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Abstract

Markov automata constitute an expressive continuous-time compositional mod-
elling formalism, featuring stochastic timing and nondeterministic as well as
probabilistic branching, all supported in one model. They span as special cases,
the models of discrete and continuous-time Markov chains, as well as interactive
Markov chains and probabilistic automata. Moreover, they might be equipped
with reward and resource structures in order to be used for analysing quantita-
tive aspects of systems, like performance metrics, energy consumption, repair
and maintenance costs. Due to their expressive nature, they serve as semantic
backbones of engineering frameworks, control applications and safety critical sys-
tems. The Architecture Analysis and Design Language (AADL), Dynamic Fault
Trees (DFT) and Generalised Stochastic Petri Nets (GSPN) are just some ex-
amples. Their expressiveness thus far prevents them from efficient analysis by
stochastic solvers and probabilistic model checkers. A major problem context of
this thesis lies in their analysis under some budget constraints, i. e. when only a
finite budget of resources can be spent by the model.

We study mathematical foundations of Markov automata since these are
essential for the analysis addressed in this thesis. This includes, in particular,
understanding their measurability and establishing their probability measure.
Furthermore, we address the analysis of Markov automata in the presence of
both reward acquisition and resource consumption within a finite budget of re-
sources. More specifically, we put the problem of computing the optimal expected
resource-bounded reward in our focus. In our general setting, we support tran-
sient, instantaneous and final reward collection as well as transient resource
consumption. Our general formulation of the problem encompasses in particu-
lar the optimal time-bound reward and reachability as well as resource-bounded
reachability. We develop a sound theory together with a stable approximation
scheme with a strict error bound to solve the problem in an efficient way. We
report on an implementation of our approach in a supporting tool and also
demonstrate its effectiveness and usability over an extensive collection of indus-
trial and academic case studies.
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Zusammenfassung

Markov-Automaten bilden einen mächtigen Formalismus zur kompositionellen
Modellierung mit kontinuierlicher stochastischer Zeit und nichtdeterministischer
sowie probabilistischer Verzweigung, welche alle in einem Modell unterstützt
werden. Sie enthalten als Spezialfälle die Modelle diskreter und kontinuierli-
cher Markov-Ketten sowie interaktive Markov-Ketten und probabilistischer Au-
tomaten. Darüber hinaus können sie mit Belohnungs- und Ressourcenstrukturen
ausgestattet werden, um quantitative Aspekte von Systemen wie Leistungsfä-
higkeit, Energieverbrauch, Reparatur- und Wartungskosten zu analysieren. Sie
dienen aufgrund ihrer Ausdruckskraft als semantisches Rückgrat von Enginee-
ring Frameworks, Steuerungsanwendungen und sicherheitskritischen Systemen.
Die Architekturanalyse und Designsprache (AADL), Dynamic Fault Trees (DFT)
und Generalized Stochastic Petri Nets (GSPN) sind nur einige Beispiele dafür.
Ihre Aussagekraft verhindert jedoch bisher eine effiziente Analyse durch stochas-
tische Löser und probabilistische Modellprüfer. Ein wichtiger Problemzusam-
menhang dieser Arbeit liegt in ihrer Analyse unter Budgetbeschränkungen, das
heisst wenn nur ein begrenztes Budget an Ressourcen vom Modell aufgewendet
werden kann.

Wir studieren mathematische Grundlagen von Markov-Automaten, da die-
se für die in dieser Arbeit angesprochene Analyse von wesentlicher Bedeutung
sind. Dazu gehört insbesondere das Verständnis ihrer Messbarkeit und die Festle-
gung ihrer Wahrscheinlichkeitsmaßes. Darüber hinaus befassen wir uns mit der
Analyse von Markov-Automaten in Bezug auf Belohnungserwerb sowie Ressour-
cenverbrauch innerhalb eines begrenzten Ressourcenbudgets. Genauer gesagt
stellen wir das Problem der Berechnung der optimalen erwarteten Ressourcen-
begrenzte Belohnung in unserem Fokus. Dieser Fokus umfasst transiente, so-
fortige und endgültige Belohnungssammlung sowie transienten Ressourcenver-
brauch. Unsere allgemeine Formulierung des Problems beinhalet insbesondere
die optimale zeitgebundene Belohnung und Erreichbarkeit sowie ressourcenbe-
schränkte Erreichbarkeit. Wir entwickeln die grundlegende Theorie dazu. Zur
effizienten Lösung des Problems entwerfen wir ein stabilen Approximations-
schema mit einer strikten Fehlerschranke. Wir berichten über eine Umsetzung
unseres Ansatzes in einem Software-Werkzeug und zeigen seine Wirksamkeit
und Verwendbarkeit anhand einer umfangreichen Sammlung von industriellen
und akademischen Fallstudien.
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Chapter 1

Introduction

The ever-increasing role of computer systems in the modern life pushes up the
demand for their safety and reliability. These become essential for safety-critical
systems used in medicine, transport, power systems and so on, so as to offer
necessary guarantees to assure people and environment are not endangered.
Moreover, any computer system is obliged to provide some quality of service in
the form of, for instance, energy consumption, throughput, availability, perfor-
mance . . . . In order to fulfil these requirements, appropriate tools and algorithms
for the design and evaluation of computer systems need to be employed.

Today’s computer systems are constantly growing in size and complexity. In
consequence, the methodology and machinery adopted for their design, eval-
uation and analysis must (i) provide support for the faithful consideration of
their important characteristics and properties (ii) provide efficient and scalable
techniques for their evaluation, and (iii) assure that the analysis conducted by
these techniques are sound and correct.

In this thesis we utilise Markov (reward) automata, an expressive and pow-
erful formalism encompassing a wide range of features that are required for the
design and analysis of complex systems. We propose efficient and sound solu-
tion techniques for analysis of systems modelled by Markov (reward) automaton.
The attention of this thesis is particularly focused upon points (ii) and (iii), from
above, that is to say, upon developing efficient and sound analysis techniques
for Markov (reward) automata. Nevertheless, we devote this chapter to point (i)
by providing necessary motivations for using Markov (reward) automata. In
other words, we argue about “why Markov (reward) automata serve as effective
modelling formalism for real world systems”.

1.1 Modelling real world systems

We elaborate in this section on some of the most common characteristics exhib-
ited by many of the real world systems around us. We clarify the characteristics
and the situations in which they appear by giving appropriate examples. We

3



4 CHAPTER 1. INTRODUCTION

then introduce Markov automaton as the modelling formalism exhibiting those
characteristics.

1.1.1 Nondeterminism

Nondeterminism emerges from uncertainty in a system, which can be about its
behaviour or its reaction to different internal and external situations. A nonde-
terministic behaviour is unquantified, that is to say, we cannot quantify how the
system behaves upon nondeterminism. Instead we know a collection of possible
outcomes of the behaviour. For instance, we do not know what a customer of
a vending machine is going to buy. However, we know the collections of items
that they can choose from.

We can distinguish between controllable and uncontrollable nondeterminism.
The above is an example of uncontrollable nondeterminism where the choice
of the customer can not be done by the vending machine. Typical examples of
controllable nondeterminism appear in control systems. For instance, in motion
planning of a robot, the controller should decide to go left, right or straight ahead.
We can model the possible decisions of the controller as a nondeterministic
choice between left, right and straight, as shown in Fig. 1.1a. While modelling,
designers may leave the choice open so as to make it possible to later determine
the best strategy for the controller.

Uncontrollable nondeterminism often occurs when the system must deal
with unclear situations arising by the environment or its own components. The
pressure measurements in a pump are completely nondeterministic for a pump
controller. The controller may for example be informed of the pressure being in
one of three levels low, normal or high, as depicted in Fig. 1.1b. Nevertheless,
it does not have any a priori knowledge of the exact pressure level beforehand.
Moreover, the delay imposed by the sensors measuring the pressure raises the
level of nondeterminism as the controller always acquires a slightly outdated
pressure value instead of the current one.

One of the common types of uncontrollable nondeterminism stems from

select direction
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. .

.

left st
ra

ig
ht

right

(a) Controllable in motion
planning

pressure
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. .
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control
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(c) Uncontrollable interleav-
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Figure 1.1: Different types of nondeterminism
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unobservable behaviour of components of a system that communicate with each
other. The exact internal state of the components are usually hidden from outside.
It may therefore happen that the order of events triggered by different compo-
nents is not determined by the system. As an example, illustrated in Fig. 1.1c,
two components A and B run in parallel and interleave at the specified states,
where they trigger events α and β , respectively. At this point, the events can
occur in any possible order. Hence, the possible orders (α before β and vise
versa) are modelled by nondeterminism. The situation usually takes place in a
system that embodies two or more components running in parallel.

The uncertainty that comes with nondeterminism is unquantified, regardless
of being controllable or uncontrollable. In fact, there are other kinds of uncer-
tainty that can be quantified. We can, for instance quantify the behaviour under
uncertainty by determining the probability distribution of possible choices. This
leads to the concept of probabilistic branching and stochastic timing, which are
discussed next.

1.1.2 Probabilistic branching

Probabilistic branching features uncertainty between a countable set of choices.
The uncertainty is however quantified and resolved by a probability distribution
over the set of possible choices. In other words, the distribution determines the
probability of selecting each choice in the uncertainty set. A typical example is
tossing a fair coin that has two outcomes, head or tail, each with probability
half. Probabilistic branching prevails in different kinds of systems ranging from
randomised algorithms and protocols to biological and social systems. We can in
general distinguish between two kinds of probability by design and probability
by nature.

By design. Sometimes probabilistic decision making is embedded in the design
of algorithms and protocols for specific purposes. Randomisation often brings
a simple and fast way to solve difficult problems. Computing the minimum cut
of a connected graph in a randomised way (Karger’s algorithm [Kar93]), deter-
mining the delay before retransmission of a frame in Ethernet protocol [Std12],
randomised rounding of linear program solutions to integer program solutions
(Raghavan-Tompson algorithm [RT87]) and distributed self-stabilising of micro
power grids [HH13b] are some examples. Randomisation in such algorithms
and protocols is modelled by means of probabilistic branching.

By nature. Some systems may characterise specific natural uncertainty stem-
ming from unpredictable environment. Packets in a wireless network may get
lost with a certain probability [GSK05; GSK06] due to the message collision
between nodes sending data somewhat at the same time. In social systems for
example, the spread of happiness in large social networks [FC08] and the in-
fluence between users of such systems [GBL10] are modelled by probabilistic
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branching. Moreover, discussed by [SB93], Markov models can be used for med-
ical decision making where the health state of a patient upon a clinical event
changes probabilistically.

Probabilistic branching reflects phenomena prevailing intentionally or nat-
urally within the structure of a variety of systems. It is therefore an essential
tool for modelling and evaluation of real world phenomena. Nevertheless, it is
only relevant to the cases when uncertainties are on a set of countable choices.
In the next section we deal with a special kind of uncertainty on continuous
(uncountable) time domain. That is to say, the uncertainty lies in the time when
the next event in a system occurs.

1.1.3 Continuous stochastic timing

Events play a crucial role in explaining the behaviour of different kinds of systems.
They are often distinguishable by the time instances at which they occur. This
fact is essential for understanding the dynamics of events. As in real systems time
evolves continuously, it is natural to study the dynamics of events in continuous
domain. Moreover, in many situations, the duration between the occurrences
of two events is not deterministic, but rather stochastic. In other words we
observe that the events are triggered in random moments. In order to express
this behaviour, it is therefore required to model stochastic timing.

In theory, the interarrival time between two events can be governed by an
arbitrary distribution. However, allowing an arbitrary distribution may obscure
developing an effective general evaluation technique for systems exhibiting
stochastic timing. In particular, it may complicate reasoning in the presence
of interaction between their components, e. g. via parallel composition [GBK16].
Moreover, in many applications the interarrival time can be considered to be
governed by an exponential distribution. Restricting to exponential distributions
in one hand simplifies the analysis and on the other hand provides a sound
compositional theory [Her02]. Furthermore, an arbitrary general distribution
can be represented by a phase-type distribution [Cox55]. Since phase-type distri-
butions are constructed by convolution and superposition of several exponential
distributions, represented by a Markov chain [Neu75], it is enough to restrict
to exponential distributions to produce a general distribution. In addition, effi-
cient solutions for fitting general distributions and measured data to phase-type
distributions has been proposed [TBT06]. Moreover, reduction techniques have
been developed to minimise the size of the resulting Markov chain [Pul09].
Combining with the compositionality feature, these provide an effective gen-
eral framework for modelling and analysis of different kinds of systems [HK09;
Böd+09].

Regardless of the approximation described above, there are many phenom-
ena that are known to follow exponential distributions. In reliability engineering,
exponential distributions are usually adopted for failure-time distributions. In
the field of queuing theory, the interarrival time between incoming packets as
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well as the service time is commonly considered to be exponentially distributed.
In biochemical reaction networks, the time to the next reaction to happen is
exponentially distributed [Gil76]. From dependability to performance analysis
and systems biology, the applications of exponential distributions together with
their nice compositionality feature make them one of the powerful tools for
modelling and evaluation of real world system.

1.1.4 Markov automata

In the previous sections, we discussed three different behavioural characteristics
that are exhibited by a variety of real world systems. We motivates the need
for a framework that, not only effectively captures the three features in one
model, but also provides automatic generation, reduction and efficient analysis
technique for the evaluation of the model.

There are models that individually support each of the three features dis-
cussed above. Pure nondeterminism is captured by label transition systems
(LTS). Discrete- and continuous-time Markov chains (DTMC,CTMC) support
probabilistic branching and stochastic timing, respectively. There have been at-
tempts to combine the features into a single model. In probabilistic automaton
(PA) [Seg95], each choice of nondeterminism can branch probabilistically. Inter-
active Markov chain (IMC) [Her02] orthogonally combines nondeterminism in
LTS with stochastic timing in CTMC. None of the mentioned models however
exhibit the three features all together.

Markov automata (MA) [EHZ10b; EHZ10a] constitute a compositional mod-
elling formalism featuring nondeterminism, probabilistic branching and continu-
ous stochastic timing. They are constructed by combining probabilistic automata
with continuous-time Markov chains in an orthogonal way. Therefore, they gen-
eralise LTSs, DTMCs, CTMCs, PAs and IMCs. They embody Markov decision pro-
cesses (MDP)1 and under certain conditions2 continuous-time Markov decision
processes (CTMDP).

Example 1.1. An example of a Markov automaton is depicted in Fig. 1.2a. Each
of its four states represent a specific internal status of the system that is modelled.
Dashed lines, which are annotated with positive rates, illustrate delayed transitions
governed by the exponential distributions with the corresponding rates. Solid lines
with the small circles in the middle declare transitions with probabilistic branching.
The circles are associated with the corresponding events that are triggered while the
transitions are performed. Nondeterminism may occur between two probabilistic
branches, e. g. in state v2.

The model described in Fig. 1.2a cannot be expressed by any of the models
mentioned above except for MA. The reason lies in the fact that the model

1MDPs can be regarded as a special case of PAs.
2Provided that early strategies [NSK09] are considered.
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(a) A Markov automaton
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(b) Its resources and rewards

Figure 1.2: An example of Markov automaton with resource and reward

simultaneously exhibits nondeterminism, probabilistic branching and stochastic
timing.

Having an expressive modelling formalism does not necessarily lead to an
effective evaluation framework. In fact, the formalism is only useful in practice if
it is accompanied with efficient analysis techniques. As an important prerequisite
of this, it must be able to model quantities on which the analysis is based. This
is discussed in the next section.

1.2 Analysing real world system

An effective analysis of real world systems necessitates modelling their quanti-
tative aspects. They are needed to quantify the behaviour of the system under
study. Hence, quantitative aspects are the main tools that provide the designer
with a basis on which to decide whether the requirements for the system is sat-
isfied or not. Making such a decision often involves trade-offs: Is the current
throughput satisfactory, or is it better to replace the hardware? If so, is that cost-
or energy-effective? To answer these questions we need to conduct analyses
involving system’s resources and services.

1.2.1 Resources and rewards

Essential ingredients of various kinds of analyses are resources and rewards.
Regardless of whether the analysis targets are energy consumption, repair or
maintenance costs or other consumable quantities, it involves quantifying a
resource consumption of some kind. Furthermore, throughput, availability, safety
and many other services that are provided by systems can be formulated via the
reward gained by the system. In this section, we explain resources and rewards
separately in our setting, we then draw the distinction between them, and discuss
why they are useful and effective.
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Resources. Time is the principal resource that, by advancing, is consumed in
both discrete- or continuous- time models. In many cases however, considering
time as the only resource is restrictive. There are applications that concern
energy consumption, repair or maintenance costs as the main resources. We
therefore generalise the concept of time to resources. In this view, time, energy,
money or any consumable quantities spent by a system can be considered as
resources. Resources are usually either limited in quantity or they need to be
carefully budgeted. In both cases, designers might be interested in analysing
some properties in their models under a given budget of resources.

Rewards. Rewards are used to quantify the services that are offered by a system.
They can for instance quantify the availability of a system by measuring the
percentage of time a system is ready to provide services. In this example, rewards
are obtained in a time-dependent manner. Rewards can also be event-dependent
as in throughput, which asses the rate of task completions in a system. In this
case, rewards are granted upon event occurrences. Rewards may as well depend
on the state of a system. A typical example is system safety, which evaluates the
probability of reaching states at which the system is safe within a specified period
of time. Rewards are often associated with the result produced or the service
offered by a system. Hence, the reward acquisition can be directly influenced by
nondeterministic and stochastic behaviour of a system.

The distinction. There are some quantities that can be considered as both re-
sources and rewards. For instance, time in availability servers as a reward quan-
tity whereas in safety it is a resource. There is however a subtle difference
between resources and rewards. Resources are always limited quantities, or re-
strictions in the form of fixed budgets are imposed on their consumption. They
are usually related to the quantities that are consumed by a system. Rewards, on
the other hands are related to the quantities that are produced or offered by a
system. They are obtained without concerning about any budget. In availability,
time measures the quality of being ready to offer services. In safety however, a
deadline is set on the time span of the system.

Why resources and rewards. It is possible to consider, depending on our view,
a quantity as rewards or resources. Being able to model resources and rewards
is crucial when analysing real world systems. First of all, analyses not involving
resource consumption and reward acquisition are very limited and cannot indeed
answer important questions regarding the functionality and the performance
of the systems under study. Resources and rewards on the other hand, can be
deployed with a considerable degree of flexibility to capture a wide range of
system’s measurements. Hence, they open up an opportunity to model various
kinds of quantitative aspects of real world systems. Moreover, the abstract view
of various quantities as resources and rewards generalises the way analyses
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can be specified and carried out. For instance, if there is an analysis technique
for maximum rewards gained within a deadline, it can be deployed for both
computing the maximal throughput and the maximal system safety within the
deadline, depending on how the rewards are defined. Altogether, resources and
rewards form the basis for effective system analysis in a single framework.

In the next section we equip Markov automata with resources and rewards.

1.2.2 Markov reward automata

Markov reward automata (MRA) are obtained by incorporating resource and
reward structures into MAs. They enjoy the expressiveness of MAs combined
with the ability to capture a wide range of useful quantities that can be expressed
by resources and rewards. This makes them an ideal framework for modelling
and analysis of real world systems. In the sequel, we briefly discuss how to boost
MAs with resource and reward.

In this thesis, we assume resources are spent with a non-negative constant
rate while the system stays at a specific state. The rates may indeed vary from
one state to another. The rate may also be zero at some state, meaning that the
system has no resource consumption at the state. For example, as described in
Tab. 1.2b, the resource is spend in state v1 of the MA shown in Fig. 1.2a with
rate 5. This means that the MA consumes 5 units of resource if it stays in v1
for one time unit. Similarly to the resources, transient rewards increase linearly
with time. The exemplary MA gains 2 units of transient reward per time unit of
staying at v1. MRAs are able to capture rewards that are time independent. They
can be granted either instantaneously upon triggering an event, i. e. executing
a transition, or finally when the specified budget of resources is empty. In our
example, one unit of instantaneous reward is obtained by executing a from v2.
Furthermore, half a unit of final reward is gained when the MA runs out of the
resource budget while visiting v1.

In the next section we compile a rich list of the useful features of MRAs that
are discussed above. With this we can strongly argue why MRAs are perfect tools
for quantitative system analysis.

1.3 Why Markov reward automata

Here we summarise all the benefits of employing MRAs as the modelling formal-
ism for quantitative system analysis.

Expressiveness and generality. We explained in Sec. 1.1 that MAs, as the basic
block of MRAs, support useful features in three orthogonal dimensions: nonde-
terminism, probabilistic branching and continuous stochastic timing. It makes
MRAs expressive enough to capture behavioural aspects of a diverse range of
systems that are used in practice. Moreover, MRAs generalise the behavioural
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Figure 1.3: A producer-consumer model in MA

models that partially support these dimensions, among all: LTS, DTMC, CTMC,
PA and IMC. This is practically interesting since their application domains are
carried over to the MRA world and also theoretically important as properties
established for MRAs directly hold for the sub-models.

Compositionality. Compositionality is a key feature that facilitates modular
modelling of highly complex systems. It enables designers to divide (or assem-
ble) a system into (or out of) several subsystems, each called a component, in a
top-down (or bottom-up) manner. The dynamics of the system is then defined
via composing its components in parallel. The components may need to com-
municate with each other to send and receive information. Compositionality for
MRAs is achieved by parallel composition. Parallel composition prescribes the
way the components of a system interact via synchronisation through actions.
Informally speaking, it determines how two components can synchronise their
executions by performing a shared action. This abstract view can, for instance
be instantiated as one component sending an item to another one. MAs are
compositional and so are MRAs. It is thus possible to model a complex system
by MRAs via, firstly breaking its structure down into several interacting compo-
nents, secondly modelling each component by an MRA, and lastly putting the
component in parallel composition via a set of appropriate actions.

Example 1.2. Fig. 1.3 shows Markov automaton models of a producer (Fig. 1.3a),
a consumer (Fig. 1.3b) and their parallel composition (Fig. 1.3). The states of the
composed model are formed by pairing the corresponding states of its components.
The producer and the consumer both start at state 0. The producer produces an
item in a randomly exponential duration with average 1

λ time units. The item may
however be corrupted with a probability of 0.05. The proper item is sent over to
the consumer through synchronisation between actions send and receive. The
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synchronisation takes place at state (2, 0) and as a result, the item is delivered
to the consumer. The item is then consumed in a random amount of time that is
exponentially distributed with rate µ. Action τ represent an internal behaviour
that is invisible from outside.

Compositionality brings a number of important advantageous. First of all,
it perfectly matches the design procedures that are commonly used in practice
when developing systems. Either of top-down or bottom-up approach splits a
system into some interacting components, which is exactly the procedure sup-
ported by compositional modelling. Secondly, it provides the basis for automatic
model construction specially for complex and huge systems. Design reusability,
ease of debugging and effective minimisation are some other benefits offered
by compositionality.

MRA as a semantical model. Expressiveness and generality of MRAs enables
them to serve as the semantic foundation of, among all, stochastic activity net-
work (SAN) [MMS85], generalised stochastic Petri nets (GSPN) [Eis+13], dy-
namic fault trees (DFT) [BCS10], Statecharts [Böd+09] and AADL, the architec-
ture analysis and design language [Boz+11]. Hence their application domains
are inherited by MRAs. It is therefore worthwhile to study MRA not only be-
cause of their considerable potential for modelling of real world systems directly,
but also since they deliver the low level semantics of the mentioned high level
frameworks.

Efficient modelling. An efficient modelling methodology is essential for any
formalism, specially to be used for describing extensive and complicated systems.
It is neither appropriate nor efficient to directly specify a model at a low level
of abstraction, e. g. listing states and transitions. Therefore, formal approaches
usually provide a high level language for model specification. The model is then
generated from a high-level description using automatic tools. Without this it is
hardly possible to specify huge and complex systems.

An efficient modelling approach exists for MRAs. Markov automata process
algebra (MAPA) [TPS13; Tim13] serves as the high-level language for describing
MRAs. In addition, various kinds of reduction techniques are proposed [Tim13]
that can reduce the size of the model while preserving a large class of properties,
including the ones we focus in this thesis.

Efficient analysis. Without support for analysis, any formal model provides very
limited insight into the modelled system. It is therefore necessary for formal
frameworks to support useful and practical analyses. A wide range of analyses
has been proposed for MRAs. Efficient algorithms have been successfully de-
veloped for time- and resource-bounded reachability, unbounded reachability,
expected goal-bounded rewards, long-run average rewards and expected time-
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and resource-bounded rewards. This range helps designers to quantitatively
evaluate their systems in different aspects.

Tool support. The success of MRA as a modelling and analysis formalism is
only guaranteed if it is accompanied by supporting tools. The modelling and
analysis techniques discussed above, all have been implemented in MAMA tool
chain [Guc+14b; Guc+14a]. This successfully integrates two separate tools for
the modelling and for the analysis of MRAs. For the modelling, SCOOP [Tim11]
provides an efficient generation of MRAs from MAPA specifications, accompanied
by the reduction techniques mentioned above. In the analysis part, IMCA [Guc12]
supports all the aforementioned analyses. We explain in the next section which
of those analysis are consider in this thesis and why they are important.

1.4 Why resource-bounded rewards

Finite vs infinite horizon. The title of this thesis puts emphasis on finite horizon
as the overwhelming type of analyses done for MRAs. Being on finite horizon
means that the analyses imposes a restriction on the amount of resources that
can be spend. This restriction is given in the form of a resource budget. On the
contrary, analyses on infinite horizon deal with objectives with the unbounded
resource budget, i. e. there is no restriction on the resource consumption. In
comparison with infinite horizon, analyses on finite horizon are usually more
difficult to be carried out. This is due to the fact that, for the analyses on fi-
nite horizon, we may need to change nondeterministic decisions at arbitrary
time points [Mil68; MMS85; BS11; RS11]. By contrast, on infinite horizon the
decisions are static along the time line [Put05; Guc+14a; Guc+14b].

The optimal ERR. Being on finite horizon in our setting coincides with resource
boundedness. Here, resource consumption and reward acquisition are inter-
twined. More precisely, rewards are obtained while resources are consumed by
MRAs. We are interested in computing resource-bounded rewards, the rewards
that are obtained up to running over a given resource budget. However, nonde-
terministic and stochastic behaviour of MRAs has direct impact on their reward
acquisition. The nondeterministic choices that are made and the stochastic dy-
namics of the model govern the reward acquisition. Therefore, the amount of
rewards obtained by an MRA is both nondeterministic and stochastic. After fix-
ing all nondeterministic decisions, the resource-bounded reward acquisition is
stochastic and forms a random variable. The random variable is thereby governed
by the nondeterministic decisions that are made in the model. The expectation
of the random variable yields the expected resource-bounded reward. This refers
to a range of expectations, each corresponding to a specific resolution of nonde-
terministic choices in the model. The minimum and the maximum in this range
are of special interest. These help us to measure the worst and the best services
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that a model can offered. To this end, we aim to compute the minimal or the
maximal expected resource-bounded rewards (ERR) for MRAs. More specifically,
a finite budget of resource is given, the model then tries to gain as much as (or
as little as) rewards possible in expectation until running over the budget. Here
we clarify why computing the optimal ERR is important.

Naturalness: It is completely natural to allocate a limited budget for the amount
of resources that can be consumed in a system. We often face in different
systems, a limited life time, a fixed planned budget for repair and mainte-
nance costs or a battery with a limited capacity. The analyses in all of these
cases necessitate the resource consumption to be within certain bounds.

Expressiveness: Due to the flexibility of deploying resources and rewards in a
model, it is possible to conduct a diverse range of analyses in the frame-
work of resource-bounded rewards. The optimal time-bounded rewards,
time- and resource-bounded reachability are some examples.

Challenge: Computing resource-bounded properties represent significant the-
oretical and technical challenges. The analyses on infinite horizon (un-
bounded budget) on the other hand, are usually equivalent to problems
in the same class but in discrete domain, which are well-understood and
relatively easy to solve.

Achieving the potential of MRAs: Using MRAs only for infinite horizon anal-
yses neglects their main strength as a continuous time model. Most of the
analyses can be done on discrete-time models without need to introduce
a new extensive and expressive model in continuous time. We strongly
believe that resource-bounded analyses helps to achieve the full potential
of MRAs as a continuous stochastic-time model.

In addition, studying analyses on finite horizon properties helps us to better
understand the infinite horizon ones since the latter can be seen as the limit
of the former. For instance, the long-run average reward is the limit of time-
bounded reward divided by the time bound as time bound goes to infinity. These
points urge us to consider the optimal ERR as the main property that we study
on MRAs.

1.5 Contributions

This thesis contributes to the field of quantitative system analysis. We look at
MRAs and study their analysis on finite horizon. More specifically, we aim to
establish a sound theory and efficient techniques for computing the optimal
expected resource-bounded reward (ERR). The analysis is considered as both
challenging and useful in practice. It is in general much more difficult than
the similar problems on infinite horizon. We develop all the way from a solid
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foundation in theoretical basics of MRAs to characterisations of the optimal
ERR. We then introduce an approximation scheme based on discretisation with
proved error bound for conducting the analysis. This leads to a numerically stable
polynomial time algorithm for computing the optimal ERR. We summarise our
contributions in five dimensions.

• We establish a solid theoretical foundation for MRAs. This includes in
particular, definition of meaningful strategies and a unique probability
measure for MRAs. The uniqueness ensures that with the predefined se-
mantics, there is one and only one valid way to analyse MRAs. Accordingly,
we propose a useful and solid way to define the optimal ERR via sequences
of functions. And lastly as a fundamental result, we introduce expectation
splitting on MRAs, which is, informally speaking, expressing expectation
on infinite executions in terms of expectation on finite executions. This
forms a crucial basis for several contributions throughout this thesis.

• We thoughtfully classify MRAs according to the finiteness of their optimal
ERR. As a result, we distinguish between reward convergent and reward
divergent models. A reward divergent model can infinitely obtain rewards
by spending only a finite amount of resources. This generalises the concept
of timelock, i. e. taking infinitely many transitions in a finite duration. At
the end, we prove a crucial upper bound on the optimal ERR of reward
divergent models.

• We study in depth the characterisations of the optimal ERR. First and
foremost, we introduce its characterisation as a fixed point of a Volterra
integral equation. With this, we show for the class of reward convergent
models that the optimal ERR is Lipschitz continuous with respect to re-
source bound. We provide the corresponding Lipschitz constant. We also
show that the optimal ERR may not be differentiable at the points a non-
deterministic choice has to be changed.

• We develop a sound and stable technique for computing the optimal ERR.
We first consider the optimal expected time-bounded rewards (ETR) as a
special case of the optimal ERR where the role of resources is taken by time.
To compute this approximately, we propose a sound discretisation scheme
with strict error bound that leads to a numerically stable polynomial time
algorithm. To employ the algorithm for the general case of ERR, we intro-
duce a resource-to-time measure preserving transformation by rate scaling
that reduces the resources-bounded to time-bounded computation.

• We demonstrate the effectiveness of our analysis techniques in practice.
We have implemented the tools and algorithms for computing the optimal
ERR. Moreover, we have assembled an extensive collection of industrial
and academic case studies. The empirical evaluation of our computational
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technique in various dimensions shows that it is useful in practice and also
brings value into quantitative analysis of real world system.

1.6 Overview

The rest of the thesis is organised as follows.

Chapter 2 provides the necessary background mostly in mathematical analysis
and probability theory that is used in this thesis.

Chapter 3 defines the Markov automaton model, its semantics and its proba-
bility measurability. This includes proposing measurable strategies, and
expectation splitting.

Chapter 4 studies the optimal ERR in detail by looking into its measurability
and finiteness. The classification of MRAs into reward convergent and re-
ward divergent models with an upper bound for the former is also included
in this chapter.

Chapter 5 characterises the optimal ERR as a fixed point of a Volterra integral
equation and then inspects its Lipschitz continuity and its differentiability.

Chapter 6 develops an approximation scheme for computing the optimal ETR.
In this chapter, a measure preserving transformation is introduced that
reduces the computation of the optimal ERR to ETR.

Chapter 7 presents an empirical evaluation of the computational technique
proposed in this thesis over an extensive collection of case studies.

Chapter 8 concludes the thesis by summarising the main contributions of this
thesis. It also discusses the current restrictions and open questions with a
list of possible future works.

The beginning of each chapter provides motivations for and overview of the
content. The end of each chapter summarises the results and the contributions,
overviews the related works and discusses open questions and future extensions.



Chapter 2

Mathematical Background

This chapter provides the mathematical background that is necessary for under-
standing the concepts, methods and proofs used in the thesis. We starts with the
basic notations for sets and functions and then look into measure theory. After-
wards we discuss some concepts in mathematical analysis including sequences
of functions, their convergence and also continuity. At the end some useful tools
in probability theory are represented.

2.1 Basic notations

We introduce here the notations to be used throughout this thesis.

Sets. We use operator “\” for set difference, “
⋃

i” and “
⋂

i” for the union and
the intersection of a family of sets indexed by i. The empty set is written as ;. The
set of all subsets of set A is denoted by 2A. The set of real and natural numbers
are denoted by R and N. We extend real numbers with ∓∞ to obtain the set
of extended real numbers, denoted by R. The set of extended natural numbers
is similarly defined by N := N ∪ {∞}. The set of (extended) nonnegative and
respectively positive reals numbers are denoted by R≥0 and R>0 (R≥0 and R>0).

Functions. We write f : A→ B to denote function f from X to Y . The preimage
of B under f is denoted by f −1(B) := {x ∈ X | f (x) ∈ B}. If a partial order
is given for Y , say (Y,≤), { f ≤ y} is an abbreviation for {x ∈ X | f (x) ≤ y}.
For f , g : X → Y , f ≤ g states f is pointwise less than g, i. e. f (x) ≤ g(x) for
every x ∈ X . For function f over X ×Y , f (x , ·) with x ∈ X refers to the mapping
y → f (x , y) for y ∈ Y . The indicator of X ⊆ U is the mapping 1X : U → {0,1}
with 1X (x) := 1 if x ∈ X , and 1X (x) := 0 if x /∈ X . The zero function, which
maps every thing to zero, is denoted by 0.

17
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2.2 Measure theory

Measure theory provides an abstract approach for measuring the size of sets.
Size in this context may refer to length, area, volume or, in particular probability.
This section presents the necessary concepts about measures and also probability
measures that is required for understanding the theory developed in this thesis.

2.2.1 σ-algebras and measures

In general a measure is a function, say µ, that assigns the size of A, µ(A), to every
set A in a specific universe. A collection of the subsets of the universe for which
the size exits is referred to as σ-algebra. It exhibits some intuitive properties,
for instance, if the size of A1 and A2 exist, then their union size must exist as
well. Formally, σ-algebra is closed under set complement, countable union and
countable intersection.

Definition 2.1 (σ-algebra). A collection X of subsets ofX (X ⊆ 2X) is aσ-algebra
iff it satisfies the following conditions:

(a) X ∈ X ,

(b) if A∈ X , then (X \ A) ∈ X ,

(c) if A1, A2, . . . ∈ X , then
⋃∞

i=1 Ai ∈ X .

Accordingly, the pair (X,X ) is referred to as measurable space.

The closure under countable intersection follows from (b) and (c).

Example 2.2. Let X= {1, 2, . . . , 6} correspond to the set of outcomes of throwing
a six-sided dice. The power set of X, 2X, satisfies all conditions of Def. 2.1 and is
thereby a σ-algebra. The same for instance holds for

�

;, {1}, {2}, {1,2}, {3,4, 5,6}, {2, 3,4, 5,6}, {1,3, 4,5, 6},X
	

A measurable set refers to an element of aσ-algebra. The size of a measurable
set is given by a measure, which is a set function that assigns a nonnegative
number to a given set in a specific universe. It is formally defined as follows.

Definition 2.3 (Measure). A measure on a σ-algebra X of set X is the mapping
µ : X → R such that

(a) µ(A)≥ 0 for A∈ X ,

(b) it is countably additive, that is for pairwise disjoint sets A1, A2, . . . ∈ X , it
holds that

µ
�∞
⋃

i=1

Ai

�

=
∞
∑

i=1

µ(Ai)
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Accordingly, the triple (X,X ,µ) is referred to as measure space. Moreover, if
µ(X) = 1, then µ and (X,X ,µ) are called probability measure and probability
space, respectively.

Specially in the context of probability, X refers to as sample space. It rep-
resents the set of all possible outcomes of a random experiment. Then each
elements of X corresponds to a certain outcome of the random experiment.
Moreover, an element of σ-algebra is also called a measurable event or simply
an event.

Events can have complex structures. They can also be combined via set op-
erations, making them more and more complicated. However, there are usually
“basic events” corresponding to the elementary outcomes of a random experi-
ment. In rolling a dice for example, each face can be seen as a basic event. More
complex events are then build upon the basic events using set operations.

It is usually enough to know basic events that can exist in a sample space (or
other kinds of spaces) in order to construct a σ-algebra containing all possible
events. This is done by constructing the closure under set operations described
in Def. 2.1. Let E be the set of some basic events, then

¯
σ?(E) denotes the smallest

σ-algebra generated by the set of events in E. Moreover, it is possible to extend
the measure that intuitively speaking, is defined only on the basic events E to
the measure on

¯
σ?(E) in a unique way. We will make use of this construction

later in this chapter and also in the following chapters.

2.2.2 Measurable functions

The concept of measurability can be extended from sets to functions. Measurable
functions exhibit useful properties. In particular, the theory of Lebesgue integra-
tion applies to the class of functions that enjoy a certain measurability feature.

Definition 2.4 (Measurable function). Let (Xi ,Xi), i = 1,2 be two measurable
spaces. Function f : X1 → X2 is measurable relative to σ-algebras X1 and X2,
also written as f : (X1,X1)→ (X2,X2) iff f −1(A) ∈ X1 for every A∈ X2.

The preimage of any measurable set under a measurable function is again
measurable. This means that the inverse image of a measurable function pre-
serves measurability. We do not need to check this preservation for every mea-
surable set. Indeed, it is sufficient to check it only for the basic events (see
e. g. [AD99, Definitions and Comments 1.5.1]).

In Lebesgue integration process, Borel measurable functions play an important
role. They belong to a certain class of measurable functions. To explain this class
we first need to define Borel σ-algebra. It is the σ-algebra over the set of real
numbers generated by the set of open intervals.

Definition 2.5. Borel σ-algebra on R, denoted by B(R), is the smallest σ-algebra
generated by open intervals, i. e. B(R) :=

¯
σ?({(a, b) | a, b ∈ R}). An element of

Borel σ-algebra is called Borel set.
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Some observations can be made on the Borel σ-algebra. First of all, it can
also be constructed by other types of intervals as the basic events, for instance by
closed, half closed interval, or interval of the form (−∞, b] for b ∈ R. Secondly,
Borel σ-algebra can be similarly defined on a segment of reals. In this way,
we can for example construct B(R≥0) and B([0,1]). The σ-algebra can also be
defined on the extended reals. Borel sets in this σ-algebra are the elements of
B(R), but in addition they may contain any subset of {−∞,+∞}. With this
observations, we proceed by the definition of Borel σ-algebra.

Definition 2.6 (Borel measurable function). Function f : (X1,X1)→ (X2,X2)
is Borel measurable iff X2 is a Borel σ-algebra.

As mentioned before, it is enough to show the measurability of a function for
basic events. In other words, a function is measurable if and only is its inverse
image under every basic event is measurable. This is specially the case for Borel
measurable functions.

Proposition 2.7. Let (X,X ) be a measurable space. Function f : X→ R is Borel
measurable iff {x ∈ X | f (x)≤ b} ∈ X for all b ∈ R.

Proof. It directly follows from the fact that the Borel σ-algebra can be con-
structed by (−∞, b] for b ∈ R.

Borel measurable functions have certain features that make them useful in
mathematical analysis. Among them is their closure under arithmetic operations.

Proposition 2.8. For f1, f2 : (X,X )→ (R,B(R)) it holds that f1+ f2, f1 · f2, f1/ f2
and k · f1 for every k ∈ R are Borel measurable providing the functions are well
defined.

Proof. See the proof of [AD99, Thm. 1.5.6].

In this context, arithmetic operations on functions are well defined when
they do not lead to∞−∞, a/0 and∞/∞.

Another important feature of Borel measurable functions is that they are
closed under limit sequence. In other words, the limit of a sequence of Borel
measurable functions is Borel measurable.

Theorem 2.9. Let fn : (X,X )→ (R,B(R)) for n ∈ N be a sequence Borel measur-
able functions that converge pointwise to f : X→ R, i. e. limn→∞ fn(x) = f (x)
for all x ∈ X. It then holds that f is Borel measurable.

Proof. See the proof of [AD99, p. 1.5.4].

Sequences of functions will be discussed in detail in Sec. 2.4.2.
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2.2.3 Extension of measures

Assume two measure spaces are given; here we explain how to build a measure
space upon them. This can be seen as the generalisation of Cartesian products for
measure spaces. In particular, we can use this technique for modular construction
of measure and probability spaces.

We start with the construction of σ-algebras over the Cartesian product of
two sets, which is known as product σ-algebra. For this, we first introduce mea-
surable rectangles, which are obtained by Cartesian product of two measurable
sets.

Definition 2.10 (Measurable rectangle). Given two measurable spaces (X1,X1)
and (X2,X2) then A1 × A2 is a measurable rectangle iff A1 ∈ X1 and A2 ∈ X2.

Measurable rectangles are the basic blocks of the productσ-algebra. In other
words, the productσ-algebra is generated by the set of all measurable rectangles.

Definition 2.11 (Product σ-algebra). The product space of two measurable
spaces (X1,X1) and (X2,X2) is defined as (X1 × X2,X1 ⊗ X2), where X1 ⊗ X2
is the product σ-algebra, which is the smallest σ-algebra that contains all mea-
surable rectangles, i. e.

X1 ⊗X2 = ¯
σ?
�

{A1 × A2 | A1 ∈ X1, A2 ∈ X2}
�

We can now construct a measure on the product σ-algebra. The construc-
tion assures that such a measure exists and it is also unique. In our setting, we
heavily utilise this construction to establish the probability measure for MRAs.
Intuitively speaking, if we have the probability measure for one step execution
of MRAs, we can construct the probability measure on the product of n steps.
This technique makes use of product measure theorem. We present the theo-
rem in probabilistic setting. For the theorem in more general setting see for
instance [AD99, Thm. 2.6.2].

Theorem 2.12 (Product measure theorem). Let (X1,X1,p1) be a probability
space and (X2,X2) be a measurable space. Assume that for every x1 ∈ X1 we have
a probability measure p2(x1, ·) : X2 → [0,1] with x1 → p2(x1, A) being Borel
measurable for every A∈ X2. Then there exist a unique probability measure p on
X1 ⊗X2 such that

p(A) =

∫

X1

p2(x1, A(x1))p1(dx1) for A∈ X1 ⊗X2

where A(x1) = {x2 ∈ X2 | (x1, x2) ∈ A}.

Proof. See the proof of [AD99, Thm. 2.6.2].
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We usually refer to probability measures p1 and p2 as “sub-measures”. Once
they are known and satisfy the condition of the product measure theorem, we
can combine them to constitute the probability measure on the product space
in a unique way. The crucial step is of course to show that they both satisfy the
conditions of the product measure theorem. The result of the product measure
theorem can be extended in order to compute the expectation of Borel measur-
able functions on a product space. That is to say, if we have a Borel measurable
function on the produce space, it is possible to compute its expectation using
the sub-measures. This is known as Fubini’s theorem.

Theorem 2.13 (Fubini’s theorem). Assume the hypothesis of the product measure
theorem (Thm. 2.12) and let f : X1 ×X2→ R≥0 be a Borel measurable function.
Then,

∫

X1×X2

f dp=

∫

X1

∫

X2

f (x1, x2)p2(x1, dx2)p1(dx1)

Proof. See the proof of [AD99, Thm. 2.6.4].

The product measure theorem and Fubini’s theorem can be seen as the tools
for “integration” of probability measures and expectation computation. They
can on the other hand be viewed as “disintegration” tools. We utilise this feature
in particular in Ch. 3 for expectation splitting, which is an essential technique for
computing expectations in MRAs.

2.3 Probability theory

This section provides background concepts of probability from a measure theo-
retic points of view. It includes the concept of distributions, random variables
and expectations.

Distribution. Let X be a finite (or countably infinite) set. A probability distribu-
tion over X is a function µ : X → [0, 1] such that

∑

x∈X µ(x) = 1. The support of
µ, denoted by supp(µ), is the set of all elements of X that gives positive probabil-
ity, i. e. supp(µ) := {x ∈ X | µ(x)> 0}. A distribution is Dirac on x ∈ X , written
as∆x , iff∆x(x) = 1. It is not hard to see that a distribution induces a probability
measure on the power set of X . The set of all probability distributions over X is
denoted by Distr(X ).

Random variable. In a probability space (X,X ,p), X represents the set of pos-
sible outcomes, and thereby and element of X corresponds to a random experi-
ment. However, it may not be relevant to directly work with X since it can have
an arbitrary shape and complex structure. Instead, we use a mechanism that
measures a certain quantity of random experiments. This is usually a function
X that maps outcome x to (extended) real number X (x). The inverse image of
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such a function forms a set of outcomes that must be indeed measurable. Thus
a random variable is required to be Borel measurable.

Definition 2.14 (Random variable). An (extended real-valued) random variable
X on probability space (X,X ,p) is a Borel measurable function from X to R.

As the definition suggests the terms “random variable” and “Borel measur-
able function” are equivalent in probability domain.

Expectation. Borel measurability of random variables makes further analysis
possible. In particular we can compute their expectation, which is intuitively their
average value. Expectation provides a clue on how the random experiments are
quantified on average according to their likelihood.

Definition 2.15 (Expectation). The expectation of random variable X on (X,X ,p)
is defined as

E(X ) :=

∫

X
X dp

We finish this section by looking into the expectation of a special random
variable, namely the one that maps each random experiment to a natural number.
In our setting, such a random variable is used for instance to count certain events
during the execution of an MRA.

Lemma 2.16. Let X be a nonnegative integer-valued random variable on (Ω,F , P),
then

E(X ) =
∞
∑

i=0

P(X > i)

Proof. Consider the sum:

S = P(X = 1) + P(X = 2) + P(X = 3) + · · ·
+ P(X = 2) + P(X = 3) + · · ·

+ P(X = 3) + · · ·
+ · · ·

The i-th column elements sum up to i · P(X = i), then S =
∑∞

i=0 i · P(X = i) =
E(X ). On the other hand, the i-th row elements sum up to

∑∞
j=i P(X = j) =

P(X ≥ i). Hence E(X ) =
∑∞

i=1 P(X ≥ i) =
∑∞

i=0 P(X > i).

2.4 Analysis

This chapter includes several definitions and results in mathematical analysis
that are crucial for understanding of the material in this thesis. We first look
into Lipschitz continuity and then discuss sequences of functions and their con-
vergence. We then give arguments in different cases how we can interchange
between limiting operators regarding a sequence of functions.
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2.4.1 Lipschitz continuity

There are different notions of continuity of real-valued functions. Lipschitz is a
strong notion of continuity asserting that the variation of a function is bounded.
In other words, the function cannot vary faster than some finite rate. Here we
provide the definition for real-valued functions.

Definition 2.17 (Lipschitz continuity). Function f : R → R is Lipschitz with
Lipschitz constant L ≥ 0 iff for every x , y ∈ R,

�

� f (y)− f (x)
�

�≤ L
�

�y − x
�

�.

Lipschitz is related to other forms of continuity as well as differentiability. In
particular, every Lipschitz continuous function is indeed continuous. Moreover, it
is absolutely continuous that makes it differentiable almost everywhere. In addition
its derivative in absolute value is almost everywhere bounded by L. Hence the
result of fundamental theorem of calculus may applies, ensuring that the function
coincides with the Lebesgue integral of its derivative. This is specially useful
when the function is characterised by a differential equation.

2.4.2 Convergence of sequences of functions

It is often useful to study functions not independently, but as a sequence or series.
For a quantity that can be computed iteratively, the sequence is constructed
by the value of quantity up to the n-th iteration. For instance, the cumulative
reward in MRAs is gained step by step. This constitutes a sequence of functions,
each corresponding to the cumulative rewards up to the n-th step. The overall
cumulative reward is then the limit of this sequence. In most of the cases the
limit is the quantity that we aim to compute or study. It is usually easier to
establish properties for the functions in the sequence than its limit. Hence, we
are interested to check if a property can be lifted from the sequence into its limit.

This section discusses the convergence of sequences of functions. There are
different forms of convergences, among them we study pointwise, monotone and
uniform convergences. We also discuss in these cases how limit processes like
lim, inf, and sup can be interchanged. We also mention the properties that are
preserved under a certain notion of convergence.

A sequence of functions. We consider a collection of functions that share the
same domain and co-domain. For our purpose, we restrict to extended real-
valued functions and do not consider more general forms of functions. However
most of the results extend without difficulty to more general cases. A sequence of
function is formed by a collection f1, f2, . . . of functions from an arbitrary set X
to R, written as { fn : X → R}n∈N. It may converges to another function, which
is called the limit of the sequence. Sometimes we need to be more descriptive
and state also the form of convergence.
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Pointwise convergence. One of the weakest way in which a sequence of func-
tions converges to a particular function is called pointwise convergence. Without
any further restriction, it states that for every point in the shared domain, the
sequence is convergent.

Definition 2.18 (Pointwise convergence). Sequence { fn : X → R}n∈N is said to
be pointwise convergent to f : X → R, iff limn→∞ fn(x) = f (x) for every x ∈ X .

We have already stated in Thm. 2.9 that pointwise convergence preserves
Borel measurability. Apart from measurability, Lipschitz continuity is also pre-
served under pointwise convergence, provided that there is a global Lipschitz
constant for all fn’s. As a result, f is indeed Lipschitz with the same constant.
We will prove this result in our specific setting in Thm. 5.7 on page 95.

Monotone convergence. Monotone convergence entails the sequence of func-
tions { fn : X → R}n∈N being monotone, i. e. either decreasing or increasing; that
is to say, fn(x) ≥ fn+1(x) (or respectively fn(x) ≥ fn+1(x)) for all n and x . In
addition, if the sequence is convergent to some function f , we shall say that the
convergence is monotone. In other words, monotone convergence is stronger
than pointwise convergence as it restricts the sequence to be additionally in-
creasing or decreasing.

Assume the functions are defined on a set accompanied by a measure space;
an important feature of monotone convergence is that it enables to interchange
between limit and integral. It implies that the integral of the functions in the
sequence with respect to the measure converges to the integral of the limit.
In fact, the function are required to be Borel measurable. This result, known
as monotone convergence theorem, is shown next for nonnegative real-valued
functions.

Theorem 2.19 (Monotone convergence). Let (X,X ,µ) be a measurable space
and { fn : X→ R≥0}n∈N be a sequence of Borel measurable functions that is mono-
tonically convergent to f . It holds that

lim
n→∞

∫

X
fn dµ=

∫

X
f dµ

Proof. See the proof of [AD99, Thm. 1.6.2].

Notice that the result of the monotone convergence theorem holds also for
summation instead of integration. As an special case, this happens when X is
countable and µ is a counting measure, a measure that counts the number of
elements of a set.
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Uniform convergence. Often enough in mathematical analysis, we want to check
whether or not a property that holds for each function in a sequence can be
carried over into its limit. For example, we may want to know if a sequence
of continuous or differentiable functions converges to a continuous, or respec-
tively differentiable function. To answer such questions, in many cases, we need
stronger notions of convergence than pointwise convergence. It usually includes
pointwise convergence together with more restrictions on the way the sequence
converges. For example, a condition can be imposed on the speed of conver-
gence. In this way, one may require that the sequence converges roughly with
the same speed for all points in the domain. This leads to the concept of uniform
convergence.

Definition 2.20 (Uniform convergence). Given set X , then a sequence of functions
{ fn : X → R} is uniformly convergent to f : X → R if and only if

• for every ε > 0 there exist N ∈ N such that for all n ≥ N and all x ∈
X \ (X∞ ] X−∞) we have

�

� fn(x)− f (x)
�

�< ε,

• for every M ∈ R there exist N ∈ N such that for all n ≥ N and all x ∈ X∞
we have fn(x)> M,

• for every M ∈ R there exist N ∈ N such that for all n≥ N and all x ∈ X−∞
we have fn(x)< M,

where X±∞ = {x ∈ X : f (x) = ±∞}.

Uniform convergence makes sure that for sufficiently large N , we have all fn
with n≥ N uniformly in ε-neighbourhood of f , or in the case of converging to
infinity, uniformly larger than M (smaller than M in case the limit goes to −∞).
This brings in nice properties, for instance preservation of continuity. Moreover,
one can interchange between limit and supremum/infimum operators taken
over a uniformly convergent sequence.

Theorem 2.21. Suppose X is a set and { fn : X → R} is a sequence of functions
converging uniformly to f : X → R, then for opt ∈ {inf, sup}

lim
n→∞

opt
x∈X

fn(x) = opt
x∈X

f (x)

Proof. We show the theorem for the case when −∞< M := optx∈X f (x)<∞.
Therefore, we can ignore sub-domains X±∞ and focus on X \ (X−∞]X∞). The
infinity cases can be treated similarly. Fix ε > 0; we have then all fn’s uniformly
in ε-neighbourhood of f for n large enough. That is to say, there exist N ∈ N
such that for all n≥ N and x ∈ X \ (X−∞ ] X∞)

�

� fn(x)− f (x)
�

�≤ ε (2.1)

At this point we distinguish between the supremum and infimum cases. From
Eq. (2.1) for the supremum case we can obtain fn(x)≤ f (x)+ε≤ supx∈X f (x)+
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ε= M + ε. By taking the supremum again we have supx∈X fn(x)≤ M + ε. The
other side of inequality (2.1) gives f (x)−ε≤ fn(x)≤ supx∈X fn(x) and thereby
M − ε≤ fn(x)≤ supx∈X fn(x). All together we can conclude

�

�

�

�

sup
x∈X

fn(x)−M

�

�

�

�

≤ ε

With a similar argument we can obtain a similar inequality for the infimum case.
Hence, for all n≥ N and x it holds that

�

�

�

�

opt
x∈X

fn(x)−M

�

�

�

�

≤ ε

which completes the proof.

As a special case, whenever set X is finite, we can conclude that the conver-
gence is uniform. This is because the speed of convergence is uniformly greater
than the speed of the convergence for the slowest point in the finite domain.
Therefore, the result of Thm. 2.21 holds. This is summarised in the next theorem.

Theorem 2.22. Suppose X is a finite set and { fn : X → R} is a sequence of
functions converging pointwise to f : X → R, then for mix ∈ {min,max}

lim
n→∞

mix
x∈X

fn(x) =mix
x∈X

f (x)

Proof. It is enough to show that the convergence is uniform since then the claim
follows from Thm. 2.21. Thanks to the finiteness of X , it is possible to satisfy the
conditions of uniform convergence given in Def. 2.20. For every ε > 0 we choose
Nx ∈ N with x ∈ X \ (X∞ ] X−∞) such that n ≥ Nx implies

�

� fn(x)− f (x)
�

� ≤ ε.
Since X is finite, we can pick N =max{Nx : x ∈ X \ (X∞ ] X−∞)} for the first
condition of uniform convergence. We proceed in the same way for the other
two conditions. For every M ∈ R we choose Nx ∈ N with x ∈ X∞ (respectively,
x ∈ X−∞) such that n ≥ Nx implies fn(x) > M (respectively, fn(x) < M).
Finally, taking N±∞ =max{Nx : x ∈ X±∞} in the second and the third condition
completes the proof.

The results of Thm. 2.21 and 2.22 will be used to justify the interchange
between limits and optimum operators in Ch. 4 and 5.

We close this section by listing a number of references for further reading.
The first four chapters of [AD99] gives an in-depth background in measure and
probability theory. It covers the most of topics discussed in this chapter and
much more. In addition, sequences and series of functions and in particular uni-
form convergence and its relation to continuity and differentiability is discussed
in [Rud76, Ch. 7]. And lastly, an excellent and brief introduction to a measure
theoretic approach to probability theory is given by [Neu10, Ch. 1].
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Chapter 3

Markov Automata

In this chapter we define Markov automata (MA) [EHZ10b; EHZ10a; DH11;
DH13] which is the main model considered in this thesis. Markov automata
constitute a nondeterministic and stochastic model subsuming a wide range
of important formalisms, including interactive Markov chains, probabilistic au-
tomata, discrete- and continuous-time Markov chains and labelled transition
system. Markov automata are compositional, making them applicable for evalu-
ation and analysis of modular systems. Their application domain spans a diverse
area in industry, engineering and research. For instance, they provide the com-
plete semantics for industrial formalisms including Generalised stochastic Petri
nets [Eis+13], dynamic fault trees [BCS10] and Architecture Analysis and Design
Language (AADL) [Boz+11].

In this chapter, we first introduce Markov automata and then study their com-
positionality. We then provide their semantics in terms of histories and paths. We
develop σ-algebras and probability measures over the set of histories and paths
induced by Markov automata. And finally we introduce expectation splitting, an
effective technique for simplifying expectation computation in MA framework.

3.1 Markov Automata

Markov automata provide a compositional behavioural model combining some
of the most important features that are necessary for modelling industrial and en-
gineering systems. They integrate Probabilistic Automata (PA) with Continuous-
Time Markov Chains (CTMC) to inherit properties from both models. They are
thereby capable of modelling nondeterministic behaviour and discrete proba-
bilistic branching from PA and stochastic timing from CTMC, making them one
of the most general models that exist in formal methods.

Similar to other automaton like structures, a collection of states and transi-
tions between them constitute an MA. A state characterises an internal status of
the system modelled by the MA within a certain period of its execution. At the
beginning, the MA is in the initial state, from which its execution starts. By exe-

29
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cuting transitions, the MA can move between its states. There are action-labelled,
known also as probabilistic transitions, and rate-labelled, known also as Marko-
vian transitions. An action represents the event associated with the execution
of the corresponding transition. It is the main tool enabling the MA to commu-
nicate with its external environment. Markovian transitions, on the other hand,
are mainly used for modelling the internal dynamics of the MA. They govern for
instance the sojourn time between state changes. With this brief introduction we
provide the formal definition of the MA.

Definition 3.1 (Markov automaton). A Markov automaton (MA) is a tuple M=
�

V, v0, Act, TP, TM

�

, where

• V is a finite set of states, of which v0 ∈ V is the initial state;

• Act is a countable set of actions, including internal invisible action τ;

• TP ⊆ V × Act×Distr(V ) is the probabilistic transition relation;

• TM ⊆ V ×R>0 × V is the Markovian transition relation.

We consider the sets V , TP and TM to be finite in this thesis. By γ= (v,α,µ) ∈
TP we say γ is an outgoing or emanating transition from v. We may also say that
γ is available at v. In such a case γ can fire or execute action α and evolves to one
of its successor state according to distribution µ. Similar terminology is used for
Markovian transition γ= (v,λ, v′) ∈ TM that is an outgoing transition from v to
v′ with rate λ.

We classify states of an MA according to their outgoing transitions. We refer
by TP(v) := {(v,α,µ) ∈ TP : α ∈ Act,µ ∈ Distr(V )} to the set of probabilistic
outgoing transitions from v, and similarly by TM(v) := {(v,λ, v′) ∈ TM : λ ∈
R>0, v′ ∈ V} to the set of Markovian outgoing transitions from v. With this we
partition state space of an MA into the set of probabilistic (VP), Markovian (VM),
hybrid (VH) and deadlock (VD) states, where

• v ∈ VP iff TP(v) 6= ; and TM(v) = ;,

• v ∈ VM iff TP(v) = ; and TM(v) 6= ;,

• v ∈ VH iff TP(v) 6= ; and TM(v) 6= ;,

• v ∈ VD iff TP(v) = ; and TM(v) = ;.

Intuitively speaking the set of probabilistic (Markovian) states are those that
have only probabilistic (Markovian) outgoing transitions. Hybrid states have
transitions of both types, and deadlock states have no outgoing transition.
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3.1.1 Interpretation of transitions

A transition conveys information about its source, its destination and its timing
dynamics. This information determines when the transition fires and what hap-
pens after its execution. Here we give the interpretation for both probabilistic
and Markovian transitions.

Probabilistic transitions carry the possibly visible part of an MA behaviour,
i. e. actions. However, not all of the actions are visible, in particular τ ∈ Act is
considered invisible, describing an internal behaviour of the system modelled by
the MA. We make a distinction between external actions, which are visible and
meant to be used for synchronisation in parallel composition with other models,
and internal actions that are invisible. Accordingly, we call a transition internal
(external) iff it carries an internal (external) action. Note that the terms are only
applicable to probabilistic transitions as Markovian ones are not action-labelled.
There is a difference between internal and external transitions in regard to tim-
ing. Internal transitions are autonomous meaning that they fire instantaneously
and thereby their execution cannot be delayed. Conversely external transitions
can be delayed by synchronisation in case the model is in communication with
another MA. In such a case the transition may not execute its external action
until the other MA is also ready for synchronisation.

As explained above the timing of external transitions depends on the MA’s
context, i. e. the environment in which the MA is placed. The environment may
consist of several other MAs communicating with each other and with the MA.
Conversely the timing of internal transitions is independent of the context. Hence,
we interpret internal transitions first, and we discuss about external transitions
later in Sec. 3.1.2, where we define compositionality. Let γ = (v,α,µ) ∈ VP(v)
be an internal transition, i. e. action α is internal, and suppose γ is the only
outgoing transition of v. Then, at the moment the model is in v, the transition
fires. This also implies that the time of staying at v, known as the sojourn time,
is zero. Immediately afterwards the model evolves to one of the successors of v.
The choice of the successor state is probabilistic. More precisely, state v′ ∈ V is
selected as the successor of v with probability µ(v′).

Markovian transitions behave stochastically. In contrast to internal transi-
tions, they are not instantaneous. Moreover their delay, opposed to external
transitions does not depend on the MA’s context, but rather their exit rate. The
exit rate of a Markovian transition determines how it fires randomly. It com-
pletely identifies the distribution of the sojourn time of the transition source.
Let v be a Markovian state, then the rate between v and an arbitrary state u
is defined as rate(v, u) :=

∑

{λ : (v,λ, u) ∈ TM(v)}. The exit rate of v is then
the sum of its outgoing rates, denoted by E(v) :=

∑

v′∈V rate(v, v′). The time to
leave state v by firing one of its outgoing transitions is exponentially distributed
with the parameter equal to its exit rate. Following from the probability density
function of exponential distributions, the probability to leave v within interval

[a, b] is given by
∫ b

a E(v)e−E(v)·t dt = e−E(v)·a−e−E(v)·b. After leaving v the choice



32 CHAPTER 3. MARKOV AUTOMATA

of the successor state is governed by the branching probability distribution of v,
which selects v′ as the successor of v with probability rate(v,v′)

E(v) . As the reader may
have noticed, the interpretation of a Markovian transition in an MA coincides
with that of a state with the same exit rate in a CTMC.

The above explanation implicitly provides the interpretation of a probabilis-
tic state with only one outgoing transition and a Markovian state. There are still
questions remaining unanswered. For instance, how to interpret a probabilistic
state with more than one outgoing transition, or a hybrid state with both Marko-
vian and probabilistic transitions. The former is explained by means of strategies
in Sec. 3.2.1. The latter is discussed in the context of compositionality, which is
presented in the next section.

3.1.2 Compositionality

Compositionality is one of the key features of MAs, enabling them to be used
for modular modelling of complex systems. MAs are essentially designed to be
compositional. It means that the MA of a complex system consisting of several
components can be constructed by composing the MAs of the individual com-
ponents. This feature is of crucial importance since modelling each component
separately and then composing them is much more effective and natural than
modelling the whole system at once. In order to obtain a faithful model of the
system its components must be able to cooperate and communicate with each
other. As mentioned before the communication is done by synchronisation over
a number of actions. In this section we go more deeply into the details of the
synchronisation and in general what is called parallel composition.

Parallel composition of MAs conservatively generalises that of PAs [Seg95]
and Interactive Markov Chains (IMC) [Her02]. It is defined as an operator and
applied to two MAs sharing some synchronisation actions. This constitutes a
model that is the result of running both of the MAs in parallel while they com-
municate via the synchronisation actions. The state space of the composed model
is the Cartesian product of the state spaces of its components. As expected its
initial state is a pair consisting of the initial states of its component, and its action
space is the union of the action spaces of its components. Construction of its
transitions, however, requires more elaborations, which we discuss here. Paral-
lel composition of two MAs is formally defined via a family of binary operators
indexed by synchronisation sets [EHZ10a; EHZ10b]. We recap the definition
here.

Definition 3.2 (Parallel composition). Given two MAs M′ =
�

V ′, v′0, Act′, T ′P, T ′M
�

and M′′ =
�

V ′′, v′′0 , Act′′, T ′′P , T ′′M
�

with synchronisation set A⊆ (Act′∩Act′′)\{τ},
then the composition of M′ and M′′ with respect to parallel operator ||A is defined
as M′ ||A M′′ =

�

V, v0, Act, TP, TM

�

, where V = V ′ × V ′′, v0 = (v′0, v′′0 ), Act =
Act′ ∪ Act′′, and TP and TM are the smallest relations complying with the rules
depicted in Tab. 3.1.
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In the rules, ∆ refers to the Dirac distribution. Moreover, we write slv′,v′′ as
rate(v′, v′) + rate(v′′, v′′) for v′ ∈ V ′ and v′′ ∈ V ′′. For µ′ ∈ Distr(V ′) and µ′′ ∈
Distr(V ′′),µ′ ||Aµ′′ ∈ Distr(V ′×V ′′) denotes the composed distribution with respect
to ||A with µ′ ||A µ′′(v′, v′′) := µ′(v′) ·µ′′(v′′).

Some observations can be made by the rules of Tab. 3.1. The two compo-
nents execute their transitions synchronously when the transitions are labelled
with the same action that is in the synchronisation set. Otherwise they inter-
leave their transitions. Similarly, the interleaving happens between Markovian
transitions. Due to the memoryless property of exponential distributions, one
component can fires its Markovian transition with the same distribution, irre-
gardless of the fact that the other component may or may not have executed
its Markovian transition. In other words, whatever happens the distribution of
firing the Markovian transitions is still exponential with exactly the same rate
as before.

Parallel composition of two components is carried out over a synchronisation
set. After that, those actions in the synchronisation set that are not required for
further synchronisation can be made hidden. This operation is called hiding and
simply done by relabelling those actions to τ.

Definition 3.3. LetM=
�

V, v0, Act, TP, TM

�

be an MA, then hidingMwith respect
to A⊆ Act \ {τ} gives MA M \A=

�

V, v0, Act \A, T ′P, TM

�

, where T ′P is the smallest
relation satisfying the rules depicted in Tab. 3.2.

After parallel composition and hiding explained, we are ready to give the
interpretation of hybrid states. We draw a distinction between two kinds: hybrid
state with and without external actions. The discussion of both kinds not only
clarifies how hybrid states behave, but also provides a helpful transition into the
next topic, which describes open and closed MAs.

Firstly, consider a hybrid state without any external action, i. e. its outgoing
transitions are either τ-labelled or Markovian. The interpretation of such a state
is straightforward and can be indeed explained without resorting to the concept
of compositionality. Since τ-labelled transitions are instantaneous on the one

�

v′,α,µ′
�

∈ T ′P α /∈ A
�

(v′, v′′),α,µ′ ||A∆v′′
�

∈ TP

�

v′′,α,µ′′
�

∈ T ′′P α /∈ A
�

(v′, v′′),α,∆v′ ||A µ′′
�

∈ TP

�

v′,α,µ′
�

∈ T ′P
�

v′′,α,µ′′
�

∈ T ′′P α ∈ A
�

(v′, v′′),α,µ′ ||A µ′′
�

∈ TP

�

v′1,λ, v′2
�

∈ T ′M v′1 6= v′2
�

(v′1, v′′),λ, (v′2, v′′)
�

∈ TM

�

v′′1 ,λ, v′′2
�

∈ T ′′M v′′1 6= v′′2
�

(v′, v′′1 ),λ, (v′, v′′2 )
�

∈ TM

slv′ ,v′′ > 0
�

(v′, v′′), slv′ ,v′′ , (v′, v′′)
�

∈ TM

Table 3.1: Structural operational semantics for the parallel composition defined
in Def. 3.2.
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�

v,α,µ
�

∈ TP α /∈ A
�

v,α,µ
�

∈ T ′P

�

v,α,µ
�

∈ TP α ∈ A
�

v,τ,µ
�

∈ T ′P

Table 3.2: Structural operational semantics of hiding defined in Def. 3.3.

hand and the probability of immediate execution of Markovian transitions is
zero on the other hand, there is no chance for Markovian transitions to be fired
before any τ-labelled transition. Consequently, in a hybrid state without any
external actions, τ-labelled transitions are almost surly executed earlier than
Markovian transitions. The concept is known as maximal progress assumption,
requiring that in general, probabilistic transitions labelled with internal actions
and Markovian transitions can not be executed at the same time. The former
takes precedence over the latter, wherever both enabled, i. e. in hybrid states.

Now we turn our attention to the other kind: hybrid states with external
actions. As it can be inferred from the definition of parallel composition, the
execution time of an external action entirely depends on the context, i. e. what
model is placed in parallel with the MA. This kind of MAs that have transitions
labelled with external actions, and thereby can still interact with the other MAs
via parallel composition are known as open MAs. Therefore the interpretation
of an open MA, and in particular those hybrid states is not understood without
the full knowledge of the environment in which the MA is situated.

The closest attempts to provide an interpretation of open MAs are per-
haps [Brá+12; HKK13]. Their approach works for IMCs instead of MAs. They
embed an open IMC into a timed game played with an unknown environment
that controls the execution of the external actions. The evaluation of the game at
the end provides a compositional verification of the IMC by establishing bounds
on reachability probabilities. The bounds are guaranteed to hold under any cir-
cumstances regardless of the environment or the context in which the IMC is
located. The approach has not been yet extended to be applicable for MAs. We
are unaware of any other technique trying to put an interpretation on open MAs.

We conclude the discussion of this section by pointing out that this thesis
does not provide the interpretation and analysis of open MAs. We instead turn
our attention to closed MAs, which are the MAs that cannot be composed with
other MAs, i. e. they cannot interact with their environment. Therefore their
interpretation is understood without any extra knowledge of the context in
which they are. We describe closed MAs and explain their properties in the next
section.

3.1.3 Closed MAs

MAs can be locked up against interaction with their environment, meaning that
they are not anymore considered subject to further composition. Such an MA is
called closed. In a closed MA there is no external action enabled in the whole
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model whatsoever. Therefore, none of the actions can be delayed by synchro-
nisation. Furthermore, each outgoing transition from any state is labelled with
an internal action. Consequently, we can put a definite interpretation on each
outgoing transition in the MA. They are either internal or Markovian. We can
further remark on two points regarding closed MAs.

Remark 3.4. It is clear that nothing prevents internal transitions from happen-
ing instantaneously. Since all enabled transitions of a closed MA are internal, we
can impose maximal progress assumption to safely eliminate Markovian outgoing
transitions of all hybrid states. As a result all hybrid states can be turned into
probabilistic states without affecting their interpretation.

Remark 3.5. As the actions available in a closed MA are not subject to further
interaction, they do not carry any meaning. They are just labels that can be safely
removed. We then, instead of meaningless actions, label probabilistic transitions
with \, signifying that they are fired instantaneously. Furthermore, we aggregate
all outgoing transitions of each Markovian state into a single transition labelled
with the exit rate of the state. The transition includes, in addition, the branching
probability distribution of the state. This way of representation unifies the notation
of probabilistic and Markovian transitions without altering their meaning.

Following from the remarks we adapt Def. 3.1 for closed MAs.

Definition 3.6 (Closed Markov automaton). A closed MA is a tripleM= (V, v0, T ),
where V , v0 are as described in Def. 3.1, and T ⊆ V×R\>0×Distr(V ) is the transition
relation with R\>0 = R>0 ] {\}.

Furthermore, let, for every v ∈ V , TP(v) be the set of probabilistic outgoing
transitions of v, i. e., TP(v) := {(v, \,µ) ∈ T}, and similarly, TM(v) be the set of
Markovian outgoing transitions of v, i. e., TM(v) := {(v,λ,µ) ∈ T | λ ∈ R>0}.
Then, T must satisfies:

• for every v ∈ V , at least one of TP(v) or TM(v) is empty (Rem. 3.4);

• for every v ∈ V , |TM(v)| ≤ 1 (Rem. 3.5).

Once more we want to stress that Def. 3.6 complies with Def. 3.1 in terms of
the interpretation developed in Sec. 3.1.1 and 3.1.2. It indicates that the special
description of closed MAs depicted in Def. 3.6 does not alter their semantics
compared with what is generally represented as MAs in Def. 3.1. There are, how-
ever, syntactic differences. Markovian and probabilistic transition relations are
separately defined in Def. 3.1, but now in Def. 3.6 they are merged into a single
set denoted by T . Therein, label \ of a probabilistic transition distinguishes it
from a Markovian one, which carries instead a positive exit rate. Moreover, we
make sure that there is no hybrid state in the model, as the maximal progress
assumption is by default imposed. For technical reasons, we need to eliminate
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deadlock states as well. For this, we decorate each deadlock state with a Marko-
vian self loop with an arbitrary rate. As a consequence, the model is stuck in
deadlock states while time progresses.

We recapitulate the interpretation of Markovian and probabilistic transitions
adapted to the new notation. Transition (v,λ,µ) ∈ T is probabilistic, if λ = \,
otherwise (λ ∈ R>0) it is Markovian. If probabilistic, it will be executed instan-
taneously. Otherwise it is fired after an exponentially distributed random delay
with parameter λ. The successor of v for both Markovian and probabilistic tran-
sitions is selected according to distribution µ. Consequently, for Markovian case,
the probability that the transition is fired within t ≥ 0 time units and the model
moves to state v′ ∈ V is given by µ(v′) · (1− e−λ·t).

As stated previously, we use TM(v) and TP(v) to refer to the set of Markovian
and probabilistic transitions available at state v. Then, T (v) = TM(v)] TP(v) is
the set of all transitions available at state v. We denote the set of Markovian and
probabilistic transitions by TM and TP, respectively. The same state partitioning,
as discussed before, prevails in this case with, indeed, the fact that the sets of
hybrid and deadlock states are both empty. Given transition γ = (v,λ,µ) ∈ T ,
we use functions vγ := v, rγ := λ and dγ := µ to project γ into its source, its rate
and its distribution, respectively.

Closedness of an MA enables it to autonomously move between its states
via its transitions without interacting with the environment in which it is placed.
Considering that its complete behaviour can be understood independent of any
external objects, it is of interest as a subject for different kinds of analyses. As
of now we assume all MAs that are subject to analysis are closed and, unless
stated differently, the term MA refers to closed MA. We provide the complete
semantics of [closed] MAs in the next section.

3.1.4 Paths and histories

By execution of an MA, starting from its initial state, it traverses its state space
through firing its transitions. The execution of each transition follows its specific
interpretation, as discussed previously. The successive execution of the transi-
tions continues forever, exhibiting a sample behaviour of the MA. In transition
system terminology this is usually known as execution trace, trajectory or path.
The set of all paths that can be observed from an MA captures its complete
dynamics. In this section we elaborate on different kinds of traces, which are
paths and their finite forms histories and path fragments. Before going into their
definition, their main building block, called step, is introduced here.

Definition 3.7 (Step). A step ς ∈ (TM×R≥0)] (TP×{0}) is a pair of a transition
and its execution time. The set of all steps is denoted by S.

A step taken in a closed MA is essentially interpreted according to its type
of transition, as discussed in Sec. 3.1.3. Step (γ, t) ∈ S indicates that the MA
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resides in state vγ for t time units before executing γ. In other words, the so-
journ time in vγ is t time units. In case the transition is probabilistic, it must
be taken immediately, i. e. t = 0. For a Markovian transition, the sojourn time
can however be any nonnegative value. Steps act as building blocks of other
trace-like structures such as histories. Here, we explain how the concatenation
of multiple steps produces a history.

Definition 3.8 (History). A history η ∈ S∗×V is a finite sequence of steps ending
in a state.

A history of an MA contains a finite sequence of steps followed by the last
state, where the history meets the present. The MA has visited all of the states in
the history up to the last state. In this case, we say that the history is executed by
the MA. The interpretation of the whole history is obtained by assembling the
interpretation of all the steps and that of its last state. That is, the MA executes
the transitions of its steps one by one at the specified time points until it reaches
the last state.

We introduce here some useful notations regarding histories. We refer to
|η| as the length of history η, which is the number of its transitions. The last

state of η is denoted by η↓. We usually write γ
t
−→ instead of step (γ, t) and

thus represent a history as η = γ0
t0−→ γ1

t1−→ · · ·γn−1
tn−1−−→ v. Taking history η

into consideration, we can refer to elements of η by their index. Given index
i ∈ {0, . . . , n − 1}, γi, which is the (i + 1)-th transition of η, is denoted by Γηi .
We can refer to the source, the rate and the distribution of Γηi by vηi , rηi and dηi ,
respectively. Moreover, we use η〈i〉 to denote t i, the (i + 1)-th sojourn time in
vηi .

A path extends a history by continuing its sequence of steps forever.

Definition 3.9 (Path). A path π ∈ Sω is an infinite sequence of steps.

Similar to the histories, a path is represented as η = γ0
t0−→ γ1

t1−→ · · · . Its
length is indeed infinity and its last state is undefined. Apart from that, other
notations that are used for histories can also be employed for paths in a straight-
forward way.

For technical reasons, we need to define path fragments separately from
histories. Intuitively, a fragment is a history whose last state is left out. Thus the
last state of a fragment is unspecified.

Definition 3.10 (Fragment). A path fragment, or simply fragment is a finite
sequence of steps, namely an element of set S∗.

All the concepts and notations used for histories, except for the last state are
carried over to fragments. Furthermore, we define the null fragment to be the
fragment with length zero, denoted by εε.

We use operator ◦ to concatenate a fragment to a trace. As stated before a
trace can be a fragment, a history or a path. Given fragment ϕ and trace x , then
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the trace generated by the concatenation of ϕ and x , is denoted by ϕ ◦ x . The
concatenation is naturally done by attaching x to ϕ such that the first transition
of x is directly executed after the last transition of ϕ. It obviously holds that
ε◦ x = x . It is then clear thatϕ◦ x is of the same type as x , for instance ϕ◦π ∈ P,
if π ∈ P.

It is often useful to extract a sub-fragment, sub-history or sub-path lying in
a trace up to or starting from a specific step. For trace x that has at least n≥ 0
step(s), dxen is referred to as the prefix of x up to the n-th step. A sub-fragment
or a sub-history might be considered as the prefix. If the prefix is intended to
be a sub-fragment, it will be obtained by taking the first n step(s) of x . The
sub-history, as expected, is the sub-fragment followed by vx

n , as the last state. In
the sequel, it will become clear by the context whether a sub-fragment or a sub-
history is meant. The initial state of x can be obtained by sub-history dxe0, and
also sub-fragment dxe0 is nothing but ε. The suffix of x after (but not including)
the n-th step, bxcn, is extracted by removing the first n step(s) of x , if existing.
Here, again the trace and its suffix are of the same type. It holds that bxc0 = x .

Fragments are technically important since every path π ∈ P can be split into
a sub-fragment dπen and a sub-path bπcn for all n ∈ N such that π= dπen ◦ bπcn.
The probability measure and, more importantly, other objectives discussed in
this thesis can be split accordingly. More details are found in Sec. 3.2 and 3.3.

Given MA M, we use FM, HM and PM to denote the set of all fragments,
histories and paths of M, respectively. Furthermore, for n ∈ N, FMn and HMn are
referred to as the set of all fragments and histories of length n, respectively. We
omit superscript M whenever it is clear from the context.

The next section introduces measurable spaces for MAs, which are crucially
based upon the concept histories and paths.

3.2 Measurability for MAs

A pattern of an MA’s behaviour is specified by a collection of paths. Intuitively
speaking, such a pattern, which is also called an event, is measurable if its prob-
ability can be measured. We study measurability to figure out for what kind
of events in MAs the probability can be assessed. Understanding measurability
is essential for the analysis of MAs. Notably, a particular analysis is measur-
able, provided that it involves a collection of events that are all measurable. In
mathematical analysis measurable spaces are used to identify such collections.
This section is devoted to defining measurable spaces for the set of fragments,
histories and paths of an MA.

A collection of measurable events that is closed under infinitely many set
operations is referred to as a σ-algebra (cf. Def. 2.1). The purpose of this section
is to provide the formal definition of σ-algebras over the set of fragments, his-
tories and paths. The construction of σ-algebras can be done in a modular way.
Having σ-algebras defined on two sets X1 and X2, it is possible to extend them
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into a σ-algebra on their product space X1×X2, based on the concept of product
σ-algebra (cf. Def. 2.11). In our setting for instance, a fragment is the product
of a finite number of steps; hence the σ-algebra over the set of fragments can
be built up from the σ-algebra over the set of steps.

A step is defined as a pair of a transition and its execution time. As the set of
all steps is the disjoint union of steps on Markovian and probabilistic transitions,
we construct the σ-algebra over each set separately. For the steps on Markovian
transitions we employ the construction of the productσ-algebra. It is the smallest
σ-algebra containing all measurable rectangles as the basic events. Recall that a
measurable rectangle (Def. 2.10) is a tuple of measurable sets, each coming from
the respective σ-algebra. For steps taken by Markovian transitions, it is of the
form Γ × B where Γ ∈ 2TM and B ∈ B(R≥0) with 2TM being the power set of TM,
and B(R≥0) the Borel σ-algebra over nonnegative reals. The smallest σ-algebra
containing all of those measurable rectangles is denoted by 2TM ⊗B(R≥0). For
probabilistic transitions the execution time is always zero, therefore the power
set of TP × {0}, denoted by 2TP×{0} is the appropriate σ-algebra. As a result S,
the σ-algebra over the set of steps, is defined as

⋃

Sp∈2TP×{0}

�

2TM ⊗B(R≥0)∪ Sp

�

.

The basis of the σ-algebra over the set of fragments, histories and paths is
formed by S, again using product σ-algebra. Accordingly, the σ-algebra over
the set of fragments of length n≥ 1 is given by Fn :=

⊗n
i=1 S. Moreover, Hn :=

Fn ⊗ 2V is the σ-algebra over the set of histories of length n. For the set of
paths, the σ-algebra is obtained by applying standard cylinder set construction
(cf. [Neu10, Sec. 2.5.4]). Briefly speaking, let Bn be a subset of Hn, then the
cylinder of base Bn is described as Cyl(Bn) := {π ∈ P | dπen ∈ Bn}. A cylinder
is measurable iff its base is measurable; for instance, Cyl(Bn) is measurable iff
Bn ∈Hn. Then, P , the σ-algebra over the set of paths, is the smallest σ-algebra
generated by the class of all measurable cylinders i. e.

⋃∞
i=0{Cyl(Bn) | Bn ∈Hn}

(cf. [Neu10, Lem. 2.10]).
The above mentioned σ-algebras provide measurable spaces over the set of

steps (S,S), also over the set of traces1 (Fn,Fn), (Hn,Hn) and (P,P) for n ∈ N.
The spaces are used to reason the measurability of events and functions related
to the dynamics of MAs. Moreover, by using a measurable strategy, which is
discussed in the next section, we establish a probability measure on each of the
measurable spaces.

3.2.1 Strategies

MAs may exhibit nondeterminism occurring at a state with two or more outgoing
transitions. In such a state it is not clear a priori which transition is taken during
the execution of the model. There must be an external object, called strategy2

to resolve the nondeterminism. In the absence of nondeterminism, which has

1Note that F0 = {ε} and F0 = {;,F0}.
2It is also known as policy, scheduler or adversary.
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been resolved by strategies, MAs exhibit pure stochastic behaviour. As a result,
a probability measure can be defined on the measurable space related to an MA.
In other words, a complete semantics as a stochastic process can be delivered
to an MA that is under the governance of a strategy.

Strategies use the details of histories such as the transitions, their order and
their execution time to resolve nondeterminism. They are classified according to
the amount of details they employ. The most general class exploits the complete
information from histories to decide between transitions available at their last
states. This class is further pruned by considering only the strategies that are
measurable. It is known as the class of generic measurable strategies [WJ06;
Joh08; Neu10], which is defined next.

Definition 3.11 (Generic measurable strategy). A generic strategy of MA M is a
function, σ :H→ Distr(T ), such that for every η ∈H it holds that supp(σ(η)) ⊆
T (η↓). Strategy σ is generic measurable iff {η ∈ Hn | σ(η)(γ) ∈ B} ∈ Hn for
every γ ∈ T, B ∈ B([0,1]) and n ∈ N. We use Σ to denote the set of all generic
measurable strategies.

The support restriction in Def. 3.11 indicates that for every history η, the
strategy can only select the outgoing transitions available at the last state of η.
Precisely, if σ(η)(γ) > 0, then it must hold that γ ∈ T (η↓). Measurability of a
strategy intuitively means that it never resolves nondeterminism for histories
that in any way induce non-measurable sets. That is to say, the preimage of the
strategy under every subset of transitions and every Borel set in [0,1] can be
partitioned into sets, each containing histories of the same length that belongs
to the respective σ-algebra. As the probability measure is defined ultimately
over the set of paths, we are interested in the extension of the preimage to paths.
The extension of set of histories H ⊆H is done by extending every history in H
to a path in every possible way, that is ext(H) = {π ∈ P | dπe|η| = η,η ∈ H}. A
direct consequence of our definition ensures that the extension of the preimage
is in P .

Lemma 3.12. For every measurable strategy σ, γ ∈ T and B ∈ B([0, 1]) it holds
that ext

�

{η | σ(η)(γ) ∈ B}
�

∈ P .

Proof. The lemma directly follows from the fact that the extension is the count-
able union of cylinders whose bases are measurable by definition, namely

ext
�

{η | σ(η)(γ) ∈ B}
�

=
∞
⋃

n=0

Cyl
�

{η ∈Hn | σ(η)(γ) ∈ B}
�

Our definition of measurability follows that of [Fu14a]. It is in contrast
to [WJ06; Neu10], which defines the measurability with respect to the measur-
able space induced by the set of histories, i. e. (H,FH). However, it is not possible
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to define any meaningful measure on that measurable space3. Therefore, we
avoid the definition of measurability in that way.

Building upon strategies

There are situations where we need to develop a strategy from another strategy.
This is useful, in particular, when we want to force a strategy to decide in a
specific way for a set of histories. The need for this strategy emerges when we
want to change the decision of the old strategy only for a specific history or want
to mimic its decision when we know a fragment has happened. Those situations
frequently arise when analysing a model. We exploit them in proofs, specially
in Ch.4 and 5. Let us first define a strategy that requires a specific transition to
be always selected whenever starting from its source state.

Definition 3.13. Given a measurable strategy σ ∈ Σ, then σ|γ with γ ∈ T is
defined as:

σ|γ(η) :=

(

∆γ η= vγ
σ(η) η 6= vγ

Intuitively speaking, σ|γ mimics the decisions of σ for all histories except
for vγ, in which transition γ is selected with probability one. It can be shown
that σ|γ is measurable.

Lemma 3.14. For all σ ∈ Σ and γ ∈ T, σ|γ is measurable.

Proof. For γ′ ∈ T , B ∈ B([0,1]) and n ∈ N we define sets X B,γ′
n := {η ∈ Hn |

σ(η)(γ′) ∈ B} and Y B,γ′
n := {η ∈Hn | σ|γ(η)(γ′) ∈ B}. In case n= 0, γ= γ′ and

1 ∈ B, Y B,γ′
n = X B,γ′

n ∪{vγ}, otherwise Y B,γ′
n = X B,γ′

n . The claim then follows from

X B,γ′
n ∈Hn.

Sometimes it is useful to construct a new strategy that presumes a fragment
has just been visited and then complies with another strategy for forthcoming
decisions.

Definition 3.15. Given a measurable strategy σ ∈ Σ and a fragment ϕ ∈ F, then
σ[ϕ] resolves nondeterminism for history η as σ does it for ϕ◦η, i. e. σ[ϕ](η) :=
σ(ϕ ◦η).

It is supposed by strategy σ[ϕ] that every history is preceded by fragment
ϕ. By taking it into account, for each history η the strategy mimics the decision
of σ for ϕ ◦η. It can be shown that resolving nondeterminism in this way leads
to a measurable strategy.

3The σ-algebra over the set of histories is the σ-algebra generated by collection {Hn}n∈N. The
elements of the collection are pairwise disjoint. Two events H1 ∈Hn1

and H2 ∈Hn2
with n1 6= n2

are considered as disjoint since their lengths are different. Nevertheless the events might share
some common stems making their extension overlapping.
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Lemma 3.16. For every σ ∈ Σ and ϕ ∈ F, σ[ϕ] is measurable.

Proof. Let X B,γ′
n := {η ∈Hn | σ(η)(γ′) ∈ B} and Y B,γ′

n := {η ∈Hn | σ[ϕ](η)(γ′) ∈
B} for some γ′ ∈ T , B ∈ B([0,1]) and n ∈ N. Then, from the measurability of
σ, it holds that X B,γ′

n+|ϕ| ∩ ({ϕ} ×Hn) ∈H|ϕ|+n. On the other hand, the set equals

{ϕ}×Y B,γ′
n . Therefore, it must hold that Y B,γ′

n ∈Hn, otherwise it contradicts the
measurability of σ.

As a special case we are interested in situations where ϕ = γ
t
−→ with γ ∈ T

and t ∈ R≥0. In order to resolve nondeterminism for history η in this case,

σ[γ
t
−→] assumes that γ is fired at time t beforeη is visited. We use this strategy in

Ch. 5 for proving the fixed point characterisation of the optimal ERR (Thm. 5.2).

Early vs. late strategies

In this thesis we consider early strategies, which are the only possible strategies
that exist in MA’s world. The difference between early and late strategies prevails
in the situations where there are more than one Markovian transition available
in a state. In this case, early [NSK09]means that the decision of which transition
to take has to be made when entering a state and it may not be changed while
residing in the state. On the contrary, a late decision may be changed at any time
while staying in the state. In an MA, Markovian states have only one outgoing
transition, as a result making a late or early decision induces the same result.
Therefore late strategies are not relevant for MAs. In contrast to MAs, early
and late strategies produce difference results in the analysis of CTMDPs, since
having a state with two Markovian transitions is allowed there. For more details
see [NSK09; Neu10]

3.2.2 Probability measure

The purpose of a probability measure is to assess how likely it is for an MA to ob-
serve an event. It basically determines the probability of executing a measurable
set of paths starting from a given state while a measurable strategy is set. Similar
to the construction of σ-algebra, we first construct the probability measure on
the set of steps, and then extend it to more complex traces, like paths. Moreover
we show that our construction always lead to a unique probability measure. The
probability measure on the set of steps is defined as follows.

Definition 3.17 (Probability meausre on steps). Let (S,S) be the measurable
space over the set of steps, as defined on page 39. Assume further that σ ∈ Σ is a
strategy of MA M and ϕ ∈ F. Then, µσ(ϕ, ·) : S 7→ [0, 1] is defined as

µσ(ϕ, S) :=
∑

{γ|(γ,t)∈S}

(

dϕ|ϕ|−1(vγ) ·σ[ϕ](vγ)(γ) · P
S
ex(γ) ϕ 6= ε

σ(vγ)(γ) · PS
ex(γ) ϕ = ε
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with

PS
ex(γ) :=











∫

R≥0

1S(γ, t) · rγ · e−rγ t dt γ ∈ TM

1S(γ, 0) γ ∈ TP

Intuitively speaking, µσ(ϕ, S) measures the probability of executing steps in
S given that the steps are preceded byϕ and strategyσ is set. For each transition
γ that appears in S, it measures the probability of its execution at some time
point in {t | (γ, t) ∈ S}. It makes a difference whether ϕ is the null fragment or
not. In the latter case, the probability is computed in three parts:

1. dϕ|ϕ|−1(vγ): the probability to land in the source state of γ after executing
the last transition of ϕ,

2. σ[ϕ](vγ)(γ): the probability that σ selects γ at vγ when fragment ϕ has
just been visited,

3. PS
ex(γ): the probability to execute γ according to the sojourn times given

in S.

It is obviously a fact that, when ϕ = ε, the term dϕ|ϕ|−1(vγ) is not applicable and
also σ[ϕ](vγ)(γ) = σ(vγ)(γ). For the third term we distinguish between Marko-
vian and probabilistic transitions. In case γ is Markovian, the probability of its
execution is governed by the exponential distribution as discussed in Sec. 3.1.3.
Otherwise, γ, as a probabilistic transition, is fired immediately.

All the three terms that contribute in the measure are probability distribu-
tions. It therefore holds that µσ(ϕ, ·) is a probability measure. To put it formally,
we consider the measure as the extension of sub-measures on the product of
transitions and sojourn times. The result is stated in the next lemma.

Lemma 3.18. For any ϕ ∈ F and σ ∈ Σ, µσ(ϕ, ·) : S 7→ [0,1] is the unique
probability measure on (S,S).

Proof. By employing product measure theorem (Thm. 2.12) we show thatµσ(ϕ, ·)
as described in Def. 3.17 is indeed a probability measure and is also unique. For
that we define measure µϕ,σ

1 : 2T → [0,1] such that

µ
ϕ,σ
1 ({γ}) :=

(

dϕ|ϕ|−1(vγ) ·σ[ϕ](vγ)(γ) ϕ 6= ε
σ(vγ)(γ) ϕ = ε

for γ ∈ T . It is intuitively the probability to execute γ right after fragment ϕ.
Furthermore, we define µ2(γ, ·) : B(R≥0)→ [0, 1] with

µ2(γ, B) :=

(

∫

B rγ · e−rγ t dt γ ∈ TM

1B(0) γ ∈ TP
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This intuitively measures the probability of executing γ at some time point within
B. It is not hard to see that µϕ,σ

1 and µ2(γ, ·) are measures; they are both non-
negative and countably additive, and give the zero measure to empty set. To
see countable additivity (cf. Def. 2.3) of µ2(γ, ·) for γ ∈ TM, note that for any
pairwise disjoint collection {Bn ∈ B(R≥0)}n∈N and N ∈ N:

µ2(γ,
N
⊎

n=0

Bn) =

∫

]N
n=0Bn

rγ · e−rγ t dt =
N
∑

n=0

∫

Bn

rγ · e−rγ t dt =
N
∑

n=0

µ2(γ, Bn)

By taking the limit when N goes to infinity the claim follows. It is also true
that both of them are probability measure, namely µϕ,σ

1 (T ) = µ2(γ,R≥0) = 1,
for every γ ∈ T . In particular it is the case for µϕ,σ

1 , since there is no deadlock
state in the MA. The measurability of µ2(γ, B) on γ is also obvious for every
B ∈ B(R≥0). Therefore, both sub-measures µϕ,σ

1 and µ2 satisfy the conditions
of the product measure theorem. Now we can apply the theorem to build the
probability measure on steps preceded by some ϕ ∈ F. It is not hard to see that
it then gives µσ(ϕ, ·), defined in Def. 3.17, as the unique probability measure
on steps.

For ϕ ∈ F, the uniqueness of µσ(ϕ, ·) indicates that it is the only natural
probability measure on measurable space (S,S), in the situation when ϕ has
just been observed.

Remark 3.19. Different choices of sub-measures µϕ,σ
1 and µ2(γ, ·) might induce

different measures on steps. This means that the uniqueness of µσ(ϕ, ·) holds pro-
vided both of the sub-measures are given. However, since they tightly follow the
MA’s semantics, there is no way to have any meaningful sub-measures other than
those defined in the proof of Lem. 3.18. Therefore, µσ is the only valid probability
measure that complies with the MA’s semantics.

A notion of measurability of µσ(ϕ, ·) allows us to recursively employ it for
building the probability measures on fragments and histories. It is described in
the next lemma.

Lemma 3.20. For every σ ∈ Σ, S ∈ S and B ∈ B([0,1]), holds that {ϕ ∈ Fn |
µσ(ϕ, S) ∈ B} ∈ Fn.

Proof. The claim clearly holds for n= 0, which also covers the case when ϕ = ε.
Since PS

ex is independent of ϕ, it is by Prop. 2.8 enough to show that both of the
functions f γn , gγn : Fn→ [0, 1]with f γn (ϕ) := dϕn−1(vγ) and gγn(ϕ) := σ[ϕ](vγ)(γ)
are Borel measurable for all n > 0 and γ ∈ T . To show the measurability of gγn
we use a similar technique as employed in the proof of Lem. 3.16. It follows
from Def. 3.11 that X B,γ

n := {η ∈Hn | σ(η)(γ) ∈ B} ∈Hn. Now let Y B,γ
n := {ϕ ∈

Fn | σ[ϕ](vγ)(γ) ∈ B}, it thus holds that Y B,γ
n × {vγ} = X B,γ

n ∩ (Fn × {vγ}). The

right hand side is a measurable set, hence Y B,γ
n must be measurable, otherwise it
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contradicts the measurability of σ. To see the measurability of f γn , observe that
we can write ZB,γ

n := {ϕ ∈ Fn | f γn (ϕ) ∈ B} as

Fn−1 ×
�

({γ′ ∈ TM | dγ′(vγ) ∈ B} ×R≥0)∪ ({γ′ ∈ TP | dγ′(vγ) ∈ B} × {0})
�

which is a measurable rectangle.

Now we have all ingredients to define probability measures on fragments and
histories. We start with the probability measures on measurable spaces (Fn,Fn)
for all n ∈ N.

Definition 3.21 (Probability measure on fragments). Let σ ∈ Σ be a strategy on
MA M with state v ∈ V , then the probability measure pFn

v,σ : Fn→ [0, 1] for every
n ∈ N is defined as follows. For n= 0, it holds that pF0

v,σ({ε}) = 1. Otherwise:

pF1
v,σ(Φ) := µσ(ε, {(γ, t) ∈ Φ | vγ = v, t ∈ R≥0})

pFn+1
v,σ (Φ) :=

∫

ϕ∈Fn

pFn
v,σ(dϕ)

∫

ς∈S
1Φ(ϕ ◦ ς) ·µσ(ϕ, dς)

The probability measure, as a function takes a measurable set of fragments
of the respective length and determines how likely it is that they are executed by
M. The construction of the probability measure is done in a recursive manner.
The case n= 0 is straightforward, as F0 only contains ε. Moreover, µσ(ε, ·) can
be used for n = 1, since F1 and S coincide and also nothing is visited before
the execution of each step in F1. The only relevant steps in this case are indeed
those starting from v. Longer fragments are regarded as the extension of those
that are one step shorter. That is to say, the probability measure on fragments
of length n is extended into the measure on fragments of length n+ 1 by using
the probability measure on steps.

Thus far we have not established that the recursive definition given in Def. 3.21
leads to a probability measure. Once more we can employ the product measure
theorem to show that it is a probability measure and indeed the only valid one
that obeys the MA’s semantics.

Proposition 3.22. Let σ ∈ Σ be a strategy on MA M with state v ∈ V . Then, pFn
v,σ

is the unique probability measure on (Fn,Fn) for every n ∈ N.

Proof. If n= 0, then the conclusion is obvious. For n> 0, the proof is done via
induction. The claim for n= 1 follows from Lem. 3.18. The induction hypothesis
yields that p

Fn
v,σ is the unique probability measure on (Fn,Fn). Moreover, by

Lem. 3.18 for every ϕ ∈ Fn, µσ(ϕ, ·) is the unique probability measure on (S,S).
The measurability of µσ(·, S) with respect to (Fn,Fn) for all S ∈ S follows from
Lem. 3.20. Therefore, both p

Fn
v,σ and µσ satisfy the conditions of the product

measure theorem (Thm. 2.12). Now we can apply the theorem to build the
measure on (Fn+1,Fn+1) using them. It is then straightforward to show that pFn+1

v,σ ,
as described in Def. 3.21, is the unique probability measure on the measurable
space.
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By definition a history is obtained by the concatenation of a fragment and a
state. Accordingly, the probability measure on fragments can be easily extended
to the probability measure on histories. The uniqueness of the probability mea-
sure on fragments is then carried over to the probability measure on histories.

Proposition 3.23. Let σ ∈ Σ be a strategy on MA M with state v ∈ V . Then,
p
Hn
v,σ : Hn → [0,1] is the unique probability measure on (Hn,Hn) for all n ∈ N.

That is, if n= 0 then p
H0
v,σ({v}) := 1 and otherwise

pHn
v,σ(H) :=

∫

ϕ∈F
pFn

v,σ(dϕ)
∑

{v′|ϕ◦v′∈H}

dϕ|ϕ|−1(v
′) for H ∈Hn

Proof. The claim obviously holds for n = 0. For n > 0, put fn(ϕ, v) := dϕn−1(v).
It is clear that fn(ϕ, ·) is a probability measure for all ϕ ∈ Fn. It intuitively
computes the probability to land in v after execution of ϕ. The measurability
of fn(ϕ, v) on ϕ for all v ∈ V is established by the measurability of f γn that is
shown in the proof of Lem. 3.20. The claim then follows from employing product
measure theorem on sub-measures pFn

v,σ and fn.

The measures on histories are used to establish the probability measure on
paths. We first define a probability measure on cylinder sets, which are the main
construction block of P . As any measurable cylinder is characterised by its base,
which has a finite length, the probability measure of the cylinder is determined
by the probability measure of its base. It can be established that the extension
leads to a unique probability measure on (P,P).

Theorem 3.24. Let σ ∈ Σ be a strategy on MA M with state v ∈ V . Then there
exist a unique probability measure pv,σ : P → [0, 1] such that the measure of each
measurable cylinder agrees with the measure of its base, i. e. for all Bn ∈ Hn, it
holds that pv,σ

�

Cyl(Bn)
�

:= p
Hn
v,σ(Bn).

Proof. It directly follows from Ionescu-Tulcea extension theorem. For more de-
tails see, e. g., [AD99, Thm. 2.7.2].

3.3 Analysis of MAs

The main purpose of this thesis is to provide sound theories and techniques for
MA analysis. We have thus far proceeded one step by defining the probability
measure on the set of paths. It is essential for us to have the probability measure
as the basis to mathematically represent MA analysis. This is due to the fact
that the analyses considered in this thesis are carried out by computing the
expectation of some random variables or measurable functions defined on the
set of paths. This section provides tools and methods to be used for dealing with
such kinds of analyses.
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We start with the definition of a general form of analysis represented by the
expectation of a measurable function defined on the set of paths. Afterwards,
we develop theories that aim to simplify the expectation computation. The main
concept behind them is path splitting, which is a technique to split the analysis
at a point at which some particular event happens. For instance, the reward of a
path can be split into the reward before and the reward after the execution of its
first transition. This helps us to express the reward computation inductively by
proceeding through steps. In this section we aim to formalise such an analysis
by means of the path splitting in MAs. Let us first define the expectation.

Definition 3.25 (Expectation). Given strategy σ ∈ Σ on MA M with state v ∈ V .
The expectation of Borel measurable function f : P → R on probability space
(P,P ,pv,σ) is defined as the Lebesgue integral Ev,σ( f ) :=

∫

P f dpv,σ

The analysis is specified by Borel measurable function f that maps an ex-
tended real value to each path. We will see in the next chapter that the minimal
and maximal values of the expectation ranging over all measurable strategies
are of our particular interest.

The main idea behind the result of this section is path splitting. It splits a
path into its prefix and suffix before and after the execution of its n-th transition,
for n> 0. Thereafter, one can write a pathπ ∈ P as π= dπen◦bπcn and then P=
Fn×P. It is then possible to employ the product measure theorem to give a new
representation of the probability measure on paths in terms of the probability
measure on fragments of length n. It is also helpful to split the expectation
computation of any measurable function according to the path splitting. It is
henceforth referred to as expectation splitting, which is the main result of this
section.

3.3.1 Possibility indicator

We have seen so far the situations in which a given fragment assumed to be
executed before visiting some steps, for instance ϕ ∈ F in µσ(ϕ, ·) (Def. 3.17).
The question arises whether it is possible at all to execute the fragment or not.
It is of technical importance to know the answer to that question since some
useful structures that we use are only well-defined under possible fragments.

Here we define an indicator to determine the possibility of a given fragment
or a history. It makes use of the probability measure in a time-abstract setting,
similar to the one defined for MDPs, which is naturally embedded in the proba-
bility measure in the timed setting. For our purpose we employ it independently,
so as to reason about the possibility of a fragment or a history to be executed
in a model under a given strategy. It thereby enables us to distinguish between
possible and impossible traces.

Definition 3.26 (Possibility indicator). Given strategy σ ∈ Σ on MA M, the
possibility indicator ισ : F]H→ [0, 1] under strategy σ is defined as follows. For
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ϕ ∈ Fn, ισ(ϕ) := 1, if n= 0 or 1. Otherwise, it is defined as

ισ(ϕ) :=
|ϕ|−1
∏

i=1

dϕi−1(v
ϕ
i ) ·σ(dϕe

i ◦ vϕi )(Γ
ϕ
i )

Similarly, for η ∈ H0, it holds ισ(η) := 1, and η ∈ Hn with n > 0, ισ(η) :=
ισ(dηen)d

ϕ
n−1(h↓).

The calculation of probabilities in the possibility indicator is done in a straight-
forward way. For each transition γ in the fragment and its successor transition
γ′, it multiplies the probability of landing in vγ′ after execution of γ with the
probability of γ′ being selected by σ at vγ′ . The computation proceeds until the
last pair of consecutive transitions in the fragment is processed. The possibility
indicator of a history is simply that of its fragment extracted by eliminating its
last state times the probability to land in the last state from its last transition.

The possibility indicator determines whether the execution of a fragment or
a history is possible or impossible. In case the value is positive the fragment or
the history is valid and possible to be executed. Conversely if the value of the
indicator is zero, at least one of the transitions along the fragment or the history
cannot in any way be visited. It might be due to the fact that it is not selected
by the strategy or its source state is not reachable via its predecessor since in
the graph representation of the MA such a predecessor does not exist. Either of
the facts means that the fragment or the history is impossible to happen. To ease
the proofs, we use the possibility indicator to avoid considering such impossible
traces in our arguments. We must nevertheless establish its measurability before
using it.

Lemma 3.27. For all n ∈ N and B ∈ B([0,1]), it holds that {ϕ ∈ Fn | ισ(ϕ) ∈
B} ∈ Fn and {η ∈Hn | ισ(η) ∈ B} ∈Hn.

Proof. We first show the claim on fragments by induction on their length. For
induction bases note that the conclusion for n= 0 and 1 is obvious. For longer
fragments it holds that

ισ(ϕ) = ισ(dϕen−1) · dϕn−2(v
ϕ
n−1) ·σ(dϕe

n−1 ◦ vϕn−1)(Γ
ϕ
n−1)

Therefore the claim follows from the induction hypothesis and Prop. 2.8. The
measurability on fragments can be easily extended to the measurability on his-
tories again using Prop. 2.8.

This lemma enables us to define the subspace of possible fragments under
a given strategy σ ∈ Σ. For n ∈ N, let Υσn ⊆ Fn be the set of all fragments in Fn
that are possible, i. e. Υσn := {ϕ ∈ Fn | ισ(ϕ)> 0}. The set is in fact measurable
since ισ is measurable.
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3.3.2 Expectation splitting

In this section we explain path and expectation splitting and discuss how they
can possibly simplify the expectation computation for a measurable function. We
proceed by introducing a probability measure that is an ingredient of path and
expectation splitting. The probability measure, p′σ, takes a possible fragment that
is not null and a measurable set of paths that are executed after the fragment,
and then computes the probability of the set.

Definition 3.28. Given strategy σ ∈ Σ on MA M, then for n > 0 and ϕ ∈ Υσn ,
p′σ(ϕ, ·) : P → [0, 1] is defined as

p′σ(ϕ,Π) :=
∑

v∈V

dϕn−1(v) · pv,σ[ϕ](Π)

Every pathπ ∈ Π is preceded byϕ, i. e. eventΠ is studied under the condition
that ϕ is visited before. It then makes sense to measure the probability of Π,
only if ϕ is possible. Hence, we restrict ϕ to be a possible fragment. We have
not yet proved that p′σ is a probability measure. It is shown in the next lemma.

Lemma 3.29. Given σ ∈ Σ on MA M, then for every ϕ ∈ F that is possible and
ϕ 6= ε, p′σ(ϕ, ·) establishes a probability measure on (P,P).

Proof. First note that p′σ(ϕ, ·) is a measure, since it is a nonnegative function by
which the empty set measures zero. Its countable additivity directly comes from
that of pv,σ[ϕ]. It is furthermore a probability measure, as it gives P the measure
of one. This is due to the fact that there is not any deadlock state in M and also
that pv,σ′(P) = 1 for all v ∈ V and σ′ ∈ Σ.

In order to employ p′σ as a sub-measure to be used in product measure
theorem or Fubini theorem, it must exhibit a notion of measurability, i. e. p′(·,Π)
must be measurable for every Π ∈ P. Since its domain is restricted to the set of
possible fragments, we need to define the σ-algebra on that set. We define it
using the concept of σ-algebra on a subspace by Yσn := {Υσn ∩ Φ | Φ ∈ Fn} for
n > 0. This restricts each element of Fn to include only possible fragments. It
immediately follows from the definition of Yσn that reducing the domain of an
arbitrary function from Fn to Υσn preserves its Borel measurability.

With the definition of Yσn we can now discuss about the measurability of
p′σ. The intuition behind the measurability is similar to that of σ[ϕ]. Shifting
the decisions of σ by fragment ϕ through strategy σ[ϕ] does not violate its
measurability. In a similar way it preserves the measurability of p′σ(ϕ,Π), which
can be seen as the shifted version of pvϕ0 ,σ. The conclusion is formally stated in
the next lemma.

Lemma 3.30. Given σ ∈ Σ on MA M and Π ∈ P , then p′σ(·,Π) : Υσn → [0, 1] is
measurable on (Υσn ,Yσn ), for every n> 0.
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Proof. The proof is done by expressing pσ(·,Π) in terms of well-defined arith-
metic combination of measurable functions. For this we utilise the measurability
of functions defined by an integral under the conditions given by Tonelli theorem.
That is, consider two σ-finite measurable spaces (Ω1,X1,ν1) and (Ω2,X2,ν2),
and let f : Ω1 ×Ω2 → R≥0 be Borel measurable on (Ω1 ×Ω2,X1 ⊗X2). Then
it holds that ω1→

∫

X2
f (ω1,ω2)ν2(dω2) is Borel measurable (Ω1,X1), for all

X2 ∈ X2. As expected, changing the role of the measurable spaces is possible.
To see the complete results delivered by the theorem see, for instance [Sch05,
Thm. 13.5]. What comes in the sequel provides the construction of p′σ as an
integral of a measurable function.

Here we make use of Dirac impulse distribution, a concept heavily applied
in physics and engineering. It has the whole probability mass concentrated at
one point. It is usually represented as the limit sequence of distributions such
as Gaussian, Cauchy and uniform. We can, for instance, take the uniform one
on the nonnegative real line:

δk(t) :=

(

k t ∈ [0, 1
k ]

0 t ∈ (1
k ,∞)

for k > 0. It is then the case that limk→∞δk(t) = δ(t). The whole probability
mass of δ(t) is concentrated at zero, meaning that it almost never happens to
have any positive real value. It is well understood that limk→∞

∫∞
0 δk(t)dt = 1

and for f being right continuous at 0, limk→∞
∫∞

0 f (t)δk(t)dt = f (0). Here,
the concept of Dirac impulse distribution on the real line is carried over into
fragments. That is, given a specific fragment, we introduce a distribution that
concentrates its mass on that fragment and has zero mass everywhere else. We
thus define Dk : Fn × P→ R≥0 with

Dk(ϕ,π) :=
n−1
∏

i=0

�

1{Γϕi }
(Γπi )

�

1TM
(Γπi )δk(π〈i〉 −ϕ〈i〉) +1TP

(Γπi )
�

�

The function takes a fragment ϕ of length n and path π, and then, intuitively
speaking, gives positive value only if dπen closely looks like ϕ. By increasing k,
this closedness becomes tighter and tighter, until in the limit it will give zero to
all paths π whose prefix is not exactly ϕ. It examines the first n transition(s) of
π against that of ϕ with their order. By using Dirac impulse distribution, it also
checks that if a transition in ϕ is Markovian, its execution time be close to that
of the respective transition in π. The Dirac impulse of fragment ϕ, D(ϕ, ·), is
obtained by taking the limit of sequence {Dk(ϕ, ·)}k>0. Therefore its probability
mass is concentrated on all paths that are generated by base ϕ. In other words,
∫

Π
D(ϕ,π)pv,σ(dπ) = 0, if Π∩Cyl(ϕ) = ;.
It is not hard to show that D is measurable on (Fn×P,Fn⊗P). First, consider

Dk for k > 0; It is built up on the summations and products of indicator function
and δk, which are obviously measurable on (Fn × P,Fn ⊗P). It thus holds by
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Prop. 2.8 that Dk is also measurable. Since D is the limit of sequence {Dk}k>0,
it is measurable by Thm. 2.9. As a result, by applying Tonelli theorem it holds
that MΠ

v,σ : ϕ→
∫

Π
D(ϕ,π)pv,σ(dπ) is measurable on (Fn,Fn) for all v ∈ V and

Π ∈ P . The same conclusion thereby holds on (Υσn ,Yσn ).
We now reduce the domain of D from Fn×P to Fn×Fn. Observe that D(ϕ,π)

only needs dπen for its computation. Hence, we can define D̃ : Fn × Fn → R≥0

such that D̃(ϕ,ϕ′) := D(ϕ,ϕ′ ◦π) for some arbitrary π ∈ P. Note also that D̃
is measurable on (Fn × Fn,Fn ⊗Fn). This can be shown by a similar argument
that is given above for the measurability of D.

Now that we have proved the measurability of MΠ
v,σ, we show it can be

expressed by arithmetic combination of a measurable function and p′σ using
Fubini theorem. More specifically, in product space Fn×P, for some possible non-
null fragment ϕ ∈ Fn and every ϕ′ ∈ Fn define probability measure p̂σ,ϕ(ϕ′, ·) :
P → [0, 1] by p̂σ,ϕ(ϕ′,Π′) := p′(ϕ,Π′). The fact that it is a probability measure
follows from Lem. 3.29. It also holds that ϕ′ → p̂σ,ϕ(ϕ′,Π′) is measurable
on (Fn,Fn), for all Π′ ∈ P , simply because it is independent of ϕ′. Therefore
it satisfies the condition to be used in Fubini theorem4. We aim to apply the
theorem to compute MFn×Π

vϕ0 ,σ
.

MFn×Π
vϕ0 ,σ

(ϕ) =

∫

Fn×Π
D(ϕ,π)pvϕ0 ,σ(dπ)

=

∫

Fn×Π
D̃(ϕ, dπen)pvϕ0 ,σ(dπ)

=

∫

ϕ′∈Fn

∫

π′∈Π
D̃(ϕ,ϕ′)pFn

vϕ0 ,σ
(dϕ′) p̂σ,ϕ(ϕ

′, dπ′)
�

∗ by Fubini theorem ∗
�

=

∫

ϕ′∈Fn

∫

π′∈Π
D̃(ϕ,ϕ′)pFn

vϕ0 ,σ
(dϕ′)p′σ(ϕ, dπ′)

=

∫

ϕ′∈Fn

D̃(ϕ,ϕ′)pFn

vϕ0 ,σ
(dϕ′)

∫

π′∈Π
p′σ(ϕ, dπ′)

= p′σ(ϕ,Π) ·
∫

ϕ′∈Fn

D̃(ϕ,ϕ′)pFn

vϕ0 ,σ
(dϕ′)

Now it should become clear why p̂σ,ϕ is defined independent of its second
argument. It is because the value of D̃(ϕ,ϕ′) is zero for every ϕ′ 6= ϕ and
thereby p̂σ,ϕ(ϕ′, ·) can give an arbitrary probability. It also follows from mea-
surability of D̃(ϕ,ϕ′) on (Fn × Fn,Fn ⊗ Fn) and Tonelli theorem that ϕ →

4We actually use the classical Fubini theorem [AD99, Thm. 2.6.6], which is the corollary of
Fubini theorem in the case the product measure is simply obtained by multiplying individual
measures. In that case changing the order of integration is possible.
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∫

ϕ′∈Fn
D̃(ϕ,ϕ′)pFn

vϕ0 ,σ
(dϕ′) is measurable on (Fn,Fn). Hence, the same conclu-

sion is true on (Υσn ,Yσn ). Moreover the function is strictly positive for every
possible ϕ ∈ Fn. The claim then follows by Prop. 2.8 and the fact that p′σ(ϕ,Π)
is a well-defined arithmetic combination of two measurable functions.

We have now reached the moment to present the main result of this section.
We have all ingredients to split expectation of a measurable function according
to path splitting. That is to say, breaking a path at a specific step into its fragment
up to the step and its suffix after the step. It can be useful in particular when
path splitting simplifies the function, as it is the case for D(ϕ,π) in the proof of
Lem. 3.30.

Theorem 3.31 (Expectation splitting). Let σ ∈ Σ be a strategy on MA M with
state v ∈ V . Furthermore, assume f : P→ R≥0 is measurable with respect to (P,P).
Then for n> 0 it holds that

Ev,σ( f ) :=

∫

P
f dpv,σ =

∫

ϕ∈Fn

∫

π∈P
f (ϕ ◦π)p′σ(ϕ, dπ)pFn

v,σ(dϕ)

=

∫

ϕ∈Fn

∫

π∈P
f (ϕ ◦π)

∑

v′∈V

dϕn−1(v
′)pv′,σ[ϕ](dπ)p

Fn
v,σ(dϕ)

Proof. It is the direct consequence of Fubini theorem. We apply the theorem
on P = Fn × P with two sub-measures p

Fn
v,σ and p′σ(ϕ, ·) for every ϕ ∈ Fn. The

crucial requirements are the fact that p′σ(ϕ, ·) is a probability measure for every
ϕ ∈ Fn, shown by Lem. 3.29, and p′σ(·,Π) is Borel measurable for every Π ∈ P ,
proven by Lem. 3.30.

The above result is essential for proving the upper bound for the main objec-
tive considered in this thesis, namely the optimal ERR, which will be discussed
in Ch. 4. It is also used to prove the fixed point characterisation of the objective,
given in Ch. 5. Moreover, we can, as a result of the theorem, associate the expec-
tation of any measurable function from an arbitrary state with the expectations
in the same setting but when taking a specific transition from the state is forced.
That is to say formally, Ev,σ( f ) is a convex combination of the expectations
Ev,σ|γ( f ) for all γ ∈ T (v).

Lemma 3.32. Let σ ∈ Σ be a strategy on MA M with state v ∈ V and as-
sume f : P→ R≥0 is a Borel measurable function. Then, it holds that Ev,σ( f ) =
∑

γ∈T (v)σ(v)(γ) ·Ev,σ|γ( f ).

Proof. The claim for v ∈ VM follows from the fact that v has only one outgoing
transition say γ̌. It thereby holds that σ(v)(γ̌) = 1 and also two strategies σ and
σ|γ̌ are the same. For v ∈ VP we use Thm. 3.31 for n = 1, that is by viewing
P as S× P. As v is probabilistic and therefore urgent, the set of relevant steps
from v is T (v) × {0}. It is then possible to write the integral over the set by
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a sum. Furthermore, by putting ς = (γ, 0) for some γ ∈ T (v) it is not hard
to see that pSv,σ(dς) = σ(v)(γ) and pSv,σ|γ

(dς) = 1 (by Lem. 3.21) and also

p′σ(ς, dπ) = p′
σ|γ
(ς, dπ) (by Def. 3.28 and the fact that σ[ς] and σ|γ[ς] are the

same). It then gives

Ev,σ( f ) =

∫

P
f dpv,σ

=

∫

ς∈S

∫

π∈P
f (ς ◦π) p′σ(ς, dπ) pSv,σ(dς)

�

∗ Thm. 3.31 ∗
�

=
∑

γ∈T (v)

∫

π∈P
f (γ

0
−→ π) p′σ(γ

0
−→, dπ) σ(v)(γ)

=
∑

γ∈T (v)

∫

ς∈S

∫

π∈P
f (γ

0
−→ π) p′σ(γ

0
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σ(v)(γ)
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ς∈S

∫

π∈P
f (γ

0
−→ π) p′

σ|γ
(γ

0
−→, dπ) pSv,σ|γ

(dς)

=
∑

γ∈T (v)

σ(v)(γ)

∫

ς∈S

∫

π∈P
f (ς ◦π) p′

σ|γ
(ς, dπ) pSv,σ|γ

(dς)

=
∑

γ∈T (v)

σ(v)(γ)Ev,σ|γ( f )
�

∗ Thm. 3.31 ∗
�

The lemma yields a clue about the optimal value of Ev,σ( f ) ranging over
all measurable strategies. It is indeed among Ev,σ|γ( f ) for γ ∈ T (v), where
a deterministic decision at the initial state is made. This fact is, in particular
reflected in the fixed point characterisation of the optimal ERR given in Ch. 5.

As an intuitive corollary we point out the same conclusion for probability
measure instead of expectation.

Corollary 3.32.1. Given v, σ as in Lem. 3.32, then for all Π ∈ P it holds that
pv,σ(Π) =

∑

γ∈T (v)σ(v)(γ) pv,σ|γ(Π).

Proof. It is a direct consequence of Lem. 3.32 by putting f = 1Π.

3.4 Discussion

This chapter provided the mathematical basis of Markov automata and their
analysis. We list the main points covered by this chapter.
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(i) We defined Markov automaton and its compositionality in Sec. 3.1;

(ii) We explained the concept of closedness and provided the thorough seman-
tics of closed MAs by means of histories and paths;

(iii) In Sec. 3.2, we studied the measurability of MAs, defined generic measur-
able strategies and finally established the unique probability measure on
the set of paths induced by an MA;

(iv) For analysis of MAs, we introduced the concept of expectation splitting
in Sec. 3.3, which splits the expectation computation for a measurable
function according to a specific number of steps that has been executed.

Contributions. This chapter developed the theoretical foundations of Markov
automata. We extended our previous work [HH12] on the measurability of
MAs and established their unique probability measure (point (iii)). Moreover,
we introduced the concept of expectation splitting, an abstract tool that can
simplify a diverse range of analyses on MAs (point (iv)). Such a thorough study
had not been done before for MAs.

Related works. Our development of measurability for MAs is inspired by [WJ06;
Joh08]. In particular, our definition of generic measurable strategies is similar
to their definition of measurable schedules for CTMDPs. They also established a
probability measure for the set of paths in CTMDPs. Their work has been taken
up by [Fu14b] and extended by [Neu10] to IMCs. To the best of our knowledge,
expectation splitting in the general setting we considered has not been proposed
before neither for MAs nor for related models (IMCs and CTMDPs). On CTMDPs
however, probability measure splitting on the first step is proposed in [Fu14b,
Thm. 7.1]. This is a special case of Thm. 3.31 when f is an indicator function and
n= 1. Lem. 3.7 in [Neu10] also provides a splitting for the probability measure
of CTMDPs but restricted to measurable rectangles, i. e. events of the form Φ×H
where Φ ∈ Fn and H ∈ Hk, n, k ∈ N. In those, the measurability of strategies
under shifting is not considered. This is an essential step that effectively makes
their proof incomplete.

Future works. We did not consider different classes of strategies for MAs. Clas-
sifications of strategies for CTMDPs has been studies by [WJ06; Joh08; Neu10].
A similar classification can be applied to MAs, however in the early setting. In
this chapter, we introduced the set of generic measurable strategies as the uni-
verse of MA’s meaningful strategies. The question still remains open, is there a
supper class of this set that still provides the unique probability measure and
supports the expectation splitting offered by Thm. 3.31? The answer could be
of theoretical interest.
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Chapter 4

Markov Reward Automata and
Resource-bounded Analysis

In this chapter we introduce Markov reward automata (MRA) [Guc+14b; Hat+15;
Bra+15], which as the extension of Markov automata with reward and resource
structures. On MRAs, we study resource-bounded analysis and in particular we
look into the optimal Expected Resource-bounded Reward (ERR). The optimal
ERR is the main objective considered in this thesis. With this objective we aims
to minimise or maximise the reward that can be earned by an MRA under a re-
source budget. It subsumes into a general category of objectives, encompassing
useful analyses such as the optimal expected time-bounded reward, time- and
resource-bounded reachability.

This chapter forms the theoretical basis of analysing MRAs against the op-
timal ERR properties. It defines relevant random variables to be used for com-
puting the optimal ERR on MRAs. We heavily exploit sequences of functions to
represent resource-bounded analysis as the limit of the expectation of a sequence
of random variables. This helps us to establish useful properties of the optimal
ERR by lifting characteristics of the sequence to its limit. Among them, we pro-
vide an upper bound for the optimal ERR, which is later employed as a criterion
to classify MRAs. The bound is also used to prove the Lipschitz continuity of the
optimal ERR.

4.1 Markov reward automaton

Often in the context of model analysis it is needed to quantify quantities such as
energy consumption, profits and maintenance costs under some budget. The bud-
get comes from resources such as time, money or energy. In general, resources are
the quantities that are consumed in a system with a tight restriction, described
as a budget. In the analyses discussed in this thesis, a bound is always imposed
on resource consumption. Rewards, on the other hand, quantify the services that
are offered by a system. They are therefore meant to be optimised rather than
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budgeted. The analyses discussed in this thesis always ask for the minimum and
the maximum rewards offered by a system. Altogether, it is natural and conve-
nient to equip models with rewards and resources. It enables us, for example,
to inquire “How many tasks can be maximally completed in the system before
the battery running dry?”, or “What is the minimum maintenance cost of the
system within one year?” In order to answer such questions we extend Markov
automata with resources and rewards, which are attached to their transitions:

Definition 4.1 (Resource and reward structures). Given MA M, a resource func-
tion % : T → R≥0 assigns a transient resource consumption rate to each transition.
A reward structure ρ is a triple ρ := (ρt,ρi,ρf) of functions ρt,ρi,ρf : T → R≥0;
ρt is the transient reward rate, ρi the instantaneous reward, and ρf the final re-
ward.

For a transition γ = (v,λ,µ) ∈ T , resources and transient rewards are
granted per time unit, i. e. residing in v for t time units before taking transi-
tion γ spends t ·%(γ) resource units, and gains t ·ρt(γ) reward units. In contrast,
the instantaneous reward ρi(γ) is instantly earned by executing transition γ.
The final reward is granted on a state at which we run over resource budget. In
this case the reward equivalent to the final reward of the next transition, which
is one of the outgoing transitions of the state, is received. This construction will
allow, e. g. to consider resource-bounded reachability probabilities as a special
case of ERR (for more details, see Sec. 4.2.3).

We incorporate the reward and resource structures defined in Def. 4.1 in
MAs to obtain Markov reward automata.

Definition 4.2 (Markov reward automaton). Markov reward automaton (MRA)
is a triple R := (M,%,ρ) with M := (V, v0, T ) being a Markov automation as
in Def. 3.6, % and ρ := (ρt,ρi,ρf) being its resource and respectively its reward
structure as in Def. 4.1.

Throughout this thesis, R := (M,%,ρ) is referred to as an MRA, and unless
stated differently, it implicitly signifies M := (V, v0, T ) and ρ := (ρt,ρi,ρf). In
an MRA R := (M,%,ρ), it is useful to distinguish transitions that consume
from those that do not consume resources. It is in particular important since the
transitions that do not consume any resources can be executed with no concerns
about the resource budget. Hence, they can be treated differently from resource
consuming transitions. The set of transitions is accordingly partitioned into re-
source consuming, denoted by Trc, and resource preserving transitions, denoted
by Trp. In addition to Markovian transitions with zero resource consumption,
probabilistic transitions are resource preserving as they are executed instanta-
neously. We can thus define Trp := TP ∪ {γ ∈ TM : %(γ) = 0} and Trc := T \ Trp.
The state space of a Markov automaton is partitioned accordingly. A resource
consuming (resource preserving) state is the source of a resource consuming (re-
source preserving) transitions. The set of resource consuming and preserving
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transitions are denoted respectively by Vrc and Vrp. Note that V = Vrc ] Vrp since
there is neither a state with both resource consuming and resource preserving
transitions nor a deadlock state. Moreover it obviously holds that a resource
consuming state must be Markovian as well.

4.2 The optimal ERR

In this section we define the optimal ERR of an MRA using appropriate random
variables that collect rewards and resources along paths induced by the MRA. We
first define the functions that represent resource consumption and total reward
of a fragment of a given path, and then we show that they are Borel measurable.
These are described as sequences of functions indexed by the length of the
corresponding fragments. We then utilise the fact that taking the limit of a
sequence preserves measurability (cf. Thm. 2.9). With this we can construct a
random variable for resource-bounded rewards.

4.2.1 Random reward variables

Here we propose relevant random variables for computing resources and re-
wards along paths. They are then employed for introducing a random variable
for resource-bounded rewards. We consider it as the limit of a sequence of random
variables. This view enables us to lift some useful properties like measurability
from the sequence to its limit.

We start with resources and rewards of prefixes of a path. Given path π,
the resource consumption of its prefix of length n is a function %n : P→ R≥0,
with %0(π) := 0 and %n(π) :=

∑n−1
i=0 %(Γ

π
i ) ·π〈i〉 for n> 0. It is the cumulative

resource consumption of the first n transition(s) of π. The cumulative reward
gained by the first n transition(s) of π is computed by ρn : P → R≥0, with
ρ0(π) := 0 and ρn(π) :=

∑n−1
i=0

�

ρt(Γπi ) · π〈i〉 + ρi(Γπi )
�

for n > 0. The next
lemma shows that both of the functions are Borel measurable.

Lemma 4.3. %n and ρn are Borel measurable, for all n ∈ N.

Proof. We prove by induction on n that %n is Borel measurable. The base case,
n = 0, is trivial. Note that %n+1(π) = %n(π) + %(Γ

π
n−1)π〈n− 1〉. By induction

hypothesis, %n is measurable. Therefore, by Prop. 2.8, it remains to show that
fn(π) := %(Γπn−1)π〈n− 1〉 is measurable. By Prop. 2.7 it is enough to establish,
for every b ∈ R≥0, that { fn ≤ b} ∈ P . Since fn(π′) only depends on the n-th step
ofπ′, { fn ≤ b} is equivalent to all paths whose n-th step is an element of TP×{0},
Trp \ TP × R≥0 or {(γ, t): γ ∈ Trc,%(γ) > 0, t ∈ [0, b

%(γ))}. It thus constitutes a
measurable base of length n whose cylinder is measurable by definition. Hence
the claim follows. The proof for measurability of ρn is similar.

With %n and ρn, the resource consumption and respectively, the cumulative
reward acquisition along a path is computed step by step, until the first n step(s)
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are visited. By imposing an extra restriction, it is possible to designate a function
for computing step- and resource-bounded rewards. That is the reward received
by a fragment of a path under a constraint on the consumption of resources.
The constraint obligates the reward to be accumulated as long as the resource
consumption along the path is less than or equal to some nonnegative resource
bound or resource budget. It is formally given by Rb

n : P→ R≥0:

Rb
n(π) :=







ρn(π) %n(π)≤ b

ρ n̂−1(π) +
b−% n̂−1(π)
%(Γπn̂ )

·ρt(Γπn̂ ) +ρf(Γπn̂ ) otherwise
(4.1)

where b ∈ R≥0 and n̂ ∈ N is the length of the shortest fragment of π that con-
sumes more than b resource units, namely % n̂−1(π)≤ b and % n̂(π)> b. In other
words, the resource consumption exceeds b while staying at the n̂-th state of π.
Therefore, the reward is gained up to residing b−% n̂−1(π)

%(Γ h
n̂ )

time units in the state,

and then the final reward is received. Note that n̂ must exist and it must also
hold that %(Γπn̂ )> 0, provided that %n(π)> b.

Collection {Rb
n}n∈N constitutes a sequence of functions converging to the

random variable that we aim to propose. It is therefore necessary to establish
the existence and the measurability of its limit. In the first step we show, in the
next lemma, that Rb

n is measurable for every n ∈ N.

Lemma 4.4. For every n ∈ N and b ∈ R≥0, Rb
n is Borel measurable.

Proof. Given an arbitrary b ∈ R≥0, it suffices, by Prop. 2.7, to show that {Rb
n ≤

a} ∈ P , for every n ∈ N and a ∈ R≥0. Put gn : P→ R≥0 with gn(π) := ρ n̂−1(π)+
b−% n̂−1(π)
%(Γπn̂ )

·ρt(Γπn̂ ) +ρf(Γπn̂ ), as the case associated with %n(π) > b in Eq. (4.1).

Since %n and ρn are measurable (Lem. 4.3) and %(Γπn̂ )> 0, gn is well-defined
and by Prop. 2.8 measurable. With this it holds that {Rb

n ≤ a} = ({%n ≤ b} ∩
{ρn ≤ a}) ∪ ({%n > b} ∩ {gn ≤ a}). Since σ-algebras are closed under union
and intersection, then {Rb

n ≤ a} ∈ P .

The above lemma forms the basis of the random variable for computing
resource-bounded rewards. Before shown to be a random variable, it is proposed
in the next definition.

Definition 4.5. For every b ∈ R≥0, Rb : P → R≥0 is defined for every π ∈ P as
Rb(π) := limn→∞ Rb

n(π).

Def. 4.5 considers Rb as the pointwise limit of the sequence {Rb
n}. We show

in the next proposition that the limit exists for every π ∈ P and that Rb is indeed
a random variable.

Proposition 4.6. For every b ∈ R≥0, Rb is well-defined and Borel measurable.
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Proof. We show that Rb(π) exists for every π ∈ P. To see the existence, note that
the reward and resource consumption of any transition is nonnegative. Hence,
%n and ρn are monotonically increasing; that is to say, %n(π) ≤ %n+1(π) and
ρn(π) ≤ ρn+1(π) for every π ∈ P and n ∈ N. By Eq. (4.1), the same holds for
Rb

n for every b ∈ R≥0. As a result, limn→∞ Rb
n(π) exists, and thereby Rb is well-

defined. To see the measurability, observe that Rb
n is measurable by Lem. 4.4 for

every n ∈ N, and so is its limit (Thm. 2.9).

Measurability of Rb introduces it as a random variable for computing resource-
bounded rewards. It delivers the integrability of Rb in the sense of Lebesgue inte-
gration. As proposed by Def. 3.25, it is thereby possible to define the expectation
of Rb on probability space (P,P ,pv,σ), for v ∈ V and σ ∈ Σ.

4.2.2 Resource-bounded analysis

This section introduces the tree of objectives we consider in this thesis. At its
root is the optimal expected resource-bounded reward (ERR), from which other
objectives branch out. We first introduce ERR from an initial state under a fixed
strategy. Thereafter, we define the optimal ERR and show how the other objec-
tives derive from it.

Definition 4.7 (Expected resource-bounded reward (ERR)). Let R := (M,%,ρ)
be an MRA, then its expected resource-bounded reward within resource bound
b ∈ R≥0 from state v ∈ V under strategy σ ∈ Σ is the expectation of Rb on
probability space (P,P ,pv,σ), i. e.

R(v,σ, b) := Ev,σ(R
b) =

∫

P
Rb dpv,σ

The ERR is represented for every resource bound b ∈ R≥0 as the expectation
of random variable Rb with respect to an initial state under a given strategy.
As it is defined in Def. 4.5 and proved in Prop. 4.6, Rb is the limit of sequence
{Rb

n}n∈N. Due to the monotonicity of {Rb
n}n∈N, it is possible to establish ERR as

the limit of the expectations of Rb
n.

Lemma 4.8. Let R := (M,%,ρ) be an MRA and put Rn(v,σ, b) := Ev,σ(Rb
n)

for σ ∈ Σ, v ∈ V and b ∈ R≥0. Then {Rn(v,σ, b)}n∈N forms a monotonically
increasing sequence converging to R(v,σ, b).

Proof. The claim directly follows from Thm. 2.19 (monotone convergence the-
orem), as Rb

n’s are monotonically increasing and pointwise convergent to Rb

(cf. proof of Prop. 4.6).

The value of ERR from a fixed state and fixed resource budget may depend
on the choice of strategies. In the context of model checking and verification,
one is usually interested in the minimal and the maximal value that the ERR
can take. That is represented by the optimal ERR.
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Definition 4.9 (Optimal ERR). For MRA R := (M,%,ρ) the minimal and the
maximal ERR from state v ∈ V within resource bound b ∈ R≥0 are respectively
defined as R(v, b) := infσ∈ΣR(v,σ, b) and R(v, b) := supσ∈ΣR(v,σ, b).

Thus far we have associated Rb with the sequence {Rb
n}n∈N via Def. 4.5 and

Prop. 4.6, and Ev,σ(Rb) with {Ev,σ(Rb
n)}n∈N. It is useful to do the same for the

optimal ERR. It turns out that it is not as easy as it sounds first, at least for
the infimum case. To see why, we first need to define the optimal step- and
resource-bounded rewards.

Definition 4.10. For MRA R := (M,%,ρ) the minimal and the maximal step-
and resource-bounded reward from state v ∈ V within resource bound b ∈
R≥0 are respectively defined as Rn(v, b) := infσ∈ΣRn(v,σ, b) and Rn(v, b) :=
supσ∈ΣRn(v,σ, b).

We want to establish R and R as the limit of sequences {Rn}n∈N and {Rn}n∈N,
respectively. The latter follows from the fact that the limit of an increasing se-
quence coincides with its supremum.

Lemma 4.11. For all v ∈ V and b ∈ R≥0, it holds that limn→∞Rn(v, b) = R(v, b).

Proof. As shown in Lem. 4.8, for everyσ ∈ Σ sequence {Rn(v,σ, b)}n∈N is mono-
tonically increasing, and so is {Rn(v, b)}n∈N. It therefore holds that the limits of
the sequences exist and also coincide with their supremum, i. e.

lim
n→∞

Rn(v,σ, b) = sup
n∈N

Rn(v,σ, b) (4.2)

lim
n→∞

Rn(v, b) = sup
n∈N

Rn(v, b) (4.3)

It then gives

lim
n→∞

Rn(v, b) = sup
n∈N

Rn(v, b)
�

∗ Eq. (4.3) ∗
�

= sup
n∈N

sup
σ∈Σ

Rn(v,σ, b)
�

∗ Def. 4.10 ∗
�

= sup
σ∈Σ

sup
n∈N

Rn(v,σ, b)

= sup
σ∈Σ

lim
n∈N

Rn(v,σ, b)
�

∗ Eq. (4.2) ∗
�

= sup
σ∈Σ

R(v,σ, b)
�

∗ Lem. 4.8 ∗
�

= R(v, b)
�

∗ Def. 4.9 ∗
�

The above lemma brings a crucial result, expressing the maximal ERR as
the limit of sequence {Rn}n∈N. It forms a basis for carrying some important
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properties of Rn’s such as Lipschitz continuity over to R. This will be discussed
later in Ch. 5.

There is a subtle issue that makes the adaptation of the proof of Lem. 4.11
to the minimal case impossible. In the proof, we have changed the order of two
“sup” operators, which is overall possible. However, in the minimal case, it is
required to justify interchange of sup coming from the limit and inf, which is
not always possible. For instance, let fn : R≥0→ R≥0 constitutes an increasing se-
quence with fn(t) = 1[0,n](t) for n ∈ N. Then, limn→∞ inft≥0 fn(t) = 0, whereas
inft≥0 limn→∞ fn(t) = 1.

The conclusion of Lem. 4.11 can be definitely extended to the minimal case,
nevertheless by using a more complicated proof technique. It uses a stronger
notion of convergence called uniform convergence, which is described in Def. 2.20.
For any uniformly convergent sequence of functions over a set, the limit operator
over the sequence and the infimum operator over the set are commutative, as
expressed in Thm. 2.21. The crucial part, however, is to show that ERR is indeed
the limit of a uniformly convergent sequence.

Lemma 4.12. For every v ∈ V and b ∈ R≥0 the sequence {Rn(v, ·, b)}n∈N is uni-
formly convergent to R(v, ·, b), i. e.

lim
n→∞

sup
σ∈Σ

�

�Rn(v,σ, b)−R(v,σ, b)
�

�= 0

Proof. Proof sketch:

• we show that looking into a compact topology of strategies is enough,
i. e. the strategies that regard only histories with the consumption of b
resource units or less,

• we show that Rn(v,σ, b) is continuous on the topology,

• using the fact that the sequence is increasing and Dini’s theorem (see
e. g. [Rud76, Thm. 7.13]) the result follows.

Switching the order of the limit and the infimum operators is measure pre-
serving for any uniformly convergent sequence. This is formally adapted to the
minimal ERR case, as described in the next lemma.

Lemma 4.13. For all v ∈ V and b ∈ R≥0, it holds that limn→∞Rn(v, b) = R(v, b).

Proof. It is the immediate consequence of Thm. 2.21, as {Rn(v, · b)}n∈N is uni-
formly convergent to R(v, ·, b) by Lem. 4.12.

4.2.3 Other types of analyses

Some other useful properties can be formulated as the optimal ERR. This is
achieved by considering special reward and resource structures and/or by ap-
plying slight modifications in the model. Three important classes of properties
can be considered as special cases of the optimal ERR.
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Time-bounded rewards. In the optimal time-bounded (cumulative) rewards, time
plays the role of resource. Therefore the time duration for reward collection is
limited in this property. This corresponds to using resource consumption rate of
one for all Markovian transitions, i. e. % := 1TM

. Hence, the resource consump-
tion become equivalent to time passage.

Resource-bounded reachability. The second class represents the optimal resource-
bounded reachability probabilities, i. e. “what is the maximal probability to reach
a set G ⊆ V of states before spending b resource units?”. In order to formulate a
property of this class in an MRA as the optimal ERR, the MRA is required to be
slightly modified. The modification indeed preserves the value of the properties
in this class. It makes each state in G absorbing, by first removing all of its
outgoing transitions and then adding a Markovian self-loop with an arbitrary
finite rate instead. A Markovian self-loop is a transition whose successor is its
source with probability one. A special reward structure need to be applied as well.
The final reward of the self-loop transitions is set to value one, namely ρf(γ) = 1
if vγ ∈ G. All other reward values are constantly zero. As a result, each path
that reaches some goal state before running out of the budget receives reward
one. Thus the expected reward in that situation corresponds to the probability
of reaching some state G until b resource units is spent.

Time-bounded reachability. The third class, the optimal time-bounded reachabil-
ity probabilities is a special case of the second class, when the resource is time. It
can be seen as resource-bounded reachability when the resource consumption
coincides the time passage. Therefore it is formulated as the optimal ERR by
applying all techniques discussed for the resource-bounded reachability as well
as setting the resource consumption of all Markovian transitions to one.

4.2.4 Instantaneous resource consumption

In this thesis, we do not consider instantaneous resource consumption as it would
substantially increase the hardness of the problem. To see this, we establish the
complexity class of computing the optimal ERR under instantaneous resource
consumption. We make use of a straightforward reduction from 0/1 knapsack
problem to the optimal ERR. We formulate items in the knapsack as states of
an MA and their values and weights as instantaneous rewards and resources,
respectively. The result is shown in the next theorem.

Theorem 4.14. Computation of the optimal ERR under presence of instantaneous
resource consumption is NP-hard.

Proof. We provide a reduction from the knapsack problem. The goal is to select
a subset from n items, each with value x i and weight wi (i = 1, . . . , n), such that
the weight of the items in the subset is at most equal to a given bound W and their
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value is maximal. To solve the problem, we define MRA R := (M,%,ρ) with
M= (V, v1, T ) such that V := {v1, . . . , vn+1}. States v1, . . . , vn correspond to the
respective items, whereas vn+1 is just a terminal state. Transitions are declared
as T := {γ(0)i ,γ(1)i | i = 1, . . . , n} ∪ {γn+1} with γ(0)i := γ(1)i := (vi , \,∆vi+1

) for

i = 1, . . . , n and γn+1 := (vn+1, 1,∆vn+1
). Executing transitions γ(0)i and γ(1)i is

equivalent to ignoring and picking item i, respectively. Transition γn+1 is the
Markovian self-loop of state vn+1 to be used for ensuring deadlock freedom.
The transitions however have different resource and reward values, namely
%(γ(1)i ) = wi and ρi(γ

(1)
i ) = x i . All other rewards and resource values are zero.

It is not hard to see that the knapsack problem can be solved via computing
R(v1, W ).

There is another reason to avoid using the instantaneous resource consump-
tion. The algorithmic technique for computing the optimal ERR relies on a mea-
sure preserving transformation (cf. Ch. 6) that converts resource consumption
into time passage. Adding instantaneous resources would render the transfor-
mation impossible, since there is no instantaneous passage of time. Note that, in
general, bringing resources into play for analysing resource-bounded properties
is expensive, still for discrete-time models [AHK03], even more here so as we
have to support continuous time with non-integer resources.

4.3 A bound for the optimal ERR

This section provides an upper bound for the optimal ERR of a given MRA. The
bound is expressed in terms of some parameters taken from the MRA. It plays a
vital role in the classification of MRAs according to the optimal ERR being finite
or infinite. In addition, it will be used to prove that the optimal ERR is Lipschitz
continuous with respect to resource bound and also to establish the error bound
for the discretisation scheme proposed in Ch. 6.

4.3.1 Partial rewards

A reward structure consists of three different reward functions, as described
in Def. 4.1. To get the resource-bounded reward of a given path, each one is
applied step by step until the budget is balanced. Each step might carry a resource
consuming or a resource preserving transition. We use this criterion to split
the resource-bounded reward into three partial resource-bounded rewards. Each
partial reward has its own contribution to the value of the resource-bounded
reward. We study each of them separately in order to find out how large they
can finally donate to the value of the optimal ERR.

For a given MRA R := (M,%,ρ) with resource bound b ∈ R≥0, we inter-
pret random variable Rb as the sum of three orthogonal rewards, Rb

rc, Rb
rp, Rb

f
:

P→ R≥0. They respectively stand for the resource-bounded reward of resource
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consuming transitions, that of resource preserving transitions and the resource-
bounded final rewards. The first two, as the names suggest, restrict the reward to
be received solely from the corresponding transitions. It can be the transient or
instantaneous rewards of the transitions, but not the final rewards. The last one,
Rb

f , only includes the final rewards. In other words, the partial rewards are all
special cases of Rb, each obtained by suppressing the reward source of the others.
For instance, Rb

rc can be obtained by setting the rewards of resource preserving
transitions and the final reward of any transition to zero, i. e. ρt(γ) = ρi(γ) = 0
for all γ ∈ Trp and ρf(γ′) = 0 for all γ′ ∈ T . The others can be derived analo-
gously. Derivation of the partial rewards from Rb indicates that they are Borel
measurable.

Lemma 4.15. For all b ≥ 0, it holds that Rb
rc, Rb

rp and Rb
f are Borel measurable.

Proof. The claim directly follows from Prop. 4.6.

The above lemma shows that Rb
rc, Rb

rp and Rb
f are random variables. Moreover,

it trivially holds that the random variables sum up to Rb:

Rb = Rb
rc + Rb

rp + Rb
f (4.4)

We are interested in the expectations of the random variables, respectively de-
noted by Rrc, Rrp and Rf. In particular, we intend to determine the maximum
possible contribution of each random variable to the value of ERR. It helps at
the end to find out an upper bound of the ERR. And it can later be used to decide
whether there is a states and a strategy under which the value of ERR is infinite.

For the MRA finding the maximum value of partial rewards requires deter-
mining some characteristic measures of the model. For instance, we need to
know what is the maximum transient reward per time unit over all transitions of
M, or how long maximally it takes to run over the resource budget in the model.
The characteristic measures depend on certain parameters of the underlying MA
M and its resource and reward structures (% and ρ) that are identified in the
next two definitions.

Definition 4.16. For MRA R := (M,%,ρ), the maximum exit rate and the min-
imum resource consumption of resource consuming transitions are respectively
defined as λ̄=maxγ∈Trc

rγ and % =minγ∈Trc
%(γ).

Def. 4.16 brings the necessary parameters for bounding the elapsed time and
the expected number of Markovian jumps until the consumption of the whole
resource budget in the MRA. Given a resource bound b, the former is bounded
by b/%, which occurs while holding the transition with the minimum positive
resource consumption rate until the budget is empty. The latter happens when
the transition has already the highest rate, since it likely occurs more often than
any other transitions in the model. The number of Markovian jumps in this
case is a pure birth process or equivalently a Poisson process with rate λ̄. Its
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expectation at time point b/% is given by λ̄b/%. That is indeed an upper bound
for the expectation of the number of Markovian jumps in the MRA since every
other transition has a smaller or equal rate and also a larger or equal resource
consumption. The following definition specifies the maximum partial rewards
among resource consuming transitions.

Definition 4.17. LetR := (M,%,ρ) be an MRA; then among its resource consum-
ing transitions the maximum transient reward is defined as ρ̄t =maxγ∈Trc

ρt(γ),
the maximum instantaneous reward as ρ̄i = maxγ∈Trc

ρi(γ) and the maximum
final reward as ρ̄f =maxγ∈Trc

ρf(γ).

We have now identified all parameters to be used for bounding partial re-
wards. The next lemma establishes upper bounds for the expectation of transient
and final rewards.

Lemma 4.18. For MRA R := (M,%,ρ) with resource bound b ∈ R≥0, it holds for
all v ∈ V , σ ∈ Σ that Rrc(v,σ, b)≤ (ρ̄t + λ̄ρ̄i)

b
% and Rf(v,σ, b)≤ ρ̄f.

Proof. The latter immediately follows from Rf(π) ≤ ρ̄f for all π ∈ P. For the
former we think of Rb

rc as the sum of two random variables obtained by projec-
tion of Rb onto transient and instantaneous rewards. As discussed above, the
contribution of Rb

rc that comes from transient rewards is bounded above by ρ̄t b/%.
The expectation of the contribution from instantaneous rewards is smaller or
equal to λ̄ρ̄i

b/%, which proves the claim.

It only remains to provide an upper bound for Rb
rp. Thereafter an upper bound

on the ERR can be determined.

4.3.2 Bounding the optimal ERR

The previous section established bounds for Rb
rc and Rb

f , which are both finite and
bounded given a model with a finite number of states and transitions and a finite
resource bound. In this section we specify an upper bound for Rb

rp, which is the
expectation of the resource-bounded reward of resource preserving transitions.
It is possible to execute those transitions without being concerned about the
resource bound as they consume no resources. Such a reward acquisition can
rise to infinity. It may happen for instance when a resource preserving transition
with a positive transient or instantaneous reward is visited infinitely often with
positive probability.

We give another interpretation for Rb
rp. The reward from resource preserving

transitions is collected between consecutive executions of resource consuming
transitions. The new interpretation views the random variable as the sum of
those rewards until certain stopping time at which the resource bound is reached.
As it is well-understood in probability theory, we study the stopping time in the
context of a sequence of random variables. There we make use of the theory de-
veloped in Sec. 4.2. We will see later that an upper bound for the reward earned
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in between two consecutive resource consuming transitions can be obtained.
The bound is the adapted for Rb

rp.
For the sake of formality, we propose two auxiliary random variables. Firstly,

random variable #b : P→ N is a counter of resource consuming transitions. It
determines the number of resource consuming transitions executed along the
path before b resource units are spent. It can be easily constructed from Rb by
assigning value one to instantaneous reward of resource consuming transitions
and zero to everything else. This, for example gives {#b = n} as the set of all
paths containing exactly n resource consuming transitions up to the point the
resource consumption reaches b.

Secondly, we define sequence of random variables A;n : P→ R, n= 1,2, . . . ,
each corresponding to the total reward of resource preserving transitions along
a path up to the n-th resource consuming transition. It does not take the final
reward into account. Formally it is

A;n(π) :=
Kπn
∑

i=0

�

π〈i〉 ·ρt(Γ
π
i ) +ρi(Γ

π
i )
�

1Trp
(Γπi ) (4.5)

where Kπn is the index of the n-th resource consuming transition in π ∈ P. In
other words, it is the length of the longest prefix of π that has (strictly) less than
n resource consuming transitions. Therefore, Kπn will be infinity if the number of
resource consuming transitions along the entire path is less than n. Among all
A;n’s, A;1 is of particular interest, since it can be expressed in terms of Rb

rp when

b is carefully chosen. In fact, R0
rp and A;1 coincide, namely A;1(π) = R0

rp(π) for
every π ∈ P. Both compute the reward of resource preserving transitions along
π up to the execution of the first resource consuming transition, at which the
resource must be spend. Apart from that, it is in general possible to reconstruct
Rb

rp using the auxiliary random variables A;n’s and #b for all b ∈ R≥0. Before
going into the details, we need first to prove the claim that they are measurable.

Lemma 4.19. #b and A;n are Borel measurable for every b ∈ R≥0 and n= 1, 2, . . . .

Proof. The measurability of #b comes from that of Rb by Prop. 4.6 as it is a
special case of Rb when every resource consuming transition has instantaneous
reward of one and all other rewards are zero. We prove the measurability of A;n
for n= 1, 2, . . . by induction on n. The conclusion for the base case follows from
A;1 = R0

rp and Lem. 4.15. It is possible to split the reward of path π ∈ P collected

by A;n+1 into the reward up to the n-th resource consuming transition computed
by A;n and the reward between the n-th and the (n+ 1)-th transition specified
by A;1(bπcKπn +1), i. e. A;n+1(π) = A;n + A;1(bπcKπn +1). By the induction hypothesis

and Prop. 2.8 it only remains to show the measurability of π → A;1(bπcKπn +1),
which can be proven by regarding A;1 = R0

rp. For k ∈ N, let {K(·)n = k} be the set
of fragments of length k + 1 that contains n resource consuming transition(s)
including its last transition. The set clearly belongs to Fk+1. Then, for every
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B ∈ B(R≥0) the set {π | A;1(bπcKπn +1) ∈ B} coincides with
⋃

k∈N({K
(·)
n = k} × {π |

R0
rp(π) ∈ B}). The set is constructed by countable union of measurable rectangles,

which proves the claim.

Intuitively speaking, A;n computes the same kind of rewards as Rb
rc, neverthe-

less by imposing a restriction on the number of resource consuming transitions
instead of resource consumption. On the other hand, #b can provide the right
moment to stop the reward computation in terms of the number of resource con-
suming transitions. It can then be passed as the index of A;n. This composition,
A;

#b , thus collects the reward of resource preserving transitions along paths until
reaching the resource consuming transition at which the resource consumption
exceeds b. In fact it is nothing but Rb

rp, i. e.

∀π ∈ P Rb
rp(π) = A;

#b(π) (4.6)

In order to establish a bound for Rb
rp it is useful to express A;

#b in terms of

A;n’s. We split the reward computed by A;
#b into the sum of the rewards received

in between consecutive occurrences of resource consuming transitions. That
is done by aggregating A;1, A;2 − A;1, A;3 − A;2 and so on. By using an indicator
function we make sure the path is relevant, i. e. it contains a high enough number
of resource consuming transitions. This is important since the evaluation of
A;n+1(π)− A;n(π) makes sense only if π contain at least n resource consuming
transition(s). Altogether we can write

A;
#b = A;1 +

∞
∑

n=1

(A;n+1 − A;n)1{#b≥n} (4.7)

Our aim is to first obtain upper bounds for the expectation of the summands of
Eq. (4.7) which are then combined together to provide the final bound. We start
with bounding A;1 using the maximal null reward which is defined next.

Definition 4.20. For a given MRA R := (M,%,ρ), the maximal null reward is
defined as r0 =maxv∈V supσ∈ΣRrp(v,σ, 0).

This is simply the maximum reward from any state collected by resource
preserving transitions without touching the resource budget. For any strategy
σ ∈ Σ, Rrp(v,σ, 0) is zero when v is resource consuming; otherwise it might
be positive. We repeat the fact that R0

rp in general collects the reward along the
path until the first resource consuming transition is visited. At that point the
reward computation stops since resources need to be spent, however the budget
is empty. As R0

rp and A;1 represent exactly the same random variable, maximal

null reward implicitly provides an upper bound for A;1. All facts together brings
some conclusions which is formalised in the next lemma.

Lemma 4.21. For a given MRA R := (M,%,ρ), the following holds
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a. r0 =maxv∈V supσ∈ΣEv,σ(A
;
1),

b. For every v ∈ V and σ ∈ Σ, Ev,σ(A
;
1)≤ r0,

c. For every v ∈ Vrc and σ ∈ Σ, Ev,σ(A
;
1) = 0,

d. For every v ∈ Vrc and σ ∈ Σ, Ev,σ(A
;
2)≤ r0.

Proof. The first three are immediate consequences of Def. 4.20 and the fact that
R0

rp = A;1. To prove the last one we use the technique of expectation splitting as
described in Thm. 3.31 on p. 52. Starting from an arbitrary resource consuming
state v ∈ Vrc we set strategy σ ∈ Σ and then split the expectation of A;2 at the
point v is left, i. e. by setting n= 1 in Thm. 3.31. Then it holds that

Ev,σ(A
;
2) =

∫

P
A;2 dpv,σ =

∫

ς∈S

∫

π∈P
A;2(ς ◦π)

∑

v′∈V

dς0(v
′) · pv′,σ[ς](dπ)p

S
v,σ(dς)

We can further simplify the equation by taking into consideration that v is re-
source consuming. It is also a Markovian state, which has only one outgoing tran-
sition, say T (v) = {γ̌}. It is thus only relevant to consider paths starting with step

γ̌
t
−→, for t ∈ R≥0; otherwise the probability measure is zero. Hence, we can re-

strict the first integral over {γ̌}×R≥0. Furthermore, it holds that A;2(ς◦π) = A;1(π)
for ς ∈ {γ̌} ×R≥0 and π ∈ P. It gives then

Ev,σ(A
;
2) =

∫

ς∈{γ̌}×R≥0

∫

π∈P
A;1(π)

∑

v′∈V

dγ̌(v′) · pv′,σ[ς](dπ) p
S
v,σ(dς)

=

∫

ς∈{γ̌}×R≥0

∑

v′∈V

dγ̌(v′)
∫

π∈P
A;1(π) pv′,σ[ς](dπ) p

S
v,σ(dς)

=

∫

ς∈{γ̌}×R≥0

∑

v′∈V

dγ̌(v′)Ev′,σ[ς](A
;
1) p
S
v,σ(dς)

≤
∫

ς∈{γ̌}×R≥0

∑

v′∈V

dγ̌(v′) r0 p
S
v,σ(dς)

�

∗ by Lem. 4.21 ∗
�

=

∫

ς∈{γ̌}×R≥0

r0 p
S
v,σ(dς)

= r0

∫

ς∈{γ̌}×R≥0

pSv,σ(dς)

= r0

Thus far a general upper bound is established for the expectation of A;1.
And the bound is carried over into the expectation of A;2 starting from resource
consuming states. We have now all ingredients to extend the bound to Rb

rp via

random variable A;
#b for an arbitrary nonnegative resource bound b.
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Lemma 4.22. Given an MRA R := (M,%,ρ) and let b ≥ 0 be a resource bound.
Then for everyσ ∈ Σ, it holds that Rrp(v,σ, b)≤ λ̄b

% r0 if v ∈ Vrc, and Rrp(v,σ, b)≤

r0 +
λ̄b
% r0 otherwise.

Proof. The proof proceeds in two steps. We first relate Rrp to the reward col-
lected in between consecutive executions of resource consuming transitions
using Eqs. (4.6) and (4.7):

Rrp(v,σ, b) = Ev,σ

�

Rb
rp

�

= Ev,σ

�

A;
#b

� �

∗ by Eq. (4.6) ∗
�

= Ev,σ

�

A;1 +
∞
∑

n=1

(A;n+1 − A;n)1{#b≥n}

�

�

∗ by Eq. (4.7) ∗
�

= Ev,σ

�

A;1
�

+
∞
∑

n=1

Ev,σ

�

(A;n+1 − A;n)1{#b≥n}

�

(4.8)

where the last equation comes from the linearity of expectation. The second step
is crucial to establish an upper bound for the last term of Eq. (4.8). Formally, we
would like to determine an upper bound for

Ev,σ

�

(A;n+1 − A;n)1{#b≥n}

�

=

∫

P
(A;n+1 − A;n)1{#b≥n} dpv,σ

=

∫

{#b≥n}
(A;n+1 − A;n)dpv,σ (4.9)

for every n = 1,2, . . . . We proceed by partitioning {#b ≥ n} according to the
length of prefixes that contain exactly n resource consuming transition(s). Let

C
k
n be the set of all paths whose shortest prefix with n resource consuming tran-

sition(s) has length k. The set of such prefixes, namely the fragments of length
k containing n resource consuming transition(s) including its last transition, is

denoted by Ck
n . It obviously holds that C

k
n = Cyl(Ck

n ) and dπek ∈ Ck
n for π ∈ C

k
n.

It is not hard to see that C
k
n is empty for k ≤ n, also C

k
n’s are pairwise disjoint for

k ≥ n. Therefore, they are used to partition {#b ≥ n}. Let Γ
b
n,k := C

k
n∩{#

b ≥ n},

then it holds that {#b ≥ n}=
⊎∞

k=n Γ
b
n,k. With this we rewrite Eq. (4.9) as

Ev,σ

�

(A;n+1 − A;n)1{#b≥n}

�

=

∫

{#b≥n}
(A;n+1 − A;n)dpv,σ

=

∫

⊎∞
k=n Γ

b
n,k

(A;n+1 − A;n)dpv,σ

(†)
=
∞
∑

k=n

∫

Γ
b
n,k

(A;n+1 − A;n)dpv,σ
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=
∞
∑

k=n

∫

P
(A;n+1 − A;n)1Γ b

n,k
dpv,σ (4.10)

where (†) derives from the fact that Lebesgue integral is countably additive (see
e.g. [AD99, Thm. 1.6.1]). Now we apply expectation splitting, as described in
Thm. 3.31, into Eq. (4.10) by taking the prefixes of length k. Before going into

details we specify some facts about the splitting. Moreover, similar to C
k
n, we

write Γ
b
n,k as the cylinder of a measurable base. Take any π ∈ Γ b

n,k, then, by

definition, it holds that dπek ∈ Ck
n and #b(π) ≥ n. Since dπek already contains

n resource consuming transition(s), its resource consumption is less than b, i. e.
%k(π)≤ b. Hence, it holds for every π′ ∈ Cyl(dπek) that %k(π

′)≤ b and thereby

π′ ∈ Γ b
n,k. To summarise, let Γ b

n,k be the set of fragment of length k such that

Γ
b
n,k = Cyl(Γ b

n,k)
1, then π ∈ Γ b

n,k iff dπek ∈ Γ b
n,k. We accordingly simplify A;n+1(π)

for every π ∈ Γ b
n,k as

A;n+1(π) = A;n(π) + A;1(bπck) (4.11)

since dπek has n resource consuming transition(s) including its last one. There-
fore

Ev,σ

�

(A;n+1 − A;n)1{#b≥n}

�

=
∞
∑

k=n

∫

P
(A;n+1 − A;n)1Γ b

n,k
dpv,σ

�

∗ by Eq. (4.10) ∗
�

=
∞
∑

k=n

∫

ϕ∈Fk

∫

π∈P

�

�

A;n+1(ϕ ◦π)− A;n(ϕ ◦π)
�

1
Γ

b
n,k
(ϕ ◦π)

�

×
∑

v′∈V

dϕk−1(v
′) pv′,σ[ϕ](dπ) pv,σ(dϕ)

�

∗ by Thm. 3.31 ∗
�

=
∞
∑

k=n

∫

ϕ∈Γ b
n,k

∫

π∈P

�

A;n+1(ϕ ◦π)− A;n(ϕ ◦π)
�

∑

v′∈V

dϕk−1(v
′) pv′,σ[ϕ](dπ) pv,σ(dϕ)

=
∞
∑

k=n

∫

ϕ∈Γ b
n,k

∫

π∈P
A;1(π)

∑

v′∈V

dϕk−1(v
′) pv′,σ[ϕ](dπ) pv,σ(dϕ)

�

∗ by Eq. (4.11) ∗
�

=
∞
∑

k=n

∫

ϕ∈Γ b
n,k

∑

v′∈V

∫

π∈P
A;1(π)d

ϕ

k−1(v
′) pv′,σ[ϕ](dπ) pv,σ(dϕ)

=
∞
∑

k=n

∫

ϕ∈Γ b
n,k

∑

v′∈V

dϕk−1(v
′)Ev′,σ[ϕ](A

;
1(π)) pv,σ(dϕ)

1It is important to note that projection does not in general preserve measurability of sets.
However, it is the case here, since the set is actually a cylinder.
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≤
∞
∑

k=n

∫

ϕ∈Γ b
n,k

∑

v′∈V

dϕk−1(v
′) r0 pv,σ(dϕ)

�

∗ by Lem. 4.21 ∗
�

= r0 ·
∞
∑

k=n

∫

ϕ∈Γ b
n,k

pv,σ(dϕ)

= r0 ·
∞
∑

k=n

pFk
v,σ(Γ

b
n,k)

= r0 ·
∞
∑

k=n

pv,σ(Γ
b
n,k)

�

∗ by Thm. 3.24 ∗
�

= r0 · pv,σ(
∞
⊎

k=n

Γ
b
n,k)

�

∗ by countable additivity of pv,σ ∗
�

= r0 · pv,σ(#
b ≥ n) (4.12)

We proceed by putting Eq. (4.12) into (4.8), which finally gives the desired upper
bound.

Rrp(v,σ, b) = Ev,σ

�

Rb
rp

�

= Ev,σ

�

A;
#b

� �

∗ Eq. (4.6) ∗
�

≤ Ev,σ

�

A;1
�

+ r0 ·
∞
∑

n=1

pv,σ(#
b ≥ n)

�

∗ Eq. (4.12) ∗
�

= Ev,σ

�

A;1
�

+ r0 ·Ev,σ(#
b)

�

∗ Lem. 2.16 ∗
�

= Ev,σ

�

A;1
�

+ r0 ·
λ̄b
%

�

∗ Lem. 4.18 ∗
�

The last equation is derived from Lem. 4.18 by viewing #b as a special case
of Rb

rc when the transient and instantaneous reward of all resource consuming
transitions are respectively zero and one. The conclusion therefore follows from
Lem. 4.21 by the fact that Ev,σ(A

;
1) = 0 for v ∈ Trc, and Ev,σ(A

;
1)≤ r0 otherwise.

The proved upper bound for Rrp together with the result of Lem. 4.18 provide
the necessary ingredients to bound ERR. We are now ready to represent the main
result of this section:

Proposition 4.23. Given MRA R := (M,%,ρ) with resource bound b ∈ R≥0.
Then for every σ ∈ Σ, it holds that R(v,σ, b)≤ ρ̄t b

% +
λ̄b
%

�

ρ̄i + r0

�

+ ρ̄f for v ∈ Vrc

and R(v,σ, b)≤ r0 +
ρ̄t b
% +

λ̄b
%

�

ρ̄i + r0

�

+ ρ̄f otherwise.

Proof. We view random variable Rb as the sum of three partial rewards as de-
scribed in Eq. (4.4). We then apply the upper bound for the expectation of the
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random variables. Assume for the moment that v ∈ Vrc, then

R(v,σ, b) = Rrc(v,σ, b) +Rrp(v,σ, b) +Rf(v,σ, b)
�

∗ Eq. (4.4) and linearity of expectation ∗
�

≤
ρ̄t b
%
+
λ̄b
%
ρ̄i + r0 +

λ̄b
%

r0 + ρ̄f

�

∗ Lem. 4.18 and 4.22 ∗
�

= r0 +
ρ̄t b
%
+
λ̄b
%

�

ρ̄i + r0

�

+ ρ̄f

The conclusion for v ∈ Vrp is achieved by dropping r0 from the above bound
justified by Lem. 4.22.

The bound can be carried over into the optimal ERR.

Corollary 4.23.1. Assume the hypothesis of Prop. 4.23 then it holds that R(v, b)≤
R(v, b) ≤ ρ̄t b

% +
λ̄b
%

�

ρ̄i + r0

�

+ ρ̄f for v ∈ Vrc and R(v, b) ≤ R(v, b) ≤ r0 +
ρ̄t b
% +

λ̄b
%

�

ρ̄i + r0

�

+ ρ̄f otherwise.

Apart from proving an upper bound for the maximal ERR, Cor. 4.23.1 clarifies
how the quantity can be unbounded. Indeed the only part that can be divergent
is the one coming from resource preserving transitions, namely Rrp. It is used as
a criterion to classify MRAs.

4.4 MRA classification

This section is dedicated to the classification of MRAs according to the value of
the maximal ERR. We employ the result of the previous section to distinguish
MRAs whose maximal ERR is finite from those whose maximal ERR is infinite.
Prop. 4.23 and Cor. 4.23.1 provide the criterion for drawing the distinction. To
ensure the finiteness of (optimal) ERR it is enough to check the value of maximal
null reward being finite. Since the state and transition spaces of the model are
finite, by Def. 4.20 the maximal null reward from all states are finite. Accordingly,
we classify states of an MRA and also MRAs themselves.

Definition 4.24. In a given MRA R := (M,%,ρ), state v is null reward conver-
gent (NRC) iff supσ∈ΣRrp(v,σ, 0) <∞; conversely, it is null reward divergent
(NRD). An MRA is NRD if it contains an NRD states, otherwise it is NRC.

The classification helps us further to judge whether the ERR is finite or
infinite. Following from Def. 4.24 and Cor. 4.23.1, being NRC is conducive to
finiteness of the (optimal) ERR in spite of how big the resource budget is. It is an
interesting and useful result to be able to determine the finiteness of the maximal
ERR under any resource budget by examining only maximal null rewards from



4.5. DISCUSSION 75

all states. It again clarifies why maximal null rewards are the only reason for
the divergence of (optimal) ERR. The following lemma represents it formally.

Lemma 4.25. Given an NRC MRA R := (M,%,ρ), then R(v, b) is finite for all
v ∈ V and b ∈ R≥0.

Proof. By Def. 4.20 and 4.24, r0 for an NRC MRA is finite. The claim then follows
from Cor. 4.23.1.

NRC models exhibit distinctive features. In particular, their optimal ERR as
a function of resource budget is Lipschitz continuous. This will be discussed in
detail in Ch. 5. We will in addition present their corresponding Lipschitz constant
by means of Cor. 4.23.1. The contrapositive of the above lemma is also important.
It states that if the maximal ERR under some budget b ∈ R≥0 starting from some
state v is infinite, then the MRA is NRD. Furthermore, it is possible to develop
an approximation scheme for computing the optimal ERR of NRC models with
a strict error bound. This will be proposed in Ch. 6.

4.5 Discussion

This chapter defined Markov reward automata and provided the basis of their
analysis against the optimal ERR. Here comes the list of the main points discussed
in this chapter.

(i) We defined Markov reward automata in Sec. 4.1 by combining Markov
automata with resources and rewards;

(ii) We introduced the optimal ERR in Sec. 4.2 and showed that it is the limit
of the sequence of optimal expected step- and resource-bounded rewards;

(iii) We established an upper bound for the optimal ERR by considering re-
source preserving, resource consuming and final rewards separately;

(iv) We classified MRAs as either null reward convergent or null reward divergent
models according to their optimal ERR being finite or infinite.

Contributions. To introduce Markov reward automata and their analysis under
resource constraints, we extended and generalised our previous works [HH12;
Guc+13; Guc+14b; Guc+14a; Bra+15; Hat+15] from timed reachability analy-
sis of MAs to resource-bounded reward analysis of MRAs. Such a broad analysis
(on finite horizon) has never been done before for neither MRAs nor MAs and
similar models including IMCs and CTMDPs. We also showed that the minimal
case is technically more difficult than the maximal case. While most of the previ-
ous works restricted their analysis to the maximal case, we developed our theory
for both (point (ii)). Establishing an upper bound for the optimal ERR of MRAs
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is the other contribution of this chapter (point (iii)). To this end we utilised the
rigorous technique of expectation splitting developed in Ch. 3. This enabled us
to, depending on the value of the optimal ERR being finite or infinite, classi-
fied MRAs into null reward convergent and null reward divergent, respectively
(point (iv)).

Related works. One of the basic works on the analysis of resource bounded
properties for nondeterministic and stochastic systems is done by [Bai+08]. It
considers the problem of resource-bounded reachability of uniform CTMDPs
under time abstract strategies. Here, we have generalised the result to richer
classes of properties, strategies and models. We also relaxed the constraints
on positive resource consumption by supporting resource preserving transitions.
Resource-bounded reachability for CTMDPs is also studied by [Fu14a; Fu14b].
Comparing to that work, we generalised reachability to rewards on a different
model, namely MRAs. Other differences between the two methods and a more
complete list of related works are discussed in Sec. 5.4 and 6.5.

Future works. Expectation splitting in principle enables us to simplify a broad
range of analyses in MRAs. It is therefore worthwhile to investigate more general
analysis classes and to study their properties using the expectation splitting
technique. Discounted and time-inhomogeneous rewards are notable examples.
Furthermore, a thorough study of null reward divergence and its connection to
timelock in MRAs has not been done yet. We strongly believe that there is a
relation between timelock and the uniqueness of the optimal ERR as the fixed
point of the characterisation that will be given in Ch. 5. Proving the existence
of reward divergent strategy is also important, so as to develop an algorithm to
detect null reward divergent models.



Chapter 5

Characteristics of the optimal
ERR

This chapter demonstrates some important properties of the optimal expected
resource-bounded reward (ERR). We characterise the objective as a fixed point of
a Volterra integral equation. This present an opportunity to develop an algorithm
for computing the optimal ERR. More specifically, it provides the basis for the
discretisation scheme and its error analysis that will be discussed in the next
chapter. Furthermore, we study the continuity of the optimal ERR. We exploit
the fixed point characterisation to show the optimal ERR of MRAs that are null
reward convergent (NRC) is Lipschitz continuous. Moreover, we present the
corresponding Lipschitz constant using the upper bound of the optimal ERR,
proposed in the previous chapter. At the end of this chapter, we look into the
derivative of the optimal ERR with respect to the resource budget and show that
it exists almost everywhere. Moreover, we discuss where the derivative may not
exist.

5.1 A fixed point characterisation

The aim of this section is to provide a characterisation of the optimal ERR as a
fixed point. We approach the problem step-by-step and first recap on the fact
that the optimal ERR is the limit of a sequence of functionals. More precisely, the
sequence is constituted by the optimal expected step- and resource-bounded re-
wards as described in Def. 4.10. We have previously shown in Lem. 4.11 and 4.13
that the limit converges to the optimal ERR. As explained in the previous chapter,
the infimum case appears with a technical difficulty that complicates the proof.
Throughout this chapter, we take it into consideration and explain different
situations arising by both infimum and supremum cases.

Here we recap the definition of the optimal expected n-step resource-bounded
rewards. Given an MRA with state v and a resource budget b ∈ R≥0. Then the
minimal and maximal n-step and resource-bounded rewards are respectively

77
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defined for n ∈ N as:

Rn(v, b) := inf
σ∈Σ

Rn(v,σ, b) = inf
σ∈Σ
Ev,σ(R

b
n) (5.1)

Rn(v, b) := sup
σ∈Σ

Rn(v,σ, b) = sup
σ∈Σ
Ev,σ(R

b
n) (5.2)

where Rb
n is the random variable for n-step resource-bounded rewards as defined

in Eq. (4.1) on p. 60. We may use Rn to denote either of the minimal or the
maximal value and similarly for R. Here, we provide a characterisation of Rn as
a recursive integral equation. We will see later that its fixed point is the solution
of the induced Volterra integral equation.

Lemma 5.1. Let R := (M,%,ρ) be an MRA and b ∈ R≥0 be a resource bound.
Then, for n ∈ N it holds that

Rn+1(v, b) =

∫ b/%(γ̌)

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−%(γ̌) · t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌) (5.3a)

if v ∈ Vrc with T (v) = {γ̌}. For v ∈ Vrp ∩ VM with T (v) = {γ̌}:

Rn+1(v, b) =
ρt(γ̌)

rγ̌
+ρi(γ̌) +

∑

v′∈V

dγ̌(v′)Rn(v
′, b) (5.3b)

And finally for v ∈ VP:

Rn+1(v, b) = mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)Rn(v
′, b)

�

(5.3c)

where mix is max if R is meant and min otherwise. In the base case, R0 is constantly
zero.

Proof. We first show that to optimise ERR it suffices to only considers strategies
that decide deterministically for the initial state. For that we use the result of
Lem. 3.32 which represents the expectation of a function as a convex combina-
tion of several expectations. Obviously, the maximum of those expectations is
superior to any of their convex combination. The same holds for the minimum.
We employ the fact here, first in the maximum setting.

Rn(v, b) = sup
σ∈Σ
Ev,σ(R

b
n)

�

∗ Eq. (5.2) ∗
�

= sup
σ∈Σ

∑

γ∈T (v)

σ(v)(γ)Ev,σ|γ(R
b
n)

�

∗ Lem. 3.32 ∗
�

= sup
σ∈Σ

max
γ∈T (v)
Ev,σ|γ(R

b
n)

= max
γ∈T (v)

sup
σ∈Σ
Ev,σ|γ(R

b
n)

= max
γ∈T (v)

sup
σ∈Σ

Rn(v,σ|γ, b) (5.4)
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It can be easily shown that the same holds in the minimum case:

Rn(v, b) = min
γ∈T (v)

inf
σ∈Σ

Rn(v,σ|γ, b) (5.5)

We have thus far presented that for the optimal ERR up to n step(s) it is enough
to optimise over finitely many choices, each corresponding to a transition that
can be taken at the initial state. Afterwards, we elaborate on the choices for
different types of states. We distinguish between the cases spelled out in the
theorem.

For v ∈ Vrc there is only one outgoing transition, say γ̌, which must be Marko-
vian. Therefore, we can skip max operator of Eq. (5.4) (min operator of Eq. (5.5))
and write

Rn(v, b) = opt
σ∈Σ

Rn(v,σ|γ̌, b) (5.6)

where opt is either inf or sup respecting the choice of Rn, which is either Rn
or Rn. At this time we use expectation splitting given by Thm. 3.31 to simplify
Rn+1(v,σ|γ̌, b). We split the expectation at the first step; then it holds that

Rn(v,σ|γ, b) =

∫

ς∈S

∫

π∈P
Rb

n(ς ◦π)
∑

v′∈V

dς0(v
′) pv′,σ|γ̌[ς](dπ) p

S
v,σ|γ̌
(dς) (5.7)

We can further simplify the equation by using the fact that γ̌ is the only outgoing
transition of v and thereby σ and σ|γ̌ are the same. It is then only relevant to
consider paths starting with step ς ∈ {γ̌} ×R≥0. Moreover, by Def. 3.21 it holds
for every B ∈ B(R≥0) that

pSv,σ|γ
({γ̌} × B) =

∫

B
rγ̌ e−rγ̌ t dt (5.8)

With Eq. (5.8) one can rewrite Eq. (5.7) in order to adapt the first integral to be
taken over the nonnegative real line. That is indeed possible since, as mentioned
before, there is only one relevant choice for the transition of the first step to be
executed at any time point on the time horizon. Therefore we can write

Rn(v,σ|γ̌, b) =

∫ ∞

0

rγ̌ e−rγ̌ t

∫

π∈P
Rb

n(ς ◦π)
∑

v′∈V

dγ̌(v′)pv′,σ[ς](dπ)dt (5.9)

Note that Eqs. (5.6) and (5.9) hold for every v ∈ VM even if v is not resource
consuming. Now we can decompose Rb

n into the reward gained by the first step

and the remainder. Let ςt
v denote step γ̌

t
−→, then it holds that

Rb
n+1(ς

t
v ◦π) =

(

ρt(γ̌)t +ρi(γ̌) + Rb−%(γ̌)t
n (π) t ≤ b

%(γ̌)

ρt(γ̌) ·
b
%(γ̌) +ρf(γ̌) t > b

%(γ̌)

(5.10)
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We put Eq. (5.10) into (5.9). With a bit of rearranging we obtain

Rn+1(v,σ|γ̌, b) =

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t
�

ρt(γ̌)t +ρi(γ̌)
�

∫

π∈P

∑

v′∈V

dγ̌(v′)pv′,σ[ςt
v]
(dπ)dt

+

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t

∫

π∈P
Rb−%(γ̌)t

n (π)
∑

v′∈V

dγ̌(v′)pv′,σ[ςt
v]
(dπ)dt

+

∞
∫

b/%(γ̌)

rγ̌ e−rγ̌ t
�

ρt(γ̌)b
%(γ̌)

+ρf(γ̌)
�

∫

π∈P

∑

v′∈V

dγ̌(v′)pv′,σ[ςt
v]
(dπ)dt

=

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t
�

ρt(γ̌)t +ρi(γ̌)
�

∑

v′∈V

dγ̌(v′)
∫

π∈P
pv′,σ[ςt

v]
(dπ)dt

+

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)
∫

π∈P
Rb−%(γ̌)t

n (π) pv′,σ[ςt
v]
(dπ)dt

+

∞
∫

b/%(γ̌)

rγ̌ e−rγ̌ t
�

ρt(γ̌)b
%(γ̌)

+ρf(γ̌)
�

∑

v′∈V

dγ̌(v′)
∫

π∈P
pv′,σ[ςt

v]
(dπ)dt

=

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)
∫

π∈P
Rb−%(γ̌)t

n (π) pv′,σ[ςt
v]
(dπ)dt

+

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t
�

ρt(γ̌)t +ρi(γ̌)
�

dt +

∞
∫

b/%(γ̌)

rγ̌ e−rγ̌ t
�

ρt(γ̌)b
%(γ̌)

+ρf(γ̌)
�

dt

�

∗ By
∑

v′∈V dγ̌(v′) =
∫

π∈P pv′,σ[ςt
v]
(dπ) = 1 ∗

�

=

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)Ev′,σ[ςt
v]
(Rb−%(γ̌)t

n )dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌) (5.11)

Putting Eq. (5.11) into (5.6) with some simplification gives

Rn+1(v, b) = opt
σ∈Σ

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)Ev′,σ[ςt
v]
(Rb−%(γ̌)t

n )dt
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+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌)

(†)
=

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′) opt
σ∈Σ
Ev′,σ[ςt

v]
(Rb−%(γ̌)t

n )dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌)

(‡)
=

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)Rn

�

v′, b−%(γ̌)t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌) (5.12)

which shows the correctness of Eq. (5.3a). Since the derivations of (†) and (‡)
are nontrivial, they are explained in more details. The former is the result of
interchanging of opt, the integral and sum. They can be swapped, intuitively
as the integral is over t and the sum is over v′, nevertheless σ[ςt

v] can be seen
as a function in both variables. More precisely, it is possible to combine the
optimal strategies for each choice of t and v′ into a strategy that is optimal for
all possible values of t and v′. To put it formally, fix a time point t ∈ [0, b/%(γ)]
and a successor of v, say v′ ∈ V , then let {σt,v′

k }k∈N be a sequence of strategies
such that for all k ∈ N

E
v′,σt,v′

k [ςt
v]

�

Rb−%(γ̌)t
n

�

≤ E
v′,σt,v′

k+1[ς
t
v]

�

Rb−%(γ̌)t
n

�

when opt= sup. The above order must be reversed (decreasing) for the infimum
case. Moreover,

lim
k→∞
E

v′,σt,v′
k [ςt

v]

�

Rb−%(γ̌)t
n

�

= opt
σ∈Σ
Ev′,σ[ςt

v]
�

Rb−%(γ̌)t
n

�

(5.13)

Note that such a sequence must exist as the set of strategies is nonempty. Now
we combine all the strategies indexed by t and v′ to construct a new sequence,

that is {σk}k∈N with σk(γ
t
−→ π) = σt,vπ0

k (π) for t ∈ [0, b
%(γ)], k ∈ N and π ∈ P.

Therefore it holds by construction that

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′) opt
σ∈Σ
Ev′,σ[ςt

v]
(Rb−%(γ̌)t

n )dt

=

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′) lim
k→∞
E

v′,σt,v′
k [ςt

v]

�

Rb−%(γ̌)t
n

�

dt
�

∗ Eq. (5.13) ∗
�
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= lim
k→∞

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)Ev′,σt,v′
k [ςt

v]

�

Rb−%(γ̌)t
n

�

dt
�

∗ Thm. 2.19 ∗
�

(∗)
= lim

k→∞

b/%(γ̌)
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)Ev′,σk[ςt
v]
�

Rb−%(γ̌)t
n

�

dt (5.14)

where (∗) follows from the sequence construction. On the other hand, it holds
in general that the LHS of (†) is less or equal to the RHS of (†) when opt= sup1.
This fact together with Eq. (5.14) approves that the inequality must be tight.

To justify (‡), it is required to show that

Rn

�

v′, b−%(γ̌)t
�

= opt
σ∈Σ
Ev′,σ[ςt

v]
�

Rb−%(γ̌)t
n

�

Take any sequence of strategies {σk : k ∈ N} such that

lim
k→∞
Ev′,σk

�

Rb−%(γ̌)t
n

�

= Rn

�

v′, b−%(γ̌)t
�

Put sequence {σ′k : k ∈ N} with σ′k(γ̌
t
−→ π) := σk(π) for every k ∈ N and π ∈ P.

This construction gives

Rn

�

v′, b−%(γ̌)t
�

= lim
k→∞
Ev′,σk

�

Rb−%(γ̌)t
n

�

= lim
k→∞
Ev′,σ′k[ς

t
v]
�

Rb−%(γ̌)t
n

�

which shows the correctness of (‡). It completes the prove of Eq. (5.3a).
Similarly to resource consuming states, for v ∈ Vrc ∪ VM there is only one

outgoing transition, say γ̌, which is indeed Markovian. Therefore, it satisfies
Eq. (5.9). Decomposing Rb

n into the rewards gained by the first step and others
gives

Rb
n+1(ς

t
v ◦π) = ρt(γ̌)t +ρi(γ̌) + Rb

n(π) (5.15)

where ςt
v := γ̌

t
−→. Put Eq. (5.15) into (5.9) with a bit of rearranging to obtain

Rn+1(v,σ|γ̌, b) =

∞
∫

0

rγ̌ e−rγ̌ t
�

ρt(γ̌)t +ρi(γ̌)
�

∫

π∈P

∑

v′∈V

dγ̌(v′)pv′,σ[ςt
v]
(dπ)dt

+

∞
∫

0

rγ̌ e−rγ̌ t

∫

π∈P
Rb

n(π)
∑

v′∈V

dγ̌(v′)pv′,σ[ςt
v]
(dπ)dt

=

∞
∫

0

rγ̌ e−rγ̌ t
�

ρt(γ̌)t +ρi(γ̌)
�

∑

v′∈V

dγ̌(v′)
∫

π∈P
pv′,σ[ςt

v]
(dπ)dt

1The reverse holds for the infimum case.
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+

∞
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)
∫

π∈P
Rb

n(π) pv′,σ[ςt
v]
(dπ)dt

=

∞
∫

0

rγ̌ e−rγ̌ t
�

ρt(γ̌)t +ρi(γ̌)
�

dt +

∞
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)Ev′,σ[ςt
v]
�

Rb
n

�

dt

�

∗
∑

v′∈V dγ̌(v′) =
∫

π∈P pv′,σ[ςt
v]
(dπ) = 1 ∗

�

=
ρt(γ)

rγ
+ρi(γ) +

∞
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)Ev′,σ[ςt
v]
�

Rb
n

�

dt (5.16)

Putting Eq. (5.16) into (5.6) with some simplification gives

Rn+1(v, b) =
ρt(γ̌)

rγ̌
+ρi(γ̌) + opt

σ∈Σ

∞
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)Ev′,σ[ςt
v]
�

Rb
n

�

dt

(†)
=
ρt(γ̌)

rγ̌
+ρi(γ̌) +

∞
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′) opt
σ∈Σ
Ev′,σ[ςt

v]
�

Rb
n

�

dt

(‡)
=
ρt(γ̌)

rγ̌
+ρi(γ̌) +

∞
∫

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′) Rn

�

v′, b
�

dt

=
ρt(γ̌)

rγ̌
+ρi(γ̌) +

∑

v′∈V

dγ̌(v′) Rn

�

v′, b
�

∞
∫

0

rγ̌ e−rγ̌ t dt

=
ρt(γ̌)

rγ̌
+ρi(γ̌) +

∑

v′∈V

dγ̌(v′) Rn

�

v′, b
�

which confirms Eq. (5.3b). Note that (†) and (‡) can be justified with similar
arguments given for the corresponding cases during the derivation of Eq. (5.12)
on p. 81.

It remains to derive Eq.(5.3c) for v ∈ VP. In contrast to the previous cases,
here v may have more that one outgoing transition. However, the one who
is selected by the strategy must be executed immediately. We first compute
Rn+1(v,σ|γ, b) for some σ ∈ Σ and γ ∈ T (v). For that we use Thm. 3.31 to split
the expectation at the first executed step. Once more we stress on the facts that
γ is probabilistic and thereby urgent and σ|γ selects γ from v with probability
one. Therefore, ςγ := (γ, 0) is the only probable step that can be executed at the
beginning from v under strategy σ|γ, namely pSv,σ|γ

({ςγ}) = 1. We can further

decompose Rb
n+1(ςγ ◦π) into the rewards gained by ςγ and π.

Rb
n+1(ςγ ◦π) = ρi(γ) + Rb

n(π) (5.17)
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Moreover, it holds by Defs. 3.13 and 3.15 that σ[ςγ] and σ|γ[ςγ] are the same.
Therefore,

Rn+1(v,σ|γ, b) =

∫

ς∈S

∫

π∈P
Rb

n+1(ς ◦π)
∑

v′∈V

dς0(v
′)pv′,σ|γ[ς](dπ)p

S
v,σ|γ
(dς)

�

∗ Thm. 3.31 ∗
�

=

∫

π∈P
Rb

n+1(ςγ ◦π)
∑

v′∈V

dςγ0 (v
′)pv′,σ|γ[ςγ](dπ)

=

∫

π∈P
Rb

n+1(ςγ ◦π)
∑

v′∈V

dγ(v′)pv′,σ[ςγ](dπ)

=

∫

π∈P

�

ρi(γ) + Rb
n(π)

�

∑

v′∈V

dγ(v′)pv′,σ[ςγ](dπ)
�

∗ Eq. (5.17) ∗
�

=
∑

v′∈V

dγ(v′)
∫

π∈P

�

ρi(γ) + Rb
n(π)

�

pv′,σ[ςγ](dπ)

= ρi(γ) +
∑

v′∈V

dγ(v′)
∫

π∈P
Rb

n(π)pv′,σ[ςγ](dπ)
�

∗
∑

v′∈V dγ(v′) =
∫

π∈P pv′,σ[ςγ](dπ) = 1 ∗
�

= ρi(γ) +
∑

v′∈V

dγ(v′)Ev′,σ[ςγ]
�

Rb
n

�

(5.18)

Putting Eq. (5.18) into (5.4) gives

Rn+1(v, b) = max
γ∈T (v)

sup
σ∈Σ

Rn+1(v,σ|γ, b)
�

∗ Eq. (5.4) ∗
�

= max
γ∈T (v)

sup
σ∈Σ

�

ρi(γ) +
∑

v′∈V

dγ(v′)Ev′,σ[ςγ]
�

Rb
n

�

�

�

∗ Eq. (5.18) ∗
�

(†)
= max

γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′) sup
σ∈Σ
Ev′,σ[ςγ]

�

Rb
n

�

�

(‡)
= max

γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)Rn(v
′, b)

�

(5.19)

where (†) and (‡) can be justified with similar but this time simpler arguments
than the ones given for the corresponding cases during the derivation of Eq. (5.12)
on p. 81. We can in the same way derive Eq. (5.19) for the infimum case. It con-
firms the correctness of Eq. (5.3c) and subsequently completes the proof.

Lem. 5.1 establishes a recursive integral equation system for sequence of
functions {Rn}n∈N, each computing the optimal n-step ERR. Moreover, we have
shown in Ch. 4 that the limit of the sequence exists and coincides with the
optimal ERR. We exploit both facts to first show the continuity of the functions
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in the sequence and then derive the continuity is carried over into the limit. This
will be discussed in more details in Sec. 5.2.

Another important result emerging from the aforementioned facts allows us
to characterise the optimal ERR as a fixed point. The characterisation demon-
strates that the recursion given in Lem. 5.1 has a least fixed point, which is
indeed the optimal ERR. Moreover, it formulates the optimal ERR as the solu-
tion of a Volterra integral equation induced from it. The result is described in
the following theorem.

Theorem 5.2. Let R := (M,%,ρ) be an MRA, then, for every v ∈ V , R is the least
fixed point of higher order operator Ω : (V × R≥0 → R≥0) → (V × R≥0 → R≥0)
where

Ω(F)(v, b) =

∫ b/%(γ̌)

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′) · F
�

v′, b−%(γ̌) · t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌) (5.20a)

when v ∈ Vrc with T (v) = {γ̌},

Ω(F)(v, b) =
ρt(γ̌)

rγ̌
+ρi(γ̌) +

∑

v′∈V

dγ̌(v′) · F(v′, b) (5.20b)

if v ∈ Vrp ∩ VM with T (v) = {γ̌}, and finally for v ∈ VP:

Ω(F)(v, b) = mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′) · F(v′, b)
�

(5.20c)

Proof. The proof proceeds in two steps. We first claim that the optimal ERR is
a fixed point of Ω. Afterwards, we show that it is the least fixed point. To show
the former observe that limn→∞Rn = R by Lem. 4.11 and 4.13. Moreover, by
comparing Eq. (5.3a), (5.3b) and (5.3c) respectively with Eq. (5.20a), (5.20b)
and (5.20c), it turns out that Rn+1 = Ω

�

Rn

�

, for all n ∈ N. It is therefore enough
to show for every v ∈ V and that

R(v, b) = lim
n→∞

Rn+1(v, b) = lim
n→∞

Ω
�

Rn

�

(v, b)

= Ω
�

lim
n→∞

Rn

�

(v, b) (5.21)

= Ω
�

R
�

(v, b)

The crucial part is to justify that Eq. (5.21) holds, i. e. the limit and Ω operators
are interchangeable. More specifically, it must be possible to interchange the
limit operator with the integral, the summation and the minimum/maximum
operators given in Eq. (5.20a), (5.20b) and (5.20c). To explain why the inter-
changes are valid we first provide general arguments. For this we heavily use the
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fact that the sequence
�

Rn

	

n∈N is monotonically increasing. The interchange of
the limit with the integral and the summation lying in Eq. (5.20a) and (5.20b)
is justified by the monotone convergence theorem. Furthermore, the limit and
the minimum/maximum in Eq. (5.20c) can be interchanged since the sequence
of functions inside the mix operator are uniformly convergent on T . We explain
each of these arguments in more details next.

We first consider the interchange between the limit and the summation.
Observe that Rn(v, b)≤ Rn+1(v, b) for every v ∈ V , b ∈ R≥0 and n ∈ N. Moreover,
summation can be viewed as integration with respect to counting measures.
Hence, the monotone convergence theorem (Thm. 2.19) together with Lem. 4.11
and 4.13 implies that

lim
n→∞

∑

v′∈V

dγ(v′)Rn(v
′, b) =

∑

v′∈V

lim
n→∞

dγ(v′)Rn(v
′, b) =

∑

v′∈V

dγ(v′)R(v′, b)

(5.22)
With a similar argument we can switch between the limit and the integration.
Putting all facts together, we can write

R(v, b) = lim
n→∞

Rn+1(v, b)

= lim
n→∞

∫ b/%(γ̌)

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)Rn

�

v′, b−%(γ̌) · t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌)

�

∗ Eq. (5.3a) ∗
�

=

∫ b/%(γ̌)

0

lim
n→∞

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)Rn

�

v′, b−%(γ̌) · t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌)

�

∗ Thm. 2.19 ∗
�

=

∫ b/%(γ̌)

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)R
�

v′, b−%(γ̌) · t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌)

�

∗ Eq. (5.22) ∗
�

= Ω
�

R
�

(v, b)

which justifies Eq. (5.21) for v ∈ Vrc. Similarly for v ∈ Vrp ∩ VM we have

R(v, b) = lim
n→∞

Rn+1(v, b)

= lim
n→∞

�ρt(γ̌)
rγ̌
+ρi(γ̌) +

∑

v′∈V

dγ̌(v′)Rn(v
′, b)

�

=
ρt(γ̌)

rγ̌
+ρi(γ̌) + lim

n→∞

∑

v′∈V

dγ̌(v′)Rn(v
′, b)
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=
ρt(γ̌)

rγ̌
+ρi(γ̌) +

∑

v′∈V

dγ̌(v′)R(v′, b)
�

∗ Eq. (5.22) ∗
�

= Ω
�

R
�

(v, b)

It remains to prove the correctness of Eq. (5.21) for v ∈ VP. For this we make
use of the fact that the set of transitions is finite and thereby by Thm. 2.22 the
convergence of

pv,b
n (γ) = ρi(γ) +

∑

v′∈V

dγ(v′)Rn(v
′, b)

is uniform on the set of transitions T (v) for v ∈ VP. We can thus write

R(v, b) = lim
n→∞

Rn+1(v, b)

= lim
n→∞

mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)Rn(v
′, b)

�

= mix
γ∈T (v)

lim
n→∞

�

ρi(γ) +
∑

v′∈V

dγ(v′)Rn(v
′, b)

�

�

∗ Thm. 2.22 and 2.21 ∗
�

= mix
γ∈T (v)

�

ρi(γ) + lim
n→∞

∑

v′∈V

dγ(v′)Rn(v
′, b)

�

= mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)R(v′, b)
�

�

∗ Eq. (5.22) ∗
�

= Ω
�

R
�

(v, b)

In the second step, we show that R is the least fixed point of Ω. Let G :
V ×R≥0→ R≥0 be an arbitrary fixed point of Ω, then we prove, by induction on
n, that Rn ≤ G for all n ∈ N. For the base case, it obviously holds that 0= R0 ≤ G.
Assume that Rn ≤ G holds for some n≥ 0. It gives

Rn+1 ≤ Ω
�

Rn

� (†)
≤ Ω

�

G
�

= G

where (†) follows from the fact thatΩ is order preserving. That is to say, if F1 ≤ F2
then Ω(F1) ≤ Ω(F2). This can be easily shown for each case of the theorem
described by Eq. (5.20a), (5.20b) and (5.20c). The final result is obtained by
taking the limit of both sides of the inequality, i. e. R= limn→∞Rn ≤ G.

The characterisation offered by Thm. 5.2 provides the opportunity for better
understanding of how the optimal ERR behaves. This will be used for studying
the continuity and the differentiability of the optimal ERR as a function of re-
source budget. Furthermore, this forms the basis for computing the optimal ERR
in an algorithmic way.

It is important to note that a larger resource budget in the optimal ERR does
not necessarily mean a higher reward gain. The converse in particular occurs
when the final reward of a resource consuming state is very large. The tighter
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the resource budget in this case, the more likely to reside in the state at the
moment of running over the budget and thereby the larger the reward to gain.
In the next section however, we study a certain part of the optimal ERR that is
increasing with respect to the resource budget. This will be used for proving the
Lipschitz continuity.

5.2 Continuity

In this section we study the continuity of the optimal ERR as a function of
resource bound. There are different notions of continuity in mathematics, among
them we study Lipschitz continuity, as described in Def. 2.17. It is a strong notion
of continuity that, in addition to implying the conventional form of continuity,
it limits how fast a function can vary. Lipschitz bounds the absolute value of
the slope between two arbitrary points on the function. The bound is called
Lipschitz constant. One important property of Lipschitz functions is that they
can be approximated arbitrarily closely by discretisation, since their maximum
speed of variation is bounded. We use this feature to prove the error bound of
the discretisation algorithm given in Ch. 6.

We show in this section that the optimal ERR of NRC models is Lipschitz
continuous. This intuitively means that by varying the resource budget, the
variation in the optimal ERR is bounded. In other words, the optimal ERR cannot
rise or drop endlessly fast. Moreover, we establish the bound for the variation,
which is identified by a Lipschitz constant. The Lipschitz constant is expressed
in terms of some parameters of the model. In the sequel we first show that the
optimal n-step ERRs are Lipschitz with a global constant. Such a sequence in
general enjoys an interesting property, namely its limit, which is in our case the
optimal ERR, is also Lipschitz continuous with the same constant. The result
mainly relies upon the fact that the optimal ERR is bounded (Cor. 4.23.1) and
the characterisation of the optimal n-step ERR (Lem. 5.1).

At the first step we investigate how the optimal n-step ERR changes as the
resource budget decreases or increases. The next lemma studies the variation
of Rn(v, ·) under a resource budget change, for v ∈ Vrc. It provides a basis for
establishing Lipschitz continuity of the optimal n-step ERR.

Lemma 5.3. For v ∈ Vrc with T (v) = {γ̌} and 0 ≤ δ ≤ b it holds for all n ∈ N
that:

Rn+1(v, b) =

δ/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)Rn

�

v′, b−%(γ̌) · t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·δ
%(γ̌)

�

+Rn+1(v, b−δ) e−
rγ̌·δ
%(γ̌) (5.23)
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Proof. Eq. (5.23) can be derived via Eq. (5.3a) in Lem. 5.1. Let Fn(γ̌, b) be the
integral given in Eq. (5.3a). We split the integral by dividing the interval [0, b

%(γ)]

at point δ
%(γ) .

Fn(γ̌, b) =

b/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−%(γ̌) · t
�

dt

=

δ/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−%(γ̌) · t
�

dt

+

b/%(γ̌)
∫

δ
%(γ̌)

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−%(γ̌) · t
�

dt

(∗)
=

δ/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−%(γ̌) · t
�

dt

+

b−δ
%(γ̌)
∫

0

rγ̌ · e−rγ̌·(τ+δ)
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−δ−%(γ̌) ·τ
�

dτ

�

∗ τ= t − δ
%(γ̌) ∗

�

=

δ/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−%(γ̌) · t
�

dt

+ e−
rγ̌ ·δ
%(γ̌)

b−δ
%(γ̌)
∫

0

rγ̌ · e−rγ̌·τ
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−δ−%(γ̌)τ
�

dτ (5.24)

where (∗) is derived by substituting t in the second integral by τ= t − δ
%(γ) . Put

Eq. (5.24) into Eq. (5.3a) to obtain:

Rn+1(v, b) =

δ/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−%(γ̌) · t
�

dt

+ e−
rγ̌ ·δ
%(γ̌)

b−δ
%(γ̌)
∫

0

rγ̌ · e−rγ̌·τ
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−δ−%(γ̌)τ
�

dτ

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−
rγ̌ ·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌ ·b
%(γ̌)
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=

δ/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−%(γ̌) · t
�

dt

+ e−
rγ̌ ·δ
%(γ̌)

b−δ
%(γ̌)
∫

0

rγ̌ · e−rγ̌·τ
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−δ−%(γ̌)τ
�

dτ

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−
rγ̌ ·δ
%(γ̌) + e−

rγ̌ ·δ
%(γ̌) − e−

rγ̌ ·b
%(γ̌)

�

+ e−
rγ̌ ·δ
%(γ̌) ·ρf(γ̌) e

−
rγ̌(b−δ)
%(γ̌)

=

δ/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−%(γ̌) · t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−
rγ̌ ·δ
%(γ̌)

�

+ e−
rγ̌ ·δ
%(γ̌)

b−δ
%(γ̌)
∫

0

rγ̌ · e−rγ̌·τ
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−δ−%(γ̌)τ
�

dτ

+ e−
rγ̌ ·δ
%(γ̌)

�ρt(γ̌)
rγ̌
+ρi(γ̌)

��

1− e−
rγ̌(b−δ)
%(γ̌)

�

+ e−
rγ̌ ·δ
%(γ̌) ·ρf(γ̌) e

−
rγ̌(b−δ)
%(γ̌)

(†)
=

δ/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b−%(γ̌) · t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−
rγ̌ ·δ
%(γ̌)

�

+Rn+1(v, b−δ) e−
rγ̌ ·δ
%(γ̌)

�

∗ Eq. (5.3a) ∗
�

Lem. 5.3 helps us to inspect the variation of the optimal n-step ERR under
resource budget changes. In order to establish their Lipschitz continuity we need
to utilise an auxiliary inequality. The inequality demonstrate an upper bound
for the optimal n-step ERR with respect to the optimal expected n-step resource-
bounded cumulative reward, denoted by R

c
n. Intuitively speaking, R

c
n computes

the optimal n-step ERR without considering the final rewards.

Definition 5.4. For MRA R := (M,%,ρ), R
c
n is the optimal n-step ERR (Rn) of

R after replacing ρf with zero function, i. e. ρf := 0.
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As the definition suggests R
c
n is a special case of the optimal ERR. Hence, it

inherits the properties of the optimal ERR. In particular, the results of Lem. 5.1
and 5.3 holds also for R

c
. Moreover, one can view R

c
as partial rewards gained

by transient and instantaneous but not final rewards. In this regard we utilise
similar technique as used in Sec. 4.3.1 to decompose the optimal n-step ERR

into R
c
n and R

f
n. The latter, the optimal expected n-step resource-bounded final

reward, is always less than or equal to ρ̄f. The next lemma associates Rn with
R

c
n for a resource consuming state via an inequality.

Lemma 5.5. For a given MRA R := (M,%,ρ) and b ∈ R≥0 it holds for every with
v ∈ Vrc with T (v) = {γ̌} and n ∈ N that

Rn(v, b)≤ R
c
n(v, b) + ρ̄f ·

�

1− e−
rγ̌ ·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌ ·b
%(γ̌)

Proof. As the optimal n-step ERR consists of cumulative and final rewards it is
not hard to see that Rn(v, b)≤ R

c
n(v, b)+ ρ̄f. Then, observe that the result holds

for n = 0 since R0 and R
c
0 are constantly zero everywhere. We then turn our

attention to n+ 1 step objectives for n ∈ N. From Eq. (5.3a) we have

Rn+1(v, b) =

∫ b/%(γ̌)

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)Rn

�

v′, b−%(γ̌) · t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌)

≤
∫ b/%(γ̌)

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)
�

R
c
n(v
′, b−%(γ̌) · t) + ρ̄f

�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌)

=

∫ b/%(γ̌)

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)Rn

�

v′, b−%(γ̌) · t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ ρ̄f ·
�

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌)

= R
c
n+1(v, b) + ρ̄f ·

�

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌)

�

∗ Eq. (5.3a) ∗
�

Now we are ready to establish the Lipschitz continuity of the optimal n-step
ERR. The next lemma shows that Rn’s are uniformly Lipschitz with a global
constant, meaning that the speed of their variation is globally bounded for all
n ∈ N. The result is indeed limited to NRC models, as the optimal ERR of an
NRD MRA might reach infinity.
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Lemma 5.6. Given NRC MRA R := (M,%,ρ), then Rn(v, ·): R≥0 → R≥0 is Lip-
schitz continuous with constant L = 1

%

�

ρ̄t + λ̄(ρ̄i + r0 + ρ̄f)
�

for all v ∈ V and
n ∈ N.

Proof. We proceed by induction on n and show for every 0≤ b ≤ b′ that

−ρ̄f
λ̄
% (b

′ − b)≤ Rn(v, b′)−Rn(v, b)≤ L · (b′ − b) (5.25)

It is straightforward to establish the induction base, as R0(v, ·) is constant and
thereby Lipschitz. We assume now that Eq. (5.25) holds for n ∈ N and then
prove it for n+ 1. We distinguish between different cases given in Lem. 5.1. For
v ∈ Vrc with T (v) = {γ̌} we apply the result of Lem. 5.3 to have

Rn+1(v, b′) =

b/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)Rn

�

v′, b′ −%(γ̌) · t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−
rγ̌ ·b
%(γ̌)

�

+Rn+1(v, b′ − b) e−
rγ̌ ·b
%(γ̌)

�

∗ Eq. (5.23) ∗
�

≤

b/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)
�

Rn(v
′, b−%(γ̌) · t) + L · (b′ − b)

�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−
rγ̌ ·b
%(γ̌)

�

+Rn+1(v, b′ − b) e−
rγ̌ ·b
%(γ̌)

�

∗ by I. H. ∗
�

=

b/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)Rn

�

v′, b−%(γ̌) · t)
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−
rγ̌ ·b
%(γ̌)

�

+ L · (b′ − b)
�

1− e−
rγ̌ ·b
%(γ̌)

�

+Rn+1(v, b′ − b) e−
rγ̌ ·b
%(γ̌)

=

b/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)Rn

�

v′, b−%(γ̌) · t)
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−
rγ̌ ·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌ ·b
%(γ̌) −ρf(γ̌) e

−
rγ̌ ·b
%(γ̌)

+ L · (b′ − b)
�

1− e−
rγ̌ ·b
%(γ̌)

�

+Rn+1(v, b′ − b) e−
rγ̌ ·b
%(γ̌)

= Rn+1(v, b)−ρf(γ̌) e
−

rγ̌ ·b
%(γ̌) + L · (b′ − b)

�

1− e−
rγ̌ ·b
%(γ̌)

�
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+Rn+1(v, b′ − b) e−
rγ̌ ·b
%(γ̌)

≤ Rn+1(v, b)−ρf(γ̌) e
−

rγ̌ ·b
%(γ̌) + L · (b′ − b)

�

1− e−
rγ̌ ·b
%(γ̌)

�

+
�

R
c
n+1(v, b′ − b) + ρ̄f

�

1− e−
rγ̌(b

′−b)

%(γ̌)
�

+ρf(γ̌) e
−

rγ̌(b
′−b)

%(γ̌)

�

e−
rγ̌ b

%(γ̌)

�

∗ Lem. 5.5 ∗
�

Now we apply Cor. 4.23.1 and make use of the monotonicity of R
c
n to obtain

R
c
n+1(v, b′ − b)≤ R

c
(v, b′ − b)≤

b′ − b
%

�

ρ̄t + λ̄(ρ̄i + r0)
�

= (L − ρ̄f
λ̄
% )(b

′ − b) (5.26)

We consider Eq. (5.26) with the fact that 1− ex ≤ x for x ≥ 0 and continue the
above derivation

Rn+1(v, b′)−Rn+1(v, b)

≤ −ρf(γ̌) e
−

rγ̌ ·b
%(γ̌) + L · (b′ − b)

�

1− e−
rγ̌ ·b
%(γ̌)

�

+
�

(L − ρ̄f
λ̄
% )(b

′ − b) + ρ̄f

rγ̌(b′ − b)

%(γ̌)
+ρf(γ̌) e

−
rγ̌(b

′−b)

%(γ̌)

�

e−
rγ̌ b

%(γ̌)

≤ −ρf(γ̌) e
−

rγ̌ ·b
%(γ̌) + L · (b′ − b)

�

1− e−
rγ̌ ·b
%(γ̌)

�

+
�

(L − ρ̄f
λ̄
% )(b

′ − b) + ρ̄f
λ̄
% (b

′ − b) +ρf(γ̌) e
−

rγ̌(b
′−b)

%(γ̌)

�

e−
rγ̌ b

%(γ̌)

= −ρf(γ̌) e
−

rγ̌ ·b
%(γ̌) + L · (b′ − b)

�

1− e−
rγ̌ ·b
%(γ̌)

�

+ L · (b′ − b) e−
rγ̌ b

%(γ̌)

+ρf(γ̌) e
−

rγ̌(b
′−b)

%(γ̌) e−
rγ̌ b

%(γ̌)

= L · (b′ − b)−ρf(γ̌)
�

1− e−
rγ̌(b

′−b)

%(γ̌)
�

e−
rγ̌ b

%(γ̌) ≤ L · (b′ − b)

This completes the proof of the upper bound for v ∈ Vrc. For the lower bound,
first observe that Eq. (5.3a) gives

Rn+1(v, b)≥ ρf(γ̌) e
−

rγ̌ b

%(γ̌) (5.27)

for n ∈ N. We then apply Lem. (5.1) to get

Rn+1(v, b′) =

b/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′) ·Rn

�

v′, b′ −%(γ̌) · t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−
rγ̌ ·b
%(γ̌)

�

+Rn+1(v, b′ − b) e−
rγ̌ ·b
%(γ̌)

�

∗ Eq. (5.23) ∗
�
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≥

b/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)
�

Rn(v
′, b−%(γ̌) · t)− ρ̄f

λ̄
% (b

′ − b)
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−
rγ̌ ·b
%(γ̌)

�

+Rn+1(v, b′ − b) e−
rγ̌ ·b
%(γ̌)

�

∗ by I. H. ∗
�

=

b/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)Rn

�

v′, b−%(γ̌) · t)
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−
rγ̌ ·b
%(γ̌)

�

− ρ̄f
λ̄
% (b

′ − b)
�

1− e−
rγ̌ ·b
%(γ̌)

�

+Rn+1(v, b′ − b) e−
rγ̌ ·b
%(γ̌)

=

b/%(γ̌)
∫

0

rγ̌ · e−rγ̌·t
∑

v′∈V

dγ̌(v′)Rn

�

v′, b−%(γ̌) · t)
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−
rγ̌ ·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌ ·b
%(γ̌) −ρf(γ̌) e

−
rγ̌ ·b
%(γ̌)

− ρ̄f
λ̄
% (b

′ − b)
�

1− e−
rγ̌ ·b
%(γ̌)

�

+Rn+1(v, b′ − b) e−
rγ̌ ·b
%(γ̌)

= Rn+1(v, b)−ρf(γ̌) e
−

rγ̌ ·b
%(γ̌) − ρ̄f

λ̄
% (b

′ − b)
�

1− e−
rγ̌ ·b
%(γ̌)

�

+Rn+1(v, b′ − b) e−
rγ̌ ·b
%(γ̌)

�

∗ Eq. (5.3a) ∗
�

≥ Rn+1(v, b)−ρf(γ̌) e
−

rγ̌ ·b
%(γ̌) − ρ̄f

λ̄
% (b

′ − b)
�

1− e−
rγ̌ ·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌(b
′−b)

%(γ̌) e−
rγ̌ b

%(γ̌)
�

∗ Eq. (5.27) ∗
�

= Rn+1(v, b)− ρ̄f
λ̄
% (b

′ − b)
�

1− e−
rγ̌ ·b
%(γ̌)

�

−ρf(γ̌)
�

1− e−
rγ̌(b

′−b)

%(γ̌)
�

e−
rγ̌ b

%(γ̌)

(†)
≥ Rn+1(v, b)− ρ̄f

λ̄
% (b

′ − b)
�

1− e−
rγ̌ ·b
%(γ̌)

�

−ρf(γ̌)
rγ̌(b′ − b)

%(γ̌)
e−

rγ̌ b

%(γ̌)

≥ Rn+1(v, b)− ρ̄f
λ̄
% (b

′ − b)
�

1− e−
rγ̌ ·b
%(γ̌)

�

− ρ̄f
λ̄
% (b

′ − b)e−
rγ̌ b

%(γ̌)

= Rn+1(v, b)− ρ̄f
λ̄
% (b

′ − b)

where (†) follows from 1− e−x ≤ x for x ≥ 0. The second case corresponds to
v ∈ Vrp ∩ VM with T (v) = {γ̌}. For that we employ Eq.(5.3b) to get:

Rn+1(v, b′)−Rn+1(v, b) =
∑

v′∈V

dγ(v′)
�

Rn(v, b′)−Rn(v, b)
�



5.2. CONTINUITY 95

≤
∑

v′∈V

dγ(v′) · L · (b′ − b)
�

∗ I. H. ∗
�

= L · (b′ − b)

The proof of the lower bound is similar. For the last case, v ∈ VP, we first look
into the upper bound and define

¯
γ := argmin

γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)Rn(v
′, b)

�

γ̄ := arg max
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)Rn(v
′, b′)

�

Using Eq. (5.3c) we have

Rn+1(v, b′)−Rn+1(v, b) = mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)Rn(v
′, b′)

�

− mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)Rn(v
′, b)

�

≤ ρi(
¯
γ̄) +

∑

v′∈V

d
¯
γ̄(v
′)Rn(v

′, b′)

−ρi(
¯
γ̄) +

∑

v′∈V

d
¯
γ̄(v
′)Rn(v

′, b)

=
∑

v′∈V

d
¯
γ̄(v
′)
�

Rn(v
′, b′)−Rn(v

′, b)
�

≤
∑

v′∈V

dγ(v′) · L · (b′ − b)
�

∗ I. H. ∗
�

= L · (b′ − b)

The proof of the lower bound is analogous. Hence, we finally showed the cor-
rectness of Eq. (5.25). Afterwards, as L ≤ ρ̄f

λ̄
% , we can write

�

�

�Rn+1(v, b′)−Rn+1(v, b)
�

�

�≤ L
�

�b′ − b
�

�

which completes the proof.

Lipschitz continuity of a sequence of functions is in general closed under their
pointwise limit, provided that the functions have all a global Lipschitz constant.
This is indeed the case for the optimal ERR. Therefore, the Lipschitz continuity
of Rn is carried over into R.

Theorem 5.7. Given NRC MRA R := (M,%,ρ), then R(v, ·): R≥0→ R≥0 is Lips-
chitz continuous with constant L = 1

%

�

ρ̄t + λ̄(ρ̄i + r0 + ρ̄f)
�

for all v ∈ V .

Proof. From Lem. 5.6 it holds that
�

�

�Rn(v, b′)−Rn(v, b)
�

�

�≤ L
�

�b′ − b
�

�



96 CHAPTER 5. CHARACTERISTICS OF THE OPTIMAL ERR

for every v ∈ V , n ∈ N and b′, b ∈ R≥0. Since the model is NRC and by Lem. 4.11
and 4.13 it holds that limn→∞Rn(v, b) = R(v, b)<∞ for all v ∈ V and b ∈ R≥0.
The claim then follows by taking the limit of both sides of the inequality when
n goes to infinity.

Being Lipschitz continuous is an important property of a function. Many
other nice features comes after Lipschitz continuity. In particular, Lipschitz con-
tinuous functions can be effectively discretised since their variation is bounded.
We utilise this feature for the computation of the optimal ERR in Ch. 6.

In the next section we look into the derivative of the optimal ERR.

5.3 Differentiability

There is a connection between being Lipschitz continuous and being differen-
tiable for real valued functions. It is known that every differentiable function
with bounded first derivative is Lipschitz continuous. The converse is not al-
ways true. However, it holds that every Lipschitz continuous function is almost
everywhere differentiable. It is the direct corollary of Thm. 5.7.

Corollary 5.7.1. For an NRC MRA R := (M,%,ρ), R(v, ·): R≥0→ R≥0 is almost
everywhere differentiable for all v ∈ V .

The corollary states that the derivative may not exist in a set with Lebesgue
measure zero. In fact, such a set may exist for the optimal ERR. This set cor-
responds to the points in time horizon at which the optimal strategy changes
the transition taken from a probabilistic state. The time instances are usually
referred to as swapping points.

The decision changes at a swapping point as the current transition will not
perform optimally afterwards. This also means at the swapping point the current
and the next transition perform equally, but the latter may then overtake the
former. It is thus possible that the variation of the optimal ERR is different before
and after the swapping point. We illustrate an example of this situation.

The MRA depicted in Fig. 5.1a contains four states and five transitions.
Markovian transition are distinguished by dashed arrows. At it is visible from
the structure, the distributions of all transitions are Dirac. Among transitions,
(v1, 4,∆v3

) and respectively (v2, 2,∆v3
) have transient reward of 4 and 3, i. e.

ρt(v1, 2,∆v3
) = 3 and ρt(v2, 3,∆v3

) = 4. The reward of all other transitions is
zero. We aim to compute the maximal expected time-bounded reward of the
initial state v0. For this, we assign one to the resource consumption rate of all
Markovian transitions. Suppose time bound b ∈ R≥0 is given. From Thm. 5.2 it
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Figure 5.1: MRA with a non-differentiable swapping point

holds that

R(v0, b) = max
�

R(v1, b),R(v2, b)
	

R(v1, b) = 1− e−4b

R(v2, b) = 3
2

�

1− e−2b
�

R(v3, b) = 0

The decision of the optimal strategy changes at t = log(2)
2 where (v0, \,∆v2

) is
favourable to (v0, \,∆v2

). The evolution of R(v0, b) in terms of b is illustrated
in Fig. 5.1b. As it depicted in the figure, the left and the right derivatives are
different at t. It can be indeed shown that the left and the right derivative at t
are respectively 1 and 3

2 .

5.4 Discussion

This chapter investigated certain characteristics of the optimal ERR, mainly
rooted in its fixed point characterisation. Here we see the major points illus-
trated in this chapter.

(i) We proposed a fixed point characterisation of the optimal ERR as a Volterra
integral equation;

(ii) We established the Lipschitz continuity of the optimal ERR and determined
its Lipschitz constant;

(iii) We studied the derivative of the optimal ERR and showed that the deriva-
tive may not exist in swapping points.

Contributions. The fixed point characterisation mentioned in Point (i) is the
generalisation of our previous works. We started by the fixed point characteri-
sation for time-bounded reachability [HH12; Guc+13; Guc+14a] in MAs and
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time-bounded rewards [Guc+14b; Bra+15] in MRAs and extended it to resource-
bounded rewards in [Hat+15]. We also studied for the first time the continuity
of the optimal ERR. Here we considered a strong notion of continuity, namely
Lipschitz, and showed that optimal n-step ERRs and thereby the optimal ERR
are Lipschitz all with a global constant. We looked into the derivative of the
optimal ERR and showed that the derivative may not exist at swapping points.

Related works. The techniques that we utilised in this chapter are inspired by a
series of results mostly on CTMDPs and IMCs. Characterisation of time-bounded
reachability of CTMCs as the least fixed point of a Volterra integral equation was
first proposed by [Bai+03]. It was then extended by [Bai+08; Fu14a; Fu14b] to
resource-bounded reachability in CTMDPs, by [Neu10; ZN10] to time-bounded
reachability in CTMDPs and IMCs. Rewards are not considered by any of the
mentioned works. Lipschitz continuity and differentiability of resource-bounded
reachability in CTMDPs are discussed by [Fu14a; Fu14b]. Furthermore, the
conventional notion of continuity is studied for time-bounded reachability of
CTMDPs by [Neu10].

Future works. We did not look into the differential characterisation of the op-
timal ERR. It is indeed possible to represent the optimal ERR as an ordinary
differential equation. This view does help to investigate the uniqueness of the
fixed point discussed in Thm. 5.2. We strongly believe that at least for MRAs
without timelock the fixed point is unique and can be computed by solving the
equivalent “initial value problem”. Another worthwhile extension is to inspect
the existence and then the structure of the optimal strategy. Similar works have
been done for resource- and time-bounded reachability in CTMDPs [Fu14b;
Neu10]. Furthermore, it has been shown the optimal strategy for time-bounded
reward [Mil68] and time-bounded reachability [RS11] of CTMDPs has finitely
many swapping points. We believe that the optimal strategy for ERR in MRAs
has the same shape.
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Chapter 6

Numerical Computations

This chapter provides tools and algorithms to compute the optimal ERR for an
MRA. We start with a slightly simpler problem, namely the optimal expected
time-bounded reward (ETR). It is simply the optimal ERR under the considera-
tion of time as the resource. We propose a stable numerical solution based on
discretisation for computing an approximation of the objective, which in addi-
tion offers a strict error bound. Using the discretisation approach the objective
can be approximated arbitrarily close to the exact value. Based on this approach
we develop an algorithm for computing the optimal ETR. Furthermore, we study
the complexity of the algorithm and show that our solution can compute the
approximate optimal ETR in polynomial time.

At the end of this chapter, we address the computation of the optimal ERR.
We introduce a reduction from resource- to time-bounded objectives via a mea-
sure preserving model transformation. The transformation is linear in the size
of the model and thereby efficiently applicable in practice. In general, the trans-
formation suggests that any algorithm that computes the optimal ETR can also
compute the optimal ERR.

6.1 From resource to time

The optimal expected time-bounded reward (ETR) estimates the optimal expected
reward gained until a deadline is met. It imposes a restriction on the duration
of the reward collection. From another point of view, it is a special case of the
optimal ERR when Markovian transitions all consume one units of resource per
time unit. In this case, the resource consumption is naturally equivalent to the
passage of time.

Definition 6.1 (Optimal ETR). For MRA R := (M,%,ρ), the optimal expected
time-bounded reward, denoted by �, is the optimal ERR under resource function
% := 1TM

.

Def. 6.1 provides the specific resource function for the time-bounded set-

101
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ting. In addition, it implies that all random variables and expectations that are
defined for the optimal ERR can be carried over into the time-bounded setting
by considering the resource function. We use �b, �b

n, � and �n for n ∈ N to
denote the respective random variables and expectations in the time-bounded
setting. Note that b ∈ R≥0 in these cases is specifically a time bound rather than
a general resource budget.

State and transition partitioning is simpler in the time-bounded setting. In
this case, as Markovian transitions all are resource consumers with rate one, be-
ing Markovian is equivalent to being resource consuming. Therefore, we simply
partition both state and transition spaces into Markovian respectively proba-
bilistic ones, as before, and safely ignore the partitioning based on resource
consumption. The latter is indeed implied by the former.

Having in mind that ETR is a special case of ERR, all measurability and
results in the resource-bounded setting given in Ch. 4 and 5 continue to be
valid in the time-bounded setting, i. e. when the resource function 1TM

is set. In
particular, the fixed point characterisation of the optimal ERR can be adapted
for the time-bounded setting. We obtain as a particular case of Thm. 5.2 the
following fixed point characterisation for the optimal ETR.

Theorem 6.2. For MRA R := (M,%,ρ) with % := 1TM
, � is the least fixed point

of higher order operator Ω : (V ×R≥0→ R≥0)→ (V ×R≥0→ R≥0) where

Ω(F)(v, b) =

∫ b

0

rγ̌ · e−rγ̌ t
∑

v′∈V

dγ̌(v′) F(v′, b− t)dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌·b
�

+ρf(γ̌) e
−rγ̌·b (6.1a)

when v ∈ VM with T (v) = {γ̌}, and for v ∈ VP:

Ω(F)(v, b) = mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′) F(v′, b)
�

(6.1b)

Proof. By setting % = 1TM
, Vrc = VM and Vrp = VP in Thm. 5.2.

We can indeed bring all the results established for the optimal ERR into the
time-bounded setting. It is, in particular, possible to adapt the upper bound for
the optimal ERR given in Cor. 4.23.1, the recursion of the optimal n-step ERRs
given in Lem. 5.1 and splitting the resource bound described in Lem. 5.3 to this
case. We can also conclude that the optimal ETR as a function of time-bound is
Lipschitz continuous with the adapted constant L = ρ̄t+λ̄(ρ̄i+r0+ρ̄f), according
to Thm. 5.7.

We have introduced the optimal ETR, not only because it represents a useful
class of analyses, but also because its computation provides the basis for the
computation of the more general class, namely the optimal ERR. The details are
discussed in Sec. 6.4.
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6.2 Discretisation

In this section we describe how to compute the optimal ETR via discretisation
of the fixed point characterisation introduced in Thm. 6.2. It is not generally
feasible to directly solve the fixed point characterisation due to the presence of
the complex Volterra integral equations therein. The discretisation technique
proposed here is the solution we have devised to tackle the problem. It yields a
stable numerical algorithm with strict error bound. Moreover, it can be harvested
to compute the optimal ERR through an efficient transformation that will be
described in Sec. 6.4.

The general idea behind discretisation is to split the time interval from time
zero up to the time bound into a finite number of equally sized chunks. This way
we evaluate the optimal ETR at finitely many points, i. e. at the boundaries of
each chunk. However, this does not necessarily decrease the complexity of our
analysis. This is because the question how the model behaves inside each chunk,
in general, can be highly complicated to answer and algorithmically intractable
to analyse. Two observations help us to further simplify the behaviour of an MRA
within each chunk. They are, firstly, “with high probability at most one Markovian
transition is executed within each chunk” and secondly, “the reward gained after
execution of the first Markovian transition is negligible”. The observations are in
fact valid especially when the chunk length is small. The discretised optimal ETR
is emerged from taking these observations into account while computing the
optimal ETR. In practice, the discretised optimal ETR can be computed efficiently
in polynomial time. In the sequel we show, in more details, how we utilise the
observations to define the discretised optimal ETR. Moreover, we indicate that
the error arising from the discretisation can be strictly bounded.

6.2.1 Discretised optimal ETR

Our goal is to approximately determine the optimal ETR, under a given time
bound b ∈ R≥0 using the discretisation just discussed. We have defined the
optimal ERR in Ch. 4 as the limit of optimal n-step ERRs. A similar procedure
is used here to define the discretised optimal ETR, namely we define it as the
limit of discretised optimal n-step ETRs. To do this, we first need to introduce
the latter.

LetR := (M,1TM
,ρ) be an MRA. We aim to compute the discretised optimal

ETR withing a given time bound b ≥ 0. The discretisation is applied by splitting
interval [0, b] into K > 0 chunk(s), each with length δ = b

K . The length of
each chunk is also referred to as discretisation constant. The idea is to evaluate
the objective at equidistant time points iδ, i = 0, . . . , K under two simplifying
assumptions: at most one Markovian jump lies in each chunk [ jδ, ( j + 1)δ],
j = 0, . . . , K − 1, and the reward obtained after this jump – if there is any – is
ignored. The assumptions are inspired by the observations discussed before.

The assumptions simplify the computation of the optimal ETR, in particular
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for Markovian states. For v ∈ VM with T (v) = {γ̌} it follows from Lem. 5.3 that
for n ∈ N and k > 0

�n+1(v, kδ) =

(a)
︷ ︸︸ ︷

∫ δ

0

rγ̌ · e−rγ̌ t
∑

v′∈V

dγ̌(v′)�n(v
′, kδ− t)dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌ δ
�

︸ ︷︷ ︸

(b)

+�n+1(v, (k− 1)δ) e−rγ̌ δ
︸ ︷︷ ︸

(c)

Notice the difference between two indices n and k. The former counts the num-
ber of transitions whereas the latter refers to the chunks. The source of partial
rewards (a), (b) and (c) becomes clear only in combination with the expecta-
tion splitting used in the proof of Lem. 5.1 together with time horizon split-
ting employed by the discretisation. To explain it more precisely we need to
partition the set of paths starting from v according to the execution time of

the first transition, which is γ̌. Put J v
≤δ := {γ̌

t
−→ π | 0 ≤ t ≤ δ,π ∈ P} and

J v
>δ

:= {γ̌
t
−→ π | t > δ,π ∈ P} as the set of paths staying less and respectively

more than δ time units in v. We then split the reward gained by each partition
separately. That is to say, we decompose the reward of each path in J v

≤δ into
the reward gained before and after leaving v. Moreover, we break the reward of
each path in J v

>δ
into the reward gained within the first chunk (inside interval

[0,δ]) the one gained thereafter. We accordingly write

�b
n+1(π) =

(b)
︷ ︸︸ ︷

ρt(γ̌) t +ρi(γ̌)+

(a)
︷ ︸︸ ︷

�b−t
n (π′) J v

≤δ 3 π= γ̌
t
−→ π′

�b
n+1(π) = ρt(γ̌)δ

︸ ︷︷ ︸

(b)

+�b−δ
n (γ̌

t−δ
−−→ π′)

︸ ︷︷ ︸

(c)

J v
>δ 3 π= γ̌

t
−→ π′

which also associates each of the partial rewards (a), (b) and (c) with its cor-
responding reward source. We can then conclude that the optimal (n+ 1)-step
ETR can be split into three portions, coming from

• the reward gained after leaving v from paths in J v
≤δ, denoted by (a),

• the reward gained before leaving v within the first chunk, denoted by (b),
and

• the reward gained after the first δ time units from paths in J v
>δ

, denoted
by (c).

With the source of each partial reward being clear we can apply the simplify-
ing assumptions suggested by the discretisation. Considering the discretisation
step from time point kδ to (k−1)δ, it is not hard to see that the assumptions only
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affect the computation of part (a). That involves the integral equation, which
is also the most difficult part of the computation. From the assumptions, there
will be no transition execution and no more reward after leaving v. To apply
the assumptions, we simply replace �n(v

′, kδ − t) by �n(v
′, (k − 1)δ) in part

(a). This change brings both assumptions into play as it forces to stay at v′ after
leaving v until the end of discretisation step while collecting no reward. This
then simplifies part (a) by

∫ δ

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)�n(v
′, (k−1)δ)dt=

�

1−e−rγ̌ δ
�

∑

v′∈V

dγ̌(v′)�n(v
′, (k−1)δ)

This result is an essential step towards the definition of the discretised optimal
ETR.

We now define discretised optimal n-step ETRs using the simplification just

discussed. They are specified by �δn : V×N→ R≥0 for a discretisation constant δ

and n ∈ N. Intuitively speaking, �δn(v, k) denotes the discretised optimal n-step
ETR from state v within time bound kδ. It can be seen as an approximation of
�n(v, kδ). The next definition describes it formally in a recursive way.

Definition 6.3 (Discretised optimal n-step ETRs). Given MRA R := (M,1TM
,ρ)

and a discretisation constant δ > 0. Then �δn : V ×N→ R≥0 for n ∈ N is defined

for boundary points as �δ0 := 0 and �δn(v, 0) = ρf(γ̌) for n > 0 and v ∈ VM with
T (v) = {γ̌}. Furthermore, it holds for n ∈ N that

�δn+1(v, k) =
�

1− e−rγ̌ δ
�

∑

v′∈V

dγ̌(v′) �δn(v
′, k− 1)

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌ δ
�

+�δn+1(v, k− 1) e−rγ̌ δ (6.2a)

for k > 0 and v ∈ VM with T (v) = {γ̌};

�δn+1(v, k) = mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′) ·�
δ

n(v
′, k)

�

(6.2b)

for k ∈ N and v ∈ VP.

The recursion suggested by Eq. (6.2b) resembles the corresponding one for
Rn given in Eq. (5.3c) on p. 78. As a consequence the reward coming from
probabilistic transitions is computed in the same way with and without discreti-
sation. Nevertheless, the discretisation employs the simplification as discussed
previously in the computation for Markovian states in Eq. (6.2a). This is the
situation where the computation is simplified.

In the next step, we define the discretised optimal ETR as the limit of the
discretised optimal n-step ETRs when n goes to infinity. We shall first show that
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the limit exist by taking advantage of the fact that the discretised optimal n-step
ETRs constitute an increasing sequence of functions. For that we provide another
interpretation of Def. 6.3 and using an order preserving operator that transforms

�δn into �δn+1.

Definition 6.4. For a given MRA R := (M,1TM
,ρ) and discretisation constant

δ > 0 we define operator Ω
δ

ρ
: (V ×N→ R≥0)→ (V ×N→ R≥0) as, for k ∈ N

Ω
δ

ρ(F)(v, k) =
�

1− e−rγ̌δ
�

k−1
∑

i=0

e−rγ̌ iδ
∑

v′∈V

dγ̌(v′) F(v′, k− i − 1)

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌kδ
�

+ρf(γ̌) e−rγ̌kδ

when v ∈ VM with T (v) = {γ̌} and

Ω
δ

ρ(F)(v, k) = mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′) F(v′, k)
�

for v ∈ VP. The min and max operators are respectively taken for Ωδ and Ω
δ
.

It is possible to define the recursion described in Def. 6.3 using operator Ω
δ

ρ.

We show that the recursion can be done by applying the operator, i. e. �δn+1 =

Ω
δ

ρ(�
δ

n). This fact is obvious for probabilistic states, but it needs to be elaborated
for Markovian states. It is also worth noting that this case is the discrete version
of Eq. (6.1a) where the integral is approximately computed by summation. We
summarise the result here.

Lemma 6.5. For a given MRA R := (M,1TM
,ρ) and discretisation constant δ > 0

it holds that �δn+1 = Ω
δ

ρ(�
δ

n), for n ∈ N.

Proof. We prove the lemma for all different cases described in Def. 6.3. The claim
for v ∈ VP follows directly from Eq. (6.2b) and Def. 6.4. Now assume v ∈ VM
with T (v) = {γ̌} and fix some n ∈ N. For this case we shall show by induction

on k that �δn+1(v, k) = Ω
δ

ρ(�
δ

n)(v, k). First observe that for the induction base,

k = 0, the claim follows from Def. 6.4 as Ω
δ

ρ(�
δ

n)(v, 0) = ρf(γ̌) = �δn+1(v, 0).
By induction hypothesis, assume that the claim holds for some k ∈ N. We show
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then it holds for k+ 1. We use Eq. (6.2a) to obtain

�δn+1(v, k+ 1) =
�

1− e−rγ̌ δ
��
∑

v′∈V

dγ̌(v′) �δn(v
′, k) +

ρt(γ̌)
rγ̌
+ρi(γ̌)

�

+�δn+1(v, k) · e−rγ̌δ

=
�

1− e−rγ̌ δ
��
∑

v′∈V

dγ̌(v′) �δn(v
′, k) +

ρt(γ̌)
rγ̌
+ρi(γ̌)

�

+Ω
δ

ρ

�

�δn
�

(v, k) · e−rγ̌δ
�

∗ I. H. ∗
�

=
�

1− e−rγ̌ δ
��
∑

v′∈V

dγ̌(v′) �δn(v
′, k) +

ρt(γ̌)
rγ̌
+ρi(γ̌)

�

+ e−rγ̌δ
�

1− e−rγ̌δ
�

k−1
∑

i=0

e−rγ̌ iδ
∑

v′∈V

dγ̌(v′) �δn(v
′, k− i − 1)

+ e−rγ̌δ
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌kδ
�

+ρf(γ̌) e−rγ̌(k+1)δ

=
�

1− e−rγ̌ δ
�
∑

v′∈V

dγ̌(v′) �δn(v
′, k)

+
�

1− e−rγ̌δ
�

k−1
∑

i=0

e−rγ̌(i+1)δ
∑

v′∈V

dγ̌(v′) �δn(v
′, k− i − 1)

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌(k+1)δ
�

+ρf(γ̌) e−rγ̌(k+1)δ

=
�

1− e−rγ̌ δ
�
∑

v′∈V

dγ̌(v′) �δn(v
′, k)

+
�

1− e−rγ̌δ
�

k
∑

j=1

e−rγ̌ jδ
∑

v′∈V

dγ̌(v′) �δn(v
′, k− j)

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌(k+1)δ
�

+ρf(γ̌) e−rγ̌(k+1)δ

=
�

1− e−rγ̌δ
�

k
∑

j=0

e−rγ̌ jδ
∑

v′∈V

dγ̌(v′) �δn(v
′, k− j)

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌(k+1)δ
�

+ρf(γ̌) e−rγ̌(k+1)δ

= Ω
δ

ρ

�

�δn
�

(v, k+ 1)

Lem. 6.5 brings yet another intuition how the discretisation works. It presents
the discretisation as a technique for computing the integral involved in Eq. (6.1a).
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For v ∈ VM it gives for k ∈ N that

�δn+1(v, k) =
�

1− e−rγ̌δ
�

k−1
∑

i=0

e−rγ̌ iδ
∑

v′∈V

dγ̌(v′) �δn(v
′, k− i − 1)

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌kδ
�

+ρf(γ̌) e−rγ̌kδ

On the other hand, it follows from Eq. (6.1a) in Thm. 6.2 that

�n+1(v, kδ) =

∫ kδ

0

rγ̌e−rγ̌ t
∑

v′∈V

dγ̌(v′) �n(v
′, kδ− t)dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌kδ
�

+ρf(γ̌) e−rγ̌kδ

Comparing both equations reveals that the discretisation employs a technique
similar to Riemann summation for estimation of the integral involved in the com-
putation. It estimates �n(v

′, ·) using a piecewise constant function that gives a
constant value inside each of the k chunk(s) made by the discretisation. More
precisely, �n(v

′, t) for jδ ≤ t < ( j + 1)δ, j = 0, . . . , k − 1 is approximated by

�δn(v
′, j). We show in the next section that the error arising from this approxi-

mation is bounded.
The main reason for the representation of �δn using operator Ω

δ

ρ is because
the operator has a useful feature, namely it is order preserving. The next lemma
indicates this property.

Lemma 6.6 (Order preservation). Let R := (M,1TM
,ρ) be an MRA and F, G :

V ×N→ R≥0 such that F ≤ G, i. e. G(v, k) ≤ F(v, k) for every v ∈ V and k ∈ N.

Then, for all δ > 0 it holds that Ω
δ

ρ(F)≤ Ω
δ

ρ(G).

Proof. We need to show that Ω
δ

ρ(F)(v, k) ≤ Ωδρ(G)(v, k) for every v ∈ V and
k ∈ N. For this we distinguish between two cases. For v ∈ VM with T (v) = {γ̌},
it holds that

Ω
δ

ρ(F)(v, k) =
�

1− e−rγ̌δ
�

k−1
∑

i=0

e−rγ̌ iδ
∑

v′∈V

dγ̌(v′) F(v′, k− i − 1)

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌kδ
�

+ρf(γ̌) e−rγ̌kδ

≤
�

1− e−rγ̌δ
�

k−1
∑

i=0

e−rγ̌ iδ
∑

v′∈V

dγ̌(v′) G(v′, k− i − 1)

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌kδ
�

+ρf(γ̌) e−rγ̌kδ

= Ω
δ

ρ(G)(v, k)
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And similarly for v ∈ VP we have

Ω
δ

ρ(F)(v, k) = mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′) F(v′, k)
�

≤ mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′) G(v′, k)
�

= Ω
δ

ρ(G)(v, k)

Being order preserving brings important properties. This is in particular

helpful for proving that the sequence {�δn}n∈N is monotonically increasing and
therefore its limit exists. The result is described in the next lemma.

Lemma 6.7. For a given MRA R := (M,1TM
,ρ) and discretisation constant δ > 0

it holds for all n ∈ N that �δn ≤ �δn+1 and limn→∞�δn(v, k) exists for all v ∈ V
and k ∈ N.

Proof. First we prove by induction on n that �δn ≤ �δn+1. The base case, �δ0 ≤ �δ1
is trivial since �δ0 is constantly zero. Now assume, for some n ∈ N, it holds that

�δn ≤ �δn+1. By Lem. 6.6 we know that Ω
δ

ρ is order preserving. It subsequently

implies that �δn+1 = Ω
δ

ρ(�
δ

n)≤ Ω
δ

ρ(�
δ

n+1) = �δn+2. The existence of the limit is a

direct consequence of {�δn}n∈N being monotonically increasing.

The consequence of Lem. 6.7 completes the story of this subsection. Thus
far, the optimal discretised ETR has not been formally defined. Here we propose
it as the limit of the discretised optimal n-step ETRs.

Definition 6.8 (Discretised optimal ETR). For a given MRA R := (M,%,ρ) and

discretisation constant δ > 0, the discretised optimal ETR, �δ is defined for every

v ∈ V and k ∈ N as �δ(v, k) := limn→∞�δn(v, k).

We have thus far seen similar procedures in introducing concepts for the
optimal ETR and its discrete version. For each of them we started from the def-
initions of the corresponding n-step functions. We showed that each of them
constitutes an increasing sequence of functions whose limit then exists. And
finally we defined the main objective as the limit of the corresponding sequence.
We have proposed a characterisation of the optimal ETR in Thm. 6.2 as a fixed
point. The corresponding characterisation does not yet exist for the discrete ver-
sion. Here we continue the procedure and propose a fixed point characterisation
for the discretised optimal ETR.

Theorem 6.9. Given MRA R := (M,1TM
,ρ) and discretisation constant δ > 0.

Then �δ is the least fixed point of Ω
δ

ρ.



110 CHAPTER 6. NUMERICAL COMPUTATIONS

Proof. We first prove that �δ is a fixed point of Ω
δ

ρ. For this it is enough to show

that lim and Ω
δ

ρ are interchangeable. More precisely, it suffices to confirm the
correctness (∗) in the following equation.

�δ = lim
n→∞

�δn+1 = lim
n→∞

Ω
δ

ρ

�

�δn
� (∗)
= Ω

δ

ρ

�

lim
n→∞

�δn
�

= Ω
δ

ρ

�

�δ
�

We inspect it for different kinds of states. For v ∈ VM with T (v) = {γ̌}, it is
enough to show, for all k ∈ N that

lim
n→∞

�

1− e−rγ̌δ
�

k−1
∑

i=0

e−rγ̌ iδ
∑

v′∈V

dγ̌(v′) �δn(v
′, k− i − 1) =

�

1− e−rγ̌δ
�

k−1
∑

i=0

e−rγ̌ iδ
∑

v′∈V

dγ̌(v′) lim
n→∞

�δn(v
′, k− i − 1)

The above equation can be justified immediately by the monotone convergence

theorem (Thm. 2.19) since sequence {�δn}n∈N is increasing.
Now we elaborate on the correctness of (∗) for v ∈ VP. For γ ∈ T (v), put

pv,k
n (γ) := ρi(γ) +

∑

v′∈V

dγ(v′)�
δ

n(v
′, k)

pv,k(γ) := ρi(γ) +
∑

v′∈V

dγ(v′)�
δ
(v′, k)

As sequence {�δn}n∈N is increasing, it is not hard to see by the monotone conver-
gence theorem that limn→∞ pv,k

n = pv,k. Thanks to the finiteness of T , we can
further deduce that {pv,k

n }n∈N converges uniformly to pv,k. Hence, Thm. 2.22
allows us to write

lim
n→∞

mix
γ∈T (v)

pv,k
n (γ) = mix

γ∈T (v)
pv,k(γ)

which completes the first part of the proof.

It remains to show that �δ is the least fixed point of Ω
δ

ρ. Take any fixed point

F : V ×N→ R of Ω
δ

ρ, then �δ0 ≤ F since �δ0 is constantly zero. By induction on

n and using the fact that Ω
δ

ρ is order preserving (Lem. 6.6) one can show that

�δn ≤ F for all n ∈ N. Therefore, �δ = limn→∞�δn ≤ F and we are done.

From algorithmic points of view, it is important to have a characterisation
that is algorithmically tractable. We have proposed a characterisation of the
optimal ETR in Thm. 6.2 as a fixed point. We have discussed however that the
characterisation is not algorithmically tractable. This was the main argument for
resorting to the discretisation approach. On the contrary, the characterisation
given in the Thm. 6.9 directly proposes an algorithm for computing the discre-
tised optimal ETR. In summary, Thm. 6.9 provides an effective and practical
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technique for our purpose. More precisely, it serves as a basis for developing an
algorithm for computing the discretised optimal ETR.

The algorithm proceeds via computing the recursion suggested by operator

Ω
δ

ρ. Given step k ∈ N it is straightforward to compute �δ(v, k) for v ∈ VM. For
this we need to recursively compute the objective for all successors of v and all

steps N 3 k′ < k and then apply operator Ω
δ

ρ. Storing �δ(v′, k′) for all successor
v′ of v and all k′ < k might not be space efficient, specially if k is large. To tackle
this problem, the solution established by the next lemma requires only to have
the values for the (k− 1)-th step.

Lemma 6.10. Let R := (M,1TM
,ρ) be an MRA and δ > 0 be a discretisation

constant, then for every v ∈ VM and every k > 0 it holds that

�δ(v, k) =
�

1− e−rγ̌ δ
�
∑

v′∈V

dγ̌(v′) �δ(v′, k− 1)

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌ δ
�

+�δ(v, k− 1) e−rγ̌ δ (6.3)

Proof. The proof is done via taking the limit of both sides of Eq. (6.2a) as n
goes to infinity. After processing the left hand side, the claim follows from the

monotone convergence theorem (since sequence �δn is monotone) and the fact

that limn→∞�δn = �δ (Def. 6.8).

Lem. 6.10 decreases the space complexity of computing the discretised op-
timal ETR for Markovian states. That is to say, if the vector of objective values

for step k − 1, i. e. �δ(·, k − 1) is ready, it is possible to computed �δ(v, k) for

every v ∈ VM using Eq. (6.3). For v ∈ VP, on the other hand, Ω
δ

ρ suggests to com-
pute a fixed point which is similar to the one used for computing the optimal
reward in MDPs. This fixed point can be computed via value or policy iteration or
solving the corresponding linear programming problem [For+11; Put05; BK08].
This completes the cycle of the algorithm for step k. We discuss about the algo-
rithm and its complexity in more details in Sec. 6.3.2. Before that, we inspect in
the next section how precise is to approximate the optimal ETR by its discrete
version.

6.2.2 Error analysis

The whole idea of discretisation is relevant and useful only if it is sound, meaning
that the error arising from the approximation vanishes when the discretisation
constant tends to zero. The main topic of this section is to establish the soundness
of the discretisation. We also establish a lower and an upper bound on the
discretisation error. We use the bounds later to figure out the discretisation
constant in order to guarantee a predefined accuracy level. This is of course
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only applicable when the optimal ETR is bounded. Therefore, for analysing the
discretisation error, we only consider NRC models, for which the optimal ETR is
finite. We deal with the NRD models later in the next section.

We discussed two main assumptions made by the discretisation in the pre-
vious section. They echo the observations that have been mentioned in the
beginning of Sec. 6.2. We recap the observations here and study their likelihood
when the discretisation constant tends to zero. This study intuitively clarifies
the soundness of the discretisation. Let δ > 0 be the discretisation constant, i. e.
the length of each chunk made by the discretisation, then we observe that

1. with high probability each chunk carries at most one Markovian jump,

2. the expected reward gained after the first jump is negligible.

Now, let λ̄ be the largest exit rate appearing in the model. Then, 1− e−λ̄δ(1+
λ̄δ) is the maximum probability to have more than one Markovian jump in a
chunk. This probability vanishes as δ goes to zero, thereby confirming the first
observation. Since the model we analyse at the moment is NRC, the maximum
reward it can gain (or lose) in each chunk is bounded by Lδ, where L is the
Lipschitz constant associated with the model. Therefore the reward obtained
after the first jump in each chunk is bounded above by (1 − e−λ̄δ)Lδ, where
the first term indicates the maximum probability of jumping within each chunk.
When δ approaches zero, this reward tends towards zero as well. This justifies
the second observation.

The above arguments intuitively explain why the discretisation is sound.
They support the fact that the terms dropped out of the computation vanishes
as the discretisation constant becomes smaller and smaller. Or equivalently, the
approximation approaches the real objective as δ tends zero. In the remainder
of this section we try to formally prove that statement.

We have seen in Ch. 4 that breaking the optimal ERR into partial rewards
provides a useful tool to better understand the nature of reward acquisition. It
helps us to figure out how the partial rewards influence the value of the optimal
ERR. This has been used heavily to find out the upper bound for the optimal ERR
proposed in Sec. 4.3.1 and to show that it is Lipschitz continuous in Sec. 5.2.
Here we proceed in the same way for the discretised optimal ETR. We decompose
the objective into partial rewards and then study their properties in order to
establish particular inequalities that are helpful for proving the discretisation
error.

Similar to the decomposition proposed for the optimal ERR by Def. 5.4,
we decompose the discretised optimal ETR into two different kinds of partial
rewards: cumulative and final rewards. As the names suggest cumulative rewards
are gained all the way through the execution of transitions in the model whereas
final rewards are granted at the moment the deadline is met. For a reward
structure ρ = (ρt,ρi,ρf), it is therefore the case that the source of cumulative
rewards comes from ρt and ρi, and that of final rewards come from ρf.
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Definition 6.11 (Discretised partial rewards). Given an MRA R := (M,1TM
,ρ)

and discretisation constant δ > 0, we build reward structures ρ(c) = (ρt,ρi,0)

and ρ(f) = (0,0,ρf) upon ρ. Moreover, for n ∈ N let �c,δ
n and �f,δ

n be the dis-
cretised optimal n-step ETR under reward structures ρ(c) and ρ(f), respectively,
as described in Def. 6.3. Finally, the discretised partial rewards are defined as

�c,δ
:= limn→∞�c,δ

n and �f,δ
:= limn→∞�f,δ

n .

The reward structure ρ(c) and ρ(f) are the projection of ρ into its first two
and, respectively, its last component. They are therefore special kinds of reward
structures. In this view the discretised partial rewards are also the special cases
of the discretised optimal ETR. Hence, all of the results established for the dis-
cretised optimal ETR holds also for its partial versions.

Remark 6.12. Being special cases of �δn means that �c,δ
n and �f,δ

n constitute in-

creasing sequences of functions. Therefore, both limn→∞�c,δ
n and limn→∞�f,δ

n

introduced by Def. 6.11 exist. The same is true for �c,δ
and �f,δ

. In particular, they

are the least fixed points of Ω
δ

ρ(c) and Ω
δ

ρ(f) , respectively.

We utilise certain properties of the discretised partial rewards and establish
two inequalities that are useful for proving the discretisation error. In particular,
we make use of the fact that cumulative rewards are increasing with respect
to the time bound, in both continuous and discrete domains. In other words,
the value of (discretised) cumulative rewards increases when the time bound is
extended. This is simply because by extending the deadline either more rewards
are gained or, in the worst case, the reward value stays the same. This property
in general holds for nonnegative rewards that are collected cumulatively. It is
though not true for final rewards. Assume, for instance, the model stays at a
state with very large final reward, then extending the deadline corresponds to
having higher probability to leave the state and therefore losing some rewards
in expectation. Altogether, we show the following inequalities.

Lemma 6.13. Let R := (M,1TM
,ρ) be an MRA and δ > 0 be a discretisation

constant. Then it holds for every n, k ∈ N and every v ∈ V that

�c,δ
n (v, k)≤ �c

n(v, kδ) (6.4)

�δn ≤ �c,δ
n +�f,δ

n (6.5)

Proof. To prove Eq. (6.4) we first show that �c
n(v, ·) : R≥0→ R≥0 is an increasing

function. Fix any n ∈ N, then we have �c,b
n (π) ≤ �c,b′

n (π) for all π ∈ P and
b ≤ b′. This yields �c

n(v,σ, b)≤ �c
n(v,σ, b′) for every v ∈ V , which consequently

confirms for every n ∈ N and every v ∈ V that

�c
n(v, b)≤ �c

n(v, b′)
�

b, b′ ∈ R≥0, b ≤ b′
�

(6.6)
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Now we proceed by induction on n and show Eq. (6.4) holds. The base case n= 0

is obvious, since �c,δ
0 and �c

0 are both constantly zero. By induction hypothesis,
we assume for some n ∈ N, every v ∈ V and every k ∈ N that

�c,δ
n (v, k)≤ �c

n(v, kδ) (6.7)

To prove the claim for n+ 1, we consider two cases. For v ∈ VP we can write for
every k ∈ N that

�c,δ
n+1(v, k) = mix

γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)�
c,δ
n (v

′, k)
�

�

∗ Eq. (6.2b) ∗
�

≤ mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)�
c
n(v
′, k)

�

�

∗ Eq. (6.7) ∗
�

= �c
n+1(v, k)

�

∗ Eq. (5.3c) ∗
�

To prove the induction step for v ∈ VM, we apply another induction, this time

on k. The claim for k = 0 holds since �c,δ
n+1(v, 0) = �c

n+1(v, 0) = ρf(γ̌) for all
v ∈ VM with T (v) = {γ̌}. By induction hypothesis, suppose that for some k ∈ N
and every v ∈ VM with T (v) = {γ̌} we have

�c,δ
n+1(v, k)≤ �c

n+1(v, kδ) (6.8)

We show the above inequality is correct for k+1 using the following derivations:

�c,δ
n+1(v,k+ 1)

=
�

1− e−rγ̌ δ
�
∑

v′∈V

dγ̌(v′) �c,δ
n (v

′, k) +
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌ δ
�

+�c,δ
n+1(v, k) e−rγ̌ δ

�

∗ Eq. (6.2a) ∗
�

=

∫ δ

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′) �c,δ
n (v

′, k)dt +
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌ δ
�

+�c,δ
n+1(v, k) e−rγ̌ δ

≤
∫ δ

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′) �c
n(v
′, kδ)dt +

�ρt(γ̌)
rγ̌
+ρi(γ̌)

��

1− e−rγ̌ δ
�

+�c,δ
n+1(v, k) e−rγ̌ δ

�

∗ Eq. (6.7) ∗
�

≤
∫ δ

0

rγ̌e−rγ̌ t
∑

v′∈V

dγ̌(v′)�
c
n(v
′, kδ+δ− t)dt +

�ρt(γ̌)
rγ̌
+ρi(γ̌)

��

1− e−rγ̌ δ
�

+�c,δ
n+1(v, k) e−rγ̌ δ

�

∗ Eq. (6.6) ∗
�

≤
∫ δ

0

rγ̌e−rγ̌ t
∑

v′∈V

dγ̌(v′)�
c
n(v
′, kδ+δ− t)dt +

�ρt(γ̌)
rγ̌
+ρi(γ̌)

��

1− e−rγ̌ δ
�
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+�c
n+1(v, kδ) e−rγ̌ δ

�

∗ Eq. (6.8) ∗
�

= �c
n+1

�

v, (k+ 1)δ
� �

∗ Eq. (5.23) ∗
�

which completes the proof of Eq. (6.4).
We use induction once more to prove Eq. (6.5). The base case for n = 0 is

trivial. Suppose that Eq. (6.5) holds for some n ∈ N. We show its correctness for
n+ 1 by considering different cases. For v ∈ VM we have

�δn+1(v, k) =
�

1− e−rγ̌δ
�

k−1
∑

i=0

e−rγ̌ iδ
∑

v′∈V

dγ̌(v′)�
δ

n(v
′, k− i − 1)

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌kδ
�

+ρf(γ̌) e
−rγ̌kδ

�

∗ Def. 6.4 and Lem. 6.5 ∗
�

≤
�

1− e−rγ̌δ
�

k−1
∑

i=0

e−rγ̌ iδ
∑

v′∈V

dγ̌(v′)
�

�c,δ
n (v

′, k− i − 1) + ρ̄f

�

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌kδ
�

+ρf(γ̌) e
−rγ̌kδ

�

∗ I. H. ∗
�

=
�

1− e−rγ̌δ
�

k−1
∑

i=0

e−rγ̌ iδ
∑

v′∈V

dγ̌(v′)�
c,δ
n (v

′, k− i − 1)

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌kδ
�

+ρf(γ̌)e
−rγ̌kδ+

�

1− e−rγ̌kδ
�

ρ̄f

= �c,δ
n+1(v, k) +ρf(γ̌)e

−rγ̌kδ +
�

1− e−rγ̌kδ
�

ρ̄f
�

∗ Def. 6.4 and Lem. 6.5 ∗
�

= �c,δ
n+1(v, k) + ρ̄f +ρf(γ̌)e

−rγ̌kδ − ρ̄f e−rγ̌kδ

≤ �c,δ
n+1(v, k) + ρ̄f

�

∗ ρf(γ̌)≤ ρ̄f ∗
�

For v ∈ VP we have

�δn+1(v, k) = mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′) (�
δ

n(v
′, k)

�

�

∗ Eq. (6.2b) ∗
�

≤ mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)
�

�δn(v
′, k) + ρ̄f

�

�

�

∗ I. H. ∗
�

= mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)�
δ

n(v
′, k) + ρ̄f

�

= mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)�
δ

n(v
′, k)

�

+ ρ̄f

= �c
n+1(v, k) + ρ̄f

�

∗ Eq. (6.2b) ∗
�
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This section aims to figure out a lower and an upper bound for the discreti-
sation error. That is to say, we address the lower and the upper bound of the
difference between the optimal ETR and its discrete approximation, defined by

¯
d̄δ(v, k) := �(v, kδ)−�δ(v, k) (6.9)

where
¯
d̄δ is referred to as error function for δ > 0 and every v ∈ V and k ∈ N.

As the common technique in this thesis, we first establish some appropriate

bounds for the n-step error function described by
¯
d̄δn (v, k) := �n(v, kδ)−�δn(v, k)

and then study its limit behaviour as n goes to infinity. For this purpose, we
need an auxiliary inequality that deals with the lower and the upper bound of

¯
ξ̄δ,k−1

n (v,δ − t) := �n(v, kδ − t)−�δn(v, k − 1) for 0 ≤ t ≤ δ and k > 0. Intu-
itively speaking, this is a shifted form of the n-step error function that reevaluates

¯
d̄δn (v, k− 1) in which the time bound of �n is extended by δ− t. It is formally
represented by

¯
ξ̄δ,k

n (v,δ′) := �n(v, kδ+δ′)−�δn(v, k) (6.10)

To see why we need to establish bounds on
¯
ξ̄δ,k−1

n (v,δ − t), we show how it
appears in the computation of

¯
d̄δn+1(v, k) for v ∈ VM. By Eq. (5.23) and (6.2a)

we have

¯
d̄δn+1(v, k) =

∫ δ

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′) �n(v
′, kδ− t)dt

−
�

1− e−rγ̌δ
�
∑

v′∈V

dγ̌(v′) �δn(v
′, k− 1)

+ e−rγ̌ δ
�

�n+1(v, (k− 1)δ)−�δn+1(v, k− 1)
�

=

∫ δ

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)
�

�n(v
′, kδ− t)−�δn(v

′, k− 1)
�

dt

+ e−rγ̌ δ
¯
d̄δn+1(v, k− 1)

=

∫ δ

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)
¯
ξ̄δ,k−1

n (v,δ− t)dt + e−rγ̌ δ
¯
d̄δn+1(v, k− 1)

(6.11)

In the above equation, observe that the term inside the integral contains
¯
ξ̄δ,k−1

n (v,
δ− t). It is therefore helpful to know its bound while we inductively determine
the bounds of

¯
d̄δn+1. This is addressed in the following two lemmas.

Lemma 6.14. LetR := (M,1TM
,ρ) be an NRC MRA and δ > 0 be a discretisation

constant, then for a Markovian state v ∈ VM it holds

¯
ξ̄δ,k

n (v,δ′)≤ δ′Lc +
�

kδLc + ρ̄f

��

1− e−λ̄δ
′
�

+
¯
d̄δn (v, k) e−λ̄δ

′
(6.12)

¯
ξ̄δ,k

n (v,δ′)≥ − ρ̄f ·
�

1− e−λ̄δ
′
�

+
¯
d̄δn (v, k) e−λ̄δ

′
(6.13)
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where Lc = ρ̄t + (ρ̄i + r0)λ̄ and n, k ∈ N, δ′ ∈ R≥0.

Proof. Both inequalities hold for n = 0, as
¯
ξ̄
δ,·
0 and

¯
d̄δ0 are constantly zero. It

is therefore enough to show them for every nonzero natural n. We start with
Eq. (6.13) and first prove a lower bound for �n+1(v, kδ+δ′). Suppose T (v) =
{γ̌}, then we consider �n ≥ �c

n and combine it with Eq. (5.23) to obtain

�n+1(v, kδ+δ′)≥
∫ δ′

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)�
c
n(v
′, kδ+δ′ − t)dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌δ′
�

+�n+1(v, kδ) e−rγ̌δ′

= �c
n+1(v, kδ+δ′)−�c

n+1(v, kδ)e−rγ̌δ′ +�n+1(v, kδ)e−rγ̌δ′
�

∗ Eq. (5.23) ∗
�

≥ �c
n+1(v, kδ)−�c

n+1(v, kδ) e−rγ̌δ′ +�n+1(v, kδ) e−rγ̌δ′
�

∗ Eq. (6.6) ∗
�

= �c
n+1(v, kδ)

�

1− e−rγ̌δ′
�

+�n+1(v, kδ) e−rγ̌δ′

≥ �c,δ
n+1(v, k)

�

1− e−rγ̌δ′
�

+�n+1(v, kδ) e−rγ̌δ′
�

∗ Eq. (6.4) ∗
�

≥ �c,δ
n+1(v, k)

�

1− e−λ̄δ
′
�

+�n+1(v, kδ) e−λ̄δ
′

(6.14)

where the last inequality follows from the fact that the right hand side is de-
creasing in λ̄. This can be easily verified by taking the derivative of the right

hand side with respect to λ̄. The claim then follows by �c,δ
n+1 ≤ �n+1. Now we

establish an upper bound on �δn+1(v, k).

�δn+1(v, k) = �δn+1(v, k)
�

1− e−λ̄δ
′
�

+�δn+1(v, k) e−λ̄δ
′

≤
�

�c,δ
n+1(v, k) + ρ̄f

��

1− e−λ̄δ
′
�

+�δn+1(v, k) e−λ̄δ
′

(6.15)

where the last derivation follows from Eq. (6.5). After subtracting Eq. (??) from
Eq. (6.14) the lower bound follows.

To obtain the upper bound we make use of the fact that the model is NRC.
We then consider �n ≤ �c

n + ρ̄f and combine it with Eq. (5.23) to obtain

�n+1(v, kδ+δ′)≤
∫ δ′

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)
�

�c
n(v
′, kδ+δ′ − t) + ρ̄f

�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌δ′
�

+�n+1(v, kδ) e−rγ̌δ′

=

∫ δ′

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)�
c
n(v
′, kδ+δ′ − t)dt
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+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌δ′
�

+ ρ̄f ·
�

1− e−rγ̌δ′
�

+�n+1(v, kδ) e−rγ̌δ′

= �c
n+1(v, kδ+δ′)−�c

n+1(v, kδ)e−rγ̌δ′ + ρ̄f ·
�

1− e−rγ̌δ′
�

+�n+1(v, kδ)e−rγ̌δ′
�

∗ Eq. (5.23) ∗
�

≤ Lcδ′ +�c
n+1(v, kδ)−�c

n+1(v, kδ) e−rγ̌δ′

+ ρ̄f ·
�

1− e−rγ̌δ′
�

+�n+1(v, kδ) e−rγ̌δ′
�

∗ Lem. (5.6) ∗
�

= Lcδ′ +
�

�c
n+1(v, kδ) + ρ̄f

��

1− e−rγ̌δ′
�

+�n+1(v, kδ) e−rγ̌δ′

≤ Lcδ′ +
�

kδLc + ρ̄f

��

1− e−rγ̌δ′
�

+�n+1(v, kδ) e−rγ̌δ′

�

∗ Cor. 4.23.1 ∗
�

≤ Lcδ′ +
�

kδLc + ρ̄f

��

1− e−λ̄δ
′
�

+�n+1(v, kδ) e−λ̄δ
′

(6.16)

Note that the last inequality follows from the fact that the right hand side is
increasing in λ̄. This can be confirmed by taking its derivative with respect to
λ̄. The derivative is positive since �n+1(v, kδ) ≤ kδLc + ρ̄f by Cor. 4.23.1 as v
is Markovian and thereby resource consuming. Finally, the upper bound follows

after subtracting �δn+1(v, k)≥ �δn+1(v, k) e−λ̄δ
′
from Eq. (6.16).

We remark on two points regarding Lem. 6.14. Firstly, the conclusion of the
lemma is only valid for NRC models. The proof indeed makes use of Lipschitz
continuity of NRC models. Secondly, we elaborate on Lc. In fact, it is the Lipschitz
constant associated with the optimal cumulative ETR (�c

), i. e. when the final
rewards are zero everywhere. Hence, it can be obtained by setting ρ̄f = 0 and
% = 1 in the Lipschitz constant provided by Lem. 5.6.

The above lemma relates the shifted error function with the error function
for Markovian states in a recursive way. The following lemma however provides
recursive inequalities between the shifted error function of a probabilistic state
and that of its successors.

Lemma 6.15. Let R := (M,1TM
,ρ) be an MRA and δ > 0 be a discretisation

constant, and suppose v is probabilistic. Then, for every n, k ∈ N and every δ′ ∈ R≥0

there exist
¯
γ, γ̄ ∈ T (v) such that

¯
ξ̄
δ,k
n+1(v,δ′)≤

∑

v′∈V

d
¯
γ̄(v
′)

¯
ξ̄δ,k

n (v
′,δ′) (6.17)

Similarly for the lower bound, there exist
¯
γ, γ̄ ∈ T (v) such that

¯
ξ̄
δ,k
n+1(v,δ′)≥

∑

v′∈V

d
¯
γ̄(v
′)

¯
ξ̄δ,k

n (v
′,δ′) (6.18)



6.2. DISCRETISATION 119

Proof. The proof is by construction, namely we show that such transitions exist
for both the lower and the upper bound. We first look into the upper bound and
put

¯
γ= arg min

γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)�δn(v
′, k)

�

γ̄= arg max
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)�n(v
′, kδ+δ′)

�

We then combine Eq. (6.10) with (5.3c) to get

¯
ξ̄
δ,k
n+1(v,δ′) = �n+1(v, kδ+δ′)−�δn+1(v, k)

= mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′) �n(v
′, kδ+δ′)

�

− mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′) �δn(v
′, k)

�

≤ ρi(
¯
γ̄) +

∑

v′∈V

d
¯
γ̄(v
′) �n(v

′, kδ+δ′)

−
�

ρi(
¯
γ̄) +

∑

v′∈V

d
¯
γ̄(v
′) �δn(v

′, k)
�

=
∑

v′∈V

d
¯
γ̄(v
′)
�

�n(v
′, kδ+δ′)−�δn(v

′, k)
�

=
∑

v′∈V

d
¯
γ̄(v
′)

¯
ξ̄δ,k

n (v
′,δ′)

For the lower bound it is enough to define

¯
γ= argmin

γ∈T (v)

�

ρi(γ) +
∑

v′∈V

�n(v
′, kδ+δ′)

�

γ̄= argmax
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

�δn(v
′, k)

�

This follows then by substituting the ’≤’ with ’≥’ in the above steps.

Lem. 6.15 implies that the lower and upper bounds of the shifted error
function propagate by taking one probabilistic transitions. In particular, it allows
such bounds from any probabilistic state are lifted from that of its successors.
This also means that computation of the optimal ETR for probabilistic states
does not arise any extra error. This result together with the result of Lem. 6.14
provides a useful tool for proving bounds on the discretisation error.

Before looking into the discretisation error, we need to define two functions
that are used to determine the bounds for discretisation error. We assume NRC
MRA R := (M,1TM

,ρ) and discretisation constant δ > 0 are given. Once more
we distinguish between cumulative and final rewards. We use Ec

R and Ef
R to
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denote the upper bounds – to be established – on the discretisation error for
cumulative and final rewards, respectively, where

Ec
R(k,δ) = kδLc −

Lc

λ̄

�

1− e−λ̄δ
�

k−1
∑

i=0

e−iδλ̄
�

1+ λ̄δ
�i

(6.19)

Ef
R(k,δ) = ρ̄f ·

�

1− e−kδλ̄
�

1+ λ̄δ
�k
�

(6.20)

The MRA is often clear from the context, so we may drop it from the terms and
simply write Ec and Ef. Using the above functions we propose a lower and an
upper bound for

¯
ξ̄δ,k for k ∈ N.

Lemma 6.16. LetR := (M,1TM
,ρ) be an NRC MRA and δ > 0 be a discretisation

constant, then it holds for every v ∈ V and every δ′ ≥ 0 that

¯
ξ̄δ,k

n (v,δ′)≤ δ′L +
�

kδL + ρ̄f

��

1− e−λ̄δ
′
�

+
�

Ec(k,δ) +Ef(k,δ)
�

e−λ̄δ
′

(6.21)

¯
ξ̄δ,k

n (v,δ′)≥ − ρ̄f ·
�

1− e−λ̄δ
′
�

−Ef(k,δ) e−λ̄δ
′

(6.22)

for all n, k ∈ N.

Proof. We prove by induction on n that both Eq. (6.21) and (6.22) hold. The
base case is obvious as

¯
ξ̄
δ,k
0 is constantly zero for every k ∈ N. We now assume

that the claim holds for some n ∈ N, and prove it also holds for n + 1. We
consider two cases: v ∈ VM and v ∈ VP. The latter case can be simply addressed
by Lem. 6.15. That is to say, there are

¯
γ, γ̄ ∈ T (v) such that

¯
ξ̄
δ,k
n+1(v,δ′)≤

∑

v′∈V

d
¯
γ̄(v
′)

¯
ξ̄δ,k

n (v
′,δ′)

�

∗ Eq. (6.17) ∗
�

≤ δ′L +
�

kδL + ρ̄f

��

1− e−λ̄δ
′
�

+
�

Ec(k,δ) +Ef(k,δ)
�

e−λ̄δ
′

�

∗ I. H. ∗
�

The lower bound can be obtained analogously using Eq. (6.18).
We now consider v ∈ VM and employ the result of Lem. 6.14. Accordingly it

is enough to show that

−Ef(k,δ)≤
¯
d̄δn+1(v, k)≤ Ec(k,δ) +Ef(k,δ) (6.23)

We prove it by induction on k. In the base case, k = 0, all the terms involving
in Eq. (6.23) are zero, as a result the inequality holds. Now, suppose Eq. (6.23)
holds for some k ∈ N, then we show that it also holds for k + 1. First note by
Eq. (6.11) that

¯
d̄δn+1(v, k+1) =

∫ δ

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)
¯
ξ̄δ,k

n (v,δ− t)dt+e−rγ̌ δ
¯
d̄δn+1(v, k) (6.24)
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To obtain a lower and an upper bound for the above equation, we apply the
hypothesis from the induction on “n” to obtain

¯
ξ̄δ,k

n (v,δ− t)

≤ (δ− t)Lc +
�

kδLc + ρ̄f

��

1− e−λ̄(δ−t)
�

+
�

Ec(k,δ) +Ef(k,δ)
�

e−λ̄(δ−t)

= (δ− t)Lc +
�

kδLc + ρ̄f

��

1− e−λ̄(δ−t)
�

+ ρ̄f ·
�

1− e−kδλ̄(1+ λ̄δ)k
�

e−λ̄(δ−t)

+
�

kδLc −
Lc

λ̄

�

1− e−λ̄δ
�

k−1
∑

i=0

e−iδλ̄(1+ λ̄δ)i
�

e−λ̄(δ−t)

= (k+ 1)δLc + ρ̄f − t Lc −
eλ̄t Lc

λ̄

�

1− e−λ̄δ
�

k
∑

i=1

e−iδλ̄(1+ λ̄δ)i−1

− ρ̄f e−(k+1)δλ̄(1+ λ̄δ)keλ̄t (6.25)

and similarly for the lower bound it gives

¯
ξ̄δ,k

n (v,δ− t)≥ −ρ̄f + ρ̄f e−(k+1)δλ̄(1+ λ̄δ)keλ̄t (6.26)

Note that the lower bound is obtained by flipping the sign of the upper bound
when Lc = 0. The proof of the lower bound can then be obtained by tweaking that
of the upper bound. Therefore we first look into the upper bound. We substitute
Eq. (6.25) into (6.24) and also applying the hypothesis of the induction on “k”
to have

¯
d̄δn+1(v, k+ 1)

≤
∫ δ

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)
�

(k+ 1)δLc + ρ̄f − t Lc
�

dt

−
∫ δ

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)
�eλ̄t Lc

λ̄

�

1− e−λ̄δ
�

k
∑

i=1

e−iδλ̄(1+ λ̄δ)i−1
�

dt

−
∫ δ

0

rγ̌ e−rγ̌ t
∑

v′∈V

dγ̌(v′)
�

ρ̄f e−(k+1)δλ̄(1+ λ̄δ)keλ̄t
�

dt

+
�

kδLc −
Lc

λ̄

�

1− e−λ̄δ
�

k−1
∑

i=0

e−iδλ̄(1+ λ̄δ)i
�

e−rγ̌δ

+ ρ̄f ·
�

1− e−kδλ̄(1+ λ̄δ)k
�

e−rγ̌δ

=
�

(k+ 1)δLc + ρ̄f

��

1− e−rγ̌δ
�

−
Lc

rγ̌

�

1− e−rγ̌δ(1+ rγ̌δ)
�

−
Lc

λ̄

�

1− e−λ̄δ
�

k
∑

i=1

e−iδλ̄(1+ λ̄δ)i−1

∫ δ

0

rγ̌ e(λ̄−rγ̌)t dt
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− ρ̄f e−(k+1)δλ̄(1+ λ̄δ)k
∫ δ

0

rγ̌ e(λ̄−rγ̌)t dt + kδLce−rγ̌δ

−
e(λ̄−γ̌)δLc

λ̄

�

1− e−λ̄δ
�

k
∑

i=1

e−iδλ̄(1+ λ̄δ)i−1 + ρ̄f e−rγ̌δ

− ρ̄f e−(k+1)δλ̄(1+ λ̄δ)ke(λ̄−rγ̌)δ

= (k+ 1)δLc + ρ̄f −
Lc

rγ̌

�

1− e−rγ̌δ
�

−
Lc

λ̄

�

1− e−λ̄δ
�

k
∑

i=1

e−iδλ̄(1+ λ̄δ)i−1
�

e(λ̄−rγ̌)δ +

∫ δ

0

rγ̌ e(λ̄−rγ̌)t dt
�

− ρ̄f e−(k+1)δλ̄(1+ λ̄δ)k
�

e(λ̄−rγ̌)δ +

∫ δ

0

rγ̌ e(λ̄−rγ̌)t dt
�

(6.27)

We extract two functions from the above equation to determine how they vary.
Put F, G : (0, λ̄]→ R≥0 with

F(r) :=
Lc

r

�

1− e−rδ
�

and G(r) := e(λ̄−r)δ +

∫ δ

0

re(λ̄−r)t dt

As it can be seen, F(rγ̌) and G(rγ̌) both appears in the right hand side of the
above equation. It is not hard to see that both functions are differentiable
on (0, λ̄), hence we have F ′(r) = − Lc

r2 (1 − e−rδ(1 + rδ)) ≤ 0 and G′(r) =

−
∫ δ

0 λ̄te(λ̄−r)t dt ≤ 0, where the former inequality comes from ex ≥ 1+ x for
x ≥ 0. Since both functions are decreasing, we have

F(rγ̌)≥
Lc

λ̄

�

1− e−λ̄δ
�

= F(λ̄) and G(rγ̌)≥ 1+ λ̄δ = G(λ̄)

Including them into Eq. (6.27) gives

¯
d̄δn+1(v, k+ 1)≤ (k+ 1)δLc + ρ̄f −

Lc

λ̄

�

1− e−λ̄δ
�

−
Lc

λ̄

�

1− e−λ̄δ
�

k
∑

i=1

e−iδλ̄(1+ λ̄δ)i−1(1+ λ̄δ)

− ρ̄f e−(k+1)δλ̄(1+ λ̄δ)k(1+ λ̄δ)

= (k+ 1)δLc −
Lc

λ̄

�

1− e−λ̄δ
�

k
∑

i=0

e−iδλ̄(1+ λ̄δ)i

+ ρ̄f

�

1− e−(k+1)δλ̄(1+ λ̄δ)k+1
�

= Ec(k+ 1,δ) +Ef(k+ 1,δ)

which completes the proof of the upper bound. That of the lower bound is essen-
tially similar, by setting Lc = 0 and flipping the signs and thereby the inequalities
operators when necessary.
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We point out that Lem. 6.16 essentially provides bounds for the discretisation
error. The bounds are simply obtained by setting δ′ = 0 in Eq. (6.21) and (6.22),
as

¯
d̄δn (v, k) =

¯
ξ̄δ,k

n (v, 0) for every v ∈ V and every n, k ∈ N. There is a possibility
to tighten the lower bound for special kinds of objectives. It happens in particular
when the cumulative and final rewards are computed separately, for instance, for
the optimal time-bounded reachability or the optimal time-bounded cumulative
rewards. As such objectives are useful in industrial applications, it is worthwhile
to establish a better bound for them, leading to more efficient computation. We
formalise this improvement using a specifically structured MRA called absorbing,
which is defined next.

Definition 6.17 (Absorbing MRA). An MRA R := (M,%,ρ) is absorbing iff for
all γ ∈ Trc, ρf(γ)> 0 implies dγ =∆vγ with rγ > 0.

Intuitively speaking, in an absorbing MRA every transition with a nonzero
final reward is indeed a Markovian self loop. The states exhibiting such transi-
tions are also called absorbing states. As a result, a path entering in an absorbing
state stays there forever. This brings an important feature, namely it makes the
total reward increasing with respect to increases in time bound. More precisely,
by extending the deadline it cannot happen that the total reward decreases. This
has a direct impact on the lower bound, formalised in the next lemma.

Lemma 6.18. Let R := (M,1TM
,ρ) be an absorbing NRC MRA and δ be a

discretisation constant, then it holds for all v ∈ V that

0≤
¯
d̄δn (v, k)≤ Ec(k,δ) +Ef(k,δ)

for all n, k ∈ N.

Proof. The upper bound directly follows from Eq. (6.21) after setting δ′ = 0.

For the lower bound we shall show that �δn(v, k) ≤ �n(v, kδ) for every v, k, n.
The proof goes in the same line as that of Lem. 6.13. We first show that �n(v, ·) :
R≥0 → R≥0 is an increasing function. Fix any n ∈ N, then we have �b

n(π) ≤
�b′

n (π) for all π ∈ P and b ≤ b′. Note that this is not true in general since
extending the deadline may reduce the final reward that is gained by the path.
However, this situation cannot happen for an absorbing MRA since as soon as
the path visits an absorbing state it cannot leave it. Therefore the final reward
stays the same even though the deadline is extended. This is lifted up to the
expectation and thereby to the optimal ETR, i. e. �n(v, b)≤ �n(v, b′). The rest
of the proof is similar to the proof Eq. (6.4) in Lem. 6.13. To adapt the proof for

this case, it is enough to replace �c
with � and �c,δ

with �δ there.

We have thus far established the lower and the upper bound for n-step dis-
cretisation error for an arbitrary NRC MRA. If the model is absorbing as well, the
lower bound is tightened by the above lemma. To propose a stable numerical
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algorithm for computing the optimal ETR, it is required to have a strict bound
for the discretisation error. Since the bounds do not depend on n, we can lift the
bounds to the error function. This is the main result of this section, formulated
in the next theorem.

Theorem 6.19 (Discretisation error). Let R := (M,1TM
,ρ) be an NRC MRA and

δ > 0 be a discretisation constant, then it holds for all v ∈ V that

−Ef(k,δ)≤
¯
d̄δ(v, k)≤ Ec(k,δ) +Ef(k,δ) (6.28)

0≤
¯
d̄δ(v, k)≤ Ec(k,δ) +Ef(k,δ)

�

when R is absorbing
�

(6.29)

for all k ∈ N.

Proof. It holds by Lem. 6.16 and 6.18 that

−Ef(k,δ)≤
¯
d̄δn (v, k)≤ Ec(k,δ) +Ef(k,δ)

0≤
¯
d̄δn (v, k)≤ Ec(k,δ) +Ef(k,δ)

�

when R is absorbing
�

The claim simply follows by taking the limit of the above inequalities as n goes
to infinity. Nevertheless it still needs to be confirmed that limn→∞ ¯

d̄δn = ¯
d̄δ. This

is the case since the limits of �n and �δn when n goes to infinity are both finite.
The former follows from the fact that R is NRC and thereby the latter comes

after taking the limit of the sequence of inequalities �δn ≤ �c
n+ ρ̄f ≤ �n+ ρ̄f.

The theorem indicates that the discretisation scheme produces a strict error
bound. By investigating the bounds it becomes clear that the smaller the discreti-
sation constant, the more precise the approximation is. This ensures that the
discretisation is sound, meaning that by taking smaller and smaller discretisation
constants, the error vanishes.

Corollary 6.19.1 (Soundness). For a NRC MRA R := (M,1TM
,ρ) it holds that

limδ→0 �δ = �.

Proof. First note that limδ→0 E
c(k,δ) = Ef(k,δ) = 0 for every k ∈ N. The result

then follows by applying the squeeze theorem [Bin82, Thm. 4.10] when taking
the limit of Eq. (6.28) as δ approaches zero.

The soundness of the discretisation technique suggests a sound algorithm for
estimating the optimal ETR. The algorithm is based on the computation of the
optimal ETR via its characterisation proposed by Thm. 6.9 and later simplified
in Lem. 6.10 for Markovian states. Following the characterisation, the algorithm
offers to compute the approximate optimal ETR in an iterative manner. In the
next section we will see how to run the iterations of the algorithm in more
details. Moreover, we provide a complexity analysis for it.
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6.3 Algorithm and complexity analysis

This section develops a stable numerical algorithm for computing the optimal
ETR that harvests the theoretical results established so far. Furthermore, the
complexity analysis of the algorithm is discussed. The algorithm is essentially
based on the discretisation technique discussed in Sec. 6.2 as explained next.

6.3.1 An algorithm for computing the optimal ETR

We assume that MRA R := (M,1TM
,ρ) with a time bound b ≥ 0 is given.

The MRA might be NRC or NRD. We aim to approximately estimate �(v, b)
for every v ∈ V , in case R is NRC, and otherwise to recognise it as NRD. The
approximation quality is imposed by a given accuracy level enforcing the error to
be at most ε > 0. As mentioned before, the algorithm computes the discretised
optimal ETR, principally via its characterisation as a fixed point (Thm. 6.9)
using an iterative method. The algorithm shall first identify whether R is NRC

or NRD. In the former case, it estimates the optimal ETR as �δ(v, b) where δ
is chosen such that the given accuracy level is respected. It is thus a key step of
the algorithm to find a discretisation constant ensuring the accuracy level.

The starting point to look for an appropriate discretisation constant is pro-
vided by Thm. 6.19. Given an accuracy level ε > 0, by Eq. (6.28) and (6.29) it
is enough to find δ > 0 such that

Ec( b
δ ,δ) +Ef( b

δ ,δ)≤ ε (6.30)

It is not hard to see that the left hand side of Eq. (6.30) is increasing in δ.
Hence, the tighter the inequality, the larger the discretisation. Making the in-
equality (6.30) tight leads to an algebraic equation of variable δ. Due to the
existence of exponential terms there is no closed form solutions for the equation.
To be able to conduct our complexity analysis we need, however to have at least
a safe – if not the largest – discretisation constant that respects the accuracy level
and can be expressed in terms of model parameters. To this end, we compute
safe upper bounds for Ef and Ec via a linear approximation. We make use of

1+ x ≥ (1−
x2

2
)ex (6.31)

for x ≥ 0 and k ∈ N. To prove the inequality we can apply Taylor’s theorem to
g(x) = ex . It accordingly holds that

ex = 1+ x +
x2

2
eη

for some η ∈ (0, x). The inequality then follows by ex ≥ eη. Using the inequality
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we give a safe upper bound, first to Ef.

Ef(k,δ) = ρ̄f ·
�

1− e−kδλ̄
�

1+ λ̄δ
�k
�

≤ ρ̄f ·
�

1− e−kδλ̄
�

1− λ̄2δ2/2
�k

ekδλ̄
�

�

∗ Eq. (6.31) ∗
�

= ρ̄f ·
�

1−
�

1− λ̄2δ2/2
�k
�

≤ ρ̄f
kλ̄2δ2

2

where the last derivation follows from Bernoulli’s inequality, i. e. (1+x)k ≥ 1+kx ,
for x ≥ −1 and k ∈ N. Since in practice usually a high accuracy level is required,
it is safe to assume λ̄δ � 1. This therefore justifies the usage of Bernoulli’s
inequality. Finally, put k = b/δ in the above inequality to get

Ef( b
δ ,δ)≤

ρ̄fλ̄
2 b

2
δ (6.32)

We use Bernoulli’s inequality to provide an upper bound for Ec as well.

Ec(k,δ) = kδLc −
Lc

λ̄

�

1− e−λ̄δ
�

k−1
∑

i=0

e−iδλ̄
�

1+ λ̄δ
�i

≤ kδLc −
Lc

λ̄

�

1− e−λ̄δ
�

k−1
∑

i=0

e−iδλ̄
�

1− λ̄2δ2/2
�i

eiδλ̄
�

∗ Eq. (6.31) ∗
�

= kδLc −
Lc

λ̄

�

1− e−λ̄δ
�

k−1
∑

i=0

�

1− λ̄2δ2/2
�i

= kδLc −
Lc

λ̄

�

1− e−λ̄δ
�1−

�

1− λ̄2δ2/2
�k

1−
�

1− λ̄2δ2/2
�

= kδLc −
Lc

λ̄

�

1− e−λ̄δ
�1−

�

1− λ̄2δ2/2
�k

λ̄2δ2/2
(6.33)

At this point we make use of (1− x)k ≤ 1− kx + k(k− 1) x2

2 for x ∈ [0,1] and
k ≥ 1. This inequality can be proven by Taylor’s theorem as follows. It holds by
the theorem for k ≥ 2 that

(1− x)k = 1− kx + kx2

2 (k− 1)(1−η)k−2

for some η ∈ (0,1). The inequality is established by taking into account that
(1 − η)k−2 ≤ 1. It is easy to see that the inequality holds also for k = 0,1.
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Considering that λ̄δ� 1 we apply the inequality to Eq. (6.33) to obtain

Ec(k,δ)≤ kδLc −
Lc

λ̄

�

1− e−λ̄δ
�1−

�

1− kλ̄2δ2/2+ k(k− 1)λ̄4δ4/8
�

λ̄2δ2/2

= kδLc −
kLc

λ̄

�

1− e−λ̄δ
��

1− (k− 1) λ̄
2δ2

4

�

(†)
≤ kδLc −

kLc

λ̄

�

λ̄δ− λ̄2δ2

2

��

1− (k− 1) λ̄
2δ2

4

�

= Lc kλ̄δ2

2

�

1+ (k− 1) λ̄δ2 − (k− 1) λ̄
2δ2

4

�

where (†) follows from 1− ex ≥ x − x2

2 for x ≥ 0. By setting k = b/δ, it finally
gives

Ec( b
δ ,δ)≤ Lc b

λ̄δ

2

�

1+ ( b
δ − 1) λ̄δ2 − (

b
δ − 1) λ̄

2δ2

4

�

= Lc b
λ̄δ

2

�

1+ λ̄b
2 −

λ̄δ
2 (1+

λ̄b
2 ) +

λ̄2δ2

4

�

≤ Lc b
λ̄δ

2

�

1+ λ̄b
2 −

λ̄δ
2 (1+

λ̄δ
2 ) +

λ̄2δ2

4

�

�

∗ δ ≤ b ∗
�

= Lc b
λ̄δ

2

�

1+ λ̄b
2 −

λ̄δ
2

�

≤ Lc b
λ̄δ

2

�

1+ λ̄b
2

�

(6.34)

Now that we have the upper bounds of Ef and Ec, which are both linear in δ,
we can simply take δ such that it respects a given accuracy level ε. To this end,
we incorporate Eq. (6.32) and (6.34) into Eq. (6.30) to obtain for ε > 0

ε≥ Lc b λ̄δ2
�

1+ λ̄b
2

�

+ ρ̄fλ̄
2 b

2 δ

⇐⇒ δ ≤
ε

λ̄b
2

�

Lc(1+ λ̄b
2 ) + ρ̄fλ̄

�

(6.35)

Eq. (6.35) provides an upper bound of on discretisation constantδ so as to assure
an accuracy of at least ε. Moreover, it provides a lower bound on how many
steps must be taken by the discretisation approach to guarantee the accuracy
level fixed a priori. This enables us to analyse the numbers of iterations required
for the algorithm.

Efficiency. In practice the discretisation constants offered by Eq. (6.35) are
usually much smaller than needed. It often happens that the accuracy level is
reached even if much larger discretisation constants are taken. It is indeed desir-
able to find a larger discretisation step provided that it still respects the accuracy
level. As a result, a smaller number of iterations is taken and the computation
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is thereby faster. One solution is to resort to root finding algorithms since, as
mentioned before, there is no closed form solution for Eq. (6.30). In our imple-
mentation we employ this approach and utilise Newton method to estimate a
larger discretisation constant that still respects the accuracy level.

Iterations. We can now estimate the number of iterations to be taken by the
discretisation technique. Suppose we have chosen an appropriate δ from a given
accuracy level ε > 0 using the method discussed above. Hence, it is required to
take b/δ iterations to reach the deadline given by the problem. We now explain
the computation that is done in each iteration. As discussed before, our algorithm
evaluates the discretised optimal ETR via its characterisation as a fixed point.
That is, it proceeds according to the following recursion for k ∈ N:

�δ(v, k+ 1) =
�

1− e−rγ̌ δ
�
∑

v′∈V

dγ̌(v′) �δ(v′, k)

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e−rγ̌ δ
�

+�δ(v, k) e−rγ̌ δ (6.36)

for v ∈ VM with T (v) = {γ̌} and

�δ(v, k) = mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′)�
δ
(v′, k)

�

(6.37)

for v ∈ VP. The correctness of Eq. (6.36) and (6.37) comes from Lem. 6.10 and
Thm. 6.9, respectively. An iteration of the algorithm is comprised of (i) comput-

ing �δ(v, k+ 1) for v ∈ VM from the previously computed vector �δ(·, k) using
Eq. (6.36) and (ii) computing the fixed point induced by Eq. (6.36) to obtain

�δ(v, k) for v ∈ VP. The former, i. e. the computation of the objective for Marko-
vian states is performed in a straightforward way via Eq. (6.36). It is referred
to as an M-update. However, the crucial part of each iteration lies in the latter.
This part of the iterations is called a P-update. The details of each comes later.

M- and P-updates. The algorithm runs the iterations as follows. At the first

iteration (k = 0), �δ(v, 0) is set to ρf(γ̌) for v ∈ VM with T (v) = {γ̌}. Therefore
an M-update is not relevant here. To conduct the P-update, special attentions
should be paid: We first observe by Eq. (6.37) that P-updates only deal with
probabilistic states. Hence, they target only the underlying MDP structure of
the model, which is induced by probabilistic states. Secondly, in a P-update,
we can treat each Markovian state as a deadlock state with final reward of
�δ(v, k) since its value stays constant during this phase. All in all, a P-update
is nothing but computing the optimal expected total reward in the underlying
MDP part of the model with Markovian states playing the role of deadlock states.
Formally speaking, the underlying MDP of MAM= (V, v0, T ) is indeed a new MA
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obtained by removing its Markovian transitions, i. e. µMDP(M) := (V, v0, TP). In
summary, a P-update is the computation of the fixed point suggested by Eq. (6.37)
on µMDP(M). There are different approaches to conduct a P-update, it is for
instance possible to employ reward optimisation algorithms working on MDPs.
However, we take a different view to solve the problem, namely by employing
goal-bounded analysis while the Markovian states are taken as the goal set. In
this view, we want to optimise reward acquisition until reaching some state in
the goal set. This is referred to as the optimal expected goal-bounded reward,
solved in [Guc+14b]. We encode the P-update problem as this problem in the
next lemma.

Lemma 6.20. For a given MRA R := (M,1TM
,ρ) and discretisation constant

δ > 0, the P-update at iteration k can be done via computing the optimal expected
goal-bounded rewards of µMDP(M) under reward structure ρ(k) = (ρt,ρi,ρ

(k)
f )

with ρ(k)f (v) = �δ(v, k) for v ∈ VM and zero otherwise. Moreover, the goal set
contains all Markovian states.

Proof. The proof is simply by comparing the fixed point characterisations of the
two objectives. The fixed point computed in order to carry out the P-update is
given by Eq. (6.37). The other one can be obtained via a slight extension of the
fixed point given in [Guc+14b, Thm. 1], i. e. letting goal states have arbitrary
positive final rewards, instead of zero. It is not hard to see thus both fixed point
characterisations are equivalent and thereby their least fixed points are the same.
This completes the proof.

Note also that in the above lemma we assign the final rewards to Markovian
states instead of Markovian transitions, simply because the latter do not exist in
the underlying MDP. To make a clear view of what is going to be computed in
a P-update, we reformulate Eq. (6.37) as a Bellman equation. We first assume
an arbitrary total ordering of the states of the MRA that allows us to consider

any function g : V → R as vector g ∈ R|V | with g v = g(v) for every v ∈ V .
We keep this ordering later when we discuss the algorithm. A P-update is then
carried out by computing the least fixed point of the Bellman optimality operator
¯
¯
T f : R|V |≥0→ R

|V |
≥0 such that for every vector g ∈ R|V |≥0:

¯
¯
T f (g v) =

(

mixγ∈T (v)
�

ρi(γ) +
∑

v′∈V dγ(v′) · g v′
�

v ∈ VP

f v v ∈ VM
(6.38)

where f ∈ R|V |≥0 is the vector of final rewards for Markovian states. We can finally

conclude that the P-update at iteration k is the least fixed point of ¯
¯
T f (k) with

f (k)v = �δ(v, k) for all v ∈ V .
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Computing the maximal null reward. The result of Lem. 6.20 together with
Eq. (6.38) not only provides a way to compute a P-update, but also, as a special
case, offers a solution for computation of the maximal null reward. It is required
to know this value to determine whether the model is NRC or NRD. Moreover,
if the model is NRC that value is again needed for computation of Lc to be used
for searching an appropriate discretisation constant, for instance by Eq. (6.35).
Recall that the maximal null reward is the maximum reward that a resource
preserving state can earn up to reaching some resource consuming state. In
the time-bounded setting, it is translated to the maximum reward starting from
probabilistic states up to reaching some Markovian state. As a result the maximal
null reward can be obtained by conducting a P-update while the final reward of
Markovian states, all are set to zero.

The algorithm. We now integrate all pieces together to obtain the algorithm for
computing an approximation of the optimal ETR with a proven error bound. The
algorithm, displayed in Alg. 6.1, takes as input an arbitrary MRA, a deadline, an
accuracy level and the optimisation goal which might either be “min” or “max”.
It then determines whether the MRA is NRC or NRD by computing the maximal
null reward. In the former case, it estimates the optimal ETR within the given
deadline while respecting the accuracy level. As mentioned before, we take an
arbitrary total ordering into account in order to do all of the computations on
vectors.

Alg. 6.1 first computes the parameters of the MRA in lines 2 and 3. In partic-
ular, it evaluates the maximal null reward to determine whether it is finite or infi-
nite. In the latter case the model is NRD and therefore the algorithm terminates.
Otherwise, the algorithm searches for an appropriate discretisation constant that
respects the given accuracy level for both absorbing and non-absorbing mod-
els. This can be easily done using the linear approximations given by Eq. (6.35).
However, a better solution is to employ a numerical root finder like Newton algo-
rithm to approximately find δ > 0 that makes inequality (6.30) tight. In practice,
this method is favourable since it leads to larger discretisation constants and
thereby a smaller number of iterations. The computed discretisation constant
should be adjusted in a way that b is reached after taking an integer number of
steps of length δ, specified in the algorithm by K . This adjustment must indeed
respect the accuracy level. Thereafter, the iterations of the algorithm are carried
out. Each iteration contains an M-update followed by a P-update, computed
by functions Mupdate and Pupdate, respectively. The result of each iteration is
stored in vector x . After the last iteration, the vector contains the ε-approximate
optimal ETR enjoying the given accuracy level as described in the output of the
algorithm.

Fixed point computation. The crucial part of each iteration is to perform the
P-update, which is done by function Pupdate in the algorithm. It computes the
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Algorithm 6.1: Computing ε-approximate optimal ETR

Input: MRA R := (M,1TM
,ρ), horizon b ≥ 0, accuracy level ε > 0,

optimisation goal (min or max)
Output: Report if R is NRD, otherwise vector {x v}v∈V such that

�

�x v −�(v, b)
�

�≤ ε, or if R is absorbing 0≤ �(v, b)− x v ≤ ε

1 begin
2 ρ̄t =max

γ∈TM

ρt(γ), ρ̄i =max
γ∈TM

ρi(γ), ρ̄f =max
γ∈TM

ρf(γ), λ̄=max
γ∈TM

rγ
3 x = Pupdate(0), r0 =max

v∈V
x v // the maximal null reward

4 if r0 =∞ then
5 print “The model is NRD”
6 exit
7 end
8 Lc = ρ̄t + λ̄ · (ρ̄i + r0)
9 choose some δ > 0 that

• respects Eq. (6.30) and
• there exists K ∈ N such that b = Kδ

foreach v ∈ VM do x v = ρf(γ̌) /* Initialisation */
x =Pupdate (x )
for i = 1 to K do /* Iterations */

10 x =Mupdate (x )
11 x =Pupdate (x )
12 end
13 end
14 Function Mupdate(x):
15 foreach v ∈ V do x ′v = 0
16 foreach v ∈ VM do

x ′v =
�

1− e−rγ̌δ
��∑

v′∈V dγ̌(v′)x v′ +
ρt(γ̌)

rγ̌ +ρi(γ̌)
�

+ x ve−rγ̌δ

17 return x ′

18 end
19 Function Pupdate(x):
20 return the least fixed point of ¯

¯
T x , given in Eq. (6.38)

21 end

least fixed point of the Bellman optimality operator given in Eq. (6.38). There
are different ways to compute the fixed point, which will be discussed in detail
in Sec. 7.1.2.

Soundness. We explain at this point why Alg. 6.1 is sound. We first stress the
point that the algorithm computes the discretised optimal ETR via its characteri-
sation given in Thm. 6.9 and Lem. 6.10. Secondly, the selection of discretisation
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constant δ on line 9 of the algorithm assures that the discretisation error is at
most ε. This is justified by Thm. 6.19. As a result what the algorithm computes,
as claimed, is in the ε-neighbourhood of the optimal ETR for every state of the
input MRA. The result is concluded in the next theorem.

Theorem 6.21. Alg. 6.1 is sound.

Proof. The claim follows from Thm. 6.9, Lem. 6.10 and Thm. 6.19.

Special cases. As mentioned before, various kinds of analyses can be encoded
as the optimal ETR. However, Alg. 6.1 conduct them in the most general case.
It is possible to adapt the algorithm for special classes of analyses and models.
This may lead to a more efficient analysis. A notable example is computing
reachability and cumulative reward for an absorbing MRA. As it can be implied
from the output of the algorithm, the computation is more precise for absorbing
models. It follows from Thm. 6.19 that the optimal ETR is always greater than or
equal to its approximation for absorbing models whereas that is not necessarily
the case for non-absorbing models. This might for instance make a decision
procedure induced by a logical formula more efficient for absorbing models. It
is particularly useful when solving the problem of the optimal expected time-
bounded cumulative reward and the optimal time-bounded reachability. For the
former Def. 6.17 implies that the model is absorbing as the final rewards of
transitions are all zero. For the latter we apply the technique of making goal
states absorbing to obtain an absorbing model.

Here we discuss briefly how the technique of making goal states absorb-
ing [Bai+03] is employed for computing time-bounded reachability. Recall that
in time-bounded reachability the objective is to compute the optimal probability
to reach some state in a given goal set within a deadline. It is encoded in our
setting by making all states in the goal set absorbing, i. e. removing all of their
outgoing transitions and replacing them with a Markovian self loop with an
arbitrary rate and with final reward of one. It is known (cf. [Neu10, Thm. 6.7])
that this encoding preserves time-bounded reachability of IMCs. The extension
to MRAs is straightforward. Finally, Alg. 6.1 can be applied after making the
model absorbing. The error bound given by Eq. (6.29) in Thm. 6.19 thus holds
in this setting.

Extension. We have recently extended Alg. 6.1 so as to compute the same mea-
sure in two-player stochastic games [Bra+14; Bra+15]. We have then exploited
the extension in an abstraction refinement framework for MRAs. There, an MRA
is abstracted into a smaller two-player game such that analysing the game allows
to deduce safe bounds on the optimal ETR of the original model.
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6.3.2 Complexity analysis

In this section we provide a complexity analysis of Alg. 6.1. In some parts of
the algorithm there are some levels of freedom to choose variant methods for
performing specific tasks. Precisely speaking, to be able to analyse the com-
plexity we need to make it clear how we compute the discretisation constant
on line 9 and also the P-updates in Pupdate function. To this end we assume
Eq. (6.35) is used for computing the discretisation constant and linear program-
ming is employed to conduct P-updates. Note that these assumptions are not
the best choices in practice. For instance we known that applying Newton steps
in Eq. (6.30) almost always gives a larger discretisation step size than the one
offered by Eq. (6.35). This leads to a smaller number of iterations. Moreover,
value iteration is know [For+11] to be empirically much faster than solving lin-
ear programming for a P-update. However, these choices not only simplify the
complexity analysis, but also provide a pessimistic hardness for Alg. 6.1 which
in fact is still polynomial in the size of the model.

The first step of our complexity analysis is to estimate the number of itera-
tions that the algorithm takes. Assume a fixed accuracy level ε > 0, then from
Eq. (6.35) the following discretisation constant respects the accuracy level.

δ′ =
ε

λ̄b
2

�

Lc(1+ λ̄b
2 ) + ρ̄fλ̄

�

(6.39)

With this, db/δ′e iteration(s) need to be taken to cross the time bound, which
equals

l

λ̄b2

2ε

�

Lc(1+ λ̄b
2 ) + ρ̄fλ̄

�

m

(6.40)

In each iteration an M-update and a P-update is carried out. For each Markovian
state in an M-update O(|V |) operations are executed since the Markovian state
might be connected to all other states. The complexity of an M-update is thus
O(|VM||V |). It remains to analyse the complexity of a P-update. To formulate P-
update as a linear programming [BK08; Put05] we introduce a variable for each
probabilistic state and impose a constraint for each probabilistic transition. Let
LP(n, m) be the complexity of solving linear programming with n variables and
m constraints, then LP(|VP|, |TP|) is the complexity of conducting P-update via
solving the corresponding linear programming. Note also that the complexity of
solving linear programming is known [Kha80] to be polynomial in the number
of variables and constraints. Finally we can obtain the complexity of Alg. 6.1,
which is

O
�

λ̄b2

2ε

�

Lc(1+ λ̄b
2 ) + ρ̄fλ̄

�

·
�

|VM||V |+LP(|VP|, |TP|)
�

�

(6.41)

Discussion. The complexity of Alg. 6.1 as shown above is polynomial in the
parameters of the input MRA, provided that the accuracy level is fixed. However
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the algorithm may not be efficient in practice. In particular the number of itera-
tions is quadratic in λ̄ and b. This implies that the number of iterations can grow
very fast when increasing the deadline or the largest exit rate of the model.

One solution to this problem is to change the assumption made by the dis-
cretisation in order to achieve the same accuracy level but with much less number
of iterations. It has been shown [HH13a; HH15] for IMCs that the number of
iterations drastically reduces when we let more Markovian jumps lie in a dis-
cretisation step. In the second-order discretisation, which allows at most two
jumps in a discretisation step, the number of iterations is in the order of

Æ

(λ̄b)3.
This method, on the other hand, increases the per iteration complexity since in
this setting the decision of the (ε-)optimal strategy may change between the first
and the second Markovian jumps. The point at which the decision is changed,
named swapping point, can be computed by a root finding algorithm. The com-
plexity of the second-order approximation that utilises the bisection method as
the root finding algorithm is discussed in [HH15]. In practice also, the second-
order approximation is shown to be empirically much faster than the first-order
approximation, which sticks to the same principles as the ones in Alg. 6.1. How-
ever, adapting this method to MRA seems not to be easy. The main complication
arises when each decision that can be made by probabilistic states must be con-
sidered to estimate swapping points. The number of decisions to be analysed
for computing the swapping point in general may be exponential in the size of
the model. This may not happen for IMCs since their interactive part has much
simpler structure, namely it only contains transitions with single successors. This
makes the number of decisions to be considered for swapping point computa-
tion at most as large as the number of states in the model. Nevertheless for the
MRAs with relatively small number of transitions, the second-order approxima-
tion works well, especially because the number of decisions to be considered is
small.

Another solution is to use the idea of adaptive discretisation, where the
discretisation constant is adapted during the computation according to error
estimation. With this we achieve the predetermined accuracy level while trying
to minimise the computational steps. The method is known to be effective for the
integration of ordinary differential equations, for instance when Runge-Kutta is
used [Pre+07, Sec. 17.2]. It is also employed for the computation of the optimal
ETR of CTMDPs for the class of late strategies [Buc+11]. This method is shown to
be highly effective among various industrial and academic case studies [But+15].
We strongly believe that adaptive discretisation with proved error bounds can
be developed in our setting. It is however left for future work.

6.4 From time to resource

We have seen thus far how to compute the optimal ETR for an MRA. As we
mentioned before, it was introduced not only because it addresses the computa-



6.4. FROM TIME TO RESOURCE 135

tion of a useful class of analyses, but also because it provides the basis for the
computation of a more general class, namely the optimal ERR. In this section
we therefore bring resources into play and discuss how to compute the optimal
ERR using the already known solution for the optimal ETR.

The discretisation approach described in Sec. 6.2 cannot be easily lifted
to the resource-bounded setting. The approach to compute the optimal ETR
is through discretisation of its fixed point characterisation. That is to say, the
Volterra integral equation (Eq. (6.1a)) is discretised over the time horizon from 0
to b. By comparing the structure of the fixed point described in Thm. 6.2 with the
one in Thm. 5.2 it turns out that they do not look particularly different. However,
the discretisation cannot be efficiently adapted to the resource-bounded setting.
The main reason is that resources might be spent with different rates among
different states whereas the time passage is globally the same for all (Markovian)
states. It helps in particular to designate the same discretisation scheme among
all states, which is not easily possible in the resource-bounded setting.

We propose a transformation from the time- to the resource-bounded setting.
During the transformation both the model and its resource and reward structures
will be changed. The transformation reduces the problem of computing the
optimal ERR in the original model into the problem of computing the optimal
ETR in the transformed model. In other words, we transform an MRA into
another one such that the optimal ERR of the original model coincides with the
optimal ETR of the transformed one. We can then apply Alg. 6.1 proposed in
Sec. 6.3 to compute the optimal ETR of the transformed model.

6.4.1 The transformation

The core idea of the transformation comes from Beaudry [Bea78]. It exploits
rate scaling as the main technique for resource-to-time transformation in CTMCs.
More precisely, it scales transition rates reciprocal to their resource consumption
rates. In this way, the time passage of the transitions is stretched or compressed
according to their resource consumption. Therefore, for a high resource consum-
ing transition time passes slowly so as to simulate a high resource consumption
with a long sojourn time. The intuition for a low resource consuming transition
is similar. At the end, the rate scaling enables us to simulate resource consump-
tion with time passage. In other words, the resource consumption in the original
model coincides with the time passage in the transformed model. This idea was
later extended to CTMDPs under the class of time-abstract strategies [Bai+08].
The technique is however restricted to uniform CTMDPs, which are CTMDPs in
which all states have the same exit rate.

Requirements. We aim to generalise the resource-to-time transformation of
Beaudry to MRAs for computing the optimal ERR. In our setting, we want to lift
the restriction of [Bai+08] on the class of strategies and on the uniformity of
the model. Moreover, we want our transformation to support states with zero
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resource consumption as it is natural and useful to have such states in a system.
We shall take into account that the transformation may manipulate the transient
reward gained by a state by changing the distribution of sojourn time. Altogether,
we address a resource-to-time transformation that

1. supports general class of MRAs, in particular containing resource preserv-
ing states and transitions,

2. preserves total reward collection under the class of generic measurable
strategies.

The idea. To fulfil the above requirements we make use of the specific structure
of MRAs. In comparison to CTMCs and CTMDPs, MRAs may contain probabilistic
states, states that fire their transitions instantaneously. We exploit it to meet the
first requirement; more precisely to deal effectively with resource preserving
transitions. Such transitions with zero resource consumption suffer from hav-
ing infinite rate after the rate scaling. This in fact justifies turning them into
probabilistic states since infinite rate implies infinitely fast execution.

The transformation. We follow the core idea of the rate scaling, namely we
scale the rate of resource consuming transitions reciprocal to their resource
consumption rate. In order to enable the transformation to preserve transient
rewards, we need to scale transient reward rates in the same way. It remains to
explain how to tackle resource preserving transitions. According to our intuition,
such transitions must be infinitely fast, leaving no chance for consuming any
resource. As mentioned before, this can be indeed imitated by probabilistic tran-
sitions. But in this approach, transient rewards need to be adapted accordingly.
Since probabilistic transitions cannot gain any transient reward, the transient
reward obtained by the original resource preserving transition needs to be prop-
erly transferred to its corresponding probabilistic transition. To do this, we add
the expected transient reward gained by the original transition to the instanta-
neous reward of the transformed transition. Altogether, the formal description
of the transformation is given in the next definition.

Definition 6.22 (Resource-to-time transformation). Let R := (M,%,ρ) be an
MRA. The (resource-to-time) transformed MRA is defined as R% = (M%,1TM

,ρ%)
with M% := (V, v0, T%) and ρ% := (ρ%t ,ρ%i ,ρf) such that

T% = TP ]
�

(vγ, \,dγ) |γ ∈ TM ∩ Trp

	

]
�

(vγ,
rγ
%(γ) ,dγ) |γ ∈ TM ∩ Trc

	

ρ
%
t (γ) =

(

ρt(γ)
%(γ) γ ∈ Trc

0 otherwise
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ρ
%
i (γ) =

(

ρi(γ) +
ρt(γ)

rγ γ ∈ TM ∩ Trp

ρi(γ) otherwise.

We can summarise the transformation as follows. A resource consuming
transition in the original model turns into a Markovian transition in the trans-
formed model with its rate and transient reward scaled inverse proportional to
its resource consumption. A Markovian resource preserving transition becomes
a probabilistic transition with the instantaneous reward increased by the ex-
pected transient reward of the original transition. This can be computed using
the probability density function of the exponential distribution, which leads to
ρt(γ)

rγ for transition γ ∈ Trp ∩ TM. Probabilistic transitions stay untouched under

the transformation. We can at the end conclude that T%M = Trc and T%P = Trp.
MRAs are obviously closed under the transformation. Additionally, their struc-

ture and their size, i. e. the number of states and transitions, stay unchanged
across the transformation. More importantly, there is a one-to-one correspon-
dence between the states and transitions of the original and the transformed
model. Therefore, the transformation is linear in the size of input model and
moreover, it is efficiently computable.

6.4.2 Measure preservation

The resource-to-time transformation exhibits certain features. Apart from the
closure and the efficiency discussed in the previous section, it features measure
preservation. Measure preservation enables it to be used for computing the opti-
mal ERR. More precisely, the transformation reduces the problem of computing
the optimal ERR to computing the optimal ETR. The result is depicted in the
next theorem.

Theorem 6.23 (Measure preservation). LetR,% andR% be as defined in Def. 6.22,
then for all v ∈ V and every b ≥ 0 it holds that

RR(v, b) = �R%(v, b)

Proof. The proof is done by showing that the original and the transformed mod-
els have indeed the same fixed point characterisation for the optimal ERR and
ETR, respectively. We start with the fixed point characterisation of the optimal
ERR for the original MRA, described in Thm. 5.2 for different cases. We first look
at v ∈ Trc with T (v) = {γ̌} and use Eq. (5.20a) to write

Ω(F)(v, b) =

∫ b/%(γ̌)

0

rγ̌ · e−rγ̌ t
∑

v′∈V

dγ̌(v′) · F
�

v′, b−%(γ̌) · t
�

dt

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌)
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We then apply a variable substitution according to the transformation given
in Def. 6.22. Let γ̌% ∈ T% be the transition in the transformed model that is
corresponding to γ̌, then by Def. 6.22 their rates and transient rewards are
related by rγ̌% = rγ̌/%(γ̌) and ρt(γ̌%) = ρt(γ̌)/%(γ̌). Other elements of the transitions
are the same i. e. vγ̌% = vγ̌, dγ̌% = dγ̌, ρ

%
i (γ̌

%) = ρi(γ̌) and ρf(γ̌%) = ρf(γ̌). We
then introduce variable τ with τ := %(γ̌) t. Taking dτ = %(γ̌)dt into account
we express the above equation in terms of τ:

Ω(F)(v, b) =

∫ b

0

rγ̌ · e−
rγ̌/%(γ̌)τ

∑

v′∈V

dγ̌(v′) F(v′, b−τ) 1
%(γ̌) dτ

+
�ρt(γ̌)

rγ̌
+ρi(γ̌)

��

1− e
−

rγ̌·b
%(γ̌)

�

+ρf(γ̌) e
−

rγ̌·b
%(γ̌)

=

∫ b

0

rγ̌% · e−rγ̌%τ
∑

v′∈V

dγ̌%(v′) F(v′, b−τ)dτ

+
�ρ

%
t (γ̌

%)
rγ̌%

+ρ%i (γ̌)
��

1− e−rγ̌% b
�

+ρf(γ̌
%) e−rγ̌% b (6.42)

It can be already seen that the above equation looks exactly like Eq. (6.1a) in
Thm. 6.2. In order to complete the proof we still need to consider v ∈ Vrp ∩
VM and combine it with the case v ∈ VP. Once more, assume γ̌% ∈ T% is the
transformed version of γ̌ ∈ T (v) for v ∈ Vrp ∩ VM. Following from Def. 6.22, it
holds that ρ%i (γ̌

%) = ρi(γ̌) + ρt(γ̌)/rγ̌. Moreover, γ̌% becomes a probabilistic state
of the transformed model with the same source and distribution as γ̌. Therefore,
by Eq. (5.20b) we have

Ω(F)(v, b) =
ρt(γ̌)

rγ̌
+ρi(γ̌) +

∑

v′∈V

dγ̌(v′) F(v′, b)

= ρ%i (γ̌
%) +

∑

v′∈V

dγ̌%(v′) F(v′, b) (6.43)

As mentioned before, probabilistic transitions are not changed by the transfor-
mation. Thus, we can write for v ∈ VP that

Ω(F)(v, b) = mix
γ∈T (v)

�

ρi(γ) +
∑

v′∈V

dγ(v′) · F(v′, b)
�

= mix
γ∈T%(v)

�

ρ
%
i (γ) +

∑

v′∈V

dγ(v′) · F(v′, b)
�

(6.44)

Since γ̌% is the only transition of v and now it is probabilistic in the transformed
model, we can combine Eq. (6.43) and (6.45) to obtain

Ω(F)(v, b) = mix
γ∈T%(v)

�

ρ
%
i (γ) +

∑

v′∈V

dγ(v′) · F(v′, b)
�

(6.45)
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Now we combine Eq. (6.42) and (6.45) to constitute a new representation of
operator Ω. In this view, Ω is identical to the operator given Thm. 6.2. In the one
hand, by Thm. 5.2, RR is the least fixed point of Ω. With the new representation
and by Thm. 6.2 on the other hand, �R% is the least fixed point of Ω. This
complete the proof.

Thm. 6.23 offers a solution for the computation of the optimal ERR. Given
an MRA with resource function % : T → R≥0 and resource budget b ≥ 0, we
first apply the transformation described by Def. 6.22. The transformation can
be efficiently computed in linear time in the size of the MRA. We are left then
with the computation of the optimal ETR of the transformed MRA. At this point,
we can apply Alg. 6.1 to compute the objective up to an arbitrary accuracy
level. The complexity of computing ε-optimal ERR in this way coincides, indeed
with the complexity of Alg. 6.1 applied to the transformed MRA, as discussed in
Sec. 6.3.2.

6.5 Discussion

This chapter addressed the computation of the optimal ERR via a sound discreti-
sation approach together with a measure preserving resource-to-time transfor-
mation. Here we remark on the main points discussed in this chapter.

(i) We defined the optimal ETR (Def. 6.1) as the special case of the optimal
ERR when time is the resource.

(ii) We proposed a discretisation scheme, introduced the discretised optimal
ETR as the limit of a sequence of functions by Def. 6.8 and also established
its characteristics as a fixed point (Thm. 6.9).

(iii) We studied the error induced by the discretisation scheme and established
a lower and an upper bound on it (Thm. 6.19).

(iv) We developed a sound algorithm (Alg. 6.1) for computing the optimal
ETR via the discretisation scheme.

(v) We provided a worst-case complexity analysis for the algorithm and showed
that it can be implemented to run in polynomial time.

(vi) We proposed an efficient resource-to-time transformation that reduces the
computation of the optimal ERR to that of the optimal ETR.

Contributions. This chapter made two major contributions to the analysis of
MRAs. Firstly, as mentioned in points (ii), (iii) and (iv), it developed a sound
discretisation approach with strict error bound that leads to a polynomial time
algorithm for computing the optimal ETR. The algorithm can approximate the
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optimal ETR up to a given precision level. This is a generalisation of our previous
works [HH12; Guc+13; Guc+14a; Guc+14b; Bra+15]. Secondly, it proposed an
efficient resource-to-time transformation that reduces the problem of computing
the optimal ERR to that of computing the optimal ETR. This ingredient was
published in [Hat+15]. Combining these two contributions together enables us
to compute an ε-approximation of the optimal ERR for MRAs in an efficient and
sound way. In the sequel, we elaborate on the existing algorithms and techniques
related to our contributions.

6.5.1 Existing algorithms for CTMDP

To the best of our knowledge, the work described here is the only work devel-
oping a solution for time- and resource-bounded analysis of MRAs. There are,
however, a number of related algorithms, especially in the context of CTMDPs.
Here we discuss them in more details.

Zhang-Neuhäusser algorithm [ZN10; Neu10] computes the maximal time-
bounded reachability of IMCs and CTMDPs for both early and late strate-
gies. Their approach is to discretise the fixed point characterisation of
the maximal time-bounded reachability approach. To this end, the time
horizon is split into a finite number of chunks. The reachability probabili-
ties are then evaluated at the equidistant points induced by the splitting.
The discretisation assumes that at most one Markovian jump can happen
within each chunk. This assumption approximates reachability probabili-
ties by a piece-wise exponential function emerging from the discretisation
of the fixed point characterisation. This can yield an a priori error bound.
Our discretisation can be seen as the extension of theirs for a more gen-
eral class of analysis, namely the optimal ERR, and a more general class
of models, namely MRAs. Furthermore, in [HH13a; HH15] we extended
the Zahng-Neuhäusser algorithm for timed reachability analysis of IMCs
by letting more Markovian jumps occur in each chunk. We showed by an
empirical evaluation that this is superior to the original Zahng-Neuhäusser
algorithm.

Buchholz-Schulz algorithm [BS11; Buc+11] employs both discretisation and
uniformisation [Jen53] for computing the maximal time-bounded reward
of a CTMDP under the class late strategies. The core idea behind the
approach comes from discretising the differential characterisation of the
maximal reward function, given by [Mil68], and solving it using uniformi-
sation. This approach does not support transition dependent rewards. In
this approach the discretisation is done in an adaptive way, meaning that
the length of chunks are not necessarily the same. In each chunk, an un-
der and an over approximation of the maximal reward is computed via
uniformisation. The error bound at each iteration is not clear a priori but
only after computing the approximations. Depending on the shape of the
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current approximations, the length of the next chunk can be prolonged
until the error allowed for this step is reached. This greatly reduces the
number of iterations, relative to the non-adaptive setting. The successor of
the algorithm [BDS17] provides support for transition dependent rewards
in addition to an efficiency improvement.

Polynomial approximation algorithm [Fea+11; Fea+16] computes the opti-
mal time-bounded reachability of a CTMDP (and Markov games) under
the class of late strategies. It discretises the differential characterisation of
the optimal time-bounded reachability using a collocation method similar
to the Runge-Kutta algorithm for solving ordinary differential equations.
However, in contrast to most collocation methods, it provides an a priori er-
ror bound. The reachability probabilities in each chunk are approximated
by polynomials. The higher the degree of the polynomials, the higher is
the computational effort, but the number of chunks required to assure an
a priori error bound drastically decreases. This is the main advantage of
using this algorithm.

Fu’s algorithm [Fu14a; Fu14b] provides a naïve discretisation approach with
a priori error bound for computing the maximal resource-bounded reach-
ability of CTMDPs with multiple resources. This method approximates the
objective by a piece-wise linear function. In this regard, it is similar to the
first order version of the polynomial approximation algorithm discussed
above. It thus requires a high number of iterations to assure a predefined
accuracy level. This method has not been implemented in practice.

Baier et al. algorithm [Bai+05] is one of the earliest attempt to attack the
problem of timed reachability in CTMDPs. The algorithm is designed specif-
ically for the class of uniform CTMDPs. In a uniform CTMDP, transitions
exhibit all the same exit rate. The algorithm then exploits the uniformity
to compute the optimal time-bounded reachability of CTMDPs under the
class of time-abstract strategies. The procedure is similar to the original
uniformisation [Jen53] for CTMCs. The algorithm was later extended so
as to compute resource-bounded reachability in [Bai+08]. It is simple,
efficient and easy to implement.

Unif+ [But+15] is a simple and fast algorithm based on uniformisation [Jen53]
and untimed [Bai+05; Brá+13; RS13] analysis. In contrast to the other
algorithms the time horizon is not discretised; instead the maximal time-
bounded reachability of CTMDPs is iteratively estimated by computing
an under and an over approximation. The algorithm can perform in both
early and late setting. The computation considers the class of time-abstract
strategies. Nevertheless their power tends to the richer class of timed
strategies as the uniformisation rate tends to infinity. Therefore, in order
to improve the approximation bound, in each iteration the uniformisation
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rate is doubled. The iterations continue until the desired accuracy level is
achieved.

Comparison. An broad empirical comparison of the above mentioned algo-
rithms (except for uniformisation and Fu’s algorithm) is presented in [But+15]
where the efficiency of computing time-bounded reachability for CTMDPs is in-
vestigated across several industrial and academic case studies. Although there
is no clear winner among the algorithms, except for a few cases, Unif+ and
Buchholz-Schulz algorithms stand out. The former provides a simple and fast so-
lution, especially when a low to middle accuracy is required. The latter, however
offers a more stable performance for high precision analysis. All in all, Unif+
seems to be the best choice for the first attack to solve the problem.

6.5.2 Resource-to-time transformation

There are a few resource-to-time transformations for Markovian models, which
are explained here. A transformation of resource- to time-bounded properties
for CTMCs was proposed by Beaudry [Bea78]. It uses rate scaling to compute
certain performance-related reliability measures, such as reachability and mean
resource before failure. The technique was generalised [Bai+00] and later ex-
tended to uniform CTMDPs by [Bai+08] for computing the optimal resource-
bounded reachability under the class of time-abstract strategies. We extended
this approach in several directions:

(i) Our transformation works for two player Markov games [Hat+15], which
generalises the previous works. In this thesis, however we focused the
transformation on MRAs, which are special cases of Markov games with
only one player.

(ii) While the original transformation is only given for reachability properties,
our extension also supports cumulative and final rewards.

(iii) We showed that the transformation is measure preserving under the class
of measurable (early) strategies whereas before it was only proved under
the class of time-abstract strategies.

(iv) In contrast to the previous works, our transformation can deal effectively
with resource preserving transitions (transitions with zero resource con-
sumption). This is in fact due to the existence of immediate transitions
offered by probabilistic states in MRAs.

6.5.3 Future works

There exist several avenues for improvement and generalisation of our current
approach. We start with the algorithm for computing the optimal ETR (Alg. 6.1)
and discuss in which direction it can be improved.
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As mentioned before, the number of iterations taken by the algorithm is often
large. Resorting to higher-order approximations will decrease the number of it-
erations [HH15; Fea+11; Fea+16]. We have already done this for IMCs [HH15].
To apply this for MRAs, the main challenge is to estimate the swapping points.
Technically, employing higher-order approximations enables the optimal strat-
egy to change its decision inside a chunk. This necessitates the estimation of
swapping points. To do this in MRAs, we need to consider all stationary strategies
for reaching the set of Markovian states from a probabilistic state. This strategy
set can in general be exponentially large.

An effective alternative to decreasing the number of iterations is to make the
algorithm adaptively taking the discretisation constant according to the current
precision achieved. This has been shown to drastically reduce the number of
iterations for classical collocation methods, e. g. [Pre+07, Sec. 17.2] and also for
CTMDPs [BS11; BDS17]. We believe that our algorithm can be easily improved
to make use of adaptive discretisation constants.

There is an obvious way to generalise our approach to support a richer class of
models. Even though both, the transformation and the algorithm are extended
to compute the same measures in two player Markov games [Hat+15], only
early strategies are considered there. The extension to the late setting would
generalise our approach then effectively cover more formal models including
CTMDPs in the late setting.
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Chapter 7

Implementation and Case
Studies

This chapter revolves around evaluating the effectiveness of the algorithm pro-
posed for the optimal ERR in Ch. 6. It reports on empirical analyses of our
implementation over a variety of academic and industrial case studies modelled
by MRA. We analyse the models against properties that can indeed be formulated
as optimal ERR and are also highly demanded in practice, such as time-bounded
reward, resource- and time-bounded reachability.

We explain first how to model large MRAs in an effective way. We then briefly
describe IMCA, the tool in which we have implemented our algorithm. Combin-
ing both constitutes a processing pipeline called MAMA [Guc+13; Guc+14a;
Guc+14b], which not only supports model description from the beginning to
the final numerical analysis, but also efficient reduction and minimisation of the
model in between.

We demonstrate that the algorithms and tools we developed in the previous
chapters are effective and useful in practice. To this end, we have collected, to
the best of our knowledge, the richest set of academic and industrial case studies
available for MAs and MRAs. We look into the case studies and clarify their com-
ponents and parts. We evaluate the case studies against different analysis goals.
This is followed by experimental results and analysis discussions. In particular,
we inspect the sensitivity of our algorithm with respect to certain parameters of
the model and the analysis, such as model size and accuracy level.

7.1 MAMA tool chain

In this section we sketch M AM A, a tool chain that will be used for MRA modelling
and analysis. MAMA offers an efficient and effective approach that supports
all the way from model description to model reduction and evaluation. In this
regard, there is a clear separation between “model generation” procedure and
“model evaluation” procedure, each being carried out via different tools.

145
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1 Producer = <lambda> . tau . psum(0.05 -> Producer[] ++ 0.95 -> send . Producer[])
2 Consumer = receive . <mu> . Consumer[]
3

4 init Producer[] || Consumer[]
5 comm (send, receive, delivered)
6 encap send, receive

Figure 7.1: MAPA specification of the producer-consumer depicted in Fig. 1.3

7.1.1 Model generation

M AM A provides a process-algebraic modelling language designed for specifying
MRAs. Moreover, it supports several reduction techniques aiming to enhance
both model generation and model evaluation.

MAPA. M AM A employs the Markov Automata Process Algebra (MAPA) [Tim13]
for specifying MRAs. It supports nondeterminism, probabilistic branching and
stochastic timing, all of which are required for specifying MRA models. More-
over, MAPA supports parallel composition of MRAs, allowing modular specifi-
cation of large systems via describing subsystems by MRA and declaring the
interaction between them. In addition, it provides several syntactic reductions
(see also [Tim+12; TPS13]) applied on the language level that shrink the size of
models. MAPA language together with the reduction techniques offer an efficient
way to model MRAs and to reduce their size.

An example. To give the flavour of modelling with MAPA, we present the MAPA
specification of the producer-consumer example described in Fig. 1.3. It is shown
in Fig. 7.1. In the specification random delays are enclosed in “<>”, actions are
written in red colours and probabilistic branching is represented by the psum
operator. The MAPA specification contains two processes Producer (line 1) and
Consumer (line 2). The Producer is subject to a random delay with rate lambda
for producing an item. The item is either failed to be produced with probability
0.05, or is successfully produced and sent to the Consumer with probability
0.95 via action send. The Consumer receives the item via action receive and
consume it in a period that is exponentially distributed with rate mu.

MAPA provides certain constructions for specifying how processes interact
with each other. The init statement on line 4 indicates that the Producer and
the Consumer run in parallel. On line 5, comm describes the action synchronisa-
tion between the two processes. It states that send is synchronised with receive;
the result is labelled with delivered. Afterwards actions send and receive
are made invisible. This is done in line 6 using the encap statement.

SCOOP. Support for MAPA specifications together with several reduction tech-
nique is implemented in SCOOP [Tim+12]. SCOOP takes a MAPA specifica-



7.1. MAMA TOOL CHAIN 147

tion, applies the reduction techniques at the language level and finally gen-
erates the resulting model. The final model basically describes the states and
the transitions in between. It can be dumped into specific formats that can
be read by different analysis tools, including IMCA, which is our tool for MRA
analysis. A web service offering, among others, SCOOP functionality is avail-
able at http://wwwhome.cs.utwente.nl/~timmer/scoop/webbased.html.
Detailed discussions about MAPA and SCOOP are the subject of Ph. D. thesis of
Mark Timmer [Tim13].

7.1.2 Model evaluation

This section elaborates on our implementation that computes an approximation
of the optimal ERR. We first discuss interactive Markov chain analyser (IMCA),
the part of MAMA that is responsible for MRA analysis.

#INITIALS
s0
#TRANSITIONS
s0 ! 0.0
* s1 3.0
s1 tau
* s1 0.05
* s2 0.95
s2 send
* s0 1.0

Figure 7.2: An IMCA
format

IMCA. The IMCA tool is the part of MAMA tool chain
targeted at efficient computation of various types of objec-
tives for MRA models. We have implemented Alg. 6.1 in
IMCA [Guc12; Guc+12; Guc+13; Guc+14b; Guc+14a].
It accepts the textual representation of MRAs in the
form of state-transition list, resembling the input lan-
guage of MRMC [Kat+09] and ETMCC [Her+03]. The
IMCA format of the producer corresponding to line 1 of
Fig. 7.1 and also to Fig. 1.3a is illustrated in Fig. 7.2.
Notice that the IMCA format precisely follows the state-
transition graph of the MRA. The initial state is described
by #INITIALS. The declaration of transitions are followed after #TRANSITIONS
statement. A transition is specified by its source state followed by an action
name and a (rate) distribution. Special action ! is used to signify a Markovian
transition.

The block diagram of IMCA is depicted in Fig. 7.3. The parser reads a model
specified in IMCA format and translates it into a specific sparse matrix equipped
with several indices. The indices provide a fast access to the model parameters
such as rates, distributions and rewards of the transitions. This data structure
is similar to the one used by MRMC. For more details about the data structure
see [Guc12].

The analysis engine of IMCA includes a diverse range of analyses. The “reach-
ability engine” of IMCA computes the optimal unbounded and timed reachability
probabilities of MRAs. The optimal long-run average (reward) is carried out by
the “long-run engine”. The “reward engine” offers reward computation under
both time-bounded and goal-bounded restrictions. The latter stands for the opti-
mal expected reward gained until reaching certain goal states. The former refers
to the optimal ETR. Our contribution to the tool was made by providing the
engine for computing timed reachability and the optimal ETR.
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IMCA
format

input file

parser sparse
matrix

data structure
reachability

long-run

reward

analysis engine

results

Figure 7.3: The IMCA tool [Guc12; Guc+12; Guc+13; Guc+14b; Guc+14a]

Implementation details. To analyse an MRA against the optimal ERR it might
be required to apply the resource-to-time transformation before feeding the
model into Alg. 6.1. We have implemented the transformation using a Python
script. The transformation is done at the language level, i. e. both the original
and the transformed model are described in IMCA format. The complexity of
the transformation is linear in the size of the model and can be therefore carried
out in an efficient way.

We now remark on our implementation of Alg. 6.1. The crucial part is to per-
form the P-updates, which is done by function Pupdate in the algorithm. There,
the least fixed point of the Bellman optimality operator given in Eq. (6.38) is
computed. There are different ways to compute the fixed point. A simple ap-
proach, which is also implemented by us, is to use value iteration. This approach
iteratively updates the vector of rewards using the Bellman optimality opera-
tor. At the beginning the vector is initialised to zero, i. e. g = 0. The iterations
continue until a stopping criterion is met. A common stopping criterion is to
terminate the iterations if the distance between two successive valuations is less
than some predefined error tolerance.

For selecting a good discretisation constant that respects the given accuracy
level (line 9 of Alg. 6.1) we use both linear approximation, given by Eq. (6.39)
and Newton steps. Unless stated differently, in the conducted experiments the
Newton method is applied as it leads to a fewer number of iterations. For sen-
sitivity analysis of the algorithm however we used the linear approximation.
The optimal ERR, which is the main analysis discussed in this thesis, embodies
various types of objectives such as time- and resource bounded reachability and
time-bounded cumulative reward. In Ch. 6, Alg. 6.1 is proposed to compute ε-
approximation of the optimal ETR using the discretisation technique described
in Sec. 6.2. Computing the optimal ERR reduces to computing the optimal ETR
via the transformation given in Def. 6.22.

7.1.3 The tool chain

In order to enable the analysis of MRAs, SCOOP has been connected to IMCA to
form a tool chain, called M AM A [Guc+13; Guc+14a]. In its middle, however we
will need to apply the transformation described in Def. 6.22, in case a resource-
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MAPA spec-
ification

SCOOP
IMCA
format transformation

IMCA

results

Figure 7.4: The MAMA tool chain

bounded analysis is asked. The process of MRA analysis using the tool chain is
summarised in Fig. 7.4. Once an MRA is specified in MAPA, the specification is
fed into SCOOP. SCOOP then performs various reductions and minimisations
and finally generates the model directly in IMCA format. The IMCA format
can now be analysed against time-bounded properties, e. g. the optimal ETR.
Nevertheless, we need to apply the transformation before the model is handed
over to IMCA, provided the analysis involves some resource-bounded property.
In this case the script translates the model into its transformed version according
to Def. 6.22.

As mentioned before, this tool chain is not restricted to ETR and ERR analy-
sis. Once the model is entered, IMCA in addition can carry out long-run average
rewards, unbounded reachability and expected goal-bounded rewards. A web in-
terface for M AM A is available at http://wwwhome.cs.utwente.nl/~timmer/
scoop/webbased.html.

7.2 Case Studies

For our experiments we use a diverse collection of industrial and academic case
studies, all modelled as MRA. Their size is ranging from small models to very
large models containing hundreds of thousands states. Each case study comprises
several components communicating with each other. We model the components
and their interactions using MAPA. In what comes next, we describe different
components of each case study and explain how they are assembled together to
construct the whole system.

Polling System [Guc+13; TPS13] consists of S stations and one server, as il-
lustrated in Fig. 7.5. Incoming requests of J types are buffered in the
stations, each equipped with a queue of size K . The server polls the sta-
tions for requests and processes them with a rate depending on their type.
It may happen with probability 0.1 that a request erroneously stays in a
queue even after being processed by the server. This is represented by red
arrows in the figure. Each request brings an instantaneous reward once
it is completely processed by the server. Moreover, when processing, the
server consumes energy. The model is subject to two kinds of analysis: First
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Figure 7.5: Diagrammatic representation of a polling system

we compute the minimum and the maximum probability of encountering
the error under some energy budget. The second analysis is on the com-
putation of the minimum and the maximum expected energy-bounded
reward of the model. The instances of the polling system are denoted by
“PS-S-J -K”.

Queuing System [HH12] stores requests of J different types into two queues,
each of size K . Each queue is attached to a server, as depicted in Fig. 7.6.
Servers A and B fetch requests from their corresponding queues and pro-
cess them afterwards. Requests processed by server A may follow different
paths. They are either considered as “completely done” or are subject to
“further processing” by server B. In the latter case, which happens with
probability 0.1, they are sent back to the queue of server B as illustrated
by the blue arrow in the figure. Both servers consume energy when they
are processing. We compute the minimum and the maximum number of
processed requests under different energy budgets. The model instances
are denoted as “QS-J -K”.

Dynamic Power Management System [QWP01] models the power manage-
ment system used in a model of Fujitsu disk drive. An abstract model of
the system is described in Fig. 7.7. The model consists of four compo-

Server A

Request Processed

Server B

Queue 1

Queue 2

Figure 7.6: Diagrammatic representation of a queuing system
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Power
Manager

SQ
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Figure 7.7: The abstract model of the dynamic power management system

nents: service requester (SR), service queue (SQ), service provider (SP),
and power manager (PM). SR generates tasks of J types differing in energy
demands. Tasks are buffered by SQ, providing a separate queue of size K
for each task type. They are then fetched from the queues and delivered
to SP to be processed. SP can work in different energy/performance levels
ranging from sleep and stand-by to full processing mode. It is the task of
PM to control the mode of SP in order to achieve a specific objective, like
minimising the energy consumption or processing time.

We explain in more details the operation modes of the SP. It can either
be “busy” with processing a task, “idle” while the queues are empty, in a
“standby” mode, or in a “sleep” mode. In the latter two modes it is inactive
and unable to handle tasks. The change between “busy” and “idle” occurs
automatically, depending on whether there are tasks in the queue or not. If
it has been “idle” for some time, it can be switched into “standby” or “sleep”
by PM. The PM is also responsible for switching from these two modes
back to “idle”. The SP consumes the least power in “standby” and “sleep”
(0.35 W and 0.13 W, respectively), whereas it consumes more power while
“idle” (0.95 W) and the most if it is “busy” (2.15 W) [QWP01; Sim+00].
We model the DPMS as an MRA with the resource representing the power
consumption of the SP. The reward granted as a task is completely ac-
complished. For our experiments we varied the number of different task
types (J) and the size of the queues (K) and describe the instances by
“DPMS-J -K”. We explore the optimal ERR under different energy budgets.

Stochastic Job Scheduling [BDF81] originally stems from economy. In this set-
ting, a number of jobs with different service rates are distributed between
processors. Each processor consumes resources, e. g. energy which has to
be paid for. The goal is to have all jobs processed within a certain energy
budget. In our experiments we explore the reachability of this goal with
homogeneous (“all processors have the same power consumption”) and
heterogeneous power consumption (“the power consumption is different
across processors”), while varying the number of jobs (M) and the number
of processors (N). Since the system degenerates to a CTMC if the service
rates are homogeneous, we do not consider this case. The model instances
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Figure 7.8: The google file system

are denoted as “SJS-N -M”.

Google File System [GGL03; Guc12] is a model of a replicated file system that
is used by Google, as depicted in Fig. 7.8. It splits files into chunks of
equal size. A copy of each chunk is maintained independently by several
of N chunk servers. In the figure, copies of a chunk in different servers
are represented by the same colour. If a user requests a read/write access
to a chunk, the file system first asks a master server which stores the
addresses of all individual chunks. Afterwards, the data is transferred
between the file system and the appropriate chunk server. All servers are
prone to hardware and software failures, but they can be repaired in case
a failure happens. Moreover, a copy of a chunk may be lost (illustrated by
blurred colour), however the recovery is possible if the master server is up.
The number of chunks a server may store is fixed to 5000 and the total
number of chunks to 100000. The model instances are then produced by
varying the number of chunk servers N , denoted as “GFS-N”. We analyse
the maximal reachability probabilities of several instances of GFS. A state
is defined as goal if the file system service is operational there, i. e. the
master server is up and for each chunk at least one copy is available. We
therefore estimate the probability of the system to become operational
within some time interval if starting from a state at which the system is
out of service.

Fault Tolerant Workstation Cluster [HHK00], originally described as a GSPN,
models two networks of N workstations each, interconnected by a switch.
The two switches communicate via a backbone, as depicted in Fig. 7.9.
Workstations, switches, and the backbone fail after a random time that
is exponentially distributed, and can be repaired only one at a time. If
multiple components have failed at the same time, a choice needs to be
made what to repair next. The model instances are denoted by “FTWC-N”.
We consider the overall cluster in premium quality if at least N worksta-
tions are operational and connected to each other. In our experiments, we



7.3. RESULTS AND DISCUSSIONS 153

Backbone

Workstation 1 Workstation 2 Workstation N

Workstation 1 Workstation 2 Workstation N

Switch

Switch

Figure 7.9: The fault-tolerant workstation cluster

analyse the probability of the cluster being unable to offer the premium
service within specific periods of time.

Erlang Stages is a synthetic model with known characteristics [ZN10]. It has
two different paths to reach the goal state: a fast but risky path or a slow
but sure path. The slow path is an Erlang chain of length K and rate R.
The model instances are produced by varying the length K and the rate R
of the slow chain (Erlang chain). ES-K-R

7.3 Results and discussions

In this section we report on the experimental results of analysing the case studies
discussed in Sec. 7.2 against various kinds of objectives. As we mentioned before,
we exploit the M AM A tool chain, described in Sec. 7.1, for this analysis process.
To do this, we made the MAPA specification of each case study. We then fed the
MAPA specifications into SCOOP to generate the IMCA format. The IMCA format
is subject to the resource-to-time transformation if the property to be analysed
is in resource-bounded setting. The IMCA format can then directly be analysed
using IMCA. Here we provide the results of the analyses and discuss them in
more details.

Experimental settings. We ran our experiments on two different machines. All
experiments on the first four case studies were run on a single core of an Intel
Xeon processor (quad-core, 3.3 GHz per core) with 64 GB of memory. All others
were run on a single core of Intel Core i7-4790 (quad core, 3.6 GHz per core)
with 16GB of RAM. In the sequel, we report the parameters of the model we
analyse, the objective to be computed and the result of the computation. We
sometimes report the duration of the analysis, but not the memory consumption,
since it is negligible for all experiments. This echoes that the space complexity
of Alg. 6.1 is linear in the model size.
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Table 7.1: Expected reward in the dynamic power management system

budget = 10 budget = 20 budget = 50
name #states min max min max min max
DPMS-2-5 508 0.759 0.859 1.557 1.924 3.910 5.150
DPMS-2-10 1,588 0.759 0.859 1.557 1.924 3.910 5.150
DPMS-2-20 5,548 0.759 0.859 1.557 1.924 3.910 5.150
DPMS-3-5 5,190 0.785 0.883 1.617 1.930 4.129 5.088
DPMS-3-10 29,530 0.785 0.883 1.617 1.930 4.129 5.088
DPMS-3-20 195,810 0.785 0.883 1.617 1.930 4.129 5.088
DPMS-4-5 47,528 0.784 0.877 1.617 1.889 4.143 4.936
DPMS-4-10 492,478 0.784 0.877 1.617 1.889 4.143 4.936

Computation times. Here we briefly make some observations on the time mea-
surements of all experiments. The shortest computations took only fractions of
a second, e. g. the computation of the minimum reachability for SJS-2-4 with a
resource budget of 5 took 0.06 seconds. The larger ones, however needed several
hours, e. g. for DPMS-4-10 the computation of the minimum reachability with a
resource budget of 50 took almost 11 hours, which was the highest computation
time across all our experiments. As expected, larger models need more time
for analysis than smaller ones. The computation time is also influenced by the
size of the resource (time) budget. For example, for resource budget 10 instead
of 50, the computation of the minimum reachability for DPMS-4-10 took less
than 6 min. Other parameters that affect the running time of Alg. 6.1 are the
accuracy level, the largest exit rate and the maximum reward (of different kinds)
appearing in the model. We discuss in detail later how these parameters affect
the computation time.

Empirical results and discussions. At this point we present our empirical obser-
vations. Tab. 7.1 to 7.4 show the results of our experiments for the first four
case studies, one table for each case study. The first two columns of each table
contain the name of the respective model instance and its number of states. We
reported the result of our computations for different kinds of objectives.

In case of DPMS (Tab. 7.1) and QS (Tab. 7.2) we explore the minimum and
maximum expected reward under different resource budgets. For DPMS we used
resource budgets of 10, 20, and 50, whereas for QS we used resource budgets
of 1, 5, and 10 (see the respective blocks in Tab. 7.1 and Tab. 7.2). It holds for
both DPMS and QS that the expected reward grows with the budget, as does the
difference between minimum and maximum reward, as to be expected. Another
interesting fact is that the size of the queues in the models – while having a
considerable influence on the size of the system – has practically no impact on
the expected reward. The behaviour is completely determined by the number
of different task types. This observation can be explained as follows: For the
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processing unit of DPMS (or of QS) it is not important how many jobs exactly
can be stored in the queue(s), as long as there are jobs in the queue(s).

For PS (Tab. 7.3) we studied both the minimum and maximum reachability
and the minimum and maximum expected reward (see the respective blocks
in the table) under a resource budget of 5. If we increase the queue size, the
minimum and maximum probability for encountering the error decreases, while
the expected minimum and maximum reward increases. At the same time we
can observe that the reachability increases with the number of stations, e. g. for
PS-2-2-2, containing two stations, the maximum probability is 0.773, whereas
for PS-5-2-2, containing five stations, it is 0.992. This makes sense, since the error
is caused by the stations and the probability to encounter the error therefore
increases with having more stations.

For SJS (Tab. 7.4) we also used a resource budget of 5. Here we studied
the minimum and maximum reachability while assuming homogeneous or het-
erogeneous energy consumption for the different processors of the system (see
the respective blocks in Tab. 7.4). For homogeneous energy consumption we
can observe a similar effect as for DPMS and PS: The number of processors in-
fluences the number of states in the system, but has a negligible impact on the
reachability. The latter is completely determined by the number of jobs. What’s
more, the minimum and the maximum reachability are the same in this case,
which echoes the fact that the nondeterminism there is spurious. These effects
vanish if we assume heterogeneous energy consumption. In this case, the dis-
tance between the minimum and maximum reachability increases, especially the
maximum reachability becomes higher. These observations make sense: In case
of a homogeneous system it does not matter, which processor handles which job.
However, in a heterogeneous system there is a choice between more and less
expensive processors which can handle the jobs, which in turn leads to a higher

Table 7.2: Expected reward of the queuing system

budget = 1 budget = 5 budget = 10
name #states min max min max min max
QS-2-2 2,314 0.249 0.857 1.294 4.078 2.634 7.975
QS-2-3 10,778 0.249 0.857 1.294 4.078 2.634 7.975
QS-2-4 46,234 0.249 0.857 1.294 4.078 2.634 7.975
QS-2-5 191,258 0.249 0.857 1.294 4.078 2.634 7.975
QS-2-6 777,754 0.249 0.857 1.294 4.078 2.634 7.975
QS-3-2 12,205 0.125 0.857 0.649 4.078 1.332 7.972
QS-3-3 117,532 0.125 0.857 0.649 4.078 1.332 7.972
QS-3-4 1,080,865 0.125 0.857 0.649 4.078 1.332 7.972
QS-4-2 42,616 0.125 1.287 0.649 6.127 1.333 12.075
QS-4-3 708,088 0.125 1.287 0.649 6.127 1.333 12.075
QS-6-2 266,974 0.084 1.713 0.433 8.187 0.892 16.201
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Table 7.3: Results for the polling system

rechability reward
name #states min max min max
PS-2-2-2 455 0.743 0.773 3.128 3.219
PS-2-2-3 2,055 0.483 0.551 3.980 4.117
PS-2-2-4 8,421 0.998 0.999 1.045 1.080
PS-2-3-2 2,392 0.995 0.996 1.209 1.253
PS-2-3-3 22,480 0.973 0.983 1.730 1.848
PS-2-3-4 137,445 0.990 0.994 1.489 1.583
PS-3-2-2 3,577 0.888 0.917 2.549 2.685
PS-3-2-3 34,425 0.665 0.760 3.493 3.732
PS-3-3-2 35,659 1.000 1.000 0.918 0.965
PS-3-4-2 300,793 0.402 0.543 4.180 4.412
PS-4-2-2 27,783 0.955 0.973 2.166 2.307
PS-4-3-2 570,375 0.793 0.879 3.116 3.403
PS-5-2-2 213,689 0.983 0.992 1.908 2.039

Table 7.4: Reachability in the stochastic job scheduling benchmark

homogeneous heterogeneous
costs costs

name #states min max min max
SJS-2-2 34 0.713 0.713 0.699 0.799
SJS-2-4 464 0.241 0.241 0.186 0.243
SJS-2-6 4,144 0.041 0.041 0.021 0.029
SJS-2-8 29,344 0.004 0.004 0.001 0.002
SJS-4-2 104 0.713 0.713 0.542 0.995
SJS-4-4 3,168 0.241 0.241 0.120 0.610
SJS-4-6 71,644 0.041 0.041 0.013 0.130
SJS-4-8 1,032,272 0.004 0.004 0.001 0.012
SJS-6-2 214 0.713 0.713 0.424 1.000
SJS-6-4 13,924 0.241 0.241 0.059 0.945
SJS-6-6 685,774 0.041 0.041 0.005 0.374
SJS-8-2 364 0.713 0.713 0.337 1.000
SJS-8-4 41,552 0.241 0.241 0.033 0.999
SJS-10-2 554 0.713 0.713 0.274 1.000
SJS-10-4 98,436 0.241 0.241 0.019 1.000

(lower) maximum (minimum) reachability.

We now investigate specific parameter changes and their impact on the run-
ning time of the algorithm. We begin with the model size, more specifically, the
number of states and transitions in the model. By looking into Alg. 6.1, it be-
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Figure 7.10: Impact of model size on computation time

comes clear that enlarging the model size increases the per iteration complexity
of the algorithm. It affects both M- and P-updates in the same way. On the one
hand, if the number of Markovian states and/or transitions increases, M-updates
will need to perform more operations. The same situation prevails among the
probabilistic part of the model when a P-update is invoked. In this case, the fixed
point is computed over a larger structure. Since we employ value iteration in
our implementation, we can say that the per iteration complexity of Alg. 6.1 is
proportional to the model size.

We inspect this claim in practice on the Google file system and the fault
tolerant workstation cluster analysed against time-bounded reachability. We fix
the accuracy level and the time bound and generate several models by changing
their other parameters. This gives us a bunch of similarly structured models
that differ in size. Unfortunately it is not always possible to keep the maximum
exit rate fixed across the models. This impacts the number of iterations to be
taken, which directly affects the running time. We observe this phenomenon in
Fig. 7.10a. In this figure the number of states plus the number of transitions is
considered as the representation of the model size for the fault tolerant work-
station cluster. On the y-axis the running time of the algorithm is reported. The
plot resembles a line with slope of one in logarithmic scale, which reflects the
fact that the running time is proportional to the model size.

The last sample observed from Fig. 7.10a deviates from the previous sample
paths. The reason, as we mentioned briefly, is that the corresponding model
has a larger maximum exit rate than the others. This makes the algorithm take
more iterations to respect the given accuracy level. This situation happens more
frequently for the Google file system. We therefore take the number of iterations
into account and multiply it to the model size. We then report the running
time of the algorithm for each model instance as shown in Fig. 7.10b. Owing
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Figure 7.11: Impact of accuracy level and resource budget on computation time

to considering the number of iterations, the high deviation disappears in this
case. Hence, we shall investigate the number of iterations and its impact on the
running time.

The computation time of Alg. 6.1 also depends on the size of the resource
budget1 and the required accuracy level. In contrast to model size which affects
the per iteration complexity of the algorithm, these two parameters influence the
number of iterations that need to be taken in order to satisfy the accuracy level.
To see why, notice that the per iteration complexity is solely influenced by the
size and the structure of the model, i. e. the number of states and transitions and
how they are connected. Hence, the aforementioned parameters have no impact
on the per iteration complexity. Moreover, considering Eq. (6.30) makes clear
that raising the accuracy level or extending the resource budget both increase the
number of iterations of the algorithm. The increasing ratio is however different
for the two parameters. Extending the resource budget by factor α with other
model parameters unchanged increases the number of iterations by factor α2.
The corresponding factor for the accuracy level under the same condition is α.
Note that the observations are only valid if we use the linear approximation
given in Eq. (6.35) to estimate the number of iterations of the algorithm (see
also Alg. 6.1 line 9).

We conducted some time-bounded reachability analyses in order to find out
the impact of changes in time bound and accuracy level on the running time
of our algorithm. Even though an estimation of the discretisation step via the
Newton method always gives better results than using the linear approximation,
for our purpose we take the latter in this set of experiments. The running time
of the algorithm with respect to ε and b are illustrated in logarithmic scale in

1In this context we can indistinguishably interchange between resource budget and time bound
as the transformation defined in Def. 6.22 does not modify its size.
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Fig. 7.11a and 7.11b, respectively. The dashed lines plotted in each figure are
meant to help representing the dependency. They are drawn with the slope of
one and two in the left and the right figure, respectively. As it can be seen, the
observation from empirical results justifies the conclusion made in the above
paragraph. They suggest the linear dependency between running time and ε
and quadratic dependency between running time and and b.

There are in general other parameters affecting the number of iterations.
Their impact on the number of iterations is summarised in Sec. 6.3.2 by Eq. (6.40).
From there it can be observed that for time-(resource-)bounded reachability
(Lc = 0) the number of iterations is quadratic in the maximum exit rate. Other
dependencies can be inferred from Eq. (6.40).

7.4 Discussion

In this chapter we elaborated on the details of the analysis process we used for
computing the optimal ERR for MRAs. Furthermore, we reported on experimen-
tal results of the analysis on several case studies. The main points covered in
this chapter are as follows.

(i) We discussed briefly how to use Markov automata process algebra (MAPA)
for modelling MRAs;

(ii) We explained the implementation of the analysis technique for computing
the optimal ERR, which is mainly as a part of IMCA tool;

(iii) We described the MAMA tool chain, which provides an analysis pipeline
for computing various kinds of objectives defined on MRAs;

(iv) We collected several industrial and academic case studies that are all mod-
elled by MRA;

(v) We conducted various experiments on the set of case studies to enquire
how effective and efficient our analysis methodology is. Moreover, we
studied the runtime sensitivity of our algorithm with respect to different
parameters of the model and the objective.

Contributions. This chapter contributed to the practical applications of MRAs
and provided an effective and solid methodology for their analysis. This is done
via the MAMA tool chain [Guc+13; Tim13; Guc+14a; Guc+14b], constitut-
ing a pipeline for modelling, reduction and analysis of MRAs. Research groups
from Universität des Saarlandes, RWTH Aachen and University of Twente were
involved in the development of the tool chain. Our contribution in this collabo-
ration was the development of algorithms and tools for MRAs analysis against
the optimal ERR.
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Markov (reward) automaton is a relatively new model with various applica-
tion areas. However, the number of case studies and benchmarks that demon-
strates their applicability has been thus far very limited. In this chapter, we
collected several case studies from industry, economics and academia to better
demonstrate the potential application domains of MRAs. Except for the Google
file system for which the IMCA format was available [Guc12], we specified all
the other case studies in MAPA.

Related works. The root of our analysis techniques mainly comes from the
CTMDP world. A number of tools have been developed for the analysis of
CTMDPs and related models. ETMCC [Her+03] was one of the first tools for
analysis of continuous-time Markovian models. It supports model checking of
CTMCs against continuous stochastic logic (CSL). The successor of this tool,
MRMC [Kat+09] provides a wide range of analysis on various kinds of models.
In particular, it supports CTMDPs and their model checking. There, the Buchholz-
Schulz algorithm [BS11; Buc+11] is implemented for computing the optimal
ETR of CTMDPs. IMCA is highly inspired by MRMC. It reuses MRMC data struc-
ture with slight adaptions to MRAs. However, as we discussed in Sec. 6.5 the
algorithm for computing the optimal ETR follows a different approach. There ex-
ists an algorithm [Fu14a; Fu14b] for resource-bounded reachability of CTMDPs
with multi-dimensional resource consumption. Nevertheless this algorithm has
not been implemented in any tool and thus far has been known as a proof of
concept for solving the problem (on multi-dimension). To the best of our knowl-
edge there is neither a tool that employs the polynomial approximation [Fea+11;
Fea+16] nor a prototype implementation of the algorithm. In the IMC world, the
Zhang-Neuäusser algorithm was proposed for computing time-bounded reach-
ability. The algorithm is implemented in the reachability engine of IMCA. As
discussed in Sec. 6.5 our analysis technique utilises the same approach but for
a more general class of problems on a more general model.

Future works. There is potential room for improvement of our implementation
of computing the optimal ETR. Notably, the discretisation can be extended to take
adaptive steps instead of fixed steps. This has been shown to bring considerable
advancement in efficiency for conventional ODE solvers [Pre+07, Sec. 17.2], and
also for the Buchholz-Schulz algorithm [BS11; But+15]. Another improvement
may result from employing a more efficient approach for computing P-updates.
Currently P-updates are computed via value iteration. In addition, policy iteration
and linear programming may be used to compute the fixed point. An empirical
comparison of these approaches given in [For+11] shows that in all of their
benchmarks a variant of value iteration stands out. However, there are situations
where a combination of the approaches is more effective. This is the case, for
instance when the exact value of the fixed point is needed. For this problem,
it has been shown [Gir12] that the combination of value iteration and linear



7.4. DISCUSSION 161

programming is more efficient. There are plenty of other possibly more efficient
approaches, e. g. pre-solving of P-updates, topological value iteration [DG07]
and so on.
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Chapter 8

Conclusions

This thesis has contributed to the analysis of Markov (reward) automata (MRA).
MRAs constitute an expressive and powerful formalism encompassing a wide
range of features that are required for design and analysis of complex systems. In
order to develop an effective and sound analysis framework for MRAs, we studied
their theoretical foundations and concepts. We then considered their analysis
on finite horizon and, more specifically studied the optimal expected resource-
bounded reward (ERR). In addition to be challenging, this embodies a collection
of important analyses, which are naturally needed for evaluation of industrial
and practical systems. We then looked into mathematical characteristics of the
optimal ERR. Afterwards, we developed sound and efficient algorithmic solutions
for computing the optimal ERR. We implemented our analysis framework and
demonstrated its effectiveness on different industrial and academic case studies.

8.1 Summary

We summarise the main topics explored in this thesis chapter by chapter.

Ch. 1 started with a brief introduction to MRAs and indicated that MRAs can
serve as an effective modelling formalism for real world systems. It then
discussed why the optimal ERR is essential for analysis of practical systems.

Ch. 2 provided the mathematical background essential for understanding the
concepts, methods and proofs used in this thesis. This includes measure
theoretic concepts, convergence, continuity and basics of probability the-
ory.

Ch. 3 developed the theoretical foundations of Markov automata (MA), the
underlying construction of MRAs. It defined Markov automaton and dis-
cussed compositionality. It then explained the concept of closedness and
provided the semantics of closed Markov automata by means of histories
and paths. Afterwards, it studied measurability in the MA context, and

163
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defined a σ-algebra over the set of paths induced by MAs together with its
generic measurable strategies. The most important topic of this chapter was
expectation splitting, which provides a generic technique for computing
the expectation of a random variable defined on the set of paths induced
by an MA.

Ch. 4 introduced Markov reward automata (MRA) as the extension of Markov
automata with reward and resource structures. It subsequently defined
the optimal expected resource-bounded reward (ERR) on MRAs, which is
the main objective studied in this thesis. As the main result, this chapter
established an upper bound for the optimal ERR of an MRA in terms of
certain parameters of the model. Accordingly, MRAs were classified into
null reward convergent and null reward divergent, depending on the value
of the optimal ERR being finite or infinite, respectively.

Ch. 5 took the main step toward computing the optimal ERR by characterising
it as the least fixed point of a Volterra integral equation system. Using
this result, it established Lipschitz continuity of the optimal ERR for null
reward convergent models. This also leads to its differentiability almost
everywhere but not at swapping points.

Ch. 6 addressed the numerical computation of the optimal ERR. It started with
a slightly simpler problem, namely the computation of the optimal expected
time-bounded reward (ETR), which is the optimal ERR when time takes the
role of the resource. For this, a sound discretisation approach was proposed
for computing an ε-approximation of the optimal ETR. This leads to a
numerically stable algorithm with strict a priori error bound which runs in
polynomial time. This chapter also proposed an efficient resource-to-time
transformation that reduces the computation of the optimal ERR to that
of the optimal ETR. This accomplished a sound analysis framework for
computing the optimal ERR in MRAs.

Ch. 7 evaluated the effectiveness and the efficiency of the proposed analysis
framework. It first explained our tool chain, MAMA, which constitutes
a processing pipeline for efficient modelling, reduction and analysis of
MRAs. M AM A is the result of collaboration between a number of research
groups from Universität des Saarlandes, RWTH Aachen and University of
Twente. Moreover, this chapter collected several industrial and academic
case studies that are all modelled by MRA. It then reported on an empirical
evaluation of our analysis framework by conducting various experiments
on the set of case studies. Moreover, the run-time sensitivity of our tech-
nique was studied with respect to different parameters of the model and
the objective.

In summary, the framework proposed in this thesis provides sound and efficient
algorithms for analysing MRAs on finite horizon. This is bundled into the M AM A
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tool chain together with a modelling language, several reduction techniques
and infinite horizon analysis. All in all, MRAs can effectively serve as modelling
formalism accompanied by efficient analysis approaches for a wide range of
systems.

8.2 Contributions

We categorise the contributions made by this thesis into three domains. We
elaborate on each domain separately.

Foundation. This thesis contributed to mathematical foundations of Markov
reward automata. In Ch. 3, we extended our previous work [HH12] on the mea-
surability in the MA context, defined the class of generic measurable strategies
and established a unique probability measure on the set of paths induced by
an MRA. Such a thorough study has not been done before for MRAs and MAs.
Moreover, we introduced the concept of expectation splitting, an abstract tool
that can simplify a diverse range of analyses on MRAs. In Ch. 4, we generalised
our previous works [HH12; Guc+13; Guc+14b; Guc+14a; Bra+15; Hat+15]
and defined the optimal expected resource-bounded reward (ERR), step by step
using the optimal expectation of a sequence of random variables. Employing
such a method for defining a measure, later facilitated the development of math-
ematical features like measurability and continuity. In contrast to common belief,
we also showed that studying the minimal ERR is technically more difficult than
the maximal case. While most of the previous works restricted their analysis to
the maximal case, we developed our theory for both.

Analysis. A significant contribution was made in the domain of developing both
theoretic and algorithmic tools for analysis of Markov reward automata on finite
horizon. In Ch. 4, we established an upper bound for the optimal ERR of MRAs.
To this end, we utilised the rigorous technique of expectation splitting developed
in Ch. 3. Accordingly, we classified MRAs into null reward convergent and null
reward divergent, depending on the value of the optimal ERR being finite or
infinite, respectively. In Ch. 6, we developed a sound discretisation approach
with strict error bound that leads to a polynomial time algorithm for computing
the optimal ETR. The algorithm enables to approximate the optimal ETR up to
a given precision level. This is a generalisation of our previous works [HH12;
Guc+13; Guc+14a; Guc+14b; Bra+15]. We then proposed an efficient resource-
to-time transformation that reduces the problem of computing the optimal ERR
in an MRA to the problem of computing the optimal ETR in the transformed MRA.
This contribution was published in [Hat+15]. At the end, the algorithm and the
transformation together constitute an efficient and sound analysis framework
for computing an ε-approximation of the optimal ERR.
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Application. In this thesis, we also looked into application domains of Markov
reward automata. In Ch. 7, we collected several case studies from industry,
economics and academia to better show the potential application domains of
MRAs. Such a broad list of case studies was never collected for MRAs before. We
also implemented our analysis technique as a part of the MAMA tool chain. In
addition to our analysis framework, M AM A provides a wide range of tools and
techniques for efficient modelling, reduction and analysis (on infinite horizon)
of MRAs. We then conducted various experiments on the collected case studies
to demonstrate the effectiveness and the efficiency of our analysis framework.

8.3 Future works

A number of topics have been mentioned as future works throughout this thesis.
Here we highlight some interesting ones. In Ch. 3, we would like to inspect the
existence of a super class of generic measurable strategies that still leads to a
unique probability measure over the set of paths induced by an MRA. The result is
of theoretical interest. A detailed study of null reward divergence, defined in Ch. 4
and its connection to timelock is another potential area for further investigation.
Establishing the differential characterisation of the optimal ERR, as mentioned
in Ch. 5, might provide new insights into the way we analyse MRAs. Moreover,
this might be helpful when studying the existence and the shape of the optimal
strategy for ERR. The main area of development in Ch. 6 and 7 is to improve
the efficiency of Alg. 6.1, which computes an approximation of the optimal ETR.
This includes decreasing the number of iterations in the algorithm, developing
adaptive discretisation, using more efficient ways for fixed point computation
and employing parallel processing. Extending the analysis framework to the late
setting will also generalise our approach to a wide range of models, including
CTMDPs.
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