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Abstract

Virtually all of modern cryptography relies on unproven assumptions. This is necessary, as the
existence of cryptography would have wide ranging implications. In particular, it would hold that
P , NP, which is not known to be true. Nevertheless, there clearly is a risk that the assumptions
may be wrong. Therefore, an important field of research explores which assumptions are strictly
necessary under different circumstances. This thesis contributes to this field by establishing
lower bounds on the minimal assumptions in three different areas of cryptography.

We establish that assuming the existence of physically uncloneable functions (PUF), a specific
kind of secure hardware, is not by itself sufficient to allow for secure two-party computation
protocols without trusted setup. Specifically, we prove that unconditionally secure oblivious
transfer can in general not be constructed from PUFs. Secondly, we establish a bound on the
potential tightness of security proofs for Schnorr signatures. Essentially, no security proof
based on virtually arbitrary non-interactive assumptions defined over an abstract group can be
significantly tighter than the known, forking lemma based, proof. Thirdly, for very weak forms
of program obfuscation, namely approximate indistinguishability obfuscation, we prove that
they cannot exist with statistical security and computational assumptions are therefore necessary.
This result holds unless the polynomial hierarchy collapses or one-way functions do not exist.
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Zusammenfassung

Fast die gesamte moderne Kryptographie beruht auf unbewiesenen Annahmen. Dies ist notwen-
dig, da die Existenz von Kryptographie weitreichende Folgen hätte. Insbesondere, müsste gelten,
dass P , NP, was aber unbekannt ist. Dennoch besteht das Risiko, dass die Annahmen falsch sind.
Deshalb ist die Untersuchung, welche Annahmen unter verschiedenen Umständen unbedingt
notwendig sind, ein wichtiges Forschungsgebiet. Diese Dissertation trägt zu diesem Gebiet bei,
indem untere Schranken für minimale Annahmen in drei Gebieten der Kryptographie bewiesen
werden.

Wir zeigen, dass es nicht ausreicht anzunehmen, dass Physically Uncloneable Functions
(PUF), eine Art von sicherer Hardware, existieren, um Protokolle für sichere Zweiparteienbe-
rechnungen ohne sogenanntes „Trusted Setup“ zu konstruieren. Genauer beweisen wir, dass
bedingungslos sicherer Oblivious Transfer nicht aus PUFs konstruiert werden kann. Zweitens
zeigen wir eine Schranke für die mögliche „Tightness“ von Sicherheitsbeweisen für Schnorr-
signaturen. Im Wesentlichen kann kein Sicherheitsbeweis, basierend auf nahezu beliebigen
nicht-interaktiven Annahmen über eine abstrakte Gruppe, signifikant „tighter“ sein als der be-
kannte „Forking Lemma“-Beweis. Drittens beweisen wir für sehr schwache Formen von Program
Obfuscation, nämlich „Approximate Indistinguishability Obfuscation“, dass sie nicht mit stati-
stischer Sicherheit existieren können, sondern Annahmen notwendig sind. Dieses Resultat gilt
unter der Annahme, dass die polynomielle Hierarchie nicht kollabiert und One-Way-Funktionen
existieren.
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1Introduction

The security guarantees of any cryptographic construction stand or fall with the veracity of
the assumptions made in its proof of security. Virtually all of modern cryptography crucially
relies on unproven assumptions. Some cryptographic tasks can be achieved – in a limited
sense – with perfect security. A prominent example of this is symmetric encryption using the
One-Time Pad. However, it was already shown by Shannon [Sha49] that this requires a key
that is at least as long as the message. As formally shown by Impagliazzo and Luby [IL89],
even simple symmetric encryption with a short key implies the existence of one-way functions
(OWF). A one-way function is a function that can be efficiently computed, but is computationally
infeasible to invert, i.e., given an image under the function, it is computationally infeasible to
find a preimage. One-way functions are the weakest building block of modern cryptography, but
their existence would imply that P , NP and would therefore solve the most prominent open
question in complexity theory and maybe all of mathematics and theoretical computer science.
The complexity classes P and NP are classes of decision problems, and the question whether P
and NP are the same or not roughly comes down to the following: If it is possible to efficiently
verify the solution to a problem, is it then also possible to efficiently find said solution? It is
generally assumed that P , NP but no proof is known to support this assumption. Therefore,
most of modern cryptography is not even know to exist. In fact, it is very likely that P , NP is
not even a sufficient assumptions for one-way function [AGG+06; AGG+10; BB15], thus making
the necessary assumptions even stronger.

While apparently necessary, basing security on unproven assumptions still seems to be a
risky proposition. It is therefore important to only make those assumptions that are strictly
necessary. To enable this, it is crucial to identify the minimal assumptions, for any application
and any proof. When it is unknown what the minimal assumptions are, it is helpful to establish
lower bounds on the necessary assumptions. To do this a number of different strategies and
techniques have emerged over the last decades, each with its own benefits and problems. We
outline three different strategies in the following.

Oracle Separations. In their seminal work, Impagliazzo and Rudich [IR90; IR89] proposed the
oracle separation technique as a way to separate key agreement (KA) from one-way functions. In
a key agreement protocol, two parties – who prior to the protocol execution share no information
– interact with the goal of computing a shared secret that will remain unknown to any third
party eavesdropping on the communication. The goal of Impagliazzo and Rudich was to prove
that it is impossible to construct a such a protocol based solely on the assumption that one-way
functions exist. However, based on the current state of knowledge, it is impossible to prove a
logical statement such as OWF 6=⇒ KA, because it is not known whether key agreement exists
or not. We very much hope that we live in a world where key agreement does exist, even if this
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2 CHAPTER 1. INTRODUCTION

existing protocol may be based on something other than a one-way function. In a world where
even a single secure key agreement protocol does exist, however, the conclusion of the statement
OWF =⇒ KA is already true, meaning that the statement itself is always true.

To enable a proof, Impagliazzo and Rudich, therefore, do not actually consider key agreement
protocols in the real world. Instead, in a thought experiment, they construct a theoretical
world, in which a single one-way function and everything that can potentially be built from this
one-way function exists, but nothing else. Roughly, this world is constructed as follows: First, an
oracle is introduced into this world, that can solve an NP-complete problem. This essentially
means that in this world any problem in NP can now be efficiently solved by simply querying
the oracle. Breaking the security of key agreement or inverting a one-way function are both
problems in NP.1 Therefore, in this world, any candidate for a one-way function can now be
inverted efficiently and any candidate for a key agreement protocol can be broken. In this world
neither key-agreement nor one-way functions therefore exist. In a next step, an oracle computing
a uniformly chosen random function – a so called random oracle (RO) – is introduced into the
world. It can be shown that with very high probability this random oracle is hard to invert.
Furthermore, an oracle can always be efficiently computed by any party in this world, simply
by querying it. The random oracle therefore introduces a one-way function. This means that in
this theoretical world there exist only exactly those key-agreement protocols which can be built
from the one-way function introduced by the random oracle. To rule out constructions of key
agreement from one-way functions, Impagliazzo and Rudich next explicitly specify an efficient
eavesdropper that breaks any possible key agreement protocol candidate in this world.

This seems to prove that key agreement cannot be based on the security of one-way functions
alone, since otherwise a key agreement protocol would exist in this world. However, there
is a caveat to this result, because it implicitly restricts the constructions of a key agreement
protocol to be “black-box”. A construction is said to be black-box in the underlying primitive, if
it only depends on the input/output behavior of the primitive. A construction that would be
non-black-box could for example depend on the internal description – the source code – of the
primitive. In the theoretical world constructed by Impagliazzo and Rudich, such a non-black
box construction is impossible, because the primitive does not even have a short description.
It is therefore left open, whether non-black-box techniques may be able to circumvent the
result. The proof of Impagliazzo and Rudich was later refined by Barak and Mahmoody [BM09;
BM08] giving a tighter analysis. The same oracle separation technique and refinements [HR04]
of it were also used to establish separations between collision resistant hash functions and
one-way functions [Sim98], oblivious transfer and public key encryption [GKM+00] and many
more [GMR01; CHL02; Fis02; DOP05; BCF+09; FLR+10; Hof11; Rud92; KSY11; FS12]. This
technique is also used in this thesis in Chapter 2 to separate oblivious transfer and secure two-
party computation from malicious physically uncloneable functions, i.e., from the assumption
that a special kind of secure hardware exists.

Meta-Reductions. An alternative separation technique, called meta-reductions, was first in-
troduced by Boneh and Venkatesan [BV98], although the term meta-reduction was coined in
later works [PV05; Bro05; Bro16]. Meta-reductions are most commonly used to separate more

1More precisely, the corresponding decision problems are in NP and a decider for the decision problems can be used
to solve the computational problem.
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Figure 1.1: Depicted on the left hand side is the basic idea of a security reduction: The reduction
gets as input some problem instance and solves it by interacting with an adversary while
simulating the interaction the adversary would have with the cryptographic scheme. Depicted
on the right hand side is the basic idea of a meta-reduction: The meta-reduction gets as input
some problem instance and solves it by interacting with a reduction while simulating the
interaction the reduction would have with the adversary.

specific assumptions and schemes. E.g., Boneh and Venkatesan [BV98] use it to separate the RSA
assumption from the assumption that factoring is hard. However, it can also be used in more
general cases, such as ruling out blind signature schemes with less than four communication-
rounds based on any non-interactive assumption [FS10]. The basic idea of a meta-reduction is to
construct a “reduction against the reduction”.

A proof by reduction is the most prevalent technique for proving the security of a cryp-
tographic construction. Conceptually, this works as follows: To prove that a construction is
secure, one first needs to assume that some underlying problem, that we will call Π, is hard.
For example, we might assume that a function is a one-way function, i.e., we assume that the
function is hard to invert. We then assume that a successful attacker A against our construction
exists and bring the two assumptions to a contradiction. This is done by constructing a reduction
R that uses its interaction with A to solve the problem Π. This is depicted on the left side of
Figure 1.1. The reduction R get as input an instance of the problem Π, e.g., for inverting a
one-way function this would simply be an image under the function. It then interacts with A,
simulating the construction that A is supposedly able to attack. In this interaction, R would
in some way embed the problem instance in such a way, that the output of the attacker would
allow the reduction to correctly solve the problem instance.

A meta-reduction uses essentially the same concept, but against the reduction instead of the
attacker. I.e., we assume that there exists a reduction R supposedly able to solve a hard problem
Π when given access to any attacker A able to break the construction and once again bring the
assumptions that Π is hard and that R exists to a contradiction. This is done by constructing
a meta-reductionM that uses R to directly solve the problem Π. This is depicted on the right
side of Figure 1.1. The meta-reductionM get as input an instance of the problem Π. It then
interacts with R and simulates an attacker A, thus turning R into a successful algorithmMR
for solving the problem Π. The key part of this technique is of course the simulation of A.
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Clearly, a successful meta-reduction requires two things. First, a successful attacker A against
the construction must exists in the first place. Otherwise R does not need to be successful at
all. Second,M’s simulation of Amust be “convincing”. This seems to lead to a contradiction.
If a successful efficient attacker is known to exist, then the construction is obviously already
insecure. Therefore, there would be no point in proving that its security cannot be based
on some assumption. To circumvent this seeming contradiction, we must assume that R is
fully black-box in the attacker. Essentially, this means that R must be successful when given
access to any algorithm having the correct input-output behavior of a successful attacker. This
in particular includes inefficient attackers. For most cryptographic constructions, inefficient
attackers trivially exist, for example attackers that use exhaustive search over all possible keys to
break an encryption scheme. Note, that this does not imply that the construction is insecure,
because computational security definitions only consider efficient attackers.

The meta-reductionMmust of course still be able to efficiently simulate A, which may again
seem like a contradiction. If an inefficient attacker can be simulated efficiently, then seemingly an
efficient attacker also exists. However, this is not true. The meta-reduction commonly manages
to efficiently simulate an inefficient attacker by leveraging additional capabilities that an attacker
would not possess. This includes for example the ability ofM to reset or rewind the reductionR
to an earlier state. Another approach is to haveM actually reduce to a different problem Π′ than
the problem Π, the reduction reduces too. This is helpful if Π′ gives more power to an algorithm
trying to solve it than Π. An example for this would be if Π is the discrete logarithm problem
and Π′ is the one-more discrete logarithm problem. IfMmanages to simulate A in such a way
that the interaction of R with the simulated attacker is indistinguishable from the interaction
with the actual (inefficient) A, thenMR can leverage the success probability of RA to directly
solve the problem Π or Π′ .

Meta-reductions are a very powerful separation technique. In particular, in contrast to
oracle separations described above, meta-reduction usually do not require the construction or
the security reduction to be black-box in the underlying primitive. As such they have been
successfully applied to achieve a great number of results such as [Cor02b; PV05; FS10; Pas11;
GW11; DHT12; Seu12; BL13a; FF13b; ZZC+14; CHZ14; ZCC+15; BJL+16; BFW16]. It is also
noteworthy that separations via meta-reduction are not necessarily unconditional, but can in fact
leverage additional assumptions. In the high level description above, this is exactly the case ifM
solves a different problem Π′ from the problem Π that the reduction solves. The interpretation
of this case would be that a security reduction to problem Π cannot not exist if Π′ is a hard
problem. Examples of this include the works of Paillier and Vergnaud [PV05] and of Fischlin
and Fleischhacker [FF13b] who both rule out certain classes of security reductions for Schnorr
signatures to the discrete logarithm problem, under the assumption that the weaker one-more
discrete logarithm problem is hard.

The meta-reduction technique is also used in this thesis in Chapter 3 to establish several
lower bounds on the minimal assumptions required to prove security for Schnorr’s signature
scheme. These bounds are in some instances orthogonal to and in other instances greatly extend
results about Schnorr signatures mentioned above.

Contradictions to Commonly Held Beliefs. A different strategy is to show that the existence
of some cryptographic primitive or proof thereof would lead to a contradiction with other
assumptions that – while not strictly proven – are commonly accepted as true by researchers
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in the relevant fields. Most commonly these are assumptions from complexity theory, such as
P , NP or the generalization thereof, i.e., the assumption that the so-called polynomial hierarchy
does not collapse. Insofar, this type of result does not necessarily show that something cannot
possibly exist, but instead that the existence would have far reaching consequences. Essentially,
if the primitive or proof exists, then the world we live in differs fundamentally from the world
we commonly think we live in.

This strategy can also be particularly helpful to show that a certain primitive cannot exists
with unconditional security. While such a result may seem qualitatively different from the
separation results discussed before, it can nevertheless often be seen as a lower bound on
necessary assumptions. I.e., it shows a lower bound in the sense that at least some assumption is
necessary to construct the primitive.

Early examples include the work of Brassard [Bra79] and the later clarification thereof
[GG98] showing that the security of certain special types of public key encryption cannot be
based on NP-hardness unless NP = coNP which would imply the collapse of the polynomial
hierarchy. Further negative results of this kind found that is is unlikely to reduce the average-case
complexity of an NP problem to the worst-case complexity of an NP problems [BT03; BT06] or
to base the security of certain types of one-way functions [AGG+06; AGG+10; BB15] or private
information retrieval [LV16] on NP-hardness. Examples of impossibility results for statistically
secure cryptography include proofs that neither statistically sound witness encryption [GGS+13]
nor statistically secure indistinguishability obfuscation [GR07] exists unless the polynomial
hierarchy collapses.

With the introduction of many new extremely powerful cryptographic primitives, a new
flavor of this kind of result has also recently emerged. These so called one-out-of-two results
do not show that the existence of one primitive has unlikely implications about the landscape
of complexity theory, but instead shows that two different primitives cannot coexist. For
example, the existence of indistinguishability obfuscation implies attacks against certain types
of Universal Computational Extractors [BFM14], obfuscation of multi-bit point functions with
auxiliary input [BM14], and extractable one-way functions [BCP+14].

In Chapter 4 a sort of hybrid of these two types of proofs is employed to show that an
extremely weak form of obfuscation (approximate correlation obfuscation) cannot exist with
statistical security, unless either one-way functions do not exist or the polynomial hierarchy
collapses.

1.1 Contribution

This thesis establishes lower bounds for minimal assumptions in in three areas of cryptography.
These lower bounds differ in their nature, quality and in the way they are achieved.

In Chapter 2 we use an oracle separation technique to give a lower bound for the necessary
assumptions of oblivious transfer and general secure two-party computation. In particular, we
show that oblivious transfer, and by implication secure two-party computation, can in general not
be based on the security of a type of secure hardware known as physically uncloneable functions
(PUFs) in a black-box way. For general PUFs, this result holds unconditionally. However, we
also show how this result can be sidestepped by making additional assumptions on the power of
the attacker. Whether these assumptions might be reasonable, largely depends on the precise
instantiation of PUFs.
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In Chapter 3 we use a meta-reduction to establish lower bounds for the minimal assumption
necessary for proving the security of Schnorr signatures. Our main result shows that the security
of Schnorr signatures cannot be tightly reduced to almost any natural non-interactive assumption.
This means that a much harder underlying problem needs to be assumed to achieve any concrete
provable hardness of forging Schnorr signatures. Thus it gives a lower bound on the necessary
hardness of the underlying problem.

In Chapter 4 we show that it is very unlikely that even extremely weak forms of program
obfuscation can be instantiated with statistical security. In particular, we show that the existence
of statistically secure approximate indistinguishability obfuscation (saiO) would imply the
collapse of the polynomial hierarchy. It thus contradicts the commonly accepted complexity
theoretic assumption that the polynomial hierarchy does not collapse. The result therefore
shows that, unless the polynomial hierarchy collapses, it is necessary to make computational
assumptions when instantiating approximate indistinguishability obfuscation.

1.1.1 Secure Computation Based on Secure Hardware

Secure two party computation in general refers to a protocol, in which two parties interact to
jointly evaluate some functionality. Both parties may have input to the functionality and both
parties may receive output. Intuitively, the security guarantee of such a protocol is that neither
party learns more about the other parties input than can be trivially inferred from the received
output. Oblivious transfer is one of the major building blocks of secure two-party computation
for arbitrary functionalities. In fact, assuming oblivious transfer is sufficient for constructing
secure two-party computation for arbitrary functionalities. In an oblivious transfer protocol,
party A holds two secrets s0, s1 and party B holds a choice bit b. After the execution of the
protocol, B should learn sb but learn nothing about s1−b, whereas A should be unable to tell
which secret B learned.

Secure two-party computation with strong security guarantees was shown by Canetti and
Fischlin [CF01] to be impossible for arbitrary functionalities in the so called “plain model” where
no infrastructure besides communication channels exists. In fact Canetti et al. [CKL06] later
showed that the impossibility holds for essentially all non-trivial functionalities. An interesting
question was therefore whether this impossibility could be sidestepped by assuming some kind
of setup. It turns out that this is indeed possible, at least using trusted setup. Examples of
sufficient trusted setup include a common reference string [CF01; CLO+02] or a trusted public
keys registration service [BCN+04; CDP+07].

The idea of using secure hardware to replace trusted parties as a setup assumption was first
explored by Katz [Kat07] who showed that tamper-proof hardware tokens are sufficient to
circumvent the impossibility results. A different kind of secure hardware that has been proposed
are physically uncloneable functions (PUF) [Pap01; PRT+02; MV10; AMS+11; KKR+12]. A PUF
is supposed to be a physical object generated via a process that is intended to create “unique”
objects that can be probed and whose responses behave like a random function. I.e., a PUF
is supposed to look random, and be impossible to copy even by the entity who created the PUF.
PUFs seem to be extremely powerful and in particular Brzuska et al. [BFS+11] showed that
PUFs allowed for universally composable constructions of bit commitment, key agreement, and
oblivious transfer (and hence secure computation of arbitrary functionalities) with unconditional
security. They, thus, also seemed to be a good candidate for a physical setup assumption that
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does not require trusted parties. However it was observed by Ostrovsky et al. [OSV+13], that the
result of Brzuska et al. implicitly assumes that all PUFs – including those created by the attacker –
are honestly generated. This means that the model implicitly reintroduce an assumption of trust,
namely the trust that PUFs are created honestly – possibly by some designated trusted party.
The question whether PUFs without an additional assumption of trust still allow unconditionally
secure computation of arbitrary functionalities was explicitly left open by Ostrovsky et al. and
remained unanswered since.

In Chapter 2 we answer this question negatively. Our proof specifies an oracle separation
showing that oblivious transfer cannot be based on maliciously generated PUFs in a black-box
way. Our impossibility result crucially relies on malicious PUFs being able to keep state. In
Section 2.4 we show that this is indeed inherent, since it is possible to achieve unconditionally
secure computation of arbitrary functionalities if malicious PUFs can be guaranteed to be
stateless.

1.1.2 Tight Security of Schnorr Signatures

Schnorr’s signature scheme is one of the most fundamental public-key cryptosystems and was
proven secure by Pointcheval and Stern based on the generally accepted discrete logarithm
assumption [PS96] in the Random Oracle Model (ROM) [BR93]. However, their reduction is
not tight. This means that the reduction is significantly less successful in solving the discrete
logarithm problem than the attacker is in breaking the signature scheme. In particular, if the
attacker successfully forges a signature with probability ε after making q queries to the random
oracle, then the reduction only solves the discrete logarithm problem with probability ε/q.

In an asymptotic sense this is still a valid security reduction, since for any non-negligible
function ε and any polynomial number of queries q, the function ε/q is also non-negligible.
However in any concrete setting, such a reduction is almost useless for determining secure
parameters for the underlying discrete logarithm problem because the underlying problem
must be at least q times as hard as the signature scheme. Since q depends on the run-time of
the attacker, but the hardness of the discrete logarithm problem is constant, a large constant
upper bound (say 280 or 2100) for q must be chosen. While this might lead to a secure choice of
parameters, the resulting keysize would be astronomical. We therefore investigate whether a
tight security reduction for Schnorr signatures is possible.

Previous work [PV05; GBL08; Seu12] in this area showed that with respect to a limited
(but natural) class of reductions (so-called algebraic reductions) the proof of Pointcheval and
Stern is essentially optimal under the assumption that the stronger one-more discrete logarithm
problem [BNP+03] is hard. While these impossibility results are already quite general, they
are explicitly limited to the case of reducing to the discrete logarithm problem. I.e., they do
not make any statement whether tight security reductions to other, stronger assumptions, such
as the computational or decisional Diffie-Hellman assumptions, might exist. In Chapter 3 we
answer this question in the negative. Our impossibility result rules out the existence of tight
reductions for virtually all natural non-interactive computational problems defined over abstract
algebraic groups. Moreover – in contrast to previous works – our results hold unconditionally.
On a technical level, our result is incomparable with previous work, because we need to limit the
class of reductions slightly more than previous work. I.e., our result holds for generic reductions
instead of algebraic ones.
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Algebraic and generic algorithms both are constrained in how they can use group elements.
In essence, in both cases it is enforced that the algorithm can only act upon group elements
by using the defined group operation. Technically, this is done in two different ways, which
leads to the main difference. While both kinds of algorithm can only use group operations to act
upon group elements, an algebraic algorithm can make decisions based on the representation of
group elements, whereas a generic algorithm cannot. Therefore, an algebraic reduction is more
powerful and, thus, considering only generic reductions is more restrictive.

However, the main motivation of considering only algebraic reductions is that non-algebraic
ones are essentially unknown. I.e., all known security reductions for discrete logarithm based
cryptographic constructions are algebraic. It turns out, that this motivation applies equally to
generic reductions. To the best of our knowledge all known examples of algebraic reductions are
also generic.

The proof technique uses meta-reductions in combination with a novel simulation strategy.
In Section 3.5 we also show that the new simulation strategy can be applied in a slightly different
context, ruling out any (even non-tight) generic security proof in a weaker model known as the
non-programmable random oracle model (NPROM). The NPROM is strictly weaker than the
ROM. While in the ROM the reduction fully controls the random oracle and can in particular
reprogram parts of the oracle on the fly, the random oracle is external to the reduction in the
NPROM. This means that the reduction can observe the queries the attacker makes to the random
oracle, but it cannot influence the answers. A security proof in a weaker model would be a
stronger argument for security of the scheme.

1.1.3 Statistically Secure Obfuscation

Program obfuscation in general is the concept of taking a program and transforming it in such a
way that the resulting program is completely unintelligible but nevertheless still computes the
same function. A very natural formalization of this concept is that the obfuscated code should
not reveal anything that cannot also be learned from access to an oracle containing the program.
Barak et al. [BGI+01; BGI+12], however, showed that this strong kind of obfuscator does not
exist in general. A much weaker form obfuscation called Indistinguishability Obfuscation
(iO) was proposed. An indistinguishability obfuscator only guarantees, that if there are two
programs that compute exactly the same function (and are of the same size) then obfuscations
of the two are indistinguishable. Intuitively this security guarantee appears very weak and
one might even suspect that such obfuscators would be useless. However the opposite turned
out to be true. Since the proposal of the first candidate construction by Garg et al. [GGH+13],
iO has firmly established itself as a very powerful tool. It is also one of the few known non-
black-box techniques for the construction of cryptographic objects. As such, iO, e.g., allows to
transform symmetric encryption into public-key encryption [SW14]. Therefore, the existence of
a statistically secure indistinguishability obfuscator (siO) would sidestep the black-box impossibility
discussed above and resolve the question of constructing public key cryptography from one-way
functions. This even remains true for weaker forms of obfuscation that only preserve approximate
correctness. I.e., the symmetric to public key transformation of Sahai and Waters [SW14] does not
require that the obfuscated program computes exactly the same function. It is instead sufficient
that there is a non-negligible correlation between the functionality of the input program and
that of the output program. We are therefore interested in answering the question whether
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obfuscation with statistical security may exist.
Previous work in this area by Goldwasser and Rothblum [GR07; GR14] could only rule

out statistically secure obfuscation with perfect correctness under the assumption that the
polynomial hierarchy does not collapse. While this result already put a damper on hopes
to achieve statistically secure obfuscation, it has no known implications for the existence of
statistically secure obfuscation with approximate correctness (saiO).

In Chapter 4 we prove that it is very unlikely that saiO exists. In particular, we show that saiO
does not exist if one-way functions exist and the polynomial hierarchy does not collapse. Our
impossibility results extend even beyond the case of saiO. In fact, the result applies even when
the security of the obfuscator is approximate. Namely, when we are only guaranteed that the
obfuscation of functionally equivalent circuits results in distributions that have mild statistical
distance (as opposed to negligible). While the impossibility result extends to a large range of
parameters, it turns out that we cannot rule out all useful parameters, thus still leaving a gap for
a potential non-black-box construction of public-key encryption from one-way functions.

1.2 Notation

We introduce some general notation. By n ∈N, we denote the security parameter that we give to
all algorithms implicitly in unary representation 1n. By {0,1}` we denote the set of all bit-strings
of length `. For a finite set S, we denote the action of sampling x uniformly at random from S by
x←$S, and denote the cardinality of S by |S |. We call an algorithm efficient or PPT (probabilistic
polynomial time) if it runs in time polynomial in the security parameter. Unless explicitly stated
to be deterministic, all algorithms are assumed to be randomized. If A is randomized then by
y←A(x;r) we denote that A is run on input x and with random coins r and produces output
y. If no randomness is specified, then we assume that A is run with freshly sampled uniform
random coins, and write this as y←$A(x;U ), where U refers to the uniform distribution over
random coins, or in shorthand y←$A(x). We denote with ∅ the empty string, the empty set, as
well as the empty list, the meaning will always be clear from the context. We write [n] to denote
the set of integers from 1 to n, i.e., [n] := {1, . . . ,n}. For a circuit C we denote by |C| the size of
the circuit, i.e., the number of gates. We say a function negl (n) is negligible if for any positive
polynomial poly (n), there exists an N ∈N, such that for all n > N , negl (n) ≤ 1

poly(n) .
We will use the following definition of statistical distance.

Definition 1 (Statistical Distance). For two probability distributions X,Y we define the statistical
distance SD(X,Y ) as

SD(X,Y ) = max
A

( Pr
x ←$X

[A(x) = 1]− Pr
y ←$Y

[A(y) = 1])

where A ranges over all probabilistic algorithms including inefficient ones.





2On Secure Computation with Malicious PUFs

2.1 Introduction

A physically uncloneable function (PUF) [Pap01; PRT+02; MV10; AMS+11; KKR+12] is a physical
object generated via a process that is intended to create “unique” objects with “random” (or
at least random-looking) behavior. PUFs can be probed and their response measured, and a
PUF thus defines a function. (We ignore here the possibility of slight variability in the response,
which can be corrected using standard techniques.) At an abstract level, this function has two
important properties: it is random, and it cannot be copied even by the entity who created the
PUF.

Since their introduction, several cryptographic applications of PUFs have been suggested,
in particular in the area of secure computation. PUFs are especially interesting in this setting
because they can potentially be used (1) to obtain universally composable (UC) protocols [Can01]
without additional setup, thus bypassing known impossibility results that hold for universal com-
position in the “plain” model [CF01; CKL06], and (2) to construct protocols with unconditional
security, i.e., without relying on any cryptographic assumptions.

Initial results in this setting [Rüh10; RKB10] showed constructions of oblivious transfer with
stand-alone security based on PUFs. Brzuska et al. [BFS+11] later formalized PUFs within the
UC framework, and showed UC constructions of bit commitment, key agreement, and oblivious
transfer (and hence secure computation of arbitrary functionalities) with unconditional security.
The basic feasibility questions related to PUFs thus seemed to have been resolved.

Ostrovsky et al. [OSV+13], however, observe that the previous results implicitly assume
that all PUFs, including those created by the attacker, are honestly generated. They point out,
correctly, that this may not be a reasonable assumption: nothing forces the attacker to use the
recommended process for manufacturing PUFs and it is not clear, in general, how to “test”
whether a PUF sent by some party was generated correctly or not. (Assuming a trusted entity
who creates the PUFs is not a panacea, as one of the goals of using PUFs is to avoid reliance on
trusted parties.) Addressing this limitation, Ostrovsky et al. define a model in which an attacker
can create malicious PUFs having arbitrary, adversary-specified behavior. The previous protocols
can be easily attacked in this new adversarial setting, but Ostrovsky et al. show that it is possible
to construct universally composable protocols for secure computation in the malicious-PUF
model under additional, number-theoretic assumptions. They explicitly leave open the question
of whether unconditional security is possible in the malicious-PUF model. Recently, Damgård
and Scafuro [DS13] have made partial progress on this question by presenting a commitment
scheme with unconditional security in the malicious-PUF model.

11
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Stateful vs. stateless (malicious) PUFs. Honestly generated PUFs are stateless; that is, the
output of an honestly generated PUF is independent of its computation history. Ostrovsky et al.
note that maliciously generated PUFs might be stateful or stateless. Allowing the adversary to
create stateful PUFs is obviously more general. (The positive results mentioned earlier remain
secure even against an attacker who can create malicious, stateful PUFs.) Nevertheless, the
assumption that the adversary is limited to producing stateless PUFs is meaningful; indeed,
depending on the physical technology used to implement the PUFs, incorporating dynamic state
in the PUF may simply be infeasible.

2.1.1 Our Results

Spurred by the work of Ostrovsky et al. and Damgård and Scafuro, we reconsider the possibility
of unconditionally secure computation based on malicious PUFs and resolve the main open
questions in this setting. Specifically, we show:

1. Unconditionally secure oblivious transfer (and thus unconditionally secure computation of
general functions) is impossible when the attacker can create malicious stateful PUFs. Our
result holds even with regard to stand-alone security, and even for indistinguishability-
based (as opposed to simulation-based) security notions.

2. If the attacker is limited to creating malicious, but stateless, PUFs, then universally com-
posable oblivious transfer (OT) and two-party computation of general functionalities are
possible. Our oblivious-transfer protocol is efficient and requires each party to create only
a single PUF for polynomially many OT executions. The protocol is also conceptually
simple, which we view as positive in light of the heavy machinery used in [OSV+13].

2.1.2 Comparison to [DFK+14]

We extend and improve the proceedings version [DFK+14] in many respects. First, we identify
several pitfalls in formalizing PUFs and provide a corrected definition that addresses these issues.
For example, [OSV+13] does not require that the evaluation algorithm of the (malicious) PUF
runs in polynomial-time. The basic idea here is that the evaluation algorithm performs some
physical operations that cannot be computed efficiently. However, simulation in this case may
become difficult because the PUF may simply solve a hard problem, such as factoring, internally
before outputting the response. Another difference to [DFK+14] is that we provide a simplified
protocol for our positive result. That is, the OT-protocol suggested in [DFK+14] requires two
PUFs, while the protocol in this version only requires a single PUF. Finally, this version contains
all proofs, while parts of the proofs in [DFK+14] were omitted.

2.1.3 Other Related Work

Hardware tokens have also been proposed as a physical assumption on which to base secure
computation [Kat07]. PUFs are incomparable to hardware tokens since they are more powerful
in one respect and less powerful in another. PUFs have the property that a party cannot query
an honestly generated PUF when it is out of that party’s possession, whereas in the token model
parties place known functionality in the token and can simulate the behavior of the token at
any point. On the other hand, tokens can implement arbitrary code, whereas honestly generated
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PUFs just provide a random function. In any case, known results (such as the fact that UC
oblivious transfer is impossible with stateless tokens [GIM+10]) do not directly translate from
one model to the other.

Impossibility results for (malicious) PUFs are also not implied by impossibility results in
the random-oracle model (e.g., [BM09]). A random oracle can be queried by any party at any
time, whereas (as noted above) an honestly generated PUF can only be queried by the party who
currently holds it. Indeed, we show that oblivious transfer is possible when malicious PUFs
are assumed to be stateless; in contrast, oblivious transfer is impossible in the random-oracle
model [IR89].

Ostrovsky et al. [OSV+13] consider a second malicious model where the attacker can query
honestly generated PUFs in a non-prescribed manner. They show that secure computation is
impossible if both this and maliciously generated PUFs are allowed. We do not consider the
possibility of malicious queries in this work.

In other work, Rührmair and van Dijk [RD13] show impossibility results in a malicious-
PUF model that differs significantly from the ones considered in [OSV+13; DS13] and here.
Their model appears to be strictly weaker than the model of Ostrovsky et al., i.e., it seems to
guarantee security against strictly more powerful adversaries. However, it is not entirely clear
to us to which extent the additional power given to the attackers corresponds to attacks that
could feasibly be carried out in the real world. In [DR12] van Dijk and Rührmair informally
discussed the idea of using the technique of Impagliazzo and Rudich [IR89] in the context of
PUFs. Although the authors claim to provide a formal impossibility result, they do not give a
formal definition of what a “bad PUF” is. Moreover, applying the technique of of Impagliazzo
and Rudich [IR89] in the context of PUFs does not straightforwardly seem to be possible, as we
show in this work.

2.2 Impossibility Result for Malicious, Stateful PUFs

A physically uncloneable function (PUF) is a physical device with “random” behavior introduced
through uncontrollable manufacturing variations during their fabrication. When a PUF is
queried with a stimulus (i.e., a challenge), it produces a physical output (the response). In
practice, the output of a PUF can be noisy; i.e., querying the PUF twice with the same challenge
may yield distinct, but close, responses. Moreover, the response need not be uniform; it may
instead only have high min-entropy. For the purpose of the impossibility result, however we will
skip a formal definition of PUFs including all these subtleties. Instead, for the purpose of the
impossibility result, we will work with theoretical ideal PUFs.

Namely, an honestly generated ideal PUF for the purpose of this proof is a piece of hardware
that implements a truly random function and allows only black-box access to this function. A
maliciously generated PUF in this ideal setting, can contain any efficiently computable program
specified by the generating party.

Similarly, we consider an indistinguishability based definitions of security for OT and not a
UC definition of OT. Since we are going to show an impossibility result, using ideal PUFs as the
building block and ruling out weaker security notions only makes our result stronger (since a
noisy PUF can be simulated given an ideal PUF by querying the ideal PUF and adding noise).
We prove that any PUF-based oblivious-transfer (OT) protocol is insecure when the attacker has
the ability to generate malicious, stateful PUFs. Formally:
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Theorem 2. Let Π be a PUF-based OT-protocol where the sender S and receiver R each make at most
m = poly (n) PUF queries. Then at least one of the following holds:

1. There is an unbounded adversary S ∗ that uses malicious, stateful PUFs, makes only poly (n)
queries to honestly generated PUFs, and computes the choice bit ofR (whenR’s input is uniform)
with probability 1/2 + 1/poly (n).

2. There is an unbounded adversary R∗ that uses malicious, stateful PUFs, makes only poly (n)
queries to honestly generated PUFs, and correctly guess both secrets of S (when S ’s inputs are
uniform) with probability at least 2/3.

2.2.1 Overview

The starting point for our impossibility result is the impossibility of constructing oblivious
transfer in the random-oracle model. The fact that OT is impossible in the random-oracle model
follows from the fact that key agreement is impossible in the random-oracle model [IR89; BM09;
BM13], and the observation that OT implies key agreement. However, a direct proof ruling out
OT in the random-oracle model is also possible, and we sketch such a proof here.

Consider an OT protocol in the random-oracle model between a sender S and receiver R,
where S ’s two input bits are uniform and R’s selection bit is uniform. We show that either S
or R can attack the protocol. Consider the case where both parties run the protocol honestly
and then at the end of the protocol they each run a variant of the Eve algorithm from [BM09;
BM13] to obtain a set Q of queries/answers to/from the random oracle. This set Q contains
all “intersection queries” between S and R, which are queries made by both parties to the
random oracle. However, note that the setting here is different from the key-agreement setting
in which a third party (the eavesdropper) runs the Eve algorithm. In fact, in our setting, finding
intersection queries is trivial for S and R: all intersection queries are, by definition, already
contained in the view of either of the parties. Thus, the point of running the Eve algorithm is for
both parties to reconstruct the same set of queries Q that contains all intersection queries. As
in [BM09; BM13], conditioned on the transcript of the protocol and this set Q, the views of S
and R are independent. The property of the Eve algorithm we use is that with high probability
over random coins of the protocol and the choice of the random oracle, the distribution over
R’s view conditioned on S ’s view and Q is statistically close to the distribution over R’s view
conditioned on only the transcript and Q.

To use the above to obtain an attack, we first consider the distribution over R’s view condi-
tioned on S ’s view and Q. We argue that with probability roughly 1/2 over this distribution, R’s
view must be consistent with selection bit 0, and with probability 1/2 it must be consistent with
selection bit 1. (If not, then S can compromise R’s security by guessing that R’s selection bit is
the one which is more likely.) Next, we consider the distribution over R’s view conditioned on
only the transcript and Q. Note that R can sample from this distribution, since R knows the
transcript and can compute the same set Q. Since this distribution is statistically close to the
distribution over R’s view conditioned on S ’s view and Eve queries, we have that R can with
high probability sample a view consistent with selection bit 0 and S ’s view and a view consistent
with selection bit 1 and S ’s view. But correctness of the protocol then implies that R can with
high probability discover both of S ’s inputs.
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From random oracles to PUFs. The problem with extending the above to the PUF model is
that, unlike a random oracle, a PUF can only be queried by the party who currently holds it.
This mean that the above attack, as described, will not work. In fact, this property is what allows
us to construct an OT protocol in the case where malicious PUFs are assumed to be stateless! To
overcome this difficulty, we will need to use the fact that malicious parties can create stateful
PUFs.

To illustrate the main ideas, consider a protocol in which four PUFs are used. PUFS and
PUF′S are created by S , with PUFS held by S at the end of the protocol and PUF′S held by R at
the end of the protocol. Similarly, PUFR,PUF

′
R are created by R, with PUFR held by R at the end

of the protocol and PUF′R held by S at the end of the protocol. We now want to provide a way
for both parties to be able to obtain a set Q of queries/answers for all the PUFs that contains the
following “intersection queries”:

1. Any query that both parties made to PUF′S or PUF′R (as in [BM09; BM13]).

2. All queries that Rmade to PUFS .

3. All queries that S made to PUFR.

The first of these can be achieved by having S (resp.,R) construct PUF′S (resp., PUF′R) with known
code, such that S (resp., R) can effectively query PUF′S (resp., PUF′R) at any time. Formally, we
have each party embed a randomly chosen t-wise independent function in the PUF they create,
where t is large enough so that the behavior of the PUF is indistinguishable from a random
function as far as execution of the protocol (and the attack) is concerned. At the end of the
protocol, both parties can then run the Eve algorithm with access to PUF′S : R has access because
it holds PUF′S , and S has access because it knows the code in PUF′S . An analogous statement
holds for PUF′R.

To handle the second set of queries above, we rely on the ability of S to create stateful PUFs.
Specifically, we have S create PUFS in such a way that it records (in an undetectable fashion)
all the queries that Rmakes to PUFS , in such a way that S can later recover these queries once
PUFS is back in its possession. (This is easy to do by hardcoding in the PUF a secret challenge,
chosen in advance by S , to which the PUF responds with the set of all queries made to the PUF.)
So, at the end of the protocol, it is trivial for S to learn all the queries that Rmade to PUFS . Of
course,R knows exactly the set of queries it made to PUFS throughout the course of the protocol.
Queries that S makes to PUFR are handled in a similar fashion.

To complete the proof, we then show that the set of intersection queries as defined above is
enough for the analysis from [BM09; BM13] to go through. In order for our proof to go through,
it is crucial to find intersection queries immediately after each message is sent, as opposed to
waiting until the end of the protocol. This is necessary in order to ensure the independence of
the views of S and R. Therefore, we define a variant of the Eve algorithm which, after each
protocol message is sent, makes queries to a particular set of PUFs, determined by the sets of
PUFs currently held by each party. For example, if immediately after message i is sent S holds
{PUFS ,PUF′R} and R holds {PUFR,PUF′S }, then our Eve variant will make queries only to PUF′R
and PUF′S .
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2.2.2 Proof Details

Oblivious transfer. Oblivious transfer (OT) is a protocol between a sender S with input bits
(s0, s1) and a receiver R with input bit b. Informally, the receiver wishes to retrieve sb from S
in such a way that (1) S does not “learn” anything about R’s choice and (2) R learns nothing
about s1−b.

We note that our impossibility holds even for protocols that do not enjoy perfect correctness,
i.e., it holds for protocols where correctness holds (over choice of inputs, randomness, and PUFs)
with probability 1− 1/poly (n).

Protocols based on PUFs. We consider a candidate PUF-based OT protocol Π with ` rounds
that has 2` passes and where in each pass a party sends a message. We assume w.l.o.g. that S
sends the first message of the protocol and R sends the final message. Let z = z(n) be the total
number of PUFs used in protocol Π with security parameter n. We model the set of all PUFs
{PUF1, . . . ,PUFz} utilized by Π as a single random oracle. W.l.o.g. we assume that each query q
to a PUF has the form q = (j,q′), where j denotes the identity of the PUF being queried, and q′

denotes the actual query to this PUF. 1 Note that when using this ideal PUF, responses to unique
queries q = (j,q′) are independent and uniform. We further assume w.l.o.g. that a party will
only send a PUF back and forth along with some message mi of the protocol Π. In particular,
we denote by S iback the set of indices j ∈ [z] such that PUFj is sent by S (resp. R) to R (resp. S)
immediately after message mi of Π is sent, and PUFj was created by R (resp. S). We define S iPUF
to be the set of indices j such that either:

• PUFj is held by S immediately after message mi is sent and PUFj was created by R.

• PUFj is held by R immediately after message mi is sent and PUFj was created by S .

Augmented transcripts. A full (augmented) transcript of protocol Π = 〈S ,R〉 is denoted by M̃.
The “augmented transcript” consists of the transcript M =m1, . . . ,m2` of protocol Π with a set
ψi appended after each message mi . If message mi is sent by S (resp. R), then ψi contains all
queries made by S (resp. R) up to this point in the protocol to all PUFj , j ∈ S iback. Specifically,
M = {m1, . . . ,m2`} and M̃ = {m1‖ψ1, . . . ,m2`‖ψ2`}. We also define the set Ψ i which is the union of
the ψj sets for j ≤ i. Specifically, Ψ i = ψ1 ∪ · · · ∪ψi . Note that M̃ can be computed by both a
malicious S and a malicious R participating in Π. Intuitively, this is because both malicious
S and R can program each of their PUFs to record all queries made to it. The following claim
formalizes the fact that malicious, stateful PUFs can be used to extract sets of queries made by
the opposite party:

Claim 3. Consider a PUF-based `-round OT protocol, Π. By participating in an execution of Π
while using maliciously constructed PUFs, we have that, for all odd i ∈ [2`], both a malicious S and
a malicious R can find the set of queries ψi made by S up to this point in the protocol to all PUFj ,
j ∈ S iback. The same claim holds for even i ∈ [2`], with the roles of S ,R reversed.

1Jumping ahead to the formal treatment of PUFs in Section 2.3.4, this means that the PUF family is instantiated
using a single random oracle, Snor(1n) simply chooses a random id, and Enor(1n, id, c) responds by querying the random
oracle on id and c.
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Proof. The malicious R will instantiate their own PUFs using a stateful circuit that uses a PUF
gate to honestly evaluate the PUF, but stores the query in the updated state such that this record
can later be retrieved by the creator of the PUF. This can for example be achieved by having the
circuit simply output the full state when queried on some randomly chosen secret input. Note
that such a circuit would be polynomial in size and therefore a valid circuit for a maliciously
generated PUF. Since at the end of the i-th pass, for odd i ∈ [2`], R holds PUFj , j ∈ S iback, we have
that the malicious R can recover the ordered set of queries made to that PUF, and can therefore
deduce the set of queries made by S to that PUF thus far. On the other hand, S knows the queries
it made itself to PUFj , j ∈ S iback. An analogous argument holds for even i ∈ [2`].

Queries and views. By Vi
S (resp. Vi

R) we denote the view of S (resp. R) up to the end of round
i. This includes S ’s (resp. R’s) randomness rS (resp. rR), exchanged messages Mi as well as oracle
query-answer pairs known to S (resp. R) so far. We use Q(·) as an operator that extracts the set
of queries from a set of query-answer pairs or a view.

Executions and distributions. A (full) execution of S , R, Eve in protocol Π can be described
by a tuple (rS , rR,H) where H is a random function. We denote by E the distribution over
(full) executions that is obtained by running the algorithms for S ,R,Eve with uniformly chosen
random tapes and a sampled oracleH . For a sequence of i (augmented) messages M̃i = [m̃1, . . . , m̃i]
and a set of query-answer pairs P, by V (M̃i ,P) we denote the joint distribution over the views
(Vi
S ,V

i
R) of S and R in their (partial) execution of Π up to the point in the system in which

the i-th message is sent (by S or R) conditioned on: The transcript of messages in the first i
passes equals M̃i and H(j,q′) = a for all ((j,q′), a) ∈ P made to H (recall that a query (j,q′) to H
corresponds to a query q′ made to PUFj ). For (M̃i ,P) such that PrE

[
(M̃i ,P)

]
> 0, the distribution

V (M̃i ,P) can be sampled by first sampling (rS , rR,H) uniformly at random conditioned on being
consistent with (M̃i ,P) and then deriving S and R views Vi

S ,V
i
R from the sampled (rS , rR,H).

For (M̃i ,P) such that PrE
[
(M̃i ,P)

]
> 0, the event Good(M̃i ,P) is defined over the distribution

V (M̃i ,P) and holds if and only if Q(Vi
S )∩Q(Vi

R) ⊆ P+, where P+ = P∪Ψ i . For PrE
[
(M̃i ,P)

]
> 0 we

define the distribution GV (M̃i ,P) to be the distribution V (M̃i ,P) conditioned on Good(M̃i ,P). For
complete transcripts M̃, the distributions V (M̃,P) and GV (M̃,P) are defined similarly.

Transforming the protocol. We begin by transforming the OT protocol Π into one that has
the following properties:

Semi-normal form: We define a semi-normal form for OT protocols, following [BM09; BM13].
A protocol is in semi-normal form if it fulfills the following two properties:

(1) S and R ask at most one query in each protocol round, and

(2) the receiver of the last message uses this message to compute its output and it does
not query the oracle.

We start by converting our OT protocol Π into its semi-normal version. Note that any
attack on the semi-normal version of Π can be translated into an attack on the original Π
that makes the same number of queries [BM09; BM13]. Thus, in the following we present
our attacks and analysis w.r.t. the semi-normal version of Π.
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Using t-wise independent functions: Instead of instantiating the PUFs such that they evaluate
an honest PUF gate, a malicious R (resp. S) will create malicious stateful PUFs which
evaluate a randomly chosen t-wise independent hash functions. We define the distribu-
tion V t(M̃,P) exactly like V (M̃,P) except some subset of PUFs is instantiated with t-wise
independent hash functions for some t = poly (m/ε ), instead of with random oracles. Since
we choose t such that the malicious sender and honest receiver (resp., malicious receiver
and honest sender) make a total of at most t queries to all PUFs then: For every setting
of random variables (M̃i ,Pi), the distributions V (M̃i ,Pi) and V t(M̃i ,Pi) are identical. Thus,
from now on, even when R or S are malicious (and create t-wise independent PUFs), we
consider only the distribution V (M̃,P).

Random inputs: In the last step we change the protocol such that both sender and receiver
choose their input(s) uniformly at random. Thus, in the following, we consider execution
of Π = 〈S(1n),R(1n)〉 where the parties use their random tapes to choose their inputs.

The Eve algorithm. Recall that we have converted the protocol Π into semi-normal form. We
now present the attacking algorithm, Eve, which will be run by both the malicious sender (S ′)
and malicious receiver (R′) defined later:

Construction 1. Let ε < 1/100 be an input parameter. After each message mi is sent, Eve generates
the augmented transcript M̃i (note that by Claim 3, M̃i can always be reconstructed by Eve, since Eve
is launched by either the malicious S or R). Given M̃i , Eve attacks the `-round two-party protocol
Π = 〈S ,R〉 as follows. During the attack Eve updates a set P of oracle query-answer pairs as follows:
Suppose S (alternatively R) sends the i-th message in M̃i which is equal to m̃i =mi‖ψi . For i ∈ [2`],
Eve does the following: As long as the total number of queries made by Eve is less than t − 2m and
there is a query q = (j,q′) < P+, where P+ := Ψ i ∪ P, such that one of the following holds:

Pr
(ViS ,V

i
R)←GV (M̃i ,P)

[
q′ ∈ Q(Vi

S )∧ j ∈ S iPUF
]
≥ ε2

100m

or Pr
(ViS ,V

i
R)←GV (M̃i ,P)

[
q′ ∈ Q(Vi

R)∧ j ∈ S iPUF
]
≥ ε2

100m
.

Eve queries the lexicographically first such q = (j,q′) to H and adds (q,H(q)) to P.

2.2.3 Analysis of the Eve Algorithm

We summarize some properties of the Eve algorithm that can be verified by inspection:

Symmetry of Eve: Both S and R can run the Eve algorithm, making the same set of queries P to
the PUFs. In particular, at the point where message mi is sent, a party requires only the
augmented transcript M̃i and oracle access to PUFj for j ∈ S iPUF. Note that for each j ∈ S iPUF
a party either holds PUFj (and so can query it directly) or created PUFj dishonestly and
thus knows the code of PUFj (and so can simulate responses to queries to PUFj ).

Determinism of Eve: The Eve algorithm is deterministic and so for a fixed transcript M̃ and a
fixed set of PUFs, both parties will recover the same set of queries when running Eve.
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Number of queries: The number of queries made by Eve is at most t − 2m. Thus, since S and R
each make at most m number of PUF queries, the total number of queries made by S , R
and Eve is at most (t − 2m) + 2m = t.

We will now prove the following Lemma about the Eve algorithm:

Lemma 4. Let Π = 〈S ,R〉 be a PUF-based OT protocol in which the sender and receiver each ask at
mostm queries total. Then we have the following properties of the Eve algorithm, with input parameter
ε < 1/100, described in Construction 1:

With probability at least 1− ε over the randomness of S , R, and the randomness of the PUFs we
have that the statistical distance between VVS (M̃,P)×VVR(M̃,P) and V (M̃,P) is at most ε. Namely:

SD
(
VVR(M̃,P)×VVS (M̃,P),V (M̃,P)

)
≤ ε.

We first consider a modified Eve algorithm which makes an unbounded number of queries
and analyze the properties of this algorithm. We then switch to the Eve algorithm described in
Construction 1. Our exposition follows [BM09; BM13] closely.

Construction 2. Let ε < 1/100 be an input parameter. After each message mi is sent, Eve generates
the augmented transcript M̃i (note that by Claim 3, M̃i can always be reconstructed by Eve, since Eve
is launched by either the malicious S or R). Given M̃i , Eve attacks the `-round two-party protocol
Π = 〈S ,R〉 as follows. During the attack Eve updates a set P of oracle query-answer pairs as follows:
Suppose S (alternatively R) sends the i-th message in M̃i which is equal to m̃i =mi‖ψi . For i ∈ [2`],
Eve does the following: As long as there is a query q = (j,q′) < P+, where P+ := Ψ i ∪P, such that one of
the following holds:

Pr
(ViS ,V

i
R)←GV (M̃i ,P)

[
q′ ∈ Q(Vi

S )∧ j ∈ S iPUF
]
≥ ε2

100m

or Pr
(ViS ,V

i
R)←GV (M̃i ,P)

[
q′ ∈ Q(Vi

R)∧ j ∈ S iPUF
]
≥ ε2

100m

Eve queries the lexicographically first such q = (j,q′) to H and adds (q,H(q)) to P.

We prove the following:

Lemma 5. Let Π = 〈S ,R〉 be a PUF-based OT protocol in which the sender and receiver each ask at
mostm queries total. Then we have the following properties of the Eve algorithm, with input parameter
ε < 1/100, described in Construction 2:

1. poly (m/ε )-Efficiency: Eve is deterministic and, over the randomness of the PUFs and S and R’s
private randomness, the expected number of Eve queries is at most poly (m/ε ).

2. (1 − ε/2)-Security: With probability at least 1 − ε/2 over the randomness of S , R, and the
randomness of the PUFs we have that the statistical distance between VVS (M̃,P)×VVR(M̃,P) and
V (M̃,P) is at most ε/2. Namely:

SD
(
VVR(M̃,P)×VVS (M̃,P),V (M̃,P)

)
≤ ε/2.
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Preliminaries Let H be a random oracle, i.e., uniformly distributed over the set of all random
functions H : {0,1}∗→ {0,1}∗. For any partial function F with domain D we denote by PrH [F ]
the probability that the random oracle H is consistent with F.

Lemma 6. For consistent finite partial functions F1,F2 and random oracle H it holds that

Pr
H

[F1 ∪F2 ] =
PrH [F1 ] ·PrH [F2 ]

PrH [F1 ∩F2 ]
.

Events over E. Event Fail holds if and only if at some point during the execution of the system,
S or R asks a query q, which was asked by the other party, but is not already contained in
P+ := P∪Ψ i . If the first query that makes Fail happen is R’s j-th query we say the event RFailj
has happened, and if it is S ’s j-th query we say that the event SFailj has happened.

Analysis of Modified Attack. Let ε1 := ε2/100. We prove the following lemma:

Lemma 7. For every (Vi
R,M̃

i ,P) sampled by executing the system it holds that

Pr
GV (M̃i ,P)

[
RFaili | Vi

R
]
≤ 3ε1

2m
.

A symmetric statement holds for S .

The Graph Characterization As in [BM09; BM13], we first present a graph characterization
for the distribution V (M̃i ,P) and then use it to prove Lemma 7.

Lemma 8 (Graph Characterization of V (M̃i ,P)). Let (M̃i ,P) be, in order, the augmented partial
transcript and the set of oracle query-answer pairs known to Eve by the end of the round in which the
last message in M̃i is sent, and PrV (M̃i ,P)

[
Good(M̃i ,P)

]
> 0. For every such (M̃i ,P), there is a bipartite

graph G (depending on (M̃i ,P)) with vertices (US ,UR) and edges E such that:

1. Every vertex u in US has a corresponding view Su for S and a set Qu = Q(Su) \ P+, where
P+ := P∪Ψ i . The same holds for vertices in UR by changing the role of S and R.

2. There is an edge between u ∈ US and v ∈ UR if and only if Qu ∩Qv = ∅.

3. Every vertex is connected to at least (1− 2ε1) fraction of vertices on the other side.

4. The distribution (Vi
S ,V

i
R)←GV (M̃i ,P) is identical to sampling a random edge (u,v)← E and

taking (Su ,Rv) (i.e. the views corresponding to u and v).

We now proceed to prove Lemma 7, given the graph characterization.

Proof. Let Vi
R,M̃

i ,P be as in Lemma 7 and let q = (j,q′) be R’s `-th query which is going to
be asked after the last message m̃i in M̃i is sent to R. By Lemma 8, the distribution GV (M̃i ,P)
conditioned on getting Vi

R as R’s view is the same as uniformly sampling a random edge
(u,v) ← E in the graph G of Lemma 8 conditioned on Rv = Vi

R. We prove Lemma 7 even
conditioned on choosing any vertex v such that Rv = Vi

R. For such fixed v, the distribution of
S ’s view Sv , when we choose a random edge (u,v′) conditioned on v = v′ is the same as choosing
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a random neighbor u←N (v) of the node v and then selecting S ’s view Su corresponding to the
node u. Let S = {u ∈ US | q ∈ Qu}. Note that if q = (j,q′) is such that j < S iPUF then we have that

Pr
u←N (v)

[q ∈ Qu ] = 0.

This is because R can only query a PUF that it holds at the point right after message m̃i is
sent. However, if PUFj is such that R currently holds the PUF and PUFj < S

i
PUF, then PUFj must

have been created by R. Thus, by definition of the augmented transcript M̃i , all queries made
by S to PUFj up to this point in the protocol are included in S i ⊆ P+ and thus cannot be in
Qu =Q(Su) \ P+.

Thus, we focus our attention on queries q = (j,q′) such that j ∈ S i . We have that

Pr
u←N (v)

[q ∈ Qu ] ≤ |S |
d(v)

≤ |S |
(1− 2ε1) · US

≤ |S | · |UR|
(1− 2ε1) · |E|

≤
∑
u∈S d(u)

(1− 2ε1)2 · |E|
≤ ε1

(1− 2ε1)2 ·m
≤ 3ε1

2m

The second and fourth inequalities are due to the degree lower bounds of Item 3 in Lemma 8.
The third inequality is because |E| ≤ |US | · |UR|. The fifth inequality is because of the definition of
the attacker Eve who asks ε1/m heavy queries, for queries q of the form (j,q′) where j ∈ S i , for
S ’s view when sampled from GV (M̃i ,P), as long as such queries exist. Namely, when we choose
a random edge (u,v)← E (which by Lemma 8 is the same as sampling (Vi

S ,V
i
R)← GV (M̃i ,P)),

it holds that u ∈ S with probability
∑
u∈S d(u)/ |E|. But for all u ∈ S it holds that q ∈ Qu , and

so if
∑
u∈S d(u)/ |E| > ε1/m the query q should have been learned by Eve already and by Item

2 of Lemma 8, q could not be in any set Qu . The sixth inequality is because we are assuming
ε1 < ε < 1/100.

Next, we turn our attention to proving Lemma 8. In order to prove this Lemma, we present a
product characterization of the distribution GV (M̃i ,P).

Lemma 9 (Product Characterization). For any (M̃i ,P) there exists a distribution S (resp. R) over S ’s
(resp. R’s) views such that the distribution GV (M̃i ,P) is identical to the product distribution (S×R)
conditioned on the event Good(M̃i ,P). Namely,

GV (M̃i ,P) ≡ ((S×R) | Q(S)∩Q(R) ⊆ P+)

Proof. Suppose (Vi
S ,V

i
R)← V (M̃i ,P) is such that Q(Vi

S )∩Q(Vi
R) ⊆ P+, where P+ = P∪Ψ i . Note

that the set Ψ i can be derived from M̃i only. For such (Vi
S ,V

i
R) we will show that

Pr
GV (M̃i ,P)

[
(Vi
S ,V

i
R)

]
= α(M̃i ,P) ·αS ·αR,

where α(M̃i ,P) depends only on (M̃i ,P), αS depends only on Vi
S , and αR depends only on Vi

R.

This means that if we let S be the distribution over Supp
(
Vi
S

)
such that PrS

[
Vi
S

]
is proportional

to αS and let R be the distribution over Supp
(
Vi
R
)

such that PrR

[
Vi
R
]

is proportional to αR,

then GV (M̃i ,P) is proportional (and hence equal to) the distribution ((S×R) | Q(S)∩Q(R) ⊆ P+).
In the following we will show that PrGV (M̃i ,P)

[
(Vi
S ,V

i
R)

]
= α(M̃i ,P) · αS · αR. Since we are

assuming Q(S)∩Q(R) ⊆ P+ we have
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Pr
V (M̃i ,P)

[
(Vi
S ,V

i
R)

]
= Pr
V (M̃i ,P)

[
(Vi
S ,V

i
R)∧Good(M̃i ,P)

]
= Pr
V (M̃i ,P)

[
Good(M̃i ,P)

]
· Pr
GV (M̃i ,P)

[
(Vi
S ,V

i
R)

]
.

(2.1)

On the other hand, by definition of conditional probability we have

Pr
V (M̃i ,P)

[
(Vi
S ,V

i
R)

]
=

PrE
[
(Vi
S ,V

i
R,M̃

i ,P)
]

PrE
[
(M̃i ,P)

] . (2.2)

Therefore, by Equation 2.1 and Equation 2.2 we have

Pr
GV (M̃i ,P)

[
(Vi
S ,V

i
R)

]
=

PrE
[
(Vi
S ,V

i
R,M̃

i ,P)
]

PrE
[
(M̃i ,P)

]
·PrV (M̃i ,P)

[
Good(M̃i ,P)

] . (2.3)

The denominator of Equation 2.2 only depends on (M̃i ,P) and so we can take β(M̃i ,P) =
PrE

[
(M̃i ,P)

]
·PrV (M̃i ,P)

[
Good(M̃i ,P)

]
. In the following we analyze the numerator.

Notation. For partial function F, we denote by PrE [F ] = PrH [F ].
We claim that:

Pr
E

[
(Vi
S ,V

i
R,M̃

i ,P)
]

= Pr [rS = rS ] ·Pr [rR = rR ] ·Pr
E

[
Q(Vi

S )∪Q(Vi
R)∪ P

]
.

The reason is that the necessary and sufficient condition that (Vi
S ,V

i
R,M̃

i ,P) happens in the
execution of the system is that when we sample a uniform (rS , rR,H), rS equals S ’s randomness,
rR equals R’s randomness, and H is consistent with Q(Vi

S ) ∪ Q(Vi
R) ∪ P. These conditions

implicitly imply that S and R will indeed produce transcript M̃i as well.
Recall that P+ = P∪Ψ i . Note that P+ can be derived given (M̃i ,P) only. Now by Lemma 6, the

fact that Ψ i ⊆ Q(Vi
S )∪Q(Vi

R) and the fact that Q(Vi
S )∩Q(Vi

R) ⊆ P∪Ψ i = P+ we have that

Pr
E

[
Q(Vi

S )∪Q(Vi
R)∪ P

]
= Pr
E

[
Q(Vi

S )∪Q(Vi
R)∪ P+

]
= Pr
E

[
P+ ]
·Pr
E

[(
Q(Vi

S )∪Q(Vi
R)

)
\ (P+)

]
= Pr
E

[
P+ ]
·

PrE
[
Q(Vi

S ) \ P+
]
·PrE

[
Q(Vi

R) \ P+
]

PrE
[(
Q(Vi

S )∩Q(Vi
R)

)
\ P+

]
= Pr
E

[
P+ ]
·Pr
E

[
Q(Vi

S ) \ P+
]
·Pr
E

[
Q(Vi

R) \ P+
]
.

Therefore, we get:

Pr
GV (M̃i ,P)

[
(Vi
S ,V

i
R)

]
= Pr [rS = rS ] ·Pr [rR = rR ] ·Pr

E

[
P+ ]
·

PrE
[
Q(Vi

S ) \ P+
]
·PrE

[
Q(Vi

R) \ P+
]

β(M̃i ,P)
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and so we can take

αS = Pr [rS = rS ] ·Pr
E

[
Q(Vi

S ) \ P+
]
, αR = Pr [rR = rR ] ·Pr

E

[
Q(Vi

R) \ P+
]
, α(M̃i ,P) =

PrE [P+ ]

β(M̃i ,P)
.

Using the product characterization from Lemma 9, we define the following graph. GV (M̃ i ,P)
is a distribution over random edges of some bipartite graphG. More precisely, for fixed (M̃i ,P) the
bipartite graphG = (US ,UR,E) is defined as follows. Every node u ∈ US will have a corresponding
partial view Su of S that is in the support of the distribution S from Lemma 9.

We let the number of nodes corresponding to a view Vi
S be proportional to PrS

[
S = Vi

S

]
,

meaning that S corresponds to the uniform distribution over the left-side vertices US . Similarly,
every node v ∈ UR will have a corresponding partial view Rv of R such that R corresponds to
the uniform distribution over UR.

We define Qu =Q(Su) \
(
P∪Ψ i

)
=Q(Su) \P+ for u ∈ US to be the set of queries outside P+ that

were asked by S in the view Su . We define Qv =Q(Rv) \P+ similarly. We put an edge between
the nodes u and v (denoted by u ∼ v) in G if and only if Qu ∩Qv = ∅.

Lemma 9 implies that the distribution GV (M̃i ,P) is equal to the distribution obtained by
letting (u,v) be a random edge of the graph G and choosing (Su ,Rv). It turns out that the graph
G is dense as formalized in the next lemma.

Lemma 10. Let G = (US ,UR) be the graph above. Then for every u ∈ US , d(u) ≥ |UR| · (1− 2ε1) and
for every v ∈ UR, d(v) ≥ |US | · (1− 2ε1) where d(w) is the degree of vertex w.

Proof. We first show that for every w ∈ US ,
∑
v∈UR,w/v d(v) ≤ ε1 · |E|. The reason is that when

a random edge is chosen, the probability of each vertex v being chosen is d(v)/ |E| and if∑
v∈UR,w/v d(v)/ |E| > ε1 it means that Pr(u,v)←E [Qw ∩Qu , ∅] ≥ ε1. Moreover, note that Qw ∩Qu

can only contain queries of the form q = (j,q′) where j ∈ S iback since immediately after message i
has been sent, for j < S iback, P+ contains all queries made by at least one of the parties to PUFj .
Hence, because |Qw | ≤m, by the pigeonhole principle there must exist q = (j,q′) where j ∈ backi
such that Pr(u,v)←E [q ∈Qv ] ≥ ε1/m. But this is a contradiction, because if that holds, then q
should have been in P by the definition of the attacker Eve of Construction 2, and hence it could
not be in Qw. The same argument shows that for every w ∈ UR,

∑
u∈US ,w/v d(u) ≤ ε1 · |E|. Thus

for every vertex w ∈ US ∪UR, |E/(w)| ≤ ε1 |E| where E/(w) denotes the set of edges that do not
contain any neighbor of w (i.e. E/(w) = {(u,v) ∈ E | u / w∧w /}). The following claim proved
in [BM09; BM13] completes the proof of Lemma 10.

Claim 11. For ε1 ≤ 1/2, let G = (US ,UR,E) be a nonempty bipartite graph where |E/(w)| ≤ ε1 · |E| for
all vertices w ∈ US ∪UR. Then d(u) ≥ |UR| · (1− 2ε1) for all u ∈ US and d(v) ≥ |US | · (1− 2ε1) for all
v ∈ UR.

Given Lemma 7, Lemma 5 holds via the same analysis as in [BM09; BM13].2

2In particular, given Lemma 7, the proofs of Lemmas 3.4 and 3.5 of [BM13] can be used, essentially unchanged, to
complete the proof of our Lemma 5.
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Analysis of the original attack. Note that the Eve of Construction 1 is the same as Eve defined
in Construction 2 except it is modified to stop asking queries once Eve has made t − 2m =
poly (m/ε ) number of queries. Since, by property (1) of Lemma 5 we have that the expected
number of queries made by the Eve of Construction 2 is poly (m/ε ), for appropriate setting of t,
Lemma 4 follows from property (2) of Lemma 5 and Markov’s inequality. This completes the
proof of Lemma 4.

Breaking oblivious transfer. Recall that we assume that the honest S chooses its inputs (s0, s1)
at random and that the honest R chooses its input bit at random. Thus, we may consider an
execution of OT protocol Π = 〈S(1n),R(1n)〉 where the parties use their random tapes to choose
their inputs.

We now state an alternative version of Theorem 2:

Theorem 12. Let Π = 〈S(1n),R(1n)〉 be a PUF-based OT-protocol in which the sender and receiver
each ask at most m queries total to the set of z = poly (n) PUFs, {PUF1, . . . ,PUFz}. Then, at least one of
the following must hold:

1. There exists an adversarial S that uses malicious, stateful PUFs to compute the choice bit of R
with advantage 1/poly (n) and makes poly (n) queries to the PUFs.

2. For constant ε,δ where ε < 1/100 and 2ε < δ < 1/36, there exists an adversarial R that uses
malicious, stateful PUFs to correctly guess both secrets of S with probability 1− 12δ and makes
poly (n) queries to the PUFs.

By choosing constants ε,δ appropriately, we obtain the parameters of Theorem 2.

Proof. We begin with some notation. For a view VR (resp. VS ), we denote by In(VR) (resp. In(VS ))
the input of the corresponding party implicitly contained in its view. We denote by Out(VR)
the output of R implicitly contained in its view. For a distribution D and random variables
X1, . . . ,Xn, we denote by D(X1, . . . ,Xn) the distribution D conditioned on X1, . . . ,Xn.

Let p(·) be some sufficiently large polynomial. We consider two cases.

Case 1: With probability 1/p(n) over (M̃,P,VS ) generated by a run of Π̃ we have that either

Pr
VVR (M̃,P,VS )

[In(VR) = 0∧Out(VR) = s0 ] ≤ 1/2− δ

or Pr
VVR (M̃,P,VS )

[In(VR) = 1∧Out(VR) = s1 ] ≤ 1/2− δ

holds, where (s0, s1) = In(VS ).

Case 2: With probability 1− 1/p(n) over (M̃,P,VS ) generated by a run of Π̃ we have that both

Pr
VVR (M̃,P,VS )

[In(VR) = 0∧Out(VR) = s0 ] ≥ 1/2− δ

and Pr
VVR (M̃,P,VS )

[In(VR) = 1∧Out(VR) = s1 ] ≥ 1/2− δ
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hold, where (s0, s1) = In(VS ).
Clearly, for any PUF-based OT protocol, either Case 1 or Case 2 must hold. We show that

if Case 1 holds then a malicious sender may attack receiver privacy making poly (m/ε ) queries
and succeeding with advantage δ/4p(n), and if Case 2 holds then a malicious receiver may
attack sender privacy making poly (m/ε ) queries and succeeding with probability 1− 10δ. This
is sufficient to prove the theorem.

We next present and analyze the attacks on Receiver and Sender privacy.

2.2.3.1 Sender’s attack (denoted S ′) on receiver privacy:

1. Participate in protocol Π where the PUFs constructed by S are instantiated with t-wise
independent hash functions and maliciously constructed to record R queries.

2. Convert the resulting transcript M to the augmented transcript M̃ in an online fashion.

3. Run the Eve algorithm on augmented transcript M̃ in an online fashion to generate the set
P.

4. Compute the probabilities

P0 = Pr
VVR (M̃,P,VS )

[In(VR) = 0∧Out(VR) = s0 ]

and P1 = Pr
VVR (M̃,P,VS )

[In(VR) = 1∧Out(VR) = s1 ] .

5. If P0 ≥ 1/2 + δ/2, output 0, if P1 ≥ 1/2 + δ/2, output 1. Otherwise, output 0 or 1 with
probability 1/2.

Success of the attack. Recall that if Case 1 occurs then with probability 1/p(n) over (M̃,P,VS )
we have that either

Pr
VVR (M̃,P,VS )

[In(VR) = 0∧Out(VR) = s0 ] ≤ 1
2
− δ

or Pr
VVR (M̃,P,VS )

[In(VR) = 1∧Out(VR) = s1 ] ≤ 1
2
− δ

(2.4)

where (s0, s1) = In(VS ). Note that by assuming that the correctness of the OT protocol is at least
1− δ/4p(n), we have that

Pr
E

[(In(VR) = 0∧Out(VR) , s0)∨ (In(VR) = 1∧Out(VR) , s1)] ≤ δ/4p(n).

Thus, by Markov’s inequality, we have that with probability 1− 1/2p(n) over (M̃,P,VS ):

Pr
VVR (M̃,P,VS )

[(In(VR) = 0∧Out(VR) , s0)∨ (In(VR) = 1∧Out(VR) , s1)] ≤ δ/2. (2.5)
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Combining Equation 2.4 and Equation 2.5 with the fact that for every M̃,P,VS in the support of
E,

1 = Pr
VVR (M̃,P,VS )

[In(VR) = 0∧Out(VR) = s0 ] + Pr
VVR (M̃,P,VS )

[In(VR) = 1∧Out(VR) = s1 ]

+ Pr
VVR (M̃,P,VS )

[(In(VR) = 0∧Out(VR) , s0)∨ (In(VR) = 1∧Out(VR) , s1)] ,

we have that with probability 1/2p(n) over (M̃,P,VS ) either:

P0 = Pr
VVR (M̃,P,VS )

[In(VR) = 0∧Out(VR) = s0 ] ≥ 1
2

+ δ/2

or P1 = Pr
VVR (M̃,P,VS )

[In(VR) = 1∧Out(VR) = s1 ] ≥ 1
2

+ δ/2

We claim that S ′ achieves advantage of δ/4p(n) in guessing R’s input bit (where probabilities
are taken over all coins of S ′ and R). To see this, note that when P0 ≥ 1/2 + δ/2 or when
P1 ≥ 1/2 + δ/2, then S ′ guesses the R’s input bit correctly with probability at least 1/2 + δ/2 over
choice of PUFs and R’s randomness. Thus, the sender’s advantage is equal to:

1
2

(
1− 1

2p(n)

)
+

1
2p(n)

(1
2

+
δ
2

)
− 1

2
=

1
2

+
δ

4p(n)
− 1

2
=

δ
4p(n)

.

This concludes the analysis of the sender’s attack.

2.2.3.2 Receiver’s attack (denotedR′) on sender privacy:

1. Participate in protocol Π where the PUFs constructed by R are instantiated with t-wise
independent hash functions and are maliciously constructed to record S queries.

2. Convert the resulting transcript M to the augmented transcript M̃ in an online fashion.

3. Run the Eve algorithm on augmented transcript M̃ in an online fashion to generate the set
P.

4. Compute the probabilities

P0 = Pr
VVR (M̃,P)

[In(VR) = 0] and P1 = Pr
VVR (M̃,P)

[In(VR) = 1] .

5. If P0 = 0 or P1 = 0 then output ⊥ and terminate.

6. Otherwise, draw two views VR(0) and VR(1) from VVR(M̃,P, In(VR) = 0) and VVR(M̃,P,
In(VR) = 1), respectively (where VVR(M̃,P, In(VR) = 0) denotes the distribution over the
view of the receiver conditioned on (M̃,P) and the receiver’s input bit being equal to 0 and
VVR(M̃,P, In(VR) = 1) denotes the distribution over the view of the receiver conditioned on
(M̃,P) and the receiver’s input bit being equal to 1).

7. Output s′0 = Out(VR(0)), s′1 = Out(VR(1)).
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Success of the attack. We now proceed to analyze the success probability of the receiver’s
attack given Lemma 4. Recall that if Case 2 occurs then with probability 1−1/p(n) over (M̃,P,VS )
we have that both:

Pr
VVR (M̃,P,VS )

[In(VR) = 0∧Out(VR) = s0 ] ≥ 1/2− δ

and Pr
VVR (M̃,P,VS )

[In(VR) = 1∧Out(VR) = s1 ] ≥ 1/2− δ

where (s0, s1) = In(VS ).
This immediately implies that

Pr
VVR (M̃,P,VS )

[In(VR) = 0] ≤ 1/2 + δ and Pr
VVR (M̃,P,VS )

[In(VR) = 1] ≤ 1/2 + δ. (2.6)

By Lemma 4 we have that with probability 1− ε over (M̃,P)

SD
(
VVR(M̃,P)×VVS (M̃,P),V (M̃,P)

)
≤ ε. (2.7)

Note that for any fixed (M̃,P),

SD
(
VVR(M̃,P)×VVS (M̃,P),V (M̃,P)

)
= E

VS∼VVS (M̃,P)

[
SD

(
VVR(M̃,P),VVR(M̃,P,VS )

)]
. (2.8)

Thus, using Markov’s inequality and combining Equation 2.7 and Equation 2.8 we have that
with probability 1−

√
ε − ε > 1− 2

√
ε over (M̃,P,VS )

SD
(
VVR(M̃,P),VVR(M̃,P,VS )

)
≤
√
ε.

Given the above, and since we assume δ ≥ 2
√
ε ≥ 1/p(n) we have that with probability 1− 2δ

over (M̃,P,VS ) both

Pr
VVR (M̃,P)

[In(VR) = 0∧Out(VR) = s0 ] ≥ 1
2
− 2δ

and Pr
VVR (M̃,P)

[In(VR) = 1∧Out(VR) = s1 ] ≥ 1
2
− 2δ.

We denote the event that (over choice of (M̃,P,VS )) both quantities above are at least 1/2− 2δ
by EV . We must now analyze the probability that s′0 = Out(VR(0)) and s′1 = Out(VR(1)) are the
correct input bits of the sender. First, note that event EV occurs with probability at least 1− 2δ.
Moreover, it is not hard to see that when event EV occurs for some fixed (M̃,P,VS ), R′ does not
abort and moreover, due to Equation 2.6 we have that

Pr
VVR (M̃,P,In(VR)=0)

[Out(VR) = s0 ] ≥ 1/2− 2δ
1/2 + 2δ

≥ 1− 5δ

and Pr
VVR (M̃,P,In(VR)=1)

[Out(VR) = s1 ] ≥ 1/2− 2δ
1/2 + 2δ

≥ 1− 5δ.
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Thus, conditioned on EV ocurring, the probability that the sampled VR(0) (resp. VR(1)) is such
that Out(VR(0)) (resp. Out(VR(1))) is incorrect is at most 5δ. Finally, by a union bound, we have
that with probability at least 1− 12δ (over all coins of S and R′) both the sampled views of R′
output the correct s′0, s

′
1. This concludes the analysis of the receiver’s attack.

2.3 Formalizing Physically Uncloneable Functions

As mentioned before, in reality the ideal PUFs used for our impossibility result do not exist. In
reality a physically uncloneable function (PUF) is a physical device with “random” behavior
introduced through uncontrollable manufacturing variations during their fabrication. When a
PUF is queried with a stimulus (i.e., a challenge), it produces a physical output (the response).
The output of a PUF can be noisy; i.e., querying the PUF twice with the same challenge may
yield distinct, but close, responses. Moreover, the response need not be uniform; it may instead
only have high min-entropy. While we could ignore these inconvenient details for the negative
result, because using an ideal version of PUFs makes the negative result stronger, this is not
true for a positive result. For the positive result to be meaningful, we need to make sure, that
the definition of PUFs used as a building block is instantiable. This means that we will have
to formally define malicious PUFs in the UC-model explicitely allowing for noisiness. Prior
work has shown that for almost all applications, by using fuzzy extractors, one can eliminate the
noisiness of a PUF and make its output effectively uniform.

Formally, a PUF family is defined by two algorithms S and Eval. The index-sampling
algorithm S, which corresponds to the PUF-fabrication process, takes as input the security
parameter 1n and returns as output an index id. The evaluation algorithm Eval takes as input an
index id and a challenge3 c, and generates as output the corresponding response r.

We do not require that S or Eval can be evaluated efficiently. In fact, these are meant to
represent physical processes that generate a physical object and measure this object’s behavior
under various conditions. The index id is simply a formal placeholder that refers to a well-
defined physical object; it does not in itself represent any meaningful information about how
this object works.

Following [BFS+11], we define the two main security properties of PUFs: unpredictability and
uncloneability. As noted earlier, for simplicity we consider only a strong form of unpredictability
where the output of the PUF is uniform. Intuitively, uncloneability means that only one party
can evaluate a PUF at a time. This is formally modeled using an ideal functionality, FPUF, that
enforces this. Details of this ideal functionality are given in Section 2.3.4.

Finally, we also allow for the possibility of a maliciously generated PUF whose behavior
does not necessarily correspond to (S,Eval) as described above. We consider two possibilities
here: The first possibility is a malicious-but-stateless PUF that may use an Emal procedure of the
adversary’s choice in place of the honest algorithm Eval. Whenever a party in possession of
this PUF evaluates it, it receives Emal(c) instead of Evalid(c). (As noted in prior work, care must
be taken to ensure that the adversary cannot use Emal to perform arbitrary exponential-time
computation; formally, we restrict Emal to be a polynomial-time algorithm with oracle access
to Evalid.) The second possibility is a malicious-and-stateful PUF that may use a stateful Emal

3We assume the challenge space is just a set strings of a certain length. For some classes of PUFs, this is naturally
satisfied (see [MV10]). For others, this can be achieved using appropriate encoding.
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procedure of the adversary’s choice in place of Eval. Again, Emal is limited to polynomial-time
computation with oracle access to Evalid.

To simplify notation throughout the rest of the paper, we write PUF← S(1n) to denote the
fabrication of a PUF, and then write r := PUF(c).

2.3.1 Security of PUFs

Many different security properties of PUFs have been suggested in the literature such as, e.g.,
unpredictability, uncloneability, bounded noise, uncorrelated outputs, one-wayness, and tamper-
evidence. We refer the reader to [MV10; RSS09; BFS+11] for comprehensive discussions and
overviews. Following [BFS+11], we stick to the two main security properties of PUFs: unclone-
ability and unpredictability (notice that unpredictability as defined here implies mild forms of
uncloneability [BFS+11]).

Unpredictability. Loosely speaking, a PUF should be unpredictable in the sense that the PUF
on input a challenge c has some significant amount of intrinsic entropy, even if the PUF has
been measured before on several challenge values. The main tool to analyze this is (conditional)
min-entropy which is a measurement for the min-entropy on a response value for a challenge
c, when one has already measured the PUF on (not necessarily different) challenges c1, . . . , c`
before. As discussed in [BFS+11] it is sufficient for our definition that a PUF has a certain average
min-entropy, which we define as follows:

Definition 13 (Average Min-Entropy). The average min-entropy of PUF(c) conditioned on the
measurements of challenges C = (c1, . . . , c`) is defined by

H̃∞ (PUF(c)|PUF(C)) := − log

 E

ri :=PUF(ci )

[
max
r

(Pr [PUF(c) = r |r1 = PUF(c1), . . . , r` = PUF(c`)])
]

= − log

 E

ri :=PUF(ci )

[
2−H∞(PUF(c)|r1=PUF(c1),...,r`=PUF(c`))

]
where the probability is taken over the choice of id from I and the choice of possible PUF responses on
challenge c. The term PUF(C) denotes a sequence of random variables PUF(c1), ...,PUF(c`) each corre-
sponding to an evaluation of the PUF on challenge ck . We set H̃∞ (PUF(c)|C ) := H̃∞ (PUF(c)|PUF(C)).

Unpredictability is then defined as follows:

Definition 14 (Unpredictability). We call a (rg,dnoise)-PUF family P = (S,Eval) for security param-
eter 1n is (dmin(n),m(n))-unpredictable if for any c ∈ {0,1}n and any challenge list C = (c1, . . . , c`), one
has that, if for all 1 ≤ k ≤ ` the Hamming distance satisfies Dham(c,ck) ≥ dmin(n), then the average min-
entropy satisfies H̃∞ (PUF(c)|PUF(C)) ≥m(n). Such a PUF-family is called a (rg,dnoise,dmin,m)-PUF
family.

2.3.2 Applying Fuzzy Extractors to PUFs.

As mentioned before, the outputs of a PUF are noisy by nature. A natural way to handle these
outputs is to apply a fuzzy extractors, as introduced by Dodis et al. [DRS04; DOR+08], to
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convert any noisy, high-entropy measurements of PUFs into reproducible random values. Our
definition of fuzzy extractors follows the one of [BFS+11] and we use the following notions:
U` is the uniform distribution on `-bit binary strings and a set M with a distance function
D :M×M←R

+ = [0,∞) is called a metric space.

Definition 15 (Fuzzy Extractor). Let D be a distance function for metric spaceM. A (m,`, t,ε)-fuzzy
extractor FE consists of two efficient randomized algorithms (Gen,Rep):

Gen: The algorithm Gen outputs on input w ∈M a secret string st ∈ {0,1}` and a helper data string
p ∈ {0,1}∗.

Rep: The algorithm Rep takes an element w′ ∈M and a helper data string p ∈ {0,1}∗ and outputs a
string st.

Correctness: If D(w,w′) ≤ t and (st,p)←$Gen(w), then Rep(w′ ,p) = st.

Security: For any distributionW on the metric spaceM of min-entropy m, the first component of
the random variable (st,p), defined by drawing w according to W and then applying Gen, is
distributed almost uniformly, even if p is observed, i.e., SD((st,p), (U` ,p)) ≤ ε.

To combine PUFs with a fuzzy extractors one needs to define matching parameters such that
the outputs of the composition of both primitives are almost uniformly distributed. Assume that
we have a (rg(n),dnoise(n),dmin(n),m(n))-PUF family with dmin being in the order of o(n/ logn)
and let `(n) := n be the length parameter for value st. By ε(n) we denote a negligible function
and let t(n) = dnoise(n). For each n, let (Gen,Rep) be a (m(n), `(n), t(n),ε(n))-fuzzy extractor. The
metric spaceM is {0,1}rg(n) with Hamming distance Dham.

Definition 16 (Matching Parameters). If a PUF and a fuzzy extractor FE = (Gen,Rep) satisfy the
above requirements, then they are said to have matching parameters.

If a PUF and a fuzzy extractor have matching parameters, then the properties well-spread
domain, extraction independence and response consistency follow.

Well-Spread Domain: For all polynomials p(n) and all sets of challenges c1, ..., cp(n), the proba-
bility of a random challenge to be within distance smaller dmin of any of the ck is negligible.

Extraction Independence: For all challenges c1, ..., cp(n), it holds that the PUF evaluation on a
challenge c with D(ck , c) > dmin for all 1 ≤ k ≤ p(n) and subsequent application of Gen yields
an almost uniform value st even for those who observe p.

Response Consistency: The fuzzy extractor helps to map two evaluations of the same PUF to
the same random string, i.e., if PUF is measured on challenge c twice and returns r and r ′ ,
then for (st,p)←$Gen(r), one has st = Rep(r ′ ,p).

2.3.3 Malicious PUFs in the UC Framework

Brzuska et al. [BFS+11] modeled PUFs in Canetti’s universal composability framework [Can01].
Their ideal functionality considers only honestly generated PUFs and it is provided here for
completeness. Subsequently, Ostrovsky et al. initiated the study of UC secure protocols in the
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context of maliciously generated PUFs [OSV+12]. We first review the ideal functionality of
honest PUFs, taken almost verbatim from [BFS+11].

The ideal functionality FHPUF is presented in Figure 2.1 and it allows the following operations:
(1) a party S is allocated a PUF; (2) S can query the PUF; (3) S gives the PUF to another party R
who can also query the device; (4) an adversary can query the PUF in transit [BFS+11].

The functionality FHPUF maintains a list L of tuples (sid, id,S , τ) where sid is the (public)
session identifier and id is the (internal) PUF-identifier, essentially describing the output distri-
bution. Note that the PUF itself does not use sid. The element τ ∈ {trans(R),notrans} denotes
whether the PUF is in transition to R. For trans(R), indicating that the PUF is in transit to R,
the adversary is able to query the PUF. In turn, if it is set to notrans then only the possessing
party can query the PUF.

The PUF functionality FHPUF is indexed by the PUF parameters (rg,dnoise,dmin,m)-PUF and
gets the security parameter n in unary encoding as additional input. It is required to satisfy
the bounded noise property for dnoise(n) and the unpredictability property for (dmin(n),m(n)).
This enforces that the outputs obey the basic entropic requirements of PUFs (analogously to the
requirement for the random oracle functionality to produce random and independent outputs).
We write FHPUF and FHPUF(rg,dnoise,dmin,m) interchangeably.

Also note that our definition requires that a PUF is somehow certified. That is, the adversary
cannot replace a PUF sent to an honest party by a fake token including some “software emula-
tion”; the adversary can only measure the PUF when in transition. The receiver can verify the
constitution and authenticity of the received hardware. Even though this certification is not
explicitly modeled in the ideal functionality, it is easy to see that it is ensured since the receiver
of the PUF can simply check if the sid it received is the correct one.

2.3.3.1 The Approach of Ostrovsky et al.

Ostrovsky et al. considered two different generalizations of the definition by Brzuska et al..
The first one models the case where the adversary is able to produce a fake PUF that behaves
arbitrarily. The second definition allows the adversary to access the honestly generated PUF
maliciously. In this work we are only interested in the setting where the PUF has been generated
maliciously and will not discuss the second setting.

Their ideal functionality for maliciously generated PUFs is parametrized by two PUF families
in order to handle honestly and maliciously generated PUFs: The honestly generated family is
a pair (Snor,Enor) and the malicious one is (Smal,Emal). The malicious family can be considered
as chosen by the attacker. Whenever a party Pi initializes a PUF, then it specifies whether it is
an honest or a malicious PUF by sending mode ∈ {nor,mal} to the functionality FPUF. The ideal
functionality then initialises the appropriate PUF family and stores a tag nor or mal representing
this family. Whenever the PUF is evaluated, the ideal functionality uses the evaluation algorithm
that corresponds to the tag.

The handover procedure is identical to the original formulation of Brzuska et al. [BFS+11],
where each PUF has a status flag τ ∈ {trans(R),notrans} that indicates if a PUF is in transit or
not. A PUF that is in transit can be queried by the adversary. Thus, whenever a party Pi sends a
PUF to Pj , then the status flag is changed from notrans to trans and the attacker can evaluate
the PUF. At some point, the attacker sends readyPUF to the ideal functionality to indicate that it
is not querying the PUF anymore. The ideal functionality then hands the PUF over to Pj and



32 CHAPTER 2. ON SECURE COMPUTATION WITH MALICIOUS PUFS

FHPUF is parameterized by the PUF family P = (Snor,Enor) with parameters (rg,dnoise,dmin,m),
it also receives as initial input a security parameter 1n and runs with parties P1, ..., Pn and
adversary Sim.
• Whenever a party S sends (initPUF,sid,S) to FHPUF, FHPUF checks, if there exists a tuple

(sid,∗,∗,∗) ∈ L:
? If such a tuple exists return into waiting state.
? Else, draw id←$Snor(1n) from the PUF-family, append (sid, id,S ,notrans) to L, and send

(initializedPUF,sid) to S .
• Whenever a party S sends (evalPUF,sid,S , c) to FHPUF, FHPUF checks if there exists a tuple

(sid, id,S ,notrans) ∈ L:
? If no such tuple exists return into waiting state.
? Else, run r←$Enor(1n, id, c) and send (responsePUF,sid, c, r) to S .
• Whenever a party S sends (handoverPUF,sid,S ,R) to FHPUF, FHPUF checks if there exists a

tuple (sid,∗,S ,notrans) ∈ L:
? If no such tuple exists return into waiting state.
? Else, modify the tuple (sid, id,S ,notrans) to the updated tuple (sid, id,⊥, trans(R)) and

send handoverPUF(sid,S ,R) to Sim to indicate that a handover occurs between S and R.
• Whenever Sim sends (evalPUF,sid,Sim, c) to FHPUF, FHPUF checks if there exists a tuple

(sid, id,⊥, trans(∗)) ∈ L:
? If no such tuple exists return into waiting state.
? Else, run r←$Enor(1n, id, c) and send (responsePUF,sid, c, r) to Sim.
• Whenever Sim sends (readyPUF,sid,Sim) to FHPUF, FHPUF checks if there exists a tuple

(sid, id,⊥, trans(R)) ∈ L:
? If no such tuple exists return into waiting state.
? Else, modify the tuple (sid, id,⊥, trans(R)) to the updated tuple (sid, id,S ,notrans), send

(handoverPUF,sid,S) to R, and store the tuple (receivedPUF,sid,S).
• Whenever Sim sends (receivedPUF,sid,S) on FHPUF’s input tape, FHPUF checks if a tuple

(receivedPUF,sid,S) has been stored. If so, it sends this tuple to S . Else, FHPUF returns into
waiting state.

Figure 2.1: The ideal functionality FHPUF for honestly generated PUFs.

changes the status flag back to notrans. The party Pj may evaluate the PUF. Finally, when the
attacker sends the message receivedPUF to the ideal functionality, then FPUF sends receivedPUF
to Pi in order to notify Pi that the handover is over.

This model for maliciously generated PUFs was used as the basis of the previous version of
this work [DFK+14] published at CRYPTO 2014, however, it has several problems. First of all,
the fact that a malicious PUF can essentially contain a non-polynomial time algorithm presents a
problem for any simulator in the security proof. Ostrovsky et al. try to circumvent this problem
by requiring that a PUF family is admissible relative to the assumptions underlying the rest of
the protocol. I.e., the problem should remain hard, even if the attacker is given access to the
PUF family. However this does not seem to be enough. Consider the following example that
illustrates the problem:

An attacker might embed an algorithm solving a completely unrelated hard problem into the
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PUFs (e.g., the rest of the problem is based on DDH and the attacker embeds an RSA solver into
the PUF) and simply probe the PUF before running the attack. If the PUF is able to solve the
hard problem, it continues. Otherwise it aborts. This presents a problem for a polynomial time
simulator, since it may have to simulate this super-polynomial time algorithm to effectively use
the attacker. The admissibility requirement does not solve this, as the problem that is solved by
the PUF is completely unrelated and therefore does not invalidate the assumptions underlying
the rest of the protocol.

Another problem with the definition of Ostrovsky et al. is mainly counter-intuitive in the
case where malicious PUFs can be stateful but becomes very pronounced in the case of stateless
malicious PUFs: The only way for the attacker to instantiate a PUF, is to sample uniformly
from the specified family. This presents a problem in several cases. An attacker might want to
adaptively use several different kinds of malicious PUFs with different behavior, depending on
the current protocol step. An attacker might want instantiate the PUFs as t-wise independent
functions and use the fact that this allows them to evaluate the PUF, even if it is not in their
possession. An attacker might want to fix the PUF to particular values on a fixed number of
points but let it behave honestly everywhere else. In the stateful case, all of these and similar
problems can be solved by giving the PUFs some kind of programming interface that allows the
attacker to switch between different kinds of PUFs, program a function to evaluate, or program
certain points of the PUF. While this seems like a very counter-intuitive approach, it does indeed
work and gives the attacker a lot of power. As soon as we require PUFs to be stateless, however,
the attacker loses any ability to change the behavior of the sampled malicious PUF and thus
the power of an attacker degenerates much more severely than one would have hoped. In the
next section, we therefore develop a new ideal functionality for maliciously generated PUFs that
adresses these problems.

2.3.4 Maliciously Generated PUFs

The main change is, that malicious PUFs are no longer generated by drawing uniformly from an
arbitrary attacker-specified family. Instead, to generate a malicious PUF, the attacker specifies
a polynomial-size circuit that may include honest PUF gates. This gets rid of the possibility
of a malicious PUF solving a hard problem, since the circuit must be of polynomial size and
can, therefore, by definition not be used to solve any hard problems. It also makes specifying
malicious PUFs much more intuitive, since it allows to directly specify the behavior, without
having to use programming techniques. For the same reason, the power of an attacker also
degenerates much more gracefully when restricted to stateless PUFs than it does in in the model
of Ostrovsky et al. and all the examples from above can be realized in an intuitive way whether
the PUFs are allowed to be stateless or not: If the attacker wants to specify different kinds of
malicious PUFs at different points in the protocol, it may do so by simply specifying different
circuits. If an attacker wants to instantiate the PUF with an efficiently computable function to
allow evaluation even after handing the PUF over, it can do so by simply specifying said function
as a circuit when instantiating the PUF. If an attacker wants to have an “almost honest” PUF that
is fixed on only a few points, the honest PUF gates in the circuits easily allow to do this. The
ideal functionality FPUF is presented in Figure 2.2.
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FPUF is parameterized by the PUF family P = (Snor,Enor) with parameters (rg,dnoise,dmin,m),
it also receives as initial input a security parameter 1n and runs with parties P1, ..., Pn and
adversary Sim.
• Whenever a party S sends (initPUF,sid,S ,C,state) to FPUF, FPUF checks if there exists a

tuple (sid,∗,∗,∗,∗,∗,∗) ∈ L:
? If such a tuple exists return into waiting state.
? Else, draw id←$Snor(1n) from the PUF-family. If C = ⊥ set mode = nor, otherwise set

mode = mal. Append (sid, id,mode,S ,notrans,C,state) to L and send (initializedPUF,sid)
to S .

• Whenever a party S sends (evalPUF,sid,S , c) to FPUF, FPUF checks if there exists a tuple
(sid, id,mode,S ,notrans,C,state) ∈ L:
? If no such tuple exists return into waiting state.
? Else, if mode = nor run r←$Enor(1n, id, c) and send (responsePUF,sid, c, r) to S .
? Else, if mode = mal evaluate (state′ , r)←$CEnor(1n,id,·)(state, c), modify the tuple (sid, id,

mal,S ,notrans,C,state) to the updated tuple (sid, id,mal,S ,notrans,C,state′), and send
(responsePUF,sid, c, r) to S .

• Whenever a party S sends (handoverPUF,sid,S ,R) to FPUF, FPUF checks if there exists a
tuple (sid,∗,∗,S ,notrans,∗,∗) ∈ L:
? If no such tuple exists return into waiting state.
? Else, modify the tuple (sid, id,mode,S ,notrans,C,state) to the updated tuple (sid, id,

mode,⊥, trans(R),C,state) and send (handoverPUF,sid,S ,R) to Sim to indicate that a
handoverPUF occurs between S and R.

• Whenever Sim sends (evalPUF,sid,Sim, c) to FPUF, FPUF checks if there exists a tuple
(sid, id,mode,⊥, trans(∗),C,state) ∈ L:
? If no such tuple exists return into waiting state.
? Else, if mode = nor run r←$Enor(1n, id, c) and send (responsePUF,sid, c, r) to Sim.
? Else, if mode = mal evaluate (state′ , r)←$CEnor(1n,id,·)(state, c), modify the tuple (sid,

id,mal,⊥, trans(R),C,state) to the updated tuple (sid, id,mal,⊥, trans(R),C,state′) and
send (responsePUF,sid, c, r) to Sim.

• Whenever Sim sends (readyPUF,sid,Sim) to FPUF, FPUF checks if there exists a tuple
(sid, id,mode,⊥, trans(R),∗,∗) ∈ L:
? If no such tuple exists return into waiting state.
? Else, modify the tuple (sid, id,mode,⊥, trans(R),C,state) to the updated tuple (sid,

id,mode,S ,notrans,C, trans), send (handoverPUF,sid,S) to R, and store the tuple
(receivedPUF,sid,S).

• Whenever Sim sends (receivedPUF,sid,S) to FPUF, FPUF checks if a tuple
(receivedPUF,sid,S) has been stored. If so, it sends this tuple to S . Else, FPUF
returns into waiting state.

Figure 2.2: The ideal functionality FPUF for maliciously generated PUFs.
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2.4 Feasibility Result for Malicious, Stateless PUFs

We show that universally composable two-party computation is possible if the adversary is
limited to creating stateless malicious PUFs. The core of our result is a construction of an
unconditionally secure, universally composable, oblivious-transfer protocol in this model; we
describe the protocol here, and prove it secure. In Section 2.4.2 we briefly discuss how the
oblivious-transfer protocol can be used to obtain the claimed result.

Sender S session sid ReceiverR

PUF←$S(1n)
PUF

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ for i = 1, ...,N do

ci←{0,1}n

(ri ,pi ) := Gen(PUF(i‖ci ))
PUF

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− store (c1, r1,p1), . . . , (cN , rN ,pN )

for i = 1, . . . ,N do

Input: s0,s1 ∈ {0,1}n Input: b ∈ {0,1}

x←$ {0,1}n
x

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
v,pi←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−− v := ci ⊕ (b · x)

r̂0 := Rep(PUF (i‖v) ,pi )

r̂1 := Rep(PUF (i‖(v ⊕ x)) ,pi )

S0 := s0 ⊕ r̂0

S1 := s1 ⊕ r̂1
S0,S1−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→ return sb := Sb ⊕ ri

Figure 2.3: Oblivious transfer protocol.

2.4.1 Universally Composable Oblivious Transfer

Our OT protocol adapts the protocol of Brzuska et al. [BFS+11], which is secure against attackers
limited to honestly generated PUFs. Essentially, we simply switch which party generates the
PUF.

In our description of the protocol in Figure 2.3, we have the parties exchange the PUF once,
after which they can subsequently execute any pre-determined number N of oblivious-transfer
executions.

Theorem 17. The protocol depicted in Figure 2.3 securely realizes FOT in the (FPUF,Fauth)-hybrid
model, where malicious parties are limited to generate stateless PUFs (with arbitrary behavior). The
security holds unconditionally.

The security of our protocol holds in the statistical sense which means that, the environment’s
view between the ideal and the real wold is statistically close, even if the algorithms A, Z,
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FOT is parameterized by an integer N and receives as input a security parameter 1n, and runs
with parties P1, ..., Pn and adversary Sim. The functionality initially sets (i,S,R) = (1,⊥,⊥).
In the following, the functionality ignores any input if i > N , or if i > 1 and (S,R) , (S ,R) for
the parties’ identities (S ,R) in the input. Else,
• Whenever S sends (sendOT,sid,ssid,S ,R, (s0,s1)) with s0,s1 ∈ {0,1}n ∪ {⊥} to FOT, FOT

stores (sendOT,sid,ssid,S ,R, (s0,s1)) and sends (sendOT,sid,ssid,S ,R) to Sim. The func-
tionality increments i to i + 1 and, if now i = 2, stores (S,R) = (S ,R).

• WheneverR sends (choose− secretOT,sid,ssid,S ,R,b) for b ∈ {0,1} to FOT, FOT stores this
tuple and sends (choose− secretOT,ssid,sid,S ,R) to Sim.

• When Sim sends (deliverOT,sid,ssid,S ,R) to FOT, FOT checks if tuples
(sendOT,sid,ssid,S ,R, (s0,s1)) and (choose− secretOT,sid,ssid,S ,R,b) have been
stored. If so, send (deliverOT,sid,ssid,S ,R,sb) to R.

• When Sim sends (receiptOT,sid,ssid,S ,R) to FOT, FOT checks if the tuple
(choose− secretOT,sid,ssid,S ,R,b) has been stored. If so, send (receiptOT,sid,ssid,S ,R)
to S .

Figure 2.4: The ideal functionality FOT for oblivious transfer adapted from [Can01].

and Sim are unbounded but query the PUF only a polynomial number of times. The proof
follows [BFS+11] closely.

Proof. We prove the security of our construction for static corruptions, which simplifies the
proof because we can describe different simulators depending on the corrupted party. We further
simplify the exposition of the proof by fixing the number of OTs to N = 1, but we stress that the
proof straightforwardly carries over to the more general case. In the following we construct an
ideal world adversary (simulator) Sim that interacts with the ideal world functionality FOT such
that no environment Z can distinguish an interaction with A in the real world from a protocol
execution with Sim in the ideal world. To do so, the simulator Sim invokes a copy of A and it
simulates the interaction of A with Z and the parties S and R.

Destroying PUFs. Malicious parties may destroy PUFs they create in the real world. However,
it is clear that this does not help them. Formally, this is because Sim (in the ideal world) can
simply ignore such a request (and the adversary has no way of telling whether the “PUF” was
destroyed or not. We therefore do not explicitly mention this possibility in what follows.

Simulating the Communication with Z The simulator Sim forwards the messages between Z
and A. This means that any message that Sim receives from Z is written on A’s input tape and
whenever A writes on his output tape, then Sim copies this value on its own output tape.

Both parties are honest. The simulator simulates both S and R locally and works as follows.

• Whenever Z writes two secrets (s0,s1) on the communication tape of S in the real world,
then Sim obtains (sendOT,sid,ssid,S ,R) on its input tape. Sim then picks two secrets
(s′0,s

′
1) uniformly at random and writes them on S ′s input tape. In addition, Sim chooses
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two random strings x0 and x1 and runs S which sends (sendauth,sid,ssid,S ,R, (x0,x1)) to
the simulated functionality Fauth.

• If FOT writes (choose− secretOT,sid,ssid,S ,R) on Sim’s input tape, then Sim chooses a
random bit b and writes b on R’s input tape.

• The simulator Sim relays all communications between the simulated parties S ,R, FPUF,
and A and follows their program as long as they do not produce any local output.

• At some point, the party R outputs sb and Sim then writes (deliverOT,sid,ssid,S ,R) on
the input tape of FOT. If S outputs receiptOT, then Sim writes (receiptOT,sid,ssid,S ,R)
on FOT’s input tape.

Recall, that both Z and Amay have evaluated the PUF in the setup phase a polynomial number
of times. In the following we show that tuple (x,c⊕ (b ·x),s0⊕ r̂0,s1⊕ r̂1) is uniformly distributed
from A’s point of view. To do so, it is sufficient to show that with high probability each variable
corresponding to each entry looks random and that each entry does not depend on the previous
entry. Obviously, x is a random string, the value c ⊕ (b · x) is computed by first choosing c
uniformly at random and then computing either c or c⊕ x depending on the value of b. Thus, in
both cases this value is distributed independently of x and b. Since the PUFs have a well-spread
domain, it follows that the adversary did not query the PUFs on challenges closer than dmin from
c⊕ (b ·x) or x⊕ c⊕ (b ·x). If this is the case, then the outputs of Gen(̂rα) for α = 0,1 are distributed
almost according to Ul . In particular, the statistical distance from Ul is at most ε(n) even after
learning the helper data. Thus, their statistical distance is at most 2ε(n) which is negligible.

Receiver is corrupted. We turn to the case where S is honest and R is malicious. In the setup
phase the simulator Sim observes the dishonest receiver queries (asked by A and Z) to the
honestly generated sender PUF and adds all query-answer pairs to a list L. In addition, Sim
creates an initially empty list of challenge values C. Note, that the malicious receiver cannot
replace the honestly generated PUF with a maliciously generated one, since the sender can
simply check the sid of the returned PUF and would reject a replaced PUF.

Whenever Z writes two secrets (s0,s1) on the communication tape of S in the real world,
then Sim obtains (sendOT,sid,ssid,S ,R) on its input tape. The simulator Sim then follows
the protocol description, picks a random value x and sends (sendauth,sid,ssid,S ,R,x) to the
simulated functionality Fauth. At some point, A asks the simulated R to send a value v to S
in the real world, then Sim first checks that D(v,C) > dmin and D(v ⊕ x,C) > dmin. If both cases
are true, then Sim verifies for each (c, r) ∈ L that either the hamming distance of c and v or of
c and v ⊕ x is smaller than dmin. Observe that both cases cannot occur simultaneously because,
D(c,v) < dmin and D(c,v ⊕ x) < dmin implies that D(v,v ⊕ x) < 2dmin. However the well-spread
domain property guarantees that the latter only happens with negligible probability. Thus, we
have proven that only one of the two cases can hold. The next step of the proof is to show that
the challenges in L are either not close to v or are not close to v ⊕ x. Suppose to the contrary
that there exist two queries c0 and c1 to the PUF such that D(c0,v) < dmin and D(c1,v ⊕ x) < dmin.
If this is the case, then D(c0 ⊕ x,c1) < 2dmin or equivalently, that D(x,c0 ⊕ c1) ≤ 2dmin. Since A
has made all PUF queries, this means that the value x is a random value that is independent of
any value c that A evaluated the PUF on. This implies that if A is able to choose c0, c1 in such
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a way, then this must be true for a non-negligible fraction of values x ∈ {0,1}n. If we denote by
p(n) the number of queries by A, then we can compute the number of sums of two different
challenges as p(n)

2 = 1
2p(n)(p(n)− 1). This equation represents only a negligible fraction of 2n. We

can further bound this number by multiplying the number of all elements in a ball of radius
2dmin to the number above, then we see that this property still holds as 2dmin is still in o(n/ logn).
This implies that A can only cover a negligible number of values x.

Now, the simulator sets b := 0 if there exists a challenge with D(c,v) < dmin or b := 1 if there
exists challenges with D(c,v ⊕ x) < dmin. If no such challenges exists then Sim chooses b at
random. Afterwards, Sim sends (sendauth,sid,ssid,R,S ,v) in the internal simulation and Sim
writes (choose− secretOT,sid,ssid,S ,R,v) on FOT’s input tape. When Sim gets the message
(choose− secretOT,sid,ssid,S ,R), then Sim writes (deliverOT,sid,ssid,S ,R) on FOT’s input
tape obtaining (deliverOT,sid,ssid,S ,R, sb) on the malicious R’s input tape, which is simulated
by Sim for A. To compute the answer for the message (sendauth,sid,ssid,R,S ,v), Sim chooses a
random secret s1−b, and the PUF and Gen to compute (̂rα ,pα), for α = 0,1 following the protocol.
It then sends (sendauth,sid,ssid,S ,R, (s0 ⊕ r̂0,p0,s1 ⊕ r̂1,p1)) to the simulated Fauth.

The last step of this part of the proof is to show that the joint views of Z andA in the protocol
execution in the real world is indistinguishable from the joint view of Z and A (simulated by
Sim) in the ideal world. Obviously, both joint views differ only in the last message received by
R. Since the adversary never queried the PUF on any challenge with distance smaller than dmin

from v ⊕ ((1− b) · x), it follows by the response independence of the honest PUF that r̂1−b is quasi
uniform even if p1−b is known. Thus, from A’s point of view the last messages are distributed
identically.

Sender is corrupted. We consider the case where S is malicious and R is honest. In this case
we build a simulator Sim that extracts both secrets s0,s1 from the malicious sender using its
permanent access to the PUFs. In the setup phase Sim follows the protocol description of the
honest R and to extracts both secrets, the simulator waits that the following two events happen:

1. A asks S to send (sendauth,sid,ssid,S ,R,x) in the simulation.

2. The ideal functionality FOT sends (choose− secretOT,sid,ssid,S ,R) to Sim.

If both events happen in arbitrary order, then Sim chooses a random string v← {0,1}n, sends
(sendauth,sid,ssid,S ,R,v) to S , and writes (deliverOT,sid,ssid,S ,R) to the input tape of FOT.
The simulator then evaluates the PUF computing rα for α ∈ {0,1} by sending (evalPUF,PUF,S ,v ⊕
(α ·x)) to the ideal functionality FPUF. Afterwards, Sim uses the helper data pα and the algorithm
Rep to obtain r̂α . If r̂α := Rep(rα ,pα) fails for α ∈ {0,1}, then set sα to⊥. If all executions succeeded,
then Sim sets s0 := r̂0⊕a0 and s1 := r̂1⊕a1. Afterwards, Sim writes (sendOT,sid,ssid,S ,R, (s0,s1))
on FOT’s input tape and Sim also writes (deliverOT,sid,ssid,S ,R) on FOT’s input tape.

Finally, we have to show that the simulation of the malicious S in the ideal world is indis-
tinguishable from the real world execution. This is true because v is random string in both
worlds and also because the output of R is the same in both worlds. To see this, observe that Sim
computes the output as R does it in the real world for both possible choice bits.
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2.4.2 From UC Oblivious Transfer to UC Two-Party Computation

We observe that our UC oblivious-transfer protocol can be used to obtain UC two-party compu-
tation of any functionality. The main idea is to first construct a semi-honest secure two-party
computation protocol using Yao’s garbled-circuit protocol, and to then apply the compiler of
Ishai, Prabhakaran, and Sahai [IPS08].

Semi-honest secure two-party computation. Lindell and Pinkas presented a proof for Yao’s
two-party secure-computation protocol [LP09]. They show how to instantiate the garbling part
of the protocol with a private-key encryption scheme having certain special properties. In
addition, the authors show that any pseudorandom function is sufficient to instantiate such a
private-key encryption scheme. Our main observation is that we can replace the pseudorandom
function with a PUF.4 This has already been observed before by Brzuska et al. [BFS+11] in a
different context. With this observation, we can apply the result of [LP09] to obtain a protocol
for semi-honest secure two-party computation based on PUFs only (and no computational
assumptions).

Theorem 18. Let f be any functionality. Then there is a (constant-round) protocol that securely
computes f for semi-honest adversaries in the (FPUF,FOT)-hybrid model.

We omit the proof since it follows easily from prior work.

Universally composable two-party computation. In the next step we apply the IPS com-
piler [IPS08], a black-box compiler that takes

1. An “outer” MPC protocol Π with security against a constant fraction of malicious parties.

2. An “inner” two-party protocol ρ, in the FOT-hybrid model, where the security of ρ only
needs to hold against semi-honest parties.

and transforms them into a two-party protocol ΦΠ,ρ which is secure in the FOT-hybrid model
against malicious corruptions.

In our setting, we must be careful to give information-theoretic instantiations of the “outer”
and “inner” protocols so that our final protocol ΦΠ,ρ will be unconditionally secure in the
FOT-hybrid model. Fortunately, we may instantiate the “outer” protocol, Π, with the seminal
BGW protocol [BGW88] and may instantiate the “inner” protocol, ρ, with the protocol from the
previous section. Alternatively, the “inner” protocol can be instantiated with the semi-honest
version of the two-party GMW protocol [GMW87] in the FOT-hybrid model.

Let ψ denote the OT-protocol described in Figure 2.3 and let Φψ
Π,ρ(f ) denote the IPS-compiled

protocol which makes subroutine calls to ψ instead of FOT and computes the functionality f .
Using Theorem 17 and Theorem 18, along with the UC composition theorem, we obtain the
following result:

Theorem 19. For any functionality f , protocol Φψ
Π,ρ(f ) securely computes f in the (FPUF,Fauth)-

hybrid model.

4Note also that if the circuit generator is malicious, then he cannot violate the circuit evaluator’s privacy by generating
a malicious PUF.





3On Tight Security Proofs for Schnorr Signatures

3.1 Motivation

The security of a cryptosystem is nowadays usually confirmed by giving a security proof. Typi-
cally, such a proof describes a reduction from some (assumed-to-be-)hard computational problem
to breaking a defined security property of the cryptosystem. A reduction is considered as tight,
if the reduction solving the hard computational problem has essentially the same running time
and success probability as the attacker on the cryptosystem. Essentially, a tight reduction means
that a successful attacker can be turned into an efficient algorithm for the hard computational
problem without any significant increase in the running time and/or significant loss in the success
probability. The tightness of a reduction thus determines the strength of the security guarantees
provided by the security proof: A non-tight reduction gives weaker security guarantees than
a tight one. Moreover, tightness of the reduction affects the efficiency of the cryptosystem
when instantiated in practice: A tighter reduction allows to securely use smaller parameters
(shorter moduli, a smaller group size, etc.). Therefore, it is very desirable for a cryptosystem
to have a tight security reduction. What is considered tight or non-tight may differ depending
on the circumstances, but usually even a polynomially-bounded increase/loss is considered as
significant, if the polynomial may be large. An increase/loss by a small constant factor on the
other hand is not considered as significant.

In the domain of digital signatures, tight reductions are known for many fundamental
schemes, such as Rabin/Williams signatures [Ber08], many strong-RSA-based signatures [Sch11],
and RSA Full-Domain Hash [KK12]. For Schnorr signatures [Sch90; Sch91], however, the story
is a bit different. Schnorr’s scheme is one of the most fundamental public-key cryptosystems
and Pointcheval and Stern have shown that it is provably secure, assuming the hardness of the
discrete logarithm (DL) problem [PS96] in the Random Oracle Model (ROM) [BR93]. However,
the reduction of Pointcheval and Stern from the discrete logarithm problem to breaking Schnorr
signatures is not tight: It loses a factor of q in the time-to-success ratio, where q is the number of
random oracle queries performed by the forger.

This has lead to a long line of research investigating the existence of tighter security proofs
for Schnorr signatures. At Asiacrypt 2005 Paillier and Vergnaud [PV05] gave a first lower
bound showing that any algebraic reduction (even in the ROM) converting a forger for Schnorr
signatures into an algorithm solving the discrete logarithm problem must lose a factor of at
least q1/2. Their result is quite strong, as they rule out reductions even for adversaries that do
not have access to a signing oracle and receive as input the message for which they must forge
(UUF-NMA, see Section 3.3.1.1 for a formal definition). However, their result also has some
limitations: It holds only under the interactive one-more discrete logarithm (OMDL) assumption,
they only consider algebraic reductions, and they only rule out tight reductions from the (one-
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more) discrete logarithm problem. At Crypto 2008 Garg et al. [GBL08] refined this result, by
improving the bound from q1/2 to q2/3 with a new analysis and show that this bound is optimal
if the meta-reduction follows a particular approach for simulating the forger. At Eurocrypt 2012
Seurin [Seu12] finally closed the gap between the security proof of Pointcheval and Stern [PS96]
and known impossibility results, by describing a novel elaborate simulation strategy for the
forger and providing a new analysis. Thus, to summarize, all previous works [PV05; GBL08;
Seu12] on the existence of tight security proofs for Schnorr signatures have the following in
common:

1. They only rule out the existence of tight reductions from specific strong computational
problems, namely the (one-more) discrete logarithm problem [BNP+03]. Reduction from
weaker problems such as, e.g., the computational or decisional Diffie-Hellman problem
(CDH/DDH) are not considered.

2. The impossibility results are not unconditional but instead are themselves only valid under
the very strong OMDL hardness assumption.

3. They hold only with respect to a limited (but natural) class of reductions, so-called algebraic
reductions.

It is not entirely unlikely that first the nonexistence of a tight reduction from strong computa-
tional problems is proven, and later a tight reduction from some weaker problem is found. A
concrete recent example in the domain of digital signatures where this has happened is RSA
Full-Domain Hash (RSA-FDH) [BR96]. First, at Crypto 2000 Coron [Cor00] described a non-tight
reduction from solving the RSA-problem to breaking the security of RSA-FDH, and at Eurocrypt
2002 [Cor02a] showed that under certain conditions no tighter reduction from RSA can exist.
Later, at Eurocrypt 2012, Kakvi and Kiltz [KK12] gave a tight reduction from solving a weaker
problem, the so-called Phi-Hiding problem. The leverage, used by Kakvi and Kiltz to circumvent
the aforementioned impossibility results, was to assume hardness of a weaker computational
problem, i.e., making a stronger assumption. As all previous works rule out only tight reductions
from strong computational problems such as DL and OMDL, this might happen again with
Schnorr signatures and the question whether a tight security reduction from weaker problems
might exist was left open for 25 years. A very first non-trivial tight security reduction for Schnorr
signatures was recently presented by Kiltz, Masny, and Pan [KMP16]. However, the necessary
assumption is interactive, highly non-standard, and is specifically tailored to allow the proof to
go through. The following question therefore still remained open:

Does a tight security proof for Schnorr signatures exist based on any weaker non-interactive
computational problem?

3.2 Contribution

In this chapter we answer this question in the negative for an overwhelming class of weaker
problems, ruling out the existence of tight reductions for virtually all natural non-interactive
computational problems defined over abstract algebraic groups. Like previous works, we
consider universal unforgeability under no-message attacks (UUF-NMA-security). Moreover,
our results hold unconditionally. In contrast to previous works, we consider generic reductions
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instead of algebraic reductions, but we believe that this restriction is marginal: The motivation
of considering only algebraic reductions from [PV05] applies equally to generic reductions. In
particular, to the best of our knowledge all known examples of algebraic reductions are also
generic.

Our main technical contribution is a new approach for the simulation of a forger in a meta-
reduction, i.e., “a reduction against the reduction”, which differs from previous works [PV05;
GBL08; Seu12] and which allows us to show the following main result:

Theorem (informal). For almost any natural non-interactive computational problem Π, there is no
tight generic reduction from solving Π to breaking the universal unforgeability under no-message
attacks of Schnorr signatures.

Technical Approach. We begin with the hypothesis that there exists a tight generic reduction
R from some hard non-interactive problem Π to the universal unforgeability under no-message
attacks (UUF-NMA) of Schnorr signatures. Then we show that under this hypothesis there exists
an efficient algorithmM, a meta-reduction, which efficiently solves Π. This implies that the
hypothesis is false. The meta-reductionM =MR runsR as a subroutine, by efficiently simulating
the forger A for the reduction R.

The difficulty with meta-reductions is thatM =MR must efficiently simulate the forger A
for R. All previous works in this direction [PV05; GBL08; Seu12] followed essentially the same
approach, using a discrete logarithm oracle provided by the OMDL assumption. This oracle
allows to efficiently compute valid signatures in the simulation of forger A. This is also the
reason why all previous results are only valid under the OMDL assumption, and were only
able to rule out reductions from the discrete log or the OMDL problem. To overcome these
limitations, a new simulation technique is necessary.

We revisit the simulation strategy of A applied in known meta-reductions, and put forward a
new technique for proving impossibility results. It turns out that considering generic reductions
provides additional leverage for simulating a successful forger efficiently, essentially by suitably
re-programming the group representation while computing valid signatures. The technical
challenge is to prove that the reduction remains oblivious to theses changes to the group
representation during the simulation, except for some negligible probability. We show how to
prove this by adopting the “low polynomial degree” proof technique of Shoup [Sho97], which was
originally introduced to analyze the complexity of certain algorithms for the discrete logarithm
problem, to the setting considered in this paper.

This new approach turns out to be extremely powerful, as it allows to rule out reductions
from any non-interactive representation-invariant computational problem. Since almost all
common hardness assumptions in algebraic groups (e.g., DL, CDH, DDH, DLIN, etc.) are
based on representation-invariant computational problems, we are able to rule out tight generic
reductions from virtually any natural computational problem, without making any additional
assumptions. Even though we apply it specifically to Schnorr signatures, the overall approach is
general. We expect that it is applicable to other cryptosystems as well.

Generic Reductions vs. Algebraic Reductions Similar to algebraic reductions, a generic re-
duction performs only group operations. The main difference is that the sequence of group
operations performed by an algebraic reduction may (but, to our best knowledge, in all known
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examples does not) depend on the particular representation of group elements. A generic reduc-
tion, however, is required to work essentially identical for any representation of group elements.
Generic reductions are by definition more restrictive than algebraic ones.

An obvious question arising with our work is the relation between algebraic and generic
reductions. Is a lower bound for generic reductions much less meaningful than a bound for
algebraic reductions? We argue that the difference is not very significant. The restriction to
algebraic reductions was motivated by the fact that most reductions in known security proofs
treat the group as a black-box, and thus are algebraic [PV05; GBL08; Seu12]. However, the same
motivation applies to generic reductions as well, with exactly the same arguments. In particular,
virtually all examples of algebraic reductions in the literature are also generic.

The vast majority of reductions in common security proofs for group-based cryptosystems
treats the underlying group as a black-box (i.e., works for any representation of the group), and
thus is generic. This is a very desirable feature, because then the cryptosystem can securely be
instantiated with any group in which the underlying computational problem is hard. In contrast,
representation-specific security proofs would require to re-prove security for any particular
group representation the scheme is used with. Therefore considering generic reductions seems
very reasonable.

Generic Reductions vs. Security Proofs in the Generic Group Model. We stress that we
model only the reduction R as a generic algorithm. We do not restrict the forger A in this way,
as commonly done in security proofs in the generic group model. It may not be obvious that this
is possible, because A expects as input group elements in some specific encoding, while R can
only specify them in the form of random encodings. However, the reduction only gets access to
the adversary as a black-box, which means that the adversary is external to the reduction, and
the environment in which the reduction runs can easily translate between the encodings used
by the reduction and the adversary. Further, note that while some reduction from a problem Π

may be generic, the actual algorithm solving said problem is not R itself, but the composition of
R and A which may very well be non-generic. In particular, this means that any results about
equivalence of interesting problems in the generic group model do not apply to the reduction.
See Section 3.3.4 and Figure 3.2 for further explanation.

Generic Reductions in the Non-Programmable Random Oracle Model. An orthogonal ques-
tion to the one answered in our main result is whether security proofs – even non-tight ones –
for Schnorr signatures exist in weaker models. In another result of [PV05] Paillier and Vergnaud
analyzed the security of Schnorr Signatures in the standard model. In particular, they presented
an impossibility result for security proofs based on algebraic reductions and the discrete loga-
rithm problem. In a similar vein, Fischlin and Fleischhacker [FF13b] presented a result about the
security of Schnorr signatures in the non-programmable random oracle model. Essentially they
prove that in the non-programmable ROM [FLR+10] no reduction from the discrete logarithm
problem exists that invokes the adversary only ever on the same input. This class is limited, but
encompasses all forking-lemma style reductions used to prove Schnorr signatures secure in the
programmable ROM.

Both results suffer from the same shortcomings already discussed earlier. They only show
impossibility for the discrete logarithm problem and they are themselves not unconditional, in
that they rely on the hardness of the one-more discrete logarithm problem. By applying our new
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simulation technique to reductions in the non-programmable random oracle model, we continue
this line of research and show the following result:

Theorem (informal). For almost any natural non-interactive computational problem Π, there is no
(even non-tight) generic reduction from solving Π to breaking the universal unforgeability under
no-message attacks of Schnorr signatures in the non-programmable random oracle model.

Further Related Work. Dodis et al. [DHT12] showed that it is impossible to reduce any com-
putational problem to breaking the security of RSA-FDH in a model where the RSA-group Z

∗
N is

modeled as a generic group. This result extends [DOP05]. Coron [Cor02a] considered the exis-
tence of tight security reductions for RSA-FDH signatures [BR96]. This result was generalized
by Dodis and Reyzin [DR03] and later refined by Kiltz and Kakvi [KK12].

In the context of Schnorr signatures, Neven et al. [NSW09] described necessary conditions
the hash function must meet in order to provide existential unforgeability under chosen-message
attacks (EUF-CMA), and showed that these conditions are sufficient if the forger (not the
reduction!) is modeled as a generic group algorithm.

3.3 Preliminaries

In this section we describe Schnorr’s signature scheme and introduce general definitions for
security for signature schemes, computational problems and generic reductions.

3.3.1 Digital Signatures and Unforgeability

We first recall the syntax and correctness condition of a digital signature scheme, and the
definition of Schnorr’s signature scheme.

Definition 20. A signature scheme (KGen,Sig,Vf) consists of three algorithms:
The key generation algorithm KGen takes as input the security parameter 1n and generates a key

pair (pk,sk)←$KGen(1n).
The probabilistic signing algorithm Sig takes as input a secret key sk and a message m ∈ {0,1}∗ and

outputs a signature σ ←$Sig(sk,m).
The deterministic verification algorithm Vf takes as input a public key pk, a message m, and a

candidate signature σ and outputs a bit b← Vf(pk,m,σ ).
The scheme is correct if and only if for all n ∈N, all (pk,sk)←$KGen(1n), all m ∈ {0,1}∗, and all

σ ←$Sig(sk,m), it holds that Vf(pk,m,σ ) ?=1.

Definition 21. Let G be a group of order p with generator g, and let H : G× {0,1}`→Zp be a hash
function. The Schnorr signature scheme [Sch90; Sch91] consists of the following efficient algorithms
(KGen,Sig,Vf).

KGen(g): The key generation algorithm takes as input a generator g of G. It chooses sk←$Zp,
computes pk := gsk, and outputs (pk,sk).

Sig(sk,m): The input of the signing algorithm is a private key sk and a message m ∈ {0,1}` . It chooses
a random integer r←$Zp, sets R := gr as well as c := H(R,m), and computes y := sk ·c+r mod p.
It outputs σ = (R,y).
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Vf(pk,m, (R,y)): The verification algorithm outputs the truth value of gy ?=pkc ·R, where c = H(R,m).

3.3.1.1 Unforgeability

We next define universal unforgeability under no-message attacks. Consider the following
security experiment involving a signature scheme (KGen,Sig,Vf), an attacker A, and a challenger
C.

1. The challenger C computes a key-pair (pk,sk)←$KGen(g) and chooses a messagem←$ {0,1}`
uniformly at random. It invokes A on input (pk,m).

2. Eventually, A stops, outputting a signature σ .

Definition 22. We say that A (ε, t)-breaks the UUF-NMA-security of (KGen,Sig,Vf), if A runs in
time at most t and

Pr [A(pk,m) = σ : Vf(pk,m,σ ) = 1] ≥ ε,

where randomness is taken over the random choice of pk, m, and A’s random coins.

Note that UUF-NMA-security is a very weak security goal for digital signatures. Since we
are going to prove a negative result, this is not a limitation, but instead, makes our result even
stronger. In fact, if we rule out reductions from some problem Π to forging signatures in the
sense of UUF-NMA, then the impossibility clearly holds for stronger security notions, such as
existential unforgeability under adaptive chosen-message attacks [GMR88], too.

3.3.2 Computational Problems

Let G be a cyclic group of order p and g ∈G a generator of G. We write desc(G, g) to denote the
list of group elements desc(G, g) = (g,g2, . . . , gp) ∈Gp. We say that desc(G, g) is the enumerating
description of G with respect to g.

Definition 23. A non-interactive computational problem Π in G is specified by two (computation-
ally unbounded) procedures Π = (GΠ,VΠ), with the following syntax.

GΠ(desc(G, g)) takes as input an enumerating description of G, and outputs a state st and a problem
instance (the challenge) C = (C1, . . . ,Cu ,C

′) ∈Gu × {0,1}∗. We assume in the sequel that at least
C1 is a generator of G.

VΠ(desc(G, g), st,S,C) takes as input (desc(G, g), st,C) as defined above, and S = (S1, . . . ,Sw,S
′) ∈

G
w × {0,1}∗. It outputs 0 or 1.

The exact description and distribution of st,C,S depends on the considered computational problem.

Definition 24. An algorithm A (ε, t)-solves the non-interactive computational problem Π if A has
running time at most t and wins the following interactive game against a (computationally unbounded)
challenger C with probability at most ε, where the game is defined as follows:

1. The challenger C generates an instance of the problem (st,C)←$GΠ(desc(G, g)) and invokes A
on input C.
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2. Eventually, algorithm A outputs a candidate solution S. The algorithm A wins the game (i.e.,
solves the computational problem correctly) if and only if VΠ(desc(G, g), st,C,S) = 1.

Example 25. The discrete logarithm problem in G is specified by the following procedures. The
sampling algorithm GΠ(desc(G, g)) outputs (st,C) with st = ∅ and C = (g,h), where h←$G is a
random group element. The verification algorithm VΠ(desc(G, g), st,C,S) interprets S = S ′ ∈
{0,1}∗ canonically as an integer in Zp, and outputs 1 iff h = gS

′
.

Example 26. The UUF-NMA-forgery problem for Schnorr signatures in G with hash function
H is specified by the following procedures. GΠ(desc(G, g)) outputs (st,C) with st =m and C =
(g,pk,m) ∈G2 × {0,1}`, where pk = gsk for sk←$Zp and m←$ {0,1}`. The verification algorithm
VΠ(desc(G, g), st,C,S) parses S as S = (R,y) ∈G×Zp, sets c := H(R,st), and outputs 1 if and only
if pkc ·R = gy .

3.3.3 Representation-Invariant Computational Problems

In our impossibility results given below, we want to rule out the existence of a tight reduction
from as large a class of computational problems as possible. Ideally, we want to rule out
the existence of a tight reduction from any computational problem that meets Definition 23.
However, it is easy to see that this is not achievable in this generality: as Example 26 shows, the
problem of forging Schnorr signatures itself is a problem that meets Definition 23. However, of
course there exists a trivial tight reduction from the problem of forging Schnorr signatures to
the problem of forging Schnorr signatures! Therefore we need to restrict the class of considered
computational problems to exclude such trivial, artificial problems.

We introduce the notion of representation-invariant computational problems. Intuitively,
a computational problem is representation-invariant, if a valid solution to a given problem
instance remains valid even if the representation of group elements in challenges and solutions
is converted to a different representation of the same group.

This class of problems captures most computational problems defined over an abstract
algebraic group. In particular, the problem of forging Schnorr signatures is not contained in this
class (see Example 29 below).

More formally we define representation-invariance as follows:

Definition 27. Let G,Ĝ be groups such that there exists an isomorphism φ : G→ Ĝ. We say that
Π is representation-invariant, if and only if for all isomorphic groups G,Ĝ and for all generators
g ∈ G, all C = (C1, . . . ,Cu ,C

′)←$GΠ(desc(G, g)), all st = (st1, . . . , stt , st′) ∈ Gt × {0,1}∗, and all S =
(S1, . . . ,Sw,S

′) ∈Gw × {0,1}∗ holds that VΠ(desc(G, g), st,C,S) = 1 ⇐⇒ VΠ(desc(Ĝ, ĝ), ŝt, Ĉ, Ŝ) = 1,
where ĝ = φ(g) ∈ G

′, Ĉ = (φ(C1), . . . ,φ(Cu),C′), ŝt = (φ(st1), . . . ,φ(stt), st′), and Ŝ = (φ(S1), . . . ,
φ(Sw),S ′).

Observe that this definition only demands the existence of an isomorphism φ : G→ Ĝ and
not that it is efficiently computable.

Example 28. The discrete logarithm problem is representation-invariant. Let C = (g,h) ∈ G2

be a discrete log challenge, with corresponding solution S ′ ∈ {0,1}∗ such that S ′ canonically
interpreted as an integer S ′ ∈Zp satisfies gS

′
= h ∈G. Let φ : G→ Ĝ be an isomorphism, and let

(ĝ , ĥ) := (φ(g),φ(h)). Then it clearly holds that ĝ Ŝ
′

= ĥ, where Ŝ ′ = S ′ .
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O(e,e′ ,◦)

(e,e′ ,◦) ∈ E ×E × {·,÷}
(i, j) := GetIdx(e,e′)

return Encode(LGi ◦L
G

j )

GetIdx(~e)

parse ~e as (e1, . . . , ew)

for j = 1, . . . ,w do

pick first i ∈
[∣∣∣LE ∣∣∣] s.t. LEi = ej

ij := i

return (i1, . . . , iw)

Encode(G)

parse G as (G1, . . . ,Gu)

for j = 1, . . . ,u do

if ∃i s.t. LGi = Gj

ej := LEi
else

ej ←$E \LE

append ej to LE

append Gj to LG

return (e1, . . . , eu)

Figure 3.1: Procedures implementing the generic group oracle.

Virtually all common hardness assumptions in algebraic groups are based on representation-
invariant computational problems. Popular examples are, for instance, the discrete log problem
(DL), computational Diffie-Hellman (CDH), decisional Diffie-Hellman (DDH), decision linear
(DLIN), and so on.

Example 29. The UUF-NMA-forgery problem for Schnorr signatures with hash function H is
not representation-invariant for any hash function H. Let C = (g,pk,m)←$GΠ(desc(G, g)) be a
challenge with solution S = (R,y) ∈G×Zp satisfying pkc ·R = gy , where c := H(R,m).

Let Ĝ be a group isomorphic to G, such that G∩ Ĝ = ∅ (that is, there exists no element of Ĝ
having the same representation as some element of G).1 Let G→ Ĝ denote the isomorphism. If
there exists any R such that H(R,m) , H(φ(R),m) in Zp (which holds in particular if H is collision
resistant and φ efficiently computable), then we have

gy = pkH(R,m) ·R but φ(g)y , φ(pk)H(φ(R),m) ·φ(R).

Thus, a solution to this problem is valid only with respect to a particular given representation of
group elements.

The UUF-NMA-forgery problem of Schnorr signatures is not representation-invariant, be-
cause a solution to this problem involves the hash value H(R,m) that depends on a concrete
representation of group element R. We consider such complexity assumptions as rather unnatu-
ral, as they are usually very specific to certain constructions of cryptosystems.

3.3.4 Generic Reductions

In this section we recall the notion of generic groups, loosely following [Sho97] (cf. also [Mau05;
RLB+08], for instance), and define generic (i.e., representation independent) reductions.

1Such a group Ĝ can trivially be obtained for any group G, for instance by modifying the encoding by prepending a
suitable fixed string to each group element, and changing the group law accordingly.
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Generic Groups. Let (G, ·) be a group of order p and E ⊆ {0,1}dlogpe be a set of size |E| = |G|.
If g,h ∈G are two group elements, then we write g ÷ h for g · h−1. Following [Sho97] we define
an encoding function as a random injective map φ : G→ E. We say that an element e ∈ E is the
encoding assigned to group element h ∈G, if φ(h) = e.

A generic group algorithm is an algorithm R which takes as input Ĉ = (φ(C1), . . . ,φ(Cu),C′),
where φ(Ci) ∈ E is an encoding of group element Ci for all i ∈ [u], and C′ ∈ {0,1}∗ is a bit string.
The algorithm outputs Ŝ = (φ(S1), . . . ,φ(Sw),S ′), where φ(Si) ∈ E is an encoding of group element
Si for all i ∈ [w], and S ′ ∈ {0,1}∗ is a bit string. In order to perform computations on encoded
group elements, algorithm R=RO may query a generic group oracle (or “group oracle” for short).
This oracle O takes as input two encodings e = φ(G), e′ = φ(G′) and a symbol ◦ ∈ {·,÷}, and returns
φ(G ◦G′). Note that (E, ·O), where ·O denotes the group operation on E induced by oracle O,
forms a group which is isomorphic to (G, ·).

It will later be helpful to have a specific implementation of O. We will therefore assume
in the sequel that O internally maintains two lists LG ⊆ G and LE ⊆ E. These lists define the
encoding function φ as LEi = φ(LGi ), where LGi and LEi denote the i-th element of LG and LE ,
respectively, for all i ∈

[∣∣∣LG∣∣∣]. Note that from the perspective of a generic group algorithm it
makes no difference whether the encoding function is fixed at the beginning or lazily evaluated
whenever a new group element occurs. We will assume that the oracle uses lazy evaluation to
simplify our discussion and avoid unnecessary steps for achieving polynomial runtime of our
meta-reductions. The specific implementation of the oracle is shown in Figure 3.1 and explained
in detail in the following:

Procedure Encode takes a list G = (G1, . . . ,Gu) of group elements as input. It checks for each
Gj ∈ L if an encoding has already been assigned to Gj , i.e., whether there exists an index
i such that LGi = Gj . If this holds, Encode sets ej := LEi . Otherwise (if no encoding has
been assigned to Gj so far), it chooses a fresh and random encoding ej ←$E \LE . In either
case Gj and ej are appended to LG and LE , respectively, which gradually defines the map
φ such that φ(Gj ) = ej . Note also that the same group element and encoding may occur
multiple times in the list. Finally, the procedure returns the list (e1, . . . , eu) of encodings.

Procedure GetIdx takes a list (e1, . . . , ew) of encodings as input. For each j ∈ [w] it defines ij as
the smallest2 index such that ej = LEij , and returns (i1, . . . , iw).3

The lists LG and LE are initially empty. Then O calls (e1, . . . , eu)←$Encode(G1, . . . ,Gu) to
determine encodings for all group elements G1, . . . ,Gu and starts the generic group algorithm on
inputR(e1, . . . , eu ,C

′). The reductionRO may now submit queries of the form (e,e′ ,◦) ∈ E×E×{·,÷}
to the generic group oracle O. In the sequel we will restrict R to issue only queries (e,e′ ,◦) to
O such that e,e′ ∈ LE . It determines the smallest indices i and j with e = ei and e′ = ej by
calling (i, j) = GetIdx(e,e′). Then it computes LGi ◦L

G

j and returns the encoding Encode(LGi ◦L
G

j ).

Furthemore, we require that R only outputs encodings φ(Si) such that φ(Si) ∈ LE .

Remark 30. We note that the above restrictions are without loss of generality. To explain this,
recall that the assignment between group elements and encodings is random. An alternative

2Recall that the same encoding may occur multiple times in LE .
3Note that GetIdxmay receive only encodings e1, . . . , ew which are already contained in LE , as otherwise the behavior

of GetIdx is undefined. We will make sure that this is always the case.
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R

A

O

Environment

C1, . . . ,Cl ,C
′

φ(C1), . . . ,φ(Cl ),C′ (φ(i),φ(j),◦)

φ(i ◦ j)

φ(X),m,ω X,m,ω

A,mφ(A),m

φ(B) =H(φ(A),m) B

(R,y)(φ(R), y)

S1, . . . ,Sw,S
′

φ(S1), . . . ,φ(Sw),S ′

Figure 3.2: An example of the interaction between a generic reduction R and a non-generic
adversary A against the unforgeability of Schnorr signatures. All group elements – such as the
challenge input and the signature output by A – are encoded by the environment before being
passed to R. In the other direction, encodings of group elements output by R – such as the
public key that is the input of Aand the solution output by R – are decoded before being passed
to the outside world.

implementation O′ of O could, given an encoding e < LE , assign a random group element
G←$G \LG to e by appending G to LG and e to LE , in which case R would obtain an encoding
of an independent, new group element. Of course R can simulate this behavior easily when
interacting with O, too.

Generic Reductions. Recall that a (fully black-box [RTV04]) reduction from problem Π to
problem Σ is an efficient algorithm R that solves Π, having black-box access to an algorithm A
solving Σ. In the sequel we consider reductions RA,O having black-box access to an algorithm
A as well as to a generic group oracle O. A generic reduction receives as input a challenge
C = (φ(C1), . . . ,φ(Cu),C′) ∈Gu × {0,1}∗ consisting of u encoded group elements and a bit-string
C′. The reduction R may perform computations on encoded group elements, by invoking a
generic group oracle O as described above, and interacts with algorithm A to compute a solution
S = (φ(S1), . . . ,φ(Sw),S ′) ∈ G

w × {0,1}∗, which again may consist of encoded group elements
φ(S1), . . . ,φ(Sw) and a bit-string S ′ ∈ {0,1}∗.

We stress that the adversary A does not necessarily have to be a generic algorithm. It may
not be immediately obvious that a generic reduction can make use of a non-generic adversary,
considering that A might expect a particular encoding of the group elements. However, this
is indeed possible. In particular, most reductions in security proofs for cryptosystems that are
based on algebraic groups (e.g. [PS96; BB04; Wat05], to name a few well-known examples) are
independent of a particular group representation, and thus generic.

Recall that R is fully black-box, i.e., A is external to R. Thus, the environment in which
the reduction runs can easily translate between the two encodings. Consider as an example the
reduction shown in Figure 3.2 that interacts with a non-generic adversary A. We stress that the
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actual algorithm solving the problem Π, which is a composition of R and A is therefore not
generic.

3.4 Unconditional Tightness Bound for Generic Reductions

In this section, we investigate the possibility of finding a tight generic reduction R that reduces
a representation-invariant computational problem Π to breaking the UUF-NMA-security of
the Schnorr signature scheme. Our results in this direction are negative, showing that it is
impossible to find a tight generic reduction from any non-interactive representation-invariant
computational problem.

We prove this main result using a meta-reduction technique. To recall, that means that
we begin with the hypothesis that there exists a tight generic reduction R from some hard
non-interactive problem Π to the UUF-NMA security of Schnorr signatures using only black-box
access to the attacker A. Then we show that under this hypothesis there exists an efficient
algorithmM, a meta-reduction, which efficiently solves Π. This implies that the hypothesis is
false. The meta-reductionM =MR uses R as a subroutine, and efficiently simulates the forger A
for the reduction R.

To show that the simulation of the attacker is correct, it is necessary to specify a concrete
attacker that is being simulated. For this purpose we specify an explicit inefficient adversary. Next
we describe how the adversary can be efficiently simulated by the meta-reduction. To do so, we
make use of a novel simulation strategy that involves reprogramming the group representation.
To showcase and explain this novel simulation strategy we first consider only a very simple class
of reductions in Section 3.4.1. This restricted class of reductions allows for a much easier proof
and a clearer explanation of our strategy. In Section 3.4.2 we finally apply the strategy to general
case in order to achieve our main result.

3.4.1 Vanilla Reductions

We begin with considering a very simple class of reduction that we call vanilla reductions. A
vanilla reduction is a reduction that runs the UUF-NMA forgerA exactly once (without restarting
or rewinding) in order to solve the problem Π. This allows us to explain and analyze the new
simulation technique. Later we turn to reductions that may execute A repeatedly, such as the
known security proof from [PS96] based on the Forking Lemma.

3.4.1.1 An Inefficient AdversaryA

In this section we describe an inefficient adversary A that breaks the UUF-NMA-security of
the Schnorr signature scheme. Recall that a black-box reduction Rmust work for any attacker
A. Thus, algorithm RA will solve the challenge problem Π, given black-box access to A. The
meta-reduction will be able to simulate this attacker efficiently for any generic reduction R. We
describe this attacker for comprehensibility, in order to make our meta-reduction more accessible
to the reader.

1. The input of A is a Schnorr public-key pk, a message m, and random coins ω ∈ {0,1}n.
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2. The forger A chooses q uniformly random group elements R1, . . . ,Rq←$G. (We make the
assumption that q ≤ |G|.) Subsequently, the forger A queries the random oracle H on (Ri ,m)
for all i ∈ [q]. Let ci := H(Ri ,m) ∈Zp be the corresponding answers.

3. Finally, the forger A chooses an index uniformly at random α←$ [q], computes y ∈ Zp

which satisfies the equation gy = pkcα ·Rα , and outputs (Rα , y). For concreteness, we assume
this computation is performed by exhaustive search over all y ∈Zp (recall that we consider
an unbounded attacker here, we show later how to instantiate it efficiently).

Note that (Rα , y) is a valid signature for message m with respect to the public key pk. Thus, the
forger A breaks the UUF-NMA-security of the Schnorr signatures with probability 1.

3.4.1.2 Main Result for Vanilla Reductions

Now we are ready to prove our main result for vanilla reductions.

Theorem 31. Let Π = (GΠ,VΠ) be a non-interactive representation-invariant computational problem
with a challenge consisting of u group elements and let p be the group order. Suppose there exists a
generic vanilla reduction R that (εR, tR)-solves Π, having one-time black-box access to an attacker A
that (εA, tA)-breaks the UUF-NMA-security of Schnorr signatures with success probability εA = 1 by
asking q random oracle queries. Then there exists an algorithmM with access to R that (ε, t)-solves Π

with ε ≥ εR −
2(u+q+tR)2

p and t ≈ tR.

Remark 32. The values u,q, and tR are polynomially bounded while p is exponential. Therefore,
the theorem shows that the existence of a reduction R implies the existence of a meta-reduction
M, which solves Π with essentially the same success probability and running time. Thus, an
efficient (and even non-tight) reduction R can only exist if there exists an efficient algorithm for
Π, which means that Π cannot be hard.

Remark 33. Observe that Theorem 31 rules out reductions from nearly arbitrary non-interactive
computational problems. At a first glance this might look contradictory, for instance there
always exists a trivial reduction from the problem of forging Schnorr signatures to solving
the same problem. However, as explained in Example 29, forging Schnorr-signatures is not a
representation-invariant computational problem, therefore this is not a contradiction.

Proof. Assume that there exists a generic vanilla reduction R := RO,A that (εR, tR)-solves Π,
when given access to a generic group oracle O, and a forger A(φ(pk),m,ω), where the inputs to
the forger are chosen by R. Furthermore, the reduction R simulates the random oracle H for A.
We denote the simulation of H by R by R.H. We show how to build a meta-reductionM that has
black-box access to R and solves the representation-invariant problem Π directly.

We describeM in a sequence of games, beginning with an inefficient implementationM0 of
M and modify it gradually until we obtain an efficient implementationM2 ofM. We bound the
probability with which any reduction R can distinguish each implementationMi fromMi−1 for
all i ∈ {1,2}, which yields thatM2 is an efficient algorithm that can use R to solve Π if R is tight.
In what follows let Xi denote the event that R outputs a valid solution to the given problem
instance Ĉ of Π in Game i.
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M0(C)

# Initialization

parse C as (C1, . . . ,Cu ,C
′)

LG := ∅
LE := ∅
~R = (R1, . . . ,Rq)←$G

q

I := (C1, . . . ,Cu ,R1, . . . ,Rq)

Encode(I )

Ĉ := (LE1 , . . . ,L
E
u ,C
′)

Ŝ ←$RO,A(Ĉ)

# Finalization

parse Ŝ as (Ŝ1, . . . , Ŝw,S
′)

(i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw)

return (LGi1 , . . . ,L
G

iw
,S ′)

A(φ(pk),m,ω)

foreach i in [q] do

ci :=R.H(φ(Ri ),m)

α←$ [q]

y := logg pk
cαRα

return (φ(Rα), y)

Figure 3.3: Implementation ofM0.

Game 0. Our meta-reductionM0 is an algorithm for solving a representation-invariant com-
putational problem Π, as defined in Section 3.3.3. That is, M0 takes as input an instance
C = (C1, . . . ,Cu ,C

′) ∈Gu × {0,1}∗, of the representation-invariant computational problem Π and
outputs a candidate solution S. The reduction R is generic, i.e., a representation-independent
algorithm for Π having black-box access to an attackerA. AlgorithmM0 runs the reductionR as
a subroutine, by simulating the generic group oracle O and attacker A for R. In order to provide
the generic group oracle for R, the meta-reductionM0 implements the following procedures (cf.
Figure 3.3).

Initialization of M0: At the beginning of the game, M0 initializes two lists LG := ∅ and
LE := ∅, which are used to simulate the generic group oracle O. Furthermore, M0 chooses
~R = (R1, . . . ,Rq)←$G

q at random (these values will later be used by the simulated attacker A),
sets I := (C1, . . . ,Cu ,R1, . . . ,Rq), and runs Encode(I ) to assign encodings to these group elements.
Then M0 invokes the reduction R on input Ĉ := (LE1 , . . . ,LEu ,C′). Note that Ĉ is an encoded
version of the challenge instance of Π received byM0. That is, we have Ĉ = (φ(C1), . . . ,φ(Cu),C′).
Oracle queries of R are answered byM0 as follows.

Generic group oracle O(e,e′ ,◦): To simulate the generic group oracle, M0 implements pro-
cedures Encode and GetIdx as described in Section 3.3.4. Whenever R submits a query
(e,e′ ,◦) ∈ E ×E × {·,÷} to the generic group oracle O, the meta-reduction determines the smallest
indices i and j such that e = LGi and e′ = LGj by calling (i, j) = GetIdx(e,e′). Then it computes

LGi ◦L
G

j and returns Encode(LGi ◦L
G

j ).
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M1(C)

# Initialization

parse C as (C1, . . . ,Cu ,C
′)

LG := ∅
LE := ∅
LV := ∅
~R = (R1, . . . ,Rq)←$G

q

I := (C1, . . . ,Cu ,R1, . . . ,Rq)

Encode(I )

LVi := ηi , ∀i ∈ [u + q] .

Ĉ := (LE1 , . . . ,L
E
u ,C
′)

Ŝ ←$RO,A(Ĉ)

# Finalization

parse Ŝ as (Ŝ1, . . . , Ŝw,S
′)

(i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw)

return (LGi1 , . . . ,L
G

iw
,S ′)

O(e,e′ ,◦)

(e,e′ ,◦) ∈ E ×E × {·,÷}
(i, j) := GetIdx(e,e′)

a := LVi �L
V
j ∈Z

u+q
p

append a to LV

return Encode(LGi ◦L
G

j )

Figure 3.4: Meta-ReductionM1. Elements highlighted in gray show the differences toM0. All
other procedures are identical toM0 and thus omitted.

The forgerA(φ(pk),m,ω): This procedure implements a simulation of the inefficient attacker
A described in Section 3.4.1.1. It proceeds as follows. When R outputs (φ(pk),m,ω) to invoke
an instance of A, A queries the random oracle R.H provided by R on (φ(Ri),m) for all i ∈ [q],
to determine ci = H(φ(Ri),m). Afterwards,M0 chooses an index α←$ [q] uniformly at random,
computes the the discrete logarithm y := logg pk

cαRα by exhaustive search, and outputs (φ(Rα), y).
(This step is not efficient. We show in subsequent games how to implement this simulation
efficiently.)

Finalization ofM0: Eventually, the algorithm R outputs a solution Ŝ := (Ŝ1, . . . , Ŝw,S
′) ∈ Ew ×

{0,1}∗. The algorithmM0 runs (i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw) to determine the indices of group
elements (LGi1 , . . . ,L

G

iw
) corresponding to encodings (Ŝ1, . . . , Ŝw), and outputs (LGi1 , . . . ,L

G

iw
,S ′).

Analysis ofM0. Note thatM0 provides a perfect simulation of the oracle O and it also mimics
the attacker from Section 3.4.1.1 perfectly. In particular, (Rα , y) is a valid forgery for message m
and thus, R outputs a solution Ŝ = (Ŝ1, . . . , Ŝw,S

′) to Ĉ with probability Pr [X0 ] = εR. Since Π is
assumed to be representation-invariant, S := (S1, . . . ,Sw,S

′) with Ŝi = φ(Si) for i ∈ [w] is therefore
a valid solution to C. Thus,M0 outputs a valid solution S to C with probability εR.

Game 1. In this game we introduce a meta-reductionM1, which essentially extendsM0 with
additional bookkeeping to record the sequence of group operations performed by R. The
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purpose of this intermediate game is to simplify our analysis of the final implementationM2.
Meta-reductionM1 proceeds identical toM0, except for a few differences (cf. Figure 3.4).

Initialization of M1: The initialization is exactly as before, except that M1 maintains an
additional list LV of elements of Zu+q

p . Let LVi denote the i-th entry of LV .
List LV is initialized with the u + q canonical unit vectors in Z

u+q
p . That is, let ηi denote the

i-th canonical unit vector in Z
u+q
p , i.e.,

η1 := (1,0, . . . ,0),η2 := (0,1,0, . . . ,0), . . . ,ηu+q := (0, . . . ,0,1).

Then LV is initialized such that LVi := ηi for all i ∈ [u + q] .

Generic Group Oracle O(e,e′ ,◦). In parallel to computing the group operation, the generic
group oracle implemented byM1 also performs computations on vectors of LV . Given a query
(e,e′ ,◦) ∈ E ×E × {·,÷}, the oracle O determines the smallest indices i and j such that e = LGi and
e′ = LGj by calling GetIdx. It computes a := LVi �L

V
j ∈ Z

u+q
p , where � := + if ◦ = · and � := − if

◦ = ÷, and appends a to LV . Finally it returns Encode(LGi ◦L
G

j ).

Analysis ofM1. Recall that the initial content I of LG is I = (C1, . . . ,Cu ,R1, . . . ,Rq), and that
R performs only group operations on I . Thus, any group element h ∈ LG can be written as
h =

∏u
i=1C

ai
i ·

∏q
i=1R

au+i
i where the vector a = (a1, . . . , au+q) ∈Z

u+q
p is (essentially) determined by

the sequence of queries issued by R to O. For a vector a ∈Zu+q
p and a vector of group elements

V = (v1, . . . , vu+q) ∈ Gu+q let us write Eval(V ,a) as a shorthand for Eval(V ,a) :=
∏u+q
i=1 v

ai
i in the

following. In particular, it holds that Eval(I , a) =
∏u
i=1C

ai
i ·

∏q
i=1R

au+i
i . The key motivation for the

changes introduced in Game 1 is that now (by construction ofM1) it holds that LGi = Eval(I ,LVi )
for all i ∈

[∣∣∣LG∣∣∣] . Thus, at any point in time during the execution ofR, the entire list LG of group

elements can be recomputed from LV and I by setting LGi := Eval(I ,LVi ) for i ∈
[∣∣∣LV ∣∣∣]. The

reduction R is completely oblivious to this additional bookkeeping performed byM1, thus we
have Pr [X1 ] = Pr [X0 ] .

Game 2. Note that the meta-reductions described in previous games were not efficient, because
the simulation of the attacker in procedure A needed to compute a discrete logarithm by
exhaustive search. In this final game, we construct a meta-reduction M2 that simulates A
efficiently.M2 proceeds exactly likeM1, except for the following (cf. Figure 3.5).

The forgerA(φ(pk),m,ω). When R outputs (φ(pk),m,ω) to invoke an instance of A, the forger
A queries the random oracle R.H provided by R on (φ(Ri),m) for all i ∈ [q], to determine
ci = H(φ(Ri),m). Then it chooses an index α←$ [q] uniformly at random, samples an element y
uniformly at random from Zp, computes R∗α := gypk−cα , and re-computes the entire list LG using
R∗α instead of Rα .

More precisely, let I ∗ := (C1, . . . ,Cu ,R1, . . . ,Rα−1,R
∗
α ,Rα+1, . . . ,Rq). Observe that the vector I ∗

is identical to the initial contents I of LG, with the difference that Rα is replaced by R∗α . The list
LGis now recomputed from LV and I ∗ by setting LGi := Eval(I ∗,LVi ) for all i ∈

[∣∣∣LV ∣∣∣]. Finally,
M2 returns (φ(R∗α), y) to R as the forgery.
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A(φ(pk),m,ω)

foreach i in [q] do

ci =R.H(φ(Ri ),m)

α←$ [q]

y ←$Zp ; R∗α := gypk−cα

I ∗ := (C1, . . . ,Cu ,R1, . . . ,Rα−1,R
∗
α ,Rα+1, . . . ,Rq)

for j = 1, . . . ,
∣∣∣∣LG∣∣∣∣ do

LGi := Eval(I ∗,LVi )

return (φ(R∗α), y)

Figure 3.5: Efficient simulation of attacker A byM2.

Analysis ofM2. First note that (φ(R∗α), y) is a valid signature, since φ(R∗α) is the encoding of
group element R∗α satisfying the verification equation gy = pkcα ·R∗α ,where cα = H(φ(R∗α),m). Next
we claim that R is not able to distinguishM2 fromM1, except for a negligibly small probability.
To show this, observe that Game 2 and Game 1 are perfectly indistinguishable, if for all pairs
of vectors LVi ,L

V
j ∈ L

V it holds that Eval(I ,LVi ) = Eval(I ,LVj ) ⇐⇒ Eval(I ∗,LVi ) = Eval(I ∗,LVj ),

because in this caseM2 chooses identical encodings for two group elements LGi ,L
G

j ∈ L
G if and

only if M1 chooses identical encodings. It remains to show that this happens with overwhelming
probability. We state this in the following Lemma.

Lemma 34. Let F denote the event that R computes vectors LVi ,L
V
j ∈ L

V such that

Eval(I ,LVi ) = Eval(I ,LVj ) ∧ Eval(I ∗,LVi ) , Eval(I ∗,LVj ) (3.1)

or

Eval(I ,LVi ) , Eval(I ,LVj ) ∧ Eval(I ∗,LVi ) = Eval(I ∗,LVj ). (3.2)

Then
Pr [F ] ≤ 2(u + q+ tR)2/p.

Before we prove Lemma 34, we first apply it to finish the proof of Theorem 31. By Lemma 34,
algorithmM2 fails to simulateM1 with probability at most 2(u + q + tR)2/p. Thus, we have
Pr [X2 ] ≥ Pr [X1 ]− 2(u + q+ tR)2/p.

Note also thatM2 provides an efficient simulation of adversary A. The total running time
ofM2 is essentially of the running time of R plus some minor additional computations and
bookkeeping. Furthermore, if R is able to (εR, tR)-solve Π, thenM2 is able to (ε, t)-solve Π with
probability at least

ε ≥ Pr [X2 ] ≥ εR −
2(u + q+ tR)2

p
.

This concludes the proof of Theorem 31, subject to proving Lemma 34.

It now remains to prove Lemma 34. The proof of this lemma is based on the observation
that an algorithm that performs only a (polynomially) limited number of group operations in
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an (exponential-size) generic group is very unlikely to find any “non-trivial relation” among
random group elements. This technique was introduced in [Sho97] in a different setting, to
analyze the complexity of algorithms for the discrete logarithm problem.

Proof of Lemma 34. We first introduce an alternative formulation of event F. Recall that the
vectors I and I ∗ differ only in their α-th component. In the sequel let us write Iα to denote the
vector I , but with its α-th component Rα set equal to 1 ∈G. That is,

Iα := (R1, . . . ,Rα−1,1,Rα+1, . . . ,Rq, g1, . . . , gu).

Then we have

Eval(I ,LVi ) = Eval(Iα ,LVi ) ·R
LVi,α
α and Eval(I ∗,LVi ) = Eval(Iα ,LVi ) · (R∗α)L

V
i,α

where LVi,α denotes the α-th component of vector LVi . In particular, for any two vectors LVi ,L
V
j

we have

Eval(I ,LVi ) = Eval(I ,LVj ) ⇐⇒ Eval(Iα ,LVi ) ·R
LVi,α
α = Eval(Iα ,LVj ) ·R

LVj,α
α

⇐⇒ Eval(Iα ,LVi −L
V
j ) ·R

LVi,α−L
V
j,α

α = 1.

Thus, Equation 3.1 is equivalent to

Eval(Iα ,LVi −L
V
j ) ·R

LVi,α−L
V
j,α

α = 1 ∧ Eval(Iα ,LVi −L
V
j ) · (R∗α)L

V
i,α−L

V
j,α , 1. (3.3)

If we take discrete logarithms to base γ ∈ G, where γ is an arbitrary generator of G, and
define the degree-one polynomial ∆i,j,α ∈Zp[X] as

∆i,j := logEval(Iα ,LVi −L
V
j ) +X ·

(
LVi,α −L

V
j,α

)
,

then Equation 3.3 (and therefore also Equation 3.1) is in turn equivalent to

∆i,j (logRα) ≡ 0 mod p ∧ ∆i,j (logR∗α) . 0 mod p. (3.4)

Similarly, Equation 3.2 is equivalent to

∆i,j (logRα) . 0 mod p ∧ ∆i,j (logR∗α) ≡ 0 mod p. (3.5)

Thus, event F occurs if R computes vectors LVi ,L
V
j such that either Equation 3.4 or Equa-

tion 3.5 holds.

Failure Event F1. Let F1 denote the event that Equation 3.4 holds. Note that this can only
happen ifR performs a sequence of computations, such that there exist a pair (i, j) ∈

[∣∣∣LV ∣∣∣]×[∣∣∣LV ∣∣∣]
such that the polynomial ∆i,j is not the zero-polynomial in Zp[X], but it holds that ∆i,j(Rα) ≡
0 mod p.

At the beginning of the game R receives only a random encoding φ(Rα) of group element Rα .
The only further information that R learns about Rα throughout the game is through equality
or inequality of encodings. Since R runs in time tR, it can issue at most tR oracle queries.
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Thus, at the end of the game the list LV contains at most |LV | ≤ tR + q + u entries. Each pair
(i, j) ∈

[∣∣∣LV ∣∣∣] with i , j defines a (possibly non-zero) polynomial ∆i,j . In total there are at most

(tR + q+u) · (tR + q+u − 1) ≤ (tR + q+u)2 such polynomials.

Since all polynomials have degree one, and logRα is uniformly distributed over Zp (because
Rα is uniformly random over G), the probability that logRα is a root of any of these polynomials
is upper bounded by

Pr [F1 ] ≤
(u + q+ tR)2

p
.

Failure Event F2. Let F2 denote the event that Equation 3.5 holds. Since logR∗α is uniformly
distributed over Zp (because we have defined R∗α := gypk−c for uniformly y←$Zp), with similar
arguments as before we have

Pr [F2 ] ≤
(u + q+ tR)2

p
.

Bounding Pr [F ]. Since F = F1 ∪F2 we have

Pr [F ] ≤ Pr [F1 ] + Pr [F2 ] ≤
2(u + q+ tR)2

p
.

3.4.2 Multi-Instance Reductions

Now we turn to considering multi-instance reductions, which may run multiple sequential
executions of the signature forger A. This is the interesting case, in particular because the
Forking-Lemma based security proof for Schnorr signatures by Pointcheval and Stern [PS96] is
of this type.

Again we construct a meta-reduction with simulated adversary. The main difference to our
single-instance adversary is that it does not succeed with probability 1, but tosses a biased coin
that decides if it forges for the message or not. On the first glance this approach might seem to
be of little value, because an adversary with a higher success probability should improve the
success probability of the reduction. However, it was shown in [Seu12] that, once we consider
a reduction that runs multiple sequential executions of this adversary, this approach allows to
derive an optimal tightness bound.

In the following we assume that the reduction R executes n sequential instances of the same
adversary A(φ(pk),m,ω), where the public key φ(pk), the message m, and the randomness ω
of each instance are chosen by R. Observe that the input to the adversary and the random
oracle query/answers completely determine the behaviour of the adversary. Thus, any successive
execution of an instance of A may be identical to a previous execution up to a certain point,
where the response c = H(R,m) of the random oracle differs from a response c′ = H(R,m) received
by A in a previous execution. This point is called the forking point [Seu12].
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3.4.2.1 A Family of Inefficient AdversariesAF,f

In this section, we describe a different inefficient adversary A against the UUF-NMA-security
of the Schnorr signature scheme. In fact, we do not describe a single adversary but a family of
adversaries from which the meta-reduction will choose one to simulate at random.

To define this family, we fix the following notations. The Bernoulli distribution of a parameter
µ ∈ [0,1] is defined by Berµ, i.e., Prδ ←$Berµ

[δ = 1] = µ and Prδ ←$Berµ
[δ = 0] = 1−µ. LetQ = G×Zp

be the set of possible random oracle queries and answers. By Si =Qi we denote the set of random

oracle query sequences of length i and the set of all possible sequences is defined as S =
q⋃
i=1

Si .

Consider now the set F of all functions F : {0,1}` ×G×{0,1}κ ×S→G. And the set E of functions
f : G→ {0,1} for which the following holds Pr [f (g) = 1 |g←$G] = Pr

[
b = 1

∣∣∣b←$Berµ

]
. For each

pair (F,f ) ∈ F ×E we define the adversary AF,f as follows:

1. The input of A is a Schnorr public-key pk, a message m, and random coins ω ∈ {0,1}κ.

2. The forger A sets σ :=⊥ and performs the following computations. For i = 1, . . . , q it com-
putes Ri := F(m,pk,ω, (R1, c1), . . . , (Ri−1, ci−1)) and queries the random oracle H on (Ri ,m),
where ci := H(Ri ,m) ∈Zp is the corresponding answers. If σ =⊥, thenAF,f sets Zi := pkciRi
and checks if f (Zi) = 1. If this is the case, then AF,f computes yi ∈ Zp satisfying the
equation gyi = Ri · pkci by exhaustive search and sets σ := (Ri , yi). Otherwise, if f (Zi) = 0,
then it continues with the loop.

3. Finally, the forger AF,f returns σ .

Note that (Ri , yi) is a valid signature for message m with respect to the public key pk. Thus, the
forger AF,f breaks the UUF-NMA-security of the Schnorr signatures whenever f (Zi) = 1 for at
least one i ∈ [q]. This translates to a success probability of εA = 1− (1−µ)q.

Observe that defining the adversaries as above ensures that, while different instances of the
same adversary will behave identically as long as their input and the answers of the random
oracle are the same, as soon as one of the inputs or one of the random oracle answers differ the
behavior of two instances will be independent of one another from that point onwards. As such,
the behavior of these adversaries mimics closely the idea behind the forking lemma and it allows
us to easily simulate the adversary in our meta-reduction below.

3.4.2.2 Main Result for Multi-Instance Reductions

In this section, we combine the approach of Seurin [Seu12] with our simulation of signature
forgeries based on re-programming of the group representation, as introduced in Section 3.4.1.2.
This allows to prove a nearly optimal unconditional tightness bound for all generic reductions
and any representation-invariant computational problem Π.

Unfortunately, the combination of the elaborate techniques of Seurin [Seu12] with our
approach yields a rather complex meta-reduction. We stress that we follow Seurin’s work as
closely as possible. The main difference lies in the way signature forgeries are computed, namely
in our case by exploiting the properties of the generic group representation, instead of using an
OMDL-oracle as in [Seu12].
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The main difference between the meta-reduction described in this section and the one
presented in Section 3.4.1.2 lies in the simulation of the random oracle queries issued by the
adversary in different sequential executions. In particular, the meta-reductionM simulates the
oracles procedures Encode, GetIdx, and O exactly as before.

Theorem 35. Let Π be a representation-invariant computational problem. Suppose there exists
a generic reduction RO,AF,f that (εR, tR)-solves Π, having n-time black-box access to an attacker
AF,f that (εA, tA,q)-breaks the UUF-NMA-security of Schnorr signatures with success probability
εA = 1− (1−µ)q in time tA ≈ q. Then there exists an algorithmM that (ε, t)-solves Π with

ε ≥ εR −
2n(u +nq+ tR)

p
−
n ln

(
(1− εA)−1

)
q(1− p−1/4)

.

Remark 36. Just as in Theorem 31, the term 2n(u + nq + tR)/p in the bound on ε is negligible.
However, now we have an additional term n ln((1− εA)−1/(q(1− p−1/4)). Note that this term is
identical to the corresponding term from the main theorem of [Seu12]. Following [Seu12], we
therefore conclude that any reduction Rmust have a security loss of Ω(q).

Proof. Suppose that there exists a generic reduction R := RO,A that (εR, tR)-solves Π, when
given access to a generic group oracle O and to n instances of the same forger AF,f , where the
inputs to each instance of the forger are chosen by R. As before, the random oracle R.H for A is
provided by R. We show how to construct a meta-reductionM that has black-box access to R
and that solves the representation-invariant problem Π directly. Again we proceed in a sequence
of games, and denote withMi the implementation of algorithmM in Game i, and with Xi the
event that R outputs a valid solution S to C in Game i. As in Section 3.4.1.2, we will bound the
probability with which any efficient reduction R can distinguish each implementationMi from
Mi−1 for all i ∈ {1,2,3}. We start with an inefficient implementationM0 ofM, and modify this
implementation gradually until we obtain an efficient algorithmM3 that uses R to solve Π.

Game 0. M0 (cf. Figure 3.6) takes as input an instance C = (C1, . . . ,Cu ,C
′) ∈Gu × {0,1}∗ of the

representation-invariant computational problem Π and outputs a candidate solution S. It also
maintains the encoding of the group using two lists LG ⊆ G and LE ⊆ E. Our first instance
M0 perfectly simulates one adversary chosen from the family of adversaries described above
uniformly at random. The only difference between the real and the simulated adversary is that
the meta-reduction does not fix the functions F,f at the beginning but instead defines them on
the fly.

Initialization ofM0. At the beginning of the game,M0 chooses ~R = (R1,1, . . . ,Rn,q)←$G
nq at

random (these are the values the function F will be lazily programmed to evaluate to), sets
I := (C1, . . . ,Cu ,R1,1, . . . ,Rn,q), and runs Encode(I ) to assign encodings to these group elements.
Furthermore, M0 initializes lists T , Γgood, Γbad, and D as empty lists. Recall that R executes
n sequential instances of the simulated adversary A and that depending on the input and the
query/answer pairs toR.H, the successive execution might be identical to a certain point. The list
T will be used to store the inputs and query answer pairs of each adversary to ensure consistency
of F across adversary instances. Note further that the simulated adversary tosses a biased coin
and decides whether it forges a signature or not. The lists Γgood and Γbad are used to store these
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M0(C)

# Initialization

parse C as (C1, . . . ,Cu ,C
′)

LG := ∅
LE := ∅
~R = (R1,1, . . . ,Rn,q)←$G

nq

I := (C1, . . . ,Cu ,R1,1, . . . ,Rn,q)

Encode(I )

T := ∅
Γgood := ∅
Γbad := ∅
D := ∅
j := 0

Ĉ := (LE1 , . . . ,L
E
u ,C
′)

Ŝ ←$RO,A(Ĉ)

# Finalization

parse Ŝ as (Ŝ1, . . . , Ŝw,S
′)

(i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw)

return (LGi1 , . . . ,L
G

iw
,S ′)

A(φ(pk),m,ω)

j := j + 1

ipk := GetIdx(φ(pk))

τ := (φ(pk),m,ω)

σ :=⊥
i := 1

BeforeFork(m,LGipk )

AfterFork(m,LGipk )

append τ to T
return σ

BeforeFork(m,pk)

k := EvalF(τ)

while k ,⊥ do

ci :=R.H(Rk ,m)

append (k,ci ) to τ

k′ := EvalF(τ)

if σ =⊥
Zi := Rkpk

ci

Encode(Zi )

if k′ =⊥
Fork(Zi , k, ci )

k := k′

else if φ(Zi ) ∈ Γgood

σ := Forge(Rk ,Zi )

i := i + 1

AfterFork(m,pk)

while i ≤ q do

ci :=R.H(φ(Rj,i ),m)

append ((j, i), ci ) to τ

if σ =⊥
Zi := Rj,ipk

ci

Encode(Zi )

if φ(Zi ) < Γgood ∪ Γbad

Decide(Zi , (j, i), ci )

if φ(Zi ) ∈ Γgood

σ := Forge(Rj,i ,Zi )

i := i + 1

EvalF(τ)

foreach τ ′ in T do

if τ ≺ τ ′

(k,c) := τ ′|τ |+1

return k

return ⊥

Fork(Z,k,c)

if φ(Z) < Γgood ∪ Γbad

Decide(Z,k,c)

if φ(Z) ∈ Γgood

σ := Forge(Rk ,Z)

Forge(R,Z)

foreach (Z′ , y′) in D do

if Z′ = Z

return (φ(R), y′)

Decide(Z,k,c)

δz ←$Berµ

if δz = 0

Γbad = Γbad ∪ {φ(Z)}
else

Γgood = Γgood ∪ {φ(Z)}
y := DLog(Z,k,c)

append (Z,y) to D

DLog(Z,k,c)

foreach y in Zp do

if gy = Z

return y

Figure 3.6: Meta-ReductionM0.
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decisions whether for a given Z, the simulated adversary AF,f will forge a signature or not.
Again, they are used to ensure consistency of f across adversary instances. Accordingly Γgood
contains exactly those elements for whichM0 knows the discrete logarithms and Γbad contains
exactly those elements for which it will never compute the discrete logarithms. Finally, D is used
to store known discrete logarithms. Then,M0 runs a black-box simulation of the reduction R
on input Ĉ := (LE1 , . . . ,LEu ,C′). Note that Ĉ is an encoded version of the challenge instance of Π
received byM0. That is, we have Ĉ = (φ(C1), . . . ,φ(Cu),C′). Oracle queries of R =RO,S

′
Π
,A are

answered exactly as described in Section 3.4.1.2, with the difference being the forger that we
describe in the following.

The forgerA(φ(pk),m,ω). The simulation of the forger A is rather technical, becauseM0 has
to provide a consistent simulation of the n sequential executions of A. As already discussed at
the beginning of this chapter,M0 has to emulate an identical behavior of A up to the forking
point, or the reduction might loose its advantage. We split this algorithm up into several sup-
procedures (see Figure 3.6). The main sub-procedures are BeforeFork and AfterFork, with the
idea that A runs the code of BeforeFork if the forking point has not been reached yet and the
simulation must be consistent with a previous execution. The second procedure, AfterFork
describes howM0 simulates A after the forking point.

Now we proceed with the technical description of the main procedure of A and explain the
sub-procedures in the following. When R outputs (φ(pk),m,ω) to invoke an instance of AF,f ,
thenM0’s simulation of AF,f initializes the list τ with its input (φ(pk),m,ω) and the forgery σ
with ⊥. These inputs are part of the function F and we need to store them in oder to ensure
consistency with previous adversary instances.

The forger’s first stage BeforeFork(pk,m). In this stage, the forger first tries to evaluate
the function F on its input using EvalF. If no previous instance with the same input exists, the
instance has already forked and BeforeFork immediately returns. If the instance has not yet
forked from all other instances, i.e., if there exists a previous instance with the same input, it
receives back the index k of the R to which F evaluates. In this case it proceeds to ask query
ci = R.H(φ(Rk),m) and appends (k,ci) to τ . If it has not already forged a signature it then
computes Zi := Rkpkci . If the forking point has been reached, the adversary now forks from the
previous instances as described in Fork. Otherwise, if Zi ∈ Γgood, then AF,f forges a signature by
calling Forge(Rk ,Zi). The algorithm will repeat the described process until the forking point is
reached.

The forger’s second stage AfterFork(pk,m). After the current instance has forked from
all previous instances it proceeds as follows. Until exactly q random oracle queries have been
asked, AF,f queries ci := R.H(φ(Rj,i),m) and appends ((j, i), ci) to τ . If the adversary has not
already forged a signature, it continues to compute Zi := Rj,ipkci . If φ(Zi) is neither in Γgood nor
in Γbad, the adversary decides in which set to put it by invoking Decide. If afterwards φ(Zi) is
in Γgood, a signature is forged. The algorithm continues in this fashion until exactly q random
oracle queries have been asked.
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Handling the forking point Fork(Z,k,c). When the simulation of AF,f reaches the forking
point, it checks whether φ(Z) is contained neither in Γgood nor in Γbad and if this is the case, the
simulation decides in which set to put it by invoking Decide. If φ(Z) is contained in Γgood, i.e. if
M already knows the discrete logarithm, the simulation produces a forgery.

Deciding whether to forge Decide(Z,k,c). To decide whether Z belongs in Γgood or Γbad,
the simulation tosses a biased coin δz←$Berµ. If δz = 0 then Z is added to Γbad. If δz = 1 then Z
is added to Γgood, its discrete logarithm y is computed using DLog and (Z,y) is appended to D.

Computing the discrete logarithm DLog(Z,k,c). Computation of the discrete logarithm
is performed by exhaustively searching for a y ∈Zp satisfying gy = Z.

Producing a forgery Forge(R,Z). Actually producing a forgery is trivial, because forgeries
will only be produced for Z ∈ Γgood and for each such Z,D already contains the discrete logarithm.
Accordingly, a forgery is produced by finding the entry (Z ′ , y′) ∈ D such that Z ′ = Z and returning
(R,y′)

Finalization ofM0. Eventually, R outputs a solution Ŝ := (Ŝ1, . . . , Ŝw,S
′) ∈ Ĝw × {0,1}∗. Then

M0 runs (i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw) to determine the indices of group elements (LGi1 , . . . ,L
G

iw
)

corresponding to encodings (Ŝ1, . . . , Ŝw), and outputs (LGi1 , . . . ,L
G

iw
,S ′).

Analysis ofM0 Note thatM0 provides a perfect simulation of the oracle O and it also mimics
the inefficient attacker from Section 3.4.2.1 perfectly, the only difference being that F is chosen
lazily. In particular, (R,y′) is a valid forgery for message m and thus, RO,AF,f outputs a solution
Ŝ = (Ŝ1, . . . , Ŝw,S

′) to Ĉ with probability Pr [X0 ] = εR. Since Π is assumed to be representation-
invariant, S := (S1, . . . ,Sw,S

′) is therefore a valid solution to C, where Ŝi = φ(Si) for i ∈ [w]. Thus
M0 outputs a valid solution S to C with probability εR.

Game 1. In this game we introduce an implementationM1 which extendsM0 with bookkeep-
ing, exactly as in Game 1 from the proof of Theorem 31. See Figure 3.7. Briefly summarized, we
introduce an additional list LV ⊆Z

u+nq
p to record the sequence of operations performed by A.

Let ηi denote the i-th canonical unit vector in Z
u+nq
p . Then this list is initialized as LVi = ηi for

i ∈ [u +nq]. Whenever R asks to perform a computation (LEi ,L
E
j ,◦), thenM1 proceeds as before,

but additionally appends a := LVi +LVj ∈Z
u+nq
p (if ◦ = ·) or LVi −L

V
j ∈Z

u+nq
p (if ◦ = ÷) to LV .

Furthermore, in order to keep list LV consistent with LG (exactly as in in the proof of
Theorem 31), we replace the generic group oracle O ofM0 with the following procedure.

Generic group oracle O(e,e′ ,◦) Given a query (e,e′ ,◦) ∈ E ×E × {·,÷}, the oracle O determines
the smallest indices i and j such that e = ei and e′ = ej by calling GetIdx. It computes a :=
LVi �L

V
j ∈Z

u+nq
p , where � := + if ◦ = · and � := − if ◦ = ÷, and appends a to LV . Finally it returns

Encode(LGi ◦L
G

j ).

Recall that the initial content I of LG is I = (C1, . . . ,Cu ,R1,1, . . . ,Rn,q), and that R performs
only group operations on I . Now, by construction of M1, it holds that LGi = Eval(I ,LVi ) for
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M1(C)

# Initialize

parse C as (C1, . . . ,Cu ,C
′)

LG := ∅
LE := ∅
LV := ∅
~R = (R1,1, . . . ,Rn,q)←$G

q·n

I := (C1, . . . ,Cu ,R1,1, . . . ,Rn,q)

Encode(I )

LVi := ηi , ∀i ∈ [u +nq].

T := ∅
Γgood := ∅
Γbad := ∅
D := ∅
j := 0

Ĉ := (LE1 , . . . ,L
E
u ,C
′)

Ŝ ←$RO,A(Ĉ)

# Finalization

parse Ŝ as (Ŝ1, . . . , Ŝw,S
′)

(i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw)

return (LGi1 , . . . ,L
G

iw
,S ′)

O(e,e′ ,◦)

(e,e′ ,◦) ∈ E ×E × {·,÷}
(i, j) := GetIdx(e,e′)

a := LVi �L
V
j ∈Z

u+q
p

append a to LV

return Encode(LGi ◦L
G

j )

Figure 3.7: ExtendingM0 with additional bookkeeping yieldsM1. The elements highlighted in
gray show the difference toM0. All procedures not shown are not changed.

all i ∈
[∣∣∣LG∣∣∣]. Thus, at any point in time during the execution of R, the entire list LG of group

elements can be recomputed from LV and I by setting LGi := Eval(I ,LVi ) for i ∈
[∣∣∣LV ∣∣∣].

Again this change is made to keep list LV consistent with LG, i.e., to ensure that LGi =
Eval(I ,LVi ) for all i ∈

[∣∣∣LG∣∣∣], where I := (C1, . . . ,Cu ,R1,1, . . . ,Rn,q). Clearly R is completely oblivi-
ous to this change, thus

Pr [X1 ] = Pr [X0 ]

Game 2. In this game we introduce an implementationM2 (cf. Figure 3.8) which works exactly
asM1, except that it aborts when it would have to compute a new forgery at a forking point.
That is,M2 aborts when it would have to forge in the case where it queried an Ri already asked
by a previous instance of the adversary but received a different answer ci . This step is important,
because in the final implementationM3 we will not be able to simulate valid signatures if this
happens.
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Fork(Z,k,c)

if φ(Z) < Γgood ∪ Γbad

Decide(Z,k,c)

if φ(Z) ∈ Γgood

Abort simulation

if φ(Z) ∈ Γgood

σ := Forge(Rk ,Z)

Figure 3.8: The difference betweenM1 andM2.

Fork(Z,k,c): If Fork is called on input φ(Z), such that φ(Z) is neither in Γgood nor in Γbad, and
the Decide places it in Γgood, thenM2 aborts.

Analysis of M2. We claim that R is not able to distinguish M2 from M1 with probability
greater than (n ln

(
(1− εA)−1

)
)/q(1− p−1/4). To show this, observe that Game 2 and Game 1 are

perfectly indistinguishable, as long asM2 does not abort in Fork. We use Lemma 4 of [Seu12] to
bound the probability of an abort.

Lemma 37 (Based on Lemma 4 of [Seu12]). The probability thatM2 aborts in Fork is at most

n ln
(
(1− εA)−1

)
q(1− p−1/4)

We thus have

Pr [X2 ] ≥ Pr [X1 ]−Pr [F1 ] ≥ Pr [X1 ]−
n ln

(
(1− εA)−1

)
q(1− p−1/4)

.

DLog(Z, (j, i), c)

y ←$Zp

R∗j,i := gy · pk−c

(C1, ...,Cu ,R
′
1,1, ...,R

′
q,n) := (LG1 , . . . ,L

G

u+qn)

I ∗ := (C1, . . . ,Cu ,R
′
1,1, . . . ,R

′
j,i−1,R

∗
j,i ,R

′
j,i+1, . . . ,R

′
n,q

for k = 1, . . . ,
∣∣∣∣LG∣∣∣∣ do

LGk := Eval(I ∗,LVk )

return y

Figure 3.9: The difference betweenM2 andM3.
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Game 3. Note that the meta-reductions described in previous games were not efficient, because
the simulation of the attacker in procedure A needed to compute a discrete logarithm by
exhaustive search. In this final game, we construct an efficient meta-reduction M3 that it
identical toM2, with the difference that it simulates A efficiently. M3 proceeds exactly likeM2,
except for the following (cf. Figure 3.9).

DLog(Z,k,c): The DLog procedure chooses y←$Zp uniformly random and computes

R∗j,i := gy · pk−c (3.6)

Then it reads the first u + qn entries from LG as

(C1, ...,Cu ,R
′
1,1, ...,R

′
q,n) := (LG1 , . . . ,L

G

u+qn),

replaces Rj,i with R∗j,i by setting

I ∗ := (C1, . . . ,Cu ,R
′
1,1, . . . ,R

′
j,i−1,R

∗
i,j ,R

′
j,i+1, . . . ,R

′
q,n),

and finally re-computes the entire list LG from LV by setting LGa := Eval(I ∗,LVa ) for all
a ∈

[∣∣∣LV ∣∣∣]. Note that this implicitly defines Z as Z := gy , due to Equation 3.6.

Note that meta-reductionM3 can be implemented efficiently, as it does not have to compute
discrete logarithms. It remains to show that it is indistinguishable fromM2 for R with all but
negligible probablility.

Analysis ofM3. First note that each σ with σ ,⊥ output by A is a valid signature. Moreover,
we claim that R is not able to distinguishM3 fromM2, except for a negligibly small probability.
To this end, we apply a lemma which is very similar to Lemma 34 from the proof of Theorem 31.

Lemma 38. Let F2 denote the event that R computes vectors LVa ,LVb ∈ L
V such that

Eval(I ,LVa ) = Eval(I ,LVb ) ∧ Eval(I ∗,LVa ) , Eval(I ∗,LVb )

or

Eval(I ,LVa ) , Eval(I ,LVb ) ∧ Eval(I ∗,LVa ) = Eval(I ∗,LVb ).

Then

Pr [F2 ] ≤
2n(u +nq+ tR)

p
.

Before we sketch the proof of this lemma (which is very similar to the proof of Lemma 34),
let us finish the proof of Theorem 31. Note thatM3 is perfectly indistinguishable fromM2,
unless Event F occurs. Applying the above lemma, we thus obtain

Pr [X3 ] ≥ Pr [X2 ]−Pr [F2 ] ≥ Pr [X2 ]−
2n(u +nq+ tR)

p
.

Summing up, we thus obtain that

ε ≥ εR −
2n(u +nq+ tR)

p
−
n ln

(
(1− εA)−1

)
q(1− p−1/4)

.
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Proof Sketch for Lemma 38. The proof of Lemma 38 is almost identical to the proof of Lemma 34.
The main difference is that we need to simulate many (up to n) signatures in the multi-instance
case. This works well, with the same arguments as in the proof of Lemma 34, as long as we make
sure that we do not need to re-assign the same encoding twice. (In particular because this would
invalidate a signature previously computed by A, and thus be easily noticeable for R.)

By construction ofM3, this can happen only if Fork receives as input a group element Z
such that φ(Z) ∈ Γgood. Note that this is exactly when event F1 occurs, in which case the game is
aborted anyway, due to the changes introduced in Game 2.

Suppose that event F1 does not occur. In this case we re-assign each encoding at most once,
by replacing in list LG a uniformly distributed group element Ri,j with another uniform group
element R∗i,j , and re-computing all group elements contained in LG. Following Lemma 34, each
replacement can be noticed by R with probability at most

2(u +nq+ tR)
p

,

where the term u + nq (instead of u + q as before) is due to the fact that in the multi-instance
case LG is now initialized with u + nq group elements. Since in total at most n encodings are
re-assigned throughout the game, a union bound yields

Pr [F2 ] ≤
2n(u +nq+ tR)

p
.

3.5 On the Existence of Generic Reductions in the NPROM

In this section we apply our meta-reduction technique to a question orthogonal to the search
for tight security proofs in the random oracle model. Namely, we investigate the possibility of
finding any generic reduction R (even a non-tight one) that reduces a representation-invariant
computational problem Π to breaking the UUF-NMA-security of the Schnorr signature scheme
in the, weaker, Non-Programmable Random Oracle Model.

The standard security proof for Schnorr signatures in the ROM due to Pointcheval and Stern
works by applying the forking lemma. That means the reduction to the underlying discrete
logarithm problem essentially works as follows: It runs the adversary twice with the goal of
receiving two forged signatures for the same message m and the same randomness r, but two
different hash values c := H(gr ,m). This gives the reduction two values y1 := sk · c1 + r and
y2 := sk · c2 + r and allows it to compute the secret key as

y1 − y2

c1 − c2
=

(sk · c1 + r)− (sk · c2 + r)
c1 − c2

=
sk · (c1 − c2)
c1 − c2

= sk,

thereby computing the discrete logarithm of pk.
Clearly, this technique crucially relies on the fact that the reduction is able to reprogram

the random oracle inbetween the two runs of the adversary, since otherwise c1 and c2 cannot
be distinct. This is a standard technique for random oracle proofs, but it makes instantiating
the random oracle very hard. Once the random oracle is instantiated with a real-world hash
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function, such as SHA-2 or SHA-3, the function is fixed and cannot be reprogrammed. It is thus
unclear if and how the reduction applies in this case.

Fischlin et al. [FLR+10] defined reductions in the non-programmable random oracle model
(NPROM) by externalizing the random oracle to both the adversary and the reduction. 4 In such
a scenario the reduction still observes the queries the adversary makes but cannot influence
the replies. While the NPROM remains a highly idealized model, it matches much closer our
intuition of “real” hash functions and instantiations through, say, SHA-3. And indeed, Fischlin
et al. showed that the NPROM is a strictly weaker model than the standard ROM. It is therefore
very interesting to ask whether a security proof for Schnorr signatures – even a non-tight one –
might exist in this weaker model.

As in the sections before, our results are negative. We prove that it is impossible to find a
generic reduction from any non-interactive representation-invariant computational problem in
the NPROM.

3.5.1 An Inefficient adversaryA

The inefficient adversary A that breaks UUF-NMA-security of Schnorr signatures works as
follows:

1. The input of A is a Schnorr public key pk ∈ G, a message m ∈ {0,1}`, and random coins
ω ∈ {0,1}n.

2. The forger A chooses a uniformly random R←$G, queries the random oracle to computes
c := H(R,m) and computes Z := pkcR.

3. Finally, the forger A uses exhaustive search to find y ∈ Zp such that Z = gy and outputs
(R,y).

Note that (R,y) is by definition of the Schnorr signature scheme always a valid signature for
message m under public key pk. Thus, the forger described above breaks the UUF-NMA-security
of Schnorr signatures with probability 1.

3.5.2 Main Result for Reductions in the NPROM

We will prove the following Theorem.

Theorem 39. Let Π = (GΠ,VΠ) be a representation-invariant non-interactive computational problem.
Suppose there exists a generic reduction R that (εR, tR)-solves Π, having n-time black-box access
to an attacker A that (εA, tA,q)-breaks the UUF-NMA-security of Schnorr signatures in the non-
programmable random oracle model with success probability εA = 1 in time tA ≈ 1. Then there exists
an algorithmM that (ε, t)-solves Π with ε ≥ εR(1− 2n(u + tR)/p) and t ≈ tR.

Remark 40. The values n,u, and tR are polynomially bounded while p is exponential. Therefore,
the theorem shows that the existence of a reduction R implies the existence of a meta-reduction
M, which solves Π with essentially the same success probability and running time. Thus, an
efficient (and even non-tight) reduction R can only exist if there exists an efficient algorithm for
Π, which means that Π cannot be hard.

4The role of programmability was previously also investigated by Nielsen [Nie02], in a different setting.
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M(C)

# Initialization

parse C as (C1, . . . ,Cu ,C
′)

LG := ∅
LE := ∅
Encode(C1, . . . ,Cu)

Ĉ := (LE1 , . . . ,L
E
u ,C
′)

Ŝ ←$RO,A(Ĉ)

# Finalization

parse Ŝ as (Ŝ1, . . . , Ŝw,S
′)

(i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw)

return (LGi1 , . . . ,L
G

iw
,S ′)

A(φ(pk),m,ω)

e←$E

if e ∈ LE

Abort simulation

c :=R.H(e,m)

y ←$Zp

i := GetIdx(φ(pk))

R := gy · (LGi )−c

if R ∈ LG

Abort simulation

append e to LE

append R to LG

return (e,y)

Figure 3.10: Implementation ofM.

Proof. Assume that there exists a generic reduction R := RO,A that (εR, trdv)-solves Π when
given access to a generic group oracle O, and a forger A(φ(pk),m,ω), where the inputs to the
forger are chosen by R. Furthermore, the reduction R can observe all random oracle queries
made by A, however it cannot influence the responses. We show how to build a meta-reduction
M that has black-box access to R and solves the representation-invariant problem Π directly.

Note, that we may assume without loss of generality that R will never invoke A on the same
input twice. This is because R cannot influence the random oracle responses and therefore
the “forking” point for two instantiations must already be in the initial inputs. This makes
things much simpler, as we do not have to ensure consistency between different instances of the
adversary.

Meta-reductionM. At the beginning of the game,M receives a challenge C = (C1, . . . ,Cu ,C
′). It

initializes the lists LG := ∅ and LE := ∅ and determines encodings by running (φ(C1), . . . ,φ(Cu)) =
Encode(C1, . . . ,Cu). Then it invokes RA,O(φ(C1), . . . ,φ(Cu),C′). The oracle O is simulated exactly
as in previous proofs (Refer to Figure 3.1 on page 48).

Whenever R outputs (φ(pk),m,ω) to invoke an instance of A, M proceeds as follows. It
chooses a random encoding e←$E, and and aborts if e ∈ LE . Then it queries the random oracle
provided byR to compute c := H.R(e,m), chooses y←$Zp, calls i := GetIdx(φ(pk)), and computes
R := gy · (LGi )−c. It aborts if R ∈ LG. FinallyM appends e to LE and R to LG and outputs (e,y) as
a forgery.

Eventually, the algorithmR outputs a solution Ŝ := (Ŝ1, . . . , Ŝw,S
′) ∈ Ew×{0,1}∗. The algorithm

M runs (i1, . . . , iw) := GetIdx(Ŝ1, . . . , Ŝw) to determine the indices of group elements (LGi1 , . . . ,L
G

iw
)

corresponding to encodings (Ŝ1, . . . , Ŝw), and outputs (LGi1 , . . . ,L
G

iw
,S ′).
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Analysis ofM. Note thatM provides a perfect simulation of the oracle O. Further, it mimics
the attacker described in Section 3.5.1 perfectly unless it aborts while attempting to simulate
a forger. We define two failure events. Let F1 denote the event that while computing the
forgery it holds that e←$E. Similarly, let F2 denote the event that while computing the forgery
it holds that R ∈ LG. It holds that, if neither F1 nor F2 occur, R does not abort and (R,y) is
always a valid forgery for message m and thus, R outputs a solution Ŝ = (Ŝ1, . . . , Ŝw,S

′) to Ĉ
with probability εR. Since Π is assumed to be representation-invariant, S := (S1, . . . ,Sw,S

′) with
Ŝi = φ(Si) for i ∈ [w] is therefore a valid solution to C. Thus, the success probability ofM is at
least ε ≥ εR · (1−Pr [F1 ∪F2 ]).

Since the n encodings chosen while simulating the forger A are chosen uniformly at random,
and we have

∣∣∣LE ∣∣∣ ≤ u + tR at all times, we can bound the probability that F1 occurs using a union
bound as Pr [F1 ] ≤ n · (u + tR)/p. Similarly, since y←$Zp is uniformly random and therefore R
is a uniformly random group element in each simulated forger, we have Pr [F2 ] ≤ n · (u + tR)/p.
Therefore, using another union bound, we get that Pr [F1 ∪F2 ] ≤ Pr [F1 ] + Pr [F2 ] ≤ 2n(u + tR)/p.

Thus, in conclusion we obtain that

ε ≥ εR
(
1− 2n(u + tR)

p

)
as claimed.

Remark 41. The above result does not carry over to the standard model. The reason is that the
adversary is not necessarily generic. In the standard model, however, the hash function must
be evaluated locally by both the reduction and the adversary. Since they are using different
encodings of the group elements, a signature that appears valid for the adversary is invalid from
the point of view of the reduction with overwhelming probability.

One might attempt to rectify this by specifying different hash functions to adversary and
reduction, i.e., specifying H(φ(·)) as the hash function for the adversary. However, this fails for
the simple reason that φ(·) is not necessarily efficiently computable.



4On Statistically Secure Approximate Obfuscation

4.1 Introduction

Constructing public-key cryptography (e.g., public-key encryption) from private-key cryptog-
raphy (such as one-way functions) is one of the most fundamental questions in theoretical
cryptography, going back to the seminal paper of Diffie and Hellman [DH76]. Diffie and Hell-
man suggested that program obfuscators with sufficiently strong security properties would allow
to realize this transformation. A program obfuscator is a compiler that takes as input a program,
and outputs another program with equivalent functionality, but which is harder to reverse
engineer. Diffie and Hellman suggested to obfuscate the encryption circuit of a symmetric-key
encryption scheme, and use the obfuscated program as a public key so as to obtain a public-key
encryption scheme. An additional hint that obfuscation may be instrumental in solving this
riddle was provided by Impagliazzo and Rudich [IR90; IR89], who proved that a transforma-
tion from symmetric to public-key must make non-black-box use of the underlying symmetric
primitive. Indeed, program obfuscation is one of very few non-black-box techniques known in
cryptography.

Modern research showed that obfuscators with the security guarantees required by the
Diffie-Hellman transformation do not exist in general [HS07; BGI+01; BGI+12]. However,
recent years have seen incredibly prolific study of weaker notions of obfuscation, following the
introduction of a candidate indistinguishability obfuscator (iO) by Garg et al. [GGH+13]. The
security guarantee of iO is that the obfuscation of two functionally equivalent circuits should
result in indistinguishable output distributions. That is, reverse engineering could not detect
which of two equivalent implementations had been the source of the obfuscated program. Sahai
and Waters [SW14] showed that even this seemingly weak notion suffices for private-key to
public-key transformation (via a clever construction that does not resemble the Diffie-Hellman
suggestion).

One would have hoped that a weak notion such as iO may be realizable with statistical
security, i.e., that reverse engineering (to the limited extent required by iO) will not be possible
even to an attacker with unlimited computational power. The existence of such statistical
indistinguishability obfuscators (siO) would resolve the question of constructing public key
cryptography from one-way functions, as well as allow to construct one-way functions based
on the hardness of NP [KMN+14]. Alas, Goldwasser and Rothblum [GR07; GR14] proved that
siO cannot exist unless the polynomial hierarchy collapses (in particular that it implies that
statistical zero knowledge proofs exist for all languages in NP, i.e., NP ⊆ SZK, and it is known that
SZK ⊆ AM∩coAM. Therefore NP ⊆ coAM which implies the collapse of the polynomial hierarchy),
which is considered quite unlikely in computational complexity, and at any rate way beyond
the current understanding of complexity theory. This seems to put a damper on our hopes to
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achieve statistically secure obfuscation.
However, the [GR07; GR14] negative result crucially relies on the correctness of the obfuscator.

That is, it only rules out such obfuscators that perfectly preserve the functionality of the under-
lying primitive (at least with high probability over the coins of the obfuscator). In contrast, the
symmetric to public key transformation can be made to work with only approximate correctness,
i.e., a non-negligible correlation between the functionality of the input circuit and that of the
output circuit (where the probability is taken over the randomness of the obfuscator and the
input domain). The question of whether statistical approximate iO (saiO) exists was therefore
the new destination in the quest for understanding obfuscation. Interestingly, it turns out that
ruling out computational notions of iO in some idealized models also boils down to the question
of whether saiO exists (see Section 4.1.2 below). The study of this notion is the objective of this
chapter.

Our Results. We show that statistical approximate iO (saiO) does not exist if one-way functions
exist (under the assumption that NP * AM ∩ coAM). Thus, in particular that saiO cannot be
used for the transformation from symmetric to public-key cryptography. We show that if one-
way functions exist, then any non-negligible correlation between the output of the obfuscator
and the input program would imply an algorithm for unique SAT (USAT) in BPPGapSD, i.e., an
algorithm deciding the SAT problem for formulae with at most one satisfying assignment in
bounded-error probabilistic polynomial time when given access to an oracle deciding the Gap
Statistical Distance Problem. As SAT reduces to USAT via a randomized reduction [VV85], a
slight adaption of a result of Mahmoody and Xiao [MX10] shows that this implies that SAT is in
AM∩ coAM.

To complement our result, we observe that if one-way functions do not exist, then an average-
case notion of saiO exists for any distribution. Specifically, for any efficiently sampleable
distribution over circuits, there exists an saiO obfuscator whose correctness holds with high
probability over the circuits in that distribution (inverting the order of quantifiers would imply
a worst-case saiO).

A Study of Correlation Obfuscation. Our impossibility results extend beyond the case of saiO.
In fact, the result applies even when the security of the obfuscator is approximate. Namely,
when we are only guaranteed that the obfuscation of functionally equivalent circuits results in
distributions that have mild statistical distance (as opposed to negligible). This motivated us to
explore the properties of this new kind of obfuscators, which as far as we know have not been
studied in the literature before.

We consider statistical approximate correlation obfuscation sacO. A sacO obfuscator is char-
acterized by two parameters ε ∈ [0,1/2) and δ ∈ [0,1). The requirement is that correctness holds
with probability 1− ε (with respect to the randomness of the obfuscator and a random choice of
input), and that obfuscating two functionally equivalent circuits results in distributions with
statistical distance at most δ. The case of negligible δ is exactly saiO, discussed above, and the
case of ε = 0 corresponds to perfect correctness.

We observe that our impossibility result degrades gracefully and holds so long as 2ε + 3δ < 1.
We found this state of affairs unsatisfactory, and tried to extend the result to hold for the entire
parameter range. However, it turns out that sacO exists via an almost trivial construction
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Figure 4.1: The graph gives an overview over the possible range of parameters for sacO. In
the upper right are parameter regimes that can be achieved using the construction described in
Section 4.4. In the lower left are the strong parameter regimes ruled out by our negative result
in Section 4.3. The graph shows nicely the gap between the parameters that can be ruled out
and those that can be used to construct public key encryption using the construction of Sahai
and Waters as well as the amplification technique of Holenstein.

whenever 2ε + δ > 1 (e.g., ε = δ = 0.4). We do not know if sacO exists in the intermediate
parameter regime.

Lastly, we conduct a study of whether sacO is sufficient to construct public-key encryption
from one-way functions. We present an amplified version of the Sahai-Waters construction using
an amplification technique due to Holenstein. Interestingly, it appears that there is a region
in the parameter domain that would allow to construct public-key encryption from one-way
functions, but is not ruled out by our current technique. See Figure 4.1 for the landscape of sacO
parameters. This leads to the intriguing open problem of closing the gap between the various
parameter regimes, which is, however, beyond the scope of this thesis.

4.1.1 Our Techniques

Our starting point is the Goldwasser-Rothblum impossibility result [GR07; GR14]. Consider
a statistical indistinguishability obfuscator such that for any pair of functionally equivalent
circuits, the obfuscator generates statistically indistinguishable distributions, and in addition
the output circuit of the obfuscator is always functionally equivalent to the input circuit (this
can be relaxed to hold only with high probability over the random coins of the obfuscator).
Goldwasser-Rothblum observe that an unsatisfiable SAT formula Ψ is functionally equivalent
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to the all-zero function 0 and therefore the distributions produced by a siO obfuscator in both
cases should be statistically indistinguishable. Slightly more formally, let X[C] denote the
distribution output by the obfuscator on input circuit C, then we get that X[Ψ ] ≡ X[0], where ≡
denotes statistical indistinguishability. On the contrary, if Ψ is a satisfiable formula, then it has
a different functionality than 0 and therefore the support of X[Ψ ] and X[0] will be disjoint (and
thus obviously not statistically indistinguishable). It follows that in order to solve SAT, it suffices
to tell whether X[Ψ ] is close to X[0]. It was shown by Sahai and Vadhan [SV97] that there exists
an SZK protocol that takes two polynomial-time samplers, and decides whether they sample
from distributions that are ε1-statistically close or ε2-statistically far, so long as (ε2 − ε1) is large
enough gap. The conclusion is that an siO obfuscator implies an SZK protocol for SAT which in
turn implies that NP ⊆ SZK.

To sum up the core argument, to show that an siO obfuscator does not exists unless NP ⊆
SZK, Goldwasser-Rothblum built the formula-indexed distribution X[Ψ ] that samples an siO
obfuscation of Ψ and has the properties that it is

(i) efficiently sampleable,

(ii) if Ψ is not satisfiable, then X[Ψ ] and X[0] are close, while

(iii) if Ψ not satisfiable, then X[Ψ ] and X[0] are far.

Allowing the obfuscator to have approximate correctness thwarts this approach completely.
Hard SAT instances are obviously ones where the density of accepting inputs is sub-polynomial,
since otherwise random sampling would yield a satisfying assignment with non-negligible
probability. Therefore, satisfiable and unsatisfiable SAT formulae will have almost identical
functionality. One could consider an saiO obfuscator that on any SAT formula that is not trivially
satisfiable would just produce an obfuscation of 0. This means that X[Ψ ] will have the same
distribution whether Ψ is satisfiable or not and thus, property (iii) is not satisfied anymore.

In order to overcome this issue, we construct a different distribution on formula-indexed
circuits CX[k,Ψ ] (where k is some uniformly random key k) such that if Ψ is not satisfiable,
then CX [k,Ψ ] and CX [k,0] have the same functionality, and if Ψ is satisfiable, then CX [k,Ψ ] and
CX [k,0] differ on a single point. Then, assuming one-way functions exist, we show that, although
these two circuits differ on a single point only, when obfuscating CX [k,Ψ ] the obfuscator has to
produce a distribution that is statistically far from an obfuscation of CX [k,0]. To do this, we rely
on the fact that the obfuscator itself is computationally efficient, and therefore it cannot break
the hardness of one-way functions and derived cryptographic objects such as pseudorandom
functions (PRFs) or puncturable PRFs (see below). This way, we construct a new formula-indexed
distribution X[Ψ ] that satisfies properties (i), (ii) and (iii) as discussed above.

Puncturable PRFs were introduced simultaneously in [BW13; BGI14; KPT+13] and were
utilized as an essential building block for using indistinguishability obfuscation in [SW14]. A
standard PRF is a function that can be efficiently computable using a key k, but is indistin-
guishable from a random function via oracle access. A puncturable PRF is a PRF where one can
generate a punctured key k{x0} which allows to compute the PRF at all points except x0, but the
value at x0 is still indistinguishable from uniform, even given the punctured key. Punctured
PRFs can be constructed from any one-way function.

Based on a puncurable PRF and an saiO obfuscator O, we now construct a distribution on
pairs of circuits (for now not indexed by a formula) such that the two circuits differ on a single
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point only and yet, an saiO obfuscator will produce distributions that are far. Let k be a key
for a puncturable PRF, let x0 be a random point in the domain, let k∗ be the key k punctured at
x0 and consider the function fk∗,y that outputs PRF(k∗,x) = PRF(k,x) for all x , x0, and outputs
y on input x0. Then by definition fk∗,y for a random y and fk∗,y0

= PRF(k, ·) for y0 = PRF(k,x0)
are identical in functionality except maybe at point x0. However, using puncturing, we can
guarantee that the distributions O(fk∗,y) and O(fk∗,y0

), where k,x0, y are chosen uniformly at
random are statistically far. To see this, it is enough to show that O(fk∗,y) and O(PRF(k, ·)) are
statistically far since fk∗,y0

= PRF(k, ·) and thus O(fk∗,y0
) ≡ O(PRF(k, ·)). Consider the predicate

that checks whether O(PRF(k, ·))(x0) = PRF(k,x0). This predicate must have non-negligible bias
towards holding true, and is efficiently checkable, which also implies that O(fk∗,y)(x0) = fk∗,y(x0)
holds true with noticeable bias, since otherwise we will have an efficient distinguisher from
fk∗,y0

= PRF(k, ·) in contradiction to the puncturable PRF security. Finally, since y , y0 with high
probability (assume for simplicity that the PRF and the obfuscator have long outputs and keys
of half the size), this implies that O(fk∗,y) and O(fk∗,y0

) have noticeable statistical distance, since
they will have noticeable probability mass on circuits that respect the functionality on x0. Note
that we used a computational argument, the security of punctured PRFs, to derive a statistical
statement about the output distribution of the obfuscator.

We would like to use the aforementioned distributions to distinguish between satisfiable
and unsatisfiable formulae. Let us restrict our attention to Unique-SAT formulae that are either
unsatisfiable or have only one satisfying assignment. Unique-SAT is known to be NP-Hard via
a randomized reduction [VV85], and combining results of Mahmoody and Xiao [MX10] and
Bogdanov and Lee [BL13b] we show in Section 4.2.1 that if Unique-SAT is in BPPGapSD, then SAT
is in AM∩ coAM.

Let Ψ be a formula that has a unique satisfying assignment, then one can randomize the
satisfying assignment (if it exists) to be uniformly distributed over the input space (e.g., by
XORing all variables with a random string). Now, consider the function fk,y,Ψ defined s.t.
fk,y,Ψ (x) = PRF(k,x) if x does not satisfy Ψ , and fk,y,Ψ (x) = y otherwise. By definition, if Ψ

is unsatisfiable then fk,y,Ψ = PRF(k, ·) and if Ψ is satisfiable by some x0 (which is uniformly
distributed) then fk,y,Ψ = fk∗,y . Therefore O(fk,y,Ψ ) is guaranteed to have a noticeable statistical
distance in the case where Ψ is unsatisfiable (in which case it is close to O(fk,y,0)) and in the
case where it is uniquely satisfiable (in which case it is far from O(fk,y,0)). This will allow us to
produce an SZK protocol to distinguish the two possibilities.

In a World without OWFs. We recall that if OWFs do not exist then for any efficiently com-
putable function f and with overwhelming probability over a y sampled from the output
distribution of f , it is possible to efficiently sample (almost) uniformly (up to an arbitrarily small
but fixed inverse polynomial error) from the set f −1(y) = {x : f (x) = y} [IL89]. Given an efficiently
sampleable distribution over circuits, we can construct an average-case obfuscator for this family
as follows. Let sampC be a sampler for this distribution of circuits and consider the function
f (r,x1, . . . ,xm) for a large polynomial m such that f (r,x1, . . . ,xm) = (x1, . . . ,xm,C(x1), . . . ,C(xm)), for
C = sampC(r).

Now, to obfuscate a circuit C, sample x1, . . . ,xm and compute yi = C(xi). Then sample
(r,x1, . . . ,xm) from f −1(x1, . . . ,xm, y1, . . . , ym) and finally output C′ = sampC(r). This is clearly a
perfect indistinguishability obfuscator (i.e., two circuits with the same functionality will produce
identical distributions). It is also approximately correct on the average, because on average, if
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two circuits agree on a randomly chosen set of points, then they will have a large agreement
altogether.

We note that a similar and even simpler argument shows that if all efficiently computable
functions are PAC learnable [Val84], even allowing membership queries, then saiO with perfect
indistinguishability exists. A probably approximately correct (PAC) learner is an algorithm that
with high probability outputs a hypothesis that approximately agrees with the function being
learned, i.e., agrees on a large fraction of inputs. An saiO follows immediately by giving the
learner (black-box) access to C, and outputting its hypothesis C′ as the output of the obfuscator.
In such case OWFs trivially do not exist.

The Landscape of Correlation Obfuscation. Extending our techniques to rule out sacO with
2ε + 3δ < 1 follows from carefully analyzing the parameters in the proof outlined above (one can
get 2ε+ 4δ < 1 by straightforward analysis, and the slight improvement comes from properly
defining the random variables in the problem). We can show a trivial sacO obfuscator for
2ε + δ > 1 as follows. Given an input circuit C, use random sampling to find the majority
value of the truth table of C (if C is approximately balanced, then any value works). Then
output the constant function taking the majority value with probability 2ε, and output C itself
with probability 1− 2ε. Correctness will hold with probability 1− ε, since if C is output then
correctness is perfect, and if the constant function is output then correctness is approximately 1/2.
The correlation between two functionally equivalent circuits is at least 2ε since the calculation
of the majority value only depends on the truth table. We provide a more formal analysis in
Section 4.4. It seems that such a trivial obfuscator cannot imply any non-trivial results.

We notice that a sacO obfuscator can be plugged into the Sahai-Waters construction, and
would imply weak notions of security and correctness for the resulting public-key encryption
scheme. Holenstein [Hol06] shows that, for some parameters, this weak notion can be amplified
to standard security and correctness. Plugging in our parameters, we get that roughly when
1
2 − 3ε+ 2ε2 > δ, sacO would imply symmetric to public key transformation using this method.
This leaves a small region of parameters where sacO is not known to be impossible, and if it is
possible it will imply highly non-trivial results. It is not clear whether other parameter regimes
can also be useful, or whether our impossibility can be extended to rule out the entire useful
regime. We refer to Figure 4.1 again for a visual characterization of the parameter regimes.

4.1.2 Consequences of Our Result

Our result strengthens previous negative results for proving the existence of iO in several ideal
models. Previous works show that a construction of statistically secure (perfectly correct) iO
in any of those ideal models implies the existence of saiO in the standard model. Actually,
one can generalize these results to also hold for saiO. Combined with our result, we now yield
that a construction of iO or saiO in these ideal models implies that NP ⊆ AM ∩ coAM or the
non-existence of one-way functions.

This line of research was initiated by Canetti et al. [CKP15] who show that given a VBB
obfuscator in the random oracle model, one can remove the random oracle at the cost of relaxing
the correctness of the obfuscator. Pass and shelat [PS16] show an analogous result for VBB
obfuscators in the ideal constant-degree encoding model, and Mahmoody, Mohammed, and
Nematihaji [MMN16] show analogous results for the generic group model and the random
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trapdoor permutation model. All these results transform a VBB obfuscator in an oracle world
into an approximately correct VBB obfuscator in the standard model. They yield an impossibility
result for VBB obfuscation in the ideal models, as approximately correct VBB is known not to
exist, assuming trapdoor permutations, see [CKP15; BP13]. The crucial insight of Mahmoody et
al. [MMN+16] is that all these oracle removal procedures are actually oblivious to the exact notion
of obfuscation. The reason is that all proofs proceed by showing that the oracle-free obfuscation is
as secure as the oracle-based obfuscation, i.e., the oracle-free obfuscated circuit can be simulated
by an adversary in the oracle world, given the oracle-based obfuscated circuit. Therefore, if
one has an iO obfuscator in any of the ideal models, via the oracle removal procedures, one
obtains an saiO obfuscator in the standard model. Mahmoody et al. [MMN+16] conclude that, as
an saiO obfuscator in the standard model allows to resolve the long-standing open problem of
building public-key encryption from symmetric-key encryption, it seems very hard to construct
such an object. In other words, their result rules out saiO assuming that building public-key
encryption from symmetric-key encryption is impossible. Our result strengthens1 their result
by ruling out saiO based on the accepted complexity postulate that NP * AM∩ coAM and the
fundamental assumption of cryptography that one-way functions exist. Therefore, based on the
same assumptions, iO in all aforementioned idealized models cannot exist.

4.1.3 Open Problems

The main question that we leave open is the set of parameters for sacO that are useful and that
are (im)possible. Note that it is desirable to have more positive results not only for sacO, but
also for acO, the computational variant of sacO, in the spirit of Bitansky-Vaikuntanathan [BV16]
who give an assumption-based transformations from aiO to standard iO. Even if sacO for useful
parameters turns out to be impossible, it might still be easier to build acO for useful parameters
and then use amplification rather than to build fully secure fully correct iO directly.

In particular, note that for a certain parameter range of sacO, we do not know of any
impossibility results of building sacO in ideal models. The oracle removal procedures that we
discuss in Section 4.1.2 maintain security and only weaken correctness. Therefore, a variant of
the oracle removal procedures can also be proven for sacO (losing some amount of correctness).
As not all useful parameters for sacO are ruled out by our results, one might aim for building
sacO in an ideal model for these parameters. Note that one can use our result as a sanity check
for any potential oracle construction: If the construction would also work for parameters that
we rule out, then it is probably better to pursue a different approach.

Another direction for building useful statistical variants of iO is to relax the computational
efficiency of the obfuscator in which case the distributions X[Ψ ] that we considered before
are not efficiently sampleable anymore and thus, the argument described in Section 4.1.1 fails.
Interestingly, Lin et al. [LPS+16] recently showed that such a notion of iO, which they call XiO,
indeed has useful applications to transformations on functional encryption.

1Note that our result is only a “stronger” result in a moral sense, but not in a formal sense. While the non-existence
of one-way function would allow us to build a reduction from public-key encryption to symmetric-key encryption (as in
this case, both do not exist), it is not known that NP ⊆ AM∩ coAM implies that we can build a public-key encryption
scheme from a one-way function.
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4.2 Preliminaries

4.2.1 Complexity Theory

We refer the reader to Goldreich’s book [Gol08] for a detailed exposition of complexity theory.
We now discuss a few object that are most relevant to our proof. We let SAT denote the set of
all satisfiable boolean formulae in conjunctive normal form (CNF), we let USAT denote the set
of CNF formulae that have exactly one satisfying assignment, and we let UNSAT denote the set
of CNF formulae that have no satisfying assignment. Given a formula Ψ , deciding whether
Ψ ∈ SAT is an NP-Complete problem. We recall that a promise problem Π = (ΠYes,ΠNo) is a pair
of disjoint subsets of {0,1}∗. Of particular interest to us is the unique SAT (promise) problem
UniqueSAT = (USAT,UNSAT). Total problems (a.k.a. languages) are a special case of promise
problems, e.g. (SAT,UNSAT) is exactly the SAT problem. In such a case, it suffices to specify ΠYes

in order to completely define the problem.
We consider the notion of randomized polynomial time Turing reductions between problems. A

promise oracle to a problem Π = (ΠYes,ΠNo), is one that always answers 1 on inputs in ΠYes and
always answers 0 on inputs in ΠNo, but otherwise can answer arbitrarily, and even inconsistently
between calls. We define the class BPPΠ as the class of problems solvable using a probabilistic
polynomial time algorithm with access to a Π oracle. In other words, BPPΠ is the class of
problems that are reducible to Π. One can verify that this class indeed composes, i.e. if Π̃ ∈ BPPΠ

then BPPΠ̃ ⊆ BPPΠ. Valiant and Vazirani [VV85] showed that SAT is reducible to unique SAT.

Theorem 42 (Valiant-Vazirani). SAT ∈ BPPUniqueSAT.

An additional promise problem which will be of interest to us is the GapSD problem, defined
by Sahai and Vadhan [SV97]. This problem essentially captures the hardness of distinguishing
between efficient samplers for statistically close distributions and ones for statistically far
distributions. We recall that for a circuit C (which we regard as a sampler from a distribution),
C(U ) denotes the distribution generated by running C on a random input.

Definition 43 (GapSD Problem). The problem GapSD = (GapSDYes,GapSDNo) is defined as follows.
Consider tuples of the form (C0,C1,ν,1`), where C0,C1 are circuits, ν is a threshold value and 1` is a
unary encoding of a probability gap. Define

GapSDYes = {(C0,C1,ν,1
`) : SD(C0(U ),C1(U )) < ν} ,

and
GapSDNo = {(C0,C1,ν,1

`) : SD(C0(U ),C1(U )) > ν + 1/`} .

Combining results by Mahmoody and Xiao [MX10] and by Bogdanov and Lee [BL13b] as
follows implies that BPPGapSD is contained in AM∩coAM. In fact, by applying [MX10] we get that
BPPSZK ∈ AM∩coAM, which is almost what we need. However, it is only known that GapSD ∈ SZK
under a somewhat weaker definition of the GapSD problem.

Theorem 44. BPPGapSD ⊆ AM∩ coAM.

Proof. It follows from [BL13b, Theorem 9] that GapSD ∈ AM ∩ coAM. This means that both
(GapSDYes,GapSDNo) and its complement (GapSDNo,GapSDYes) have AM protocols, say with
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completeness 9/10 and soundness 1/10. Consider the protocol that takes (C0,C1,ν,1`) and
does the following. First, execute the AM protocol for (GapSDYes,GapSDNo) on input x1 =
(C0,C1,ν + 1/(4`),14`). Then, execute the AM protocol for (GapSDNo,GapSDYes) (note the reverse
order) on x2 = (C0,C1,ν − 1/(2`),14`). Accept only if the two executions accepted. Now, assume
that ν = SD(C0,C1). Then it holds that x1 ∈ GapSDYes and x2 ∈ GapSDNo and therefore our new
protocol accepts with probability at least 8/10. However, if |ν −SD(C0,C1)| > 1/` then either
x1 ∈ GapSDNo or x2 ∈ GapSDYes and therefore our new protocol accepts with probability at most
2/10. This means that our protocol is an AM protocol that, for any ε, can decide given (C0,C1),
1d1/εe and ν whether ν = SD(C0(U ),C1(U )) or whether |ν −SD(C0(U ),C1(U ))| > ε.

Consider now the real valued function fSD : {0,1}∗→R defined as

fSD(C0,C1,1
k) = SD(C0(U ),C1(U ))

(note that the third parameter is ignored and is used only for padding purposes) and consider
the class R-TFAM as defined by Mahmoody and Xiao[MX10].

Definition 45 (R-TFAM). A function f : {0,1}∗ → R is in R-TFAM if for every ε ≥ 1/poly (n), the
following relation R = (RYes,RNo) is in AM:

1. RYes = {(x,f (x)) |x ∈ {0,1}∗ }

2. RNo =
{
(x,y)

∣∣∣x ∈ {0,1}∗ ∧ ∣∣∣y − f (x)
∣∣∣ ≥ ε }

Our protocol above implies, by definition, that fSD ∈ R-TFAM. Furthermore, it holds that
BPPGapSD ⊆ BPPOfSD , for any oracle OfSD that on input x ∈ {0,1}n outputs a value y such that∣∣∣y − fSD(x)

∣∣∣ ≤ 1/n. To see this, we notice that we can answer queries to the GapSD oracle of the
form (C0,C1,ν,1`) as follows: First compute y = OfSD(C0,C1,12`), then if y < ν+1/(2`) return Yes,
otherwise return No. This implies that BPPGapSD ⊆ BPPR-TFAM by [MX10, Definition 3.2] (when
choosing ε(n) = 1/n). Finally, [MX10, Theorem 1.1] states that BPPR-TFAM ⊆ AM∩ coAM, which as
shown above implies that BPPGapSD ⊆ AM∩ coAM as desired.

We now state an important corollary of Theorem 44 which shows that there would be unlikely
consequences if UniqueSAT ∈ BPPGapSD.

Corollary 46. If UniqueSAT ∈ BPPGapSD, then NP ⊆ AM∩ coAM.

Proof. By definition it holds that NP ⊆ BPPSAT. Theorem 42 implies that BPPSAT ⊆ BPPUniqueSAT.
If UniqueSAT ∈ BPPGapSD then BPPUniqueSAT ⊆ BPPGapSD. Together with BPPGapSD ⊆ AM∩ coAM
from Theorem 44, we get

NP ⊆ BPPSAT ⊆ BPPUniqueSAT ⊆ BPPGapSD ⊆ AM∩ coAM ,

and the corollary follows.
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4.2.2 Obfuscation

In this section, we define the statistically secure variant of approximately correct indistinguisha-
bility obfuscation (saiO) and its generalization that we call statistically secure approximately correct
correlation obfuscation (sacO). We start with the generalized variant sacO first and then define
saiO as a special case. The notion of correlation obfuscation, in contrast to standard indistin-
guishability obfuscation, does not require that the output of the obfuscator is indistinguishable
for functionally equivalent circuits. Rather, it only requires that there is a noticeable correlation
between the outputs.

Definition 47 (Approximately Correct Correlation Obfuscation). Let O be a PPT algorithm that
takes the security parameter 1n and a boolean circuit (with a single output bit) as inputs and produces
a boolean circuit as output. For a circuit C, we let O(1n,C;r) denote the output of running O on C
with randomness r, and we let O(1n,C) denote the distribution O(1n,C;r) with uniform r. We say
that O is a (1− ε)-approximately correct and (1− δ)-secure correlation obfuscator sacO if the following
conditions hold:

Approximate Correctness. For any circuit C it holds that

Pr
r,x

[O(1n,C;r)(x) = C(x)] ≥ 1− ε(|C| ·n).

Correlation. For any pair of circuits C1,C2 which compute the same function and such that |C1| =
|C2| it holds that SD(O(1n,C1),O(1n,C2)) ≤ δ(|C1| ·n).

The definition of statistically secure approximately correct indistinguishability obfuscation
(saiO) follows by requiring negligible statistical distance δ.

Definition 48 (Approximately Correct Indistinguishability Obfuscation). Let O be a (1− ε)-ap-
proximately correct and (1 − δ)-secure correlation obfuscator. We say that O is also a (1 − ε)-
approximately correct statistically secure indistinguishability obfuscator (saiO) if there exists a negligi-
ble function negl (|C| ·n) such that for all circuits C it holds that δ(|C| ·n) ≤ negl (|C| ·n).

4.2.3 Puncturable Pseudorandom Functions

We use a weak notion of puncturable pseudorandom function. This notion suffices for our results
and follows trivially from the stronger standard definition.

Definition 49 (Puncturable Pseudorandom Functions). A pair of PPT algorithms (PRF,Puncture)
is a puncturable pseudorandom function with one-bit output if, on input a key k ∈ {0,1}n or a punctured
key k∗ and an input value x ∈ {0,1}n, PRF deterministically outputs a bit b and on input a key k ∈ {0,1}n
and an input value x0, Puncture outputs a punctured key k∗ such that the following two properties are
satisfied.

Functionality Preserved Under Puncturing. For all keys k, all input values x0, all punctured
keys k∗←$Puncture(k,x0), and all input values x , x0, it holds that

PRF(k∗,x) = PRF(k,x).
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Security For every PPT adversary (A1,A2) such that A1(1n;r1) outputs an input value x0 and state
st, consider an experiment where k←$ {0,1}n, k∗ = Puncture(k,x0; t), and b←$ {0,1}. Then we have∣∣∣∣∣∣ Pr

k,r1,t,r2

[A2(st,k∗,x0,PRF(k,x0);r2) = 1]− Pr
k,b,r1,t,r2

[A2(st,k∗,x0,b;r2) = 1]

∣∣∣∣∣∣ ≤ negl (n) .

As observed by [BW13; BGI14; KPT+13] puncturable PRFs can, for example, be constructed
from pseudorandom generators (and thereby one-way functions [HIL+99]) via the GGM tree-
based construction [GGM84; GGM86].

4.3 Negative Results for sacO and saiO

We now prove our main theorem that sacO for a large class of parameters, in particular the saiO
parameters, is impossible assuming one-way functions and NP * AM∩ coAM.

Theorem 50 (Impossibility of sacO). If (1−ε)-approximately correct, (1−δ)-secure sacO for P exists,
and there exists some polynomial poly (|C| ,n) such that δ(|C| · n) ≤ 1

3 −
2
3ε(|C| · n) − 1

poly(|C|·n) , then
one-way functions do not exist or NP ⊆ coAM∩AM.

By setting δ to be some negligible function, impossibility of saiO follows immediately as a
corollary.

Corollary 51 (Impossibility of saiO). If (1− ε)-approximately correct, saiO for P exists, and there
exists some polynomial poly (|C| ,n) such that ε(|C| ·n) ≤ 1

2 −
1

poly(|C|·n) , then one-way functions do not
exist or NP ⊆ coAM∩AM.

Proof of Theorem 50. We define an efficiently sampleable distribution X[Ψ ] that is parametrized
by a formula Ψ , and we define a reference distribution Y that should be parametrized by the size
of Ψ and the number of variables in Ψ , but we omit the dependency on Ψ for readability. We
note that in the introduction, we discussed to use Y = X[0], where 0 is a canonical representation
of an unsatisfiable formula of the same size as Ψ . It is intuitive to think of Y as being indeed
equal to X[0]. However, for the sake of tightness, jumping ahead, we will use a slightly different
distribution and note that this allows us to gain an additive term of δ in Claim 58.

As in the proof by Goldwasser and Rothblum [GR07; GR14] that we sketched in the intro-
duction, we want to define X[Ψ ] (and Y ) in a way such that the distributions are efficiently
sampleable, that they are statistically close if Ψ is satisfiable, and that they are statistically far if
Ψ is unsatisfiable, assuming one-way functions and sacO. If we manage to do so, then we suceed
in showing that these assumptions imply the collapse of the polynomial hierarchy.

Our proof will rely on the promise problem (USAT,UNSAT) rather than the language SAT
(See Section 4.2.1) and therefore, instead of using the gap statistical distance problem GapSD
directly as Goldwasser-Rothblum, we will consider BPPGapSD to be able to accommodate the
randomized reduction from SAT to USAT (See Theorem 42).

Our proof does not rely on complexity-theoretic techniques, except for proving the following
claim and showing that the theorem follows from it.

Claim 52. Assume that there is a formula-indexed distribution X[Ψ ], a reference distribution Y , a
function ν, and a polynomial poly (n) such that the following three conditions are satisfied.
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(1) There is a uniform polynomial-time algorithm A, that on input Ψ , constructs two polynomial-
size randomized circuits that sample from X[Ψ ] and Y respectively.

(2) If Ψ is in UNSAT, then X[Ψ ] is has statistical distance at most ν(n) from Y .

(3) If Ψ is in USAT, then X[Ψ ] has statistically distance at least ν(n) + 1
poly(n) from Y .

Then USAT is in BPPGapSD ⊆ AM∩ coAM.

Proof. Given that conditions (1), (2) and (3) are satisfied, we construct an algorithm B such that
for all GapSD oracles and all formulae Ψ , BGapSD(Ψ ) outputs 1 with probability 1 if Ψ ∈ USAT
and 0 with probability 1 if Ψ ∈ UNSAT. On input Ψ , the algorithm B runs A to get circuits for
X[Ψ ] and Y and queries (X[Ψ ],Y ,ν(n),1poly(n)) to the GapSD oracle. B returns whatever the
oracle returns. By properties (1), (2) and (3), the query that B makes is in GapSDYes if Ψ ∈ USAT
and in GapSDNo if Ψ ∈ UNSAT. Hence, B is correct and USAT is in BPPGapSD. Moreover, due to
Theorem 44, BPPGapSD ⊆ AM∩ coAM.

To obtain the main theorem, we need to show that USAT is in BPPGapSD implies that NP is in
AM∩ coAM which directly follows from Corollary 46 of Theorem 44. Thus, if we can show that a
distributions as described in conditions (1), (2) and (3) exist, then the theorem follows.

We now define X[Ψ ] and Y and then show that they satisfy (1), (2) and (3) assuming the
existence of one-way functions and sacO with suitable correctness and security.

Definition 53 (Distribution). Let `(n) be a sufficiently large polynomial designating the size to
which all circuits are padded before being obfuscated. Let Ψ be a formula, let (PRF,Puncture) be
a puncturable pseudorandom function, and let O be a (1 − ε)-correct, statistically (1 − δ)-secure
approximate correlation obfuscator, where δ(|C| · n) ≤ 1

3 −
2
3ε(|C| · n)− 1

poly(|C|·n) . We now define the
distribution X[Ψ ] and Y , where the circuits CX[k,b, s,Ψ ] and Cprf[k] are defined to the right of the
distributions.

X[Ψ ](1n)

k←$ {0,1}n

s←$ {0,1}n

C := CX [k,s,Ψ ]

C′ ←$O(1n,C)

return (k,s,C′)

CX [k,s,Ψ ](x)

if Ψ (x⊕ s) = 1

return PRF(k,x)⊕ 1

else

return PRF(k,x)

Y (1n)

k←$ {0,1}n

s←$ {0,1}n

C := Cprf[k]

C′ ←$O(1n,C)

return (k,s,C′)

Cprf[k](x)

return PRF(k,x)

Claim 54 (Distribution). The distributions defined in Definition 53 satisfy the conditions demanded
in Claim 52. I.e., there exists a function ν and a polynomial poly (n) such that they satisfy the
following:

(1) There is a uniform polynomial-time algorithm A, that on input Ψ , constructs two polynomial-
size randomized circuits that sample from X[Ψ ] and Y respectively.

(2) If Ψ is in UNSAT, then X[Ψ ] is has statistical distance at most ν(n) from Y .

(3) If Ψ is in USAT, then X[Ψ ] has statistically distance at least ν(n) + 1
poly(n) from Y .
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We will first state two claims and a lemma that will allow us to prove Claim 54. We will then
prove Claim 54 and afterwards prove the claims and the lemma.

Claim 55 (Efficient Sampling). There is a uniform polynomial-time algorithm A, that on input Ψ ,
constructs two polynomial-size randomized circuits that sample from X[Ψ ] and Y respectively..

Claim 56 (Statistical Proximity). For all formulae Ψ ∈ UNSAT, X[Ψ ] has statistical distance at most
δ(`(n) ·n) from Y .

Lemma 57 (Statistical Distance). There exists a negligible function negl (n), such that for all formulae
Ψ ∈ USAT, X[Ψ ] has statistical distance at least 1− 2ε(`(n) ·n)− 2δ(`(n) ·n)−negl (n) from Y .

Proof of Claim 54. Condition (1) follows immediately from Claim 55. Condition (2) follows from
Claim 56 for a function ν(n) = δ(`(n) ·n). From Lemma 57, it follows that, if Ψ is in USAT, then
X[Ψ ] has statistically distance at least 1− 2ε(`(n) ·n)− 2δ(`(n) ·n)−negl (n) from Y . Combining
this with the ν(n) obtained from Claim 56 we get that condition (3) holds, if there exists a
polynomial poly (n), such that

δ(`(n) ·n) + 1
poly(n) ≤ 1− 2ε(`(n) ·n)− 2δ(`(n) ·n)−negl (n)

⇐⇒ 3δ(`(n) ·n) ≤ 1− 2ε(`(n) ·n)− 1
poly(n) −negl (n)

⇐⇒ δ(`(n) ·n) ≤ 1
3
− 2

3
ε(`(n) ·n)− 1

poly(n) −negl (n) . (4.1)

And, since negl (n) is dominated by an inverse polynomial, Equation 4.1 is already ensured by
Definition 53, condition (3) holds, and the claim follows.

Proof of Claim 55. Sampling k and s is efficient and so is constructing CX[k,s,Ψ ] and Cprf[k].
Finally, from the efficiency of the obfuscator, it follows that X[Ψ ] and Y are efficiently sampleable
by polynomial-size randomized circuits.

Proof of Claim 56. For all unsatisfiable formulae Ψ , the circuits CX [k,s,Ψ ] and Cprf[k] are func-
tionally equivalent and of same size `(n). Hence, by statistical security of the obfuscator,
the distributions (k,s,O(1n,CX [k,s,Ψ ])) and (k,s,O(1n,Cprf[k])) have statistical distance at most
δ(`(n) ·n).

We now turn to the most involved part of the proof, which is to show that Lemma 57 holds.
In order to show that for all formulae Ψ ∈ USAT, X[Ψ ] is statistically far from Y , we show that, if
Ψ ∈ USAT, then the distribution X[Ψ ] has a property that Y does not have. We state the property
in two claims.

Claim 58. For all x0, it holds that

Pr
(k,s,C′)←$Y (1n)

[
C′(x0 ⊕ s) , PRF(k,x0 ⊕ s)

]
≤ ε(`(n) ·n).

Claim 59. If Ψ ∈ USAT, then there exists xΨ , such that

Pr
(k,s,C′)←$X[Ψ ](1n)

[
C′(xΨ ⊕ s) , PRF(k,xΨ ⊕ s)

]
≥ 1− ε(`(n) ·n)− 2δ(`(n) ·n)−negl (n) .
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Proof of Lemma 57. Lemma 57 follows directly from Claim 58 and Claim 59, because the stated
properties are statistical properties, i.e., we can give an inefficient distinguisher as follows:
The distinguisher determines xΨ – which is exactly the satisfying assignment of Ψ – through
exhaustive search and then, given a sample (k,s,C′) from either X[Ψ ] or Y , checks whether
PRF(k, ·) and C′ differ on input xΨ ⊕s. If the sample is from X[Ψ ], they will differ with probability
greater than 1− ε(`(n) ·n)− 2δ(`(n),n)−negl (n). If on the other hand the sample is from Y , then
they will differ only with probability less than ε(`(n) ·n). This concludes the proof of Lemma 57,
subject to proving the claims.

It now remains to prove Claim 58 and Claim 59. The proof of the first property is relatively
straightforward, while the proof of the second property contains the technical key arguments
that we discussed above.

Proof of Claim 58. To prove the claim, we will argue that the following equalities hold:

Pr
(k,s,C′)←$Y (1n)

[
C′(x0 ⊕ s) , PRF(k,x0 ⊕ s)

]
(4.2)

= Pr
k,s ←$ {0,1}n,C′ ←$O(1n,Cprf[k])

[
C′(x0 ⊕ s) , PRF(k,x0 ⊕ s)

]
(4.3)

= Pr
k,s ←$ {0,1}n,C′ ←$O(1n,Cprf[k])

[
C′(s) , PRF(k,s)

]
(4.4)

≤ ε(`(n) ·n) (4.5)

Equation 4.3 is simply a restatement of the claim. Given that s is uniformly and independently
distributed, s and x0⊕s are distributed identically and therefore, also Equation 4.4 holds. Finally,
Equation 4.4 simply checks whether an obfuscated circuit does not agree with the original circuit
on a uniformly chosen input. This happens by definition of correctness with probability at most
ε(`(n) ·n), yielding Equation 4.5 and concluding the proof.

Proof of Claim 59. Let xΨ denote the accepting assignment of Ψ . We first define the game Game1
as specified below and observe that

Pr
(k,s,C′)←$X[Ψ ](1n)

[
C′(xΨ ⊕ s) , PRF(k,xΨ ⊕ s)

]
= Pr [Game1(n) = 1] .

We will now bound this probability using a series of game hops. To specify the game hops, we
need to specify an additional circuit Cpunct[k∗,x0,b](x), that is parametrized by a punctured PRF
key k∗, an input x0 , and a bit b.

Game1(n)

(k,s,C′)←$X[Ψ ]

x0 := xΨ ⊕ s
b := PRF(k,x0)⊕ 1

return (C′(x0) ?=b)

Cpunct[k∗,x0,b](x)

if x = x0

return b

else

return PRF(k∗,x)

Note that Game2 is a re-write of Game1 by making X[Ψ ] explicit.
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Game2(n)

k←$ {0,1}n

s←$ {0,1}n

x0 := xΨ ⊕ s
b := PRF(k,x0)⊕ 1

C′ := O(1n,CX [k,s,Ψ ])

return (C′(x0) ?=b)

Game3(n)

k←$ {0,1}n

s←$ {0,1}n

x0 := xΨ ⊕ s
b := PRF(k,x0)⊕ 1

k∗ ←$Puncture(k,x0; t)

C′ := O(1n,Cpunct[k
∗,x0,b])

return (C′(x0) ?=b)

Game4(n)

k←$ {0,1}n

x0 ←$ {0,1}n

b := PRF(k,x0)⊕ 1

k∗ ←$Puncture(k,x0; t)

C′ := O(1n,Cpunct[k
∗,x0,b])

return (C′(x0) ?=b)

obfuscation security perfect

puncturable prf

Game5(n)

k←$ {0,1}n

x0 ←$ {0,1}n

b := PRF(k,x0)

k∗ ←$Puncture(k,x0; t)

C′ := O(1n,Cpunct[k
∗,x0,b])

return (C′(x0) ?=b)

Game6(n)

k←$ {0,1}n

x0 ←$ {0,1}n

b := PRF(k,x0)

C′ := O(1n,Cprf[k])

return (C′(x0) ?=b)

puncturable prf

obfuscation security

We will first bound the differences between each pair of consecutive games and then prove a
bound for Pr [Game6(n) = 1].

Hop from Game1 to Game2. The changes between the two games are purely syntactic. I.e., the
definition of the sampling process from X[Ψ ] is explicitely written down in Game2. Therefore,
the two games are perfectly equivalent, and it holds that

Pr [Game1(n) = 1] = Pr [Game2(n) = 1] . (4.6)

Hop from Game2 to Game3. Here it is critical to observe that CX[k,s,Ψ ] and Cpunct[k∗,x0,b]
are functionally equivalent. Even though the key is punctured on x0 = xΨ ⊕ s in Cpunct, this
makes no difference, since PRF is never invoked on x0 in the circuit. Instead the circuit outputs
the hardcoded value b = PRF(k,x0)⊕ 1 on input x0, which is the same value output by CX [k,s,Ψ ].
Therefore, the two circuits are functionally equivalent and it follows from the statistical security
of the obfuscator that the statistical difference between the distributions of C′ in the two games
is at most δ(`(n) · n). It follows, that also the distribution of the outputs of Game2 and Game3
have a statistical distance of at most δ(`(n) ·n). I.e.,

|Pr [Game3(n) = 1]−Pr [Game2(n) = 1]| ≤ δ(`(n) ·n). (4.7)
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Hop from Game3 to Game4. Since s is no longer known to the obfuscator in Game3, x0 := xΨ ⊕s
is simply a uniformly distributed value. Thus, x0 is distributed identically in Game3 and Game4
and it follows that

Pr [Game3(n) = 1] = Pr [Game4(n) = 1] . (4.8)

Hop from Game4 to Game5. Note that xΨ is no longer required to evaluate Game4 and Game5.
Therefore, the two games can be evaluated efficiently. This allows us to bound the difference
between the two games by the security of the puncturable pseudorandom function. To bound
the difference between games Game4(n) and Game5(n), we construct a distinguisher (A1,A2)
with advantage

1
2 · |Pr [Game4(n) = 1]−Pr [Game5(n) = 1]|

against the puncturable PRF as follows:

A1(1n;r1)

x0 ←$ {0,1}n

return (⊥,x0)

A2(st, k∗,x0,b;r2)

C′ := O(1n,Cpunct[k
∗,x0,b])

return (C′(x0) ?=b)

Observe, that in the case where A2 receives the PRF value, it holds that

Pr
k,r1,t,r2

[A2(st,k∗,x0,PRF(k,x0);r2) = 1] = Pr [Game5(n) = 1] . (4.9)

If on the other hand, A2 receives a b chosen uniformly at random, then b is equal to PRF(k,x0)
and PRF(k,x0)⊕ 1 with probability 1

2 respectively, and it holds that

Pr
k,b,r1,t,r2

[A2(st,k∗,x0,b;r2) = 1] =
1
2

Pr [Game4(n) = 1] +
1
2

Pr [Game5(n) = 1] (4.10)

By security of the puncturable PRF, it must hold that∣∣∣∣∣∣ Pr
k,r1,t,r2

[A2(st,k∗,x0,PRF(k,x0);r2) = 1]− Pr
k,b,r1,t,r2

[A2(st,k∗,x0,b;r2) = 1]

∣∣∣∣∣∣ ≤ negl (n) .

Combining this with Equation 4.9 and Equation 4.10 yields∣∣∣∣∣Pr [Game5(n) = 1]− 1
2

Pr [Game4(n) = 1]− 1
2

Pr [Game5(n) = 1]
∣∣∣∣∣ ≤ negl (n)

=⇒ 1
2
|Pr [Game5(n) = 1]−Pr [Game4(n) = 1]| ≤ negl (n)

⇐⇒ |Pr [Game5(n) = 1]−Pr [Game4(n) = 1]| ≤ 2negl (n) . (4.11)

Hop from Game5 to Game6. Here it is critical to observe that Cpunct[k∗,x0,b] and Cprf[k] are
functionally equivalent. Even though the key is punctured on x0 in Cpunct, this makes no
difference, since PRF is never invoked on x0 in the circuit. Instead the circuit outputs the
hardcoded value b = PRF(k,x0) on input x0. Therefore, the two circuits are functionally equivalent
and it follows from the statistical security of the obfuscator that the statistical difference between
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the distributions of C′ in the two games is at most δ(`(n) ·n). It follows, that also the distribution
of the outputs of Game5 and Game6 have a statistical distance of at most δ(`(n) ·n). I.e.,

|Pr [Game5(n) = 1]−Pr [Game6(n) = 1]| ≤ δ(`(n) ·n). (4.12)

It remains to bound the probability Pr [Game6(n) = 1]. Observe, that x0 is a uniformly chosen
input unknown to the obfuscator. Further, the Game6(n) simply checks whether the output of
circuit C′ is the correct output value of the obfuscated circuit. Therefore, the correctness of the
obfuscator implies that

Pr [Game6(n) = 1] ≥ 1− ε(`(n) ·n). (4.13)

Finally, combining Equation 4.13 with Equations 4.6, 4.7, 4.8, 4.11, and 4.12, we get

Pr [Game1(n) = 1]

≥Pr [Game6(n) = 1]− |Pr [Game1(n) = 1]−Pr [Game6(n) = 1]|
≥1− ε(`(n) ·n)− 2δ(`(n) ·n)− 2negl (n)

thus concluding the proof of Claim 59 and Theorem 50.

4.4 A positive result for Correlation Obfuscation

In this section, we instantiate approximately correct correlation obfuscation for a large class of
weak parameters. The idea of the construction is fairly simple and is based on two observations.
For circuits with only a single bit output, we can efficiently estimate the majority of the outputs
by using random sampling. This estimation depends only on the function computed by a circuit
and not on the circuit itself. Therefore an obfuscator that simply outputs the estimated majority
is fully secure but only correct with probability about 1

2 . An obfuscator, that simply outputs the
circuit itself, on the other hand, is not secure at all (statistical distance is 1), but is fully correct.

By combining these two obfuscators and outputting the majority with probability 2ε and the
circuit itself with probability 1− 2ε we can construct a roughly (1− ε) approximatly correct and
(1−2ε) secure obfuscator Oε,µ as detailed below. The parameter µ is some inverse polynomial
function that describes the amount of approximation error that we allow (and that affects the
correctness of Oε,µ) when the obfuscators samples repeatedly from the output distribution of the
circuit to see whether the circuit is closer to the constant 1 or constant 0 function.

For any circuit C, in(C) denotes the number of input wires. For b ∈ {0,1}, Constib is a canonical
circuit with input length i and constant output b. The Bernoulli distribution of a parameter
p ∈ [0,1] is defined by Berp, i.e., it holds that Prb ←$Berp

[b = 1] = p and Prb ←$Berp
[b = 0] = 1− p.

Depending on the desired error parameter µ, the obfuscation proceeds as follows.
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Oε,µ(1n,C)

b←$Ber2ε

if b = 1 :

m := EstMaj(C,µ,1n)

C′ := Const
in(C)
m

else

C′ := C

return C′

EstMaj(C,µ,1n)

for i := 1, . . . ,
⌈

4n
µ2

⌉
xi ←$ {0,1}in(C)

yi := C(xi )

return maj

y1, . . . , y⌈ 4n
µ2

⌉

Claim 60. On input (C,1n), the obfuscator Oε,µ runs in time linear in 4n
µ2 |C| plus the time needed

to sample from Ber2ε and is an (1 − (ε + µ)) approximately correct and (1 − 2ε) secure correlation
obfuscator for circuits with single bit output.

Proof. Efficiency follow by construction and so does security, because EstMaj only uses the
input-output behaviour of the circuit which is the same for two functionally identical circuits. If
the function induced by the circuit C is less than µ

4 from being balanced (i.e., 1 with probability
1
2 on a uniformly random input), then the correctness error is at most µ

2 , if b = 1, and 0, if b = 0
and hence, the overall correctness error is upper bounded by (1 − 2ε) · 0 + 2ε · µ2 = εµ ≤ ε + µ.
If the function induced by the circuit C outputs a fixed value, w.l.o.g. 1, with probability at
least 1

2 + µ
4 , then via a Chernoff bound, the probability that EstMaj(C,µ,1n) outputs 1 is at least

1−negl (n) and in that case, the correctness error is at most 1
2 −

µ
4 and else, the correctness error

is at most 1. Hence, for the case that b = 1, we obtain an upper bound on the correctness error of
( 1

2 −
µ
4 ) · (1−negl (n))+1 ·negl (n) = 1

2 −
µ
4 +negl (n). As before, when b = 0, the correctness error is

0 and hence, we obtain as upper bound on the correctness error (1−2ε) ·0+2ε · ( 1
2 −

µ
4 +negl (n)) =

ε − µ2 ≤ ε+µ.

4.5 Fom OWF to PKE using Correlation Obfuscation

By inspecting the Sahai-Waters [SW14] construction to transform a one-way function into a
public-key encryption scheme (PKE) by using obfuscation, Bitansky and Vaikuntanathan [BV16]
and Mahmoody et al. [MMN+16] observe that approximately correct iO suffices for this trans-
formation. Both papers consider approximately correct variants of iO with “full” security, i.e.,
where the adversary has only negligible advantage in distinguishing obfuscations of two func-
tionally equivalent circuits. As discussed in previous sections, approximately correct correlation
obfuscation (sacO) with weaker security might still be useful. We therefore work out the exact
correctness and security parameters required of a sacO for the Sahai-Waters transformation to
work. Jumping ahead, we note that part of the bounds that we obtain here are ruled out by our
impossibility result, but not all of them.

For much weaker parameters, we earlier gave a trivial construction of sacO. We do not deem
this construction to be useful. As expected, there is a gap between the parameters that we can
construct trivially and the parameters that we can rule out (else, we would have a proof that
one-way functions imply the collapse of the polynomial hierarchy). Also, as expected, the trivial
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bounds do not suffice to instantiate the Sahai-Waters construction (according to our analysis that
we have reasons to believe is tight).

On the other hand, our impossibility result does not rule out all useful bounds for sacO.
It is an interesting question to (1) show that also for the parameters in this small gap, sacO
cannot exist, or (2) show a construction for these parameters, and/or (3) improve the parameters
that are needed for meaningful applications. Note that even if it turns out that sacO for these
parameters cannot exist, (3) could still be a fruitful research direction, because it might be
helpful to weaken the parameters also on variants of acO with computational security in order to
obtain constructions from weaker assumptions.

We will consider sacO with (1− δ)-security and (1− ε) correctness, and we will also yield a
PKE that does not achieve full correctness and that does not achieve full security. In some cases,
as observed by Holenstein [Hol06], via amplification, it is possible to achieve full security and
correctness with overwhelming probability. However, as we discuss now, amplification is not
always possible.

4.5.1 Amplification

We define (1− εPKE)-correct and ( 1
2 − δPKE)-secure PKE as follows.

Definition 61 (Approximate Public Key Encryption). Let PKE = (KGen,Enc,Dec) be a public key
encryption scheme.

Correctness. We say that PKE is (1− εPKE)-correct, if it holds that

Pr
b,r1,r2

[Dec(sk,Enc(b,pk;r2)) = b, (pk,sk)←$PKE.KGen(1n;r1)] ≥ 1− εPKE(n).

Security. We say that PKE is ( 1
2 − δPKE)-secure, if for all efficient adversaries A, there exists a

negligible function negl (n) such that for a uniformly chosen bit b

Pr
b,r1,r2,r3

[A(pk,Enc(b,pk;r2);r3) = b, (pk,sk)←$KGen(1n;r1)] ≤ 1
2

+ δPKE(n) +negl (n) .

We would like to amplify such a scheme into “standard” PKE, where εPKE and δPKE are
negligible. We now discuss via a counterexample why such an amplification is not generally
possible. Take a bit encryption scheme that outputs the message bit with probability α and
a random bit with probability 1−α and where decryption is the identity function. This PKE
scheme is ( 1

2 −
α
2 )-secure and ( 1

2 + α
2 )-correct. Correctness parameters are thus only meaningful

if εPKE and δPKE are bounded away from 1
2 and if, moreover, there is a meaningful relationship

between the security and the correctness parameter. Holenstein [Hol06] shows (and we use the
presentation of Mahmoody et al. [MMN+16] here) that amplification is possible if there exists a
polynomial poly (n) such that

(1− 2εPKE(n))2 > 2δPKE(n) +
1

poly (n)
.

Note that Holenstein also shows a tightness result for his amplification technique with respect
to restricted black-box reductions.
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4.5.2 The Sahai-Waters Construction

We now present the Sahai-Waters [SW14] construction of a public-key encryption scheme
from a one-way function. We recall that – by Håstad et al. [HIL+99], Goldreich, Goldwasser
and Micali [GGM86], and several independent proofs [BW13; BGI14; KPT+13] that the GGM
construction is a puncturable PRF – puncturable PRFs and OWFs are existentially equivalent.
The key generation of the Sahai-Waters construction draws a key k for a puncturable PRF as the
secret key sk and then outputs an obfuscation of the following circuit CSW[k] as a public key pk:

CSW[k](m,r)

r′ := PRG(r)

c :=m⊕ PRF(k, r′)

return (r′ , c)

The encryption algorithm Enc(pk,m,r) interprets the public key pk as a circuit, runs it on (m,r)
and returns the result as a ciphertext. Finally, for decryption of a pair (r ′ , c), the decryption
algorithm Dec(sk, (r ′ , c)) outputs m := c⊕ PRF(sk, r ′).

Claim 62 (Sahai-Waters). The Sahai-Waters construction instantiated with sacO with correctness
1−ε and security 1−δ yields a public-key encryption scheme with correctness error εPKE(n) = ε(|C| ·n)
and a distinguishing advantage of δPKE(n) = δ(|C| ·n) + ε(|C| ·n)

Before we prove this claim, we will first illustrate what this implies for the bounds on param-
eters allowing for Holenstein amplification. Combining the bound for Holenstein amplification
with Claim 62, we get that

2δPKE(n) +
1

poly (n)
< (1− 2εPKE(n))2 (4.14)

⇐⇒ 2δ(|C| ·n) + 2ε(|C| ·n) +
1

poly (n)
< (1− 2ε(|C| ·n))2 (4.15)

⇐⇒ δ(|C| ·n) <
1
2
− 3ε(|C| ·n) + 2ε(|C| ·n)2 − 1

2poly (n)
. (4.16)

We thus get the following corollary.

Corollary 63. Any (1−ε) correct and (1−δ) secure sacO implies a construction of public key encryption
from one-way functions, if there exists some polynomial poly (|C| ·n) such that

δ(|C| ·n) <
1
2
− 3ε(|C| ·n) + 2ε(|C| ·n)2 − 1

poly (|C| ·n)
.

Proof of Claim 62. Note that correctness of the encryption scheme is over a random message,
the randomness of the key generation and the randomness of the encryption algorithm. The
obfuscated circuit is therefore invoked on a uniformly random input and the probability that
it does not output the correct ciphertext can thus be bounded by the correctness error of the
obfuscator. Since the decryption of the scheme is perfectly correct, we thus get that εPKE(n) =
ε(|C| ·n).

To prove securtity, we first define the following game
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Game1(n)

k←$ {0,1}n

r ←$ {0,1}n/2

pk←$O(1n,CSW[k])

b←$ {0,1}
c := pk(b,r)

b′ ←$A(pk, c)

return (b′ ?=b)

and observe that for a uniformly chosen bit b←$ {0,1}

Pr
b,r1,r2,r3

[A(pk,Enc(b,pk;r2);r3) = b, (pk,sk)←$KGen(1n;r1)] = Pr [Game1(n) = 1] .

We will now bound this probability using a series of game hops.

Game2(n)

k←$ {0,1}n

r ←$ {0,1}n/2

r′ := PRG(r)

pk←$O(1n,CSW[k])

b←$ {0,1}

c := (b⊕ PRF(k, r′), r′)

b′ ←$A(pk, c)

return (b′ ?=b)

Game3(n)

k←$ {0,1}n

r′ ←$ {0,1}n

pk←$O(1n,CSW[k])

b←$ {0,1}

c := (b⊕ PRF(k, r′), r′)

b′ ←$A(pk, c)

return (b′ ?=b)

Game4(n)

k←$ {0,1}n

r′ ←$ {0,1}n

k∗ ←$Puncture(k, r′ ; t)

pk←$O(1n,CSW[k∗])

b←$ {0,1}

c := (b⊕ PRF(k, r′), r′)

b′ ←$A(pk, c)

return (b′ ?=b)

Game5(n)

k←$ {0,1}n

r′ ←$ {0,1}n

k∗ ←$Puncture(k, r′ ; t)

pk←$O(1n,CSW[k∗])

b←$ {0,1}
s←$ {0,1}
c := (b⊕ s, r′)
b′ ←$A(pk, c)

return (b′ ?=b)

obfuscation securityPRG security PRF security

We will first bound the differences between each pair of consecutive games and then argue a
bound for Pr [Game5(n) = 1].

Hop from Game1 to Game2. The change between the two games is that the ciphertext is now
no longer computed using the obfuscated circuit. Instead, it is computed as specified in the
unobfuscated circuit CSW[k]. Since the input to the circuit is uniformly and independently
distributed, we can bound the probability that the two computations differ by the correctness of
the sacO. I.e., it holds that

|Pr [Game1(n) = 1]−Pr [Game2(n) = 1]| ≤ ε(|C| ·n). (4.17)
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Hop from Game2 to Game3. The change between the two games is that the bitstring r ′ is no
longer the output of a PRG and instead a uniformly chosen random string. We can thus bound
the difference between the two games using the security of the pseudorandom generator. I.e.,
we can construct a distinguisher D with advantage |Pr [Game2(n) = 1]−Pr [Game3(n) = 1]| as
follows

D(r ′ ;r1)

k←$ {0,1}n

pk←$O(1n,CSW[k])

b←$ {0,1}
c := (b⊕ PRF(k, r′), r′)

b′ ←$A(pk, c)

return (b′ ?=b)

Observe, that in the case where D receives the output of the PRG, it holds that

Pr
r,r1

[D(PRG(r);r1) = 1] = Pr [Game2(n) = 1] . (4.18)

If on the other hand, D receives an r ′ chosen uniformly at random, then it holds that

Pr
r ′ ,r1

[
D(r ′ ;r1) = 1

]
= Pr [Game3(n) = 1] . (4.19)

By definition of a secure PRG, there further exists a negligible function negl (n), such that∣∣∣∣∣∣∣Pr
r,r1

[D(PRG(r);r1) = 1]− Pr
r ′ ,r1

[
D(r ′ ;r1) = 1

]∣∣∣∣∣∣∣ ≤ negl (n) .

Combining this with Equation 4.18 and Equation 4.19, we get

|Pr [Game2(n) = 1]−Pr [Game3(n) = 1]| ≤ negl (n) . (4.20)

Hop from Game3 to Game4. In this hop, the obfuscated circuit is replaced. It is critical to
observe, that if r ′ is not in the range of PRG, then the two circuits are functionally equivalent,
since the PRF will never be invoked on the point the key is punctured on. In this case, the
distance between the two games can therefore be bounded by the security of the sacO. If r ′ is in
the range of PRG, then we have no guarantee, but this only occurs with probabilty 2−n/2. Thus it
follows that

|Pr [Game3(n) = 1]−Pr [Game4(n) = 1]| ≤ δ(|C| ·n) + 2−n/2. (4.21)

Hop from Game4 to Game5. Note that in Game5, the PRF value is replaced with a uniformly
chosen random value. This allows us to bound the difference between the two games by the
security of the puncturable pseudorandom function. To bound the difference between games
Game4 and Game5, we construct a distinguisher (D1,D2) with advantage

|Pr [Game4(n) = 1]−Pr [Game5(n) = 1]|

against the puncturable PRF as follows:
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D1(1n;r1)

r′ ←$ {0,1}n

return (⊥, r′)

D2(st, k∗, r ′ , s;r2)

pk←$O(1n,CSW[k∗])

b←$ {0,1}
c := (b⊕ s)
b′ ←$A(pk, c)

return (C′(x0) ?=b)

Observe, that in the case where A2 receives the PRF value, it holds that

Pr
k,r1,t,r2

[
D2(st,k∗, r ′ ,PRF(k, r ′);r2) = 1

]
= Pr [Game4(n) = 1] . (4.22)

If on the other hand, D2 receives an s chosen uniformly at random, it holds that

Pr
k,s,r1,t,r2

[
D2(st,k∗, r ′ , s;r2) = 1

]
= Pr [Game5(n) = 1] (4.23)

By security of the puncturable PRF, it must hold that there exists a negligible function negl (n)
such that ∣∣∣∣∣∣∣ Pr

k,r1,t,r2

[
D2(st,k∗, r ′ ,PRF(k, r ′);r2) = 1

]
− Pr
k,s,r1,t,r2

[
D2(st,k∗, r ′ , s;r2) = 1

]∣∣∣∣∣∣∣ ≤ negl (n)

Combining this with Equation 4.22 and Equation 4.23 yields

|Pr [Game5(n) = 1]−Pr [Game4(n) = 1]| ≤ negl (n) (4.24)

It remains to bound the probability Pr [Game5(n) = 1]. However, the ciphertext in Game5
is simply a uniformly distributed random value that does not reveal any information about b.
Therefore, it is easy to see that Pr [Game5(n) = 1] = 1

2 . Combining this with Equations 4.17, 4.20,
4.21, and 4.24, we can conclude that

Pr [Game1(n) = 1] ≤ 1
2

+ δ(|C| ·n) + ε(|C| ·n),

thus concluding the proof.
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