
Interactive, Example-driven Synthesis

and Manipulation of Visual Media

Dissertation zur Erlangung des Grades eines

Doktors der Ingenieurwissenschaften der

Fakultät für Mathematik und Informatik der

Universität des Saarlandes

Vorgelegt von

Bernhard Reinert
Weidenalle 61, Haus 6
20357 Hamburg
Deutschland

im Juli 2016 in Saarbrücken

II

Dekan – Dean

Prof. Dr. Frank-Olaf Schreyer

Kolloquium – Examination

Datum – Date

02. Dezember 2016

Vorsitzender – Chair

Prof. Dr. Matthias Hein

Bericherstatter – Correspondents

Dr. Tobias Ritschel

Dr. Johannes Kopf

Prof. Dr. Hans-Peter Seidel

Akademischer Mitarbeiter – Staff member

Dr. Michael Zollhöfer

Abstract

This thesis proposes several novel techniques for interactive, example-driven synthesis and
manipulation of visual media. The numerous display devices in our everyday lives make
visual media, such as images, videos, or three-dimensional models, easily accessible to a
large group of people. Consequently, there is a rising demand for efficient generation of syn-
thetic visual content and its manipulation, especially by casual users operating on low-end,
mobile devices. Off-the-shelf software supporting such tasks typically requires extensive
training and in-depth understanding of the underlying concepts of content acquisition, on
the one hand, and runs only on powerful desktop machines, on the other hand, limiting the
possibility of artistic media generation to a small group of trained experts with appropriate
hardware. Our proposed techniques aim to alleviate these requirements by allowing casual
users to synthesize complex, high-quality content in real-time as well as to manipulate it by
means of simple, example-driven interactions.

First, this thesis discusses a manipulation technique that visualizes an additional level of
information, such as importance, on images and three-dimensional surface models by local,
non-uniform, and self-intersection-free size manipulations. Second, we propose a technique
to automatically arrange and sort collections of images based on the images’ shape and a
sparse set of exemplar images that builds on a novel distribution algorithm. Along this line,
an extension for higher dimensions such as three-dimensional models is presented and the
implications of distributions for lower-dimensional projections are discussed. Further, the
spectral properties of the distributions are analyzed and the results are applied for efficient,
high-quality image synthesis. Finally, we suggest an algorithm to extract deformable, three-
dimensional content from a two-dimensional video leveraging a simple limb representation
that the user sketches onto a sparse set of key frames.

All methods build on the availability of massively parallel execution hardware, such as
graphics processing units (GPUs), nowadays built also into cheap mobile devices. By
mathematical abstraction, parallelization, and task distribution our algorithms achieve a
high efficiency that allows running our methods in real-time on low-end devices.

III

Kurzzusammenfassung

Die vorliegende Dissertation stellt mehrere neuartige Techniken zur interaktiven, beispiel-
basierten Synthese und Manipulation visueller Medien vor. Die zunehmende Verbreitung
von Wiedergabegeräten macht visuelle Medien – wie Bilder, Videos oder dreidimensionale
Oberflächen – einer Vielzahl von (Privat-)Nutzern zugänglich. Folglich gibt es auch im
Alltagsbereich einen wachsenden Bedarf an effizienter Synthese und Bearbeitung visueller
Medien unter Zuhilfenahme weitverbreiteter, mobiler Endgeräte. Handelsübliche Software,
die in der Lage ist, diese Aufgaben umzusetzen, setzt in der Regel langwierige Schulungen
sowie ein tiefgreifendes Verständnis der zugrundeliegenden Konzepte zur Inhaltserzeugung
voraus. Auf der anderen Seite lässt sich diese Software nur auf leistungsstarken Arbeits-
platzcomputern ausführen, wodurch die Möglichkeit künstlerischer Medienerzeugung auf
eine kleine Gruppe gut ausgebildeter Experten mit passender Hardware beschränkt wird.
Die im Rahmen dieser Arbeit entwickelten Techniken haben das Ziel, die Hürden für private
Endnutzer herabzusetzen, indem sie Gelegenheitsnutzern ermöglichen, komplexe Inhalte
von hoher Qualität mit Hilfe von einfachen, beispielbasierten Interaktionen in Echtzeit zu
synthetisieren und zu manipulieren.

Zunächst wird eine Manipulationstechnik präsentiert, bei der es darum geht, ein weiteres
Level an Informationen, wie z. B. Gewicht, auf Bildern und dreidimensionalen Modellen
durch lokale, ungleichförmige und selbstüberschneidungsfreie Größenmanipulationen zu
visualisieren. Anschließend stellen wir eine Technik vor, die auf einem neuartigen Vertei-
lungsalgorithmus beruht und Bildersammlungen automatisch anhand der Form der Bilder
sowie einer kleinen Menge von Beispielbildern arrangiert. In diesem Kontext stellen wir
eine Erweiterung für höhere Dimensionen, wie z. B. dreidimensionale Oberflächen, vor
und diskutieren die Implikationen der Verteilungen auf geringer-dimensionale Projektionen.
Weiterhin werden die spektralen Eigenschaften der Verteilungen analysiert und zur effizien-
ten, hochqualitativen Bildsynthese eingesetzt. Schließlich schlagen wir einen Algorithmus
zur Extraktion deformierbarer, dreidimensionaler Inhalte aus zweidimensionalen Videos
vor, der auf einer simplen Repräsentation von Körperteilen beruht, die der Nutzer in einigen
wenigen Schlüsselbildern skizziert.

Alle Methoden basieren auf der Verfügbarkeit von hochgradig paralleler Hardware, wie
z. B. eine Grafikkarte (GPU), die heutzutage auch in günstigen, mobilen Geräten verbaut
wird. Durch mathematische Abstraktion, Parallelisierung und Aufgabenverteilung erreichen
unsere Algorithmen eine hohe Effizienz, die es erlaubt die Techniken in Echtzeit auf diesen
mobilen Geräten auszuführen.

V

Summary

This thesis proposes several novel techniques for interactive, example-driven synthesis and
manipulation of visual media. The numerous display devices in our everyday lives make
visual media, such as images, videos, or three-dimensional models, easily accessible to a
large group of people. Consequently, there is a rising demand for efficient generation of syn-
thetic visual content and its manipulation, especially by casual users operating on low-end,
mobile devices. Off-the-shelf software supporting such tasks typically requires extensive
training and in-depth understanding of the underlying concepts of content acquisition, on
the one hand, and runs only on powerful desktop machines, on the other hand, limiting the
possibility of artistic media generation to a small group of trained experts with appropriate
hardware. Our proposed techniques aim to alleviate these requirements by allowing casual
users to synthesize complex, high-quality content in real-time as well as to manipulate it by
means of simple, example-driven interactions.

First, this thesis discusses a manipulation technique that visualizes an additional level of
information, such as importance, on images and three-dimensional surface models by local,
non-uniform, and self-intersection-free size manipulations. Second, we propose a technique
to automatically arrange and sort collections of images based on the images’ shape and a
sparse set of exemplar images that builds on a novel distribution algorithm. Along this line,
an extension for higher dimensions such as three-dimensional models is presented and the
implications of distributions for lower-dimensional projections are discussed. Further, the
spectral properties of the distributions are analyzed and the results are applied for efficient,
high-quality image synthesis. Finally, we suggest an algorithm to extract deformable, three-
dimensional content from a two-dimensional video leveraging a simple limb representation
that the user sketches onto a sparse set of key frames.

All methods build on the availability of massively parallel execution hardware, such as
graphics processing units (GPUs), nowadays built also into cheap mobile devices. By
mathematical abstraction, parallelization, and task distribution our algorithms achieve a
high efficiency that allows running our methods in real-time on low-end devices.

This thesis starts with an introduction in Chapter 1 that commences the topics, gives an
overview of the specific contributions made in the different techniques, and provides an
outline of the following chapters. In Chapter 2 relevant related work and further technical
background for the subsequent chapters is discussed. Following, Chapter 3 to Chapter 6
present the four main approaches of this thesis. Chapter 7 concludes this thesis and discusses
potential directions for future work, both in terms of individual works and combinations
thereof. The specific works are listed below.

VII

VIII

Homunculus Warping False color coding provides a simple means to depict an additional
level of information on a three-dimensional surface or two-dimensional image. However,
human color perception differs surprisingly much amongst different viewers, limiting the
effectiveness of false color coding. Reversely, human perception of relative extent, area, or
volume is remarkably invariant amongst individuals and most naturally relates to importance,
nearness, and weight. Conveying importance of specific parts by depicting it at a different
size is a classic artistic principle, in particular when importance varies across a domain.
One striking example is the neuronal homunculus; a human figure where the size of each
body part is proportional to the neural density on that part. We propose an approach which
enables casual users to create such models starting from an undeformed input model by
simple specification of a scalar importance per model part. Our approach changes local
size of a two-dimensional image or a three-dimensional surface that, at the same time,
minimizes distortion, prevails smoothness, and, most importantly, avoids fold-overs, i. e.,
collisions. We employ a parallel, two-stage optimization algorithm that scales the shape
non-uniformly according to an interactively-defined, sparse importance map and then solves
for a similar, self-intersection-free configuration. Our results include a three-dimensional,
rendered version of the classic neuronal homunculus but also a range of images and surfaces
with different importance maps.

Interactive By-example Design of Artistic Packing Layouts Combining several images
into a large collage can be a tedious task requiring a lot of manual effort especially for
arbitrarily shaped objects. We propose an approach to “pack” a set of two-dimensional
graphical primitives into a spatial layout that follows artistic goals. We formalize this
process as a projection from a high-dimensional feature space into a two-dimensional layout
space. Our system does not expose the control of this projection to the user in form of sliders
or similar interfaces. Instead, we infer the desired layout of all primitives from interactive
placement of a small subset of example primitives. To produce a pleasant distribution of
primitives with spatial extend, we propose a novel generalization of Centroidal Voronoi Tes-

sellation which equalizes the distances between boundaries of nearby primitives. Compared
to previous primitive distribution approaches our parallel implementation achieves both,
better quality and asymptotically higher speed. A user study evaluates the system’s usability
and feasibility.

Projective Blue-Noise Sampling Synthesizing realistic digital images requires an approx-
imation of the physically correct, full light transport that is present in the scene, often
solved by sampling at specific locations. To get good and fast results the sample pattern
should cover the domain uniformly without too much uniformity that can lead to artifacts.
We propose projective blue-noise patterns that retain their blue-noise characteristics when
undergoing one or multiple projections onto lower-dimensional subspaces. These patterns
are produced by extending existing methods, such as dart throwing and Lloyd relaxation,
and have a range of applications. For numerical integration, our patterns often outperform
state-of-the-art stochastic and low-discrepancy patterns, which have been specifically de-
signed only for this purpose. Our patterns generalize the approach of packing primitives in
two-dimensions to arbitrary dimensionality of the primitives, containers, as well as their
projection, i. e., they allow to distribute primitives uniformly in three-dimensional space

IX

such that their full-dimensional distributions as well as their two-dimensional projections
retain a blue-noise distribution. Finally, for image reconstruction, our method outperforms
traditional blue-noise sampling when the variation in the signal is concentrated along one
dimension.

Animated 3D Creatures from Single-View Video by Skeletal Sketching Extraction
of deformable three-dimensional geometry is not accessible to casual users, as it either
requires dedicated hardware or vast manual effort. Inspired by the recent success of
semi-automatic, three-dimensional reconstruction from a single image, we introduce a
sketch-based extraction technique that allows a fast reconstruction of a dynamic, articulated
shape from a single video. We model the shape as a union of generalized cylinders deformed
by an animation of their axes, representing the “limbs” of the articulated creature. The axes
are acquired from strokes sketched by the user on top of a few key frames. Our method
bypasses the meticulous effort required to establish dense correspondences when applying
common structure from motion techniques for shape reconstruction. Instead, we produce
a plausible shape from the fusion of silhouettes over multiple frames. Reconstruction is
performed at interactive rates, allowing interaction and refinement until the desired quality
is achieved.

Zusammenfassung

Die vorliegende Dissertation stellt mehrere neuartige Techniken zur interaktiven, beispiel-
basierten Synthese und Manipulation visueller Medien vor. Die zunehmende Verbreitung
von Wiedergabegeräten macht visuelle Medien – wie Bilder, Videos oder dreidimensionale
Oberflächen – einer Vielzahl von (Privat-)Nutzern zugänglich. Folglich gibt es auch im
Alltagsbereich einen wachsenden Bedarf an effizienter Synthese und Bearbeitung visueller
Medien unter Zuhilfenahme weitverbreiteter, mobiler Endgeräte. Handelsübliche Software,
die in der Lage ist, diese Aufgaben umzusetzen, setzt in der Regel langwierige Schulungen
sowie ein tiefgreifendes Verständnis der zugrundeliegenden Konzepte zur Inhaltserzeugung
voraus. Auf der anderen Seite lässt sich diese Software nur auf leistungsstarken Arbeits-
platzcomputern ausführen, wodurch die Möglichkeit künstlerischer Medienerzeugung auf
eine kleine Gruppe gut ausgebildeter Experten mit passender Hardware beschränkt wird.
Die im Rahmen dieser Arbeit entwickelten Techniken haben das Ziel, die Hürden für private
Endnutzer herabzusetzen, indem sie Gelegenheitsnutzern ermöglichen, komplexe Inhalte
von hoher Qualität mit Hilfe von einfachen, beispielbasierten Interaktionen in Echtzeit zu
synthetisieren und zu manipulieren.

Zunächst wird eine Manipulationstechnik präsentiert, bei der es darum geht, ein weiteres
Level an Informationen, wie z. B. Gewicht, auf Bildern und dreidimensionalen Modellen
durch lokale, ungleichförmige und selbstüberschneidungsfreie Größenmanipulationen zu
visualisieren. Anschließend stellen wir eine Technik vor, die auf einem neuartigen Vertei-
lungsalgorithmus beruht und Bildersammlungen automatisch anhand der Form der Bilder
sowie einer kleinen Menge von Beispielbildern arrangiert. In diesem Kontext stellen wir
eine Erweiterung für höhere Dimensionen, wie z. B. dreidimensionale Oberflächen, vor
und diskutieren die Implikationen der Verteilungen auf geringer-dimensionale Projektionen.
Weiterhin werden die spektralen Eigenschaften der Verteilungen analysiert und zur effizien-
ten, hochqualitativen Bildsynthese eingesetzt. Schließlich schlagen wir einen Algorithmus
zur Extraktion deformierbarer, dreidimensionaler Inhalte aus zweidimensionalen Videos
vor, der auf einer simplen Repräsentation von Körperteilen beruht, die der Nutzer in einigen
wenigen Schlüsselbildern skizziert.

Alle Methoden basieren auf der Verfügbarkeit von hochgradig paralleler Hardware, wie
z. B. eine Grafikkarte (GPU), die heutzutage auch in günstigen, mobilen Geräten verbaut
wird. Durch mathematische Abstraktion, Parallelisierung und Aufgabenverteilung erreichen
unsere Algorithmen eine hohe Effizienz, die es erlaubt die Techniken in Echtzeit auf diesen
mobilen Geräten auszuführen.

XI

XII

Diese Dissertation beginnt mit einer Einführung in Kapitel 1, die die Thematik vorstellt,
einen Überblick über die spezifischen Beiträge der unterschiedlichen Ansätze liefert und
eine Übersicht über die folgende Kapitel darstellt. In Kapitel 2 werden relevante Arbeiten
diskutiert und tiefergehende technische Hintergründe für die folgenden Kapitel vorgestellt.
Anschließend stellen Kapitel 3 bis Kapitel 6 die vier Hauptansätze dieser Arbeit vor. Kapi-
tel 7 beschließt diese Dissertation und erörtert mögliche Ansätze für zukünftige Arbeiten,
sowohl individuell als auch in Kombination. Im Folgenden werden die spezifischen Arbeiten
genauer vorgestellt.

Homunculus Warping Eine Darstellung in Falschfarben stellt eine einfache Möglich-
keit dar, ein weiteres Level an Information auf einer dreidimensionalen Oberfläche oder
einem zweidimensionalen Bild zu illustrieren. Die menschliche Farbwahrnehmung variiert
allerdings erstaunlich stark zwischen verschiedenen Beobachtern, was die Effektivität der
Falschfarbdarstellung eingeschränkt. Andererseits ist die menschliche Wahrnehmung von
relativer Größe, Fläche oder Volumen auffallend invariant zwischen verschiedenen Individu-
en und bezieht diese Einheiten naturgemäß auf Wichtigkeit, Nähe und Gewicht. Weiterhin
ist die Darstellung spezifischer Bestandteile eines Objektes mit besonderer Bedeutung in
einer realitätsfremden Größe ein klassisches, künstlerisches Prinzip, das besonders bei
variierender Bedeutung der Bestandteile zur Geltung kommt. Ein eindrucksvolles Beispiel
ist der neuronale Homunkulus, ein Modell des menschlichen Körpers, dessen Körperteile
proportional zur spezifischen neuronalen Dichte skaliert wurden. Unser Ansatz erlaubt
es Gelegenheitsnutzern, besagte Modellvariationen aus undeformierten Modellen durch
simple Festlegung eines skalaren Gewichtes zu erstellen. Wir erreichen dies durch eine
Modifikation der lokale Größe eines zweidimensionalen Bildes oder einer dreidimensio-
nalen Oberfläche, die simultan Verzerrungen minimiert, Gleichmäßigkeit erzielt und vor
allem Selbstüberschneidung und -kollisionen vermeidet. Hierzu nutzen wir eine parallele,
zweistufige Optimierung, die das Modell ungleichförmig skaliert. Diese Optimierung ba-
siert auf einer interaktiv modifizierbaren, dünn besetzten Gewichtskarte, die zunächst zur
Berechnung einer nicht überschneidungsfreien Vorschau dient. Diese wird dann als Zielkon-
figuration zur Berechnung einer Konfiguration ohne Selbstüberschneidungen herangezogen.
Unsere Ergebnisse beinhalten eine dreidimensionale, gerenderte Version des klassischen,
neuronalen Homunkulus aber auch eine Auswahl an anderen Bildern und Oberflächen mit
diversen Gewichtskarten.

Interactive By-example Design of Artistic Packing Layouts Die Kombination mehrerer
Bilder (sog. Primitive) zu einer ganzheitlichen Kollage stellt einen mühsame Aufgabe dar,
die, besonders im Fall beliebig geformter Bilder, mit enormerem Aufwand verbunden ist.
Wir stellen einen Ansatz zum Anordnen zweidimensionale Bilder in ein räumliches Layout
vor, der künstlerischen Aspekten folgt. Wir formalisieren diesen Prozess als eine Projektion
von einem hochdimensionalen Merkmalsraum in einen zweidimensionalen Layoutraum.
Hierbei kontrolliert der Nutzer diese Projektion nicht mithilfe von Schiebereglern oder
ähnlichen Schnittstellen, sondern durch das interaktive Platzieren einer kleinen Teilmenge
von Beispielprimitiven, aus der das gewünschte Layout der übrigen Primitive abgeleitet
wird. Um eine ansprechende Verteilung der Primitive mit räumlicher Größe zu erzielen,
schlagen wir eine neuartige Verallgemeinerung der sog. Centroidal Voronoi Tessellation vor,

XIII

die die Abstände zwischen den Rändern der Primitive in alle Richtungen ausgleicht. Im
Gegensatz zu vorherigen Verteilungstechniken erreicht unsere parallele Implementierung
sowohl eine höhere Qualität als auch eine asymptotisch höhere Geschwindigkeit. Eine
Nutzerstudie evaluiert die Nutzbarkeit und Einsetzbarkeit unseres Systems.

Projective Blue-Noise Sampling Die digitale Synthese realistischer Bilder erfordert eine
Approximation des physikalisch korrekten, vollständigen Lichttransportes der Szene, die
oft durch Abtasten an spezifischen Orten angenähert wird. Um effizient zufriedenstellende
Ergebnisse zu erzielen, sollte die Verteilung der Abtastorte die Domäne gleichmäßig ab-
decken ohne Regelmäßigkeit aufweisen, da diese zu Artefakten führen kann. Wir schlagen
sog. Projective Blue-Noise Verteilungen vor, die ihre Blue-Noise Eigenschaften auch bei
Projektionen in einen oder mehrere, geringer-dimensionale Unterräume beibehalten. Diese
Verteilungen werden durch Erweiterungen existierender Methoden, wie z. B. Dart Thro-
wing und Lloyd Relaxation, erreicht und haben eine Vielzahl von Anwendungen. Bei der
numerischen Integration übertreffen unsere Muster häufig stochastische Muster und solche
mit niedriger Diskrepanz, die speziell zu diesem Zweck entworfen wurden und dem Stand
der Technik entsprechen. Unsere Verteilungen verallgemeinern den Ansatz, Primitive im
zweidimensionalen Raum zu arrangieren, für eine beliebige Dimensionalät der Primitive,
der Container als auch ihrer Projektionen. Mit anderen Worten erlauben sie z. B. Primitive
gleichmäßig im dreidimensionalen Raum zu verteilen, so dass sowohl ihre volldimensio-
nale Verteilung als auch ihre zweidimensionalen Projektionen eine Blue-Noise Verteilung
darstellen. Schließlich übertrifft unsere Methode bei der Bildrekonstruktion traditionelle
Blue-Noise Muster, vor allem falls die Variation des Signals sich hauptsächlich auf eine
Dimension konzentriert.

Animated 3D Creatures from Single-View Video by Skeletal Sketching Die Extraktion
deformierender, dreidimensionaler Geometrie ist nicht zugänglich für Gelegenheitsnutzer,
da dieser Vorgang entweder dedizierte Hardware oder enormen manuellen Aufwand er-
fordert. Inspiriert durch den kürzlichen Erfolg von halbautomatischen, dreidimensionalen
Rekonstruktionen einzelner Bilder anhand von Skizzen, stellen wir eine skizzenbasierte Ex-
traktionsmethode vor, die eine schnelle Rekonstruktion von dynamisch artikulierten Formen
aus einem einzelnen Video ermöglicht. Wir modellieren den Umriss des zu rekonstruieren-
den Objektes als Vereinigung von generalisierten Zylindern, die von einer Animation ihrer
Achsen deformiert werden und die Körperteile einer artikulierten Kreatur darstellen. Diese
Achsen werden aus Strichskizzen, die der Nutzer auf ein paar wenige Schlüsselbilder der
Videosequenz malt, akquiriert. Unsere Methode umgeht die Notwendigkeit dichter Korre-
spondenzen zwischen den Bildern der Videosequenz, die bei der Rekonstruktion der Form
mit Hilfe von Methoden der Struktur aus Bewegung benötigt werden. Stattdessen erzeugt
unser Ansatz eine plausible Form aus der Fusion von Silhouetten aus mehreren Bildern.
Unsere Implementierung erreicht eine interaktive Geschwindigkeit bei der Rekonstruktion,
wodurch Interaktion mit den Resultaten und Anpassung des Ergebnisses bis zur gewünschte
Qualität ermöglicht werden.

Contents

List of Figures . XIX

1 Introduction . 1

1.1 Background . 1
1.2 Contributions . 6
1.3 Outline . 7

2 Previous work . 9

2.1 Synthesis of visual media . 9
2.1.1 Rendering . 9
2.1.2 Model reconstruction . 12
2.1.3 Motion . 14

2.2 Media manipulation . 16
2.2.1 Model deformation . 16
2.2.2 Example-driven approaches . 20

2.3 Point patterns . 21
2.3.1 Pattern Properties . 22
2.3.2 Pattern Generation . 24
2.3.3 Point Patterns for Primitive Placement 27

2.4 Interactivity . 29
2.4.1 Intuitive User Interfaces . 29
2.4.2 Interactive performance . 31

3 Homunculus Warping . 33

3.1 Introduction . 34
3.2 Approach . 35

3.2.1 Input . 35
3.2.2 Voxelization . 35
3.2.3 Optimization . 38
3.2.4 Equation minimization . 39
3.2.5 Deformation transfer . 41

3.3 Results . 42

4 Interactive By-example Design of Artistic Packing Layouts 45

4.1 Introduction . 46
4.2 Overview . 47

XV

CONTENTS XVI

4.3 Forward layout . 47
4.3.1 Feature mapping . 48
4.3.2 Primitive distribution with spatial extent 49

4.4 Inverse Layout . 53
4.5 Results . 55

5 Projective Blue-Noise Sampling . 63

5.1 Introduction . 64
5.2 Our approach . 64

5.2.1 Dart throwing . 65
5.2.2 Lloyd relaxation . 66

5.3 Analysis . 69
5.3.1 Projective analysis . 69
5.3.2 Comparison to latinization . 74
5.3.3 Rotation . 75
5.3.4 Sample warping . 76
5.3.5 Lloyd convergence . 76
5.3.6 Performance . 77

5.4 Applications . 78
5.4.1 Rendering . 78
5.4.2 Image reconstruction . 80
5.4.3 Primitive placement . 81

5.5 Discussion . 81

6 Animated 3D Creatures from Single-View Video by Skeletal Sketching 83

6.1 Introduction . 84
6.2 From skeletal sketches to animated shapes 84

6.2.1 Overview . 84
6.2.2 User interface . 86
6.2.3 Preprocessing . 86
6.2.4 Stroke processing . 87
6.2.5 Stroke tracking . 87
6.2.6 Segmentation . 91
6.2.7 Cylinder fitting . 93
6.2.8 Texturing . 96
6.2.9 Implementation . 97

6.3 Results . 97
6.4 Scope and Limitations . 104

7 Conclusion . 107

7.1 Closing Remarks . 107
7.2 Future Work . 109

7.2.1 Individual Future Work . 109
7.2.2 Combinations for Future Work . 111
7.2.3 General Outlook . 113

XVII CONTENTS

7.3 Message . 114

List of Figures

2.1 Rendering concepts . 11
2.2 Three-dimensional reconstruction from depth cameras and photos 13
2.3 Video Pop-Up and template fitting . 13
2.4 Motion transfer . 15
2.5 Automated and manual rigging . 17
2.6 As-rigid-as-possible and variational surface modeling 18
2.7 Deformation concepts . 19
2.8 Position Based Dynamics . 20
2.9 Example-driven approaches . 21
2.10 Blue-Noise point patterns . 22
2.11 Uniform and QMC sampling . 25
2.12 Random sampling . 25
2.13 Dart throwing . 27
2.14 Lloyd relaxation . 27
2.15 Generalized Lloyd relaxation . 28
2.16 User interfaces and sketching . 31

3.1 Homunculus Warping teaser . 33
3.2 Local scaling examples from art . 34
3.3 Our approach . 36
3.4 Voxelization . 37
3.5 Pseudo-code of our approach . 41
3.6 Image deformation results . 43
3.7 Three-dimensional surface deformation results 44

4.1 Interactive By-example Design of Artistic Packing Layouts teaser 45
4.2 Packing examples from art . 46
4.3 Our notation . 47
4.4 Isolines of different layout functions . 48
4.5 CVT relaxation vs. our relaxation . 50
4.6 Distance function approximation . 51
4.7 Relaxation concepts . 52
4.8 Inverse layout . 53
4.9 Results with non-rectangular boundary . 55
4.10 Results, part 1 . 56
4.11 Results, part 2 . 57
4.12 Results, part 3 . 58

XIX

LIST OF FIGURES XX

4.13 Results with semantic features . 59
4.14 Results of the user study . 60

5.1 Projective Blue-Noise Sampling teaser . 63
5.2 Dart throwing concept . 66
5.3 Lloyd relaxation concept . 67
5.4 Analysis of sample patterns, part 1 . 70
5.5 Analysis of sample patterns, part 2 . 71
5.6 Analysis of sample patterns, part 1 . 72
5.7 Three-, two-, and one-dimensional power spectra 73
5.8 Four-, Three-, Two-, and one-dimensional power spectra 74
5.9 Average, generalized Poisson-disk radii . 75
5.10 Rotation of projection axes . 75
5.11 Importance sampling . 76
5.12 Lloyd cost convergence for different weight functions 77
5.13 Rendering error for variable sample counts and light source aspect ratios . . 78
5.14 Rendering results . 79
5.15 Image reconstruction results . 80
5.16 Primitive placement results . 82

6.1 Animated 3D Creatures from Single-View Video by Skeletal Sketching teaser 83
6.2 Dependency overview of our approach . 85
6.3 Our user interface . 86
6.4 Stroke tracking . 89
6.5 Segmentation . 92
6.6 Cylinder fitting . 93
6.7 Radius filtering . 94
6.8 Ellipse densification . 95
6.9 Three-dimensional path orientation . 96
6.10 Reconstruction results, part 1 . 98
6.11 Reconstruction results, part 2 . 99
6.12 Texture transfer results . 100
6.13 Posing results . 100
6.14 Creature cloning results . 101
6.15 Three-dimensional printing results . 101
6.16 Reconstruction error . 102
6.17 Optical flow comparison . 103

7.1 Character sketchbook . 112

Chapter 1
Introduction

This thesis proposes several novel techniques for interactive, example-driven synthesis and
manipulation of visual media. In this first chapter, we motivate our research (Section 1.1),
present our main contributions (Section 1.2) and outline the whole thesis (Section 1.3).

1.1 Background

Nowadays, display devices for digital visual media are easily and universally accessible in
our everyday lives. Such devices range from classical computer monitors, used in our homes
or at work, over smartphone screens, used in casual situations, to modern head-mounted
displays (HMDs) often used for entertainment such as virtual reality (VR). To increase
mobility, recently, devices tend to get smaller, effectively reducing their performance and
power consumption. Content for these devices can easily be compiled also by casual users
using sophisticated and accessible acquisition devices such as cameras or 3D scanners even
available in many modern, low-end mobile devices. However, virtual synthesis of adequate
content or manipulation of existing content meeting the users’ intention and imagination is
an intricate task that typically requires high-performance hardware. Additionally, the tasks
warrant a substantial level of training from the users as they generally need to understand
fundamental concepts of content acquisition to effectively control the parameters of synthetic
content creation. Output content can range from two-dimensional images, over image
collections to animated, three-dimensional surface models, each implying its distinct set of
parameters that need to be controlled and adapted. Consequently, content creation often
requires specific training of the users for each of these scenarios.

A wide variety of software is readily available that aims at making media creation as
easy as possible and allows for efficient content creation, e. g., Photoshop [Adobe, 2016],
Blender [Blender Online Community, 2016], etc. However, realizing sophisticated effects
with this software typically requires a considerable amount of familiarization. Commonly,
the applications decouple content creation from direct interaction with the content, i. e.,
users have to pick potentially non-descriptive parameters in an external dialog to realize

1

1. INTRODUCTION 2

their intended effects. Especially for visual media however, the desired appearance can
often be achieved through direct manipulation by the user employing appropriate editing
tools. Manipulation of the entire model to fit the desired appearance, though, yields a
time-consuming and tedious task. These manipulations commonly include large amounts
of repetitive work whereas the parameters governing them can be described already by a
small subset of the entire manipulations. Providing this subset of example manipulations,
the underlying parameters of the full manipulation could be inferred by the software and
applied to the full model. Hence, example-driven approaches generalize the appearances
of a small set of example to the entire model, potentially leveraging model knowledge
to restrict the manipulations to only plausible ones. On the one hand, a major advantage
of these approaches is that they unify the required interactions among different domains.
They enable synthesis and manipulation tools for different kinds of visual media by simple
interactions as they operate on examples, often more intuitive and less involved than explicit
parameter adaption. On the other hand, example-based approaches require careful design
as they tend to overfit and provide erroneous guesses. Example-based approaches have
received a lot of interest and are an active area of research (cf. [Wang et al., 2008; Wei et al.,
2009; Garg, Jacobson and Grinspun, 2016]).

Synthesis and manipulation of visual media constitutes a forward problem, i. e., a set of
parameters, e. g., three-dimensional geometry and a set of light sources, is provided that
governs the final outcome, e. g., the rendered two-dimensional image. Estimation of these
parameters given the outcome can be regarded as the inverse or backward problem, e. g.,
geometry estimation from rendered images. Example-based approaches are one avenue of
such inverse problems, as illustrated in this thesis.

Visual media synthesis and manipulation is an intricate task amounting to a high computa-
tional complexity. Example-based approaches add an extra layer of complexity through pa-
rameter estimation, resulting in a involved and computationally expensive system. Through
careful problem formulation many of the problems in media generation allow for massive
parallelization that can primarily be exploited by the universally and widespread available
graphics processing units (GPUs). Nowadays, such processors are built even into low-end
devices enabling utilization also by casual users.

This thesis aims at making content creation more accessible to casual users by introducing
efficient and accessible techniques for media creation based on example-based approaches,
exemplified by four techniques.

Synthesis of visual media is the task to digitally create artificial visual media such as
images, videos, or thre-dimensional models that comply with the users’ requirements.

Generating two-dimensional images from three-dimensional scenes is called rendering and
builds the classical core of computer graphics. The first system to allow for real-time, three-
dimensional graphics and text was the Whirlwind Computer in the 1950s [Everett, 1951].
Ever since the quality and speed of rendering has been improved tremendously, in particular
by seminal works of Phong [1975], Blinn et al. [1976], Cook et al. [Cook, Carpenter and
Catmull, 1987], and many others resulting in state-of-the-art, real-time graphics almost
indistinguishable from real photographs. Content creation for such renderings however,

3 1.1. BACKGROUND

like three-dimensional models and materials, still poses an intricate task that is typically
restricted to trained artists requiring vast amounts of manual work. Simplifying this work
and enabling content creation for casual users hence has large potential but demands for
easier and more intuitive content creation tools. Such tools are an active area of research
and many instances have been developed over the years. On the one hand, different tools for
editing various kinds of media such as materials [Menzel and Guthe, 2009], colors [Nguyen,
Ritschel and Seidel, 2015], as well as three-dimensional models [Sorkine and Alexa, 2007]
have been developed but still possess limitations. Editing of three-dimensional models, for
example, still most commonly does not handle collisions introducing a demand for more
intuitive and lifelike editing tools resulting in feasible manipulations. On the other hand,
analyzing the effects of parameter changes on the final rendering requires rapid rendering
previews. Handling sophisticated effects such as area light sources however is costly. Hence,
there is a demand for better and faster convergence rates in rendering.

The inverse rendering problem constitutes another typical task of visual media synthesis.
Here, the three-dimensional information previously projected into the two-dimensional
images are to be recovered. Ideally, these methods separate camera and object motion as well
as lighting and texturing of the models. Fully automated reconstruction has been a classical
task and was introduced by Prazdny [1980] and further investigated by the seminal works
of Spetakis et al. [1987], Hartley et al. [2004], and many others. Using images taken from
different positions and directions, sophisticated solutions for static geometry reconstruction
have been proposed. If enough camera images are available these systems can recreate the
full three-dimensional information for typical scenes. The mentioned techniques commonly
assume fully rigid geometry with a rigidly transforming camera as the sole dynamic object.
In the more realistic case of limited views and deforming geometry, these geometrical
solutions however become under-constrained and hard to solve. Particularly, the special case
of deforming geometry in a single view has recently attracted a lot of interest, aiming for
fully automated methods. If three-dimensional scans are available, sophisticated registration
techniques can be employed [Li, Sumner and Pauly, 2008]. In the case of two-dimensional
video, fully automated solutions were presented e. g., by Russell et al. [2014], but are
limited to sparse reconstructions of short sequences, resulting in a demand to overcome the
aforementioned limitations. A recent trend in reconstruction problems is to use minimal
user input, e. g., by sketching generalized cylinders [Chen et al., 2013b]. Combining these
ideas with deforming geometry allows for dense, three-dimensional reconstructions of
two-dimensional videos, i. e., utilizing a set of examples. Here, the solution space should be
restricted to only plausible solutions by including knowledge about the model to reconstruct.

Manipulation of visual media Besides synthesis, manipulation of existing visual
media to meet the users’ intention is of great interest for artists and casual users. Digital
media can be replicated and manipulated, enabling non-destructive editing and hence making
digital modeling an ideal tool for both, casual as well as experienced users.

One classical manipulation example is layouting of text and images, where the positions
of characters, paragraphs, and other elements are manipulated until a desired document
layout is acquired. To this end several constraints, such as the document measurements,

1. INTRODUCTION 4

line heights, and margins have to be considered. The advent of letterpress printing in the
15th century lead to a significant increase in interest and speed with which such layouting
problems could be solved. Reordering and -formatting of text and images became a task of
simply replacing and inserting certain elements, abolishing the need to recreate the entire
document. The digital revolution in the 20th century increased the dissemination even
further as it simplified the process of layout development to a level that enabled rapid layout
generation even for casual users utilizing easy-to-use software, such as Microsoft Word
[Microsoft, 2016]. Due to the high number of constraints of such text layouts the search
space for the optimal layout can be pruned extensively, allowing for efficient inference of
solutions even on low-performance machines. Similar layouting examples include mosaic
generation, a classical art form, or, more generally, the generation of packing layouts
optionally following additional constraints. Conversely however, efficient solutions for such
problems are much more involved as their computational complexity is disparately higher
due to a much larger search space that cannot be pruned as efficiently. One instance of such
packing problems particularly covered in this thesis is the packing of images with arbitrary
boundaries into arbitrary containers. Besides an even distribution of the elements in the
container, ideally having the same distance in all directions, additional constraints govern
the macroscopic distribution of the elements, e. g., sorting the elements based on visual
features such as brightness. Similar to text layouts, here, the position of the elements can
convey certain additional information such as brightness gradients or the like. Controlling
these additional information can be tedious and benefits from example-based approaches
where the parameters are learned from examples. While the distribution itself can be seen as
a forward problem, estimating the parameters for the distribution from examples constitutes
an inverse problem. Moving from images to three-dimensional models or even higher
dimensions increases the complexity exponentially and demands for even more efficient
solutions.

Another instance of media manipulation addresses deformations of two- and especially
three-dimensional surfaces. Sculpture by manipulation is a classical real-world modeling
technique to shape three-dimensional surfaces involving flexible materials such as wax,
plaster, or clay. It allows deforming the sculpture and adding or removing certain parts until
a desired outcome is achieved, constituting intuitive modeling mechanisms. Moving to the
digital world, naturally, in modern three-dimensional modeling software such as Blender
[Blender Online Community, 2016] these modeling metaphors are also widely utilized.
In contrast to real-world modeling, physical properties, such as collisions of the surfaces,
are often ignored in digital modeling as they substantially increase the complexity of the
modeling process. Support for these properties has the potential to significantly increase
the intuitiveness of modeling tools resulting in an improved user experience. Besides three-
dimensional surface manipulation, avoiding collisions is beneficial for many manipulation
tools in all dimensions as it is closer to a physically correct behavior. Additionally, manipu-
lations often involve repetitive work that can be overcome using example-based parameter
estimations. Such manipulations can be used to generalize example manipulations to the
full model, but also from a single model to a collection of models.

5 1.1. BACKGROUND

Interactivity is a crucial requirement for example-driven approaches such as the ones
introduced in this thesis. It relates to both, interactive exploration of design possibilities
by the user and interactive performance provided by the machine. Ideally, these tasks
are split optimally such that both, the users can freely attain their imagination without
overhead and the machine supports this task with a fast response, leveraging the strength
of both sides. A key concept in interactive user interfaces is the direct interaction with the
media at hand, e. g., by providing subsets of examples. On the one hand, an interactive
application allows for easy, fast, and unimpeded exploration as well as navigation of design
possibilities by the user. This exploration of design spaces is an inherently interactive task,
as it requires a lot of trial-and-error to navigate the possibilities, i. e., users typically conduct
multiple iterations until they arrive at their intended outcome. Hence, on the other hand, fast
response of the system is essential and interactive frame rates are desirable. Especially in
the case of example-driven approaches that might suggest wrong guesses, interactive speed
is substantial as it allows rapid error correction by adding more examples. Content synthesis
and manipulation with interactive applications enables fast results, exploration of design
spaces, and discovery of new effects.

Many of the problems that arise in example-driven approaches and hence also in this thesis
can be formulated as optimization problems. For numerous of these problems off-the-shelf
algorithms exist that efficiently solve the problem at hand. However, often, these solutions
are still too slow for interactive needs and hence yield a high demand for more efficient
solutions. Constraints on the optimization commonly can be used to efficiently prune the
space of solutions, avoiding unnecessary search for invalid results. Manual reformulation
of the problem or a broader analysis of the problems often reveals particular properties
that can be exploited to make the optimization more efficient. Such properties include
reducing the number of possible solutions, ideally turning the optimization into a convex
problem, or changing its dependency structure to allow for parallelization. Due to the
universal availability of parallel hardware nowadays, parallelization of algorithms is of
particular interest, especially leveraging the massive parallelism of the GPU. Because of
inherent scheduling and memory management limitations of these processors, mapping the
optimization problems to the GPU to optimally utilize this massive parallelism requires
careful algorithm design. Besides parallelization, splitting the computations between the
available processors, such as the central processing unit (CPU) and the GPU, to exploit
their respective strengths is another avenue of runtime optimization explored in this thesis.

Conclusion The observations above suggest three important properties that ideal example-
driven algorithms for synthesis and manipulation of visual media should possess:

• Intuitiveness: Simple user interfaces that abstract non-descriptive parameters increase
the intuitive operability of the system.

• Plausibility: Plausible generalizations of appearance examples improve the acceptance
of the systems’ suggestions by the users.

• Speed: Interactive feedback enhances the user experience and reduces fatigue while
using the system.

1. INTRODUCTION 6

1.2 Contributions

This thesis proposes novel example-based approaches and addresses common limitations
with these approaches, exemplified in four different techniques published in [Reinert,
Ritschel and Seidel, 2012; Reinert, Ritschel and Seidel, 2013; Reinert et al., 2015; Reinert,
Ritschel and Seidel, 2016]. Below the specific contributions of each technique are discussed.

The first approach in Chapter 3 (based on [Reinert, Ritschel and Seidel, 2012]) enables
deformations of two- and three-dimensional surfaces by localized, non-uniform size changes.
In contrast to previous work in this research area, the results are self-intersection-free. Its
specific main contributions are:

• A novel optimization solver to create deformed, self-intersection-free surface models.

• A combination of a fast, parallel implementation for a preview with an offline solver
for the final, self-intersection-free solution.

Following, Chapter 4 (based on [Reinert, Ritschel and Seidel, 2013]) presents an approach
to interactively pack a set of example images with arbitrary boundaries into a container of
arbitrary shape. The margins between each of the image boundaries are equalized and the
images itself follow user-prescribed objectives revealing relationships between the images.
These user-prescribed objectives are learned from a set of specifically placed example
images. In contrast to previous work our system is drift-free and achieves interactive
performance for all steps of the pipeline, resulting in the following main contributions:

• An interactive inverse layout approach to infer a user’s packing layout intention from
a small number of examples.

• A drift-free layout algorithm to evenly distribute primitives with spatial extend in
real-time on a GPU.

• A study of packing layout task performance of novice users.

Chapter 5 (based on [Reinert et al., 2015]) introduces projective properties of point patterns
as an important feature for the solution to several computer graphics tasks. The chapter
provides an in-depth analysis of point patterns in terms of their projective properties and
discusses several applications. It generalizes the work on packing layouts of Chapter 4 to
arbitrary dimensions and discusses projections onto the screen. The main contributions are:

• Two projective generalizations of algorithms that produce point patterns of arbitrary
dimensionality.

• An in-depth comparison of the spectral and projective properties of projective blue-
noise patterns to various competing methods.

• A detailed analysis of the influence and effectiveness of the projective properties.

7 1.3. OUTLINE

Finally, Chapter 6 (based on [Reinert, Ritschel and Seidel, 2016]) presents an approach to
extract animated, three-dimensional geometry from two-dimensional videos. Extraction of
dense, deformable three-dimensional geometry from single view video is typically limited
to sparse reconstructions of short sequences. Leveraging minimal user input in form of
sparse axis sketches in combination with generalized cylinders, our system generates dense
and complete reconstructions and presents the following main contributions:

• A parallel tracking algorithm for axis sketches through image sequences.

• A video segmentation consolidation over all frames of a video based on generalized
cylinders.

• A three-dimensional generalized cylinders fitting approach leveraging tracked strokes
and segmentation masks.

1.3 Outline

This thesis is structured as follows: Chapter 2 discusses additional background and re-
views previous work that substantiates our work. Afterwards, Chapter 3 to Chapter 6
present four novel synthesis and manipulation techniques for visual media in detail. More
specifically, Chapter 3 presents a self-intersection-free deformation technique for two- and
three-dimensional surfaces by localized, non-uniform size changes. Next, Chapter 4 presents
a layouting algorithm for images with arbitrary boundaries that allows to interactively and
evenly pack and sort a set of images into an arbitrary container image. Here, the layout
intention of the user is inferred from a small set of examples. Subsequently, Chapter 5
extends this notion of layouting and packing for sample patterns in arbitrary dimensions.
In particular, projective properties that originate e. g., from perspective projections onto
a two-dimensional image are analyzed. Further implications for other tasks such as ren-
dering of area light sources and image reconstruction are discussed. Finally, Chapter 6
presents an approach to extract deformable, three-dimensional geometry from uncalibrated
two-dimensional videos leveraging minimal user input in form of sketches. This thesis is
completed by a conclusion in Chapter 7 that also discusses potential combinations of our
approaches and presents promising avenues of future work.

Chapter 2
Previous work

In this chapter, we review some background and related work of the projects and concepts
presented in this thesis. First, synthesis of visual media by means of rendering, model
reconstruction, as well as animation are examined. Second, we focus on media manipulation
by means of surface deformation and example-based approaches. Point patterns, which occur
frequently in computer graphics problems, constitute the next topic. Finally, interactivity by
means of parallelization and user interfaces is discussed.

2.1 Synthesis of visual media

Synthesis of visual media is the task of creating novel, synthetic content by combining
several, distinct components, e. g., three-dimensional models and light-transport to create
an image. In particular this thesis is concerned with the synthesis of two-dimensional
images from three-dimensional content, a process that constitutes the forward direction of
rendering. Conversely, three-dimensional models can be obtained from two-dimensional
images or videos by data-driven approaches, e. g., using reconstruction of deformable three-
dimensional geometry, generally representing the inverse direction of rendering. Another
avenue this section introduces is animation of visual media.

2.1.1 Rendering

Two-dimensional image synthesis, also referred to as rendering, is the traditional core of
computer graphics and describes the generation of a realistic, two-dimensional image of a
three-dimensional scene by modeling the light transport [Goral et al., 1984]. While this thesis
is not immediately concerned with improving core rendering, a thorough understanding
of the basic principles is inevitable to understand some of the core concepts in sample
patterns (cf. Section 2.3) and the following chapters (cf. e. g., Chapter 5). Additionally,
this knowledge is helpful for the inverse direction of rendering, i. e., three-dimensional

9

2. PREVIOUS WORK 10

reconstruction (cf. Section 2.1.2). For realistic image synthesis, the global light transport
(global illumination) has to be modeled. Every surface sample can potentially interact
with all other surface positions possibly multiple times. Formalizing this concept of light
transport, the full light interactions in a scene can be expressed by the well-known rendering
equation [Kajiya, 1986]. It describes the radiance Lo emitted at location x ∈ R

3 of a
surface M ⊆ R

3 in direction ωo ∈ S
2, with S

2 as the three-dimensional hemisphere, by an
integration over all incoming directions. Omitting the wavelength dependency by assuming
that all operations are jointly executed on all color channels, it is defined as

Lo(x,ωo) = Le(x,ωo)+
∫

S2
Li(x,ωi)R(x,ωi,ωo)〈n(x),ωi〉+dωi, (2.1)

with Le as the emitted radiance, Li as the incoming radiance arriving at location x from
direction ωi, n(x) as the surface normal at x, and R(x,ωi,ωo) ∈ M ×S

2 ×S
2 → R

+as the
bidirectional reflectance distribution function [Nicodemus, 1965] of the incoming direction
ωi and the outgoing direction ωo at location x (Figure 2.1).

The incoming light Li potentially emanates from other surface locations and is obtained by
solving Equation 2.2 for these locations as well, amounting to a large system of non-linear
inter-dependent equations. The resulting interactions between all surface locations make
an exhaustive evaluation of the integral infeasible. With increasing scene complexity it
becomes prohibitively complex to efficiently evaluate the integral of Equation 2.2. To
overcome this limitation, several approximation techniques have been proposed [Lafortune
and Willems, 1993] that have been improved to allow for efficient rendering [Vorba et al.,
2014]. Usually these techniques target offline rendering, but other techniques that enable
real-time rendering have been published that typically require some degree of pre-processing
as well as approximation and make certain assumptions about the scene [Ritschel et al.,
2012; Keller, 1997; Scherzer et al., 2012]. As evaluating the integral of the rendering
equation, stated in Equation 2.2, is not feasible for typical scenes due to complex visibility
relations, only approximations of the precise result are possible. A classical technique to
approximate numerical solutions of an integral is numerical integration, where the result
is approximated by sampling the function to integrate with discrete sample points; this
approximation is called Monte Carlo integration. The integral of Equation 2.2 is replaced
by a finite sum over all directional point samples s ∈ S = [0,1)2, i. e., it becomes

Lo(x,ωo) = Le(x,ωo)+
1
|S| ∑

s∈S

Li(x,ωi)R(x,ω(s),ωo)〈n(x),ω(s)〉+, (2.2)

with ω as a spherical unit vector. Evaluation of this sum is often still too expensive for
interactive performance and is replaced by some specialized sum that e. g., only samples
direct light sources. Typically, the point patterns must possess special properties to perform
well in different scenarios, e.g. when sampling an area light source of different size and
shape. Ideally, the patterns should be general purpose patterns, like the patterns in Chapter 5
that work well in many scenarios to overcome the need to have specialized patterns for
every scenario.

In combination with importance sampling [Veach and Guibas, 1997], results with low
variance can be obtained in short time. Importance sampling builds on the availability of

11 2.1. SYNTHESIS OF VISUAL MEDIA

additional knowledge about the function that needs to be integrated, e. g., if an environment
map has to be sampled. One possibility is to treat this function as a cumulative distribution

function that can be inverted. With increasing dimensionality of the problem, taking
multiple factors, such as light position, wavelength, and others into account, the problem
becomes increasingly difficult. The result of this numerical integration heavily depends
on the placement of the samples in a sample pattern. A rich set of analysis methods
has been developed that allow predicting convergence rates for rendering by discrepancy
analysis of such patterns and numerical integration has been investigated extensively [Halton,
1964; Shirley, 1991; Schlömer and Deussen, 2010]. As sample patterns also serve different
purposes in computer graphics a comprehensive review for many applications in combination
is presented in Section 2.3.

ω
o

ω
i

n(x)

S

Figure 2.1: Rendering integrates the incoming light over all directions ωi of the hemisphere
S (blue) to produce the final result at position x in direction ωo. Image-based rendering, in
contrast, solely reuses the results of the previous image(s) (black) to generate the current
image (green).

Image-based rendering Image-based rendering (IBR) approaches the task of creating
an image by solely reusing pixel information from other images. These different images
contain information from previous views that in common scenarios presumably are close
to the desired current view, but are typically captured from slightly different positions and
directions. In this thesis, a variant of IBR is used in Chapter 6 and discussed in more
detail as an outlook in Chapter 7. In contrast to traditional rendering described in the
previous paragraph, for IBR we do not need to actually solve the rendering equation for
each pixel but simply reuse the rendered information of previously received images, making
it a computationally affordable method for real-time demands also on mobile hardware.
IBR was introduced in the seminal work by Chen et al. [1993] and later improved by Mark
et al. [1997] and others. All IBR methods try to invert the flow, i. e., all methods build on the
assumption of a known forward flow for each pixel, i. e., for each pixel of the input image we
can reconstruct its new position in the output image. The projection of a three-dimensional
world position xw ∈R

4 in homogeneous coordinates into screen-space xs ∈R
4 given a view

2. PREVIOUS WORK 12

matrix Vi ∈ R
4×4 and a projection matrix Pi ∈ R

4×4 as

xw = PiVixs.

For a known projection model, approximate (up to pixel precision) x-, and y-coordinates
are implicitly defined by the pixel position for each point. In order to reconstruct the pixels
world position only a single depth value needs to be provided. Using an inverse projection,
the world position xw can be reconstructed from the projected position, i. e.,

xs = (PiVi)
−1

xw.

Now, to calculate the forward flow we simply reconstruct the world position for each pixel
and reproject it using the new view marix Vo ∈R

4×4 as well as a potentially new projection
matrix Po ∈ R

4×4, e. g., by employing the standard rendering pipeline with depth testing
(cf. e. g., [Shreiner et al., 2013]). Since all points are given in homogeneous coordinates,
the Cartesian coordinates can be obtained by division by the last element of each vector.
Ideally, for each output pixel we would like to know the backward flow, i. e., the lookup
position in the input image. Obtaining the backward flow is hard due to occlusions and
missing regions, leading to potentially multiple or zero solutions per pixel.

2.1.2 Model reconstruction

Reconstructing three-dimensional shape from one or multiple images has been an important
area of research in the past decades and remains a challenging task. Especially deforming
geometry poses difficult problems that are not easily solvable. Our work in Chapter 6
extends the line of work on user-assisted acquisition of static, three-dimensional geometry
from a single view [Chen et al., 2013b] to animated, three-dimensional geometry from
multiple video frames.

Three-dimensional geometry is usually acquired using specialized hardware, such as depth
sensors [Izadi et al., 2011] or multi-camera setups [Snavely, Seitz and Szeliski, 2006].
When background segmentation is feasible, multiple silhouettes can be combined into a
single, three-dimensional object using the visual hull [Matusik et al., 2000]. Sufficiently
textured rigid scenes can reliably be acquired using Structure-from-Motion (SfM) and enable
impressive applications [Snavely, Seitz and Szeliski, 2006] when sufficiently large image
collections are available. These algorithms however only reconstruct three-dimensional
information for a sparse set of reliably tracked features. Using those features in combination
with additional constraints provided by the user, such as symmetry or planarity, high-quality,
three-dimensional models can be constructed [Sinha et al., 2008].

If the object class to be reconstructed is known a-priori, specialized template-based solu-
tions for humans from many three-dimensional scans [Allen, Curless and Popović, 2003],
faces [Blanz and Vetter, 1999], or animals [Cashman and Fitzgibbon, 2013] have been
proposed. Most of these approaches require user interaction in some way, such as defining
correspondences by clicking [Allen, Curless and Popović, 2003; Cashman and Fitzgibbon,
2013]. If the video contains a human, for which a template models is available, motion
can be captured [Wei, 2010] using automatic or semi-automatic template fitting allowing to

13 2.1. SYNTHESIS OF VISUAL MEDIA

Figure 2.2: a): Three-dimensional reconstruction from depth cameras with Kinect Fusion
[Izadi et al., 2011], b): Three-dimensional reconstruction from multiple photos [Snavely,
Seitz and Szeliski, 2006]. Images courtesy of the publication authors.

manipulate images [Zhou et al., 2010] or videos [Jain et al., 2010]. The approach described
in Chapter 6 goes beyond human shapes, allowing the user to draw and refine arbitrary
skeletons unknown a-priori.

Reconstruction of animated, non-rigid three-dimensional models without special hardware
poses a challenging, under-constrained problem for which no sophisticated solutions are
available. Non-rigid SfM is currently addressed by either assuming that the deformation is
a combination of rigid transformations of basis shapes [Bregler, Hertzmann and Biermann,
2000] or basis trajectories [Akhter et al., 2008]. Even if correspondences are given [Garg,
Roussos and Agapito, 2013] reconstruction is typically limited to moderately deforming,
sphere-like objects and requires long computation time, defying interactive use.

Many works rely on feature tracks that can reliably be tracked and matched throughout
long image sequences. For deforming objects these features are clustered into nearly
rigid components and their transformations are blended [Russell, Yu and Agapito, 2014]
(Figure 2.3, a). Optical flow provides means of calculating the differences between image
pairs.

Multi-view three-dimensional reconstruction For multiple views, skeletons, and
template models sophisticated systems exist that estimate both, the skeletons and shape,
simultaneously [Gall et al., 2009]. In contrast to such approaches, our approach in Chapter 6
does not rely on any a-priori known model or an explicit understanding of the underlying
skeletal structure of the creature. Additionally, our algorithm allows for a rich set of defor-
mations, exceeding those of other tracking approaches. While other tracking approaches
deform each bone by a single rigid transformation, our limbs commonly aggregate several
biological bones allowing for piecewise rigid but also non-rigid motions. This enables
tracking of limbs that are otherwise hard to track using a single bone, such as the tail and
body of a cheetah or the neck of a giraffe, and abstracts model complexity away. Our
system solely relies on the input video in combination with user-defined strokes, enabling
three-dimensional reconstruction even for creatures with unknown or no skeleton at all. All

2. PREVIOUS WORK 14

Figure 2.3: a): 2.5D reconstruction using Video Pop-Up [Russell, Yu and Agapito, 2014],
b): Three-dimensional reconstruction using template fitting [Gall et al., 2009]. Images

courtesy of the publication authors.

video sequences used in Chapter 6 are taken from online video platforms and do not require
any calibration steps beforehand, rendering the system useful also for casual users within
the assumptions of this thesis.

Single-view three-dimensional reconstruction Creating a three-dimensional model
from a single image is an even more challenging task, often addressed using semi-automatic
approaches. A classic idea is to assume piecewise planar geometry that is segmented by
a user who also specifies the vanishing point [Horry, Anjyo and Arai, 1997]. Zhang et al.
[2002] reconstruct a smooth 2.5D patch (equivalent to a depth map) by solving a variational
optimization problem that finds a smooth surface that is perpendicular to the viewer at the
silhouette and follows several other positional and directional user constraints. Research
of human perception has found that the occluding contour or silhouette is a strong cue
for the inference of a full shape from its 2D projection [Koenderink, 1984]. Later, the
silhouette-based approaches were extended by Prasad et al. [2006] to full 3D patches. Most
systems require the user to interactively segment the object in question [Zhang et al., 2002]
unless it has been imaged in front of a simple background. A different approach is taken
by Hoiem et al. [2005] where foreground, background and up-right labels are assigned to
image patches, allowing to infer a simple depth map automatically.

2.1.3 Motion

Finally, besides different spatial dimensions, synthesis of visual media can also relate
to temporal, i. e., time-varying aspects such as animations of three-dimensional objects.
Explicit modeling of every single frame of these animations is a tedious task and can lead to

15 2.1. SYNTHESIS OF VISUAL MEDIA

salient leaps in the animation if not done carefully. Hence, an important research area is
concerned with the (semi-)automatic generation and extraction of animations.

Data-driven animation A popular approach to facilitate animating objects are data-
driven techniques that aim at transferring motion from source to target objects. This can
be achieved e. g., for a three-dimensional target object, such as an animated camel, with
a three-dimensional source object as done by Sumner et al. [2004] (Figure 2.4). Other
approaches work on simplified abstracted models such as skeletons, for which motion
tracking systems are available. While this approach produces sophisticated results, motion
tracking systems or three-dimensional animations of similar objects are usually hard to
obtain by casual users. In contrast, other, potentially lower-dimensional animation sources
such as videos or images are easily accessible, e. g., on internet video platforms. For this
reason, Xu et al. [2008] reconstruct animal motion from a single or low number of images
that show multiple animated poses of a walk cycle. Bregler et al. [2002] capture motion of
two-dimensional cartoon characters and transfer it to three-dimensional character frames.
These approaches work well if enough example frames and/or poses are present, but often
only short sequences or sparse image collections are available. To enable smooth animations
between these results, interpolation, i. e., temporal upsampling, can be used to compute in
between frames of an animation.

Figure 2.4: Motion transfer from a source model (upper row) to a target model (lower row)

[Sumner and Popović, 2004]. Image courtesy of the publication authors.

Temporal upsampling of an animation leverages a sparse set of key frames and pro-
vides an efficient and powerful means to achieve both, reduce the amount of work required
to produce the animation and generate smooth results. In combination with automated key
frame extraction it can be used to constitute full animations and allows for smooth time
warping of animations. It requires model knowledge that can be generic, as with constrained
velocities between frames, or domain-specific, including model knowledge, e. g., rigidity
constraints (cf. Section 2.2.1). Our approach in Chapter 6 includes both, generic as well as
model knowledge, and can in many cases reproduce the complicated gait pattern of an entire
limb in an animal walk cycle from a single user annotation, including occlusion handling.
Further it solves for shape and animation in combination. Favreau et al. use segmentation
on videos to extract a small set of key frames that represent the principal components of

2. PREVIOUS WORK 16

animal gait patterns [2004]. A linear combination of these components then constitutes the
full animal gait. Their approach allows transferring motion to three-dimensional models,
but does not reconstruct the true three-dimensional shape from two-dimensional videos
as in our approach. Automatic and semi-automatic creation of animation from examples
[Arikan and Forsyth, 2002] or annotations [Arikan, Forsyth and O’Brien, 2003] has been
proposed, but requires geometry given a-priori and a skeletal animation hierarchy. Plausible
in-between frames can be created from user annotations [Sỳkora, Dingliana and Collins,
2009], but will not reproduce motion details present in the source video. It builds upon
user-guided segmentation [Agarwala et al., 2004] of animated objects in video, but to the
end of reconstructing an animated three-dimensional shape.

Reconstructing motion from simple annotations, such as sketches, has received less attention
than more sophisticated segmentations. In Chapter 6 we build a global motion model
[Bergen et al., 1992] from strokes on the fly allowing the user to inspect the resulting
three-dimensional shape and animation quality and refine the input.

Optical flow [Brox et al., 2004; Tao et al., 2012; Sanchez Perez, Meinhardt-Llopis and
Facciolo, 2013] establishes dense correspondences between frames over time and can be
used to transfer results from one frame to adjacent frames. It can be employed to animate
objects or transfer edits, but the missing domain-specific knowledge in these generic methods
often lead to inferior results compared to specialized methods detailed before.

Physical simulation, as described in Section 2.2.1, is closely connected to temporal upsam-
pling as it can serve as a prior that includes domain-specific knowledge into the upsampling
process. It allows to regularize the results obtained by temporal upsampling to only permit
plausible deformations and can limit the design space to only these reasonable solutions
[Nguyen, 2014].

Our technique in Chapter 6 is a hybrid method that combines data-driven approaches from
video feature tracking with model knowledge for temporal upsampling. Generally, motion
fits in both categories, synthesis (cf. Section 2.1) and manipulation (cf. Section 2.2) as it,
on the one hand, synthesizes motion from examples or other provided data but, on the other
hand, also utilizes this data to deform existing surfaces.

2.2 Media manipulation

Media manipulation is concerned with the manipulation of existing, visual content to meet
the constraints and intentions of the users. In this thesis we particularly manipulate two-
and three-dimensional surfaces and entire collections of such surfaces that create a layout.
First, deformations of surfaces of different dimensionality are discussed. Next, as most of
the approaches presented in this thesis are example-driven, an overview of example-based
approaches is presented.

17 2.2. MEDIA MANIPULATION

2.2.1 Model deformation

Deformations of images [Wolberg, 1998] and surfaces [Sederberg and Parry, 1986] have a
rich history in computer graphics and pose a classical avenue of visual media manipulation
involving prescribed content and deformation models. For three-dimensional models, a
wide variety of software (e. g., Blender [2016]) exists that allows to model and manipulate
meshes. These applications enable full control of every step along the process of creating
detailed three-dimensional models, but many of these steps involve tedious and repetitive
manual work. A three-dimensional mesh, representing an object such as an animal, is
defined as a complex C = (V,E) with a set of vertices V = {v1 . . . ,vn ∈R

3} and edges E =
{e1, . . . ,em ∈ N

2}. Modeling of meshes typically also characterizes sensible manipulations
or deformations of existing meshes. A typical way of representing such deformations
is explicitly prescribing the positions of a small set of constrained vertices [Welch and
Witkin, 1994; Sorkine et al., 2004; Zorin, Schröder and Sweldens, 1997; Witkin and Kass,
1988; Arikan and Forsyth, 2002]. The remaining, unconstrained vertices then should follow
these constrained vertices in a plausible way, ideally respecting physical laws.

If rigs [Baran and Popović, 2007] are available for the meshes, off-the-shelf software
supports deformations by manipulating the rig vertices that in turn cause the assigned
model vertices to move accordingly. Most commonly however, meshes available in three-
dimensional model databases, such as Google Warehouse, do not include such rigs and
modeling them by hand is involved and requires vast amounts of manual work (Figure 2.5,
b). What is more, for some models, rigs might be too restrictive as they only allow
approximately rigid deformations. Hence, handling model deformations in an automated
and expressive way has the ability to significantly improve the modeling process.

Figure 2.5: Rigging. a): Rigs can be automatically constructed for meshes using the
technique of [Baran and Popović, 2007]. b): The Blender [Blender Online Community,
2016] interface to manually define rigs for a given model allows the manipulation of many
parameters. Images courtesy of the publication authors.

2. PREVIOUS WORK 18

One solution is to automatically model and assign rigs for existing meshes [Baran and
Popović, 2007], but this approach is most commonly restricted to certain classes of known
models (Figure 2.5, a). Explicit assignment of physical material properties, such as mass
and elasticity, to parts or the entirety of the model is another possibility to accomplish
plausible deformations [Popović, Seitz and Erdmann, 2003; McNamara et al., 2004; Wojtan,
Mucha and Turk, 2006; Schulz et al., 2014]. Other works have focused on simpler means
that do not explicitly relate to physical properties but model plausible model behavior
[Botsch and Sorkine, 2008]. Deformations that minimize distortions [Alexa, Cohen-Or
and Levin, 2000; Schaefer, McPhail and Warren, 2006; Nealen et al., 2007] have received
considerable interest in the past years. The deformations resulting from these methods
aim to follow artistic constraints, react smoothly, and locally behave like rotations. In
particular as-rigid-as-possible (ARAP) surface deformations [Sorkine and Alexa, 2007]
are a famous example, where all edges in a neighborhood of a deformed vertex ṽi should
be described by a local rotation of the original, undeformed vertex positions vi as close as
possible (Figure 2.6, a), i. e.,

ṽi − ṽ j ≈ Ri(vi −v j),∀(i, j) ∈ E,

with Ri ∈ R
3×3 as a rotation matrix (cf. Figure 2.7, a). The authors propose an efficient

optimization that fixes the positions or rotations in turn, allowing to iteratively obtain
sophisticated solutions.

Figure 2.6: a): A source model of a cactus (left) and an example deformation using the red
and yellow handles from different views (right three images) [Sorkine and Alexa, 2007]. b):

Scaling the surface using the technique of [Botsch and Sorkine, 2008]. Images courtesy of

the publication authors.

In the work presented in Chapter 3 we are interested in particular in local changes of size,
where each part of a mesh can be assigned a different size, also known as non-homogeneous
scaling. Non-homogenous scaling was addressed in the context of retargeting [Kraevoy et al.,
2008], where the bounding box of one object is fit into another one, while trying to locally
preserve salient regions and structures, e. g., such that spheres remain spheres. Our approach
seeks to do the opposite, as it locally aims at rescaling but has to prevent intersections
and minimize distortion. An important aspect in deformations often ignored in interactive
applications is to avoid these self-collisions that frequently occur by scaling deformations in
free space. The PriMo modeling system [Botsch et al., 2006] is a rare example that allows
for local scaling of surface area (Figure 2.6, b), but without an account for intersections
that occur for drastic and complex size changes such as the ones we target (cf. Figure 3.1).

19 2.2. MEDIA MANIPULATION

The volume-preserving approach of von Funck et al. [2006] produces self-intersection-free
vector fields, but is limited to certain types of supported deformations. The approach of
Harmon et al. [2011] includes continuous intersection handling into the modeling process
that allows for sliding motions, such as the one of cloth on a character, by eliminating
space-time interference. Incorporation of internal anatomical structures such as bones,
local size changes can be used to model muscularity and other anatomical properties while
preventing self-intersections [Saito, Zhou and Kavan, 2015].

v
i

v
i

v
j

a) b)

Figure 2.7: Deformation concepts. a): Constraint projection as used in [Müller et al.,
2007], b): ARAP neighborhood rotation as used in [Sorkine and Alexa, 2007]. The
figures show vertices (red and blue crosses), previous configurations (light grey edges),
new configurations (dark grey edges), corrected configurations (stippled grey edges), and
correction vectors (green arrows).

As size changes often induce collisions that need to be resolved, multiple constraints, such
as distortion minimization and collision avoidance, have to be optimized simultaneously.
Combining multiple constraints in one optimization is a classical task of physical simulation.
Physical simulation can be realized using various approaches [Terzopoulos et al., 1987;
Nealen et al., 2006]; in this thesis we draw inspiration from one particular approach, coined
as position-based dynamics [Müller et al., 2007]. Here, several constraints can be defined on
the vertices and edges of the complex C to implement physical conditions. For example, all
edges try to preserve their rest length as much as possible while other forces, such as gravity
and acceleration, try to attract the vertices to new positions. The idea of position-based
dynamics is to solve these constraints in turn using a so called constraint projection. Here,
the vertices involved in a single constraint are projected to the closest configuration to the
previous solution that satisfies the constraints. One example constraint, commonly used
in this thesis, is the length constraint, representing distance preservation between adjacent
vertices. The projection corrects the positions of both vertices of an edge to satisfy their rest
length. For an edge e = (a,b) ∈ E the correction between its rest length ‖vi −v j‖2 and its
current length is distributed evenly to both vertices (ṽi and ṽ j) of an edge in the direction of

2. PREVIOUS WORK 20

the edge, i. e.,

ṽi = ṽi +

(‖vi −v j‖2

‖ṽi − ṽ j‖2
−1

)
ṽi − ṽ j

2
,

with i, j ∈ {a,b}, i 6= j (Figure 2.7, b). Other constraints include collision avoidance, detailed
in Chapter 3. Inclusion of such collision detection and resolution in physical animation
is common, but often ignored for shape manipulation or focus+context visualization. The
objective of the approach in Chapter 3 is to achieve a static rest state where all constraints
are balanced; the time-dependent change of a deformation subject to certain forces (i. e., of
a piece of cloth) and momenta are not important for our application. The edge preservation
constraint leads to similar results to those of ARAP surface deformations [Sorkine and
Alexa, 2007] but are slower to optimize. They however allow to naturally include multiple
other constraints into the optimization that can be weighted differently.

Figure 2.8: Position Based Dynamics. Example deformations showcasing different stiffness
parameter configurations [Müller et al., 2007]. Image courtesy of the publication authors.

Besides the technical challenges that need to be solved, the visualization community has
identified the opportunities provided by local size changes under the label of focus+context
visualizations [Leung and Apperley, 1994]. The underlying magnifying glass metaphor
was extended to three-dimensional surfaces and volumes [Wang et al., 2005]. Recent works
combine all levels of detail in a single image with smooth transitions between the different
levels [Hsu, Ma and Correa, 2011]. Different views and the space each one of them should
cover in the final image can be defined and the method smoothly interpolates between these
views. The result however is view-dependent and it is not clear if and how an extrapolation
for different views could be added. Beyond lenses, other deformations can be applied
in three dimensions to achieve focus+context. Wang et al. [2008; 2011] deform a three-
dimensional surface to achieve focus+context by allowing to deform free space to distort
more and minimize distortions of the surface. The problem in Chapter 3 is different in
two ways: First, Wang’s technique handles all voxels inside of a bounding cube whereas

21 2.2. MEDIA MANIPULATION

our technique ignores voxels not occupied by mesh vertices. Second, their focus+context
deformation field is intentionally of low frequency (e. g., a single large gradient proportional
to the distance from a focus point). In contrast, the solution presented in Chapter 3 can be
applied to both, high-frequency deformation, e. g., the crocodile teeth in Figure 3.6 as well
as focus+context deformation as used by Wang et al. [2008; 2011], e. g., Figure 3.7, i.

2.2.2 Example-driven approaches

Example-driven approaches try to control manipulations of visual media by a small set of
explicitly defined examples. The goal for such systems is to find the right appearance for the
remaining, undefined instances by generalizing from the examples to the full model. In this
thesis we make use of such approaches throughout most of our techniques, handling different
kinds of media. A particular instance of this is three-dimensional model deformation where
a sparse set of constrained vertices is defined and all other vertices follow these vertices in a
meaningful way, detailed in Section 2.2.1. With size constraints the model can be solved for
positions as done in Chapter 3.

Other examples include layout generation from a sparse set of exemplar images. Inferring a
layout from sparse user constraints is an instance of semi-supervised learning [Chapelle,
Schölkopf and Zien, 2010], in particular semi-supervised dimensionality reduction [Zhang,
Zhou and Chen, 2007] where some primitives are labeled (i. e., placed by the user) but most
are not. In the most general setting, the problem described in Chapter 4 can be regarded as
(inverse) procedural modeling that can be solved with amazing results by approaches such
as Metropolis sampling [Talton et al., 2011]. However, this approach is too costly to deliver
timely response to the users’ interaction. A classical way to reduce the dimensionality of
a dataset is to use multi-dimensional scaling [Kruskal and Wish, 1978] or self-organizing
maps [Kohonen, 1990] as done e. g., by Nguyen et al. [2015]. While these systems are
very good at reproducing the distance matrix with a mixture of different dimensions, they
lack the ability to explain the distances by a single, isolated dimension as required by our
approach in Chapter 4, necessitating a sparse dimensionality reduction.

As shown in Chapter 5, layout inference and generation can be generalized to higher
dimensions. Presentation of these layouts involves projection into lower-dimensional
subspaces, such as two-dimensional images. These projective properties pose additional
constraints on the layout generation that have to be optimized in combination with other
constraints. In computer graphics such projections were studied intensively, especially for
shadows (cf. e. g., [Mitra and Pauly, 2009]) to allow optimizing objects such that they
produce predefined shadows when seen from multiple distinct viewports. However, arbitrary
placement of three-dimensional objects such that they follow certain constraints and possess
good distributions in three dimensions as well as in multiple projections (cf. Chapter 5) was
not considered.

2. PREVIOUS WORK 22

Figure 2.9: Example-driven approaches. a): Shadow art [Mitra and Pauly, 2009] b):
Metropolis procedural modeling [Talton et al., 2011]. Images courtesy of the publication

authors.

2.3 Point patterns

Point patterns are a key component for solutions to many problems arising in the field
of computer graphics. On the one hand, they can be applied for numerical integration to
approximate complex integrals, e. g., for rendering and imaging (cf. Section 2.1.1). On the
other hand, in the fields of geometry processing and primitive placement, point patterns are
used to constitute distinct locations for primitives, such as images or mesh vertices.

Numerical integration was already discussed in Section 2.1.1, hence we will briefly introduce
other areas of application and its key requirements in further detail, explain how important
pattern properties can be analyzed, and discuss specific pattern generation algorithms. In
the following, a point pattern (Figure 2.10, a) of n ∈ N

+ samples in dimension d ∈ N
+ is

defined as a set S = {s1, ...,sn ∈ [0,1)d}.

Primitive placement Sample patterns for primitive placement are utilized in geometry
processing [Chen et al., 2013a] but also for artistic purposes e. g., in two dimensions for
non-photorealistic rendering, such as for stippling [Deussen et al., 2000; Hiller, Hellwig and
Deussen, 2003], mosaics [Hausner, 2001; Kim and Pellacini, 2002], or texture synthesis
[Lagae and Dutré, 2005].

In particular, the work of Hiller et al. [2003] who distributes primitives in the plane such
that they follow a prescribed density, is a similar case of the system described in Chapter 4

23 2.3. POINT PATTERNS

that produces distributions that follow rules inferred from the users’ interaction with the
distribution itself. Properly distributing primitives in a domain has been a challenge for
both, technical and aesthetical reasons, and remains demanding especially if interactive
performance is crucial.

2.3.1 Pattern Properties

d
min

a) b) c)

0

0

1

1

Figure 2.10: a): Point patterns with blue-noise characteristics have a minimum distance
dmin to their closest adjacent point. b): The power spectrum of their Fourier transformation
can be used to analyze spectral properties. c): Radially averaging the power spectrum gives
insights about the pattern’s quality.

Certain properties of point patterns can be analyzed to assess their usefulness in terms of
quality and applicability. Several methods to assess the quality of point patterns have been
proposed that allow objectively contrasting the point patterns in terms of different quantities.
Most of the analysis is concentrated on two-dimensional patterns but can be generalized to
higher dimensions. Additionally, patterns can be analyzed not only in their full-dimensional
space but also in lower-dimensional subspaces, yielding insights about important projective
properties.

One property is the patterns’ progressiveness, i. e., the ability to insert points into existing
patterns such that their distribution properties are preserved as much as possible. This
enables adaptive insertion of points until a desired result quality is achieved while it
progressively increases. Other properties include the so called stratification, Latin hypercube

(LH), or (t,m,s)-nets property, which describe the exclusive coverage of certain subspaces
of the [0,1)-domain, detailed in Section 2.3.2. Patterns can either be calculated on a bounded
domain with explicit boundaries or a toroidally wrapped domain which can be interpreted
as an infinitely tiled domain in all dimensions.

A key property for good performance of point patterns, both in terms of numerical integration
and primitive placement, is a good distribution of the point samples. A direct measure
of the pattern’s performance for numerical integration is its discrepancy for which the
pattern’s coverage of the integration domain is investigated. Another tool is to analyze the
patterns in terms of their spectral properties, most often using a Fourier transform. Coined
by Ulichney [1987], the term blue-noise refers to the spectral properties of uniform and
isotropic, yet structureless point distributions which implies a certain minimum distance

2. PREVIOUS WORK 24

dmin ∈ R between the primitives (Figure 2.10, a). The color of noise can be determined by
the radially averaged power spectrum of the patterns (plot in Figure 2.10, c). Interpretation
as a spectrum of visible light would result in blue light (light spectrum in Figure 2.10, c).
Originally developed for the purposes of digital half-toning [Ulichney, 1987], blue-noise
distributions have been found useful in many other applications due to their resemblance of
the photoreceptor arrangement in the eye’s retina [Yellott, 1983].

Even though blue-noise point sets have a very uniform distribution and lack regular-
ity, their application in image synthesis has so far been mostly restricted to image anti-
aliasing [Mitchell, 1987; Pharr and Humphreys, 2010]. Reports on their performance for
estimating illumination integrals have been controversial [Shirley, 1991; Schlömer, Heck
and Deussen, 2011; Marques et al., 2013]. We hypothesize that the main reason for their
sub-optimal performance is the poor uniformity in their low-dimensional projections, and
aim to produce point sets with both blue-noise and LH properties in Chapter 5. Research in
numerical integration has shown that the quality of a pattern can be improved by “latinizing”
either the initial values for Lloyd relaxation or the final result [Romero et al., 2006; Saka,
Gunzburger and Burkhardt, 2007]. However, no attempt has been made to achieve both LH
and blue-noise properties simultaneously.

We will now detail the Fourier analysis and the discrepancy measurement.

Fourier Analysis The most commonly used analysis method for point patterns in
computer graphics applications is the Fourier transform. Here, the power spectrum P of a
pattern S is computed using the Fourier transform F as

PS(f) = |FS(f)|2 =
1
n



(

∑
s∈S

cos(2π〈f,s〉)
)2

+

(

∑
s∈S

sin(2π〈f,s〉)
)2

 ,

for a frequency f ∈ R
+d [Wei and Wang, 2011]. Dependent on the number of points

of the pattern, these spectra are typically very noisy and averaging the power spectra of
several pattern instances results in a smoothed spectrum that facilitates further analysis.
Displaying an excerpt of the lower frequency range of this averaged spectrum as a greyscale
image (Figure 2.10, b) allows to visually inspect and analyze the quality of a pattern.
Anisotropy and regularity artifacts show up as features in these images (cf. Figure 5.4 –
Figure 5.6). Radial statistics of these images, such as average and variance, give insights
about the spectral properties of the underlying point patterns (Figure 2.10, c). To facilitate
comparisons of spectral analyses among different publications, unification of parameter
choices, such as the number of point samples and the frequency range, is crucial. Schlömer
et al. developed a standardized way to produce these analyses [Schlömer and Deussen, 2010]
also followed in this thesis. Chapter 5 extends this work to patterns of higher dimensions.
Recently, the Fourier analysis has been shown to be misleading in terms of minimal sample
distance and was improved by operating in the differential domain that is related more
closely to actual sample distances [Wei and Wang, 2011]. Although not being directly
related to integration error, a Fourier analysis gives adequate insights about the performance
of a pattern for rendering applications in many scenarios.

25 2.3. POINT PATTERNS

Discrepancy The quality of a pattern for numerical integration can be measured by its
discrepancy [Shirley, 1991; Mitchell, 1992]. While there are many discrepancy measures,
typically the star discrepancy L∞

∗ ∈ R is used to assess the pattern quality, defined as

L∞
∗ (S) = sup

J∈Y

∣∣∣∣
#(J,S)

n
−Vol(J)

∣∣∣∣ ,

with #(J,S)∈N
+ as the number of points s ∈ S in J, Vol(J)∈R as the volume of J ⊆ [0,1)d

and Y as the set of all d-dimensional subintervals of the form

J =
d

∏
i=1

[0,ui),

where 0 ≤ ui ≤ 1. While discrepancy provides good insights about integration error, the
box integral of J might be too simplistic for real rendering applications. Consequently,
reports on discrepancy measures for rendering performance have been controversial, as the
important areas of the integral at hand might as well have a very different shape.

2.3.2 Pattern Generation

In the following we will detail several algorithms to generate point patterns.

Regular sampling The simplest way to get a uniform coverage of the domain [0,1)d is
to produce point patterns on a uniform grid, i. e., placing the points at equidistant locations
(Figure 2.11, a). Inter-sample distances can be improved by employing a hexagonal grid
or, in higher dimensions, the tightest sphere packing [Lagae and Dutré, 2006]. Uniform
patterns require sample counts that are squares of natural numbers, are not progressive, and
produce regularity artifacts clearly observable in many applications, such as rendering (cf.
Figure 5.14).

a) b) c) d)

Figure 2.11: a): Uniform sampling, b): Halton sequence, c): Hammersley sequence, d):

Shuffled Hammersley sequence. The greyscale markers in c – d show the respective order
in which the samples were inserted (dark to bright).

2. PREVIOUS WORK 26

Random sampling To overcome the regularity artifacts present in uniform sampling,
points can be inserted at random locations. However the white noise power spectrum of
these patterns leads to an uneven coverage of the domain, i. e., it produces holes and clusters
(Figure 2.12, a).

a) b) c) d)

Figure 2.12: a): Random sampling, b): Jittered sampling, c): Latin hypercube sampling,
d): Multi-jittered sampling. The arrows in b) depict the positions of the uniform grid that
are randomly displaced. In c) the colors show the rows and columns occupied by previous
samples (dark to bright, left to right).

Combining uniform and random sampling to produce uniform but irregular point patterns can
reduce aliasing [Dippé and Wold, 1985] and noise [Cook, 1986] in Monte Carlo rendering.
Such applications have traditionally relied on stratified pseudo-random sampling, which
places one sample in every stratum of the uniformly subdivided sampling domain [Pharr
and Humphreys, 2010]. One instance of this idea is jittering, where each sample on a
regular grid is displaced randomly by a bounded offset (Figure 2.12, b). Stratification can
often increase the error convergence rate of the Monte Carlo estimator over pure random
sampling [Mitchell, 1992]. Latin-hypercube, or N-rooks, sampling enforces stratification
along each axis of a high-dimensional point set by invalidating each row and column of a
grid per sample for all future samples (Figure 2.12, c). Jittered and LH sampling have been
combined to produce high-quality numerical integration patterns [Chiu, Shirley and Wang,
1994; Kensler, 2013] (Figure 2.12, d).

Quasi Monte-Carlo sampling Quasi Monte-Carlo (QMC) patterns overcome the
limitations of uniform sampling using low-discrepancy sequences. The sequences build on
the existence of an expansion of an arbitrary number a ∈ N

+ using a prime base b ∈ N
+ as

a = a0 ·b0 +a1 ·b1 +a2 ·b2 + · · ·+an ·bn,

where ai ∈ [0,b− 1] for all i ∈ [0,n]. We can define a function φ that constitutes a low-
discrepancy sequence for basis b as

φb(a) = a0 ·b−1 +a1 ·b−2 + · · ·+an ·b−n−1.

Using sequences with different values for b – one per dimension – we can now define
d-dimensional points. For the special case of b = 2 the sequence φ2 is called Van der

Corput sequence [Halton, 1964]. Several construction patterns involving different choices
for the dimensions have been proposed and we will introduce two well-known patterns

27 2.3. POINT PATTERNS

for the two-dimensional case. The samples si ∈ S = [0,1)2 of a so called Halton sequence
(Figure 2.11, c) can be found as

si = (φ2(i),φ3(i)) . (2.3)

The samples of a Hammersley sequence (Figure 2.11, b) are defined as

si =

(
i

n
,φ2(i)

)
. (2.4)

QMC patterns outperform uniform sampling as they produce lower discrepancies and,
as long as all dimensions are produced with low-discrepancy sequences, are progressive.
However, they only produce perfect stratification along each axis for point counts that are
powers of b and still suffer from regularity artifacts, especially when one axis is sampled
equidistantly. In that case the patterns are also not progressive (cf. Hammersley sequence,
Equation 2.4). Regularity artifacts can be overcome by randomization but naïve offsetting
by a constant would destroy important properties of QMC patterns, such as the (t,m,s)-nets
property. Specialized shuffling algorithms can be used that produce randomized results
while preserving these properties [Kollig and Keller, 2002]. One example can be seen in
Figure 2.11, c and d. This preservation however comes at the cost of lacking randomness,
resulting in some remaining regularity artifacts (cf. Figure 5.4).

Low-discrepancy point sets, such as QMC patterns, have seen wide adoption in physically-
based rendering, as they are relatively simple to implement and possess excellent stratifi-
cation and LH properties [Kollig and Keller, 2002; Pharr and Humphreys, 2010; Keller,
Premoze and Raab, 2012]. However, as discussed before, most low-discrepancy sampling
methods achieve good stratification only for a restricted number of points (e. g., powers of
two), depending on the construction method [Keller, Premoze and Raab, 2012], limiting
their applicability especially for progressive sampling. The patterns generated by the algo-
rithms in Chapter 5 do not have this limitation and perform on par with or better than such
methods for rendering and primitive placement.

Dart throwing One popular way to generate blue-noise point sets is to insert points
one by one, while maintaining a minimum inter-sample distance dmin. The most common
approach for doing this is dart throwing [Cook, 1986], which ensures that points are tightly
packed but no closer than a specified minimum distance, producing a so-called Poisson-disk

distribution (Figure 2.13). This algorithm can be made progressive by adaptively shrinking
the minimum distance after a certain number of failed insertion attempts [McCool and
Fiume, 1992]. Alternatively, a new point can be inserted at the location farthest from
the existing set [Mitchell, 1991; Eldar et al., 1997]. Various enhancements of this basic
approach have been proposed recently, regarding its performance [Dunbar and Humphreys,
2006; Jones, 2006; Gamito and Maddock, 2009; Kalantari and Sen, 2011] as well as its
ability to produce non-uniform [Wei, 2010; Öztireli and Gross, 2012; Chen et al., 2013a],
anisotropic [Li et al., 2010], and multi-class [Wei, 2010] blue-noise point sets.

2. PREVIOUS WORK 28

d
min ...

a) b) c) d)

Figure 2.13: Dart throwing: Samples are inserted one by one (a–c) obeying a specific
minimum sample distance dmin that is progressively shrunk with increasing number of
points to produce the final pattern (d).

Lloyd relaxation Another approach that produces high-quality blue-noise sample pat-
terns is to start from an initial, e. g., random (cf. Random Sampling), sample set and
maximize the minimum inter-point distance using an iterative optimization scheme. The
popular Lloyd relaxation algorithm [Lloyd, 1982] (Figure 2.14) is based on Centroidal

Voronoi Tessellation (CVT). CVT is prone to slight, but visible regularity artifacts and
the quality of the resulting patterns has been improved by Balzer et al. [2009] avoiding
spurious regular hexagonal patterns. Some further developments have addressed anisotropic
sampling [Li et al., 2010] as well as improving efficiency [de Goes et al., 2012; Chen et al.,
2012]. In an effort to further improve the performance, flexibility, and spectral properties
of blue-noise sampling, various optimization methods have been proposed recently [Fattal,
2011; Schlömer, Heck and Deussen, 2011; Öztireli and Gross, 2012; Heck, Schlömer and
Deussen, 2013; Chen et al., 2013a].

...

a) b) c) d)

Figure 2.14: Lloyd relaxation: The Voronoi diagram for all samples is computed (a) and
the samples are moved to the center of mass of their corresponding region (b) iteratively (c)

until convergence (d).

2.3.3 Point Patterns for Primitive Placement

Apart from numerical integration, other works have demonstrated the utility of blue-noise
sampling for procedural primitive placement. This application also benefits from the real-
time performance of tile-based sampling [Ostromoukhov, Donohue and Jodoin, 2004;
Kopf et al., 2006; Ostromoukhov, 2007; Wachtel et al., 2014]. Computational placement of
extended primitives in two dimensions that uniformly fill the given space [Hiller, Hellwig

29 2.3. POINT PATTERNS

and Deussen, 2003] has applications in automated generation of layouts in print, on screens,
and for fabrication. For placing primitives in the plane, the usage of Voronoi tessellation is
popular to avoid and resolve collisions [Dalal et al., 2006] and achieve pleasant (temporal)
distributions.

The Lloyd relaxation algorithm can be generalized to support samples with arbitrary sizes
and shapes by employing a generalized Voronoi diagram (Figure 2.15). This enables
efficient, interactive generation of pleasant packing layouts. If shapes are used that cannot
be well approximated by ellipsoids, this approach however can lead to drift und unpleasant
layouts (cf. Figure 4.5).

...

a) b) c) d)

Figure 2.15: Generalized Lloyd relaxation [Hiller, Hellwig and Deussen, 2003]. A gen-
eralized Voronoi diagram for all samples is computed (a) and the center of mass of each
primitive is moved to the center of mass of its corresponding Voronoi region (b) iteratively
until convergence (c). d): A different converged outcome obtained from different initial
positions.

In contrast to numerical integration where each point sample constitutes the same entity,
for layout generation, every sample is associated with a specific primitive, such as an
image, and hence each sample represents a different entity. Consequently, besides analyzing
the relationships and distances of adjacent points, as done by most pattern generation
algorithms, we can additionally analyze the relationships on a more macroscopic or global
level. This view allows us to convey certain relationships between the different primitives,
e. g., by clustering similar elements, and has been an active area of research. The results in
Figure 2.15, c and Figure 2.15, d, for example, convey different element relationships while
their blue-noise characteristics are identical. The parameters for this primitive placement
can be difficult to control as noted by Hurtut et al. [2009] and Öztireli et al. [2012], who
proposed to transfer the statistics from a source to a target distribution of primitives. Our
approach in Chapter 4 is not based on distribution statistics. Instead, we infer high-level
rules that describe the intended embedding of a high-dimensional feature space into a
low-dimensional medium from user input instead of spatially-invariant statistics of items
that cannot express all of the users’ intentions. Exploration of high-dimensional spaces
of visual features was described by Lasram et al. [2012]. Beyond distribution statistics,
grouping for stylization was described by Bezerra et al. [2008]: A layout of a scene is
given, and the style of items is made coherent according to an observed grouping. A subset
of our approach in Chapter 4 performs the inverse: We are given primitive features (e. g.,
brightness, shape, size) and want to find a layout.

2. PREVIOUS WORK 30

Apart from the macroscopic positioning, also the smaller-scale relationships of adjacent
samples are different due to the spatial extend of the primitives. Optimally placing a set of
spatially extended objects into a constraining container, also known as bin packing, such
as three-dimensional shapes into another three-dimensional shape [Gal et al., 2007] or text
into a two-dimensional contour [Xu and Kaplan, 2007; Maharik et al., 2011] is an NP-hard
problem, but can be solved with sufficient approximate solutions in practice. Different goals
can be formulated to either use up the least space [Lodi, Martello and Vigo, 2002] or to fill
the given container evenly [Hiller, Hellwig and Deussen, 2003]. Packing into a container can
be one constraint among many, like in our system described in Chapter 4. Packing UV charts
[Lévy et al., 2002] is a common technical challenge for surface parametrization. Closest
to the objective described in Chapter 4 is the approach of Yu et al. [2011] that arranges
furniture in a room according to rules learned from exemplars in a forward procedure, but
without assistance from the users to change the layout or to learn from their feedback.

While producing images using projections, e. g., shadows (cf. [Mitra and Pauly, 2009]), has
been addressed in computer graphics, no prior work has considered the spectral properties of
projections of primitive layouts. This becomes important when placing (fabricated) objects
in three-dimensional space, i. e., in a physical exhibition or a collaborative virtual environ-
ment. Typically employed patterns do not produce layouts with blue-noise characteristics
when observed from different viewpoints. The approach in Chapter 5 can reduce clutter and
occlusion by optimizing both the spatial and the projected arrangement.

2.4 Interactivity

Interactivity is an essential requirement for any system that tries to keep the user in the loop,
i. e., that allows users to iteratively refine the outcome of an algorithm until a desired result is
achieved. Interactivity relates to both, a system that the user can intuitively interact with but
also a system that is fast enough to present results at interactive rates. The first requirement
can be targeted using intuitive user interfaces (UIs) that ideally are easily comprehensible
also by casual users. The second requirement can be approached with efficient algorithms
that achieve interactive performance.

2.4.1 Intuitive User Interfaces

User interfaces try to provide the user as much control as possible over algorithms while
maintaining a high level of intuitiveness. These two contradicting goals usually cannot be
optimized in combination. Hence, several techniques and conventions have been proposed
that allow for intuitive operability. For example, a rich set of so-called widgets has been
developed [Swick and Ackerman, 1988]. These UI elements combine layout and interaction
elements such as buttons, sliders, tabs, etc. with interaction metaphors such as drag-and-drop
(Figure 2.16, a). Their intuitiveness stems from their utilization amongst many different
systems and they are the de-facto standard in UIs. Several widgets are typically combined
into a widget collection to allow control of an algorithm, requiring them to be layouted in

31 2.4. INTERACTIVITY

an efficient and intuitive way. This assembly is one of the most classic layout problems
in desktop publishing and user interfaces. Automated ways to compute them are an open
and active area of research [Lok and Feiner, 2001; Jacobs et al., 2003]. Here, the state of
the art is based on systems that exploit the regular grid-structure of text layouts, which
however does not generalize to arbitrary widget shapes. A limiting factor of these layout
elements is their rectangular shape that is even further restricted by constrained column and
row dimensions. Distributing elements of different shape still poses a difficult problem for
which no optimal solutions are known. A more natural way of distributing the widgets could
be to use up the given space more evenly and adaptively distribute the elements based on the
content, as done e. g., in information visualization. Here, graph drawing [Harel and Koren,
2002] and specifically word clouds [Bateman, Gutwin and Nacenta, 2008; Strobelt et al.,
2012] share challenges such as collision avoidance with this approach. Placement of textual
labels by example was considered by Vollick et al. [2007].

Widgets are good at allowing full control over a large range of abstract parameters. In many
scenarios, especially when concerned with media generation, these parameters have a direct
visual meaning and controlling them with widgets detaches the user from this immediate
representation. Arriving at the desired result often requires multiple parameter combinations
and many iterations of trial-and-error. A more intuitive way of content creation in these
scenarios would be to let the user directly interact with the media at hand. To do this
efficiently, the system could learn from the users’ examples and interactions to generalize
the appearance and estimate the parameters as described in Section 2.2.2. For word clouds,
user input has only been included in a forward manner in the ManiWordle system [Koh et al.,
2010], where a user can fixate individual word primitives to specific locations. Different
from such off-line systems, in Chapter 4 we account for visual features of the primitives
themselves (and not only abstract word frequency), learn layout from user feedback, and
present new layouts, all on-line, with interactive performance. For layout problems such
direct interactions could involve positioning of some elements to their desired location and
generalizing the locations of the other, unconstrained elements (cf. Chapter 4).

Another powerful example-based interaction metaphor is sketching, especially popular in
the generation of three-dimensional models, where the projections of parts of the models are
drawn. The first system to create three-dimensional surfaces from sketches was proposed by
Zeleznik et al. [1996]. Later, the “Teddy” system [Igarashi, Matsuoka and Tanaka, 1999]
introduced intuitive modeling of free-form, three-dimensional surfaces from simple sketches
(Figure 2.16, b). The SmoothSketch system [Karpenko and Hughes, 2006] allows the
user to draw the silhouette, from which a smooth surface is created similar to the creation
of silhouettes from photos [Prasad and Fitzgibbon, 2006]. A different approach for user
annotation is to directly scribble depth inequalities, e. g., for cartoons [Sỳkora et al., 2010]
or normals [Wu et al., 2008]. As many real-world objects can be approximated using simple
geometric primitives as proxies, like cuboids [Zheng et al., 2012] or generalized cylinders
[Chen et al., 2013b] (Figure 2.16, c), some recent systems snap the user sketches directly
to a reference photo with interactive feedback. Sketching motion [Guay et al., 2015] is
another area where such user interfaces can be useful (Figure 2.16, d). Modeling objects
by sweeping a profile along the main axis e. g., a generalized cylinder has been used as an
intuitive modeling metaphor for many objects [Choi and Lee, 1990]. The ArtiSketch system

2. PREVIOUS WORK 32

Figure 2.16: a): Classical user interfaces consist of a set of widgets. b): Sketching can be
used as a more intuitive user interface e. g., to model three-dimensional geometry [Igarashi,
Matsuoka and Tanaka, 1999], c:) to extract geometry from monocular images [Chen et al.,
2013b], d): or to sketch motion [Guay et al., 2015]. Images courtesy of the publication

authors.

[Levi and Gotsman, 2013] reconstructs animated surfaces from sketches on video frames in
an offline process and demonstrates applications for comic characters. It requires the user to
place a skeleton that was designed in an external application and to sketch the outlines of the
shape components. Our approach in Chapter 6 combines skeleton and surface estimation in
a single interaction metaphor and runs at interactive rates for natural image input of detailed,
natural, animated surfaces.

2.4.2 Interactive performance

Interactive performance involves optimization of runtimes of algorithms realizable using
different approaches. A trivial solution is to replace the hardware with more powerful
machines, which for casual users and mobile devices however often is not an option due
to cost and power consumption limitations. Other solutions include complexity reduction
of algorithms leveraging typical properties of the problems at hand, e. g., using dynamic
programming [Buchanan and Fitzgibbon, 2006], or implementation of specialized data
structures that improve efficiency, e. g., hash tables [Cormen et al., 2001]. Reformulation
of the problem to reduce its complexity is another possibility. Approximation of the
exact solution or presentation of simplified previews provides another avenue of realizing
interactive performance. These methods provide solutions close to the final result and the

33 2.4. INTERACTIVITY

ultimate, complete solution can then be calculated in an offline or background process, if
desired (Chapter 3). Finally, a classical way of improving the runtime of algorithms is
to use parallel computing. For this approach the problem at hand must be divisible into
smaller subproblems that can be solved and combined for the final solution (cf. [Dean and
Ghemawat, 2008]). Most of the problems at hand are not trivially parallelizable but have to
be reformulated. Many of the problems presented in this thesis allow for parallel execution.

Parallel computing In the last decade the so-called power-wall for processors was hit,
preventing the CPU to ever become exponentially faster as stated by Moore’s law [1998].
To remedy this limitation, instead of faster processors, modern CPUs nowadays possess
multiple cores allowing parallel execution of algorithms. This paradigm shift lead to an
increased interest in optimizing algorithms by parallelization. Typically, the number of
parallel cores per CPU is still low (≤ 8) enabling only a minor degree of parallelism. Many
problems, especially those arising in computer graphics, are inherently massively parallel,
i. e., can be split up into hundreds of thousands of much smaller subproblems. For such
problems an optimized, parallel co-processor is available, the GPU.

Originally designed mainly for rendering computations that often allow for massive, triv-
ial parallelism [England, 1986], GPUs evolved into sophisticated, general purpose co-
processors that can be used to speed up a wide variety of algorithms [McCool, Qin and Popa,
2002]. While early programmable GPUs required considerable low-level programming
overhead, the interfaces to program the hardware have emerged into an abstract set of tools
that enable rapid development, monitoring, and debugging of parallel algorithms. A variety
of sophisticated toolsets (APIs) for these tasks is available, such as CUDA [NVIDIA, 2015],
OpenGL [Shreiner et al., 2013], OpenCL [AMD, 2015], or DirectX [Luna, 2012], and the
field is ever evolving [Kessenich and Sellers, 2016]. To allow for the massively parallel
execution of threads, the layout of a GPU is fundamentally different from that of other
processors. This layout poses some limitations, prohibiting the trivial transfer of parallel
algorithms designed for other processors, such as the CPU. For example, scheduling, an
evolved topic for CPUs and operating systems [Tanenbaum, 2007], becomes much more
involved on GPUs due of the massive parallelism. Other limitations include expensive syn-
chronization steps with the CPU and inefficient memory management. Most programming
interfaces for GPUs come with build-in functionality to remedy these issues to some degree
in many cases (e. g., scheduling [NVIDIA, 2012]) but specialized solutions for the tasks at
hand are capable of substantially improving the performance. A comprehensive overview
of the limitations and potential solutions can be found in the thesis of Steinberger [2013].
While optimization of GPU scheduling poses a potentially beneficial avenue of research,
this thesis mostly builds upon operations performed with OpenGL, where the described
low-level tasks are handled by the hardware driver. An informed choice of representation
can alleviate typical scheduling and memory management problems by reformulating the
problems at hand to map well to the GPU layout. Operating on implicit, regular grids
with pre-defined, implicit connectivity between adjacent nodes enables problems to be
parallelized more efficiently. Many of the problems that arise in this thesis can be formu-
lated to operate on such grids, making usage of the parallel hardware even more beneficial.
Aggregation of several results into a combined result is another task that frequently arises

2. PREVIOUS WORK 34

in computer graphics problems. Leveraging pyramidal structures that aggregate multiple
results of smaller levels into coarser level results until a coarsest level is reached, maps well
to the GPU and has direct hardware support using MIP mapping.

Chapter 3
Homunculus Warping

Figure 3.1: Upper row, left to right: An undeformed, three-dimensional model, importance
defined by false colors on the surface of the model, and the resulting deformed model that
resembles the defined importance. Lower row: Four additional views of the according
Homunculus Warping.

35

3. HOMUNCULUS WARPING 36

3.1 Introduction

Simple and effective visual representations of complex relations are hard to come by [Tufte,
1997]. While there are many different approaches and diagram types, the problem is to
pick one that is suitable for the task at hand and is understood immediately. To clarify
the relationship between different data dimensions it is sometimes useful to visualize one
dimension on the domain of a different one, e. g., to illustrate the number of inhabitants of a
country on a world map. A common way of visualizing this data is to use false color coding,
despite all its known shortcomings [Borland and Taylor II, 2007]. The main shortcoming is
the complex human color perception that varies considerably among different viewers and
even penalizes achromates as well as the conflicts it causes for three-dimensional surfaces
in combination with shading.

Figure 3.2: Four examples of local size changes to convey importance: The motorical
(a) and sensorical (b) homunculus (Natural History Museum, London). c): A renaissance
painting by Gentile da Fabriano (1370–1427): “Mary Enthroned with the Child, Saints
and a Donor” depicting the donors as smaller and less important. d): Miniature from the
“Tetraevangelia of Ivan Alexander” (14th century, Bulgaria) depicting the tsar and his wife
as more important than his children. e): Limestone engraving from the tomb of Akhenaten
(2nd century BC, Cairo Museum, Egypt) where cascading size conveys importance.

Generally perceived differences in size are remarkably invariant under different viewing
conditions [Cutting, 1987; Gregory, 1963] especially for familiar objects [Bingham, 1993]
e. g., the human body. Hence an alternative to false color coding is to encode the scalar field
directly as size.

37 3.2. APPROACH

A prominent contemporary example of this type of visual coding is a didactical concept
from neuroscience: the homunculus (Figure 3.2). Here the three-dimensional surface of
the human body is locally changed to reflect the density of sensorical and motorical neural
density [Penfield and Rasmussen, 1950]. The idea of encoding importance in size however
is not a novel idea. It dates back to examples from early renaissance (Figure 3.2, c) where a
donor of a painting is depicted smaller, as he is less important than the depicted saint, or
even earlier examples like medieval book illustrations (Figure 3.2, d). Considering that the
metaphor is as old as art itself, e. g., used in Egypt (Figure 3.2, e), it seems worthwhile to
make it accessible for digital media.

In this chapter we introduce an approach to locally deform a domain such as a two-
dimensional image or three-dimensional surface such that it conveys importance. The
computational challenge is to effectively minimize distortions, such as fold-overs, while
fulfilling the goals imposed by the importance field to convey. Besides directly depicting
importance, our approach can be used for focus+context visualization [Leung and Apperley,
1994], as a two- or three-dimensional editing metaphor, on its own or for the design of two-
and three-dimensional aggregate texture design.

3.2 Approach

An overview of our approach is given in Figure 3.3. The input boundary (Section 3.2.1) is
first voxelized (Section 3.2.2) and subsequently the importance is defined on the voxelization
(Section 3.2.2). Next, a two-step optimization (Section 3.2.3) is performed to fulfill the
importance goals, retain the object appearance, and smoothly avoid self-collisions. Finally,
a deformation transfer (Section 3.2.5) from the voxelization back onto the boundary is
performed.

3.2.1 Input

Input to our approach is a detailed (d − 1)-dimensional boundary B in R
d and a scalar

importance field F (x) : Rd → R
+ defined on its voxelization. Output is a new boundary B ′,

where the local size is proportional to the importance, with an intersection-free deformation.
In practice we deal with a discrete d-dimensional polygonal mesh B = (V B,EB) defined by
its vertex positions V B and its edges EB.

3.2.2 Voxelization

We perform a voxelization to become independent of the actual underlying boundary and
its representation, to achieve a more uniform sampling, to become robust to potential
(erroneous) self-intersections present in the input B, and to better reflect the solid nature of
the shape inside the boundary B.

3. HOMUNCULUS WARPING 38

Deformation transfer

Edge Optimization

Stepwise scalingCollision removal

Edge optimization

B
o

u
n

d
a

ry

Im
p

o
rt

a
n

t
Im

p
o

rt
a

n
t

Im
p

o
rt

a
n

t

G
ri
d

Collision optimization

Input Meshing

Figure 3.3: Overview of our approach (Left to right, top to bottom). Input is a detailed
boundary representation such as a three-dimensional mesh with an annotation of importance.
First, the boundary is simplified and voxelized into a regular grid. For didactical purposes
the optimization is illustrated both for the the boundary (top) and the regular grid actually
used in our computation (bottom). The deformation consists of an edge and a collision
optimization. The edge part first locally scales the elements proportional to their importance
and distributes the distortion by preserving relative coordinates. While the resulting shape
is smooth and conveys the importance well, it results in collisions (yellow cells). In the
collision part, collisions are removed, which re-introduces distortions. Those distortions are
removed by locally preserving edge lengths. This can result in new collisions; hence the
collision optimization step is iterated. Finally, the deformation of the grid is propagated onto
the original input mesh. Note, how the resulting shape follows the prescribed importance,
has no collisions, smoothly distributes collision response over the complex, and has rotated
parts (cf. e. g., the hands) to avoid collisions.

39 3.2. APPROACH

The first step is to voxelize B into an edge complex C = (V,E) with vertices V = {v1 . . . ,vn ∈
R

d} and edges E = {e1, . . . ,em ∈N
2} as well as into a tetrahedral complex Ct = (V,T) with

the same vertices V and tertrahedra T = {t1, . . . , to ∈ N
4}. For images the alpha channel

is used to find all occupied pixels, i. e., pixels with an alpha value > 0. To this end, a
finite discretization is chosen that partitions space into virtual cells. For each cell that is
at least partially inside B, all its edges, its vertices, and its tetrahedra are appended to C

and Ct respectively. The scalar field importance values F = { f1, . . . , fm ∈ R} are assigned
to each edge e ∈ E. ∆i ∈ R

d is defined to represent the i-th edge’s difference vector, i. e.,
∆i = v j − vk.

Boundary

a) b) c)

d) e) f)

Boundary + Grid

Boundary Voxelization Flood Fill Our Voxelization

Solid Scanline Voxelization

Figure 3.4: Voxelization. Note how our voxelization is more robust to meshing defects.

In practice, B cannot be assumed to be closed manifold as done for many (GPU) voxeliza-
tions [Dong et al., 2004]. Instead we perform solid voxelization that tolerates small holes
(Figure 3.4, d – e). First, the boundary is voxelized into a grid, by simply rasterizing its
triangles. Doing so all cells that are partially covered by B are marked and consequently
holes smaller than one cell are closed. Holes larger than a cell, e. g., from non-orientable
objects such as cloth lead to shell-like objects without volume. We did not further investigate
deformation of such objects and report results restricted to surfaces with holes no larger
than one cell. We assume that the cell size is small enough to resolve all details, e. g., to
separate the hand and body in Figure 3.3. In a final step a flood fill finds all outside voxels
and every voxel that is not marked as being outside is considered to belong to the inside.

3. HOMUNCULUS WARPING 40

3.2.3 Optimization

Our optimization is performed in two steps: The first step finds a mesh configuration
that tries to preserve edge directions and set edge lengths according to importance (edge

optimization). The second step finds a collision-free configuration of the first step’s solution
which evenly distributes the distortions introduced by collision response over the complex
(collision optimization).

Edge optimization Here, we seek to find vertex positions V ′ such that edges in (V ′,E)
have lengths proportional to their importance values F . In other words, for each edge ei ∈ E

with importance fi ∈ F it holds that

∆′
i = fi ∆i,

which leads to a linear system of equations. Please note how this formulation also tries to
preserve initial edge directions. Since the importance values fi are user-defined and thus
might not correspond to an actual, viable configuration, in general not all edge lengths can
be satisfied simultaneously. Hence the goal becomes to find the minimal sum of errors in a
least squares sense, i. e.,

argmin
V ′

m

∑
i=1

‖∆′
i − fi ∆i‖2

2. (3.1)

The global minimum of this equation can be found by setting its directional derivatives to
zero. This step of our pipeline generalizes the approach of Sorkine and Alexa [2007] by
adding a per-edge scaling factor.

Collision optimization After the edge optimization, the edges in the complex (V ′,E)
are scaled optimally while reducing distortions, but the complex (V ′,T) is potentially self-
intersecting. A second optimization is used to resolve self-intersections while preserving
the appearance of the previous step as much as possible. To this end, collisions need to
be detected, resolved, and the resulting deformation needs to be distributed. To fulfill
these goals at the same time, each individual goal is iteratively resolved in turn as in
Müller et al. [2007]. While the edge optimization strived to preserve edge directions the
collision optimization should just maintain edge lengths. Doing so distributes the collision
response over the complex since it allows edges to rotate.

Since collision detection is a continuous process only small scalings can be established
concurrently; introducing the full scaling of Equation 3.1 at once would lead to many severe
collisions which are much harder to resolve. As a solution we propose to introduce only a
small portion of the optimal length li = ‖∆′

i‖2 for the i-th edge in multiple iteration steps,
i. e., the target length for each edge ei becomes λ li with incrementally increasing λ ∈ [0,1].
Doing so will result in much fewer collisions in every step that are much easier to resolve.

For the stepwise scaling of the mesh we solve the equation

‖∆′′
i ‖2 = λ li

41 3.2. APPROACH

for every i. Since the values li are derived from a satisfiable configuration of the mesh the
resulting system of equations has at least one solution (namely V ′). However V ′′ should be
collision-free which introduces distortions to the mesh and turns the system into a potentially
overdetermined system of equations that has to be minimized, i. e.,

argmin
V ′′

m

∑
i=1

(
‖∆′′

i ‖2 −λ li
)2

(3.2)

such that V ′′ is free of collisions. Since this system involves finding a constrained solution
V ′′ it has to be minimized iteratively. Solving this equation has a two-fold purpose: First
it incrementally scales the complex to the designated size and second it distributes the
distortions introduced by collision response over the complex.

For higher similarity to the input complex, collisions should not be resolved precisely but
rather vertices should keep a certain distance to the boundary. We propose to approximate
this behavior by defining for every vertex i a sphere with a radius ri ∈ R

+ that equals the
minimal distance to every adjacent vertex, i. e., ri = min{‖v′′i − v′′j‖2|(i, j) ∈ E}. Collision
between all vertices and spheres are found using spatial hashing build in every iteration
[Teschner et al., 2003]. When a collision of a vertex v′′i with a sphere surrounding vertex v′′j
is found, the vertex is projected to the shell of the sphere in the direction v′′i − v′′j , i. e., the
vertex is corrected by

v′′i +=

(
ri

‖v′′i − v′′j‖2
−1

)
v′′i − v′′j

2
.

The same correction is performed for vertex v j in the opposite direction.

3.2.4 Equation minimization

We minimize Equation 3.1 and Equation 3.2 based on parallel operations (using OpenCL)
as follows. Equation 3.1 leads to a linear system Ax = b, where the rows ai of A express the
differences between vertex i and its edge-connected vertices; the values bi of b reflect the sum
of the signed distances for every coordinate between vertex i and its edge-connected vertices.
The matrix A therefore is sparse, symmetric, and positive semi-definite, which allows to use
efficient solvers such as the Cholesky decomposition or the Gauss-Seidel method. Although
the Cholesky decomposition can solve the system in one step, the iterative approach of
the Gauss-Seidel method has some advantages for interactive applications: On the one
hand, the system is underdetermined and has three degrees of freedom, i. e., the vertices
can be translated to an arbitrary position in space. Using the Cholesky decomposition
the complex can freely translate, while the Gauss-Seidel method converges to a solution
spatially close to the initial position. On the other hand, the Gauss-Seidel method can
efficiently be implemented on parallel hardware which allows for real-time framerates even
for very detailed complexes. Moreover, the results of intermediate steps can immediately
be visualized which turns the deformation into an animation providing an extra level of
information to the user. Because of its iterative nature the Gauss-Seidel method allows for
instantaneous changes of the complex’ structure, while a Cholesky decomposition would fix
the complex and requires additional preprocessing overhead.

3. HOMUNCULUS WARPING 42

Minimizing Equation 3.2 involves solving a constrained system of equations of second
degree polynomials. We solve this iteratively using constraint projection as described by
Müller et al. [2007], which allows to treat edges independently and admits to handle scaling
and collision response in a unified way. Again, since the system of equations only specifies
edge lengths, it is underdetermined. This approach is compatible with the solution to
Equation 3.1.

Since both our solvers work iteratively they turn the solutions V ′ and V ′′ into sequences
(V ′

0, . . . ,V
′
ne
) and (V ′′

0 , . . . ,V
′′
nc
) with V ′

0 = V ′′
0 = V , ne ∈ N

+ and nc ∈ N
+ as the number of

iterations for Equation 3.1 and Equation 3.2, respectively. We combine both sequences into
a single sequence V (i) : N →

(
R

d
)n

= (V ′
0, . . . ,V

′
ne
,V ′′

0 , . . . ,V
′′
nc
). The pseudo-code of our

approach is given in Figure 3.5. After a user interaction, the last solution V ′′ is used as the
initial guess V0.

43 3.2. APPROACH

V (0):=V;

// Edge optimization

for t from 0 to ne −1
for i from 0 to n in parallel

v
(t+1)
i :=(bi +aii v

(t)
i − (Av(t))i)/aii;

// Remember optimal edge length

for all edges e = (i, j)

li:=‖∆′(ne)
i ‖2;

V (ne):=V;

// Collision optimization

for t from ne to ne +nc −1
λ:=(t −ne)/(nc −1);
// Stepwise scaling

P:=0;
for i from 0 to n in parallel

pi:=v
(t)
i ;

for all edges e = (i, j) connected to vi

p+=((λ li/‖pi − v
(t)
j ‖2)−1)(pi − v

(t)
j)/2;

// Calculate radii

R(t):=FLT_MAX;

for i from 0 to n in parallel

for all edges e = (i, j) connected to vi

r
(t)
i :=min(r

(t)
i , ‖pi − p j‖2);

// Handle collisions

for i from 0 to n in parallel

for all v j with ‖pi − p j‖2 < ri

p+=((r
(t)
i /‖pi − p j‖2)−1)(pi − p j)/2;

v′(t+1)
i :=p;

Figure 3.5: Pseudo-code of our approach.

Theoretically the increment in edge lengths must not be larger than the minimum distance
between two vertices divided by the maximum distance between two vertices of the complex.
However this value highly depends on the scalar field F and in practice we empirically
found that much larger values for λ are feasible.

3.2.5 Deformation transfer

In a pre-process, the barycentric coordinates αi,βi,γi,δi ∈ R with

αi +βi +γi +δi = 1

3. HOMUNCULUS WARPING 44

for the containing tetrahedron

t j = (a j,b j,c j,d j) ∈ N
4

defined by the vertices va j
, vb j

, vc j
, and vd j

are computed for every vertex vB
i in B [Müller

and Gross, 2004]. Finally, the deformed vertex positions V ′′ are used to deform the original
boundary B. At runtime, the new position is compute as

vB′
i = αi v′′a j

+βi v′′b j
+γi v′′c j

+δi v′′d j
.

Using the barycentric coordinates the scalar field F can also be resampled on the actual
boundary B to visualize the importance on it. In practice sometimes higher order upsampling
is used [Zollhöfer et al., 2012], but we found the results to be satisfactory.

3.3 Results

Typical outputs of our approach for and for two-dimensional images are shown in Figure 3.6
and for three-dimensional surfaces in Figure 3.7. All results can be manipulated interactively
and the solution is found incrementally. A reasonable linear deformation feedback is returned
in a fraction of a second before the solution converges in less than a second. Typically, the
iterative approach for the edge optimization converges in less than ne = 20 iterations. The
collision optimization converges in the order of a few minutes (typically, we set nc = 1000
iterations). The high-frequency (and by that also detailed) importance fields require a high
number of voxels, typically 128×128×128.

45 3.3. RESULTS

Figure 3.6: Our approach applied to two-dimensional images. For every example the
resolution of the discretization is listed. a): Deformation for geographical map data with
importance where classic deformation leads to intersections (b,d) avoided by our approach
(c,e). k): High-frequency deformation on the crocodile scales only the teeth, leading to many
collisions (l,n). Our method results in opening the mouth (m,o). As only the teeth grow, the
jaw globally and locally bends to make more room for the individual teeth. f): Conveying
magnetism on the end of the horseshoe magnet, results in interference (g,i) whereas our
approach bends the domain to make room (h,j). p): A snake digesting its prey self-intersects
when applying classic deformation (q,t) that is prevent by our approach (r,s).

3. HOMUNCULUS WARPING 46

Figure 3.7: Results of classic deformation (Left) compared to our collision-aware approach
(Right). For every example the resolution of the voxelization is listed and a false-color coded
importance field is shown. a): Noise sources of an airplane. b): Injury probability of a goal
keeper c): Black market price of body parts of an elephant. d): Force field on a robot. e):
Pollen concentration of flowers. f): Homunculus. g): Heat field on a street lamp. h): Diluent
concentration of bike parts in contact with human body. i): Focus+context visualization of a
colon model (cf. [Wang, Lee and Tai, 2008]). j): Comic character deformation.

Chapter 4
Interactive By-example

Design of Artistic Packing
Layouts

Figure 4.1: Starting from a common layout (top left), the user’s objective is inferred from
placement of three primitives (push pins), leading to a layout organized vertically by size
(top right) and after a different placement additionally by brightness horizontally (bottom).

47

4. INTERACTIVE BY-EXAMPLE DESIGN OF ARTISTIC PACKING LAYOUTS 48

4.1 Introduction

Arranging sets of primitives into a pleasing spatial packing layout that tightly fills the space
in two-dimensions is tedious and requires expert skills (Figure 4.2).

While arrangements can serve for recreation and aesthetic purposes, they often seek to
convey an underlying message concerning the relation between primitives and serve a
didactical purpose. In this work, we propose a system to automate artistic layouts by
inferring the user’s high-level intentions from the interactions performed. The interactive
exploration of different artistic layouts and primitive relations enabled by our system goes
beyond static print or display layouts and helps to improve general layouts, such as required
for Mind Maps [Buzan, 1991], tag clouds [Bateman, Gutwin and Nacenta, 2008], or any
arrangement of graphical, two-dimensional primitives.

Figure 4.2: Packing examples from art. a): G. Grohmann: “Recueil de dessins” (1805). b):

Bulliard: “La Flore Des Environs de Paris” (1776). c): Schweizerbart: “Evolution der Tiere”
(2001). d): U. Gorter: “Whales of the World” (2003). e): J. Brickwil: “Natural history of
North-Carolina” (1712).

Figure 4.1 shows three steps of a typical interaction using our system: After loading a set
of primitives, our system presents a general-purpose layout (Figure 4.1, left). To change

49 4.2. OVERVIEW

this layout, a simple solution would be to expose many sliders that control the importance
weight for each feature dimension. Such high-dimensional parameter spaces are hard to
navigate for colloquial users and hamper creative exploration. Our system takes a different
approach: We offer the user to move primitives to new positions (Figure 4.1, middle) and by
that to infer the user’s intention, leading to a new layout, in this case, where primitives are
organized vertically by size. After a second manipulation (Figure 4.1, right) the layout is
organized by brightness horizontally and by size vertically.

4.2 Overview

Conceptually, our system consists of an infinite loop: First, a forward layout step places
primitives according to some rules (Section 4.3). When user interaction occurs, an inverse

layout step (Section 4.4) refines the rules for the forward layout and the loop repeats.

A typical use case of the system is as follows (Figure 4.1): Initially, the user is presented
some generic layout of graphical primitives in two dimensions. This layout maps primitives
with certain similar features (e. g., brightness, shape, etc.) to similar locations (Section 4.3.1).
Primitives are placed in such a way that the average distance of the boundary of nearby
primitives (the “gap” between them) has a similar value everywhere (Section 4.3.2). Next,
users interactively manipulate this layout by constraining a small number of primitives to
particular locations (Section 4.4). This is depicted by a push-pin icon shown next to the
constrained primitive. The system infers what features are to be used in the forward layout
from these constraints.

4.3 Forward layout

Primitives are n ∈ N objects represented as images with a (possibly concave) boundary
Ωi. A typical number of primitives in our examples is between 10 and 200. An additional
input to our approach is a per-primitive feature vector f ∈ R

m representing m ∈ N distinct
features. Features capture visual properties, such as size, shape, brightness, texture, etc.
(automatically extracted from the input primitive by image processing) as well as semantic
quantities like age, strength, etc. (acquired from an external database).

X=

Ωi ..
.
..
.
..
.

..
.

..
.

..
.

..
.
..
.

F= }} {C= }{{
P Φ

t

T

Figure 4.3: Notations of our formalization. Shown is the boundary Ωi, the sequence of
feature vectors F , the feature projection matrix P, the parameter translation vector t, the set
of constraints C (cf. Section 4.4), and the final output sequence X .

4. INTERACTIVE BY-EXAMPLE DESIGN OF ARTISTIC PACKING LAYOUTS 50

The sequence of the feature vectors of all primitives is denoted as F = {f1, . . . , fn ∈ R
m}.

A typical number of features in our examples is 10. Output of our system is a sequence
X = {x1, . . . ,xn ∈ R

2} which contains locations at which primitives are to be placed in the
two-dimensional layout space R

2 (Figure 4.3).

Forward layout is performed in two main steps to be explained next: feature mapping

(Section 4.3.1) and primitive distribution with spatial extent (Section 4.3.2).

4.3.1 Feature mapping

Feature mapping reduces high-dimensional features f ∈ R
m to their low-dimensional 2D

layout coordinates x ∈ R
2 as

x = φ(Pf+ t), (4.1)

where P is a feature projection matrix, t is a parameter translation, and φ is a layout

function, all explained in the next paragraphs.

Feature projection and parameter translation is performed by a tuple (P, t) as a
projection matrix P ∈ R

2×m and a translation vector t ∈ R
2 that map feature vectors f ∈ R

m

to parameter vectors p ∈R
2 as p = Pf+ t. P is non-zero only at position (k, l) if feature l is

mapped to dimension k. The value at Pk,l gives the factor by which the feature is scaled to
create the parameter vector dimension. Per dimension (i. e., row) only one non-zero element
(i. e., feature) scaling-factor is present, i. e., only one feature is used per parameter vector
dimension. As an example given three features (e. g., size, brightness, anisotropy) the matrix

P =

[
0 0 1
0 0.2 0

]

would select the third feature (anisotropy) with unit scaling as the first dimension and
the second feature (brightness) as the second dimension, scaled by 0.2. t is used to shift
the parameter vector along the parameter axis, and can be used for example to move the
primitives along the axes in layout space in a Cartesian layout (Figure 4.4).

Layout function The parameter vector p serves as input to different layout functions
φ(p) ∈ R

2 → R
2. Such functions map e. g., the first parameter to the x-axis and the second

one to the y-axis in a Cartesian layout, or the first parameter to angle and the second to radius
in a radial layout function. In practice different layout functions can be used (Figure 4.4).
The only requirement for φ is that the inverse mapping φ−1 needs to exist in order to
perform the inverse layout (Section 4.4).

C
a
rt
e
si
a
n

P
o
la
r

P
e
rs
p
e
c
ti
v
e

Lo
g
a
ri
th
m
ic

Figure 4.4: Isolines of first parameter dimension for different layout functions φ.

51 4.3. FORWARD LAYOUT

Single-dimensional case We also support to select only one, or no feature at all,
i. e., where P does not have full rank with rows of only zeros. In this case, the missing
dimensions in p are created using Multi-dimensional scaling (MDS) [Cox and Cox, 2008] of
all remaining features, i. e., the features with columns that have all zeros in P. The resulting
parameter vector p can then be fed into φ as before.

4.3.2 Primitive distribution with spatial extent

Preserving a balanced distance to all adjacent primitives is key to a good layout. The
output layout of the feature mapping however can produce arbitrary primitive positions with
possibly overlapping primitives that do not necessarily occupy the given layout space evenly.
Further, feature mapping only operates on points and has no concept of spatial extent. To
distribute primitives with spatial extent we equalize the distances between the boundaries
of nearby objects. For primitives of complex shape and varying size, this leads to more
pleasant distributions, yet resulting in simple computations that allow for a real-time, GPU
implementation.

Boundary Voronoi Tessellation For point primitives, Centroidal Voronoi Tessellation

(CVT) [Lloyd, 1982] has proven to produce layouts that yield balanced point distances. For
our purpose, one option would be to use the extension of Hiller et al. [2003] for general
shapes. We implemented this approach but observed unsatisfying results: All but almost
ellipsoidal shapes produce unbalanced results that drift (cf. Figure 4.5). This drift arises
from that fact that the proposed CVT generalization not explicitly states boundary distances
in its objective function but aligns the centroids of the primitive and its Voronoi region
resulting in an optimization that rather resembles shape matching [Müller et al., 2005]
between the Voronoi region and primitive (Figure 4.7, b).

To achieve an even distance between primitives, we explicitly include the boundary distances
in our objective function (Figure 4.7, a). The deviation of a layout X from this equilibrium
can be measured by summing the squared distances between each primitive’s boundary and
its Voronoi region boundary:

c(X) =
n

∑
i=1

∫

ΩV
i

distancei(ω,xi)
2dω, (4.2)

where ΩV
i is the boundary of the i-th primitive’s Voronoi region and distancei(ω,xi) :

R
2 ×R

2 → R gives the shortest Euclidean distance between ω, a point on the Voronoi
region boundary, and the i-th primitive’s boundary Ωi positioned at xi. The minimum of
this cost function X ′ = argminX c(X) yields the optimal solution. This formulation is very
similar to Equation 1 in Dalal et al. [2006], except for that only considering the boundary of
the Voronoi region in our formulation and not its interior (we also omit the rotational parts
as we explicitly are only interested in a translation). In practice, we perform all calculations

4. INTERACTIVE BY-EXAMPLE DESIGN OF ARTISTIC PACKING LAYOUTS 52
C
V
T

O
u
r

CVT

11.4

Our

486.9

CVT

194.9

Our

399.7

Our

624.3

CVT

111.6

Our

425.2

Our

300.1

CVT

281.7

Our

176.3

CVT

4.5

CVT

3.3

Figure 4.5: Results for extended CVT [Hiller, Hellwig and Deussen, 2003] (upper row)

and our relaxation (lower row). Adjacent to the layouts the values of the CVT residual and
our residual (Equation 4.3) is listed. CVT relaxation results in unbalanced layouts and its
residual in each column is lower for CVT relaxation. In contrast our residual is lower for
the more balanced layouts, indicating that our residual is more accurate in measuring the
quality of a balanced layout.

on a discretized grid, i. e., Equation 4.2 becomes

c(X) =
n

∑
i=1

∑
ω∈ΩV

i

distancei(ω,xi)
2. (4.3)

As minimizing Equation 4.3 is NP-hard, finding the global optimum is infeasible. Moreover,
we are explicitly not interested in the global optimum of Equation 4.3 as it possibly shuffles
all primitive positions to new places, whereas we seek to find a solution that is similar to
the one produced by the forward mapping (Section 4.3.1), but balances primitive distances.
Hence the global optimization of Equation 4.3 is replaced by a local iterative one that tries
to find a small offset for each primitive position individually, given a static Voronoi diagram
per iteration. The formula then becomes

ci(xi) = ∑
ω∈ΩV

i

distancei(ω,xi)
2. (4.4)

This equation could be minimized using image correlation, as done by Dalal et al. [2006],
whose complexity is O(na loga), where n is the number of primitives and a is the total
number of pixels of the domain. However, this complexity is prohibitively expensive for
our real-time needs. Hence we seek to replaced Equation 4.4 with an approximation.

A first idea could be to replace distancei(ω,xi) by a Taylor polynomial [Pottmann and
Hofer, 2003] of degree one and solve this approximate objective ĉi instead of Equation 4.4.
However ci is only poorly approximated by ĉi as the distance between ci and ĉi can become

53 4.3. FORWARD LAYOUT

ω δ x 0

δc
(x
+δ
) e

x h

c

c

ĉ

~

a) b)

Figure 4.6: a): In this 1D example the primitive at x is shifted by δ. The distance function
c and its approximations ĉ and c̃ measure the shortest distance to ω. b): The distance
functions are plotted for an approximation at x. For all values δ ≤ h the approximations
ĉ and c̃ exactly conform with c. For values δ> h both functions deviate from the correct
function, but the error of c̃ is bounded by e.

arbitrarily large (cf. Figure 4.6). Furthermore Taylor polynomials require derivatives,
whereas distancei(ω,xi) is not necessarily continuously differentiable.

We can reformulate Equation 4.4 by expanding distancei as

ci(xi) = ∑
ω∈ΩV

i

‖closesti(ω,xi)−ω‖2
2

where closesti(ω,xi) : R2 ×R
2 → R

2 gives the point closest to ω on the boundary Ωi of
the i-th primitive at position xi. The function closesti(ω,xi) can be approximated for a point
xi +δi as

closesti(ω,xi +δi)≈ closesti(ω,xi)+δi, (4.5)

i. e., the closest position to ω on Ωi at position xi +δi is approximately the closest position
on Ωi at position xi with an added offset δi. This approximation does not involve a
derivative and always yields a point on the primitive’s boundary. The maximal error is
therefore bounded by the maximal distance of two points on the primitive’s boundary (cf.
Figure 4.6). Using Equation 4.5 the cost for an offset δi is given for the primitive positions
xi as

c̃i(xi +δi) = ∑
ω∈ΩV

i

‖closesti(ω,xi)+δi −ω‖2
2 .

The optimal δ′i is found by setting its derivative to zero as

δ′i = argmin
δi

c̃i(xi +δi) =
1

|ΩV
i |

∑
ω∈ΩV

i

ω− closesti(ω,xi).

As an intuition behind this solution, finding the minimum can be regarded as a set of springs
located at the Voronoi region boundary that tries to push or pull the primitive into the correct
place in its Voronoi region. A single step in our iteration has a complexity of O(n|ΩV|)
where |ΩV| is the total length in pixel of all Voronoi region boundaries.

For the special case of point primitives CVT is equivalent with our problem statement in
Equation 4.3 (except for only considering the Voronoi boundary). The Voronoi diagram
for overlapping primitives with spatial extend is not well-defined. To overcome this, we

4. INTERACTIVE BY-EXAMPLE DESIGN OF ARTISTIC PACKING LAYOUTS 54

compute the Voronoi diagram using a two-sided distance to the boundaries of the primitives,
such that distances increase inside and outside of the boundary, leading to well-defined
Voronoi diagrams. The primitives might have interior boundaries (e. g., the circular cutout
of the circles in Figure 4.5, b) that should not influence the relaxation. By iterating over
the Voronoi boundary the closest point on the primitive boundary by definition is on the
outermost boundary. Due to our approximations, in rare cases the converged distributions
might still have overlapping primitives.

closesti

ω

x
i

distancei

ΩV i
Ω
i

a) b)

Figure 4.7: Relaxation approaches: a:) our new relaxation (Please see text.), b:) classical
shape matching relaxation, moving the object’s (grey, striped area) center of mass to its
Voronoi region’s (red, dotted area) center of mass

Implementation We use a GPU to accelerate our relaxation. Two maps are pre-
calculated for each primitive: The first one contains the distance of every pixel to the
primitive boundary, the latter holds the location of the closest position on the boundary.
At runtime we use rasterization [Hoff et al., 1999] in combination with the distance map
to create a Voronoi diagram holding the index of the closest primitive at each pixel and
an additional map giving the closest position on the primitive’s boundary. The calculation
of δi then becomes a parallel summation over all Voronoi region boundary pixels with a
single diagram lookup per pixel to acquire the closest point on the primitive’s boundary.
The resulting relaxation is at least as efficient as CVT: Typically, we use 30 relaxations in
every frame and achieve more than 10 fps for more than 200 primitives including drawing
in HD resolution on an Nvidia GTX 680 GPU.

Extensions Arbitrary global boundaries, such as the shape of the butterfly in Figure 4.9,
can be handled by removing the pixels of the Voronoi regions that are outside of the global
boundary. Parts of the primitives might fall outside of the global boundary. Therefore
for each pixel of primitive i outside of the global boundary an offset is added to δi in the
direction of the closest point on the global boundary, pushing the primitive back inside.

55 4.4. INVERSE LAYOUT

4.4 Inverse Layout

The user can define primitive constraints, i. e., force certain primitives with indices C =
{c1, . . . ,co ∈ (1,n)} with o ∈ N

+ to be located exactly at position xci
. The inverse layout

computes a new feature projection matrix P, a parameter translation vector t, and a new
layout function φ (as defined in Section 4.3.1) that best “explain” the placement of the o

constrained primitives, i. e., given the primitive positions X , their features F , and constraints
C we try to find φ and (P, t) (cf. Equation 4.1) minimizing

∑
a∈C

‖Pfa + t−φ−1(xa)‖. (4.6)

Before any user interaction, P and t are set to zero and φ to identity. After a user changed
the constraints we try to minimize Equation 4.6. Solving this task is split into two parts:
enumeration of all plausible layout functions ψ and computation of the optimal feature

mapping for it. Finally, we choose the layout hypothesis and feature mapping for which
a residual function r(ψ) is minimal (layout selection). We will explain both steps in the
following paragraphs.

F

X
,C

...

...

...

...

ψ
1

7r

A

T

ψ
2

ψ
3

ψ
4

S

P

19r

A

T

S

P

11r

A

T

S

T

23r

A

P

S

P

C
a

rt
e

si
a

n

C
a

rt
e

si
a

n

C
a

rt
e

si
a

n

R
a

d
ia

l

Layout hypotheses

Color

Size

Col.var.

Input

x
1
x
2
x
3
x
4
x
5

t t t t

Figure 4.8: Inverse layout. Input are the primitives and their positions X , constraints C, and
features F . From C several layout hypotheses ψi are build and the best feature-dimension
mapping A and its residual r are calculated. Output is the ψi with the lowest cost, its
projection matrix P, and the translation vector t (ψ1, black border).

Layout functions We restrict our enumeration to a plausible subset of all possible
layout functions (the bijections on R

2), which we call layout hypotheses. The Cartesian and
radial layout hypotheses are built independently as follows.

A Cartesian layout function hypothesis is defined by two axes. We assume one axis is the
connection between two constraint positions, i. e., for each a,b ∈C with a 6= b the first axis
is

u =
xa −xb

‖xa −xb‖2
.

The second axis is then chosen orthogonal, i. e., v = (−uy,ux)
T and the layout function

becomes
ψ(p) = (< u,p >,< v,p >)T ,

4. INTERACTIVE BY-EXAMPLE DESIGN OF ARTISTIC PACKING LAYOUTS 56

resulting in o(o−1)/2 layout hypotheses.

A radial layout function hypothesis is defined by a center position u. Our hypothesis
assumes that the center position is either located at one of the constraints, i. e., u = xa with
a ∈C or that its position is the centroid, i. e.,

u =
1
o

∑
a∈C

xa,

or the center of the bounding box of all constraints, i. e.,

u =
1
2

(
min
a∈C

xa +max
a∈C

xa

)
.

The layout function then is

ψ(p) = (u1 +p1 sinp2,u2 +p1 cosp2)
T ,

resulting in o+2 different layout hypotheses.

Feature mapping For a fixed layout hypothesis ψ its residual r and its optimal feature
projection matrix P are found as follows: All constraint positions are mapped back to
parameter space as pi = ψ−1(xi), i. e., the inverse of the layout function. Next, we need to
find how well a common scalar Sk,l of the k-th dimension-wise difference of the parameter
vector could “explain” the differences of the l-th feature. For example, we would like
to know how well a common scaling of all butterfly size differences can “explain” the
differences of the second layout parameter, which, again, could be the radii of a radial
layout or the vertical coordinates in a Cartesian layout. We combine the cost of “explaining”
parameter dimension k by feature l using the scaling matrix S′ ∈ R

2×m as the residual
matrix functional R ∈ R

2×m → R
2×m defined as

Rk,l(S
′) = ∑

a,b∈C,a6=b

(
S′

k,l(fa − fb)l − (pa −pb)k

)2
.

For each dimension k and feature l the optimal scaling factor is found by setting its deriva-
tives to zero as

Sk,l = argmin
S′

Rk,l(S
′) =

∑a,b∈C,a6=b(pa −pb)k(fa − fb)l

∑a,b∈C,a6=b(fa − fb)
2
l

.

Using these scaling factors yields the minimal residual matrix T = R(S). Now the as-
signment of features to dimensions can be found as a solution to the general assignment
problem [Martello and Toth, 1987], such that every dimension is assigned to exactly one
feature, using the costs from matrix T. The result is an assignment matrix A ∈ {0,1}2×m

where Ak,l = 1, if feature l is mapped to dimension k, and Ak,l = 0 otherwise. As T is small,
enumerating all m(m−1) possible partial assignments is feasible. The residual of ψ is then
given by

r = ‖A◦T‖1, (4.7)

where ◦ denotes the component-wise (i. e., Hadamard) product of two matrices. In other
words, the product keeps only the elements of T where A is non-zero. The 1-norm of the
resulting matrix then gives the total absolute residual for all dimensions as a single scalar
value.

57 4.5. RESULTS

Layout selection A unique and optimal solution to the inverse layout problem can be
found for o ≥ 3. For the hypothesis ψ with the smallest residual r, we set φ = ψ and
P = A ◦S, i. e., we keep the best layout function with the best feature projection. The
optimal parameter translation vector can then be found as the offset of the centroids, i. e.,

t =
1
o

∑
a∈C

pa −Pfa.

Lower-dimensional case It might not be possible to reliably infer the intended layout
from the user constraints, because either not enough constraints are provided (o < 3),
because of contradicting constraints, or because the constraints are non-unique. If the
residual for all layouts is too high, we repeat the above procedure for a single dimension
only, producing a matrix with a zero second row. As explained in Section 4.3.1, MDS
will then be used to create the second parameter coordinate. If the residual using only this
single component is still too high or no hypothesis could be build, MDS is used for both
dimensions.

4.5 Results

All results were produced with our system by the authors and by user study participants.

Example Layouts In our main result, starting from an initial distribution users can
manipulate the layout and the system tries to infer their layout idea (see Figure 4.10 to
Figure 4.12 and captions). The special case of packing into an arbitrarily shaped container
can be combined with additional constraints and layout functions, as seen in Figure 4.9.

Figure 4.9: a): Layout of butterflies inside the boundary of a butterfly. b): A radial layout.
Radius maps to size and hue to angle.

4. INTERACTIVE BY-EXAMPLE DESIGN OF ARTISTIC PACKING LAYOUTS 58

Figure 4.10: Results of our approach (top to bottom, left to right, layout feature(s) in

brackets). Butterflies (brightness, size, shape anisotropy, shape anisotropy plus brightness).
African carnivores (color variance, orientation).

59 4.5. RESULTS

Figure 4.11: Results of our approach (top to bottom, left to right, layout feature(s) in

brackets). Frogs (brightness). Dinosaurs (brightness). Beetles (size). Fishing baits (hue).
Bats (shape anisotropy). Cookies (radial layout by brightness as angle and hue as radius).

4. INTERACTIVE BY-EXAMPLE DESIGN OF ARTISTIC PACKING LAYOUTS 60

Figure 4.12: Results of our approach (top to bottom, layout feature(s) in brackets). Sea
moluscae (size plus brightness). Whales (brighness).

Finally, our system can be used to interactively explore multi-dimensional datasets, such as
the countries in Figure 4.13.

61 4.5. RESULTS

Figure 4.13: Semantic layouts: a): Layout by infant mortality rate from the World Fact
Book. b): Now by population size. c): A remix of “The Descent of Men” by Ernst Häckel
(1834–1919) seen in (d). e): A remix of another layout by Häckel (f).

User Study To design a user study, we first conducted a pilot questioning of two pro-
fessional artists with a special expertise in packing layout production. According to the
artists, besides legal and research issues, the most time-consuming steps are the generation
of graphical primitives itself and the final layout. They say that achieving a balanced
primitive distance (Section 4.3.2) is a major challenge. Here the artists wish to have “an
automated layout tool creating a spatial boundary between primitives” and that these tools
were “easier to work with” than currently available software packages. According to the
artists, the position of the primitives is governed by their “taxonomic relationship" and by
visual features such as brightness, texture, or drawing style but also by arranging them in a
“visually pleasing way”. The programs used by artists were Adobe Photoshop, Illustrator,
InDesign, as well as Corel Draw which all do not offer distribution tools that generate
balanced primitive distances in two dimensions.

To assess the usefulness of our system we conducted a user study, in which 15 naïve
subjects were asked to produce a layout with three different user interfaces. The interfaces
presented were a commercial software (“commercial interface”, UI #1), an interface of
our software with only our relaxation step (Section 4.3.2) enabled (“relaxation interface”,
UI #2, Section 4.3.2) and an interface with relaxation (Section 4.3.2) and inverse layout
step (Section 4.4) enabled (“our interface”, UI #3). For the commercial interface, we let
the subjects choose from either Adobe Illustrator CS6 or Microsoft PowerPoint 2010 and
rate their expertise in these programs for the presented task after the user study on a scale
from 1 (novice) to 5 (expert). The task was to produce a layout that organizes primitives
by specific features and has a balanced distance between the primitives. The initial layout
was always identical: a fully relaxed MDS layout (cf. Section 4.3). Every session was
self-timed until the subject was either satisfied with the generated layout or gave up due to
fatigue. The order in which the interfaces were presented to the subjects was randomized
for every session. For every session we logged the time spend to produce the final layout

4. INTERACTIVE BY-EXAMPLE DESIGN OF ARTISTIC PACKING LAYOUTS 62

and stored the final layout image result. For the relaxation interface and for our interface we
additionally logged the cost (cf. Equation 4.3) of the final layouts. In the subsequent analysis
we excluded cases in which the subjects gave up due to fatigue. Three users chose Adobe
Illustrator CS6 and rated their expertise with 3.67 on average, the other twelve users chose
Microsoft PowerPoint 2010 with an average expertise rating of 3.5. The layout generation
took 16:32 minutes on average for the commercial interface with a standard deviation of
8:07 minutes, for the relaxation interface 7:24 minutes on average with a standard deviation
of 2:18 minutes and for our interface 1:49 minutes with a standard deviation of 0:52 minutes
(Figure 4.14, a). We conclude with statistical significance (p < 0.0001, ANOVA test) that
our interface results in a speedup of approximately one order of magnitude. The average
final residual of the relaxation interface was 2516.47 pixels2 with a standard deviation of
2944.12 and for our interface we have an average cost of 590.87 pixel2 with a standard
deviation of 129.36. Again we found with statistical significance (p < 0.027, ANOVA) that
our system results in a quantifiable quality gain.

a) b)

UI #3

62.6%

UI #2

27.4%

UI #1

10.0%

UI #1 UI #2 UI #3
0

400

800

1200

1600

se
c

o
n

d
s

Figure 4.14: Results of the two user studies. a:) Average time in seconds spent generating
the intended layout with each interface by 15 subjects. Variance is shown as black bars
b:) Result preference of the layouts of (a) by a group of 19 subjects, disjoint from the first
group.

In a second user study we asked a group of 19 subjects, disjoint from the first study, to rate
the layouts produced by the subjects of the first user study (Figure 4.14, b). The three layouts
of each subject of the first user study were presented to the new subjects and they had to pick
the layout which they found best accomplished the given task. We found that in 62.63 %
of the cases the layout produced by our interface was the preferred one, while 27.37 %
preferred the one generated with the relaxation interface and 10 % were in favor of the
layout of the commercial interface. We conclude with statistical significance (p < 0.0004,
binomial between all pairs) that results from our interface are preferred over all alternatives
at least by a factor of two. In 69.59% of the cases the subjects’ choice correlates with the
residual value (cf. Equation 4.3) of the first study.

63 4.5. RESULTS

During our first user study we made the following observations: with the commercial
interface users tend to initially cluster primitives with extreme features first. Some users
also took the clusters and arranged them in layers, in which primitives of one common
feature appeared on the same layer. The hardest task seemed to be achieving a balanced
distance; users either used too much or too few space, resulting in unsatisfying results.

Chapter 5
Projective Blue-Noise

Sampling

1D

2D

2D

1D

a) b) c)

d)

B
lu

e
 n

o
is

e
P

ro
je

ct
iv

e
 b

lu
e

 n
o

is
e

Pattern Spectrum

Figure 5.1: Our projective blue-noise distributions (a, bottom) have blue-noise spectra
in two dimensions as well as in their one-dimensional projections, while classic two-
dimensional blue-noise (a, top) has an almost white-noise spectrum in one dimension.
Applications include Monte Carlo rendering (b), reconstruction (c), as well as placement
of primitives (d), such that they are well-distributed both in three dimensions and when
projected to two dimensions.

65

5. PROJECTIVE BLUE-NOISE SAMPLING 66

5.1 Introduction

Producing “good” sampling patterns is an important task in many computer graphics
applications, including simulation, rendering, image reconstruction, and primitive placement
(Chapter 4). But what makes a good pattern depends on the application. For Monte
Carlo rendering, low integration error is important [Cook, 1986; Shirley, 1991], which
is usually achieved by stratified Latin hypercube or low-discrepancy point sets that have
well-distributed low-dimensional projections. For digital half-toning [Ulichney, 1987],
stippling [Kopf et al., 2006], and object placement [Hiller, Hellwig and Deussen, 2003],
blue-noise point sets with maximized minimal inter-sample distance are preferred, as their
structure closely resembles the photoreceptor arrangement in the eye retina [Yellott, 1983].
Such patterns are also desirable for image reconstruction [Dippé and Wold, 1985] where
low-discrepancy patterns can lead to spurious aliasing artifacts [Mitchell, 1987]. At the
same time, it has been shown that blue-noise patterns are not as competitive for numerical
integration [Shirley, 1991]. All these applications call for point sets that are uniformly
distributed in the sampling domain, though research in each area has focused on optimizing
the distribution for its slightly different definition of uniformity. It has remained an open
question whether there exist distributions that meet the requirements of a wide range of
applications.

In this chapter we propose projective blue-noise point distributions, in an attempt to give
a positive answer to the above question. A key property of these distributions is that
they retain their blue-noise characteristics when undergoing one or multiple projections to
lower-dimensional subspaces (Figure 5.1, a). We show how the classic dart throwing and
Lloyd relaxation algorithms can be extended to produce such point sets, and demonstrate
the usefulness of their projective blue-noise properties in various applications. For Monte
Carlo rendering (Figure 5.1, b) and image reconstruction (Figure 5.1, c), our patterns
often outperform existing distributions for functions with variations concentrated along one
dimension, where the resulting sampling quality is dominated by a projection of the pattern.
Furthermore, while common blue-noise patterns are useful for placing primitives in three-
dimensional space, our patterns preserve the good visual distribution when the arrangement
is viewed from different angles, i. e., projected to different image planes (Figure 5.1, d).

The rest of this chapter is organized as follows. In Section 5.2 we describe the construction
of projective blue-noise patterns and discuss some practical considerations. Section 5.3
analyzes the properties of our point sets and the performance of our construction algorithms.
In Section 5.4 we demonstrate the versatility of our method in practical applications,
followed by a discussion in Section 5.5.

5.2 Our approach

The basic idea of projective blue noise is to extend existing sampling methods to not only
operate in the full d-dimensional sample space, but also in multiple lower-dimensional
projective subspaces simultaneously. While classic dart throwing and Lloyd relaxation test

67 5.2. OUR APPROACH

candidates or move points only in the full-dimensional space, our extensions additionally
check candidates, respectively move points, in the projection subspaces. We specify all
spaces via a set of m projection vectors

B = {b j ∈ {0,1}d}m
j=1. (5.1)

The vectors b j can be used with the Hadamard product (i. e., the element-wise vector
multiplication) to project points and vectors onto the (sub)spaces specified by those vectors.
Classic, non-projective blue-noise is a special case with B = {{1}d}. In our projective
extension, for two-dimensional point sets, we use B = {(1,1),(1,0),(0,1)}.

In the following subsections, we extend the dart throwing and Lloyd relaxation algorithms to
projective blue-noise sampling. For each method, we first review its classic, non-projective
variant, before presenting our projective extension.

We create sample patterns X = {x0, ...,xn} with n ∈ N
+.

5.2.1 Dart throwing

Classic Dart throwing (Figure 5.2, left) starts with an empty point set and iteratively
generates random candidate points x that are added to the set only if their distance to every
other point xi is larger than a certain threshold r, called the Poisson-disk radius [Cook,
1986]:

min
i=1,...,n′

‖x−xi‖> r, (5.2)

where n′ < n is the number of the previously accepted points. For tiled patterns, the
distance is computed on a toroidally wrapped domain. In its most basic form, the algorithm
terminates if no new points can be added after a certain number of successive failed attempts.
Alternatively, instead of terminating, the radius can be shrunk by a constant factor, which
makes the sampling method progressive [McCool and Fiume, 1992]. Our implementation
operates on a toroidal domain and also incorporates this shrinkage.

Projective Our dart throwing extension (Figure 5.2, right) accepts a candidate point
x only if its distance to every other point xi in the full d-dimensional space and in every
projection space is larger than a certain threshold:

min
i=1,...,n′

∥∥b j ◦ (x−xi)
∥∥> r j ∀ j ∈ 1, . . . ,m, (5.3)

where r j is the desired radius (i. e., minimum distance) in the j-th space, and ◦ is the
aforementioned Hadamard product.

Radii Since the distances between points are smaller in lower-dimensional subspaces, the
radii for these spaces should be smaller than the ones for higher-dimensional spaces. We
derive the radius for a space from the radius of the tightest known lattice sphere packing in

5. PROJECTIVE BLUE-NOISE SAMPLING 68

b
1

r r
1

r
2

r
2

r
3

r
3

b
2

b3

x

y
x

yC
la

ss
ic

d
a

rt
 t

h
ro

w
in

g

P
ro

je
c

ti
v

e
d

a
rt

 t
h

ro
w

in
g

Figure 5.2: Classic dart throwing (left) accepts both the orange and the blue candidate
points, as no existing point in the set is within the rejection radius r (pink circle). Projective
dart throwing (right) accepts the orange candidate, but not the blue one, as its projection
onto b3, with radius r3 (pink box) conflicts with an existing point.

the corresponding dimension. For one through four dimensions, these maximum radii are
given respectively by [Lagae and Dutré, 2006; Korkin and Zolotarev, 1877]

rmax
1 =

1
2n

, rmax
2 =

√
1

2
√

3n
, rmax

3 = 3

√
1

4
√

2n
, rmax

4 =
4

√
1

8n
.

For higher dimensions d, the maximum radius is found by solving Vd = ηd/n for the radius
rmax

d of a d-dimensional sphere, where Vd is the sphere volume and ηd is the best lattice
disk packing density.

Given the maximum packing radii, we compute the Poisson-disk radii for every dimension
as

r j = r ·
rmax

d j

rmax
d

, (5.4)

where d j = ‖b j‖1 is the dimension of space j and d is the dimension of the full space. The
algorithm is now controlled via a single initial parameter r ∈ [0,1], which we set to r = 0.15
for all our experiments.

5.2.2 Lloyd relaxation

Classic The Lloyd optimization algorithm (Figure 5.3, left) constructs a point arrange-
ment that is a Centroidal Voronoi Tessellation (CVT). In a CVT, each point, or site, xi is
also the center of its associated Voronoi cell – the subset of the domain that is closer to xi

than to any other site. To obtain such a set X = {x1, . . . ,xn}, Lloyd relaxation minimizes

69 5.2. OUR APPROACH

the cost

c(X) =
n

∑
i=1

∫

Ωi

‖xi −x‖2dx, (5.5)

where Ωi is the i-th cell in the Voronoi tessellation of X . Conceptually, this cost measures
how far the sites are from the center of mass of their Voronoi cells. As with dart throwing,
for tiled patterns the distances are computed on a toroidally wrapped domain.

The relaxation algorithm starts with a random set of sites X which is refined iteratively in
three steps. First, a Voronoi tessellation of X is built, mapping every location in the domain
to its closest site. Second, the centroid of every Voronoi cell is computed by averaging
the locations in the cell. Finally, every site is moved to the centroid of its associated cell.
Practical implementations often discretize the domain into a finite set of locations, turning
the integral of Equation 5.5 into a sum.

Δ

b
2

b
3

xi

Δ3

Δ
2

Ω
2

Ω3

Ω
xi

Δ1

Ω
1

1b

C
la

ss
ic

L
lo

yd
 r

e
la

xa
ti

o
n

P
ro

je
ct

iv
e

L
lo

yd
 r

e
la

xa
ti

o
n

Figure 5.3: Classic Lloyd relaxation (left) moves each point xi (orange) to the center (blue)

of its Voronoi cell (pink). Our projective extension (right) tries to move each point xi to the
center of its Voronoi cell in the full space b1 as well as in the two subspaces specified by b2

and b3.

Projective In our case, we want to distribute the sites uniformly not only in the full-
dimensional space, but also in multiple lower-dimensional projection subspaces (Figure 5.3,
right). Similarly to our dart throwing extension, we specify all spaces via a set of m

projection vectors b j. We build m Voronoi tessellations, one for each space, and aim to
optimize the sites, such that they coincide with centroids of their corresponding Voronoi
cells in all tessellations. Note that for any site, its associated cells are different in the
different (sub-)spaces. The cost of each site is computed by summing m weighted norms,
and the total cost reads

cp(X) =
m

∑
j=1

w j

n

∑
i=1

∫

Ωi, j

∥∥φ(b j ◦xi)−x
∥∥2

dx, (5.6)

5. PROJECTIVE BLUE-NOISE SAMPLING 70

where ◦ is the Hadamard product, {w j}m
j=1 is a set of scalar projection weights that sum up

to one, and Ωi, j is the Voronoi cell of the i-th site after projection onto the j-th space. Note
that the dimension of the points x above depends on j and φ reduces this dimensionality to
the relevant dimensions of the subspace.

Our relaxation scheme seeks to minimize Equation 5.6. We start with the same initial
point set as the classic Lloyd method, but we perform the optimization steps in m spaces
simultaneously as follows: For each site xi, we compute m correction vectors ∆i, j, one from
the Voronoi tessellation in each space. Each vector ∆i, j would move xi to the center of
Voronoi cell Ωi, j. These vectors are generally different for the different projections j, and
each individual site can be moved to exactly fulfill only one constraint locally. We instead
try to partially fulfill all constraints by applying all correction vectors ∆i, j to site xi, each
scaled by a corresponding weight w j. After moving all sites, the m Voronoi tessellations are
recomputed and the process is iterated.

Note that the projective correction vectors are heuristically chosen and not proven to be
optimal as the non-projective vectors are, but work well in practice as shown by our analysis.

Weights Ideally, we want all spaces to have equal importance in the total cost in Equa-
tion 5.6. However, since distances between points in lower-dimensional spaces are shorter,
the relative contribution of such spaces is smaller than that of higher-dimensional spaces.
We equalize all contributions by making each weight w j inversely proportional to the tightest
sphere packing radius in dimension d j (cf. Section 5.2.1, Weights):

w j =
1/rmax

d j

∑
m
k=1 1/rmax

dk

. (5.7)

Additional optimizations Due to the increased number of constraints, the straightfor-
ward implementation of the above scheme may converge much slower than the classic Lloyd
relaxation algorithm. We propose two enhancements to improve both the speed and the
quality of the resulting patterns.

First, in early iterations, the different correction vectors contradict heavily, making the
process susceptible to local minima and slow convergence. To remedy this, the weights w j

for the lower-dimensional spaces are faded in linearly from 0 for 50 iterations. This is done
for each dimension successively, i. e., first the weights of the (d−1)-dimensional subspaces
are faded in, then the (d −2)-dimensional ones, etc.

Second, the convergence speed can be further increased by exploiting the fact that in one
dimension the best point arrangement that maximizes the mutual minimum distance is
the regular distribution [Ramamoorthi et al., 2012], which is the global minimum of the
Lloyd cost in one dimension (Equation 5.5). Thus, to satisfy a single one-dimensional
projection, the pattern can simply be “snapped” to a regular grid along the corresponding
axis [Saka, Gunzburger and Burkhardt, 2007]. So instead of building one-dimensional
Voronoi tessellations, we directly compute the correction vectors as the differences between
the regular grid {(i+0.5)/n}n

i=0 and the sorted point coordinates along each axis. Note that

71 5.3. ANALYSIS

this closed-form solution works only for one-dimensional projections, and minimizing the
cost in multiple dimensions simultaneously still requires iterative optimization.

5.3 Analysis

In this section we compare the quality of our patterns to existing methods in terms of their
spectral and projective properties, Poisson-disk radii and discrepancy. We also compare our
method to latinization [Saka, Gunzburger and Burkhardt, 2007] and analyze the convergence
and the computational performance of our projective Lloyd relaxation.

5.3.1 Projective analysis

We begin with an analysis of the spectral and spatial properties of our projective patterns. We
follow the recommendations of Schlömer et al. [2011] on reporting the spectral properties
for two-dimensional point sets, including the critical frequency fc and anisotropy reference
levels in Figure 5.1, Figure 5.4, Figure 5.5, Figure 5.6, Figure 5.7, and Figure 5.8. For
the one-, three-, and four-dimensional power spectrum plots we generalize the relevant
frequency ranges using the respective rmax

d (see Section 5.2.1, Weights).

2D analysis In Figure 5.4, Figure 5.5, and Figure 5.6 we compare various 2D patterns in
terms of their Fourier power spectra as well as their star discrepancy and Poisson-disk radii.
The patterns we consider are: (1) regular, (2) Sobol, (3) scrambled Larcher-Pillichshammer
(SLP) [Kollig and Keller, 2002], (4) uniform random, (5) jittered, (6) Latin hypercube (LH),
(7) multi-jittered (MJ) [Chiu, Shirley and Wang, 1994], (8) correlated multi-jittered (CMJ)
[Kensler, 2013], (9) dart throwing, (10) Lloyd relaxation, (11) latinized dart throwing [Saka,
Gunzburger and Burkhardt, 2007], (12) latinized Lloyd relaxation [Saka, Gunzburger and
Burkhardt, 2007], (13) our projective dart throwing, and (14) our projective Lloyd relaxation.
All plotted patterns consist of 25 samples. The spectral power plots have been computed as
the average of the periodograms of 100 random instances of each pattern with 3025 samples.
The star discrepancy L∞

∗ and Poisson-disk radii ρ (i. e., the normalized global minimum
inter-sample distance [Lagae and Dutré, 2008]) have been computed for sample patterns of
size 529.

A characteristic feature of two-dimensional blue-noise distributions is their isotropic Fourier
power spectrum with a black disk in the center indicating the absence of low-frequency
content, surrounded by an energy-peak ring around the principal frequency [Lagae and Dutré,
2008]. Such distributions are produced by maximizing the minimum distance between the
points in the set. As discussed in Section 5.2.2, in one dimension the regular distribution
achieves the maximum point separation, and its Fourier power spectrum is zero except at
frequencies that are multiples of n (the number of points). As a consequence, in Figure 5.4
and Figure 5.5 patterns with good one-dimensional axis projections, such as LH, MJ, as
well as the latinized and our projective patterns, have black crosses in their two-dimensional
power spectra. This is because the interesting power spectrum features of such distributions

5. PROJECTIVE BLUE-NOISE SAMPLING 72

Regular Random JitteredSobol SLP

S
a

m
p

le
p

a
tt

e
rn

2
D

 P
o

w
e

r
sp

e
ct

ru
m

S
p

e
ct

ru
m

ra
d

ia
l a

vg
.

S
p

e
ct

ru
m

a
n

is
o

tr
o

p
y

1
D

 p
o

w
e

r
sp

e
ct

ru
m

0.04301

0.93060

0.00674

0.31614

0.05478

0.01663
0.01852

0.07106

0.00923

0.10658

1

0
0 204f

c

25

-25
0 204f

c

1

0
0 3025

ρ
L
∞

*

Figure 5.4: Spectral analysis of five different two-dimensional point sets and their one-
dimensional axis projections (shown as red and blue bars and graphs respectively), discussed
in Section 5.3. Note that the horizontal (frequency) scale is different for the one-dimensional
power spectrum plots and the radial average and anisotropy plots. The last rows report the
star discrepancy L∞

∗ and Poisson-disk radius ρ of each point set.

occur at different scales in one and two dimensions respectively. For the sake of visual
clarity, we clamp the two-dimensional spectrum plots to the frequency range [0;204], and
show the one-dimensional projection slices of these spectra as separate plots in the range
[0;3025]. Note also that the black crosses in the two-dimensional spectra cause a slight
artificial increase in anisotropy.

The Sobol and SLP low-discrepancy patterns achieve regular one-dimensional axis projec-
tions for sample counts that are powers of two. For other sample counts however, gaps
remain along at least one axis. In our 25-sample example in Figure 5.4 and Figure 5.5, only
the x-axis of the SLP pattern has a uniform distribution. Furthermore, both methods fail to
produce blue-noise two-dimensional spectra.

Uniform random, regular, and jittered sampling all fail to produce high-quality two-
dimensional blue-noise distribution and one-dimensional projections. The regular two-
dimensional patterns have very poor projection distributions with multiple points sharing
the same coordinates on each axis, causing spikes in the one-dimensional power spectra.

73 5.3. ANALYSIS

Latin hypercube (LH) sampling has good projection properties but poor two-dimensional
uniformity.

S
a

m
p

le
p

a
tt

e
rn

 2
D

 P
o

w
e

r
sp

e
ct

ru
m

S
p

e
ct

ru
m

ra
d

ia
l a

vg
.

S
p

e
ct

ru
m

a
n

is
o

tr
o

p
y

1
D

 p
o

w
e

r
sp

e
ct

ru
m

MJLatin hypercube

0.01358

0.07417

0.02875

0.05623

CMJ
Dart

throwing
Lloyd

relaxation

0.00970

0.20471

0.01733

0.72556

0.01221

0.76699

0

1

0
0 204f

c

25

-25
204f

c

1

0
0 3025

ρ
L
∞

*

Figure 5.5: Spectral analysis of five different two-dimensional point sets and their one-
dimensional axis projections (shown as red and blue bars and graphs respectively), discussed
in Section 5.3. Note that the horizontal (frequency) scale is different for the one-dimensional
power spectrum plots and the radial average and anisotropy plots. The last rows report the
star discrepancy L∞

∗ and Poisson-disk radius ρ of each point set.

Multi-jittered (MJ) sampling [Chiu, Shirley and Wang, 1994], as a combination of jittered
and LH sampling, produces a two-dimensional power spectrum that shares the features
of both methods. MJ patterns have acceptable projections, but like other jittered patterns
do not guarantee a minimal inter-sample distance, which is reflected in the smooth low-
frequency ramps in both the two-dimensional and the projected one-dimensional power
spectra. CMJ [Kensler, 2013] results in identical one-dimensional spectra but a much less
uniform two-dimensional spectrum.

Classic Lloyd relaxation produces excellent blue-noise distributions but only in two dimen-
sions. Latinizing the pattern improves the one-dimensional projections but at the cost of
increasing the anisotropy and decreasing the Poisson-disk radius. Our projective Lloyd dis-
tribution combines a good two-dimensional spectrum with well-distributed one-dimensional
projections, and has a larger Poisson-disk radius than the latinized variant. Improving the

5. PROJECTIVE BLUE-NOISE SAMPLING 74

one-dimensional projections of a blue-noise pattern also decreases its discrepancy [Saka,
Gunzburger and Burkhardt, 2007], where our projective method once again comes on top of
latinization.

S
a

m
p

le
p

a
tt

e
rn

 2
D

 P
o

w
e

r
sp

e
ct

ru
m

S
p

e
ct

ru
m

ra
d

ia
l a

v
g

.
S

p
e

ct
ru

m
a

n
is

o
tr

o
p

y
1

D
 p

o
w

e
r

sp
e

ct
ru

m

ρ
L
∞

*

Latinized
dart throwing

Latinized
Lloyd relaxation

Our projective
dart throwing

Our projective
Lloyd relaxation

0.00914

0.73271
0.01512

0.63878

0.01120

0.70742
0.01503

0.57221

1

0
0 204f

c

25

-25
204f

c

1

0
0 3025

Figure 5.6: Spectral analysis of four different two-dimensional point sets and their one-
dimensional axis projections (shown as red and blue bars and graphs respectively), discussed
in Section 5.3. Note that the horizontal (frequency) scale is different for the one-dimensional
power spectrum plots and the radial average and anisotropy plots. The last rows report the
star discrepancy L∞

∗ and Poisson-disk radius ρ of each point set.

Finally, dart throwing produces inferior blue-noise distributions compared to Lloyd relax-
ation, as confirmed by both the two-dimensional and the projected one-dimensional spectral
plots. This is not unexpected, as this method is highly sensitive to the order in which the
samples are inserted. The additional constraints introduced by our projective extension
further reduce the probability of successfully inserting a candidate point. As a result, the
two-dimensional blue-noise spectrum of projective dart throwing suffers more from the

75 5.3. ANALYSIS

imposed constraints than that of Lloyd relaxation, and some low-frequency components
appear – the dark circle in the center of the spectrum is grey, not black. On the other hand,
latinized dart throwing produces good projective and non-projective spectra but also higher
anisotropy.

Three-dimensional analysis In Figure 5.7 we compare the power spectra of clas-
sic three-dimensional blue-noise patterns to the projective distributions produced by our
extended Lloyd relaxation. We see that classic, non-projective patterns (top row) have
inferior two-dimensional spectral properties and almost white-noise one-dimensional dis-
tributions. Our approach (middle and bottom rows) retains good quality in all specified
projective subspaces, although this comes at the cost of a slight quality degradation in the
three-dimensional spectrum.

0

1

0

1

0
0 0 0167 238 1024f

c
f

c

1

Frequency Frequency Frequency

3D spectrum

XYZ XY XZ YZ X Y Z

3
D

3
D

+
2

D
3

D
+

2
D

+
1

D

2D spectra 1D spectra

Figure 5.7: The three-, two-, and one-dimensional power spectra (columns) of 1,024-sample
patterns, averaged from 10 periodograms, produced by our projective Lloyd relaxation
with different projections enabled (rows). The spectra of the different same-dimensional
projections are color-coded.

Four-dimensional analysis In Figure 5.8 we plot the power spectra of four-dimensional
patterns produced by our extended Lloyd relaxation with projective blue-noise properties
imposed on all lower-dimensional subspaces. The characteristic blue-noise spectrum shape
in all projections demonstrates that our method generalizes to higher dimensions. Note
the different frequency scales of each plot, indicating a quality improvement in the corre-
sponding dimension over classic four-dimensional blue noise, as also seen in Figure 5.7.
However, imposing this many constraints leads to a more noticeable overall deterioration in

5. PROJECTIVE BLUE-NOISE SAMPLING 76

blue-noise quality compared to the three-dimensional case. The noise in the plots is due to
the relatively low number of periodograms averaged (ten).

0 22f
c

4D 3D 2D 1D

0 59f
c

0 2560
0

1

13f
c

Figure 5.8: The power spectra of a 256-sample 4D projective blue-noise point distribution,
averaged from 10 periodograms. Each plot shows the radial averages for all subspaces of
the same dimensionality: 1 in four, 4 in three, 6 in two, and 4 in one dimension.

5.3.2 Comparison to latinization

Having analyzed the spectral properties of our projective Lloyd relaxation and the latiniza-
tion method of Saka et al. [2007] in Section 5.3.1, we now conduct a closer comparison
between these two approaches. On a high level, our notion is a non-greedy, high-dimensional
generalization of latinization: Instead of first creating a blue-noise pattern and latinizing
it as a post-process, we interleave these two steps. Note that while our method handles
arbitrary dimensions, latinization only considers 2D patterns and their 1D axis projections.
We look at the average projective Poisson-disk radius w.r.t. our subspace-vector b:

ρ̃b =
1
n

∑
x∈X

min
y∈X

‖b◦ (x−y)‖/dmax
b , (5.8)

which is the projective generalization of the average Poisson-disk radius measure [Schlömer,
Heck and Deussen, 2011]. The minimal inter-sample distance is normalized by the optimal
packing distance dmax

b in subspace b, i. e., dmax
b = 2rmax

‖b‖1
. In the following, we will use ρ̃,

ρ̃x, and ρ̃y to denote the average radii in two dimensions and in the x- and y-axis projections
respectively, corresponding to projections using the vectors (1,1), (1,0) and (0,1).

For patterns with 512 samples, latinized dart throwing and our projective variant achieve
(ρ̃, ρ̃x, ρ̃y) = (0.801,1,1) and (ρ̃, ρ̃x, ρ̃y) = (0.806,0.917,0.921) respectively. Latinized
Lloyd relaxation produces (ρ̃, ρ̃x, ρ̃y) = (0.873,1,1), whereas our projective variant gives
the best balance with (ρ̃, ρ̃x, ρ̃y) = (0.909,0.998,0.999). In summary, latinization produces
perfect one-dimensional stratification, but at the cost of decreasing the uniformity in two
dimensions. Our approach optimizes for both measures simultaneously.

The above measures indicate that in two dimensions, latinized dart throwing outperforms
our projective variant. However, latinization has a negative effect on the progressiveness of
the algorithm, one of the major benefits using this algorithm. We analyze this in Figure 5.9
by comparing the average Poisson-disk radii for classical, latinized, and our projective
dart throwing and the Sobol low-discrepancy sequence [Sobol, 1994]. We plot the radii as
functions of the first n points in 512-sample sets, where the latinized pattern is computed

77 5.3. ANALYSIS

from the classical dart-throwing pattern after generating all samples. The plots reveal that
our projective dart throwing has the most consistent progressive performance in one and
two dimensions, while the latinized variant has good properties only for sample counts
close to the maximum. The classical dart throwing performs well in two dimensions, but its
one-dimensional projections are consistently poor. In contrast, the Sobol pattern is perfectly
latinized for power-of-two sample counts, but its two-dimensional radius is significantly
worse than those of the dart throwing patterns.

of samples64 512

.85

of samples64 # of samples 512 64 512

Classical

.55

1

.4

Latinized SobolOur projective

ρ̃ ρ̃ ρ̃x y

Figure 5.9: Average, generalized Poisson-disk radii (bigger is better) in two dimensions
and along the x- and y-axis projections (left to right) as functions of increasing sample
subset size for three dart throwing variants and the Sobol sequence. Please see Section 5.3.2

for further details.

5.3.3 Rotation

Our approach supports rotating the canonical coordinate axes, as long as they remain
orthogonal. Since our methods operate on a toroidal domain, this can be trivially achieved
by optimizing the pattern for the canonical axes (Figure 5.10, a) before rotating it by the
desired amount (Figure 5.10, b). The black cross in the resulting power spectrum is oriented
according to the rotation angle (Figure 5.10, c). The same approach can also be used in
higher dimensions, as the patterns tile in all dimensions.

5.3.4 Sample warping

Monte Carlo rendering and primitive placement often require warping samples according
to a specified importance function. In Figure 5.11 we compare the warping quality of our
projective Lloyd patterns against other patterns on a thin 2D curve, which can represent
e. g. an environment light source for rendering or a path on a (hyper-)plane for primitive
placement. To produce the warped patterns, we first create samples as described before,
i. e., using a uniform importance. We then warp these samples to follow a new importance
function (Figure 5.11, left) using the common approach of tabulating conditional and
marginal distributions along the x- and y-axis respectively [Devroye, 1986, p. 555]. Our

5. PROJECTIVE BLUE-NOISE SAMPLING 78

c)a) b)

Figure 5.10: Rotation of projection axes. a): Original pattern. b): Tiled and rotated pattern.
c): Resulting power spectrum.

pattern achieves the most uniform warped distribution, which in rendering translates to
a low integration error. This is due to its well-distributed projections along both axes, a
property that no other pattern in the comparison has.

Importance SLP CMJ Lloyd
Projective

Lloyd

Figure 5.11: Importance-driven warping of different 25-sample 2D patterns. Our projective
Lloyd pattern produces the best distribution, thanks to its good projections along both axes.

5.3.5 Lloyd convergence

We now analyze the convergence of different variants of our projective Lloyd optimization
on a two-dimensional point set X . In Figure 5.12 we plot the classic two-dimensional
cost c(X) (Equation 5.5) and the projective one-dimensional part cp(X)−w1 · c(X) of the
generalized cost (Equation 5.6), where w1 is the full (two-dimensional) space weight, over
an increasing number of iterations. We consider six variants of our algorithm: classic

79 5.3. ANALYSIS

non-projective, latinization, as well as variants with and without the weight fading and 1D
grid snapping optimizations from Section 5.2.2. A sixth graph shows the effect of latinizing
the pattern after 50 optimization iterations.

We see that all non-latinized variants minimize the classic two-dimensional cost, though with
slightly different speeds. Our projective variants achieve a final 2D cost only 0.76% worse
than that of the classical method (note the small vertical range in the left plot, [0.16;0.18]),
while also minimizing the one-dimensional costs. On the other hand, latinization brings
excellent projective properties but at the expense of increasing the total cost.

Unsurprisingly, the projective one-dimensional cost is not minimized by the classic Lloyd
relaxation. The weight fading increases the projective cost initially, but ultimately achieves a
substantially faster convergence. The one-dimensional grid snapping adds a further constant
runtime improvement.

0.16

0.18

1 100

7x10
-8

1 100Iterations Iterations
0 0

Classic Lloyd

C
o

st

C
o

st

Latinization

Fade, 1D snapNo fade, 1D snap

Fade, no 1D snapNo fade, no 1D snap

2D cost Projective 1D cost

Figure 5.12: Two- and one-dimensional cost plots at different iterations of classic and
latinized Lloyd relaxation as well as four different variants of our projective extension for a
pattern with 2048 samples (cf. Section 5.3.5). Different weight fading strategies are shown
in different colors, while solid and dashed lines denote the utilization of one-dimensional
grid snapping (Section 5.2.2).

5.3.6 Performance

The GPU implementation of our projective Lloyd relaxation performs slower than classic
Lloyd relaxation by a factor slightly smaller than m (the number of projection spaces).
While the performance of the one-dimensional relaxation is improved by the grid snapping
optimization, its computational cost is insignificant compared to the higher-dimensional
Voronoi tessellations. Our naïve implementation of projective dart throwing is about three
times slower than the classic method.

5. PROJECTIVE BLUE-NOISE SAMPLING 80

5.4 Applications

In this section we demonstrate the utility of our projective blue-noise patterns in rendering,
image reconstruction and primitive placement – applications that have traditionally relied
on specialized distributions.

5.4.1 Rendering

To analyze the effect of light source anisotropy, in Figure 5.13, top-left we plot the RMS
reference error of three patterns on a simple scene for varying numbers of samples. Classic
Lloyd relaxation (green) and SLP (blue) exhibit strong variation in quality. For power-of-
two sample counts, SLP is on par with our projective Lloyd pattern (red) which otherwise
performs consistently better. We speculate that classic Lloyd relaxation spuriously achieves
the same quality as ours when it occasionally produces patterns with good one-dimensional
projections. For a square area light source (Figure 5.13, bottom-left), the differences
are smaller, though our approach again consistently outperforms classic Lloyd relaxation.
Finally, in Figure 5.13 right we plot the RMS error as a function of the light source
anisotropy.

0

0.05

0

0.1

100%0%

0

0.15

8 16 25 32 Anisotropy

of samples

E
rr

o
r

E
rr

o
r

E
rr

o
r

8 16 25 32

of samples
0

0.1

100%0% Anisotropy

E
rr

o
r

Thin light

Lloyd

SLP

Our Lloyd

Square light

25 samples

16 samples

Figure 5.13: RMS error plots of the renderings of a scene using three different sample
patterns. We plot the error as a function of sample count (left plot) and area light source
anisotropy (right plot).

81 5.4. APPLICATIONS

G
ro

u
n

d
 t

ru
th

H
a

m
m

e
rs

le
y

C
M

J
S

L
P

L
lo

yd
P

ro
je

ct
iv

e
 L

lo
yd

a) Thin area light c) Square area lightb) Environment light

2.1x10-2

2.1x10-2

1.7x10-2

2.0x10-2

1.6x10-2

2.4x10-2

2.4x10-2

2.4x10-3

2.2x10-3

2.2x10-3

4.1x10-2

4.0x10-2

3.5x10-3

4.4x10-3

3.8x10-3

Figure 5.14: Rendering comparison of five sample patterns on three scenes with different
light sources, discussed in Section 5.4.1.

5. PROJECTIVE BLUE-NOISE SAMPLING 82

In Figure 5.14 we compare several patterns for Monte Carlo rendering of direct illumination
from three different types of extended light sources. The light sources used to produce the
renderings are (a) an anisotropic area light with a color gradient, 21 samples per pixel (spp);
(b) an importance-sampled environment light (see inset in Figure 5.14, b and Section 5.3.4),
25 spp; and (c) a square area light, 25 spp. We decorrelate the pixel estimators for all but the
SLP and CMJ patterns (as they employ a specialized scrambling themselves) via Cranley-
Patterson rotation [Cranley and Patterson, 1976]. We use (1) Hammersley [Kollig and
Keller, 2002], (2) correlated multi-jittered (CMJ) [Kensler, 2013], (3) scrambled Larcher-
Pillichshammer (SLP) [Kollig and Keller, 2002], (4) classic Lloyd relaxation (which was
slightly better than classical dart throwing), and (5) our projective Lloyd relaxation (which
was slightly better than our projective dart throwing) to sample the rectangular domains of
the area and environment light sources.

The visual and numerical results in Figure 5.14 indicate that our projective blue-noise
patterns outperform all others on thin area lights. SLP is the closest competitor on all scenes
and even slightly outperforms our patterns on the environment map scene. However the
pattern exhibits pixel correlation which is clearly visible in both the first and the second
scenes, as also observed by Kensler [2013]. The environment map in the second scene
features thin curved lights that are importance sampled as described in Section 5.3.4. In
Figure 5.14, c we observed that the blue-noise patterns perform slightly better than the
classical optimal methods also on a square area light source.

5.4.2 Image reconstruction

Isotropic

Classic Lloyd Projective Lloyd

Anisotropic

Classic Lloyd

Ground truth

Projective Lloyd

Figure 5.15: Reconstructions of an isotropic (left two images) and an anisotropic (right

images) two-diemsnional zone plate function using a classic blue-noise pattern and our
projective blue-noise pattern.

In Figure 5.15 we compare the performance of classic Lloyd relaxation and our projective
extension for reconstructing two-dimensional images. We test a two-dimensional zone plate
function with a 4-pixel-wide Lanczos filter (512×512 pixels = 262,144 samples) as well as a
modified anisotropic variant (512×16 pixels = 16,384 samples). On the isotropic zone plate

83 5.5. DISCUSSION

(left), the two patterns perform similarly. However, our pattern significantly outperforms
classic blue noise on the anisotropic variant (right), demonstrating the importance of having
well-distributed one-dimensional projections.

5.4.3 Primitive placement

Finally, we demonstrate the utility of our three-dimensional projective blue-noise patterns
for primitive placement. Our approach enables arranging objects in three dimensions in a
way that is artistically pleasant [Hiller, Hellwig and Deussen, 2003], has semantic structure
along its axes [Reinert, Ritschel and Seidel, 2013], and fills multiple two-dimensional
projection subspaces uniformly. Figure 5.16 shows one such arrangement where primitives
are sorted by size, brightness, and orientation (i. e., direction of the primitive’s first principal
component) along the x-, y-, and z-axis respectively. The distances in the projective Lloyd
cost (cf. Equation 5.6) have been computed on a non-toroidal domain by taking the spatial
extent of the objects into account [Reinert, Ritschel and Seidel, 2013]. When looking at the
two-dimensional projection along an axis, the distribution remains uniform and shows two
aspects of the data, e. g., size and brightness when looking down the z-axis.

5.5 Discussion

Compared to low-discrepancy sequences, our patterns are much more costly to construct.
Compared to the cost of common blue-noise sampling approaches, however, the overhead is
small and the produced patterns are of almost the same quality in the full-dimensional space.
For numerical integration, we have found our projective two-dimensional Lloyd relaxation
to perform consistently better than most other patterns in all our experiments. Nevertheless,
our patterns can be slightly outperformed by low-discrepancy sequences that achieve perfect
one-dimensional stratification for certain sample counts. We have only demonstrated our
method for up to four dimensions; however our results indicate that it generalizes to higher
dimensions required in full global illumination rendering.

5. PROJECTIVE BLUE-NOISE SAMPLING 84

Projective

3D blue noise2D blue noise3D blue noise

F
re

e
 v

ie
w

X
Y

 p
ro

je
c

ti
o

n
Y

Z
 p

ro
je

c
ti

o
n

X
Z

 p
ro

je
c

ti
o

n

Brightness

S
iz

e

Orientation

S
iz

e

Brightness

O
ri

e
n

ta
ti

o
n

Figure 5.16: Using three-, two-, and our projective three-dimensional blue-noise patterns
for distributing primitives ordered by brightness, size, and orientation along the x-, y-, and
z-axis, respectively.

Chapter 6
Animated 3D Creatures

from Single-View Video by
Skeletal Sketching

Figure 6.1: Our approach analyzes two-dimensional sketches (colored lines in video frames

of last column) over a sparse set of key frames (rows) of a two-dimensional video (last

column) to produce an animated and textured, three-dimensional mesh (left two colums).

85

6. ANIMATED 3D CREATURES FROM SINGLE-VIEW VIDEO BY SKELETAL SKETCHING 86

6.1 Introduction

The acquisition of dynamic three-dimensional content requires either dedicated scanning
hardware, such as range sensors [Izadi et al., 2011], multi-camera setups [Matusik et al.,
2000], or large amounts of manual effort [Maestri, 2006] often not accessible to casual
users. Simpler means to convert a common monocular video into an animated and textured
three-dimensional surface would provide new opportunities in display, manipulation, and
transmission of visual content.

Multi-view reconstruction, e. g., from a large set of general community images or videos
[Snavely, Seitz and Szeliski, 2006], provides an accessible means for the reconstruction of
static geometry. Existing approaches reconstruct static models [Debevec, Taylor and Malik,
1996; Sinha et al., 2008] from multiple views using Structure from Motion (SfM) techniques.
Extensions for moving or deformable objects [Cootes et al., 1992; Bregler, Hertzmann and
Biermann, 2000; Akhter et al., 2008] were proposed, but the challenge to establish reliable
correspondences between the different views remains difficult. While for rigid shapes a
single linear transformation suffices, non-rigid content requires complicated space-time
regularizations.

Inspired by a recent user-assisted reconstruction technique [Chen et al., 2013b], in this
chapter we develop a sketch-based acquisition approach for the reconstruction of non-rigid
shapes from a single view video. The premise of our approach is that the animated three-
dimensional object can be modeled as a union of deforming generalized cylinders. The
approach is guided by a user sketching a set of “limb strokes” indicating the axis of a
generalized cylinder in a couple of key frames. The core of our method is to propagate this
annotation from key frames to all video frames. Our method bypasses the meticulous effort
required for specifying dense correspondences used in common SfM techniques. Instead,
“limb strokes" are used to fuse the silhouettes of all video frames into a consistent, animated,
three-dimensional shape. Combining different silhouettes does not only result in animation,
but also resolves shape details that are not revealed in a single frame. The procedure can be
performed at interactive rates, allowing the user to refine the result until the desired quality
is achieved.

Our results demonstrate extraction of animated, three-dimensional shapes such as animals
in motion from video with applications including cloning, reposing, novel view synthesis,
texture transfer and three-dimensional printing.

6.2 From skeletal sketches to animated shapes

6.2.1 Overview

Input to our method is an arbitrary video sequence depicting a moving creature and a
set of strokes that the user draws on top of a sparse set of key frames. Each stroke is
drawn alongside one body part of this creature, representing a deforming “limb” potentially
connected to other limbs. Users are free to draw as many strokes as they want but typically

87 6.2. FROM SKELETAL SKETCHES TO ANIMATED SHAPES

each non-branching body part can be drawn in a single stroke. Every stroke is associated
with a label and the user is required to draw consistently labelled strokes in all key frames.
Our limb strokes are conceptual and do not necessarily have a biological meaning: As
long as a creature’s body part can be represented by a single generalized cylinder, i. e.,
without a branch, it can be drawn with a single stroke. We assume that the limbs observed
in all frames deform but exhibit the same connectivity, although not all limb strokes are
necessarily entirely observable in all frames. We shall show this rather simple user input
suffices to enable the reconstruction of an animated mesh.

The four main components of our approach are stroke tracking, segmentation, cylinder
fitting, as well as texturing (Figure 6.2). A simple user interface (Section 6.2.2) provides the
necessary input.

Stroke tracking

Input video & strokes Texturing

Segmentation Cylinder �tting

Output result

Figure 6.2: An overview of our approach with the dependencies of the individual steps.

Stroke tracking turns the temporally sparse limb strokes defined in a few key frames
into temporally dense, coherent strokes for all frames. Section 6.2.5 describes tracking
of strokes that form a skeleton over a video sequence. We exploit the connectivity and
spatio-temporal structure to track complicated structures such as limbs with occlusion and
pose changes over long frame ranges, such that for unoccluded parts often a single stroke is
sufficient to be tracked over a typical sequence.

Segmentation uses the temporally densified strokes from tracking and the video to
consistently segment foreground from background in all video frames, described in Sec-
tion 6.2.6. Again, we exploit the space-time structure of the two-dimensional strokes to
simplify the problem and make a consistent segmentation over many video frames from
sparse input.

Cylinder fitting uses the foreground segmentation in all video frames to fit animated,
three-dimensional cylinder geometry around each limb stroke. Section 6.2.7 explains how

6. ANIMATED 3D CREATURES FROM SINGLE-VIEW VIDEO BY SKELETAL SKETCHING 88

to use marching in two-dimensional masks to implement a voting scheme to robustly find
cylinder radii and three-dimensional paths.

Texturing finally utilizes the segmentation and video frames to assign texture colors to
the animated, three-dimensional cylinders (Section 6.2.8).

6.2.2 User interface

The main user interface elements are the limb strokes suggesting the two-dimensional
projection of a non-branching, generalized cylinder-like shape part. Identical limb stroke
labels are identified in different frames by the same stroke color. Not all limb strokes need
to be drawn in all key frames but the user is required to draw the full skeleton in the first
one. The results of the stroke tracking step (Section 6.2.5) are used to complete and display
the missing strokes in subsequent frames. The user can review the tracking results at any
time using a time slider and insert a new key frame correcting only the inaccurately tracked
strokes. Once the user has drawn a stroke in one key frame, for subsequent stroke sketches
we display a circle with the maximal limb length found (Figure 6.3, limb length hint) to
facilitate sketching of consistent stroke lengths, particularly for (partially) occluded limbs.
Each limb stroke comes with a direction state that determines if the stroke points towards or
away from the viewer which can be altered with a click and is detailed in Section 6.2.4 and
Section 6.2.7.

Figure 6.3: Our user interface showing the individual control elements for frame selection
and stroke drawing. The functionality of each element is shown in the labels.

6.2.3 Preprocessing

Initially, the video sequence is resampled to a fixed resolution of 512×512 pixels for all
steps to speed up the subsequent computations and allow identical parameter settings for all

89 6.2. FROM SKELETAL SKETCHES TO ANIMATED SHAPES

video sequences. Cylinder fitting (Section 6.2.7) operates on a filtered variant of the scaled
video to facilitate video segmentation: a five-times-repeated bilateral filter with a spatial
radius of 10 pixels and a range radius of 0.02 (cf. Figure 6.5, a).

6.2.4 Stroke processing

Strokes are sequences of vertices defined at two-dimensional image locations. Each stroke
of label l ∈N

+ drawn by the user in frame f ∈N
+ initially may consist of a varying number

of vertices, defined by a set X̂ l, f = {x̂
l, f
1 , x̂

l, f
2 , . . .} with x̂

l, f
i ∈ R

2. As our subsequent steps
require consistent vertex counts in all key frames, the strokes need to be resampled with an
approximately equal inter-vertex distance along the original stroke. To this end we employ a
linear resampling per label l with a vertex count nl ∈N

+ depending on the maximum stroke
length in all frames. A vertex sequence is resampled to a set X l, f = {x

l, f
1 ,x

l, f
2 , . . . ,x

l, f
nl

∈R
2}

such that dX̂ l, f (xi,xi+1)≈ c,∀i ∈ [1,nl −1] with dX̂ l, f as the length along stroke X̂ l, f . Stroke
tracking (Section 6.2.5) uses an approximate inter-vertex distance of c = 10 pixels while
segmentation (Section 6.2.6) and cylinder fitting (Section 6.2.7) operate on vertices with
approximately c = 1 pixel distance. Ideally, stroke resampling should take texture features
into account; due to limb deformations and occlusions matching those features however is
not feasible in this step.

As we require all limb strokes to be connected to other limb strokes, they share common
start- and/or end-vertices, resulting in a connection graph of strokes. We arbitrarily define
the first vertex of the first limb stroke to be the root vertex, turning the connection graph
into a connection tree.

We use a simple, heuristic symmetry detection on the strokes drawn by the user to bootstrap
some of the subsequent steps. Two limb strokes drawn in the same key frame that share a
connecting stroke vertex are defined to be symmetric if their stroke lengths differ by less
than 10% and if the y-coordinates of their outer stroke vertex differ by less than 30 pixels.
The limb associated with the stroke of higher label number is heuristically chosen to be the
outside limb, further away from the viewer than the inside one. This decision can be flipped
for both limbs using the limb direction buttons of the user interface.

6.2.5 Stroke tracking

Input are temporally sparse, two-dimensional strokes in some key frames. Output are dense
“space-time strokes”, i. e., two-dimensional image locations for every limb stroke vertex in
every frame. Space-time strokes are tracked on the range between key frames forward and
backward independently (cf. Figure 6.3). This potentially contradicting information of two
overlapping ranges for each point in time is combined in a blending step.

Without loss of generality, we will next describe the forward tracking of all stroke vertices
for one range. Starting from a key frame k (Figure 6.4, a) every frame in the range is tracked
sequentially. The current frame is denoted by f whereas the previous frame in forward
or backward tracking direction is indexed by f ± 1. For every frame f , new candidate

6. ANIMATED 3D CREATURES FROM SINGLE-VIEW VIDEO BY SKELETAL SKETCHING 90

positions x f ,l for every vertex of every stroke l are generated and combined into stroke
candidates X

f ,l
. For each of the stroke candidates we compute a unary cost u(x) : R2 → R

encoding appearance constancy and a binary cost b(x,y) : R2×R
2 →R encoding kinematic

constraints between neighboring vertices of a stroke. Hence we can compute the cost of a
candidate stroke X

l, f
as

c(X
l, f
) =

nl

∑
i=1

u(x
l, f
i)+λ

nl−1

∑
i=1

b(x
l, f
i ,x

l, f
i+1), (6.1)

where λ ∈ R constitutes a relative weight between unary and binary terms. Finally, the best
sequence of candidates that globally minimizes Equation 6.1 is selected. We will detail
every step in the following.

Candidate generation Candidate vertex positions xl, f for the current frame are gener-
ated in a small window around the vertex position xl, f±1 of the previous frame (Figure 6.4,
b). Two types of candidates are produced: Occluded and non-occluded ones. Non-occluded
candidates are placed for every pixel in a search window of 64×64 pixels around the vertex
position of the previous frame. Additionally, 100 occluded candidate vertex positions are
placed on a regular grid in the identical search window, allowing occluded and non-occluded
candidates to potentially use the same position. Non-occluded candidates that fall outside
of the image are removed, whereas occluded candidates are allowed to fall outside the
image, enabling tracking of strokes partially outside of the image. Each candidate stores its
occlusion type for later stages.

Unary cost The unary cost (cf. Equation 6.1) models appearance consistency between
frames (filled circles and squares in Figure 6.4). To this end, we compare a neighborhood
patch N of size 32×32 pixels around each non-occluded candidate position to a patch of
the same size around the vertex position in previous frames using a sum of squared pixel
color distances (SSD), i. e.,

u(x) = min
T∈T×i∈[1,3] ∑o∈N

‖a f±i(T (x+o))−a f (x+o)‖2
2,

where a f (x) gives the pixel values at position x in frame f , T ∈ T is single transformation
of a set of transformations T and i is a frame distance detailed below. SSD is used instead
of normalized cross correlation (NCC) as the differences in appearance are small between
frames and mainly due to deformations rather than illumination changes. Further, SSD can
trivially be parallelized whereas NCC requires additional computations.

In particular, we consider variants in template and orientation when taking this difference,
defined as a set of rigid transformations T. First, the difference to the patch around the
three last non-occluded vertex positions is enumerated. Second, we allow for 10 degrees of
positive or negative template rotation in seven steps. The unary cost of the candidate is then
the minimal difference over all 21 possible variants. These rigid transformations are applied
per vertex and their combination allows for a wide variety of non-linear deformations.

91 6.2. FROM SKELETAL SKETCHES TO ANIMATED SHAPES

Occluded candidates do not have an apparent unary cost as the appearance constancy for
occlusions cannot be evaluated directly from the video frames. In order to select an occluded
candidate the unary cost should reflect a certain occlusion penalty cost that allows these
candidates to be chosen over non-occluded ones that match poorly. To this end we assign
a unary cost of 150% of the previous best non-occluded matching cost to each occluded
candidate. Combining occlusion states with template comparison makes the system robust
against occlusions that occur frequently e. g., on legs, and offers a solution to the well-known
“template update”-problem [Matthews, Ishikawa and Baker, 2004].

S
tr

o
ke

s
fr

a
m

e
 t

C
a

n
d

id
a

te
s
t±
1

S
tr

o
ke

s
fr

a
m

e
 t
±
1

U
n

a
ry

 a
n

d
 b

in
a

ry
 c

o
st

s
t±
1

C
u

t
±
1

a) b)

c) d) e)

N
o

n
-o

cc
lu

d
e

d
 c

a
n

d
id

a
te

O
cc

lu
d

e
d

 c
a

n
d

id
a

te

Figure 6.4: Stroke tracking of a stroke from frame t to t ± 1: The solution of frame
t initializes candidates for frame t ± 1 (a and b). Non-occluded (circles) and occluded
(squares) candidates are generated for frame t ±1 (b and c). Costs are visualized as grey
values on candidates and on edges for an abstract stroke domain (b – d). The path with
lowest cumulative cost is found (d) and yields the solution for frame t ±1 (e). Note that,
although being unoccluded, the green marker is chosen from the set of occluded candidates
as all non-occluded candidates lead to higher costs.

6. ANIMATED 3D CREATURES FROM SINGLE-VIEW VIDEO BY SKELETAL SKETCHING 92

Binary cost The binary cost (cf. Equation 6.1) consists of two components: distance

and direction preservation (lines in Figure 6.4, b – d), defined as

b(x,y) = φ(x,y)+θ(x,y).

Distance preservation measures the change in length for each candidate pair relative to the
original distance in the key frame as

φ(x,y) =
∣∣∣‖x−y‖2 −‖xk −yk‖2

∣∣∣ ,

with xk,yk as the respective vertex position in key frame k. It encodes topology and isometry
knowledge put into the system through user interaction and adds user-given semantics not
available, e. g., to optical flow. Orientation preservation measures the change in orientation
and distance of each candidate pair from the current to the previous frame as

θ(x,y) =
∥∥∥(x−y)− (x f±1 −y f±1)

∥∥∥
2
,

where x f±1,y f±1 are the respective vertex positions of the previous frame. It encodes
velocity constraints and enforces smooth movements but also penalizes large distance
changes between frames.

Candidate selection Candidate selection chooses one candidate out of the occluded
and non-occluded candidates for every stroke vertex that globally minimizes the cumulative
unary and binary costs of Equation 6.1, i. e., it computes

X l, f = argmin
X

l, f∈C
c(X

l, f
),

where C is the set of all possible stroke candidates. Ideally, all combinations of all candidate
positions should be evaluated but the sheer amount of candidates makes the optimization
prohibitively expensive as the complexity is quadratic in the number of candidates. To
enable an efficient optimization we prune the non-occluded candidates down to a count of
five constituting the dominant minima of the unary costs. We found that although being an
approximation this pruning strategy does not noticeably degrade our result. As distance and
direction preservation pose important constraints on our optimization we weight them with
a factor of 10 relative to the unary and binary distance cost, i. e., λ = 10. The optimized
result for each frame becomes the initial result governing the candidate generation of the
next frame (Figure 6.4, d). Globally optimizing a one-dimensional sequence of labels with
unary and binary costs can efficiently be solved using dynamic programming as done e. g.,
by Buchanan et al. [2006]. In contrast to their approach that regularizes feature tracks over
time, we employ dynamic programming to regularize in space, i. e., along our strokes.

In general we do not only want to select candidates for a single stroke but for all strokes of
the connection tree in a single frame at once. Without loss of generality we can employ the
connection tree to run a global candidate selection on all strokes simultaneously, starting
from the tree’s leaf vertices up to the root vertex, to get the globally optimal candidate
choice.

93 6.2. FROM SKELETAL SKETCHES TO ANIMATED SHAPES

We apply special treatment to those vertices that are likely to be occluded by other parts.
Symmetric limbs flagged to be further away from the viewer (Section 6.2.4) are presumably
(partially) occluded by their symmetric counterpart in many frames. Hence our optimization
is allowed to only choose from occluded candidates for stroke vertices of these strokes that
are closer than 20 pixels away from any other stroke vertex. In some cases these limbs can
however be fully occluded in all frames and for such we add the vertex position offsets of
the symmetric, inward-facing limb also to the vertex positions of the outward limb.

The spatial connections of the stroke vertices form a Markov chain. Including temporal
connections to other frames could allow for global optimization in both, spatial and temporal,
directions, resulting in a Markov random field model. As stroke tracking is based on
a cost depending not only on the last but all previous frames up to the last key frame
candidate selection would become prohibitively expensive. Taking into account all previous
frames leads to an excessive number of temporal connections between frames making an
optimization of our non-submodular costs too expensive to be optimized with interactive
performance.

Blending After all ranges have been tracked, they need to be combined into one con-
sistent sequence. This happens for all forward-backward pairs of ranges between two key
frames in isolation. Input to this step are two ranges that overlap in some frames, one from
the forward and one backwards in time. Output is a single, consistent track. To preserve
motion and intrinsic distances, we blend the orientations of each limb stroke segment
relative to its parent using spherical linear interpolation (SLERP) [Shoemake, 1985] with
a linear interpolation of the root vertex position. The weight given to a range at each
vertex at each point in time decreases with the frame distance to the respective key frame.
An alternative way of blending between the two frame ranges could incorporate texture
information, i. e., using the unary costs of Equation 6.1. However, the resulting weights
would not necessarily be smooth over time and could lead to noticeable jumps in the motion.
Computing matching-based weights in a temporally smooth way, hence, remains future
work.

6.2.6 Segmentation

As now all strokes are known in all frames, we next segment the foreground of the filtered
input video and, in a second step, label the foreground such that every pixel belongs to
exactly one stroke.

Foreground segmentation We employ cost-volume filtering [Rhemann et al., 2011]
using the previously generated space-time strokes as input. To this end we build two (soft)
foreground RGB histograms with 503 bins (Figure 6.5, b): one of all pixel colors of the
stroke vertices in all frames of the filtered video (colored strokes in Figure 6.5, a) and one
build from a set of background vertices in all frames (white stroke in Figure 6.5, a). The
background stroke is found as vertices of a slightly offset bounding box of the limb strokes.
Softness is achieved using a Gaussian blur with a σ of 2. The cost volume is blurred (we

6. ANIMATED 3D CREATURES FROM SINGLE-VIEW VIDEO BY SKELETAL SKETCHING 94

typically use 2×2 pixels for our resampled video) in space and a binary foreground mask
(Figure 6.5, c) is extracted with a threshold at 0.75. We use this slightly higher threshold to
allow for larger segmentations that can later be consolidated by the cylinder fitting step. To
improve segmentation stability for tracking errors, the last 20 % of the stroke vertices on
each terminal limb stroke are skipped. A terminal limb stroke is a stroke with no further
child strokes in the connection tree. This helps, as such strokes are susceptible to be drawn
too long or are occluded near the ground, e. g., by the grass in Figure 6.1, or can be difficult
to segment due to contact shadows. As the user is required to draw the full skeleton in the
first key frame the initial histograms resemble a valid color distribution of the object.

Stroke segmentation Each pixel of the foreground segmentation does not belong to
all limbs and drawing radius samples from this segmentation directly prevalently leads
to overestimation. Hence, in a second step the foreground is partitioned such that every
foreground pixel belongs to exactly one stroke. This second segmentation step is done
independently in all frames. For every stroke vertex we march the image orthogonal to the
stroke until we leave the foreground mask or the image. For every pixel visited during the
walk we keep a reference to the closest stroke and draw a line from the stroke to the radius
sample with a depth value corresponding to this distance (Figure 6.5, d). This can be done
efficiently on a GPU using splatting of sufficiently thickened stroke IDs and z-buffering of
distances. Note that this is slightly different from a generalized Voronoi decomposition of
the skeleton in terms of Voronoi sites as distances are computed strictly orthogonal to the
limb strokes, the marching direction of the cylinders.

6.2.7 Cylinder fitting

Cylinder fitting takes as input the dense, two-dimensional space-time strokes as well as the
stroke segmentation. Output is one deforming generalized three-dimensional cylinder for
each limb stroke represented as a one-dimensional table of three-dimensional positions (the
path function), as well as a two-dimensional table of radii for every direction at all stroke
positions (the radius function). The radius function (Section 6.2.7) and three-dimensional
direction (Section 6.2.7) are found independently (Figure 6.6). Finding the correct radius in
a single frame can fail due to self-occlusions, especially in the vicinity of limb joints, and
segmentation errors. Hence, consolidation of segmentation results of all frames is used to
compute consistent radii.

Radius fitting

To account for incautiously drawn terminal limbs of creatures, such as legs or heads, we
initially extend every stroke along its start and end direction in two dimensions by an
additional 10 % before all further processing. This approach potentially creates samples
outside of the segmentation, but the final validation step eliminates invalid samples.

Next, the radius function at every vertex is found independently (Figure 6.6, a and b) before
combining them into consistent radius samples along the stroke (Figure 6.6, c). We will now

95 6.2. FROM SKELETAL SKETCHES TO ANIMATED SHAPES

Soften

Soften

Foreground histogram

C
o

st
 V

o
lu

m
e

 F
il

te
ri

n
g

Background histogram

a)

d) c)

b)

Figure 6.5: Segmentation. a): The foreground (colored lines) and background (white,

stippled line) strokes are shown on top of the filtered video. b): The resulting foregound and
background color histograms are built and smoothed, c): and used for cost-volume filtering
[Rhemann et al., 2011]. d): Stroke segmentation separates the segmentation results into a
single, disjoint segmentation mask per stroke and frame.

describe this procedure for a single vertex. In the work of Chen et al. [2013b] the user has
to specify the radii explicitly; in contrast our method automatically combines segmentation
results of all video frames to fit consolidated radii. While our approach could benefit from
explicitly drawn radii it would make the interface more complicated and especially at limb
joints specifying the correct radius is fairly difficult and requires careful drawing. Hence,
correcting false radii using additional strokes remains future work.

Marching The full radius function is computed from a radius sample pair: One radius
in the normal direction of the limb stroke and one in the opposite one. In a subsequent
step, these many sample pairs are converted into a full 360-degree radius function. We will
describe this procedure for the radius samples drawn from the normal direction without loss
of generality, both are performed equally.

Starting from a stroke vertex position we march orthogonal to the stroke direction [Chen et al.,
2013b] until we reach a pixel not belonging to the foreground. Each such walk results in a
vote for a radius. If on the way we encounter a part belonging to a different stroke we reject
this sample. Additionally, radius samples at image boundaries or smaller than a threshold
of 3 pixels are rejected. Drawing radii in all frames results in a distribution of different
two-dimensional radii votes: one, potentially rejected vote per frame. To obtain a robust
radius estimation for every vertex from this distribution, we use the robust 25 %-percentile
of the accepted radius samples for the vertex itself, its four neighbor vertices along the stroke

6. ANIMATED 3D CREATURES FROM SINGLE-VIEW VIDEO BY SKELETAL SKETCHING 96

Time

S
tr

o
k

e
 v

e
rt

ic
e

s

Radius Cum. radius probability

Radii

a) b) c)

Figure 6.6: Cylinder fitting: For every stroke vertex (circle) in each frame orthogonal
marching finds the closest background pixel which is then counted as a vote for a radius
(blue line). Each frame produces a different radius vote over time, here shown as a radius
function of each stroke vertex. Taking a robust minimum finds the effective radius for every
stroke vertex, producing a radius function along the stroke (thick blue vertical line). In
practice, two radius functions are computed for each vertex (only shown for one vertex).

and vertices of the symmetric limb, if applicable. Percentiles help to resolve false radius
samples due to overlapping limbs or erroneous segmentation. If too many radius samples
are rejected per vertex (more than 90%), we flag the radius as being invalid. This happens
if a limb stroke is stuck inside the body of a creature or if segmentation fails permanently.
Assigning a radius for these vertices is left to filtering and in-painting along the stroke.

Filtering and in-painting Next, invalid radius samples are in-painted from nearby valid
ones. Also, the radius function is slightly blurred with a σ of 10 % of the total stroke length
accounting for noise in the percentile segmentation along the stroke (Figure 6.7, b).

Capping All cylinder ends that are connections between limbs are capped, i. e., the radii
at the start and end are blended to 0 in an interval of 20 samples around the ends.

Validation In-painting, blurring, and capping modifies the radius samples, resulting in
cylinders that potentially fall outside of the segmentation. Also the robust percentile is
prone to a slight overestimation of the correct radius. However, we can be more sure about
radii in the key frames. Therefore, we iterate over all key frame foreground masks, and
make sure no vertex falls outside this mask in any key frame (Figure 6.7, c).

Densification Finally, the radius pair is converted into a dense radius sample function
for all directions at every stroke vertex by fitting an ellipse (Figure 6.8, a). Simply using the
average of the normal and counter-normal radii (pink and blue) for both, major and minor,
ellipse radii (green and red), yields a circular cross-section (Figure 6.8, b). For many shapes

97 6.2. FROM SKELETAL SKETCHES TO ANIMATED SHAPES

Robust radius over time Radius blurred along stroke Validation

a) b) c)

Figure 6.7: a): Estimating the radius pair at every stroke vertex can be noisy and has errors
such as at the ends, which are not part of the limb strokes, but added automatically (white

part). b): Smoothing is used to reduce noise. Outliers are detected and in-painted along the
stroke. c): Finally, the radius function is fitted to the mask in one reference frame to refine
the shape, in particular at the end.

such as an animal torso, where the spine is located rather at the border of the cylinders, a
compressed ellipse provides a better shape approximation. Thus, we multiply the minor
ellipse radius with the ratio of the smaller of the two normal radii divided by the larger one
(Figure 6.8, c). As this leads to flat cross sections in case of close to zero minimum normal
radii, we average both strategies to obtain our final minor ellipse radius: half the average
and half the ratio (Figure 6.8, d).

3

26

9

66
4

a) b) c) d)

6

Figure 6.8: Ellipse densification. The final radius function (d) is found as the mean radius
function of the average (b) and a scaled radius function (c) of the two radius samples (a).

Path fitting

The x- and y-coordinate of the generalized cylinder path function result from the stroke
tracking step (Section 6.2.5). Assuming approximately constant object-to-camera distance
throughout the entire video sequence, these coordinates immediately constitute the x- and
y-coordinates for each stroke vertex. The missing z-component is found using the kinematic
information as follows (cf. Figure 6.9): We detect limb strokes that leave the image plane
with the aid of their projected lengths. A limb stroke with a substantially shorter projected
length (50 % of its maximum length) likely has rotated outwards of the image plane. For

6. ANIMATED 3D CREATURES FROM SINGLE-VIEW VIDEO BY SKELETAL SKETCHING 98

such frames we use inverse perspective for the known three-dimensional length to compute
its out-of-plane rotation. To obtain the final z-values we use a polynomial of degree two
that interpolates the start position as well as its gradient and exhibits the correct three-
dimensional length. To determine if we have an increasing or decreasing z-component
we use the user-defined limb direction flag. A temporal smoothness assumption allows
propagating this flag from the sparse set of key frames to all frames: When a limb moves
smoothly from an in-plane direction to an out-of plane direction facing the viewer, it is
assumed to continue facing the viewer. Finally, limbs that are found to be symmetric get
a z-offset depending on their thickness. For this we calculate the average thickness of the
lower 50 % of the limbs and use this offset with a factor of 4 to move the limbs in positive
or negative z-direction respectively. The previously mentioned limb direction decides on the
sign of this offset. This reliably offsets the limbs of animals at hip- or shoulder-type joints
and appears to be a suitable heuristic for the animals used in this chapter.

Frame 1

Frame

Screen plane

Screen plane
G

e
o

d
e

si
c

le
n

g
th

2 3 41
2D

3D

Frame 2 Frame 3 Frame 4

Figure 6.9: The length of each stroke in image space varies for strokes that change their
three-dimensional direction such as the tail. To the right we plot the geodesic length for
all four frames. We use this information to add three-dimensional out-of-plane rotation of
strokes to the two-dimensional shape (bottom).

6.2.8 Texturing

Texturing uses the generalized cylinders as well as the video sequence. It outputs a cylindri-
cal texture for each limb cylinder. Blending textures from different frames has shown to
be counter-productive due to slight but apparent shading and deformation changes. Hence,
we chose a single frame of the video to obtain the texture for all limbs. We heuristically
always pick the first key frame as it contains all limbs by definition. To obtain the texture for
each cylinder we project the cylinders vertices into the video frame and calculate a binary
reliability. Unreliable pixels are those that fall outside of the foreground segmentation, pixels
at grazing angles of the cylinders, and pixels marked as being occluded. These unreliable
pixels are filled with the closest reliable pixels using push-pull in-painting [Gortler et al.,
1996]. To allow for wrap-around of the in-painting, it is performed on an unwrapped
cylinder that respects a toroidal parametrization. Occluded limbs use the texture of their
symmetric, non-occluded counterpart for texturing. Texturing uses frames from the original
video in full resolution to produce textures with maximum detail.

99 6.3. RESULTS

6.2.9 Implementation

To ensure interactive performance, most steps are implemented using parallel graphics
hardware. Candidate selection of the stroke tracking governs the complexity of our algorithm
with a running time of 20 to 400 ms per frame depending on the skeleton complexity. All
other steps can be parallelized over all stroke vertices and strokes in all frames resulting in a
running time of less than 5 ms. The initial tracking of a typical skeleton in a video sequence
of 64 frames can be processed in 20 to 30 seconds, whereas the number of frames to be
tracked decreases for subsequent key frames. Each video was processed in under 5 minutes.
The resulting mesh can be rendered and animated at several hundred frames per second.

6.3 Results

We report qualitative results in form of three-dimensional mesh animations from videos
that allow for certain applications as well as quantitative results in terms of a user study,
measurement of reconstruction error for synthetic scenes, and a comparison to previous
work. On average 4.39% of all strokes in all frames were drawn to reconstruct the sequences;
further stroke statistics can be seen in Table 6.1.

Table 6.1: Stroke statistics. Stroke percentage is the ratio between the number of drawn
strokes to the number of all strokes in all frames.

Sequence Frames Key frames Strokes Stroke percentage

Cheetah 64 4 19 4.24 %
Dog 38 3 11 4.13 %

Elephant 45 7 19 4.92 %
Greyhound 88 5 19 3.08 %

Kangaroo 65 4 17 3.26 %
Zebra 47 4 12 4.25 %
Horse 60 5 14 3.33 %
Snake 49 3 3 6.12 %
Camel 60 5 16 3.81 %

Giraffe 29 4 16 6.80 %

Average 54.5 4.4 14.6 4.39 %

Qualitative results Our primary results are three-dimensional mesh animations from
skeleton sketches (Figure 6.10 and Figure 6.11). This allows for typical applications such
as texture transfer (Figure 6.12), re-posing (Figure 6.13), and cloning (Figure 6.14).

6. ANIMATED 3D CREATURES FROM SINGLE-VIEW VIDEO BY SKELETAL SKETCHING 100

Figure 6.10: Results for different video sequences (columns) and their key frame strokes
(colored strokes). We always show the animated three-dimensional surface at the frame of
the video from one view similar to the video and a different one. The total sketching time
for such input is below 5 minutes.

101 6.3. RESULTS

Figure 6.11: Results for different video sequences (columns) and their key frame strokes
(colored strokes). We always show the animated three-dimensional surface at the frame of
the video from one view similar to the video and a different one. The total sketching time
for such input is below 5 minutes.

6. ANIMATED 3D CREATURES FROM SINGLE-VIEW VIDEO BY SKELETAL SKETCHING 102

Figure 6.12: Transfer of an overlay texture from one frame (a) to another frame (b). Please
note how occlusions are realistically handled. c, d): Transfers of entirely different textures.

Figure 6.13: a): Original frame. b, c, d): Posed results using the shown colored strokes.
Please not the Kangaroo’s tail leaving the image plane as it was drawn shorter (c).

Our output meshes allow to be fed directly to three-dimensional printers such as the
MakerBot Replicator 2 (Figure 6.15).

While the quality of our animated meshes does not meet high-quality production needs,
we think that they suffice for most casual applications. To obtain high-quality meshes our

103 6.3. RESULTS

Figure 6.14: Creature cloning (cf. Figure 6.1, Figure 6.10, and Figure 6.11) in new views
and new poses.

results can be used as an initial solution for further automatic and manual mesh processing,
offering a valuable source for which the vast efforts of tracking as well as shape fitting
have already been carried out and only small corrections and shape details need to be
added. The methods of Ji et al. [Ji, Liu and Wang, 2010] or Borosan et al. [Borosán et al.,
2012] could provide means to generate clean, joint meshes from our parametrization. Our
parametrization is flexible enough to propagate changes on the mesh in one frame to all
other frames immediately.

Figure 6.15: Three-dimensional printing results of the models from Figure 6.1 and Fig-
ure 6.16.

Reconstruction error We rendered animated, three-dimensional meshes of a camel
and a horse into a video (Figure 6.16), painted strokes on it, let the system reconstruct the
three-dimensional mesh animation, and compared the result to the input in terms of time-
averaged intersection-over-union (IoU) in two dimensions with a resolution of 1150×1000
and in three dimensions using a voxelization of size 643. The two dimensional and three-
dimensional IoU are 63.53% and 85.85% for the horse as well as 58.31% and 83.95% for
the camel, respectively. Additionally, we visualized the accumulated error for every vertex
of the reconstructed mesh by averaging the distance transform of the rasterization for the
two-dimensional and the voxelization for the three-dimensional case. It can be seen that the
two-dimensional error is relatively low except for one part of the camel where the radius

6. ANIMATED 3D CREATURES FROM SINGLE-VIEW VIDEO BY SKELETAL SKETCHING 104

was wrongly estimated due to consistent segmentation errors and at the occluded limbs due
to imperfect tracking. The three-dimensional error at all limbs is relatively high due to our
limb z-offset-heuristic. We found the resulting three-dimensional object to be very similar
to the input mesh, even in new views. Some geometric details such as the ears of the camel
or the animals’ feet details could not be reproduced, as they constitute geometry outside of
the scope of generalized cylinders.

Figure 6.16: We rendered an animated three-dimensional mesh of a horse (top) and a camel
(bottom) to a video, reconstructed the three-dimensional mesh with our system (middle),
and compared the outcome to the input using different metrics (right).

User study To evaluate the usefulness of our system we asked nine novice users with
previous experience in computer graphics and media production on different levels to use
our system and reproduce the results of the first sequence in Figure 6.10. After a short
introduction to the system using the sequence in Figure 6.1 the users had at most five
minutes to reconstruct the sequence, but most users were satisfied before (3:43 minutes on
average). The users used on average 9.5 strokes to reconstruct the sequence which is in
agreement to the stroke count used by the authors (cf. Table 6.1). We would argue it does
not need a formal control group to see that without substantial training users are not capable
to produce models of this quality using any available modeling and animation software such
as Blender [Blender Online Community, 2016]. Users were able to produce animations of a
quality similar to the animation produced by the authors, indicating the system can be used
by non-experts.

Comparison Our stroke tracking approach relies on appearance and regularization terms
commonly used in extensively-investigated optical flow methods. An interesting question
could be if methods designed to solve a much more general problem already suffice to
solve the tracking problem at hand. To this end, we compared our limb stroke tracking
method on a running cheetah sequence of 20 frames to state-of-the-art optical flow methods:
SimpleFlow [Tao et al., 2012], Brox et al. [2004], TVL1 [Sanchez Perez, Meinhardt-Llopis

105 6.3. RESULTS

and Facciolo, 2013] , and a ground truth for which all strokes were painted manually for all
frames.

Figure 6.17: Stroke tracking comparison using different optical flow methods and our
tracking approach. Our approach outperforms all previous methods.

We optimized the parameters for each method by hand and only report the best results
obtained. The strokes are tracked back and forth starting from the same, single key frame for
all methods. We use the optical flow offset vectors to track the strokes by accumulating them
for every vertex position in every frame. As optical flow generally does not produce offset
vectors for occlusions, only strokes that were completely visible in all frames are used for
tracking. An error measure is computed as the sum of absolute distances to the ground truth
vertex positions. The accumulated error over all frames is 77.6 for SimpleFlow, 21.4 for
Brox et al., 12.6 for TVL1, and 0.189 for our approach. Optical flow works well for many
vertices in many frames, but the sheer number of vertices and frames will quickly result in a
disintegrating skeleton. We believe that the main reason for the limited performance of the
investigated optical flow methods is the accumulation of small matching errors. As these
methods only compute optical flow between neighboring frames this error accumulates
rapidly over longer frame ranges. One way to overcome this issue could be to compute

6. ANIMATED 3D CREATURES FROM SINGLE-VIEW VIDEO BY SKELETAL SKETCHING 106

optical flow not only between neighboring frames but over longer frame ranges. In practice
however it is unclear how to choose these ranges to stabilize the tracking on the one hand
and allow for limb deformations on the other hand. Optical flow could be used as a prior in
our stroke tracking algorithm but would require additional, expensive preprocessing steps
and hence remains future work. We conclude that optical flow, which successfully performs
a much more general task, might not be the best tool for solving the skeletal correspondence
challenge we addressed using our user interface. Additionally, our algorithm allows for
interactive performance while the optical flow methods employed, use up to seconds or even
minutes to be computed per frame.

To the best of our knowledge no existing template skeleton tracking approach works
exclusively on strokes and single-view video, rendering a comparison to these methods
unfair and requiring a lot of manual effort.

6.4 Scope and Limitations

Our system is putting the user in the loop to solve an otherwise heavily under-constrained
and hard vision problem. We apply several assumptions that might not hold for certain
inputs.

Stroke tracking fails if there are not enough features to be tracked on the object or in the
presence of severe occlusions. Occluded parts can be mistaken to be non-occluded, in
which case tracking starts using erroneous templates for matching. The regularization terms
in Equation 6.1 however lead to graceful failures that can be resolved by additional user
interaction.

Next, segmentation fails if the fore- and background histograms are too similar and salient
edges separating the object from its background are missing. Our method is particularly
designed to allow tracking of creatures with arbitrary skeletons for which template models
might not be available. While our method might also be applicable to humans, the large
body of research on this specific topic leads to results that most likely outperform our
method.

Our model allows to track limbs of arbitrary complexity and abstracts model knowledge,
but a more rigid model could be beneficial enabling a more realistic motion extraction.
We have demonstrated reproduction of sequences where the creature as a whole exhibits
approximately image-plane-parallel motion. While our approach is capable of handling
out-of-plane motion for isolated limbs, such as tails or trunks, as well as limited camera
motion and zooming, support for arbitrary camera motion is missing and constitutes the
strongest limitation of our algorithm. Surprisingly however, many videos found in on-
line video platforms depicting animal locomotion satisfied our assumptions, enabling the
reconstruction of a wide variety of creatures.

Handling arbitrary camera motion would not only enable support for a larger variety of
videos but the extra views add additional knowledge about the true three-dimensional shape
of the object to the system. Exploiting these cases in our algorithms remains the most

107 6.4. SCOPE AND LIMITATIONS

promising direction for future work. Shape reconstruction using generalized cylinders is a
valid assumption in many cases, but fails in case of certain cylindrical cross sections, such
as for bodies and fins of fish, or complicated branching structures. Again, in these cases,
multiple views can help to find the true shape of the limbs. Nevertheless, many creatures
look plausible in views substantially different from the side view (Figure 6.14).

Animals are usually composed of several rigid bones. While on the one hand our approach
abstracts this concept away from the user it also leads to a certain non-rigidness on the other
hand, where more explicit assumptions could lead to more sophisticated results.

Chapter 7
Conclusion

In Section 7.1, we summarize the major contributions following the four main tracks:
Homunculus Warping, Interactive By-example Design of Artistic Packing Layouts, Pro-
jective Blue-Noise Sampling, and Animated 3D Creatures from Single-View Video by
Skeletal Sketching. Section 7.2 discusses possible future work before Section 7.3 states the
take-home message of this thesis.

7.1 Closing Remarks

Synthesis and manipulation of visual media commonly poses a tedious and time-consuming
task demanding in-depth knowledge, extensive training, and high-end hardware to be
performed effectively. Common tools to accomplish this goal involve recurring interactions
cycles and parameter tuning until a satisfying result is achieved. Realization of the desired
outcome inevitably depends on the users’ intentions and hence keeping the user in the loop
and motivated is essential. What is more, without further knowledge many synthesis tasks
are heavily under-constrained and only become feasible with the input of the user. Inverse,
example-based approaches alleviate these problems by estimating the underlying parameters
governing the manipulation and synthesis from a small subset of examples. Making these
techniques efficient and accessible is the goal of this thesis. The techniques presented
contribute to different kinds of media that needs to be synthesized or manipulated. We
exemplify several techniques to create a full system that enables generation and manipulation
of images, videos, and three-dimensional models. All parts serve as building blocks of a
full system that allows generating visual media. The goals formulated in Section 1.1 were
realized as follows: Intuitiveness was achieved by leveraging visceral, widget-free user
interfaces that build on common interaction techniques such as sketching. We validated
our approaches with user studies supporting our arguments. Plausibility was accomplished
by including informed model knowledge of the specific tasks into the system to constrain
the solution space to only plausible solutions. Speed was accomplished by reformulation

109

7. CONCLUSION 110

of sequential tasks as parallel problems that map well to the GPU and allow for efficient,
parallel execution.

In Chapter 3 we presented an approach to change the local scale of a surface to convey
importance. The resulting shapes are free of self-intersections and avoid distortions. Com-
pared to other visualizations of scalar (importance) fields, size changes are immediately
understood by the users and could be employed to illustrate scalar information on complex
domains even for naïve observers. This is because a twice-as-large object (cf. e. g., the
hands in Figure 3.1) is naturally perceived as being twice as important, whereas there is
no color that represents being twice as much as another color. Additionally, unlike colors
that are restricted to fixed bounds, there are no limits to size changes. Conversely however,
color-coded scalar fields are superior to our approach when qualitative comparisons of
locations on the domain are required e. g., finding all locations with the same color label.

Chapter 4 introduced an approach to compile artistic primitive layouts. Technically, we
stated the problem as a projection from the space of visual and semantic features into a
lower-dimensional layout space combined with a GPU-based relaxation to achieve an equal
distance between primitive boundaries. The parameters of this projection are learned from
user feedback. Reponses received from artists as well as both parts of our user study show
that producing packing layouts is challenging and benefits from computational support.
Specifying the underlying parameters by hand involves selection of a layout function (e. g.,
linear layout), the feature dimensions (e. g., axis direction), a feature mapping (e. g., size to
map to the first axis), a feature scaling factor, and an adjustment of the specified layout to
the user constraints. All these parameters are automatically inferred by our system. Our
widget-free interface cannot replace professional data analysis but augment existing dialogs
or serve other purposes. It could, however, be used by novice users, e. g., children in a
museum: Such users might not be willing to participate in a formal user dialog involving
concepts like “sorting”. However, they might play around and manipulate butterflies and get
insights from how our system reacts, without a particular goal in mind, maybe even without
knowing they perform man-machine interaction in the first place.

In Chapter 5 we proposed a simple extension to blue-noise sampling that produces patterns
with desirable spectral properties when projected onto lower-dimensional subspaces. Our
extension is easy to implement and likely orthogonal to many ways of generating patterns,
as we demonstrated for two popular methods – dart throwing and Lloyd relaxation. For
Monte Carlo rendering we showed that the resulting patterns outperform classic blue-noise
patterns and are on par with or better than low-discrepancy patterns which have specifically
been designed for the purpose of numerical integration. For primitive placement we showed
arrangements with uniform distribution in both three-dimensional space and multiple two-
dimensional viewing projections. We believe our approach is a step towards a single,
universal, multi-dimensional pattern with a wide range of applications.

Chapter 6 demonstrates a system to acquire mesh animations from sketches in videos.
The system uses limb strokes, which we believe are the most basic imaginable input that
every casual user knows and produces results at interactive frame rates, allowing to quickly
refine the solution until the desired quality is achieved. Previous work on sketch-based
acquisition was limited to a single or multiple images of a rigid scene or to specific classes

111 7.2. FUTURE WORK

of animations such as humans. Capturing geometry in multiple frames does not only allow
for animated surfaces, but can also resolve ambiguities that could not be eliminated using
a single frame. The increase in animated surface quality when adding more images due
to new views, new deformations, or both can be inspected visually (cf. Figure 6.10 and
Figure 6.11) and quantified by reconstructing rendered images of three-dimensional models
with known reference geometry (cf. Figure 6.16).

7.2 Future Work

In the following sections we discuss potential avenues of future research for each component
separately (Section 7.2.1) as well as for combinations of the components (Section 7.2.2)
and provide a general outlook to promising, open problems (Section 7.2.3).

7.2.1 Individual Future Work

Homunculus Warping The current system’s performance is limited by the offline
optimization of the collision-free result defying interactive use of the full design pipeline.
Hence, increasing its performance is an interesting direction for future work allowing
fully interactive focus+context visualizations while abolishing the necessity of a preview.
Human perception of area, weight, size, scale, and its dependence on spatial organization of
the underlying domain most definitely has an influence on our approach but yet remains
to be modeled computationally. Avoiding distortion of salient features such as faces
(Figure 3.1) or symmetry is a promising direction for future work. Additionally, considering
the articulation by limiting the degrees of freedom of the fundamental distortions could
lead to more sophisticated and realistically looking model deformations. However, this
would require input meshes with additional information such as skeleton data, defying the
usage with most off-the-shelf models. Different applications of the deformations, such as
computational body-building [Saito, Zhou and Kavan, 2015] or shape registration, and its
implications on the optimization could be explored in further detail. Finally, a perceptual
study could lead to a more formal understanding of human task performance when using
size versus color-coded information.

Interactive By-example Design of Artistic Packing Layouts The developed sys-
tem faces the same challenge as other systems making suggestions to users as it might
provide undesired results. Mitigating this e. g., by displaying different suggestions is a
promising direction for future work. We would like to complement the system by active
learning: If a user organizes bright small eggs (cf. Figure 4.1) along the horizontal line, the
system could ask if the feature that was meant was “bright” or “small” or both by displaying
different propositions. Additionally, only linear arrangements are considered in this work,
while there are other methods to reveal relations between the primitives. The system is not
yet capable to infer higher-level layouts, such as clustered (e. g., Figure 4.2, d), symmetric
(e. g., Figure 4.2, a), or tree-like layouts (e. g., Figure 4.2, c), which would require a more

7. CONCLUSION 112

sophisticated search for the layout function φ (Equation 4.1). Using a general combination
of different features for the layout, instead of only two distinct features, also remains future
work. Generalizing the two-dimensional layouts to primitives of higher dimensionality
could spark a wide range of applications. In the current implementation, our approach
only operates on bounded domains, but layouts for toroidal domains that tile infinitely in
all directions could also be considered. Further, additional degrees of freedom such as
rotations, (non-uniform) scaling, affine transformations, or general deformations could be
added to the relaxation to facilitate tighter packings. Aside from positional constraints other
constraint types, such as how well an individual, single shape matches the local container
shape, could be considered [Xu et al., 2014]. Finally, other applications that could benefit
from our interactive application such as specialized tilings and floor plan layouts [Peng,
Yang and Wonka, 2014] could be investigated further.

Projective Blue-Noise Sampling Extending other sampling algorithms, e. g., capacity-
constrained Lloyd relaxation [Balzer, Schlömer and Deussen, 2009] or farthest point opti-
mization [Eldar et al., 1997; Schlömer, Heck and Deussen, 2011], to projective blue-noise
and non-linear projections is a pertinent direction of future work. Although not being a
limitation of our theoretical formulation, our system is currently constrained to rectangular
domains and consequently only allows for (optionally rotated) axis-aligned projections.
Generally, support for more elementary intervals of the (t,m,s)-nets (cf. Section 2.3.1) could
lead to improved discrepancy values and in turn better rendering performance. Extensions
to non-orthogonal and non-linear projections are an interesting avenue for further research
requiring a more in-depth analysis of how projections into such domains and a toroidal
tiling are reciprocally influencing each other. Similar to the packing layouts, additional
applications such as floor design and object tilings pose another potential avenue for future
work.

Animated 3D Creatures from Single-View Video by Skeletal Sketching The
most notable limitation of the current system presumably is the assumption of a static
camera (w.r.t. the creature). Although our stable tracking approach relaxed this requirement
to a certain degree, the algorithm does not support strong camera motions including obser-
vations of the object from drastically different views. Besides this limitation, relaxing other
limitations detailed in Section 6.4 remains viable future work towards a unified system to
extract arbitrary deformable geometry from video. Additionally, future work could include
automatic detection of repetitive motion from a few sketches and a more advanced method
for symmetry and orientation detection for ambiguous postures. Further, we would like
to relax the requirement of a skeletal model to generalized sketching of animated surface
reconstruction hints that specify length, direction, area, volume, fluid flow, compression,
torque, and other properties on top of video frames. In combination with a more involved
surface estimation, e. g., a global optimization, this would allow to acquire even more chal-
lenging animated scenes. Finally, our representation of animated creatures with generalized
cylinders could be used to, on the one hand, build a model and database of motion sequences
for different creatures and motion objectives. On the other hand, such a database could be
used to identify creatures and motion objectives based on the extracted cylinders.

113 7.2. FUTURE WORK

7.2.2 Combinations for Future Work

Several of the approaches introduced in this thesis are not necessarily stand-alone techniques
and could potentially benefit from a combination with other algorithms. Homunculus
Warping, Interactive By-example Design of Artistic Packing Layouts, Projective Blue-Noise
Sampling, and Animated 3D Creatures from Single-View Video by Skeletal Sketching are
all handling input and output media of different types and dimensionality with varying
design objectives. Combinations of the systems commonly require generalizations of the
techniques to other input modalities of different dimensionality, enabling a compound of the
techniques into a unified design pipeline. Possible pairwise combinations of the approaches
are discussed before a full design pipeline including all approaches is sketched.

The animated meshes obtained in Chapter 6 could serve as input meshes to our Homunculus
Warping technique (Chapter 3) allowing edits and deformations of single frames of the mesh
animation. Extending Homunculus Warping to mesh animations would enable information
visualization of time-varying aspects of the mesh sequences, e. g., the velocity of particular
limbs. The specific mesh representation that comes as a result of Chapter 6, i. e., a mesh
combined with animated axes, a representation close to a skeleton, can serve as a regularizer
of Homunulus Warping, facilitating deformations that respect the viable articulation of
the limbs. Leveraging a similar representation also for other meshes, resulting e. g., from
the proposed sketching interface of Chapter 3, would enable articulated deformations for
arbitrary input meshes. Turning this conjunction around, the collision detection and resolu-
tion step of Chapter 3 could be used as an additional regularizer in Chapter 6. Modeling
collisions to regularize limb tracking in video is an involved and computationally demanding
task probably requiring additional optimizations but would lead to more realistic results
and improve the tracking substantially, as it limits the admissible deformation to more
plausible results and hence prunes the search space. Leveraging the collisions in the surface
estimation step, additionally, could lead to surfaces of higher quality closer to the correct
solution.

The insights of the generalization of projective sampling to three or higher dimensions of
Chapter 5 could be combined with the packing layouts of Chapter 4. This would lead to a
general purpose algorithm to distribute objects of arbitrary dimensionality. In particular, the
projective properties of presenting three-dimensional content on a two-dimensional screen
pose an interesting and promising direction of future work, partially covered already in
Chapter 5. Here, additional constraints such as occlusions and constrained camera positions
could be taken into consideration. Combining packing with camera path planning [He,
Cohen and Salesin, 1996] would introduce novel applications in visualizations. Including
time as an additional dimension, the animated sequences from Chapter 6 could be presented
as a collection of deforming, three-dimensional surfaces. Generally, dynamic and deforming
primitives would require adjusting primitive positions over time and make up an interesting
avenue to investigate further.

The deformation techniques of Chapter 3 could serve as an additional degree of freedom for
the packing layouts in Chapter 4. It would allow for tighter or more even packing results.

7. CONCLUSION 114

Finally, all methods could be combined into a single, unified framework that, on the one
hand, allows efficient extraction of animated, three-dimensional geometry from uncalibrated,
two-dimensional video in combination with efficient and collision-free deformations of such
content. On the other hand, the framework would enable to interactively pack and present
large collections of such mesh animations on the screen and efficiently render them. All of
the steps would be fully guided using spare subsets of examples controlling the parameters
of the techniques that optionally can also be influenced directly by expert users.

Figure 7.1: Sketchbook for a cat character. Image courtesy of Jesse Aclin.

An example application for this framework could be character design. To create a new
character, artists draw character sketches in different postures, deformations, as well as from
different viewpoints (Figure 7.1) to examine different design choices and get an overview
of the design space. Creating these sketchbooks is a time-consuming process that requires
multiple iterations to converge and could benefit from computational support. Our unified
framework could be used to obtain different postures for a character from real video footage
(Chapter 6), deform the character to meet the artists intentions (Chapter 3), and render
(Chapter 5) as well as arrange (Chapter 4) different styles and views of the character to yield
a sketchbook-like character overview (cf. Figure 7.1).

115 7.2. FUTURE WORK

7.2.3 General Outlook

Besides specific and combined directions for future research proposed in the former sections,
the techniques presented in this thesis open up interesting general directions for further
investigation.

From a user perspective, all methods could be integrated into existing software packages. On
the one hand, there are straightforward integrations, e. g., including the relaxation approach
of Chapter 4 into layout programs such as Adobe Photoshop [Adobe, 2016] that, so far, only
support to arrange images in one dimension. Generally speaking, all software that allows
arranging images could benefit from our approach. Another inclusion involves integration
of collision detection and response into the modeling process of three-dimensional surfaces
with three-dimensional modeling software such as Blender [Blender Online Community,
2016]. While integration of these functionalities can be done in isolation, on the other hand,
there are more pervasive integrations of the techniques presented in this thesis. Shifting
from the current paradigm of separate, detached user dialogs for many editing tasks in
the aforementioned software packages to an example-based paradigm requires a profound
redesign of the user interface. Optimally, example-based parameter estimation would
complement existing manipulation and synthesis tools as suggested e. g., in Chapter 4.
Initially, example-based parameter estimation could be used as a beginner or casual mode to
facilitate application of the software by novice users. After each step, the software could
display the estimated parameters, on the one hand, to enable fast error correction but, on
the other hand, also to instruct the users about the estimated, underlying parameters. Over
time recurring users would be able to subconsciously conceive these parameters without
explicitly having to learn about them. Ultimately, a competent user would be able to pick
the optimal interaction mode for the task at hand. For example, a rapid generation using the
example-based approach in combination with minor fine tuning using explicit parameter
dialogs could be the fastest way to achieve the goal; or depending on the specific task directly
picking the parameters could be faster. Both options have the potential to be superior to the
other one, both in terms of quality and convergence speed to a desired result depending on
each specific task. Providing users the choice to pick the optimal technique enables efficient
software usage by both, novice and expert users, with a smooth transition in between.

Our approaches compute solutions based solely on the current examples provided by the
user and the model knowledge built into our system, completely ignoring the history of
manipulations of the current and previous sessions by the same and other users. While
careful design of the model knowledge has the ability to limit the possibilities to only valid
solutions, such approaches fail repeatedly on the same examples. Leveraging the results
of previous decisions on the same or similar inputs, our systems could, on the one hand,
prioritize manipulations that are more likely to be performed by specific users. This could
lead to user-specific profiles that adjust the model knowledge to present plausible results
for each individual user more frequently. On the other hand, leveraging manipulations of
all users, our system could learn models of plausible or “human” edits and interactively
adjust the model knowledge put into the system for all users. This way failures could be
compensated over time and implausible manipulations would be decreased in priority.

7. CONCLUSION 116

The presented techniques are applicable by both, expert and casual users. However, en-
abling casual usage eminently also involves facilitating mobile usage. While generally our
techniques are already optimized for efficiency and parallel execution, for mobile hardware
distinct limitations have to be considered for tangible applicability. Such limitations include
restricted support of specific hardware functionalities and power consumption considera-
tions. If expensive computations have to be executed that do not allow for interactive usage
on mobile platforms, remote computing on a powerful server in combination with image
streaming is an option. However, such solutions typically introduce latency that has to be
compensated on the mobile device. Correcting the delayed image to correspond to the latest
view using Image-based Rendering (Section 2.1.1) is an efficient and promising option, but
commonly has limitations in image quality demanding for improved rendering techniques.

Finally, in the scope of this thesis, we investigated specific types of media synthesis and
manipulation. Other manipulation and synthesis techniques could also benefit from example-
based approaches, eventually leading to manipulation software for all kinds of visual media
that is entirely established by example-based parameter estimation. Interactions between
different kinds of media could lead to a unified framework and facilitate an intuitive
transition between the different dimensions. Extending the work to other types of media,
especially non-visual media such as sound, could be valuable in rendering also these areas
more accessible to casual users.

7.3 Message

This thesis discussed how intricate tasks in manipulation and synthesis of visual media can
benefit from more intuitive, example-based approaches that keep the user in the loop. The
techniques presented in this thesis target casual users that typically do not perform editing
tasks on a regular basis. Such users benefit from more intuitive user interfaces that learn
from a small set of examples about the inherent relationships and restrictions in the data.
To be effective these approaches require both, interactive performance and intuitive user-
interfaces. Unlike other example-based techniques that learn complex models and hence
only run offline, in our work we focus on optimization efficiency and achieve interactive
performance by reformulation of the problems to run in parallel on GPUs. Potential future
work includes adoption of example-driven approaches in cross-domain software packages
and combinations with active learning to improve model knowledge. Looking ahead we
believe that with the advent of more casual usage especially on mobile machines new
intuitive and efficient tools will be required that could benefit from the insights of this thesis.

Bibliography (Own work)

LOCHMANN, G. ET AL.: Real-time Novel-view Synthesis for Volume Rendering Using
a Piecewise-analytic Representation. In Proceedings of VMV. Bayreuth, Germany:
Eurographics Association, 2016

LOCHMANN, G. ET AL.: Real-time Reflective and Refractive Novel-view Synthesis. In
Proceedings of VMV. Darmstadt, Germany: Eurographics Association, 2014

REINERT, B. ET AL.: Proxy-guided Image-based Rendering for Mobile Devices. Computer

Graphics Forum (Proceedings of Pacific Graphics) 2016, ISSN 1467–8659

REINERT, B., RITSCHEL, T. AND SEIDEL, H.-P.: Homunculus Warping: Conveying Impor-
tance using Self-intersection-free Non-homogeneous Mesh Deformation. Computer

Graphics Forum (Proceedings of Pacific Graphics) 5 2012 (31)

REINERT, B., RITSCHEL, T. AND SEIDEL, H.-P.: Interactive By-example Design of
Artistic Packing Layouts. ACM Transactions on Graphics (Proceedings of SIGGRAPH

Asia) 31 2013 (6)

REINERT, B., RITSCHEL, T. AND SEIDEL, H.-P.: Animated 3D Creatures from Single-
view video by Skeletal Sketching. Graphics Interface 31 2016 (6)

REINERT, B. ET AL.: Projective Blue-Noise Sampling. Computer Graphics Forum (Pre-

sented at EGSR 2016) 2015

REINERT, B., SCHUMANN, M. AND MÜLLER, S.: Parameter and Configuration Analysis
for Non-linear Pose Estimation with Points and Lines. In Proceedings of the Interna-

tional Conference on Computer Vision Theory and Applications (VISIGRAPP). 2012,
271–276

I

Bibliography

ADOBE: Photoshop CC. Adobe, San Jose: Adobe, 2016

AGARWALA, A. ET AL.: Keyframe-based tracking for rotoscoping and animation. ACM

Transactions on Graphics, 23 2004 (3), 584–91

AKHTER, I. ET AL.: Nonrigid structure from motion in trajectory space. In Proceedings of

NIPS. 2008, 41–48

ALEXA, M., COHEN-OR, D. AND LEVIN, D.: As-rigid-as-possible shape interpolation. In
ACM Transactions on Graphics (Proceedings of SIGGRAPH). 2000, 157–164

ALLEN, B., CURLESS, B. AND POPOVIĆ, Z.: The space of human body shapes: recon-
struction and parameterization from range scans. ACM Transactions on Graphics, 22
2003 (3), 587–94

AMD: AMD Accelerated Parallel Processing OpenCL – Programming Guide. 2015

ARIKAN, O. AND FORSYTH, D. A.: Interactive Motion Generation from Examples. In
Proceedings of the 29th Annual Conference on Computer Graphics and Interactive

Techniques. New York, NY, USA: ACM, 2002, SIGGRAPH ’02, 483–490

ARIKAN, O., FORSYTH, D. A. AND O’BRIEN, J. F.: Motion synthesis from annotations.
ACM Transactions on Graphics, 22 2003 (3), 402–8

BALZER, M., SCHLÖMER, T. AND DEUSSEN, O.: Capacity-constrained point distribu-
tions: a variant of Lloyd’s method. ACM Transactions on Graphics (Proceedings of

SIGGRAPH) 28 2009 (3)

BARAN, I. AND POPOVIĆ, J.: Automatic Rigging and Animation of 3D Characters. In
ACM Transactions on Graphics (Proceedings of SIGGRAPH). New York, NY, USA:
ACM, 2007, SIGGRAPH ’07

BATEMAN, S., GUTWIN, C. AND NACENTA, M.: Seeing things in the clouds: the effect
of visual features on tag cloud selections. In Proceedings of ACM Hypertext and

Hypermedia. 2008, 193–202

BERGEN, J. R. ET AL.: Hierarchical model-based motion estimation. In Proceedings of

ECCV. 1992, 237–52

III

Bibliography IV

BEZERRA, H. ET AL.: 3D dynamic grouping for guided stylization. In Proceedings of

NPAR. 2008, 89–95

BINGHAM, G.: Perceiving the size of trees: Form as information about scale. Journal of

Experimental Psychology: Human Perception and Performance, 19 1993 (6), 1139

BLANZ, V. AND VETTER, T.: A morphable model for the synthesis of 3D faces. In ACM

Transactions on Graphics (Proceedings of SIGGRAPH). 1999, 187–4

BLENDER ONLINE COMMUNITY: Blender – A 3D modelling and rendering package.
Blender Institute, Amsterdam: Blender Foundation, 2016 〈URL: http://www.blender.

org〉

BLINN, J. F. AND NEWELL, M. E.: Texture and Reflection in Computer Generated Images.
Communications of the ACM, 19 October 1976 (10), 542–547

BORLAND, D. AND TAYLOR II, R.: Rainbow color map (still) considered harmful. IEEE

CG & App. 2007, 14–17

BOROSÁN, P. ET AL.: RigMesh: Automatic Rigging for Part-based Shape Modeling and
Deformation. ACM Transactions on Graphics, 31 November 2012 (6), 198:1–198:9

BOTSCH, M. ET AL.: PriMo: Coupled prisms for intuitive surface modeling. In Proceedings

of SGP. 2006, 11–20

BOTSCH, M. AND SORKINE, O.: On Linear Variational Surface Deformation Methods.
IEEE Transactions on Visualization and Computer Graphics, 14 January 2008 (1),
213–230

BREGLER, C., HERTZMANN, A. AND BIERMANN, H.: Recovering non-rigid 3D shape
from image streams. In Proceedings of CVPR. Volume 2, 2000

BREGLER, C. ET AL.: Turning to the masters: motion capturing cartoons. ACM Transac-

tions on Graphics 2002

BROX, T. ET AL.: High accuracy optical flow estimation based on a theory for warping. In
ECCV 2004

BUCHANAN, A. AND FITZGIBBON, A. W.: Interactive Feature Tracking using K-D Trees
and Dynamic Programming. In Proceedings of CVPR. 2006

BUZAN, T.: Use both sides of your brain : new mind-mapping techniques to help you raise
all levels of your intelligence and creativity, based on the latest discoveries about the
human brain. New York, N.Y., U.S.A: Dutton, 1991

CASHMAN, T. AND FITZGIBBON, A.: What Shape Are Dolphins? Building 3D Morphable
Models from 2D Images. IEEE PAMI, 35 2013 (1), 232–44

CHAPELLE, O., SCHÖLKOPF, B. AND ZIEN, A.: Semi-Supervised Learning. 1st edition.
The MIT Press, 2010

http://www.blender.org
http://www.blender.org

V Bibliography

CHEN, J. ET AL.: Bilateral Blue Noise Sampling. ACM Transactions on Graphics, 32
2013a (6), 216:1–216:11

CHEN, S. E. AND WILLIAMS, L.: View Interpolation for Image Synthesis. In ACM

Transactions on Graphics (Proceedings of SIGGRAPH). 1993, 279–88

CHEN, T. ET AL.: 3Sweep: Extracting Editable Objects from a Single Photo. ACM Trans-

actions on Graphics, 32 2013b (6), 195:1–195:10

CHEN, Z. ET AL.: Variational Blue Noise Sampling. IEEE Transactions on Visualization

and Computer Graphics, 18 2012 (10), 1784–96

CHIU, K., SHIRLEY, P. AND WANG, C.: Graphics Gems IV. 1994. – chapter Multi-jittered
Sampling, 370–4

CHOI, B. AND LEE, C.: Sweep surfaces modelling via coordinate transformation and
blending. CAD, 22 1990 (2), 87–96

COOK, R. L.: Stochastic sampling in computer graphics. ACM Transactions on Graphics,
5 1986 (1), 51–72

COOK, R. L., CARPENTER, L. AND CATMULL, E.: The Reyes Image Rendering Archi-
tecture. In Proceedings of the 14th Annual Conference on Computer Graphics and

Interactive Techniques. New York, NY, USA: ACM, 1987, SIGGRAPH ’87, 95–102

COOTES, T. F. ET AL.: Trainable method of parametric shape description. Image and Vision

Computing, 10 1992 (5), 289–94

CORMEN, T. H. ET AL.: Introduction to Algorithms. 2nd edition. McGraw-Hill Higher
Education, 2001

COX, A. M. A. AND COX, F. T.: CHAP. MULTIDIMENSIONAL SCALING. INHandbook of
Data Visualization. Berlin, Heidelberg: Springer Berlin Heidelberg, 2008, 315–347

CRANLEY, R. AND PATTERSON, T.: Randomization of number theoretic methods for
multiple integration. SIAM Journal on Numerical Analysis, 13 1976 (6), 904–14

CUTTING, J.: Rigidity in cinema seen from the front row, side aisle. Journal of Experimental

Psychology: Human Perception and Performance, 13 1987 (3), 323

DALAL, K. ET AL.: A spectral approach to NPR packing. In Proceedings of NPAR. 2006,
71–78

DEAN, J. AND GHEMAWAT, S.: MapReduce: Simplified Data Processing on Large Clusters.
Commun. ACM, 51 January 2008 (1), 107–113

DEBEVEC, P. E., TAYLOR, C. J. AND MALIK, J.: Modeling and Rendering Architec-
ture from Photographs: A Hybrid Geometry- and Image-based Approach. In ACM

Transactions on Graphics (Proceedings of SIGGRAPH). 1996, 11–20

Bibliography VI

DEUSSEN, O. ET AL.: Floating points: A method for computing stipple drawings. In
Computer Graphics Forum. Volume 19, 2000, 41–50

DEVROYE, L.: Non-Uniform Random Variate Generation. Springer, 1986

DIPPÉ, M. A. AND WOLD, E. H.: Antialiasing through stochastic sampling. ACM SIG-

GRAPH Computer Graphics, 19 1985 (3), 69–78

DONG, Z. ET AL.: Real-time voxelization for complex polygonal models. In Proceedings

of Pacific Graphics. 2004, 43–50

DUNBAR, D. AND HUMPHREYS, G.: A Spatial Data Structure for Fast Poisson-disk
Sample Generation. ACM Transactions on Graphics, 25 2006 (3), 503–08

ELDAR, Y. ET AL.: The farthest point strategy for progressive image sampling. IEEE

Transactions on Image Processing, 6 1997 (9), 1305–15

ENGLAND, N.: A graphics system architecture for interactive application-specific display
functions. IEEE Computer Graphics Applications, 6 January 1986 (1), 60–70

EVERETT, R. R.: The Whirlwind I Computer. Managing Requirements Knowledge, Inter-

national Workshop on, 0 1951, 70

FATTAL, R.: Blue-noise point sampling using kernel density model. In ACM Transactions

on Graphics (Proceedings of SIGGRAPH). Volume 30, Vancouver, 2011, 48

FAVREAU, L. ET AL.: Animal gaits from video. In BOULIC, R. AND PAI, D. K., EDITORS:
Symposium on Computer Animation. The Eurographics Association, 2004

GAL, R. ET AL.: 3D collage: expressive non-realistic modeling. In Proceedings of NPAR.
2007, 7–14

GALL, J. ET AL.: Motion capture using joint skeleton tracking and surface estimation. In
CVPR. June 2009, 1746–1753

GAMITO, M. N. AND MADDOCK, S. C.: Accurate Multidimensional Poisson-disk Sam-
pling. ACM Transactions on Graphics, 29 2009 (1), 8:1–8:19

GARG, A., JACOBSON, A. AND GRINSPUN, E.: Computational Design of Reconfigurables.
ACM Transactions on Graphics 35 2016 (4)

GARG, R., ROUSSOS, A. AND AGAPITO, L.: Dense variational reconstruction of non-rigid
surfaces from monocular video. In Proceedings of CVPR. 2013, 1272–9

GOES, F. DE ET AL.: Blue Noise Through Optimal Transport. ACM Transactions on

Graphics, 31 2012 (6), 171:1–171:11

GORAL, C. M. ET AL.: Modeling the Interaction of Light Between Diffuse Surfaces. In
Proceedings of the 11th Annual Conference on Computer Graphics and Interactive

Techniques. New York, NY, USA: ACM, 1984, SIGGRAPH ’84, 213–222

VII Bibliography

GORTLER, S. J. ET AL.: The Lumigraph. ACM Transactions on Graphics (Proceedings of

SIGGRAPH), 1996, 43–54

GREGORY, R.: Distortion of visual space as inappropriate constancy scaling. Nature 199
1963 (678-91)

GUAY, M. ET AL.: Space-time sketching of character animation. ACM Transactions on

Graphics, 34 May 2015 (4), 1

HALTON, J. H.: Algorithm 247: Radical-inverse Quasi-random Point Sequence. Communi-

cations of the ACM, 7 December 1964 (12), 701–702

HAREL, D. AND KOREN, Y.: Drawing graphs with non-uniform vertices. In Proceedings

of Working Conference on Advanced Visual Interfaces. 2002, 157–166

HARMON, D. ET AL.: Interference-aware geometric modeling. ACM Transactions on

Graphics (Proceedings of SIGGRAPH), 30 2011 (6), 137

HARTLEY, R. I. AND ZISSERMAN, A.: Multiple View Geometry in Computer Vision.
2nd edition. Cambridge University Press, 2004

HAUSNER, A.: Simulating decorative mosaics. In ACM Transactions on Graphics (Pro-

ceedings of SIGGRAPH). 2001, 573–580

HE, L.-W., COHEN, M. F. AND SALESIN, D. H.: The Virtual Cinematographer: A
Paradigm for Automatic Real-time Camera Control and Directing. In Proceedings of

the 23rd Annual Conference on Computer Graphics and Interactive Techniques. New
York, NY, USA: ACM, 1996, SIGGRAPH ’96, 217–224

HECK, D., SCHLÖMER, T. AND DEUSSEN, O.: Blue Noise Sampling with Controlled
Aliasing. ACM Transactions on Graphics, 32 2013 (3), 25:1–25:12

HILLER, S., HELLWIG, H. AND DEUSSEN, O.: Beyond stippling – Methods for distributing
objects in the plane. In Proceedings of Eurographics. Volume 22, Granada, 2003,
515–522

HOFF, K. I. ET AL.: Fast computation of generalized Voronoi diagrams using graphics
hardware. In ACM Transactions on Graphics (Proceedings of SIGGRAPH). 1999,
277–86

HOIEM, D., EFROS, A. A. AND HEBERT, M.: Automatic photo pop-up. ACM Transactions

on Graphics (Proceedings of SIGGRAPH), 24 2005 (3), 577–84

HORRY, Y., ANJYO, K.-I. AND ARAI, K.: Tour into the picture: using a spidery mesh
interface to make animation from a single image. In ACM Transactions on Graphics

(Proceedings of SIGGRAPH). 1997, 225–232

HSU, W.-H., MA, K.-L. AND CORREA, C.: A rendering framework for multiscale views
of 3D models. In ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia).
2011, 131:1–131:10

Bibliography VIII

HURTUT, T. ET AL.: Appearance-guided synthesis of element arrangements by example. In
Proceedings of NPAR. 2009, 51–60

IGARASHI, T., MATSUOKA, S. AND TANAKA, H.: Teddy: A sketching interface for 3D
freeform design. In ACM Transactions on Graphics (Proceedings of SIGGRAPH).
1999, 409–16

IZADI, S. ET AL.: KinectFusion: real-time 3D reconstruction and interaction using a moving
depth camera. In Proceedings of UIST. 2011, 559–568

JACOBS, C. ET AL.: Adaptive grid-based document layout. ACM Transactions on Graphics,
22 2003 (3), 838–847

JAIN, A. ET AL.: Moviereshape: Tracking and reshaping of humans in videos. ACM

Transactions on Graphics (Proceedings of SIGGRAPH Asia), 29 2010 (6), 148

JI, Z., LIU, L. AND WANG, Y.: B-Mesh: A Modeling System for Base Meshes of 3D
Articulated Shapes. Computer Graphics Forum 2010

JONES, T. R.: Efficient generation of Poisson-disk sampling patterns. Journal of Graphics

Tools 11 2006

KAJIYA, J. T.: The Rendering Equation. In Proceedings of the 13th Annual Conference on

Computer Graphics and Interactive Techniques. New York, NY, USA: ACM, 1986,
SIGGRAPH ’86, 143–150

KALANTARI, N. K. AND SEN, P.: Efficient Computation of Blue Noise Point Sets through
Importance Sampling. Computer Graphics Forum, 30 2011 (4), 1215–21

KARPENKO, O. A. AND HUGHES, J. F.: SmoothSketch: 3D free-form shapes from
complex sketches. In ACM Transactions on Graphics (Proceedings of SIGGRAPH).
Volume 25, 2006, 589–98

KELLER, A.: Instant Radiosity. In Proceedings of the 24th Annual Conference on Computer

Graphics and Interactive Techniques. New York, NY, USA: ACM Press/Addison-
Wesley Publishing Co., 1997, SIGGRAPH ’97, 49–56

KELLER, A., PREMOZE, S. AND RAAB, M.: Advanced (Quasi) Monte Carlo Methods for
Image Synthesis. In ACM Transactions on Graphics (Proceedings of SIGGRAPH).
2012, 21:1–21:46

KENSLER, A.: Correlated Multi-Jittered Sampling. Pixar Technical Memo 13-01, 2013

KESSENICH, J. AND SELLERS, G.: Vulkan Programming Guide: The Official Guide to
Learning Vulkan. Addison Wesley Publishing Company Incorporated, 2016, OpenGL
Series

KIM, J. AND PELLACINI, F.: Jigsaw image mosaics. ACM Transactions on Graphics, 21
2002 (3), 657–664

IX Bibliography

KOENDERINK, J. J.: What does the occluding contour tell us about solid shape. Perception,
13 1984 (3), 321–30

KOH, K. ET AL.: Maniwordle: Providing flexible control over wordle. IEEE Transactions

on Visualization and Computer Graphics, 16 2010 (6), 1190–97

KOHONEN, T.: The self-organizing map. Proceedings of the IEEE, 78 Sep 1990 (9), 1464–
1480

KOLLIG, T. AND KELLER, A.: Efficient multidimensional sampling. In Proceedings of

Eurographics. Volume 21, Saarbrücken, 2002, 557–63

KOPF, J. ET AL.: Recursive Wang Tiles for Real-time Blue Noise. ACM Transactions on

Graphics, 25 2006 (3), 509–518

KORKIN, A. AND ZOLOTAREV, G.: Sur les formes quadratiques positives. In Math. Ann.

11. 1877, 242–292

KRAEVOY, V. ET AL.: Non-homogeneous resizing of complex models. In ACM Transac-

tions on Graphics (Proceedings of SIGGRAPH Asia). Volume 27, 2008, 111

KRUSKAL, J. B. AND WISH, M.: Multidimensional scaling. Beverely Hills, California:
Sage Publications, 1978, 07 11

LAFORTUNE, E. P. AND WILLEMS, Y. D.: Bi-Directional Path Tracing. In Proceedings

of third International Conference on Computational Graphics and Visualization

Techniques (Compugraphics ’93). 1993, 145–153

LAGAE, A. AND DUTRÉ, P.: A procedural object distribution function. ACM Transactions

on Graphics, 24 2005 (4), 1442–61

LAGAE, A. AND DUTRÉ, P.: Poisson Sphere Distributions. In Proceedings of VMV. Aachen,
November 2006, 373–379

LAGAE, A. AND DUTRÉ, P.: A comparison of methods for generating Poisson disk
distributions. 27 2008 (1), 114–29

LASRAM, A., LEFEBVRE, S. AND DAMEZ, C.: Procedural texture preview. Computer

Graphics Forum (Proceedings of Eurographics), 31 2012, 413–20

LEUNG, Y. AND APPERLEY, M.: A review and taxonomy of distortion-oriented presen-
tation techniques. ACM Transactions on Computer-Human Interaction, 1 1994 (2),
126–160

LEVI, Z. AND GOTSMAN, C.: ArtiSketch: A System for Articulated Sketch Modeling.
In Computer Graphics Forum (Proceedings of Eurographics). Volume 32, 2013,
235–44

LÉVY, B. ET AL.: Least squares conformal maps for automatic texture atlas generation. In
ACM Transactions on Graphics. Volume 21, 2002, 362–371

Bibliography X

LI, G. ET AL.: Analysis, reconstruction and manipulation using arterial snakes. ACM

Transactions on Graphics, 29 2010 (6), 152

LI, H., SUMNER, R. W. AND PAULY, M.: Global Correspondence Optimization for Non-
rigid Registration of Depth Scans. In Proceedings of the Symposium on Geometry

Processing. Aire-la-Ville, Switzerland, Switzerland: Eurographics Association, 2008,
SGP ’08, 1421–1430

LLOYD, S.: Least squares quantization in PCM. IEEE Transactions on Information Theory,
28 1982 (2), 129–37

LODI, A., MARTELLO, S. AND VIGO, D.: Recent Advances on Two-dimensional Bin
Packing Problems. Discrete Applied Mathematics, 123 November 2002 (1-3), 379–
396

LOK, S. AND FEINER, S.: A survey of automated layout techniques for information
presentations. In Proceedings of Smart Graphics. 2001, 61–68

LUNA, F.: Introduction to 3D Game Programming with DirectX 11. USA: Mercury Learn-
ing & Information, 2012

MAESTRI, G.: Digital Character Animation 3. Pearson Education, 2006

MAHARIK, R. ET AL.: Digital micrography. ACM Transactions on Graphics (Proceedings

of SIGGRAPH), 30 2011 (4), 100

MARK, W. R., MCMILLAN, L. AND BISHOP, G.: Post-rendering 3D Warping. In Proceed-

ings of i3D. 1997

MARQUES, R. ET AL.: Spherical Fibonacci Point Sets for Illumination Integrals. Computer

Graphics Forum 32 2013 (8)

MARTELLO, S. AND TOTH, P.: Linear assignment problems. North-Holland Mathematics

Studies, 132 1987, 259–282

MATTHEWS, I., ISHIKAWA, T. AND BAKER, S.: The template update problem. IEEE

PAMI, 26 2004 (6), 810–5

MATUSIK, W. ET AL.: Image-based visual hulls. In ACM Transactions on Graphics (Pro-

ceedings of SIGGRAPH). 2000, 369–374

MCCOOL, M. AND FIUME, E.: Hierarchical Poisson disk sampling distributions. In
Proceedings of GI. Vancouver, 1992

MCCOOL, M. D., QIN, Z. AND POPA, T. S.: Shader metaprogramming. In Proc. ACM

SIGGRAPH/EUROGRAPHICS conference on Graphics hardware. 2002, HWWS ’02,
57–68

MCNAMARA, A. ET AL.: Fluid Control Using the Adjoint Method. In ACM Transactions on

Graphics (Proceedings of SIGGRAPH). New York, NY, USA: ACM, 2004, 449–456

XI Bibliography

MENZEL, N. AND GUTHE, M.: g-BRDFs: An Intuitive and Editable BTF Representation.
Computer Graphics Forum, 28 2009 (8), 2189–2200

MICROSOFT: Word 2016. Microsoft, Redmond: Microsoft, 2016

MITCHELL, D.: Ray tracing and irregularities of distribution. In Proceedings of EGWR.
Pisa, 1992, 61–9

MITCHELL, D. P.: Spectrally optimal sampling for distribution ray tracing. ACM SIG-

GRAPH Computer Graphics, 25 1991 (4), 157–64

MITCHELL, D.: Generating antialiased images at low sampling densities. Computer Graph-

ics (Proceedings of SIGGRAPH), 21 1987, 65–72

MITRA, N. J. AND PAULY, M.: Shadow Art. In ACM Transactions on Graphics (Proceed-

ings of SIGGRAPH Asia). New York, NY, USA: ACM, 2009, SIGGRAPH Asia ’09,
156:1–156:7

MOORE, G. E.: Cramming More Components Onto Integrated Circuits. Proceedings of the

IEEE, 86 Jan 1998 (1), 82–85

MÜLLER, M. AND GROSS, M.: Interactive virtual materials. In Proceedings of Graphics

Interface. 2004, 239–246

MÜLLER, M. ET AL.: Position based dynamics. Journal of Visual Communication and

Image Representation, 18 2007 (2), 109–118

MÜLLER, M. ET AL.: Meshless deformations based on shape matching. In ACM Transac-

tions on Graphics (Proceedings of SIGGRAPH). Volume 24, 2005, 471–8

NEALEN, A. ET AL.: FiberMesh: designing freeform surfaces with 3D curves. ACM

Transactions on Graphics, 26 2007 (3), 41

NEALEN, A. ET AL.: Physically Based Deformable Models in Computer Graphics. Com-

puter Graphics Forum, 25 2006 (4), 809–836

NGUYEN, C. H.: Data-driven Approaches for Interactive Appearance Editing. Ph. D thesis,
Universität des Sarlandes, 2014

NGUYEN, C. H., RITSCHEL, T. AND SEIDEL, H.-P.: Data-driven Color Manifolds. ACM

Transactions on Graphics 34 2015 (2)

NICODEMUS, F. E.: Directional Reflectance and Emissivity of an Opaque Surface. Applied

Optics, 4 Jul 1965 (7), 767–775

NVIDIA: NVIDIA’s Next Generation CUDA Compute Architecture: Kepler TM GK110.
White paper, 2012

NVIDIA: NVIDIA CUDA Compute Unified Device Architecture – Programming Guide.
NVIDIA, 2015

Bibliography XII

OSTROMOUKHOV, V.: Sampling with Polyominoes. ACM Transactions on Graphics 26
2007 (3)

OSTROMOUKHOV, V., DONOHUE, C. AND JODOIN, P.-M.: Fast hierarchical importance
sampling with blue noise properties. In ACM Transactions on Graphics (Proceedings

of SIGGRAPH). Volume 23, Los Angeles, 2004, 488–95

ÖZTIRELI, A. C. AND GROSS, M.: Analysis and Synthesis of Point Distributions based on
Pair Correlation. ACM Transactions on Graphics (Proceedings of SIGGRAPH Asia)

31 2012 (6)

PENFIELD, W. AND RASMUSSEN, T.: The cerebral cortex of man; a clinical study of
localization of function. 1950

PENG, C.-H., YANG, Y.-L. AND WONKA, P.: Computing Layouts with Deformable
Templates. ACM Transactions on Graphics, 33 July 2014 (4), 99:1–99:11

PHARR, M. AND HUMPHREYS, G.: Physically based rendering: From theory to implemen-
tation. Morgan Kaufmann, 2010

PHONG, B. T.: Illumination for Computer Generated Pictures. Communications of the

ACM, 18 June 1975 (6), 311–317

POPOVIĆ, J., SEITZ, S. M. AND ERDMANN, M.: Motion Sketching for Control of Rigid-
body Simulations. ACM Transactions on Graphics, 22 October 2003 (4), 1034–1054

POTTMANN, H. AND HOFER, M.: Geometry of the squared distance function to curves
and surfaces. In Visualization and Mathematics III. Springer, 2003, 223–44

PRASAD, M. AND FITZGIBBON, A.: Single view reconstruction of curved surfaces. In
Proceedings of CVPR. Volume 2, 2006, 1345–54

PRAZDNY, K.: Egomotion and relative depth map from optical flow. Biological Cybernetics,
36 1980 (2), 87–102

RAMAMOORTHI, R. ET AL.: A theory of Monte Carlo visibility sampling. ACM Transac-

tions on Graphics, 31 2012 (5), 121

RHEMANN, C. ET AL.: Fast cost-volume filtering for visual correspondence and beyond. In
Proceedings of CVPR. 2011, 3017–24

RITSCHEL, T. ET AL.: The State of the Art in Interactive Global Illumination. Computer

Graphics Forum, 31 February 2012 (1), 160–188

ROMERO, V. J. ET AL.: Initial Evaluation of Pure and Latinized Centroidal Voronoi Tessel-
lation for Non-Uniform Statistical Sampling. Rel. Eng. & Sys. Safety, 91 2006 (10),
1266–80

RUSSELL, C., YU, R. AND AGAPITO, L.: Video Pop-up: Monocular 3D Reconstruction
of Dynamic Scenes. ECCV , 2014, 583–598

XIII Bibliography

SAITO, S., ZHOU, Z.-Y. AND KAVAN, L.: Computational Bodybuilding: Anatomically-
based Modeling of Human Bodies. ACM Transactions on Graphics, 34 July 2015 (4),
41:1–41:12

SAKA, Y., GUNZBURGER, M. AND BURKHARDT, J.: Latinized, improved LHS, and CVT
point sets in hypercubes. International Journal of Numerical Analysis and Modeling,
4 2007 (3-4), 729–743

SANCHEZ PEREZ, J., MEINHARDT-LLOPIS, E. AND FACCIOLO, G.: TV-L1 Optical Flow
Estimation. Image Processing On Line, 3 2013, 137–150

SCHAEFER, S., MCPHAIL, T. AND WARREN, J.: Image deformation using moving least
squares. In ACM Transactions on Graphics (Proceedings of SIGGRAPH). Volume 25,
2006, 533–540

SCHERZER, D. ET AL.: Pre-convolved Radiance Caching. Computer Graphics Forum

(Proceedings of EGSR) 4 2012 (31)

SCHLÖMER, T. AND DEUSSEN, O.: Towards a Standardized Spectral Analysis of Point
Sets with Applications in Graphics. 2010

SCHLÖMER, T., HECK, D. AND DEUSSEN, O.: Farthest-point optimized point sets with
maximized minimum distance. In Proceedings of HPG. Vancouver, 2011, 135–142

SCHULZ, C. ET AL.: Animating Deformable Objects Using Sparse Spacetime Constraints.
ACM Transactions on Graphics, 33 July 2014 (4), 109:1–109:10

SEDERBERG, T. AND PARRY, S.: Free-form deformation of solid geometric models. ACM

SIGGRAPH Computer Graphics, 20 1986 (4), 151–160

SHIRLEY, P.: Discrepancy as a quality measure for sample distributions. In Proceedings of

Eurographics. Volume 91, Vienna, 1991, 183–94

SHOEMAKE, K.: Animating rotation with quaternion curves. In ACM SIGGRAPH Computer

Graphics. Volume 19, 1985, 245–54

SHREINER, D. ET AL.: OpenGL Programming Guide: The Official Guide to Learning
OpenGL, Version 4.3. 8th edition. Addison-Wesley Professional, 2013

SINHA, S. N. ET AL.: Interactive 3D architectural modeling from unordered photo collec-
tions. ACM Transactions on Graphics, 27 2008 (5), 159

SNAVELY, N., SEITZ, S. M. AND SZELISKI, R.: Photo Tourism: Exploring Photo Collec-
tions in 3D. ACM Transactions on Graphics, 25 2006 (3), 835–846

SOBOL, I. M.: A Primer for the Monte Carlo Method. 1st edition. CRC Press, May 1994

SORKINE, O. AND ALEXA, M.: As-rigid-as-possible surface modeling. In Proceedings of

SGP. 2007, 109–116

Bibliography XIV

SORKINE, O. ET AL.: Laplacian Surface Editing. In Proceedings of the 2004 Eurograph-

ics/ACM SIGGRAPH Symposium on Geometry Processing. New York, NY, USA:
ACM, 2004, SGP ’04, 175–184

SPETSAKIS, M. E. AND ALOIMON, J.: Closed Form Solution to the Structure from Motion
Problem from Line Correspondences. In Proceedings of the Sixth National Conference

on Artificial Intelligence. Volume 2, AAAI Press, 1987, 738–743

STEINBERGER, M.: Dynamic Resource Scheduling on Graphics Processors. Ph. D thesis,
Graz Univerity of technology, 2013

STROBELT, H. ET AL.: Rolled-out Wordles: A Heuristic Method for Overlap Removal of
2D Data Representatives. In Computer Graphics Forum. Volume 31, 2012, 1135–44

SUMNER, R. W. AND POPOVIĆ, J.: Deformation Transfer for Triangle Meshes. In ACM

Transactions on Graphics (Proceedings of SIGGRAPH). New York, NY, USA: ACM,
2004, 399–405

SWICK, R. R. AND ACKERMAN, M. S.: The X Toolkit: More Bricks for Building User-
Interfaces or Widgets for Hire. In USENIX Winter. USENIX Association, 1988,
221–228

SỲKORA, D., DINGLIANA, J. AND COLLINS, S.: As-rigid-as-possible image registration
for hand-drawn cartoon animations. In Proceedings of NPAR. 2009, 25–33

SỲKORA, D. ET AL.: Adding depth to cartoons using sparse depth (in) equalities. Computer

Graphics Forum (Proceedings of Eurographics), 29 2010 (2), 615–23

TALTON, J. ET AL.: Metropolis procedural modeling. ACM Transactions on Graphics, 30
2011 (2), 11

TANENBAUM, A. S.: Modern Operating Systems. Upper Saddle River, NJ, USA: Prentice
Hall Press, 2007

TAO, M. ET AL.: SimpleFlow: A Non-iterative, Sublinear Optical Flow Algorithm. In
Computer Graphics Forum (Proceedings of Eurographics). Volume 31, 2012, 345–
53

TERZOPOULOS, D. ET AL.: Elastically Deformable Models. In Proceedings of the 14th

Annual Conference on Computer Graphics and Interactive Techniques. New York,
NY, USA: ACM, 1987, SIGGRAPH ’87, 205–214

TESCHNER, M. ET AL.: Optimized spatial hashing for collision detection of deformable
objects. In Proceedings of VMV. 2003, 47–54

TUFTE, E. R.: Visual Explanations: Images and Quantities, Evidence and Narrative.
Cheshire, CT, USA: Graphics Press, 1997

ULICHNEY, R.: Digital Halftoning. Cambridge, MA, USA: MIT Press, 1987

XV Bibliography

VEACH, E. AND GUIBAS, L. J.: Metropolis Light Transport. In Proceedings of the 24th

Annual Conference on Computer Graphics and Interactive Techniques. New York, NY,
USA: ACM Press/Addison-Wesley Publishing Co., 1997, SIGGRAPH ’97, 65–76

VOLLICK, I. ET AL.: Specifying label layout style by example. In Proceedings of UIST.
2007, 221–230

VON FUNCK, W., THEISEL, H. AND SEIDEL, H.: Vector field based shape deformations.
ACM Transactions on Graphics (Proceedings of SIGGRAPH), 25 2006 (3), 1118–
1125

VORBA, J. ET AL.: On-line Learning of Parametric Mixture Models for Light Transport
Simulation. ACM Transactions on Graphics (Proceedings of SIGGRAPH) 33 aug
2014 (4)

WACHTEL, F. ET AL.: Fast Tile-based Adaptive Sampling with User-specified Fourier
Spectra. ACM Transactions on Graphics, 33 2014 (4), 56:1–56:11

WANG, J. ET AL.: Modeling Anisotropic Surface Reflectance with Example-based Mi-
crofacet Synthesis. In ACM Transactions on Graphics (Proceedings of SIGGRAPH).
New York, NY, USA: ACM, 2008, 41:1–41:9

WANG, L. ET AL.: The magic volume lens: An interactive focus+context technique for
volume rendering. In Proceedings of IEEE VIS. 2005, 367–374

WANG, Y.-S., LEE, T.-Y. AND TAI, C.-L.: Focus+Context Visualization with Distor-
tion Minimization. IEEE Transactions on Visualization and Computer Graphics, 14
2008 (6), 1731–1738

WANG, Y.-S. ET AL.: Feature-Preserving Volume Data Reduction and Focus+Context
Visualization. IEEE Transactions on Visualization and Computer Graphics, 17 2011,
171–181

WEI, L.-Y. ET AL.: State of the Art in Example-based Texture Synthesis. In Eurographics

’09 State of the Art Reports (STARs). Eurographics, March 2009

WEI, L.-Y. AND WANG, R.: Differential domain analysis for non-uniform sampling. In
ACM Transactions on Graphics (Proceedings of SIGGRAPH). Volume 30, Vancouver,
2011, 50

WEI, L.: Multi-class blue noise sampling. ACM Transactions on Graphics, 29 2010 (4), 79

WELCH, W. AND WITKIN, A.: Free-form Shape Design Using Triangulated Surfaces. In
Proceedings of the 21st Annual Conference on Computer Graphics and Interactive

Techniques. New York, NY, USA: ACM, 1994, SIGGRAPH ’94, 247–256

WITKIN, A. AND KASS, M.: Spacetime Constraints. In Proceedings of the 15th Annual

Conference on Computer Graphics and Interactive Techniques. New York, NY, USA:
ACM, 1988, SIGGRAPH ’88, 159–168

Bibliography XVI

WOJTAN, C., MUCHA, P. J. AND TURK, G.: Keyframe Control of Complex Particle Sys-
tems Using the Adjoint Method. In Proceedings of the 2006 ACM SIGGRAPH/Euro-

graphics Symposium on Computer Animation. Aire-la-Ville, Switzerland, Switzerland:
Eurographics Association, 2006, SCA ’06, 15–23

WOLBERG, G.: Image morphing: a survey. The visual computer, 14 1998 (8), 360–372

WU, T.-P. ET AL.: Interactive normal reconstruction from a single image. ACM Transactions

on Graphics (Proceedings of SIGGRAPH Asia), 27 2008 (5), 119

XU, J. AND KAPLAN, C.: Calligraphic packing. In Proceedings of GI. 2007, 43–50

XU, P. ET AL.: Global Beautification of Layouts with Interactive Ambiguity Resolution.
In Proceedings of the 27th Annual ACM Symposium on User Interface Software and

Technology. New York, NY, USA: ACM, 2014, UIST ’14, 243–252

XU, X. ET AL.: Animating Animal Motion from Still. ACM Transactions on Graphics

(Proceedings of SIGGRAPH Asia), 27 2008 (5), 117:1–117:8

YELLOTT, J.: Spectral consequences of photoreceptor sampling in the Rhesus retina.
Science, 221 1983 (4608), 382–85

YU, L.-F. ET AL.: Make it home: automatic optimization of furniture arrangement. ACM

Transactions on Graphics (Proceedings of SIGGRAPH), 30 2011 (4), 86

ZELEZNIK, R. C., HERNDON, K. P. AND HUGHES, J. F.: SKETCH: an Interface for
Sketching 3D Scenes. In ACM Transactions on Graphics (Proceedings of SIGGRAPH).
1996, 163–170

ZHANG, D., ZHOU, Z. AND CHEN, S.: Semi-supervised dimensionality reduction. In
Proceedings of SIAM Data Mining. 2007, 629–34

ZHANG, L. ET AL.: Single-view modelling of free-form scenes. Journal of Visualization

and Computer Animation, 13 2002 (4), 225–235

ZHENG, Y. ET AL.: Interactive images: Cuboid proxies for smart image manipulation. ACM

Transactions on Graphics (Proceedings of SIGGRAPH), 31 2012 (4), 99

ZHOU, S. ET AL.: Parametric reshaping of human bodies in images. ACM Transactions on

Graphics (Proceedings of SIGGRAPH), 29 2010 (4), 126

ZOLLHÖFER, M. ET AL.: GPU based ARAP Deformation using Volumetric Lattices. In
ANDÚJAR, C. AND PUPPO, E., EDITORS: Eurographics (Short Papers). Eurograph-
ics Association, 2012, 85–88

ZORIN, D., SCHRÖDER, P. AND SWELDENS, W.: Interactive Multiresolution Mesh Editing.
In Proceedings of the 24th Annual Conference on Computer Graphics and Interactive

Techniques. New York, NY, USA: ACM Press/Addison-Wesley Publishing Co., 1997,
SIGGRAPH ’97, 259–268

	List of Figures
	Introduction
	Background
	Contributions
	Outline

	Previous work
	Synthesis of visual media
	Rendering
	Model reconstruction
	Motion

	Media manipulation
	Model deformation
	Example-driven approaches

	Point patterns
	Pattern Properties
	Pattern Generation
	Point Patterns for Primitive Placement

	Interactivity
	Intuitive User Interfaces
	Interactive performance

	Homunculus Warping
	Introduction
	Approach
	Input
	Voxelization
	Optimization
	Equation minimization
	Deformation transfer

	Results

	Interactive By-example Design of Artistic Packing Layouts
	Introduction
	Overview
	Forward layout
	Feature mapping
	Primitive distribution with spatial extent

	Inverse Layout
	Results

	Projective Blue-Noise Sampling
	Introduction
	Our approach
	Dart throwing
	Lloyd relaxation

	Analysis
	Projective analysis
	Comparison to latinization
	Rotation
	Sample warping
	Lloyd convergence
	Performance

	Applications
	Rendering
	Image reconstruction
	Primitive placement

	Discussion

	Animated 3D Creatures from Single-View Video by Skeletal Sketching
	Introduction
	From skeletal sketches to animated shapes
	Overview
	User interface
	Preprocessing
	Stroke processing
	Stroke tracking
	Segmentation
	Cylinder fitting
	Texturing
	Implementation

	Results
	Scope and Limitations

	Conclusion
	Closing Remarks
	Future Work
	Individual Future Work
	Combinations for Future Work
	General Outlook

	Message

