
Saarland University

Faculty of Mathematics and Computer Science

Quantitative Anonymity Guarantees for Tor

Dissertation

zur Erlangung des Grades

des Doktors der Ingenieurwissenschaften

der Fakultät für Mathematik und Informatik

der Universität des Saarlandes

von

Sebastian Wilhelm Ludwig Meiser

Saarbrücken,

Februar 2016

Day of Colloquium 23. November 2016

Dean of the faculty Prof. Dr. Frank-Olaf Schreyer

Chair of the Committee Prof. Dr. Christian Rossow

Reviewers Prof. Dr. Michael Backes

Prof. Aniket Kate, Ph.D.

Dr. George Danezis

Academic Assistant Dr. Robert Künnemann

ii

Zusammenfassung

In dieser Arbeit präsentieren wir eine neue Methode, um beweisbar sichere Anony-

mitätsgarantien für Protokolle zur anonymen Kommunikation zu geben und veran-

schaulichen die Anwendung dieser Methode anhand des Tor Protokolls. Zu diesem

Zweck präsentieren wir zunächst das AnoA Framework, welches dazu dient, die Anony-

mität von Protokollen zur anonymen Kommunikation zu quantifizieren. Der Angreifer,

der in AnoA betrachtet wird, ist modular konfigurierbar. Wir zeigen, wie das Tor

Protokoll in einer abstrakten Weise analysiert werden kann und greifen hierbei auf

eine existierende Formalisierung von Tor im Universal Composibility (UC) Frame-

work zurück. Wir beweisen, dass unsere abstrakten Betrachtungen sichere Garantien

ergeben. Darüber hinaus entwickeln wir effizient berechenbare und beweisbar sichere

Formeln, mit denen sich die Sicherheit von Tor gegenüber von Angreifern, die entweder

durch Besitz eigener Tor Server oder durch eine Überwachung der Kommunikation,

auf eine passive Art versuchen, die Anonymität zu brechen. Letztlich führen wir eine

umfassende Analyse des Tor Netzwerks durch und berechnen die Anonymität, die Tor

gegen eine Vielzahl solcher Angreifer zur Verfügung stellt, basierend auf den technischen

Eigenschaften von Tor’s Pfadsuchalgorithmus (und einigen Alternativen).

iii

iv

Abstract

In this thesis, we present a methodology to compute sound anonymity guarantees for

anonymous communication protocols, which we apply to the Tor protocol. To this end,

we present AnoA, a formal framework for quantifying the anonymity of anonymous

communication protocols against modularly describable adversaries. We show how the

Tor protocol can be analyzed in an abstract way by utilizing an existing formalization

of Tor in the universal composability (UC) framework and prove that this analysis is

sound. Moreover, we derive efficiently computable, sound anonymity guarantees for Tor

against eavesdropping adversaries that may control Tor servers or wiretap communica-

tions between parties. For known adversaries that perform perfect traffic correlations

we show that our bounds are tight. Finally, we perform an extensive analysis of the

Tor network against such adversaries in which we calculate the anonymity of Tor when

using Tor’s current path selection, thereby considering many real-world properties of

the path selection algorithm, as well as when using one of several variants, against a

variety of eavesdropping adversaries that can control Tor nodes (depending on various

properties) or wiretap the communication between them.

v

vi

Acknowledgments

Sufficiently acknowledging all people that positively influenced me during my doc-

toral studies is certainly a hard task. I will try to keep these words brief and hope to

not offend in doing so. I want to thank my supervisor Michael Backes for his support,

for the various explicit and implicit lessons in these past years and for giving me suffi-

cient freedom in my research agenda. I obviously want to thank all my colleagues with

which I worked together in these past years, foremost Esfandiar Mohammadi; I enjoyed

our discussions, the invention of our grand board game, and, being able to call you a

friend. Moreover, I want to thank Aniket Kate for his undying optimism regarding our

projects, as well as for the foresight in striving for such types of guarantees. I want

to thank Dominique Unruh for teaching me the art of designing definitions and proofs

and Tim Ruffing for all helpful discussions.

Concerning the line of research started by this thesis I want to thank all students and

internship students that I had the pleasure to supervise (in almost alphabetical order):

Markus Bauer, who both helped in fixing the implementation of MATor and who as

his Bachelor’s thesis developed a MATor plugin for the Tor browser, Simon Koch, who

successfully battled parenthesis to perform a large-scale data collection for our network-

infrastructure adversaries, Tahleen Rahman who had the bravery to delve into the

depths of Tor’s C-implementation and who extended this dissertation in her Master’s

thesis by modeling adversaries that add new Tor nodes to the consensus, Marcin Slowik

who significantly contributed to more than one refactoring of MATor and with whom

I had helpful discussions about the nature and generality of adversarial advantages,

Lukas Wedeking, who as his Bachelor’s thesis analyzed the impact of adversaries on

Tor’s hidden services on basis of this dissertation, and finally Marta Wrzola and Dawid

Gawel who in their internship contributed to the final refactoring of MATor.

I also want to thank the Cognition and Action research group of Prof. Dirk Wentura,

as well as Prof. Christian Frings for giving me insights into psychology and pragmatism

when solving problems, as well as for their encouraging discussions concerning my

doctoral studies.

Finally, I want to thank my family for their support and my friends for the countless

hours of stress-relieving pen-and-paper games.

For Science.

vii

viii

Background of this Dissertation

This dissertation is based on three peer-reviewed papers that have been accepted at

influential and well-ranked conferences in the field of computer security, in each of

which the author contributed as one of the main authors. In addition, the author

was the main author of other peer-reviewed papers in the field of cryptography and

information security [11, 10] and one of the main authors of a paper slightly related to

the foundation of this thesis [16]. However, this dissertation focuses on the following

four papers, as this selection defines a novel and very promising line of work. The

author considers a thorough and consistent presentation that partially improves upon

the original works to be significantly more useful to the research community than less

consistent presentation that additionally covers the papers mentioned above.

• In AnoA [13] (published at CSF’13), as well as in the extended technical report

and the journal version (to be published in a special issue of the Journal of Privacy

and Confidentiality), the author contributed significantly to the central notions

of the framework, whereas a preliminary and abstract analysis of the Tor net-

work (which is not included here) was mainly done by Praveen Manoharan. The

central notion of IND-CDP is influenced by the papers “Computational Differen-

tial Privacy” [81] of Mironov et. al, and “Secrecy without Perfect Randomness:

Cryptography with (Bounded) Weak Sources” [16] in which the author also con-

tributed as one of the main authors. The adaptations of the UC protocol to the

AnoA framework were performed by Esfandiar Mohammadi. Praveen and Es-

fandiar also worked on the UC-realization of differential-privacy style properties,

which is a central building block for AnoA.

• In the paper “(Nothing Else) MATor(s)” [14] (published at CCS’14), the author

contributed as one of the main authors. Together with Esfandiar Mohammadi,

he investigated how the actual Tor client implements Tor’s current path selection

algorithm, as well as the impact of these subtle choices on Tor’s anonymity. More-

over, they investigated the impact of TCP ports and derived sound formulas for

calculating anonymity guarantees for Tor. The author additionally contributed

to the implementation of MATor, a tool used for calculating Tor’s anonymity that

forms the foundation of all implementations considered for the evaluations in this

thesis.

• In “Your choice MATor(s)” [12] (published at PETS’16), the author was the main

author and driving force. The author contributed by defining a novel, observation

based analysis for calculating the anonymity guarantees, that is significantly more

precise than the heuristics used before. The necessary modifications and the par-

tial re-implementation of the analysis tool MATor, however, was done by Marcin

Slowik, who worked under the author’s direct supervision and the evaluation was

designed and performed by both authors.

ix

x

• Finally, in a paper we are currently working on that is targeted at analyzing

the impact of network-level adversaries on Tor, the author contributed mainly

to the theoretical foundations by defining a novel, observation based analyses

of the calculation of our anonymity guarantees, together with the proofs on its

correctness. The gathering of data was performed by Simon Koch, Tor’s Internet

topology was developed by the author together with Esfandiar Mohammadi and

Christian Rossow.

As an additional effort for this thesis, the individual papers have been combined into

one consistent analysis of Tor that includes a novel formalization of a simplified AnoA

game for Tor against eavesdropping adversaries. To this end, the majority of proofs

has been revised, the analysis tool MATor has been re-factored and we repeated our

large-scale formal evaluation of Tor against eavesdroppers.

Contents

1 Introduction 1

1.1 Contribution . 2

1.2 Overview . 4

1.2.1 Anonymity and Privacy . 5

1.2.2 Intuition: Indistinguishability Based Anonymity 6

1.2.3 The Tor Protocol . 10

1.2.4 From Observations of an Eavesdropper to Anonymity Guarantees 13

1.2.5 Defining Categories of Eavesdroppers 14

1.2.6 Evaluating Tor Against Eavesdroppers 16

1.3 Related Work . 16

1.3.1 Anonymous Communication Protocols 17

1.3.2 Practical Attacks and Countermeasures 18

1.3.3 Anonymity Analyses . 18

2 AnoA 23

2.1 Notation . 23

2.2 Full AnoA Game . 24

2.3 Anonymity Notions . 27

2.3.1 Sender Anonymity . 28

2.3.2 Recipient Anonymity . 29

2.3.3 Relationship Anonymity . 30

2.4 Adversary Classes . 30

2.4.1 Defining Adversary Classes . 31

2.4.2 Plug’n’Play Adversary Classes 38

3 Impact of Passive Adversaries on Tor 45

3.1 Observation Points of Tor Circuits . 45

3.1.1 Observations . 46

3.2 Tor’s Universal Composability Protocol 48

3.2.1 Overview of Tor in UC . 49

3.2.2 Modifications . 50

3.2.3 Differential Privacy Style Guarantees in UC 50

xi

xii CONTENTS

3.3 Specialized AnoA Game . 57

3.3.1 Soundness of the Simplified Game 60

4 Calculating Anonymity Guarantees 67

4.1 Calculating Anonymity Guarantees for Observations 67

4.1.1 Probabilities of Observations . 68

4.1.2 Distinguishing Anonymity Scenarios 70

4.1.3 A Sound and Precise Calculation of the Reduction of Anonymity 73

4.2 Tor Path Selection Algorithms . 77

4.2.1 Tor . 77

4.2.2 DistribuTor . 78

4.2.3 Other Variants . 79

4.2.4 Assumptions on Tor Path Selection Algorithms 81

4.3 Efficient Guarantees for (Node) Budget Adversaries 82

4.3.1 Anonymity Impact of a Budget Adversary 83

4.3.2 Correctness of impactX bounds 90

4.4 Proof of Soundness . 91

4.4.1 Overall Proof Outline . 91

4.4.2 Visible Nodes, Observation Core and Blank Observations 92

4.4.3 Proof for Sender Anonymity . 99

4.4.4 Proof for Recipient Anonymity 105

4.4.5 Proof for Relationship Anonymity 107

4.4.6 Approximating the Set of Compromised Nodes 113

5 Evaluation 117

5.1 Evaluating Tor Against Node Adversaries 117

5.1.1 Instantiating Node Budget Adversaries 117

5.1.2 Setup . 118

5.1.3 Implementation . 119

5.1.4 Results . 120

5.1.5 Evaluation of the Precision . 134

5.2 Evaluating Tor Against Network Adversaries 140

5.2.1 Internet Topology Datasets . 140

5.2.2 Network-level Adversaries . 144

5.2.3 Implementation and Optimizations 145

5.2.4 Senders and Recipients . 145

5.2.5 Evaluated Malicious Infrastructure 148

5.2.6 Results . 150

5.2.7 Different TCP Ports . 153

CONTENTS xiii

A Appendix 165

A.1 Abstracting Tor in UC . 165

A.1.1 System and Adversary Model . 165

A.1.2 Ideal Functionality . 166

A.1.3 Ideal Functionality for a Party P 166

xiv CONTENTS

Chapter 1

Introduction

The Internet has evolved from a small communication network, used only by academic

researchers and technology enthusiasts to the most culture-defining technology of the

last century. Within few decades, the Internet has grown to a backbone of communica-

tion and trade, and even short-time Internet blackouts for individual companies result

in economic damage estimated in ten thousands US dollars per minute of downtime.

Moreover, with the development of smartphones and social networks, the Internet has

become a major social factor in the life of the majority of people: cheap communication,

almost at the speed of light, from one continent to another is affordable for billions of

people and integrated into various entertainment systems. In addition to enhancing

social communication and possibilities, the Internet has also introduced various previ-

ously unthinkable challenges to privacy. As recent revelations have shown, companies

can gather vast quantities of information about their employees and customers, and

countries can even gather and monitor data from every communication of any two citi-

zens with each other and store this data for years, thus achieving eavesdropping powers

previously only described in a science fiction dystopia.

These invasions of people’s privacy have motivated millions of people to use anony-

mous communication (AC) protocols to anonymously communicate or browse the web.

In all AC protocols, traffic is sent via anonymizing proxies, i.e., servers are trusted to

relay the users’ traffic as if it originated from them, without revealing the identity of

the users. One of the most important protocols is the onion routing network Tor [42],

a widely employed low-latency anonymous communication service [109] used by more

than 2 million users every day. To provide anonymity, Tor routes a user’s traffic through

several anonymizing proxies. For each communication via Tor the trust is distributed

over three anonymizing proxies (also called nodes), instead of one proxy, which are

chosen from around 6500 volunteer nodes [110]. Using these anonymizing proxies, Tor

creates an anonymous channel for the user that ideally provides anonymity as long as

not all three proxies are corrupted – an important strategy, since not all volunteers can

be trusted [116]. In contrast to mix-nets, Tor allows for low-latency traffic, which is a

strict requirement for comfortable web surfing.

1

2 CHAPTER 1. INTRODUCTION

Whenever AC protocols strive for low-latency traffic, so called traffic-correlation

attacks become possible. Traffic correlation attacks allow to re-identify traffic even if

the traffic is encrypted, decrypted, or re-encrypted, based on the patterns of the traffic.

As traffic at different points in the network can be correlated, such attacks render Tor’s

ideal anonymity goals (partially) invalid and lead to the following central question from

a user’s perspective:

How anonymous is this channel that Tor creates, i.e., how likely is it that

an eavesdropper can deanonymize me?

Deriving the degree of a user’s anonymity is challenging for such a complex system

with a fluctuating set of 6500 nodes, where each node has different parameters, such as

its entrusted bandwidth and a set of TCP ports it offers for a communication. Previous

analyses are either empirical or abstract the Tor network by ignoring important real-

life parameters of Tor, such as the path selection algorithm, the varying entrusted

bandwidth of different Tor nodes, or the user’s requested ports. So far, there is no

methodology for performing an accurate, formally grounded analysis of the anonymity

provided by Tor.

1.1 Contribution

In this thesis we present a full formal methodology for quantifying the anonymity

of an AC protocol against eavesdropping adversaries and we apply this methodology

to the popular AC protocol Tor. Our contribution is manifold. We first propose a

novel perspective on anonymity, by defining several prominent notions of anonymity

as indistinguishability-based notions. Based on this intuition, we introduce AnoA, a

formal framework for deriving quantitative anonymity guarantees for the prominent

anonymity notions sender anonymity, recipient anonymity and relationship anonymity.

We then apply AnoA to Tor, utilizing an existing formalization of Tor in the universal

composability framework (UC) and show that AnoA’s central anonymity guarantee is

compatible with UC. Consequently, anonymity guarantees presented for an idealized

version of Tor carry over to its cryptographic instantiation, and thus, under reason-

able assumptions, to its implementation. We then analyze the possible impact that

an eavesdropper can have on Tor’s anonymity and define the concept of adversarial

observations and their impact on the respective anonymity notions. We show that a

fairly abstract, observation-based definition of Tor suffices for giving correct guarantees

by relating this abstract notion to Tor’s UC formalization. We derive a precise method

for calculating the impact of such an observation-based eavesdropper and show that

for fixed adversaries, i.e., for adversaries with a fixed set of eavesdropping points, this

calculation is precise up to a negligible factor. We show how to efficiently give an ap-

proximative guarantee for a whole class of adversaries and prove that these guarantees

are sound. Finally, we utilize the presented definitions and abstractions to perform the

1.1. CONTRIBUTION 3

largest formal evaluation of the Tor network so far. We analyze the impact of eaves-

droppers on Tor’s anonymity, which we model both in terms of compromised Tor nodes

and in terms of overly curious network infrastructure.

In what follows we describe our key contributions in slightly more detail.

AnoA – a framework for quantifying anonymity We present AnoA, a frame-

work for quantifying anonymity of autonomous communication (AC) protocols. AnoA

defines anonymity as a challenge-response game between a probabilistic polynomial

time (PPT) Turing machine A and a challenger machine Ch that simulates the AC pro-

tocol. AnoA is parametric in the targeted anonymity notion which it represents as a

function that depending on a challenge bit selects a scenario, e.g., for sender anonymity,

the anonymity function selects one of two possible senders. The goal of the adversary

is to predict the challenge bit by distinguishing the possible scenarios:

Informal Definition 1.1.1 (Reduction of Anonymity (Intuitive)). Let α be an ano-

nymity function. An adversary A that outputs either 0 or 1 reduces the anonymity of

a protocol Π by at most ε and δ, if the probability of the adversary to distinguish the

challenge bit used by the anonymity function is bounded by ε and δ:

Pr [0 = 〈A|Ch(Π, α(0))〉]
≤ eε Pr [0 = 〈A|Ch(Π, α(1))〉] + δ,

where z = 〈X|Y 〉 describes the output of the machine X after interacting with the

machine Y .

For deriving guarantees against adversaries with different observational capabili-

ties and for defining the number of Tor nodes the adversary can compromise and the

number of wires it can tap, we cluster adversaries into so called adversary classes that

describe the adversaries’ capabilities. We explore and define a set of conditions for an

adversary class such that we achieve single-challenge reducibility (SCR), i.e., guaran-

tees for one challenge suffice to generically derive guarantees for an arbitrary number

of challenges. To simplify subsequent analyses even further, we present a versatile, con-

structive definition of adversary classes, which we coin Plug’n’Play adversary classes

that by construction satisfy the conditions for SCR.

The anonymity impact of eavesdropping adversaries on Tor For analyzing

Tor, we instantiate the protocol Π in our AnoA definition with a formalization of Tor

in the universal composability (UC) framework, as presented by Backes et.al. [15]. To

counter trivial attacks by the adversary, we slightly modify the formalization by the use

of some wrapper machines for the environment. We analyze Tor’s anonymity and to

simplify subsequent analyses we show that considering one message per session suffices

for quantifying anonymity.

4 CHAPTER 1. INTRODUCTION

We define an abstract notion of the observations an adversary can make when

eavesdropping on Tor communication. Building upon this notion of observations we

define a significantly more abstract and simpler anonymity game in which we replace

the UC formalization of Tor with a simple observation function. We subsequently

show that this simplification is sound and tight for any eavesdropping adversary: we

show how to transform any adversary against Tor’s UC formalization into an adversary

against the observation function and vice versa.

Calculating precise formal guarantees We present a methodology for calculat-

ing the impact of passive adversaries on Tor, based on our notions of observations.

We define different types of eavesdropping adversaries, based on the novel concept of

budget-adversaries, which describe all adversaries that can compromise Tor entities and

connections between them, based on a budget and a cost function that assigns costs

to every compromisable entity and connection. We show a generic way for calculating

guarantees for any eavesdropping adversary that compromises a given set of Tor nodes

and connections and prove these calculations sound and tight up to a negligible factor.

Given a budget adversary class, we then show how to calculate guarantees in a rather

efficient manner and show that these guarantees are sound.

Evaluating Tor’s anonymity Finally, we show the applicability of our methodology

by performing a large-scale evaluation of Tor’s anonymity against eavesdroppers. Our

evaluation considers both Tor’s current path selection algorithm and interesting variants

thereof. Moreover, we analyze the impact of a large number of budget-adversaries,

including adversaries that corrupt a specific number of Tor nodes, adversaries that

corrupt Tor nodes with at most a given amount of bandwidth in total, adversaries that

corrupt all Tor nodes in specific countries and adversaries that corrupt Tor nodes based

on their monthly monetary upkeep costs. Moreover, we present a second analysis of

Tor against network infrastructural adversaries, i.e., adversaries that compromise part

of the Internet infrastructure, which allows them to eavesdrop on connections between

nodes.

Remark 1.1.1. This thesis contains work published in several international peer-

reviewed top conferences (CSF’13 [13], CCS’14 [14], ACNS’15 [16], and PETS’16 [12]).

A description of the AnoA framework that is more along the lines of the presentation

in this thesis is also to appear in the journal of privacy and confidentiality (JPC).

1.2 Overview

In this section we present the intuition behind key concepts of the thesis together with

several informal definitions of these concepts. To find a common basis for discussion, we

first describe the type of anonymity properties we aim at and isolate it from other pos-

sible interpretations of anonymity and privacy. Based on this intuition of anonymity,

1.2. OVERVIEW 5

we describe our novel indistinguishability-based methodology for defining anonymity, in

which an adversary tries to distinguish between so called anonymity scenarios. For the

three commonly considered anonymity notions sender anonymity, recipient anonymity,

and relationship anonymity, we define indistinguishability-based variants and compare

our definitions with similar definitions in the literature. Furthermore, we give a brief

overview over the anonymous communication protocol Tor and describe what an eaves-

dropping adversary can observe. We show how to cast these observations into formulas

that describe the reduction of anonymity imposed by the eavesdropper. Moreover, we

introduce our evaluation of Tor against several such eavesdroppers.

1.2.1 Anonymity and Privacy

In the literature, the concepts of anonymity and privacy are often not clearly distin-

guished. Some works consider anonymity an essential ingredient for privacy (how can

you protect your privacy, if anyone can trace your actions?), others consider privacy a

necessity for anonymity (how can you be anonymous if you leak personal information?).

In this section, we briefly discuss the concepts of privacy and anonymity in the con-

text of for the context of communication between two participants and choose one of

many possible interpretations of anonymity that we will use for the rest of this thesis.

We regard anonymous communication protocols as basic building blocks for construct-

ing privacy preserving applications and protocols. Hence, we strive for a definition of

anonymity that (a) is independent of the application in which the anonymous commu-

nication protocol is used, (b) is strong enough to hold independent of the context in

which it is used, and (c) matches our intuition of anonymity. Consequently, we consider

anonymity and privacy to be separate properties which we define as follows.

Informal Definition 1.2.1 (Privacy). Privacy is a property of the content of messages

(that might be publicly available). We distinguish between attribute disclosure, where

the messages leak information about certain attributes of their writer, e.g., age, gender,

or personal interests, and identity disclosure, where messages leak information about

the physical identity of their writer. We consider the end-points of the communication

to be independent of this content and thus irrelevant for an analysis.

Ideal privacy means that the content of messages does not leak information about

their writer.

Informal Definition 1.2.2 (Anonymity). Anonymity is a property of a communica-

tion channel that specifies whether or not the end-points of this channel can be identified.

We consider the transferred information to be independent from the end-points and thus

irrelevant for an analysis.

Ideal anonymity means that the communication can be considered an idealized anony-

mous channel, where the sender unobservably sends a message via an unobservable

direct connection to a trusted third party that, in turn, relays the message via an unob-

servable direct connection to the recipient.

6 CHAPTER 1. INTRODUCTION

Remark 1.2.1. The combination of anonymous communication and content-based in-

formation (which includes information about the structure of content) is non-trivial:

existing attacks on anonymity include so called website fingerprinting, in which the

structure of even encrypted and otherwise anonymous communication is used to iden-

tify which website a user visits. Similarly, by observing the stream of communication,

one can typically easily distinguish between a user that receives a small website and a

user that streams a video, simply by the shape and sheer amount of transferred infor-

mation.

These definitions cover only a subset of the notions and applications considered in

the literature, but allow us to clearly describe the properties we strive to achieve. The

integration of both notions is non-trivial and requires application-specific analyses. In

this thesis, we solemnly focus on anonymity, which we consider to be an important and

necessary building block for a wide variety of applications.

1.2.2 Intuition: Indistinguishability Based Anonymity

We consider three common notions of communication anonymity α in this paper: sender

anonymity (α = αSA, i.e., determine who is sending a message), recipient anonymity

(α = αRA, i.e., determine to whom a message is being sent), and relationship anony-

mity (α = αREL, i.e., determine a correlation between sender and recipient). Each of

these notions is defined as the (in-)ability of an adversary to distinguish two scenar-

ios that differ in their involved senders and recipients. This follows the established

concept of indistinguishability-based definitions in cryptography (e.g., IND-CCA se-

cure encryption): The adversary can initially corrupt Tor nodes and tap wires between

them (including wires from senders to Tor nodes and from Tor nodes to recipients).

Then, one of these two scenarios is selected at random, a Tor circuit is created for

this scenario, and the adversary is then allowed to make observations for this circuit

depending on the set of corrupted nodes. The adversary knows the set-up of both

scenarios, makes its observations, and it then has to decide which scenario it currently

observes.

In the following we present all three anonymity notions as so called anonymity

scenarios that should be hard to distinguish. For every scenario we present an intuitive

description, as well as an abstract definition. We compare the indistinguishability-based

notions based on scenarios with commonly considered notions of anonymity from the

literature.

Informal Definition 1.2.3 (Indistinguishability-based Anonymity). We say that a

protocol Π satisfies α up to δ for α ∈ {sender anonymity, recipient anonymity, re-

lationship anonymity} against an adversary A, if A cannot distinguish between the

respective anonymity scenarios with an advantage more than δ.

1.2. OVERVIEW 7

a)

TorS0

S1

R0

b)

TorS0

S1

R0

Figure 1.1: Sender anonymity scenarios. Either S0 communicates to R0 (a), or S1

communicates to R0 (b).

Sender Anonymity

Sender anonymity models that the sender of a message is well hidden and cannot be

easily discovered.

Sender Anonymity Scenarios For sender anonymity, we compare the communica-

tion from S0 to R0 to the communication from another sender S1 to the same recipient

R0. We say, Tor satisfies sender anonymity, if even a malicious recipient R0 cannot dis-

tinguish between the two senders. Consequently, the two scenarios differ in the sender,

but share the same recipient R0. In addition to its observations from corrupted nodes

and communication between corrupted nodes, the adversary is allowed to observe the

recipient R0 and should be able to distinguish if the communication originates at S0

or at S1. We refer to Fig. 1.1 for a graphical presentation of the scenarios for sender

anonymity.

Sender Anonymity in the Literature The notion of sender anonymity is intro-

duced in [93] as follows:

Anonymity of a subject from an adversary’s perspective means that the

adversary cannot sufficiently identify the subject within a set of subjects,

the anonymity set.

In comparison to our indistinguishability-based notion of sender anonymity, this

classical definition requires the adversary to directly identify a sender, i.e., to compute

a sender with sufficient probability, where the anonymity set intuitively describes how

hidden a sender is. Naturally, our anonymity notion is stronger than the classical

definition above.

Informal Lemma 1.2.1 (Sender anonymity comparison 1). For all protocols Π over

a (finite) user space S it holds that if Π provides δ-sender anonymity against any PPT

adversary A (of certain strength), as in Informal Definition 1.2.3, then classically,

no similar PPT adversary B (with the same strength) can compute the sender with

probability more than δ for any anonymity set N ⊆ S.

8 CHAPTER 1. INTRODUCTION

Proof Idea. We show the contraposition of the lemma: an adversary B that breaks

classical sender anonymity, can be used to distinguish between the anonymity scenarios.

We construct an adversary A against Informal Definition 1.2.3 by running B and by

comparing the output of B with the possible senders of our scenarios. If B outputs

one of those senders, A outputs the respective scenario. A has at least the success

probability in the indistinguishability game as B in the sender anonymity game. Since

A has no additional information, it is of similar strength as B.

In the converse direction, we lose a factor of 1
N in the reduction, where N is the size

of the anonymity set. If an AC protocol Π provides δ-sender anonymity, we classically

can only guarantee (δ ·N)-sender anonymity for Π.

Informal Lemma 1.2.2 (Sender anonymity comparison 2). For all protocols Π over

a (finite) user space S it holds that if no PPT adversary B (of certain strength) can

compute the sender S out of an anonymity set N with probability more than δ, then

Π provides (N · δ)-sender anonymity as in Informal Definition 1.2.3 against any PPT

adversary A (with the same strength).

Proof Idea. We show the contraposition of the lemma: an adversary A that breaks

sender anonymity as in Informal Definition 1.2.3, can be used to break classical sender

anonymity. We construct an adversary B against classical sender anonymity by running

A and outputting S0 if A outputs 0 and S1 if A outputs 1. If the senders from the

anonymity scenarios coincide with the randomly chosen sender from the classical notion,

the reduction works (with probability 1
N the sender is S0; with probability 1

N the sender

is S1). Thus, B has an advantage of δ
|N | of outputting the sender, if A has an advantage

of δ in distinguishing the scenarios.

Recipient Anonymity

Recipient anonymity models that the recipient of a message is well hidden and cannot

be determined easily.

Recipient Anonymity Scenarios For recipient anonymity we compare the com-

munication from S0 to R0 to the communication from the same sender S0 to another

recipient R1. We say Tor satisfies recipient anonymity if even an adversary observing all

outgoing traffic of S0 cannot distinguish between the two recipients. Similarly to sender

anonymity, the two scenarios differ in the recipient, but share the same sender S0. We

refer to Fig. 1.2 for a graphical presentation of the scenarios for recipient anonymity.

Recipient Anonymity in the Literature Recipient anonymity can analogously to

sender anonymity be defined via anonymity sets and the (in)ability of an adversary to

determine the real recipient within that set. Our observations and informal lemmas

from sender anonymity equally apply to recipient anonymity by the same arguments.

1.2. OVERVIEW 9

a)

TorS0 R0

R1

b)

TorS0 R0

R1

Figure 1.2: Recipient anonymity scenarios. The sender S0 either communicates with

R0 (a) or with R1 (b).

Relationship Anonymity

Relationship anonymity models that it is hard to determine the relationship between

senders and recipients, i.e., which sender communicates to which recipient. For any

given message, it should be hard to determine the sender of that message and the

recipient to which it is sent.

Relationship Anonymity Scenarios Capturing the absence of correlations to de-

fine relationship anonymity is more involved. We consider both an additional sender

S1 and an additional recipient R1: The first relationship anonymity scenario considers

the two cases that S0 communicates with R0 and that S1 communicates with R1; the

second scenario considers the two cases that S0 communicates with R1 and that S1

communicates with R0. After the scenario has been selected, one of the two described

cases for this scenario is chosen uniformly at random, then a Tor circuit is created for

this case, and the adversary can make its observations for this circuit. We refer to

Fig. 1.3 for a graphical presentation of the scenarios for relationship anonymity.

Relationship Anonymity in the Literature We find that, for the notion of rela-

tionship anonymity, many of the interpretations from the literature are not accurate.

In their Mixnet analysis, Shmatikov and Wang [101] define relationship anonymity as

‘hiding the fact that party A is communicating with party B’. Feigenbaum et al. [47]

also take the same position in their analysis of the Tor network. However, in the pres-

ence of such a powerful adversary, as considered in this work, these previous notions

collapse to recipient anonymity since they assume knowledge of the potential senders

of some message.

We consider the notion of relationship anonymity as defined in [93]: the anonymity

set for a message m comprises the tuples of possible senders and recipients; the ad-

versary wins by determining which tuple belongs to m. However, adopting this notion

directly is not possible: an adversary that gains partial information (e.g. by finding

out the sender of a communication), also breaks this relationship anonymity game, as

the sender-recipient pairs are no longer equally likely. Therefore we think that our

indistinguishability-based approach constitutes a better definition of relationship ano-

10 CHAPTER 1. INTRODUCTION

a)

TorS0

S1

R0

R1

b)

TorS0

S1

R0

R1

c)

TorS0

S1

R0

R1

d)

TorS0

S1

R0

R1

Figure 1.3: Relationship anonymity scenarios. On the left side are the scenarios in

which S0 communicates with R0 (a) or S1 communicates with R1 (c). These should be

hard to distinguish from the scenarios on the right side, where S0 communicates with

R1 (b) or S1 communicates with R0 (d).

nymity, as the adversary needs to uncover both sender and recipient in order to learn

the correlation between them and, thus, to break anonymity.

1.2.3 The Tor Protocol

When communicating over the Internet, the IP address of both the sender of a message

and the recipient of a message are visible in plain text. The recipient of a message needs

to be readable to allow the message to actually be forwarded to its destination. The

sender is included to allow the recipient to correlate the received packets and to send

its reply to the correct IP address. Both IP addresses are visible to every entity along

the path taken through the Internet, which allows a multitude of entities to store the

communication history of users and to build profiles about their personal and political

opinions, thus invading their privacy.

To hide this correlation between a sender’s IP address and a recipient’s IP address,

many use proxies, i.e., servers that relay messages from the sender to the recipient.

Such proxies (also called relays, or in the case of Tor, nodes) hide any direct connection

between the sender and the recipient of a communication. The Tor network [42, 109]

consists of a large number of around 6,500 such anonymizing proxies (in October 2015),

solely contributed by volunteers and usable without fee. Using any such proxy, however,

places a significant trust on the provider of the proxy that, by definition, sees all

incoming and outgoing traffic of any user and can create profiles on its own. Tor achieves

anonymity by the three main principles of a large variety in users, the distribution of

trust over three proxies per communication and the unpredictability of communication.

We first describe the technical design decisions of Tor that are inspired by these three

1.2. OVERVIEW 11

principles and then present a few of the available statistics about the Tor network.

To increase the variety of Tor users, Tor tries to please a large number of users.

The majority of users care about efficiency and comfort at least as much as about

privacy. Consequently, Tor aims at providing low-latency communication with sufficient

bandwidth suitable for browsing the web, thus significantly increasing the acceptance

of the Tor network among common privacy-aware users. The distribution of trust

over three Tor nodes (instead of one anonymizing proxy) significantly improves the

anonymity against malicious Tor nodes. Every communication is relayed over a so

called circuit consisting of three Tor nodes: the guard node, the middle node and the

exit node. Each node can only observe and relay traffic from its predecessor to its

successor and all traffic is encrypted. Moreover, a circuit is constructed in a telescopic

way: the sender first establishes a secure channel with the guard node, then, using

this secure channel establishes a second secure channel to the middle node, and finally,

using both secure channels he establishes a third secure channel to the exit node. By

way of construction the choice of exit node is hidden from the guard node and vice

versa. If a circuit was created, using the Tor node ng as guard node, nm as middle

node and nx as exit node, the sender has exchanged keys kng , knm , and knx with these

nodes respectively. For sending a message m to a recipient R, the sender creates a

layered encryption of the message and sends Enc(kng ,Enc(knm ,Enc(knx , (m,R)))) to

the guard node. The guard node ng, using kng removes one layer of encryption and sends

Enc(knm ,Enc(knx , (m,R))) to the middle node. The middle node nm, using knm removes

another layer of encryption and sends Enc(knx , (m,R)) to the exit node. The exit node

nx using the key knx removes the last layer of encryption and sends m to the specified

recipient R. Because of the layered encryptions that are “peeled” while sending the

message, this type of routing is called onion routing. We refer to Fig. 1.4 for a graphical

representation of this technique. Ideally, as long as at least one of the Tor nodes within

a circuit is honest and as long as there are many users that create Tor circuits, the

communication is anonymous, as every information aside from the predecessor and the

successor of a node is hidden by means of cryptography, with the exception that the exit

node can observe the message itself. To achieve confidentiality of messages, the sender

and the recipient have to exchange keys and send encrypted messages via Tor. Tor

clients choose fresh Tor nodes for every Tor circuit via a randomized selection method

that (ideally) uses the same distribution over Tor nodes for all senders and recipients.

Thus, controlling a small number of, say, k = 65 malicious Tor nodes out of the set of

n = 6500 Tor nodes, an adversary can only succeed if three of its Tor nodes were chosen

for the same circuit, resulting in a deanonymization chance of roughly
(
k
n

)3
= 0.0001%.

The ideal description of Tor presented so far is almost identical to the actual imple-

mentation of the Tor protocol, with a few highly significant differences that are essential

for Tor’s anonymity.

• The fact that Tor communication aims at low-latency communication allows for

so-called traffic correlation attacks. For example, assume that Alice uses Tor to

12 CHAPTER 1. INTRODUCTION

ngS nm nx R

m m m m

Figure 1.4: Channels for layered (onion) encryption. The sender S sends the message

m to the recipient R, using ng as the guard node, nm as the middle node and nx as

the exit node of a Tor circuit. The encryption here is displayed via encapsulating the

message in a rectangle. The color of the rectangle corresponds to the color of the entity

with which the sender exchanged the respective cryptographic key.

anonymously communicate to Bob. If Eve can observe traffic from Alice into the

Tor network, then Eve can note down the number of packets that Alice sends, as

well as the delay between those packets. If furthermore Eve observes, at roughly

the same time, traffic from the Tor network to Bob, she can compare the number

of packets and their delays with her notes and in some cases re-identify Alices

traffic. By applying a traffic correlation attack, it suffices for Eve to control the

guard node and the exit node of a communication. Moreover, if Bob controls

the guard node of Alice, he can apply traffic correlation attacks to deanonymize

Alice, since he observes all traffic Alice sends to him.

• The fact that Tor aims to provide sufficient bandwidth has lead to very influential

bandwidth-weights on the random choice over Tor nodes. The Tor client chooses

Tor nodes not uniformly but by a weighted random choice, where the weight

directly corresponds to (some measurement of) the entrusted bandwidth of a Tor

node. Consequently, a node that provides significantly more bandwidth than

other nodes will have a higher probability to be chosen.

• Since not everyone who provides a Tor node wants this node to be used as an exit

node, and since the guard position is considered more significant than the other

two positions, Tor does not allow every node at every position, which further

restricts the choices and thus modifies the probabilities: Nodes are assigned flags,

such as Exit, if they can be used as exit nodes Guard, if they can be used as

guard nodes, or Stable if they are considered stable enough for Tor circuits that

are required to work for more than a few minutes.

As these differences between the idealistic view of Tor and the actual implementation

heavily impact Tor’s anonymity, we require a formalization of Tor that is precise enough

to capture all presented subtleties. The anonymity analyses presented in this thesis

consider all mentioned properties correctly.

1.2. OVERVIEW 13

ngS-GS G-M nm M-X nx X-R RS-G G-M M-X X-R

Figure 1.5: Observation points of an eavesdropper.

1.2.4 From Observations of an Eavesdropper to Anonymity Guaran-

tees

When using Tor, one of the biggest open research questions is the impact of malicious

Tor nodes and the impact of eavesdroppers on the anonymity of users. There are two

main strategies for adversaries: performing aggressive active attacks, such as denial-of-

service attacks on Tor nodes or exploiting vulnerabilities in the protocol to watermark

traffic and performing undetectable, passive attacks, such as contributing a seemingly

honest Tor node but simultaneously trying to deanonymize users or to wiretap commu-

nication between senders, Tor nodes and recipients. Aggressive active attacks, although

devastating, are easily detectable and typically are also fixable via some modifications

of the Tor protocol. Consequently, in this work we focus on the second type of adver-

saries: passive eavesdroppers that try to undetectably deanonymize Tor users, either

by contributing Tor nodes or by wiretapping communication in parts of the Internet.

For any given Tor circuit that a sender S creates to communicate to a recipient

R, such an eavesdropper can sit at many different positions: it can control any of the

three nodes of a circuit (ng, nm, nx) and eavesdrop on traffic between the sender and

the guard node (S-G), between the guard node and the middle node (G-M), between

the middle node and the exit node (M-X) or between the exit node and the recipient

(X-R). We refer to Figure 1.5 for a graphical overview over these positions.

At any observation point at which the adversary can observe traffic, it can also

observe the protocol entities that communicate, e.g., a malicious guard node can ob-

serve the sender and the middle node of a communication. Such observations alone

can suffice for breaking anonymity in terms of the anonymity scenarios from Informal

Definition 1.2.3. In this thesis we show that observations of this granularity suffice

for calculating sound quantitative anonymity guarantees against eavesdropping adver-

saries. To this end, we first enumerate all possible relevant observations that an adver-

sary could make for any given circuit, i.e., all combinations of possible senders, guard

nodes, middle nodes, exit nodes and recipients. For every such observation and for

every anonymity scenario we calculate the probability that the considered adversary

can make this observation, where the probability is based on the random choices of

the sender that creates a circuit. More precisely, given any observation o, any circuit

C = (S, ng, nm, nx,R) and an adversary A, we check whether A would make the obser-

14 CHAPTER 1. INTRODUCTION

vation o for the circuit C. We then calculate the probability for every circuit C to be

created by the sender S of the anonymity scenario and accumulate the probabilities of

all circuits for which the adversary makes the same observation. Finally, we compare

the probability for each such observation depending on the anonymity scenario and

accumulate all differences in probabilities to yield an anonymity guarantee. We prove

that for every passive eavesdropper A these calculations indeed yield a precise char-

acterization of the advantage of A in distinguishing between the respective anonymity

scenarios.

Proving that the technique presented here results in sound (and for fixed adversaries

also tight) guarantees is the main technical contribution of this thesis. As the purpose

of this overview is to give an intuitive description of the targeted problem, we will

not discuss the strategy of our proofs here. Instead, we refer the interested reader to

Chapter 2 for our formal definitions of anonymity, to Chapter 3 for our definitions of

observations and their impact on Tor and to Chapter 4, where we derive a methodology

for calculating anonymity guarantees for eavesdroppers based on their observations and

show this methodology to be sound and, for fixed adversaries, tight.

1.2.5 Defining Categories of Eavesdroppers

We aim to apply the analysis sketched in the previous section to perform a large-scale

evaluation of the Tor network against passive eavesdroppers. To this end, we define a

variety of such eavesdroppers, depending on their attack vectors, and embed them into

our formal framework. In the following we sketch all considered adversaries, grouped

into curious Tor node adversaries that compromise or simply own a number of Tor

nodes and malicious network infrastructure adversaries that monitor Internet traffic

on a large scale.

Curious Tor Node Adversaries

We model curious Tor node adversaries by defining sets of budget adversaries ABf that

are parametric in a cost function f that assigns a cost to every Tor node and a budget

B that limits the expenses of the adversary. Every adversary A ∈ ABf controls a set of

Tor nodes s.t. the sum of the costs of all contained nodes is below the specified budget.

We then instantiate this fairly general adversary to model the following adversaries.

k-collusion Adversary A k-collusion adversary is the most straight-forward in-

stance of our budget adversary, where f assigns the cost 1 to every Tor node and

allows for a budget of k compromised nodes. This adversary models collusions of up

to k Tor nodes. Its worst-case instance typically compromises the Tor nodes with the

highest bandwidth.

1.2. OVERVIEW 15

Predicate Adversary Given any predicate P on Tor nodes, such as whether the

node runs a certain (vulnerable) version of the Tor software or whether it is within a

specified geographic jurisdiction, a predicate adversary sets the cost of all nodes that

satisfy the predicate to 0 and the costs of all nodes that do not satisfy the predicate

to ∞. The budget B = 1 states that the adversary can only compromise nodes for

which the predicate is satisfied. This adversary class directly specifies which nodes the

adversary will compromise and can be used to define arbitrary fixed adversaries.

Bandwidth-constrained Adversary A bandwidth-constrained adversary can com-

promise arbitrary Tor nodes that contribute up to a certain, specified amount of band-

width. This adversary models that a certain percentage of Tor’s bandwidth is compro-

mised. The cost function f assigns to each node a cost equal to the node’s bandwidth

and the budget B specifies the total compromised bandwidth.

Money-constrained Adversary The money-constrained adversary can compro-

mise arbitrary Tor nodes, but has to pay the (estimated) monthly costs required to

run them. This adversary models an adversary following a rational strategy that tries

to maximize its deanonymization power while minimizing its costs. The cost function

f assigns to each node a cost equal to the nodes monthly renting cost and the budget

B directly specifies the adversary’s monetary budget.

Malicious Network Infrastructure Adversaries

We model malicious network infrastructure as a predicate adversary that compromises

the communication into the Tor network, out of the Tor network or between Tor nodes,

but that does not compromise Tor nodes. The main difficulty in defining such types of

adversaries lies in learning the topology of the Internet, which is a hard problem on its

own.

Autonomous System(s) Adversary The autonomous system (AS) adversary com-

promises all communications between Tor nodes that run through one or more specified

autonomous systems. This adversary describes the impact that any Internet service

provider (or a collusion of several such companies) can have on Tor’s anonymity.

Internet Exchange Point Adversary The Internet exchange point (IXP) adver-

sary compromises all communications between Tor nodes that run through the specified

IXP. Since IXP’s typically do not show up in measurements of the Internet, we infer

the existence of an IXP on a route by considering the autonomous systems and the

physical location of the traversed subnets and assume that an IXP is present if two

ASes that openly peer at the IXP are traversed subsequently and if furthermore the

subnets are in geographic proximity of the IXP.

16 CHAPTER 1. INTRODUCTION

$100,000/mo 10 nodes 1 GB/s CC=DE

2014-09-01 2014-11-01 2015-01-01 2015-03-01 2015-05-01
0

0.2

0.4

0.6

i
m
p
a
c
t
S
A

Figure 1.6: One of the results of our analysis: The graph shows the advantage of the re-

spective adversary to distinguish between sender anonymity scenarios. The adversaries

include (from left to right) an adversary that can compromise arbitrary Tor nodes, but

has to pay for their monthly renting costs and that can spend up to 100,000 US dollars

per month, an adversary that can compromise 10 arbitrary Tor nodes of its choice, an

adversary that can compromise arbitrary Tor nodes with a total Bandwidth of at most

1 GB/s, and an adversary that compromises all Tor nodes in Germany.

Submarine Cable Adversary The submarine cable adversary compromises all

communications between Tor nodes that run through the specified submarine cable,

or that run through any cable that passes through the specified landing point. For

inferring the usage of a submarine cable, we try to learn the geographic location of the

traversed IP subnets and infer the usage of a cable by the usage of subnets that are

close to two (different) landing points of the same cable, typically accompanied by a

change of continents.

1.2.6 Evaluating Tor Against Eavesdroppers

For evaluating the Tor network we have performed several analyses over the course of

around one year, from August 2014 until June 2015. In our evaluation we compare the

impact of the adversaries from above on Tor’s anonymity for several variants of Tor’s

path selection algorithm.

1.3 Related Work

Our field of anonymity research is an ever-changing field that has attracted a lot of

attention in the last decades. We partition the related work into the categories anony-

mous communication and (onion) routing protocols, attacks and countermeasures, and

anonymity analyses. We begin by discussing a few selected anonymous communication

protocols and then focus on onion routing and, most prominently, the widely used onion

routing protocol Tor. After presenting these protocols we discuss a few types of attacks

that are conceptually hard to avoid when using anonymous communication protocols,

especially when using low-latency AC protocols for interactively browsing the web. Fi-

1.3. RELATED WORK 17

nally we review a number of existing analyses on AC protocols, compare them with

this work and group them into formal analyses and empirical analyses. We end the

section by discussing why we did not take an entropy-based approach to anonymity.

In what follows we discuss each category in more detail.

1.3.1 Anonymous Communication Protocols

Over the past decade, many protocols for anonymous communication have been pro-

posed. Two approaches, both based on fundamental work by Chaum in the 1980’s are

mixnets and dining-cryptographer nets (DC-nets). AC protocols based on the dining

cryptographers problem, called DC-nets [33] achieve impressive guarantees, but rely on

a vast communicational overhead. Mix-nets [34], consist of proxies that receive traffic

from different senders, wait until a sufficient amount of traffic has been sent and then

try to pertube this traffic to hide the identity of the senders. Specific protocols aim to

overcome the inefficiency of these original proposals. Examples include Herbivore [53],

which is based on DC nets, Dissent, which is based on DC nets with mixing [36], which

combines the ideas of DC nets with mix nets and even the cute idea of having an AC

protocol imitate a public transport system to anonymously add and remove information

to a bus-like message [20].

A different, but particularly successful methodology to provide anonymous com-

munication is the concept of onion routing[94, 55]. Onion routing protocols allow for

low-latency anonymous communication. Many onion routing approaches have been pro-

posed, e.g., Tarzan [49], a peer-to-peer variant of onion routing, Salsa [88] that tries to

help the node selection if the users only have incomplete knowledge of the set of nodes,

and PIR-Tor [82], that adds private information retrieval techniques to such variants

of onion routing to achieve a better scalability. Variants of onion routing protocols

either focus on high performance [74, 35], or on very strong variants of anonymity [72].

Danezis et al. [37] explore onion routing on the basis of a social network, where friends

act as relays.

The most popular onion routing protocol today, Tor [42], currently is used by around

two million users every day [110]. Tor’s success inspired many Tor related scientific

papers that propose slight variations, present vulnerabilities and attacks and that try to

analyze Tor’s anonymity. Since the focus of this thesis lies in analyzing Tor’s anonymity

against a specific type of attacks, we now discuss papers reasoning about Tor in slightly

more detail.

The Tor literature is rich on proposals for new path selection algorithms. Some

propose to increase the anonymity of the users [1, 45, 70, 14, 71, 60] by reducing the

attack vectors of an adversary that controls part of the Internet infrastructure or part

of the Tor network. Others propose to increase the performance (i.e., expected latency

and throughput) of the Tor network [80, 72, 66, 108, 84, 4, 8, 115, 2, 57, 3, 5].

However, although most of these proposals come with a specific evaluation highlight-

ing the performance impact or the anonymity impact of the proposed change (rarely

18 CHAPTER 1. INTRODUCTION

both), their analyses are incomparable. The rich literature on variants of Tor motivates

us to provide a framework for objectively quantifying and comparing the anonymity

impact of the different considered adversaries (e.g., adversaries that compromise Tor

nodes or adversaries that compromise parts of the Internet infrastructure) against dif-

ferent variants.

1.3.2 Practical Attacks and Countermeasures

The field of anonymity research has discovered many strong attacks against anonymity

protocols and subsequently tried to prevent them via countermeasures.

A very successful type of attacks is called traffic correlation attacks [77, 86, 102,

87, 44, 52, 31, 30, 83, 117, 69]. Applying a traffic correlation attack, the adversary can

re-identify traffic it observed at other points in the network, even if the traffic has been

encrypted, re-encrypted or decrypted in between by analyzing the patterns, timings and

other features of the traffic that are preserved by the cryptographic operations applied

in between. As traffic correlation attacks are not specific to Tor’s implementation,

usage or protocol specification, but that are practically unavoidable without making

Tor as it is unusable, we capture them in our formalization.

There also is a rich literature on other, more specific attacks, out of which we present

only a small selection of interesting attacks. Borisov et. al show that denial of service

(DoS) attacks against Tor can also impact anonymity by increasing the adversary’s

attack surface [22]. The revelation of protocol vulnerabilities that allow cheap DoS

attacks suggest that this might even be a successful strategy [17]; Jansen et al. present

a way to anonymously host DoS attacks against powerful Tor nodes [68]. Similarly,

Bauer et. al [18] leverage a (fixed) vulnerability that allowed Tor nodes to significantly

cheat when reporting their bandwidth and thus to increase their impact on Tor. The

attacks that abuse such vulnerabilities typically are both devastating to anonymity and

detectable by the Tor network. Consequently, we do not focus on these protocol-specific

(and fixable) attacks against Tor in this thesis. However, revelations of vulnerabilities

typically result in the need to patch the Tor protocol, which motivates us to provide a

reusable and easily configurable framework for analyzing Tor (and other AC protocols).

Adversaries can sometimes learn the so called fingerprint of a website, i.e., the

amount of traffic it sends and the number of requests it creates. This leads to an

attack in which an adversary can quite trivially break recipient anonymity of a low-

latency AC protocol by identifying the recipient via its fingerprint, even if the traffic is

encrypted. The literature on fingerprinting attacks also considers such content-based

attacks against onion routing in general and Tor in particular [56, 91, 114].

1.3.3 Anonymity Analyses

Pfitzmann and Hansen [93] develop a consistent terminology for various relevant ano-

nymity notions; however, their definitions lack formalism. Nevertheless, these informal

1.3. RELATED WORK 19

definitions form the basis of almost all recent anonymity analysis, and we also adopt

their terminology to validate the anonymity definitions in AnoA.

There has been a substantial amount of previous work [107, 39, 98, 100, 78, 58,

101, 38, 46, 47, 51, 6, 48] on analyzing the anonymity provided by various AC proto-

cols such as dining cryptographers network (DC-net) [33], Crowds [95], mix network

(Mixnet) [34], and onion routing (e.g., Tor) [50, 61, 94]. Previous frameworks such as

[63] only guarantee anonymity for a symbolic abstraction of the AC protocol, not for its

cryptographic realization. Moreover, while some existing works like [48] consider an ad-

versary with access to a priori probabilities for the behavior of users, analyses struggle

with adversaries that possess arbitrary auxiliary information about user behavior.

There have been analyses which focus on a particular AC protocol, such as [98,

38, 101, 51, 73] for Mixnet, [21, 6] for DC-net, [39, 100] for Crowds, [97] for Shadow,

[105] for Dissent, and [107, 78, 46, 47, 70, 48] for onion routing. Most of these study

a particular anonymity property in a particular scenario and are not flexible enough

to cover the emerging system-level attacks on the various AC protocols. Some of the

existing frameworks and analyses focus on changes in entropy [39, 98, 101, 38], which

allows, but also requires, to explicitly specify the adversary’s initial knowledge. We

refer the readers to [48, Sec. 5] for a detailed survey up to 2012.

Formal Treatment of Anonymity Notably, there has been work on exploring met-

rics related to the multiplicative factor in our anonymity definitions: Andres et al. [6]

distinguish multiplicative leakage and additive leakage (however, as alternatives, not in

combination with each other). Their approach is focused on concurrent systems and

applied to the dining cryptographers protocol. Moreover, Shmatikov [100] defines the

notions of “probable innocence” and “possible innocence” – in terms of our metric, a

multiplicative factor quantifies the strength of “probable innocence”, while ensuring

“possible innocence”, whereas the distinguishing events rule out “possible innocence”.

A relatively recent result [48] among these by Feigenbaum, Johnson and Syverson

models the OR protocol in a simplified black-box abstraction, and studies a notion

of relationship anonymity which is slightly different from ours: here the adversary

wishes to identify the destination of a user’s message. As discussed in Section 1.2.2,

this relationship anonymity notion is slightly weaker than ours. Moreover, their model

is not flexible enough to extend to other system-level scenarios such as fingerprinting

attacks [92, 25, 44].

Building on the work of Hevia and Micciancio [61], Gelernter and Herzberg pub-

lished, concurrently with our AnoA framework, an expressive framework that extends

the work of Hevia and Micciancio with active adversaries that adaptively send in-

puts [50]. They apply their methodology to obtain an impossibility result for a strong

combination of sender anonymity and unobservability, which they coin “ultimate anony-

mity”. However, as in the work of Hevia and Micciancio, they only consider qualitative

anonymity notions (i.e., protocols that only allow a negligible chance of de-anonymizing

20 CHAPTER 1. INTRODUCTION

users), which does not allow them to quantify the anonymity loss in low-latency anony-

mous communication networks, such as Tor. Moreover, they do not provide a mecha-

nism, such as the adversary classes presented in this work, to flexibly relax the strength

of the adversary.

These pieces of work, however, abstract the Tor network by ignoring characteristics

of Tor that significantly influence a user’s anonymity, such as the path selection algo-

rithm, the varying entrusted bandwidth of different Tor nodes, or the user’s requested

ports. All these works assume that the path selection algorithm chooses nodes uni-

formly at random (which Tor does not) and, hence, do not provide rigorous guarantees.

Moreover, the formalizations of Tor [50, 48] ignore subtle, yet potentially influencial,

differences in adversarial observations whenever different senders or recipients have an

impact the probabilities of the selected Tor circuits, e.g., because they use specific

parameters for Tor, or even alternative path selection algorithms.

Empirical Studies and Simulations Empirical studies and simulations are a very

successful method for generating insights into the strengths and weaknesses of an anony-

mous communication protocol. In contrast to abstract theoretical analyses, these em-

pirical works often are close to the practical implementation of the protocol in question

and thus provide realistic results. However, the are, by nature, empirical and in-

complete. For us, these works provide an inspiring motivation for formalizations and

provably sound analyses.

This second line of work models Tor’s anonymity relevant characteristics more accu-

rately [69, 113, 19, 67, 29, 65, 85], e.g., they explicitly model Tor’s path selection. Most

works in this area focus on simulating Tor rather than on performing live experiments

on Tor, as this might lead to privacy violations (c.f. [75] for a discussion). Johnson et

al. [69] present a simulation of the Tor network, based on a probabilistic (bandwidth-

based) adversary that compromises a certain percentage of Tor’s bandwidth, which the

adversary has to split into entry bandwidth and exit bandwidth. This strategy, how-

ever, neglects the case that a relay that offers its bandwidth as entry node will with

significant probability be chosen as a middle node (i.e., the second proxy) or as an exit

node (i.e., the third proxy) and can still learn some information.

The work by Wacek et al. [113] goes into a similar direction. They construct a

slightly smaller model of the Tor network, on which they perform extensive simulations,

using the real Tor client code, to evaluate the impact of path selection algorithms on

Tor’s performance and anonymity. As both analyses are based on simulations, they, in

contrast to our work, do not yield provable bounds on the degree of a user’s anonymity.

In the category of empirical analyses without rigorous anonymity guarantees, Mur-

doch and Watson [85] present an analysis of proposed path selection algorithms against

(bandwidth-based) adversaries that can inject malicious nodes into the Tor network,

subject to a specific adversarial budget. Their work inspired the formalization of our

budget adversary, with the difference that our adversary compromises existing nodes

1.3. RELATED WORK 21

instead of adding new nodes.1 Other works strive to analyze Tor against network-level

adversaries, which we consider a highly interesting, yet orthogonal, problem. In this

area, Johnson et al.[70] and later Jaggard et al. [64] propose path selection adaptations

based on network trust to reduce the impact of network adversaries. Wacek et al. [113]

analyze the impact of path selection algorithms on anonymity and performance by

simulating a significant fraction of the Tor network, and then they analyze the anony-

mity of various path selection algorithms against (AS-level) network adversaries. The

amount of analyses based on simulations and measurements further underlines the im-

portance of a rigorous approach for quantitatively assessing the anonymity of Tor’s

path selection algorithm and comparing it against alternative variants.

Some empirical works [19, 65, 99] provide practical tools for simulating the Tor

protocol. We consider this a very helpful contribution to the community as it allows

for rerunning experiments and for extending analyses in a comparable way. With our

implementation of MATor , we strive to also provide a usable analysis tool for Tor that

is, however, based on our formal analysis instead of empirical measurements.

Relation to Entropy-based Anonymity Notions Entropy-based analyses [111,

32, 24] use well-established anonymity notions to argue about the impact of an ad-

versary. Hemal, Gregoire and Goldberg [59] argue that an attack-based view might

be more favorable in some situations. They consider an adversary that has a certain

bandwidth budget and tries to infiltrate as many paths as possible. As Paul Syverson

portrays it in a well-written article [106], entropy is useful, but cannot easily capture

some of the most important concepts we look for when analyzing anonymity. The ano-

nymity guarantee we present should mainly depend on the hardness of an adversary

to overcome the AC protocol and not present an average-case result that bears only

a small importance to some unlucky users. Moreover, it should not be based on the

number of other users in the system if they actually do not significantly impact the

anonymity of individual users. Insights and thoughts like these actually lead us to

develop AnoA and to focus on worst-case indistinguishability guarantees.

To avoid giving too pessimistic guarantees, we parametrize the adversary by its

capabilities, its knowledge and its view of the world, thus reaching a balance between

worst-case guarantees against an adversary with almost arbitrary prior knowledge and

realistic assumptions and relaxations of such an adversary by explicitly reducing its

knowledge.

Our indistinguishability-based notion reasons about the cryptographic implemen-

tation of Tor. For such cryptographic systems with their computational security guar-

antees, entropy-based notions, including notions that define the effective size of an

anonymity set [98, 39], are not directly applicable. A relation between entropy-based

1An method for quantifying the impact of an adversary that adds new nodes to the network based

on our AnoA framework and out notion of observations is developed by Tahleen Rahman as part of

her Master’s thesis.

22 CHAPTER 1. INTRODUCTION

notions and cryptographic notions might be possible along the lines of [9] that estab-

lishes a tight correspondence between the information-theoretic capacity of channels,

their abstract description and finally their cryptographic instantiations. We plan to

investigate this approach in the context of more comprehensive systems such as Tor in

future work.

Chapter 2

AnoA

In this chapter we introduce AnoA, a formal framework for quantifying anonymity

guarantees for anonymous communication (AC) protocols. We strive for a framework

that is defined independent of the AC protocol we analyze. Moreover, we aim for defi-

nitions that match our intuition of anonymity scenarios, as discussed in Section 1.2.2.

The framework should be parametric in the anonymity notion and should also be able

to formalize arbitrary efficient adversaries.

To this end, we define the AnoA framework as a challenge-response game between

an adversary machine and a challenge machine. The challenge machine simulates the

anonymity scenarios (parametric in the anonymity notion). Finally, we define the con-

cept of adversary classes for restricting adversaries and present a few formal results

that make our upcoming analyses easier: We show that for some adversary classes ana-

lyzing the protocol for one challenge suffices for deriving results for multiple challenges.

As this property comes from reducing adversaries that initialize several challenges to

adversaries that only initialize one challenge, we coin it single-challenge reducibility.

Note that even though this thesis focuses on analyzing the anonymity of Tor against

eavesdroppers, all results from this chapter are applicable to arbitrary AC protocols

and other types of adversaries as well.

2.1 Notation

We consider the following sets of entities: a set of senders S, a set of recipients R and

a set of Tor nodes N . Subsequently, we group senders, recipients and Tor nodes in the

set of all relevant Tor entities, i.e., entities that can send and/or receive messages and

write E = N ∪ S ∪R.

23

24 CHAPTER 2. ANOA

2.2 Full AnoA Game

We formalize anonymity as a challenge-response game, in which the adversary has to

distinguish two scenarios. Formally, an anonymity notion is a function α that receives

as inputs two senders S0 and S1, two recipients R0 and R1, and a so-called challenge bit b.

It then selects one sender and one recipient based on the challenge bit and the considered

anonymity notion. This selection can be probabilistic and for every individual challenge

the anonymity function can keep state. The anonymity of a protocol is then defined as

a bound on the adversary’s advantage in guessing the challenge bit.

Game-based anonymity definition The definition of the AnoA challenger Ch is

the main building block for the definition of the adversary’s advantage in AnoA as a

challenge-response game. In the AnoA framework, the challenger receives as input a

description of the protocol Π to be analyzed, an anonymity notion α, a bound γ on the

permitted challenge-messages (see-below), and the challenge bit b. It then simulates the

protocol for the sender-recipient scenario selected by α. The adversary interacts with

the challenger in order to determine which scenario is being simulated. The adversary

knows all inputs to the challenger up to an uncertainty of one bit (the challenge bit b).

We now describe the challenger Ch in detail and refer to Figure 2.1 for an algorithmic

definition of Ch.

The AnoA challenger.

• As described above, the challenger Ch expects as inputs a description of the

protocol Π to be analyzed, the anonymity notion α, a bound γ on the permitted

challenge-messages, and the challenge bit b. The challenger keeps track of active

sessions Sessions and the states of all challenges in a list States consisting of γ

entries that initially are FRESH.

• Challenge-messages: Upon receiving a message Challenge = (S0, S1,R0,R1,m,Ψ)

∈ S2 ×R2 × {0, 1}∗ ×N, the challenger checks whether the challenge index is al-

lowed (Ψ ≤ γ) and whether the challenge state allows further challenge messages

with this tag (States[Ψ] 6= OVER). If any of these checks fails, the challenger out-

puts an error symbol ⊥ to the adversary. If they succeed, Ch computes the ano-

nymity notion α on (S0,S1,R0,R1), the challenge state States[Ψ] and the challenge

bit b and obtains a sender-recipient pair (S∗,R∗) ∈ {S0,S1}×{R0,R1}, as well as an

updated challenge state state′. The challenger first stores the updated challenge

state and then simulates the protocol where S∗ sends the message m to R∗. We

abbreviate this using the subroutine SimulateProtocol(Π,S∗,m,R∗, (Ch,Ψ))

in Figure 2.1. For protocols that use sessions: If no session ID sid exists in

Sessions for the challenge Ψ, the challenger creates a new session sid ← N and

stores it in Sessions together with the challenge tag Ψ. Otherwise, it retrieves

2.2. FULL ANOA GAME 25

the existing session ID. Via the existing or freshly created session the challenger

then sends the message m from S∗ to R∗ using Π.1

• Input-messages: Upon receiving a message Input = (S,R,m, z) ∈ S×R×{0, 1}∗×
N, the challenger directly calls the subroutine SimulateProtocol(Π,S,R,m,

(A, z)), as described above, with the difference that fresh sessions are created for

every nonce z. These sessions are by definition disjoint from the sessions created

for challenge messages. Input-messages, hence, capture additional information

the adversary may have about the communication contents in the protocol.

Based on the challenge-response game introduced above, we can now define impact

on anonymity of an adversary that may compromise protocol parties and connections

between them, if the protocol description allows that. We also call this anonymity

impact the reduction of anonymity imposed by the adversary. Our definition is mo-

tivated by similar definitions presented under different contexts, e.g. differential in-

distinguishability [16] for cryptography with imperfect randomness, and differential

privacy [43] for privacy in statistical databases. Formally, we say that a protocol Π

provides (α, γ, ε, δ)-IND-CDP if the (in)distinguishability of the random variables de-

fined by 〈A|Ch(Π, α, γ, 0)〉 and 〈A|Ch(Π, α, γ, 1)〉 can be bounded multiplicatively and

additively be ε and δ. Note that we write 〈A(x)|B(y)〉 for the output of a machine

A on input x when interacting with a machine B on input y and consequently write

z = 〈A(x)|B(y)〉 for the event that said output equals z.

Definition 2.2.1 (Adversary’s Advantage; Reduction of Anonymity). Let α be an

anonymity function, γ ∈ N. Then, the adversary’s advantage of an adversary A against

a protocol Π for γ challenges of the anonymity notion α is bounded by ε and δ, with

ε ≥ 0, 0 ≤ δ ≤ 1, if for all sufficiently large η ∈ N, we have

Pr [0 = 〈A(1η)|Ch(Π, α, γ, 0)〉]
≤ eε Pr [0 = 〈A(1η)|Ch(Π, α, γ, 1)〉] + δ.

We say that a protocol Π exhibits a reduction of anonymity of at most (ε, δ) under γ

challenges (formally: Π is (α, γ, ε, δ)-IND-CDP) against a class A of adversaries if the

adversary’s advantage of all probabilistic polynomial-time adversaries A ∈ A against Π

for γ challenges of the anonymity notion α is bounded by ε and δ.

Anonymity Function The anonymity guarantee we provide in AnoA is parametric

in the function α : {0, 1}∗ × S2 × R2 × {0, 1} → {0, 1}∗ × S × R describing the ano-

nymity notion. This function encodes the specific anonymity notion we analyze, e.g.

sender anonymity, recipient anonymity or relationship anonymity. The main purpose

of the anonymity function α is to validate challenges issued by the adversary for the

1The semantics of the simulation and the session handling depends on the protocol. For Tor, the

sessions correspond to Tor circuits.

26 CHAPTER 2. ANOA

Adaptive AnoA Challenger Ch(Π, α, γ, b)

Initialize the Game

Set Sessions := ∅,States := [FRESH, FRESH, . . . , FRESH] (γ entries, one per chal-

lenge).

Upon message Input = (S,R,m, z)

SimulateProtocol(Π,S,R,m, (A, z))

Upon message Challenge = (S0, S1,R0,R1,m,Ψ)

if Ψ /∈ {1, . . . , γ} ∨ States[Ψ] = OVER then

Output ⊥.

else

Compute (state′,S∗,R∗)← α(States[Ψ],S0,S1,R0,R1, b)

Set States[Ψ] := state′.
SimulateProtocol(Π,S∗,R∗,m, (Ch,Ψ))

end if

Upon message (m, sid) from Π

if (ID, sid) ∈ Sessions for some value ID then

Send Observations = (m, ID) to A.

end if

Subroutine SimulateProtocol(Π, S,R,m, ID), where ID = (Ch,Ψ) or ID =

(A, z)

if (ID, sid) ∈ Sessions for some value sid then

Retrieve this sid

else

Set sid← N
Store (ID, sid) in Sessions

end if

Run Π on (S,R,m, sid). If the protocol supports sessions, use session sid (or

create a fresh one, if no session sid exists). The precise semantics obviously

depends on the protocol Π.

Figure 2.1: The full AnoA challenger.

anonymity notion represented by α and to choose one of the challenge inputs based on

the challenger Ch’s challenge bit. We construct the anonymity functions for different

anonymity notions in Section 2.3.

2.3. ANONYMITY NOTIONS 27

About the Additive and Multiplicative Bound In Definition 2.2.1, we bound the

difference in probabilities between 〈A(1η)|Ch(Π, α, γ, 0)〉 and 〈A(1η)|Ch(Π, α, γ, 1)〉 by

a multiplicative bound eε and an additive bound δ. The multiplicative bound indicates

the distinguishability of both random variables under ideal conditions, i.e. quantifies

the leakage inherent to the analyzed protocol Π, even against a passively observing

adversary. The additive bound δ gives us the probability with which the adversary can

(with certainty higher than ε) distinguish both Ch(Π, α, γ, 0) and Ch(Π, α, γ, 1). For

anonymous communication networks this can be intuitively interpreted as the likelihood

of a distinguishing event which allows the adversary to break anonymity and identify

the hiding party.

If the adversary has an advantage δ in distinguishing between two scenarios, e.g.,

two possible recipients of a message, this might stem from a chance of breaking the

cryptography involved in the protocol, i.e., by guessing a decryption key, or a chance to

entirely compromise relevant protocol parties. Generally, such an advantage can stem

from a certain probability of finding hard evidence or proof for the scenario. In contrast,

a (purely) multiplicative factor describes that the adversary has some advantage in

guessing the scenario, but is provably not able to find hard evidence or even proof.

Multiple Challenges As many differential-privacy style guarantees, IND-CDP ben-

efits from a straight-forward generalization on the number of challenges. Allowing more

than one challenge does not lead to conceptually new attacks, but simply increases the

values of ε and δ depending on the number of challenges:

Informal Theorem 2.2.1 (Single-Challenge Reducibility). For every protocol Π, ev-

ery anonymity function α, and every γ ∈ N. Whenever Π is (α, 1, ε, δ)-IND-CDP, with

ε ≥ 0 and 0 ≤ δ ≤ 1, then Π is (α, γ, γ · ε, γ · eγε · δ)-IND-CDP.

Note that we did not specify the adversary in this Theorem, as its validity cannot

be tied to an individual adversary, but requires a class of adversaries. Consequently,

we do not discuss the generalization here, but refer to Section 2.4.1, where we define

adversary classes for which the Theorem holds. Such a result greatly amplifies the utility

of our analyses: a rather simple analysis yields guarantees for an arbitrary number of

challenges.

2.3 Anonymity Notions

In this section we present a variety of example anonymity notions for AnoA. These

notions are represented as anonymity functions that describe the challenges in the

game-based definition between our challenger (see Figure 2.1) and the adversary.

For all anonymity notions, the challenge state state defines whether a challenge has

not been started yet (in which case state = FRESH) and otherwise carries all relevant

information for ensuring consistency over all messages belonging to the same challenge.

28 CHAPTER 2. ANOA

αSA(state,S0, S1,R0,R1, b) :

if state = FRESH then

state := (S0,S1,R0)

else if state 6= (S0,S1,R0) then

output ⊥
end if

output (state,Sb,R0)

αRA(state,S0,S1,R0,R1, b) :

if state = FRESH then

state := (S0,R0,R1)

else if state 6= (S0,R0,R1) then

output ⊥
end if

output (state,S0,Rb)

αREL(state, S0,S1,R0,R1, b) :

if state = FRESH then

a←u {0, 1}
state := (S0,S1,R0,R1, a)

else if state 6= (S0,S1,R0,R1, a) for some a ∈ {0, 1} then

output ⊥
end if

if b = 0 then

output (state,Sa,Ra)

else

output (state,Sa,R1−a)
end if

Figure 2.2: The anonymity functions for AnoA.

2.3.1 Sender Anonymity

Sender anonymity characterizes the anonymity of senders against a (possibly even ma-

licious) recipient. In contrast to other notions from the literature, we define sender

anonymity as the inability of an observer to decide which of two self-chosen senders is

sending messages to the recipient.

We formalize our notion of sender anonymity with the definition of an anonymity

function αSA as depicted in Figure 2.2. Basically, αSA selects one of two possible

2.3. ANONYMITY NOTIONS 29

challenge senders while returning the first given recipient.

Definition 2.3.1 (Sender anonymity). A protocol Π provides (γ, ε, δ)-sender anony-

mity against A, if it is (αSA, γ, ε, δ)-IND-CDP against A for αSA as defined in Fig-

ure 2.2.

Example 2.3.1 (Sender anonymity). The adversary A decides that it wants to use the

senders Alice and Bob in the sender anonymity game. It sends a challenge Challenge =

(Alice,Bob, evilserver.com, evilserver.com,m, 1) for sending some message m of A’s

choice to a (probably corrupted) recipient evilserver.com; note that there is only one

relevant recipient for a sender anonymity challenge. The anonymity function αSA now

outputs (depending on the challenge bit) one of the two senders and the recipient.

2.3.2 Recipient Anonymity

Recipient anonymity characterizes that the recipient of a communication remains anony-

mous, even to observers that have knowledge about the sender in question. Our notion

of recipient anonymity is defined analogously to sender anonymity: the anonymity

function selects one of two possible recipients for a message.

Definition 2.3.2 (Recipient anonymity). A protocol Π provides (γ, ε, δ)-recipient ano-

nymity against A, if it is (αRA, γ, ε, δ)-IND-CDP against A for αRA as defined in

Figure 2.2.

Remark 2.3.1 (Messages and Website Fingerprinting). There are known practical at-

tacks against recipient anonymity that work by learning the fingerprint of a website,

i.e., the shape of messages sent by the respective web-server. In such a website finger-

printing attack, the attacker checks traffic features (e.g., volume and direction changes)

of the response, which in many cases is unique as recent studies show [92, 25]. Such

a trivial attack is possible against any low-latency anonymous communication protocol

and should hence be excluded for quantifying the anonymity guarantees of a low-latency

anonymous communication protocol. Following our intuition of anonymity from Sec-

tion 1.2.1 that an ideal AC protocol should provide an anonymous channel, not neces-

sarily hide the identity of parties that leak information about themselves via the content

of messages they send, we exclude such attacks by explicitly requiring that the content

of messages does not depend on the challenge bit.

One can account for possibly different message requirements for different recipients,

by introducing two challenge messages, similar to senders and recipients. The anony-

mity function then selects the message appropriate for the selected recipient. To still

counter attacks based on the pattern of those messages, the challenger checks whether

the messages have the same length.

30 CHAPTER 2. ANOA

2.3.3 Relationship Anonymity

A protocol satisfies relationship anonymity, if for any communication, the adversary

cannot determine sender and recipient of this communication at the same time [93].

We model this property by letting the anonymity function αREL choose one of two

possible senders and one of two possible recipients for a given challenge. We then

group the four possible combinations in two sets (one defined by the adversary and one

modified by the anonymity function) and let the adversary guess from which set the

challenger sampled the sender and the recipient of the communication.

More formally, the anonymity function αREL on input (state, S0,S1,R0,R1, b), as

defined in Figure 2.2, chooses either a sender Si and a recipient Rj with the same index

i = j (for b = 0) or a sender Si and a recipient Rj with different indexes i 6= j (for

b = 1).

Definition 2.3.3 (Relationship anonymity). A protocol Π provides (γ, ε, δ)-relationship

anonymity against A, if it is (αREL, γ, ε, δ)-IND-CDP against A for αREL as defined in

Figure 2.2.

Example 2.3.2 (Relationship anonymity). The adversary A decides that it wants to

use the senders Alice and Charlie and the recipients Bob and Dave in the relationship

anonymity game. It wins the game if it can distinguish between the scenario “0” where

Alice communicates to Bob or Charlie communicates to Dave and the scenario “1”

where Alice communicates to Dave or Charlie communicates to Bob. Only one of those

four possible instructions will be fed to the protocol.

The adversary A sends a challenge message Challenge = (Alice,Charlie,Bob,

Dave,m,Ψ) to Ch. The anonymity function αREL then randomly selects a sender

a ∈ {Alice,Charlie}, say Alice. Then, depending on the challenge bit b, the func-

tion outputs either the pair (Alice,Bob) as specified by A (for b = 0), or (Alice,Dave)

as a modified instruction (for b = 1).

2.4 Adversary Classes

AnoA assumes a strong attacker that can choose the users’ inputs and, if the protocol

permits, freely compromise protocol parties and connections between them. For many

protocols the resulting anonymity guarantees are quantitative and inherently depend

on the choices of the adversary, most prominently on its compromisation strategy. By

defining restrictions for the adversary’s capabilities, we can analyze a multitude of

realistic scenarios and give meaningful worst-case guarantees for all adversaries with

these restrictions.

Technically, we reason about sets of adversaries that do not exploit their full ca-

pabilities. We call such sets adversary classes if they can be constructively described

in terms of a PPT wrapper machine that internally runs arbitrary PPT machines. In

this section, we give examples for adversary classes and identify sanity conditions for

2.4. ADVERSARY CLASSES 31

adversary classes. We show that all adversary classes that satisfy these sanity con-

ditions are single-challenge reducible (SCR). For a SCR adversary class it suffices to

show anonymity bounds for a single challenge to immediately derive bounds for more

challenges, which significantly simplifies anonymity analyses. Finally, to ease the usage

of AnoA in subsequent analyses, we construct a general template for adversary classes

(Plug’n’Play adversary classes) and show that every instantiation of the template is

SCR.

2.4.1 Defining Adversary Classes

An adversary class is a set of PPT machines that is constructively defined in terms of a

PPT wrapper machine A(·). This wrapper machine internally simulates the adversary

in a black-box fashion, which we denote with A(A) for any specific adversary A. The

machine A(A) restricts A in the following three dimensions: (a) in its ability to send

messages to the protocol (i.e., for compromising parties or injecting new messages), (b)

in its possible challenge messages, and thus, in its knowledge about the world and (c)

in its possible observations of messages from the protocol, and thus, in its ability to

gain insights about leakage. Moreover it may communicate with the adversary. We

simply write A for the set of all PPT adversaries described by the wrapper machine:

A = {A(A)|A is a PPT machine}.

Definition 2.4.1 (Anonymity Guarantees against Adversary Classes). For every ano-

nymity notion α, we say that a protocol is (α, γ, ε, δ)-IND-CDP against an adversary

class A, if is (α, γ, ε, δ)-IND-CDP against every A ∈ A.

The following example highlights a scenario in which restricting the adversary (not

only in its compromisation) is important for an analysis.

Example 2.4.1 (Tor with entry guards). Consider Tor with so-called entry guards.

Every user selects only one entry node (his guard) that serves as the entry node of every

circuit. A new guard is chosen only after several months. As a compromised entry node

is fatal for the security guarantees that Tor can provide, the concept of entry guards

helps in reducing the risk of choosing a malicious node. However, if such an entry

guard is compromised the impact is more severe since an entry guard is used for a large

number of circuits.

The adversary can choose its targets adaptively and thus perform the following at-

tack. Initially it corrupts some nodes that can in principle be entry guards and then

sends (polynomially many) messages Input = (S,R,m) for different users S, until one

of them, say Alice, chooses a compromised node as its entry guard. Then A proceeds by

choosing Alice and some other user in a challenge. As Alice will use the compromised

entry guard again, the adversary trivially wins the sender anonymity game.

This extremely successful attack is not unrealistic: It models the fact that if there

are compromised entry guards, then certainly some of the millions of Tor users will

32 CHAPTER 2. ANOA

use them and consequently those unlucky users will be deanonymized by the adversary.

However, this might not be the attack scenario that we are interested in. Thus, we

define an adversary class that makes sure that the adversary cannot choose its targets.

Whenever the adversary starts a new challenge for sender anonymity, the adversary

class draws two users at random and places them into the challenge messages of this

challenge.

Adversary classes are a versatile tool to restrict the adversary’s capabilities. Al-

though adversary classes are critical to the results of an analysis, slight mistakes in

defining an adversary class can lead to unintuitive results. Recall that we strive for

single-challenge reducibility, i.e., we strive to show that IND-CDP against adversaries

that only use one challenge immediately implies IND-CDP against adversaries that use

more than one challenge. The quantitative guarantees naturally depend on the number

of challenges.

The set of all adversaries (not restricted by an adversary class) satisfies single-

challenge reducibility and thus for multiple challenges yields a degradation of anonymity

similar to differential privacy: Both ε and δ increase linearly in the number of challenges

in the same way in which a larger distance between databases linearly increases the

guarantees for differential privacy. The intuition behind this generalization is similar to

comparable guarantees for differential privacy: As long as the protocol is oblivious to

whether it was instructed by a challenge or an input message, any additional challenge

can increase the advantage of an adversary (linearly), but cannot allow the adversary

to perform attacks that were impossible without this additional challenge. Intuitively,

if there was a strong attack against the protocol that required γ ≥ 2 challenges, then

the adversary could simulate this attack although it only initiates one challenge: The

adversary randomly samples a challenge bit bA and then simulates the first γ − 1

challenge messages by computing the anonymity function on them, using bA as the

challenge bit, and sending the resulting messages as an input messages. Finally, it

sends the last challenge as in the original attack. If the guess of the challenge bit was

correct, the protocol receives exactly the same messages in this 1-challenge-attack as it

receives in the original γ-challenge-attack. Consequently, the attack can be performed.

Adversary classes, however, can treat challenge messages in a special way such that

anonymity guarantees established for a single challenge tag cannot be generalized to

several challenge tags. Hence, allowing the adversary to initiate more challenges can

allow for new attacks instead of linearly increasing the advantage. The next example

illustrates this problem.

Example 2.4.2 (Non-single-challenge reducible adversary class). Consider the follow-

ing adversary class Anc. The adversary class relays input messages to the challenger

and replaces the messages of the first challenge by (say) random strings or error sym-

bols. The adversary class simply relays all messages to the challenger except for the

ones belonging to the first challenge.

2.4. ADVERSARY CLASSES 33

Ch A A

Protocol Protocol

Input Input

Challenge Challenge

t t′

Ch A Simz A

Protocol Protocol

Input Input Input

Challenge Challenge Challenge

t t′ t′

Figure 2.3: The two games relevant for our proof: the real game AC-Real (left), where

A directly communicates with A and the simulator game AC-Sim[Simz] (right), where

A communicates with Simz that in turn communicates with A. In this figure, Protocol

specifies messages that are sent directly to the protocol and not to the challenger.

Every protocol, even if completely insecure, will be IND-CDP secure for one chal-

lenge for the class Anc (as the adversary cannot gain any information about the bit b

of the challenger), but it might not necessarily be secure for more than one challenge.

Requirements for Single-Challenge Reducibility (SCR)

Showing that an adversary class (in general) satisfies SCR is not as simple as it might

appear on first glance. Technically, we show that even maliciously described protocols

cannot violate SCR. To this end, we show that SCR can be achieved if the adversary

can—despite potential modifications of the adversary class—cause the same protocol

behavior with input messages as with challenge messages. More precisely, we require

that the entire behavior of the adversary class, the challenger and the protocol on

challenges can be simulated by an adversary that guesses the challenge bit correctly

and sends inputs instead. To this end, we introduce a machine Sim, called the challenge-

simulator that sits between the adversary and the adversary class and that simulates

challenge messages (sent by the adversary) with input messages.

Technically, we compare the normal scenario AC-Real with the challenger, the

adversary class, and the adversary to the scenario AC-Sim with the challenger, the

adversary class, the challenge simulator, and the adversary. We consider not only

the case where all challenge messages are simulated with input messages but also

all case in which only parts of the challenge messages are simulated. Hence, we re-

quire a family of challenge simulators, indexed by a sequence z of n pairs (zi, bi). If

zi = don’t simulate, the challenge simulator Sim does not simulate the challenge

messages of the ith challenge tag. If zi = simulate, the challenge simulator simulates

the challenge messages of the ith challenge tag as if the challenge recommendation bit

bi was the challenge bit. Construction 1 describes both scenarios in a more technical

manner.

Construction 1. Consider the following two scenarios (as depicted in Fig. 2.3):

• AC-Real(Π, α, γ, b): A communicates with A and A communicates with Ch(Π, α,

34 CHAPTER 2. ANOA

γ, b). The bit of the challenger is b and the adversary may send challenge tags in

{1, . . . , n}.

• AC-Sim[Simz](Π, α, γ, b): A communicates with Simz that in turn communicates

with A and A communicates with Ch(Π, α, γ, b).The bit of the challenger is b and

the adversary may send challenge tags in {1, . . . , γ}.

In the proof, we use the simulator in an intricate hybrid argument. For that argu-

ment, we additionally need that a simulation using the wrong bit for some challenges

can still simulate other challenges for the correct bit. For a given challenge bit b

and for any pair of simulator indices z, z′, the scenarios AC-Sim[Simz](Π, α, γ, b) and

AC-Sim[Simz′](Π, α, γ, b) are indistinguishable if: whenever z differs from z′ in the sim-

ulation bit (zi 6= z′i) for some position i and zi = simulate, the corresponding challenge

recommendation bit bi = b is consistent with the challenge bit.

Definition 2.4.2 (Consistent simulator index). A simulator index (for γ challenges)

is a bitstring z = [(z1, b1), . . . , (zγ , bγ)] ∈ {0, 1}2γ. A pair of simulator indexes z, z′ ∈
{0, 1}2γ (for γ challenges) is consistent w.r.t. b if ∀i ∈ {1, . . . , γ} s.t. zi 6= z′i we have

(zi = simulate⇒ bi = b) ∧ (z′i = simulate⇒ b′i = b).

Additionally, we require that the adversary class must not initiate challenges on

its own, though it can drop challenges (reliability). Moreover, the adversary class is

independent from the actual challenge tags per se, i.e., it does not interpret the challenge

tags in a semantic way (alpha-renaming).

Definition 2.4.3 (Condition for adversary class). An adversary class A is single-

challenge reducible (SCR) for an anonymity function α, if the following conditions

hold:

1. Reliability: A(A) never sends a message Challenge = (. . . ,Ψ) to the challenger

before receiving a message Challenge = (. . . ,Ψ) from A with the same challenge

tag Ψ.

2. Alpha-renaming: A does not behave differently depending on the challenge tags

Ψ that are sent by A except for using it in its own messages Challenge = (. . . ,Ψ)

to the challenger. More formally, for every permutation π on N, we define Aπ
as the machine that replaces all challenge tags Ψ within messages reaching A by

π(Ψ) and all messages sent from A containing a challenge tag Ψ by π−1(Ψ) and

that otherwise simulates A. For all such machines, Aπ behaves exactly as A, i.e.,

for each input, its outputs have the same distribution.

3. Simulatability: For every n ∈ N and every list z = [(z1, b1), . . . , (zn, bn)] ∈
{0, 1}2n there exists a machine Simz such that:

2.4. ADVERSARY CLASSES 35

(a) For every i ∈ {1, . . . , n}, the following holds: if zi = simulate, then Simz
never sends a message Challenge = (. . . , i) to A.

(b) The games AC-Real(Π, α, γ, b) and AC-Sim[Simzreal](Π, α, γ, b), as defined be-

low are computationally indistinguishable, where zreal = [(don’t simulate,

), . . . , (don’t simulate,)] ∈ {0, 1}2n for A.

(c) for all consistent simulator indices z, z′ ∈ {0, 1}2n (see Definition 2.4.2),

the games AC-Sim[Simz](Π, α, γ, b) and AC-Sim[Simz′](Π, α, γ, b) are compu-

tationally indistinguishable for A.

Theorem 2.4.1. Let Π be a protocol, α be an anonymity function, γ ∈ N be a number

of challenges, and A be an adversary class that is SCR for α, as in Definition 2.4.3.

Whenever Π is (α, 1, ε, δ)-IND-CDP for A(A), with ε ≥ 0 and 0 ≤ δ ≤ 1, then Π is

(α, γ, γ · ε, γ · eγε · δ)-IND-CDP for A(A).

Proof. We show the composability theorem by induction over γ. We assume the theo-

rem holds for i and compute the anonymity loss between the games AC-Real(Π, α, i+

1, 0), where we have b = 0 and AC-Real(Π, α, i + 1, 1), where we have b = 1 via a

transition of indistinguishable, or differentially private games.

Proof Structure: We start with AC-Real(Π, α, i + 1, 0) and introduce a simulator

that simulates one of the challenges for the correct bit b = 0. We apply the induction

hypothesis for the remaining i challenges (this introduces an anonymity loss of (i ·
ε, i · ei·ε · δ)). The simulator still simulates one challenge for b = 0, but the bit of the

challenger is now b = 1. We then simulate all remaining n challenges for b = 1 and thus

introduce a game in which all challenges are simulated. As the bit of the challenger is

never used in the game, we can switch it back to b = 0 again and remove the simulation

of the first challenge. We can apply the induction hypothesis again (we loose (ε, δ))

and switch the bit of the challenger to b = 1 again. In this game, we have one real

challenge (for b = 1) and n simulated challenges (also for b = 1). Finally, we remove

the simulator again and yield AC-Real(Π, α, i+ 1, 1).

Assume that Π is (i, i · ε, eiε · i · δ)-IND-CDP . We show that Π is also (i + 1, (i +

1) · ε, e(i+1)·ε(i + 1) · δ)-IND-CDP . Let A be an adversary that sends at most i + 1

challenges. We construct several games:

• Game: G0 is the normal game AC-Real(Π, α, i+ 1, 0) with up to i+ 1 challenges

where b = 0.

• Game: G1 is an intermediate game AC-Sim[Simzreal](Π, α, i + 1, 0). Here every

message from A to A(A) (and otherwise) goes through the simulator Simzreal .

However, by definition of zreal, the simulator does not need to simulate any

challenge.

Claim: G0 and G1 are computationally indistinguishable.

Proof: By item 3b Definition 2.4.3 the simulator Simzreal exists and the games

are indistinguishable.

36 CHAPTER 2. ANOA

• Game: G2 is an intermediate (hybrid) game AC-Sim[Simz](Π, α, i + 1, 0) with

b = 0 and fixed Input messages instead of the challenge with tag i+ 1 (so there

are at most i challenges left). This is done by using the simulator Simz for

z = [(don’t simulate,), . . . , (don’t simulate,), (simulate, 0)] ∈ {0, 1} i+ 1,

i.e., the simulator simulates the i+ 1st challenge for b = 0.

Claim: G1 and G2 are computationally indistinguishable.

Proof: By item 3 of Definition 2.4.3, we know that the simulator Simz exists.

Since the simulator Simz from G2 uses the correct bit bi+1 = 0 for the simulated

challenge, Item 3c of Definition 2.4.3 implies that the games are indistinguishable.

• Game: G3 is the intermediate (hybrid) game AC-Sim[Simz](Π, α, i+ 1, 1) where

the simulator stays Simz but the challenger changes to b = 1.

Claim: G2 and G3 are (iε, eiεiδ)-indistinguishable.

Proof: The adversary Simz(A) makes at most i queries with challenge tags

in {1, . . . , i}. From the reliability property of the adversary class (item 1 of

Definition 2.4.3) we know that thus A(Simz(A)) uses at most i challenge tags in

{1, . . . , i}. The claim immediately follows from the induction hypothesis: Π is

(i, i · ε, i · δ)-IND-CDP .

• Game: G4 is a game AC-Sim[Simz′](Π, α, i+1, 1) where the simulator Simz′ with

z′ = [(simulate, 1), . . . , (simulate, 1), (simulate, 0)] simulates all challenges from

A. For the challenge tags 1 to i, Simz′ simulates the challenges for b1 = . . . =

bi = 1, whereas for the tag i+ 1 it still simulates it for bi+1 = 0. The challenger

uses b = 1.

Claim: G3 and G4 are computationally indistinguishable.

Proof: Since the simulator Simz′ from G4 uses the correct bit b1 = . . . = bi = 1

for the challenges that are not simulated in Simz, Item 3c of Definition 2.4.3

implies that the games are indistinguishable.

• Game: G5 is the game AC-Sim[Simz′](Π, α, i+ 1, 0) where we use the same sim-

ulator Simz′ as in G4, but the challenge bit is set to b = 0 again.

Claim: G4 and G5 are computationally indistinguishable.

Proof: Since there are no challenge messages (everything is simulated, as by item

3a Simz′ does not send any messages Challenge = (. . . ,Ψ)), changing the bit b of

the challenger does not have any effect. Hence, the games are indistinguishable.

• Game: G6 is the game AC-Sim[Simz′′](Π, α, i + 1, 0s) where we use the simula-

tor Simz′′ with z′′ = [(simulate, 1), . . . , (simulate, 1), (don’t simulate,)]. In

other words, we do not simulate the challenge for i + 1 with bi+1 = 0, but we

use the challenger again (also with b = 0). Still, the challenges from 1 to i are

simulated with b1 = . . . = bi = 1.

2.4. ADVERSARY CLASSES 37

Claim: G5 and G6 are computationally indistinguishable.

Proof: Since the simulator Simz′ from G5 uses the correct bit bi+1 = 0 for the

simulated challenge (which the simulator Simz′′ does not simulate), Item 3c of

Definition 2.4.3 implies that the games are indistinguishable.

• Game: G7 is AC-Sim[Translator(Simz′′)](Π, α, i+1, 0) where we build around

the simulator Simz′′ an interface Translator(·) that translates the challenge

tag from i + 1 to 1 and vice versa in all messages Challenge = (. . . ,Ψ) from

Simz′′ to A(·) and in all messages Observations = (t,Ψ) from A(·) to Simz′′ .

Claim: G6 and G7 are information theoretically indistinguishable.

Proof: Item 2 of Definition 2.4.3 requires that the renaming of challenge tags

does not influence the behavior of A(·). It also does not influence the behavior

of the challenger (by definition) or the protocol (that never sees challenge tags).

Thus, the games are indistinguishable.

• Game: G8 is the game AC-Sim[Translator(Simz′′)](Π, α, i + 1, 1) where the

simulator is defined as in G7 but the challenge bit is set to b = 1.

Claim: G7 and G8 are (ε, δ) indistinguishable.

Proof: By assumption of the theorem, the protocol Π is (1, ε, δ)-IND-CDP for

A(A). Moreover, by definition of z′′ and by item 3a, the translated adversary

Translator(Simz′′(A)) only uses at most one challenge tag, namely the tag 1.

From the reliability property of the adversary class (item 1 of Definition 2.4.3) we

know that thus A(Translator(Simz′′(A))) uses only the challenge tag 1. Thus,

G7 and G8 are (ε, δ) indistinguishable.

• Game: G9 is AC-Sim[Simz′′](Π, α, i+1, 1), defined like G8, except that we remove

the translation interface again.

Claim: G8 and G9 are information theoretically indistinguishable.

Proof: As before, Item 2 of Definition 2.4.3 requires that the renaming of chal-

lenge tags does not influence the behavior of A(A). It also does not influence

the behavior of the challenger (by definition) or the protocol (that never sees

challenge tags). Thus, the games are indistinguishable.

• Game: G10 is the target game AC-Real(Π, α, i + 1, 1) without modifications,

where the challenge bit is b = 1.

Claim: G9 and G10 are computationally indistinguishable.

Proof: Since Simz′′ uses the correct bit b1 = . . . = bi = 1 for all simula-

tions, we can replace it with Simzreal , that, in turn, is indistinguishable from

AC-Real(Π, α, i+ 1, 1).

38 CHAPTER 2. ANOA

We slightly abuse notation in writing Pr [0 = A(G0)] for

Pr [0 = 〈A(A)|Ch(Π, α, γ, 0)〉] ,

Pr [0 = A(G1)] for

Pr [0 = 〈A(Simz(b,A))|Ch(Π, α, γ, 0)〉] , etc..

We can then show the Theorem via the following inequations, where we denote the

negligible functions induced by the (computational) indistinguishability properties by

µ. We neglect the (implicit) security parameter 1η of the adversary, the simulator and

the challenger and stress that the last inequality holds for a sufficiently large security

parameter.

Pr [0 = A(G0)]

≤ Pr [0 = A(G1)] + µ1

≤ Pr [0 = A(G2)] + µ2 + µ1

≤ eiεPr [0 = A(G3)] + eiεiδ + µ2 + µ1

≤ eiεPr [0 = A(G4)] + eiε(µ3 + iδ) + µ2 + µ1

≤ eiεPr [0 = A(G5)] + eiε(µ4 + µ3 + iδ) + µ2 + µ1

≤ eiεPr [0 = A(G6)] + eiε(µ5 + µ4 + µ3 + iδ) + µ2 + µ1

= eiεPr [0 = A(G7)] + eiε(µ5 + µ4 + µ3 + iδ) + µ2 + µ1

≤ eiε(eεPr [0 = A(G8)] + δ) + eiε(µ5 + µ4 + µ3 + iδ) + µ2 + µ1

= e(i+1)εPr [0 = A(G8)] + eiε(µ5 + µ4 + µ3 + (i+ 1)δ) + µ2 + µ1

= e(i+1)εPr [0 = A(G9)] + eiε(µ5 + µ4 + µ3 + (i+ 1)δ) + µ2 + µ1

≤ e(i+1)εPr [0 = A(G10)] + e(i+1)εµ6 + eiε(µ5 + µ4 + µ3 + (i+ 1)δ) + µ2 + µ1

≤ e(i+1)εPr [0 = A(G10)] + e(i+1)ε(i+ 1)δ

This concludes the proof.

2.4.2 Plug’n’Play Adversary Classes

Proving single-challenge reducibility can be tedious and lengthy. Therefore, we develop

a template for adversary classes, called the Plug’n’Play (PnP) template and show that

every adversary class that can be expressed in this template is single-challenge reducible.

The Plug’n’Play template forwards all input messages from the adversary and starts

for every challenge tag a new submachine, called a challenge machine, with a fresh mem-

ory. In particular, none of the challenge machines shares memory with any other part

of the adversary class. These challenge machines can modify challenges and create fresh

input messages, as well as communicate with the adversary. Additionally, the template

includes a provision for blocking messages in both directions via a so-called filter ma-

chine, that generalizes limitations on compromisation, injection, and observation. The

2.4. ADVERSARY CLASSES 39

setup-machine S allows to specify initial adversarial messages (before any challenge or

input message). Given such a challenge machine M , a filter F , and a setup machine S

we construct a PnP adversary class PnPM,F,S as follows.

Definition 2.4.4 (PnP Adversary Class). For three PPT machines M , the challenge

machine, F , the filter, and S, the setup, we define the Plug’n’Play adversary class

PnPM,F,S as follows.

1. Initially send all messages setup(m) from A to S (and block all other messages

from A) and send all messages from S to A and to Π until S stops. Block all mes-

sages from S to the challenger that are of the type Input(. . .) or Challenge(. . .):

S may only receive messages from A and Π and send messages to A and Π; S

can never send a message Input or Challenge.

2. Whenever A sends a message Input = (S,R,m, (A, z)) for any nonce z, relay this

message as Input = (S,R,m, z) to the challenger.

3. Whenever A sends a message Input = (S,R,m, (Ch,Ψ)) or a message Challenge =

(S0, S1,R0,R1,m, (Ch,Ψ)), run MΨ on the respective message Input/Challenge,

as below.

4. Whenever A sends any message m to the protocol Π directly, run F on m until

it outputs a message m′ or an error symbol ⊥. If it outputs a message m′, send

m′ to Π.

5. Whenever Π sends a message t, first simulate F on t until it outputs a message

t′, or an error symbol ⊥. If it returned t′, relay it to A.

6. Whenever Ch sends a message Observations(m, ID), relay this message to A.

Running MΨ on a message m

• If MΨ was not initialized so far (i.e., if a message with ID = (Ch,Ψ) is received

for the first time), initialize a new instance of the machine M as MΨ.

• Then / otherwise simulate MΨ on m (without its message ID, i.e., replace (Ch,Ψ)

by ⊥), until MΨ outputs a message m′ and relay m′, depending on its structure:

to A (if m′ = Observations(t, ID′)), or to Ch (otherwise). In both cases, replace

the message identifier ID′ by (Ch,Ψ).

On the efficiency of a PnP adversary We only consider efficient probabilistic

Turing machines PnPM,F,S . Although we do not discuss the runtime of the machines

explicitly, we require the machines M , F and S to be efficient and to not blow up the

runtime of PnPM,F,S . The runtime is measured (and has to be polynomial) in terms

of the first (omitted) runtime parameter, not in terms of other inputs they may receive

from the protocol.

40 CHAPTER 2. ANOA

Theorem 2.4.2. Every Plug’n’Play adversary class is single-challenge reducible as in

Definition 2.4.3.

Proof. Let M , F and S be three arbitrary PPT machines for a PnP adversary class

PnPM,F,S . We show that that PnPM,F,S has the properties from Definition 2.4.3.

• Alpha-Renaming: The Plug’n’Play adversary class PnPM,F,S uses challenge

tags Ψ exactly for one purpose: for handling one instance of a machine M per

challenge tag, obliviously to the tag itself. The behavior of the machines F and

M and S is not affected by Ψ (simply because they never see them). Thus, for

any permutation on the challenge tags, the adversary class will have exactly the

same behavior.

• Reliability: Note that the challenger never initializes challenges, i.e., will never

send any message containing (Ch,Ψ) before receiving a message containing (Ch,

Ψ). By construction, PnPM,F,S only sends messages with ID = (Ch,Ψ) when

MΨ outputs them (F cannot communicate with the challenger and S cannot

send a message Challenge). However, PnPM,F,S invokes MΨ only if it (before)

receives a message with ID = (Ch,Ψ). Since the challenger cannot send a message

with ID = (Ch,Ψ) before receiving a message with ID = (Ch,Ψ), PnPM,F,S only

initializes and invokes MΨ if the adversary has send a message with ID = (Ch,Ψ)

before. Thus, PnPM,F,S is reliable.

• Simulatability: We construct the following generic simulator Sim on input z

and the anonymity notion α:

– Sim initialized a set of known IDs I := ∅ and a set of challenge states

States = [FRESH, . . . , FRESH] for all γ possible challenges, where γ is directly

infered from z.

– Whenever Sim receives any message m = (. . . , ID), where ID = (Ch,Ψ) with

zΨ = don’t simulate, Sim forwards the message.

– Whenever Sim receives any message m = (. . . , ID), where ID = (Ch,Ψ) with

zΨ = simulate (for the bit bΨ), behave as follows:

∗ If MΨ was not initialized so far (i.e., if a message with ID = (Ch,Ψ) is

received for the first time), initialize a new instance of the machine M

as MΨ. Moreover, draw a new nonce z and add (Ψ, z) to I.

∗ Then / otherwise simulate MΨ on m (replace ID with ⊥), until it outputs

a message m′ and relay m′, depending on its structure:

· If m′ = Observations = (t, ID′), relay m′ to A, but replace the ID′

with (Ch,Ψ).

· If m′ = Input = (S,R,m′′, ID), relay m′ to Ch, but replace ID′ with

(A, z).

2.4. ADVERSARY CLASSES 41

· If m′ = Challenge = (S0, S1,R0,R1,m
′′, ID′), then compute the

challenge as (state′,S∗,R∗) := α(States[Ψ], S0,S1,R0,R1, bΨ), set the

corresponding state as States[Ψ] := state′ and send Input = (S∗,R∗,
m′′, (A, z)) to Ch.

We consequently show that the general simulator Sim satisfies all conditions from

Definition 2.4.3, Item 3.

– Item 3a: Let z ∈ {0, 1}2γ be any simulator index and i ∈ {1, . . . , γ},
s.t., zi = simulate. Then by construction Simz intercepts all messages

with ID = (Ch, i) and feeds them into a simulated machine Mi. Whenever

this machine outputs a message Challenge = (S0, S1,R0,R1,m, ID
′), Sim re-

places it by Input = (S∗,R∗,m, (A, z)) for some nonce z, where (, S∗,R∗) :=

α(States[Ψ],S0, S1,R0,R1, bΨ). Furthermore, Sim never introduces messages

of the type Challenge = (. . . , (Ch, j)) for any j: it only forwards messages

of this form if they are sent by A and if zj = don’t simulate. Thus, Sim

never sends a message Challenge = (. . . , (Ch, i)).

– Item 3b: The simulator Sim(zreal, α) forwards all messages it receives. It

never intercepts messages with ID = (Ch, i) for any i and never intercepts

any messages with ID = (A, z) for any z. Thus, Sim(zreal) does not modify

the communication and consequently, the games are information theoreti-

cally indistinguishable.

– Item 3c: We now show that our simulator correctly simulates challenges (if

the bit within its index is correct). Let γ be the number of allowed challenges,

let α be the anonymity notion and, let b be the bit of the challenger and let

z, z′ ∈ {0, 1}2γ such that

∀i ∈ {1, . . . , n} s.t. zi 6= z′i. (zi = simulate⇒ bi = b)

∧(z′i = simulate⇒ b′i = b).

We now show that the gamed AC-SimSim(z,α)(Π, α, γ, b) and AC-SimSim(z′,α)(Π,

α, γ, b) (as in Definition 2.4.3) are indistinguishable.

We begin with noticing that both our generic simulator and the adversary

class do not share state between different ID’s: Their behavior on messages

(, ID) does not in any way depend on any communication or computation

on messages (, ID′) for any other ID′, except for F possibly keeping state.

Consequently, we can analyze their behavior for each ID separately for a

state stateF of F .

We furthermore assume that there are indexes i ∈ {1, . . . , n} s.t. zi 6= z′i.
Let i be such an index and let us assume w.l.o.g., that zi = simulate. The

42 CHAPTER 2. ANOA

difference in behavior covers exactly the messages with ID = (Ch, i) by A.2

To simplify the proof we can thus assume that there is exactly one difference

(for index i).

Whenever a message with ID = (Ch, i) is sent by A to Simz′ , the simulator

simply forwards the message to PnPM,F,S , which, in turn, feeds it to the

machine Mi. Analogously, Simz initializes a machine Mi and feeds it all such

messages. Whenever in the game with Simz′ the challenger replies to the

adversary with a message Observations = (x, (Ch, i)), PnPM,F,S also feeds

it to Mi. If these messages instead (as in the game with Simz) have the ID

(A, z) for any nonce z, then PnPM,F,S simply forwards them and Simz feeds

them into its machine Mi.

We proceed by an inductive proof over all messages sent to and received by

Mi.

The first message must originate from A, as the challenger never initializes

challenges (i.e., it never sends messages (Ch, i) without receiving such mes-

sages before). Before A sends such a message, the two considered games

AC-SimSim(z,α)(Π, α, γ, b) and AC-SimSim(z′,α)(Π, α, γ, b) are information the-

oretically indistinguishable (the simulators do not behave differently). For

this first message m, Simz now creates a fresh nonce z for translating the

challenge ID and then initializes the machine Mi with m. Analogously,

Simz′ simply forwards the message to PnPM,F,S that initializes Mi with

m. Both machines will behave indistinguishably, as they are initialized

with the same message. The games only differ if Mi outputs a message

Challenge = (. . . , ID′). In AC-SimSim(z′,α)(Π, α, γ, b) this message is sent to

Ch which, since this is a challenge message, applies the anonymity func-

tion α to it (using challenge bit b) and forwards the resulting message

to the protocol. In AC-SimSim(z,α)(Π, α, γ, b), the simulator applies α to

it (using the same challenge bit b) and forwards the resulting message as

Input = (S∗,R∗,m, (A, z) to PnPM,F,S , which forwards the message to Ch

(PnPM,F,S does not modify input messages), which, again (since this is an

input message) directly forwards it to the protocol.3

Consider any later point in the games, where so far the machines Mi behaved

indistinguishably and the games were also indistinguishable. If suddenly

the machines Mi behaved in a distinguishable manner, they would entail a

distinguisher on the aforementioned indistinguishability. Again, the games

2Technically, Simz translates the communication regarding this challenge ID to (A, z) when com-

municating to the challenger, for a random nonce z. The messages with ID = (A, z) could thus also be

affected.
3Technically, the challenger handles sessions in both cases, once for ID (Ch, i), once for ID (A, z).

Its behavior may only differ if the real adversary sends a message with ID = (A, z) before, or after the

challenge, but since z is a random nonce, this occurs with negligible probability only.

2.4. ADVERSARY CLASSES 43

only are structurally different if Mi outputs a message Challenge = (. . .),

but this message will be transformed to a sender S∗, a recipient R∗ and a

message m∗ for the protocol Π that is the same for both games and for this

tuple (S∗,R∗,m∗) the challenger will handle protocol sessions in exactly the

same way as long as there is no collision of the ID (A, z) with IDs generated

by A, which, however, occurs with negligible probability only.

This concludes the proof.

Remark 2.4.1. It is, theoretically, possible to compose adversary classes by nesting

them into each other or by sequentially applying them. However, such a nested compo-

sition of adversary classes is then not necessarily single-challenge reducible in terms of

Definition 2.4.3: The fact that answers from the challenger either are filtered twice (for

adversary IDs and consequently for answers to the simulator) or input to a challenge-

machine M in between the two filters can cause the simulation to fail. We could restrict

the filter machine F to only apply to challenge messages, which would make such a

composition possible, but this would also restrict the versatility of our PnP adversary

class.

We rather focus on an easy-to-use PnP adversary class in which the machines

themselves can enforce combinations of different restrictions for the adversary.

Example 2.4.3. The following simple examples for adversary classes show the expres-

siveness of our PnP adversary class.

• Fixed-Sender-Recipient adversaries: We want the adversary to only select two

predefined senders S0, S1 and/or two predefined recipients R0, R1 for its chal-

lenges. Consequently, we set F to the identity machine (simply forwarding all

inputs) and define M as follows: M forwards all messages of the form Input =

(S,R,m, ID) and replaces all messages Challenge = (Sx,Sy,Rx,Ry,m0,m1, ID)

by Challenge = (S0, S1,R0,R1,m0,m1, ID).

• Static compromisation adversaries: We set M to the identity machine (simply

forwarding all inputs), F to a compromisation blocking machine, blocking all

messages (compromise, . . .) from A to Π and S to the following machine: S com-

municates with the adversary about its compromisation strategy and then sends

messages (compromise, P) for all respective parties P that A wants and is allowed

to compromise.

• More elaborate compromisation: Whenever F is initialized with the adversary’s

compromisation strategy (N,L), F checks and/or directly modifies the sets and

outputs (N ′, L′), thereby enforcing arbitrary compromisation restraints. One ver-

satile and useful example (that we also discuss in detail later) is a budget ad-

versary, where F is parametric in a budget B and a cost function f that checks

44 CHAPTER 2. ANOA

whether
∑

n∈N∩N
f(n) < B and if so forwards (N, ∅), i.e., F allows the adversary

to compromise Tor nodes up to the budget B and does not allow the adversary to

compromise connections between Tor entities.

• Combined adversary class: We later combine all three mentioned adversary classes

to calculate anonymity guarantees for eavesdroppers that statically compromise

Tor nodes and wiretap communications between them. Consequently, we put the

restrictions mentioned for the “more elaborate compromisation” adversary class

on S instead of on F and block all compromisation messages from F . Moreover we

restrict the challenges by using the machine M from the “Fixed-Sender-Recipient”

adversary to calculate guarantees for specific anonymity scenarios.

Chapter 3

Impact of Passive Adversaries on

Tor

In this chapter we discuss the possible observations that any passive adversary against

Tor can make for any given communication. To this end, we first formalize the intu-

itive description of observation points we introduced in Section 1.2.4. Subsequently

we present a formalization of Tor in the universal composability framework and show

that anonymity guarantees shown for the idealization carry over to the cryptographic

instantiation and, under reasonable assumptions, for Tor’s implementation. Based on

the concept of observations and the ideal functionality of the UC formalization, we

present a simplified variant of the AnoA challenge-response game. We show that it

suffices to analyze the advantage of eavesdroppers in this simplified game to derive

anonymity guarantees for the ideal functionality and, thus, for Tor’s actual implemen-

tation.

3.1 Observation Points of Tor Circuits

Observing any Tor entity or connection between Tor entities involved in a Tor circuit

enables the adversary to draw certain conclusions about the sender and/or the recipient

of the circuit, thereby reducing their degree of anonymity.

Some of these conclusions are straightforward and result in immediate deanonymiza-

tion: if the guard node can be observed, the sender is trivially deanonymized as the

origin of the communication; similarly, observing the exit node unveils the recipient as

the destination of the communication. Existing papers are typically limited to such

all-or-nothing observations. However, additional conclusions can be drawn when cor-

rupting any Tor entity or connection between them, and these conclusions are no less

influential. For instance, if the adversary observes or knows that a recipient requires a

specific TCP port, all exit nodes can be excluded that do not support this port, and

hence, any communication that involves excluded exit nodes cannot involve this recipi-

45

46 CHAPTER 3. IMPACT OF PASSIVE ADVERSARIES ON TOR

Guard Node

ngS nm nx R

Figure 3.1: The guard node ng of a circuit C = (S, ng, nm, nx,R) ∈ Circuits can observe

the sender S and the middle node nm.

ent. Moreover, excluding exit nodes influences the probability of which nodes are being

selected as guard or middle nodes in this circuit by Tor’s path selection algorithm:

The selection takes so-called family relationships and further constraints into account.

Technically, this means that the a-priori probability distribution over circuits induced

by Tor’s path selection algorithm is now replaced by an a-posteriori distribution that is

conditioned on the observations of the adversary. This enables the adversary to draw

further conclusions and to thereby reduce anonymity.

3.1.1 Observations

Now we define which observations an adversary is able to make if certain nodes are

considered corrupted. We consider a distinguished symbol, denoted ⊥, that reflects

that an observation at a certain position in the Tor circuit cannot be made. Further,

we define the overall impact on anonymity if a given set of nodes is considered under

adversarial control.

Definition 3.1.1 (Observations and Circuits). For a set of senders S, a set of re-

cipients R, and the set of all Tor nodes N , we define the set of Tor circuits Circuits

between these senders and recipients as CircuitsS,R,N := S × N 3 × R and the set of

observations as OS,R,N := (S ∪ {⊥}) × (N ∪ {⊥})3 × (R ∪ {⊥}) for the distinguished

symbol ⊥. We omit the subscripts if they are clear from the context and, hence, write

Circuits and O.

For a set N ⊆ E of Tor entities, and a set L ⊆ E2 of connections between Tor

entities, we now define the observations obs[N,L](C) ∈ O made by N and L within

a considered Tor circuit C. Intuitively, whenever a node n ∈ N is part of the circuit

C, then this node as well as its successor and predecessor can be identified. If n ∈ S,

then the sender and the guard node can be identified; if n ∈ R, the exit node and the

recipient can be identified.

Formal Definition of Observations per Tor Circuit Based on the possible obser-

vation points (c.f. Figures 3.1 to 3.5), we define the observations that any combination

3.1. OBSERVATION POINTS OF TOR CIRCUITS 47

Middle Node

ngS nm nx R

Figure 3.2: The middle node nm of a circuit C = (S, ng, nm, nx,R) ∈ Circuits can observe

the guard node ng and the exit node nx.

Exit Node

ngS nm nx R

Figure 3.3: The exit node nx of a circuit C = (S, ng, nm, nx,R) ∈ Circuits can observe

the middle node nm and the exit node R.

Sender and Recipient observations

ngS nm nx R

Figure 3.4: The sender S of a circuit C = (S, ng, nm, nx,R) ∈ Circuits can observe the

guard node ng; the recipient R of C can observe the exit node nx.

Compromised Connections between Tor Entities

ngS0-GS G-M nm M-X nx X-R0 RS-G G-M M-X X-R

Figure 3.5: An observer on the connection between two Tor entities e1 and e2 can,

naturally, observe both e1 and e2. In this graph we show all such observation points

between Tor entities.

48 CHAPTER 3. IMPACT OF PASSIVE ADVERSARIES ON TOR

ngS0-GS0

S1-G

S1

G-M nm M-X nx X-R0 R0

X-R1

R1

S0-G G-M M-X X-R0

S1-G X-R1

Figure 3.6: Comprehensive overview over the possible observations for a Tor circuit in

a challenge, where one of two senders S0, S1 sends a message to one of two recipients

R0,R1. We portray all observation points, i.e., all Tor entities of the circuit and all

connections between them.

of Tor entities N and connections between Tor entities L can make for any given circuit.

Definition 3.1.2 (Circuit Observations). For a set of senders S, a set of recipients

R, and for N ⊆ E, L ⊆ E2, the circuit observation of Nand L is a function obs[N,L] :

Circuits → O and is defined as follows. For C = (S, ng, nm, nx,R) ∈ Circuits, we have

obs[N,L](C) := (n1, . . . n5) with

• n1 := S if {S, ng} ∩N 6= ∅ or (S, ng) ∈ L; otherwise n1 := ⊥.

• n2 := ng if {S, ng, nm} ∩N 6= ∅ or {(S, ng), (ng, nm)} ∩ L 6= ∅; otherwise n2 := ⊥.

• n3 := nm if {ng, nm, nx}∩N 6= ∅ or {(ng, nm), (nm, nx)}∩L 6= ∅; otherwise n3 := ⊥.

• n4 := nx if {nm, nx,R} ∩N 6= ∅ or {(nm, nx), (nx,R)} ∩ L 6= ∅; otherwise n4 := ⊥.

• n5 := R if {nx,R} ∩N 6= ∅ or (nx,R) ∈ L; otherwise n5 := ⊥.

We call (N,L) the observation points of obs.

3.2 Tor’s Universal Composability Protocol

In this section we show that it suffices to analyze Tor in an abstract fashion modeled by

an ideal functionality in the universal composability (UC) framework. Under reason-

able assumptions, these analyses are equivalent to guarantees for Tor’s implementation

against statically corrupting, passive adversaries, up to a negligible factor. To this end,

3.2. TOR’S UNIVERSAL COMPOSABILITY PROTOCOL 49

we briefly review the Tor model of Backes, Goldberg, Kate and Mohammadi, which

they defined in the universal composability (UC) framework of Canetti [UC, 15]. We

show that differential-privacy like guarantees (such as IND-CDP) shown for an ideal

functionality also hold for its cryptographic instantiation, which provides a slight re-

laxation of classical UC proofs.

3.2.1 Overview of Tor in UC

The UC framework allows for a modular analysis of security protocols. In the UC

framework, the security of a protocol is defined by comparing an execution of the

protocol with a setting in which all parties have a direct and private connection to a

trusted machine that provides the desired functionality. As an example consider an

authenticated channel between two parties Alice and Bob. In the real world Alice calls

a protocol that signs the message m to be communicated. She then sends the signed

message over the network and Bob verifies the signature. In the setting with a trusted

machine T , however, we do not need any cryptographic primitives: Alice sends the

message m directly to T . T in turn sends m to Bob, who trusts T and can be sure that

the message is authentic. The trusted machine T is called the ideal functionality.

We briefly review the formal UC definition (an ideal functionality FOR) for the

onion routing (OR) network and its cryptographic instantiation [15]. FOR presents the

OR definition in the message-based state transitions form, and defines sub-machines for

all OR nodes in the ideal functionality. These sub-machines share a memory space in

the functionality for communicating with each other. FOR assumes an adversary who

might possibly control all communication links and destination servers, but cannot view

or modify messages between uncompromised parties due to the presence of secure and

authenticated channels between the parties. In FOR these secure channels are realized

by having each party store their messages in the shared memory, and create and send

corresponding handles 〈P, Pnext, h〉 through the network. Here, P and Pnext are the

sender and the recipient of a message respectively and h is a handle, or pointer, for the

message in the shared memory. Only messages that are visible to compromised parties

are forwarded to A.

Tor sets a time limit (of ten minutes) for each established circuit. However, the

UC framework does not provide a notion of time. FOR models such a time limit by

only allowing a circuit C to transport at most a constant number (say ttl-count) of

messages. We could implement this restriction via the adversary class. However, for

ease of notation and since the number of messages sent over a circuit does not impact

anonymity, we do not consider this technical detail in our analysis. Instead, we assume

that there is a bound on the number of messages the adversary sends per circuit and

we set ttl-count to this bound.

50 CHAPTER 3. IMPACT OF PASSIVE ADVERSARIES ON TOR

3.2.2 Modifications

We base our model of Tor on our previous work that models Tor as a UC protocol

ΠOR [15]. ΠOR is based on Tor’s specification and accurately models the key exchange,

the circuit establishment, and the process of relaying message cells over Tor.

The cryptographic protocol ΠOR [15] abstracts from Tor’s path selection by con-

sidering a uniform path selection. In our work, we use an extension of ΠOR, where

instead of the uniform path selection, we treat Tor’s path selection as a distribution

depending on the sender and recipient of the circuit. This extension of ΠOR, which we

call Π′OR, solely extends the path selection algorithm in ΠOR and leaves everything else

untouched. We accordingly extend the ideal functionality FOR from [15], which ab-

stracts from all cryptographic operations in ΠOR, with Tor’s actual path selection. We

call the extension of the ideal functionality FOR with Tor’s actual path selection F ′OR.

Since ΠOR and FOR both execute the same path selection algorithm, the UC realization

proof for ΠOR and FOR applies verbatim to Π′OR and F ′OR (Proposition 3.2.1).

In [15] secure OR modules are defined, which comprise a one-way authenticated

key exchange protocol, and secure encryption and decryption operations. Moreover,

that work uses a network functionality Fnetq for modeling partially global network

adversaries that compromise at most q links, a key registration functionality Freg and

a functionality for a confidential and mutually authenticated channel (for modeling

HTTPS connections) Fscs.

We rewrite the environment s.t. the adversary does not per se control all recipients.

Only if the recipient has received a message compromise, the adversary can observe all

incoming messages. If a message is sent to a recipient R from a Tor node n and the

adversary has sent observe(n,R), then the adversary also learns the message.

Proposition 3.2.1. [UC Realization of Tor c.f.[15]] If Π′OR uses secure OR modules

M , then with the global functionality Fnetq the resulting protocol Π′OR in the Freg,scs-

hybrid model securely realizes the ideal functionality F ′OR for any q.

3.2.3 Differential Privacy Style Guarantees in UC

In this section, we prove that differential privacy (and therefore also IND-CDP) are pre-

served under realization. This preservation allows for an elegant crypto-free anonymity

proof for cryptographic AC protocols with AnoA.

Security in the UC framework is defined as follows: A real protocol is secure if

an execution of this real protocol is indistinguishable from an execution of the cor-

responding ideal functionality. Here, indistinguishability is defined in terms of binary

random variables which represent the output of the probabilistic real protocol and ideal

functionality.

Definition 3.2.1 (Indistinguishability (Canetti)). Two binary distribution ensembles

X and Y are indistinguishable, denoted X ≈ Y if for every c ∈ N there is a η0 ∈ N

3.2. TOR’S UNIVERSAL COMPOSABILITY PROTOCOL 51

such that for all η > η0 and all x we have that

|Pr[X(η, x)] = 1− Pr[Y (η, x)] = 1| < δ′ = η−c

The Real World For the process in the real world we introduce the random variable

RealΠ,A,D(η, x) which captures the interaction of a protocol Π with an adversary A,

observed by a distinguisher D. RealΠ,A,D will denote the ensemble of all those distri-

butions. Note that as we try to argue about IND-CDP , our input x will be a tuple of

inputs (x0, x1).

The Ideal World Similarly, we introduce the random variable IdealF ,S,D(η, x)

which captures the interaction of an ideal functionality F , a simulator S and the dis-

tinguisher. IdealF ,S,D will again denote the ensemble of such random variables.

If the execution of a real protocol is indistinguishable from the execution of the

corresponding ideal functionality, we say that the protocol UC-realizes the ideal func-

tionality.

Definition 3.2.2 (Realization in UC). A protocol Π UC-realizes an ideal functionality

F if for every PPT adversary A of Π there exists a PPT simulator S sucht that for every

PPT distinguisher D it holds that

RealΠ,A,D ≈ IdealF ,S,D

Preservation of Differential Privacy The UC-realization does not only allow us

to prove the security of the real protocol given a trivially secure ideal functionality, but

also allows to lift security guarantees proven for the realized protocol to the realizing

protocol: given the realization of a (ε, δ)-differentially-private ideal functionality by a

protocol Π, we get differential privacy for Π as well. This result is motivated by the

ideas presented in the result of integrity property conservation by simulation-based

indistinguishability shown by Backes and Jacobi [7, Thm. 1].

Theorem 3.2.1. If Π UC-realizes an (ε, δ)-dp functionality F then Π is (ε,∆)-dp with

∆ = δ + δ′ for some negligible value δ′.

Proof. Given an (ε, δ)-dp functionality F , assume Π UC-realizes F , but Π is not (ε,∆)-

dp, i.e. there exist an adversary A and two inputs x0 and x1 s.t.

Pr[A(Π(x1)) = 1] > eεPr[A(Π(x0)) = 1] + ∆

such that ∆ ≥ δ + δ′ for a non negligible value δ′. We construct the following PPT

distinguisher D that uses A in order to separate Π from F :

1. choose b
R← {0, 1} uniformly at random

2. send xb through the network

52 CHAPTER 3. IMPACT OF PASSIVE ADVERSARIES ON TOR

3. depending on the output b∗ of the adversary:

(a) if the adversary returns b∗ = b output 1 (most likely (Π, A) was observed).

(b) otherwise output 0 (most likely (F , S) was observed).

We now bound the probabilities Pr[RealΠ,A,D(η, (x0, x1)) = 1] and Pr[IdealF ,S,D(η,

(x0, x1)) = 1] as required for the lemma. We will use the expressions AbRealΠ,D
and

SbIdealF,D
to denote the output of the adversary and simulator respectively during the

execution after the distinguisher decided on a specific b ∈ {0, 1}. Using the assumption

that Π is not (ε,∆)-differentially private, the first expression computes to

Pr[RealΠ,A,D(η, (x0, x1)) = 1]

= Pr[AbRealΠ,D
= b]

= Pr[A1
RealΠ,D

= 1] · Pr[D chooses x1] + Pr[A0
RealΠ,D

= 0] · Pr[D chooses x0]

= Pr[A(Π(x1)) = 1] · Pr[b = 1|b R← {0, 1}] + Pr[A(Π(x0)) = 0] · Pr[b = 0|b R← {0, 1}]

=
1

2
(Pr[A(Π(x1)) = 1] + Pr[A(Π(x0)) = 0])

>
1

2
(Pr[A(Π(x0)) = 1]eε + ∆ + Pr[A(Π(x0)) = 0])

=
1

2
(Pr[A(Π(x0)) = 1]eε + ∆ + 1− Pr[A(Π(x0)) = 1])

=
1

2
((eε − 1) Pr[A(Π(x0)) = 1] + ∆ + 1)

≥ 1

2
(1 + ∆) (3.1)

Using the (ε, δ)-differential privacy of F , the second expression can be bound as follows

Pr[IdealF ,S,D(η, (x0, x1)) = 1]

= Pr[SbIdealF,D
= b]

= Pr[S1
IdealF,D

= 1] · Pr[D chooses x1] + Pr[S0
IdealF,D

= 0] · Pr[D chooses x0]

= Pr[S(F(x1)) = 1] · Pr[b = 1|b R← {0, 1}] + Pr[S(F(x0))) = 0] · Pr[b = 0|b R← {0, 1}]

=
1

2
(Pr[S(F(x1)) = 1] + Pr[S(F(x0)) = 0])

≤ 1

2
(Pr[S(F(x0)) = 1]eε + δ + Pr[S(F(x0)) = 0])

=
1

2
((1− Pr[S(F(x0)) = 0])eε + δ + Pr[S(F(x0)) = 0])

=
1

2
(eε + (1− eε) Pr[S(F(x0)) = 0] + δ)

≤ 1

2
(eε + 1− eε + δ)

=
1

2
(1 + δ) (3.2)

3.2. TOR’S UNIVERSAL COMPOSABILITY PROTOCOL 53

(3.3)

Putting Equations 3.1 and 3.2 together, we then get

Pr[RealΠ,A,D(η, (x0, x1)) = 1]− Pr[IdealF ,S,D(η, (x0, x1)) = 1] >
1

2
(∆− δ) =

1

2
δ′

for a non negligible value δ′
2 . Hence D is a PPT machine distinguishing (A,Π) from

(S,F) with more than negligible probability, contradicting the UC-realization of F by

Π (cf Definition 3.2.2). Therefore our initial assumption is wrong and Π is (ε,∆)-

differentially private.

In the same vein as above, we can also show that IND-CDP is preserved by UC

realization. As a consequence of this result, it suffices to apply AnoA to ideal function-

alities: transferring the results to the real protocol weakens the anonymity guarantees

only by a negligible amount.

Corollary 3.2.1. Let Π be (ε, δ)-IND-CDP and Π be a protocol. If Π UC-realizes Π

then Π is (ε,∆)-IND-CDP with ∆ = δ + δ′ for some negligible value δ′.

The above result, in combination with an ideal functionality for an AC protocol, is

useful for analyzing the AC protocol with respect to our strong anonymity definitions.

Formalization of Tor Entities Senders can create Tor circuits by sending a message

(create circuit,C) to Tor nodes, where C ∈ Circuits describes the Tor nodes that

should be used for the circuit creation. Subsequently, Tor nodes receive messages

extend circuit and reply with created if they successfully extended the circuit. After

a circuit was created, it can be used to send messages that are subsequently propagated

by the Tor nodes.

Recipient Wrapper Our formalization of Tor is parametric in a stateless machine

Rec that computes responses of recipients. The machine needs to be stateless to ensure

that there is no indirect information flow between different recipients. As our analysis

targets anonymity of IP addresses, we require that Rec is independent of its first

input, i.e., the response computed by Rec does not depend on the recipient to which

the message was sent. We refer to Figure 3.7 for a description of the recipient wrapper

machine.

Adversary Model Their Tor model considers partially global attackers. Thus, they

model the network explicitly by an explicitly defined ideal functionality FNet that allows

the adversary to compromise connections between Tor nodes up to a specific number q.

The adversary can send messages (compromise, n) to compromise a Tor node and mes-

sages (observe, n, n′) to compromise connections between them. We naturally modify

the compromisation mechanic by applying the same restrictions on compromisation as

54 CHAPTER 3. IMPACT OF PASSIVE ADVERSARIES ON TOR

for the AnoA adversary. Instead of allowing subsequent compromisation up to a specific

number of nodes or connections, we require the adversary to initially send two sets N

and L and restrict them via adversary classes, as before. Moreover, the adversary from

[15] can perform active attacks, by inserting, dropping, or modifying messages. We

restrict the adversary to passive attacks and from performing adaptive compromisation

by the use of an AnoA adversary class that we present in the following.

We refer to Appendix A.1 for a formal definition of FOR (which is not part of this

thesis, repeated for completeness).

We construct the following Plug’n’Play adversary class:

Definition 3.2.3 (Passive UC Adversary with Transparent Challenges). Given any

challenge Turing machine M ′ and a predicate on compromisation P , we construct

a passive, statically corrupting Tor adversary class as a Plug’n’Play adversary class

PnPM,Fblock,SP
as follows:

• The challenge machine M runs the input machine M ′ but enforces transparent

challenges, i.e., whenever M ′ sends a message m to Ch, M additionally sends m

to A.1

• The filter machine Fblock blocks all messages from A to Π, thus rendering A

passive, as it cannot influence Tor messages and reflects all messages from Π to

A, thus disallowing A from intercepting and blocking messages. As a side effect,

Fblock disallows adaptive compromisation, as A can only compromise Tor entities

in the setup phase. More specifically, if F receives a message of the form (P,Q,m)

from FNet, then reflect (P,Q,m) back to FNet. If F receives a message of the

form 〈P1, . . . , Pn, cmd,m〉 from FOR, then send (Pn−1, Pn, cmd,m) to FOR. 2 In

both cases, the adversary receives a copy of the message.

• The setup machine SP allows A to compromise Tor entities, as follows: A can

specify a set N ⊆ E of compromised Tor entities and a set L ⊆ E2 of compromised

connections between Tor entities. Then, SP checks, whether P (N,L) = true and

only if so, allows this compromisation. However, SP restricts the compromisation

of senders and recipients depending on the anonymity notion as follows:

– if α = αSA, let N := N \ S.

– if α = αRA, let N := N \ R.

– if α = αREL, let N := N \ (S ∪R).

1To clearly distinguish these messages from other messages that M ′ sends to A, we can begin all

messages from M ′ to A with the bit 0 and all messages that are copies of challenger messages with the

bit 1.
2Technically, FNet (and also FOR) expect a handle h, s.t., m = lookup(h). However, we assume

that handles can be distinguished from messages and by extending the lookup algorithm lookup s.t.

for messages m (that are not handles), lookup(m) = m.

3.2. TOR’S UNIVERSAL COMPOSABILITY PROTOCOL 55

SP then sends messages (compromise, n) to FNet for all n ∈ N and (observe, n, n′)
to FNet for every (n, n′) ∈ L.

We observe that for sender anonymity, recipient anonymity and relationship anony-

mity the adversary cannot improve its advantage by sending several messages Challenge

for the same challenge tag Ψ. Consequently, it suffices to focus on challenges consisting

of single messages only.

Theorem 3.2.2 (Single-message challenges and inputs suffice). Let PnPM,Fblock,SP
be

an adversary class as defined in Definition 3.2.3, for arbitrary machines M ′ and SP .

Let ΠONCE be defined as Π, with the difference that we set ttl-count to 1. Under the

assumption that traffic correlation attacks are perfect, it holds that whenever there is

an adversary A ∈ PnPM,Fblock,SP
, s.t., A reduces the anonymity of Π in the (α, γ)-

IND-CDP game by (ε, δ), then there is an adversary A′ ∈ PnPM ′,Fblock,SP ,α, s.t., A′

reduces the anonymity of Πonce in the (α, γ)-IND-CDP game by (ε, δ).

Proof. Note that the anonymity notions αSA, αRA and αREL ensure that for every

challenge tag, exactly one fresh Tor circuit is constructed. If, as we assume, traffic

correlation is perfect, then the observations that an adversary can make for any Tor

circuit do not depend on the number of messages sent over this circuit. We show that

for every machine A within the adversary class, we can construct a machine B that

simulates all received messages that are received because of later challenge messages

or later input messages. Since the challenge machine has transparent challenges, B

knows the messages m that are sent and can fully simulate them, as they use the same

Tor circuit that was used by the first message of this challenge. Note that for every

challenge only one Tor circuit is created. As soon as the number of messages exceeds

the allowed number ttl-count of the original protocol, the circuit is destroyed and no

further circuits are created for this session ID.

Let PnPM,Fblock,SP
be an adversary class as in Definition 3.2.3, let Rec be a PPT

machine that computes the output of recipients and let A be an arbitrary PPT machine

(run within the adversary class wrapper machine the constructive interpretation of the

adversary class, c.f., Section 2.4). We construct a PPT machine B as follows:

• Internally run A and relay all messages from A with the exceptions mentioned

below.

• Whenever receiving information, store it and relay it to the adversary.

• Whenever M sends a message Challenge(, , , ,m,Ψ) to the protocol, check

whether this is the first message with the respective challenge tag Ψ. If so, store

all data about observed communications until receiving any other message from

A or from M . Whenever receiving another message Challenge(, , , ,m′,Ψ)

with the same tag Ψ, replay the stored observations, but replace m by m′ if

it occurs and replace all handles by freshly drawn handles. Moreover, compute

56 CHAPTER 3. IMPACT OF PASSIVE ADVERSARIES ON TOR

Call to Π with input (S,R,m, sid) from Ch:

Upon input (R,m, sid)

Send message (R,m, sid) to PS within EnvS, as specified below.

Wrapper Envu for onion proxy Pu:

Upon input (R,m, sid) from Ch

if (R,C, sid, t) ∈ Circuits for some value C then

if t < ttl-count then

send message (send,C, (R,m)) to Pu
increase t+=1 by storing (R,C, sid, t+ 1) in Circuits

else

Drop the message.

end if

else

Parties← ps(Pu,R)

send message (create circuit,Parties) to Pu
wait for response (created , C)

store (R,C, sid, 1) in Circuits

send message (send,C, (r,m)) to Pu
end if

Upon input (received,C,m) from FOR

if (R,C, sid, t) ∈ Circuits for some values C and R then

send message (m, sid) to Ch.

end if

The recipient wrapper Envr:

Let Rec be any stateless machine that describes the behavior of recipient, i.e., that

computes the recipient’s answers to messages.

Upon message (R,m, sid) from machine P

Run the (stateless) machine Rec on (R, P,m, sid)

Upon message (P,m, sid) from recipient Rec

send (m, sid) to the protocol machine P

Figure 3.7: Wrapper machine for the environment Env .

3.3. SPECIALIZED ANOA GAME 57

the response of the recipient R on message m′ by running the stateless recipient

machine Rec and sent its output and a replay of the observations made for the

first response to the adversary.

For concluding the proof, it remains to be shown that the simulation of B in the

game with single messages per session is correct. More precisely, we argue that the

adversary A behaves the same in the simulation of B as in the original game where it

can send several messages and receive observations from FOR and FNet. This follows

from the definition of FOR and FNet, as well as our construction of B: All messages

sent through the same Tor circuit will result in the same adversarial observations (with

different handles), except for the message that is sent. If the adversary controls the

exit node of the circuit, the recipient, or it observes the connection between the exit

node and the recipient, then it can additionally observe the message. By storing the

initial observations for the first message and by replaying them with replaced handles

and messages, B perfectly simulates the observations. Thus, A will behave just as in

the original game and by outputting the bit b∗ of A, B achieves the same advantage.

Note that as long as M decides not to send challenge messages, B cannot (and does

not have to) simulate messages. Since M does not receive messages from the protocol

directly, it cannot tell whether or not the protocol actually sends a message through a

circuit or not and thus cannot behave differently depending on whether Π or Πonce is

used.

Remark 3.2.1. Note that in contrast to its name, the filter machine Fblock does not

filter or block any message from the protocol to the adversary. If Fblock could modify

messages from the protocol, then at least in general, the theorem would not hold: The

machine could filter and/or block messages depending on their content or even at ran-

dom. Thus, the adversary could gather non-redundant information by sending more

than one message per challenge.

3.3 Specialized AnoA Game

In this section, we simplify the game-based definitions of AnoA by tailoring the game

to the Tor protocol and by only considering statically corrupting passive adversaries.

Our simplified game eases our analyses by abstracting away all details of Tor’s UC

formalization.

As in the more general definition of AnoA, we formalize anonymity as a challenge-

response game, in which the adversary has to distinguish two scenarios. These scenarios

are described by a simplified anonymity function α-simple that receives as inputs two

senders S0 and S1, two recipients R0 and R1, and the challenge bit b. It then selects

one sender and one recipient, based on the challenge bit and the considered anonymity

notion.

58 CHAPTER 3. IMPACT OF PASSIVE ADVERSARIES ON TOR

Simplified AnoA Challenger for Tor Ch-simple(α-simple, b)

Initialize the Game

Receive N ⊆ E and L ⊆ E2 as input.

if α-simple = α-simpleSA, let N := N \ S.

if α-simple = α-simpleRA, let N := N \ R.

if α-simple = α-simpleREL, let N := N \ (S ∪R).

Set first = true

Upon message Input = (S,R)

SimulateTor(S,R)

Upon message Challenge = (S0, S1,R0,R1)

if first = false then

Output ⊥.

else

Compute (S∗,R∗)← α-simple(S0,S1,R0,R1, b)

Set first := false.

SimulateTor(S∗,R∗)
end if

Subroutine SimulateTor(S,R)

Let C← ps(S,R) be a fresh Tor circuit.

Send Observations := obs[N,L](C) to A.

Figure 3.8: The simplified AnoA challenger for Tor against statically corrupting, passive

adversaries, single-challenge messages and for one challenge.

Game-based anonymity definition We replace the complex challenger Ch with

a significantly simpler challenger Ch-simple that only allows for one challenge that

consists of exactly one message. Instead of simulating the UC formalization of Tor, it

computes the adversary’s observations via the observation function obs. For complete-

ness we now describe the challenger in detail.

The AnoA challenger. The challenger Ch-simple is defined in Figure 3.8. As described

above, it expects as inputs the anonymity notion α-simple and the challenge bit b.

The challenger initially waits for a set N ⊆ E of compromised Tor entities and a

set L ⊆ E2 of compromised connections between Tor entities. Upon receiving these

sets, the challenger removes illegitimate corruption requests: S is removed from N for

sender anonymity, R is removed from N for recipient anonymity, and both S and R
are removed from N for relationship anonymity, which reflects the respective scenarios.

3.3. SPECIALIZED ANOA GAME 59

α-simpleSA(S0,S1,R0,R1, b) :

output (Sb,R0)

α-simpleRA(S0, S1,R0,R1, b) :

output (S0,Rb)

α-simpleREL(S0,S1,R0,R1, b) :

a←u {0, 1}
output (Sa,Ra⊕b)

Figure 3.9: The simplified (single-message) anonymity functions.

Then, it accepts two types of messages from the adversary: challenge-messages,

denoted as Challenge = (S0,S1,R0,R1) in Figure 3.8, that trigger that the challenge

message is sent, and input-messages, denoted as Input = (S,R) in Figure 3.8, that send

additional messages m between senders S and recipients R :

• Challenge-messages: Upon receiving the (first) message Challenge = (S0,S1,

R0,R1) ∈ S2 × R2, the challenger computes the anonymity notion α-simple

on (S0, S1,R0,R1) and the challenge bit b and obtains a sender-recipient pair

(S∗,R∗) ∈ {S0,S1} × {R0,R1}. The challenger then very abstractly simulates

the Tor protocol where S∗ sends a message to R∗. We abbreviate this using

the subroutine SimulateTor(S∗,m,R∗, (Ch,Ψ)) in Figure 3.8. The challenger

samples a new Tor circuit C from sender S∗ to recipient R∗ from the path selection

distribution ps(S∗,R∗) and sends the observations obs that the adversary can

make as obs[N,L](C) to A.

• Input-messages: Upon receiving a message Input = (S,R) ∈ S×R, the challenger

calls the subroutine SimulateTor(S,R), as described above, i.e., samples a fresh

circuit and sends the observations to A.

Based on this simplified game we describe the reduction of anonymity of any stati-

cally corrupting passive adversary on Tor, analogously to Definition 2.2.1, as follows.

Definition 3.3.1 (Reduction of anonymity; advantage). Let α-simple be an anonymity

function. Then, the adversary’s advantage of an adversary A is at most δ, with 0 ≤
δ ≤ 1, if for all sufficiently large η ∈ N, we have

Pr [0 = 〈A(1η)|Ch-simple(α-simple, 0)〉]
≤ eε Pr [0 = 〈A(1η)|Ch-simple(α-simple, 1)〉] + δ.

60 CHAPTER 3. IMPACT OF PASSIVE ADVERSARIES ON TOR

We say that Tor exhibits a reduction of anonymity of at most (ε, δ) (formally: Tor

is (α-simple, 1, ε, δ)-IND-CDP) against a class A of adversaries if the adversary’s

advantage of all probabilistic polynomial-time adversaries A ∈ A is bounded by ε and

δ.

This definition captures an eavesdropping adversary that corrupts a fixed set of

nodes and connections between nodes before it starts observing the network. In par-

ticular, the adversary cannot adaptively decide which nodes and connections to com-

promise.

Anonymity Function The anonymity guarantee we provide in AnoA is parametric

in the function α-simple : S2 × R2 × {0, 1} → S × R, describing the anonymity

notion. As for the more complex anonymity functions of AnoA, α-simple encodes the

anonymity notion we analyze. We refer to Figure 3.9 for an overview over the three

considered anonymity notions.

Adversary For our simplified game, we define a new adversary class PnPM,Fobs,Sp

analogously to Definition 3.2.3, with a few minor, technical adaptations:

Definition 3.3.2 (Passive Observation Adversary with Transparent Challenges). Given

any challenge Turing machine M ′ and a predicate on compromisation P , we construct

a passive, statically corrupting Tor adversary class as a Plug’n’Play adversary class

PnPM,Fblock,SP
as follows:

• Exactly as in Definition 3.2.3, the challenge machine M runs the input machine

M ′ but enforces transparent challenges.

• The filter machine Fobs relays all messages from Ch to A. Since the adversary

cannot send messages to any protocol, Fobs does not have to block such messages.

• The setup machine SP , if initialized by the adversary with N ⊆ E and L ⊆ E2,

checks, whether P (N,L) = true and only if so, allows this compromisation. To

this end and in contrast to Definition 3.2.3, SP then simply forwards (N,L) to

Ch-simple.

We will now show that the simplified AnoA game against a passive observation

adversary with transparent challenges is equivalent to the more complex AnoA game

using the UC formalization against a passive UC adversary with transparent challenges

as in Definition 3.2.3.

3.3.1 Soundness of the Simplified Game

We show that quantifying anonymity based on the observations transmitted by our

simplified challenger suffices for calculating the success of a passive, corruption-based

3.3. SPECIALIZED ANOA GAME 61

Ch PnPM,Fblock,SP TUC→O A

FOR FNet

Env

Ch-simple PnPM ′,Fidentity,SP TO→UC A

Figure 3.10: The two generic translators TUC→O (left) and TO→UC (right) in the respec-

tive games in which we use them.

attacker, even when considering the significantly more complex UC definition of Tor.

More precisely, we show that for every anonymity notion α ∈ {α-simpleSA, α-simpleRA,
α-simpleREL}, every adversary A (that can be expressed as in Definition 3.3.2) that

wins the AnoA game with ε, δ can be directly translated to a corresponding adversary

(expressed as in Definition 3.2.3) against the idealized version of Tor’s UC protocol with

an equal advantage (up to a negligible factor) and vice versa. We then combine the

results from above and show that under the assumption of perfect traffic correlation,

all AnoA guarantees result in equivalent guarantees for Tor’s implementation (up to a

negligible loss due to the cryptographic instantiation).

In the UC game, the adversary can typically only observe the handles of all messages

transmitted to compromised Tor nodes or over observed links between Tor entities,

and, in some cases the message itself. More precisely, the UC adversary can (passively)

observe the following events and messages:

• All handles for messages that are sent to compromised Tor nodes n ∈ N and

over compromised connections (n, n′) ∈ L, which includes system messages like

“extend circuit” and “circuit extended”.

• The messages themselves, if the exit node or the recipient is compromised (the

recipient can be a Tor node, for circuit handling messages) or the connection from

exit to recipient is observed.

Since the answers of the recipient are computed by a stateless machine Rec and we

require the UC adversary class (and, consequently, our observation adversary class) to

have transparent challenges, the adversary already can compute all answers of recipients

on its own by running Rec on the challenge messages.

Definition 3.3.3 (Generic Translation). We define two generic translators; a transla-

tor TUC→O that translates UC observations into abstract observations and a translator

TO→UC that translates abstract observations into UC observations, as follows:

62 CHAPTER 3. IMPACT OF PASSIVE ADVERSARIES ON TOR

• From observation tuple to UC (TO→UC): The machine first initializes the

whole ideal functionality for Tor, as described in Section 3.2 for all Tor entities

E ∪
{
ndummy

}
, where ndummy /∈ E is an additional protocol party that is not part

of the regular Tor entities. We use ndummy to describe protocol parties that the

adversary cannot observe.

Then, whenever the translator is queried with an observation o = (n1, n2, n3, n4,

n5) ∈ O and a message m, we replace all unobserved elements ni = ⊥ in o with

ndummy. Subsequently, we ask the sender n1 (who might be ndummy) to create a fresh

Tor circuit consisting of the nodes n2, n3 and n4 and we then send the message

m over this circuit to n5. Note that any of the Tor nodes involved and/or the

recipient may be ndummy.3 We refer to Figure 3.12 for a formal description.

• From UC transcripts to an observation tuple (TUC→O): Whenever the

translator is queried with the transcript t of observations made by the compromised

Tor entities and the observed links between them, TUC→O parses the transcript and

counts the number of times it observes an entity. From this count we can infer

the position of the entity on the circuit: as Tor creates circuits in a telescopic

way, the number of messages sent for creating a circuit depends on the position

of the entities; e.g., the guard node has to relay all messages, including the circuit

construction messages and the corresponding responses, from the sender to the

subsequent nodes, whereas the exit node only relays the message m itself to the

recipient. We refer to Figure 3.11 for a formal description.

Theorem 3.3.1. For every challenge machine M ′, every predicate P , and every ano-

nymity notion α ∈ {αSA, αRA, αREL}, the anonymity impact of the adversary class

PnPM,Fblock,SP
(c.f. Definition 3.2.3) in the game with Ch-simple(α-simple, b) is

equal to the anonymity impact of the corresponding adversary class PnPM,Fobs,SP
(c.f.

Definition 3.3.2) on Πonce in the game with Ch(α, 1, b), up to a negligible factor.

Proof. Let M ′ be a challenge machine, P be a predicate and α ∈ {αSA, αRA, αREL} be

an anonymity function with α-simple as the corresponding simple anonymity notion.

Further, let A be any PPT machine.

Simplified AnoA → AnoA with UC We show that for A, the game with the

challenger Ch running the protocol Πonce is indistinguishable from the game with the

challenger Ch-simple, if additionally we translate all observations to UC using the

translator TO→UC, as described in Figure 3.12.

The two games differ in their simulation of the Tor protocol and, (technically) in

their handling of the compromisation. However, the compromisation is only technically

3For the purpose of this proof the same Tor node can used several times in the same circuit. We could

circumvent this by introducing several dummy entities ndummy1 to ndummy5 for the individual positions.

For simplicity we chose to introduce only one such entity.

3.3. SPECIALIZED ANOA GAME 63

TUC→O (t)

Set counts(x, y):=0 for every (x, y) ∈ E2

Set n1:=⊥; n2:=⊥; n3:=⊥; n4:=⊥; n5:=⊥
Parse the transcript t and proceed as follows:

upon parsing (P, Pnext,cid, h):

IncCount(P, Pnext)

upon parsing (P,Q1, . . . , Qu,m/h):

IncCount(P,Q1); IncCount(Q1, Q2); . . . ; IncCount(Qu−1, Qu)

if there are no more messages in t then

for each (P, Pnext) ∈ E2 do

switch (counts(P, Pnext))

case 1:

n4:=P ; n5:=Pnext
case 2:

n3:=P ; n4:=Pnext
case 3:

n2:=P ; n3:=Pnext
case 4:

n1:=P ; n2:=Pnext
end for

end if

Output (n1, n2, n3, n4, n5)

where we define IncCount as follows:

IncCount (counts,P,Q)

if counts(Q,P) = 0 then counts(P,Q)+=1 // We only count the direction

from the sender to the recipient.

Figure 3.11: Translation algorithm TUC→O

different (the same Tor entities will be compromised and the same connections between

them will be observed). Moreover, TO→UC will simulate the circuit creation and the

sending of messages depending on the five-tuple received by Ch-simple. We describe

the execution of the protocol in more detail now and argue why the adversary cannot

distinguish the games.

In both cases, A initially sends messages setup to SP that contain a set of Tor

entities N and a set of connections between Tor entities L. In both games, the predicate

P is evaluated on (N,L) and only if it is satisfied, the compromisation is allowed by SP .

In the UC game, SP restricts N according to the anonymity notion and subsequently,

64 CHAPTER 3. IMPACT OF PASSIVE ADVERSARIES ON TOR

TO→UC(N,L)

Initially:

Initialize FNet and initialize FOR for every Tor entity e ∈ E ∪
{
ndummy

}
.

Initialize a dummy adversary AUC(N,L) that stores and reflects all messages it

receives. The adversary deletes or outputs its transcript upon request.

AUC sends messages compromise to all Tor entities n ∈ N and messages observe

to FNet for all (n, n′) ∈ L.

upon receiving an observation o = (n1, n2, n3, n4, n5) and a message m:

Request that AUC deletes its transcript.

Replace all entries ni = ⊥ in o with ndummy.

Send (create circuit,Parties = 〈n2, n3, n4〉) to the FOR party n1.

After the circuit is created, retrieve the circuit ID cid from n1 and send

(send,C = 〈n1
cid1⇔ n2 ⇔ n3 ⇔ n4〉, 〈data, (n5,m)〉) to n1

Query AUC for its transcript t and output the transcript t.

where we use the original ideal functionality FOR that in turn uses the ideal network

functionality FNet.

Figure 3.12: Translation algorithm TO→UC

messages compromise and observe are sent to the respective Tor entities and to FNet.

In the simplified game, the messages are sent to the challenger, that, in turn, restricts

N in the same way.

All communication between A and M ′ is the same in both games. Whenever M ′

sends a message Challenge or a message Input to the challenger, the protocol is

simulated. The games only differ in the observations made by the adversary. Note that

these observations are not restricted by Fblock or Fobs.

• In the game with Ch, the adversary observes handles sent by Tor entities to other

Tor entities, depending on the compromised nodes and observed connections.

• In the game with Ch-simple we translate an observation o ∈ O to a transcript

using TO→UC and using the message sent by M ′ to the challenger. 4

The execution of TO→UC on an observation o and a message m and the execution of

Πonce (where the message m is sent) can only differ in the Tor entities that create a

circuit, are parts of the circuit or pose as the recipient. In both cases a Tor circuit

C = (Sa, ng, nm, nx,Rb) is drawn from the same distribution ps(Sa,Rb). All entities that

are observed are the same in both games. Let (n1, n2, n3, n4, n5) := obs[N,L](C) be the

4TO→UC receives this message from M ′ since we enforce transparent challenges.

3.3. SPECIALIZED ANOA GAME 65

observation in the simple AnoA game. For every ni s.t. ni = ⊥, the adversary neither

has compromised the respective Tor entity, nor observes it via another Tor entity or via

an observed connection. This, however, means that by definition of FOR and FNet, the

adversary does not receive any message containing this entity. Consequently, we can

exchange the entity with the (always unobserved) dummy entity ndummy in our simulation

and the adversary will receive exactly the same messages.

AnoA UC → Simplified AnoA We show that for A, the game with the challenger

Ch-simple is indistinguishable from the game with the challenger Ch running the

protocol Πonce, if additionally we translate all UC transcripts to observations using the

translator TUC→O, as described in Figure 3.11.

The two games differ in their simulation of the Tor protocol and, (as above) in their

handling of the compromisation. TUC→O will construct an observation o ∈ O from

a transcript of messages it receives by counting the number of messages sent by Tor

entities. We describe the execution of the protocol in more detail now and argue why

the adversary cannot distinguish the games.

The setup phase is equivalent, as argued for the previous case and results in the

same Tor entities being considered compromised and the same connections between

them being considered observed.

As argued above, All communication between A and M ′ is the same in both games.

Whenever M ′ sends a message Challenge or a message Input to the challenger, the

protocol is simulated. The games only differ in the observations made by the adversary.

Note that these observations are not restricted by Fblock or Fobs.

• In the game with Ch, the adversary observes handles sent by Tor entities to other

Tor entities, depending on the compromised nodes and observed connections.

• In the game with Ch-simple we translate an observation o ∈ O to a transcript

using TO→UC.

The executions of TUC→O on a transcript t scans the transcript for messages, learns

the position of all Tor entities by counting the number of messages that are observed

and then outputs an observation five-tuple. We now argue why the same five-tuple is

sent to A in both cases.

In both cases a Tor circuit C = (Sa, ng, nm, nx,Rb) is drawn from the same distribu-

tion ps(Sa,Rb). All entities that are observed are the same in both games.

In the UC formalization of Tor, Sa creates a Tor circuit by first sending a mes-

sage create to ng. Upon receiving a response from ng, it sends a second message

extend circuit to ng and ng now sends a message create to nm. After receiving a

response, Sa now sends another message extend circuit to ng, ng relays it to nm and

nm sends a message create to nx. Finally, upon receiving a response extended, Sa
sends a handle for the message m to ng, ng relays it to nm, nm relays it to nx and nx
sends the message m to Rb.

66 CHAPTER 3. IMPACT OF PASSIVE ADVERSARIES ON TOR

We see that Sa sends 4 messages to ng; ng sends 3 messages to nm; nm sends 2

messages to nx and nx sends 1 message to R. Consequently, by counting the number

of messages, we can compute the position of a Tor entity in the circuit. This works

independently of whether a Tor entity is observed or whether a connection between Tor

entities is observed, as long as connections are observed in an undirected manner. Note

that we only count the messages sent in the direction from the sender to the recipient,

not the (equal number of) replies sent in the opposite direction.

Since the transcript only contains the Tor entities that were observed by the Tor

entities in N or via the connections in L, the observation created by TUC→O equals

obs[N,L](C), which is equal to the output of Ch-simple.

This concludes the proof. Since the adversary cannot distinguish the games (in

either case), it will behave the same and its probability to output the correct challenge

bit b∗ = b is the same up to a negligible advantage.

Chapter 4

Calculating Anonymity

Guarantees

In this section, we show how to compute tight bounds on the anonymity provided by

Tor in the presence of an adversary that can observe the communication at or between

certain Tor entities. We begin by characterizing the impact that observations from

Chapter 3 have on Tor’s anonymity for the anonymity notions sender anonymity, recip-

ient anonymity and relationship anonymity, based on the adversary’s compromisation,

the challenge senders and recipients, and the path selection algorithm (i.e., the distri-

bution over Tor nodes). We then show that these impacts constitute tight bounds on

the adversary’s success for all fixed adversaries, i.e., for adversaries that are known in

advance, both in AnoA and in a practical instantiation of Tor [15] (up to a negligible

influence). For calculating these bounds, we are required to instantiate the probability

distribution that describes Tor’s path selection algorithm by an actual distribution,

which we present for Tor’s path selection algorithm as well as for several of its variants.

Finally, we present a heuristic for efficiently calculating the impact of specific structural

adversaries that compromise Tor nodes restricted only by a given budget.

4.1 Calculating Anonymity Guarantees for Observations

In Chapter 3 we defined the observations a passive adversary can make by eavesdrop-

ping on Tor communication. Note that in the simplified AnoA game of Section 3.3,

which we have shown to be sufficient for our analysis, only one challenge exists and this

challenge only consists of one message. Consequently, only one Tor circuit is created

and any passive adversary can base its guess of the challenge bit b only on exactly this

one observation of exactly one Tor circuit. In this section we calculate the probability

for each observation to occur depending on the sender and recipient of a Tor circuit.

For a given challenge message Challenge = (S0,S1,R0,R1) and for each of the anony-

mity notions of sender anonymity, recipient anonymity and relationship anonymity we

67

68 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

calculate the difference in probability for each observation if the challenge bit is b = 0

in comparison to the challenge bit being b = 1.

Lemma 4.1.1. In the specialized AnoA game from Definition 3.3.1, any adversary

that is part of a Plug’n’Play adversary class with transparent challenges can only base

its decision about the challenge bit b on exactly one message obs ∈ O that reflects

the adversary’s observations of one single Tor circuit, for every stateless path selection

algorithm.

Proof. Note that in the specialized AnoA game the adversary only sends one message

Challenge. We show the Lemma by showing that the only information the adversary

learns that in any way depends on the challenge bit b of the challenger is the message

Observations that the challenger sends after receiving the (single) message Challenge

from the adversary.

Note that for every Plug’n’Play adversary, the messages Input(S,R) are directly

sent to the challenger. The adversary class by definition cannot base any decision

on such messages. Similarly, the message Observations that the challenger sends to

the adversary after receiving the message Input(S,R) cannot influence the behavior

of the adversary class, as it is immediately sent to the adversary and not processed

by any machine of the adversary class. Furthermore, as we assume ps to be known

(in general), the adversary can compute the observation itself by sampling a circuit

C from the distribution ps(S,R) and by computing the resulting observation as in

Definition 3.1.2.

For the messages Input generated by the adversary class itself, this argumentation

does not apply. However, since the adversary class has transparent challenges, the

adversary learns both challenge senders S0,S1 and both challenge recipients R0,R1. The

observation for the challenge message only depends on these senders and recipients and

on the challenge bit b. Thus, we can, for simplicity, assume that the adversary class does

not generate messages Input, as they cannot help the adversary in guessing the bit, but

also cannot harm the adversary, since the adversary class has transparent challenges

and thus cannot use input messages to hide information about the challenges.

Under the above assumptions, the game consists only of a message Challenge to

the challenger, followed by one message Observations and the adversary can only base

its guess for the bit b on exactly this one message Observations.

As the adversary can only base its decisions on one observation message, we continue

by calculating the probability for each observation. We explain our intuition behind

the statelessness of the path selection algorithm and the impact of this assumption on

our analyses of Tor in Section 4.2.1.

4.1.1 Probabilities of Observations

For any given compromisation, consisting of a set of compromised Tor entities N ⊆ E
and a set of compromised communications between Tor entities L ⊆ E2 and for any

4.1. CALCULATING ANONYMITY GUARANTEES FOR OBSERVATIONS 69

Observation-Phase(N,L, S0,S1,R0,R1)

for each z ∈ {S0, S1} × {R0,R1} × O(S0, S1,R0,R1) do

store[z] := 0

end for

for each (S,R) ∈ {S0,S1} × {R0,R1} do

psS,R:=new ps(S,R)

end for

for each (S,R) ∈ {S0,S1} × {R0,R1}, (ng, nm, nx) ∈ N 3 do

store[S,R,observed(N,L, S, ng, nm, nx,R)]+=psS,R(ng, nm, nx)

end for

return store

where we define

observed(N,L, S, ng, nm, nx,R)

Initialize i:=⊥ for i ∈ {oS, oG, oM, oX, oR}
if {S, ng} ∩N 6= ∅ or (S, ng) ∈ L then oS:=S

if {S, ng, nm} ∩N 6= ∅ or (S, ng) ∈ L or (ng, nm) ∈ L then oG:=ng
if {ng, nm, nx} ∩N 6= ∅ or (ng, nm) ∈ L or (nm, nx) ∈ L then oM:=nm
if {nm, nx,R} ∩N 6= ∅ or (nm, nx) ∈ L or (nx,R) ∈ L then oX:=nx
if {nx,R} ∩N 6= ∅ or (nx,R) ∈ L then oR:=R

return (oS, oG, oM, oX, oR)

Figure 4.1: Computation of the probability for every observation. Here (N,L) denotes

compromised Tor entities and malicious infrastructure, S0 and S1 two senders, and R0

and R1 two recipients.

Tor circuit C = (S, ng, nm, nx,R), we can compute the observation o the respective ad-

versary makes, as obs[N,L](C), as described in Definition 3.1.2. The probability that

the circuit C is chosen depends on the path selection algorithm the sender uses, as well

as, possibly, on the recipient. For now, we consider the path selection algorithm ps as

a distribution over Tor circuits that depends on the sender and the recipient. Conse-

quently, we compute the probability of each observation as described in the algorithm

Observation-Phase in Figure 4.1, where psS,R(ng, nm, nx) denotes the probability that

ps(S,R) returns the circuit C = (S, ng, nm, nx,R).

Based on the probability for every observation, we can compute the anonymity

impact of every observation depending on the anonymity notion.

70 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

φε(X,Y)

if X > eε · Y then

return X − eε · Y
else

return 0

end if

Figure 4.2: Impact of the difference of probabilities on our differential privacy style

anonymity guarantee.

4.1.2 Distinguishing Anonymity Scenarios

For each of the three anonymity notions sender anonymity, recipient anonymity and

relationship anonymity, the adversary needs to distinguish between the anonymity sce-

narios defined by the notion and the choice of senders and recipients. In each scenario,

the adversary can make observations depending on the probability distribution over

the circuits, as computed above.

Whenever the probability of an observation differs, say it is X for b = 0, but Y for

b = 1, then the adversary can gain a small advantage, which we define as φε(X,Y).

The definition of φε(X,Y) is inherently asymmetric, as we strive for an asymmetric

anonymity definition (we bound the advantage in distinguishing between b = 0 and

b = 1 by an inequation). We refer to Figure 4.2 for our definition of φ.

Lemma 4.1.2. For every PPT distinguisher A that tries to distinguish the distributions

X and Y over the same set U , the advantage of A is bound as follows.

Pr [0 = A(u)|u← X] ≤ eε Pr [0 = A(u)|u← Y]

+
∑
u∈U

(φε(Pr [x = u|x← X] , Pr [y = u|y ← Y]))

Proof. The proof follows directly by the definition of φε:

Pr [0 = A(u)|u← X]

=
∑
u∈U

(Pr [0 = A(u)] · Pr [u = x|x← X])

≤
∑
u∈U

Pr [0 = A(u)] ·


eεPr [u = y|y ← Y] if Pr [u = x|x← X]

≤ eεPr [u = y|y ← Y]

Pr [u = x|x← X] otherwise


≤
∑
u∈U

(Pr [0 = A(u)] · (eεPr [u = y|y ← Y] + φε(Pr [u = x|x← X] , Pr [u = y|y ← Y])))

≤ eε Pr [0 = A(u)|u← Y] +
∑
u∈U

(φε(Pr [x = u|x← X] , Pr [y = u|y ← Y]))

4.1. CALCULATING ANONYMITY GUARANTEES FOR OBSERVATIONS 71

ε-impactOSA(N,L) :=
∑
o∈O

φε

(
Pr [o = obs[N,L](C),C← ps(S0,R0)] ,

Pr [o = obs[N,L](C),C← ps(S1,R0)]
)

Figure 4.3: Calculation of ε-impactOSA(N,L) that defines the impact of any observation

on sender anonymity.

ε-impactORA(N,L) :=
∑
o∈O

φε

(
Pr [o = obs[N,L](C),C← ps(S0,R0)] ,

Pr [o = obs[N,L](C),C← ps(S0,R1)]
)

Figure 4.4: Calculation of ε-impactORA(N,L) that defines the impact of any observation

on recipient anonymity.

For the second to last inequation note that

Pr [u = x|x← X] = eεPr [u = y|y ← Y] + Pr [u = x|x← X]− eεPr [u = y|y ← Y] .

As the calculation of the advantage depends on the anonymity scenarios that, in

turn, depend on the anonymity notion, we discuss them for every notion individually.

Distinguishing Sender Anonymity Scenarios For sender anonymity, the scenar-

ios defined by the challenge message Challenge = (S0,S1,R0,R1,m) are that either S0

or S1 send the message m to R0 (we refer to Section 1.2.2 for an intuition on these

scenarios).

The observations an adversary can make only depend on the probability distribution

over Tor circuits for each scenario and the scenarios only differ in the sender: a circuit

is drawn either from ps(S0,R0) or from ps(S1,R0). We thus calculate the impact of an

adversary that compromises the Tor entities N and the communications between Tor

entities L on sender anonymity ε-impactOSA(N,L) as defined in Figure 4.3.

Distinguishing Recipient Anonymity Scenarios For recipient anonymity, the

scenarios defined by the challenge message Challenge = (S0,S1,R0,R1,m) are that S0

72 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

ε-impactOREL(N,L) :=
∑
o∈O

φε

((
Pr [o = obs[N,L](C),C← ps(S0,R0)]

+ Pr [o = obs[N,L](C),C← ps(S1,R1)]
)
/2,(

Pr [o = obs[N,L](C),C← ps(S0,R1)]

+ Pr [o = obs[N,L](C),C← ps(S1,R0)]
)
/2
)

Figure 4.5: Calculation of ε-impactOREL(N,L) that defines the impact of any observation

on relationship anonymity.

sends the message m either to R0 or to R1 (we refer to Section 1.2.2 for an intuition on

these scenarios).

Analogously to sender anonymity, the observations an adversary can make for the

two scenarios differ in the probability distributions over Tor circuits, which only differ

depending on the recipient: a circuit is drawn either from ps(S0,R0) or from ps(S0,R1).

We thus calculate the impact of an adversary that compromises the Tor entities N and

the communications between Tor entities L on recipient anonymity ε-impactORA(N,L)

as defined in Figure 4.4.

Distinguishing Relationship Anonymity Scenarios Relationship anonymity is

slightly more complex than sender anonymity and recipient anonymity. Recall that for

relationship anonymity there are the following four anonymity scenarios for every chal-

lenge message Challenge = (S0, S1,R0,R1): any of the two senders sends the message

m to any of the two recipients and the adversary has to distinguish Sx communicating

with Rx for x ∈ {0, 1} from Sx communicating with R1−x for x ∈ {0, 1}.
The observations the adversary can make for the anonymity scenarios differ in the

probability distributions over Tor circuits. However, the adversary does not a priori

know the choice of x, which we have to consider for modeling the impact. If the

adversary observes R0 as the recipient of a message, it does not know whether x = 0

and b = 0 or whether x = 1 and b = 1. We thus compare the probability for an

observation depending on the challenge bit, not on the scenario itself by combining the

probability distributions for ps(S0,R0) with ps(S1,R1) and ps(S0,R1) with ps(S1,R0)

and calculate the impact of an adversary that compromises the Tor entities N and the

communications between Tor entities L on recipient anonymity ε-impactOREL(N,L) as

defined in Figure 4.5.

Intuitions for the Observation Impact Alternatively to the observation-based

quantification presented here one can discuss the reduction of anonymity in terms of

4.1. CALCULATING ANONYMITY GUARANTEES FOR OBSERVATIONS 73

distinguishing observations and evidence-building observations. An observation is dis-

tinguishing if it clearly helps in distinguishing the scenarios, e.g., a compromised guard

node can clearly distinguish two senders and thus break sender anonymity. Evidence-

building observations, however, do not lead to an immediate deanonymization, but

present some slight evidence that can be used for distinguishing the scenarios with

higher probability, e.g., a compromised middle node could observe an exit node that is

more likely to be used for communicating with one recipient than for communicating

with another recipient.

Our observation-based quantification already suffices for quantifying both types of

observations. Note that the set of possible observations for a circuit also includes the

possible senders and recipients. If for sender anonymity, where either Alice or Bob send

a message, a guard node is compromised, the adversary can for one of the scenarios

observe that Alice sends a message, resulting in some observation o = (Alice, ng, , ,).

This observation, however, is impossible if actually Bob sends a message in the other

scenario. Consequently, the difference in probabilities immediately characterizes the

probability that the guard node is compromised, thus reflecting a distinguishing obser-

vation.

4.1.3 A Sound and Precise Calculation of the Reduction of Anony-

mity

So far we have presented a way for calculating the probabilities of observations de-

pending on the probability distribution over Tor circuits defined Tor’s path selection

algorithm. Moreover we have discussed the impact of these observations on the ano-

nymity scenarios defined by an adversarial challenge, the anonymity notion and the

challenge bit.

We now combine these insights into an algorithm that quantifies the reduction of

anonymity of one specific challenge message Challenge(S0,S1,R0,R1) depending on a

set of compromised Tor entities N and a set of compromised communications between

Tor entities L and then show that this algorithm is sound, and, under the assumption

that traffic correlation is perfect, tight. Our algorithm calculates the reduction of

anonymity for all three anonymity notions at once. To this end, it starts by defining

sets of compromised Tor entities for each of the anonymity scenarios, strictly following

the setup of the (simplified) AnoA game: For sender anonymity, the set NSA may not

contain any sender or recipient (in our case we simply remove S0 and S1); for recipient

anonymity, the set NRA may not contain any recipient (in our case we simply remove

R0 and R1); for relationship anonymity, the set NREL may neither contain senders nor

recipients (in our case we simply remove all four).

Subsequently, for every anonymity notion we calculate the probability of every ob-

servation, which we call the observation phase, as presented in Figure 4.1, based on the

challenge senders and recipients and on the respective set NX for X ∈ {SA,RA,REL}.
Then, in the so called deduction phase, our algorithm calculates the impact of all ob-

74 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

ComputeDelta(S0, S1,R0,R1, N, L, ε)

NSA:=N \ {S0,S1}; NRA:=N \ {R0,R1}; NREL:=N \ {S0,S1,R0,R1}.
for X ∈ {SA,RA,REL} do

storeX:=Observation-Phase(NX , L,S0, S1,R0,R1)

δX:=Deduction-Phase(store, X, ε, S0, S1,R0,R1)

end for

return (δSA, δRA, δREL)

Deduction-Phase(store, X, ε, S0, S1,R0,R1)

δSA, δRA, δREL:=0

for each o ∈ O(S0,S1,R0,R1) do

δSA+=φε(store[S0,R0, o], store[S1,R0, o])

δRA+=φε(store[S0,R0, o], store[S0,R1, o])

r1:=(store[S0,R0, o] + store[S1,R1, o])/2

r2:=(store[S0,R1, o] + store[S1,R0, o])/2

δREL+=φε(r1, r2)

end for

return δX

φε(X,Y)

if X > eε · Y then

return X − eεY
else

return 0

end if

Figure 4.6: Computation of reduction of anonymity. Here (N,L) denotes compromised

Tor entities and malicious infrastructure, S0 and S1 two senders, and R0 and R1 two

recipients.

servations on anonymity and computes a value for δ depending on a given value for ε

as discussed in the previous subsection. We refer to Figure 4.6 for a description of our

algorithm.

We now show that for all anonymity notions αX with X ∈ {SA,RA,REL}, the values

for δX computed by our algorithm constitutes a tight guarantee for the anonymity

notion αX against an adversary that compromises exactly N and L and that sends

exactly one challenge with the Tor entities S0,S1,R0,R1 as in the calculation.

Theorem 4.1.1. Let N ⊆ E and L ⊆ E2 denote the sets of observation points,

let S0,S1 ∈ S be two senders, R0,R1 ∈ R be two recipients, and let αX for X ∈

4.1. CALCULATING ANONYMITY GUARANTEES FOR OBSERVATIONS 75

{SA,RA,REL} be an anonymity notion. And let AN,L,αX

S0,S1,R0,R1
be the adversary class

PnPM,Fblock,SP
with M and P defined as:

M: Whenever invoked with a message Challenge = (Sx,Sy,Rx,Ry), send the message

Challenge = (S0, S1,R0,R1) to the challenger.

P: The predicate P evaluated on (N ′, L′) depends on the anonymity notion αX : If

αX = αSA, return true iff N ′ = N \ S and L′ = L; if αX = αRA, return true iff

N ′ = N \ R and L′ = L; if αX = αREL, return true iff N ′ = N \ (S ∪ R) and

L′ = L.

Then Tor is (αX , 1, ε, δ)-IND-CDP) against AN,L,αX

S0,S1,R0,R1
, for every ε ≥ 0, and for

δ = δX , as computed by ComputeDelta (defined in Figure 4.6). Moreover, for every

value ε ≥ 0, there is an adversary A ∈ AN,L,αX

S0,S1,R0,R1
that has advantage δ = δX against

Tor, if we assume perfect traffic correlation.

Proof. Soundness. Let αX ∈ {αSA, αRA, αREL} be an anonymity notion and A ∈
AN,L,αX

S0,S1,R0,R1
be an adversary from the considered class and let C be the circuit created by

the challenger via C← ps(S∗,R∗), where S∗,R∗ were computed by αX . By Lemma 4.1.1

the adversary can base its decision only on one observation, namely obs[N,L](C) and

thus, this decision directly depends on the probability to make the respective observa-

tion. Consequently, by Lemma 4.1.2, the advantage of A in the AnoA game is limited

by ε and δ = δX , where δX was calculated by ComputeDelta(S0, S1,R0,R1, N, L, ε).

Tightness. We first discuss the tightness for sender anonymity. The proof is analogous

for recipient anonymity and relationship anonymity. For the tightness we construct the

following adversary B for sender anonymity.

• B initializes and sends a message Challenge(, , ,) to its adversary class, such

that the challenge message is triggered.

• Moreover, B bases its decisions on a subset OSA of all possible observations O,

where OSA ⊆ O contains all observations that are (sufficiently) more likely if S0

is the sender (in comparison to S1). More formally:

OSA := {o ∈ O if OPS0,R0,o ≥ eε · OPS1,R0,o} ,

where

OPS,R,o := Pr [o = obs[N,L](c)|c← ps(S,R)]

• Upon (after sending the challenge) receiving a message Observations(o) from

Ch-simple, B outputs b∗ := 0 if and only if o ∈ OSA and b∗ := 1 otherwise.

We now calculate the advantage of B in the game by comparing the probability that

it outputs b∗ = 0 if b = 0 with the probability that it outputs b∗ = 0 if b = 1. We

76 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

first show the Theorem for ε = 0, as this presents an intuition for our approach and is

slightly less complex than the case for ε > 0.

Pr [0 = 〈B(1η)|Ch-simple(α-simpleSA, 0)〉]
−Pr [0 = 〈B(1η)|Ch-simple(α-simpleSA, 1)〉]
=
∑
o∈OSA

Pr [o = obs[NSA, L](C)|C← ps(S0,R0)]

−
∑
o∈OSA

Pr [o = obs[NSA, L](C)|C← ps(S1,R0)]

=
∑
o∈OSA

(OPS0,R0,o − OPS1,R0,o)

=
∑
o∈O

(φε(OPS0,R0,o,OPS1,R0,o))

=ε-impactOSA(NSA, L) = δSA as computed by ComputeDelta(S0,S1,R0,R1, N, L, ε)

For ε = 0, the calculation from above directly yields our guarantee. For ε > 0 we

show the theorem via contradiction. Assume that for a value ε there would be a δ′

with δ′ < δSA, s.t., B cannot distinguish the scenarios better than with ε and δ′ and

where δSA = ε-impactOSA(NSA, L). For brevity we write Ch instead of Ch-simple and

αSA instead of α-simpleSA in the following calculation.

Pr [0 = 〈B(1η)|Ch(αSA, 0)〉] ≤ eεPr [0 = 〈B(1η)|Ch(αSA, 1)〉] + δ′

⇔
∑
o∈OSA

OPS0,R0,o ≤
∑
o∈OSA

(eεOPS1,R0,o) + δ′

⇔
∑
o∈OSA

(OPS0,R0,o + eεOPS1,R0,o − eεOPS1,R0,o) ≤
∑
o∈OSA

(eεOPS1,R0,o) + δ′

⇔
∑
o∈OSA

(eεOPS1,R0,o + φε(OPS0,R0,o,OPS1,R0,o)) ≤
∑
o∈OSA

(eεOPS1,R0,o) + δ′

⇔
∑
o∈OSA

φε(OPS0,R0,o,OPS1,R0,o) ≤ δ′

⇔ δSA ≤ δ′

This contradicts our assumption that δ′ < δSA and thus concludes the proof.

We omit the proofs for recipient anonymity and relationship anonymity, as they

follow completely analogously with the following two machines BRA and BREL.

• BRA is defined exactly as B with the only difference that we use the set ORA

instead of OSA, where

ORA := {o ∈ O if OPS0,R0,o ≥ eε · OPS0,R1,o}

4.2. TOR PATH SELECTION ALGORITHMS 77

• We analogously define the set OREL for BREL, but combine the observations of

two scenarios:

OREL := {o ∈ O if (OPS0,R0,o + OPS1,R1,o)/2

≥ eε · (OPS0,R1,o + OPS1,R0,o)/2}

Finally, for calculating the impact on Tor, we need to instantiate the probability

distribution psS,R to accurately match the distribution over Tor circuits that the Tor

client of the sender S chooses to communicate with R. To this end, we describe Tor’s

path selection algorithm in the next section.

4.2 Tor Path Selection Algorithms

Tor’s anonymity guarantees inherently depend on its path selection algorithm, as this

algorithm determines the probability by which nodes are chosen for a circuit.

In this section we introduce Tor’s current path selection algorithm and discuss the

technical restrictions it places on Tor nodes. Moreover, we introduce a few relevant

variants of Tor’s path selection algorithm: (a) Uniform-weights, a performance insen-

sitive variant of Tor’s path selection algorithm, (b) SelekTOR, a variant of Tor’s path

selection algorithm that restricts the exit node to nodes from a specific country, (c)

LASTor, an approach to improve anonymity against malicious network infrastructure,

and (d) DistribuTor, our novel variant of Tor’s path selection algorithm that intents to

improve anonymity against very bandwidth-extensive Tor nodes.

4.2.1 Tor

Tor’s path selection algorithm does not select Tor nodes (uniformly) at random. To

improve the performance, Tor’s current path selection algorithm makes a weighted

random choice over all nodes that support the user’s connections and preferences, and

bases the weights on information that is retrieved from a periodically published server

descriptor and an hourly published consensus document. These documents are gener-

ated and maintained by a small set of semi-trusted directory authorities, and contain

up-to-date information about each node.

In a server descriptor, a Tor node publishes its bandwidth, the ports it would

allow as an exit node, its so-called family (used for distributing trust), its uptime, its

operating system, and its version of Tor. In order to prevent malicious Tor nodes

from equivocating (i.e., sending different information to different users), the nodes are

required to periodically upload (every 12 to 18 hours) their current server descriptor

to all directory authorities.

78 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

The consensus document is computed hourly by the directory authorities, and it

contains for each node information such as the node’s availability, its entrusted band-

width, a pointer to the up-to-date server descriptor, and whether this node should

be used as an exit node and/or an entry node. Moreover, the consensus document

contains entry, middle, and exit scaling factors for every node in order to balance the

bandwidth. This scaling is necessary since there are fewer nodes that are marked as

exit nodes (≈1000 in October 2015) than as entry (≈1800 in October 2015), from an

even larger set of Tor nodes (≈ 6500 in October 2015), most of which, however, can

only be used as middle nodes.

The PSTor algorithm computes the weight of a node based on the retrieved node’s

entrusted bandwidth. Since a circuit establishment is expensive, the path selection

tries to include as many of the requested ports into one circuit as possible. Given a

list of requested ports by the user, PSTor determines the maximal set of ports that

is supported by any exit node, and then excludes all nodes that do not support this

maximal set of ports and that are not marked as exit nodes. Then, the algorithm

assigns a weight to every remaining n by dividing its entrusted bandwidth n.bw by the

sum of the entrusted bandwidths s of all not excluded nodes and multiplies this with

the corresponding exit scaling factor scEx(n) from the consensus document: n.bw/s ∗
scEx(n). Finally, the algorithm performs a weighted random choice over these nodes.

As Tor is built upon the principle of distributing trust, the path selection excludes

circuits with nodes that are related, i.e., that are in the same /16 subnet and nodes that

are in each other’s family. After having chosen the exit node, the path selection chooses

an entry node in two steps: first, the algorithm excludes all nodes that are related to

the exit node and all nodes that are not marked as entry nodes in the current consensus;

second, the algorithm computes the weight of each of the remaining nodes by dividing

their entrusted bandwidth by the sum of all not excluded nodes and performs a weighted

random choice over these nodes. For the middle node the path selection proceeds as

for the entry nodes except that middle nodes do not require specific tags. However, all

relatives of both the exit node and the entry node are excluded.

This path selection algorithm adapts to the preferences of the user, who can, e.g.,

decide to only use nodes that have the ‘stable’ tag or to build circuits that only use

‘fast’ nodes. Tor’s path selection algorithm also offers a configuration for including

non-valid entry or exit nodes as well as entry nodes that are not considered to be entry

guards. We refer to Tor’s specification [41] for a more detailed description.

4.2.2 DistribuTor

The bandwidth of Tor nodes is not uniformly distributed as Tor tries improve its

performance by selecting nodes depending on their bandwidth. As a result, a node

with twice the bandwidth is twice as likely to be used for a circuit. The real-life

bandwidth distribution, however, contains nodes that are several hundred times as likely

as other nodes. Consequently, a small number of nodes with a very high bandwidth is

4.2. TOR PATH SELECTION ALGORITHMS 79

used in a large percentage of circuits. If these nodes get compromised or similar new

nodes are added to the network by an adversary, this adversary can deanonymize many

connections. Thus, the current path selection of Tor produces obvious targets such that

an attacker that compromises these points can deanonymize a significant part of the

network.

Novel loss-less path selection: Re-balancing the workload To reduce the risk

posed by such high bandwidth nodes we propose PSDistribuTor, a path selection

algorithm that distributes the trust amongst exit and entry nodes as evenly as possible.

We observe that the exit bandwidth inherently is a bottleneck as only few nodes wish

to be used as exit nodes. Hence, we first focus on the exit nodes.

• Distributing the bandwidth for exit nodes: We compute the exit band-

width that Tor supports at a given moment by summing over the bandwidth of

all possible exit nodes and weighting them according to their tags and the weights

from the consensus. We then compute how evenly we can distribute the band-

width by using small exit nodes solely as exit nodes and restricting the usage of

the largest exit nodes accordingly. In this process we make sure that the previous

exit bandwidth is still provided by our improved path selection algorithm.

• Distributing the bandwidth for entry nodes: After the weight of nodes

for their position as an exit node has been set we compute the weights for entry

nodes. We proceed just as before, by trying to preserve the entry bandwidth and

still distributing the trust in entry nodes as widely as possible.

Anonymity improvement As we put a bound for the maximal weight of exit and

entry nodes, we use their remaining bandwidth by increasing their weight to be used

as middle node, as this position is considered least critical. The details of our redis-

tribution can be found in Figure 4.7. In Section 5.1 we present our analysis computed

on the real consensus data of Tor and evaluate PSDistribuTor against Tor’s path

selection algorithm.

Naturally it would be possible to sacrifice performance of the Tor network for a

much stronger improvement in anonymity by reducing the targeted total bandwidth.

In an extreme case one could weight all nodes uniformly, which would allow much

stronger anonymity guarantees against a small number of colluding nodes.

Note that we did not consider the case that the entry bandwidth poses a bottleneck

for Tor. In this case, one should change the order in which these calculations are made.

4.2.3 Other Variants

Uniform Node Selection Many existing works abstract Tor’s actual path selection

as a uniform path selection algorithm. We analyze not a strictly uniform routing

80 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

n.exitBW

1: if n can be used as exit then

2: if n.bw < maxExitBW then

3: return n.bw

4: else return maxExitBW

5: end if

6: else return 0

7: end if

n.entryBW

1: if n can be used as entry then

2: if n can be used as exit then

3: if n.bw < maxExitBW then

4: return 0

5: else

6: if n.bw −maxExitBW < maxEntryBW then

7: return n.bw −maxExitBW
8: else return maxEntryBW

9: end if

10: end if

11: else return min(maxEntryBW, n.bw)

12: end if

13: else return 0

14: end if

n.middleBW

1: bw := n.bw

2: if n can be used as exit then bw := bw −maxExitBW
3: if n can be used as entry then bw := bw −maxEntryBW
4: if bw > 0 then return bw

5: else return 0

Figure 4.7: PSDistribuTor: Our redistribution of the bandwidths

strategy, but a parameter respecting uniform routing strategy. In this variant of Tor,

nodes can only be chosen as guard nodes, middle nodes or exit nodes if their parameters

support that and the order in which they are chosen is equal to the order in which Tor

selects these nodes. Related nodes (nodes in the same family or the same /16 subnet)

cannot be chosen for the same circuit. However, all nodes are chosen with the same

4.2. TOR PATH SELECTION ALGORITHMS 81

weight, ignoring the performance improvement strategies of Tor.

SelekTOR SelekTOR [89] restricts the Tor client to always select an exit node from

a specific country, e.g., in order to bypass geo-restrictions of websites and services.

SelekTOR only differs from TorPS in that the weights of all Tor exit nodes outside

the considered country are set to zero. In our evaluation, we consider a SelekTOR

configuration with exit nodes in the US.

LASTor LASTor [1] groups Tor nodes together into so-called clusters based on their

physical location (latitude and longitude), which it infers by their IP address via GeoIP.

LASTor first selects a guard cluster, a middle cluster, and an exit cluster and weights

the guard cluster (and exit cluster) inverse to the distance between them and the sender

(or the recipient, respectively), thereby reducing the expected physical distance. After

selecting clusters, LASTor selects a node from each cluster uniformly at random.

4.2.4 Assumptions on Tor Path Selection Algorithms

For showing the soundness and precision of our guarantees we require some assumptions

on the path selection algorithms. These assumptions are quite natural, although they

may present a limitation for some analyses.

We assume that the path selection algorithm is a stateless probability distribution

ps parametric in a sender S ∈ S and a recipient R ∈ R over Tor circuits C ∈ Circuits.

Moreover, all Tor circuits C = (S′, ng, nm, nx,R′) for which the path selection algorithm

ps(S,R) has a non-zero probability satisfy the following properties: S = S′, R = R′, and

all Tor nodes are pairwise distinct, i.e., ng 6= nm, ng 6= nx, nm 6= nx.

Remark 4.2.1 (Statelessness of the Path Selection Algorithm). We assume the path

selection algorithm(s) we consider to be stateless. This follows our intuition that no

state from any one input session should be transferred to a challenge session. and it

holds true for many variants of Tor’s path selection algorithm. However, the concept

of entry guards, where a user selects one guard node that will be the guard node in

every circuit. Our analysis, consequently, considers the user to change his guards for

the challenge circuit.

Alternatively, for analyzing guard nodes, we could rephrase the proofs in this sec-

tion and consider an adversary class as in our first adversary class example from Sec-

tion 2.4.1.

82 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

4.3 Efficient Guarantees for (Node) Budget Adversaries

We have shown that the anonymity impact(s) of Section 4.1 correctly characterize the

advantage of any adversary. So far, we can only efficiently calculate the impact of

an adversary, if all of its choices (on the senders, recipients and the compromisation

strategy) are known. Moreover, we may only be able to efficiently calculate the impact,

if the number of possible choices is limited.

However, as our goals are to give a wide range of anonymity guarantees for Tor,

we require more efficient approaches. In this section we provide a heuristic algorithm

for computing guarantees. We will show this algorithm to be sound, however, we will

trade in precision for the efficiency we seek.

To this end, we define different classes of structural adversaries that statically com-

promise a certain subset of Tor nodes. For conveniently reasoning about different such

adversaries in a unified manner, we define the concept of a budget adversary.

Intuitively, given a cost function f : N → N∪{∞} and a budget B ∈ N, an adversary

is called a budget adversary AB
f if it can compromise arbitrary sets of Tor nodes N ⊆ N ,

as long as
∑
n∈N

f(n) ≤ B.

Formally, we define a budget adversary as a PnP adversary as follows.

Definition 4.3.1 (AnoA Budget Adversary). Consider a cost function f : N → N ∪
{∞} and a budget B ∈ N.

Then for any arbitrary machine M , a budget adversary AB
f is defined as the machine

PnPM,Fblock,SP
, where the predicate P on input (N,L) is defined as follows:

• If L 6= ∅, P (N,L) = false.

• If
∑

n∈N f(n) > B, P (N,L) = false.

• Otherwise, P (N,L) = true.

We let ABf denote the class of all budget adversaries for f and B.

We provide several instantiations for budget adversaries.

Definition 4.3.2 (k-collusion Adversary). A k-collusion adversary is a budget adver-

sary Ak
fcoll that compromises up to k nodes of its choice, i.e., fcoll(n) := 1 for n ∈ N .

Definition 4.3.3 (Predicate Adversary). A predicate adversary is a budget adversary

A1
fP

that compromises all nodes that fulfill a given predicate P , i.e., fP (n) := 0 if

P (n) = true, and fP (n) :=∞ otherwise.

Examples of predicate adversaries include geographic adversaries that compromise

all nodes within a certain country or a collaboration of countries, Tor-Version adver-

saries that can exploit vulnerabilities of specific versions of the Tor software and can

compromise all nodes that run this version, and subnet adversaries that compromise

all Tor nodes within a specific IP-subnet.

4.3. EFFICIENT GUARANTEES FOR (NODE) BUDGET ADVERSARIES 83

Definition 4.3.4 (Bandwidth Adversary). A resource-constrained bandwidth adver-

sary, or bandwidth adversary for short, is a budget adversary AB
fBW that compromises

an arbitrary set of Tor nodes with at most an overall bandwidth of B, i.e., for n ∈ N ,

we have fBW(n) := n.BW for n ∈ N , where n.BW denotes the bandwidth of node n.

This adversary model allows us to provide anonymity bounds in the presence of

adversaries that manage to observe a certain percentage of all traffic within the Tor

network, e.g., by adding fake nodes or by assuming control over existing nodes.

Definition 4.3.5 (Monetary Adversary). A monetary adversary is a budget adver-

sary AB
f$

that compromises Tor nodes with a monthly monetary maintenance and rent-

ing cost of at most B. For a set of providers P and a function price : P × N →
N that assigns a price for each provider and offered bandwidth, we have f$(n) :=

price(n.provider, n.BW) for n ∈ N , where n.provider and n.BW denotes the provider

and the bandwidth of node n, respectively.

Monetary adversaries reflect adversaries with a limited budget for the operational

cost of running Tor nodes.

4.3.1 Anonymity Impact of a Budget Adversary

We now combine our formalization of observations and of their anonymity impact from

Chapter 3 with our definition of a budget adversary. Thereby, we compute a bound on

the anonymity impact of a budget adversary on Tor’s path selection algorithm for each

of the three considered anonymity notions.

A straight-forward method for computing a bound on the impact of a budget ad-

versary is to enumerate all possible sets of nodes that this adversary could compromise,

to compute the observational impact of every one of these sets, and to output the max-

imal such impact. This method, however, requires a huge computational effort, as the

number of possible sets is exponential in the number of Tor nodes for most budget ad-

versaries. Consequently, we derive a methodology to soundly calculate the anonymity

impact of each individual Tor node and then use these to derive an overall bound.

Definition 4.3.6 (Modified Observation Impact). Let S0,S1 ∈ S denote two senders,

let R0,R1 ∈ R denote two recipients, let N ⊆ E denote a set of compromised Tor

entities, let ps denote a path selection algorithm, and let αX for X ∈ {SA,RA,REL}
be an anonymity notion. Then, as we consider ε = 0, impactOX(N), as defined in

Figure 4.8, denotes the observation impact of N for αX and ps,S0, S1,R0,R1, where

Obs 6⊥ = O\{(⊥,⊥,⊥,⊥,⊥)} is the set of all observations in which at least one position

is different from ⊥ and where Obs2 = {S0, S1} × N 3 × {⊥} ∪ {⊥} × N 3 × {R0,R1} ∪
{S0, S1} × N 3 × {R0,R1} is the set of observations that are made by two or more

compromised nodes in a circuit.

84 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

impactOSA(N) :=
∑

o∈Obs 6⊥

φ
(

Pr [o = obs[N](c), c← ps(S0,R0)] ,

Pr [o = obs[N](c), c← ps(S1,R0)]
)

;

impactORA(N) :=
∑

o∈Obs 6⊥

φ
(

Pr [o = obs[N](c), c← ps(S0,R0)] ,

Pr [o = obs[N](c), c← ps(S0,R1)]
)

;

impactOREL(N) :=
∑

o∈Obs 6⊥

φ
((

Pr [o = obs[N](c), c← ps(S0,R0)]

+ Pr [o = obs[N](c), c← ps(S1,R1)]
)
/2,(

Pr [o = obs[N](c), c← ps(S0,R1)]

+ Pr [o = obs[N](c), c← ps(S1,R0)]
)
/2
)
.

Figure 4.8: Slightly modified definition of impactOX(N) instead of ε-impactOX(N),

where we set ε = 0 and exclude empty observations.

For singletons N = {n}, we write impactOX(n) instead of impactOX({n}). For

the sake of readability, we did not explicitly include S0,S1,R0,R1 and ps as addi-

tional parameters of impactOX(N) but consider them clear from the context, simi-

larly in the upcoming definitions. Where necessary to clarify S0,S1,R0,R1 we write

impactOX;S0,S1,R0,R1
(N) for this and upcoming definitions.

We distinguish two kinds of impact in the following that contribute to the overall

anonymity impact of a Tor node: direct anonymity impact and indirect anonymity

impact. Direct impact considers those information gained from observing compromised

and honest Tor entities. Indirect impact is more subtle: it captures what the adversary

can additionally learn from the absence of observations, i.e., which compromised Tor

nodes were not used in the circuit, and from which it can hence draw corresponding

conclusions. In the following, we elaborate on both cases separately first.

Direct Anonymity Impact The direct anonymity impact of a Tor node represents

the observation impact (Definition 4.3.6) of this node in all circuits in which it is

present, i.e., of all observations that contain the node. For sender anonymity and

recipient anonymity, we consider only one node at a time, whereas for relationship

anonymity, we also consider observations made by pairs of nodes. In the following, we

4.3. EFFICIENT GUARANTEES FOR (NODE) BUDGET ADVERSARIES 85

explain this strategy for each of the anonymity notions.

For the direct anonymity impact on sender anonymity, a compromised guard node

is sufficient. Consequently, each direct impact made by a compromised guard node

in combination with any other node is also already made by this guard node alone.

Each observation made by a compromised middle node in combination with the com-

promised recipient equals the observation made by a compromised middle node and

a compromised exit node in the same circuit. Thus, for the direct impact it suffices

to consider each compromised node n individually by calculating impactOSA(n). For

the direct anonymity impact on recipient anonymity, the reasoning is analogous to the

reasoning for sender anonymity, where for every node n we now calculate impactORA(n).

For relationship anonymity, the observations made by all three nodes in a circuit equals

the observation made by the guard node and the exit node. Thus, it suffices to consider

all observations in which one or two nodes are compromised. We divide the set of all

observations into the set of observations made by individual nodes and the observations

made by two nodes. For the first set of observations, analogously to sender anonymity

and recipient anonymity, we consider each compromised n individually by calculating

impactOREL(n). For additionally considering the second set of observations, we define two

helper functions impactO-2REL and impactcombinedREL , see Figure 4.9. The intuition behind

these functions is as follows:

• impactO-2REL({n, n′}) defines the direct impact that a pair of nodes n and n′ have

on relationship anonymity. Formally, this is defined as the observation impact of

{n, n′} over all observations o ∈ Obs2, i.e., all observations that are made by two

or more compromised nodes in a circuit.

• impactcombinedREL (n) soundly combines the observational impact impactOREL(n) of n

individually with a worst-case approximation over the direct impact of every pair

of n with other compromised nodes n′.

Indirect Anonymity Impact The indirect anonymity impact of a Tor node repre-

sents the observation impact of this node on all circuits in which it is not present. The

observation that a compromised node is not present in a circuit can significantly modify

the anonymity impact of an observation, as illustrated by the following example.

Example 4.3.1 (Indirect Impact). Consider the following set of circuits: XS0,ng,nm :=

{c = (S, ng
′, nm′, nx′,R) | ng′ = ng ∧ nm

′ = nm ∧ S = S0} for a guard node ng and a mid-

dle node nm. On each circuit C ∈ XS,ng,nm, an adversary that only compromises the

guard makes the observation o := obs[{ng}](c) = (S0, ng, nm,⊥,⊥) independently of

the exit node and the recipient. By adding an exit node nx to the set of compromised

nodes, the probability for the observation o changes. Whenever nx is the exit node of

the circuit, instead of o the adversary will make the observation (S0, ng, nm, nx,R). If

the compromised exit node is more likely to be used for one specific recipient R, then

not observing the exit node in this scenario leaks information about the recipient.

86 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

We consequently capture the impact of unobserved compromised nodes by adding

the impact of their absence to any given observation made by another compromised

node. To formally define the indirect impact impactindX for anonymity notion αX , we

define several helper functions for computing impactindX , see Figure 4.10. The intuition

behind these functions is as follows:

• impact
(ab,cd)
indirect(ng, nx) defines the mutual indirect impact that a compromised

guard node ng has on the observations of a compromised exit node nx, and vice

versa.

• impactRec1 and impactRec2 describe the impact of compromised nodes on observa-

tions made by a compromised recipient (as used for sender anonymity): The first

notion impactRec1 considers the impact that any individual (compromised) node

may have on the (lack of) observations of a compromised recipient; the second

one impactRec2 bounds the maximal error in calculating the first one.

• impactSen1 and impactSen2 analogously describe the impact of compromised nodes

on observations made by a compromised sender (as used for recipient anonymity).

Based on these helper functions, the indirect impact impactindX is defined in Figure

4.11. We explain this definition for all three cases of X:

Indirect anonymity impact for sender anonymity. impactindSA is computed by combining

the indirect impact of compromised guard nodes on observations made by exit nodes

(impact
(10,00)
indirect) with the impact of compromised guard nodes and middle nodes on

the observations made by the recipient alone (impactRec1 and impactRec2). Whenever

a compromised node is more likely to be used as a guard node (or middle node) by the

sender S1, then not observing this node is is more likely when the sender is S0.

Indirect anonymity impact for recipient anonymity. impactindRA is computed by com-

bining the indirect impact of compromised exit nodes on observations made by guard

nodes (impact
(01,00)
indirect) with the impact of compromised middle nodes and exit nodes

on the observations made by observing the sender alone (impactSen1 and impactSen2).

Whenever a compromised node is more likely to be used as an exit node (or middle

node) for contacting the recipient R1, then not observing this node is is more likely

when the recipient is R0.

Indirect anonymity impact for relationship anonymity. impactindREL is computed by com-

bining all possible ways in which compromised guard nodes can impact observations

of compromised exit nodes and vice versa. The observations of compromised guard

nodes contain the sender of a communication and thus the adversary only needs to find

out the recipient, making these cases comparable to the case of recipient anonymity;

the observations of compromised exit nodes contain the recipient of a communication

and thus the adversary only needs to find out the sender of a communication, mak-

ing these cases comparable to sender anonymity. Since for relationship anonymity the

4.3. EFFICIENT GUARANTEES FOR (NODE) BUDGET ADVERSARIES 87

impactcombinedREL (n,AB
f) := impactOREL(n) + max

K
B−f(n),f

⊆ N

(∑
m∈K

impactO-2REL({n,m})
)

impactO-2REL(N) :=
∑

o∈Obs2

φ
((

Pr [o = obs[N](c); c← ps(S0,R0)]

+ Pr [o = obs[N](c); c← ps(S1,R1)]
)
/2,(

Pr [o = obs[N](c); c← ps(S0,R1)]

+ Pr [o = obs[N](c); c← ps(S1,R0)]
)
/2
)

where the set of observations that are made by two or more compromised nodes

in a circuit is defined as Obs2 = {S0, S1} × N 3 × {⊥} ∪ {⊥} × N 3 × {R0,R1} ∪
{S0, S1} × N 3 × {R0,R1}

Figure 4.9: Helper functions for the direct impact of nodes, as used in Figure 4.12.

set of compromised entities N neither contains any of the senders or recipients of the

challenge, the indirect impacts of senders and recipients do not apply here.

Defining the Anonymity Impact We finally give the overall definition of anony-

mity impact ; we will explain it for the individual anonymity notions in detail after the

definition.

Definition 4.3.7 (Anonymity Impact). Let S0,S1 be two senders, let R0,R1 be two

recipients, let ps be a path selection algorithm, let αX for X ∈ {SA,RA,REL} be an

anonymity notion, and let AB
f be a budget adversary. Then, impactX(AB

f), as defined

in Figure 4.12, defines the anonymity impact of AB
f for αX and ps,S0,S1,R0,R1.

The computation of the anonymity impact impactX(AB
f) depends on the considered

anonymity notion αX as follows.

Sender anonymity. The impact of any budget adversary AB
f on sender anonymity con-

stitutes at most the aggregated observation impact of the optimal set of compromised

nodes together with the observation impact impactOSA (R0) of the compromised recip-

ient R0 (which is assumed for sender anonymity) and the indirect impact on sender

anonymity, c.f., Equations (1) in Figures 4.11 and 4.12.

Recipient anonymity. Analogously, the impact of any budget adversary AB
f on recip-

ient anonymity is, at most, the aggregated observation impact of the optimal set of

88 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

impact
(ab)(cd)
indirect(ng, nx) :=

∑
nm∈N

φ(P abng,nm,nx , P
cd
ng,nm,nx)

impactRec1(n) :=
∑
nx∈N

φ(
∑
n′∈N

(P 10
n,n′,nx + P 10

n′,n,nx),
∑
n′∈N

(P 00
n,n′,nx + P 00

n′,n,nx))

impactRec2(n, n
′) :=

∑
nx∈N

φ(P 00
n,n′,nx , P

10
n,n′,nx)

impactSen1(n) :=
∑
ng∈N

φ(
∑
n′∈N

(P 01
ng,n,n′ + P 01

ng,n′,n),
∑
n′∈N

(P 00
ng,n,n′ + P 00

ng,n′,n))

impactSen2(n, n
′) :=

∑
ng∈N

φ(P 00
ng,n,n′ , P

01
ng,n,n′)

where N
B,f
⊆ N := N ⊆ N s.t .

∑
n∈N

f(n) ≤ B

P abng,nm,nx := Pr [(Sa, ng, nm, nx,Rb) = c; c← ps(Sa,Rb)]

Figure 4.10: Helper functions for the indirect impact of nodes, as used in Figure 4.11.

compromised nodes together with the observation impact impactORA (S0) of the com-

promised sender S0 (which is assumed for recipient anonymity) and the indirect impact

on recipient anonymity, c.f., Equations (2) in Figures 4.11 and 4.12.

Relationship anonymity. Analogously, the impact on any budget adversary AB
f on rela-

tionship anonymity is, at most, the aggregated observation impact of the optimal set of

compromised nodes and the indirect impact on relationship anonymity, c.f., Equations

(3) in Figures 4.11 and 4.12. In contrast to sender anonymity and recipient anony-

mity, we need to consider a combination of nodes for the direct impact of relationship

anonymity, see, combinedREL in Figure 4.10.

For relationship anonymity we technically assume that the empty observation o =

(⊥,⊥,⊥,⊥,⊥) has an anonymity impact of zero, while practically capturing the empty

observation by calculating the anonymity impact in both directions, i.e., not only com-

puting a guarantee for the scenarios with b = 0 (S0 communicates with R0 or S1

communicates with R1) against the scenarios with b = 1 (S0 communicates with R1 or

S1 communicates with R0), but also vice versa.

Precision of our Calculation For all circuit observations made by sets of compro-

mised nodes, individual nodes, pairs of nodes, and sender or recipient, our calculation

4.3. EFFICIENT GUARANTEES FOR (NODE) BUDGET ADVERSARIES 89

(1) impactindSA (n,AB
f) := impactRec1(n)

+ max

N
B−f(n),f

⊆ N

∑
n′∈N

(
impact

(10)(00)
indirect

(
n, n′

)
+ impactRec2(n, n

′)
)

(2) impactindRA (n,AB
f) := impactSen1(n)

+ max

N
B−f(n),f

⊆ N

∑
n′∈N

(
impact

(01)(00)
indirect

(
n′, n

)
+ impactSen2(n, n

′)
)

(3) impactindREL,Sa,Sc,Rb,Rd
(n,AB

f) := max

K
B−f(n),f

⊆ N\{n}

∑
n′∈N

(
1

2

(
impact

(ad)(ab)
indirect

(
n, n′

)
+ impact

(cb)(cd)
indirect

(
n, n′

)
+ impact

(ad)(cd)
indirect

(
n′, n

)
+impact

(cb)(ab)
indirect

(
n′, n

)))

Figure 4.11: Definition of indirect impact (for Definition 4.3.7)

(1) impactSA(AB
f) := impactOSA (R0)

+ max

N
B,f
⊆ N

∑
n∈N

(
impactOSA (n) + impactindSA (n,AB

f)
)

(2) impactRA(AB
f) := impactORA (S0)

+ max

N
B,f
⊆ N

∑
n∈N

(
impactORA (n) + impactindRA (n,AB

f)
)

(3) impactREL(AB
f) := max

(
δREL(AB

f , 0, 1), δREL(AB
f , 1, 0)

)
where δREL(AB

f , b, d) := max

N
B,f
⊆ N

∑
n∈N

(
impactcombinedREL,S0,S1,Rb,Rd

(n,AB
f)

+ impactindREL,S0,S1,Rb,Rd
(n,AB

f)
)

Figure 4.12: Definition of impactX(AB
f) , in order to define anonymity impact (Defi-

nition 4.3.7)

of impactOSA(N), impactORA(N) and impactOREL(N) precisely captures the anonymity

impact for the respective notion. However, when we aggregate the impact of individual

90 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

nodes in impactX in order to derive our overall bounds for the anonymity impact of

a budget adversary, we might count observations made for the same circuit more than

once, and therefore over-approximate the impact of the individual observations. More-

over, our bound on the (indirect) impact of nodes soundly overestimates the impact.

We decided to accept this slight over-approximation for reasons of performance and

scalability, as it allows us to compute bounds for budget adversaries based on each

node individually; otherwise, we would have to combine all possible observations of all

subsets of the set of nodes that fall within the budget. We refer to Section 5.1.5 for

an estimation of the precision. Furthermore, we assume that an adversary can mount

traffic correlation attacks with perfect accuracy, i.e., whenever it observes traffic at two

different points in the Tor network, we assume that the adversary can determine if

this traffic belongs to the same Tor circuit. This assumption is motivated by the high

accuracy achieved by recent work on traffic correlation attacks [104, 69, 85]; yet, it still

constitutes an over-approximation.

4.3.2 Correctness of impactX bounds

We now show that impactX(AB
f), as defined in Definition 4.3.7, closely corresponds to

the notion of adversary’s advantage in the AnoA framework for budget adversaries AB
f ,

thereby establishing the output of impactX as accurate bounds for Tor against such

adversaries.

Theorem 4.3.1 (Soundness). For every anonymity notion αX with X ∈ {SA,RA,REL},
all senders S0,S1 ∈ S, all recipients R0,R1 ∈ R, every path selection algorithm ps, and

every budget B and every cost function f , Tor is (αX , 1, ε = 0, δ)-IND-CDP for the

class of budget adversaries ABf , where δ = impactX(ABf), as calculated in Section 4.3,

up to a negligible additive factor.

Since the proof of this theorem is involved, we dedicate the following subsections to

it. We start with an overall proof outline. After that, we define the visible elements and

the core of an observation, i.e., the nodes that are visible to the adversary and nodes

that lead to the observation, and we describe the probability to make an observation

in terms of the core and all non-core nodes (Section 4.4.2). Using these general con-

cepts, we show the theorem separately for the three anonymity notions (Sections 4.4.3

to 4.4.5). Finally, we show that approximating the impacts via local maximization of

the impacts is a sound over-approximation (Section 4.4.6).

The empty observation Although we exclude the empty observation (⊥,⊥,⊥,⊥,⊥)

from our computations, we do not exclude it from the guarantee itself. An adversary

with some background knowledge that knows about the existence of a Tor circuit, but

that makes no observation at all can still learn that none of its compromised Tor nodes

were used in the circuit, which might be more likely for one of the scenarios. For sender

anonymity (and for recipient anonymity) we do not need to consider this case, as we

4.4. PROOF OF SOUNDNESS 91

can soundly assume that the recipient (or the sender) is always compromised, which

always leads to a non-empty observation. For relationship we technically assume that

the empty observation has an anonymity impact of zero, while practically capturing

the empty observation by calculating the anonymity impact in both directions, i.e., not

only computing a guarantee for the scenarios with b = 0 (S0 communicates with R0 or

S1 communicates with R1) against the scenarios with b = 1 (S0 communicates with R1

or S1 communicates with R0), but also vice versa.

4.4 Proof of Soundness

We start with an overall proof outline. After that, we define the visible elements and the

core of an observation, i.e., the nodes that are visible to the adversary and nodes that

lead to the observation, and we describe the probability to make an observation in terms

of the core and all non-core nodes (Section 4.4.2). Using these general concepts, we

show the theorem separately for the three anonymity notions (Sections 4.4.3 to 4.4.5).

Finally, we show that approximating the impacts via local maximization of the impacts

is a sound over-approximation (Section 4.4.6).

4.4.1 Overall Proof Outline

By Theorem 3.3.1 we know that it suffices to analyze the specialized AnoA game

from Section 3.3. By Theorem 4.1.1 we know that any observation made by any set

of Tor nodes (in combination with senders and recipients) N impacts anonymity by

exactly impactOX(N) for the anonymity notion αX under consideration. Intuitively, the

remaining proof of soundness divides the set of all observations into distinct subsets of

observations, depending on where compromised nodes are located in a circuit. Then,

for every such set, we compare the impact of each observation if a set of Tor entities is

compromised with the sum of the impacts of all compromised Tor entities on their own.

Since we sum over all these Tor entities, for the majority of observations the impact of

the sum is larger than the impact of the combined set. However, the lack of observation

of certain (compromised) Tor nodes can increase the impact of observations made by

other compromised Tor entities. In the remainder of this section, we will formally

substantiate these claims.

A Simple Lemma For our proofs concerning the soundness of our bounds we will

need the following simple lemma. Note that we write φ for φε, as ε = 0 will hold for

the remainder of this chapter.

Lemma 4.4.1 (Properties of φ). The function φ has the following properties:

(i) For all a, b, c, d ≥ 0, we have φ(a+ b, c+ d) ≤ φ(a, c) + φ(b, d).

(ii) For all a, b, c, d ≥ 0, we have φ(a− b, c− d) ≤ φ(a, c) + φ(d, b).

92 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

Proof. We show each property via a case distinction over the two cases of the conditional

within φ.

(i) Let a, b, c, d. We distinguish two cases:

• Case 1: (a+b) ≤ (c+d). Then φ(a+b, c+d) = 0 ≤ 0+0 ≤ φ(a, c)+φ(b, d).

• Case 2: (a+ b) > (c+ d). Then

φ(a+ b, c+ d) = a+ b− (c+ d)

=a− c+ b− d ≤ φ(a, c) + φ(b, d),

since by definition φ(X,Y) ≥ X − Y .

(ii) Let a, b, c, d ≥ 0. We distinguish two cases:

• Case 1: (a−b) ≤ (c−d). Then φ(a+b, c+d) = 0 ≤ 0+0 ≤ φ(a, c)+φ(d, b).

• Case 2: (a− b) > c− d. Then

φ(a− b, c− d) = a− b− (c− d) = a− c+ d− b
≤φ(a, c) + φ(b, d),

since by definition φ(X,Y) ≥ X − Y .

Additional Notation for the Proof In what follows, we write P ab[C] as a shortcut

for Pr [C ∈ C;C← ps(Sa,Rb)]. Moreover, for the probabilities we encounter when an-

alyzing relationship anonymity we write P ab,cd[C] instead of 1
2

(
P ab[C] + P cd[C]

)
. For

an observation o = (n1, n2, n3, n4, n5) we refer to the element ni by writing o.ni. For

any three Tor nodes ng, nm, nx we write P abng,nm,nx for

Pr [C = (Sa, ng, nm, nx,Rb);C← ps(Sa,Rb)] .

.

4.4.2 Visible Nodes, Observation Core and Blank Observations

We continue by defining natural observations that occur if the adversary can only

compromise Tor entities (and not communication links between them) and by then

classifying them. For every (natural) observation we define which elements are visible

to the adversary. We will see that for every natural observation there is one or more

sets of core entities that have to be compromised in order to make the respective

observation. Along with these core entities we define for every observation which roles

other Tor nodes have to play in order to not invalidate the observation. To this end, we

define blanked observations, i.e., observations that only describe the type of the natural

observation.

4.4. PROOF OF SOUNDNESS 93

Definition 4.4.1 (Natural Observations; Visible Elements; Core Elements; Blanked

Observations). We define the set NatObs of natural observations as (S ×N × {⊥}3) ∪
(S × N 2 × {⊥}2) ∪ ({⊥} × N 3 × {⊥}) ∪ ({⊥}2 × N 2 × R) ∪ ({⊥}3 × N ×R) ∪ (S ×
N 3 × {⊥}) ∪ ({⊥} ×N 3 ×R) ∪ (S ×N 3 ×R).

For every observation o = (n1, n2, n3, n4, n5) ∈ O, we define the set of visible Tor

entities V (o) as V (o):= {ni | ni 6= ⊥, i ∈ {1, 2, 3, 4, 5}}.
For every natural observation o = (n1, n2, n3, n4, n5) ∈ NatObs, we define the core

elements core(o) of o as follows:

• If o ∈ S ×N × {⊥}3, then core(o):={{n1}}.

• If o ∈ S ×N 2 × {⊥}2 , then core(o):={{n2}}.

• If o ∈ {⊥} ×N 3 × {⊥}, then core(o):={{n3}}.

• If o ∈ {⊥}2 ×N 2 ×R, then core(o):={{n4}}.

• If o ∈ {⊥}3 ×N ×R, then core(o):={{n5}}.

• If o ∈ S ×N 3 × {⊥}, then core(o):={{n1, n3}, {n2, n3}}.

• If o ∈ {⊥} ×N 3 ×R, then core(o):={{n3, n4}, {n3, n5}}.

• If o ∈ S ×N 3 ×R, then core(o):={{n1, n3, n5}, {n1, n4}, {n2, n4}, {n2, n5}}.

Naturally the core elements of an observation are always visible: For every natural

observation o ∈ NatObs, and for every Core ∈ core(o), we have Core ⊆ V (o).

For a natural observation o = (n1, n2, n3, n4, n5) ∈ NatObs, we define the corre-

sponding blanked observation blank(o) as blank(o):=(n′1, n
′
2, n
′
3, n
′
4, n
′
5) where n′i:=ni

if ni = ⊥ and n′i:= otherwise for a distinguished symbol . We extend the stan-

dard equality on observations o by treating as a placeholder: an observation o =

(n1, n2, n3, n4, n5) is equal to a blank observation o′ = (n′1, n
′
2, n
′
3, n
′
4, n
′
5) if ni = n′i for

all n′i 6= .

Definition 4.4.2 (Observation Circuits). Let N ⊆ E be a set of compromised Tor

entities and o ∈ O be an observation. Then we define the set of observation circuits

OC(N, o) of N and o as

OC(N, o):= {C ∈ Circuits | o = O[N](C)} .

Similarly, we define the set of blanked observation circuits OCblank(N, o) of N and o

as OCblank(N, o):= {c ∈ Circuits | blank(o) = O[N](C)}.

We first show a basic lemma that states that an observation o by a set N can be

made for a given circuit precisely if for every element Core of the core of o, we have

that (i) the same observation is made for this circuit by Core and (ii) and the elements

in N \ Core make the corresponding blanked observation blank(o) for this circuit.

94 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

Lemma 4.4.2 (Classification of Core). Let o ∈ NatObs be a natural observation, let

Core ∈ core(o), and let N ⊆ E be a set of compromised Tor entities such that Core ⊆ N
and let C ∈ Circuits be a circuit. Then we have

obs[N](C) = o⇔ obs[Core](C) = o ∧ obs[N \ Core](C) = blank(o).

Proof. Let o ∈ NatObs be a natural observation, let Core ∈ core(o), and let N ⊆ E
such that Core ⊆ N and let C = (S, ng, nm, nx,R) ∈ Circuits be a circuit. We distinguish

the following cases depending on the structure of o.

• o ∈ S × N × {⊥}3. Then o = (S′, ng′,⊥,⊥,⊥) for some S′ ∈ S, ng′ ∈ N . By

definition, core(o) = {{S′}} and thus Core = {S′}; since Core ⊆ N we have

S′ ∈ N . By definition of obs, we have

obs[N](C) = o⇔ S = S′ ∧ ng = ng
′ ∧ {ng, nm, nx,Rb} ∩N = ∅.

Moreover, we have

obs[
{
S′
}

](C) = o⇔ S = S′ ∧ ng = ng
′.

Since blank(o) = (, ,⊥,⊥,⊥), we have

obs[N \
{
S′
}

](C) = blank(o)⇔ {ng, nm, nx,R} ∩N = ∅.

Thus, obs[N](C) = o⇔ obs[Core](C) = o ∧ obs[N \ Core](C) = blank(o).

• o ∈ S × N 2 × {⊥}2. Then o = (S′, ng′, nm′,⊥,⊥) for some S′ ∈ S, ng′, nm′ ∈ N .

By definition, core(o) = {{ng′}} and thus Core = {ng′}; since Core ⊆ N we have

ng
′ ∈ N . By definition of obs, we have

obs[N](C) = o⇔ S = S′ ∧ ng = ng
′ ∧ nm = nm

′ ∧ {nm, nx,R} ∩ (N \
{
ng
′}) = ∅.

Moreover, we have

obs[
{
ng
′}](C) = o⇔ S = S′ ∧ ng = ng

′ ∧ nm = nm
′.

Since blank(o) = (, , ,⊥,⊥), we have

obs[N \
{
ng
′}](C) = blank(o)⇔ {nm, nx,R} ∩ (N \

{
ng
′}) = ∅.

Thus, obs[N](C) = o⇔ obs[Core](C) = o ∧ obs[N \ Core](C) = blank(o).

• o ∈ {⊥}×N 3×{⊥}. Then o = (⊥, ng′, nm′, nx′,⊥) for some ng
′, nm′, nx′ ∈ N . By

definition, core(o) = {{nm′}} and thus Core = {nm′}; since Core ⊆ N we have

nm
′ ∈ N . By definition of obs, we have

obs[N](C) = o⇔ ng = ng
′∧nm = nm

′∧nx = nx
′∧{S, ng, nx,R}∩ (N \

{
nm
′}) = ∅.

4.4. PROOF OF SOUNDNESS 95

Moreover, we have

obs[
{
nm
′}](C) = o⇔ ng = ng

′ ∧ nm = nm
′ ∧ nx = nx

′.

Since blank(o) = (⊥, , , ,⊥), we have

obs[N \
{
nm
′}](C) = blank(o)⇔ {S, ng, nx,R} ∩ (N \

{
nm
′}) = ∅.

Thus, obs[N](C) = o⇔ obs[Core](C) = o ∧ obs[N \ Core](C) = blank(o).

• o ∈ {⊥}2 ×N 2 ×R. Then o = (⊥,⊥, nm′, nx′,R′) for some nm
′, nx′ ∈ N ,R′ ∈ R.

By definition, core(o) = {{nx′}} and thus Core = {nx′}; since Core ⊆ N we have

nx
′ ∈ N . By definition of obs, we have

obs[N](C) = o⇔ nm = nm
′ ∧ nx = nx

′ ∧ R = R′ ∧ {S, ng, nm} ∩ (N \
{
nx
′}) = ∅.

Moreover, we have

obs[
{
nx
′}](C) = o⇔ nm = nm

′ ∧ nx = nx
′ ∧ R = R′

Since blank(o) = (⊥,⊥, , ,), we have

obs[N \
{
nx
′}](C) = blank(o)⇔ {S, ng, nm} ∩ (N \

{
nx
′}) = ∅.

Thus, obs[N](C) = o⇔ obs[Core](C) = o ∧ obs[N \ Core](C) = blank(o).

• o ∈ {⊥}3 × N × R. Then o = (⊥,⊥,⊥, nx′,R′) for some nx
′ ∈ N ,R′ ∈ R. By

definition, core(o) = {{R′}} and thus Core = {R′} and since Core ⊆ N we have

R′ ∈ N . By definition of obs, we have

obs[N](C) = o⇔ nx = nx
′ ∧ R = R′ ∧ {S, ng, nm, nx} ∩N = ∅.

Moreover, we have

obs[
{
R′
}

](C) = o⇔ nx = nx
′ ∧ R = R′

Since blank(o) = (⊥,⊥,⊥, ,), we have

obs[N \
{
R′
}

](C) = blank(o)⇔ {S, ng, nm, nx} ∩N = ∅

Thus, obs[N](C) = o⇔ obs[Core](C) = o ∧ obs[N \ Core](C) = blank(o).

• o ∈ S×N 3×{⊥}. Then o = (S′, ng′, nm′, nx′,⊥) for some S′ ∈ S, ng′, nm′, nx′ ∈ N .

By definition, core(o) = {{ng′, nm′} , {S′, nm′}}. We distinguish the following two

cases, depending on Core.

Case Core = {ng′, nm′}: Since Core ⊆ N we have ng
′, nm′ ∈ N . By definition of

obs, we have

obs[N](C) = o

96 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

⇔ S = S′ ∧ ng = ng
′ ∧ nm = nm

′ ∧ nx = nx
′ ∧ {nx,R} ∩ (N \

{
ng
′, nm′

}
) = ∅.

Moreover, we have

obs[
{
ng
′, nm′

}
](C) = o

⇔ S = S′ ∧ ng = ng
′ ∧ nm = nm

′ ∧ nx = nx
′.

Since blank(o) = (, , , ,⊥), we have

obs[N \
{
ng
′, nm′

}
](C) = blank(o)⇔ {nx,R} ∩ (N \

{
ng
′, nm′

}
) = ∅.

Thus, obs[N](C) = o⇔ obs[Core](C) = o ∧ obs[N \ Core](C) = blank(o).

Case Core = {S′, nm′}: Since Core ⊆ N we have S′, nm′ ∈ N . By definition of

obs, we have

obs[N](C) = o

⇔ S = S′ ∧ ng = ng
′ ∧ nm = nm

′ ∧ nx = nx
′ ∧ {nx,R} ∩ (N \

{
S, nm

′}) = ∅.

Moreover, we have

obs[
{
S′, nm′

}
](C) = o

⇔ S = S′ ∧ ng = ng
′ ∧ nm = nm

′ ∧ nx = nx
′.

Since blank(o) = (, , , ,⊥), we have

obs[N \
{
S′, nm′

}
](C) = blank(o)⇔ {nx,R} ∩ (N \

{
S, nm

′}) = ∅.

Thus, obs[N](C) = o⇔ obs[Core](C) = o ∧ obs[N \ Core](C) = blank(o).

• o ∈ {⊥}×N 3×R. Then o = (⊥, ng′, nm′, nx′,R′) for some ng
′, nm′, nx′ ∈ N ,R′ ∈ R.

By definition, core(o) = {{nm′, nx′} , {nm′,R′}}. We distinguish the following two

cases, depending on Core.

Case Core = {nm′, nx′}: Since Core ⊆ N we have nm
′, nx′ ∈ N . By definition of

obs, we have

obs[N](C) = o

⇔ng = ng
′ ∧ nm = nm

′ ∧ nx = nx
′ ∧ R = R′ ∧ {S, ng} ∩ (N \

{
nm
′, nx′

}
) = ∅

Moreover, we have

obs[
{
nm
′, nx′

}
](C) = o⇔ ng = ng

′ ∧ nm = nm
′ ∧ nx = nx

′ ∧ R = R′

Since blank(o) = (⊥, , , ,), we have

obs[N \
{
nm
′, nx′

}
](C) = blank(o)⇔ {S, ng} ∩ (N \

{
nm
′, nx′

}
) = ∅

4.4. PROOF OF SOUNDNESS 97

Thus, obs[N](C) = o⇔ obs[Core](C) = o ∧ obs[N \ Core](C) = blank(o).

Case Core = {nm′,R′}: Since Core ⊆ N we have nm
′,R′ ∈ N . By definition of

obs, we have

obs[N](C) = o

⇔ng = ng
′ ∧ nm = nm

′ ∧ nx = nx
′ ∧ R = R′ ∧ {S, ng} ∩ (N \

{
nm
′,R
}

) = ∅

Moreover, we have

obs[
{
nm
′,R′

}
](C) = o⇔ ng = ng

′ ∧ nm = nm
′ ∧ nx = nx

′ ∧ R = R′

Since blank(o) = (⊥, , , ,), we have

obs[N \
{
nm
′,R′

}
](C) = blank(o)⇔ {S, ng} ∩ (N \

{
nm
′,R
}

) = ∅

Thus, obs[N](C) = o⇔ obs[Core](C) = o ∧ obs[N \ Core](C) = blank(o).

• o ∈ S × N 3 × R. Then o = (S′, ng′, nm′, nx′,R′) for some ng
′, nm′, nx′ ∈ N ,S′ ∈

S,R′ ∈ R. By definition, core(o) = {{S′, nm′,R′} , {S′, nx′} , {ng′, nx′} , {ng′,R′}}.
Be definition of obs we have

obs[N](C) = o⇔ S = S′ ∧ ng = ng
′ ∧ nm = nm

′ ∧ nx = nx
′ ∧ R = R′

Equally, for every element Core ∈ core(o) we have

obs[Core](C) = o⇔ S = S′ ∧ ng = ng
′ ∧ nm = nm

′ ∧ nx = nx
′ ∧ R = R′

Moreover, since blank(o) = (, , , ,), for every observation o′ ∈ O we have

o′ = blank(o) and thus, obs[N](C) = o⇔ obs[Core](C) = o∧obs[N \Core](C) =

blank(o).

With this lemma in place, we can state and prove a lemma about the impact of

compromised nodes on a certain observation. It states that the probability of making

a certain observation by means of a set N of nodes can be computed by the probabil-

ity that the core of this observation already suffices to make this observation, under

the assumption that the remaining nodes (outside this core) make the corresponding

blanked observation. Intuitively, this means that the core is sufficient for making the

observation, and that the remaining nodes can only infer ⊥ for those elements of the in-

formation that cannot be observed. This lemma leverages Lemma 4.4.2 from individual

circuits to probabilities for making observations.

Lemma 4.4.3 (Impact of Compromised Nodes). Let Sa ∈ S be a sender and Rb ∈ R
be a recipient. Let o ∈ NatObs be a natural observation, Core ∈ core(o), and N ⊆ E
be a set of compromised Tor entities such that Core ⊆ N . Then we have

P ab[OC(N, o)] = P ab[OC(Core, o) ∩ OCblank(N \ Core, o)].

98 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

Proof. We have

P ab[OC(N, o)] = Pr [c ∈ OC(N, o);C← ps(Sa,Rb)]

= Pr [obs[N](C) = o;C← ps(Sa,Rb)]

= Pr [obs[Core](C) = o ∧ obs[N \ {Core}](C) = blank(o);C← ps(Sa,Rb)]

= Pr [c ∈ OC(Core, o) ∩ OCblank(N \ Core, o);C← ps(Sa,Rb)]

= P ab[OC(Core, o) ∩ OCblank(N \ Core, o)],

where the fourth equality follows from Lemma 4.4.2; the remaining equalities hold by

definition of P ab and OC.

For any given observation, more than the core of the observation is visible to the

adversary. We now analyze the impact that compromising any such visible Tor entity

may have on the impact of an observation, if the entity is not already contained in the

core of the observation.

We show that such entries can be of two types: (i) entities that are superfluous, i.e.,

compromising them does not change the impact of the observation, and (ii) entities

that are destructive, i.e., compromising them makes the observation impossible and

thus completely removes the impact of an observation. We combine these insights in

the following lemma, where we show that ignoring all visible entities except for the core

can only increase the impact of an observation.

Lemma 4.4.4 (Impact of Visible (Non-core) Nodes). Let Sa,Sc ∈ S be two senders and

Rb,Rd ∈ R be two recipients. Let o ∈ NatObs be a natural observation, Core ∈ core(o),

and N ⊆ E be a set of compromised Tor entities such that Core ⊆ N . Then, for

NV = N \ (V (o) \ Core),

φ
(
P ab[OC(N, o)], P cd[OC(N, o)]

)
≤ φ

(
P ab[OC(NV , o)], P

cd[OC(NV , o)]
)

Proof. Let Sa, Sc ∈ S be two senders and Rb,Rd ∈ R be two recipients. Let o ∈ NatObs

be a natural observation, Core ∈ core(o), and N ⊆ E be a set of compromised Tor

entities such that Core ⊆ N , and let NV = N \ (V (o) \ Core). By Lemma 4.4.2 we

know that OC(N, o) ⊆ OC(Core, o).

Let x ∈ V (o)\Core be any visible Tor entity of the observation that does not belong

to the core. We show that we can remove x from N without reducing the impact. If x /∈
N , φ

(
P ab[OC(N, o)], P cd[OC(N, o)]

)
= φ

(
P ab[OC(N \ {x} , o)], P cd[OC(N \ {x} , o)]

)
trivially holds.

If x ∈ N , we distinguish two cases:

• There is a circuit C ∈ OC(Core, o) s.t. C /∈ OCblank({x} , o). By our assump-

tions on path selection algorithms from Section 4.2.4 we know that x cannot

occur in C twice with non-zero probability, so the position in which x is observed

must lead to an observation that is incompatible with blank(o). However, by

4.4. PROOF OF SOUNDNESS 99

definition of OC(Core, o) and V , for every other circuit C′ ∈ OC(Core, o), x is

in the same position, which leads to an observation of the same form and thus

C′ /∈ OCblank({x} , o) must also hold. Consequently,

φ
(
P ab[OC(N, o)], P cd[OC(N, o)]

)
= φ

(
P ab[OC(Core, o) ∩ OCblank(N \ Core, o)],

P cd[OC(Core, o) ∩ OCblank(N \ Core, o)]
)

= φ
(
P ab[∅], P cd[∅]

)
= φ (0, 0)

≤ φ
(
P ab[OC(N \ {x} , o)], P cd[OC(N \ {x} , o)]

)
• Otherwise, we have OC(Core, o) ⊆ OCblank({x} , o)] and thus,

φ
(
P ab[OC(N, o)], P cd[OC(N, o)]

)
= φ

(
P ab[OC(N \ {x} , o)], P cd[OC(N \ {x} , o)]

)
.

Applying this reasoning for every such element x ∈ V (o)\Core concludes the proof.

4.4.3 Proof for Sender Anonymity

We now combine the results for indirect impacts and derive our bound for sender

anonymity. To this end, we first show that for any given set of compromised Tor nodes

we can derive a bound according to our definitions for indirect impact.

Lemma 4.4.5 (Observations for Sender Anonymity). Let S0, S1 ∈ S be two senders

and R0 ∈ R be a recipient, and let N = N ′ ∪{R0} be a set of compromised Tor entities

with N ′ ⊆ N being a set of compromised Tor nodes. Then we have

∑
o∈O

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
≤ impactOSA (R0) +

∑
n∈N ′

(
impactOSA (n) + impactRec1(n)

+
∑

n′∈N ′\{n}

(
impact

(10),(00)
indirect

(
n, n′

)
+ impactRec2(n, n

′)
)

Proof. Let S0,S1 ∈ S be two senders and R0 ∈ R be a recipient, and let N = N ′∪{R0}
be a set of compromised Tor entities with N ′ ⊆ N being a set of compromised Tor

nodes. We define the following sets of observations for sender anonymity:

100 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

• Og,SA:= {(n1, . . . , n5) ∈ O s.t. n1 6= ⊥},

• Om,SA:= {(n1, . . . , n5) ∈ O \ Og,SA s.t. n2 6= ⊥},

• Ox,SA:= {(n1, . . . , n5) ∈ O \ (Og,SA ∪ Om,SA) s.t. n3 6= ⊥},

• OR,SA:=O \ (Og,SA ∪ Om,SA ∪ Ox,SA).

As these sets define a partitioning of O, we get∑
o∈O

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
=

∑
o∈Og,SA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
+

∑
o∈Om,SA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
+

∑
o∈Ox,SA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
+

∑
o∈OR,SA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
We now consider each of the sets of observations individually.

• Og,SA. We first show that (in addition to R0) a compromised guard node is re-

quired and sufficient for making an observation in Og,SA and that additionally

compromised nodes do not contribute to the impact of such observations. Let

C = (Sa, ng, nm, nx,R0) ∈ Circuits be any circuit with Sa ∈ {S0,S1} s.t. o =

obs[N](C) ∈ Og,SA is the observation made by the adversary for this circuit. By

definition of Og,SA, Sa is part of the observation. Since {S0, S1}∩N = ∅, we know

that ng ∈ N is required to make the observation. Since ng ∈ N is also sufficient

to observe the sender we get P 00[OC(N, o)] = 0 or P 10[OC(N, o)] = 0. By defini-

tion of φ we know that for these observations φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
=

P 00[OC(N, o)]. Thus,∑
o∈Og,SA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
=

∑
o∈Og,SA

P 00[OC(N, o)]

=
∑

ng∈N ′
nm,nx∈N

Pr [C = (S0, ng, nm, nx,R0),C← ps(S0,R0)]

=
∑

ng∈N ′

∑
o∈Og,SA

φ
(
P 00[OC({ng} , o)], P 10[OC({ng} , o)]

)
.

• Om,SA. We first show that (in addition to R0) a compromised middle node is

required and sufficient for making an observation in Om,SA. We then argue that

we can remove the recipient from the computation without modifying the prob-

ability and, finally, that additionally compromised nodes do not contribute to

the impact of such observations. Let C = (Sa, ng, nm, nx,R0) ∈ Circuits be any

4.4. PROOF OF SOUNDNESS 101

circuit with Sa ∈ {S0,S1} s.t. o = obs[N](C) ∈ Om,SA is the observation made by

the adversary for this circuit. We have core(o) = {{nm, nx} , {nm,R0}} and set

Core = {nm,R0}. By Lemma 4.4.4 we know that

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
≤ φ

(
P 00[OC(N \ {ng, nx} , o)], P 10[OC(N \ {ng, nx} , o)]

)
All nodes of the circuit are visible in the observation. Since all nodes in N \V (o)

can thus never lead to the observation o and consequently, compromising them

does not modify the probability of the observation, we know that

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
≤ φ

(
P 00[OC({nm,R0} , o)], P 10[OC({nm,R0} , o)]

)
Moreover, we know that

obs[{nm,R0}](C) = (⊥, ng, nm, nx,R0),

and obs[{nm}](C) = (⊥, ng, nm, nx,⊥) =: o′. Since there is only one recipient and

since this holds for all respective circuits,

P a0[OC({nm,R0} , o)] = P a0[OC({nm} , o′)],

and, consequently, ∑
o∈Om,SA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
≤

∑
o∈Om,SA

φ
(
P 00[OC({nm} , o)], P 10[OC({nm} , o)]

)
• Ox,SA. All observations o ∈ Ox,SA are of the form (⊥,⊥, nm, nx,R0) and we have

core(o) = {{nx}} and V (o) = {nm, nx,R0}. By Lemma 4.4.4 we know that∑
o∈Ox,SA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
≤

∑
o∈Ox,SA

φ
(
P 00[OC(N \ {nm,R0} , o)], P 10[OC(N \ {nm,R0} , o)]

)
.

If nx /∈ N then

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
= φ (0, 0) = 0.

Otherwise, we rewrite the probability according to Lemma 4.4.3 and get

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)

102 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

≤ φ
(
P 00[OC({nx} , o) ∩ OCblank(N \ V (o), o)],

P 10[OC({nx} , o) ∩ OCblank(N \ V (o), o)]
)

= φ

 ∑
ng∈N\N ′

P 0,0
ng,nm,nx ,

∑
ng∈N\N ′

P 1,0
ng,nm,nx


= φ

∑
ng∈N

P 0,0
ng,nm,nx −

∑
ng∈N ′

P 0,0
ng,nm,nx ,

∑
ng∈N

P 1,0
ng,nm,nx −

∑
ng∈N ′

P 1,0
ng,nm,nx


≤ φ

∑
ng∈N

P 0,0
ng,nm,nx ,

∑
ng∈N

P 1,0
ng,nm,nx

+ φ

 ∑
ng∈N ′

P 1,0
ng,nm,nx ,

∑
ng∈N ′

P 0,0
ng,nm,nx


≤ φ

(
P 00[OC({nx} , o)], P 10[OC({nx} , o)]

)
+ φ

 ∑
ng∈N ′

P 1,0
ng,nm,nx ,

∑
ng∈N ′

P 0,0
ng,nm,nx

 .

Thus, if we sum over all observations o ∈ Ox,SA we get∑
o∈Ox,SA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
≤

∑
o∈Ox,SA

(
φ
(
P 00[OC({o.n4} , o)], P 10[OC({o.n4} , o)]

)

+φ

 ∑
ng∈N ′

P 1,0
ng,o.n3,o.n4

,
∑

ng∈N ′
P 0,0
ng,o.n3,o.n4


=

∑
nx∈N ′

∑
o∈Ox,SA

(
φ
(
P 00[OC({nx} , o)], P 10[OC({nx} , o)]

))

+
∑
nx∈N ′

∑
nm∈N

φ

 ∑
ng∈N ′

P 1,0
ng,nm,nx ,

∑
ng∈N ′

P 0,0
ng,nm,nx


≤

∑
nx∈N ′

∑
o∈Ox,SA

(
φ
(
P 00[OC({nx} , o)], P 10[OC({nx} , o)]

))
+
∑

ng∈N ′
nx∈N ′

impact
(10),(00)
indirect (ng, nx) .

• OR,SA. Let o = (⊥,⊥,⊥, nx,R0) be any observation in OR,SA. Since core(o) =

{{R0}} we have Core = {R0}. By Lemma 4.4.4 we know that

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
≤ φ

(
P 00[OC(N \ {nx} , o)], P 10[OC(N \ {nx} , o)]

)
We rewrite the probability according to Lemma 4.4.3 and yield

φ
(
P 00[OC(N \ {nx} , o)], P 10[OC(N \ {nx} , o)]

)

4.4. PROOF OF SOUNDNESS 103

= φ
(
P 00[OC(Core, o) ∩ OCblank(N \ {nx,R0} , o)],

P 10[OC(Core, o) ∩ OCblank(N \ {nx,R0} , o)]
)

= φ

 ∑
ng∈N\N ′
nm∈N\N ′

P 0,0
ng,nm,nx ,

∑
ng∈N\N ′
nm∈N\N ′

P 1,0
ng,nm,nx ,



= φ

 ∑
ng∈N
nm∈N

P 0,0
ng,nm,nx −

∑
n∈N ′
n′∈N

(
P 0,0
n,n′,nx + P 0,0

n′,n,nx

)
+
∑

ng∈N ′
nm∈N ′

P 0,0
ng,nm,nx ,

∑
ng∈N
nm∈N

P 1,0
ng,nm,nx −

∑
n∈N ′
n′∈N

(
P 1,0
n,n′,nx + P 1,0

n′,n,nx

)
+
∑

ng∈N ′
nm∈N ′

P 1,0
ng,nm,nx



≤ φ

 ∑
ng∈N
nm∈N

P 0,0
ng,nm,nx ,

∑
ng∈N
nm∈N

P 1,0
ng,nm,nx



+φ

∑
n∈N ′
n′∈N

(
P 1,0
n,n′,nx + P 1,0

n′,n,nx

)
,
∑
n∈N ′
n′∈N

(
P 0,0
n,n′,nx + P 0,0

n′,n,nx

)

+φ

 ∑
ng∈N ′
nm∈N ′

P 0,0
ng,nm,nx ,

∑
ng∈N ′
nm∈N ′

P 1,0
ng,nm,nx


≤ φ

(
P 00[OC({R0} , o)], P 10[OC({R0} , o)]

)
+
∑
n∈N ′

φ

∑
n′∈N

(
P 1,0
n,n′,nx + P 1,0

n′,n,nx

)
,
∑
n′∈N

(
P 0,0
n,n′,nx + P 0,0

n′,n,nx

)
+
∑

ng∈N ′
nm∈N ′

φ
(
P 0,0
ng,nm,nx , P

1,0
ng,nm,nx

)

We combine these individual bounds for the sets of observations and yield∑
o∈O

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
=

∑
o∈Og,SA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
+

∑
o∈Om,SA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)

104 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

+
∑

o∈Ox,SA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
+

∑
o∈OR,SA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
≤

∑
o∈Og,SA

∑
ng∈N ′

φ
(
P 00[OC({ng} , o)], P 10[OC({ng} , o)]

)
+

∑
o∈Om,SA

∑
nm∈N ′

φ
(
P 00[OC({nm} , o)], P 10[OC({nm} , o)]

)
+

∑
o∈Ox,SA

∑
nx∈N ′

φ
(
P 00[OC({nx} , o)], P 10[OC({nx} , o)]

)
+

∑
ng∈N ′
nx∈N ′

(
impact

(10),(00)
indirect (ng, nx)

)

+
∑

o∈OR,SA

(n1,n2,n3,n4,n5):=o

(
φ
(
P 00[OC({R0} , o)], P 10[OC({R0} , o)]

)

+
∑
n∈N ′

φ

∑
n′∈N

(
P 1,0
n,n′,n4

+ P 1,0
n′,n,n4

)
,
∑
n′∈N

(
P 0,0
n,n′,n4

+ P 0,0
n′,n,n4

)
+
∑

ng∈N ′
nm∈N ′

φ
(
P 0,0
ng,nm,n4

, P 1,0
ng,nm,n4

))

≤
∑
n∈N ′

 ∑
o∈Obs 6⊥

φ
(
P 00[OC({n} , o)], P 10[OC({n} , o)]

)
+
∑
n′∈N ′

impact
(10),(00)
indirect

(
n, n′

)
+ impactRec1(n) +

∑
n′∈N ′

impactRec2(n, n
′)

)
+

∑
o∈Obs 6⊥

φ
(
P 00[OC({R0} , o)], P 10[OC({R0} , o)]

)
= impactOSA (R0) +

∑
n∈N ′

(
impactOSA (n) + impactRec1(n)

+
∑

n′∈N ′\{n}

(
impact

(10),(00)
indirect

(
n, n′

)
+ impactRec2(n, n

′)
)

The last equation holds because for all n ∈ N , impact
(ab),(cd)
indirect (n, n) = 0, since all

probabilities of circuits are zero if the same node is used more than once in the same

circuit.

4.4. PROOF OF SOUNDNESS 105

4.4.4 Proof for Recipient Anonymity

We now derive our bound for recipient anonymity. Both the lemma and the proof are

completely analogous to the case of sender anonymity.

Lemma 4.4.6 (Observations for Recipient Anonymity). Let S0 ∈ S be a sender and

R0,R1 ∈ R be two recipients, and let N = N ′ ∪ {S0} be a set of compromised Tor

entities with N ′ ⊆ N being a set of compromised Tor nodes. Then we have∑
o∈O

φ
(
P 00[OC(N, o)], P 01[OC(N, o)]

)
≤ impactORA(S0) +

∑
n∈N ′

(
impactORA(n) + impactSen1(n)

+
∑

n′∈N ′\{n}

(
impact

(01),(00)
indirect

(
n, n′

)
+ impactSen2(n, n

′)
)

Proof. Let S0 ∈ S be a sender and R0,R1 ∈ R be two recipients, and let N = N ′∪{S0}
be a set of compromised Tor entities with N ′ ⊆ N being a set of compromised Tor

nodes. We define the following sets of observations for recipient anonymity:

• Ox,RA:= {(n1, . . . , n5) ∈ O s.t. n5 6= ⊥},

• Om,RA:= {(n1, . . . , n5) ∈ O \ Ox,RA s.t. n4 6= ⊥},

• Og,RA:= {(n1, . . . , n5) ∈ O \ (Ox,RA ∪ Om,RA) s.t. n3 6= ⊥},

• OS,RA:=O \ (Ox,RA ∪ Om,RA ∪ Og,RA).

As these sets define a partitioning of O, we get∑
o∈O

φ
(
P 00[OC(N, o)], P 01[OC(N, o)]

)
=

∑
o∈Ox,RA

φ
(
P 00[OC(N, o)], P 01[OC(N, o)]

)
+

∑
o∈Om,RA

φ
(
P 00[OC(N, o)], P 01[OC(N, o)]

)
+

∑
o∈Og,RA

φ
(
P 00[OC(N, o)], P 01[OC(N, o)]

)
+

∑
o∈OS,RA

φ
(
P 00[OC(N, o)], P 01[OC(N, o)]

)
The rest of the proof is completely analogous to the proof for Lemma 4.4.5. To

give some intuition into the proof, we describe which parts of this proof correspond to

which parts of the proof for Lemma 4.4.5.

106 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

• Ox,RA corresponds to Og,SA in Lemma 4.4.5.

• Om,RA corresponds to Om,SA in Lemma 4.4.5.

• Og,RA corresponds to Ox,SA in Lemma 4.4.5.

• OS,RA corresponds to OR,SA in Lemma 4.4.5.

We combine these bounds and yield

impactORA(N)

=
∑
o∈O

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
=

∑
o∈Ox,RA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
+

∑
o∈Om,RA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
+

∑
o∈Og,RA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
+

∑
o∈OS,RA

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
≤

∑
o∈Ox,RA

∑
nx∈N ′

φ
(
P 00[OC({nx} , o)], P 01[OC({nx} , o)]

)
+

∑
o∈Om,RA

∑
nm∈N ′

φ
(
P 00[OC({nm} , o)], P 01[OC({nm} , o)]

)

+
∑

o∈Og,RA

 ∑
ng∈N ′

φ
(
P 00[OC({ng} , o)], P 01[OC({ng} , o)]

)
+

∑
ng∈N ′
nx∈N ′

(
impact

(01),(00)
indirect (ng, nx)

)

+
∑

o∈OS,RA

(n1,n2,n3,n4,n5):=o

(
φ
(
P 00[OC({S0} , o)], P 01[OC({S0} , o)]

)

+
∑
n∈N ′

φ

∑
n′∈N

(
P 0,1
n2,n,n′ + P 0,1

n2,n′,n

)
,
∑
n′∈N

(
P 0,0
n2,n,n′ + P 0,0

n2,n′,n

)
+
∑

nm∈N ′
nx∈N ′

φ
(
P 0,0
n2,nm,nx , P

0,1
n2,nm,nx

))

≤
∑
n∈N ′

impactORA(n) +
∑
n′∈N ′

impact
(01),(00)
indirect

(
n, n′

)

4.4. PROOF OF SOUNDNESS 107

+ impactSen1(n) +
∑
n′∈N ′

impactSen2(n, n
′)

)
+

∑
o∈Obs 6⊥

φ
(
P 00[OC({S0} , o)], P 01[OC({S0} , o)]

)
= impactORA(S0) +

∑
n∈N ′

(
impactORA(n) + impactSen1(n)

+
∑

n′∈N ′\{n}

(
impact

(01),(00)
indirect

(
n, n′

)
+ impactSen2(n, n

′)
)

The last equation holds because for all n ∈ N , impact
(ab),(cd)
indirect (n, n) = 0, since all

probabilities of circuits are zero if the same node is used more than once in the same

circuit.

4.4.5 Proof for Relationship Anonymity

We combine the results for indirect impacts and derive our bound for relationship ano-

nymity. In contrast to sender anonymity and relationship anonymity, two aspects are

different for relationship anonymity: (i) for relationship anonymity, N contains neither

a sender nor a recipient from the challenge message, and (ii) for relationship anonymity

we have to consider four distributions over circuits instead of two distributions over

circuits. Recall that we write P ab,cd[C] instead of 1
2

(
P ab[C] + P cd[C]

)
.

Lemma 4.4.7 (Observations for Relationship Anonymity). Let S0,S1 be two senders

and R0,R1 be two recipients, and let N ⊆ N be a set of compromised Tor nodes. Under

the assumption that P 00,11[OC(N, (⊥,⊥,⊥,⊥,⊥))] ≤ P 01,10[OC(N, (⊥,⊥,⊥,⊥,⊥))]

∑
o∈O

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
≤
∑
n∈N

impactOREL({n}) +
∑
n′∈N

(
impactO-2REL(

{
n, n′

}
)
)

+
∑
n′∈N

(
+

1

2
impact

(01),(00)
indirect

(
n, n′

)
+

1

2
impact

(10),(11)
indirect

(
n, n′

)
+

1

2
impact

(10),(00)
indirect

(
n′, n

)
+

1

2
impact

(01),(11)
indirect

(
n′, n

)))
Proof. We define the following sets of observations for relationship anonymity, where

each set is indexed by the positions of the compromised nodes that make the respective

observations:

• Ogx,REL:= {(n1, . . . , n5) ∈ O s.t. (n1 6= ⊥ ∧ n5 6= ⊥)},

108 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

• Ogm,REL:= {(n1, . . . , n5) ∈ O \ Ogx,REL s.t. n1 6= ⊥ ∧ n4 6= ⊥},

• Omx,REL:= {(n1, . . . , n5) ∈ O \ Ogx,REL s.t. n2 6= ⊥ ∧ n5 6= ⊥},

• Om,REL:= {(n1, . . . , n5) ∈ O \ (Ogx,REL ∪ Ogm,REL ∪ Omx,REL) s.t. n2 6= ⊥ ∧ n4 6= ⊥},

• Og,REL:= {(n1, . . . , n5) ∈ O \ (Ogx,REL ∪ Ogm,REL ∪ Omx,REL ∪ Om,REL) s.t. n2 6= ⊥},

• Ox,REL:= {(n1, . . . , n5) ∈ O \ (Ogx,REL ∪ Ogm,REL ∪ Omx,REL ∪ Om,REL) s.t. n4 6= ⊥},

• Or,REL:=O \ (Ogx,REL ∪ Ogm,REL ∪ Omx,REL ∪ Om,REL ∪ Og,REL ∪ Ox,REL). Consequently, Or,REL =

{(⊥,⊥,⊥,⊥,⊥)}.

We now consider each of the sets of observations individually.

• Ogx,REL. Since neither the sender nor the recipient can be compromised for rela-

tionship anonymity, each observation in this set is of the form o = (Sa, ng, nm, nx,

Rb) and we either have ng, nx ∈ N , or φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
=

φ(0, 0) = 0. Since {ng, nx} ∈ core(o), by Lemma 4.4.4 and by the fact that the

observation can only be made by the nodes ng, nm, nx that belong to the circuit

we get

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
≤ φ

(
P 00,11[OC({ng, nx} , o)], P 01,10[OC({ng, nx} , o)]

)
.

• Ogm,REL. Each observation in this set is of the form o = (Sa, ng, nm, nx,⊥) and

we have core(o) = {{Sa, nm} , {ng, nm}}. Since Sa /∈ N for relationship anony-

mity, we assume Core = {ng, nm} ⊆ N to make this observation, as otherwise

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
= φ(0, 0) = 0. Since {ng, nm} ∈ core(o),

by Lemma 4.4.4 and by the fact that the observation can only be made by the

nodes ng, nm, nx that belong to the circuit we get

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
≤ φ

(
P 00,11[OC({ng, nm} , o)], P 01,10[OC({ng, nm} , o)]

)
.

• Omx,REL. Analogously to the previous case, each observation in this set is of the

form o = (⊥, ng, nm, nx,Rb) and we have core(o) = {{nm, nx} , {nm,Rb}}. Since

Rb /∈ N for relationship anonymity, we assume Core = {nm, nx} ⊆ N to make this

observation, as otherwise φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
= φ(0, 0) = 0.

Since {nm, nx} ∈ core(o), by Lemma 4.4.4 and by the fact that the observation

can only be made by the nodes ng, nm, nx that belong to the circuit we get

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
≤ φ

(
P 00,11[OC({nm, nx} , o)], P 01,10[OC({nm, nx} , o)]

)
.

4.4. PROOF OF SOUNDNESS 109

• Om. Each observation in this set is of the form o = (⊥, ng, nm, nx,⊥) and we

have core(o) = {{nm}}. We assume Core = {nm} ⊆ N to make this observation,

as otherwise φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
= φ(0, 0) = 0. Since {nm} ∈

core(o), by Lemma 4.4.4 and by the fact that the observation can only be made

by the nodes ng, nm, nx that belong to the circuit we get

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
≤ φ

(
P 00,11[OC({nm} , o)], P 01,10[OC({nm} , o)]

)
.

• Og,REL. Each observation in this set is of the form o = (Sa, ng, nm,⊥,⊥) and we

have core(o) = {{ng}}. We assume Core = {ng} ⊆ N to make this observation,

as otherwise φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
= φ(0, 0) = 0. Since {ng} ∈

core(o), by Lemmas 4.4.3 and 4.4.4 we get

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
≤ φ

(
P 00,11[OC(N \ {nm} , o)], P 01,10[OC(N \ {nm} , o)]

)
= φ

(
P 00,11[OC({ng} , o) ∩ OCblank(N \ {ng, nm} , o)],

P 01,10[OC({ng} , o) ∩ OCblank(N \ {ng, nm} , o)]
)

We now distinguish two cases depending on the sender Sa:

– Case Sa = S0. Then

φ
(
P 00,11[OC({ng} , o) ∩ OCblank(N \ {ng, nm} , o)],

P 01,10[OC({ng} , o) ∩ OCblank(N \ {ng, nm} , o)]
)

=
1

2
φ

 ∑
nx∈N\N

P 0,0
ng,nm,nx ,

∑
nx∈N\N

P 0,1
ng,nm,nx


=

1

2
φ

(∑
nx∈N

P 0,0
ng,nm,nx −

∑
nx∈N

P 0,0
ng,nm,nx ,

∑
nx∈N

P 0,1
ng,nm,nx −

∑
nx∈N

P 0,1
ng,nm,nx

)

≤ 1

2
φ

(∑
nx∈N

P 0,0
ng,nm,nx ,

∑
nx∈N

P 0,1
ng,nm,nx

)
+

1

2
φ

(∑
nx∈N

P 0,1
ng,nm,nx ,

∑
nx∈N

P 0,0
ng,nm,nx

)
≤ φ

(
P 00,11[OC({ng} , o)], P 01,10[OC({ng} , o)]

)
+

1

2

∑
nx∈N

φ
(
P 0,1
ng,nm,nx , P

0,0
ng,nm,nx

)
– Case Sa = S1. Then

φ
(
P 00,11[OC({ng} , o) ∩ OCblank(N \ {ng, nm} , o)],

P 01,10[OC({ng} , o) ∩ OCblank(N \ {ng, nm} , o)]
)

110 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

=
1

2
φ

 ∑
nx∈N\N

P 1,1
ng,nm,nx ,

∑
nx∈N\N

P 1,0
ng,nm,nx


=

1

2
φ

(∑
nx∈N

P 1,1
ng,nm,nx −

∑
nx∈N

P 1,1
ng,nm,nx ,

∑
nx∈N

P 1,0
ng,nm,nx −

∑
nx∈N

P 1,0
ng,nm,nx

)

≤ 1

2
φ

(∑
nx∈N

P 1,1
ng,nm,nx ,

∑
nx∈N

P 1,0
ng,nm,nx

)
+

1

2
φ

(∑
nx∈N

P 1,0
ng,nm,nx ,

∑
nx∈N

P 1,1
ng,nm,nx

)
≤ φ

(
P 00,11[OC({ng} , o)], P 01,10[OC({ng} , o)]

)
+

1

2

∑
nx∈N

φ
(
P 1,0
ng,nm,nx , P

1,1
ng,nm,nx

)
Thus, overall we get∑

o∈Og,REL

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)

≤
∑

o∈Og,REL

(n1,n2,n3,n4,n5):=o

∑
ng∈N

φ
(
P 00,11[OC({ng} , o)], P 01,10[OC({ng} , o)]

)

+
1

2

∑
nx∈N

φ
(
P 0,1
n2,n3,nx , P

0,0
n2,n3,nx

)
+

1

2

∑
nx∈N

φ
(
P 1,0
n2,n3,nx , P

1,1
n2,n3,nx

))
≤

∑
ng∈N

∑
o∈Og,REL

φ
(
P 00,11[OC({ng} , o)], P 01,10[OC({ng} , o)]

)
+

1

2

∑
ng∈N
nm∈N
nx∈N

φ
(
P 0,1
ng,nm,nx , P

0,0
ng,nm,nx

)
+

1

2

∑
ng∈N
nm∈N
nx∈N

φ
(
P 1,0
ng,nm,nx , P

1,1
ng,nm,nx

)

=
∑
ng∈N

∑
o∈Og,REL

φ
(
P 00,11[OC({ng} , o)], P 01,10[OC({ng} , o)]

)
+

1

2

∑
ng∈N
nx∈N

impact
(01)(00)
indirect (ng, nx) +

1

2

∑
ng∈N
nx∈N

impact
(10)(11)
indirect (ng, nx) .

• Ox,REL. Each observation in this set is of the form o = (⊥,⊥, nm, nx,Rb) and we

have core(o) = {{nx}}. We assume Core = {nx} ⊆ N , as otherwise

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
= φ(0, 0) = 0.

Since {nx} ∈ core(o), by Lemmas 4.4.3 and 4.4.4 we get

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
≤ φ

(
P 00,11[OC(N \ {nm} , o)], P 01,10[OC(N \ {nm} , o)]

)

4.4. PROOF OF SOUNDNESS 111

= φ
(
P 00,11[OC({nx} , o) ∩ OCblank(N \ {nx, nm} , o)],

P 01,10[OC({nx} , o) ∩ OCblank(N \ {nx, nm} , o)]
)

We now distinguish two cases depending on the recipient Rb:

– Case Rb = R0. Then

φ
(
P 00,11[OC({nx} , o) ∩ OCblank(N \ {nx, nm} , o)],

P 01,10[OC({nx} , o) ∩ OCblank(N \ {nx, nm} , o)]
)

=
1

2
φ

 ∑
ng∈N\N

P 0,0
ng,nm,nx ,

∑
ng∈N\N

P 1,0
ng,nm,nx


=

1

2
φ

∑
ng∈N

P 0,0
ng,nm,nx −

∑
ng∈N

P 0,0
ng,nm,nx ,

∑
ng∈N

P 1,0
ng,nm,nx −

∑
ng∈N

P 1,0
ng,nm,nx


≤ 1

2
φ

∑
ng∈N

P 0,0
ng,nm,nx ,

∑
ng∈N

P 1,0
ng,nm,nx

+
1

2
φ

∑
ng∈N

P 1,0
ng,nm,nx ,

∑
ng∈N

P 0,0
ng,nm,nx


≤ φ

(
P 00,11[OC({nx} , o)], P 01,10[OC({nx} , o)]

)
+

1

2

∑
ng∈N

φ
(
P 1,0
ng,nm,nx , P

0,0
ng,nm,nx

)
– Case Rb = R1. Then

φ
(
P 00,11[OC({nx} , o) ∩ OCblank(N \ {nx, nm} , o)],

P 01,10[OC({nx} , o) ∩ OCblank(N \ {nx, nm} , o)]
)

=
1

2
φ

 ∑
ng∈N\N

P 1,1
ng,nm,nx ,

∑
ng∈N\N

P 0,1
ng,nm,nx


=

1

2
φ

∑
ng∈N

P 1,1
ng,nm,nx −

∑
ng∈N

P 1,1
ng,nm,nx ,

∑
ng∈N

P 0,1
ng,nm,nx −

∑
ng∈N

P 0,1
ng,nm,nx


≤ 1

2
φ

∑
ng∈N

P 1,1
ng,nm,nx ,

∑
ng∈N

P 0,1
ng,nm,nx

+
1

2
φ

∑
ng∈N

P 0,1
ng,nm,nx ,

∑
ng∈N

P 1,1
ng,nm,nx


≤ φ

(
P 00,11[OC({nx} , o)], P 01,10[OC({nx} , o)]

)
+

1

2

∑
ng∈N

φ
(
P 0,1
ng,nm,nx , P

1,1
ng,nm,nx

)
Thus, overall we get (analogously to the case for Og,REL)∑

o∈Ox,REL

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)

112 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

≤
∑
nx∈N

∑
o∈Ox,REL

φ
(
P 00,11[OC({nx} , o)], P 01,10[OC({nx} , o)]

)
+

1

2

∑
ng∈N
nx∈N

impact
(10)(00)
indirect (ng, nx) +

1

2

∑
ng∈N
nx∈N

impact
(01)(11)
indirect (ng, nx) .

• Or,REL. This set only contains the observation or = (⊥,⊥,⊥,⊥,⊥) and by as-

sumption P 00,11[OC(N, (⊥,⊥,⊥,⊥,⊥))] ≤ P 01,10[OC(N, (⊥,⊥,⊥,⊥,⊥))]. Thus,

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
= 0.

As these sets define a partitioning of O, we get∑
o∈O

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
=

∑
o∈Ogx,REL

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
+

∑
o∈Ogm,REL

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
+

∑
o∈Omx,REL

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
+
∑
o∈Om

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
+
∑
o∈Og

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
+
∑
o∈Ox

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
+
∑
o∈Or

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
≤

∑
n∈N
n′∈N

 ∑
o∈Ogx,REL∪Ogm,REL∪Omx,REL

φ
(
P 00,11[OC(

{
n, n′

}
, o)], P 01,10[OC(

{
n, n′

}
, o)]

)
+
∑
n∈N

(∑
o∈Om

φ
(
P 00,11[OC({n} , o)], P 01,10[OC({n} , o)]

)
+
∑
o∈Og

φ
(
P 00,11[OC({n} , o)], P 01,10[OC({n} , o)]

)
+

1

2

∑
nx∈N

impact
(01),(00)
indirect (n, nx) +

1

2

∑
nx∈N

impact
(10),(11)
indirect (n, nx)

+
∑
o∈Ox

φ
(
P 00,11[OC({n} , o)], P 01,10[OC({n} , o)]

)
+

1

2

∑
ng∈N

impact
(10),(00)
indirect (ng, n) +

1

2

∑
ng∈N

impact
(01),(11)
indirect (ng, n)



4.4. PROOF OF SOUNDNESS 113

≤
∑
n∈N

impactOREL({n}) +
∑
n′∈N

(
ε-impactO-2REL(

{
n, n′

}
)
)

+
∑
n′∈N

(
+

1

2
impact

(01),(00)
indirect

(
n, n′

)
+

1

2
impact

(10),(11)
indirect

(
n, n′

)
+

1

2
impact

(10),(00)
indirect

(
n′, n

)
+

1

2
impact

(01),(11)
indirect

(
n′, n

)))

4.4.6 Approximating the Set of Compromised Nodes

It remains to be shown that the guarantees we compute can be approximated for every

budget adversary. To this end we show that the guarantee we get by maximizing the

(slightly over-approximated) impact of every node leads to a bound on the advantage

of every adversary from the respective class.

Lemma 4.4.8 (Approximating N). For every anonymity notion αX with X ∈ {SA,RA,
REL}, all senders S0, S1 ∈ S, all recipients R0,R1 ∈ R, every path selection algorithm

ps, and every budget B and every cost function f , let AB
f be any budget adversary that

compromises the nodes in the set N
B,f
⊆ N . Then the impact of compromising N can

be bounded as follows:

(1) impactOSA(N ∪ {R0}) ≤ impactOSA (R0)

+ max

N†
B,f
⊆ N

∑
n∈N†

(
impactOSA (n) + impactindSA (n,AB

f)
)
.

(2) impactORA(N ∪ {S0}) ≤ impactORA (S0)

+ max

N†
B,f
⊆ N

∑
n∈N†

(
impactORA (n) + impactindRA (n,AB

f)
)
.

(3) impactOREL(N) ≤ max

N†
B,f
⊆ N

∑
n∈N†

(
impactcombinedREL (n) + impactindREL(n,AB

f)
)

Proof. Let S0,S1 ∈ S be two senders and R0,R1 ∈ R be two recipients, and let N ′
B,f
⊆ N

be any set of compromised Tor nodes within the budget. We show each part separately.

In each part we use the fact that impact
(ab),(cd)
indirect (n, n) = 0, which holds since a node

cannot occur in the same circuit twice with non-zero probability.

(1) By Lemma 4.4.5 we know that for N = N ′ ∪ {R0} we have

impactOSA(N)

114 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

=
∑
o∈O

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
≤ impactOSA (R0) +

∑
n∈N ′

(
impactOSA (n) + impactRec1(n)

+
∑

n′∈N ′\{n}

(
impact

(10)(00)
indirect

(
n, n′

)
+ impactRec2(n,n′)

)
≤ impactOSA (R0) + max

N†
B,f
⊆ N

∑
n∈N†

(
impactOSA (n) + impactRec1(n)

+ max

N∗
B−f(n),f

⊆ N

∑
n′∈N∗

(
impact

(10)(00)
indirect

(
n, n′

)
+ impactRec2(n,n′)

)
= impactOSA (R0) + max

N†
B,f
⊆ N

∑
n∈N†

(
impactOSA (n) + impactindSA (n,AB

f)
)
.

(2) By Lemma 4.4.6 we know that for N = N ′ ∪ {S0} we have

impactORA(N)

=
∑
o∈O

φ
(
P 00[OC(N, o)], P 10[OC(N, o)]

)
≤ impactORA(S0) +

∑
n∈N ′

(
impactORA(n) + impactSen1(n)

+
∑

n′∈N ′\{n}

(
impact

(01),(00)
indirect

(
n, n′

)
+ impactSen2(n, n

′)
)

≤ impactORA(S0) + max

N†
B,f
⊆ N

∑
n∈N†

(
impactORA(n) + impactSen1(n)

+ max

N∗
B−f(n),f

⊆ N

∑
n′∈N∗

(
impact

(01),(00)
indirect

(
n′, n

)
+ impactSen2(n, n

′)
)

= impactORA (S0) + max

N†
B,f
⊆ N

∑
n∈N†

(
impactORA (n) + impactindRA (n,AB

f)
)
.

(3) By Lemma 4.4.7 we know that for N = N ′ we have

∑
o∈O

φ
(
P 00,11[OC(N, o)], P 01,10[OC(N, o)]

)
≤

∑
n∈N

impactOREL({n}) +
∑
n′∈N

(
ε-impactO-2REL(

{
n, n′

}
)
)

4.4. PROOF OF SOUNDNESS 115

+
∑
n′∈N

(
+

1

2
impact

(01),(00)
indirect

(
n, n′

)
+

1

2
impact

(10),(11)
indirect

(
n, n′

)
+

1

2
impact

(10),(00)
indirect

(
n′, n

)
+

1

2
impact

(01),(11)
indirect

(
n′, n

)))

=
∑
n∈N

impactOREL({n}) +
∑

n′∈N\n

(
ε-impactO-2REL(

{
n, n′

}
)
)

+
∑

n′∈N\n

(
+

1

2
impact

(01),(00)
indirect

(
n, n′

)
+

1

2
impact

(10),(11)
indirect

(
n, n′

)
+

1

2
impact

(10),(00)
indirect

(
n′, n

)
+

1

2
impact

(01),(11)
indirect

(
n′, n

)))

≤ max

N†
B,f
⊆ N

∑
n∈N†

impactOREL({n}) + max

N∗
B−f(n),f

⊆ N

∑
n′∈N∗

(
ε-impactO-2REL(

{
n, n′

}
)
)

+ max

N∗
B−f(n),f

⊆ N

∑
n′∈N∗

(
+

1

2
impact

(01),(00)
indirect

(
n, n′

)
+

1

2
impact

(10),(11)
indirect

(
n, n′

)
+

1

2
impact

(10),(00)
indirect

(
n′, n

)
+

1

2
impact

(01),(11)
indirect

(
n′, n

)))
= max

N†
B,f
⊆ N

∑
n∈N†

(
impactcombinedREL (n,AB

f) + impactindREL(n,AB
f)
)

Lemma 4.4.8 concludes our proof. We have shown that our anonymity guarantees

indeed are sound upper bounds on the anonymity impact of a budget adversary.

116 CHAPTER 4. CALCULATING ANONYMITY GUARANTEES

Chapter 5

Evaluation

In this final chapter we show the applicability of our methodology, by calculating formal

guarantees for Tor, depending on its path selection algorithm ps against a variety

of AnoA adversaries. Based on the foundation of Chapter 2 and the calculations of

Chapter 4 we perform two analyses. First, we analyze Tor against a multitude of node

budget adversaries, i.e., adversaries that may compromise a set of Tor nodes, based on

their parameters, including k-collusion adversaries, bandwidth restricted adversaries,

economical adversaries and country restricted adversaries.

Second, we construct a model of Tor’s Internet topology and evaluate Tor against

several network infrastructure adversaries, including malicious companies that provide

autonomous systems (AS), malicious Internet exchange points (IXP) and malicious

submarine cables.

5.1 Evaluating Tor Against Node Adversaries

One of the greatest concerns of Tor users is that some of the large number of Tor

nodes are malicious. In this part of our evaluation we analyze the impact of such

eavesdropping Tor nodes on anonymity. To this end, we first instantiate the budget

adversaries from Section 4.3. We then describe the setup of the evaluation (i.e., the

senders and recipients we considered and the gathering of Tor consensus information),

present a few technical details about the implementation of our analysis tool and finally

show and discuss the results of our large-scale analysis.

5.1.1 Instantiating Node Budget Adversaries

We consider the following four instances of budget adversaries in our analysis and

evaluate their anonymity impact on Tor’s anonymity for all considered path selection

algorithms.

k-collusion adversary. We evaluate the k-collusion adversary for up to 25 compro-

mised nodes, i.e., for a budget B ranging from 0 to 25. Recall that the k-collusion

117

118 CHAPTER 5. EVALUATION

adversary is restricted only by the number of compromised nodes, independently of

their properties. Consequently, it will choose very influential Tor nodes.

Bandwidth adversary. We evaluate the bandwidth adversary for a budget B ranging

from 1 MB/s to 1 GB/s. Recall that the bandwidth adversary is not restricted in the

number of nodes it can compromise. Thus, it may either compromise a few influential

nodes with high bandwidth, or many less influential nodes with low bandwidth. Its

decision is based mainly on the ratio between impact and bandwidth.

Geographic adversary. We evaluate several adversaries that compromise all nodes

in a given country. We consider the five top countries according to offered Tor band-

width: Germany (DE), France (FR), the Netherlands (NL), the United States (US)

and the United Kingdom (GB). Recall that as a predicate adversary, the geographic

adversary can exactly compromise the Tor nodes for which the predicate is true. Since

compromising any node can only increase the adversary’s advantage, the geographic

adversary will compromise all nodes located in the respective country, independently

of their number or their other properties.

Monetary adversary. We evaluate a monetary adversary with a monthly budget B in

US dollars, ranging from 103 to 108 US dollars. Recall that the cost function f$ assigns

each node its monthly cost, depending on a price function price(n.provider, n.BW).

We instantiate price for the 8 largest providers hosting Tor nodes (Amazon, DigitalO-

cean, Hetzner, LeaseWeb, myLoc, Online, OVH, and STRATO), accounting for approx-

imately 1
3 of Tor bandwidth. We assign each node hosted by one of these providers the

price of the cheapest product of the respective provider that offers at least the node’s

average bandwidth. For all remaining nodes (that are not hosted by these providers),

price(·) assigns the average consumer prices per bandwidth, depending on the node’s

country, taken from Ookla’s NetIndex [90] per country. The monetary adversary will

mainly base its decision on the ratio between the impact of nodes and their costs, i.e., it

is mainly concerned with the ratio between the impact and the price that the respective

provider asks for a server with the necessary bandwidth.

5.1.2 Setup

Recall that our computations are with respect to specific senders S0, S1 and recipients

R0,R1. For the sake of evaluation, we hence consider concrete users in the following:

the IP addresses from the affiliations of the PC chairs of PETS2015 and PETS2016.

The first user, S0, establishes a Tor circuit from Drexel University in Philadelphia;

the second user, S1, connects from Indiana University in Bloomington. As possible

destinations, we have selected TU Darmstadt as R0 and KU Leuven as R1. For both

destinations, we only required the HTTPS port 443 as the by far most widely used port

for Tor connections (Tor is mainly used via the Tor-Browser bundle, which includes

HTTPS-Everywhere). We added one analysis where the recipient instead requires the

TCP port 6667 (used for IRC chat) to show the impact of ports on (recipient) anony-

5.1. EVALUATING TOR AGAINST NODE ADVERSARIES 119

Maximization(B, f,N , [impact(n) for n ∈ N])

1: Out:=0, L:=∅
2: for n ∈ N do

3: if f(n) = 0 then

4: Out:=Out + impact(n)

5: else if f(n) ≤ B then

6: L:=L ∪ {n}
7: end if

8: end for

9: B′:=B
10: for n ∈ L, ordered by impact(n)

f(n) (descending) do

11: if B′ ≥ f(n) then

12: Out:=Out + impact(n)

13: B′:=B′ − f(n)

14: else

15: Out:=Out + B′
f(n) · impact(n)

16: B′:=0

17: end if

18: end for

19: return Out

Figure 5.1: Simple maximization algorithm for MATor .

mity. Moreover, since the choice of the IP address mainly influences LASTor, we add

a second setup for LASTor (which we coin LASTor (2), or L2 in our graphs), in which

we swap the IP addresses of S1 and R1.

Unless stated otherwise in a specific experiment, we used the following data in our

evaluation: Our evaluation was conducted on Tor network consensus data over the

course of almost one year (August 2014-May 2015). For each month we gathered 15

consensus files (resulting in around one file every second day, at noon) and calculated

the anonymity impact of the considered adversaries.

5.1.3 Implementation

We have implemented the computation of impactX as a C++ tool, which we coin

MATor . MATor takes care of computing the probability distribution over Tor circuits

for a given Tor network consensus and the respective server descriptors. Moreover,

we added the calculations from Chapter 4 for any given budget adversary ABf (·), the

desired anonymity notion αX , and concrete senders S0,S1 and recipients R0,R1. To

120 CHAPTER 5. EVALUATION

this end, we first compute the individual impacts impactO for all observations of indi-

vidual nodes, pairs of nodes and – depending on the anonymity notion – relevant end

points. Leveraging the computation from impactOX to impactX requires us to solve

the underlying integer maximization problems, e.g., determining N ⊆ N such that∑
n∈N f(n) ≤ B becomes maximal. While this problem is known to be NP-hard, we

soundly approximate it via a simple optimization algorithm. Our algorithm chooses

the nodes with the best ratio of impact and costs to consume up the budget. As soon

as a node is too expensive, the algorithm adds a fraction of the node’s bandwidth to

the overall impact, depending on the remaining budget and the costs. As we order the

nodes by their impact, this method soundly converts the budget into an approximated

overall impact. We refer to Fig. 5.1 for a description of this algorithm. The source code

of our implementation is publicly available [103].

About Proofs, Implementations and Good Scientific Practice While working

on the write-up of this thesis we realized that our previous formalizations did not

correctly capture the (slightly unintuitive) indirect impact of a node. Moreover, the

implementation of our MATor tool had several minor bugs and also did not correctly

capture this impact. Consequently, we refactored our MATor implementation and,

along the way, also added the possibility for calculating lower bounds to measure the

margin of error of our calculations. Subsequently we repeated the evaluation that

already appeared in [12] for this thesis. To compare our results with the evaluation

presented there, we decided to re-evaluate the time period chosen in our paper.

5.1.4 Results

To allow for parsing the large number of results, we try to present them in a consistent

notation and divide the results into intuitive categories. First we present the impact of

our adversaries on Tor’s current path selection algorithm. The respective graphs present

a ground truth for our comparison with other path selection algorithms. To simplify

understanding the impact on other path selection algorithms, we then provide both the

anonymity impact of the adversaries on the alternative path selection algorithms and

difference-graphs, i.e., graphs that show how the anonymity guarantee for the respective

path selection algorithm compares to Tor’s path selection algorithm.

Moreover, we present the impact of alternative path selection algorithms in the

transition phase, in which some few users use the alternative while most users stick to

Tor’s current path selection algorithm.

Evaluating Tor’s Path Selection Algorithm

The results of our evaluation of TorPS are depicted in Figures 5.2 and 5.3.

5.1. EVALUATING TOR AGAINST NODE ADVERSARIES 121

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

Number of Compromised Nodes

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

Bandwidth Adversary (Budget in MB/s)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

Figure 5.2: Adversarial impact for sender (top), recipient (middle) and relationship

(bottom) anonymity for the k-collusion adversary for k from 0 to 25 (left) and the

bandwidth adversary with a budget from 1 MB/s up to 1, 000 MB/s (right).

122 CHAPTER 5. EVALUATION

DE FR GB NL US
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

Country Adversary

103 104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

Money Adversary (Budget in USD/month)

DE FR GB NL US
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

103 104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

DE FR GB NL US
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

103 104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

Figure 5.3: Adversarial impact for sender (top), recipient (middle) and relationship

(bottom) anonymity for the geographic adversary for the countries Germany (DE),

France (FR), the United Kingdom (GB), Netherlands (NL) and the United States (US)

(left), and the monetary adversary with a monetary budget in USD/month (right).

5.1. EVALUATING TOR AGAINST NODE ADVERSARIES 123

Results – k-collusion adversary (left, Fig. 5.2) Our results confirm that a

small number of influential nodes suffices to significantly reduce anonymity. Allow-

ing the adversary to compromise 20 nodes of its choice leads to a 15.1% reduction of

sender anonymity, a 25.6% reduction of recipient anonymity and a 2.3% reduction of

relationship anonymity. This reduction of anonymity increases sublinearly for sender

anonymity and recipient anonymity, which we attribute to the fact that for Tor’s path

selection algorithm alone there is no indirect impact and thus the advantage is consid-

ered on a per-node basis. Hence, the adversary will choose the node with the highest

impact first and every upcoming node can only have a smaller impact than any of

the previous nodes. For relationship anonymity however, every additional nodes can

increase the impact of any already compromised node, as the pairwise impact is quite

significant.

Results – bandwidth adversary (right, Fig. 5.2) The plot shows the reduc-

tion of anonymity on a logarithmic scale axis. Our results confirm that a significant

amount of bandwidth is necessary for reducing Tor’s anonymity. An adversary that

may compromise nodes with an overall advertised bandwidth of 1GB/s leads to a 21.9%

reduction of sender anonymity, a 28.6% reduction of recipient anonymity and a 3.7%

reduction of relationship anonymity. We see that reducing sender anonymity in this

scenario is, in comparison to the k-collusion adversary, slightly easier in comparison to

reducing recipient anonymity.

Results – geographic adversary (left, Fig. 5.3) Our plot shows the impact

of the top five countries according to offered Tor bandwidth: Germany (DE), France

(FR), the Netherlands (NL), the United States (US) and the United Kingdom (GB). We

confirm that, although the largest number of Tor nodes is within the United States,

the geographic adversaries for Germany, France and the Netherlands reduce anony-

mity more than the geographic adversary for the United States, which we attribute to

the fact that although more Tor nodes are within the US, their bandwidth and thus

the probability that they are used is significantly smaller. The Germany adversary

reduces sender anonymity most drastically (by 29.2%), whereas the Netherlands adver-

sary reduces recipient anonymity most drastically (by 19.1%), and the France adversary

reduces relationship anonymity most drastically (by 4.6%). We attribute this to the

large guard bandwidth in Germany, the large exit bandwidth of the Netherlands and

the combination of a high guard bandwidth and high exit bandwidth in France.

Results – monetary adversary (right, Fig. 5.3) The plot shows the impact

of our monetary adversary for a (monthly) budget of 1,000 up to 100 Mio USD. We

observe that an adversary with a rather small budget of only 1,000 USD per month

reduces sender anonymity by 11.4% and recipient anonymity by 5.5%. An adversary

with a monthly budget of 100,000 USD reduces sender anonymity by 42.1%, recipient

124 CHAPTER 5. EVALUATION

$100,000/mo 10 nodes 1 GB/s CC=DE

2014-09-01 2014-11-01 2015-01-01 2015-03-01 2015-05-01
0

0.2

0.4

0.6

i
m
p
a
c
t
S
A

2014-09-01 2014-11-01 2015-01-01 2015-03-01 2015-05-01
0

0.2

0.4

0.6

i
m
p
a
c
t
R
A

2014-09-01 2014-11-01 2015-01-01 2015-03-01 2015-05-01
0

0.1

0.2

0.3

i
m
p
a
c
t
R
E
L

Figure 5.4: Changes in the adversarial impact against selected adversarial strategies

for Tor’s path selection during the last year. Note, that the Y axis scales from 0 to 0.6

for sender and recipient anonymity plots, and from 0 to 0.3 for relationship anonymity.

anonymity by 29.3% and relationship anonymity by 10.2%. We attribute this to a

significant number of Tor nodes hosted by OVH and similar companies that offer very

cheap bandwidth.

Guarantees Over Time

The anonymity guarantees we can derive depend not only on the specification of the

path selection algorithm and the adversary, but also, significantly, on the status of

the Tor network. We included a plot that shows the change in anonymity guarantees

for a selection of four adversaries and for Tor’s current path selection algorithm. The

adversaries we included are a k-collusion adversary with k = 10, a bandwidth adversary

with a budget of 1 GB/s, a geographical adversary that compromises all Tor nodes in

Germany and a monetary adversary with a monthly budget of 100, 000 USD.

Our results confirm that the Tor network is subject to a constant fluctuation of

nodes, which impacts the anonymity guarantees we calculate. While some of the fluc-

tuations only impact the reduction of anonymity by individual classes of adversaries,

5.1. EVALUATING TOR AGAINST NODE ADVERSARIES 125

there are fluctuations that impact the reduction of anonymity of all considered adver-

saries at once.

Alternative Path Selection Algorithms

The results of our evaluation of alternative path selection algorithms are depicted in

Figures 5.5 to 5.8 – from top to bottom: sender anonymity, recipient anonymity, and

relationship anonymity. In Figures 5.5 and 5.6 we show the differences between the

anonymity impacts of the alternative path selection algorithms and TorPS and, for

completion, in Figures 5.7 and 5.8 we show the results we obtained for the alternative

path selection algorithms directly.

UniformTor It is commonly believed that the uniform distribution over all (eligible)

nodes offers the highest degree of anonymity. We can confirm that against k-collusion

adversaries, this is certainly true. Against k-collusion adversaries the uniform path

selection algorithm excels: such an adversary with a budget of k = 20 Tor nodes

only reduces sender anonymity by 1.3%, recipient anonymity by 1.9% and relationship

anonymity by < 0.1%.

However, an adversary that corrupts a certain amount of bandwidth can corrupt

a large number of low-bandwidth nodes even with a small budget. Consequently, the

bandwidth adversary with a budget of 1 GB/s reduces sender anonymity by 27.1%,

recipient anonymity by 56.7% and relationship anonymity by 12.6%, which, especially

for recipient anonymity and relationship anonymity is significantly worse in comparison

with Tor’s path selection algorithm. The geographic adversaries also reduce anonymity

differently, which we attribute to the difference in the number of Tor nodes in a country

and the bandwidth of these nodes, i.e., the United States adversary reduces anonymity

significantly more for the uniform path selection algorithm than for Tor’s path selection

algorithm. In case of a monetary adversary, the uniform path selection algorithm offers

slightly better sender anonymity guarantees, but significantly worse recipient anonymity

guarantees. We attribute this to a number of relatively cheap, high-bandwidth guards

and a large number of low-bandwidth exit nodes.

SelekTOR As SelekTOR only restricts the choice for an exit node, sender anony-

mity is comparable to Tor, while relationship anonymity and in particular recipient

anonymity suffer significantly, for essentially all considered adversaries, except for the

geographic adversaries outside of the United States. As expected, the geographic ad-

versary that compromises all nodes within the US can break recipient anonymity with

100% probability (it always controls the exit node and can perform a traffic correlation

attack).

A noteworthy exception to our observations is that for a low budget, the monetary

adversary reduces recipient anonymity significantly less, which we attribute to a higher

126 CHAPTER 5. EVALUATION

Uniform SelekTOR DistribuTor LASTor LASTor (2) .

0 5 10 15 20 25

−0.5

0

0.5

i
m
p
a
c
t
S
A

Number of Compromised Nodes

1 10 100 1000

−0.5

0

0.5

Bandwidth Adversary (Budget in MB/s)

0 5 10 15 20 25

−0.5

0

0.5

i
m
p
a
c
t
R
A

1 10 100 1000

−0.5

0

0.5

0 5 10 15 20 25

−0.5

0

0.5

i
m
p
a
c
t
R
E
L

1 10 100 1000

−0.5

0

0.5

Figure 5.5: The difference between impactX for sender (top), recipient (middle) and

relationship (bottom) anonymity of alternative path selection algorithms and TorPS.

The Considered adversaries classes are the k-collusion adversary for k from 0 to 25 (left)

and the bandwidth adversary with a budget from 1 MB/s up to 1, 000 MB/s (right).

5.1. EVALUATING TOR AGAINST NODE ADVERSARIES 127

Uniform SelekTOR DistribuTor LASTor LASTor (2) .

DE FR GB NL US

−0.5

0

0.5

i
m
p
a
c
t
S
A

Country Adversary

103 104 105 106 107 108

−0.5

0

0.5

Money Adversary (Budget in USD/month)

DE FR GB NL US

−0.5

0

0.5

i
m
p
a
c
t
R
A

103 104 105 106 107 108

−0.5

0

0.5

DE FR GB NL US

−0.5

0

0.5

i
m
p
a
c
t
R
E
L

103 104 105 106 107 108

−0.5

0

0.5

Figure 5.6: The difference between impactX for sender (top), recipient (middle) and

relationship (bottom) anonymity of alternative path selection algorithms and TorPS.

The considered adversary classes are the geographic adversary for the countries Ger-

many (DE), France (FR), the United Kingdom (GB), Netherlands (NL) and the United

States (US) (left), and the monetary adversary with a monetary budget in USD/month

(right).

128 CHAPTER 5. EVALUATION

Uniform SelekTOR DistribuTor LASTor LASTor (2) .

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

Number of Compromised Nodes

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

Bandwidth Adversary (Budget in MB/s)

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

Figure 5.7: Adversarial impact for sender (top), recipient (middle) and relationship

(bottom) anonymity for all considered alternative path selection algorithms. The Con-

sidered adversaries classes are the k-collusion adversary for k from 0 to 25 (left) and

the bandwidth adversary with a budget from 1 MB/s up to 1, 000 MB/s (right).

5.1. EVALUATING TOR AGAINST NODE ADVERSARIES 129

Uniform SelekTOR DistribuTor LASTor LASTor (2) .

DE FR GB NL US
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

Country Adversary

103 104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

Money Adversary (Budget in USD/month)

DE FR GB NL US
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

103 104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

DE FR GB NL US
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

103 104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

Figure 5.8: Adversarial impact for sender (top), recipient (middle) and relationship

(bottom) anonymity for all considered alternative path selection algorithms. The con-

sidered adversary classes are the geographic adversary for the countries Germany (DE),

France (FR), the United Kingdom (GB), Netherlands (NL) and the United States (US)

(left), and the monetary adversary with a monetary budget in USD/month (right).

130 CHAPTER 5. EVALUATION

average price for hosting small Tor nodes in the United States in comparison with some

cheap European providers.

DistribuTor DistribuTor in particular modifies the selection of entry nodes by cap-

ping the possible weights of nodes at a certain point. Consequently, it achieves much

better sender anonymity and relationship anonymity guarantees against k-collusion ad-

versaries (against which it has been designed), up to the point of being comparable

with the uniform path selection algorithm. However, against bandwidth adversaries it

suffers a higher reduction of sender anonymity and relationship anonymity. Since it uses

modified weights (especially for entry nodes), its sender anonymity is, in comparison

to Tor’s sender anonymity, slightly less prone against European country adversaries,

but more vulnerable against the US country adversary (there are more smaller entry

nodes in the US). Our guarantees for recipient anonymity are very comparable to the

guarantees for Tor’s current path selection algorithm, which we attribute to the bot-

tleneck of exit bandwidth in Tor: Tor’s current path selection algorithm already uses

possible exit nodes (almost) solemnly for the exit position, and thus DistribuTor does

not significantly change the choice of exit nodes.

LASTor Since our node adversaries do not perform network-based attacks, our evalu-

ation of LASTor, which is designed to counter network-based attacks, may seem slightly

unfair. We refer to Section 5.2 for an analysis of LASTor against compromised network

infrastructure. The uniform distribution of the node weights within LASTor’s “geo-

location buckets”, leads to significantly better results for recipient anonymity against

a k-collusion adversary due to the large number of low-bandwidth exit nodes. The re-

duction of sender anonymity, however, is much more severe, as the adversary can easily

gain partial information. Moreover, even a small amount of compromised bandwidth

suffices for completely reducing anonymity, as even a small, compromised middle node

can gain information about the location of both sender and recipient of a communi-

cation: entry and exit nodes have significantly different weights for different locations.

Note that LASTor (as presented in [1]) additionally restricts circuits depending on

whether traffic is expected to be routed through the same autonomous system twice.

We did not capture this aspect for our analysis in this section, as we wanted to avoid an

influence of incomplete information (about the network infrastructure) on our analysis.

Capturing this additional restriction, however, would only increase the advantage of an

eavesdropping node adversary.

To further evaluate LASTor, we also ran analyses in which we swapped the IP

address of one recipient with the IP address of one sender (TU Darmstadt with Indiana

University). This is displayed as LASTor (2) in Figures 5.5 and 5.6. As expected, the

resulting more diverse distribution of senders and recipients has a negative impact on

the anonymity guarantees.

5.1. EVALUATING TOR AGAINST NODE ADVERSARIES 131

Uniform SelekTOR DistribuTor LASTor .

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Number of nodes

i
m
p
a
c
t
S
A

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

Bandwidth in MB/s

DE FR GB NL US
0

0.2

0.4

0.6

0.8

1

Countries and Collaborations

i
m
p
a
c
t
S
A

103 104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

Money (in USD) spent on the nodes

Figure 5.9: impactSA for sender anonymity during the transition phase for all dif-

ferent adversarial strategies (from top left to bottom right): k-collusion, bandwidth,

geographic, and monetary.

Transition Phase

In existing evaluations of alternative path selection algorithms, the major impeding

anonymity factor that is typically omitted is the so-called transition phase, i.e., a

small number of users is already using an alternative of Tor’s path selection algorithm,

whereas the vast majority still uses the standard one. Intuitively, the users that use the

alternative algorithm cannot yet hide in a large anonymity set of users, but have to stay

anonymous amongst the users that use the standard algorithm. Figure 5.10 depicts the

adversary’s advantage in such scenarios (for sender and relationship anonymity only,

since these are the only two anonymity notions affected by this algorithmic transition).

132 CHAPTER 5. EVALUATION

Uniform SelekTOR DistribuTor LASTor .

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

Number of compromised nodes

i
m
p
a
c
t
R
E
L

1 10 100 1000
0

0.2

0.4

0.6

0.8

1

Bandwidth in MB/s

DE FR GB NL US
0

0.2

0.4

0.6

0.8

1

Countries and Collaborations

i
m
p
a
c
t
R
E
L

103 104 105 106 107 108
0

0.2

0.4

0.6

0.8

1

Money (in USD) spent on the nodes

Figure 5.10: impactREL for relationship anonymity during the transition phase for all

different adversarial strategies (from top left to bottom right k-collusion, bandwidth,

geographic, and monetary.

Our analyses show that even adversaries that do not compromise any single Tor

node have a tremendous advantage in distinguishing a user that relies on an alterna-

tive path selection algorithm from a regular Tor user: for SelekTOR, the adversary

has an advantage of 90.1%, for LASTor an advantage of 86.0% and for the uniform

path selection, the adversary has an advantage of 66.0%. In case of SelekTOR, this

advantage arises mostly from the fact, that a normal user would choose a US exit node

with only ≈ 9% probability, whereas a SelekTOR user always uses such an exit node.

For LASTor and the uniform path selection algorithm, circuits containing small nodes

are chosen with a much higher probability in comparison to TorPS. The effect of the

5.1. EVALUATING TOR AGAINST NODE ADVERSARIES 133

GreedySet(B, f,N , [impact(n) for n ∈ N])

1: Out:=∅, L:=∅
2: for n ∈ N do

3: if f(n) = 0 then

4: Out:=Out ∪ {n}
5: else if f(n) ≤ B then

6: L:=L ∪ {n}
7: end if

8: end for

9: B′:=B
10: for n ∈ L, ordered by impact(n)

f(n) (descending) do

11: if B′ ≥ f(n) then

12: Out:=Out ∪ {n}
13: B′:=B′ − f(n)

14: end if

15: end for

16: return Out

Figure 5.11: Greedy algorithm for the lower bound on Tors anonymity. We

instantiate impact depending on the anonymity notion. For sender anony-

mity, impact(n):=impactOSA (n) + impactindSA (n,AB
f), for recipient anonymity we set

impact(n):=impactORA (n) + impactindRA (n,AB
f), and for relationship anonymity we set

impact(n):=impactcombinedREL,S0,S1,Rb,Rd(n,A
B
f) + impactindREL,S0,S1,Rb,Rd(n,A

B
f).

transition phase on DistribuTor is less drastic, but still noticeable. Especially the fact

that the weights of entry nodes are heavily modified grants compromised middle nodes

an advantage in distinguishing between a Tor user and a DistribuTor user.

Mitigating the Risk of the Transition Phase The high vulnerability of users

that use a non-standard path selection algorithm indicates that a slow and voluntary

transition from one algorithm to another might alienate the (few) users that migrate

first and thus significantly weaken their anonymity. We think that as soon as a transi-

tion is necessary, the novel algorithm should be rolled out to all users at once, in order

to shorten the transition phase. With this strategy, all users would intuitively remain

in the same anonymity set.

134 CHAPTER 5. EVALUATION

Worst case bound Lower bound

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

k=0

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

k=5

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

Figure 5.12: Comparison between worst-case guarantee and lower bound for: (D) Dis-

tribuTor, (L1) LASTor in our first configuration, (L2) LASTor in our second config-

uration, (T) Tor’s current path selection algorithm, (I) Tor’s current path selection

algorithm if one recipient requires IRC’s TCP port 6667, (S) SelekTOR for country

“US”, (U) Uniform. We present guarantees for sender (top), recipient (middle) and

relationship (bottom) anonymity for the k-collusion adversary with k=0 (left) and k-

collusion adversary with k=5 (right).

5.1.5 Evaluation of the Precision

Finally, we evaluate the precision of our results, i.e., the amount of over-approximation

induced by our calculations. To this end we define a (very simple) algorithm GreedySet

that greedily selects Tor nodes based on the impact per node estimated by our calcu-

lations from Section 4.3 (c.f. Fig. 5.11 for a description of GreedySet). We then

calculate the precise anonymity impact of the resulting set of nodes and thus obtain a

lower bound for the adversarial impact.

In Figs. 5.12 to 5.17 we compare both bounds. For sender anonymity and recipient

5.1. EVALUATING TOR AGAINST NODE ADVERSARIES 135

Worst case bound Lower bound

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

k=10

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

k=25

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

Figure 5.13: Comparison between worst-case guarantee and lower bound for: (D) Dis-

tribuTor, (L1) LASTor in our first configuration, (L2) LASTor in our second config-

uration, (T) Tor’s current path selection algorithm, (I) Tor’s current path selection

algorithm if one recipient requires IRC’s TCP port 6667, (S) SelekTOR for country

“US”, (U) Uniform. We present guarantees for sender (top), recipient (middle) and

relationship (bottom) anonymity for the k-collusion adversary with k=10 (left) and

k-collusion adversary with k=25 (right).

anonymity, whenever the probability distribution over Tor circuits is the same for both

senders / both recipients, we do not over-approximate the adversary’s advantage. Con-

sequently, the the bound calculated by MATor is tight up to minor rounding errors.

For relationship anonymity (where we over-approximate the impact of the adversary

even in such scenarios) and for sender anonymity in cases in which the senders use

different path selection algorithms, as well as for recipient anonymity in the case that

different ports are required, as well as in general for LASTor, MATor significantly

over-approximates the adversarial impact.

136 CHAPTER 5. EVALUATION

Worst case bound Lower bound

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

BW 10MB/s

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

100,000 USD

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

Figure 5.14: Comparison between worst-case guarantee and lower bound for: (D) Dis-

tribuTor, (L1) LASTor in our first configuration, (L2) LASTor in our second config-

uration, (T) Tor’s current path selection algorithm, (I) Tor’s current path selection

algorithm if one recipient requires IRC’s TCP port 6667, (S) SelekTOR for country

“US”, (U) Uniform. We present guarantees for sender (top), recipient (middle) and

relationship (bottom) anonymity for the bandwidth adversary with B=10 MB/s (left)

and the money adversary with B=100000 USD (right).

The over-approximation is more significant whenever the indirect impact plays a

larger role and is most severe for relationship anonymity. Our graphs portray both the

worst-case bound calculated by MATor and the lower bound calculated by calculating

our provably tight bound for the output of GreedySet (based on the values for impact

derived by MATor).

There are several sources that might lead to such a discrepancy in our bounds.

Firstly, our quantification of the indirect impacts might not be as tight as possible.

Secondly we might over-approximate the direct impacts by counting the same circuit

5.1. EVALUATING TOR AGAINST NODE ADVERSARIES 137

Worst case bound Lower bound

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

Country=US

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

Country=DE

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

D L1L2 T I S U
0

0.2

0.4

0.6

0.8

1

Figure 5.15: Comparison between worst-case guarantee and lower bound for: (D) Dis-

tribuTor, (L1) LASTor in our first configuration, (L2) LASTor in our second config-

uration, (T) Tor’s current path selection algorithm, (I) Tor’s current path selection

algorithm if one recipient requires IRC’s TCP port 6667, (S) SelekTOR for country

“US”, (U) Uniform. We present guarantees for sender (top), recipient (middle) and

relationship (bottom) anonymity for the country adversary US (left) and the country

adversary DE (right).

more than once, and lastly the algorithm GreedySet might not be optimal for cases

in which pairwise impacts play a big role. In such cases, we add the impact of the

pair to individual nodes, i.e., the pairwise impact of two nodes nx and ny is also taken

into account if the adversary compromises nx and another node nz, even if there is no

pairwise impact for nx and nz. Understanding the source of these discrepancies and

searching for more precise guarantees as well as more precise lower bounds is left open

for future work.

138 CHAPTER 5. EVALUATION

Worst case bound Lower bound

D L S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

k=0

D L S U
0

0.2

0.4

0.6

0.8

1

k=5

D L S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

D L S U
0

0.2

0.4

0.6

0.8

1

Worst case bound Lower bound

D L S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

k=10

D L S U
0

0.2

0.4

0.6

0.8

1

k=25

D L S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

D L S U
0

0.2

0.4

0.6

0.8

1

Figure 5.16: Comparison between worst-case guarantee and lower bound for for all

path selection algorithms in the transition phase:(D) DistribuTor, (L) LASTor, (S)

SelekTOR for country “US”, (U) Uniform. We present guarantees for sender (top),

recipient (middle) and relationship (bottom) anonymity for the k-collusion adversary

with k=0 (top left), k=5 (top right), k=10 (bottom left) and k-collusion adversary with

k=25 (bottom right).

5.1. EVALUATING TOR AGAINST NODE ADVERSARIES 139

Worst case bound Lower bound

D L S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

BW 10MB/s

D L S U
0

0.2

0.4

0.6

0.8

1

100,000 USD

D L S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

D L S U
0

0.2

0.4

0.6

0.8

1

Worst case bound Lower bound

D L S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

Country=US

D L S U
0

0.2

0.4

0.6

0.8

1

Country=DE

D L S U
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

D L S U
0

0.2

0.4

0.6

0.8

1

Figure 5.17: Comparison between worst-case guarantee and lower bound for for all

path selection algorithms in the transition phase:(D) DistribuTor, (L) LASTor, (S)

SelekTOR for country “US”, (U) Uniform. We present guarantees for sender (top),

recipient (middle) and relationship (bottom) anonymity for the bandwidth adversary

with B=10 MB/s (top left) the money adversary with B=100000 USD (top right), the

country adversary US (bottom left) and the country adversary DE (bottom right).

140 CHAPTER 5. EVALUATION

AS-Name ASN countries

LEVEL3 - Level 3 Communications 3356 21

LVLT-3549 - Level 3 Communications 3549 18

NTT-COMMUNICATIONS- NTT America 2914 17

NTTA-3946 - NTT America 3949 7

Figure 5.18: A small selection of important ASes with a wide geographic distribution.

5.2 Evaluating Tor Against Network Adversaries

In this section we instantiate the observed links between Tor entities L ⊆ E × E by

an actual malicious infrastructure MI for a Tor network state (i.e., a so-called Tor

consensus), considering real (groups of) autonomous systems (ASes), Internet exchange

points (IXPs) and submarine cables.

To properly define the impact of malicious infrastructure, we construct a model of

Tor’s Internet topology that consists of all relevant routing paths between Tor entities.

A routing path between two Tor entities n1 and n2 is a set of ASes, IXPs and submarine

cables that are able to observe traffic between n1 and n2.

5.2.1 Internet Topology Datasets

Before we describe our model of Tor’s Internet topology, we briefly discuss two possible

directions for building such a model – publicly available Border Gateway Protocol data

published by several organizations and the iPlane project – and compare them in terms

of accuracy and coverage.

BGP: The Border Gateway Protocol (BGP) is the standard protocol for negotiating

and announcing Internet routing between different ASes. In BGP, an AS announces to

its peering ASes to which IP prefixes it can connect them, and these peers can relay

this information to their respective peers. BGP data published by an AS consequently

contains information about the paths that traffic will most likely take from exactly

this AS to the announced IP prefixes. Since several organizations provide free BGP

data feeds [112, 28], it is tempting to leverage BGP data for constructing a model of

Internet routing. However, these local views on the Internet are each specific to one

AS. To construct an accurate model of Tor’s Internet topology, we would require BGP

information from respective ASes of a large fraction of Tor nodes. Moreover, BGP

information is very coarse-grained, as it only reveals the ASes on the route, but not

the precise routes. Hence it lacks the geographical precision necessary for Internet

exchange points and submarine cables, as many, especially the often-used Tier-1 ASes

span dozens of countries and even several continents. We refer to Figure 5.18 for a

small collection of such ASes. Consequently, we consider BGP data to be insufficient

for our model.

5.2. EVALUATING TOR AGAINST NETWORK ADVERSARIES 141

iPlane: The iPlane project [76] combines active traceroute measurements, which are

periodically performed between nodes under control of the project (e.g., PlanetLab

nodes), with opportunistic measurements to achieve a wider, but still precise coverage

of today’s Internet topology. To increase the coverage of its traceroute information,

iPlane clusters IP addresses on the basis of BGP atoms (i.e., IP prefixes), and treats

hosts at the same point of presence (PoP) as equal. Furthermore, as an opportunistic

method, iPlane predicts paths based on known sub-paths, applying several sanity checks

to them to ensure precision. Technically, iPlane supplies IP routes as well as AS routes

between tuples via an API [76]. Consequently, iPlane achieves a significantly wider

coverage than individual traceroute measurements, while maintaining a higher accuracy

than BGP data sources. The precision of iPlane is in the granularity of IP prefixes,

and, often, even as fine-grained as IPs, which allows for a quite precise geographic

localization of the involved systems and thus for modeling IXPs and submarine cables.

Consequently, we utilize iPlane for constructing our model of Tor’s Internet topology.

Tor-to-Tor Traffic

We construct a model of all routing paths between Tor nodes, by first selecting a Tor

consensus (from 2015, June 25th) and subsequently querying iPlane with all pairs of IP

prefixes that contain at least one Tor node from this consensus. In turn, iPlane provides

a large quantity of routing paths between Tor nodes, but only reaches a coverage of

around 24% for the considered consensus. We then increase our coverage by restricting

the consensus to the Tor nodes for which we have routing path information. This

restriction slightly reduces the significance of our evaluation, but increases the precision

of our calculation.

To this end, we propose a graph-based algorithm that reduces the considered Tor

consensus in order to achieve high connectivity; here we define the connectivity of a

Tor node n1 as the number of other Tor nodes n2, such that the path from n1 to n2

is within our dataset. Figure 5.19 describes our greedy algorithm for finding a good

trade-off between connectivity and significance by successively shrinking the consensus

until the average connectivity ratio of all remaining nodes is above a specified target

threshold. To this end, we select the node(s) with the smallest connectivity as potential

candidates for removal. To increase the significance of our result, we add all nodes whose

connectivity is below a smoothed threshold of 1 + s times the connectivity of the least

connected node. We then remove the candidate node with the smallest significance to

the consensus (i.e., the smallest bandwidth weight) from the consensus. The intuition

behind our algorithm’s smoothness is that we prefer to remove slightly better connected

nodes, if their impact to the consensus is smaller than that of slightly less connected

node. We hence optimize the consensus towards a significant amount of remaining

bandwidth weight. We run the algorithm several times with different smoothness values

s to obtain an ideal result.

We use three metrics to evaluate the efficacy of our algorithm from Figure 5.19,

142 CHAPTER 5. EVALUATION

Reduce Consensus

For all pairs of Tor nodes n1, n2, let info(n1, n2) ∈ {0, 1} be 1 iff we have routing path

information from n1 to n2.

Let connn be the connectivity of node n for all nodes.

Let L := N be the list of nodes we consider (initially all).

while averagen∈L (connL(n)) < goal do

worst := minn∈L (connL(n)).

Let candidates := {n ∈ L s.t. connL(n) ≈ worst}
Let r ∈ candidates s.t. r.bandwidth is minimal.

L := L \ {r}
end while

Figure 5.19: Our algorithm for greedily reducing a given Tor consensus with emphasis

on high connectivity based on available routing path data as well as optimizing towards

high bandwidth weights.

and compare the resulting statistics to the original consensus: (1) the distribution of

Tor nodes with relevant flags (such as Guard, Exit, Fast, Stable), (2) the distribution

over the Top countries, and (3) the remaining number and overall bandwidth of Tor

nodes. Figure 5.20 shows the distribution of node types in the reduced consensus,

depending on the target connectivity of our algorithm from Figure 5.19. We aim at

very high connectivity values to increase the accuracy of our calculation. We present

the distributions over node types for target connectivities ranging from 90% up to

99.5% in steps of 0.5%. Note that the distribution over Flags does not significantly

change with the target connectivity. Moreover, Figure 5.20 demonstrates that also the

distribution of Tor nodes per country is relatively static and deviates at most 5% from

the original consensus, up to connectivity values of 99%. Finally, Figure 5.20 shows

the total Tor bandwidth of the remaining nodes and the number of remaining nodes,

as a percentage of the original Tor consensus. Given the significant drop of bandwidth

beyond 0.97% coverage, we chose to fix 0.97% coverage as a parameter for Figure 5.19.

The reduced consensus we considered includes 1677 Tor nodes out of 6680 (≈ 25.1%)

with a total bandwidth weight of 15.11 Mio. out of 34.82 Mio (≈ 43.39%). Up to this

point, our model of Tor’s Internet topology is state-of-the-art both in terms of coverage

and precision of the routing paths between Tor nodes and in terms of significance.

Tor-to-User Traffic

We chose to select IP addresses as senders and recipients from which we can immedi-

ately run traceroute measurements to all relevant Tor nodes, thus ensuring a perfect

connectivity and a high precision out our routing paths into and out of the Tor network.

We refer to Section 5.2.4 for our choice of senders and recipients.

5.2. EVALUATING TOR AGAINST NETWORK ADVERSARIES 143

0.9 0.92 0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1

Concensus connectivity

R
at
io

in
co
n
se
n
su
s

Guard Exit
Both Fast
Stable

0.9 0.92 0.94 0.96 0.98 1
0

0.1

0.2

0.3

0.4

0.5

Some text

Concensus connectivity
(B

W
/
w
ei
gh

t)
p
er
ce
n
ta
ge

in
co
n
se
n
su
s

DE FR
NL US
GB

Figure 5.20: Reduced Consensus: In this figure we present both the Tor node type

distribution per threshold (left) and the Tor node country distribution per threshold

(right). The horizontal lines show the original ratio, the dashed lines the ratio of the

reduced concensus. The vertical line marks the properties of the consensus we chose

for our evaluation.

0.9 0.92 0.94 0.96 0.98 1
0

0.2

0.4

0.6

0.8

1

Concensus connectivity

T
o
ta
l
B
an

d
w
id
th

in
M
io

w
ei
gh

t

Bandwidth %

Number of nodes %

Figure 5.21: The size of the remaining bandwidth and number of nodes of the reduced

Tor consensus, depending on the threshold. The values are given in the percentual

coverage, where 100% marks the value of the original consensus.

144 CHAPTER 5. EVALUATION

5.2.2 Network-level Adversaries

The precise topology information in terms of routing paths allows us to assess the

anonymity reduction achieved by various network-level adversaries. We focus on those

adversarial models that we will use in our evaluation: (combinations of) ASes, Internet

exchange points and submarine cables. In general, our framework can be extended

to many other types of adversaries, as long as we can model the set of routes that

an adversary can monitor. That is, we have to model which ASes or other types of

intermediates along the route an adversary can monitor. As we intent to analyze the

impact of eavesdroppers on Tor, we assume that the adversary does not deploy active

attacks on the network level (such as traffic manipulation, BGP hijacking, etc.).

Autonomous Systems (AS)

As the simplest adversary model, we consider an AS-level attacker. That is, we model

an attacker that can monitor all traffic that origins in an AS, destines in an AS, or passes

an AS as part of a route path between senders and Tor guard nodes, between two Tor

nodes or between Tor exit nodes and recipients. We translate the route paths generated

by iPlane to IP prefixes, by applying a mapping from the Routeviews project[96].

Subsequently, we translate these prefixes to ASes, by comparing them to the list of

announced prefixes.

Internet Exchange Points (IXP)

As a more sophisticated adversary we consider malicious Internet Exchange points

(IXPs). IXPs have been established to allow peering between providers in a star topol-

ogy, i.e., as a (typically economically more attractive) alternative to using services of

upstream providers. However, in contrast to ASes, an IXP typically operates on a link

layer and thus is not visible in routing paths. To model whether traffic passes an IXP,

we thus use the following conservative estimation. We extract the list of ASes that are

members of IXP and particularly focus on the ones with an open peering policy, as

this policy indicates a high likelihood that traffic between two ASes traverses the IXP.

In contrast, we ignore ASes with a non-open policy, and thus slightly underestimate

the power of an IXP, as we cannot estimate whether such ASes have any commercial

peering agreement with other ASes. For each routing path, we then check whether two

consecutive IP addresses that geographically are not too far apart from the IXP are

in the list of openly peering ASes, and if so, assume that the IXP was used along the

route. This strategy reflects that ASes typically favorize to establish strong connections

to a closeby IXP over establishing direct connections to a large number of other ASes.

5.2. EVALUATING TOR AGAINST NETWORK ADVERSARIES 145

Submarine Cables

Finally, we model an adversary that can passively monitor a submarine cable. We

assume that a submarine cable on a routing path if both IP prefixes have a distance

of at least 1000 km and if the IP prefixes are at most 500 km away from some landing

point of that cable. We chose a radius of 500 km to account for imprecise GeoIP data

of some IP prefixes, while still excluding other, different cables.

Geographic locations: For all mentioned geographic considerations, both of IXPs

and of submarine cables, we utilized the up-to-date GeoIP2-City database of Max-

Mind [79], that achieves an accuracy of more than 80% in most countries worldwide.

5.2.3 Implementation and Optimizations

We implement ComputeDelta as an extension of the MATor [14] tool. MATor al-

ready computes the probability distribution over Tor circuits for a given Tor network

consensus and the respective server descriptors. We extend these basic computations

by means of a C++ implementation that computes ComputeDelta from Chapter 4,

based on a description of Tor’s Internet topology and routing path information from the

considered senders to all Tor guard nodes and from all Tor exit nodes to the considered

recipients. A näıve implementation of ComputeDelta would result in a prohibitively

high memory consumption. We hence group observations into four groups depending on

their position. Then for each group we reorder the three loops (over guard nodes, mid-

dle nodes and exit nodes) in order to directly compute the impact of each observation

on the anonymity reduction. We thereby reduce memory consumption significantly,

while increasing the computation time by a factor of four. We expect that our imple-

mentation can be further optimized, e.g., by leveraging massive parallelization via the

use of GPU libraries such as OpenCL.

5.2.4 Senders and Recipients

Routing path information from senders to Tor guards and vice versa, as well as from

Tor exit nodes to recipients and vice versa, is crucial for accurately calculating the

anonymity reduction against malicious infrastructure. Consequently, we select senders

and recipients in a way that allows us to derive routing path information ourselves.

To this end, we use looking glass servers – a collective of different servers, distributed

over the world, that provide an open HTTP interface for running Traceroute. We use

the server list provided at http://www.traceroute.org/ as a reference for available

looking glass servers, and we selected servers with a small response-time and high

availability from this list. We then automatically query these servers with traceroute

request to all Tor guard nodes and Tor exit nodes via HTTP-requests and extract the

Traceroute path from the resulting page. From all 290 working Looking Glass servers we

utilized, we choose 20 stable and responsive servers with ideal coverage in different IP

http://www.traceroute.org/

146 CHAPTER 5. EVALUATION

NTT Level3 DTAG Tier-1 DE-CIX Bude .

PSTor, Port 443 vs 443 LASTor, Port 443 vs 443

0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

Figure 5.22: Anonymity reduction as box plots for Tor’s current path selection algo-

rithm (left) and for LASTor (right), including lower quartile, median, upper quartile

and minimal and maximal values of anonymity reduction for all three anonymity no-

tions: sender anonymity (top), recipient anonymity (middle) and relationship anony-

mity (bottom). The adversaries are, from left to right: NTT, level3, DTAG, Tier-1,

DE-CIX, Bude

5.2. EVALUATING TOR AGAINST NETWORK ADVERSARIES 147

NTT Level3 DTAG Tier-1 DE-CIX Bude .

PSTor, Ports 443 vs 443,6667 LASTor, Ports 443 vs 443,6667

0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

Figure 5.23: Anonymity reduction as box plots for Tor’s current path selection al-

gorithm (left) and for LASTor (right) if (in both cases) we compare a recipient that

requires the TCP port 443 with a recipient that additionally requires the TCP port

6667 for all three anonymity notions: sender anonymity (top), recipient anonymity

(middle) and relationship anonymity (bottom). The adversaries are, from left to right:

NTT, level3, DTAG, Tier-1, DE-CIX, Bude

prefixes and select them as senders and recipients. We identified them using a tcpdump

on a well-connected server under our control that captured any UDP, ICMP, and TCP

traffic, and then ran individual traceroutes to our server from the used looking glass

servers. We then identify the corresponding ASN via the whois service provided by

team cymru and locate their geographical position via the commercial GeoIP database

of MaxMind [79]. We refer to Figure 5.24 for a complete list of the selected servers,

together with their geographical distribution over countries, their IP addresses, their

148 CHAPTER 5. EVALUATION

IP Country ASN Provider

134.96.225.228 DE 680 DFN

130.206.245.93 ES 766 REDIRIS Entidad

Publica Empresar-

ial Red.es

202.10.15.153 AU 2764 AAPT AAPT

Limited

213.200.64.94 DE 3257 Tinet SpA

67.16.148.38 US 3549 Level 3 Communi-

cations

137.192.48.106 US 5006 Onvoy

87.245.229.126 GB 9002 RETN Limited

212.101.0.106 CH 9044 SOLNET BSE

Software GmbH

59.106.1.141 JP 9370 SAKURA Internet

Inc.

210.224.179.143 JP 9371 SAKURA Internet

Inc.

211.14.3.123 JP 9607 BroadBand Tower

Inc.

216.182.1.7 US 10484 H&R Block

212.19.45.36 DE 12306 Plus.Line AG

213.136.1.6 NL 12859 BIT BV

213.91.2.19 FR 13273 Open Wide Out-

sourcing SAS

217.20.161.38 UA 15772 WNET Ukraine

81.31.41.18 CZ 24917 Master Internet

s.r.o.

217.24.81.10 FR 28855 GalacSYS

82.119.252.70 CZ 29208 Dial Telecom a.s.

212.24.145.50 CZ 29208 Dial Telecom a.s.

Figure 5.24: Looking glass servers used as senders and recipients in the evaluation.

AS number and their respective providers. For each evaluation, we sampled two senders

and two recipients from our 20 looking glass servers uniformly at random.

5.2.5 Evaluated Malicious Infrastructure

We now instantiate the malicious infrastructure of our analysis with actual companies

and locations of interest. For ease of presentation and to achieve comparability of our

5.2. EVALUATING TOR AGAINST NETWORK ADVERSARIES 149

NTT Level3 DTAG Tier-1 DE-CIX Bude .

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

0

0.2

0.4

0.6

0.8

1
i
m
p
a
c
t
R
A

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

Figure 5.25: PSTor: Anonymity reduction per sample of senders and recipients (left),

as well as box plots for these values, including lower quartile, median, upper quartile

and minimal and maximal values of anonymity reduction (right) of Tor’s path selection

algorithm for all three anonymity notions: sender anonymity (top), recipient anonymity

(middle) and relationship anonymity (bottom).

150 CHAPTER 5. EVALUATION

results we focus on the following six instances of malicious infrastructure: a selection

of three Tier-1 providers, as well as their combination; DE-CIX as the world’s largest

IXP; and one of the most important landing points of submarine cables at Bude, UK.

Nippon Telegraph and Telephone (NTT): All ASes belonging to the Japan-based

Tier-1 provider NTT, which has more than 20 ASes, connecting Asia, North America

and Europe.

Level 3 Communications: All 15 ASes belonging to the US-based Tier-1 provider

Level 3 Communications, which operates in Africa, Asia, Europe, Middle East and

South America.

Deutsche Telekom AG (DTAG): All 3 ASes belonging to the Germany-based Tier-

1 provider DTAG, which operates in Africa, Asia, Europe, North America, and South

America.

Tier-1: All ASes belonging to Level 3, DTAG and NTT.

DE-CIX: The world’s largest IXP, the German DE-CIX in Frankfurt. The DE-CIX

connects more than 626 ASes, with a strong focus on Europe. As a geographic con-

straint we only add DE-CIX to a routing path between IP prefixes of openly peering

ASes within Europe.

Bude landing point: The landing point of submarine cables at Bude, UK. Hence

the adversary can observe all communication that traverses this landing point. Several

submarine cables are crossing through the Bude landing point: the transatlantic cables

TAT-14, Apollo, and Yellow, the Euro-African-Indian cable Europe India Gateway, the

France-Ireland-England cable FastnetConnect, the England-Westafrican cable Glo-1,

and the England-Ireland cable Pan European Crossing.

5.2.6 Results

For our evaluation against the aforementioned scenarios of malicious infrastructure,

we first consider Tor’s default path selection algorithm and considered recipients that

are only contacted via HTTPS (TCP port 443). Recall that this corresponds to the

main usage of Tor, as the Tor-Browser applies HTTPS-Everywhere. We thus consider

senders and recipients for which the distribution over Tor circuits is equal, so that an

adversary can gain information by observing traffic into the Tor network (for sender

anonymity) or out of the Tor network (for recipient anonymity) or both (for relationship

anonymity).

Our results for Tor’s default path selection algorithm are given in Figure 5.25 as

three graphs, for sender anonymity, recipient anonymity, and relationship anonymity.

In each graph, one line corresponds to one scenario of malicious infrastructure, show-

ing all samples of sender/recipient pairs (x-axis) ordered by the respective anonymity

reduction δ (y-axis) according to Definition 2.2.1. For ease of comparison, we added

box plots for these graphs (Figure 5.25, lower part), presenting the lower quartile, the

inner quartile (median) and the upper quartile, with whiskers showing the lowest and

5.2. EVALUATING TOR AGAINST NETWORK ADVERSARIES 151

highest sample (excluding outliers with more than 1.5 times the difference between

upper quartile and lower quartile, which rarely occurred).

In Figure 5.26 we then compare our results for Tor’s default path selection algorithm

with our results for LASTor, depicting the difference between LASTors anonymity

reduction and Tor’s default anonymity reduction (per sample) for each scenario of

malicious infrastructure and the absolute values of our results for LASTor.

Sender anonymity

For sender anonymity we considered a scenario where the sender visits a malicious

website, i.e., connects to a malicious recipient. Consequently, the adversary can (in

addition to the observations using malicious infrastructure) observe traffic from the

Tor network to the recipient.

Tor: All considered adversaries noticeably reduce sender anonymity. Both Level 3

and NTT reduce sender anonymity significantly, for the majority of samples. The

DE-CIX adversary is geographically restricted, and thus its success depends mainly on

the location of the senders. In particular, DE-CIX reduces the anonymity of senders

residing in Europe by more than 17% on average, while reducing anonymity by less

than 1% for senders outside of Europe.

A corruption of the Bude landing point results in a reduction of sender anonymity

ranging from 1% up to 40%, depending on the considered sample. We attribute these

results to the fact that many Tor circuits need to use some submarine cable, as Tor

circuits often span more than one continent. However, since we only considered a

corruption of the Bude landing point, many other cables using different landing points

exist.

LASTor: LASTor clearly improves anonymity against the DE-CIX adversary. How-

ever, the Level 3 adversary, and the Bude landing point adversary become significantly

stronger. We interpret this as follows. The probability to choose a guard for which

DE-CIX, or, for several samples, NTT or DTAG observes S1-G is drastically reduced

by LASTor. We see two possible reasons for the increased strength of the Level 3 ad-

versary and the Bude adversary: first, the probability to use a guard to which they

observe a communication from the sender is increased; and second, internal observa-

tions made within the Tor network give away information about the senders’ location,

e.g., in many cases a cable would be used by one sender, but not by another sender, even

for traffic between the guard node and the middle node. Consequently, observations

made within a Tor circuit can help in distinguishing between two senders. Although

such an observation does not completely deanonymize the sender, it gives away partial

information, and it substantiates the necessity to cover the more subtle information

that an adversary can exploit. We attribute the overall increase of DTAG and NTT to

the second reason as well.

152 CHAPTER 5. EVALUATION

NTT Level3 DTAG Tier-1 DE-CIX Bude .

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
S
A

0 20 40 60 80 100

−0.2

−0.1

0

0.1

0.2

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
A

0 20 40 60 80 100

−0.2

−0.1

0

0.1

0.2

0 20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

i
m
p
a
c
t
R
E
L

0 20 40 60 80 100

−0.2

−0.1

0

0.1

0.2

Figure 5.26: LASTor: Our results for LASTor per sample of senders and recipients

for all three anonymity notions: sender anonymity (top), recipient anonymity (middle)

and relationship anonymity (bottom). We plot both the impact of the adversaries on

LASTor (left) and the difference of their impact in comparison with Tor’s current path

selection algorithm (right). Note that the y-axis for our differences ranges from -.25 to

.25. A higher value means that LASTor offers in these cases less anonymity compared

to the setting in Figure 5.25.

5.2. EVALUATING TOR AGAINST NETWORK ADVERSARIES 153

Recipient anonymity

For recipient anonymity we considered a scenario where the adversary can observe the

Internet connection of the sender. Consequently, the adversary can (in addition to

the observations using malicious infrastructure) observe traffic from the sender into

the Tor network. As for sender anonymity, all considered adversaries noticeably re-

duce recipient anonymity. Level3 reduces anonymity more significantly than for sender

anonymity: by over 10% for 70% of our samples. We observe that for all considered

scenarios of malicious infrastructure, the variance of the anonymity reduction is signif-

icantly smaller for recipient anonymity than for sender anonymity. In particular, the

anonymity reduction depends less on the positions of sender and recipient, and more on

the positions of Tor’s exit nodes. We attribute this dependency to the smaller number

of Tor exit nodes.

Relationship anonymity

The relationship anonymity reduction of the considered malicious infrastructure is nat-

urally smaller than for sender anonymity and for recipient anonymity, since relationship

anonymity is inherently harder to break. Consequently, most considered scenarios of

malicious infrastructures only reduced relationship anonymity by a small degree, with

the noteworthy exception of the Tier-1 provider Level 3. Note that the combination of

our three Tier-1 providers in comparison is extremely strong. For relationship anony-

mity, their combined impact is significantly higher than the sum of the impacts of the

individual providers and reaches values above 20% for almost half of our samples. These

results show that large (groups of) autonomous systems pose a significant threat for

relationship anonymity, and thus, for every usage of Tor. Their impact is even stronger

against LASTor, as even in cases in which these groups cannot completely deanonymize

a connection, they can often gain partial information about the geographic location of

senders and recipients.

5.2.7 Different TCP Ports

So far we analyzed Tor and LASTor for HTTPS only, which corresponds to the main

usage of Tor. However, Tor can be used for (almost) arbitrary TCP traffic. For the

following analyses, we hence compare two recipients with different requirements: one is

only contacted via HTTPS on port 443; the other one provides an Internet Relay Chat

(IRC) and thus additionally requires the port 6667. As this port is not supported by

all Tor exit nodes, it restricts the path selection algorithm. We present the anonymity

reduction imposed by the considered scenarios of malicious infrastructure in Figure 5.27

(both for Tor’s path selection algorithm for LASTor). Considering ports typically

increases the anonymity reduction. However, in contrast to what we have observed for

compromised Tor nodes in Section 5.1 (where restricting the path selection algorithm

for S0-R1, but not for S0-R0, always reduces anonymity), we can identify cases in which

154 CHAPTER 5. EVALUATION

NTT Level3 DTAG Tier-1 DE-CIX Bude .

Tor LASTor

0 20 40 60 80 100

−0.1

0

0.1

0 20 40 60 80 100

−0.1

0

0.1

0 20 40 60 80 100

−0.1

0

0.1

0 20 40 60 80 100

−0.1

0

0.1

Figure 5.27: Difference Distinct Ports PSTor and LASTor: Impact of using

different TCP ports on the anonymity reduction per sample of senders and recipients

of Tor’s path selection algorithm (left) and LASTor (right) for recipient anonymity

(top) and relationship anonymity (bottom). Note that the y-axis ranges from -0.15

to 0.15. We compare a user requesting port 443 (HTTPS) with a user requesting

port 443 and 6667 (IRC). A higher value means that in these cases different ports

with PSTor/LASTor leads to less anonymity compared to the setting in Figures 5.25

and 5.26.

the anonymity reduction is less severe if one recipient requires a less supported port,

like IRC (see, e.g., the leftmost results for Bude in Figure 5.27). For instance, consider

a heavy-weight exit node X that only supports port 443 and an adversary that observes

the connection between X and R1, but not between X and R0. While the adversary

can deanonymize the recipient if it observes traffic from X to R1, no such observation

can be made anymore if R1 requires a different port, since X cannot be selected as an

exit node.

Bibliography

[1] M. Akhoondi, C. Yu, and H. V. Madhyastha. “LASTor: A Low-Latency AS-

Aware Tor Client”. In: Proc. of the 2012 IEEE Symposium on Security and

Privacy (S& P). IEEE Computer Society, 2012, pp. 476–490.

[2] M. AlSabah, K. Bauer, and I. Goldberg. “Enhancing Tor’s performance using

real-time traffic classification”. In: Proceedings of the 2012 ACM conference on

Computer and communications security. ACM. 2012, pp. 73–84.

[3] M. AlSabah and I. Goldberg. “PCTCP: per-circuit TCP-over-IPsec transport

for anonymous communication overlay networks”. In: Proceedings of the 2013

ACM SIGSAC conference on Computer & communications security. ACM. 2013,

pp. 349–360.

[4] M. AlSabah, K. Bauer, I. Goldberg, D. Grunwald, D. McCoy, S. Savage, and

G. M. Voelker. “DefenestraTor: Throwing out windows in Tor”. In: Privacy

Enhancing Technologies. Springer. 2011, pp. 134–154.

[5] M. AlSabah, K. Bauer, T. Elahi, and I. Goldberg. “The path less travelled: Over-

coming tor’s bottlenecks with traffic splitting”. In: Privacy Enhancing Technolo-

gies. Springer. 2013, pp. 143–163.

[6] E. Andrés Miguel, C. Palamidessi, A. Sokolova, and P. Van Rossum. “Infor-

mation Hiding in Probabilistic Concurrent Systems”. In: Journal of Theoretical

Computer Science (TCS) 412.28 (2011), pp. 3072–3089.

[7] M. Backes and C. Jacobi. “Cryptographically Sound and Machine-Assisted Veri-

fication of Security Protocols”. In: Proceedings of 20th International Symposium

on Theoretical Aspects of Computer Science (STACS). 2003, pp. 675–686.

[8] M. Backes, A. Kate, and E. Mohammadi. “Ace: an efficient key-exchange pro-

tocol for onion routing”. In: Proceedings of the 2012 ACM workshop on Privacy

in the electronic society. ACM. 2012, pp. 55–64.

[9] M. Backes and B. Koepf. “Quantifying information flow in cryptographic sys-

tems”. In: Mathematical Structures in Computer Science 25.02 (2015), pp. 457–

479.

155

156 BIBLIOGRAPHY

[10] M. Backes and S. Meiser. “Differentially private smart metering with battery

recharging”. In: Data Privacy Management and Autonomous Spontaneous Se-

curity. Springer, 2014, pp. 194–212.

[11] M. Backes, S. Meiser, and D. Schröder. “Delegatable Functional Signatures”. In:

Public-Key Cryptography–PKC 2016. Springer, 2016, (to appear).

[12] M. Backes, S. Meiser, and M. Slowik. “Your Choice MATor (s)”. In: Proceedings

on Privacy Enhancing Technologies 2016.2 (2015), pp. 40–60.

[13] M. Backes, A. Kate, P. Manoharan, S. Meiser, and E. Mohammadi. “AnoA: A

Framework for Analyzing Anonymous Communication Protocols”. In: Computer

Security Foundations Symposium (CSF), 2013 IEEE 26th. IEEE. 2013, pp. 163–

178.

[14] M. Backes, A. Kate, S. Meiser, and E. Mohammadi. “(Nothing else) MATor (s):

Monitoring the Anonymity of Tor’s Path Selection”. In: Proceedings of the 2014

ACM SIGSAC Conference on Computer and Communications Security. ACM.

2014, pp. 513–524.

[15] M. Backes, I. Goldberg, A. Kate, and E. Mohammadi. “Provably Secure and

Practical Onion Routing”. In: Proc. 26st IEEE Symposium on Computer Secu-

rity Foundations (CSF). 2012, pp. 369–385.

[16] M. Backes, A. Kate, S. Meiser, and T. Ruffing. “Secrecy without Perfect Ran-

domness: Cryptography with (Bounded) Weak Sources.” In: Proceedings of the

13th International Conference on Applied Cryptography and Network Security,

(ACNS’15). 2015.

[17] M. V. Barbera, V. P. Kemerlis, V. Pappas, and A. D. Keromytis. “Cellflood:

Attacking tor onion routers on the cheap”. In: Computer Security–ESORICS

2013. Springer, 2013, pp. 664–681.

[18] K. S. Bauer, D. McCoy, D. Grunwald, T. Kohno, and D. C. Sicker. “Low-resource

routing attacks against tor”. In: Proc. 6th ACM Workshop on Privacy in the

Electronic Society (WPES). 2007, pp. 11–20.

[19] K. S. Bauer, M. Sherr, and D. Grunwald. “ExperimenTor: A Testbed for Safe

and Realistic Tor Experimentation.” In: Proceedings of the 4th Workshop on

Cyber Security Experimentation and Test (CSET ’11). 2011.

[20] A. Beimel and S. Dolev. “Buses for Anonymous Message Delivery”. In: Journal

of Cryptology 16.1 (Jan. 2003), pp. 25–39.

[21] M. Bhargava and C. Palamidessi. “Probabilistic Anonymity”. In: CONCUR.

2005, pp. 171–185.

[22] N. Borisov, G. Danezis, P. Mittal, and P. Tabriz. “Denial of service or denial

of security?” In: Proceedings of the 14th ACM conference on Computer and

communications security. ACM. 2007, pp. 92–102.

BIBLIOGRAPHY 157

[23] V. Boyko, P. D. MacKenzie, and S. Patel. “Provably Secure Password-Authenti-

cated Key Exchange Using Diffie-Hellman”. In: Advances in Cryptology — EU-

ROCRYPT. 2000, pp. 156–171.

[24] C. Braun, K. Chatzikokolakis, and C. Palamidessi. “Quantitative notions of leak-

age for one-try attacks”. In: Electronic Notes in Theoretical Computer Science

249 (2009), pp. 75–91.

[25] X. Cai, X. C. Zhang, B. Joshi, and R. Johnson. “Touching from a Distance:

Website Fingerprinting Attacks and Defenses”. In: Proc. 19th ACM Conference

on Computer and Communication Security (CCS). 2012, pp. 605–616.

[26] J. Camenisch and A. Lysyanskaya. “A Formal Treatment of Onion Routing”.

In: Advances in Cryptology — CRYPTO. 2005, pp. 169–187.

[27] R. Canetti. “Universally Composable Security: A New Paradigm for Crypto-

graphic Protocols”. In: Proc. 42nd IEEE Symposium on Foundations of Com-

puter Science (FOCS). 2001, pp. 136–145.

[28] R. N. C. Centre. RIPE RIS Raw Data. https://www.ripe.net/analyse/

internet- measurements/routing- information- service- ris/ris- raw-

data. accessed 2015.

[29] A. Chaabane, P. Manils, and M. A. Kaafar. “Digging into anonymous traffic: A

deep analysis of the tor anonymizing network”. In: Network and System Security

(NSS), 2010 4th International Conference on. IEEE. 2010, pp. 167–174.

[30] S. Chakravarty, A. Stavrou, and A. D. Keromytis. “Traffic Analysis against

Low-Latency Anonymity Networks Using Available Bandwidth Estimation”. In:

Proceedings of the 15th European Symposium on Research in Computer Security

(ESORICS). 2010, pp. 249–267.

[31] S. Chakravarty, M. V. Barbera, G. Portokalidis, M. Polychronakis, and A. D.

Keromytis. “On the Effectiveness of Traffic Analysis Against Anonymity Net-

works Using Flow Records”. In: Passive and Active Measurement. Springer.

2014, pp. 247–257.

[32] K. Chatzikokolakis, C. Palamidessi, and P. Panangaden. “Anonymity protocols

as noisy channels”. In: Trustworthy Global Computing. Springer, 2007, pp. 281–

300.

[33] D. Chaum. “The Dining Cryptographers Problem: Unconditional Sender and

Recipient Untraceability”. In: J. Cryptology 1.1 (1988), pp. 65–75.

[34] D. Chaum. “Untraceable Electronic Mail, Return Addresses, and Digital Pseu-

donyms”. In: Communications of the ACM 4.2 (1981), pp. 84–88.

https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data
https://www.ripe.net/analyse/internet-measurements/routing-information-service-ris/ris-raw-data

158 BIBLIOGRAPHY

[35] C. Chen, D. E. Asoni, D. Barrera, G. Danezis, and A. Perrig. “HORNET: High-

speed Onion Routing at the Network Layer”. In: Proceedings of the 22nd ACM

SIGSAC Conference on Computer and Communications Security. ACM. 2015,

pp. 1441–1454.

[36] H. Corrigan-Gibbs and B. Ford. “Dissent: accountable anonymous group mes-

saging”. In: Proceedings of the 17th ACM conference on Computer and commu-

nications security. ACM. 2010, pp. 340–350.

[37] G. Danezis, C. Diaz, C. Troncoso, and B. Laurie. “\ text {Drac}: An Archi-

tecture for Anonymous Low-Volume Communications”. In: Privacy Enhancing

Technologies. Springer. 2010, pp. 202–219.

[38] C. Dı́az. “Anonymity Metrics Revisited”. In: Anonymous Communication and

its Applications. 2006.

[39] C. Dı́az, S. Seys, J. Claessens, and B. Preneel. “Towards Measuring Anony-

mity”. In: Proc. 2nd Workshop on Privacy Enhancing Technologies (PET). 2002,

pp. 54–68.

[40] W. Diffie, P. C. van Oorschot, and M. J. Wiener. “Authentication and Authen-

ticated Key Exchanges”. In: Des. Codes Cryptography 2.2 (1992), pp. 107–125.

[41] R. Dingledine and N. Mathewson. Tor Path Specification. https://gitweb.

torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=path-spec.txt.

Accessed 2015.

[42] R. Dingledine, N. Mathewson, and P. Syverson. “Tor: The Second-Generation

Onion Router”. In: Proc. 13th USENIX Security Symposium (USENIX). 2004,

pp. 303–320.

[43] C. Dwork. “Differential Privacy: A Survey of Results”. In: TAMC. 2008, pp. 1–

19.

[44] K. P. Dyer, S. E. Coull, T. Ristenpart, and T. Shrimpton. “Peek-a-boo, i still

see you: Why efficient traffic analysis countermeasures fail”. In: Security and

Privacy (SP), 2012 IEEE Symposium on. IEEE. 2012, pp. 332–346.

[45] M. Edman and P. Syverson. “AS-awareness in Tor path selection”. In: Proceed-

ings of the 16th ACM conference on Computer and communications security.

ACM. 2009, pp. 380–389.

[46] J. Feigenbaum, A. Johnson, and P. F. Syverson. “A Model of Onion Routing with

Provable Anonymity”. In: Proc. 11th Conference on Financial Cryptography and

Data Security (FC). 2007, pp. 57–71.

[47] J. Feigenbaum, A. Johnson, and P. F. Syverson. “Probabilistic Analysis of Onion

Routing in a Black-Box Model”. In: Proc. 6th ACM Workshop on Privacy in

the Electronic Society (WPES). 2007, pp. 1–10.

https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=path-spec.txt
https://gitweb.torproject.org/torspec.git?a=blob_plain;hb=HEAD;f=path-spec.txt

BIBLIOGRAPHY 159

[48] J. Feigenbaum, A. Johnson, and P. F. Syverson. “Probabilistic Analysis of Onion

Routing in a Black-Box Model”. In: ACM Transactions on Information and

System Security (TISSEC) 15.3 (2012), p. 14.

[49] M. J. Freedman and R. Morris. “Tarzan: A Peer-to-Peer Anonymizing Network

Layer”. In: Proc. 9th ACM Conference on Computer and Communications Se-

curity (CCS). 2002, pp. 193–206.

[50] N. Gelernter and A. Herzberg. “On the limits of provable anonymity”. In:

Proc. 12th ACM Workshop on Privacy in the Electronic Society (WPES). 2013,

pp. 225–236.

[51] B. Gierlichs, C. Troncoso, C. Dı́az, B. Preneel, and I. Verbauwhede. “Revisiting

a Combinatorial Approach toward Measuring Anonymity”. In: Proc. 7th ACM

Workshop on Privacy in the Electronic Society (WPES). 2008, pp. 111–116.

[52] Y. Gilad and A. Herzberg. “Spying in the dark: TCP and tor traffic analysis”.

In: Privacy Enhancing Technologies. Springer. 2012, pp. 100–119.

[53] S. Goel, M. Robson, M. Polte, and E. Sirer. Herbivore: A scalable and efficient

protocol for anonymous communication. Tech. rep. Cornell University, 2003.

[54] O. Goldreich and Y. Lindell. “Session-Key Generation Using Human Passwords

Only”. In: Advances in Cryptology — CRYPTO. 2001, pp. 408–432.

[55] D. M. Goldschlag, M. G. Reed, and P. F. Syverson. “Hiding routing informa-

tion”. In: Information Hiding. Springer. 1996, pp. 137–150.

[56] X. Gong, N. Borisov, N. Kiyavash, and N. Schear. “Website detection using

remote traffic analysis”. In: Privacy Enhancing Technologies. Springer. 2012,

pp. 58–78.

[57] D. Gopal and N. Heninger. “Torchestra: Reducing interactive traffic delays over

Tor”. In: Proceedings of the 2012 ACM Workshop on Privacy in the Electronic

Society. ACM. 2012, pp. 31–42.

[58] J. Y. Halpern and K. R. O’Neill. “Anonymity and Information Hiding in Mul-

tiagent Systems”. In: Journal of Computer Security 13.3 (2005), pp. 483–512.

[59] A. Hamel, J.-C. Grégoire, and I. Goldberg. The Misentropists: New Approaches

to Measures in Tor. Tech. rep. Technical Report 2011-18, Cheriton School of

Computer Science, University of Waterloo, 2011.

[60] J. Hayes and G. Danezis. “Guard Sets for Onion Routing”. In: Proceedings on

Privacy Enhancing Technologies 1 (2015).

[61] A. Hevia and D. Micciancio. “An Indistinguishability-Based Characterization of

Anonymous Channels”. In: Proc. 8th Privacy Enhancing Technologies Sympo-

sium (PETS). 2008, pp. 24–43.

[62] D. Hofheinz. “Possibility and Impossibility Results for Selective Decommit-

ments”. In: J. Cryptology 24.3 (2011), pp. 470–516.

160 BIBLIOGRAPHY

[63] D. Hughes and V. Shmatikov. “Information Hiding, Anonymity and Privacy: a

Modular Approach”. In: Journal of Computer Security 12.1 (2004), pp. 3–36.

[64] A. D. Jaggard, A. Johnson, S. Cortes, P. Syverson, and J. Feigenbaum. “20,000 in

league under the sea: Anonymous communication, trust, MLATs, and undersea

cables”. In: Proceedings on Privacy Enhancing Technologies 1.1 (2015), pp. 4–

24.

[65] R. Jansen and N. Hooper. Shadow: Running Tor in a box for accurate and

efficient experimentation. Tech. rep. DTIC Document, 2011.

[66] R. Jansen, N. Hopper, and Y. Kim. “Recruiting new Tor relays with BRAIDS”.

In: Proceedings of the 17th ACM conference on Computer and communications

security. ACM. 2010, pp. 319–328.

[67] R. Jansen, K. S. Bauer, N. Hopper, and R. Dingledine. “Methodically Model-

ing the Tor Network.” In: Proceedings of the 5th Workshop on Cyber Security

Experimentation and Test (CSET ’12). 2012.

[68] R. Jansen, F. Tschorsch, A. Johnson, and B. Scheuermann. The sniper attack:

Anonymously deanonymizing and disabling the Tor network. Tech. rep. DTIC

Document, 2014.

[69] A. Johnson, C. Wacek, R. Jansen, M. Sherr, and P. Syverson. “Users get routed:

Traffic correlation on Tor by realistic adversaries”. In: Proceedings of the 2013

ACM SIGSAC conference on Computer & communications security. ACM. 2013,

pp. 337–348.

[70] A. M. Johnson, P. Syverson, R. Dingledine, and N. Mathewson. “Trust-based

anonymous communication: Adversary models and routing algorithms”. In: Pro-

ceedings of the 18th ACM conference on Computer and communications security.

ACM. 2011, pp. 175–186.

[71] J. Juen, A. Das, A. Johnson, N. Borisov, and M. Caesar. “Defending tor from

network adversaries: A case study of network path prediction”. In: Proceedings

on Privacy Enhancing Technologies 1 (2015).

[72] A. Kate, G. M. Zaverucha, and I. Goldberg. “Pairing-based onion routing with

improved forward secrecy”. In: ACM Transactions on Information and System

Security (TISSEC) 13.4 (2010), p. 29.

[73] R. Kusters, T. Truderung, and A. Vogt. “Formal analysis of chaumian mix nets

with randomized partial checking”. In: Security and Privacy (SP), 2014 IEEE

Symposium on. IEEE. 2014, pp. 343–358.

[74] V. Liu, S. Han, A. Krishnamurthy, and T. Anderson. “Tor instead of IP”. In:

Proceedings of the 10th ACM Workshop on Hot Topics in Networks. ACM. 2011,

p. 14.

BIBLIOGRAPHY 161

[75] K. Loesing, S. J. Murdoch, and R. Dingledine. “A case study on measuring

statistical data in the Tor anonymity network”. In: Financial Cryptography and

Data Security. Springer, 2010, pp. 203–215.

[76] H. V. Madhyastha, T. Isdal, M. Piatek, C. Dixon, T. Anderson, A. Krishna-

murthy, and A. Venkataramani. “iPlane: An information plane for distributed

services”. In: Proceedings of the 7th symposium on Operating systems design and

implementation. USENIX Association. 2006, pp. 367–380.

[77] N. Mathewson and R. Dingledine. “Practical traffic analysis: Extending and

resisting statistical disclosure”. In: Privacy Enhancing Technologies. Springer.

2005, pp. 17–34.

[78] S. Mauw, J. H. Verschuren, and E. P. de Vink. “A Formalization of Anony-

mity and Onion Routing”. In: Proc. 9th European Symposium on Research in

Computer Security (ESORICS). 2004, pp. 109–124.

[79] Maxind GeoIP2-City Database. https : / / www . maxmind . com / de / geoip2 -

databases. accessed 2015.

[80] J. McLachlan, A. Tran, N. Hopper, and Y. Kim. “Scalable onion routing with

torsk”. In: Proceedings of the 16th ACM conference on Computer and commu-

nications security. ACM. 2009, pp. 590–599.

[81] I. Mironov, O. Pandey, O. Reingold, and S. P. Vadhan. “Computational Dif-

ferential Privacy”. In: Advances in Cryptology — CRYPTO. Vol. 5677. 2009,

pp. 126–142.

[82] P. Mittal, F. G. Olumofin, C. Troncoso, N. Borisov, and I. Goldberg. “PIR-Tor:

Scalable Anonymous Communication Using Private Information Retrieval.” In:

USENIX Security Symposium. 2011.

[83] P. Mittal, A. Khurshid, J. Juen, M. Caesar, and N. Borisov. “Stealthy traffic

analysis of low-latency anonymous communication using throughput fingerprint-

ing”. In: Proceedings of the 18th ACM conference on Computer and communi-

cations security. ACM. 2011, pp. 215–226.

[84] W. B. Moore, C. Wacek, and M. Sherr. “Exploring the potential benefits of

expanded rate limiting in tor: Slow and steady wins the race with tortoise”.

In: Proceedings of the 27th Annual Computer Security Applications Conference.

ACM. 2011, pp. 207–216.

[85] S. J. Murdoch and R. N. M. Watson. “Metrics for Security and Performance in

Low-Latency Anonymity Systems”. In: Proc. 8th Privacy Enhancing Technolo-

gies Symposium (PETS). 2008, pp. 115–132.

[86] S. J. Murdoch and G. Danezis. “Low-cost traffic analysis of Tor”. In: Security

and Privacy, 2005 IEEE Symposium on. IEEE. 2005, pp. 183–195.

https://www.maxmind.com/de/geoip2-databases
https://www.maxmind.com/de/geoip2-databases

162 BIBLIOGRAPHY

[87] S. J. Murdoch and P. Zieliński. “Sampled traffic analysis by internet-exchange-

level adversaries”. In: Privacy Enhancing Technologies. Springer. 2007, pp. 167–

183.

[88] A. Nambiar and M. Wright. “Salsa: a structured approach to large-scale anony-

mity”. In: Proceedings of the 13th ACM conference on Computer and communi-

cations security. ACM. 2006, pp. 17–26.

[89] A. Neil. SelekTOR - Tor Exit Node Selection Made Simple. Accessed February,

2015.

[90] Ookla’s NetIndex. Accessed July, 2015.

[91] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. “Website fingerprinting in

onion routing based anonymization networks”. In: Proceedings of the 10th annual

ACM workshop on Privacy in the electronic society. ACM. 2011, pp. 103–114.

[92] A. Panchenko, L. Niessen, A. Zinnen, and T. Engel. “Website Fingerprinting in

Onion Routing Based Anonymization Networks”. In: Proc. 10th ACM Workshop

on Privacy in the Electronic Society (WPES). 2011, pp. 103–114.

[93] A. Pfitzmann and M. Hansen. A Terminology for Talking about Privacy by

Data Minimization: Anonymity, Unlinkability, Undetectability, Unobservability,

Pseudonymity, and Identity Management. http://dud.inf.tu-dresden.de/

literatur/Anon Terminology v0.34.pdf. v0.34. Aug. 2010.

[94] M. G. Reed, P. F. Syverson, and D. M. Goldschlag. “Anonymous connections

and onion routing”. In: Selected Areas in Communications, IEEE Journal on

16.4 (1998), pp. 482–494.

[95] M. K. Reiter and A. D. Rubin. “Crowds: Anonymity for Web Transactions”. In:

ACM Transactions on Information and System Security (TISSEC) 1.1 (1998),

pp. 66–92.

[96] Routeviews mapping, IP to AS. Accessed October, 2015.

[97] M. Schuchard, A. W. Dean, V. Heorhiadi, N. Hopper, and Y. Kim. “Balancing

the shadows”. In: Proceedings of the 9th annual ACM workshop on Privacy in

the electronic society. ACM. 2010, pp. 1–10.

[98] A. Serjantov and G. Danezis. “Towards an Information Theoretic Metric for

Anonymity”. In: Proc. 2nd Workshop on Privacy Enhancing Technologies (PET).

2002, pp. 41–53.

[99] F. Shirazi, M. Goehring, and C. Diaz. “Tor experimentation tools”. In: Security

and Privacy Workshops (SPW), 2015 IEEE. IEEE. 2015, pp. 206–213.

[100] V. Shmatikov. “Probabilistic Analysis of an Anonymity System”. In: Journal of

Computer Security 12.3-4 (2004), pp. 355–377.

BIBLIOGRAPHY 163

[101] V. Shmatikov and M.-H. Wang. “Measuring Relationship Anonymity in Mix

Networks”. In: Proc. 7th ACM Workshop on Privacy in the Electronic Society

(WPES). 2006, pp. 59–62.

[102] V. Shmatikov and M.-H. Wang. “Timing analysis in low-latency mix networks:

Attacks and defenses”. In: Computer Security–ESORICS 2006. Springer, 2006,

pp. 18–33.

[103] Source-code of MATor. available at https://www.infsec.cs.uni-saarland.

de/projects/anonymity-guarantees/mator.html.

[104] Y. Sun, A. Edmundson, L. Vanbever, O. Li, J. Rexford, M. Chiang, and P.

Mittal. “RAPTOR: Routing Attacks on Privacy in Tor”. In: arXiv preprint

arXiv:1503.03940 (2015).

[105] E. Syta, H. Corrigan-Gibbs, S.-C. Weng, D. Wolinsky, B. Ford, and A. Johnson.

“Security analysis of accountable anonymity in Dissent”. In: ACM Transactions

on Information and System Security (TISSEC) 17.1 (2014), p. 4.

[106] P. Syverson. “Why I’m not an entropist”. In: Security Protocols XVII. Springer,

2013, pp. 213–230.

[107] P. Syverson, G. Tsudik, M. Reed, and C. Landwehr. “Towards an Analysis of

Onion Routing Security”. In: Proc. Workshop on Design Issues in Anonymity

and Unobservability (WDIAU). 2000, pp. 96–114.

[108] C. Tang and I. Goldberg. “An improved algorithm for Tor circuit scheduling”.

In: Proceedings of the 17th ACM conference on Computer and communications

security. ACM. 2010, pp. 329–339.

[109] The Tor Project. https://www.torproject.org/. Accessed Feb 2013. 2003.

[110] Tor Metrics Portal. https://metrics.torproject.org/. Accessed Feb 2013.

[111] G. Tóth, Z. Hornák, and F. Vajda. “Measuring anonymity revisited”. In: Pro-

ceedings of the Ninth Nordic Workshop on Secure IT Systems. Espoo, Finland.

2004, pp. 85–90.

[112] University of Oregon Route Views Project. http://www.routeviews.org/.

accessed 2015.

[113] C. Wacek, H. Tan, K. S. Bauer, and M. Sherr. “An Empirical Evaluation of

Relay Selection in Tor.” In: Proc. 20th Annual Network & Distributed System

Security Symposium (NDSS). 2013.

[114] T. Wang and I. Goldberg. “Improved website fingerprinting on tor”. In: Pro-

ceedings of the 12th ACM workshop on Workshop on privacy in the electronic

society. ACM. 2013, pp. 201–212.

[115] T. Wang, K. Bauer, C. Forero, and I. Goldberg. “Congestion-aware path se-

lection for Tor”. In: Financial Cryptography and Data Security. Springer, 2012,

pp. 98–113.

https://www.infsec.cs.uni-saarland.de/projects/anonymity-guarantees/mator.html
https://www.infsec.cs.uni-saarland.de/projects/anonymity-guarantees/mator.html
https://www.torproject.org/
https://metrics.torproject.org/
http://www.routeviews.org/

164 BIBLIOGRAPHY

[116] P. Winter, R. Köwer, M. Mulazzani, M. Huber, S. Schrittwieser, S. Lindskog,

and E. Weippl. “Spoiled onions: Exposing malicious Tor exit relays”. In: Privacy

Enhancing Technologies. Springer. 2014, pp. 304–331.

[117] J. Zhang, C. Chen, Y. Xiang, and W. Zhou. “Robust network traffic identi-

fication with unknown applications”. In: Proceedings of the 8th ACM SIGSAC

symposium on Information, computer and communications security. ACM. 2013,

pp. 405–414.

Appendix A

Appendix

A.1 Abstracting Tor in UC

We cite the the description of the ideal functionality FOR. Sections A.1.1 and A.1.2

are taken from [15].

A.1.1 System and Adversary Model

We consider a fully connected network of n+m parties N = {P1, . . . , Pn, . . . , Pn+1, . . . ,

Pn+m}. We consider the parties P1, . . . , Pn to be OR nodes, and the parties Pn+1, . . . ,

Pn+m to only be senders. We furthermore assume that the set of OR nodes is publicly

known. The onion routers can be compromised by the adversary by sending compromise

messages. The senders, however, can in our model not be compromised, since the

adversary can just act as a sender of the OR network. Formally, Pn+1, . . . , Pn+m,

consequently, do not react towards compromise messages.

Tor has not been designed to resist against global adversaries. Such an adversary

is too strong for many practical purposes as it can simply break the anonymity of an

OR protocol by holding back all but one onion and tracing that one onion though

the network. However, in contrast to previous work, we do not only consider local

adversaries, which do not control more than the compromised OR routers, but also

partially global adversaries that control a certain portion of the network. Analogous

to the network functionality Fsyn proposed by Canetti [27], we model the network as

an ideal functionality FNet, which bounds the number of adversary-controlled links to

q ∈ [0,
(
n
2

)
]. For adversary-controlled links the messages are forwarded to the adversary;

otherwise, they are directly delivered.

Let R represent all possible recipients {S1, . . . , S∆} which reside in the network

abstracted by a network functionality FNetq.

We stress that the UC framework does not provide a notion of time; hence, the

analysis of timing attacks, such as traffic analysis, is not in the scope of this work.

165

166 APPENDIX A. APPENDIX

Adaptive Corruptions Forward secrecy [40] is an important property for onion

routing. In order to analyze this property, we allow adaptive corruptions of nodes by

the adversary A. Such an adaptive corruption is formalized by a message compromise

, which is sent to the respective party. Upon such a compromise message the internal

state of that party is deleted and a long-term secret key sk for the node is revealed

to the adversary. A can then impersonate the node in the future; however, A cannot

obtain the information about its ongoing sessions. We note that this restriction arises

due to the currently available security proof techniques and the well-known selective

opening problem with symmetric encryptions [62], and the restriction is not specific

to our constructions [54]. We could also restrict ourselves to a static adversary as in

previous work [26]; however, that would make an analysis of forward secrecy impossible.

A.1.2 Ideal Functionality

The presentation of the ideal functionality FOR is along the lines of the description

OR protocol ΠOR from Section [15, Section 2.4]. We continue to use the message-

based state transitions from ΠOR, and consider sub-machines for all n nodes in the

ideal functionality. To communicate with each other through messages and data struc-

tures, these sub-machines share a memory space in the functionality. The sub-machine

pseudocode for the ideal functionality appears in Figure A.1 and three subroutines are

defined in Figure A.3. As the similarity between pseudocodes for the OR protocol and

the ideal functionality is obvious, rather than explaining the OR message flows again,

we concentrate on the differences.

The only major difference between ΠOR and FOR is that cryptographic primitives

such as message wrapping, unwrapping, and key exchange are absent in the ideal world;

we do not have any keys in FOR, and the OR messages WrapOnion and UnwrapOnion

as well as the 1W-AKE messages Initiate, Respond, and ComputeKey are absent.

The ideal functionality also abstracts the directory server and expects on the in-

put/output interface of FREG (from the setting with ΠOR) an initial message with the

list 〈Pi〉ni=1 of valid nodes. This initial message corresponds to the list of onion routers

that have been approved by an administrator. We call the part of FOR that abstracts

the directory servers dir. For the sake of brevity, we do not present the pseudocode of

dir . Upon an initial message with a list 〈Pi〉ni=1 of valid nodes, dir waits for all nodes

Pi (i ∈ {1, . . . , n}) for a message (register, Pi). Once all nodes registered, dir sends a

message (registered, 〈Pi〉ni=1) with a list of valid and registered nodes to every party

that registered, and to every party that sends a last message to dir.

A.1.3 Ideal Functionality for a Party P

We assume that the Tor protocol manages a list of self-generated party identifiers (for all

Tor entities), to specify the recipient of any message. Upon an input (create circuit,

〈P, P1, , . . . , Pl〉), P creates a fresh circuit C, initially only consisting of P , and then

A.1. ABSTRACTING TOR IN UC 167

iteratively extends the circuit via the subroutine ExtendCircuit, as shown in Cref-

figure:SubFOR. To this end, it sends messages create to all involved parties, however

using the already established connections, where each subsequent extension is triggered

by a message extended, specifying that the previous extension was successful. Upon

an input (send,C,m), P checks whether the circuit can still be used for transmitting

another message (their number is bound by a limit ttl-count), and if so, sends the

message m together with the circuit ID to the guard node that will relay it to fur-

ther Tor nodes until it reaches the recipient. Otherwise, it destroys the circuit via the

subrouting DestroyCircuit (c.f. Figure A.3).

Messages from A and FNet In Figure A.1 and Figure A.4, we present the pseu-

docode for the adversary messages and the network functionality, respectively. For

our basic analysis, we model an adversary that can control all communication links

and servers in FNet, but cannot view or modify messages between parties due to the

presence of the secure and authenticated channel. Therefore, sub-machines in the

functionality store their messages in the shared memory, and create and send handles

〈P, Pnext, h〉 for these messages in FNet. The message length does not need to be leaked

as we assume a fixed message size (for all M(κ)). Here, P is the sender, Pnext is the

receiver and h is a handle or a pointer to the message in the shared memory of the

ideal functionality. In our analysis, all FNet messages flow to A, which may choose to

return these handles back to FOR through FNet at its own discretion. However, FNet

also maintains a mechanism through observed flags for the non-global adversary A.

The adversary may also corrupt or replay the corresponding messages; however, these

active attacks are always detected by the receiver due to the presence of a secure and

authenticated channel between any two communicating parties and we need not model

these corruptions.

The adversary can compromise a party P or server S by sending a compromise

message to respectively FOR and FNet. For party P or server S, the respective func-

tionality then sets the compromised tag to true. Furthermore, all input or network

messages that are supposed to be visible to the compromised entity are forwarded to

the adversary. In principle, the adversary runs that entity for the rest of the protocol

and can send messages from that entity. In that case, it can also propagate corrupted

messages which in ΠOR can only be detected during UnwrapOnion calls at OP or the

exit node. We model these corruptions using corrupted(msg) = {true, false} status

flags, where corrupted(msg) status of messages is maintained across nodes until they

reach end nodes. Furthermore, for every corrupted message, the adversary also pro-

vides a modification function T (·) as the end nodes run by the adversary may continue

execution even after observing a corrupted flag. In that case, T (·) captures the exact

modification made by the adversary.

We stress that FOR does not need to reflect reroutings and circuit establishments

initiated by the adversary, because the adversary learns, loosely speaking, no new

168 APPENDIX A. APPENDIX

information by rerouting onions.1 Similar to the previous work [26], a message is

directly given to the adversary if all remaining nodes in a communication path are

under adversary control.

1More formally, the simulator can compute all responses for rerouting or such circuit establishments

without requesting information from FOR because the simulator knows all long-term and session keys.

The only information that the simulator does not have is the routing information, which the simulator

gets in case of rerouting or circuit establishment.

A.1. ABSTRACTING TOR IN UC 169

upon input (create circuit,Parties = 〈P, P1, . . . , P`〉):
store Parties and C:=〈P 〉
Run ExtendCircuit(Parties,C)

upon input (send,C = 〈P cid1⇔ P1 ⇔ · · ·P`〉,m):

if Used(cid1) < ttl-count then

Used(cid1)++; SendMessage(P1,cid1, relay, 〈data,m〉)
else

DestroyCircuit(C,cid1); output (destroyed,C,m)

end if

upon receiving a handle 〈P, Pnext, h〉 from FNet:

send (msg):=lookup(h) to a receiving submachine Pnext

upon receiving a msg (Pi,cid, create) through a handle:

store C:=〈Pi
cid⇔ P 〉; SendMessage(Pi,cid, created)

upon receiving a msg (Pi,cid, created) through a handle:

if prev(cid) = (P ′,cid′) then

SendMessage(P ′,cid′, relay, extended)

else if prev(cid) = ⊥ then

ExtendCircuit(Parties,C)

end if

upon receiving a msg (Pi,cid, relay, O) through a handle:

Run RelayMessage(Pi,cid, O)

upon receiving a msg (sid,m) from FNet:

obtain C = 〈P ′ cid⇔ P 〉 for sid

SendMessage(P ′,cid, relay, 〈data,m〉)
upon receiving a msg (Pi,cid, destroy) through a handle:

DestroyCircuit(C,cid)

receiving a msg (Pi, P, [cmd,]h, [corrupt, T (·)])from A:

(message):=lookup(h)

if corrupt = true then

message:=T (msg); set corrupted(message):=true

end if

process message as if the receiving submachine was P

upon receiving a msg (compromise, P) from A:

set compromised(P):=true

delete all local information at P

Figure A.1: The ideal functionality FOR for Party P [15, Fig.5]

170 APPENDIX A. APPENDIX

RelayMessage(Pi,cid, relay, O):

if prev(cid) = ⊥ then

if next(cid) = ⊥ then

get (type,m) from O

end if

else (P ′,cid′):=next(cid)

else

(P ′,cid′):=prev(cid)

end if

switch (type)

case extend circuit :

get Pnext from m; cidnext ← {0, 1}κ
update C:=〈Pi cid⇔ P

cidnext⇔ Pnext〉
SendMessage(Pnext,cidnext, create)

case extended :

update C with Padded; ExtendCircuit(Parties,C)

case data :

if (cid ∈MyCircuits) then output (received, C,m)

else if m = (S,m′)
generate or lookup the unique sid for cid

send (P, S, sid,m′) to FNetq

case corrupted : /*corrupted onion*/

DestroyCircuit(C,cid)

case default : /*encrypted forward/backward onion*/

SendMessage(P ′,cid′, relay, O)

Figure A.2: The RelayMessage subroutine of the ideal functionality FOR for Party

P [15, Fig.5]

A.1. ABSTRACTING TOR IN UC 171

ExtendCircuit(Parties = (Pj)
p
j=1,C = 〈P cid1⇔ P1 ⇔ · · ·P`′〉):

determine the next node P`′+1 from Parties and C

if P`′+1 = ⊥ then

output (created,C)

else

if P`′+1 = P1 then

cid1 ← {0, 1}κ; SendMessage(P1,cid1, create)

Store cid1 in MyCircuits

else

SendMessage(P1,cid1, relay, {extend circuit, P`′+1})
end if

end if

DestroyCircuit(C,cid):

if next(cid) = (Pnext,cidnext) then

SendMessage(Pnext,cidnext, destroy)

else if prev(cid) = (Pprev,cidprev) then

SendMessage(Pprev,cidprev, destroy)

end if

discard C and all streams

SendMessage(Pnext,cidnext, cmd, [relay-type], [data]):

create a msg for Pnext from the input

draw a fresh handle h and set lookup(h):=msg

if compromised(Pnext) = true then

let Plast be the last node in the contiguous compromised path starting in Pnext.

To this end, reconstruct the remaining circuit Pnext, . . . , Plast from the shared

memory by iteratively using next, starting with cidnext.

if (Plast = OP) or Plast is the exit node then

send 〈P, Pnext, . . . , Plast,cidnext, cmd,msg〉 to A

else

send 〈P, Pnext, . . . , Plast,cidnext, cmd, h〉 to A

end if

else

send 〈P, Pnext, h〉 to FNetq

end if

Figure A.3: Subroutines of FOR for Party P [15, Fig.6]

172 APPENDIX A. APPENDIX

FNet receiving a msg (observe, P, Pnext) from A:

set observed(P, Pnext):=true

upon receiving a msg (compromise, S) from A:

set compromised(S):=true; send A all existing sid of S (as stored below).

upon receiving a msg (P, Pnext/S,m) from FOR:

if Pnext/S is a FOR node then

if observed(P, Pnext) = true then

forward the msg (P, Pnext,m) to A

else

reflect the msg (P, Pnext,m) to FOR

end if

else if Pnext/S is a FNet server then

if m is of the form (m′, sid) then

Store sid for Pnext/S.

if compromised(S) = true or observed(P, S) = true then

forward the msg (P, S,m) to A

else

output (P, S,m′)
end if

end if

end if

upon receiving a msg (P/S, Pnext,m) from A:

forward the msg (P/S, Pnext,m) to FOR

Figure A.4: The Network Functionality FNet [15, Fig.7]: A/B denotes that as a variable

name either A or B is used.

	Introduction
	Contribution
	Overview
	Anonymity and Privacy
	Intuition: Indistinguishability Based Anonymity
	The Tor Protocol
	From Observations of an Eavesdropper to Anonymity Guarantees
	Defining Categories of Eavesdroppers
	Evaluating Tor Against Eavesdroppers

	Related Work
	Anonymous Communication Protocols
	Practical Attacks and Countermeasures
	Anonymity Analyses

	AnoA
	Notation
	Full AnoA Game
	Anonymity Notions
	Sender Anonymity
	Recipient Anonymity
	Relationship Anonymity

	Adversary Classes
	Defining Adversary Classes
	Plug'n'Play Adversary Classes

	Impact of Passive Adversaries on Tor
	Observation Points of Tor Circuits
	Observations

	Tor's Universal Composability Protocol
	Overview of Tor in UC
	Modifications
	Differential Privacy Style Guarantees in UC

	Specialized AnoA Game
	Soundness of the Simplified Game

	Calculating Anonymity Guarantees
	Calculating Anonymity Guarantees for Observations
	Probabilities of Observations
	Distinguishing Anonymity Scenarios
	A Sound and Precise Calculation of the Reduction of Anonymity

	Tor Path Selection Algorithms
	Tor
	DistribuTor
	Other Variants
	Assumptions on Tor Path Selection Algorithms

	Efficient Guarantees for (Node) Budget Adversaries
	Anonymity Impact of a Budget Adversary
	Correctness of impact X bounds

	Proof of Soundness
	Overall Proof Outline
	Visible Nodes, Observation Core and Blank Observations
	Proof for Sender Anonymity
	Proof for Recipient Anonymity
	Proof for Relationship Anonymity
	Approximating the Set of Compromised Nodes

	Evaluation
	Evaluating Tor Against Node Adversaries
	Instantiating Node Budget Adversaries
	Setup
	Implementation
	Results
	Evaluation of the Precision

	Evaluating Tor Against Network Adversaries
	Internet Topology Datasets
	Network-level Adversaries
	Implementation and Optimizations
	Senders and Recipients
	Evaluated Malicious Infrastructure
	Results
	Different TCP Ports

	Appendix
	Abstracting Tor in UC
	System and Adversary Model
	Ideal Functionality
	Ideal Functionality for a Party P

