in the
non-commutative setting of bimodules.

Remark V.1.4. Let A and B be complex algebras. If M is an A-B-bimodule, then we
denote by ] the operation (A⊗ B)×M →M that is determined by linear extension of
(a⊗ b)]m := a ·m · b. Furthermore, if we would replace here B by its opposite algebra Bop,
then ] would give rise to a left action of the algebraic tensor product A⊗Bop onM. But
since the multiplicative structure of A ⊗ B will play a minor role in our considerations,
we will not care about this subtlety in the following.

The following remarks record some crucial properties of non-commutative derivatives.

Remark V.1.5. The collection (∂1, . . . , ∂n) of non-commutative derivatives is “universal”
in the following sense:

(i) Consider any C〈x1, . . . , xn〉-bimodule M and let δ : C〈x1, . . . , xn〉 → M be a
derivation. Then

(V.5) δ(P ) =
n∑
j=1

(∂jP )]δ(xj) for all P ∈ C〈x1, . . . , xn〉.

This formula is an immediate consequence of the generalized Leibniz rule for δ
and it describes in an explicit way how each such derivation δ : C〈x1, . . . , xn〉 →
M is fully determined by its values δ(x1), . . . , δ(xn) on the generators x1, . . . , xn.

(ii) More generally, consider a unital complex algebra A and some A-bimodule M.
Then, for each derivation δ : A →M and for any n-tuple X = (X1, . . . , Xn) of
elements in A, we have that

(V.6) δ(P (X1, . . . , Xn)) =
n∑
j=1

(∂jP )(X1, . . . , Xn)]δ(Xj) for all P ∈ C〈x1, . . . , xn〉,

where we put Q(X1, . . . , Xn) := (evX ⊗ evX)(Q) for any Q ∈ C〈x1, . . . , xn〉⊗2.
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Remark V.1.6. A very important property of non-commutative derivatives ∂1, . . . , ∂n on
C〈x1, . . . , xn〉 is that each of them satisfies the so-called coassociativity relation, i.e., we
have that

(id⊗∂i) ◦ ∂i = (∂i ⊗ id) ◦ ∂i for all i = 1, . . . , n.

We point out, that more generally

(id⊗∂i) ◦ ∂j = (∂j ⊗ id) ◦ ∂i for all i, j = 1, . . . , n

holds, which can be checked easily by a direct computation on monomials.

We admit that their definition might seem quite artificial at first sight, but these non-
commutative derivatives show up naturally in Voiculescu’s non-microstates approach to
free entropy in [Voi98] and also at several other places in mathematics, loosely speaking,
whenever one tries to differentiate functions in highly non-commuting variables.

Example V.1.7. Let us consider a non-commutative polynomial P in formal non-
commuting variables x1, . . . , xn. By evaluation, P induces naturally a function

P : MN(C)n →MN(C), (X1, . . . , Xn) 7→ ev(X1,...,Xn)(P ) = P (X1, . . . , Xn)

on the space MN(C)n of n-tuples of complex matrices of any fixed dimension N . Similarly,
evaluation of ∂iP yields

(ev(X1,...,Xn)⊗ ev(X1,...,Xn))(∂iP ) = (∂iP )(X1, . . . , Xn),

which is an element in MN(C) ⊗MN(C). Note that any element Y ∈ MN(C) ⊗MN(C)
induces naturally a linear map MN(C) → MN(C) by X 7→ Y ]X, where ] is defined as
above by considering MN(C) as a bimodule over itself, i.e. the operation

] : (MN(C)⊗MN(C))×MN(C)→MN(C)

is given by bilinear extension of (Y1⊗Y2)]X := Y1XY2. If we endow now MN(C) with the
usual operator-norm (by identifying matrices in MN(C) with bounded linear operators on
the Hilbert space CN), we can ask whether P admits directional derivatives. Indeed, it
turns out that

lim
t→0

1

t

(
P (X1 + tY1, . . . , Xn + tYn)− P (X1, . . . , Xn)

)
=

n∑
j=1

(∂jP )(X1, . . . , Xn)]Yj

for any point (X1, . . . , Xn) ∈MN(C)n and for any direction (Y1, . . . , Yn) ∈MN(C)n.

It is a rather surprising feature of free analysis, that these derivatives arise also from
purely algebraic operations as soon as we let our functions act on matrices of different
sizes. In fact, we have that

P
((

X1 Y1

0 X1

)
, . . . ,

(
Xn Yn
0 Xn

))
=

P (X1, . . . , Xn)
n∑
j=1

(∂jP )(X1, . . . , Xn)]Yj

0 P (X1, . . . , Xn)

 .

This observation is at the base of free non-commutative function theory as developed in
[KV14], but goes back in this particular situation to [Tay72, Tay73].
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V.2. Non-commutative derivatives and algebraic relations

In the previous section, non-commutative derivatives were treated as purely algebraic
objects. Following [Voi98], we will put them in a much more analytic setting: if X1, . . . , Xn

are certain (self-adjoint) elements in some W ∗-probability space (M, τ), we can consider
the unital (∗-)subalgebra C〈X1, . . . , Xn〉 of M , which is generated by X1, . . . , Xn. Our
goal is to define

∂̂i : C〈X1, . . . , Xn〉 → C〈X1, . . . , Xn〉 ⊗ C〈X1, . . . , Xn〉 for i = 1, . . . , n

as C〈X1, . . . , Xn〉⊗C〈X1, . . . , Xn〉-valued derivations on C〈X1, . . . , Xn〉, which satisfy the

property ∂̂iXj = δi,j1⊗ 1 for all i, j = 1, . . . , n.

In [Voi98], this was achieved by assuming that the considered variables X1, . . . , Xn do
not satisfy any algebraic relation. Indeed, this assumption guarantees that the evaluation
homomorphism

evX : C〈x1, . . . , xn〉 → C〈X1, . . . , Xn〉

induced by X = (X1, . . . , Xn) is an isomorphism, so that ∂̂i defined by ∂̂i := evX ◦∂i◦ev−1
X

clearly does the job.

The following proposition shows that the absence of algebraic relations is, among other
conditions, equivalent to the existence of such derivations ∂̂1, . . . , ∂̂n.

Proposition V.2.1. Let (M, τ) be a tracial W ∗-probability space and let self-adjoint
X1, . . . , Xn ∈M be given. Then the following statements are equivalent:

(i) The variables X1, . . . , Xn do not satisfy any algebraic relation.
(ii) For any non-commutative polynomial P ∈ C〈x1, . . . , xn〉, the following implica-

tion holds true:

(V.7) P (X1, . . . , Xn) = 0 =⇒ ∀j = 1, . . . , n : (∂jP )(X1, . . . , Xn) = 0

(iii) For each j = 1, . . . , n, there is a derivation

∂̂j : C〈X1, . . . , Xn〉 → C〈X1, . . . , Xn〉 ⊗ C〈X1, . . . , Xn〉

such that the following diagram commutes.

(V.8) C〈x1, . . . , xn〉
∂j //

evX

����

C〈x1, . . . , xn〉⊗2

evX ⊗ evX

����
C〈X1, . . . , Xn〉

∂j //
∂̂j // C〈X1, . . . , Xn〉⊗2

(iv) For each j = 1, . . . , n, there is a derivation

∂̂j : C〈X1, . . . , Xn〉 → C〈X1, . . . , Xn〉 ⊗ C〈X1, . . . , Xn〉

such that ∂̂j(Xi) = δj,i1⊗ 1 for i = 1, . . . , n.

In particular, if the equivalent conditions (i) – (iv) are satisfied, then each derivation ∂̂j
in (iii) as well as in (iv) is uniquely determined, and they both coincide.
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Proof. First of all, let us note that the implication “(i) =⇒ (ii)” is trivial, since
P = 0 is under the assumption (i) the only non-commutative polynomial satisfying
P (X1, . . . , Xn) = 0.

(ii) =⇒ (i): For j = 1, . . . , n, we may define ∆j := ((τ ◦ evX) ⊗ id) ◦ ∂j, which gives a
linear mapping

∆j : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉.
The assumption (V.7) made in (ii) yields for any P ∈ C〈x1, . . . , xn〉 the implication

(V.9) P (X) = 0 =⇒ ∀j = 1, . . . , n : (∆jP )(X) = 0.

Take now any polynomial P ∈ C〈x1, . . . , xn〉, for which P (X1, . . . , Xn) = 0 holds, and
assume that P is non-zero. Thus, we can write P as

P = a0 +
d∑

k=1

n∑
i1,...,ik=1

ai1,...,ikxi1 . . . xik ,

where d ≥ 1 denotes the total degree of P . We choose any summand of highest degree

ai1,...,idxi1 . . . xid

of P . Since ∆id . . .∆i1 is clearly zero on constants, any monomial of degree strictly less
than d, and furthermore on any monomial of degree d, where the variables do not appear
in the prescribed order, we see that ∆id . . .∆i1P = ai1,...,id . Hence, we deduce by iterating
(V.9)

ai1,...,id = (∆id . . .∆i1P )(X) = 0,

which finally leads to a contradiction. Therefore, we must have P = 0, which shows (i).

(ii) =⇒ (iii): For any given element Y ∈ C〈X1, . . . , Xn〉, we choose P ∈ C〈x1, . . . , xn〉
with Y = P (X1, . . . , Xn) and we put

∂̂jY := (∂jP )(X1, . . . , Xn) for j = 1, . . . , n.

By assumption (ii), this gives a well-defined mapping

∂̂j : C〈X1, . . . , Xn〉 → C〈X1, . . . , Xn〉 ⊗ C〈X1, . . . , Xn〉,

which is in fact a derivation, as a straightforward calculation shows. Moreover, by defini-
tion of ∂̂j, it is clear that the diagram in (V.8) commutes.

(iii) =⇒ (ii): Let P ∈ C〈x1, . . . , xn〉 with P (X1, . . . , Xn) = 0 be given. By assumption, we
get

(∂jP )(X1, . . . , Xn) = ((evX ⊗ evX) ◦ ∂j)(P )

= (∂̂j ◦ evX)(P )

= ∂̂j(P (X1, . . . , Xn))

= ∂̂j(0)

= 0,

which shows (ii).
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(iii) =⇒ (iv): Let any j ∈ {1, . . . , n} be given. If there is a derivation ∂̂j, for which the

diagram in (V.8) commutes, then we can check that

∂̂j(Xi) = ∂̂j(evX(xi))

= (evX ⊗ evX)(∂jxi)

= (evX ⊗ evX)(δj,i1⊗ 1)

= δj,i1⊗ 1.

holds for i = 1, . . . , n, i.e. ∂̂j satisfies the condition of (iv).

(iv) =⇒ (iii): Note that C〈X1, . . . , Xn〉⊗2 becomes a C〈x1, . . . , xn〉-bimodule via the eval-

uation map evX , i.e., we define P1 ·Q · P2 := P1(X)QP2(X) for all P1, P2 ∈ C〈x1, . . . , xn〉
and each Q ∈ C〈X1, . . . , Xn〉⊗2. Now, fix j ∈ {1, . . . , n} and assume that a derivation

∂̂j : C〈X1, . . . , Xn〉 → C〈X1, . . . , Xn〉 ⊗ C〈X1, . . . , Xn〉

exists, which satisfies the condition ∂̂j(Xi) = δj,i1 ⊗ 1 for i = 1, . . . , n. With respect to
this bimodule structure, the linear mapping

dj := ∂̂j ◦ evX : C〈x1, . . . , xn〉 → C〈X1, . . . , Xn〉 ⊗ C〈X1, . . . , Xn〉
turns out to be a C〈X1, . . . , Xn〉⊗2-valued derivation on C〈x1, . . . , xn〉, which moreover

enjoys the property that dj(xi) = ∂̂j(Xi) = δj,i1 ⊗ 1 holds for i = 1, . . . , n. Thus, using
(V.5), we obtain for each P ∈ C〈x1, . . . , xn〉 that

dj(P ) =
n∑
i=1

(∂iP )]dj(xi) = (∂jP )](1⊗ 1) = (evX ⊗ evX)(∂jP )

and finally, according to the definition of dj, that

(∂̂j ◦ evX)(P ) = dj(P ) = ((evX ⊗ evX) ◦ ∂j)(P ).

This means precisely that the diagram in (V.8) commutes.

If the equivalent conditions (i) – (iv) hold true, then the derivations in (iii) and (iv) are

uniquely determined. Indeed, if ∂̂j satisfies (iii) or (iv), then its value on each element
in C〈X1, . . . , Xn〉, represented according to (i) as P (X1, . . . , Xn) for some unique P ∈
C〈x1, . . . , xn〉, must be given by

∂̂j(P (X1, . . . , Xn)) = (∂̂j ◦ evX)(P ) = (evX ◦∂j)(P ) = (∂jP )(X1, . . . , Xn)

(according to the commutativity of the diagram in (V.8)) or

∂̂j(P (X1, . . . , Xn)) = (∂̂j ◦ evX)(P ) = dj(P ) = (∂jP )(X1, . . . , Xn)

(according to the proof of “(iv) =⇒ (iii)”), respectively. Furthermore, we see that both
derivations must coincide. �

These derivations ∂̂1, . . . , ∂̂n were finally used in [Voi98] for defining the so-called free
Fisher information Φ∗(X1, . . . , Xn). Accordingly, talking about the Fisher information
Φ∗(X1, . . . , Xn) always required to impose the a priori condition of absence of alge-
braic relations. This is actually not an issue, since the condition Φ∗(X1, . . . , Xn) < ∞
is expected to imply some strong kind of regularity for the tuple (X1, . . . , Xn), which
should be incongruous with algebraic relations anyway. Nevertheless, one would prefer
another approach to free Fisher information that circumvents the initial assumption of
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absence of algebraic relations and rather establishes this as a consequence of the condition
Φ∗(X1, . . . , Xn) <∞. In fact, such a slight modification of the definition of Φ∗(X1, . . . , Xn)
will be presented in Section VI.1 of Chapter VI, culminating in Theorem VI.1.5, where
Proposition V.2.1 is used to prove that Φ∗(X1, . . . , Xn) < ∞ indeed excludes algebraic
relations.

V.3. Non-commutative derivations

In the previous section, we have discussed the non-commutative derivatives

∂̂i : C〈X1, . . . , Xn〉 → C〈X1, . . . , Xn〉 ⊗ C〈X1, . . . , Xn〉 for i = 1, . . . , n,

which were introduced in [Voi98]. In fact, they fit nicely in the much more general frame
of non-commutative derivations . Their theory arises from the work of Voiculescu [Voi98,
Voi99] and of Dabrowski [Dab10, Dab14], and the corresponding generalization of
methods originating from [MSW17].

At the beginning, a few words on tensor products are in order. Throughout this section,
the purely algebraic tensor product of complex vector spaces or complex algebras will be
denoted by �, whereas the more familiar symbol ⊗ is reserved for its “natural” closure
in the corresponding analytic setting, as for instance for Hilbert spaces or von Neumann
algebras. Since the tensor sign will appear mostly in its “closed version”, this convention
saves us from decorating the tensor signs repeatedly with fancy tags and hence keeps the
notation as simple as possible.

Derivations are mainly characterized by the Leibniz rule, which is a straightforward gener-
alization of the Leibniz rule for usual derivatives. Hence, these objects can be introduced
and studied in a purely algebraic setting. But since we are interested more in the analytic
rather than the purely algebraic properties of derivations, we will impose here some addi-
tional conditions on the algebra A and the A-bimoduleM. For doing this, we clearly have
a lot of flexibility. The most general notion of such analytic derivations is probably the
one that is presented in [CS03, Definition 4.1]. However, the feasibility of our arguments
here depends strongly on more restrictive assumptions, due to which those derivations will
behave pretty much like the usual non-commutative derivatives as discussed in Section
V.1. Accordingly, we shall call them non-commutative derivations.

Throughout this section, let (M, τ) be a tracial W ∗-probability space.

Definition V.3.1. A linear map

δ : M ⊇ D(δ)→ L2(M, τ)⊗ L2(M, τ)

is called a non-commutative derivation on M if the following two conditions are satisfied:

• The domain D(δ) of δ is a unital ∗-subalgebra of M , which is moreover weakly
dense in M .
• The linear map δ satisfies the Leibniz rule (or product rule)

δ(X1X2) = δ(X1) ·X2 +X1 · δ(X2)

for all X1, X2 ∈ D(δ), where · denotes the natural bimodule operation of M on
the Hilbert space

L2(M, τ)⊗ L2(M, τ) ∼= L2(M ⊗M, τ ⊗ τ).
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Remark V.3.2. Assume that δ : M ⊇ D(δ) → L2(M, τ) ⊗ L2(M, τ) is any non-
commutative derivation in the sense of Definition V.3.1. If X1, . . . , Xn are self-adjoint
elements in D(δ), then the formula (V.6) given in Remark V.1.5 applies and yields

(V.10) δ(P (X1, . . . , Xn)) =
n∑
i=1

(∂iP )(X1, . . . , Xn)]δ(Xi)

for any P ∈ C〈x1, . . . , xn〉. In other words, the non-commutative derivatives ∂1, . . . , ∂n
are universal in the sense that they provide an explicit expression for the restriction of
any non-commutative derivation δ to a subalgebra C〈X1, . . . , Xn〉 of its domain D(δ) in
terms of its values on the generators X1, . . . , Xn.

Following [Voi98, Voi99], we change now our point of view by considering any non-
commutative derivation δ : M ⊇ D(δ) → L2(M, τ) ⊗ L2(M, τ) in the sense of Definition
V.3.1 as an unbounded linear operator

δ : L2(M, τ) ⊃ D(δ)→ L2(M, τ)⊗ L2(M, τ).

Since D(δ) is clearly dense in L2(M, τ) with respect to the L2-norm ‖ · ‖2 induced by τ ,
we can also consider its adjoint operator

δ∗ : L2(M, τ)⊗ L2(M, τ) ⊇ D(δ∗)→ L2(M, τ).

The theory that we are going to presented in the next sections concerns properties of δ
and its adjoint δ∗. More precisely, we will discuss the question of closability for δ and we
will show that δ and δ∗, which are unbounded operators by definition, can nevertheless
be controlled in appropriate norms. For most of these results, the condition 1⊗1 ∈ D(δ∗)
turns out to be essential.

V.4. Voiculescu’s formulas for δ∗

In [Voi98], Voiculescu deduced formulas for the adjoint operator δ∗ of a non-commutative
derivation δ under the assumption that 1 ⊗ 1 ∈ D(δ∗). This was shown in [Voi98] only
in the case of the non-commutative derivatives that are defined on the algebra of finitely
many generators, but it was noted and worked out in [Voi99] that the same arguments
apply in more general situations. Although this is commonly accepted as a well-known
fact, we give here for reader’s convenience a complete introduction to this circle of ideas,
since these beautiful results are of great importance for our considerations.

For the rest of this subsection, let δ : M ⊇ D(δ) → L2(M, τ) ⊗ L2(M, τ) be some fixed
non-commutative derivation in the sense of Definition V.3.1, viewed as an unbounded
linear operator

δ : L2(M, τ) ⊃ D(δ)→ L2(M, τ)⊗ L2(M, τ).

Following Voiculescu’s strategy, we begin by deducing some very useful product rules for
its adjoint operator δ∗.

Clearly, we may extend the involution ∗ on M from M uniquely to an involution on
L2(M, τ), and the canonical involution ∗ on M⊗M from M⊗M uniquely to an involution
L2(M, τ)⊗ L2(M, τ). Consequently,

(V.11) 〈X, Y 〉 = 〈Y ∗, X∗〉
holds for all X, Y ∈ L2(M, τ).
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Lemma V.4.1. Let U ∈ D(δ∗) ∩ (M �M) and X ∈ D(δ) be given. Then

(V.12)
δ∗(X · U) = Xδ∗(U)− (τ ⊗ id)(U]δ(X∗)∗),

δ∗(U ·X) = δ∗(U)X − (id⊗τ)(U]δ(X∗)∗),

where ] is defined according to Remark V.1.4 with respect to the M-M-bimodule L2(M, τ)⊗
L2(M, τ). In particular, for any U ∈ D(δ∗) ∩ (M �M), we have

{X1 · U ·X2| X1, X2 ∈ D(δ)} ⊆ D(δ∗).

Proof. Let U ∈ D(δ∗) ∩ (M �M) and X ∈ D(δ) be given. For any Y ∈ D(δ), we
observe that

〈δ(Y ), X · U〉 = 〈X∗ · δ(Y ), U〉
= 〈δ(X∗Y ), U〉 − 〈δ(X∗) · Y, U〉
= 〈X∗Y, δ∗(U)〉 − 〈1⊗ Y, U]δ(X∗)∗〉
= 〈Y,Xδ∗(U)〉 − 〈Y, (τ ⊗ id)(U]δ(X∗)∗)〉
= 〈Y,Xδ∗(U)− (τ ⊗ id)(U]δ(X∗)∗)〉,

from which X ·U ∈ D(δ∗) and the first formula in (V.12) follows. Analogously, we obtain
by

〈δ(Y ), U ·X〉 = 〈δ(Y ) ·X∗, U〉
= 〈δ(Y X∗), U〉 − 〈Y · δ(X∗), U〉
= 〈Y X∗, δ∗(U)〉 − 〈Y ⊗ 1, U]δ(X∗)∗〉
= 〈Y, δ∗(U)X〉 − 〈Y, (id⊗τ)(U]δ(X∗)∗)〉
= 〈Y, δ∗(U)X − (id⊗τ)(U]δ(X∗)∗)〉

that U ·X ∈ D(δ∗) and the second formula in (V.12). A combination of both observations
immediately yields the stated inclusion

{X1 · U ·X2| X1, X2 ∈ D(δ)} ⊆ D(δ∗)

for any U ∈ D(δ∗) ∩ (M �M). �

In the case 1⊗ 1 ∈ D(δ∗), Lemma V.4.1 yields an explicit formula for δ∗ on D(δ)�D(δ)
in terms of δ∗(1 ⊗ 1) and δ. It takes its nicest form if we require an additional property
of δ. In fact, we will assume a certain compatibility between the involution ∗ on M and
some involution † on M ⊗M , where the latter is defined as follows.

Definition V.4.2. On M ⊗M , the involution † is determined by anti-linear extension of

(X1 ⊗X2)† := X∗2 ⊗X∗1 for all X1, X2 ∈M.

Note that † differs from the canonical involution ∗ on M ⊗M only by the flip mapping
σ : M ⊗M →M ⊗M , i.e., we have U † = σ(U∗).

Clearly, we may extend the involution † from M⊗M uniquely to an involution L2(M, τ)⊗
L2(M, τ). Accordingly, for all U, V ∈ L2(M, τ)⊗ L2(M, τ), it holds true that

(V.13) 〈U, V 〉 = 〈V †, U †〉.
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Definition V.4.3. A non-commutative derivation

δ : M ⊇ D(δ)→ L2(M, τ)⊗ L2(M, τ)

on (M, τ) is called real , if it satisfies

(V.14) δ(X)† = δ(X∗) for all X ∈ D(δ).

Often, condition (V.14) can be weakened. We record this here as a remark.

Remark V.4.4. We point out that condition (V.14) is automatically satisfied if the unital
∗-algebra D(δ) is generated by self-adjoint elements Xi, i ∈ I, for some index set I 6= ∅,
such that δ(Xi)

† = δ(Xi) holds for all i ∈ I.

Indeed, if we define δ̃ with D(δ̃) := D(δ) by

δ̃ : M ⊇ D(δ̃)→ L2(M, τ)⊗ L2(M, τ), X 7→ δ(X∗)†,

we can easily check that δ̃ is a non-commutative derivation as well. Thus, the set

D := {X ∈ D(δ)| δ(X) = δ̃(X)}

is closed under multiplication, i.e. X1, X2 ∈ D implies X1X2 ∈ D. Since it contains the
generators {Xi| i ∈ I} by assumption, we must have that D = D(δ), from which it follows
by construction that δ(X)† = δ(X∗) holds for all X ∈ D(δ).

The following lemma collects some useful formulas for real non-commutative derivations.

Lemma V.4.5. Let δ : M ⊇ D(δ) → L2(M, τ) ⊗ L2(M, τ) be a real non-commutative
derivation on (M, τ), Then, for all X ∈ D(δ), it holds true that

(id⊗τ)(δ(X))∗ = (τ ⊗ id)(δ(X∗)),

(τ ⊗ id)(δ(X))∗ = (id⊗τ)(δ(X∗)).

Furthermore, for any U ∈ D(δ∗), we have also U † ∈ D(δ∗) and it holds true that

δ∗(U †) = δ∗(U)∗.

In particular, if 1⊗ 1 ∈ D(δ∗), we have δ∗(1⊗ 1) = δ∗(1⊗ 1)∗.

Proof. The first statement is an immediate consequence of the defining property of
real derivations, since in general

(V.15)
(id⊗τ)(U)∗ = (τ ⊗ id)(U †),

(τ ⊗ id)(U)∗ = (id⊗τ)(U †)

holds for each U ∈ L2(M, τ) ⊗ L2(M, τ). For seeing the second statement, we take any
Y ∈ D(δ) and we observe by using (V.13) that

〈U †, δ(Y )〉 = 〈δ(Y )†, U〉 = 〈δ(Y ∗), U〉 = 〈Y ∗, δ∗(U)〉 = 〈δ∗(U)∗, Y 〉.

This yields U † ∈ D(δ∗) with δ∗(U †) = δ∗(U)∗, as desired. �

Now, we can combine formulas (V.12) of Lemma V.4.1.
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Lemma V.4.6. If the condition 1⊗ 1 ∈ D(δ∗) is satisfied, then

D(δ)�D(δ) ⊆ D(δ∗).

If δ is a real derivation in the sense of Definition V.4.3, then we have more explicitly for
all U ∈ D(δ)�D(δ) that

(V.16) δ∗(U) = U]δ∗(1⊗ 1)−m1(id⊗τ ⊗ id)(δ ⊗ id + id⊗δ)(U),

where, in general, we denote by mη for any η ∈ L2(M, τ) the linear mapping mη : M �
M → L2(M, τ) that is determined by mη(v) = v]η, so that m1 is nothing else than the
multiplication map m1(X1 ⊗X2) = X1X2.

The formula (V.16) given in Lemma V.4.6 immediately implies that in particular

(V.17)
δ∗(X ⊗ 1) = Xδ∗(1⊗ 1)− (id⊗τ)(δ(X)),

δ∗(1⊗X) = δ∗(1⊗ 1)X − (τ ⊗ id)(δ(X)),

which we record here for later reference.

Proof of Lemma V.4.6. The first assertion, namely that D(δ) � D(δ) ⊆ D(δ∗)
holds under the condition 1 ⊗ 1 ∈ D(δ∗), is an immediate consequence of Lemma V.4.1.
Note that we did not use for this conclusion the assumption that δ is real.

For seeing (V.16), we proceed as follows. First of all, we note that the validity of (V.14)
guarantees according to Lemma V.4.5 that

(id⊗τ)(δ(X∗)∗) = (τ ⊗ id)(δ(X)),

(τ ⊗ id)(δ(X∗)∗) = (id⊗τ)(δ(X))

for each X ∈ D(δ). Next, for any U = X1 ⊗X2 with X1, X2 ∈ D(δ), we check by using
consecutively both formulas of (V.12) and Lemma V.4.5 that

δ∗(U) = δ∗(X1 · (1⊗X2))

= X1δ
∗((1⊗ 1) ·X2)− (τ ⊗ id)((1⊗X2)]δ(X∗1 )∗)

= X1δ
∗(1⊗ 1)X2 −X1(id⊗τ)(δ(X∗2 )∗)− (τ ⊗ id)((1⊗X2)]δ(X∗1 )∗)

= U]δ∗(1⊗ 1)−X1(τ ⊗ id)(δ(X2))− (id⊗τ)(δ(X1))X2

= U]δ∗(1⊗ 1)−m1(id⊗τ ⊗ id)(δ ⊗ id + id⊗δ)(U).

By linearity, this shows (V.16) for all U ∈ D(δ)�D(δ). This concludes the proof. �

V.5. Dabrowski’s inequalities

Based on Voiculescu’s formulas, Dabrowski deduced in [Dab10] a collection of interest-
ing inequalities concerning the boundedness of the non-commutative derivatives, which
are very surprising from a classical point of view. In [Dab14], he noted that the same
arguments also apply in a more general setting. More precisely, he observed (without car-
rying out the proof) that his result remain valid for any real derivation, which satisfies in
addition the so-called coassociativity relation.

Definition V.5.1. Let δ : M ⊇ D(δ) → L2(M, τ) ⊗ L2(M, τ) be a non-commutative
derivation on (M, τ). We say that δ satisfies the coassociativity relation,

• if δ takes its values in D(δ)�D(δ),
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• and if δ has the property that

(V.18) (δ ⊗ id) ◦ δ = (id⊗δ) ◦ δ.

For reader’s convenience, we state here those of Dabrowski’s formulas, which we need for
our purposes. Since it is instructive, we also include a slightly simplified proof thereof.

Theorem V.5.2. Let δ : M ⊇ D(δ) → L2(M, τ) ⊗ L2(M, τ) be a non-commutative
derivation on a tracial W ∗-probability space (M, τ), which

• is real in the sense of Definition V.4.3
• and satisfies the coassociativity relation as formulated in Definition V.5.1.

If the condition 1⊗ 1 ∈ D(δ∗) is satisfied, we have for all X ∈ D(δ) that

(V.19)
‖δ∗(X ⊗ 1)‖2 ≤ ‖δ∗(1⊗ 1)‖2‖X‖
‖δ∗(1⊗X)‖2 ≤ ‖δ∗(1⊗ 1)‖2‖X‖

and

(V.20)
‖(id⊗τ)(δ(X))‖2 ≤ 2‖δ∗(1⊗ 1)‖2‖X‖
‖(τ ⊗ id)(δ(X))‖2 ≤ 2‖δ∗(1⊗ 1)‖2‖X‖

Before proceeding with to the proof of Theorem V.5.2, we record here the following formula
for its later use therein.

Lemma V.5.3. In the situation of Theorem V.5.2, let X ∈ D(δ) be given and put

Y := (id⊗τ)(δ(X)).

Then Y ∈ D(δ) holds and we have that

(id⊗τ)(δ(Y )) = (id⊗〈·, δ∗(1⊗ 1)〉)(δ(X)).

Proof. Since δ is assumed to satisfy the coassociativity relation, we know by Defi-
nition V.5.1 that in particular D(δ) � D(δ) holds, which gives Y ∈ D(δ). Furthermore,
according to the coassociativity relation formulated in (V.18), we see that

δ(Y ) = (id⊗ id⊗τ)
(
(δ ⊗ id)(δ(X))

)
= (id⊗ id⊗τ)

(
(id⊗δ)(δ(X))

)
holds. Since we have on D(δ) the identity (τ ⊗ τ) ◦ δ = 〈·, δ∗(1⊗ 1)〉, we get

(id⊗τ)(δ(Y )) = (id⊗τ ⊗ τ)
(
(id⊗δ)(δ(X))

)
=
(

id⊗((τ ⊗ τ) ◦ δ)
)
(δ(X))

=
(

id⊗〈·, δ∗(1⊗ 1)〉
)
(δ(X)),

which is the desired formula. �

Additionally, the proof of Theorem V.5.2 will be based on the following observation.

Lemma V.5.4. Let (M, τ) be a W ∗-probability space and let T : D(T ) → M be a linear
operator on a unital ∗-subalgebra D(T ) of M . Assume that the following conditions are
satisfied:

(i) There exists a constant C > 0 such that

‖T (X)‖2
2 ≤ C‖T (X∗X)‖2 for all X ∈ D(T ).
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(ii) For each X ∈ D(T ), we have that

lim sup
m→∞

‖T (Xm)‖
1
m
2 ≤ ‖X‖.

Then T satisfies ‖T (X)‖2 ≤ C‖X‖ for all X ∈ D(T ).

Proof. Let X ∈ D(T ) be given. For each n ∈ N0, we define Zn := (X∗X)2n ∈ D(T ).
By assumption (i), we see that

‖T (Zn)‖2
2 ≤ C‖T (Zn+1)‖2 for all n ∈ N0,

which yields inductively

‖T (Z0)‖2 ≤ C
1
2

+···+ 1
2n ‖T (Zn)‖

1
2n

2 for all n ∈ N0.

Since

lim sup
n→∞

‖T (Zn)‖
1
2n

2 = lim sup
n→∞

‖T ((X∗X)2n)‖
1
2n

2 ≤ ‖X∗X‖ = ‖X‖2

due to (ii), it follows that

‖T (Z0)‖2 ≤ C‖X‖2.

By using (ii) once again, we obtain

‖T (X)‖2
2 ≤ C‖T (Z0)‖2 ≤ C2‖X‖2

and hence ‖T (X)‖2 ≤ C‖X‖, as stated. �

Proof of Theorem V.5.2. First of all, we note that it suffices to prove (V.19),
since (V.20) follows from (V.19) and Voiculescu’s formula (V.17) by an application of the
triangle inequality.

For proving (V.19), we want to use Lemma V.5.4. We consider the linear mapping T :
D(T )→M on D(T ) := D(δ) given by

T (X) := δ∗(X ⊗ 1) for all X ∈ D(δ).

Since Lemma V.4.6 guaranteesD(δ)�D(δ) ⊆ D(δ∗), the mapping T is indeed well-defined.

Now, we just have to follow the receipt given in Lemma V.5.4.

(i) For any given X ∈ D(δ), we have to compare ‖T (X∗X)‖2 and ‖T (X)‖2. In fact, we
will show that

(V.21) ‖T (X)‖2
2 = 〈T (X∗X), δ∗(1⊗ 1)〉

from which

‖T (X)‖2
2 ≤ ‖δ∗(1⊗ 1)‖2‖T (X∗X)‖2

immediately follows by an application of the Cauchy-Schwarz inequality.

Formula (V.21) can be shown as follows. Let X ∈ D(δ) be given and put Y :=
(id⊗τ)(δ(X)). Since

Y ∗ = (id⊗τ)(δ(X))∗ = (τ ⊗ id)(δ(X∗))
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according to Lemma V.4.5, we may observe by using in turn Lemma V.5.3 and Lemma
V.4.5 in the version (V.17) that

‖Y ‖2
2 = 〈Y, (id⊗τ)(δ(X))〉

= 〈Y ⊗ 1, δ(X)〉
= 〈δ∗(Y ⊗ 1), X〉
= 〈Y δ∗(1⊗ 1), X〉 − 〈(id⊗τ)(δ(Y )), X〉
= 〈δ∗(1⊗ 1)X∗, Y ∗〉 − 〈(id⊗〈·, δ∗(1⊗ 1)〉)(δ(X)), X〉
= 〈1⊗ δ∗(1⊗ 1)X∗, δ(X∗)〉 − 〈δ(X), X ⊗ δ∗(1⊗ 1)〉.

Because moreover

〈δ(X),X ⊗ δ∗(1⊗ 1)〉
= 〈X∗ · δ(X), 1⊗ δ∗(1⊗ 1)〉
= 〈δ(X∗X), 1⊗ δ∗(1⊗ 1)〉 − 〈δ(X∗) ·X, 1⊗ δ∗(1⊗ 1)〉
= 〈δ(X∗X), 1⊗ δ∗(1⊗ 1)〉 − 〈δ(X∗), 1⊗ δ∗(1⊗ 1)X∗〉,

we may conclude

‖Y ‖2
2 = 2<

(
〈1⊗ δ∗(1⊗ 1)X∗, δ(X∗)〉

)
− 〈δ(X∗X), 1⊗ δ∗(1⊗ 1)〉.

Furthermore, since T (X) = Xδ∗(1⊗ 1)− Y due to (V.17), we get that

‖T (X)‖2
2 = 〈Xδ∗(1⊗ 1)− Y,Xδ∗(1⊗ 1)− Y 〉

= ‖Xδ∗(1⊗ 1)‖2
2 + ‖Y ‖2

2 − 2<
(
〈Xδ∗(1⊗ 1), Y 〉

)
= ‖Xδ∗(1⊗ 1)‖2

2 + ‖Y ‖2
2 − 2<

(
〈Xδ∗(1⊗ 1)⊗ 1, δ(X)〉

)
.

We check now

〈Xδ∗(1⊗ 1)⊗ 1, δ(X)〉
= 〈δ∗(1⊗ 1), (id⊗τ)(X∗ · δ(X))〉
= 〈(id⊗τ)(X∗ · δ(X))∗, δ∗(1⊗ 1)〉 (by (V.11))

= 〈(id⊗τ)(δ(X))∗X, δ∗(1⊗ 1)〉
= 〈(τ ⊗ id)(δ(X∗))X, δ∗(1⊗ 1)〉 (by Lemma V.4.5)

= 〈(τ ⊗ id)(δ(X∗)), δ∗(1⊗ 1)X∗〉
= 〈δ(X∗), 1⊗ δ∗(1⊗ 1)X∗〉,

so that

<
(
〈Xδ∗(1⊗ 1)⊗ 1, δ(X)〉

)
= <

(
〈1⊗ δ∗(1⊗ 1)X∗, δ(X∗)〉

)
.

A combination of our previous computations leads us to

(V.22) ‖T (X)‖2
2 = ‖Xδ∗(1⊗ 1)‖2

2 − 〈δ(X∗X), 1⊗ δ∗(1⊗ 1)〉

Furthermore, due to (V.17), we have

T (X∗X) = X∗Xδ∗(1⊗ 1)− (id⊗τ)(δ(X∗X)),

and hence

(V.23) 〈T (X∗X), δ∗(1⊗ 1)〉 = ‖Xδ∗(1⊗ 1)‖2
2 − 〈δ(X∗X), δ∗(1⊗ 1)⊗ 1〉.
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Since (V.22) implies that 〈δ(X∗X), 1 ⊗ δ∗(1 ⊗ 1)〉 must be real, we get by using (V.13),
Lemma V.4.5, and (V.14) that

〈δ(X∗X), δ∗(1⊗ 1)⊗ 1〉 = 〈1⊗ δ∗(1⊗ 1), δ(X∗X)〉 = 〈δ(X∗X), 1⊗ δ∗(1⊗ 1)〉.

Thus, comparing (V.22) and (V.23) gives

‖T (X)‖2
2 = 〈T (X∗X), δ∗(1⊗ 1)〉,

which is the stated formula (V.21).

(ii) To begin with, we observe that for any polynomial P and any X ∈ D(δ)

(V.24) ‖T (P (X))‖2 ≤ ‖P (X)‖‖δ∗(1⊗ 1)‖2 + ‖(∂P )(X)‖π‖δ(X)‖2,

where ‖ · ‖π denotes the projective norm on D(δ)�D(δ), which is given by

‖U‖π := inf
{ N∑

j=1

‖Aj‖‖Bj‖
∣∣∣N ∈ N, A1, . . . , AN , B1, . . . , BN ∈ D(δ) : U =

N∑
j=1

Aj⊗Bj

}
for any U ∈ D(δ)�D(δ).

Indeed, according to (V.17), we have for each polynomial P and X ∈ D(δ)

T (P (X)) = δ∗(P (X)⊗ 1)

= P (X)δ∗(1⊗ 1)− (id⊗τ)(δ(P (X)))

= P (X)δ∗(1⊗ 1)− (id⊗τ)((∂P )(X)]δ(X)),

where we used that δ(P (X)) = (∂P )(X)]δ(X) according to formula (V.10), which was
given in Remark V.3.2. This yields as desired

‖T (P (X))‖2 ≤ ‖P (X)δ∗(1⊗ 1)‖2 + ‖(id⊗τ)((∂P )(X)]δ(X))‖2

≤ ‖P (X)δ∗(1⊗ 1)‖2 + ‖(∂P )(X)]δ(X)‖2

≤ ‖P (X)‖‖δ∗(1⊗ 1)‖2 + ‖(∂P )(X)‖π‖δ(X)‖2.

If we apply (V.24) to the polynomial P (X) = Xm for any m ∈ N, we may deduce that

‖T (Xm)‖2 ≤ ‖X‖m‖δ∗(1⊗ 1)‖2 +m‖X‖m−1‖δ(X)‖2

since ‖(∂P )(X)‖π ≤ m‖X‖m−1 holds. From this, we immediately get that

lim sup
m→∞

‖T (Xm)‖
1
m
2 ≤ ‖X‖.

Thus, condition (ii) of Lemma V.5.4 is satisfied.

Lemma V.5.4 tells us now that ‖T (X)‖2 ≤ ‖δ∗(1⊗ 1)‖2‖X‖, which is by definition of T
exactly the first inequality in (V.19). The second one can simply be deduced from the first
one by using that δ∗(U †) = δ∗(U)∗ holds for any U ∈ D(δ∗) according to Lemma V.4.5,
since δ was assumed to be real. �

Combining Theorem V.5.2 with Lemma V.4.6 yields the following corollary.

Corollary V.5.5. Let δ : M ⊇ D(δ)→ L2(M, τ)⊗L2(M, τ) a non-commutative deriva-
tion on a tracial W ∗-probability space (M, τ). We assume that δ is a real derivation in the
sense of V.4.3 and that is satisfies the coassociativity relation formulated in V.5.1. Then,
for all X1, X2 ∈ D(δ), it holds true that

(V.25) ‖δ∗(X1 ⊗X2)‖2 ≤ 3‖δ∗(1⊗ 1)‖2‖X1‖‖X2‖
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and

(V.26)
‖(id⊗τ)(δ(X1) ·X2)‖2 ≤ 4‖δ∗(1⊗ 1)‖2‖X1‖‖X2‖,
‖(τ ⊗ id)(X1 · δ(X2))‖2 ≤ 4‖δ∗(1⊗ 1)‖2‖X1‖‖X2‖.

Proof. According to Lemma V.4.6, we have for all X1, X2 ∈ D(δ) that

δ∗(X1 ⊗X2) = X1δ
∗(1⊗ 1)X2 −m1(id⊗τ ⊗ id)(δ ⊗ id + id⊗δ)(X1 ⊗X2)

= X1δ
∗(1⊗ 1)X2 − (id⊗τ)(δ(X1))X2 −X1(τ ⊗ id)(δ(X2))

= δ∗(X1 ⊗ 1)X2 −X1(τ ⊗ id)(δ(X2))

and thus, by applying the estimates (V.20) and (V.19), that

‖δ∗(X1 ⊗X2)‖2 ≤ ‖δ∗(X1 ⊗ 1)‖2‖X2‖+ ‖X1‖‖(τ ⊗ id)(δ(X2))‖2

≤ 3‖δ∗(1⊗ 1)‖2‖X1‖‖X2‖.
This shows the validity of (V.25). For proving (V.26), we first use integration by parts in
order to obtain

(id⊗τ)(δ(X1) ·X2) = (id⊗τ)(δ(X1X2))− (id⊗τ)(X1 · δ(X2))

= (id⊗τ)(δ(X1X2))−X1(id⊗τ)(δ(X2))

for arbitrary X1, X2 ∈ D(δ). From this, we can easily deduce by using (V.20) that

‖(id⊗τ)(δ(X1) ·X2)‖2

≤ ‖(id⊗τ)(δ(X1X2))‖2 + ‖X1‖‖(id⊗τ)(δ(X2))‖2

≤ 4‖δ∗(1⊗ 1)‖2‖X1‖‖X2‖
which is the first inequality of (V.26). The second inequality can either be proven similarly
or can be deduced from the first one by using that δ is real. �

We conclude this subsection by highlighting Formula (V.21), which was obtained in the
proof of Theorem V.5.2. Since we think that this observation might be of independent in-
terest and could be helpful for future investigations, we record (V.21) here by the following
corollary.

Corollary V.5.6. Let δ : M ⊇ D(δ) → L2(M, τ) ⊗ L2(M, τ) be a non-commutative
derivation on a tracial W ∗-probability space (M, τ), which is real and satisfies the coasso-
ciativity relation. Assume additionally that 1 ⊗ 1 ∈ D(δ∗). Then, for each X ∈ D(δ), it
holds true that

‖δ∗(X ⊗ 1)‖2
2 = 〈δ∗((X∗X)⊗ 1), δ∗(1⊗ 1)〉.

Assume, for instance, that in the situation of Corollary V.5.6 the conditions

δ∗(1⊗ 1) ∈ D(δ) ∩M and δ(δ∗(1⊗ 1)) ∈M ⊗M
are satisfied in addition. Corollary V.5.6 allows us then to conclude that for any X ∈ D(δ)

‖δ∗(X⊗1)‖2
2 = 〈δ∗((X∗X)⊗1), δ∗(1⊗1)〉 = 〈(X∗X)⊗1, δ(δ∗(1⊗1))〉 = 〈X⊗1, X·δ(δ∗(1⊗1))〉

and hence ‖δ∗(X ⊗ 1)‖2 ≤ ‖δ(δ∗(1 ⊗ 1))‖1/2‖X‖2 holds. Like in Theorem V.5.2, we can
use this in combination with (V.17) in order to deduce that

‖(id⊗τ)(δ(X))‖2 ≤
(
‖δ∗(1⊗ 1)‖+ ‖δ(δ∗(1⊗ 1))‖1/2

)
‖X‖2

holds for each X ∈ D(δ). Analogous inequalities can of course be proven for δ∗(1 ⊗ X)
and (τ ⊗ id)(δ(X)). In other words, we can strengthen the bounds that were obtained in
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Theorem V.5.2 by imposing some stronger “regularity conditions” on δ∗(1⊗1). Note that
this in fact slightly improves similar estimates that were deduced in [Dab14].

V.6. Survival of zero divisors

We are mainly interested here in applications of the theory of non-commutative derivations
to regularity questions for certain distributions; see Chapter VI and VII. The basic idea
that originates in [MSW14, MSW17] is that, in order to exclude atoms, one should
reformulate this question in more algebraic terms as a question about the existence of
zero-divisors, where the latter can be excluded by a successive reduction of the degree by
applying non-commutative derivations.

Note that a zero-divisor means here in fact a left zero divisor, and we are typically
interested in the setting of von Neumann algebras. Thus, a zero-divisor is understood as
an element X in some von Neumann algebra M , which is non-zero and for which another
non-zero element u ∈M can be found, such that Xu = 0 holds.

The key for excluding zero divisors by some kind of iterative reduction argument is a
certain inequality which allows the conclusion that zero-divisors Xu = 0 survive under
applying operators of the form

∆p(X) := (τ ⊗ id)(p · δ(X))

for any non-commutative derivation δ satisfying certain conditions and some non-trivial
projection p. This inequality will be given below in Proposition V.6.1. As we will see, it
will more generally relate products Xu and X∗v for elements X in the domain of the
given non-commutative derivation δ and arbitrary elements u, v in the corresponding von
Neumann algebra with an expression of the form v∗ · δ(X) · u.

We point out that although the inequality itself holds in a considerably large generality, the
feasibility of the whole strategy for excluding zero-divisors relies heavily on the structure
of the given non-commutative derivation. Roughly speaking, applying δ has to “reduce
the degree” of the given element X. More formally, one should think of a grading on the
space of distributions under consideration that is compatible with δ. We do not want to
give a definition in full generality, but we want to mention that the grading that was used
in [MSW14, MSW17] was given by the monomials of fixed degree and, as we will see
in Section VII.3, that there is a closely related grading on the finite Wigner chaos.

The crucial inequality will now be formulated in the following proposition.

Proposition V.6.1. Let δ : L2(M, τ) ⊇ D(δ) → L2(M, τ) ⊗ L2(M, τ) be a non-
commutative derivation. We assume that δ is real and satisfies the coassociativity relation.

Then, if in addition 1⊗ 1 ∈ D(δ∗) holds, we have for all X ∈ D(δ), where δ denotes the
closure of δ, and u, v ∈M the inequality

(V.27) |〈v∗ · δ(X) · u, Y1 ⊗ Y2〉| ≤ 4‖δ∗(1⊗ 1)‖2

(
‖v‖‖Xu‖2 + ‖u‖‖X∗v‖2

)
‖Y1‖‖Y2‖

for all Y1, Y2 ∈ D(δ).

In particular, if we have Xu = 0 and X∗v = 0 for any X ∈ D(δ) and some u, v ∈ M ,
then also v∗ · δ(X) · u = 0 holds.

Before giving the proof of Proposition V.6.1, we first mention an easy but useful applica-
tion of Kaplansky’s density theorem.
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Lemma V.6.2. In the given setting of a tracial W ∗-probability space (M, τ), let D be a
∗-subalgebra of M , which is weakly dense in M . Then, for each w ∈ M , there eXists a
sequence (wk)k∈N of elements in D such that

(i) sup
k∈N
‖wk‖ ≤ ‖w‖,

(ii) ‖wk − w‖2 → 0 as k →∞.

If w = w∗, then we may assume in addition that wk = w∗k for all k ∈ N.

Proof. First of all, we note that for proving the existence of a sequence (wk)k∈N of
elements in D, which satisfies conditions (i) and (ii), it suffices to find a net (wλ)λ∈Λ of
elements in D, which satisfies

(i)’ sup
λ∈Λ
‖wλ‖ ≤ ‖w‖,

(ii)’ ‖wλ − w‖2
λ∈Λ−→ 0.

Indeed, given such a net (wλ)λ∈Λ, we may choose a sequence (λk)k∈N in Λ, such that
‖wλk −w‖2 <

1
k

holds for all k ∈ N. Hence, the sequence (wλk)k∈N satisfies (i) and (ii), as
desired.

Now, for finding a net of elements in D, which satisfies (i)’ and (ii)’, we apply Kaplan-
sky’s density theorem. Indeed, this theorem guarantees the existence of a net (wλ)λ∈Λ of
elements in D, such that ‖wλ‖ ≤ ‖w‖ holds for all λ ∈ Λ, and which converges to w in
the strong operator topology. Thus, the net (wλ)λ∈Λ already satisfies condition (i)’ and it
remains to show the validity of (ii)’.

For seeing (ii)’, we note that with respect to the weak operator topology,

w∗λw
λ∈Λ−→ w∗w, w∗wλ

λ∈Λ−→ w∗w, and w∗λwλ
λ∈Λ−→ w∗w,

such that according to the continuity of τ

‖wλ − w‖2
2 = τ((wλ − w)∗(wλ − w))

= τ(w∗λwλ)− τ(w∗λw)− τ(w∗wλ) + τ(w∗w)

λ∈Λ−→ 0,

as claimed in (ii)’. This concludes the proof of the first part of the lemma.

For proving the additional statement, we just have to observe that in the case w = w∗,
we can take any sequence (wk)k∈N that satisfies (i) and (ii), and replace each wk by its
real part <(wk) = 1

2
(wk + w∗k). Indeed, for the sequence (wk)k∈N obtained in this way,

conditions (i) and (ii) are still valid, but we have achieved wk = w∗k for all k ∈ N in
addition. �

Now, we may proceed by
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Proof of Proposition V.6.1. Firstly, we assume that X ∈ D(δ) as well as u, v ∈
D(δ). In this particular case, we may compute

〈Xu, δ∗(vY1 ⊗ Y2)〉 = 〈δ(Xu), vY1 ⊗ Y2〉
= 〈δ(X) · u, vY1 ⊗ Y2〉+ 〈X · δ(u), vY1 ⊗ Y2〉
= 〈v∗ · δ(X) · u, Y1 ⊗ Y2〉+ 〈δ(u) · Y ∗2 , X∗vY1 ⊗ 1〉
= 〈v∗ · δ(X) · u, Y1 ⊗ Y2〉+ 〈(id⊗τ)(δ(u) ·X∗2 ), X∗vY1〉.

Rearranging the terms yields

〈v∗ · δ(X) · u, Y1 ⊗ Y2〉 = 〈Xu, δ∗(vY1 ⊗ Y2)〉 − 〈(id⊗τ)(δ(u) · Y ∗2 ), X∗vY1〉,
from which we deduce by the inequalities in Corollary V.5.5 that

|〈v∗ · δ(X) · u, Y1 ⊗ Y2〉|
≤ |〈Xu, δ∗(vY1 ⊗ Y2)〉|+ |〈(id⊗τ)(δ(u) · Y ∗2 ), X∗vY1〉|
≤ ‖Xu‖2‖δ∗(vY1 ⊗ Y2)‖2 + ‖(id⊗τ)(δ(u) · Y ∗2 )‖2‖X∗vY1‖2

≤ 4‖δ∗(1⊗ 1)‖2

(
‖v‖‖Xu‖2 + ‖u‖‖X∗v‖2

)
‖Y1‖‖Y2‖,

as desired. Due to Lemma V.6.2, this inequality extends to arbitrary u, v ∈M .

Thus, we have proven (V.27) for X ∈ D(δ) and u, v ∈ M . It remains to show that we
may extend it from X ∈ D(δ) to X ∈ D(δ).

Since D(δ) turns out to be the closure of D(δ) with respect to the norm ‖ · ‖2,1 defined by

‖X‖2,1 :=
(
‖X‖2

2 + ‖δ(X)‖2
2

) 1
2 for any X ∈ D(δ),

we can find for any X ∈ D(δ) a sequence (Xk)k∈N in D(δ) such that both conditions
‖Xk − X‖2 → 0 and ‖δ(Xk) − δ(X)‖2 → 0 as k → ∞ are satisfied. Hence, for given
u, v ∈M , we observe

lim
k→∞
〈v∗ · δ(Xk) · u, y1 ⊗ y2〉 = 〈v∗ · δ(Xk) · u, Y1 ⊗ Y2〉

and
lim
k→∞

(
‖v‖‖Xku‖2 + ‖u‖‖X∗kv‖2

)
= ‖v‖‖Xu‖2 + ‖u‖‖X∗v‖2,

from which (V.27) immediately follows in full generality.

Finally, if we have Xu = 0 and X∗v = 0, then (V.27) implies that

〈v∗ · δ(X) · u, Y1 ⊗ Y2〉 = 0 for all Y1, Y2 ∈ D(δ)

and hence by linearity

〈v∗ · δ(X) · u, U〉 = 0 for all U ∈ D(δ)�D(δ).

Since D(δ)�D(δ) is dense in L2(S, τ)⊗L2(S, τ), we obtain v∗ ·δ(X) ·u = 0, as stated. �

Proposition V.6.1 will be used essentially twice in the subsequent chapters. The first ap-
plication will be in Chapter VI, where we prove that conditions like finiteness of the Fisher
information or maximality of the non-microstates free entropy dimension exclude zero di-
visors and hence atoms in the distribution of any non-constant self-adjoint polynomial in
the considered variables. This follows the exposition in [MSW14, MSW17]. The second
application will be presented in Chapter VII, where we extend these methods from the
“discrete case” of non-commutative polynomials to the “continuous case” of the Wigner
chaos. This will be based on [Mai15].
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CHAPTER VI

Absence of algebraic relations and of zero divisors under the
assumption of full non-microstates free entropy dimension

In a groundbreaking series of papers [Voi93, Voi94, Voi96, Voi97, Voi98, Voi99] (see
also the survey [Voi02b]), Voiculescu transferred the notion of entropy and Fisher infor-
mation to the world of non-commutative probability theory. Free entropy and free Fisher
information are some of the core quantities in free probability theory, with fundamental
importance both for operator algebraic and random matrix questions. One of the most
striking results which came out of this program is arguably the proof of the fact [Voi96]
that the free group factors do not possess Cartan subalgebras. This gave the solution of
the longstanding open question of whether every separable II1-factor contains Cartan sub-
algebras. But despite such deep results and applications, still many of the basic analytic
properties of free entropy and Fisher information are poorly understood.

Voiculescu gave actually two different approaches to entropy and Fisher information in
the non-commutative setting. The first one is based on the notion of matricial microstates
and defines free entropy χ first and then, based on this, the free Fisher information Φ;
the second approach is based on the notion of conjugate variables with respect to certain
non-commutative derivatives and defines free Fisher information Φ∗ first and then, based
on this, free entropy χ∗. Both constructions lead independently to objects χ and χ∗ (as
well as Φ and Φ∗) which are, in analogy with the classical theory, justifiably called entropy
(and Fisher information). But it is still not known whether they coincide in general, while
equality in the case of a single variable was already shown by Voiculescu [Voi98]. Among
the various attempts to settle this problem, we want to mention here the ingenious work
[BCG03], where the inequality χ ≤ χ∗ was established, and also the more recent and
very impressive work [Dab16], where the author seeks to prove equality χ = χ∗ for a
large class of tuples of non-commutative random variables. For many questions the actual
value of these quantities is not important, essential is whether they are finite or infinite.
There exist also more refined quantities, so-called free entropy dimensions (again in various
variations), which allow a further distinction of the case of infinite entropy. In particular,
finiteness of free entropy or of free Fisher information implies that the microstates free
entropy dimension δ∗ takes on its maximal value.

In the classical case, finiteness of entropy or of Fisher information imply some regularity
of the corresponding distribution of the variables; in particular, they have a density (with
respect to Lebesgue measure). In the non-commutative situation, the notion of a density
does not make any direct sense, but still it is believed that the existence of finite free
entropy or finite free Fisher information (in any of the two approaches) should correspond
to some regularity properties of the considered non-commutative distributions. Thus one
expects many “smooth” properties for random variables X1, . . . , Xn for which either one of
the quantities χ(X1, . . . , Xn), χ∗(X1, . . . , Xn), Φ(X1, . . . , Xn), or Φ∗(X1, . . . , Xn) is finite.
In particular, it is commonly expected that such a finiteness implies that
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• there cannot exist non-trivial algebraic relations between the considered random
variables;
• and that such algebraic relations can also not hold locally on non-trivial Hilbert

subspaces; more formally this means that there are no zero divisors in the affil-
iated von Neumann algebra.

Up to now there has been no proof of such general statements. We will show here such
results. In [MSW14], this was done under the assumption of finite non-microstates free
Fisher information Φ∗(X1 . . . , Xn). Inspired by this preprint, Shlyakhtenko could prove
in [Shl14] (see [CS16] for an extended version joint with Charlesworth), by combining
our ideas with his earlier work in [CS05], our results under the weaker assumption of
maximal non-microstates free entropy dimension δ∗(X1, . . . , Xn) = n. In the light of this,
we reexamined our original arguments and noticed that they can also be extended without
much extra effort to this most general case; this has finally led to [MSW17].

Our work was originally inspired by the realization that in the usual approaches to con-
jugate variables one usually assumes that there exist no algebraic relations between the
considered variables. Though this is not necessary for the definition of conjugate variables
themselves, more advanced arguments (which rely on the existence of non-commutative
derivative operators) only work in the absence of such algebraic relations. As alluded to
above one actually expected that the existence of conjugate variables (and thus the finite-
ness of Φ∗) implies the absence of such relations. But since this has not been shown up to
now, there was a kind of an annoying gap in the theory. This gap will be closed in Section
VI.1.

It turned out that our ideas for this could also be extended to the much deeper question
whether relations could hold locally; instead of asking whether for a non-trivial polynomial
P we can have algebraically P (X1, . . . , Xn) = 0, we weaken this to the question whether
P (X1, . . . , Xn) could be zero on an affiliated Hilbert subspace; if u denotes the projection
onto this subspace, then this is the question whether P (X1, . . . , Xn) can be a zero divisor,
i.e., whether it is possible to find some non-zero element u in the von Neumann algebra
generated by X1, . . . , Xn, such that P (X1, . . . , Xn)u = 0. We will show that already the
condition δ∗(X1, . . . , Xn) = n for the non-microstates free entropy dimension excludes
such zero divisors.

In particular, this result allows us to conclude that the distribution of any non-trivial
self-adjoint non-commutative polynomial in the generators does not have atoms, if the
generators have full non-microstates free entropy dimension. Note that in a random matrix
language this allows the conclusion that the asymptotic eigenvalue distribution of poly-
nomials in random matrices has, under the above assumption, no atomic parts. Questions
on the absence of atoms for polynomials in non-commuting random variables (or for poly-
nomials in random matrices) have been an open problem for quite a while. Only recently
there was some progress on this in such generality; in [SS15], Shlyakhtenko and Skoufra-
nis showed that polynomials in free variables exhibit (under the assumption of no atoms
for each of the variables) no atoms; here we give a vast generalization of this, by showing
that the crucial issue is not freeness but the maximality of the free entropy dimension.

VI.1. Existence of conjugate variables and absence of algebraic relations

Our setting will be as presented in Section V.1: we consider C〈x1, . . . , xn〉, which is the
∗-algebra of non-commutative polynomials in n self-adjoint (formal) variables x1, . . . , xn.
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For j = 1, . . . , n, we denote by ∂j the non-commutative derivative with respect to xj, i.e.
∂j is the unique derivation

∂j : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉 ⊗ C〈x1, . . . , xn〉

that satisfies ∂jxi = δi,j1⊗ 1 for i = 1, . . . , n.

Throughout the following, let (M, τ) be a tracial W ∗-probability space, which means that
M is a von Neumann algebra and τ is a faithful normal tracial state on M . For self-adjoint
X1, . . . , Xn ∈ M we denote by vN(X1, . . . , Xn) ⊂ M the von Neumann subalgebra of M
which is generated byX1, . . . , Xn and by L2(X1, . . . , Xn, τ) ⊂ L2(M, τ) the L2-space which
is generated by X1, . . . , Xn with respect to the inner product given by 〈P,Q〉 := τ(PQ∗).

As before, we will denote by evX the evaluation ∗-homomorphism

evX : C〈x1, . . . , xn〉 → C〈X1, . . . , Xn〉 ⊂M

for a given n-tuple X = (X1, . . . , Xn) of self-adjoint elements of M and we put
P (X) := evX(P ) for any P ∈ C〈x1, . . . , xn〉 and Q(X) := (evX ⊗ evX)(Q) for any
Q ∈ C〈x1, . . . , xn〉⊗2.

Definition VI.1.1. Let X1, . . . , Xn ∈ M be self-adjoint elements. If there are elements
ξ1, . . . , ξn ∈ L2(M, τ), such that

(VI.1) (τ ⊗ τ)((∂jP )(X1, . . . , Xn)) = τ(ξjP (X1, . . . , Xn))

is satisfied for each non-commutative polynomial P ∈ C〈x1, . . . , xn〉 and for j = 1, . . . , n,
then we say that (ξ1, . . . , ξn) satisfies the conjugate relations for (X1, . . . , Xn).

If, in addition, ξ1, . . . , ξn belong to L2(X1, . . . , Xn, τ), we say that (ξ1, . . . , ξn) is the con-
jugate system for (X1, . . . , Xn).

Like in [Voi98], we note the following.

Remark VI.1.2. Let π be the orthogonal projection from L2(M, τ) to L2(X1, . . . , Xn, τ).
It is easy to see that if (ξ1, . . . , ξn) satisfies the conjugate relations for (X1, . . . , Xn), then
(π(ξ1), . . . , π(ξn)) satisfies the conjugate relations for (X1, . . . , Xn) as well, and is therefore
a conjugate system for (X1, . . . , Xn).

It is an easy consequence of its defining property (VI.1) that a conjugate system
(ξ1, . . . , ξn) for (X1, . . . , Xn) is unique if it exists.

In [Voi98, Proposition 3.5] we find that in the case n = 1 a conjugate variable ξ ∈
L2(X, τ) ∼= L2(R, µX) for X exists, if the analytic distribution µX is absolutely continuous
with respect to the Lebesgue measure λ1 on R and has a density ρX , which belongs to
L3(R, dλ1); in this case, the conjugate variable is (up to some constant factor) given by
the Hilbert transform of ρX . A recent result by S. Belinschi and H. Bercovici states that
even the converse is true; the proof appeared in [MS16]. In this sense, the existence of a
conjugate variable enforces strong regularity properties for X.

Note that our notion of conjugate relations and conjugate variables differs from the usual
definition which was given by Voiculescu in [Voi98], roughly speaking, just by the place-
ment of brackets. To be more precise, in (VI.1), we first apply the derivative ∂j to the given
non-commutative polynomial P before we apply the evaluation at X = (X1, . . . , Xn), in-
stead of applying the evaluation first, which consequently makes it necessary to have in
the second step a well-defined derivation on C〈X1, . . . , Xn〉 corresponding to ∂j.
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From a more abstract point of view, this idea is in the same spirit as [Shl00, Lemma
3.2] but only on a purely algebraic level. In fact, we used the surjective homomorphism
evX : C〈x1, . . . , xn〉 → C〈X1, . . . , Xn〉 in order to pass from (C〈X1, . . . , Xn〉, τ) to the
non-commutative probability space (C〈x1, . . . , xn〉, τX), where τX := τ ◦ evX . Due to
this lifting, the algebraic relations between the generators disappear whereas the relevant
information about their joint distribution remains unchanged.

In this section, our aim is to show that the existence of a conjugate system guarantees
that X1, . . . , Xn do not satisfy any algebraic relations. This will be the content of Theorem
VI.1.5 below. Its proof proceeds in two steps, which are performed in the following two
propositions.

Proposition VI.1.3. Let (M, τ) be a tracial W ∗-probability space and let self-adjoint
X1, . . . , Xn ∈ M be given. Assume that there are elements ξ1, . . . , ξn ∈ L2(M, τ), such
that (ξ1, . . . , ξn) satisfies the conjugate relations (VI.1) for X = (X1, . . . , Xn). Then the
following implication holds true for any non-commutative polynomial P ∈ C〈x1, . . . , xn〉:
(VI.2) P (X) = 0 =⇒ ∀j = 1, . . . , n : (∂jP )(X) = 0

Before beginning with the proof, let us introduce a binary operation ] on the algebraic
tensor product M ⊗M by bilinear extension of

(a1 ⊗ a2)](b1 ⊗ b2) := (a1b1)⊗ (b2a2).

Note that, since M ⊗M is naturally a M -bimodule, this corresponds exactly to Remark
V.1.4.

Proof of Proposition VI.1.3. Assume that P ∈ C〈x1, . . . , xn〉 satisfies P (X) =
0 for X = (X1, . . . , Xn) and choose any j = 1, . . . , n. If we take arbitrary P1, P2 ∈
C〈x1, . . . , xn〉, we have by iterating the product rule (V.3) twice that

∂j(P1PP2) = (∂jP1)PP2 + P1P (∂jP2) + P1(∂jP )P2

and therefore, by evaluating this identity at X and applying τ ⊗ τ subsequently,

(τ ⊗ τ)
(
(∂j(P1PP2))(X)

)
= (τ ⊗ τ)(P1(X)(∂jP )(X)P2(X)).

Furthermore, according to (VI.1), we may deduce that

(τ ⊗ τ)
(
(∂j(P1PP2))(X)

)
= τ(ξj(P1PP2)(X)) = 0.

Thus, we observe that

(τ ⊗ τ)((P1 ⊗ P2)(X)](∂jP )(X)) = (τ ⊗ τ)(P1(X)(∂jP )(X)P2(X)) = 0

for all P1, P2 ∈ C〈x1, . . . , xn〉 and hence by linearity

(τ ⊗ τ)(Q(X)](∂jP )(X)) = 0

for all Q ∈ C〈x1, . . . , xn〉⊗2. If we apply this observation to Q = (∂jP )∗, the faithfulness
of τ ⊗ τ (recall that τ was assumed to be faithful) implies (∂jP )(X) = 0, as claimed. �

The second proposition shows now that the validity of (VI.2) is already sufficient to
exclude algebraic relations.

Proposition VI.1.4. Let (M, τ) be a tracial W ∗-probability space and let self-adjoint
X1, . . . , Xn ∈M be given, such that (VI.2) holds. Then the non-commutative random vari-
ables X1, . . . , Xn do not satisfy any non-trivial algebraic relation, i.e., if P (X1, . . . , Xn) =
0 holds for any non-commutative polynomial P ∈ C〈x1, . . . , xn〉, then we must have P = 0.
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Proof. This follows immediately from Proposition V.2.1. Indeed, the implication
“(ii) → (i)” thereof tells us that the validity of condition (VI.2) excludes any non-trivial
algebraic relation among the variables X1, . . . , Xn. �

Combining now the above Proposition VI.1.3 with Proposition VI.1.4 leads us directly to
the following theorem.

Theorem VI.1.5. As before, let (M, τ) be a tracial W ∗-probability space. Let X1, . . . , Xn ∈
M be self-adjoint and assume that there are elements ξ1, . . . , ξn ∈ L2(M, τ), such that
(ξ1, . . . , ξn) satisfies the conjugate relations for (X1, . . . , Xn), i.e. (VI.1) holds for j =
1, . . . , n. Then we have the following statements:

(a) X1, . . . , Xn do not satisfy any non-trivial algebraic relation, i.e. there exists no
non-zero polynomial P ∈ C〈x1, . . . , xn〉 such that P (X1, . . . , Xn) = 0.

(b) For j = 1, . . . , n, there is a unique derivation

∂̂j : C〈X1, . . . , Xn〉 → C〈X1, . . . , Xn〉 ⊗ C〈X1, . . . , Xn〉

which satisfies ∂̂j(Xi) = δj,i1⊗ 1 for i = 1, . . . , n.

Note that part (b) is an immediate consequence of part (a): Since (a) tells us that the
evaluation homomorphism evX is in fact an isomorphism, we can immediately define a
non-commutative derivation

∂̂j : C〈X1, . . . , Xn〉 → C〈X1, . . . , Xn〉 ⊗ C〈X1, . . . , Xn〉,
where the terminology derivation has to be understood with respect to the C〈X1, . . . , Xn〉-
bimodule structure of C〈X1, . . . , Xn〉⊗2. The uniqueness can be deduced from (V.5); see
also Proposition V.2.1.

Following [Voi98], we may proceed now by defining (non-microstates) free Fisher infor-
mation.

Definition VI.1.6. Let (M, τ) be a tracial W ∗-probability space and let self-adjoint
elements X1, . . . , Xn ∈ M be given. We define their (non-microstates) free Fisher infor-
mation Φ∗(X1, . . . , Xn) by

Φ∗(X1, . . . , Xn) :=
n∑
j=1

‖ξj‖2
2

if a conjugate system (ξ1, . . . , ξn) for (X1, . . . , Xn) in the sense of Definition VI.1.1 exists,
and we put Φ∗(X1, . . . , Xn) :=∞ if no such conjugate system for (X1, . . . , Xn) exists.

This Φ∗(X1, . . . , Xn) is just the usual non-microstates free Fisher information as defined
in [Voi98]. However, we have now the advantage that it can be defined even without
assuming the algebraic freeness of X1, . . . , Xn right from the beginning. Actually, our
result can now be stated as follows: Φ∗(X1, . . . , Xn) <∞ implies the absence of algebraic
relations between X1, . . . , Xn.

Let (M, τ) be a W ∗-probability space and let self-adjoint elements X1, . . . , Xn ∈ M be
given such that the condition Φ∗(X1, . . . , Xn) <∞ is fulfilled. Part (a) of Theorem VI.1.5
tells us then that X1, . . . , Xn do not satisfy any algebraic relation, which in other words
means that the evaluation homomorphism evX induces an isomorphism between the ab-
stract polynomial algebra C〈x1, . . . , xn〉 and the subalgebra C〈X1, . . . , Xn〉 of M . Thus,
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each of the non-commutative derivatives

∂̂j : C〈X1, . . . , Xn〉 → C〈X1, . . . , Xn〉 ⊗ C〈X1, . . . , Xn〉,
whose existence is claimed in part (b) of Theorem VI.1.5, is naturally induced under this
identification by the corresponding non-commutative derivative ∂j on C〈x1, . . . , xn〉. Due

to this strong relationship, we do not have to distinguish anymore between ∂j and ∂̂j.

We finish this section by noting that Φ∗(X1, . . . , Xn) < ∞ moreover excludes analytic
relations. More precisely, this means that there is no non-zero non-commutative power
series P , which is convergent on a polydisc

DR := {(Y1, . . . , Yn) ∈Mn| ∀j = 1, . . . , n : ‖Yj‖ < R}
for some R > 0, such that (X1, . . . , Xn) ∈ DR and P (X1, . . . , Xn) = 0. Based on
Voiculescu’s original definition of the non-microstates free Fisher information and hence
under the additional assumption that X1, . . . , Xn are algebraically free, this was shown
by Dabrowski in [Dab14, Lemma 37].

VI.2. Non-microstates free entropy dimension and zero divisors

Inspired by the methods used in the proof of Theorem VI.1.5, we address now the more
general question of existence of zero divisors under the assumption of full non-microstates
free entropy dimension.

First of all, we shall make more precise what we mean by this. We postpone the definition
of the non-microstates free entropy dimension δ∗(X1, . . . , Xn) and related quantities to
Subsection VI.2.1, but we state here the result that we aim to prove.

Theorem VI.2.1. Let (M, τ) be a tracial W ∗-probability space. Furthermore, let
X1, . . . , Xn ∈ M be self-adjoint elements and assume that δ∗(X1, . . . , Xn) = n holds.
Then, for any non-zero non-commutative polynomial P , there exists no non-zero element
w ∈ vN(X1, . . . , Xn) such that

P (X1, . . . , Xn)w = 0.

Recall (see Definition I.1.18) that to each element X = X∗ ∈ M corresponds a unique
probability measure µX on the real line R, which has the same moments as X, i.e. it
satisfies

τ(Xk) =

∫
R
tk dµX(t) for k = 0, 1, 2, . . . .

It is an immediate consequence of Theorem VI.2.1 that the distribution µP (X1,...,Xn) of
P (X1, . . . , Xn) for any non-constant self-adjoint polynomial P cannot have atoms, if
δ∗(X1, . . . , Xn) = n. Note that a Borel probability measure µ on R is said to have an
atom if there exists some α ∈ R, such that µ({α}) 6= 0. In this case, we call α an atom of
µ. The precise statement reads as follows.

Corollary VI.2.2. Let (M, τ) be a tracial W ∗-probability space and let X1, . . . , Xn ∈M
be self-adjoint with δ∗(X1, . . . , Xn) = n. Then, for any non-constant self-adjoint non-
commutative polynomial P , the distribution µP (X1,...,Xn) of P (X1, . . . , Xn) does not have
atoms.

Indeed, any atom α of the distribution µP (X1,...,Xn), i.e. any α ∈ R satisfying
µP (X1,...,Xn)({α}) 6= 0, leads by the spectral theorem for bounded self-adjoint operators on
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Hilbert spaces to a non-zero projection u satisfying (P (X1, . . . , Xn)−α1)u = 0; see Lemma
I.1.20 and the comment thereafter. Thus, applying Theorem VI.2.1 yields immediately the
statement of Corollary VI.2.2.

We point out that the conclusions of both Theorem VI.2.1 and Corollary VI.2.2 were
shown in [MSW14] under the stronger assumption of finite non-microstates free Fisher
information. In the above stated generality they appeared first in [Shl14], where the proof
is based on results from [CS05]. We are going to prove those statements here in a more
direct way by refining the initial methods of [MSW14]; our exposition follows [MSW17].

More precisely, in Subsection VI.2.2, we will give a quantitative version of our key idea
that under the assumption of finite non-microstates Fisher information there is a strong
relation between kernels of polynomials and the kernels of their derivatives.

Since the semicircular perturbation is inherent in the definition of the non-microstates
free entropy as well as the corresponding entropy dimension, we find ourselves in the
setting of finite free Fisher information. Therefore, we will study in Subsection VI.2.3
the behavior of the results found in Subsection VI.2.2 under semicircular perturbations –
roughly speaking, we will be interested in the case where the perturbation tends to zero.

Finally, in Subsection VI.2.4, which is dedicated to the proof of Theorem VI.2.1, we
will deduce from this observation a certain reduction argument that allows us to reduce
successively the degree of the polynomial P satisfying the conditions of Theorem VI.2.1.

VI.2.1. Non-microstates free entropy and free entropy dimension. We want
to catch up now on the definition of the non-microstates free entropy dimension. Let
(M, τ) be a tracial W ∗-probability space and let self-adjoint elements X1, . . . , Xn ∈ M
be given. By enlarging (M, τ), if necessary, we may always assume that (M, τ) contains
additionally semicircular elements S1, . . . , Sn such that

{X1, . . . , Xn}, {S1}, . . . , {Sn}

are freely independent. Indeed, this can be done by replacing (M, τ) by the free product
(M, τ)∗C (L(Fn), τn) of (M, τ) with the free group factor (L(Fn), τn). Following Voiculescu
[Voi98], we define the non-microstates free entropy χ∗(X1, . . . , Xn) of X1, . . . , Xn by

χ∗(X1, . . . , Xn) :=
1

2

∫ ∞
0

( n

1 + t
− Φ∗(X1 +

√
tS1, . . . , Xn +

√
tSn)

)
dt+

n

2
log(2πe).

We need to note that the function

t 7→ Φ∗(X1 +
√
tS1, . . . , Xn +

√
tSn)

is well-defined, since [Voi98, Corollary 3.9] tells us that there exists a conjugate system of
(X1 +

√
tSn, . . . , Xn +

√
tSn) for all t > 0. Moreover, we have the inequalities (cf. [Voi98,

Corollary 6.14])

(VI.3)
n2

C2 + nt
≤ Φ∗(X1 +

√
tS1, . . . , Xn +

√
tSn) ≤ n

t
for all t > 0,

where C2 := τ(X2
1 + · · ·+X2

n). The left inequality in (VI.3) particularly implies that (cf.
[Voi98, Proposition 7.2])

χ∗(X1, . . . , Xn) ≤ n

2
log(2πen−1C2).
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This allows to define the non-microstates free entropy dimension δ∗(X1, . . . , Xn) by

δ∗(X1, . . . , Xn) := n− lim inf
ε↘0

χ∗(X1 +
√
εS1, . . . , Xn +

√
εSn)

log(
√
ε)

.

We note that there is actually a variant of δ∗(X1, . . . , Xn), given by

δ̂?(X1, . . . , Xn) := n− lim inf
t↘0

tΦ∗(X1 +
√
tS1, . . . , Xn +

√
tSn),

which is formally obtained by applying L’Hospital’s rule to the lim inf appearing in the
definition of δ∗(X1, . . . , Xn). In [CS05], where δ̂? was introduced, it was denoted by δ?;
we have slightly changed the notation for better legibility. Due to (VI.3), we have that

0 ≤ δ̂?(X1, . . . , Xn) ≤ n. It was already mentioned in [Shl14] that δ∗(X1, . . . , Xn) = n

or even δ̂?(X1, . . . , Xn) = n are the weakest possible assumptions where we can expect a
version of Theorem VI.2.1 to hold true. Accordingly, it sits at the end of a longer chain
of general implications, namely

Φ∗(X1, . . . , Xn) <∞ =⇒ χ∗(X1, . . . , Xn) > −∞
=⇒ δ∗(X1, . . . , Xn) = n

=⇒ δ̂?(X1, . . . , Xn) = n.

The first implication follows by definition of χ∗(X1, . . . , Xn), the second implication is a
direct consequence of the definition of δ∗(X1, . . . , Xn), and the last implication is justi-

fied by δ̂?(X1, . . . , Xn) ≥ δ∗(X1, . . . , Xn), which was shown in [CS05, Lemma 4.1] by a
straightforward computation.

VI.2.2. The case of finite non-microstates free Fisher information revisited.
Let (M, τ) be a tracial W ∗-probability space and let X1, . . . , Xn ∈M be self-adjoint with
Φ∗(X1, . . . , Xn) < ∞. As we have seen in Section VI.1, those conditions guarantee for
each i = 1, . . . , n the existence of a unique derivation

∂i : C〈X1, . . . , Xn〉 → C〈X1, . . . , Xn〉 ⊗ C〈X1, . . . , Xn〉,

which is determined by the condition ∂iXj = δi,j1 ⊗ 1 for j = 1, . . . , n. We may observe
that the non-commutative derivatives ∂1, . . . , ∂n fit perfectly into the setting of Chapter
V. We collect below the relevant facts:

• Let us abbreviate N := vN(X1, . . . , Xn). For each i = 1, . . . , n, we have that

∂i : N ⊃ D(∂i)→ L2(N, τ |N)⊗ L2(N, τ |N)

is a non-commutative derivation in the sense of Definition V.3.1, as its canonical
domain D(∂i) = C〈X1, . . . , Xn〉 is a unital ∗-subalgebra of N , which is weakly
dense in N , and it also satisfies the Leibniz rule.
• For each i = 1, . . . , n, the non-commutative derivation ∂i is real in the sense of

Definition V.4.3, i.e., it satisfies ∂i(P
∗) = (∂iP )† for all P ∈ D(∂i). This can be

checked easily by a direct computation.
• Each non-commutative derivation ∂i takes its values inD(∂i)�D(∂i) and satisfies

the coassociativity relation

(∂i ⊗ id) ◦ ∂i = (id⊗∂i) ◦ ∂i
in the sense of Definition V.5.1. This was already observed in Remark V.1.6;
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• For each i = 1, . . . , n may consider ∂j as a densely defined unbounded linear
operator

∂i : L2(N, τ |N) ⊇ D(∂i)→ L2(N, τ |N)⊗ L2(N, τ |N).

Since Φ∗(X1, . . . , Xn) < ∞ implies that a conjugate system (ξ1, . . . , ξn) for
(X1, . . . , Xn) exists, we see by (VI.1) that 1 ⊗ 1 belongs to the domain of defi-
nition of each of the adjoints ∂∗1 , . . . , ∂

∗
n. Accordingly, for any i = 1, . . . , n, the

initial condition 1⊗ 1 ∈ D(∂∗i ) is satisfied and we have that ξi = ∂∗i (1⊗ 1).

The following Proposition VI.2.3 is the main result of this subsection. In [MSW14,
MSW17], where it showed up for the first time, it was proven by using results of [Voi98,
Dab10]. But here, we can shorten the exposition, since we have already discussed results
of this type in Chapter V, even in a slightly more general setting. Proposition VI.2.3 is
thus largely a direct consequence of Proposition V.6.1. However, the concrete situation
allows us to include some additional statements. These will involve the projective norm
‖ · ‖π on C〈X1, . . . , Xn〉⊗2, which is given by

‖Q‖π := inf

{ N∑
k=1

‖Qk,1‖‖Qk,2‖
∣∣∣∣ Q =

N∑
k=1

Qk,1 ⊗Qk,2

}
for any Q ∈ C〈X1, . . . , Xn〉⊗2, where the infimum is taken over all possible decompositions
of Q with Qk,1, Qk,2 ∈ C〈X1, . . . , Xn〉 for k = 1, . . . , N and some N ∈ N. Whenever it
becomes necessary in the following to mention explicitly the dependence of ‖ · ‖π on the
underlying set of generators X = (X1, . . . , Xn), we will also write ‖ · ‖π,X instead of ‖ · ‖π.

Proposition VI.2.3. Let (M, τ) be a tracial W ∗-probability space and let self-adjoint el-
ements X1, . . . , Xn ∈M be given such that the condition Φ∗(X1, . . . , Xn) <∞ is satisfied.
Let (ξ1, . . . , ξn) be the conjugate system for (X1, . . . , Xn). Then, for all P ∈ C〈X1, . . . , Xn〉
and all u, v ∈ vN(X1, . . . , Xn), we have

(VI.4) |〈v∗(∂iP )u,Q〉| ≤ 4‖ξi‖2

(
‖Pu‖2‖v‖+ ‖u‖‖P ∗v‖2

)
‖Q‖π

for all Q ∈ C〈X1, . . . , Xn〉⊗2 and i = 1, . . . , n. In particular, we have

(VI.5)

n∑
i=1

|〈v∗(∂iP )u,Q〉|2

≤ 16
(
‖Pu‖2‖v‖+ ‖u‖‖P ∗v‖2

)2
Φ∗(X1, . . . , Xn)‖Q‖2

π

for all Q ∈ C〈X1, . . . , Xn〉⊗2.

Proof. As we already mentioned above, the first part of the statement concerning
(VI.4) is an immediate consequence of Proposition V.6.1. Indeed, since

∂i : N ⊃ D(∂i)→ L2(N, τ |N)⊗ L2(N, τ |N)

forms a non-commutative derivation, which is both real and satisfies the coassociativity
relation, and since also 1⊗1 ∈ D(∂∗i ) holds, Proposition V.6.1 can be applied. This yields

|〈v∗(∂iP )u,Q1 ⊗Q2〉| ≤ 4‖ξi‖2

(
‖Pu‖2‖v‖+ ‖u‖‖P ∗v‖2

)
‖Q1‖‖Q2‖

for all Q1, Q2 ∈ C〈X1, . . . , Xn〉 and hence, by the triangle inequality

|〈v∗(∂iP )u,Q〉| ≤ 4‖ξi‖2

(
‖Pu‖2‖v‖+ ‖u‖‖P ∗v‖2

) N∑
k=1

‖Qk,1‖‖Qk,2‖
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for any Q ∈ C〈X1, . . . , Xn〉⊗2 that is decomposed as

Q =
N∑
k=1

Qk,1 ⊗Qk,2 with Qk,1, Qk,2 ∈ C〈X1, . . . , Xn〉 for k = 1, . . . , N.

Since this decomposition of Q can be chosen arbitrarily, the inequality above goes over to

|〈v∗(∂iP )u,Q〉| ≤ 4‖ξi‖2

(
‖Pu‖2‖v‖+ ‖u‖‖P ∗v‖2

)
‖Q‖π,

which is just the claimed inequality (VI.4). The second inequality follows by taking squares
on both sides of (VI.4) for each i = 1, . . . , n and summing over i = 1, . . . , n. Since
Φ∗(X1, . . . , Xn) =

∑n
i=1 ‖ξi‖2

2, this concludes the proof. �

We want to stress that Proposition VI.2.3 is in fact a quantitative version of a previous
result of ours that allowed us in [MSW14] (which is an earlier version of [MSW17],
on which this chapter is based) to give a proof of Theorem VI.2.1 under the stronger
assumption of finite non-microstates Fisher information. This was based on the following
corollary.

Corollary VI.2.4. Let (M, τ) be a tracial W ∗-probability space and let self-adjoint ele-
ments X1, . . . , Xn ∈M be given, such that

Φ∗(X1, . . . , Xn) <∞
holds. We consider P ∈ C〈x1, . . . , xn〉. Then, for arbitrary u, v ∈ vN(X1, . . . , Xn), the
following implication holds true:

P (X)u = 0 and P (X)∗v = 0 =⇒ ∀i = 1, . . . , n : v∗(∂iP )(X)u = 0,

where we abbreviate X = (X1, . . . , Xn).

Proof. The inequality (VI.4), which was stated in Proposition VI.2.3, immediately
implies that 〈v∗(∂iP )u,Q〉 = 0 for all Q ∈ C〈X1, . . . , Xn〉⊗2. Hence, since C〈X1, . . . , Xn〉⊗2

is dense in L2(M, τ) with respect to ‖ · ‖2, this yields v∗(∂iP )(X)u = 0 as claimed. �

Thus, readers interested in the proof of Theorem VI.2.1 only under the stronger assump-
tion Φ∗(X1, . . . , Xn) <∞ may skip Subsection VI.2.3 and proceed directly to Subsection
VI.2.4, since the final step in the proof of Theorem VI.2.1 will only need the above reduc-
tion argument.

VI.2.3. Treating the case of full entropy dimension via semicircular pertur-
bations. Since the non-microstates free entropy dimension δ∗(X1, . . . , Xn) and its variant

δ̂?(X1, . . . , Xn) are both determined in a more or less explicit way by the behavior of the
function

t 7→ Φ∗(X1 +
√
tS1, . . . , Xn +

√
tSn)

as t ↘ 0, one is tempted to apply the results obtained in Proposition VI.2.3 to the
semicircular perturbation (X1+

√
tS1, . . . , Xn+

√
tSn). In fact, as we will see in Proposition

VI.2.5 below, in this way the quantity

α(X1, . . . , Xn) := n− δ̂?(X1, . . . , Xn)

= lim inf
t↘0

tΦ∗(X1 +
√
tS1, . . . , Xn +

√
tSn),

which also appeared in [CS05, Section 4], emerges naturally from the inequality given in
Proposition VI.2.3 and allows us to study its influence.
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It is therefore not surprising that some of the technical arguments that we will use below
for dealing with semicircular perturbations are similar to [CS05, Section 4]. However,
the proof itself is conceptually independent and follows a different strategy, since it is a
straightforward continuation of Proposition VI.2.3 and hence relies on the inequalities due
to Dabrowski [Dab10]; a general version of these inequalities was presented in Theorem
V.5.2.

More precisely, we will show the following.

Proposition VI.2.5. Let (M, τ) be a tracial W ∗-probability space and let self-adjoint
elements X1, . . . , Xn ∈M be given. Moreover, let P ∈ C〈x1, . . . , xn〉 be a non-commutative
polynomial for which there are elements u, v ∈ vN(X1, . . . , Xn) such that

P (X1, . . . , Xn)u = 0 and P (X1, . . . , Xn)∗v = 0.

Then, for all Q ∈ C〈X1, . . . , Xn〉⊗2,

n∑
i=1

|〈v∗(∂iP )(X)u,Q〉|2

≤ 16
(
‖(∂P )(X)u‖2‖v‖+ ‖u‖‖(∂P )(X)∗v‖2

)2
α(X)‖Q‖2

π,

where we abbreviate X = (X1, . . . , Xn).

Here, we use the notation ∂P for the gradient (∂1P, . . . , ∂nP ) of a polynomial P ∈
C〈x1, . . . , xn〉. Evaluation (∂P )(X), taking adjoints (∂P )(X)∗, and multiplication by ele-
ments from M like in (∂P )(X)u and (∂P )(X)∗v are then defined component-wise.

Furthermore, we point out that the space L2(M, τ)n becomes a Hilbert space in the
obvious way. We denote its induced norm also by ‖ · ‖2.

Proof of Proposition VI.2.5. (i) Without any restriction, we may assume that
our underlying W ∗-probability space (M, τ) contains n normalized semicircular elements
S1, . . . , Sn such that

{X1, . . . , Xn}, {S1}, . . . , {Sn}
are freely independent. We define variables

X t
j := Xj +

√
tSj for t ≥ 0 and j = 1, . . . , n

and denote by Nt := vN(X t
1, . . . , X

t
n) the von Neumann algebras they generate. In

particular, N0 is the von Neumann algebra generated by X1, . . . , Xn. We abbreviate
X t = (X t

1, . . . , X
t
n) for t ≥ 0, so that in particular X0 = X = (X1, . . . , Xn).

Since Nt, for each t ≥ 0, is a von Neumann subalgebra of M , we may consider the unique
trace-preserving conditional expectation Et from M onto Nt; see Remark I.2.7. Finally,
we introduce ut := Et[u] ∈ Nt and vt := Et[v] ∈ Nt.

It follows then that P (X t)ut = P (X t)Et[u] = Et[P (X t)u] and hence

‖P (X t)ut‖2 = ‖Et[P (X t)u]‖2 ≤ ‖P (X t)u‖2.

Now, since t 7→ P (X t)u is a polynomial in
√
t, which vanishes at t = 0, we may observe

that

lim
t↘0

1√
t
P (X t)u =

n∑
i=1

(∂iP )(X)u]Si.

185



186 VI.2. NON-MICROSTATES FREE ENTROPY DIMENSION AND ZERO DIVISORS

Since the linear subspaces

span{a1Sja2| a1, a2 ∈ N0}, j = 1, . . . , n,

of L2(M, τ) are pairwise orthogonal and since the mapping

L2(N0, τ)⊗ L2(N0, τ)→ L2(M, τ), U 7→ U]Sj

is in fact an isometry, which are both consequences of the assumed freeness of
{X1, . . . , Xn}, {S1}, . . . , {Sn} (more precisely, we can use the formula provided in Ex-
ample I.1.36), it follows that

lim
t↘0

1√
t
‖P (X t)u‖2 =

( n∑
i=1

‖(∂iP )(X)u‖2
2

)1/2

= ‖(∂P )(X)u‖2

Similarly, we may deduce that

lim
t↘0

1√
t
‖P (X t)∗v‖2 =

( n∑
i=1

‖(∂iP )(X)∗v‖2
2

)1/2

= ‖(∂P )(X)∗v‖2.

(ii) We note that for each Q ∈ C〈x1, . . . , xn〉⊗2

lim sup
t↘0

‖Q(X t)‖π,Xt ≤ ‖Q(X)‖π,X .

Indeed, for any given Q ∈ C〈x1, . . . , xn〉⊗2, we may consider an arbitrary decomposition

Q =
N∑
k=1

Qk,1 ⊗Qk,2.

For k = 1, . . . , N , we may write

Qk,1(X t)⊗Qk,2(X t) = Qk,1(X)⊗Qk,2(X) +

dk∑
l=1

tl/2Rk,l

for some dk ≥ 1 with certain elements

Rk,1, . . . , Rk,dk ∈ C〈X1, . . . , Xn, S1, . . . , Sn〉⊗2,

which are independent of t. Since the norm ‖ · ‖ on M⊗M is a cross norm, we get

‖Qk,1(X t)‖‖Qk,2(X t)‖ = ‖Qk,1(X t)⊗Qk,2(X t)‖

≤ ‖Qk,1(X)⊗Qk,2(X)‖+

dk∑
l=1

tl/2‖Rk,l‖

= ‖Qk,1(X)‖‖Qk,2(X)‖+

dk∑
l=1

tl/2‖Rk,l‖

for all k = 1, . . . , N and thus

‖Q(X t)‖π,Xt ≤
N∑
k=1

‖Qk,1(X t)‖‖Qk,2(X t)‖

≤
N∑
k=1

‖Qk,1(X)‖‖Qk,2(X)‖+
N∑
k=1

dk∑
l=1

tl/2‖Rk,l‖,
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so that

lim sup
t↘0

‖Q(X t)‖π,Xt ≤
N∑
k=1

‖Qk,1(X)‖‖Qk,2(X)‖.

Since the decomposition of Q was arbitrarily chosen, we get as desired

lim sup
t↘0

‖Q(X t)‖π,Xt ≤ ‖Q(X)‖π,X .

(iii) Let Q ∈ C〈x1, . . . , xn〉⊗2 be given. Since Φ∗(X t) < ∞, we obtain by Proposition
VI.2.3 that

n∑
i=1

|〈v∗t (∂iP )(X t)ut, Q(X t)〉|2

≤ 16
(
‖P (X t)ut‖2‖vt‖+ ‖ut‖‖P (X t)∗vt‖2

)2
Φ∗(X t)‖Q(X t)‖2

π,Xt

≤ 16
(
‖P (X t)u‖2‖v‖+ ‖u‖‖P (X t)∗v‖2

)2
Φ∗(X t)‖Q(X t)‖2

π,Xt

= 16

(
1√
t
‖P (X t)u‖2‖v‖+ ‖u‖ 1√

t
‖P (X t)∗v‖2

)2

tΦ∗(X t)‖Q(X t)‖2
π,Xt ,

so that, since lim sup
t↘0

‖Q(X t)‖π,Xt ≤ ‖Q(X)‖π,X according to (ii),

lim inf
t↘0

n∑
i=1

|〈v∗t (∂iP )(X t)ut, Q(X t)〉|2

≤ 16
(
‖(∂P )(X)u‖2‖v‖+ ‖u‖‖(∂P )(X)∗v‖2

)2
α(X)‖Q(X)‖2

π.

(iv) It remains to show that in fact

lim inf
t↘0

n∑
i=1

|〈v∗t (∂iP )(X t)ut, Q(X t)〉|2 =
n∑
i=1

|〈v∗(∂iP )(X)u,Q(X)〉|2.

We first check that

〈v∗t (∂iP )(X t)ut, Q(X t)〉 = 〈Et[v∗](∂iP )(X t)Et[u], Q(X t)〉
= 〈(Et ⊗ Et)[v∗(∂iP )(X t)u], Q(X t)〉
= 〈v∗(∂iP )(X t)u,Q(X t)〉,

which means in particular that this expression is actually a complex polynomial in
√
t.

This guarantees that

lim
t↘0
〈v∗t (∂iP )(X t)ut, Q(X t)〉 = 〈v∗(∂iP )(X)u,Q(X)〉

and finally completes the proof. �

VI.2.4. Proof of Theorem VI.2.1. Now, we are prepared to give a proof of The-
orem VI.2.1. Even more, we will do this under the (possibly) weaker assumption that

δ̂?(X1, . . . , Xn) = n.

The main tool is the following corollary of Proposition VI.2.5.
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Corollary VI.2.6. Let (M, τ) be a tracial W ∗-probability space and let self-adjoint ele-
ments X1, . . . , Xn ∈M be given, such that

δ̂?(X1, . . . , Xn) = n

holds. We consider P ∈ C〈x1, . . . , xn〉. Then, for arbitrary u, v ∈ vN(X1, . . . , Xn), the
following implication holds true:

P (X)u = 0 and P (X)∗v = 0 =⇒ ∀i = 1, . . . , n : v∗(∂iP )(X)u = 0.

Proof. Note that our assumption δ̂?(X1, . . . , Xn) = n is equivalent to the fact that
α(X1, . . . , Xn) = 0. If P (X)u = 0 and P (X)∗v = 0, then Proposition VI.2.5 yields

n∑
i=1

|〈v∗(∂iP )(X)u,Q〉|2 = 0

for all Q ∈ C〈X1, . . . , Xn〉⊗2. Since C〈X1, . . . , Xn〉⊗2 is by definition dense in L2(M, τ)
with respect to ‖ · ‖2, we conclude that v∗(∂iP )(X)u = 0 for i = 1, . . . , n. �

Remark VI.2.7. Let P ∈ C〈x1, . . . , xn〉 be given and assume that there are u = u∗, v =
v∗ ∈ vN(X1, . . . , Xn) such that P (X)u = P (X)∗v = 0 holds. Then, according to Corollary
VI.2.6, we know that v(∂jP )(X)u = 0 for any j = 1, . . . , n. If we replace now P by P ∗,
the statement of Corollary VI.2.6 also gives u(∂jP

∗)(X)v = 0 for j = 1, . . . , n. But we
want to point out that this does not lead to any new information.

For seeing this, let us consider the involution † on M ⊗ M , which was introduced in
Definition V.4.2. If we apply † to the initial statement

v(∂jP )(X)u = 0,

we get
u(∂jP )(X)†v = 0.

An easy calculation on monomials shows that (∂jP )(X)† = (∂jP
∗)(X), such that the

above result reduces exactly to the statement obtained by replacing P with P ∗.

Before doing the final step, we first want to test in two examples how strong the result
in Corollary VI.2.6 is. In both of these examples, we therefore suppose that (M, τ) is a
tracial W ∗-probability space and that X1, . . . , Xn ∈M for n ≥ 2 are self-adjoint elements
satisfying the condition δ̂?(X1, . . . , Xn) = n.

Example VI.2.8. For the self-adjoint polynomial P = x1x2x1, we calculate ∂2P = x1⊗x1,
such that P (X)w = 0 for some w ∈ vN(X1, . . . , Xn) implies according to Corollary VI.2.6
that wX1 ⊗X1w = 0 and therefore P̃ (X)w = 0 holds with P̃ = x1.

Applying Corollary VI.2.6 once again, but now to the non-commutative polynomial P̃
and with respect to ∂1, we end up with w ⊗ w = 0, such that w = 0 follows.

Example VI.2.9. Take P = x1x2 + x2x1. We have

∂1P = 1⊗ x2 + x2 ⊗ 1,

∂2P = x1 ⊗ 1 + 1⊗ x1

and thus according to Corollary VI.2.6

(X2w)∗(X2w) = mX2(w(∂1P )(X)w) = 0,

(X1w)∗(X1w) = mX1(w(∂2P )(X)w) = 0.
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We conclude X1w = X2w = 0, from which we may deduce like above by a second appli-
cation of Corollary VI.2.6 that w = 0.

Although the above examples might give the feeling that Corollary VI.2.6 is strong enough
to allow directly a successive reduction of any polynomial, the needed algebraic manip-
ulations turn out to be obscure in general; a skeptical reader might convince himself by
having a try at the polynomial P = x1x2x3 + x3x2x1, for instance.

Moreover, in contrast to Theorem VI.2.1, any such reduction argument that is based
only on Corollary VI.2.6 would need a symmetric starting condition. Fortunately, in our
situation, we can go around these complications, since we can use the following well-known
general lemma, which is an easy consequence of the polar decomposition and encodes the
additional information that our statement is formulated in a tracial setting.

Lemma VI.2.10. Let X be an element of any tracial W ∗-probability space (M, τ) over
some complex Hilbert space H. Let pker(X) and pker(X∗) denote the orthogonal projections
onto ker(X) and ker(X∗), respectively. The projections pker(X) and pker(X∗) belong both to
M and satisfy

τ(pker(X)) = τ(pker(X∗)).

Thus, in particular, if ker(X) is non-zero, then also ker(X∗) is a non-zero subspace of H.

Proof. We consider the polar decomposition X = V (X∗X)1/2 = (XX∗)1/2V of X,

where V ∈M is a partial isometry mapping ran(X∗) to ran(X), such that

V ∗V = pran(X∗) and V V ∗ = pran(X).

Hence, it follows that

1− V ∗V = pran(X∗)⊥ = pker(X) and 1− V V ∗ = pran(X)⊥ = pker(X∗),

from which we may deduce by traciality of τ that indeed

τ(pker(X)) = τ(1− V ∗V ) = τ(1− V V ∗) = τ(pker(X∗)).

This concludes the proof. �

Combining Lemma VI.2.10 with Corollary VI.2.6 will provide us with the desired reduc-
tion argument. Before giving the precise statement, let us introduce some notation. If
p ∈M is any projection, we define a linear mapping

∆p,j : C〈x1, . . . , xn〉 → C〈x1, . . . , xn〉

for j = 1, . . . , n by

∆p,jP := (τ ⊗ id)
(
p(evX ⊗ id)(∂jP )

)
for any P ∈ C〈x1, . . . , xn〉.

Corollary VI.2.11. Let (M, τ) be a tracial W ∗-probability space and let X1, . . . , Xn ∈M
be self-adjoint elements, which satisfy

δ̂?(X1, . . . , Xn) = n.

Moreover, let P ∈ C〈x1, . . . , xn〉 and w = w∗ ∈ vN(X1, . . . , Xn) be given, such that
P (X)w = 0 holds true. If w 6= 0, then there exists a projection 0 6= p ∈ vN(X1, . . . , Xn)
such that (∆p,jP )(X)w = 0.
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Proof. Since P (X)w = 0 and w 6= 0, we see that {0} 6= ran(w) ⊆ ker(P (X)), such
that we also must have ker(P (X)∗) 6= {0} according to Lemma VI.2.10. The projection
p := pker(P (X)∗) ∈ vN(X1, . . . , Xn) thus satisfies p 6= 0 and P (X)∗p = 0. Corollary VI.2.6
tells us that p(∂jP )(X)w = 0 for j = 1, . . . , n holds true. Hence, we get that

(∆p,jP )(X)w = (τ ⊗ id)
(
p(∂jP )(X)

)
w = (τ ⊗ id)

(
p(∂jP )(X)w

)
= 0,

which concludes the proof. �

Now, we are prepared to finish the proof of Theorem VI.2.1.

Proof of Theorem VI.2.1. Obviously, it suffices to show that, if any non-
commutative polynomial P ∈ C〈x1, . . . , xn〉 and w ∈ vN(X1, . . . , Xn) with w 6= 0 are
given such that P (X)w = 0, then P = 0 follows. By possibly replacing w by ww∗, we
may assume in addition that w = w∗.

For proving P = 0, we proceed as follows. First, we write

P = a0 +
d∑

k=1

n∑
i1,...,ik=1

ai1,...,ikxi1 . . . xik

and we assume that the total degree d of P satisfies d ≥ 1. We choose then any summand
of P of highest degree, which is non-zero, say ai1,...,idxi1 . . . xid . Iterating Corollary VI.2.11,
we see that there are non-zero projections p1, . . . , pd ∈ vN(X1, . . . , Xn) such that

(∆pd,id . . .∆p1,i1P )(X)w = 0.

But since we can easily check that

(∆pd,id . . .∆p1,i1P )(X) = τ(pd) . . . τ(p1)ai1,...,id ,

this leads us to ai1,...,id = 0, which contradicts our assumption. Thus, P must be constant,
and since w 6= 0, we end up with P = 0. This concludes the proof of Theorem VI.2.1. �

We finish by noting that Theorem VI.2.1 yields now, with Proposition V.2.1 in mind, the
following generalization of Theorem VI.1.5.

Corollary VI.2.12. Let (M, τ) be a tracial W ∗-probability space. Furthermore, let
X1, . . . , Xn ∈ M be self-adjoint elements and assume that δ∗(X1, . . . , Xn) = n holds.
Then the following statements hold true:

(a) X1, . . . , Xn do not satisfy any non-trivial algebraic relation, i.e. there exists no
non-zero polynomial P ∈ C〈x1, . . . , xn〉 such that P (X1, . . . , Xn) = 0.

(b) For j = 1, . . . , n, there is a unique derivation

∂̂j : C〈X1, . . . , Xn〉 → C〈X1, . . . , Xn〉 ⊗ C〈X1, . . . , Xn〉

which satisfies ∂̂j(Xi) = δj,i1⊗ 1 for i = 1, . . . , n.
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CHAPTER VII

Regularity of distributions of Wigner integrals

In 1998, P. Biane and R. Speicher established with their seminal work [BS98] a non-
commutative counterpart of classical stochastic calculus and Malliavin calculus in the
realm of free probability. In particular, they introduced there the so-called (multiple)
Wigner integrals

ISn (f) =

∫
Rn+
f(t1, . . . , tn) dSt1 · · · dStn

for f ∈ L2(Rn
+) on R+ = [0,∞) as the free counterpart of the classical (multiple) Wiener-

Itô integrals [Wie38, Itô51, Itô52]. Despite some clear peculiarities of these free objects,
their construction proceeds to a great extend parallel to the classical case, roughly speak-
ing by replacing the classical Brownian motion by its free relative (St)t≥0. In analogy to the
classical Wiener-Itô chaos, these Wigner integrals form the so-called Wigner chaos, which
likewise enjoys many properties similar to the classical Wiener-Itô chaos; e.g. [KNPS12].

We point out that the increments of the free Brownian motion (St)t≥0 carry the semicircu-
lar distribution as the free equivalent of the normal distribution from classical probability
theory. It might seem strange at first sight that the nomenclature of Wigner integrals
refers explicitly to Wigner, although his work clearly predates the birth of free stochastic
calculus. However, this simply highlights the very important fact that the semicircular
distribution already appeared in Wigner’s famous semicircle law and that this rather sur-
prising connection to random matrix theory, which was later clarified by Voiculescu, marks
the starting point of an extremely fruitful interaction between random matrix theory and
the theory of operator algebras.

Classical Malliavin calculus has many important applications (cf. [Nua06, Nua09]). In
particular, it became prominent for its use in treating regularity questions in different
situations, as e.g. for distributions of random variables in the Wiener-Itô chaos. For in-
stance, it was used by Shigekawa [Shi80] for proving that any non-trivial element in the
finite Wiener-Itô chaos, i.e. any non-constant finite sum of Wiener-Itô integrals, has a
distribution which is absolutely continuous with respect to the Lebesgue measure.

In contrast, in the world of free probability, distributions of non-commutative random
variables that appear in the Wigner chaos are poorly understood. The aim of this chapter,
which is based on the paper [Mai15], is a first step towards a better understanding of
these distributions by answering one of the fundamental questions formulated by Nourdin
and Peccati in [NP13, Remark 1.6], namely: can the distribution of any non-constant self-
adjoint Wigner integral have atoms or not? We will see that the answer to this question is
no in full generality. Even more, we will show that the distribution of self-adjoint elements
in the finite Wigner chaos, i.e. non-commutative random variables of the form

IS1 (f1) + IS2 (f2) + · · ·+ ISN(fN)

with mirror-symmetric fn ∈ L2(Rn
+) for n = 1, . . . , N and fN 6= 0, cannot have atoms.

This is the content of of our main Theorem VII.1.4.
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Although this result is clearly in accord with the classical result of Shigekawa [Shi80],
the proof of Theorem VII.1.4 uses completely different methods. Shigekawa’s approach is
based on arguments which are specially adapted to the commutative setting. In fact, he
uses Malliavin’s Lemma, which is a powerful result that provides a sufficient condition for
a measure on Rd to be absolutely continuous with respect to Lebesgue measure. The non-
commutativity in our situation forces us therefore to follow a totally different strategy,
which is inspired by recently developed methods [MSW17, Shl14].

In free probability, regularity questions of this type were successfully addressed only quite
recently [SS15, MSW14, Shl14, MSW17, CS16]. Our considerations here are very
much based on the paper [MSW17], where it was shown that in a von Neumann al-
gebra M , which is endowed with a faithful normal tracial state τ , the distribution of
any non-constant self-adjoint polynomial expression P (X1, . . . , Xn) in finitely many self-
adjoint variables X1, . . . , Xn ∈ M does not have atoms if the so-called non-microstates
free entropy dimension δ∗(X1, . . . , Xn) is maximal, i.e., if it satisfies δ∗(X1, . . . , Xn) = n.

We note that the quantity δ∗(X1, . . . , Xn) has its origin among other important quantities
in the work of Voiculescu. He transferred in a groundbreaking series of papers [Voi93,
Voi94, Voi96, Voi97, Voi98, Voi99] (see also the survey article [Voi02b]) the classical
notions of entropy and Fisher information to the non-commutative world. At the base
of our work are techniques from the so-called non-microstates approach presented in
[Voi98, Voi99].

Formulated in general terms, so that it can be applied in our situation, the method of
[MSW17] works as follows:

(i) Rephrase the question of absence of atoms in more algebraic terms as a question
about the absence of (certain) zero-divisors.

(ii) Prove that zero-divisors survive under special operations that are built on
non-commutative derivations. This means that zero-divisors for some partic-
ular non-commutative random variable induce zero-divisors for some other non-
commutative random variables of “lower degree”, where the term “degree” refers
to the degree of the considered polynomial, or in general to some natural grading
on the space of non-commutative random variables under consideration.

(iii) Iterate the procedure of (ii) until reaching a non-commutative random variable
of degree zero and check that the obtained element cannot be zero under the
imposed conditions on the initial non-commutative random variable. This will
lead to a contradiction and hence excludes zero-divisors.

It might be of independent interest that Step (i) establishes a very interesting relationship
to the work of Linnell [Lin91, Lin92, Lin93, Lin98] on analytic versions of the zero
divisor conjecture, particularly in the case of the free group. In fact, we will prove the
more general statement that the product of any non-commutative random variable in the
finite Wigner chaos, which is non-zero, with any non-zero element from the von Neumann
algebra generated by the underlying free Brownian motion cannot be zero as well.

The crucial part is Step (ii), which relies in [MSW17] as well as in our considerations heav-
ily on results of Dabrowski [Dab10, Dab14], concerning bounds for the non-commutative
derivatives that underlie the non-microstates approach to free Fisher information and free
entropy of [Voi97] and also for more general derivations.
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In contrast to the preceding studies, which especially concern the case of finitely many
variables, the underlying von Neumann algebra in the setting of Wigner integrals is
generated by a free Brownian motion (St)t≥0 and therefore by an uncountable fam-
ily of semicircular elements, indexed by the continuous parameter t ≥ 0. Accord-
ingly, the role of non-commutative derivatives in [MSW14, MSW17] is taken over
here by the directional gradient operators of free Malliavin calculus. Thus, the sub-
sequent investigations can be seen as a continuous extension of the previous work
[SS15, MSW14, Shl14, MSW17, CS16].

In [MSW14], which is an earlier version of [MSW17], the absence of atoms in the distri-
bution of P (X1, . . . , Xn) for non-constant self-adjoint polynomials P was first shown under
the stronger assumption of finite non-microstates free Fisher information Φ∗(X1, . . . , Xn).
Based on these ideas, Shlyakhtenko [Shl14] was able to prove a significant extension,
namely to the most general case of full non-microstates entropy dimension δ∗(X1, . . . , Xn),
by involving different techniques from [CS05]. However, shortly after [Shl14], the authors
of [MSW14] were also able to upgrade their own methods to this generality, which led
to the final version [MSW17].

Deep results of Shlyakhtenko and Skoufranis [SS15] characterize the possible sizes of
atoms that can appear in distributions of polynomial expressions P (X1, . . . , Xn) in non-
commutative random variables X1, . . . , Xn, which have not necessarily non-atomic distri-
butions, (and even more matrices (Pij(X1, . . . , Xn))di,j=1 thereof) under the assumption
that X1, . . . , Xn are freely independent. Since the non-microstates free entropy is additive
for freely independent variables and since in the case of a single self-adjoint variable X the
maximality condition δ∗(X) = 1 holds if and only if the distribution of X has no atomic
part, the results from [MSW17, Shl14] clearly generalize some parts of the statements
given in [SS15]. However, the full range of regularity results presented in [SS15] is still
out of reach in this generality, but nevertheless, one expects that indeed for most of these
properties rather the maximality of the non-microstates free entropy dimension matters
than the free independence of the involved variables.

We point out that certain questions concerning the non-singularity and absolute continuity
of distributions were addressed recently by Charlesworth and Shlyakhtenko [CS16], in
continuation of [Shl14].

This chapter is organized as follows. In Section VII.1, we state our main result Theorem
VII.1.4 on the regularity of distributions of Wigner integrals. For reader’s convenience, we
recall there also the fundamental definition of a free Brownian motion and the construction
of Wigner integrals, as it can be found in the seminal work [BS98]. This exposition of
the foundations of free stochastic calculus will then be continued in Section VII.2. In
particular, we will define there the main operators of free Malliavin calculus and collect
some results from [BS98], which will be used later on.

Finally, in Section VII.3, we will piece together these ingredients for the actual proof of
Theorem VII.1.4. For this purpose, we will introduce the notion of directional gradients.
The proof itself relies then on the fact that directional gradients, which belong by defini-
tion to free Malliavin calculus as presented Section VII.2, fit also nicely into the general
framework of non-commutative derivations as considered in Chapter V. Indeed, this will
allow us to follow the aforementioned strategy in the spirit of [MSW14, MSW17].
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VII.1. Wigner integrals and regularity of their distributions

In this section, we provide all basic terminology and background knowledge as far as it is
needed for stating our main result, Theorem VII.1.4.

We will give the definition of a free Brownian motion and present the construction of
free Wigner integrals as they were introduced by Biane and Speicher in [BS98]; see also
[Spe03] and [KNPS12].

The introduction to free stochastic calculus will be continued later in Section VII.2.

Note that, as in Section V.3 of Chapter V, we will denote here the algebraic tensor product
(over C) by �, whereas the symbol ⊗ is reserved for all different kinds of closures of the
algebraic tensor product.

VII.1.1. Free Brownian motion. Like the classical Brownian motion in the case of
Wiener-Itô integrals, the free Brownian motion is the fundamental object in free stochastic
analysis and underlies in particular the construction of Wigner integrals. Thus, we want
to recall now its definition.

Note that the definition itself will reflect the important fact that the role of the normal
distribution in classical probability is taken over in free probability by the semicircular
distribution as its free counterpart. As introduced in Definition I.1.43, the semicircular
distribution with mean 0 and variance t > 0 will be denoted by σt. Recall from Remark
I.1.45 that (σt)t≥0 forms a semi-group with respect to the free additive convolution, i.e.
we have that σs � σt = σs+t holds for all s, t ≥ 0.

Definition VII.1.1. Let (M, τ) be a tracial W ∗-probability space. A family (St)t≥0 of
operators in (M, τ) is called free Brownian motion, if there exists a filtration (Mt)t≥0 of
M , i.e. a family (Mt)t≥0 of von Neumann subalgebras Mt of M with

Ms ⊆Mt whenever s ≤ t,

such that the following conditions are satisfied:

• We have S0 = 0 and St = S∗t ∈Mt for all t ≥ 0.
• For each t > 0, the distribution of St is the semicircular distribution σt.
• For all 0 ≤ s < t, the distribution of St−Ss is the semicircular distribution σt−s.
• For all 0 ≤ s < t, the increment St − Ss is free from Ms, which means more

precisely that the unital subalgebra generated by St − Ss is free from Ms.

A free Brownian motion can be constructed in several ways. For instance, one construction
gives the free Brownian motion as the limit of matrix-valued classical Brownian motions as
the dimension tends to infinity. In contrast to this certainly appealing but rather indirect
approach, we will present in Subsection VII.2.2 a construction of the free Brownian motion
on the full Fock space over the Hilbert space L2(R+) of all square-integrable functions on
the positive real half-line R+ := [0,∞). This has the advantage that it will not only prove
the existence of the free Brownian motion but it will also give an additional structure
to this important object, which is in fact the starting point of free Malliavin calculus.
However, for the moment, we take the existence of a free Brownian motion for granted.

VII.1.2. Wigner integrals. Presuming the existence of a free Brownian motion
(St)t≥0 in a W ∗-probability space (M, τ) with respect to a filtration (Mt)t≥0 of M , we
may introduce now (multiple) Wigner integrals integrals with respect to (St)t≥0.
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Definition VII.1.2. Let n ∈ N be given. We denote by Dn ⊂ Rn
+ the collection of all

diagonals in Rn
+, i.e.

Dn := {(t1, . . . , tn) ∈ Rn
+| ti = tj for some 1 ≤ i, j ≤ n with i 6= j}.

The construction of the (multiple) Wigner integral ISn (f) for any function f ∈ L2(Rn
+)

proceeds as follows.

• For any indicator function f = 1E of some set

E = [s1, t1]× · · · × [sn, tn] ⊂ Rn
+

that satisfies E ∩Dn = ∅, we define ISn (f) by

ISn (f) = (St1 − Ss1) · · · (Stn − Ssn).

• By linearity, we extend ISn to all off-diagonal step functions , i.e. to all step
functions

f =
m∑
j=1

aj1Ej

on Rn
+, where each set Ej ⊂ Rn

+ is of the form

Ej = [sj,1, tj,1]× · · · × [sj,n, tj,n]

and satisfies Ej ∩Dn = ∅.
• Since off-diagonal step functions are dense in L2(Rn

+) (an important fact, which
is actually not hard to prove, but which is definitely worth to think about for a
moment) and since the Itô isometry

τ(ISn (f)∗ISn (g)) = 〈g, f〉L2(Rn+)

holds for all off-diagonal step functions f and g, we may finally extend ISn iso-
metrically to L2(Rn

+).

For given f ∈ L2(Rn
+), we will write

ISn (f) =

∫
Rn+
f(t1, . . . , tn) dSt1 · · · dStn .

Note that multiple Wigner integrals ISn (f) are for general f ∈ L2(Rn
+) by definition

elements of L2(M, τ). But in fact, it turns out that ISn (f) belongs toM for each f ∈ L2(Rn
+)

(and actually, to be more precise, it belongs to the C∗-subalgebra of M that is generated
by the free Brownian motion (St)t≥0). This is an immediate consequence of the fact that
off-diagonal step functions are dense in L2(Rn

+) and of [BS98, Theorem 5.3.4], which tells
us that the operator norm can be bounded by a kind of Haagerup inequality, namely

(VII.1)
∥∥∥∫

Rn+
f(t1, . . . , tn) dSt1 · · · dStn

∥∥∥ ≤ (n+ 1)‖f‖L2(Rn+) for all f ∈ L2(Rn
+).

Since Wigner integrals are bounded linear operators, we are of course allowed to multiply
them, and it is therefore natural to ask, whether one can describe this operation also
on the level of the corresponding functions. Indeed, this turns out to be possible and it
leads to a free counterpart of Itô’s formula (see, for example, [Spe03, Theorem 2.11]).
Although this result appears in many different formulations, it always reflects the same
inherent structure that shows up, roughly speaking, under multiplication. We mention

195



196 VII.1. WIGNER INTEGRALS AND REGULARITY OF THEIR DISTRIBUTIONS

here the following version, which allows us to decompose products of Wigner integrals
explicitly as linear combinations of Wigner integrals.

Theorem VII.1.3 (Biane and Speicher, 1998, [BS98]). Let f ∈ L2(Rn
+) and g ∈ L2(Rm

+ ).
For any 0 ≤ p ≤ min{n,m}, we define the p-th contraction of f and g by

f
p

a g(t1, . . . , tn+m−2p) =

∫
Rp+
f(t1, . . . , tn−p, s1, . . . , sp)

g(sp, . . . , s1, tn−p+1, . . . , tn+m−2p) ds1 . . . dsp.

Then the Itô formula

ISn (f)ISm(g) =

min{n,m}∑
p=0

ISn+m−2p(f
p

a g)

holds.

In principle, all previously collected facts about Wigner integrals put them in the most
convenient setting of non-commutative probability, such that we can already talk about
their (joint) distributions in a purely combinatorial sense. However, since we work here
in the regular setting of W ∗-probability spaces, we also want to study distributions of
Wigner integrals in a stronger analytic sense, namely as (compactly supported) probability
measures. Thus, we should have a criterion on the level of integrands that allows us to
guarantee that the corresponding Wigner integral is self-adjoint. This criterion is provided
by mirror symmetry.

It follows immediately from the definition of Wigner integrals that

ISn (f)∗ = ISn (f ∗) for all f ∈ L2(Rn
+)

holds, where the function f ∗ ∈ L2(Rn
+) is determined for any f ∈ L2(Rn

+) by

f ∗(t1, t2, . . . , tn) = f(tn, . . . , t2, t1)

for Lebesgue almost all (t1, . . . , tn) ∈ Rn
+. As a consequence, any f ∈ L2(Rn

+) satisfying
f = f ∗ gives a self-adjoint Wigner integral ISn (f). We will call such f ∈ L2(Rn

+) mirror
symmetric.

VII.1.3. Main Theorem. Here, we are interested in properties of the distributions
of Wigner integrals

ISn (f) =

∫
Rn+
f(t1, . . . , tn) dSt1 · · · dStn

for mirror symmetric functions f ∈ L2(Rn
+), and, more generally, in distributions of finite

sums of such Wigner integrals like

Y = IS1 (f1) + IS2 (f2) + · · ·+ ISN(fN)

for some N ∈ N and mirror symmetric functions fn ∈ L2(Rn
+) for n = 1, . . . , N with

fN 6= 0.

Surely one of the most basic questions one can ask about distributions in general is whether
their support is connected or not. Basic functional analysis yields that this question can
be reformulated in more operator algebraic terms to a question about the existence of
non-trivial projections in the C∗-algebra that is generated by the considered operator.
Fortunately, this translation is also helpful in our situation: As we have mentioned above,
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Wigner integrals are in fact elements of the C∗-algebra that is generated by the free Brow-
nian motion (St)t≥0. Hence, by quoting a results obtained by Guionnet and Shlyakhtenko
in [GS09], which excludes non-trivial projections in C∗({St| t ≥ 0}), we may conclude
without further effort that the distribution µY of any operator Y as above must have
connected support.

However, apart from this observation, almost nothing was known until now about regu-
larity properties of these distributions. In particular, as it was formulated by Nourdin and
Peccati in [NP13, Remark 1.6], it remained an open questions whether the distribution
of Wigner integrals of mirror symmetric functions being non-zero (except, of course, in
the chaos of order zero) may have atoms or not. We are going to answer this question
here by showing that the distribution of any such Wigner integral of a non-zero mirror
symmetric function (and even of any non-constant finite sum of such Wigner integrals)
does not have atoms.

Recall that an atom of a Borel probability measure µ on R means some α ∈ R satisfying
the condition µ({α}) 6= 0.

The statement of the main theorem of this chapter reads as follows.

Theorem VII.1.4. For given N ∈ N, we consider mirror symmetric functions fn ∈
L2(Rn

+) for n = 1, . . . , N , where we assume that fN 6= 0. Then, the distribution µY of

Y := IS1 (f1) + IS2 (f2) + · · ·+ ISN(fN),

regarded as an element in (M, τ), has no atoms.

The proof of Theorem VII.1.4 will be given in Section VII.3. We stress that the above
statement clearly stays valid if we add to Y a constant multiple of the identity. In fact,
this will be a direct outcome of the proof of Theorem VII.1.4, since we will use the chaos
decomposition to deal with such shifts in a uniform way. More precisely, we can just
encode constant multiples of the identity by the chaos of order zero.

Furthermore, we point out that Theorem VII.1.4 corresponds nicely to a classical result of
Shigekawa [Shi78, Shi80] (although its proof uses completely different methods for which
there are by now no free analogues), which states that any non-trivial finite sum of Wiener-
Itô integrals has an absolutely continuous distribution, and hence cannot have atoms.
Thus, confident of the far reaching parallelism between classical and free probability, we
are tempted to conjecture in accordance with [Spe13] that the analogy between Wiener-
Itô integrals and Wigner integrals goes even further, namely that any Y like in Theorem
VII.1.4 has in fact an absolutely continuous distribution. We leave this question to further
investigations.

VII.2. Free stochastic calculus

One of the main pillars on which the proof of Theorem VII.1.4 rests is free stochastic
calculus as it was introduced by Biane and Speicher in [BS98]. For readers convenience,
we recall in this section the basic definitions and some results of this theory as far as
necessary.

First of all, we will introduce the notion of biprocesses. Secondly, we will describe the
concrete realization of the free Brownian motion on the full Fock space over L2(R+). This
additional structure will finally allow us to introduce the basic operators of Malliavin
calculus.
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198 VII.2. FREE STOCHASTIC CALCULUS

VII.2.1. Biprocesses. We broach now the theory of biprocesses. Our exposition
here heavily relies on [BS98], [Spe03], and [KNPS12].

Let us first introduce a few general notions. We denote by E(R+) the space of all complex
valued functions f on R+, which can be written as a finite sum

f =
n∑
j=1

aj 1Ej

for some intervals E1, . . . , En ⊆ R+ of the form Ej = [sj, tj) with 0 ≤ sj < tj < ∞ for
j = 1, . . . , n and complex numbers a1, . . . , an ∈ C. As usually, 1E denotes the indicator
function of a subset E ⊆ R+. It is easy to see that E(R+) is in fact a complex algebra.

For any unital complex algebra A, the algebraic tensor product E(R+,A) := E(R+)�A
consists of all functions f defined on R+ and taking values in A, which can be written as

f =
n∑
j=1

Aj 1Ej

for some intervals E1, . . . , En ⊆ R+ of the form Ej = [sj, tj) with 0 ≤ sj < tj < ∞ for
j = 1, . . . , n and elements A1, . . . , An ∈ A.

VII.2.1.1. Definition of biprocesses. We are prepared now to define biprocesses. For
the remaining part of this subsection, we fix a tracial W ∗-probability space (M, τ) for
which a filtration (Mt)t≥0 exists.

Definition VII.2.1. We distinguish several types of biprocesses, which are built on each
other. Their definition proceeds as follows:

(i) The elements
U : R+ →M �M, t 7→ Ut

of E(R+,M �M) are called simple biprocesses .
(ii) A simple biprocess U : R+ → M �M is called adapted , if the condition Ut ∈

Mt �Mt is satisfied for all t ≥ 0. The set of all adapted simple biprocesses will
be denoted by Ea(R+,M �M).

(iii) We denote by Bp for 1 ≤ p ≤ ∞ the completion of E(R+,M �M), with respect
to the norm ‖ · ‖Bp , which is given by

‖U‖Bp :=

(∫
R+

‖Ut‖2
Lp(M⊗M,τ⊗τ) dt

) 1
2

.

An element of Bp is called an Lp-biprocess .
(iv) For 1 ≤ p ≤ ∞, the closure of Ea(R+,M �M) with respect to ‖ · ‖Bp will be

denoted by Bap . Elements of Bap are called adapted Lp-biprocesses .

VII.2.1.2. Integration of biprocesses. For our purposes, the integration theory of bipro-
cesses is of great importance. We focus here first on the integration of Lp-biprocesses with
respect to functions in L2(R+).

On the basic level of simple biprocesses, such integrals can be introduced quite easily: if
U is any simple biprocess, we may write

(VII.2) U =
n∑
j=1

U (j) 1Ej
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for some intervals E1, . . . , En ⊆ R+ of the form Ej = [sj, tj) with 0 ≤ sj < tj < ∞ for
j = 1, . . . , n and certain elements U (1), . . . , U (n) ∈M �M . Then, we put∫

R+

Ut h(t) dt :=
n∑
j=1

〈1Ej , h〉L2(R+) U
(j),

and it is easy to see that the value of this integral does not depend on the concrete choice
of the representation (VII.2).

Sometimes, it is more appropriate to write a given simple biprocess U in standard form,
i.e. in the form of (VII.2), where the intervals E1, . . . , En ⊆ R+ are assumed to be pairwise
disjoint.

By the construction presented above, we obtain a sesqui-linear pairing

〈·, ·〉 : E(R+,M �M)× L2(R+)→M �M, 〈U, h〉 :=

∫
R+

Ut h(t) dt.

Since we want to extend 〈·, ·〉 to a sesqui-linear paring between Bp and L2(R+), we need
to study its continuity with respect to ‖ · ‖Bp . This will be done in the following lemma.
In the case p = ∞, this property of 〈·, ·〉 was already mentioned in [BS98]. The general
case is probably also well-known to experts, but for the seek of completeness, we include
here the straightforward proof.

Lemma VII.2.2. Let 1 ≤ p ≤ ∞ be given. For any U ∈ E(R+,M �M) and h ∈ L2(R+),
it holds true that

‖〈U, h〉‖Lp(M⊗M,τ⊗τ) ≤ ‖U‖Bp‖h‖L2(R+).

Proof. Take U ∈ E(R+,M �M) and h ∈ L2(R+) and write U in standard form
U =

∑n
j=1 U

(j) 1Ej . For any fixed 1 ≤ p ≤ ∞, we may check that

‖U‖Bp =

(∫
R+

‖Ut‖2
Lp(M⊗M,τ⊗τ), dt

) 1
2

=

( n∑
j=1

λ1(Ej)‖U (j)‖2
Lp(M⊗M,τ⊗τ)

) 1
2

,

where λ1 denotes the Lebesgue measure on R. Thus, applying twice the Cauchy-Schwarz
inequality yields as desired

‖〈U, h〉‖Lp(M⊗M,τ⊗τ)

≤
n∑
j=1

|〈1Ej , h〉L2(R+)| ‖U (j)‖Lp(M⊗M,τ⊗τ)

=
n∑
j=1

|〈1Ej , 1Ejh〉L2(R+)| ‖U (j)‖Lp(M⊗M,τ⊗τ)

≤
n∑
j=1

‖1Ejh‖L2(R+)‖1Ej‖L2(R+)‖U (j)‖Lp(M⊗M,τ⊗τ)

≤
( n∑

j=1

‖1Ejh‖2
L2(R+)

) 1
2
( n∑

j=1

‖1Ej‖2
L2(R+)‖U (j)‖2

Lp(M⊗M,τ⊗τ)

) 1
2

≤ ‖h‖L2(R+)‖U‖Bp ,
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where we used in addition that due to the orthogonality of {1Ejh| j = 1, . . . , n}( n∑
j=1

‖1Ejh‖2
L2(R+)

) 1
2

≤ ‖h‖L2(R+)

holds and that we have ‖1E‖2
L2(R+) = λ1(E) for any Borel set E ⊆ R+ with finite Lebesgue

measure. �

Due to the inequality that we have established in Lemma VII.2.2, the definition of 〈·, ·〉
extends now naturally to Bp.

Definition VII.2.3. For any 1 ≤ p ≤ ∞, the sesqui-linear pairing

〈·, ·〉 : E(R+,M �M)× L2(R+)→M �M, 〈U, h〉 =

∫
R+

Uth(t) dt,

extends continuously according to

‖〈U, h〉‖Lp(M⊗M,τ⊗τ) ≤ ‖U‖Bp‖h‖L2(R+).

to a sesqui-linear pairing

〈·, ·〉 : Bp × L2(R+)→ Lp(M ⊗M, τ ⊗ τ).

VII.2.1.3. Stochastic integrals of biprocesses. Next, we are going to define stochastic
integrals

∫
R+
Ut]dSt of biprocesses U with respect to the free Brownian motion (St)t≥0.

For this purpose, we will use again the ]-notation, which was introduced in Remark V.1.4.

Definition VII.2.4. Let (St)t≥0 be a free Brownian motion in M with respect to its given
filtration (Mt)t≥0.

• For any simple biprocess U ∈ E(R+,M �M), we define∫
R+

Ut]dSt :=
n∑
j=1

U (j)](Stj − Ssj) =
n∑
j=1

mj∑
i=1

A
(j)
i (Stj − Ssj)B

(j)
i ,

where U is written in the form (VII.2) for intervals Ej = [sj, tj) with 0 ≤ sj <

tj < ∞ and elements U (j) ∈ M �M of the form U (j) =
∑mj

i=1A
(j)
i ⊗ B

(j)
i for

j = 1, . . . , n.
• If U, V ∈ Ea(R+,M � M) are simple adapted biprocesses, then the general

Wigner-Itô isometry (cf. [Spe03, Proposition 2.7]) tells us that

〈
∫
R+

Ut]dSt,

∫
R+

Vt]dSt〉 =

∫
R+

〈Ut, Vt〉 dt =: 〈U, V 〉B2

holds. Thus, we have in particular that∥∥∥∫
R+

Ut]dSt

∥∥∥
2

= ‖U‖B2

for all U ∈ Ea(R+,M � M). Therefore, the integral
∫
R+
Ut]dSt extends from

simple adapted biprocesses to any adapted L2-biprocess U ∈ Ba2 in such a way
that the induced mapping

U 7→
∫
R+

Ut]dSt

is isometric from Ba2 to L2(M, τ).
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VII.2.2. The free Brownian motion on the full Fock space. We come back
now to the construction of the free Brownian motion. As we announced earlier, we will do
this here in an explicit way on the full Fock space over L2(R+). These techniques will be
used to build up free Malliavin calculus, in the same way as classical Malliavin calculus
is built on the symmetric Fock space.

VII.2.2.1. The full Fock space and field operators. We first recall the construction of
the full Fock space over an arbitrary complex Hilbert space.

Recall that in the context of complex Hilbert spaces, the symbol � stands for the algebraic
tensor product (over the complex numbers C), whereas its completion with respect to the
canonical inner product will be denoted by ⊗.

Definition VII.2.5. Let (H, 〈·, ·〉H) be a complex Hilbert space. We define the full Fock
space F(H) associated to H as the complex Hilbert space that is given by

F(H) :=
∞⊕
n=0

H⊗n,

where
⊕

is understood as Hilbert space operation. Therein, we declare that H⊗0 := CΩ
for some fixed vector Ω of norm 1, which we call the vacuum vector of F(H).

More explicitly, the inner product 〈·, ·〉 on F(H) is determined by the following rules: We
have

〈g1 ⊗ · · · ⊗ gm, h1 ⊗ · · · ⊗ hn〉 = 0 if m 6= n

and in the case m = n

〈g1 ⊗ · · · ⊗ gm, h1 ⊗ · · · ⊗ hm〉 = 〈g1, h1〉H · · · 〈gm, hm〉H .

Later on, we will also work with some special (non-closed) subspaces of the full Fock space
F(H), involving an infinite but algebraic direct sum, namely

• Falg(H) :=
∞⊕

alg
n=0

H�n, i.e. the subspace of F(H) that consists of finite sums of

tensor products of vectors in H, and

• Ffin(H) :=
∞⊕

alg
n=0

H⊗n, i.e. the subspace of F(H) that consists of finite sums of

elements in the Hilbert spaces H⊗n.

It is clear by definition that we have the inclusions Falg(H) ⊆ Ffin(H) ⊆ F(H) and that
both subspaces Falg(H) and Ffin(H) are dense in F(H).

On the full Fock space F(H), we may introduce the so-called field operators. In the case
H = L2(R+), these operators will provide the desired realization of the free Brownian
motion.

Definition VII.2.6. Let (H, 〈·, ·〉H) be a complex Hilbert space. For each h ∈ H we
introduce the following operators on the full Fock space F(H) over H:

(i) The creation operator l(h) ∈ B(F(H)) is determined by

l(h)h1 ⊗ · · · ⊗ hn = h⊗ h1 ⊗ · · · ⊗ hn,
l(h) Ω = h.

201
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(ii) The annihilation operator l∗(h) ∈ B(F(H)) is given by

l∗(h)h1 ⊗ · · · ⊗ hn = 〈h, h1〉Hh2 ⊗ · · · ⊗ hn, n ≥ 2,

l∗(h)h1 = 〈h, h1〉HΩ,

l∗(h) Ω = 0.

(iii) The field operator X(h) ∈ B(F(H)) is defined by

X(h) := l(h) + l∗(h).

An easy calculation shows that we have l∗(h) = l(h)∗ for all h ∈ H, as the notation
suggests. As an immediate consequence, X(h) = X(h)∗ holds for each h ∈ H.

In order to obtain a W ∗-probability space, in which the free Brownian lives, it is natural
to consider the von Neumann algebra generated by field operators X(h) for a sufficiently
large family of vectors h. As it turns out, the right choice for this purpose are the “real”
vectors h. More formally, we will consider the full Fock space over the complexification
HC = H ⊕ iH of any real Hilbert space (H, 〈·, ·〉H). The “real” vectors are then naturally
those, which are coming from H. We shall make this more precise with the following
definition.

Definition VII.2.7. Let H be a real Hilbert space and denote by HC = H ⊕ iH its
complexification. We define the von Neumann algebra S(H) ⊆ B(F(HC)) by

S(H) = vN
(
{X(h)| h ∈ H}

)
.

We may endow S(H) with the vacuum expectation τ : S(H)→ C given by

τ(X) = 〈XΩ,Ω〉.

Due to the fact that H is a real Hilbert space, we are in the nice situation that τ gives
a faithful normal tracial state on S(H). Thus, we have obtained a W ∗-probability space
(S(H), τ).

Later on, we will also use the unital ∗-algebra Salg(H) that is given by

Salg(H) := alg
(
{X(h)| h ∈ H}

)
.

Clearly, Salg(H) ⊆ S(H) ⊆ B(F(HC)).

It is a very nice feature of (S(H), τ) that its L2-space L2(S(H), τ) can be identified in a
natural way with the corresponding full Fock space F(HC). This important observation
is at the base of free Malliavin calculus.

Since we have for all X1, X2 ∈ S(H) that

〈X1, X2〉L2(S(H),τ) = τ(X∗2X1) = 〈(X∗2X1)Ω,Ω〉F(H) = 〈X1Ω, X2Ω〉F(H),

we see that the map

Φ0 : S(H)→ F(HC), X 7→ XΩ

admits an isometric extension

Φ : L2(S(H), τ)→ F(HC).

The following lemma allows us to conclude that Φ is even more surjective and hence gives
the desired isometric isomorphism between L2(S(H), τ) and F(HC). A proof can be found
in [BS98, Section 5.1].
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Lemma VII.2.8. Given h1, . . . , hn ∈ HC, then there exists a unique operator

W (h1 ⊗ · · · ⊗ hn) ∈ S(H),

called the Wick product of h1 ⊗ · · · ⊗ hn, such that

W (h1 ⊗ · · · ⊗ hn)Ω = h1 ⊗ · · · ⊗ hn.

More precisely, if (ej)j∈J is an orthonormal basis of H then

W (e⊗k1j1
⊗ · · · ⊗ e⊗knjn

) = Uk1(X(ej1)) · · ·Ukn(X(ejn)),

where j1 6= j2 6= · · · 6= jn and Uk denotes the k’th (normalized) Chebyshev polynomial of
the second kind. These polynomials are determined by U0(X) = 1, U1(X) = X and the
recursion Uk+1(X) = XUk(X)− Uk−1(X) for k ≥ 1.

Note that the lemma implies in particular that Φ0(Salg(H)) = Falg(H).

VII.2.2.2. F(L2(R+)) and the free Brownian motion. We return now to the actual
goal of this subsection, namely the construction of the free Brownian motion. This is
achieved by applying the foregoing constructions to the real Hilbert H = L2(R+,R),
whose complexification is clearly given by HC ∼= L2(R+).

In the W ∗-probability space (S, τ) where we abbreviate S := S(L2(R+,R)), the free
Brownian motion (St)t≥0 is obtained by putting

St := X(1[0,t]) for all t ≥ 0.

The corresponding filtration (St)t≥0 of S is given by

St := vN
(
{X(h)| h ∈ L2([0, t],R)}

)
,

where we regard L2([0, t],R) as a subspace of L2(R+,R) via extension by zero. In fact,
St is generated as a von Neumann algebra by {Ss| 0 ≤ s ≤ t}, while S is generated by
{Ss| s ≥ 0}.
The very concrete realization of the free Brownian motion in the W ∗-probability space
(S, τ) has the advantage that it carries the rich structure provided by the underlying Fock
space F := F(L2(R+)) by the isometric isomorphism

Φ : L2(S, τ)→ F ,

which was obtained by isometric extension of the map Φ0 : S → F given by Φ0(X) = XΩ.
This will be used in the next subsection on free Malliavin calculus.

But before continuing in this direction, we first discuss the chaos decomposition for ar-
bitrary elements in L2(S, τ), which emerges from the isomorphism Φ. In the simplest
case, it boils down to a nice relation between Wigner integrals and the Wick products as
introduced in Lemma VII.2.8. More precisely, we have for all h1, . . . , hn ∈ L2(R+) that

W (h1 ⊗ · · · ⊗ hn) = ISn (h1 ⊗ · · · ⊗ hn) =

∫
Rn+
h1(t1) · · ·hn(tn) dSt1 · · · dStn .

This observation is generalized by the following result.

Proposition VII.2.9 (Proposition 5.3.2. in [BS98]). The inverse of the isomorphism
Φ : L2(S, τ)→ F is given by

IS : F → L2(S, τ), f 7→ IS(f),
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where

IS(f) :=
∞∑
n=0

ISn (fn)

for any

f = (fn)∞n=0 ∈
∞⊕
n=0

L2(Rn
+) ∼= F .

This means that each element of L2(S, τ) has a unique representation in the form IS(f)
for some f ∈

⊕∞
n=0 L

2(Rn
+), to which we refer as its chaos decomposition.

There is a similar decomposition for L2-biprocesses. Since the mapping IS : F → L2(S, τ)
gives rise to an isometric isomorphism

IS ⊗ IS : F ⊗ F → L2(S, τ)⊗ L2(S, τ),

we see, by using the natural isometric identifications

L2(R+,F ⊗ F) ∼= F ⊗ L2(R+)⊗F

and

L2(R+, L
2(S, τ)⊗ L2(S, τ)) ∼= L2(S, τ)⊗ L2(R+)⊗ L2(S, τ) ∼= B2,

that IS ⊗ IS induces an isometric isomorphism

IS ⊗ IS : L2(R+,F ⊗ F)→ B2,

which is again denoted by IS ⊗ IS. More explicitly, this induced isomorphism sends each
f : R+ → F ⊗F , t 7→ ft that belongs to L2(R+,F ⊗F) to the L2-biprocess that is given
by t 7→ (IS ⊗ IS)(ft).

The following diagram offers a clear view on the situation described above.

F ⊗ L2(R+)⊗F
∼= //

IS⊗id⊗IS

��

L2(R+,F ⊗ F)

IS⊗IS

��
L2(S, τ)⊗ L2(R+)⊗ L2(S, τ)

∼= // B2

We call U = (IS ⊗ IS)(f) for f ∈ L2(R+,F ⊗ F) the Wigner chaos expansion of the
L2-biprocess U .

VII.2.3. Free Malliavin calculus. Like in the classical case, the basic operators of
free Malliavin calculus are constructed first on the side of the full Fock space and are then
transferred to the algebra of field operators via the identification that is provided by the
map X 7→ XΩ.
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VII.2.3.1. Free Malliavin calculus on F(H). As above in the construction of the free
Brownian motion, we begin with the general case of an arbitrary complex Hilbert space
H. On the full Fock space F(H) over H, we consider

• an unbounded linear operator

∇̃ : F(H) ⊇ D(∇̃)→ F(H)⊗H ⊗F(H)

with domain D(∇̃) = Falg(H), which is determined by the conditions ∇̃Ω = 0
and

∇̃(h1 ⊗ · · · ⊗ hn) :=
n∑
j=1

(h1 ⊗ · · · ⊗ hj−1)⊗ hj ⊗ (hj+1 ⊗ · · · ⊗ hn),

where the tensor products appearing in the brackets are understood as Ω if the
corresponding set of indices happens to be empty.
• an unbounded linear operator

δ̃ : F(H)⊗H ⊗F(H) ⊇ D(δ)→ F(H)

with domain D(δ̃) = Falg(H)�H �Falg(H) by linear extension of

δ̃((h1 ⊗ · · · ⊗ hn)⊗ h⊗ (g1 ⊗ · · · ⊗ gm)) := h1 ⊗ · · · ⊗ hn ⊗ h⊗ g1 ⊗ · · · ⊗ gm,
δ̃(Ω⊗ h⊗ (g1 ⊗ · · · ⊗ gm)) := h⊗ g1 ⊗ · · · ⊗ gm,
δ̃((h1 ⊗ · · · ⊗ hn)⊗ h⊗ Ω) := h1 ⊗ · · · ⊗ hn ⊗ h,

δ̃(Ω⊗ h⊗ Ω) := h

• an unbounded linear operator

Ñ : F(H) ⊇ D(N)→ F(H)

with domain D(Ñ) = Falg(H), which is defined by ÑΩ = 0 and

Ñ(h1 ⊗ · · · ⊗ hn) := nh1 ⊗ · · · ⊗ hn.

We collect now a few observations related to the operators ∇̃ and δ̃. We grant that some of
these statements might appear quite artificial at the first sight, but there actual meaning
will become clear after passing from the Fock space to operators defined on it.

Remark VII.2.10. Consider the setting that was described above.

(a) A straightforward calculation shows that

(VII.3) 〈∇̃y, u〉F(H)⊗H⊗F(H) = 〈y, δ̃(u)〉F(H)

holds for all y ∈ D(∇̃) and u ∈ D(δ̃).
(b) If we endow Falg(H) with the multiplication induced by the tensor product ⊗

(in fact, we obtain in this way the tensor algebra over H), we may easily check
that ∇̃ satisfies a kind of product rule, namely

(VII.4) ∇̃(y1 ⊗ y2) = (∇̃y1) · y2 + y1 · (∇̃y2)

for all y1, y2 ∈ D(∇̃), where · denotes the canonical left and right action, respec-
tively, of Falg(H) on Falg(H)⊗H ⊗Falg(H) that is induced by ⊗, i.e.

y1 · (x1 ⊗ h⊗ x2) · y2 = (y1 ⊗ x1)⊗ h⊗ (x2 ⊗ y2).
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Instead of the tensor product operation, we can also consider another binary
operation a on Falg(H), which is defined by bilinear extension of

g1 ⊗ · · · ⊗ gm a h1 ⊗ · · · ⊗ hn

:=

min{m,n}∑
p=1

〈gm, h1〉 · · · 〈gm+1−p, hp〉g1 ⊗ · · · ⊗ gm−p ⊗ hp+1 ⊗ · · · ⊗ hn.

By a careful bookkeeping of all expressions appearing on both sides of the stated
formula, one can convince oneself that

(VII.5) ∇̃(y1 a y2) = (∇̃y1) · y2 + y1 · (∇̃y2)

for all y1, y2 ∈ D(∇̃), where · denotes now the left and right action, respectively,
of Falg(H) on Falg(H)⊗H ⊗Falg(H) that is induced by a, i.e.

y1 · (x1 ⊗ h⊗ x2) · y2 = (y1 a x1)⊗ h⊗ (x2 a y2).

(c) Since the range of ∇̃ is by definition contained in the domain of δ̃, the compo-

sition δ̃ ◦ ∇̃ is well-defined. In fact, one has Ñ = δ̃ ◦ ∇̃.

VII.2.3.2. Free Malliavin calculus on F(L2(R+)). We apply now the preceding con-
struction in the special case, where the Hilbert space H is given by L2(R+). Thus, we
may use the isomorphisms

IS : F → L2(S, τ) and IS ⊗ IS : L2(R+,F ⊗ F)→ B2

to pull over

• the operator
∇̃ : F ⊇ D(∇̃)→ L2(R+,F ⊗ F)

to the so-called gradient operator

∇ : L2(S, τ) ⊇ D(∇)→ B2

with domain D(∇) = IS(D(∇̃)),
• and the operator

δ̃ : L2(R+,F ⊗ F) ⊇ D(δ̃)→ F
to the so-called divergence operator

δ : B2 ⊇ D(δ)→ L2(S, τ)

with domain D(δ) = (IS ⊗ IS)(D(δ̃)),

in the obvious way as shown in the following two commutative diagrams.

F IS // L2(S, τ)

D(∇̃)
?�

O

∇̃

��

IS // D(∇)
?�

O

∇

��
L2(R+,F ⊗ F)

IS⊗IS // B2

L2(R+,F ⊗ F)
IS⊗IS // B2

D(δ̃)
?�

O

δ̃

��

IS⊗IS // D(δ)
?�

O

δ

��
F IS // L2(S, τ)
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In fact, the above definitions amount to

D(∇) = Salg and D(δ) = Salg � L2(R+)� Salg,

where we abbreviate Salg := Salg(L2(R+,R)).

Remark VII.2.11. We may observe that the properties of the operators ∇̃ and δ̃, which
were formulated in (a) and (b) of Remark VII.2.10 take now a much more natural form.
Indeed,

• formula (VII.3) reduces to

(VII.6) 〈∇Y, U〉B2 = 〈Y, δ(U)〉L2(S,τ)

for all Y ∈ D(∇) and U ∈ D(δ),
• and formula (VII.5) implies that ∇ is a derivation in the sense that a kind of

Leibniz rule

(VII.7) ∇(Y1Y2) = (∇Y1) · Y2 + Y1 · (∇Y2)

holds for all Y1, Y2 ∈ D(∇), where · denotes the left and right action, respectively,
of S on B2. For seeing this, note that the Itô formula given in Theorem VII.1.3
reduces to IS(g)IS(h) = IS(g a h) for all g, h ∈ Falg := Falg(L2(R+)), which
means that IS : Falg → Salg becomes multiplicative with respect to a. It follows
then for all Y1 = IS(g) and Y2 = IS(h) in Salg = IS(Falg) that

∇(Y1Y2) = ∇(IS(g)IS(h))

= ∇(IS(g a h))

= (IS ⊗ IS)(∇̃(g a h))

= (IS ⊗ IS)
(
(∇̃g) · h+ g · (∇̃h)

)
= (IS ⊗ IS)

(
∇̃g) · IS(h) + IS(g) · (IS ⊗ IS)

(
∇̃h
)

= ∇(IS(g)) · IS(h) + IS(g) · ∇(IS(h))

= (∇Y1) · Y2 + Y1 · (∇Y2).

We recall [KNPS12, Proposition 3.23], which is itself a combination of Propositions 5.3.9
and 5.3.10 in [BS98].

Proposition VII.2.12. The gradient operator

∇ : L2(S, τ) ⊇ D(∇)→ B2

is densely defined and closable. The domain D(∇) of the closure

∇ : L2(S, τ) ⊇ D(∇)→ B2

can be characterized by the chaos expansion in the following way

D(∇) =
{
IS(f)

∣∣∣ f = (fn)∞n=0 ∈ F :
∞∑
n=0

n‖fn‖2
L2(Rn+) <∞

}
.

In fact, if we write Y ∈ D(∇) in the form Y = IS(f) with f ∈ F , we have that

‖∇Y ‖2
B2 =

∞∑
n=0

n‖fn‖2
L2(Rn+).
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Moreover, the action of ∇ on its domain D(∇) is determined by

∇t

(∫
f(t1, . . . , tn) dSt1 · · · dStn

)
=

n∑
j=1

∫
f(t1, . . . , tj−1, t, tj+1, . . . , tn) dSt1 · · · dStj−1

⊗ dStj+1
· · · dStn

for f ∈ L2(Rn
+).

Remark VII.2.13. We point out that Proposition 5.2.3 in [BS98] shows beyond this
that ∇ is also closable as an unbounded linear operator from Lp(S, τ) to Bp for each
1 ≤ p < ∞. The domain of its closure, which will be denoted by Dp, is given as the
closure of Salg with respect to the norm ‖ · ‖1,p defined by

‖Y ‖1,p :=
(
‖Y ‖pLp(S,τ) + ‖∇Y ‖pBp

) 1
p .

We will use this observation only in the case p = 2, where D(∇) = D2 gives an alternative
description of the domain D(∇) of the closure of the gradient operator ∇, which was
characterized in Proposition VII.2.12 in terms of the chaos decomposition.

Concerning now the divergence operator, we record here [KNPS12, Proposition 3.25],
which combines Propositions 5.3.9 and 5.3.11 of [BS98].

Proposition VII.2.14. The divergence operator

δ : B2 ⊇ D(δ)→ L2(S, τ)

is densely defined and closable. The domain D(δ) of its closure

δ : B2 ⊇ D(δ)→ L2(S, τ)

contains all adapted L2-biprocesses Ba2 and for each U ∈ Ba2 , we have

δ(U) =

∫
R+

Ut]dSt.

In general, the action of δ on its domain D(δ) is determined by

δ
(∫

ft(t1, . . . , tn; s1, . . . , sm) dSt1 · · · dStn ⊗ dSs1 · · · dSsm
)

=

∫
ft(t1, . . . , tn; s1, . . . , sm) dSt1 · · · dStndStdSs1 · · · dSsm

for any f ∈ L2(R+, L
2(Rn

+)⊗ L2(Rm
+ )).

Finally, we also take the operator Ñ into account. This operator induces the so-called
number operator

N : L2(S, τ) ⊇ D(N)→ L2(S, τ)
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with domain D(N) := IS(Falg) = Salg as shown in the following commutative diagram.

F IS // L2(S, τ)

D(Ñ)
?�

O

Ñ

��

IS // D(N)
?�

O

N

��
F IS // L2(S, τ)

Remark VII.2.15. The relation Ñ = δ̃ ◦ ∇̃ on Falg, which was recorded in part (c) of
Remark VII.2.10, translates by definition immediately to the relation N = δ ◦ ∇ on Salg.

We recall now [KNPS12, Remark 3.24].

Proposition VII.2.16. The number operator

N : L2(S, τ) ⊇ D(N)→ L2(S, τ)

is densely defined and closable. The domain D(N) of its closure can be characterized by
using the chaos expansion in the following way

D(N) =
{
IS(f)

∣∣∣ f = (fn)∞n=0 ∈ F :
∞∑
n=0

n2‖fn‖2
L2(Rn+) <∞

}
.

In particular, the closure of the gradient ∇ maps D(N) into D(δ), and on D(N), it holds
true that N = δ ◦ ∇|D(N).

VII.3. Proof of Theorem VII.1.4

We are prepared now to build the proof of Theorem VII.1.4 on its two pillars that we
raised in the previous sections, namely free Malliavin calculus as presented in Subection
VII.2.3 and the theory of non-commutative derivatives as developped in Chapter V, in
particular in Section V.6.

In the light of free Malliavin calculus, it seems natural that methods from Chapter V
could be used for a proof of Theorem VII.1.4 based on the same reduction method as in
[MSW14, MSW17]. Nevertheless, there is the fundamental obstacle that in the world
of free stochastic calculus, the role of non-commutative derivatives which were used in
the “discrete setting” of [MSW14, MSW17], is taken over by the Malliavin operators
as their “continuous counterparts”. These operators are seemingly of completely different
nature.

But on closer inspection, it turns out that the right object for this purpose, which bridges –
somehow as an architrave, if one wants to strain the architecture language again – between
free stochastic calculus and the theory of non-commutative derivatives are directional
gradients. We will introduce this concept in the following subsection.
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VII.3.1. Directional gradients. Roughly speaking, directional gradients are ob-
tained from the gradient operator by integrating out the (for us obstructive) time depen-
dence against any function in L2(R+). More formally, we shall introduce these objects as
follows.

Definition VII.3.1. For each h ∈ L2(R+), we define an unbounded linear operator

∇h : L2(S, τ) ⊇ D(∇h)→ L2(S, τ)⊗ L2(S, τ)

with domain D(∇h) := D(∇) = Salg by

∇hY := 〈∇Y, h〉 =

∫
R+

∇tY h(t) dt,

where we refer to the pairing 〈·, ·〉 that was introduced in Definition VII.2.3. We call ∇h

the directional gradient (in the direction h).

This terminology goes in fact parallel to classical Malliavin calculus, where corresponding
expressions are also interpreted as directional derivatives.

We collect some basic but very important properties of directional gradients in the fol-
lowing lemma.

Lemma VII.3.2. Let h ∈ L2(R+) be given.

(a) If · denotes the left and right action of S on L2(S, τ) ⊗ L2(S, τ), respectively,
then the Leibniz rule

∇h(Y1Y2) = (∇hY1) · Y2 + Y1 · (∇hY2)

holds for all Y1, Y2 ∈ D(∇h) = Salg.
(b) For all Y ∈ D(∇h), it holds true that

∇h(Y ∗) = (∇hY )†.

Thus, if h ∈ L2(R+,R), we have in particular that

∇h(Y ∗) = (∇hY )†

holds for all Y ∈ D(∇h).
(c) The directional gradient ∇h takes its values in Salg � Salg and we have that

(∇h ⊗ id)∇h = (id⊗∇h)∇h.

More generally, it holds true for all h1, h2 ∈ L2(R+) that

(∇h1 ⊗ id)∇h2 = (id⊗∇h2)∇h1 .

Proof. The fact that ∇h satisfies the Leibniz rule stated in (a) follows immediately
from the Leibniz rule (VII.7) for ∇ on D(∇), since the domains D(∇) and D(∇h) agree.
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For seeing (b), we consider Y = X(h1) . . . X(hn) ∈ Salg for h1, . . . , hn ∈ L2(R+,R). A
straightforward calculation confirms that

∇h(Y ∗) =
n∑
j=1

〈hj, h〉X(hn) · · ·X(hj+1)⊗X(hj−1) · · ·X(h1)

=
( n∑
j=1

〈hj, h〉X(h1) · · ·X(hj−1)⊗X(hj+1) · · ·X(hn)
)†

= (∇hY )†.

Because h = h holds for any h ∈ L2(R+,R), the additional statement in (b) is an immedi-

ate consequence of the formula ∇h(Y ∗) = (∇hY )†. Alternatively, by referring to Remark

V.4.4, it suffices to check ∇h(Y ∗) = (∇hY )† on the algebraic generators (X(g))g∈L2(R+,R)

of Salg. But in this case, the statement is obvious since X(g) is self-adjoint and since we
have ∇hX(g) = 〈g, h〉L2(R+) 1⊗ 1 for any g ∈ L2(R+,R).

For proving (c), since ∇h clearly takes its values in Salg � Salg, it only remains to show
the stated formula. For doing this, it suffices by linearity to prove

(∇h1 ⊗ id)∇h2Y = (id⊗∇h2)∇h1Y

for all h1, h2 ∈ L2(R+) and any element Y ∈ Salg of the form

Y = X(g1)X(g2) · · ·X(gn).

If 1 ≤ j1 < j2 ≤ n are given, we will abbreviate in the following

X̌j1,j2 := X(g1) · · ·X(gj1−1)⊗X(gj1+1) · · ·X(gj2−1)⊗X(gj2+1) · · ·X(gn),

where as usually empty products are understood as 1. Firstly, we compute

∇h2Y =
∑

1≤j2≤n

〈gj2 , h2〉X(g1) · · ·X(gj2−1)⊗X(gj2+1) · · ·X(gn),

which yields

(∇h1 ⊗ id)∇h2Y =
∑

1≤j1<j2≤n

〈gj1 , h1〉〈gj2 , h2〉X̌j1,j2

Similarly, we compute

∇h1Y =
∑

1≤j1≤n

〈gj1 , h1〉X(g1) · · ·X(gj1−1)⊗X(gj1+1) · · ·X(gn),

which yields

(id⊗∇h2)∇h1Y =
∑

1≤j1<j2≤n

〈gj1 , h1〉〈gj2 , h2〉X̌j1,j2

Because the right hand sides of both results agree, we finally obtain the desired equality.
This concludes the proof. �

Combining the properties of directional gradients that we have established in the previous
Lemma VII.3.2 leads us immediately to the following crucial observation.

Corollary VII.3.3. For any h ∈ L2(R+), the directional gradient

∇h : L2(S, τ) ⊇ D(∇h)→ L2(S, τ)⊗ L2(S, τ),

induces a non-commutative derivation on S in the sense of Definition V.3.1, which sat-
isfies additionally the coassociativity relation that was formulated in Definition V.5.1. If
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we choose particularly any h ∈ L2(R+,R), then ∇h is also a real derivation in the sense
of Definition V.4.3.

The importance of this observations is perfectly clear now, since it puts directional gradi-
ents in the setting non-commutative derivations and gives therefore access to the general
theory that was presented in Chapter V.

However, there is still one key property missing that is needed to fully open this powerful
toolbox, namely the condition 1 ⊗ 1 ∈ D(δh), where δh denotes the adjoint operator of
∇h, i.e.

δh := (∇h)∗ : L2(S, τ)⊗ L2(S, τ) ⊇ D(δh)→ L2(S, τ),

We shall call δh the directional divergence operator (in the direction h) in the following.

The condition 1⊗1 ∈ D(δh) would in particular guarantee according to Proposition V.4.6
that δh is densely defined and hence that ∇h is closable. But there is actually a shortcut
in our situation. We insert here the following lemma which expresses the directional
divergence operator δh in terms of the divergence operator δ and which will allow us to
conclude directly that the domain of δh is sufficiently large.

Lemma VII.3.4. For any h ∈ L2(R+), the domain D(δh) of the directional divergence
operator δh contains Salg � Salg and we have explicitly

δh(U) = δ(U]1⊗ h⊗ 1) for all U ∈ Salg � Salg.

In particular, δh is densely defined and we have that 1⊗1 ∈ D(δh) with δh(1⊗1) = X(h).

Proof. We just have to note that by definition U]1 ⊗ h ⊗ 1 ∈ D(δ) for any U ∈
Salg � Salg and that the corresponding element δ(U]1⊗ h⊗ 1) ∈ L2(S, τ) satisfies

〈Y, δ(U]1⊗ h⊗ 1)〉 = 〈∇Y, U]1⊗ h⊗ 1〉B2 = 〈∇hY, U〉.
This means that Salg � Salg ⊆ D(δh) and even more explicit

δh(U) = δ(U]1⊗ h⊗ 1) for all U ∈ Salg � Salg.

In particular, we may deduce that δh is densely defined and that 1⊗1 ∈ D(δh) holds true
with δh(1⊗ 1) = δ(1⊗ h⊗ 1) = X(h). �

The closability of ∇h, which is implied by the lemma above, will be recorded in the
following proposition. But we discuss there in addition that the domain of the closure of
∇h contains the domain of the closure of ∇.

Proposition VII.3.5. Given h ∈ L2(R+). The directional gradient

∇h : L2(S, τ) ⊇ D(∇h)→ L2(S, τ)⊗ L2(S, τ)

is densely defined and closable. The domain D(∇h
) of its closure

∇h
: L2(S, τ) ⊇ D(∇h

)→ L2(S, τ)⊗ L2(S, τ)

contains the domain D(∇) of ∇.

Proof. Basic functional analysis tells us that in this case D(∇h
) is obtained as the

closure of Salg with respect to the norm ‖ · ‖h2,1 that is given by

‖Y ‖h2,1 :=
(
‖Y ‖2

2 + ‖∇hY ‖2
2

) 1
2 for all Y ∈ Salg,
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whereas the domain D(∇) of ∇ is obtained as the closure of Salg with respect to the norm

‖Y ‖2,1 =
(
‖Y ‖2

2 + ‖∇Y ‖2
B2

) 1
2 for all Y ∈ Salg,

as we pointed out in Remark VII.2.13. Therefore, the desired inclusion D(∇) ⊆ D(∇h
)

follows as soon as we have established that

(VII.8) ‖Y ‖h2,1 ≤ max{1, ‖h‖L2(R+)} ‖Y ‖2,1 for all Y ∈ Salg.

For that purpose, we make use of Lemma VII.2.2. This yields

‖∇hY ‖2 = ‖〈∇Y, h〉‖2 ≤ ‖h‖L2(R+)‖∇Y ‖B2 .
Now, the desired inequality (VII.8) immediately follows. �

VII.3.2. Reduction by directional gradients. In the previous subsection, we
have seen that directional gradients fit nicely into the general frame of non-commutative
derivations. The following proposition, which will be a the core of our reduction method,
is therefore an immediate consequence of Proposition V.6.1.

Proposition VII.3.6. Take any Y ∈ Sfin. If there are u, v ∈ S such that the conditions
Y u = 0 and Y ∗v = 0 are satisfied, then it holds true that

v∗ · (∇h
Y ) · u = 0 for all h ∈ L2(R+,R).

Proof. Let h ∈ L2(R+,R) be given. Firstly, we recall that the directional gradient

∇ : L2(S, τ) ⊇ D(∇h)→ L2(S, τ)⊗ L2(S, τ),

induces according to Corollary VII.3.3 a real non-commutative derivation, which satisfies
in addition the coassociativity relation. Furthermore, its adjont operator, the directional
divergence operator δh, satisfies due to Lemma VII.3.4 the condition 1⊗1 ∈ D(δh). Thus,
we can apply Proposition V.6.1, which yields the desired statement. �

Remark VII.3.7. In the proof of Proposition VII.3.6 above, we used crucially the prop-
erties of directional gradients, which put them nicely in the setting of non-commutative
derivations and which therefore allowed us to turn on by Proposition V.6.1 the powerful
machinery that was built up in Chapter V.

But recall that one of the crucial ingredients in the proof of Proposition V.6.1 were
Dabrowski’s inequalities V.5.2. Thus, concealed in the larger apparatus, we deduced par-
ticularly for any Y ∈ D(∇h) according to the inequalities (V.19) that

(VII.9)
‖δh(Y ⊗ 1)‖2 ≤ ‖h‖L2(R+)‖Y ‖,
‖δh(1⊗ Y )‖2 ≤ ‖h‖L2(R+)‖Y ‖,

and according to the inequalities (V.20) that

(VII.10)
‖(id⊗τ)(∇hY )‖2 ≤ 2‖h‖L2(R+)‖Y ‖,
‖(τ ⊗ id)(∇hY )‖2 ≤ 2‖h‖L2(R+)‖Y ‖,

since we have ‖δh(1⊗ 1)‖2 = ‖h‖L2(R+).

However, the semicircular generators that underlie our situation force in fact a much
stronger result than the inequalities above. In fact, for any Y ∈ Sfin, we have that

(VII.11)
‖δh(Y ⊗ 1)‖2 = ‖h‖L2(R+)‖Y ‖2,

‖δh(1⊗ Y )‖2 = ‖h‖L2(R+)‖Y ‖2,
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and

(VII.12)
‖(id⊗τ)(∇hY )‖2 ≤ ‖h‖L2(R+)‖Y ‖2,

‖(τ ⊗ id)(∇hY )‖2 ≤ ‖h‖L2(R+)‖Y ‖2.

This can be seen by considering the chaos decomposition of Y and by using the formulas

(VII.13)
δh(ISn (f)⊗ 1) = ISn+1(f ⊗ h),

δh(1⊗ ISn (f)) = ISn+1(h⊗ f)

and

(VII.14)
(id⊗τ)(∇hISn (f)) = ISn−1(f

1

a h),

(τ ⊗ id)(∇hISn (f)) = ISn−1(h
1

a f).

The author is grateful to Yoann Dabrowski for pointing out that this fact should be
included for reasons of clarity.

Of course, one could argue now that in view of this observation, the discussion around
Theorem V.5.2 becomes superfluous in the context of this chapter. But since there is
absolutely no chance to avoid completely a detour through the realm of non-commutative
derivations – even by taking this shortcut – we decided to present the theory of non-
commutative derivations (and in particular the result of Proposition V.6.1) in full gener-
ality, in order to show the complete picture and to make it ready for its possible use in
future investigations.

VII.3.3. How to control the reduction. Because Theorem VII.1.4 is a statement
about elements f ∈ F , which break off after finitely many non-zero terms, namely about
elements in Ffin := Ffin(L2(R)), we shall take now a closer look on

Sfin :=
{
IS(f)

∣∣∣ f = (fn)∞n=0 ∈ Ffin

}
as the corresponding space of Wigner integrals, called the finite Wigner chaos . By defini-
tion, Sfin is only a subset of L2(S, τ), but due to (VII.1) and Proposition VII.1.3 it turns
out to be in fact a ∗-subalgebra of S. Combining this with the easy observation that Salg

is contained in Sfin, we may localize Sfin as intermediate ∗-algebra Salg ⊆ Sfin ⊆ S.

Following the lines of the proof in [MSW14, MSW17], we shall introduce now certain
operators, which will later allow us to reduce any zero-divisor in Sfin in a controllable way
to a zero-divisor in the chaos of order zero by means of Proposition VII.3.6.

Definition VII.3.8. For any h ∈ L2(R+) and any projection p ∈ S, we consider the
linear operator ∆p,h : Sfin → Sfin that is defined by

∆p,hY := (τ ⊗ id)
(
p⊗ 1 (∇h

Y )
)

for all Y ∈ Sfin.

Note that these operators are indeed well-defined since Sfin ⊆ D(∇) ⊆ D(∇h
) holds by

Proposition VII.3.5. The fact that ∆p,h takes its values in Sfin and is made more precise in
the following lemma, which moreover shows that ∆p,h “reduces the degree” with respect
to the natural grading on Sfin, which is induced by Ffin.

Lemma VII.3.9. Let h ∈ L2(R+) and any projection p ∈ S be given. Let τp be the bounded
linear functional on F that is given by

τp : F → C, f 7→ τ(pIS(f)).
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In fact, if we make use of the chaos decomposition of p, we can write p = IS(g) for some
g = (gn)∞n=0 ∈ F , so that τp(f) = 〈f, g〉F holds for all f ∈ F .

Now, let f ∈ L2(Rn
+) be given. For 1 ≤ k ≤ n, we may regard f as an element f (k−1,n−k)

in L2(R+, L
2(Rk−1

+ )⊗L2(Rn−k
+ )) ⊂ L2(R+,F ⊗F). Using this notation, it holds true that

(VII.15) ∆p,hI
S
n (f) =

n∑
k=1

ISn−k

(
(τp ⊗ idF)

(∫
R+

f
(k−1,n−k)
t h(t) dt

))
.

Proof. It is very easy to check the validity of the formula under question in the case
f = f1 ⊗ · · · ⊗ fn. Indeed, we have

∇h
ISn (f) =

n∑
k=1

〈fk, h〉ISk−1(f1 ⊗ · · · ⊗ fk−1)⊗ ISn−k(fk+1 ⊗ · · · ⊗ fn)

and hence

∆p,hI
S
n (f) =

n∑
k=1

〈fk, h〉τ(pISk−1(f1 ⊗ · · · ⊗ fk−1))ISn−k(fk+1 ⊗ · · · ⊗ fn)

=
n∑
k=1

ISn−k

(
〈fk, h〉τp(f1 ⊗ · · · ⊗ fk−1) fk+1 ⊗ · · · ⊗ fn

)
=

n∑
k=1

ISn−k

(
(τp ⊗ idF)

(∫
R+

f
(k−1,n−k)
t h(t) dt

))
,

which confirms the desired formula (VII.15) in the case f = f1 ⊗ · · · ⊗ fn. By linearity
of both of its sides, we conclude that formula (VII.15) also holds for any function in the
linear span of

{f1 ⊗ · · · ⊗ fn| f1, . . . , fn ∈ L2(R+)},

i.e. for any function in L2(R+)�n. Since this linear space is dense in L2(Rn
+) with respect

to ‖ · ‖L2(Rn+), it remains to note that (VII.15) stays valid under taking limits with respect

to ‖ · ‖L2(Rn+), which means that we prove the continuity of the left and the right hand side

of the formula under question with respect to ‖ · ‖L2(Rn+).

Concerning first the left hand side, we note that

‖∇ISn (f)‖2 =
√
n ‖f‖L2(Rn+).

Indeed, we have according to Proposition VII.2.16 and the Itô isometry that

‖∇ISn (f)‖2
2 = 〈∇ISn (f),∇ISn (f)〉 = 〈

(
δ∇
)
ISn (f), ISn (f)〉 = n ‖ISn (f)‖2

2 = n ‖f‖2
L2(Rn+).

Thus, we obtain the desired bound

‖∆p,hI
S
n (f)‖2 ≤ ‖p‖ ‖∇ISn (f)‖2 =

√
n ‖p‖ ‖f‖L2(Rn+).

Concerning now the right hand side of the formula under question, we note that∥∥∥∫
R+

f
(k−1,n−k)
t h(t) dt

∥∥∥
L2(Rk−1

+ )⊗L2(Rn−k+ )
≤ ‖h‖L2(R+)‖f‖L2(Rn+)
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holds for 1 ≤ k ≤ n, which yields by the Itô isometry∥∥∥ISn−k((τp⊗ idF)
(∫

R+

f
(k−1,n−k)
t h(t) dt

))∥∥∥
2

≤
∥∥∥(τp ⊗ idF)

(∫
R+

f
(k−1,n−k)
t h(t) dt

)∥∥∥
L2(Rn−k+ )

≤ ‖p‖2

∥∥∥∫
R+

f
(k−1,n−k)
t h(t) dt

∥∥∥
L2(Rk−1

+ )⊗L2(Rn−k+ )

≤ ‖p‖2‖h‖L2(R+)‖f‖L2(Rn+).

This concludes the proof. �

By applying iteratively operators of the form ∆p,h to a fixed element in the finite Wigner
chaos Sfin, we will therefore reach the chaos of order zero after finitely many steps. The
following proposition provides an explicit formula for the output of this procedure.

Proposition VII.3.10. Let f = (fn)∞n=0 ∈ Ffin be given and let N ∈ N be chosen such
that fn = 0 for all n ≥ N + 1. Then, for any choice of functions h1, . . . , hN ∈ L2(R+) and
projections p1, . . . , pN , it holds true that

∆pN ,hN · · ·∆p1,h1I
S(f) = τ(p1) · · · τ(pN) 〈fN , h1 ⊗ · · · ⊗ hN〉 1.

Before continuing with the proof of the general statement, we first focus on the special
case of simple functions.

Remark VII.3.11. We note that for any Y ∈ Salg

∆pN ,hN · · ·∆p1,h1Y = (τ⊗N ⊗ id)
(
p1 ⊗ · · · ⊗ pN ⊗ 1 (∇h1,...,hN

Y )
)

holds, where the iterated gradient ∇h1,...,hN
: Salg → S�(N+1)

alg is defined by

∇h1,...,hN
:= (id⊗(N−1)⊗∇hN

) . . . (id⊗∇h2
)∇h1

.

Thus, the statement of Proposition VII.3.10 becomes apparent in the case where f =
(fn)∞n=0 ∈ Ffin consists of simple functions fn ∈ E(Rn

+). Indeed, since IS(f) decomposes
by the conditions that are imposed on f as

IS(f) = IS0 (f0) + IS1 (f1) + · · ·+ ISN(fN)

and because obviously

∇h1,...,hN
ISk (fk) = 0 for 0 ≤ k ≤ N − 1,

we see that

∇h1,...,hN
IS(f) = ∇h1,...,hN

ISN(fN).

By using Proposition VII.2.12, we get

∇h1,...,hN
ISN(fN) = 〈f, h1 ⊗ · · · ⊗ hN〉 1⊗(N+1).

Combining these observations yields

∆pN ,hN · · ·∆p1,h1I
S(f) = τ(p1) · · · τ(pN) 〈fN , h1 ⊗ · · · ⊗ hN〉 1,

which is the stated formula.
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Proof of Proposition VII.3.10. For the general case, we make use of Lemma
VII.3.9. Applying formula (VII.15) iteratively, yields that for 1 ≤ m ≤ N

∆pm,hm . . .∆p1,h1I
S(f) = IS(f (m)),

for some f (m) ∈ Ffin, where f
(m)
n = 0 for all n ≥ N −m+ 1. Moreover, if we put f (0) := f ,

we see that

f
(m)
N−m(tm+1, . . . , tN) = τ(pm)

∫
R+

f
(m−1)
N−m+1(tm, tm+1, . . . , tN)hm(tm) dtm

for all 1 ≤ m ≤ N − 1 and

f
(N)
0 = τ(pN)

∫
R+

f
(N−1)
1 (tN)hN(tN) dtN .

Hence, the only term that survives in ∆pN ,hN . . .∆p1,h1I
S(f) is induced by

f
(N)
0 = τ(p1) · · · τ(pN) 〈fN , h1 ⊗ · · · ⊗ hN〉,

which gives the stated formula. �

VII.3.4. Absence of zero divisors. Our discussion in the previous subsections
has shown that directional gradients allow us to transfer tools from the theory of non-
commutative derivations as presented in Chapter V to the setting of free stochastic calcu-
lus. Moreover, we have convinced ourselves that directional gradients ∇h induce operators
∆p,h, which satisfy the general conditions for performing our reduction method.

Putting things together, we obtain the following theorem, of which the desired Theorem
VII.1.4 will be a corollary.

Theorem VII.3.12. There are no zero divisors in Sfin. More precisely, if 0 6= Y ∈ Sfin is
given, then there is no 0 6= u ∈ S such that Y u = 0.

Proof. Contrarily, assume that there are 0 6= Y ∈ Sfin and 0 6= u ∈ S such that
Y u = 0. We may write Y = IS(f) for some f ∈ Ffin of the form f = (fn)∞n=0. Moreover,
we may choose N ∈ N such that fN 6= 0 but fn = 0 for all n ≥ N + 1.

Now, we fix arbitrary functions h1, . . . , hN ∈ L2(R+,R). Recall from Lemma VI.2.10 that
whenever we have an element X ∈ S such that Xu = 0 holds, then there exists a non-zero
projection p ∈ S such that X∗p = 0. Thus, by applying Proposition VII.3.6 iteratively,
we may find non-zero projections p1, . . . , pN ∈ S such that

(∆pN ,hN . . .∆p1,h1Y )u = 0.

According to Proposition VII.3.10, this means that

τ(p1) · · · τ(pN) 〈fN , h1 ⊗ · · · ⊗ hN〉u = 0.

Since we have by assumption u 6= 0 and furthermore τ(p1) · · · τ(pN) 6= 0, because
p1, . . . , pN are non-zero projections, it follows

〈fN , h1 ⊗ · · · ⊗ hN〉 = 0.

Inasmuch as the linear span of

{h1 ⊗ · · · ⊗ hN | h1, . . . , hN ∈ L2(R+,R)}
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is dense in L2(RN
+ ) with respect to ‖ · ‖L2(RN+ ), the previous insight yields fN = 0, which

contradicts the condition according to which N was chosen. Thus, the assumption made
above was wrong, so that the statement of the theorem must be true. �

We finish by showing that Theorem VII.1.4 is indeed a consequence of Theorem VII.3.12
above. In fact, we will deduce Theorem VII.1.4 exactly in the same way as it was done
for the analogous statement in [MSW17].

Proof of Theorem VII.1.4. More generally, by allowing right from the beginning
a constant summand IS0 (f0), we show the following: the distribution µY of any self-adjoint
element Y ∈ Sfin, which does not belong to the chaos of order zero, cannot have atoms.

Let Y ∈ Sfin be given. If Y does not belong to the chaos of order zero, we can write it as

Y = IS(f) = IS0 (f0) + IS1 (f1) + · · ·+ ISN(fN)

for some f = (fn)∞n=0 ∈ Ffin, which is stationary zero after fN 6= 0 for some N ∈ N.
(Note that N 6= 0 means abstractly speaking that Y is not constant, as it was assumed
in [MSW17].) Then, we observe that any atom α of the distribution µY of Y , i.e. any
α ∈ R satisfying µY ({α}) 6= 0, leads by the spectral theorem for bounded self-adjoint
operators on Hilbert spaces to a non-zero projection u satisfying (Y − α1)u = 0; see
Lemma I.1.20 and the comment thereafter. Now, Theorem VII.3.12 tells us that Y = α1,
which contradicts fN 6= 0. �
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APPENDIX A

The Schur complement formula

In this short chapter, we address one of the most important tools, which are used in this
thesis. The so-called Schur complement formula belongs certainly to the general knowledge
of many mathematicians, as it turns out to be extremely helpful in many respects, where
it can significantly simplify life, but it seems not to be spread out in a uniform way over
all different mathematical communities.

In this thesis, the Schur complement formula is mainly used in the context of the “lin-
earization trick”, as presented in Chapters III and IV. But since it also appears at some
other places (see for instance Example I.2.10), we decided to take it out of the main flow
and present it separately in the appendix. Its statement is formulated in the following
lemma.

Lemma A.1 (Schur complement formula). Let A be a complex and unital algebra. Let
matrices a ∈ Mk(A), b ∈ Mk×l(A), c ∈ Ml×k(A) and d ∈ Ml(A) be given and assume
that d is invertible in Ml(A). Then the following statements are equivalent:

(i) The matrix

(
a b
c d

)
is invertible in Mk+l(A).

(ii) The Schur complement a− bd−1c is invertible in Mk(A).

If the equivalent conditions (i) and (ii) are satisfied, we have the relation

(A.1)

(
a b
c d

)−1

=

(
0 0
0 d−1

)
+

(
1

−d−1c

)
(a− bd−1c)−1

(
1 −bd−1

)
,

which is often called the Schur complement formula.

For convenience of those readers, who are not yet familiar with the Schur complement
formula, and since this statement and some of the formulas appearing in its proof are
crucial for our purposes, we include here the straightforward proof.

Proof of Lemma A.1. A direct calculation shows that

(A.2)

(
a b
c d

)
=

(
1 bd−1

0 1

)(
a− bd−1c 0

0 d

)(
1 0

d−1c 1

)
holds. Since the matrices (

1 bd−1

0 1

)
and

(
1 0

d−1c 1

)
are both invertible in Mk+l(A), the stated equivalence of (i) and (ii) immediately follows
from (A.2). Moreover, if (i) and (ii) are satisfied, (A.2) leads to(

a b
c d

)−1

=

(
1 0

−d−1c 1

)(
(a− bd−1c)−1 0

0 d−1

)(
1 −bd−1

0 1

)
,

from which (A.1) directly follows. �
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APPENDIX B

Some results from Banach space valued complex analysis

Many of our considerations, which we have presented in the previous chapters, rely on
results from Banach space valued complex analysis. For readers convenience, we collect
them here for references and we also recall the underlying definitions, as far as this is
needed in order to understand their meaning. For a more detailed introduction to this
rich field, we refer the interested reader to [HP74].

Throughout the following, let (E, ‖ · ‖E) and (F, ‖ · ‖F ) be complex Banach spaces. There
are basically two extensions of the classical concept of holomorphy for functions defined
on open subsets of E and taking values in F .

Definition B.1. A function f : U → F defined on an open subset ∅ 6= U ⊆ E will be
called

(a) Gâteaux analytic on U , if with respect to ‖ · ‖F the limit

δf(x;h) := lim
z→0

z∈U(x;h)\{0}

1

z
(f(x+ zh)− f(x))

exists for all x ∈ U and all h ∈ E, where we put

U(x;h) := {z ∈ C| x+ zh ∈ U}.
(b) Fréchet analytic on U , if

(i) it is Gâteaux analytic on U ,
(ii) its Gâteaux derivative δf(x; ·) at any point x ∈ U is a bounded linear

operator, and
(iii) it holds true that

lim
‖h‖E→0

1

‖h‖E
‖f(x+ h)− f(x)− δf(x;h)‖F = 0.

In this case, we write f ′(x) for the linear operator given by the Gâteaux deriv-
ative δf(x; ·) at any point x ∈ U .

Note that sometimes, we will use the term “holomorphic” instead of “analytic”.

Remark B.2.

(i) It can be shown (see for instance [Zor45]) that the Gâteaux derivative δf(x; ·)
is always a linear mapping. Therefore, condition (ii) in part (b) of Definition B.1
reduces to the requirement of the boundedness of δf(x; ·).

(ii) Moreover, a result of Zorn (see [Zor46]) says that, in part (b) of Definition B.1,
condition (iii) is satisfied automatically if both (i) and (ii) hold true.

It is easy to see from the definition that any Fréchet analytic function is Gâteaux analytic
and continuous. But the converse is also true. In fact, the continuity assumption can be
replaced by local boundedness. This leads to the notion of analyticity.
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Definition B.3. A function f : D → F defined on a domain ∅ 6= D ⊆ E will be called
analytic, if the following conditions are satisfied:

(i) f is locally bounded on D, i.e. for every x ∈ D there exists r = r(x) > 0 such
that

sup
y∈U : ‖y−x‖E<r

‖f(y)‖F <∞.

(ii) f is Gâteaux analytic on D.

Indeed, the following remarkable result holds true.

Theorem B.4 (Theorem 3.17.1, [HP74]). If the function f : D → F defined on a domain
∅ 6= D ⊆ E is analytic, then it is continuous and Fréchet analytic.

Without giving the precise statement here, we want to point out that Theorem 3.17.1 in
[HP74] guarantees in addition that f can be locally expanded in a uniformly convergent
series, which is a natural analogue of the classical Taylor series.

Of particular interest for our considerations is the so called Earle-Hamilton Theorem
(see [Din89, Theorem 11.1]), which can be seen as a holomorphic version of Banach’s
contracting mapping theorem.

Theorem B.5 (Earle-Hamilton Theorem). Let h : D → E be a bounded Fréchet analytic
function, defined on a domain ∅ 6= D ⊆ E, such that h(D) lies strictly inside D, i.e.

inf {‖u− v‖ | u ∈ h(D), v ∈ E \D} > 0.

Then h has a unique fixed point x and the sequence of iterates h◦n(x0), converges for any
x0 ∈ D with respect to ‖ · ‖E to x as n→∞.

Although we do not want to give a detailed proof of this statement here, we want to
explain roughly its strategy. The reader interested in a complete proof of this theorem is
referred to [Din89]. We will follow here mainly the exposition given in [Har03].

The most surprising fact about the proof is that it is indeed based on Banach’s contracting
mapping theorem. For this purpose, one constructs a special pseudometric ρ on D, called
the Carathéodory-Riffen-Finsler pseudometric, in which h is a contraction and whose
restriction to bounded subsets of D induces a complete metric space. This construction
proceeds as follows. For any x ∈ D and v ∈ E, we put

α(x, v) := sup{|g′(x)v| | g : D → C Fréchet analytic with g(D) ⊆ D},
where D denotes the unit disc in C, i.e. D := {z ∈ C : |z| < 1}. Denote by Γ the set of all
curves γ : [0, 1]→ D with piecewise continuous derivative γ′ and define

L(γ) :=

∫ 1

0

α(γ(t), γ′(t)) dt

for each γ ∈ Γ. Finally, we define the desired pseudometric ρ by

ρ(x, y) := inf{L(γ)| γ ∈ Γ with γ(0) = x and γ(1) = y}
for all x, y ∈ D. Since (g ◦ h)′(x)v = g′(h(x))(h′(x)v) by the chain rule for the Fréchet
derivative, we may deduce that α(h(x), h′(x)v) ≤ α(x, v) for all x ∈ D and v ∈ E. Since
(h ◦ γ)′(t) = h′(γ(t))γ′(t), we get L(h ◦ γ) ≤ L(γ) and thus the Schwarz-Pick inequality

ρ(h(x), h(y)) ≤ ρ(x, y) for all x, y ∈ D.
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Since h maps D strictly into D, there exists ε > 0 such that {y ∈ E| ‖y−h(x)‖E < ε} ⊆ D
for all x ∈ E. Thus, if we replace D by⋃

x∈D

{y ∈ E| ‖y − h(x)‖E < ε},

we may assume that D is bounded.

Under this strengthened condition, we can show that there exists 0 < c < 1 such that
ρ(h(x), h(y)) ≤ cρ(x, y) holds for all x, y ∈ D. This allows us to apply Banach’s contract-
ing mapping theorem in order to conclude that h has a unique fixed point x, which is
moreover attracting in the sense that, for any starting point x0 ∈ D, the iterates h◦n(x0)
converge with respect to ρ to x as n→∞.

It remains to observe that we can find a constant m > 0 (in fact, m determined by

1

m
= sup{‖x− y‖E| x, y ∈ D}

works) such that

(B.1) ρ(x, y) ≥ m‖x− y‖E for all x, y ∈ D.
This means in particular that the iterates converge to the desired fixed point x not only
with respect to the rather abstract metric ρ but more naturally with respect to the norm
‖ · ‖E as well.
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APPENDIX C

Measures on topological spaces

This chapter aims at collecting some basic facts about Radon measures and topologies
defined on sets of Radon measures, since these concepts and the corresponding terminology
are used repeatedly in this thesis. Although we are mainly interested in Borel probability
measures on R or C, we find it instructive to work here in a more general and unifying
setting. Our exposition, which builds on [Els11, Chapter VIII], supposes that the reader
is already familiar with the basic concepts of topology, functional analysis, and measure
theory.

C.1. Radon measures

Let X be a Hausdorff topological space. We denote by B(X) the Borel σ-algebra on X,
which is the σ-algebra on X generated by the open subsets of X. Let us focus first on the
case of positive measures defined on B(X).

Definition C.1 (Definition VIII.1.1 in [Els11]). A positive measure µ : B(X)→ [0,∞]
is called

• inner regular , if we have

µ(B) = sup
K ⊆ B compact

µ(K) for each B ∈ B(X);

• outer regular , if we have

µ(B) = inf
U ⊇ B open

µ(U) for each B ∈ B(X);

• regular , if it is both inner and outer regular;
• locally finite or Borel measure, if each point x ∈ X has an open neighborhood
U , which satisfies that µ(U) <∞;
• finite, if we have µ(X) <∞;
• Radon measure, if it is both inner regular and locally finite.

The set of all (positive) Radon measures on X will be denoted by M+(B).

A few comments are in order.

Remark C.2.

• Clearly, each locally finite measure on B(X) is automatically finite on all compact
subsets of X. If we suppose in addition that the underlying space X is locally
compact, then the converse is also true, i.e., a measure µ : B(X) → [0,∞] is
locally finite if and only if it is finite on each compact subset of X; see [Els11,
Corollary VIII.1.2 (c)].
• Each finite Radon measure is automatically regular; see [Els11, Corollary

VIII.1.2 (f)].
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• Recall that a Hausdorff topological space is called σ-compact , if it can be written
as the union of countably many compact subsets. If each open subset of X is σ-
compact, then each Borel measure µ : B(X)→ [0,∞] is automatically a Radon
measure; see [Els11, Corollary VIII.1.6].

When working with Radon measures, the notion of support turns out to be important.
The following definition is taken from [Els11, Section VIII.2.5].

Definition C.3. Let µ : B(X)→ [0,∞] be a Radon measure. The support supp(µ) of µ
is defined by

supp(µ) := X\V,
where V denotes the union of all open sets U in X satisfying µ(U) = 0.

From this definition, it is immediately clear that supp(µ) always forms a closed subset of
X, since V , given as V =

⋃
U∈U U with

U := {U | U open in X : µ(U) = 0},

is open as a union of open sets. Less obvious, however, is that V itself satisfies µ(V ) = 0,
because U is typically not a countable family. This is proven in [Els11, Lemma VIII.2.15]
and the validity of this statement strongly depends on the assumption that µ is inner
regular.

An important consequence is that, with respect to each Radon measure µ, all µ-integrable
functions f on X, i.e., all measurable functions f : X → C with the property that∫
X
|f(x)| dµ(x) <∞, satisfy∫

X

f(x) dµ(x) =

∫
supp(µ)

f(x) dµ(x).

C.2. The Riesz representation theorems

Let X be a locally compact Hausdorff topological space. We will work with the following
complex vector spaces of continuous functions on X:

• Cb(X), the space of all bounded continuous functions f : X → C;
• C0(X), the space of all continuous functions f : X → C, which “vanish at

infinity” in the sense that for each ε > 0 a compact subset K ⊆ X exists, such
that |f(x)| < ε holds for all points x ∈ X\K;
• Cc(X), the space of all continuous functions f : X → C, which are “compactly

supported” in the sense that a compact set K in X exists, such that f(x) = 0
for all x ∈ X\K.

Note that we have the inclusions Cc(X) ⊆ C0(X) ⊆ Cb(X) and that both C0(X) and
Cb(X) become Banach spaces if they are endowed with the uniform norm ‖ · ‖∞.

Theorem C.4 (Riesz representation theorem for Cc(X)). Let X be a locally compact
Hausdorff topological space. If I : Cc(X) → C is a positive linear functional, then there
exists a unique Radon measure µ : B(X)→ [0,∞], such that

I(f) =

∫
X

f(x) dµ(x) for all f ∈ Cc(X).
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For a proof, we refer the reader to [Els11, Theorem VIII.2.5]. Note that C(X) = Cc(X)
holds for compact X, such that the previous theorem immediately yields the following
characterization for compact Hausdorff topological spaces X.

Corollary C.5. Let X be a compact Hausdorff topological space. If I : C(X)→ C is a
positive linear functional, then there exists a unique Radon measure µ : B(X) → [0,∞],
such that

I(f) =

∫
X

f(x) dµ(x) for all f ∈ C(X).

In fact, this Radon measure is finite, since we have µ(X) = I(1) < ∞ as the constant
function 1 belongs to C(X).

In the next theorem, which is taken from [Els11, Theorem VIII.2.10], positive linear
functions on C0(X) are discussed.

Theorem C.6 (Riesz representation theorem for C0(X)). Let X be a locally compact
Hausdorff topological space. If I : C0(X) → C is a positive linear functional, then there
exists a unique Radon measure µ : B(X) → [0,∞], such that each f ∈ C0(X) is µ-
integrable, and

I(f) =

∫
X

f(x) dµ(x) for all f ∈ C0(X).

In fact, this Radon measure µ is even finite.

C.3. The weak and the vague topology

Let X be a locally compact Hausdorff topological space. We denote by

• M+(X) the set of all (positive) Radon measures µ : B(X)→ [0,∞];
• M+

fin(X) the set of all finite (positive) Radon measures µ : B(X)→ [0,∞).

Definition C.7.

(i) The weak topology on M+
fin(X) is defined as the weakest topology on M+

fin(X),
for which all mappings

M+
fin(X)→ C, µ 7→

∫
X

f(x) dµ(x)

with f ∈ Cb(X) are continuous. In particular, if (µn)n∈N is any sequence in
M+

fin(X), we say that (µn)n∈N converges weakly to µ for some µ ∈M+
fin(X), if

lim
n→∞

∫
X

f(x) dµn(x) =

∫
X

f(x) dµ(x) for all f ∈ Cb(X).

(ii) The vague topology on M+(X) is given as the weakest topology, for which all
mappings

M+(X)→ C, µ 7→
∫
X

f(x) dµ(x)

with f ∈ Cc(X) are continuous. In particular, if (µn)n∈N is any sequence in
M+(X), we say that (µn)n∈N converges vaguely to µ for some µ ∈M+(X), if

lim
n→∞

∫
X

f(x) dµn(x) =

∫
X

f(x) dµ(x) for all f ∈ Cc(X).
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Due to the inclusion C0(X) ⊂ Cb(X), weak convergence clearly implies vague convergence.
The converse is wrong in general, but there is an additional condition that guarantees
equivalence (see [Els11, Exercise VIII.4.4 (b)]): a sequence (µn)n∈N inM+

fin(X) converges
weakly to some µ ∈M+

fin(R), if and only if (µn)n∈N converges vaguely to µ and

lim
n→∞

µn(X) = µ(X).

Theorem C.4 implies that the vague topology is Hausdorff. In particular, limits of vague
convergent sequences are unique. One can show that also the limit of a weakly convergent
sequence of finite Radon measures is unique; see [Els11, Exercise VIII.4.4 (a)].

228



Bibliography

[AGZ10] G. W. Anderson, A. Guionnet, and O. Zeitouni, An introduction to random matrices, Cam-
bridge: Cambridge University Press, 2010.

[AM16a] J. Agler and J. E. McCarthy, Aspects of non-commutative function theory, Concr. Oper. 3
(2016), 15–24.

[AM16b] , Non-commutative Functional Calculus and Spectral Theory, arXiv:1504.07323
(2016).

[Ami66] S. A. Amitsur, Rational identities and applications to algebra and geometry, J. Algebra 3
(1966), 304–359.

[And12] G. W. Anderson, Support properties of spectra of polynomials in Wigner matrices, lecture
notes (2012).

[And13] , Convergence of the largest singular value of a polynomial in independent Wigner
matrices, Ann. Probab. 41 (2013), no. 3B, 2103–2181.

[And15] , A local limit law for the empirical spectral distribution of the anticommutator of
independent Wigner matrices, Ann. Inst. Henri Poincaré, Probab. Stat. 51 (2015), no. 3,
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Fréchet, 221
Gâteaux, 221

asymptotically free, 49
almost surely, 50

atom, 15, 180, 197
Dirac measure, 15

biprocess
Lp-biprocess, 198

adapted, 198
adapted, 198
simple, 198

standard form, 199
Borel measure, 225
Brown measure, 42

regularized, 43
Brownian motion

free, 194

Carleman’s condition, 20
Catalan numbers, 28
Cauchy transform

operator-valued, 32
regularized, 43
scalar-valued, 18

chaos decomposition, 204
Chebyshev polynomials

of the second kind, 203
circuit, 67
coassociativity relation

non-commutative derivatives, 158
commutator, 149

anti-, 147
complexification, 202
conjugate

relations, 177
system, 177

contraction, 196
controllable space, 119
convergence of measures

convergence of moments, 20
vague convergence, 227
weak convergence, 227

convergence of non-commutative random
variables

convergence in distribution, 49
almost sure, 49

convolution
classical, 25
free additive, 23
free multiplicative, 25

covariance map, 38

derivation
bimodule-valued, 156
non-commutative, 155, 162

coassociativity relation, 166
real, 165

derivative
non-commutative, 155, 156

descriptor
realization, 119
system, 118

Dirac measure, 15
directional

divergence, 212
gradient, 210

display, 79
distribution

analytic, 13, 14
classical, 11
free Poisson, 29
Marchenko-Pastur, 29
non-commutative, 11
∗-distribution, 12
operator-valued, 32

normal, 51
semicircular, 28

domain
integral domain, 72
natural domain, 95
Sylvester domain, 78

Dyck path, 28

eigenvalue distribution, 15
empirical, 48
mean empirical, 48

equivalence

237



pure linear representations, 81
rational expressions
M(C)-evaluation equivalence, 74
A-evaluation equivalence, 71

evaluation
evaluation ∗-homomorphism

scalar-valued non-commutative
∗-polynomials, 12

evaluation homomorphism
operator-valued non-commutative

polynomials, 32
scalar-valued non-commutative

polynomials, 11
expectation, 8

conditional, 30
completely positive, 31
positive, 31

faithful, 9
positive, 9
tracial, 9
vacuum, 202

feed through term, 118
filtration, 194
fir, 79
n-fir, 79
semifir, 79

Fisher information
free, 161, 179

Fock space
full, 201

free
free (skew) field, 74
free convolution

additive, 23
multiplicative, 25

free cumulants, 23
free independence

for elements, 21
for subalgebras, 21
for subsets, 21

free independence with amalgamation
for elements, 38
for subalgebras, 38
for subsets, 38

free operator-valued convolution
additive, 40

free product, 24
freeness

for elements, 21
for subalgebras, 21
for subsets, 21

freeness wit amalgamation
for subsets, 38

freeness with amalgamation
for elements, 38
for subalgebras, 38

Fuglede-Kadison determinant, 42
regularized, 43

full matrix, 78

Hermite
function, 53
kernel, 53
polynomials, 53

hermitian reduction method, 43
Higman’s trick, 81
homomorphism

Σ-inverting, 77
universal, 78

increment, 194
inequality

Cauchy-Schwarz, 9
Schwarz-Pick, 222

infinitely divisible, 26
inner rank, 78
integrable, 226
inversion height, 88
Itô
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