
Light Transport Simulation
on

Special Hardware

Tomáš Davidovič

Thesis for obtaining the title of
Doctor of Engineering Science (Dr.-Ing.)

of the Faculty of Mathematics and Computer Science
of Saarland University

Saarbrücken, Germany, May 2016

Dean of faculty:
Univ.-Prof. Dr. rer. nat. Frank-Olaf Schreyer
Saarland University, Saarbrücken, Germany

Committee chair:
Prof. Dr. Sebastian Hack
Saarland University, Saarbrücken, Germany

Reviewers:
Prof. Dr.-Ing. Philipp Slusallek
Saarland University, Intel VCI, and DFKI, Saarbrücken, Germany

Dr.-Ing. Habil. Karol Myszkowski
MPI Informatik, Saarbrücken, Germany

Doc. Ing. Jaroslav Křivánek, Ph.D.
Charles University, Faculty of Mathematics and Physics
Praha, Czech Republic

Academic assistant:
Dr. Andreas Nonnengart
DFKI, Saarbrücken, Germany

Date of defense:
November 25th, 2016

Tomáš Davidovič

iii

Abstract

It cannot be denied that the developments in computer hardware and
in computer algorithms strongly influence each other, with new instructions
added to help with video processing, encryption, and in many other areas.
At the same time, the current cap on single threaded performance and wide
availability of multi-threaded processors has increased the focus on parallel
algorithms. Both influences are extremely prominent in computer graphics,
where the gaming and movie industries always strive for the best possible
performance on the current, as well as future, hardware.

In this thesis we examine the hardware-algorithm synergies in the con-
text of ray tracing and Monte-Carlo algorithms. First, we focus on the very
basic element of all such algorithms – the casting of rays through a scene,
and propose a dedicated hardware unit to accelerate this common operation.
Then, we examine existing and novel implementations of many Monte-Carlo
rendering algorithms on massively parallel hardware, as full hardware uti-
lization is essential for peak performance. Lastly, we present an algorithm
for tackling complex interreflections of glossy materials, which is designed
to utilize both powerful processing units present in almost all current com-
puters: the Central Processing Unit (CPU) and the Graphics Processing
Unit (GPU). These three pieces combined show that it is always important
to look at hardware-algorithm mapping on all levels of abstraction: instruc-
tion, processor, and machine.

iv

v

Kurzfassung

Zweifelsohne beeinflussen sich Computerhardware und Computeral-
gorithmen gegenseitig in ihrer Entwicklung: Prozessoren bekommen neue
Instruktionen, um zum Beispiel Videoverarbeitung, Verschlüsselung oder an-
dere Anwendungen zu beschleunigen. Gleichzeitig verstärkt sich der Fokus
auf parallele Algorithmen, bedingt durch die limitierte Leistung von für
einzelne Threads und die inzwischen breite Verfgbarkeit von multi-threaded
Prozessoren. Beide Einflüsse sind im Grafikbereich besonders stark , wo es
z.B. für die Spiele- und Filmindustrie wichtig ist, die bestmögliche Leistung
zu erreichen, sowohl auf derzeitiger und zukünftiger Hardware

In Rahmen dieser Arbeit untersuchen wir die Synergie von Hardware
und Algorithmen anhand von Ray-Tracing- und Monte-Carlo-Algorithmen.
Zuerst betrachten wir einen grundlegenden Hardware-Bausteins für alle diese
Algorithmen, die Strahlenverfolgung in einer Szene, und präsentieren eine
spezielle Hardware-Einheit zur deren Beschleunigung. Anschließend unter-
suchen wir existierende und neue Implementierungen verschiedener Monte-
Carlo-Algorithmen auf massiv-paralleler Hardware, wobei die maximale
Auslastung der Hardware im Fokus steht. Abschließend stellen wir dann
einen Algorithmus zur Berechnung von komplexen Beleuchtungseffekten bei
glänzenden Materialien vor, der versucht, die heute fast überall vorhandene
Kombination aus Hauptprozessor (CPU) und Grafikprozessor (GPU) op-
timal auszunutzen. Zusammen zeigen diese drei Aspekte der Arbeit, wie
wichtig es ist, Hardware und Algorithmen auf allen Ebenen gleichzeitig zu
betrachten: Auf den Ebenen einzelner Instruktionen, eines Prozessors bzw.
eines gesamten Systems.

vi

vii

Acknowledgments

No long term project is possible without support and inspiration from
many people from all walks of life.

First and foremost, I would like to thank my supervisor Philipp
Slusallek for giving me the chance to switch fields from hardware to graphics,
for his guidance in the research, and the enthusiasm with which he intro-
duced me to many other greats of the graphics field. I would also like to
thank the Saarland University and the Intel Visual Computing Institute for
providing funding of my research.

Special thanks also go to my two main collaborators, Jaroslav
Křivánek and Miloš Hašan, whose fresh perspective was always there when
my inspiration was running dry. I would also like to thank my friends and
colleagues at the Saarland University: Iliyan Georgiev, Stefan Popov, Javor
Kalojanov, Lukáš Maršálek, Beata Turoňová, Martin Čad́ık, Vincent Pego-
raro, and Ralf Karrenberg for ideas, support, distractions and generally the
best atmosphere a man could want in a time.

Sebastian Sylwan and Luca Fascione are solely responsible for fulfilling
an impossible childhood dream of mine by giving me the opportunity to
do an internship at Weta Digital and, in turn, be an active participant
on bringing the works of Tolkien to life. The thanks also belong to the
anonymous reviewers, whose comments always helped to produce a better
and clearer paper.

And last but not least, I would like to thank all my friends and family,
who supported me throughout the years in all the major decisions I had to
make.

Thank you all!

viii

Contents

1 Introduction 1
1.1 Our contributions . 4

2 Background 7
2.1 Light Transport . 8

2.1.1 Radiometric Quantities 8
2.1.2 The Rendering Equation 9
2.1.3 The Ray Tracing Operator 10
2.1.4 The Path Integral Formulation 11
2.1.5 The Bidirectional Scattering Distribution Function . . 12

2.2 Monte Carlo Integration . 14
2.2.1 Random Variables . 14
2.2.2 Monte Carlo Estimator and Its Error 15
2.2.3 Efficient Sampling of Monte Carlo Estimator 16

2.3 Rendering Techniques . 18
2.3.1 Direct Illumination . 18
2.3.2 Whitted-style Ray Tracing 20
2.3.3 Path Tracing . 21
2.3.4 Bidirectional Path Tracing 23
2.3.5 (Progressive) Photon Mapping 24
2.3.6 Virtual Point Lights 27

2.4 Acceleration Structures . 29
2.4.1 Ray Tracing Acceleration 29
2.4.2 Photon Mapping Acceleration 33

2.5 Hardware Acceleration . 36
2.5.1 Basics of Single Instruction Multiple Data 36
2.5.2 General-Purpose computation on Graphics Processing

Units . 38
2.5.3 Dedicated Ray Casting Units 41

3 A Dedicated Ray Traversal Engine 47
3.1 Ray traversal engine . 49

3.1.1 Design blocks . 50

ix

CONTENTS x

3.1.2 RTE synthesis . 51
3.2 Simulator architecture . 52

3.2.1 Shader models . 53
3.2.2 Acceleration structure partitioning 53

3.3 Results . 54
3.3.1 Standard implementation 54
3.3.2 Treelet implementation 56
3.3.3 Using BVH . 58

3.4 Conclusion . 59

4 Light Transport Simulation on the GPU 63
4.1 Related Work . 64
4.2 Overview . 65

4.2.1 Terminology . 67
4.2.2 Testing Setup . 68

4.3 Path Tracing . 69
4.3.1 Algorithm Overview 69
4.3.2 Survey of Existing GPU Implementations 70
4.3.3 Proposed Alternative Implementations 74
4.3.4 Results and Discussion 76
4.3.5 Conclusion . 79

4.4 Bidirectional Path Tracing . 80
4.4.1 Algorithm Overview 80
4.4.2 Survey of Existing GPU Implementations 81
4.4.3 Proposed Alternative: Light Vertex Cache BPT 83
4.4.4 Results and discussion 85
4.4.5 Conclusions . 87

4.5 Photon Mapping-Based Approaches 88
4.5.1 Survey of Existing GPU Implementations of Photon

Map Search Structures 90
4.5.2 Rectified Stochastic Hash Grid 92
4.5.3 Implementation Detail: Improved Hash Grid Query . 93
4.5.4 Results and Dicussion 94
4.5.5 Conclusions . 97

4.6 Vertex Connection and Merging 97
4.6.1 Algorithm Overview 98
4.6.2 Proposed GPU Implementation 98
4.6.3 Results and Discussion 98

4.7 Algorithm Comparison . 99
4.7.1 Path Tracing . 101
4.7.2 Bidirectional Path Tracing 101
4.7.3 Photon Mapping-based Methods 102
4.7.4 Vertex Connection and Merging 103

4.8 Conclusion . 103

CONTENTS xi

5 Global and Local VPLs 107
5.1 Related Work . 109
5.2 Overview . 111
5.3 Visibility Clustering for Global Lights 114
5.4 Local Lights . 117
5.5 Implementation Details . 118
5.6 Results . 119
5.7 Conclusion . 125

6 Conclusion 129

A Supplemental Material for Light Transport Simulation on
the GPU 135
A.1 Path Tracing . 135
A.2 Bidirectional Path Tracing . 135
A.3 Algorithm Comparison . 136

B Supplemental Material for Global and Local VPLs 147
B.1 Stochastic Progressive Photon Mapping 147

CONTENTS xii

List of Figures

2.1 Global Illumination examples 7
2.2 Lambert’s Law . 9
2.3 Used BSDFs . 13
2.4 Pinhole Camera . 18
2.5 Direct Illumination . 19
2.6 Direct illumination limitations 20
2.7 The Whitted-style ray tracing 20
2.8 Naive Path Tracing . 22
2.9 Path Tracing with Next Event Estimation 23
2.10 Bidirectional Path Tracing failure 24
2.11 Bidirectional Path Tracing vs Photon Mapping 25
2.12 Photon Mapping paths . 26
2.13 Virtual Point Lights . 27
2.14 2D Uniform Grid . 30
2.15 2D kd-tree . 31
2.16 2D Bounding Volume Hierarchy 32
2.17 2D point kd-tree . 34
2.18 2D point Uniform Grid . 35

3.1 RTE block diagram . 50

4.1 Our test scenes. 68
4.2 Compaction . 72
4.3 Path Tracing Performance . 79
4.4 Bidirectional Path Tracing sample 80
4.5 Reflected caustics . 86
4.6 Progressive Photon Mapping variants 88
4.7 PPM, SPPM and PBPM on glossy surfaces 90
4.8 Rectified Stochastic Hash Grid 92
4.9 Vertex Connection and Merging 98
4.10 Asymptotic convergence of all algorithms on all scenes 100
4.11 Convergence of PPM and BPT 102

xiii

LIST OF FIGURES xiv

5.1 Comparison of our approach with Virtual Spherical Lights
(VSLs) . 107

5.2 Conceptual overview of our algorithm 115
5.3 Global light methods . 119
5.4 Local lights only . 121
5.5 Component separation . 122
5.6 Kitchen 1 . 123
5.7 Results . 124

A.1 Path tracing performance . 137
A.2 Complete performance results 139
A.3 CoronaRoom results . 140
A.4 CoronaWatch results . 141
A.5 LivingRoom results . 142
A.6 BiolitFull results . 143
A.7 CrytekSponza results . 144
A.8 GrandCentral results . 145

B.1 Comparison with PPM and SPPM 148
B.2 Comparison with PPM and SPPM 149

List of Tables

3.1 Results without treelets . 55
3.2 Results with treelets . 57
3.3 Acceleration structures . 59

4.1 Path Tracing Performance . 77
4.2 Summary of BPT memory requirements 85
4.3 Relative BPT speed up . 87
4.4 WhileQuery speedup . 95
4.5 Acceleration Structure comparison 95
4.6 PPM acceleration structure timings 96
4.7 VCM performance . 99

5.1 Timing and statistics . 120

A.1 Relative BPT speed up . 138

xv

LIST OF TABLES xvi

List of Algorithms

NaivePTmk Naive Path Tracing (multiple kernels) 70
RegenerationPTmk Path Tracing with Regeneration (multiple kernels) 71
StreamingPTmk Streaming Path Tracing with Regeneration . . . 73
NaivePTsk Naive Path Tracing (single kernel) 75
RegenerationPTsk Path Tracing with Regeneration (single kernel) . 76
StreamingBPT Streaming Bidirectional Path Tracing with Re-

generation . 82
LVC-BPT Light Vertex Cache BPT 84
1 Building hash grid 91
2 Hash Grid Query 94

GLL Global and Local VPLs 113

xvii

LIST OF ALGORITHMS xviii

Chapter 1

Introduction

In the past two decades, 3D computer graphics slowly became ubiquitous in
our lives. It is an indisputable part of our entertainment as, in the almost
twenty years since Toy Story was the first feature length 3D animated movie,
3D animation took over the field almost exclusively. The same is true for
live action movies, where the posters moved from boasting that the movie
does also contain computer-generated imagery to boasting that the movie
does also contain practical effects. And, of course, computer games of just
about any kind do not even need a mention.

But it is not just the obvious fields where 3D graphics plays an im-
portant role. It is also used in architecture to visualize buildings and offices
before they are built, in design to both pitch the initial designs and to re-
duce the number of model iterations before the final product is approved, in
bioinformatics where 3D visualization of proteins with shadows and other
lighting effects helps the researchers to better understand the protein struc-
tures and their possible effects, and we could go on and on.

Therefore, it is no surprise that there is an ever-present push for a
higher realism of graphics, be it more detail, better materials, or more
realistic illumination. In car design, faithful 3D visualization allows the
car manufacturers to reduce the number of physical prototypes, as well as
quickly showing the customers what a car would look like with a different
paint or interior. In architecture, the game-like 3D graphics allows us to
present the customers with a walk-through of a yet non-existent building.
The more realistic illumination also allows evaluating how much light an
office desk or a living room will get throughout the year. It could also, with
sufficiently accurate models, prevent the effects of London’s “Walkie-Talkie”
skyscraper, which focuses light on several London streets and melts plastic
parts of cars parked there.

The importance of accurately representing the real world in visual ef-
fects for action movies is indisputable, as the goal is to present the audience
with imagery that is indistinguishable from reality, including – but not lim-

1

CHAPTER 1. INTRODUCTION 2

ited to – creating whole environments and placing actors’ faces on stuntmen
bodies. But the realism is also important in animated movies even though
the audience knows from the start that the settings are not real. The artists
rarely need completely photorealistic images but getting the indirect illu-
mination, the color bleeding, the penumbra shadows, and other such effects
right can still greatly enhance the image and leads to convincing realism.
And these effects are, indeed, present in all the newer movies by all the
big names in the industry such as Disney, DreamWorks, Pixar, and many
others.

To achieve this ever-increasing demand for realism, the computer
graphics has also evolved. At the very first, only the wireframe models,
that is, the edges of the objects, were displayed. This approach gave the
user a blueprint-like view of the scene and, for this very reason, it is still
used in architecture and similar applications. However, despite the indis-
putable advantages when it comes to design, the see-through nature is not
really appealing for most applications.

The next step was to assign the objects with colors and then, for each
pixel, display the color of the closest object seen through the pixel. It is also
possible to assign each point of the object its own color to give a perception
of surface texture such as wood or granite. This gives the users a basic idea
about spatial relations of objects in the scene and in this simple form can
be still seen today in basic kitchen planers and a similar software.

This approach has further evolved to allow more and more complex
algorithms that determine the object’s color under a given pixel leading
to today’s rasterization approach with fully programmable pixel shaders.
These generally determine the color by evaluating camera position, light
positions, and (multiple) textures. It is important to note that all of the
computations are strictly local. That is, when computing a pixels color the
program does not have any awareness about the rest of the scene and cannot,
for example, determine whether it is in shadow in respect to particular
light or not. While such limitations can, of course, be worked around, the
workarounds always contain some kind of approximation that cannot achieve
a completely faithful representation of the scene. For example, shadows
can be approximated by storing, for each light and direction from it, the
distance to the closest object in an approach called shadow mapping. As
it obviously is not possible to store the distance for each direction, these
directions are therefore discretized, leading to jagged shadow edge artifacts,
with the artifact severity based on the resolution of the discretization.

To achieve the physical realism, we have to abandon these local illu-
mination methods and, instead, focus on global illumination, inspired by the
physics of light1. In the real world, photons are emitted from a light source

1For our purposes, we will consider only the ray optics approximation of the real light
behavior as wave optics is neither widely required nor used.

CHAPTER 1. INTRODUCTION 3

and interact with the environment, reflected around until they are absorbed
by a surface. If this surface is our camera’s sensor we register the photon
and, after many such events, an image is formed. While we can simulate
this exact behavior in a computer (the method is called Light Tracing), the
ratio of all surfaces in the scene that can absorb photons to the surface of
the camera sensor is usually so large, that the method as described would
be extremely inefficient. In Path Tracing we follow a reverse process, start-
ing from the camera and interacting with surface until the path encounters
a light source and the final contribution can be computed. Both of these
methods, as well as many others that are based on the same principles,
are collectively known as the light transport simulation, as they simulate
how light is transported in a real world and along with physically plausible
materials2 form the basis of the physically-based rendering.

In this thesis, we focus on accelerating these two basic approaches
and the many algorithms that are based on them. First we look at the most
common operation used: Finding the closest surface along a given ray. This
is an essential building-block in all algorithms that mimic physics, as we
simply need to know the next surface a photon will interact with. Is it also
the single most important difference from the rasterization approaches, as
it requires access to the whole scene. In Chapter 3 we look at the options of
implementing this important operation in a dedicated hardware unit similar
to rasterization units used on the modern GPUs.

To achieve a nice noise-free image with a digital camera, we want
to capture, on average, somewhere between high tens and low hundreds of
thousands of photons per pixel, depending on the sensitivity of the CCD
sensor. While the paths used in computer graphics generally carry more in-
formation than a single photon, e.g., each represents multiple wavelengths,
we still often need tens to hundreds of paths per pixel, leading to tens to
hundreds of millions of paths total, for a full HD image. Considering these
paths are, at least in the basic approaches, completely independent and can
all be computed in parallel, we can see why rendering is often called an
embarrassingly parallel [Moler 1986] problem. A second important aspect
to note about the paths simulated in a computer is that even paths that
do not bring any contribution to the camera do come at cost. So, while
in nature we can have many billions of photons emitted for each photon
that is captured on the camera, our rendering algorithms have to be de-
signed to maximize the number of paths that bring us relevant illumination
information. In Chapter 4 we focus on these two objectives and explore
mapping of progressively more and more advanced algorithms onto some of
most powerful massively parallel hardware currently available.

2Such materials are, for example, required to reflect at most as much energy as their
receive in order to not violate the law of energy conservation. This somewhat obvious
requirement was not common before physically-based rendering.

CHAPTER 1. INTRODUCTION 4

Unfortunately, even with the most advanced algorithms of today, there
are still some scene configurations, such as stainless steel kitchens, that are
extremely hard to sample efficiently, see Figure 5.6 for an example. On
the other hand, many applications, such as fast design previews do not
need exact physical accuracy but, instead, require a solution only accurate
enough for the result to look convincing to the human eye. We explore this
opportunity in Chapter 5, where we separate the problem into two parts,
use different sets of approximation on each of these parts, and map the
required steps to both CPU and GPU to utilize the full computing power
of the modern computer.

1.1 Our contributions

The content of this thesis builds upon a number of previous work in the
field, and its major contributions are based on previously published papers
where the author was the main investigator. Below we present a summary
of these contributions:

� A Dedicated Ray Traversal Engine. (Section 3) Finding the clos-
est surface in a given direction is a fundamental operation in almost all
photorealistic rendering algorithms. However, despite its ubiquitous
nature and its significant cost that scales with the scene complexity,
there still is little hardware acceleration available. Our first contri-
bution is an evaluation of a dedicated Ray Traversal Engine hard-
ware unit with a focus on its connection to a general purpose shading
processor rather than just the ray traversal itself. We achieve this
by modifying an existing Dynamic RPU design, synthesizing it with
a state-of-the-art ASIC technology to obtain its characteristics and
building a cycle accurate simulator of the unit. We show that such a
unit could trace a significant number of rays for a fairly modest cost
in both die area and bandwidth. These contributions are based on
[Davidovič et al. 2009] and [Davidovič et al. 2011], where the author
developed the VHDL code for hardware synthesis results, the SystemC
simulation layer, performed majority of the tests, as well as wrote the
main parts of the text.

� Light Transport Simulation on the GPU. (Section 4) When look-
ing at a higher level of abstraction, the most important aspect in ren-
dering is having as many efficient paths as possible. This is the goal
of our next contribution where we focus on mapping algorithms onto
a massively parallel, wide SIMD hardware, specifically the NVIDIA
GPU cards using an already existing library for the ray tracing queries.
We re-implement many previously proposed solutions for Path Trac-
ing, Bidirectional Path Tracing, and Progressive Photon Mapping al-

CHAPTER 1. INTRODUCTION 5

gorithms, augment the selection with some novel implementations of
our own, and also provide the first GPU implementation of the Vertex
Connection and Merging algorithm [Georgiev et al. 2012]. We test
each of the algorithms on two generations of NVIDIA GPU and we
present an extensive comparison of the various implementations, pro-
viding detailed insight into their individual strengths and weaknesses
with respect to the properties of the implementation platform. Fi-
nally, to evaluate their relative performance in different scenarios we
also provide a comparison of the algorithms across multiple scenes.
This part of this thesis is based on [Davidovič et al. 2014], where
the author wrote the majority of the testing framework, proposed all
the novel algorithms, performed the described experiments, and wrote
majority of the technical sections.

� Global and Local VPLs. (Section 5) For our last major contribution
presented in this thesis, we examine the extremely hard problem of in-
terreflections in a highly glossy environment. In such an environment
only a fairly narrow bands of paths have a significant contribution to
the final image, and finding them by standard sampling techniques
is difficult and time consuming. We propose to address this issue by
separating the light transport into a global component, providing the
overall illumination, and a local component, providing highly localized
glossy reflections. This separation allows us to apply different approx-
imations of each component which allows us to significantly increase
the total number of contributing paths per pixel. The various steps
of the algorithm are then split between the CPU and the GPU and
executed in parallel to maximize the utilization of the used computer.
This method was originally published in [Davidovič et al. 2010], where
the author wrote the majority of the code, proposed several key com-
ponents on both local and global approximations, performed numerous
experiments to evaluate feasibility of each element of the final algo-
rithm, and wrote significant parts of the implementation details and
results sections.

� Other contributions. Our other contributions, not discussed in de-
tail in this thesis, include investigation of similarities between ray trac-
ing and rasterization [Davidovič et al. 2012a], as well as further ad-
vances in many-light methods on the GPU [Davidovič et al. 2012b],
and the first publicly available Vertex Connection and Merging imple-
mentation SmallVCM [Davidovič and Georgiev 2012]. The full list of
publications is also a part of this thesis and can be found after the
bibliography section (Section My Publications).

CHAPTER 1. INTRODUCTION 6

Chapter 2

Background

(a) Direct illum. (b) Color bleeding (c) Ind. shadows (d) Full GI

Figure 2.1: Global Illumination examples. Direct illumination (2.1a) provides basic
intuition about the scene but is far from realistic. Among the missing global illumination
effects is color bleeding (2.1b), where light bounces off the red wall and colors the block
in the middle. When the red wall receives a stronger illumination, it can also create
indirect shadows (2.1c) behind the block. A combination of all the effects gives us full
global illumination results (2.1d).

To render realistic global illumination effects, such as seen in Fig-
ure 2.1, we first have to understand the basic physical principles of light
propagation. In this chapter, we describe the basic concepts of light trans-
port: The basic radiometric quantities used in light transport, the render-
ing equation that describes light arriving at each point in the scene, the
ray tracing operator used to find the closest surface in a given direction,
the Bidirectional Scattering Distribution Function (BSDF) used to describe
material properties, and the path integral formulation of light transport. We
refer to these terms in all the remaining chapters but significantly in Chap-
ter 5, where we separate the rendering equation into two parts and solve
them independently, each using a different set of approximations allowed by
the separation.

Next, we introduce Monte Carlo integration as a general technique to
solve the rendering equation, and describe several rendering techniques used
to implement the Monte Carlo approach, such as Path Tracing, Bidirectional
Path Tracing, and Virtual Point Lights. Chapter 4 focuses on implementa-

7

CHAPTER 2. BACKGROUND 8

tion of these methods on massively parallel machines. Thus, it describes the
implementation details many of these methods in much greater detail.

We also give a basic overview of various acceleration structures both
for ray tracing and for range queries used in Photon Mapping and its vari-
ants. While not the main focus of this thesis, all our work uses these struc-
tures in many variants and we refer to them throughout the remaining chap-
ters.

In the last section we focus on hardware acceleration available for ren-
dering. Namely we introduce the concept of Single Instruction Multiple Data
(SIMD), used on the CPU, the GPU, as well as many dedicated ray trac-
ing hardware solutions. Then, we introduce the principles and challenges of
General-Purpose computing on Graphics Processing Units (GPGPU), which
plays a major roles in Chapters 4 and 5 where we focus on various solutions
to rendering equation on GPUs. Lastly, we introduce the concept of ded-
icated hardware ray casting units as an alternative to standard hardware
rasterization units and describe the issues encountered when designing such
a unit. This is used as a basis for Chapter 3 where we describe integration
of one such unit in a larger system.

2.1 Light Transport

In the following section we give a brief overview of light transport theory
that describes distribution and interaction of the light with a scene. To
reduce the complexity of the problem we use several common simplifications
of light transport. Namely we do not consider light polarization, material
fluorescence (re-emitting light at a different wavelength), and we assume
that basic medium in which light propagates is vacuum, not air. We refer
the readers to [Pharr and Humphreys 2004], [Dutré et al. 2006], [Veach
1997], and [Georgiev 2015] for more detailed discussion.

2.1.1 Radiometric Quantities

The basic quantity used in light transport is Radiant flux (or power), which
represents the total amount of energy passing through a region of space per
unit time. It is denoted by Φ, measured in Watts.

The area density of flux arriving at a surface is called irradiance (E),
the area density of flux leaving a surface is called radiosity (B), both area
measured in W/m2.

E =
Φi

A
B =

Φo

A
(2.1)

Lambert’s Law states that the amount of light arriving at a sur-
face is proportional to the cosine of the angle θ between the surface
normal and the light direction. Figure 2.2 shows two examples us-
ing orthogonally emitting light sources A. In the first case (left),

CHAPTER 2. BACKGROUND 9

A

A

B Cɵ

Figure 2.2: Lambert’s Law. For an
area light with the same area A, the
illuminated area and, in turn, irra-
diance depend on the cosine of the
angle θ.

the arriving light is perpendicular to the
surface, the light source area A is equal to
the receiving area B, and therefore:

EB =
Φ

B
=

Φ

A
= BA (2.2)

In the second case (right), the light arrives
at an angle such that the receiving area C
is larger. Then the following relation holds

EC =
Φ

C
=

Φ cos θ

A
= BA cos θ (2.3)

A more general variant of Equation 2.1,
that accounts for non-constant flux arriv-
ing at the pointx, is given as:

E(x) =
dΦ

dA
(2.4)

The most important radiometric quantity is Radiance (L). It is defined
as flux per unit area (perpendicular to the direction of the flux), per unit
solid angle:

L(x, ω) =
d2Φ

dωdA⊥
=

d2Φ

dωdA cos θ
(2.5)

where dA⊥ is the projected area of dA onto the direction dω, and θ is the
angle between ω and the surface normal. Intuitively, it can be seen as the
amount of light coming from an infinitely small set of directions centered
around ω and arriving at an infinitely small area around a point x. As such,
it is the answer to the question “How much light arrives at this point from
that direction?”.

An important property used in virtually all rendering algorithms is
that radiance changes only when there is an interaction with either a surface
or with a participating media (e.g., fog or smoke). For a point x in empty
space we therefore write:

Lo(x, ω) = Li(x,−ω) (2.6)

where Lo(x, ω) is radiance leaving the point x in the direction ω and
Li(x,−ω) is radiance arriving at the point x from the direction −ω.

2.1.2 The Rendering Equation

The light distribution in a scene is most often modeled using the rendering
equation by Kajiya [1986]:

Lo(x, ωo) = Le(x, ωo) +

∫
Ω+

fr(x, ωo, ωi)Li(x, ωi) cos θidωi (2.7)

CHAPTER 2. BACKGROUND 10

It says that the radiance leaving a point x in a direction ωo, Lo(x, ωo), is
equal to the radiance emitted from that point in that direction Le(x, ωo)
plus the incoming radiance Li(x, ωi) from the whole upper hemisphere Ω+,
multiplied by the Bidirectional Reflectance Distribution Function (BRDF)
fr(x, ωo, ωi) (see Section 2.1.5 for details) and the cosine of the angle θi
between incoming light direction and surface normal.

In this formulation the equation can describe only light reflection,
omitting such important phenomena as refraction on glass. The equation can
be extended to integration over the whole sphere Ω around point x [Veach
1997]. The function f(.) then becomes Bidirectional Scattering Distribution
Function (BSDF).

The rendering equation, as introduced above, assumes light of a sin-
gle wavelength. Therefore, both L and f(.) are also parametrized by the
wavelength λ. Most commonly, rendering systems use only three pseudo-
wavelengths: red, green, and blue; which directly map to RGB used in
common cameras and displays. However, to achieve effects like dispersion
(e.g., rainbow), more wavelengths are needed.

2.1.3 The Ray Tracing Operator

The rendering equation (Equation 2.7) presents light interactions locally
with respect to the point x. However, to solve for illumination globally we
have to obtain the incoming radiance Li(x, ωi) from the hemisphere.

For the sake of simplicity, let us assume that light interactions can
happen only on surfaces, i.e., the scene contains no participating media such
as smoke, fog, or, indeed, air. From Equation 2.6 it follows that the Li(x, ωi)
will be equal to the reflectance Lo(x

′,−ωi) at a point x′, found along the ray
starting at the point x in the direction ωi. This point x′ will lie on a surface
and, as we do not allow light to pass through surfaces without interaction,
it will also lie on the closest such surface.

The ray tracing operator h(x, ω) provides us with an efficient way
to denote such points and lets us rewrite the rendering equation in the
following, recursive, way:

Lo(x, ωo) = Le(x, ωo) +

∫
Ω+

fr(x, ωo, ωi)Lo(h(x, ωi),−ωi) cos θidωi (2.8)

that is, the outgoing radiance at the point x is equal to the emitted radi-
ance at that point, plus illumination from surfaces visible from the point x,
integrated over directions ωi.

This leads us to the notion that the illumination could be integrated
not only over the hemisphere over the point x, but, instead, over all surfaces
visible from the point x. The resulting surface area formulation of the

CHAPTER 2. BACKGROUND 11

rendering equation reads as follows:

Lo(x, ωo) = Le(x, ωo) +

∫
A
fr(x, ωo,Ψ)Lo(y,−Ψ)V (x, y)G(x, y)dy (2.9)

where A are all surfaces of the scene, Ψ is the direction from point x to
point y, V (x, y) is a visibility function, and G(x, y) is a geometric term.
Visibility function is a simple binary function that has value of 1 when the
path between x and y is not blocked by any objects and 0 otherwise. The
geometric term comes from the conversion of differential area to differential
solid angle and is given as:

G(x, y) =
cos (Nx,Ψ) cos (Ny,−Ψ)

(x− y)2
(2.10)

where Nx and Ny are normals at the points x and y, respectively.
This second formulation is very useful in the case where we know which

surfaces are light sources and want to directly integrate the illumination from
these light sources onto a given point.

2.1.4 The Path Integral Formulation

While the surface area measure formulation of the rendering equation (Equa-
tion 2.9) provides a well-defined formulation of the global illumination prob-
lem, its recursive structure poses some limitations on understanding the
problem. For example, in Chapter 5 we will be separately solving the direct
and indirect illumination, using Virtual Point Lights (see Section 2.3.6) to
solve for the indirect illumination. The local understanding of the problem
provided by the rendering equation would not be sufficient for that.

The path integral formulation introduced by Veach [Veach 1997], in-
stead, poses the problem as a pure integration problem. In this formulation,
the illumination on a pixel j can be computed as an integral over all light
paths in the scene passing through the pixel:

Ij =

∫
Ω
fj(x̄)dµ(x̄), (2.11)

for all light paths x̄. A path x̄ of a length k is defined as a (k+1)-tuple of
vertices:

x̄ = x0x1 . . . xk,

where each vertex lies on a surface. The length of the path k is given by the
number of path segments, each connecting two consecutive vertices, and the
path therefore has k + 1 vertices, where the vertex x0 is on a camera, and
the vertex xk is on a light source. Please note that this framework considers
only the last vertex of the path to be emissive and if a vertex can both
emit and reflect light, these effects happen on different paths. However, this

CHAPTER 2. BACKGROUND 12

is used only for theoretical analysis of the paths and poses no restrictions
on the actual implementation, where traced path would generally represent
multiple theoretical paths.

The space of all paths length k is Ωk and has a differential measure:

dµ(x̄) = dA(x0)dA(x1) . . . dA(xk).

The final result of the integral is obtained when integrating over the space of
all paths of all lengths Ω =

⋃
k≥1 Ωk, but it can also be separated and have

different path lengths solved through different means. For example, we can
explicitly sample direct illumination (k ≤ 2) and approximate the indirect
illumination (k > 2).

The path contribution function fj(x̄) is a product of the BRDF, the
visibility, and the geometry terms on the vertices of the path, finally multi-
plied by the light emission:

fj(x̄) =

(
k−1∏
i=1

fr(xi−1←xi←xi+1)V (xi↔xi+1)G(xi↔xi+1)

)
︸ ︷︷ ︸

path troughput

Le(xk→xk−1),

(2.12)
where the fr(xi−1←xi←xi+1) is a formulation of BRDF that uses the previ-
ous and the next point along the path xi−1, xi+1, to define the incoming and
outgoing directions (ωi, ωo) used in Equation 2.13. The visibility function
V (xi↔xi+1) and the geometric term G(xi↔xi+1) are the same as in Equa-
tion 2.9, and the emission term Le(xk→xk−1) is, again, using a previous
point on a path to define the outgoing direction. The product of the BRDF,
visibility, and geometric terms is also sometimes called path throughput, and
represents a fraction of the radiance that is transported from the light source
along this path.

The single most useful feature of this formulation is that we can gen-
erate the path using any sampling technique as long as we can define a
probability of each of the path vertices. That is, unlike the Equations 2.7
and 2.9, we are not bound by following the path from the camera into the
scene.

2.1.5 The Bidirectional Scattering Distribution Function

The last element of the rendering equation that needs to be discussed is
the Bidirectional Scattering Distribution Function, which defines the visual
appearance of objects in the scene. It gives an answer to the question: “If
we shine light at the surface from direction ωi, how much light is reflected
towards the observer in direction ωo”. Formally we write:

f(x, ωo, ωi) =
dLo(x, ωo)

Li(x, ωi) cos θidωi
. (2.13)

CHAPTER 2. BACKGROUND 13

(a) Diffuse (b) Phong (c) Ward (d) Mirror (e) Glass

Figure 2.3: Five BSDFs used in all the scenes throughout this work.

When both ωi and ωo are in the same hemisphere (with respect to the surface
normal) we are talking about bidirectional reflectance distribution function
(BRDF). When they are in the opposite hemispheres, we are talking about
bidirectional transmittance distribution function (BTDF).

The total energy of reflected and transmitted light cannot exceed the
total energy of incident light. All physically based BSDFs therefore have to
obey the following energy conservation condition:

∀ωo,
∫

Ω
f(x, ωo, ωi) cos θidωi ≤ 1. (2.14)

This integral represents albedo, the total amount of energy that the material
can reflect. In practice no materials have albedo equal to 1.

The second important condition for physically-based BRDFs (not
BTDFs) is their symmetry (follows from Helmholtz reciprocity principle
[Helmholtz 1867, Hapke 2012]). It states that for all pairs of ωo and ωi,
fr(x, ωi, ωo) = fr(x, ωo, ωi). That is, the surface will reflect the light in the
same way when we exchange the light source and the observer.

Figure 2.3 presents five common BSDFs. Diffuse BRDF (2.3a) repre-
sents rough surfaces like matted white paint, while glossy BRDF (2.3b and
2.3c) are used to represent surfaces with smooth finish. There are many dif-
ferent glossy BRDF models ranging from purely empirical models, such as
Phong BRDF [Phong 1975], to models that are derived from the surface mi-
crostructures (Cook BRDF [Cook and Torrance 1981], Ward BRDF [Ward
1992]), and models that are used to represent measurements of actual ma-
terials (Lafortune BRDF [Lafortune et al. 1997]).

The last two BSDFs on the Figure 2.3 represent the idealized ver-
sions of perfectly specular materials, where light can contribute to Lo(x, ωo)
from only a limited set of discrete directions ωi. Mirror BRDF (2.3d) is a
mathematically perfect mirror and the BRDF is non-zero only when ωi is
the perfect reflection of ωo. Glass BSDF (2.3e) follows a similar principle
with the refraction direction given by Snell’s Law and the ratio between the
reflected and refracted energy given by Fresnel Equations. While this be-
havior is not physically realizable, these idealized models are widely used as
many rendering algorithms can utilize these simplifications for substantial

CHAPTER 2. BACKGROUND 14

performance gains. We refer the readers to [Jenkins and White 1976] for
detailed explanation of the underlying physics principles.

In our scenes we use all four introduced types of BSDFs. For glossy
we mainly use the common Phong BRDF, as it is the BRDF of choice for
many modeling programs from which we obtained our scenes. However for
metal surfaces we switch to the Ward BRDF, as it offers a more faithful rep-
resentation of metals, including support for anisotropy needed to represent,
e.g., brushed aluminum.

2.2 Monte Carlo Integration

Neither the recursive integral equation, nor the path integral introduced in
the previous section can be solved analytically, except in the most trivial
cases. Solving these equations therefore relies on using numerical methods,
most commonly Monte Carlo integration. In this section we give a brief
overview of random variables, Monte Carlo integration, and its improve-
ments using importance sampling. For more complete introduction into the
problematic with respect to graphics we refer to [Pharr and Humphreys
2004, Georgiev 2015].

2.2.1 Random Variables

A random variable X is a variable whose value is subject to chance. The
values come from some domain, which can be either discrete, e.g., a dice, or
continuous, e.g., the probability that a bus arrives at a given time.

In the case of a dice, we have a random variable X that can have
values from the discrete domain 1, 2, 3, 4, 5, 6. Assuming the dice is a fair
dice, each of these values has the same probability pi = 1

6 . The probability
of all values always has to sum up to 1 and, consequently, the maximum
probability a single value can have is 1. Such value would be chosen in all
cases and the variable would, de facto, cease to be random.

Further, we define a cumulative distribution function (CDF) as:

P (x) = Pr[X ≤ x]. (2.15)

It represents the probability of the random variable X achieving value of x
or less. In the case of a dice we get: 1

6 , 1
3 , 1

2 , 2
3 , 5

6 , 1. CDFs are often used
to map a uniform random number ξ ∈ [0, 1) (a common output of random
generators) to the random variable X.

In the case of continuous random variables, the number of possible
values is infinite and the concept of each value having its assigned probability
is not applicable. Instead, we introduce the concept of a probability density
function (PDF), which indicates the density of probability in an area around
a given value. For example, a uniform random variable in the range [a, b]
the value of the PDF is constant and equal to 1

b−a .

CHAPTER 2. BACKGROUND 15

The PDFs are always positive and always integrate to one. The prob-
ability that a value x lies in an interval [a, b] is given as:

P (x ∈ [a, b]) =

∫ b

a
p(x)dx (2.16)

and he value of the CDF(x) is given as:

CDF (x) = P (t ∈ [−∞, x]) =

∫ x

−∞
p(t)dt (2.17)

The expected value E[X] of a random variable X is, intuitively, the
mean value of the X. In the case of a dice, the E[X] = 1

6(1+2+3+4+5+6) =
3.5. Formally, the expected value is defined as:

E[X] =
∑
i

xipi (2.18)

E[f(x)] =

∫
D
f(x)p(x)dx (2.19)

for the discrete (top) and the continuous (bottom) case, respectively.
Complementary to E[f(x)] is the variance V [f(x)], representing how

spread out the values of f(x) are from their mean. It is defined as follows:

V [f(x)] = E
[
(f (x))2

]
− E [f (x)]2 (2.20)

Variance is commonly used as a measure of quality of results of Monte Carlo
integrator and the goal of many algorithmic improvements is to lower the
variance while keeping the costs the same.

2.2.2 Monte Carlo Estimator and Its Error

Informally, the basic Monte Carlo integration works as follows: Given a
function f(x) over a domain D, we randomly choose N samples from the
domain, evaluate the function f(x) at these samples and average the results.

More formally, for a one-dimensional integral F =
∫ b
a f(x)dx and N

random samples Xi ∈ [a, b], the Monte Carlo estimator is:

F̂N =
1

N

N∑
i=1

f(Xi)

p(Xi)
. (2.21)

Its expected value E[F̂N] is then equal to the integral F =
∫ b
a f(x)dx, when

the PDF p(Xi) > 0 for all Xi, where the f(Xi) 6= 0.
However, unless the N = ∞, the actual value of F̂N can differ from

the value of the integral F leading to an error in our estimate.

CHAPTER 2. BACKGROUND 16

The mean square error (MSE) of an estimator measures its average
squared error:

MSE (F̂N) = E[(F̂N − F)2]

= E[F̂ 2
N]− 2E[F̂N]F + F 2

= (E[F̂ 2
N]− E[F̂N]2) + (E[F̂N]2 − 2E[F̂N]F + F 2)

= V [F̂N] + (E[F̂N]− F)2, (2.22)

where (E[F̂N]−F) is bias and represents the difference between the expected
value of the estimator F̂N and the true value of the integral F . Given that
our estimator has E[F̂N] = F , we can say that the mean square error of the
estimator is equal to its variance.

The root mean square error (RMSE) of an estimate is the square root
of MSE:

RMSE (F̂N) =

√
MSE (F̂N) =

√
V [F̂N] + Bias(F̂N)2, (2.23)

is expressed in the same units as the estimated integral, and is the most
common form of describing image error in rendering.

The number of samples N has an obvious effect on the error of the
estimate and for unbiased estimators the relation can be expressed as:

MSE (F̂N) = V
[
F̂N

]
= V

[
1

N

N∑
i=1

f(Xi)

p(Xi)

]

=
1

N2
V

[
N∑
i=1

f(Xi)

p(Xi)

]
=

1

N
V

[
f(X)

p(X)

]
. (2.24)

Which leads to the commonly quoted intuition that to double the image
quality (halve the RMSE), we need to quadruple the number of samples N .
The alternative to this bruteforce approach is to lower the actual variance
of f(X)

p(X) and this is the focus on the following section.

2.2.3 Efficient Sampling of Monte Carlo Estimator

Intuitively, we want to make sure that the whole domain of the integral gets
a roughly similar sample coverage. The naive approach is to choose all Xi

in the whole interval with the uniform probability p(Xi) = 1
b−a . However,

placing the samples with a uniform probability does not guarantee uniformly
spaced samples, as the samples can arbitrarily clump within the domain.

One possible improvement is to use stratified sampling [Mitchell 1996],
where the domain is split intoN equally sized strata and within each stratum
a single uniform sample is selected. Unfortunately, this approach assumed
an a priori knowledge of the number of samples N . Another approach is to

CHAPTER 2. BACKGROUND 17

use quasi random sequences [Keller 2013] (such as Halton sequence), which
ensure that the samples drawn from the sequence are “nicely” spaced with
low discrepancy across the domain. Both approaches are common in many
rendering applications.

While the previous sampling approaches strive to achieve a better
placement of uniform samples, importance sampling is a technique that is
trying to improve the sample PDF p(x). The motivation is the following.
Let us assume that we have a probability distribution p(x) such that it
exactly matches the integrated function f(x), up to a scaling factor c. This
factor is necessary to ensure that p(x) integrates to one over the domain and
it is immediately obvious that c =

∫
D f(x). We can then write:

F̂N =
1

N

N∑
i=1

f(Xi)

p(Xi)
=

1

N

N∑
i=1

c · f(Xi)

f(Xi)

=
1

N

N∑
i=1

c = c =

∫
D
f(x). (2.25)

In such an idealized case, where we have so called perfect importance sam-
pling, even a single sample will give the exact result of the integral. The
drawback is that to obtain such perfect PDF we have to know the target
value of

∫
D f(x) beforehand.

While the perfect importance sampling is not meaningful, it is still
beneficial to try and match the p(x) to the f(x) as closely as possible. For
example, in the common case where f(x) is a product of two known functions
g(x) and h(x), it is often possible to match the PDF to either g(x) or h(x).

One danger of this approach is that it is as much detrimental when
p(x) severely under- or overestimates f(x) as it is beneficial when it matches
it. Therefore, when our function of choice (e.g., g(x)) underestimates the
value of f(x) the final result can be worse than if we used only uniform
sampling.

A typical example is when g(x) is the BRDF value, which can often be
sampled perfectly, and h(x) is the incoming direct illumination, which can
also be sampled almost perfectly (we can sample proportional to light source
power, but not the occlusion). However, perfectly sampling their product
is, in the general case, impossible or, at least, impractical.

Multiple Importance Sampling, introduced by Veach and Guibas
[1995], mitigates this problem. Given n proposal PDFs p1(x) . . . pn(x) and
a sample x taken from a particular PDF ps(x), they introduce a weighting
heuristic to reduce the impact of ps(x) being a poor match for f(x) at the
given x. Here we show the most important of the introduced heuristics, the
power heuristic:

ωs(x) =
ps(x)β∑n
i=1 pi(x)β

. (2.26)

CHAPTER 2. BACKGROUND 18

The parameter β is commonly set to either 1 (then it becomes the balance
heuristic) or to 2, a good value empirically determined by the authors. The
intuition behind the approach is that when a sample x is chosen from a PDF
that underestimates the target function f(x), it will increase the variance
and its contribution should be weighted less than when the sample comes
from a PDF that matches the function well.

This approach is found in virtually all Path Tracing (Section 2.3.3)
implementations, where it is used to combine the aforementioned BRDF
sampling technique (path continuation) and direct illumination sampling
technique (so called next-event estimation).

2.3 Rendering Techniques

Image plane

View
 fru

stu
m

Lo

Figure 2.4: A Pinhole Camera. All
light rays contributing to the image
pass through the Image plane and
through a single common point (pin-
hole), in our illustration representing
the eye’s iris. All such rays subtend
a volume known as view frustum.

In this section we focus on the most
common rendering algorithms. We first
briefly describe an algorithm for comput-
ing direct illumination and extend it to
Whitted-style ray tracing [Whitted 1980]
that correctly handles mirror and glass
surfaces. We then move onto algorithms
for computating the full light transport
solution and give an overview of Path
Tracing [Kajiya 1986], Bidirectional Path
Tracing [Lafortune and Willems 1993,
Veach and Guibas 1994], Virtual Point
Lights [Keller 1997], and (Progressive)
Photon Mapping [Jensen 1996, Hachisuka
et al. 2008].

In all the algorithms we assume that
we have a full scene description available,
can directly access all sources of light (be
it emissive geometry or dedicated light
sources such as point lights), and that we are concerned with only a single
camera. For our purposes we will assume a pinhole camera (see Figure 2.4),
where all light rays contributing to the image pass through a single point in
space. A color of each given pixel is given by radiance Lo of rays that arrive
to the camera through this pixel.

2.3.1 Direct Illumination

In a direct illumination scenario, only surfaces directly seen by the cam-
era are displayed and their illumination is influenced only by light coming

CHAPTER 2. BACKGROUND 19

(a) No Anti-Aliasing (b) Anti-Aliasing

Figure 2.5: Direct Illumination. When an image is rendered with only 1 sample per
pixel (left), there can be obvious aliasing at the edges. Increasing the number of samples
leads to a nicely anti-aliased image (right). Both images rendered with an intentionally
small resolution (128×128) to emphasize the aliasing artifacts.

directly from the light sources. Refering to the Equation 2.9 we can write:

Lo(x, ωo) = Le(x, ωo) +

∫
A
fr(x, ωo,Ψ)Le(y,−Ψ)V (x, y)G(x, y)dy (2.27)

where Lo(x, ωo) is determined by the Le of the directly visible surface, but
the integral representing reflected radiance coming from other surface points
y takes into account only radiance emitted by those surfaces, not reflected
off of them. We can imagine that the camera records only photons that start
at a light source and then interact with the scene surfaces at most once.

In the context of ray tracing algorithms, the implementation usually
works in the following steps:

1. A ray is shot through the center of a pixel, determining its point x.

2. The integral is evaluated using Monte Carlo integration, randomly
positioning samples y on the surfaces proportional to their emitted
flux. Ray casting is used to evaluate the visibility function V (x, y).

A drawback of this basic approach is that it assumes a constant Lo for
the whole pixel. However, for pixels with a finite extent, this is not true,
most notably when the pixel overlaps object boundaries. This results in
objectionable aliasing artifacts, such as seen on Figure 2.5a.

To reduce the aliasing, we have to take multiple samples for each
pixel. The required number depends on the specific scene configuration, but
commonly it is between 4 and 256 samples per pixel. To produce Figure 2.5b
we chose a different method and instead of having a fixed number of samples
per pixel, we generate a new unique sample x from the pixel whenever we

CHAPTER 2. BACKGROUND 20

(a) Direct Illumination (b) Whitted-style (c) Glossy instead of mirror

Figure 2.6: Direct illumination fails to convey many materials, such as glass and
mirror (left). Using the Whitted-style ray tracing, the materials of the two balls become
immediatelly obvious (middle). Unfortunately, the approach is not directly applicable
to glossy materials (right).

generate a new sample y on a light. This way we can continuously improve
the quality until we are satisfied with the result.

2.3.2 Whitted-style Ray Tracing

Figure 2.7: The Whitted-style ray
tracing. Rays that encounter glass
bifurcate into the reflection and re-
fraction directions and recurse until
they encounter a non-specular sur-
face, or a maximum recursion depth
is reached.

One disadvantage of a pure direct illumi-
nation solution is that it cannot really con-
vey highly specular materials, such as mir-
rors and glass (Figure 2.6a). The reason
is that only light from a narrow cone of
directions contributes to the integral. In
the case of a perfect mirror and glass (as
introduced in Section 2.1.5), this narrow
cone actually becomes infinitely thin and
the probability of sampling a point y on a
light such that it would contribute toward
Lo is zero.

Turner Whitted [Whitted 1980] in-
troduced a simple solution for exactly the
case of perfect mirror and glass. The idea
is that when the BSDF at the point x lim-
its the integral to a discrete set of direc-
tions from which it can gather the illumination, these directions are explicitly
sampled by further rays. For example, when a ray from camera encounters
a glass sphere (Figure 2.7), where only perfect reflection and refraction di-
rections can contribute, the ray bifurcates and continues in both directions.
This process is recursively repeated until all the rays reach surfaces that can
be directly illuminated. To prevent infinite recursion due to, e.g., perfect
internal reflection in glass, a certain maximum recursion depth is usually

CHAPTER 2. BACKGROUND 21

enforced, selected such that the effect on the result is minimal (we use max-
imum recursion depth of 20).

Using this technique greatly improves visualization of scenes consisting
of a combination of mostly diffuse and perfectly specular materials. How-
ever, it cannot handle highly glossy surfaces, where contributing illumination
can arrive from a narrow but finite cone of directions, as multiple rays are
needed to sample this cone (Figure 2.6c).

2.3.3 Path Tracing

Both previous techniques solved a simplified version of the rendering equa-
tion, as they reduce the fr and Lo terms inside the integral to discrete
distributions, respective emitted radiance. On the other hand, Path Trac-
ing, as introduced by Kajiya [Kajiya 1986], is the direct implementation of
Equation 2.8, repeated here for convenience:

Lo(x, ωo) = Le(x, ωo) +

∫
Ω+

fr(x, ωo, ωi)Lo(h(x, ωi),−ωi) cos θidωi

To solve this recursive equation, we start at the camera and trace a ray
through one of the image pixels, same as in the previous algorithms. We
evaluate Lo at the first intersection point x with the scene by accumulating
Le and sampling the integral. The integral is sampled by choosing a random
direction ωi and tracing a ray in this direction to determine the point h(x, ωi)
whose Lo will be used in the integral. The process is recursively repeated,
forming a path of rays, with vertices at each interaction with the scene.

It is clear that in a closed scene, this algorithm by itself would lead
to infinitely long paths. The naive solution would be to artificially limit the
path length to a given number of vertices. However, choosing a maximum
path length that will provide good results highly depends on the scene. If
the path length is too short, it can cause visible artifacts in scenes, e.g., in
a scene with many mirror interreflections. If the path length is too long,
many of the paths will perform computations with little to no impact on the
final result.

A better approach is to used Russian Roulette to probabilistically
terminate the paths. It is based on the intuition, that instead of taking 10
random samples we can take only 2, but each of these will have 5× larger
impact. More formally, we can write that a sample x taken from a PDF p(x)

with a russian roulette probability prr evaluates at f(x)
prr·p(x) . The common

choice of prr in the context of Path Tracing is
∫

Ω+ fr(x, ωo, ωi)dωi, the albedo
of the material at a given vertex. The intuition is that paths continuing from
dark materials will have overall lower contribution to the final result than
paths continuing from light materials.

In practice, these methods are often combined, as maximum path
length is useful to prevent extremely long recursions in case of scene with

CHAPTER 2. BACKGROUND 22

(a) Naive Path Tracing (b) Next-event estimation (c) Naive, 4k samples

Figure 2.8: Naive Path Tracing (left) depends on a path randomly hitting light emitting
surfaces, leading to high variance (we used 20 samples per pixel). With next-event
estimation (middle), the lights are sampled explicitly leading to a significantly better
quality for the same number of samples. Path Tracing without the next-event estimation
is still noisy after 4000 samples per pixel (right).

albedos close to, or equal to, one. However, due to the presence of russian
roulette, this maximum value does not have a direct impact on performance
and can therefore be set sufficiently high (numbers between 20 and 256 are
common).

Naive Path Tracing depends only on chance to connect the camera to
lights. It is obvious that, as the lights become smaller, the noise increases
(Figure 2.8a). To improve this, we can stratify our sampling by identifying
all light sources in the scene and making explicit connections to them similar
to the direct illumination approach. This technique is called next-event
estimation and can be formally written as:

Ls(x, ωo) =

∫
Ω+

fr(x, ωo, ωi)Ls(h(x, ωi),−ωi) cos θidωi (2.28)

+

∫
A
fr(x, ωo,Ψ)Le(y,−Ψ)V (x, y)G(x, y)dy

where Ls(x, ω) is radiance scattered from the point x in the direction ω,
and it can be written that Lo(x, ω) = Le(x, ω) +Ls(x, ω). The first integral
of the equation handles light scattered from other surfaces and the second
integral light emitted by light sources.

This approach significantly increases the quality of rendering for the
same number of camera samples (Figure 2.8b) but still has room for im-
provement. Veach and Guibas [Veach and Guibas 1995] propose to use
Multiple Importance Sampling (see Section 2.2.3) to combine both tech-
niques of connecting to lights. This approach always samples lights through
both techniques, i.e., randomly hitting the light and the next-event estima-
tion, and combines them using weights that are based on the probability of a
given technique finding the contribution such that the technique resulting in
higher variance for each given contribution is assigned lower weight, result-

CHAPTER 2. BACKGROUND 23

(a) Path Tracing (b) Light Tracing (c) Bidirectional Path Tracing

Figure 2.9: Path Tracing with next-event estimation (left) cannot explicitly sample
a light behind a fixture. Light Tracing (middle) cannot connect between specular
surfaces and pinhole camera, causing the light fixture to appear black. Bidirectional
Path Tracing (right) connects camera sub-paths to light sub-paths that already passed
through the fixtures, resulting in less noise in the rendering same time (1 second, for
all images).

ing in the overall lower variance for the image than if just a single technique
was used. We refer the readers to Veach’s thesis [Veach 1997] for details.

2.3.4 Bidirectional Path Tracing

In the previous section we have seen the usefulness of sampling lights ex-
plicitly. Bidirectional Path Tracing extends this idea by sampling a full
sub-path starting at the light (light sub-path) and connecting the camera
sub-path to it.

Unfortunately, in many scenes the light source is enclosed in some
kind of glass and metal fixture, making direct connection impossible be-
cause the light has to get refracted. In this case, the next-event estimation
is effectively removed and the algorithm degenerates into Naive Path Trac-
ing (Figure 2.9a). Light Tracing reverses the tracing process, starting at
the lights. However, purely specular surfaces appear black (Figure 2.9b)
because the probability that the commonly used pinhole camera will lie in
the direction of the reflected (or refracted) ray is always zero. Thus, the
camera does not receive any radiance from such surfaces.

In Bidirectional Path Tracing both approaches are combined (Fig-
ure 2.9c). Furthermore, it allows a direct vertex connection not only be-
tween a light sub-path and camera and a camera path and lights, but also
between the light and camera sub-path vertices. As this presents multiple
ways the camera can be connected to the same light (e.g., the same path
constructed from camera or from the light), an extra care has to be taken to
not account the light’s contribution multiple times. The common approach
is, again, to use Multiple Importance Sampling [Veach 1997, Georgiev 2012,

CHAPTER 2. BACKGROUND 24

van Antwerpen 2011a], which automatically assigns higher weight to the
more suitable connections.

The common implementation then works in three steps. In the first
step, a light sub-path is traced and its vertices are stored. In the second
step, a camera sub-path is traced. In the third step, vertices on the light and
camera sub-paths are connected, forming several full paths, each of which
is properly weighted using Multiple Importance Sampling. A common ap-
proach is to not store the first vertex of the light sub-path (i.e., vertex
directly on the light) and instead connect each camera sub-path vertex di-
rectly to its own, randomly generated, vertex on the light. This removes
some correlation, coming from reusing light sub-path vertices, at virtually
no additional cost.

While Bidirectional Path Tracing can efficiently capture a large set of
paths, it still has problem with specular-diffuse-specular paths, e.g., reflected
caustics. The intuition is that connecting through a specular interaction so
we arrive at a preselected vertex in the scene (e.g., a light) is generally
not possible. To do this we would have to choose only the vertex we want
to connect to, but also the exact outgoing direction that will, after reflect-
ing/refracting on the specular objects, arrive at this vertex. As this problem
can only be solved at a fairly high cost [Jakob and Marschner 2012, Hanika
et al. 2015] it is generally recommended to use rendering approaches based
on Photon Mapping which we describe in the next section.

2.3.5 (Progressive) Photon Mapping

Figure 2.10: In Bidirectional Path
Tracing, the path cannot per-
form any vertex connection with-
out two consecutive non-specular
(green) surfaces, as the specular sur-
faces (red) enforce a single outgoing
direction.

While Bidirectional Path Tracing (BPT)
has a wider set of efficiently handled light
transport paths than Path Tracing, some
configurations still present problems. The
setting on the left side of Figure 2.11a
presents one such case. Both the cam-
era and the light are covered by per-
fectly specular glass, leaving no option
to perform any direct vertex connections
between the light and camera sub-paths
when evaluating direct illumination. As a
result, BPT degenerates into Naive Path
Tracing for this type of paths. See Fig-
ure 2.10 for the schematic view of such
configuration. Approaches based on Pho-
ton Mapping relax the way paths are con-
structed, leading to a better handling of
such cases (Figure 2.11b).

The original formulation of Photon Mapping [Jensen 1996] presents a

CHAPTER 2. BACKGROUND 25

(a) Bidirectional Path Tracing (b) Progressive Photon
Mapping

(c) Progressive Photon
Mapping (low quality)

Figure 2.11: A Cornell Box with the left side viewed through a green tinted glass, and
the light source inside a glass fixture. Bidirectional Path Tracing (left) degenerates into
Naive Path Tracing when surfaces are illuminated through glass as well as seen through
glass. Progressive Photon Mapping (middle) can handle such illumination well, at the
cost of introducing bias and a lower order of convergence. A low quality Progressive
Photon Mapping image (right) shows the splotchy artifacts typical for this rendering
technique.

different view on global illumination. It is a two-pass algorithm where, in the
first pass of the method photons are emitted from light sources and deposited
onto surfaces, storing their position, energy, and incoming direction (for
BRDF evaluation). In the second pass, camera sub-paths are traced and the
photon density is estimated in the neighborhood of their first non-specular
vertex (gather point). The density estimation is usually facilitated by finding
the k nearest photons (typically 20-50), using a k-Nearest Neighbors (k-NN)
search [Hey and Purgathofer 2002]. The outgoing radiance is computed as:

Lo = Le +
1

πr2

k−1∑
j=1

fr(x, ωo, ωi,pj)kr(dj)∆Φpj (2.29)

where x is the position of the gather point, fr is the BRDF at this position,
r is the radius of circle in which our k photons lie, ωi,pj is the incoming
direction of the photon pj , kr is a normalized and scaled kernel weight
function1, dj is the distance of the photon from x, and ∆Φpj is the flux
it carries. The intuitive reason why only k − 1 photons are used is that the
kth photon, at the very border of our search circle, does not contribute all of
its energy into our search area. Please see [Garćıa et al. 2012] for rigorous
derivation.

A key difference from the path-based methods is that the paths are
not evaluated exactly. During the density estimation, the end points of
light sub-paths (photons) are moved to the gather point position, even in

1We use the simplest, cylindrical, kernel, and the kr is therefore constant inside the
radius r and zero otherwise, and could be omitted from the equation.

CHAPTER 2. BACKGROUND 26

cases where the nature of light sub-path would not allow this, i.e., if the
previous vertex on the sub-path was specular and did not allow other di-
rections (Figure 2.12). While blurring of light transport introduces a new
type of error in our Lo estimate, bias, it also allows for a better handling of
specular-diffuse-specular type of paths than Bidirectional Path Tracing.

Figure 2.12: Photon Mapping ap-
proaches allow “merging” of path
vertices on non-specular (green) sur-
faces, allowing for use of bidirec-
tional methods even where BPT
does not.

Hachisuka et al. [2008] propose Pro-
gressive Photon Mapping, a Photon Map-
ping based method that, while biased, is
consistent, i.e., in the limit it converges to
the ground truth solution. In the first pass
of the algorithm, camera sub-paths are
traced and the gather points are stored.
The gather points include all the informa-
tion required to evaluate the BRDF at the
point, as well as the current density es-
timation radius r, the total accumulated
flux and the number of photons accumu-
lated so far. In the subsequent passes,
photons are traced from lights. Photons
are not stored but, instead, immediately
contribute to all gather points in whose
radius r they fall. After each such pass, the radius r of each gather point
is reduced using the collected statistics in such a way that the radius be-
comes zero in the limit. This approach has been expanded to Stochastic
Progressive Photon Mapping [Hachisuka and Jensen 2009] to allow chang-
ing the gather points between photon passes (e.g., for anti-aliasing or depth
of field). Knaus and Zwicker [Knaus and Zwicker 2011] change the formula-
tion to remove the requirement for per-pixel statistics. Vorba [Vorba 2011]
introduces Progressive Bidirectional Photon Mapping, where a full camera
sub-path is traced, density estimation is performed at each non-specular
vertex of the path and the results are combined using Multiple Importance
Sampling.

Georgiev et al. [2012] and Hachisuka et al. [2012] concurrently refor-
mulate the Photon Mapping in the context of path-based methods, allowing
combining of Progressive (Bidirectional) Photon Mapping with Bidirectional
Path Tracing are using Multiple Importance Sampling (MIS) into a novel
algorithm, named Vertex Connection and Merging by Georgiev and Unified
Path Sampling by Hachisuka. This work uses the name Vertex Connection
and Merging, as the author participated on the [Georgiev et al. 2012] paper,
but the names are completely interchangeable. For derivation of the MIS
weights, see [Georgiev 2012].

CHAPTER 2. BACKGROUND 27

(a) VPL rendering without
clamping

(b) VPL rendering with
clamping

(c) Reference solution

Figure 2.13: Using Virtual Point Lights leads to objectionable artifacts due to lights’
strong contribution on close distance (left). Clamping the contribution removes the
objectionable artifacts (middle), but also removes a significant amount of energy, when
compared to the reference solution (right). Only indirect illumination is shown.

2.3.6 Virtual Point Lights

The last set of techniques we preset is based on Virtual Point Lights (VPL),
first introduced by Keller [Keller 1997] in the context of fast approxima-
tion of global illumination. The basic idea was to first render the scene as
seen from the lights position and deposit VPLs onto visible surfaces. When
rendering the final image, the surfaces visible from the camera are illumi-
nated not only by the main lights (direct illumination), but also by the
Virtual Point Lights, for the so-called one-bounce global illumination (the
light paths contain one more vertex, or bounce, than direct illumination).

In principle, VPLs are similar to the Bidirectional Path Tracing, intro-
duced Section 2.3.4, with several limitations on the individual path lengths.
Light sub-paths are limited to length one, multiple light sub-paths are cre-
ated at once and each light vertex is turned into a Virtual Point Light.
Camera sub-paths are also limited to length one and each light vertex (VPL)
from each light sub-path contributes to camera sub-path vertices from all
camera sub-paths, without any contribution directly to the camera. It is
obvious that the one-bounce restriction of the original method comes from
using rasterization as the means of VPL distribution, rather than any in-
herent property of the method itself. When ray casting is used to distribute
VPLs, the restriction on light sub-path length is lifted and VPLs can be
used to approximate the full global illumination solution. Throughout this
work we only consider this approach and not the one-bounce solution.

Distributing a limited set of light sources to corners and other un-
expected places throughout the scene leads to objectionable light splotch
artifacts (Figure 2.13a), caused by the presence of the 1

distance2 term in the
geometry term in Equation 2.27. The contribution of each VPL to nearby
surface can therefore become infinitely large. We can imagine the effect as if

CHAPTER 2. BACKGROUND 28

we randomly placed invisible torches into a real scene. These torches would
create light splotches on the nearby walls and as there would be no obvious
sources for these splotches the whole effect would feel unnatural.

The common approach is to clamp each VPL’s contribution in such
a way that the the artifacts are no longer observable (Figure 2.13b). Un-
fortunately, this approach can severely decrease the overall illumination in
the scene, especially in the corners, limiting the accuracy of the rendered
image, especially in the presence of glossy surfaces (see Chapter 5). Another
approach is to increase the number of VPLs used in the rendering, as the
intensity of each VPL (and thus its splotch) is indirectly proportional to the
number of VPLs.

While the original purpose of VPL rendering was a fast approximate
global illumination, VPLs based methods, also called many-light methods,
are also used in high-fidelity offline rendering. Křivánek et al. [2010] show
that to represent materials faithfully a large number of VPLs (millions) is
required. While it is possible to simply render the images with millions
of VPLs, this is both expensive and unnecessary. Lightcuts [Walter et al.
2005] show that clusters of VPLs that are far away from the illuminated
point can be approximated by a single VPL containing energy of the whole
cluster2. The algorithm hierarchically clusters VPLs based on their position
and normal and then, for each point, traverses this tree of VPLs, using a per-
material error metric to determine which clusters can be used directly and
which have to be further refined. The algorithm has been further developed
to allow efficient handling of multiple illuminated points per pixel, such as
motion blur or depth of field [Walter et al. 2006], as well as contribution to
a full camera sub-path through a pixel [Walter et al. 2012].

A different, global, approach to clustering has been proposed by Hašan
et al. [2007]. They formulate the problem as a matrix, where each pixel
sample is a row and each VPL is a column. The matrix elements then
contain a contribution from a given VPL to a given pixel sample, and the
final image is given as a sum of all elements in each row. The authors
show that the full matrix has a significant correlation between many of its
rows (pixels) and columns (VPLs), and can be approximated by sampling a
significantly sparser matrix. This becomes fairly obvious when we consider
that a simple image upscaling is a naive utilization of this observation, four
pixels in the final image are approximated by a single pixel in the reduced
image and the final result is fairly faithful.

The introduced Matrix Row-Column Sampling algorithm focuses on
reducing the number of required VPLs, instead of pixels used in the ex-
ample above, by performing a data driven analysis of their importance to
the image and approximating many of the VPLs by VPLs with a similar

2This approach is somewhat similar to N-body simulation used in gravity, but with the
added complication of light’s directionality.

CHAPTER 2. BACKGROUND 29

contribution. The algorithm evaluates contribution of each VPL to a repre-
sentative subset of pixel samples, creating a matrix with all the columns, but
fewer rows. The columns are then clustered, based on the distance metric
between the individual columns, into a predetermined number of clusters.
The representative VPLs of these cluster then contribute to all the pixel
samples, rendering the final image.

The main advantage of this algorithm over Lightcuts is that, as the
algorithm is solely data driven, it does not require any special per-material
handling. On the down side, subsampling the image can miss some im-
portant features, and the algorithm can become severely memory bound.
The idea has been further developed to better handle glossy surfaces [Hašan
et al. 2009, Davidovič et al. 2010], lift the restriction of single clustering for
the whole image [Ou and Pellacini 2011], and introduce a more advanced
method of recovering the full matrix from sparse samples [Huo et al. 2015].

2.4 Acceleration Structures

The ray tracing operator h(x, ω) as well as the visibility function V (x, y)
introduced in Section 2.1.3 require finding an intersection between a ray and
the objects in the scene. This process is commonly called ray casting, not to
be confused with the rendering technique called Whitted-style ray tracing
(Section 2.3.2). While for simple scenes it is possible to simply compute all
ray-object intersections for all objects in the scene, it is obvious that this
approach would be prohibitively slow for scenes of any practical complexity
and, thus, some form of acceleration structure has to be used. In the first
part of this section we give an overview of basic data structures used for this
task.

Photon Mapping based approaches, introduced in Section 2.3.5, re-
quire finding k photons nearest to a given point or, alternatively, all pho-
tons within a certain distance from the given point. In the second part of
this section we give a brief overview of structures used to accelerate these
queries.

2.4.1 Ray Tracing Acceleration

The goal of ray tracing acceleration structures is to reduce the number of
ray-objection intersection tests required to determine the first intersection
along the ray (ray tracing operator) or any intersection along the ray before
a certain distance (visibility function). The approaches can be divided into
two broad categories based on whether they divide the scene space (a spatial
subdivision) or objects (an object hierarchy).

In the spatial subdivision, each point in space is uniquely identified,
but each object may need to be referenced multiple times. An object hier-
archy, on the other hand, references each object exactly once, but a point

CHAPTER 2. BACKGROUND 30

in space may be overlapped by an arbitrary number of nodes in the object
hierarchy (including zero). In this section we introduce three major rep-
resentatives of acceleration structures coming from both categories: grids
[Fujimoto et al. 1986] and kd-trees [Clark 1976] are typical spatial subdivi-
sion structures, while the bounding volume hierarchy (BVH) [Kaplan 1985]
is a typical object hierarchy structure. For a more detailed discussion of
acceleration structures we refer the readers to [Havran 2000, Wald et al.
2007]. For the sake of simplicity we assume that the only object that can be
contained within the acceleration structure are triangles. We note that this
is not necessarily the case as shown in, e.g., [Pharr and Humphreys 2004].

Figure 2.14: 2D Uniform Grid.
Cells contain zero (white), one (light
green), or two (dark green) triangles.
The traced ray is represented by the
red arrow. A blue dashed line repre-
sents a bounding box of the largest
triangle.

Uniform Grids. Uniform grids [Fuji-
moto et al. 1986] are the simplest accel-
eration structure that is commonly used.
The space occupied by scene’s triangles is
divided into uniform cells and each cell ref-
erences all the triangles that at least par-
tially overlap it. When a ray is traced, it
is marched through the cells it intersects
and in each cell tested against all triangles
contained within the cell. See Figure 2.14
for a 2D example.

To avoid testing the same triangle
multiple times (e.g., the top left triangle
in our example), we can cache the intersec-
tion results from several last intersections
in a scheme known as mailboxing [Arnaldi
et al. 1987, Amanatides and Woo 1987].

Another important factor is the
quality of the grid. An exact box-triangle
intersection test used to determine the triangles a cell should reference is
both complex and expensive and is often replaced by simpler approaches.
The simplest one is to reference a triangle from each cell that intersects the
triangle’s bounding box. This, while very fast, can severely degrade the
quality of the acceleration structure, especially in the presence of long and
skinny diagonal triangles. In our example, the blue bounding box inter-
sects twice as many cells as the triangle itself, which would lead to many
unnecessary ray-triangle tests. This difference is even more prominent in
3D.

The main disadvantage of uniform grids is their inability to adapt
to the scene. The classic example is a teapot-in-a-stadium [Haines 1988]
type of scene, i.e., a large scene with sparse geometry in most places and
highly detailed geometry in the middle. In such a scene, when the grid is

CHAPTER 2. BACKGROUND 31

coarse (large cells), the detailed geometry in the middle does not benefit
from the acceleration structure as all of the triangles will end up in just a
few cells. On the other hand, if the grid is fine, to properly accelerate the
detailed geometry, the ray has to perform many grid traversal steps even in
the sparse geometry areas. As stepping through even an empty cell has a
non-zero cost, the efficiency of the acceleration structure drops. An analysis
on whether to use a uniform grid for a particular scene or not can be found
in [Hapala et al. 2011b].

Multi-level grids [Jevans and Wyvill 1988] are an extension of this
approach that allows locally adapting grid resolution to the size and density
of the geometry. Kalojanov et al. [2011] show that the performance of even
just two-level grids can be competitive to that of the BVH.

Kd-Tree. Kd-trees [Kaplan 1985] are hierarchical spatial subdivision
structures that, unlike uniform grids, can adapt to the local scene com-
plexity. The space of the scene is hierarchically subdivided by axis-aligned
planes until a termination criteria is met and leafs are created. The build
is usually governed by the Surface Area Heuristic (SAH) [MacDonald and
Booth 1990]. This heuristic estimates the cost of intersecting a leaf based on
the surface area of the leaf, which corresponds to the probability that a ran-
dom ray will intersect the leaf, and the number of primitives inside the leaf.

1

2 25

3 3

4

A
B C D

E F

G H

Figure 2.15: 2D kd-tree. The space
is hierarchically (see numbers) di-
vided by axis-aligned lines, until each
leaf (marked by letters) contains only
one triangle. Note that the triangles
can be split and thus referenced from
multiple leaves.

When a node is split into two child nodes,
the split plane is positioned so that the
SAH cost of its children is minimized. The
SAH can also be used as termination crite-
rion, as it can estimate the relative cost of
traversing one level down versus intersect-
ing all triangles referenced by the current
node. See Figure 2.15 for a 2D example
with termination criterion: Each leaf ref-
erences at most one triangle.

When the ray in our example is
traced through the acceleration structure,
it is first tested against the topmost split
plane (line in 2D case), marked with num-
ber 1. As the line is intersected, both the
left and right child node will be traversed,
with the right child being first, as the left
child cannot contain a closer hitpoint than
the right child. So, hitting in the right
child automatically removes the necessity of examining the left child.

Next, we test with the line segment number 2 on the right side of
the scene. Here the ray does not intersect the segment, so we can discard

CHAPTER 2. BACKGROUND 32

the entire top subtree containing leaves C, D, E, and F with this single
test. The ray intersects the triangle in leaf H and terminates. If it missed
this triangle, the traversal would continue on the left side of line number 1.
For a complete survey of kd-tree traversal algorithms we refer the reader to
[Hapala et al. 2011a].

Unlike the algorithm for uniform grids, the ray traversal algorithm for
kd-trees requires a stack of the maximum size equal to the maximum depth of
the kd-tree structure. This is not always possible as some special hardware
architectures (such as older GPUs) cannot accommodate per-ray stacks.
There are several approaches aimed at traversing kd-trees without a stack
[Havran et al. 1998, Foley and Sugerman 2005, Popov et al. 2007]. These,
however, always incur some performance penalty and should be evaluated
for each architecture individually.

Bounding Volume Hierarchy. Bounding Volume Hierarchies (BVHs)
[Clark 1976] take a different approach than the two previous structures.
Instead of dividing the space and then testing triangles that overlap the
given portion of space, the triangles are hierarchically clustered together.
The triangles, respectively their clusters, are represented by their bounding
volumes, most commonly axis aligned bounding boxes (other options include
spheres and ellipsoids). Commonly, each inner node has exactly two child
nodes, but, in general, BVHs allow for arbitrary number of child nodes which
can be beneficial on certain architectures [Dammertz et al. 2008, Wald et al.
2008, Seiler et al. 2008].

Levels: 1, 2, 3, leaf

Figure 2.16: 2D Bounding Volume
Hierarchy. The root bounding box of
the whole scene (black) is split into
two children (green). The right child
contains one more inner node (red),
before reaching the leaf level, with
one triangle per leaf (blue).

The most common approach to per-
form the clustering is also based on the
SAH. The bounding boxes of all trian-
gles in a node are sorted along one axis
and the SAH is evaluated for each pos-
sible split of such a list. After all three
axis are evaluated, the best split is chosen.
Popov et al. [2009] performed an exhaus-
tive search for the best possible clustering
and propose to use spatial splits in com-
bination with the classic SAH-based clus-
tering. Bittner et al. [2013] propose an
insertion-based optimization that can be
applied as a post-process after an SAH-
based build to further improve the qual-
ity of the structure. In the recent years,
BVHs became also popular for dynamic
scenes, as there are approaches to build
slightly lower quality BVHs extremely fast

CHAPTER 2. BACKGROUND 33

[Lauterbach et al. 2009, Pantaleoni and Luebke 2010, Karras et al. 2012,
Karras and Aila 2013]. Figure 2.16 shows an example of 2D BVH.

Traversing a Bounding Volume Hierarchy is very similar to traversing a
kd-tree – with a few modification. In each node, the ray is tested not against
a single plane, but against the bounding boxes of its children. When none
of the children are intersected the traversal of this node ends as obviously
no object contained within the children can be hit. Note that it is possible
that both children are missed even when their parent node had been hit by
the ray, e.g., in the case there is a gap between the child bounding boxes,
like inside the right green node of our example.

When either one or the other child is intersected, the traversal con-
tinues with that child, and when both children are intersected, the traversal
continues in the “near” one, pushing the “far” one onto stack. Note that,
unlike kd-trees, when an intersection occurs inside the “near” child, we can-
not terminate the traversal without testing the content of the “far” child as
well, as the nodes may overlap and the “far” child can actually contain a
closer triangle. As in the case of kd-trees there has been research in stack-
less traversal approaches and the author has cooperated on the approach
presented in [Hapala et al. 2011a].

They BVHs combine the kd-tree’s advantage of adapting to the ge-
ometry density with larger nodes and shallower depth, both of which are
advantageous on the current memory architectures. This makes BVH the
ray casting acceleration structure of choice on both the CPU and the GPU
and can it be found in almost all renderers.

2.4.2 Photon Mapping Acceleration

The structures used to accelerate the photon search in Photon Mapping-
based approaches have quite a different task. Given a point in space, their
main goal for them is to return either the closest k points stored in the
structure (k-NN search) or to return all points within a radius r from the
query point (range query). While these acceleration structures are used
for quite different tasks, the basic structures are similar. Classic Photon
Mapping [Jensen 2001] uses a kd-tree to implement its k-NN search, while
Progressive Photon Mapping [Hachisuka et al. 2008] typically uses a grid for
its range queries with mostly uniform radii.

Kd-Tree. There are two different basic approaches to building a point
based kd-tree. Median split (Figure 2.17a) aims at the most shallow struc-
ture possible. All photons of a node are sorted along the axis of the node’s
longest dimension and the node is split through the median photon. These
photons are stored with the plane, i.e., it is inner nodes that store photons,
leaves of the tree are actually empty (and thus not explicitly stored). In our
example, the final level of nodes is marked by gray split lines.

CHAPTER 2. BACKGROUND 34

(a) Median split (b) Sliding midpoint

Figure 2.17: 2D point kd-tree. Two different builds of point kd-tree. In the median
split approach (top), the split plane always goes through the middle (median) photon
of the node, and the photon is stored with the plane. The sliding midpoint approach
(bottom) splits nodes in the geometric center. When one of the child nodes would be
empty, the split plane slides to put at least one photon into each child.

The goal of sliding midpoint (Figure 2.17b) is to have nodes as cube-
like as possible, even at the cost of a deeper acceleration structure. The
motivation is that some types of queries (e.g., approximate k-NN queries)
tend to perform faster [Maneewongvatana and Mount 1999]. The build
algorithm also splits nodes along the longest axis, but in the geometrical
center, irrespective of the photon distribution. The only exception is that
one of the children would have zero photons, the split plane is slid so it
would have at least one photon. This situation is denoted by the red line
in our example. Queries into both structures differ in details (e.g., based
on where the photons are stored), but the same general principles apply to
both.

Executing a range query on either type of structure is straightforward.
The structure is traversed from the top, for each child node we determine
whether its content can or cannot be within the required range and then
either process it or discard it. All photons in the processed nodes are exam-
ined and if they are within the query distance they are put into the output
set.

The k-NN queries are slightly more complicated. The process works in
three stages and uses a priority queue over photons, sorted by their distance
from the query point. In the first stage, the query point is traversed down
the tree into a leaf that would contain it, if it was a photon. All nodes
that were not visited during the traversal, i.e., child nodes that did not
contain the query point are put onto a stack. The photon contained in the
leaf node is put into the priority queue. In the second stage the previously
unvisited nodes from the stack are traversed. When a choice can be made
which child to visit, the child closer to the query point is visited. All photons
encountered in this stage are also put into the queue, until the queue contains
k photons. After that, only nodes that are closer than the farthest photon

CHAPTER 2. BACKGROUND 35

in the queue are visited, as only these can contain photons that are nearest
than our current set. After all valid nodes have been visited, the queue
contains the k nearest photons.

Uniform (Hash) Grid. Under certain conditions, uniform grids
can efficiently accelerate range queries, with build times that are
significantly faster than for the kd-tree. When the photons are
stored within a grid with cubic cells of size a3 and the range query
has a diameter 2r ≤ a, the query can be limited to only 8 cells.

Figure 2.18: 2D point Uniform
Grid. Uniform grids can efficiently
execute range queries when the ra-
dius is equal or slightly less then half
the length of a cell side. Such queries
(green) require examining photons
in only 8 cells (4 cell in 2D case).
Queries with significantly smaller ra-
dius (red) still return correct result,
but the acceleration is significantly
less efficient. If the radius is signifi-
cantly

The 2D example in Figure 2.18 (green
query) gives the intuition why. For all
queries with radius r ≤ a, valid photons
can obviously lie only in the direct neigh-
borhood of the cell containing the query.
If we further limit the radius to r ≤ a

2 ,
we observe that when the query lies in
the left ride of the cell, the radius can-
not extend to any of the cells neighboring
on the right side and the same rules apply
to the other directions. However, if the
radius is significantly smaller than a

2 (the
red query in our example), the efficiency of
the acceleration structure drops, as many
photons well outside the range have to be
examined. Therefore, uniform grids can
be a good choice when we have an apriori
knowledge of the maximum query radius
and do not expect many queries with a
radius significantly smaller than that.

The basic build algorithm, i.e., sorting points into the uniform grid, is
extremely straightforward and will not be described here. The only challenge
is that for the typical relative size of the query radius and the scene, the
resulting grid has an enormous number of cells, most of which are actually
always empty as they do not contain any surfaces for which photons could
even be generated. The solution proposed by Hachisuka et al. [2008] is to
use a Hash Grid. In this approach the original, full grid, is never explicitly
constructed and each photon is instead stored in a much smaller array at a
position determined by a hash of its cell index in the full grid. When a query
is made, the required cell indexes are again hashed and all photons stored
at the resulting positions are examined. Due to hash collisions it is possible
that the query will examine photons from cells that are out of the query’s
range. While in some pathological cases this make lookup in the grid almost
linear with the number of photons, in practice it is not an issue.

CHAPTER 2. BACKGROUND 36

2.5 Hardware Acceleration

To render the final image, we need to solve the rendering equation for each
pixel, or subpixel, independently. For many rendering algorithms there is
literally no communication required between the pixels and, therefore, the
problem is widely considered to be embarassinly parallel [Moler 1986]. While
not always completely true, e.g., generating VPLs or photons requires writ-
ing into a shared storage, it is generally true enough to make rendering
suitable for massively parallel (i.e., hundreds and more threads) approaches.
This is in a stark contrast to many standard applications (e.g., email clients,
web browsers, text editors) that require a high single thread performance,
but can utilize only a few threads. Therefore, it is only natural that render-
ing needs its own class of hardware dedicated to accelerating these massively
parallel computations.

In this section we first look at the general principles of Single Instruc-
tion Multiple Data (SIMD) computing, as it is currently the most com-
mon hardware approach to massively parallel systems. Next, we introduce
General-Purpose computing on Graphics Processing Units (GPGPU), as the
most widely available massively parallel platform. And finally, we look at
dedicated ray casting accelerators as a specialized alternative to Graphics
Processing Units’ (GPUs’) dedicated rasterization units.

2.5.1 Basics of Single Instruction Multiple Data

In 1966, Michael Flynn proposed a classification of computer architectures,
based on the relation of instructions and the data they process [Flynn 1972].
According to this classification, the computers we generally use are of the
Single Instruction Single Data (SISD) type. A typical instruction can look
like fmul R3, R1, R2 and it multiplies registers R1 and R2 and stores the
result in the register R3, each containing a floating point values.

While this is the standard model for most applications, in graphics, as
well as physics, video compression, and others, we are dealing with a large
amount of data, that is all processed using the same code. One such example
is alpha blending of two colors, where the formula A = α · B + (1− α) · C,
where A, B, and C are color channels, is applied to many affected pixels.
An obvious improvement in this case is to run the computation on multiple
pixels in parallel, using the exact same instructions, as each pixel performs
the exact same operations.

This observation is the basis of Single Instruction Multiple Data
(SIMD) approach. Here each register contains several numbers instead of
just one and the operations are applied to each of these numbers. These reg-
isters and their associated arithmetic units are also called vector registers or
vector units, as they contain, and operate on, vectors of numbers. The term
SIMD lane (or simply lane) is used to identify elements of the register, such

CHAPTER 2. BACKGROUND 37

that lane 0 means we are talking about the 0th elements of registers, and
the lane count refers to the number of lanes in each register. On the CPU,
we most commonly encounter vector units with 4 (SSE [Raman et al. 2000,
Oberman et al. 1999]) and 8 (AVX [Lomont 2011]) lanes, but other values
are also quite common (e.g., SSE has 4 single precision float lanes, but only
2 double precision lanes, while Xeon Phi has 16 single precision lanes).

For brevity, the rest of the explanation will assume 4 lane SIMD.
A typical instruction of this class would be simd.fmul V3, V1, V2, which
would take the four floating point values stored in vector register V1, multiple
each individually with a corresponding float number from a vector register
V2, and store the individual results into a vector register V3. That is, it
performs the operation for i in 0 to 3: V3[i] = V1[i] V2[i], where
[i] represents the number in the ith lane of a given register. This is well
complemented by the current wide memory buses, where the standard CPU
128-bit buses can deliver four floats at once. On the GPU, the buses are even
wider (up to 512 bits or 16 floats) on the Radeon R9 390 cards [AMD 2015].
Therefore, with properly aligned memory, SIMD can use a single instruction
to load four floats into a register at no additional cost over loading a single
float and achieve a theoretical speed up of 4×.

Unfortunately, while the general code to determine color is the same
for each pixel, there can still be differences that prevent a straightforward use
of SIMD. The first obvious deviation from the principles mentioned above
would be texturing, where the neighboring pixels might need to access texels
that are not in a contiguous memory (e.g., the texture is rotated or needs
filtering, most often both). In this case, we would still map the neighboring
4 pixels to the 4 lanes of vector registers but the sources for the computation
would come from random memory locations. To achieve this, we need to
implement a gather operation where, given 4 memory addresses, 4 floats
are fetched into the 4 lanes, one from each memory location. This can be
implemented either in hardware, where the memory controller analyzes the
addresses and issues as few memory reads as possible using crossbars and
other machinery to land the floats in their respective final lanes. Or it can be
implemented in software, where the same process is done on the instruction
level. The former approach is common to most GPUs while the latter is
used on the standard x86 CPUs.

The basic approach is to perform a 128 bit aligned load of 4 floats
from each of the 4 addresses, use bit operations (AND and OR) to reduce the
up to 16 floats to the required 4, and then use swizzle operations (moves
floats between lanes) to move them into the target lanes. If two addresses
would load the same set of 4 floats the second load is skipped, so loads from
consecutive (or identical) addresses can be up to 4× faster when compared
to the worst case. An inverse operation, scatter, also exists and stores results
from the individual lanes onto 4 separate addresses.

The principle that allows us to execute the gather code on only some of

CHAPTER 2. BACKGROUND 38

the lanes is also used to implement conditional statements, the second devia-
tion from the straightforward application of SIMD. The code that computes
the final pixel color will often have conditional statements (e.g., if) where
individual pixels take different branches. One example would be clamping of
opacity, where pixels with opacity greater than 95% would have it snapped
to 100%. For each condition, there are generally three possible outcomes:
all lanes take the then branch; all lanes take the else branch; some lanes
take then and some lanes take else. The first two cases are fairly trivial, the
condition simply changes the instruction flow and all lanes use the instruc-
tions from the given branch. However, in the case where the lanes disagree,
the code will take both branches (i.e., first then and then else), using the
previously introduced masking principle to store results of each branch for
only the lanes that should be affected.

While it is possible to implement these principles by hand, explic-
itly taking care of the gather, scatter, and branching, there are also auto-
mated tools that make this task easier. In 2007, NVIDIA introduced their
Compute Unified Device Architecture (CUDA, [NVIDIA 2015]) and with
it a programming model they called Single Instruction Multiple Threads
(SIMT). In this model, the programmer writes a standard scalar code that
is then automatically mapped onto a SIMD machine. The language pro-
vides built-in variables that the program can use to identify in which SIMD
lane it is executed, which allows to map computation (e.g., pixel index) to a
given lane. The same approach is also used by the cross-platform OpenCL
standard [Khronos OpenCL Working Group and Munshi 2015]. Intel’s ispc
compiler [Pharr and Mark 2012] compiles scalar code in slightly extended
C language the SSE and AVX SIMD targets, as well as to Intel’s Xeon Phi
coprocessors [Reinders 2012]. The output of the compiler can be linked into
a standard CPU application allowing the users to use only for certain parts
of their algorithm. The programming model is the same as the in CUDA
and OpenCL, except that Intel calls this approach Single Program Multiple
Data (SPMD). A more detailed description of CUDA and its terminology is
given in the Section 4.2.1.

2.5.2 General-Purpose computation on Graphics Processing
Units

While the history of general video acceleration starts as early as 1970’s
(the Gun Fight arcade used Fujitsu MB14241 video shifter to accelerate 2D
sprites), this section will focus on the more recent 3D accelerators, know as
Graphics Processing Units (or GPUs). We refer the interested readers to Ku-
mar et al.’s overview of the These, eventually, gave rise to General-Purpose
computation on Graphics Processing Units (GPGPU), where the GPU is
used as a very wide Single Instruction Multiple Data (SIMD) coprocessor
with a specialized memory model.

CHAPTER 2. BACKGROUND 39

At first, the computing power and high bandwidth of GPU came from
its highly fixed functionality. The main goal was to solve primary visibility,
that is, for each pixel determine which triangle in the scene is the closest to
camera and display its color. This was done via fixed function rasterization
units that, for each triangle of the scene, solved which pixels are covered by
the triangle and how far the triangle is from camera. Then, the color of each
of these pixel-triangle intersections (fragments) was determined. Often, a
fixed lighting model (e.g., Lambert of Phong) would be evaluated at each
corner of a triangle and the result interpolated inside the triangle. Lastly,
the distance (depth) of the fragment would be compared to the currently
closest fragment for each given pixel (using a dedicated depth buffer) and if
the new fragment was closer, its color was written to the frame buffer.

While this method of determining which triangles should be displayed
was extremely efficient and is still used on the most recent desktop GPUs,
the control a programmer had over the triangle’s color was severely limited
to just a few parameters, e.g., surface color or light position. The fixed func-
tion pipeline could not accommodate the ever-increasing demand for higher
quality and flexibility, which lead to the GPUs becoming more and more
programmable. Initially, the capabilities were extended by simple assembly-
like languages, with standards like OpenGL ARB assembly language and
DirectX Shader Assembly Language. Later, these have been superseded by
higher level fully featured C-like languages such as HLSL [Gray 2003] and
GLSL [Rost et al. 2009] (see [Buck 2010] for the history of programmable
shading). The shading hardware of the current generations of GPUs can be
considered fully programmable wide SIMD coprocessors and their full func-
tionality can be accessed using modern languages such as OpenCL [Khronos
OpenCL Working Group and Munshi 2015] and CUDA [NVIDIA 2015]. The
only two components that are left mainly as fixed function are the rasteri-
zation and texturing units.

The programming model for both GPU and CPU can be seen as fairly
similar, especially if the latter is programmed using the ispc or a similar
tool to generate SIMD code. The main differences are in the number of
threads that can be in flight at the same time and the access to the main
memory, but these differences still can be an order of magnitude.

Let us first note that, in this discussion, we will not be using the
NVIDIA’s definition of a thread as a single SIMD lane, but rather the more
universal definition of a thread as a scheduling unit. Initially, the common
x86 CPUs would have a single hardware thread running on each CPU core.
The Operating System would use its scheduling algorithms to assign the
many software threads (e.g., an email client, a word processor, a renderer)
to these hardware threads. A common practice is to reschedule threads on
page fault, that is, when the active thread requested a memory page that
was not currently in main memory, but on disk. As loading the page from
a disk is a relatively long process (in terms of CPU cycles) and the CPU

CHAPTER 2. BACKGROUND 40

would be idling before it could get the data, it was more efficient to assign
it to another software thread.

The principle was later extended to Hyper Threading, where multiple
hardware threads share the compute resources of a single core. The number
of threads per core is often fixed and based on the number of register sets
available in hardware, as each thread has its own logical registers. The
modern x86 CPU with 6 cores can, therefore, have up to 12 hardware threads
running at the same time. This allows for a faster and more fine grained level
of switching controlled by the CPU itself and can hide not only page faults,
but also cache misses. The principle where another thread is scheduled
while the original thread waits for a memory request is also called latency
hiding as it effectively hides memory latency from the user. Given that most
modern applications rely heavily on accessing large amounts of data this can
significantly increase the CPU resource utilization. While the theoretical
speed up of 2x from doubling the number of hardware threads is rarely
achieved, in the context of rendering applications a speed up of 1.5x is a
fairly common occurrence when Hyper Threading is enabled.

The same latency hiding approach is used on most of the modern
GPUs. Unlike the CPU, the number of threads per core can vary based on
the resources required by the threads, e.g., there is a global register pool on
the core and can be divided arbitrarily between the threads. The NVIDIA’s
GeForce GTX 980 currently has a maximum of 64 threads (in the NVIDIA
terminology warps) per core (Streaming Multiprocessor - SM) and 16 cores,
for the total of 1024 hardware threads [NVIDIA 2014]. At the same time,
while the CPU SIMD units have 4 to 8 lanes, the GTX 980 has 32 lanes.
On the CPU we can therefore schedule 12 · 8 = 96 lanes of computation
simultaneously, while the GPU can arrive at the significantly higher number
of 64 · 16 · 32 = 32768 lanes. In practice, the number of scheduled lanes on
the GPU is significantly lower (i.e., the code usually needs more than the
minimal amount of resources), but the discrepancy is still large and to fully
utilize the GPU resources the actual algorithm has to account for the need
of large numbers of concurrently active lanes.

The second major difference is in the memory access itself. Most
high performance GPUs, such as the aforementioned GTX 980, are expan-
sion cards connected to the main memory via PCI-Express. And while the
bandwidth of a 16 lane 3.0 PCI-Express is impressive 15.75 GB/s, it is still
more than an order of magnitude slower than the bandwidth when accessing
the GPU’s on-card memory (225 GB/s for the GTX 980). Coupled with the
higher latency of accessing memory through the PCI-Express bus, it is ob-
vious that high performance applications need to mainly target the on-card
memory. On the other hand, the memory itself has a significantly higher
bandwidth than even dual channel DDR3-2400 main memory (38.5 GB/s),
which helps with memory bound algorithms.

It is also important to note that CPUs are still heavily focused on

CHAPTER 2. BACKGROUND 41

single-threaded performance and their memory hierarchy is tuned to help
with this goal. On the other hand, the memory hierarchy on the GPU
is mostly biased towards providing maximum throughput and the memory
latency is hidden by other threads (i.e., similar to Hyper Threading), rather
than actively reduced by complex caching and out-of-order instruction issue
mechanisms. To utilize this throughput, it is important to provide the GPU
with comparatively large sets of work, to keep all threads occupied as much
as possible. For an extreme example, it is obviously much more effective to
have the GPU process a single set of a million rays, rather than a million sets
of a single ray, as the latter would leave majority of the GPU unoccupied.
Realistic scenarios of work set sizes are examined in Section 4.3.4.

Lastly, we will mention an issue that could be encountered on large
production scenes. The on-board memory is fairly small when compared to
maximum main memory sizes, as few GPUs have more than 10 GB, while
32 GB or more of main memory is quite common. All the scenes presented
in our work fit into the on-board memory of the used hardware but the ever
present production drive for higher model detail, more complex scenes, and
more detailed textures means that some production scenes would not fit. So,
while the topic is beyond the scope of this work, let us briefly describe one
of the basic approaches that could be used to address this issue. The idea is
to look at the out of core approaches used on the CPU when the scene does
not fit into main memory and has to be stored on the disk. In this case,
the memory is used as a cache and various tiling and sorting schemes are
employed to minimize the number of cache evictions while at the same time
servicing the requests. We refer the readers to the papers by Pantaleoni et
al. [2010], Eisenacher et al. [2013], and Laine et al. [2013] for inspiration.

2.5.3 Dedicated Ray Casting Units

So far we have only discussed the fully programmable special hardware,
used in computer graphics. But the GPU also contains two important fixed
function units. The first one is a texture unit that, given a properly laid out
texture, can do extremely efficient filtered texture lookups into compressed
textures. This is a feature that can be utilized by any rendering algorithm
and does not require further discussion in the context of this thesis. However,
the other fixed function unit, the rasterization unit, represents the core
of the rasterization rendering algorithm and thus requires more detailed
description.

The goal of the rasterization unit is to answer, for each triangle, the
following question: “Which pixels are covered by this triangle, and how far
is it?” This is almost identical to the question that ray casting acceleration
structures help to solve: “Which triangle is the closest, as seen through this
pixel?”. Except the question is asked from the position of the triangle, not
the pixel.

CHAPTER 2. BACKGROUND 42

The main advantage of this approach is that we do not need any
acceleration structure and can just stream all the triangles through the ras-
terization unit to obtain the final answer. The main disadvantage is that
this is only directly applicable to perspective and orthographic projections,
i.e., all the rays have to share either origin or direction. If we have multiple
such sets of rays, we have to stream all the triangles for each of them. So,
while this approach is useful for things like primary visibility or shadows
from point lights, it cannot answer general visibility queries the way ray
casting acceleration structures can. We refer the reader to our 3D Raster-
ization: A Bridge between Rasterization and Ray Casting [Davidovič et al.
2012a] for further discussion on the similarities and differences between the
two approaches.

It is undeniable that hardware rasterization units are of great benefit
to the overall performance of the GPU. The obvious question is whether a
similar advantage can be leveraged with a dedicated ray casting unit and
what are the challenges.

Let us first discuss the simpler case of a completely static scene. While
this scenario is not particularly exciting for real-time applications, e.g.,
games, it still has a lot of merit when high quality is preferred over frame
rate, such as in movie production where a single frame can take anywhere
from several minutes to several hours to compute.

As we mentioned earlier, the main difference between rasterization
and ray casting units is that ray casting can process arbitrary and indepen-
dent ray queries. To achieve this, we need to have the full scene geometry
accessible at all times, either by fitting it all in memory or by utilizing
some caching mechanisms. Related to memory is also the problem that a
large number arbitrary queries into your data requires a substantial band-
width. The most straightforward approach, when dealing with bandwidth
problems, is to introduce a memory hierarchy in the form of caches. This,
in itself, is often sufficient enough to accommodate a moderate number of
concurrently traced rays. For example, this approach is used in the FPGA
implementation of the RPU and DPU [Woop et al. 2005, Woop 2006], which
will be discussed in more detail in Section 3.

Unfortunately, as the complexity of the scene grows, a simple caching
scheme might not be enough. Aside from the bruteforce option, i.e., increas-
ing the cache size, it is also possible to increase the cache hit rate by sorting
the ray queries by their origins and directions. When a sufficiently large
number of ray queries is used, this leads to consecutive rays being fairly
coherent, which helps to improve on the temporal locality and thus cache
performance. This can be further improved by partitioning the scene and
re-sorting rays on the partition boundaries, similar to the CPU out-of-core
approaches such as in PantaRay [Pantaleoni et al. 2010]. The drawback of
this approach is that it requires a large number of concurrently active rays
to find any coherence in the queries and, while suitable for some rendering

CHAPTER 2. BACKGROUND 43

algorithms, e.g., Forward Path Tracing, it can be problematic for algorithms
that store significant state per path, e.g., bidirectional path tracing. Notable
hardware designs that adopt this approach are StreamRay [Ramani et al.
2009] and Caustic One [Caustic Graphics, Inc. 2009]3.

The other critical issue is the choice of an acceleration structure. As
discussed in Section 2.4.1, there are many valid options and there is no clear
candidate for the best one. Based on the research on the GPU (see [Aila
and Laine 2009]), it seems that BVH structures are better suited for hard-
ware acceleration than kD-trees, due to their larger nodes and shallower
structure. The shallow structure means that the memory system will need
fewer data fetches to reach a leaf, while the larger node means that each
fetch will bring more relevant data. Ideally, the node would be as wide as
the bus width, so each memory transfer would bring exactly one node with
no unnecessary data. And, as mentioned earlier, efficient use of memory is
of utmost importance for the overall performance. Another good candidate
would be uniform or multi-level grids, as they are fast to build (see [Kalo-
janov and Slusallek 2009, Kalojanov et al. 2011]) and have a predictable
traversal order, which allows for efficient pre-fetch of data from memory.
Unfortunately, if we leave the actual ray-structure intersection fully pro-
grammable, the hardware acceleration would be limited only to ray-triangle
intersection and, possibly, a specialized memory hierarchy. Therefore, to
fully utilize the potential of hardware acceleration, a choice of acceleration
structure has to be made and fixed for the given hardware. Please note that
it is still possible to identify operations common to multiple structures and
implement hardware acceleration for those, but this is yet another tradeoff
between programmability and performance.

The issue becomes even more prominent if we include the common
requirement for dynamic scenes in real-time setting, such as when ray tracing
would be used to produce effects in games. Here, we have to distinguish two
level of dynamics. In the simpler case the scene is only deforming, that
is, the number and the topology of triangles is the same across the frames
and it is only the triangle vertices that are moving. This allows BVH-based
structures to be built once and then refitted as the objects move.

Unfortunately, in the more general case of dynamics, where the num-
ber of triangles can change between frames, refitting is not an option and a
new acceleration structure needs to be build for every frame. While some
of the architectures cites here did include hardware for building acceleration
structures, e.g., the DRPU [Woop 2006], it is not the main topic of this the-
sis and it will not be discussed in detail. For those interested in the topic,
a good starting point may be the body of work on building and re-building

3The company has been bought by Imagination Technologies and their marketing re-
sources are no longer available.

CHAPTER 2. BACKGROUND 44

acceleration structures on the GPU, such as [Kalojanov and Slusallek 2009,
Lauterbach et al. 2009, Karras and Aila 2013].

CHAPTER 2. BACKGROUND 45

CHAPTER 2. BACKGROUND 46

Chapter 3

A Dedicated Ray Traversal
Engine

In Section 2.1.3 we have introduced the rendering equation in the ray tracing
operator form (Equation 2.8):

Lo(x, ωo) = Le(x, ωo) +

∫
Ω+

fr(x, ωo, ωi)Lo(h(x, ωi),−ωi) cos θidωi

The purpose of the ray tracing operator h(x, ω) is to identify the source of
radiance arriving at a point x from a direction ω by finding the closest surface
point in the scene along a ray defined by this point and direction. Unlike the
Le(·, ·) and fr(·, ·, ·) terms that are defined locally at a given point, the ray
tracing operator has to consider the whole scene and its cost increases with
the scene complexity. With the naive approach of testing each ray against
all objects in the scene the ray tracing operator would quickly completely
dominate the total cost of the equation. Therefore, at least some form of
acceleration of these ray casting queries is vital for any practical application.

Three of the most common acceleration structures uniform grids,
kd-trees, and bounding volume hierarchies have been introduced in Sec-
tion 2.4.1. A large body of work on build algorithms for acceleration struc-
tures, traversal algorithms, and packet traversal, published in the past fifteen
years, caused tremendous speed up of the CPU ray casting performance, e.g.,
[Havran 2000, Wald et al. 2001, Wald 2004, Reshetov et al. 2005, Günther
et al. 2007, Stich et al. 2009, Hapala and Havran 2011]. With the introduc-
tion of more programmable GPU we have also seen significant improvements
in the performance of ray casting queries on the GPU, with the works by
Aila, Laine, and Karras [Aila and Laine 2009, Aila et al. 2012, Karras et al.
2012] achieving the peak ray tracing performance and NVIDIA’s OptiX
[Parker et al. 2010] providing a simple-to-use ray tracing framework.

However, despite all these advances, real-time applications are still
a domain of rasterization. One of the key advantages of rasterization is

47

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 48

the extremely efficient dedicated hardware rasterization unit and its tight
coupling with the programmable cores used for shading. While, in principle,
rasterization also uses the ray tracing operator to find the surfaces closest
to the camera, the implementation greatly benefits from all rays having a
common origin x and the ray directions ω being parametrized on a 2D pixel
grid. Standard ray tracing does not have such limitation on rays, which
gives it a huge advantage in the terms of flexibility. However, dealing with
arbitrary rays also poses several challenges detailed in Section 2.5.3 and
mainly focus on the lack of locality when processing the rays.

Despite these challenges, there have been many different dedicated
hardware ray tracing units introduced in both academic and commercial
settings. The first implementations focused on testing rays against primi-
tives in efficient fashion [Plunkett and Bailey 1985, Owczarczyk 1988], but
they did not utilize any acceleration structures and instead chose the brute-
force approach of testing all rays against all primitives. One of the earliest
architectures to utilize acceleration structures was the TigerSHARK Archi-
tecture by Humpreys and Ananian [1996]. The authors use a wide (16-32)
SIMD approach to test a primitive against many rays at once. Each SIMD
lane is represented by a ray intersection unit that can intersect a ray against
a primitive, with all units testing the same primitive. The authors use a
Bounding Volume Hierarchy where a subtree is skipped if all lanes miss its
bounding box. The input rays are assumed to have a significant spatial co-
herence to leverage this principle and the approach would work poorly on
randomized rays, due to the “all rays test the same primitive” requirement.

A somewhat similar approach is taken by Ramani et al. [2009] who
introduce the StreamRay, a hardware architecture based on stream filtering
of rays. Here the rays are organized into streams and, using the accelera-
tion structure tests as filters (e.g., go left/right/both/neither), are gradually
filtered into substreams of similar rays. This partitioning of rays into sub-
streams allows for reducing bandwidth towards the acceleration structure
and geometry data, as a node or primitive can be fetched once and used for
all the rays in a substream. However, to be efficient, the approach requires a
large number of active rays and in algorithms that require a substantial path
state (e.g., bidirectional path tracing) this can put pressure on memory.

The TRaX architecture by Spjut et al. [2009] explicitly does not utilize
SIMD to process multiple rays at once, and instead focuses on accelerating
the single ray performance. It takes advantage of the specific memory ac-
cess patterns, e.g., read-only scene memory, and designs its memory system
around them. This architecture is later used as a basis for the works by
Spjut et al. [2012] and Kopta et al. [2013, 2015] on energy efficient ray
tracing, targeted at the mobile segment.

At Saarland University, Philipp Slusallek’s group developed three gen-
erations of ray tracing hardware. First, in 2002, Schmittler et al. introduced
the SaarCOR hardware design [Schmittler et al. 2002]. This design consists

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 49

of fixed function traversal and ray-triangle intersection units, using 32 pack-
ets of 4 rays each to hide memory latency. Unlike most of the previous
architectures, this design also incorporated shading, albeit only with a fixed
function unit.

To address the fixed function limitations, Woop et al. presented the
RPU [Woop et al. 2005] architecture. The RPU provides programmable
SIMD shader units coupled to fixed function, dedicated traversal units, using
a kd-tree acceleration structure. The last generation of the design, also
developed by Woop, is the Dynamic RPU, or DRPU [Woop 2006]. It adds
support for dynamic scenes by using refittable B-KD trees [Woop et al.
2006b] instead of the previously used kd-trees.

As can be expected, all of the introduced publications focus mainly
on the acceleration of the ray tracing operator itself. However, due to the
generally recursive nature of ray tracing, the coupling between shading and
ray tracing is of even greater importance than in rasterization. Rasterization
is, generally, a streaming process. A triangle is rasterized into fragments,
those are sent for shading, and then are either stored in the framebuffer
or not. The ray tracing shaders, on the other hand, generally produce
other rays, e.g., shadow rays or reflection rays leading to a feedback loop
and two-way communication between the units. Even though some of the
architectures do have their own programmable shading units, these units
were not the main focus of the work and their capabilities are, obviously,
fairly limited.

In this chapter we focus on this missing piece and present a solu-
tion that proposes to place a small dedicated hardware ray traversal engine
(RTE) directly on the die of a modern processor that can be used to execute
general purpose shading. For our evaluation we chose the Cell Broadband
Engine� (Cell/B.E.), due to its unique modular architecture, but the re-
sults do not, in any way, depend on this choice and can be transferred also
to other architectures.

3.1 Ray traversal engine

Our ray traversal engine (RTE) implementation is based on the well-
documented FPGA implementation of the DRPU by Woop [Woop 2006].
We extend the previous investigation into the ASIC implementation of this
design [Woop et al. 2006a] by considering options given by a fully custom
90 nm process by IBM. We will first give a brief overview of the basic blocks
used, then discuss frequency, area scaling, and the connected design deci-
sions.

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 50

3.1.1 Design blocks

The RTE (Figure 3.1) is a heavily pipelined unit with finegrained multi-
threading. It uses B-KD trees [Woop et al. 2006b] for its acceleration struc-
ture. Our B-KD tree implementation offers a two-level hierarchy, where each
leaf of the top tree can contain either a triangle or a transformation matrix
and pointer to a subtree.

The basic unit of computation is a thread, which processes four rays at
once. Each pipeline stage can accommodate a different thread and there is no
overhead in switching threads. The whole RTE can process up to 64 threads
(256 rays) at once. While there is no strict requirement for coherence of rays
within the same thread, it can bring a performance boost. Also, coherence
between all currently processed rays improves cache hit rates.

The IO unit strongly depends on the particular implementation de-
tails of integrating RTE with the rest of the system. We will therefore not
elaborate on its implementation, but we can imagine it as a kind of memory
controller that handles ray and result queues in main memory, akin to what
is assumed in [Aila and Karras 2010]. The basic functionality is to fetch
rays for idle threads and store results from finished ones.

The actual RTE core consists of two units: traversal and geometry.
Each is connected to main memory via a 4-way associative 32 kB read-only
cache. A single larger cache has been considered, but there would be either
high contention for its single port, or it would have to be two port cache,

Traversal
unit

IO unit

Node cache
32kB

Traversal
stack
32kB

Vertex cache
32kB

Geometry
unit

Main
memory

Figure 3.1: RTE block diagram. The RTE core consists of traversal and geometry
units. Each unit is connected to main memory via 32 kB cache. Traversal unit has
an additional 32 kB memory for traversal stack and connection to the IO interface to
return results and receive new queries.

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 51

resulting in higher complexity. Also, as each unit requires different data,
there is no redundancy in fetches from main memory that would lower the
efficiency.

Another two parts, not shown in Figure 3.1 are a per-thread stack
memory and a ray state buffer. The per-thread stack is accessed with up
to 1 read and 1 write each cycle, where the read occurs when a thread is
submitted to traversal unit and the write occurs when the result of traversal
stage is that both children should be intersected. Each item in the stack
consists of a node address (4 B) and the near and far values for each ray
(32 B), a total of 36 B per item. For convenience we consider a maximum
scene depth of 32. Making the internal stacks shorter and spilling overflow
into main memory, as described in [Aila and Karras 2010], would also be an
option.

The ray state buffer is a per-ray storage that stores the current closest
hit distance, the ID of the closest triangle, and the barycentric coordinates
of the hitpoint.

For each thread, the traversal unit fetches the required node. If the
node is a leaf it is sent to the geometry unit. For inner nodes it intersects
the child nodes and based on the result either pops a new node from stack,
traverses the single hit child, or traverses the closer child while pushing the
farther child onto the stack. If the stack is empty it informs the IO unit
that traversal has completed.

The geometry unit computes both the intersection with triangles and
the transformation of rays for traversing the bottom tree when a two-level
hierarchy is used. This is possible because both operations require very
similar functional units with a minimal reconfiguration. When this unit
receives a leaf node, it first fetches either three vertices (for intersection) or
matrix rows (for transformation). The thread waits until all three memory
fetches are finished before further execution.

For some of the measurements, We additionally equip the geometry
unit with a 1 MB 4-way associative L2 read-only cache. For this cache we
assume a latency of 100 cycles, and a 512 bit wide access to memory (fetches
64 B at once). When the L2 cache is not present, the L1 caches are connected
directly to memory and assume a 128 bit wide access. The main memory is
assumed to have a latency of 600 cycles.

3.1.2 RTE synthesis

We first synthesized all the major arithmetic sections of both units as well
as the cache logic using a fully custom proprietary IBM 90 nm process [Davi-
dovič et al. 2009]. All synthesized parts were able to run at frequencies of
over 2 GHz. This was done without any special fusion of dependent arith-
metic units. Also, considering the already quite high latency of both traver-
sal (14 cycles) and geometry (36 cycles) units, more stages could be added

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 52

to further stabilize the frequency without a significant impact on the overall
performance. While both optimizations can lead to higher frequency than
reported, we opted against their implementation as the preliminary results
are more than satisfactory.

We have not explicitly synthesizes all the required memories, instead
we borrowed statistics from similar memories from the Cell/B.E. processor
[Flachs et al. 2005]. This processor has a 32 kB L1 cache running at 3.2 GHz
as well as 1-read, 1-write port local store memory running at the same
frequency. As these two types of memory fulfill all requirements we have on
our memory blocks we conclude that memory frequency will not be an issue.

The area of the RTE is not of the prime concern for our results, so
we present only a rough upper bound. We used a range of area estimation
techniques to confirm that RTE comfortably fits into the area of less than
15 mm2 which is the area of each of the Synergistic Processor Unit (SPU)
coprocessors of Cell/B.E.. Further reduction of the size is possible by the
aforementioned fusion of arithmetic units.

3.2 Simulator architecture

We have performed two distinct simulations. The first simulation was on
the actual low-level VHDL code, that is used as a base for our synthesis
results. While this confirms that the design is correct and the synthesized
frequencies valid, the simulation itself is very slow.

To solve this we also designed a cycle-accurate SystemC [Open Sys-
temC Initiative 2006] model of the RTE. SystemC is a C++ library that
allows for using many high-level language constructs that are not available
in VHDL, while at the same time allowing cycle accurate simulations. We
integrated this RTE model as part of our ray tracing framework, essentially
replacing its standard traversal and intersection routine.

Normally our software framework uses the following workflow: First,
a primary ray is generated from the camera. It is then intersected with the
scene and the closest geometry is found. If there is any hit, an integrator is
invoked that queries material for its BRDF, retrieves lights from the scene
description, performs shading, and possibly generates other rays. Once the
final color of the primary ray is computed, another primary ray is generated,
until the whole image has been rendered.

While this sequential process works very well for CPU rendering with
low amounts of parallelism (4-16 threads at once), it is ill-suited for massively
parallel hardware acceleration. We have therefore modified the algorithm as
follows. First, all primary rays are generated and put into the input queue of
the RTE. The RTE emulation engine is then started and after each cycle its
output queue is checked. If there is a ray in the output queue, it is passed to
the integrator that processes the ray. This can, and generally does, generate

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 53

other rays, that are in turn fed back into the input queue ahead of any stored
primary rays. When there are no more rays in the input queue and no active
rays are in the RTE, the frame has finished. Should generating all primary
rays occupy too much memory at once, it is also possible to split the image
into several blocks or batches, based on the memory configuration.

3.2.1 Shader models

Unfortunately, this system does not lend itself easily to the standard recur-
sive shaders, nor to any kind of shader where the integrator needs result of
a traced ray. There are two possible solutions to the problem. Firstly, we
can use tail-recursion, for example adopted by [Caustic Graphics, Inc. 2009].
Here the integrator generates all required rays in a fire-and-forget manner,
attaching to them all the necessary information. Shadow rays would, for
example, carry the radiance that should be added if they are not occluded.
When a shadow ray hits the light it was generated for, the contribution is
added to the pixel value. If the shadow ray hits any other object the light
is occluded and no contribution is accumulated.

This approach has several drawback. It lacks adaptivity, i.e., it is
not possible to evaluate next event estimation samples and decides that it
would be optimal to shoot more such samples. It spawns large and poorly
controllable number of rays. Multiple rays independently writing to the
same pixel require atomicity and can lead to poor memory locality.

The other approach is to use continuations. Here the integrator is
effectively split at each call for traceRay and its state is stored. Once the
tracing of a ray has been finished, the previous shader state is fetched from a
global storage and the integrator continues. This can be easily implemented
by a finite state machine, but requires a stack in the case ray bifurcation
is allowed. One of the advantages is that all the computations concerning
one pixel are self-contained in the shader which precludes the atomicity and
locality requirements of tail recursion. It also allows examining the partial
results and based on them determine the actual number of samples to take.
The disadvantages include larger per-ray storage and higher sensitivity to
latency.

3.2.2 Acceleration structure partitioning

To increase cache coherence, Aila and Kerras [Aila and Karras 2010] in-
troduce the concept of partitioning the acceleration structure into multiple
treelets (subtrees), each of which fits into the L1 cache. As we consider this
approach highly relevant for our results, we adapted it for B-KD-trees and
included it in our measurements.

The basic principle is that the whole structure is split into many small
subtrees, called treelets. Each of the treelets has its own ray queue and

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 54

when a ray crosses a treelet boundary, its traversal is stopped and it is
put into the corresponding treelet’s input queue. While the original paper
introduced several methods for scheduling treelets to ray traversal engines,
we use only the simplest one called lazy scheduler. It simply takes the treelet
with the largest queue and processes it until the queue is empty. Then it
switches to another treelet, with the currently largest queue. The more
complex methods are meant to balance situation where there are multiple
ray traversal engines, which is something we do not currently consider for
our scenario.

3.3 Results

We tested the design on three scenes of moderate complexity, the Confer-
ence (283k triangles), Fairy forest (174k triangles), and Kitchen (253k
triangles). We test both shader approaches using 16 rays per pixel ambient
occlusion. We focus on the cache hit rates, throughput (rays per second),
ray latency (important for continuation shaders), and the bandwidth re-
quirements of our unit, measured both with and without an L2 cache.

The reason why we provide not only cache hit rates, but also their
bandwidth is that one should not automatically assume that higher hit rates
are more desirable. The perfect ray tracing algorithm would need to access
each node and triangle at most once and the caches would have a hit rate 0%
but the cache bandwidth would significantly lower. We also cannot consider
bandwidth in isolation as the simplest way to achieve the lowest possible
bandwidth is to not trace any rays. Therefore, for evaluation we need to
consider the ray throughput, the bandwidth it requires, and the cache hit
rate that helps to lower the bandwidth together and draw conclusions only
from the combination of the three, as we will see below.

In Section 3.3.1 we provide results for RTE without the use of treelets,
we follow up with Section 3.3.2 commenting on the results using treelets and
close with Section 3.3.3 on using BVH instead of B-KD-tree.

3.3.1 Standard implementation

Table 3.1, providing results for the standard RTE implementation, offers
several insights. First and most important is, that the L2 cache helps in
all the scenes, giving us a speed up by 1.3-2.3×. The reason for this is
somewhat obvious, the L2 cache provides large portion of the scene with
lower latency (100 cycles) than main memory (600 cycles). The L2 cache
also exhibits relatively high hit rate, above 85 % for nodes and over 70 %
for vertices. It is important to note that while the L2 hit rate is higher for
continuation shaders, this is actually caused by the lower L1 cache hit rate,
which causes more requests to L2 cache, increasing the bandwidth as noted
at the beginning.

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 55

Conference Fairy forest Kitchen

Continuations shaders

L2 off on off on off on

L1 hit rate [%] 68/53 69/55 55/44 56/45 83/77 89/85
L1 bandwidth [GB s−1] 6.7/4.7 15.7/11.0 5.0/3.4 11.7/7.9 11.2/7.6 16.7/11.3
L2 hit rate [%] - 95/84 - 88/73 - 90/80
L2 bandwidth [GB s−1] - 4.8/4.9 - 5.2/4.3 - 1.8/1.7
Ray bandwidth [GB s−1] 0.14 0.14 0.14 0.14 0.14 0.14
Mem bandwidth [GB s−1] 4.4 4.2 4.3 7.5 3.7 2.1
Latency [cycles] 6.0 M 2.7 M 12.0 M 5.4 M 3.3 M 2.3 M

Throughput [MRays/s] 47.8 112.4 20.8 48.1 66.6 100

Tail-recursive shaders

L2 off on off on off on

L1 hit rate [%] 76/64 78/67 63/53 64/55 87/82 85/80
L1 bandwidth [GB s−1] 8.3/5.8 16.3/11.2 6.0/4.1 12.5/8.4 12.6/8.5 16.8/11.4
L2 hit rate [%] - 93/79 - 86/71 - 93/86
L2 bandwidth [GB s−1] - 3.6/3.7 - 4.5/3.8 - 2.6/2.3
Ray bandwidth [GB s−1] 0.14 0.14 0.14 0.14 0.14 0.14
Mem bandwidth [GB s−1] 4.4 4.1 4.1 6.2 3.3 2.1
Latency [cycles] 4.9 M 2.6 M 10.0 M 5.0 M 3.0 M 2.3 M

Throughput [MRays/s] 61.1 117.4 25.0 52.3 75.4 99.2

Table 3.1: Results without treelets. We measure all three scenes with both tail-
recursive and continuation shaders and both with and without 1 MB L2 cache. The
reported results are L1 cache hit rate, required L1 bandwidth in GB s−1, the same
for L2 cache (if applicable), ray traffic bandwidth in GB s−1, total required memory
bandwidth, both from cache and rays, latency in cycles (Latency) and throughput in
million rays per second. The L1 and L2 cache results are given in format vertices/nodes.

The ray bandwidth, created by reading and writing rays from input
and into output queues, is an order of magnitude lower in all the mea-
surements than the total bandwidth to main memory and thus relatively
insignificant. We can also see that with the total memory traffic between
2 and 6 GB s−1, we are well beneath the peak performance of current GPU
memory systems.

Another very important aspect is the ray latency (noted in Table 3.1
simply as Latency). This represents the average number of cycles between
receiving a ray into the input queue and writing the result into the output
queue. The latency ranges from 2 million to 12 million cycles (1-6 ms at
2 GHz) for both tail-recursive and continuation shaders. This effectively
prohibits any kind of active or passive waiting on the shading side. By
active waiting we mean an actual spin loop that checks ray status. By passive

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 56

waiting we mean not scheduling the thread, akin to when threads are waiting
for global memory access on NVIDIA GPUs. We would therefore keep a
work queue of rays to be processed and whenever tracing a ray is required,
we would store the whole shader state, submit the ray query, and fetch a
different ray from the work queue. Considering that with ray bifurcation
the shader state actually contains a ray stack, the whole process becomes
significantly more involved than the tail-recursive shaders.

Also, looking at the ray throughput, we can see that the tail-recursive
shaders lead to almost universally better results than continuation shaders,
and never actually perform significantly worse. The improvement always
corresponds to increase in L1 cache hit rate and bandwidth, suggesting that
tail recursion gives us noticeably more coherent rays.

So far we have concluded that the overall best choice would be using
tail recursion with an L2 cache, giving us 50-100 million rays per second.
However, assuming that the L2 cache is occupied roughly equally by both
nodes and vertices, it can hold up to 25 % of the whole scene, for each of our
scenes. The cache therefore effectively lowers the demand on ray coherence.
But considering larger scenes this effect would become less pronounced. We
would therefore prefer to increase the coherence itself rather than mitigate
the impact of incoherence.

3.3.2 Treelet implementation

Towards this goal we implemented the treelet approach introduced by Aila
and Kerras [Aila and Karras 2010], as described in Section 3.2.2. We use
treelets of approximately 32 kB size, so each treelet can fit into the L1 Node
cache. The results are summed up in Table 3.2.

We present the same statistics as in Table 3.1 and additionally provide
two statistics that are specific to the treelet mechanism. The first is the
number of input queue switches. It represents the how many times was the
RTE switched from working on one treelet to another. Obviously, the lower
the number the better, as processing a treelet typically results in loading
most of its nodes into the L1 cache. As the size of each treelet matches
the size of our L1 cache, this effectively means invalidating all the previous
cache records. Corresponding to that is the average queue size, measured
when the queue’s treelet was switched to active. It represents the number
of rays that are processed between the cache invalidations. Here, the larger
the number the better.

Looking at the L1 hit rate, bandwidth, and the overall performance,
we can conclude that the treelets do provide overall improvement over the
standard implementation. Because the rays are moved to and from the RTE
on each treelet boundary crossing we can see an order of magnitude increase
in ray traffic bandwidth. This is offset by the fact that due to the increased

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 57

Conference Fairy forest Kitchen

Continuations shaders

L2 off on off on off on

L1 hit rate [%] 83/70 86/73 79/65 81/66 89/82 91/85
L1 bandwidth [GB s−1] 9.3/6.5 14.0/9.8 8.0/5.4 12.1/8.1 11.7/7.9 15.3/10.3
L2 hit rate [%] - 79/62 - 72/57 - 76/66
L2 bandwidth [GB s−1] - 2.0/2.7 - 2.3/2.8 - 1.4/1.6
Ray bandwidth [GB s−1] 1.3 1.3 2.2 2.2 1.4 1.4
Mem bandwidth [GB s−1] 5.5 7.1 5.8 9.5 4.2 4.8
Latency [cycles] 2.8 M 2.2 M 5.8 M 4.6 M 3.6 M 3.1 M
Queue switches [-] 104718 103067 196828 199421 130285 129507
Avg. queue size [-] 87 88 86 85 79 79

Throughput [MRays/s] 67.2 101.2 33.0 49.3 69.1 90.4

Tail-recursive shaders

L2 off on off on off on

L1 hit rate [%] 96.2/92.3 97/93 95/89 96/89 97/95 98/95
L1 bandwidth [GB s−1] 14.0/9.8 15.4/10.7 13.9/9.3 15.5/10.3 15.0/10.2 16.1/10.9
L2 hit rate [%] - 73/61 - 70/64 - 70/62
L2 bandwidth [GB s−1] - 0.4/0.7 - 0.6/1.1 - 0.4/0.5
Ray bandwidth [GB s−1] 1.2 1.2 2.0 2.0 1.3 1.3
Mem bandwidth [GB s−1] 2.5 2.8 3.7 4.4 2.3 2.5
Latency [cycles] 15.8 M 15.4 M 30.0 M 28.7 M 24.3 M 23.7 M
Queue switches [-] 13220 13176 19118 19252 15092 15255
Avg. queue size [-] 659 661 829 823 653 647

Throughput [MRays/s] 103.6 112.8 57.8 64.4 90.2 96.7

Table 3.2: Results with treelets. We again measure all three scenes with both tail-
recursive and continuation shaders and both with and without 1MB L2 cache. The
reported results are L1 cache hit rate, required L1 bandwidth in GB s−1, the same
for L2 cache (if applicable), ray traffic bandwidth in GB s−1, total required memory
bandwidth, both from cache and rays, latency in cycles (Latency) and throughput in
million rays per second. Two treelet specific statistics are the number of queue switches
and the average size of queue that has been scheduled for processing.

coherence between rays, the total bandwidth to memory (including the ray
bandwidth) is actually lower than in the implementation without treelets.

We can see a drop of about 10 % in the L2 hit rate, combined with
a significant drop in the L2 bandwidth. The lower L2 hit rate is caused
by all rays sharing the same treelet which completely fits into L1, so the
requests to L2 occur mostly when the active treelet changes. The treelets
are processed with priority given by the number of queued rays, which results
is a somewhat round-robin order of processing, where a just processed treelet
will not be scheduled until it accumulates enough rays. This violates the
common cache assumption that recently processed data will be needed again

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 58

soon and results in the lower hit rate on the L2 cache. This is also manifested
by much closer ray throughput between the versions with and without L2
cache.

The tail-recursive shaders clearly and consistently provide better re-
sults than continuation shaders, mainly due to the fact that they have much
more rays in flight that can be sorted into treelet queues. As result, there
are about 10× less queue switches with queues being on average 10× larger
than when using continuations.

The only drawback is significant increase in ray latency (to 15-30 mil-
lion cycles, i.e. 7.5-15 ms), which, however, is not so important when tail
recursion is used.

3.3.3 Using BVH

While using B-KD-tree treelets significantly improved the L2-less perfor-
mance for both Conference and Kitchen scenes, the Fairy forest scene
showed unsatisfactory results. The treelets did indeed balance the perfor-
mance between versions with and without L2 cache, but the absolute per-
formance was still only slightly above half of what we could achieve in the
other two scenes.

We suspected that the B-KD-tree might be a poor fit for the scene and
modified our RTE to handle BVHs instead. We modified only the simulation
engine itself, without any considerations for the changes in area or frequency.

We implemented two different approaches to the BVH. The first ap-
proach we call Node BVH, where each node contains its own bounding box
and only indices to the children. The traversal then checks whether ray hits
a node, and if so always proceeds to both children, determining the first
one based on the node split plane and ray direction. The second approach
we call Child BVH, where each node contains bounding boxes of both its
children and we only descend to the children the ray actually intersects.

While there is no principal difference between the approaches, two
aspects have to be considered. First, the Child BVH needs to perform
12 ray-plane intersections, while the Node BVH needs to perform only 6.
This essentially means a factor of 2× in terms of area requirements for
ray traversal unit. The other aspect to consider is treelet implementation.
Should we choose to use Node BVH, a ray can descend to a child that
resides in another treelet only to discover it does not intersect the child,
thus generating two unnecessary treelet transitions.

The Table 3.3 shows that the Node BVH drawback of unnecessary
treelet transitions outweighs any performance gain by using the BVH ac-
celeration structure. The Child BVH approach offers approximately 12 %
speed up, both with and without L2 cache, but further tests showed that a
similar speed up is achieved in the other two scenes as well.

Given the fact that going from the very lightweight B-KD-tree nodes

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 59

L2 off on

B-KD-tree [MRays/s] 57.7 64.4
Node BVH [MRays/s] 50.0 54.9
Child BVH [MRays/s] 65.0 73.5

Table 3.3: Acceleration structures. We show performance in million rays per sec-
ond on the Fairy forest scene, using tail-recursive shaders, treelets and three different
acceleration structures.

to BVH nodes required for Child BVH approach would introduce significant
changes in the whole design, we did not pursue this design any further.

We conclude that the lower performance in Fairy forest is not due
to the acceleration structure itself, but rather due to the complex traversal
paths of the rays we generated. This is also supported by the highest number
of queue switches as well as the longest average ray latency among the three
scenes.

3.4 Conclusion

In this chapter we introduced a hardware implementation of a ray traversal
engine (RTE) that could act as a fragment generation unit on the GPU in
lieu of current rasterization engines. Using a 90 nm process, the RTE has
been confirmed to run at frequencies above 2 GHz, can fit into area less than
15 mm2, and achieves performance of over 100 million rays per second while
keeping bandwidth to main memory below 5 GB s−1. The unit was tested
in two hardware variants, with and without 1 MB L2 cache. The L2 showed
great benefit in mitigating impact of ray incoherence, even when combined
with treelet-based B-KD tree which, in itself, reduces the incoherence.

We also tested two BVH based alternatives to the B-KD tree accel-
eration structure. The Node BVH, where each node knows only its own
bounding box, proved to be slower due to frequent transitions into treelets
that were actually completely missed by the ray. This problem is not present
in Child BVH, where each node knows its children bounding boxes, but the
significantly larger required footprint (12 plane tests instead of 2) outweighs
the modest 12% speed advantage over B-KD tree. Two competing shader
styles are also compared, tail-recursive shaders and continuations shaders.
Despite the tail-recursive shaders having less control over the number of
rays spawned and their tendency to swarm the RTE with trace requests, we
found them to be almost universally better. Even with 16 rays per pixel
the memory consumption and bandwidth are very reasonable, while at the
same time it provides a large pool of rays that nicely complements the treelet
approach.

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 60

In conclusion, we propose using tail-recursive shading wherever possi-
ble, as it does fairly well match the feed forward scheme used in the current
GPUs. But even for algorithms that would be hard pressed to use tail-
recursion (e.g., Bidirectional Path Tracing or Metropolis Light Transport),
a dedicated ray traversal engine using B-KD tree with treelets would be an
interesting, useful, and reasonably small addition to the current GPUs.

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 61

CHAPTER 3. A DEDICATED RAY TRAVERSAL ENGINE 62

Chapter 4

Light Transport Simulation
on the GPU

In the previous chapter we have discussed a hardware approach to lowering
the cost of the ray tracing operator, one of the most expensive parts of the
rendering equation. And while it is an efficient way of reducing the total
cost of a light transport path, the most effective way would be to not even
require the computation of this path. Which is precisely the goal of the var-
ious existing global illumination algorithms: Reducing the overall number
of paths required to deliver an image at a given quality by making sure that
each path brings as much relevant information as possible. In the context of
Monte Carlo integration, we view this as the difference between reducing a
cost of a Monte Carlo sample and reducing the number of samples required
to obtain the result with a given precision. Therefore, in this chapter, we
abstract from the ray tracing operator problem by using a well tuned soft-
ware ray tracing library [Karras et al. 2012] and instead focus on the global
illumination algorithms and their mapping to wide-SIMD hardware.

Global illumination research has recently focused on progressive global
illumination algorithms: Algorithms that converge to the correct solution
of the rendering equation (under some assumptions) given enough time and
provide meaningful partial results during convergence. This category con-
sists of well-known approaches, such as Path Tracing and Bidirectional Path
Tracing, as well as more recent ones: Progressive Photon Mapping (includ-
ing a bidirectional version) and Vertex Connection and Merging.

At the same time, Graphics Processing Units (GPUs) became more
flexible and many global illumination algorithms were ported to them. These
ports have mostly focused on proof-of-concept implementations that show a
performance improvement over CPU rendering.

We take it as established that progressive global illumination algo-
rithms are useful, that they can be ported to the GPU, and that they
achieve significant speedups. But are these implementations optimal? And

63

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 64

which progressive algorithms perform the best on GPUs? These questions
are far from answered: There has been a complete lack of such a rigorous
and systematic study of the implementation and performance of different
progressive global illumination algorithms on GPUs.

Our work fills this gap with a first comprehensive and in-depth in-
vestigation of the problem. We have surveyed and reimplemented the best
published techniques for GPU-based Path Tracing, Bidirectional Path Trac-
ing, and Progressive Photon Mapping, so we can analyze the impact of both
high-level and low-level optimizations on their performance. We also take
advantage of the lessons learned from these investigations to develop the
first GPU implementation of the recent Vertex Connection and Merging
algorithm [Georgiev et al. 2012] (the algorithm has been independently de-
veloped by Hachisuka et al. [2012] as Unified Path Space, we use the former
name), showing that even relatively complex light transport algorithms can
be efficiently mapped to the GPU. In addition, we present new techniques
that outperform the existing ones in most cases. For example, our Light Ver-
tex Cache, a new approach to mapping connections of sub-path vertices in
Bidirectional Path Tracing to the GPU, outperforms the state-of-the-art im-
plementations by 30-60%. With the implementation of the aforementioned
algorithms in a single system, we provide a detailed comparison of their per-
formance on scenes with various characteristics and provide a comprehensive
in-depth analysis of the findings.

Our work can have broad benefits in both research and industry, rang-
ing from low-level implementation insights for the practitioner to high-level
implications for driving research towards finding algorithms and implemen-
tation techniques that improve upon the approaches used in our results.

4.1 Related Work

Our work focuses on progressive Monte Carlo methods that converge to the
solution of the Rendering Equation [Kajiya 1986]. An overview of these
methods and the challenges associated with their GPU implementation is
given in Section 4.2. In the rest of this section, we discuss related work on
other GPU-based global illumination approaches, as well as on ray shooting.

Realtime Global Illumination. A large volume of work has focused
on realtime global illumination on the GPU using rasterzation. To achieve
this performance, the methods generally offer only an approximate light
transport solution. Because our focus is on algorithms that converge to
the exact solution, we refer to [Ritschel et al. 2012] for an overview of the
realtime methods.

Many-light methods are an important class of real-time global illumi-
nation algorithms based on Instant Radiosity [Keller 1997]. These methods
first distribute a number of virtual lights into the scene, approximating the

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 65

global illumination, and then each pixel is illuminated by a selected subset
of the lights. Please refer to Section 2.3.6 for details.

Ray Tracing. As was discussed in the previous chapter, a ray tracing
query is at the heart of virtually every light transport algorithm, both in
the form of finding the closest intersection along a given ray, and testing
visibility between two points. The research in this area focuses on three
main issues: selection of a suitable acceleration structure, algorithms for
their effective construction, and algorithms for their effective traversal.

The initial research on GPU ray shooting focused on overcoming the
hardware limitations of then current GPUs by using specially adapted data
structures and traversal algorithms [Carr et al. 2002, Foley and Sugerman
2005, Popov et al. 2007]. More recently, Aila and Laine [2009, 2012] showed
how to approach the theoretical peak ray casting performance using the
Spatial Bounding Volume Hierarchies (SBVH) [Stich et al. 2009], which
became the structure of choice for GPU. A large body of work focuses on the
fast construction of acceleration structures directly on the GPU to enable
interactive rendering of dynamic geometry. Most of this research focuses
on BVHs [Lauterbach et al. 2009, Pantaleoni and Luebke 2010, Hou et al.
2011, Karras and Aila 2013], uniform and multi-level grids [Kalojanov and
Slusallek 2009, Kalojanov et al. 2011] and kd-trees [Zhou et al. 2008]. We
refer the reader to Section 2.4.1 for an overview of acceleration structures.

Well-established high-performance ray shooting solutions are publicly
available. These libraries include Intel’s Embree [Woop et al. 2013] (aimed at
more CPU SIMD architectures) and for the GPU NVIDIA’s OptiX [Parker
et al. 2010] and the software framework of Karras et al. [2012], which is the
basis of our implementation.

4.2 Overview

Tracing full light transport paths is the most important building block for
all the investigated light transport algorithms. In Section 4.3, dedicated to
Path Tracing [Kajiya 1986], we focus on finding the best implementation of
this building block. In 2002, Purcell et al. [2002] mapped Path Tracing to
the then current GPUs, dealing mostly with their limited programmability.
However, with the modern GPUs being fully programmable, the focus of
the more recent work has shifted to fully utilizing their compute capabilities.
The main challenge of efficient Path Tracing implementation is the reduction
of thread divergence within warps, caused by paths of different lengths.
A few threads are still processing the long paths, while other threads are
idle already. Novák et al. [2010] propose to use path regeneration, where
persistent threads whose path has already terminated are assigned a new
path from a larger pool of paths. Van Antwerpen [2011b] improves on this
approach by compacting the paths so all regenerated paths are processed in

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 66

a contiguous block, further increasing thread coherence. We examine their
approaches, determine their best kernel configurations for the current GPU
architectures, and test them against simple, yet previously unpublished,
single-kernel implementations.

Section 4.4 focuses on the main challenge in implementing Bidirec-
tional Path Tracing [Lafortune and Willems 1993, Veach and Guibas 1994,
1995], that is, efficient evaluation of camera and light sub-path vertex con-
nections. The key GPU challenge is storing and connecting sub-paths of
varying lengths. Novák et al. [2010] address this issue by modifying the
basic algorithm to limit the light sub-paths to a maximum length of 5. Van
Antwerpen [2011c] also modifies the algorithm and avoids storing sub-paths
by retracing a full light sub-path for each segment of the camera sub-path, so
only one segment has to be stored at a given time. His other approach [van
Antwerpen 2011b] uses a user-defined maximum path length to conserva-
tively pre-allocate memory for the sub-paths. In this section, we evaluate
these modifications, as well as propose a new algorithm, based on the Light
Vertex Cache, which allows for a simple implementation and outperforms
the current state-of-the-art by 30-60%.

In Section 4.5, we investigate methods based on Photon Mapping.
Spatial data structures used to accelerate photon map queries are the main
challenge and the focus of our investigation. To avoid the prohibitive cost
of transfering all the photons to the CPU, it is necessary to build the ac-
celeration structure directly on the GPU. Zhou et al. [2008] show that it
is possible to build kd-trees at interactive rates. However, this approach
exhibits random memory access patterns that are suboptimal for the GPU.
Alternatively, grids can be used both for k-NN and range queries [Purcell
et al. 2003, Hachisuka et al. 2008]. Hachisuka and Jensen [Hachisuka and
Jensen 2010] also propose the Stochastic Hash Grid, which avoids an explicit
construction phase at the cost of storing only a subset of the generated pho-
tons. We examine and evaluate these acceleration structures and provide
some optimizations to further accelerate the queries.

Using the experience gathered above allows us to present in Section 4.6
the first GPU implementation of the recently introduced Vertex Connection
and Merging algorithm [Georgiev et al. 2012]. It combines both Bidirectional
Path Tracing and Progressive Photon Mapping in a common framework and
allows for efficient handling of a wide range of lighting effects.

Having implemented many of the state-of-the-art light transport sim-
ulation algorithms on a GPU, we have a unique opportunity to compare
them with each other. In Section 4.7 we compare the convergence graphs
of the best implementation of each of the introduced algorithms on a set of
six diverse scenes, explain the behavior of each algorithm with respect to
the scene characteristics, and draw conclusions as to which algorithm is best
suited for which type of scene.

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 67

Summary of Challenges Associated with GPUs. There are
three main challenges for efficiently implementing light transport algorithms
on the GPU.

� First is code divergence within a warp, which can greatly reduce the
GPU utilization due to the SIMD nature of execution units.

� Second, the memory management possibilities from within the GPU
code are limited at best and GPU algorithms have to have their mem-
ory requirements known prior to kernel execution. Efficient GPU uti-
lization requires a large number (several thousand) threads executed
in parallel, which prevents generous allocation of per-thread memory
as a solution to the memory management challenge.

� Third, to utilize the full memory bandwidth of the GPU, the accesses
from a single SIMD execution unit should be coalesced, that is, access
neighboring addresses.

This has wide implications across all algorithms. E.g., Path Trac-
ing performance benefits from work compaction, which results in coherent
primary rays being executed together in a compact block of warps.

4.2.1 Terminology

In Sections 2.5.1 and 2.5.2 we have introduced basic terminology of SIMD
and GPU programming. As this chapter discusses algorithm efficiencies
that depend on hardware specifics, let us briefly introduce some concepts
we will be referring to. We will introduce these concepts for NVIDIA’s
CUDA platform, however many are universal for any architecture using a
wide SIMD model (e.g., Xeon Phi or AMD Radeon).

The basic execution unit of CUDA is called a thread, which executes
scalar code called a kernel. This is a major deviation from the standard
terminology as these threads are more similar to SIMD lanes, rather than
CPU threads which are more similar to CUDA warps.

Each thread is allocated a certain number of registers and a certain
amount of local memory. Local memory is used when the executed code
requires more registers than are available, and is allocated only for the cur-
rently executed threads. Threads are grouped into warps of 32 threads
(typically implemented as 4× 8-way SIMD). All threads in each warp exe-
cute the same instruction in each clock cycle. When threads in a warp need
to execute different branches of code, all threads have to execute all the code
(see Section 2.5.1) and masks are used to make sure the results are used only
for threads that actually should have executed the code. This is called code
divergence, and has negative impact on efficiency proportional to the size
of the code in the different branches. Global memory is memory that can
be seen by both the CPU and GPU. It contains all inputs and outputs of a

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 68

(a) CoronaRoom (680k trian-
gles): A living room. The illu-
mination comes mostly from sun
and sky, the lamp on the left pro-
vides little illumination besides
the spots on the wall. The
windows do not contain glass.
Scene courtesy of Ludv́ık Koutný
(http://raw.bluefile.cz/).

(b) CoronaWatch (918k trian-
gles): The watch has a bezel
made of highly glossy metal,
glass with specular reflections
and refractions, and a black dial
with diffuse numbers. Illumina-
tion is provided by several large
area lights. Scene courtesy of
Jerome White.

(c) LivingRoom (783k triangles):
A room seen in a mirror. The
objects on the table are illumi-
nated by two small lamps next
to the mirror, more lights are at
the other side of the room. The
major feature of the scene is the
caustics on the table, reflected
in the mirror. Scene courtesy of
Iliyan Georgiev.

(d) BiolitFull (166k triangles):
An office scene illuminated solely
by area lights enclosed in diffuse
tube-like fixtures. Only the spots
directly beneath and above the
fixtures are directly illuminated,
and they act as secondary light
sources. Scene courtesy of Jǐŕı
“Biolit” Friml (http://biolit.
wordpress.com/).

(e) CrytekSponza (262k tri-
angles): A modified version
of the classic Sponza. The
camera is in one of the arcades
on the ground floor, the only
illumination is coming around
the drapes from a strongly
illuminated atrium. Scene
courtesy of CryTEK (http:
//www.crytek.com/cryengine/

cryengine3/downloads).

(f) GrandCentral (1527k trian-
gles): A large open hall il-
luminated by an environment
map and over 900 point lights.
Each of the 200 alcoves near
the ceiling contains one point
light. The remaining point
lights are on the chandeliers in
the side halls. Scene courtesy
of Cornell University Program
of Computer Graphics (http://
www.graphics.cornell.edu/).

Figure 4.1: Our test scenes.

kernel call, including all intermediate data between consecutive kernel calls.
The GPU has an atomic counter primitive, which we use for dealing with
variable-sized inputs and outputs (e.g. queues) and for compaction. In our
implementation we have not observed any contention problems due to many
threads simultaneously incrementing the same counter.

All of the presented algorithms are progressive in nature. For clarity,
we distinguish between a frame, the result of a single progressive iteration,
and an image, the final result obtained by averaging multiple frames. Raw
low-level performance is compared on a single frame as a basic workload
unit, while higher level comparisons between different Monte Carlo estima-
tors or completely different algorithms measure error between images and a
reference solution.

4.2.2 Testing Setup

We have implemented our algorithms on top of a publicly available imple-
mentation of GPU ray casting [Karras et al. 2012]. We use their acceler-

http://raw.bluefile.cz/
http://biolit.wordpress.com/
http://biolit.wordpress.com/
http://www.crytek.com/cryengine/cryengine3/downloads
http://www.crytek.com/cryengine/cryengine3/downloads
http://www.crytek.com/cryengine/cryengine3/downloads
http://www.graphics.cornell.edu/
http://www.graphics.cornell.edu/

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 69

ation structure as well as ray casting core and claim no contributions in
these areas. We support environment illumination, point lights, directional
lights, and area lights; our BSDFs include reflection and refraction, diffuse
textures, glossy lobes from Kelemen, Ward, Ashikhmin-Shirley, and Phong
BRDF models, and Fresnel-weighted combinations of diffuse and glossy com-
ponents. We use the Tiny Encryption Algorithm to generate random num-
bers [Zafar et al. 2010]. While not used in this survey, our design also
supports using low-discepancy sequences.

For our tests, we chose six scenes (Figure 4.1), representing various
configurations found in practical applications. All are rendered in 720p
resolution (1280x720), i.e., roughly 1 megapixel.

All our tests have been performed on a computer with Intel i7-3770K
@ 3.50GHz and 16GB RAM. We tested on two different NVIDIA GPUs of
two architecture generations: Gainward Phantom GeForce GTX 580 3GB
(Fermi architecture [NVIDIA 2011]), and Gainward GTX 680 4GB (Kepler
architecture [NVIDIA 2012b]). We note that while the GTX 680 is a newer
card and has higher theoretical FLOPS, the architecture is significantly dif-
ferent from GTX 580 and some of these differences are adversarial to our
algorithms. For example, the global memory access is no longer cached
by L1 cache but only in L2, and the clock rate has been decreased (from
1566 MHz to 1072 MHz for our cards).

4.3 Path Tracing

We first focus on Path Tracing [Kajiya 1986], one of the simplest and most
well-understood light transport simulation algorithms. All implementations
discussed represent different mappings of the same algorithm onto the GPU.
As tracing paths is an essential building block for all algorithms introduced
in the later sections, good understanding and optimization of Path Tracing
has significant impact on their performance.

4.3.1 Algorithm Overview

Path Tracing generates path samples by simulating a random walk through
a scene. A path starts with a primary ray at the camera. It is traced into the
scene and on each surface hit the path is extended into a random direction.
To increase efficiency and prevent infinitely long paths, Russian roulette at
each path vertex randomly determines whether the path will be extended or
terminated. The survival probability is commonly based on surface albedo
(in the range 0-1).

In the basic algorithm a path contributes to the frame only when it
eventually hits a light. However, this is inefficient and the algorithm is
almost always used with next event estimation (direct illumination) [Kajiya
1986]. At each hitpoint, in addition to path extension, a random light is

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 70

(a) kernel path in all paths: // Generate

path.ray = setup primary ray for path

while Any path active:
(b) kernel path in all paths: // Extend path

if path.termianted : return
trace path.ray
if no hit:

accumulate background color
path.terminated = true

else:
accumulate surface emission
compute contribution of a random light
path.directIllum = (shadowRay, contrib)
if terminated with russian roulette:

path.teminated = true

else: path.ray = sample BSDF

(c) kernel path in all paths: // Shadow test

if path.directIllum.contrib 6= 0 :
if path.directIllum.shadowRay not blocked :

accumulate path.directIllum.contrib

Algorithm NaivePTmk: Naive Path Tracing (multiple kernels): Naive

GPU implementation of Path Tracing. All paths are processed in parallel,

each path is assigned to one thread. Kernel (a) generates a primary ray

for each path, and kernels (b) and (c) perform path extension and shadow

test, respectively, until all paths have terminated.

sampled and, if visible from the hitpoint, its contribution is accumulated.
With this strategy, lights of finite extent can be sampled in two ways: Direct
connection or random hit. These two strategies are combined using Multiple
Importance Sampling (MIS) [Veach and Guibas 1995].

4.3.2 Survey of Existing GPU Implementations

All implementations introduced in this section use multiple kernels. For
clarity, we make this information part of the implementation name.

Naive Path Tracing (multiple kernels). To motivate the dis-
cussion on previous work, let us first consider the GPU implementation of
Naive Path Tracing (multiple kernels) (Algorithm NaivePTmk). All paths
used to obtain a frame (usually one path per pixel) are processed in paral-
lel. The implementation uses one thread for each path, each path keeps its
current state in global memory. In kernel (a), all paths are initialized and

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 71

// All threads marked as idle

// All paths in pathQueue

while pathQueue not empty and any thread not idle:
(a) kernel thread in all threads: // Regenerate

if thread.state == idle:
thread.path = next path in queue
thread.ray = setup primary ray for thread.path
thread.state = active

(b) kernel thread in all threads: // Extend path

if thread.state == idle: return
trace thread.ray
if no hit:

accumulate background color
thread.state = idle

else:
accumulate surface emission
compute contribution of a random light
thread.directIllum = (shadowRay, contrib)
if terminated with russian roulette:

thread.state = idle

else: thread.ray = sample BSDF

(c) kernel thread in all threads: // Shadow test

if thread.directIllum.contrib 6= 0 :
if thread.directIllum.shadowRay not blocked :

accumulate thread.directIllum.contrib

Algorithm RegenerationPTmk: Path Tracing with Regeneration

(multiple kernels): This algorithm is almost identical to Algo-

rithm NaivePTmk, but it decouples threads from paths. Kernel (a)

now resides within the main while loop, and initializes new path from

the path queue for any thread that is idle. This reduces the number of

idle threads in each loop and increases GPU utilization. Kernels (b) and

(c) are almost identical, with the difference that intermediate data are

now stored with the thread rather than with the path.

their primary rays are generated. While there is any active path, all active
paths are extended (kernel (b)) and their next event estimation is evaluated
(kernel (c)).

It is important to note that because of SIMD, even inactive threads
(i.e. terminated paths) have to be executed as long as there is at least one
active thread in their warp. If Russian roulette terminates 50% of active
paths after each path extension, the utilization of GPU will be 100% during

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 72

the first extension, then drop to an average of 50% for the second extension,
25% for the third, and so on, which is clearly detrimental to the overall
performance.

Path Tracing with Regeneration (multiple kernels). To ad-
dress this issue, Novák et al. [2010] propose Path Tracing with Regeneration
(multiple kernels) (Algorithm RegenerationPTmk). This implementation
decouples threads from paths. It uses a fixed pool of threads. Each thread
processes one path at a time. When a thread has no assigned path or its
path has terminated, we say it is idle, otherwise it is active. All threads are
idle at the start.

While there are any active threads and the path queue is not empty,
all idle threads are assigned a new path from the path queue (kernel (a)),
all paths are extended (kernel (b)), and their shadow ray is cast (kernel (c)).
This way, all threads on the GPU are active until the queue becomes empty.
Another advantage is that the path state is kept only for currently processed
paths, so the required memory depends only on the number of threads, not
the number of paths.

Stream Path Tracing with Regeneration (multiple kernels).
Van Antwerpen [2011b] introduces Stream Path Tracing with Regeneration
(multiple kernels) (Algorithm StreamingPTmk) to improve upon the pre-
vious approach. The inefficiency comes from code divergence in kernel (a)
of the Algorithm RegenerationPTmk. When at least one thread in a warp
needs to regenerate its path, all threads in the warp have to execute the
kernel, even though the other threads do not need regeneration.

0 1 2 3 4 5 6 7

0 1 2 3 4 5 6 7

Figure 4.2: Compaction: Ac-
tive paths are compacted (green),
while terminated paths are dis-
carded (red).

Van Antwerpen proposes to use
stream compaction [Sengupta et al. 2007]
to separate the threads into active and idle
threads (Figure 4.2). This way, at most one
warp can have both active and idle threads,
essentially removing the code divergence.
Another advantage is that the coherent pri-
mary rays of the new paths will be assigned
to consecutive threads that will be executed
together, and it has been shown that ray
coherence (within warps) has positive effect
on ray casting performance [Wald et al. 2001]. Similarly, the shadow rays for
next event estimation are compacted to reduce code divergence in kernel (c).

The compaction is a part of kernel (b), avoiding separate compaction
kernel calls. It uses two arrays of threads, one as input and the other as
output, and a global atomic counter, initially set to zero. For each active
thread in the input set, the counter is increased by one and its old value is
used as the thread’s target position in the output set.

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 73

// Two thread pools threadsIn, threadsOut

// All threadsOut marked as idle

// All paths in pathQueue

// atomics: pathCount = 0, directCount = 0

while pathQueue not empty and any path active:
(a) kernel thread in all threadsOut: // Regenerate

if thread index ≥ pathCount:
thread.path = next path in queue
thread.ray = setup primary ray for thread.path
thread.state = active

// Swap threadsIn ↔ threadsOut

// pathCount = 0, directCount = 0

(b) kernel thread in all threadsIn: // Extend path

if thread.state == idle: return
trace thread.ray
if no hit:

accumulate background color
thread.state = idle

else:
accumulate surface emission
compute contribution of a random light
if contrib 6= 0 :

index = directCount++
threadsOut[index].directIllum =

(thread.pixel, shadowRay, contrib)

if not terminated with russian roulette:
thread.ray = sample BSDF // atomic

index = pathCount++
threadsOut[index] = thread

(c) kernel thread in all threadsOut: // Shadow test

if thread index < directCount:
if thread.directIllum.shadowRay not blocked :

accumulate thread.directIllum.contrib to
thread.directIllum.pixel

Algorithm StreamingPTmk: Streaming Path Tracing with Regenera-

tion: Similar to Algorithm RegenerationPTmk, but threads do not “own”

their path for its entire lifetime. Instead, paths that are still active are

compacted to threads with low index. The atomic counter pathCount

contains the current number of active paths. Two arrays of threads,

threadsIn and threadsOut are used for compaction. In kernel (a), first

“pathCount” threads in the threadsOut set contain active paths, and

paths are regenerated for all the remaining threads. The two sets are

swapped, the “pathCount” counter is reset, and kernel (b) processes all

threads from threadsIn. Paths that are not terminated are compacted

to the threadsOut set. Direct illumination with non-zero contribution

is handled in the same way. Note that a thread can now handle path

extension and shadow test for different pixels.

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 74

In practice, incrementing this counter is a two-stage process where all
threads within a warp first determine how many threads are still active
and then the warp makes a single atomic add. This way we limit the mem-
ory traffic to the atomic counter as well as preserve thread coherence where
possible. This approach can be further extended to accumulate across warps
within a block and do a single atomic add per block, but it is quite a bit
more complicated and we did not observe any benefit in any of our tests.

Wavefront Path Tracing. Laine et al. [2013] analyze Path Tracing
in the cases when BSDFs are expensive to evaluate (e.g., surface charac-
teristics described by complex noise functions). Such situations can lead
to extreme code divergence. Their solution separates BSDF evaluation (for
both next event estimation and continuation sampling) into a separate ker-
nel call, sorts paths based on their BSDF and executes the BSDF kernels
in a coherent fashion. However, this technique is only effective for these ex-
pensive BSDFs. For simpler BSDFs, such as those used in our test scenes,
the overhead of extra kernel calls and sorting greatly outweights any gains
from increased execution coherence and they recommend executing all such
BSDFs in a single kernel call.

4.3.3 Proposed Alternative Implementations

All of the presented implementations launch multiple kernels, at least one
per path extension. This approach has several potential bottlenecks: kernel
launch overhead, path state stores and loads, and the fact that the number of
active paths has to be communicated to the CPU. We investigate confining
the whole algorithm into a single kernel launch, which naturally removes all
three potential bottlenecks simultaneously.

Naive Path Tracing (single kernel). We propose Naive Path
Tracing (single kernel) (Algorithm NaivePTsk) as a simpler alternative to
NaivePTmk. All three kernels and the while loop are combined into a single
large kernel, giving us code that is essentially the same as a standard CPU
path tracer. While, in theory, all paths are still processed in parallel, the
execution specifics of CUDA impose some degree of serialization. Let us
assume that the number of paths to be traced is significantly larger than
the number of threads that can be processed by the GPU at once. In such
a case, the GPU schedules threads up to its capacity, these threads process
their paths, and when all threads within a scheduling unit (block in CUDA)
have terminated, new threads are scheduled, resulting in path regeneration
on a coarser level than individual threads.

This approach has several advantages. Path state does not have to
be explicitly stored and loaded, as it is kept in thread local memory all the
time (which benefits from L1 cache even on the Kepler architecture of the
GTX 680 GPU [NVIDIA 2012a]). This also means that there is no need
to allocate any per-path memory on the GPU. The memory footprint is

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 75

kernel path in all paths:
(a) path.ray = setup primary ray for path // Generate

while path.terminated == false:
trace path.ray
if no hit:

accumulate background color
path.terminated = true

else:
accumulate surface emission
compute unoccluded contribution of a random light

(c) if contribution 6= 0 : // Shadow test

if shadowRay not blocked :
accumulate contribution

(b) if terminated with russian roulette: // Ext. path

path.teminated = true

else: path.ray = sample BSDF

Algorithm NaivePTsk: Naive Path Tracing (single kernel): This is a

single-kernel version of Algorithm NaivePTmk. All path states are kept

in local memory and only for threads currently executed on the GPU,

reducing the required memory footprint. The code is greatly simplified

and essentially identical to a standard CPU implementation.

governed solely by the number of concurrently executing threads. Only one
kernel is launched, effectively removing any impact that kernel execution
overhead has on the overall performance and when this kernel terminates
we know that all paths have terminated.

Path Tracing with Regeneration (single kernel). To explore
per-thread regeneration in the single-kernel setting, we introduce Path Trac-
ing with Regeneration (single kernel) (Algorithm RegenerationPTsk). We
use persistent threads where the number of threads is set to the GPU ca-
pacity for concurrent threads. Path (re)generation is again moved into the
while loop and threads that do not have a path are assigned one from a path
queue.

While code divergence in the regeneration step is still an issue, com-
paction is no longer an option. The use of two sets of threads would require
a global barrier to swap the sets. However, such barriers are currently not
supported, so we did not explore this option any further.

Using a single-kernel implementation has a potential drawback. Sup-
pose that the separate kernels in a multi-kernel implementation have signif-
icantly different register requirements. The number of registers influences
the number of threads a GPU can process concurrently, which in turn in-
fluences the overall performance. When such kernels are combined into a

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 76

// All threads marked as idle

// All paths in pathQueue

kernel thread in all threads:
while pathQueue not empty:

(a) if thread is idle: // Regenerate

thread.path = next path in queue
thread.ray = setup primary ray for thread.path
thread.state = active

trace path.ray
if no hit:

accumulate background color
thread.state = idle

else:
accumulate surface emission
compute contribution of a random light

(c) if contribution 6= 0 : // Shadow test

if shadowRay not blocked :
accumulate contribution

(b) if terminated with russian roulette: // Ext. path

thread.state = idle

else: thread.ray = sample BSDF

Algorithm RegenerationPTsk: Path Tracing with Regeneration (single

kernel): This is a single-kernel version of Algorithm RegenerationPTmk,

utilizing persistent threads. When a thread has no path assigned, it

is given a new path from the queue, and processes the path until its

termination.

single kernel, the GPU cannot use more threads for the more lightweight
steps of the code and is potentially underutilized in those steps.

We acknowledge that both are straightforward implementations of
Path Tracing, and none, in itself, is a major contribution. However, compar-
ing these simpler implementations with the new ones introduced in previous
work is beneficial and will lend us useful insights.

4.3.4 Results and Discussion

To configure the implementations, i.e., to set the required number of reg-
isters and the size of the thread pool used by the implementations with
regeneration, we have measured all possible configurations and used the one
that resulted in the highest performance. The optimal number of registers
greatly varies between both the individual implementations and the GPU
architectures with the difference between the best and the worst in the the

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 77

Algorithm RegenerationPTmk StreamingPTmk
GPU GTX 580 GTX 680 GTX 580 GTX 680
No. kernels #1 #2 #3 #1 #2 #3 #1 #2 #3 #1 #2 #3

CoronaRoom 23.3 36.4 42.7 20.8 31.3 29.5 50.0 55.9 52.4 48.9 51.4 40.6
CoronaWatch 52.3 54.8 55.9 35.8 34.5 34.0 71.9 78.1 68.3 51.6 49.5 42.6
LivingRoom 30.4 39.1 43.9 27.6 34.1 33.5 55.0 59.6 55.7 56.0 57.1 49.0
BiolitFull 27.9 41.0 49.5 24.5 35.0 33.5 60.5 68.9 66.0 61.0 65.0 53.0
CrytekSponza 36.8 58.8 73.4 31.9 48.3 44.6 95.1 95.4 88.2 74.5 74.8 52.8
GrandCentral 20.1 33.0 37.9 19.2 29.3 28.1 43.4 49.1 46.4 44.0 47.3 38.6

Units millions of rays per second (more is better)

Table 4.1: Performance, in millions of rays per second, of RegenerationPTmk, i.e.
Path Tracing with Regeneration (multiple kernels), and StreamingPTmk, i.e. Streaming
Path Tracing with Regeneration (multiple kernels), for different kernel configurations
(see Section 4.3.5).

tested range (32 – 63 registers) being up to 2×. As a result, we cannot give a
summary advice and only recommend always conducting performance tests
for each reimplementation or new hardware.

Memory requirements. All implementations require only a few
megabytes of local memory for the active thread variables that do not fit into
registers. Multi-kernel implementations require additional global memory to
store the input of individual kernels. This translates to less than 100 MB
per frame in all methods.

Kernel configurations. For Algorithms RegenerationPTmk and
StreamingPTmk, we tried several kernel configurations aside from the three-
kernel variant presented in the pseudocode. The results are summed up
in Table 4.1 and reference the total number of kernels in each configura-
tion, with the performance of the default three-kernel configuration given in
columns #3.

First, we tried to separate the ray casting part of kernel (b) into a
separate kernel, to better utilize the dedicated ray casting kernels from [Aila
et al. 2012]. However, this four-kernel variant dropped the performance to
less than 40% on both GTX 580 and GTX 680 compared to the three-kernel
variant. The bottleneck was in the increased loading and storing of path
data between kernel runs, suggesting that further increases in the number
of kernels would not bring any benefits.

Going the opposite way, we reduced the number of kernels to two
(Table 4.1, columns #2), by making the Regeneration kernel (a) part of the
Extend path kernel (b). This saves one set of loads and stores, at the cost of
lower GPU utilization in the regeneration step. Importantly, the effectivity
of compaction is preserved.

We also tried reducing to just a single kernel (Table 4.1, columns #1)
by folding in the Shadow test kernel (c). Here we save another load and
store, this time at the cost of losing the benefits of compaction. Note, that
this is still different from RegenerationPTsk, which runs only one kernel for

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 78

each frame, while RegenerationPTmk with one kernel runs this kernel for
each path vertex.

Table 4.1 shows the performance, in millions of rays per second, of
RegenerationPTmk and StreamingPTmk with one, two, and three kernels on
both GTX 580 and GTX 680. Starting with StreamingPTmk, it is quite clear
that the two-kernel configuration is the best, having superior performance
in almost all scenes. The three-kernel configuration on GTX 680 performs
significantly worse than the one- and two-kernel configurations, mainly due
to changes in memory system and caching of global memory accesses.

The situation with RegenerationPTmk is less clear. On GTX 580, the
three-kernel variant clearly outperforms the other two configurations. How-
ever, this changes for GTX 680, where the lower number of loads and stores
into global memory results in a slight advantage of the two-kernel configura-
tion. One of the reasons for the difference between two and three kernels in
StreamingPTmk and RegenerationPTmk is that StreamingPTmk performs
non-coalesced accesses in the compaction phase, making it more sensitive
to the missing L1 cache. For the following performance analysis, we use
the optimal RegenerationPTmk and StreamingPTmk kernel configuration
for their respective GPU (that is, we use three-kernel RegenerationPTmk
for GTX 580, two-kernel RegenerationPTmk for GTX 680, and we use the
two-kernel StreamingPTmk for both).

Performance tests. For each of these implementations we measured
performance (in rays per second) for different numbers of paths per frame.
We tested from 330 thousand to 100 million paths per frame, which covers
a wide range of desired applications, from 1 path per pixel at resolution of
640 × 480 to 100 paths per pixel at resolution of 1280 × 720. The individ-
ual per-scene measurements, to be found in the supplemental material in
Appendix A, have been aggregated in Figure 4.3.

Let us first look at Figure 4.3a (GTX 580). Here, StreamingPTmk,
is the clear winner across all path counts. Its base performance at 106

paths per frame is increased by another 15% for 107 paths, making it almost
50% faster than RegenerationPTsk and RegenerationPTmk, which compete
for being the second fastest. The comparison of RegenerationPTsk and
RegenerationPTmk, respectively, shows that our RegenerationPTsk is less
sensitive to the size of workload, keeping stable performance from approx-
imately 106 paths per frame up. RegenerationPTmk can still outperform
the single-kernel implementation, but requires 107 paths or more, and even
then the difference is marginal. Both naive implementations, NaivePTmk
and NaivePTsk, exhibit low performance. As NaivePTmk requires allo-
cated memory for each path of the frame, it could not be tested for the full
range. We note that for 2 · 106 paths per frame NaivePTsk is faster than
RegenerationPTmk, witnessing of the overhead of global memory stores and
loads.

For GTX 680 (Figure 4.3b) the story changes. Both StreamingPTmk

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 79

(a) GTX 580 (b) GTX 680

0.33 1 10 100
106 paths per frame

30

40

50

60

70
10

6
 ra

ys
 p

er
 se

co
nd

0.33 1 10 100
106 paths per frame

30

40

50

60

70

NaivePTmk
StreamingPTmk
RegenerationPTsk (ours)

RegenerationPTmk
NaivePTsk (ours)

Figure 4.3: Path tracing performance. Performance in rays per second with increasing
number of paths per frame, averaged across all six test scenes.

and our RegenerationPTsk perform roughly the same, with RegenerationPTsk
having more stable and StreamingPTmk slightly higher peak performance.
This is caused by the difference in the memory subsystem on the Kepler
architecture of the GTX 680 GPU. While StreamingPTmk benefits from
compaction and slightly better GPU utilization, our RegenerationPTsk has
the benefit of storing intermediate data in the L1-cached local memory
instead of global memory. For similar reasons NaivePTsk is faster than
RegenerationPTmk in all cases.

4.3.5 Conclusion

Lower numbers of larger kernels benefit both Fermi (GTX 580) and Kepler
(GTX 680) architectures. The disadvantage of more loads and stores out-
weighs gains from the optimal number of concurrently executed threads for a
given step. The relative performance of the measured kernel configurations
of RegenerationPTmk differs between the architectures, with three-kernel
configuration being the fastest on GTX 580, and two-kernel (joined Regen-
eration and Extend path kernels) on GTX 680. For StreamingPTmk, the
two-kernel configuration is the fastest on both architectures.

With regard to the performance on GTX 680, our Path Tracing with
Regeneration (single kernel) (RegenerationPTsk) and Streaming Path Trac-
ing with Regeneration (multiple kernels) (StreamingPTmk) have similar per-
formance, but our implementation is faster for low number of paths per
frame, as well as simpler to implement. This changes on the older GTX 580,
where StreamingPTmk is the optimal implementation for all but the lowest

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 80

number of paths per frame with its peak performance being over 50% faster
than our RegenerationPTsk, which competes with its multi-kernel variant
for the second place.

4.4 Bidirectional Path Tracing

While Path Tracing is sufficient for simpler open scenes, scenes with more
complex indirect illumination (e.g., BiolitFull) greatly benefit from more
advanced Bidirectional Path Tracing (BPT) [Lafortune and Willems 1993,
Veach and Guibas 1994]. The algorithm itself is more complicated than Path
Tracing and as such opens opportunity for a different type of optimization.
In Path Tracing we focused only on the very low-level mapping of a single
algorithm onto the GPU. Here, on the other hand, we examine options of
modifying the underlying Monte Carlo estimator (and thus the algorithm
itself) in order to better adapt to a GPU implementation.

4.4.1 Algorithm Overview

Bidirectional Path Tracing, as originally described by Lafortune and
Willems [1993] and Veach and Guibas [1994], generates, for each
image sample, two separate sub-paths: one starting at the cam-
era and one at a light (Figure 4.4). The first vertex of each sub-
path is located directly on the camera or on a light, respectively.

camera subpath

light subpath

Figure 4.4: The standard Bidirectional Path
Tracing sample consists of a camera sub-path
(green) and a light sub-path (orange), where each
vertex on the camera sub-path is connected to
each vertex on the light sub-path (dashed).

The sub-paths are extended,
by adding one vertex at a time,
in the same way as in Path
Tracing. After the two sub-
paths have been generated,
each vertex of the camera sub-
path is connected to each ver-
tex of the light sub-path, form-
ing full paths (connecting cam-
era to light). We can view
this as a generalization of Path
Tracing with next event esti-
mation, in which the light sub-
path had always just a sin-
gle vertex directly on the light
source. As there are mul-
tiple ways to construct each
full path from light to cam-
era, these options of generating
paths are combined using Multiple Importance Sampling (MIS) [Veach and
Guibas 1995].

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 81

The original formulation of MIS by Veach and Guibas [1995] assumes
that when two vertices are connected, all vertices on both sub-paths preced-
ing the connected vertices have to be accessed to gather the required data to
compute the appropriate MIS weight. Recursive Multiple Importance Sam-
pling (MIS), introduced in [van Antwerpen 2011c, Georgiev 2012], removes
this requirement and allows computing the MIS weight from information
stored only in the vertices being connected. This is especially important for
GPU implementation, where random memory accesses should be limited.
All implementations presented here use this method.

Connecting each camera sub-path vertex to all the vertices on the
light sub-path introduces two new GPU implementation issues that have
to be addressed. First, where PT has a fixed memory footprint per path,
the memory requirements in BPT depend on the length of the light sub-
path, as the whole light sub-path has to be traced and stored before the
camera sub-path can be started. While the average length of a path is not
high, this storage has to be multiplied by the number of parallel threads.
Second, unlike PT, the work required per camera sub-path vertex depends
on the light sub-path length and can be vastly different for different camera
sub-paths, which complicats an efficient mapping to GPU.

4.4.2 Survey of Existing GPU Implementations

Bidirectional Path Tracing with Regeneration (Regenera-
tionBPT). The first fully GPU-based implementation was introduced
in [Novák et al. 2010]. It uses two separate passes. In the first pass, all light
sub-paths are generated and stored in the GPU memory. In the second
pass, camera sub-paths are created and traced as in Path Tracing with
Regeneration, except that each vertex is also connected to all vertices of a
randomly chosen light sub-path. To address the memory issue, the authors
limit the length of light sub-path to five vertices. Limiting the maximum
light sub-path length also requires a more complex logic for computing MIS
weights and the authors therefore did not use MIS, which has a negative
impact on the final image quality.

Multi-path Bidirectional Path Tracing (MultiBPT). Both the
memory consumption and the workload issues are solved by the algorithm
introduced by van Antwerpen [2011c], originally under the name Streaming
Bidirectional Path Tracing, which we changed to avoid confusion with a later
introduced algorithm of the same name by the same author.

Instead of storing the whole light sub-path, the algorithm traces one
complete camera sub-path for each light sub-path vertex, which requires
storing only one light and one camera sub-path vertex. This naturally solves
both the storage and the uneven load problem, at the cost of more camera
paths; the algorithm essentially spends more time on “camera-side” effects
(e.g., anti-aliasing) than on “light-side” effects (e.g., caustics). As tracing of

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 82

while pathQueue not empty and any path active:
foreach thread in all threads:

if thread is idle:
thread.camera = setup camera path
thread.light = setup light path

CompletedPaths = 0
while CompletedPaths < 60% :

foreach thread in all threads:
if thread.light not terminated :

Extend thread.light
thread.lightVertices += light vertex

if thread.camera not terminated :
Extend thread.camera
thread.cameraVertices += camera vertex

if thread.light and thread.camera terminated :
CompletedPaths++

foreach thread in all terminated threads:
Generate all lightVertices and cameraVertices pairs
foreach vertex pair in thread :

shadowRay = pair.light to pair.camera
if shadowRay not occluded :

accumulate contribution

Algorithm StreamingBPT: Streaming Bidirectional Path Tracing with

Regeneration: All threads are initialized with a camera and light sub-

path. Then a two stage algorithm is executed, where all sub-paths are

extended in a similar way to Algorithm StreamingPTmk (details left out

for brevity). When more than 60% threads have both sub-paths termi-

nated, all pairs of vertices for each thread are generated (implicitly), and

all such pairs have their visibility evaluated and contributions accumu-

lated. All terminated threads are then regenerated, until there are no

paths left in the queue.

both sub-paths is interleaved, an efficient implementation requires reusing
the same code for both camera and light sub-paths, making the implemen-
tation quite involved.

Combinatorial Bidirectional Path-Tracing. Pajot et al. [2011]
present a hybrid two-stage implementation of BPT. All sub-paths are gen-
erated on the CPU, and the GPU performs only connections between all
camera and all light sub-path vertices. Unfortunately, this way some paths
(e.g., caustic paths) can only be handled by the CPU. As this is not a pure

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 83

GPU implementation, we are including it only for completeness and it does
not appear in our comparison.

Streaming Bidirectional Path Tracing with Regeneration
(StreamingBPT). In contrast to his [2011c] algorithm, van Antwer-
pen [2011b] presents a more traditional BPT (Algorithm StreamingBPT).
The approach is a two stage algorithm, using a pool of threads, with one
thread processing one camera and light sub-path pair. Initially, all threads
have their sub-paths generated. Both sub-paths are then extended, with
their vertices stored with the thread. When more than 60% of the threads
have both their sub-paths terminated, the algorithm enters the second stage,
in which all pairs of light and camera sub-path vertices within each thread
are tested for visibility and their contributions are accumulated to the im-
age. The pairs are formed implicitly and tested with one thread for each
pair, which solves the issue with uneven work per vertex. After that, all
terminated threads have their sub-paths regenerated and the whole algo-
rithm is repeated until there are no more paths to be traced. The required
storage size is determined by the size of the thread pool and the user-defined
maximum path length.

4.4.3 Proposed Alternative: Light Vertex Cache BPT

To remove the requirement for user-defined maximum path length while
keeping the implementation as simple as possible, we introduce the Light
Vertex Cache Bidirectional Path Tracing algorithm (Algorithm LVC-BPT).
The key idea is that instead of connecting each camera sub-path vertex to
all vertices from a given light sub-path, the vertex is connected to a given
number of uniformly and randomly chosen vertices across all light sub-paths.
It can also be seen as first choosing a random light sub-path (similar to
RegenerationBPT) with probability proportional to its number of vertices
and then choosing a uniformly random vertex on the path, which arrives at
the same uniform probability for all light sub-path vertices.

This, along with the recursive MIS weight computation, enables us
to store all vertices in a single global Light Vertex Cache (LVC), without
storing any information regarding the light sub-path they originate from.
As all vertices are stored in a common cache, we do not need to know the
maximum path length. Instead, we only need the average path length, to
allocate a large enough cache. We estimate this by tracing a small number
(ten thousand) of light sub-paths, only counting the number of vertices they
would store. This kernel takes less than 1 ms on both tested GPUs and has
to be performed only once for each scene. Using the average path length,
we compute the expected number of light sub-path vertices (adding a 10%
safety margin) and reserve the required memory for the cache. In theory, it
is possible that the algorithm will generate more light vertices than the LVC

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 84

vertexCount = 0 // Preparation phase

foreach path in 10k light paths:
while path not terminated :

trace path.ray if no hit: return
vertexCount += 1
path = extend path

averageLength = vertexCount/10 k
LVCache = reserve |light paths| · averageLength · 1.1
connections = max(1, daverageLengthe)
vertexCount = 0 // Light trace

foreach path in light paths:
while path not terminated :

trace path.ray
if no hit: return
LVCache[vertexCount++] = path.vertex
path = extend path

foreach path in camera paths: // Camera trace

while path not terminated :
trace path.ray
if no hit: return
repeat connections times:

path connects to LVCache[random]

path = extend path

Algorithm LVC-BPT: Light Vertex Cache BPT (proposed algorithm):

In LVC-BPT we first, once for each scene, estimate average light path

length (Preparation phase), reserve room in a light vertex cache for the

estimated total number of light sub-path vertices including a 10% safety

margin and estimate the number of connections for each camera sub-

path vertex. We then execute two main stages of the algorithm. First,

we trace all light sub-paths, storing the light sub-path vertices in the

cache. Second we trace all camera sub-paths, connecting the camera

vertices to the required number of random light vertices in the cache.

capacity, in which case we would discard the extra vertices (causing bias).
However, this has not happened in any of our experiments.

The implementation of LVC-BPT is fairly straightforward and can be
based on any of the algorithms introduced in Section 4.3. We present results
based on Path Tracing with Regeneration (single kernel) (as LVC-BPTsk)
and on Streaming Path Tracing with Regeneration (multiple kernels) (as
LVC-BPTmk).

As the second pass of LVC-BPT accesses the cache in a random pat-

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 85

Algorithm Vertex Storage Path extension Shadow test Other On our configuration

StreamingBPT 2 · S · L·B 4 · S · 64 B S · 44 B S · 100 B 1.1 GB
MultiBPT S · 100 B 2 · S · 64 B S · 44 B — 108MB
NaiveBPT L · E · 100 B — — — 8–10 MB

LVC-BPTsk (ours) P ·AL · 100 B — — — 16–164 MB
LVC-BPTmk (ours) P ·AL · 100 B 2 · S · 64 B S · (V + 1) · 44 B — 148–316 MB

S – thread pool size; E – number of concurrently executed threads
L – maximum path length; P – paths per frame; AL – average light sub-path length

Table 4.2: Summary of BPT memory requirements: We present the memory require-
ment of each component of each algorithm as a function of several parameters. We
also give the total amount of memory the algorithm used on our configuration.

tern, we load the vertices through the texture units in an Array of Structures
(AoS) layout for optimal performance.

4.4.4 Results and discussion

Within our frame work we have implemented and tested the following five
algorithms:

� StreamingBPT [van Antwerpen 2011b] represents the current state-
of-the-art algorithm. To confirm that our performance is on par with
the paper, we measured the number of samples (i.e., camera and light
sub-path pairs) on the same scene and GPU as in the original paper
and our implementation (8.66 million samples per second) was roughly
twice as fast as reported in the original paper (3.64 million samples
per second).

� MultiBPT [van Antwerpen 2011c]. We use a straightforward exten-
sion of the approach by complementing it with the dual algorithm of
tracing one light sub-path for each camera sub-path vertex. During
the progressive rendering of the image, we alternate between the two
algorithms, balancing the number of camera and light sub-paths.

� NaiveBPT is a straightforward port of CPU code to GPU to compare
the relative gain of the more advanced implementations. The imple-
mentation consists of two while loops of NaivePTsk (Alg. NaivePTsk)
within a single kernel. Persistent threads are used for better control
of memory requirements (see below).

� LVC-BPT is our new algorithm. Its two versions use either Path Trac-
ing with Regeneration (for LVC-BPTsk) or Streaming Path Tracing
with Regeneration (for LVC-BPTmk) as the basic algorithm for trac-
ing camera and light sub-paths.

Memory requirements. Table 4.2 gives a summary of memory used
by each of the algorithms as a function of several parameters. The state-of-
the-art StreamingBPT uses the most memory. It uses two sets of threads

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 86

and requires large storage for all light sub-path vertices using up to 1.1 GB
of memory. MultiBPT stores only one light sub-path vertex per thread
and does not use two sets of threads for each sub-path, lowering the total
memory requirements to 108 MB. NaiveBPT performs all its computation
within a single kernel launch, so it does not require any extra memory for
path extension and shadow test kernels, lowering memory requirements to
only 8–10 MB. LVC-BPTsk also stores only light vertices but the memory
is given by the average light sub-path length and the total number of light
sub-paths per frame. LVC-BPTmk again adds requirement for the path
extension and the shadow test kernel stores.

Performance tests. In Bidirectional Path Tracing, the number of
rays per second does not provide a good comparison between the algorithms.
Instead, we measure performance as the time required to achieve a given
image quality in terms of Root Mean Square Error (RMSE) with the respect
to reference solution (computed by NaiveBPT in 10 hours).

We performed measurements on both GTX 580 and GTX 680 with 106

samples per frame and chose our target quality as the RMSE achieved by the
state-of-the-art StreamingBPT in 10 minutes on a GTX 580. Table 4.3 shows
the relative speedup against StreamingBPT on GTX 580. The average result
is a simple average of the speedups for each given algorithm. Note, that we
do not use LivingRoom in this comparison, as the RMSE is dominated by
the missing reflected caustics that none of the BPT methods can reasonably
capture (Figure 4.5).

When we look at the results on GTX 580, we notice a surprisingly
high performance of NaiveBPT. On the GrandCentral scene it outperforms
the StreamingBPT, and on CoronaWatch it is even tied for the fastest al-
gorithm with our LVC-BPTsk. In these scenes, the work for each sample
is highly uniform, which mitigates the inefficiencies of the naive approach.
However, on average, the naive approach is about 15% slower than Stream-
ingBPT. MultiBPT is the slowest of the algorithms, mainly due to its more
complex implementation and imperfect interleaving of camera and light sub-
path tracing. Both LVC implementations are faster than StreamingBPT on
all scenes, with an average speedup of 33%. A major factor is that, un-

Figure 4.5: Reflected caustic dominates the RMSE of LivingRoom scene. Left: Inlay
from reference image. Right: Inlay from LVC-BPTsk after 15 min.

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 87

GeForce GTX 580
StreamingBPT NaiveBPT MultiBPT LVC-BPTsk LVC-BPTmk

CoronaRoom 1.00× 0.91× 0.81× 1.15× 1.21×
CoronaWatch 1.00× 1.41× 0.93× 1.41× 1.15×
BiolitFull 1.00× 0.52× 0.57× 1.53× 1.81×
CrytekSponza 1.00× 1.07× 0.93× 1.35× 1.29×
GrandCentral 1.00× 0.70× 0.70× 1.29× 1.34×

Average 1.00× 0.85× 0.77× 1.33× 1.33×

GeForce GTX 680
StreamingBPT NaiveBPT MultiBPT LVC-BPTsk LVC-BPTmk

CoronaRoom 0.86× 0.72× 0.69× 1.24× 1.19×
CoronaWatch 0.74× 1.17× 0.80× 1.32× 1.07×
BiolitFull 0.89× 0.42× 0.58× 1.73× 1.92×
CrytekSponza 0.84× 0.92× 0.92× 1.55× 1.12×
GrandCentral 0.97× 0.55× 0.68× 1.39× 1.49×

Average 0.85× 0.68× 0.71× 1.38× 1.27×

Table 4.3: Relative BPT speed up: Speed up of different BPT algorithms, in terms
of time to a given quality, relative to StreamingBPT on GTX 580. The target quality
is chosen as the RMSE achieved by StreamingBPT in 10 minutes on GTX 580.

like StreamingBPT, LVC-BPT stores only light vertices, which comprise
less than 40% of all vertices stored by StreamingBPT. The algorithm also
benefits from a more straightforward control flow.

The results on GTX 680 are consistent with our findings from Sec-
tion 4.3. We again see a drop in the absolute performance of multi-kernel
implementations, significantly influenced by the lack of L1 cache for global
memory accesses. Our LVC-BPTsk is the only algorithm that actually shows
increase in performance on GTX 680. All other algorithms, including our
LVC-BPTmk, show a decrease in performance.

Increasing the sample rate to 107 samples per frame, the findings are
again consistent with the findings from Section 4.3, and multi-kernel imple-
mentations (StreamingBPT, MultiBPT, and LVC-BPTmk) benefit from the
increased number of samples more than single-kernel variants (NaiveBPT
and LVC-BPTsk). The full results can be found in the supplemental mate-
rial in Appendix A.

4.4.5 Conclusions

In this section we surveyed several Bidirectional Path Tracing algorithms.
NaiveBPT and StreamingBPT implement the standard BPT Monte Carlo
estimator by only limiting the maximum path length, while other approaches
modify the estimator to achieve better GPU mapping. Our proposed LVC-
BPT significantly simplifies the implementation by decoupling light and
camera sub-paths.

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 88

We compared the state-of-the-art StreamingBPT with NaiveBPT,
MultiBPT, and our LVC-BPT. As LVC-BPT can utilize almost any Path
Tracing implementation, we measured two versions: LVC-BPTsk, based on
Path Tracing with Regeneration (single kernel), and LVC-BPTmk, based on
Stream Path Tracing with Regeneration (multiple kernels). We conducted
performance tests, measuring the time required to achieve a given image
quality. The difference between LVC-BPTsk and LVC-BPTmk closely fol-
lows the differences between their respective Path Tracing algorithms. The
single-kernel implementation is simpler and more suited for GTX 680 and
low numbers of samples per frame, while the multi-kernel implementation is
slightly more involved and is more suited for GTX 580 and larger numbers of
samples per frame. The simplicity of the LVC-BPT implementation allows it
to outperform the other algorithms by 30-60% on all tested configurations.

4.5 Photon Mapping-Based Approaches

While Path Tracing and Bidirectional Path Tracing are an excellent choice
for a wide range of scenes, some effects, e.g., the reflected caustics in Fig-
ure 4.5, remain notoriously hard to capture. In this section, we focus on a
family of methods based on Photon Mapping (PM) [Jensen 2001] that can
handle such effects.

Photon Mapping based approaches are similar to BPT in that they
require both light and camera sub-paths. However, unlike BPT, camera sub-
path vertices connect to all light sub-path vertices within a certain radius, an
operation that requires a suitable acceleration structure. These acceleration
structures have to be rebuilt for every frame and are the focus of this section.

(a) Progressive PM (b) Stochastic PPM (c) PBPM

Figure 4.6: The original Progressive Photon Mapping (left) performs density esti-
mation on the first camera sub-path vertex. Stochastic Progressive Photon Mapping
(center) extends camera sub-path using glossy BSDF components and performs den-
sity estimation on both vertices, using only diffuse BSDF components on the first one.
Progressive Bidirectional Photon mapping (right) traces full camera sub-path, performs
density estimation on all its vertices, and weights them using Multiple Importance Sam-
pling.

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 89

Unlike in previous sections, where the differences between the com-
pared variants consisted in mapping to the GPU or a slight algorithmic
modification, in this section we examine acceleration structures with very
different asymptotic complexities for both construction and querying. To
compare the structures, we implemented three different algorithms based
on Progressive Photon Mapping and we compare the results achieved with
different data structures in all three of them.

All Photon Mapping based approaches share the following two-pass
algorithm. In the first pass, light sub-paths are traced into the scene, on each
interaction with the scene a photon is stored, and the sub-paths are extended
in the same way as in BPT. The photons store only their position, incoming
direction, and energy; they do not require the BSDF. In the second pass,
camera sub-paths are traced and density estimation is performed at their
vertices. Each photon within some radius r of the hitpoint is treated as if it
arrived exactly at the hitpoint, that is, incoming direction and energy of the
photon is used to evaluate the BSDF at the hitpoint. Contributions from all
such photons are accumulated and divided by πr2. The choice of the radius
depends on the specific algorithm, with the common choices being a fixed
radius (range query) and a radius such that k nearest photons contribute
(k-nearest neighbor, k-NN, query). Which vertices of the camera sub-paths
perform the density estimation also depends on the specific algorithm.

Progressive Photon Mapping (PPM). Progressive Photon Map-
ping by Hachisuka and Jensen [2008] uses range queries to perform density
estimation on the first non-specular vertex of each camera sub-path (see
Figure 4.6a). Using per-vertex statistics such as number of accumulated
photons, they reduce the query radius in such a way that the whole algo-
rithm is consistent.

Stochastic Progressive Photon Mapping (SPPM). In their fol-
low up paper Hachisuka et al. [2009] show that the per-vertex statistics can
be reused for all vertices originating from the same pixel. This can be used
to improve performance on glossy surfaces, as standard density estimation
on glossy surfaces produces noisy results (Figure 4.7a). SPPM instead uses
only the diffuse component of the BSDF on the first camera sub-path vertex,
extends the sub-path using glossy components and performs another density
estimation on the second vertex (see Figure 4.6b). This often leads to less
noisy results (Figure 4.7b).

Progressive Bidirectional Photon Mapping (PBPM). While
highly glossy surfaces greatly benefit from SPPM (Figure 4.7, top row), al-
ways extending the camera sub-path can be adversarial when the glossy lobe
is wide (Figure 4.7, bottom row). In that case, PPM is actually better. To
address this issue, Vorba [2011] introduces Progressive Bidirectional Pho-
ton Mapping (PBPM), where the camera sub-path is extended in the same
way as in Path Tracing and density estimation is performed on each of its
vertices. Multiple Importance Sampling is then used to properly weight the

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 90

(a) Progressive PM (b) Stochastic PPM (c) PBPM

(d) Progressive PM (e) Stochastic PPM (f) PBPM

Figure 4.7: PPM, SPPM, and PBPM on glossy surfaces. Given a Cornell Box with
a highly glossy floor (top row), Progressive Photon Mapping (a) produces a noisy
image, because only very few photons on the floor produce a significant contribution.
Stochastic Progressive Photon Mapping (b) instead extends the camera sub-path in the
direction of the glossy lobe and performs density estimation on the diffuse wall, giving
a much smoother result. However, for only slightly glossy surfaces (bottom row) it is
not beneficial to follow the glossy lobe and PPM (d) produces less noisy result than
SPPM (e). Progressive Bidirectional Photon Mapping (c, f) uses multiple importance
sampling to weight both techniques to produce a noise-free image in both cases.

individual contributions, leading to a smooth result on both high and low
gloss surfaces (Figure 4.7c and 4.7f).

Knaus and Zwicker [2011] show that the per-vertex (or per-pixel)
statistics are not required and the radius can be reduced using a global
scaling factor. In all our implementations we use this approach rather than
the original reduction scheme.

All three algorithms share common elements, many of which we have
already addressed. The sole new challenge is an efficient implementation
of density estimation using a range query, accelerated through the use of a
spatial data structure. Since both photon generation and queries are done on
the GPU, it is essential that the data structure construction is also handled
by the GPU. In the next part we focus on this aspect.

4.5.1 Survey of Existing GPU Implementations of Photon
Map Search Structures

kD-tree. Zhou et al. [2008] describe an algorithm for GPU construction
of kD-trees, the acceleration structure used in the original Photon Mapping

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 91

[Jensen 1996]. The algorithm first sorts photons by their coordinates and
then builds the kD-tree incrementally, by levels. For each level of the kD-
tree three prefix sums and three scatter/gather operations are executed.
This build process is significantly more involved than the build process of
Hash Grids, introduced below and our experiments show that even the range
queries are slower (Table 4.6).

(Full) Hash Grid. While kD-trees excel at queries with an unknown
or highly varying radius, their build as well as traversal algorithms are quite
costly. The original Progressive Photon Mapping [Hachisuka et al. 2008]
implementation instead uses Hash Grids. We use the name Full Hash Grid
to distinguish it from Stochastic Hash Grid introduced later. Here, the
whole scene is partitioned into a grid with cell sizes roughly equal to the
diameter of the expected queries and the photons are stored in these cells.
As representing each cell in memory is unnecessary, a 1D array of cells is
used instead, typically equal in size to the number of light sub-paths. A
photon’s position in this array is given by a hash of its coordinates in the
full grid. A good hash function should be used (we use Jenkins’ hash [Jenkins
1997]). The construction of the structure is simple and easy to parallelize
(see Algorithm 1). When querying the grid for photons within radius r, we
iterate through all cells that are within this radius, collect all the photons,
and discard those that are farther than r. When the radius is smaller than
half of the cell edge length, only 8 cells have to be searched.

// Each cell has 1 atomic counter

// storage - array of photon indices

foreach cell :
cell.counter = 0

foreach photon:
cell[hash(photon)].counter += 1

Exclusive prefix sum over cell.counter
foreach photon:

position = cell[hash(photon)].counter++
storage[position] = photon index

Algorithm 1: Building hash grid : Each cell has a single atomic counter,

that is initially set to 0. Each photon increments this atomic counter, to

determine how many photons belong to each cell. Exclusive prefix sum

is performed over these counters, giving a start index on which photon

indices belonging to each cell should be stored. In the final pass each

photon increments the counter and fetches its old value. The photon’s

index is stored at the position given by this value in the storage array.

The range of photons in the storage array that belong to a cell with

index cidx is given by cell[cidx-1].counter (inclusive) to cell[cidx].counter

(exclusive), with cell[-1].counter = 0.

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 92

(a) Stochastic
Hash Grid

(b) Rectified Stochastic Hash
Grid

(c) Full Hash Grid

Figure 4.8: The positive (green)/Negative (red) difference of PPM using the original
Stochastic Hash Grid (left) and a Path Traced reference using the Cornell Box with
walls that have an albedo of 0.99. The corners of the Cornell Box are visibly lighter
than they should be. Our Rectified Stochastic Hash Grid (center) matches the results
given by the Full Hash Grid (right).

This approach has two drawbacks. When the radius is significantly
smaller than the size of a cell, the cell can contain many photons that will be
outside the query radius and are discarded, causing overhead. The second
problem stems from hash collisions when multiple full cells are mapped into
a single hash cell. As a result, the cell can again contain many photons that
will be outside the query range.

Stochastic Hash Grid. Hachisuka and Jensen [2010] identify two
GPU-specific problems with the Full Hash Grid approach and propose the
Stochastic Hash Grid to address them. First, for efficient access all photons
in the same cell have to be contiguous in memory, e.g., sorted by counting
sort using atomic counters. The second problem stems from the uneven
number of photons in each cell – for example, surfaces close to lights can
have a significantly higher density of photons. This means that the number
of photons processed in each query can be significantly different between
different camera vertices in a warp, lowering the GPU efficiency. Instead
of storing all photons, they propose to store only one photon for each cell,
uniformly and randomly chosen from all photons that belong to the cell with
its energy increased accordingly. In their implementation each cell has an
atomic counter and whenever a photon should be stored in a cell, it is simply
written there and the counter is increased. For rendering, the energy of the
photon is multiplied by the value of the counter.

4.5.2 Rectified Stochastic Hash Grid

The Stochastic Hash Grid is based on the assumption that independent
threads tracing the photons lead to equal probability for each photon to
be the last one written to a cell. Unfortunately, this is not the case, as

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 93

photons with longer paths have a higher probability of being the last. This
is demonstrated by Figure 4.8a, depicting the positive (green) and negative
(red) luminance difference between SPPM and a reference rendering of a
Cornell Box (walls with albedo 0.99). When compared to the results of Full
Hash Grid (Figure 4.8c), it is obvious that the original method is biased
towards longer paths.

Our Rectified Stochastic Hash Grid (Figure 4.8b) selects photons using
reservoir sampling (see Algorithm R in [Vitter 1985]), where the nth photon
replaces the stored photon with a probability of p = 1

n . This gives each
photon an equal probability to be selected for the cell, irrespective of the
order they arrive in.

Our second modification solves a possible race condition when writing
the photon into a cell. As the write of a larger structure is not atomic, it
is possible to have a result that is combined from photons from multiple
threads. To prevent this, we store each photon into its globally unique
memory location and write only the index of the photon.

4.5.3 Implementation Detail: Improved Hash Grid Query

Algorithm 2 shows two different approaches to performing a range query in
a Hash Grid. The standard NaiveQuery processes all cells that are within
range in a serial manner. On a GPU, all threads wait until each thread has
processed all photons in its current cell before processing the next cell. This
means that if the total number of photons is the same across the threads but
differs between the cells, some threads might be idle, while others are still
processing their photons from a given cell. Our WhileQuery removes this
issue in a manner similar to the “while-while” loop used in [Aila and Laine
2009]. First all threads find their next photon to process from all the cells
in range before the photons are processed. This way the query execution
is driven only by the number of photons for each thread and not by their
distribution within the grid cells.

We measured the performance of Progressive Photon Mapping (PPM),
Stochastic Progressive Photon Mapping (SPPM), and Progressive Bidirec-
tional Photon Mapping (PBPM) using both query algorithms on Full Hash
Grid. Table 4.4 represents the results as a speedup of the whole algorithm
when using WhileQuery. We see that in many scenes the difference for both
PPM and SPPM is negligible. However, in BiolitFull and CrytekSponza the
speedup is 10-43%, as both scenes have greatly varying photon density. The
effect on PBPM is significantly smaller, possibly due to the overall com-
plexity of the algorithm, meaning the density estimation itself represents
only a smaller fraction of the total time. The effect is more pronounced on
GTX 680 than on GTX 580.

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 94

def NaiveQuery:
activeCell = cellsInRange.nextCell
while activeCell 6= None:

activePhoton = activeCell.nextPhoton
while activePhoton 6= None:

if activePhoton is in range:
Process activePhoton

activePhoton = activeCell.nextPhoton

activeCell = cellsInRange.nextCell

def WhileQuery:
activeCell = cellsInRange.nextCell
while True:

repeat
activePhoton = activeCell.nextPhoton
if activePhoton = None:

activeCell = cellsInRange.nextCell
activePhoton = activeCell.nextPhoton
if activeCell = None:

return

if activePhoton not in range:
activePhoton = None

until activePhoton 6= None
Process activePhoton

Algorithm 2: Hash Grid Query : The NaiveQuery processes each cell in

range serially, introducing possible inefficiencies when cells examined by

threads in a warp contain different numbers of photons. The WhileQuery

essentially concatenates all photons from all cells in range and processes

this list, limiting the inefficiency only to cases when the total number of

photons in range differs between threads.

4.5.4 Results and Dicussion

In this section we discuss memory requirements and performance of these
structures. All our implementations are single-kernel (the performance rea-
sons are identical to LVC-BPT) and we therefore omit the sk suffix from
the acronyms.

Memory requirements. Both Full Hash Grid and Rectified
Stochastic Hash Grid require only 4 B per cell. In our setup the Hash Grids
occupy only 3.5 MB. kD-tree memory requirements depend on the specific
flavor used, but in our tests the size of the tree was always below 20 MB.
In all cases, the required storage is dominated by the photons not the data
structure.

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 95

GeForce GTX 580 GeForce GTX 680
PPM SPPM PBPM PPM SPPM PBPM

CoronaRoom 0.99 0.99 0.99 0.98 1.03 1.03
CoronaWatch 1.01 1.01 1.01 1.02 0.99 1.01
LivingRoom 1.03 1.03 1.00 1.01 1.03 1.01
BiolitFull 1.33 1.31 1.03 1.43 1.34 1.04
CrytekSponza 1.09 1.08 1.05 1.11 1.13 1.08
GrandCentral 1.03 1.03 1.01 0.98 0.98 1.02

Average 1.09 1.09 1.01 1.10 1.10 1.03

Table 4.4: WhileQuery speedup: Speedup of WhileQuery over NaiveQuery tested on
Progressive Photon Mapping (PPM), Stochastic Progressive Photon Mapping (SPPM),
and Progressive Bidirectional Photon Mapping (PBPM).

GeForce GTX 580 GeForce GTX 680
Full Stoch. kD Full Stoch. kD

CoronaRoom 1.00 0.87 0.43 0.91 0.78 0.46
CoronaWatch 1.00 0.54 0.44 0.91 0.48 0.43
LivingRoom 1.00 0.51 0.15 1.06 0.59 0.13
BiolitFull 1.00 0.45 0.11 1.04 0.50 0.10
CrytekSponza 1.00 0.64 0.25 1.21 0.80 0.22
GrandCentral 1.00 0.53 0.21 1.10 0.61 0.18

Average 1.00 0.55 0.22 1.06 0.61 0.20

Table 4.5: Acceleration Structure comparison: Speedup, in terms of time to a given
quality, of Full Hash Grid (Full), Rectified Stochastic Hash Grid (Stoch.), and kD-tree
(kD), relative to Full Hash Grid on GTX 580.

Performance. Table 4.5 shows the relative speedup of the three
acceleration structures as tested on PPM: Full Hash Grid (Full), Stochastic
Hash Grid (Stoch.), and kD-tree (kD). To compare them we use the same
time to the same quality (RMSE) method introduced in Section 4.4.4. Our
baseline is RMSE achieved by Full Hash Grid on GTX 580 in 10 minutes.

We can see that the overall performance of kD-trees is, at best, 2×
slower than the Full Hash Grid: not only is the build time of the kD-tree
larger than for Full Hash Grid (up to 75×), but the queries themselves also
take slightly more time, as the traversal of the tree is more costly than
simply gathering photons from 8 cells.

We note that Hash Grid, unlike kD-tree, is susceptible to hash colli-
sions, where the 8 examined cells will include photons from different parts
of the scene. This effect is responsible for the longer query times in the
LivingRoom, where the highly concentrated caustic photons show up and

C
H
A
P
T
E
R

4
.

L
IG

H
T

T
R
A
N
S
P
O
R
T

S
IM

U
L
A
T
IO

N
O
N

T
H
E

G
P
U

96

GeForce GTX 580

Full Rectified Stochastic kD-tree
Algorithm #photons Light Construct. Camera Light Camera Light Construct. Camera

CoronaRoom 147k 16.81 ms 1.56 ms 10.82 ms 16.72 ms 10.59 ms 18.50 ms 34.45 ms 15.37 ms
CoronaWatch 175k 15.18 ms 1.68 ms 14.77 ms 15.21 ms 12.97 ms 14.69 ms 41.76 ms 20.75 ms
LivingRoom 1788k 49.93 ms 9.49 ms 27.29 ms 51.52 ms 21.16 ms 47.85 ms 506.27 ms 31.56 ms
BiolitFull 1493k 36.73 ms 6.69 ms 17.78 ms 37.95 ms 12.32 ms 35.55 ms 504.84 ms 25.05 ms
CrytekSponza 571k 42.73 ms 3.50 ms 14.26 ms 43.65 ms 12.14 ms 36.77 ms 191.52 ms 13.51 ms
GrandCentral 746k 44.30 ms 4.54 ms 18.76 ms 44.77 ms 16.02 ms 42.00 ms 254.72 ms 20.18 ms

GeForce GTX 680

CoronaRoom 147k 16.09 ms 2.05 ms 14.65 ms 16.55 ms 14.53 ms 16.20 ms 32.79 ms 16.46 ms
CoronaWatch 175k 15.48 ms 2.27 ms 17.20 ms 15.50 ms 16.55 ms 14.97 ms 44.36 ms 21.69 ms
LivingRoom 1788k 38.59 ms 17.36 ms 27.39 ms 41.61 ms 20.24 ms 36.67 ms 603.88 ms 30.10 ms
BiolitFull 1493k 27.70 ms 12.49 ms 19.39 ms 30.96 ms 14.73 ms 25.42 ms 610.04 ms 24.20 ms
CrytekSponza 571k 27.45 ms 5.83 ms 17.16 ms 28.35 ms 15.84 ms 24.16 ms 232.81 ms 15.95 ms
GrandCentral 746k 31.12 ms 7.64 ms 23.49 ms 34.56 ms 19.79 ms 35.97 ms 311.52 ms 18.92 ms

Table 4.6: Time per frame for Full Hash Grid (Full), Rectified Stochastic Hash Grid (Rectified Stochastic), and kD-tree, broken down to the
separate passes of PPM: photon tracing (Light), acceleration structure construction (Construct.), and camera sub-path tracing and density
estimation (Camera). The times have been averaged over 15 minute runs. Note that the Stochastic Hash Grid does not have a separate
construction phase, as photons are inserted during photon tracing. The column #photons shows the average number of photons per frame.

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 97

have to be evaluated in unrelated cells across the scene. Even so, the overall
performance of the Full Hash Grid on this scene is better than the kD-tree
mainly due to the shorter build time.

While the Rectified Stochastic Hash Grid is about 25% faster, per
frame, the lower number of photons used in density estimation results in an
overall lower performance than the Full Hash Grid. We conclude that the
cost of building a Full Hash Grid is negligible compared to the benefits and
use it in all our tests.

4.5.5 Conclusions

In this section, we investigated three progressive algorithms based on Pho-
ton Mapping, namely Progressive Photon Mapping (PPM), Stochastic Pro-
gressive Photon Mapping (SPPM), and Progressive Bidirectional Photon
Mapping (PBPM). The common element of all the algorithms is density es-
timation, based on gathering photons in a certain radius from a query point.
We examined three data structures designed to accellerate this process: kD-
tree, Full Hash Grid, and Rectified Stochastic Hash Grid. Note that we did
not use the original Stochastic Hash Grid [Hachisuka and Jensen 2010], as
its incorrect convergence prevents using our quality metric.

As an implementation improvement of Hash Grid queries, we proposed
the WhileQuery that processes photons from all cells as a single group,
reducing thread divergence during evaluation. This speeds up range queries
on Full Hash Grid by up to 43% and is used in all our tests.

While the Rectified Stochastic Hash Grid is faster per frame than the
Full Hash Grid, due to the fact that it has no construction phase, this does
not make up for the lower number of stored photons, resulting in 13 to
55% slower performance in all scenes except the CrytekSponza. Both Hash
Grids significantly outperform the kD-tree, mainly due to its substantial
construction cost. As result, we recommend using the Full Hash Grid with
our WhileQuery for GPU implementation of Photon Mapping methods.

4.6 Vertex Connection and Merging

In the following we combine the experience gathered from the previous sec-
tions to introduce the first GPU implementation of the recent Vertex Con-
nection and Merging (VCM) algorithm [Georgiev et al. 2012, Hachisuka et al.
2012]. While Bidirectional Path Tracing fails to capture reflected caustics
and methods based on Photon Mapping have difficulties producing noise-
free diffuse surfaces under illumination from distant light sources, Vertex
Connection and Merging combines the best of both algorithms by using
Multiple Importance Sampling to give a high weight to the best strategy for
each situation (see Figure 4.9).

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 98

(a) Bidirectional
Path Tracing

(b) Progressive Bidirectional
PM

(c) Vertex Connection and
Merging

Figure 4.9: The reflected caustics (red) are extremely difficult for Bidirectional Path
Tracing (left). Progressive Bidirectional Photon Mapping (middle), on the other hand,
results in noticeable noise on the diffuse walls (green). In the same rendering time
(10s), Vertex Connection and Merging (right) handles both effects well.

4.6.1 Algorithm Overview

In the original paper the authors use a standard approach to Bidirectional
Path Tracing, tracing an equal number of light and camera sub-paths, form-
ing predetermined path pairs. First, all light sub-paths are traced and their
vertices are stored. Then camera sub-paths are traced, each camera sub-
path vertex is connected to all vertices on the corresponding light sub-path,
as well as merged with vertices (i.e., ‘photons’), from all light sub-paths, that
are within a given range. Vertex merging is a name used for an operation
virtually identical to the range query in Progressive Bidirectional Photon
Mapping, the only difference being the different calculation of the Multiple
Importance Sampling weights.

4.6.2 Proposed GPU Implementation

Given our Light Vertex Cache Bidirectional Path Tracing (LVC-BPT) intro-
duced in Section 4.4.3 and our GPU implementation of Bidirectional Photon
Mapping (Section 4.5) a GPU implementation of Vertex Connection Merg-
ing is easy. Our implementation first traces all light sub-paths. Then a Full
Hash Grid is built over these vertices to accelerate range queries (we use
our WhileQuery) as in PBPM. Finally, a camera pass is performed where
each camera sub-path vertex is connected to a predetermined number of
light sub-path vertices (identical to LVC-BPT) and also merged with light
sub-path vertices using a range query (identical to PBPM).

4.6.3 Results and Discussion

Memory requirements. Memory requirements are almost identical to the
requirements of LVC-BPT. Using the formulas introduced in Table 4.2 we
arrive at 17 to 171 MB for VCMsk, with VCMmk adding another 137 to

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 99

GeForce GTX 580 GeForce GTX 680
VCMsk VCMmk VCMsk VCMmk

CoronaRoom 1.00× 0.98× 0.93× 0.85×
CoronaWatch 1.00× 0.79× 0.87× 0.71×
LivingRoom 1.00× 1.04× 0.92× 0.88×
BiolitFull 1.00× 1.03× 0.92× 0.86×
CrytekSponza 1.00× 0.91× 1.00× 0.85×
GrandCentral 1.00× 0.97× 0.92× 0.87×

Average 1.00× 0.95× 0.93× 0.83×

Table 4.7: Relative performance of VCM implemented with a single kernel (VCMsk)
and using two kernels (VCMmk).

158 MB. We also need memory for the Full Hash Grid used to accelerate
vertex merging range queries, adding a small memory footprint of 3.5 MB.

Kernel configurations. Similar to Light Vertex Cache BPT, we
tested both single-kernel (VCMsk) and multi-kernel (VCMmk) implemen-
tation of VCM. Table 4.7 shows the performance relative to VCMsk on the
GTX 580. We can see that in almost all cases, VCMmk is inferior to VCMsk.
On GTX 580, VCMmk outperforms VCMsk in only two scenes by 3 and 4%
respectively, but in general is approximately 5% slower. This difference is
more pronounced on the GTX 680. Because multi-kernel VCM uses a larger
light sub-path vertex structure as well as the whole merging stage, it has
greater pressure on the memory system, leading to a decrease in perfor-
mance with respect to the single-kernel implementation. We conclude that
the single-kernel VCM is the better choice for both GPUs.

To conclude, our Vertex Connection and Merging implementation
draws heavily on the experiences from both Bidirectional Path Tracing and
Progressive Bidirectional Photon Mapping implementations. The main ap-
proach is almost identical to our LVC-BPT, using a single-kernel implemen-
tation. Compared to the CPU implementation used in [Georgiev et al. 2012],
our GPU implementation achieves a 6 to 10× speedup on the scenes tested
here.

4.7 Algorithm Comparison

Up until now we have focused on optimizing the individual algorithms. Now,
with state-of-the-art GPU implementations of a number of light transport
simulation algorithms within a single framework at our disposal we have
a unique opportunity to compare the algorithms against each other. Our
comparison is “unbiased” in the sense that we did not introduce any of the
algorithms in this chapter and so have no motivation to selectively prefer

C
H
A
P
T
E
R

4
.

L
IG

H
T

T
R
A
N
S
P
O
R
T

S
IM

U
L
A
T
IO

N
O
N

T
H
E

G
P
U

100

Time [s]
R

M
S

E
[-

]
10-1 100 101 102 103

10-2

10-1

(a) CoronaRoom

10-1 100 101 102 103

10-2

10-1

(b) CoronaWatch

10-1 100 101 102 103

10-1

100

(c) LivingRoom

R
M

S
E

[-
]

10-1 100 101 102 103

10-2

10-1

100

(d) BiolitFull

10-1 100 101 102 103

10-2

10-1

(e) CrytekSponza

10-1 100 101 102 103

10-2

10-1

100

(f) GrandCentral

RegenerationPTsk (ours) LVC-BPTsk (ours) PPM SPPM PBPM (ours) VCMsk (ours)

Figure 4.10: The log-log plot of RMSE-vs-time convergence of the six tested methods on each of the test scenes.

.

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 101

any of them. Our results are not strictly GPU-specific; we are not aware of
a similar unbiased comparison for CPU implementations either.

Figure 4.10 shows results for GTX 680. Progressive Photon Map-
ping (PPM), Stochastic Progressive Photon Mapping (SPPM), and Bidi-
rectional Photon Mapping (PBPM) use single-kernel implementations and
all algorithms that perform density estimation use the Full Hash Grid and
our WhileQuery. The results for GTX 580 using multi-kernel versions of
RegenerationPTmk and LVC-BPTmk closely follow the results of GTX 680.
The graphs are given in the supplemental material in Appendix A. Our ref-
erences are computed by NaiveBPT in 10 hours except for the LivingRoom
scene where the reference is computed by VCMsk, as BPT cannot resolve
the reflected caustic even after 10 hours.

4.7.1 Path Tracing

As expected, Path Tracing excels in scenes with a simple illumination. From
our test scenes, it achieves the best results on CoronaRoom, a mostly diffuse
scene where the majority of the illumination comes from an environment
lighting behind the glass-less window.

Good results are also achieved on CoronaWatch, which is dominated
by direct illumination. However, on Figure 4.10b we can see that the con-
vergence of PT starts to level off after approximately 100 s, due to inappro-
prietly sampled gloss-to-gloss transport.

The somewhat surprising poor performance on GrandCentral is caused
by the many individual point lights in the niches beneath the ceiling. While
the overall illumination of the scene is smooth, these niches are each illumi-
nated by essentially a single point light, which poses a great challenge for
next event estimation. This causes the majority of the variance we see in
the graph.

The other three scenes are strongly illuminated by indirect light
sources, which renders next event estimation essentially useless in these cases
and the overall convergence of PT suffers.

4.7.2 Bidirectional Path Tracing

Bidirectional Path Tracing performs well on all the scenes except Livin-
gRoom, a scene tailored to showcase Vertex Connection and Merging, where
BPT does not have any technique suitable for efficiently capturing reflected
the caustics.

On the two scenes dominated by direct illumination, i.e., Corona-
Room and CoronaWatch, the algorithm is slower than Path Tracing, as the
extended set of techniques offered by BPT is not really useful. In Grand-
Central, the niches are illuminated by paths traced from the point lights,

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 102

(a) PPM - 1st iteration (0.11s) (b) BPT - 1st iteration (0.17s)

(c) PPM - 10th iteration (0.86s) (d) BPT - 10th iteration (1.63s)

Figure 4.11: After the first iteration (top) the PPM (a) with a large radius gives
a better initial intuition about the lighting than BPT (b). After the tenth iteration
(bottom) the asymptotically faster convergence of BPT has already removed this early
advantage.

greatly reducing noise when compared to PT. The algorithm naturally han-
dles well both scenes that are dominated by indirect illumination (BiolitFull
and CrytekSponza).

4.7.3 Photon Mapping-based Methods

The Photon Mapping-based methods are most beneficial on LivingRoom,
where none of the path-based algorithms can efficiently capture the reflected
caustics. Somewhat surprising is the good behavior of Progressive Bidi-
rectional Photon Mapping on both CoronaRoom and CoronaWatch, when
compared to Progressive Photon Mapping and Stochastic Progressive Pho-
ton Mapping. The key insight here is that PBPM has Path Tracing without
next event estimation amongst its techniques and both scenes, with their
large area lights, represent a very good case for this technique. Even up to
the point that the convergence on CoronaWatch is actually dominated by
it, matching the convergence rate of path based techniques.

In the case of BiolitFull, PPM and SPPM give very good results in a
short time. This is due to mostly diffuse nature of the scene, where each
photon contributes to several pixels, giving a good, albeit blurry, initial
estimate (Figure 4.11).

However, in the CrytekSponza, which is purely diffuse and also indi-
rectly illuminated, the results are quite different. Unlike BiolitFull, where

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 103

all the lights are within a single room and roughly half the scene and a third
of the lightsources are visible to the camera, in CrytekSponza we see only a
fraction of the scene and all the lights are completely outside the view. As
result, a significantly lower fraction of all photons contributes to the frames
(0.11% vs 6.3%), giving much more noisy results.

4.7.4 Vertex Connection and Merging

VCM excels in LivingRoom, which has been tailored to showcase the algo-
rithm. It resolves the reflected caustics using techniques from PBPM, while
resolving the diffuse light transport with BPT techniques. In the other
scenes however, VCM simply mirrors the performance of BPT, in general
being slightly slower, as the vertex merging techniques have a non-negligible
cost.

4.8 Conclusion

In this chapter we presented an extensive study of GPU-based implemen-
tations of several progressive light transport simulation algorithms. For
each algorithm, we evaluated existing and new approaches on GPUs of two
different NVIDIA architectures, the older Fermi (GTX 580) and the newer
Kepler (GTX 680) architecture. To accelerate the ray tracing operator we
use a highly optimized GPU library by NVIDIA as the best currently avail-
able substitute for a more ideal hardware solution, such as discussed in
Chapter 3.

In the Path Tracing section we examined the low-level details of map-
ping the basic building block of the more complex algorithms path sampling
onto the GPU. We conclude that for optimal performance it is beneficial to
use a low number of separate kernels, as the lower number of loads and stores
outweighs the gains from improved GPU occupancy. Notably, on Kepler,
the speed gained by using Path Tracing with Regeneration with only a sin-
gle kernel actually matches the speed gained by stream compaction used in
state-of-the-art Streaming Path Tracing with Regeneration, using 2 kernels.

In the Bidirectional Path Tracing section, we show that maximal sim-
plification of the algorithm structure leads to the best performance. We
proposed our Light Vertex Cache BPT, storing only light path vertices with-
out the notion of sub-paths. Doing so increases the performance by 30-60%
when compared to the stateof-the-art, while at the same time removing the
necessity of a maximum path length.

In the Photon Mapping section we show that a simpler but asymptot-
ically slower algorithm, in our case the Hash Grid, can outperform a more
complex asymptotically faster algorithm, in our case the kD-tree. Another
important low-level optimization is our WhileQuery, used to gather pho-
tons from a Hash Grid. By removing thread synchronization after gathering

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 104

photons from a single cell, we reduce the thread divergence of the gather
process, which can increase the performance by up to 40%. All of the find-
ings are combined in Vertex Connection and Merging, showing the first GPU
implementation of the algorithm.

Our algorithm comparison shows that the raw performance of Path
Tracing makes it ideal for scenes with a low lighting complexity, but that
the more sophisticated sampling strategies of Bidirectional Path Tracing are
useful in scenes with more complex lighting. In most scenes, the performance
of Vertex Connection and Merging follows that of BPT, but due to the
overhead of merging (which has only a marginal impact on the final image)
it is about 15% slower to achieve the same image quality. Of course, in
scenes with a strong reflected caustic component, VCM outperforms BPT
since the merging is essential to capturing these light paths. The Photon
Mapping based algorithms do not present a significant advantage over any
of the other algorithms.

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 105

CHAPTER 4. LIGHT TRANSPORT SIMULATION ON THE GPU 106

Chapter 5

Global and Local VPLs

Despite the advances in rendering algorithms described in the previous chap-
ter, accurate rendering of scene with multiple glossy materials remains a
major challenge. Scenes where the illumination is strongly influenced by
glossy interreflections (such as Figure 5.1) are fairly prominent in design
applications. There, providing effective previews is an important part of the
design process and tradeoff of small inaccuracies for significant performance
gains can be acceptable. All of the algorithms introduced in the previous
section will arrive at the perfectly accurate solution, but as none of them
has a good sampling strategy for this type of paths it would require a pro-
hibitively large number of samples and none of them is therefore well suited
for this task.

On the other side of the spectrum of available algorithms are interac-
tive techniques, which trade off accuracy for performance. These approaches
achieve performance by limiting their support for materials by assuming
diffuse or low-frequency material representations, sometimes extensible to
perfectly specular [Wang et al. 2009] and/or requiring significant precom-
putation as in PRT-based algorithms [Cheslack-Postava et al. 2008]. Many-

VSLs our approach

Figure 5.1: Comparison of our approach with Virtual Spherical Lights (VSLs). Left:
VSLs fail to capture small local glossy reflections (time: 6 m 26 s). Right: Our method
(time: 4 m 59 s) computes these reflections more efficiently and accurately by using
visibility approximations for the low-rank global light transport and using local lights
for the high-rank localized light transport.

107

CHAPTER 5. GLOBAL AND LOCAL VPLS 108

light methods are gaining popularity because of their simplicity and their
ability to effectively leverage GPU performance. These formulations con-
vert global illumination into the problem of rendering with many virtual
point lights (VPLs) (see Section 2.3.6). These approaches assume that any
individual VPL does not significantly affect lighting. Thus, “spiky” lights
(either because of BRDF or proximity) are eliminated through clamping
their contribution to some user-specified maximum value.

However, clamping can negatively impact accurate material percep-
tion [Křivánek et al. 2010], and thus curb the use of these algorithms in
design applications. Recently, virtual spherical lights [Hašan et al. 2009]
were introduced to avoid the illumination loss from clamping, but at the
expense of blurring some of the sharp reflections that provide important
material cues. In this chapter, we introduce an alternative approach that
alleviates these limitations and offers a better approximation of global illu-
mination rendering with sharp glossy reflections.

Our approach is to split the light transport into two components: A
dense global component and a sparse localized component. The global com-
ponent of the light transport matrix corresponds to standard clamped VPLs
and can be approximated well by techniques like matrix row-column sam-
pling [Hašan et al. 2007]. In the context of the previous chapter, the global
component would correspond to mostly diffuse illumination cast over long
(with respect to the scene size) distances. We further observe that visi-
bility can be separately (and often more coarsely) approximated compared
to shading, particularly in scenes with glossy materials. We leverage this
observation to construct a novel visibility clustering algorithm that requires
fewer shadow maps than standard matrix row-column sampling.

To retrieve the clamped illumination, Kollig and Keller introduced a
clamping compensation algorithm [2004]. This approach uses Path Tracing
on all paths that would have been clamped in the VPL solution and weights
their contribution to obtain the correct unbiased result. It largely bases its
effectiveness on the assumption that most paths are not clamped and there-
fore will not require the path traced compensation. It also assumes that
all surfaces are diffuse which allows limiting the maximum ray lengths in
path tracing, further improving the performance. Unfortunately, in scenes
with a significant amount of glossy surfaces neither assumption holds and
essentially the whole scene has to be path traced, degenerating the over-
all algorithm to the performance of Path Tracing. Using more advanced
global illumination algorithms instead of Path Tracing is theoretically pos-
sible, even though we are not aware of any such approach being used in
practice, but would not solve the principal issue: If a large portion of the
illumination is clamped, the performance of the algorithm is dominated by
the performance of the chosen compensation approach.

In contrast, our approach approximates the local, high-rank compo-
nent of the light transport, using another many-light strategy with a different

CHAPTER 5. GLOBAL AND LOCAL VPLS 109

set of approximations. We introduce a scheme to trace local virtual lights
and have these local lights correct the global solution by compensating for
the energy lost through clamping. As each local light contributes only the
clamped portion of the energy, its effect is both short distance and focused:
The more specular the material, the more focused is the contribution of the
light. Based on this observation, our local lights illuminate small tiles of
32 × 32 pixels, and we are able to approximate their visibility, noting that
most shadowing effects are already correctly handled in the global many-
light component of the solution. The overall time required to render the
local lights is on the same order as for the global lights. Thus, by coupling
visibility approximation for global lights and compensation through local
lights we can shade highly glossy materials efficiently.

Our global and local VPL technique with visibility approximations can
achieve efficient rendering of scenes with glossy light transport in minutes
for scenes with complex materials and lighting. The proposed solution could
benefit applications where previewing of product appearance is critical and
can have significant economic impact, for example in industrial design and
architecture.

5.1 Related Work

Many previous global illumination methods have been designed without fo-
cus on glossy interreflection and thus have problems when applied to glossy
scenes. In many cases, the problem is that illumination is gathered from
a discrete set of samples that has not been adapted to the requirements of
the illumination receivers. In other techniques the adaptivity comes at a
significant cost.

Non-adaptive methods. Rendering algorithms based on the in-
stant radiosity formulation [Keller 1997] generate a number of virtual point
lights (VPLs) to approximate indirect illumination and shade visible sur-
faces from these lights. Matrix row-column sampling [Hašan et al. 2007]
samples a small number of rows and columns from the large matrix of light-
surface connections. Lightcuts [Walter et al. 2006] use a hierarchy on the
set of lights and/or surface samples to improve the scalability of connection
computations. Ritschel et al. [2008] use approximate shadow maps to ac-
celerate rendering. Laine et al. [2007] propose incremental instant radiosity
for animated sequences, where only a subset of shadow maps is recomputed
in each frame.

In theory, many-light methods provide a correct, unbiased solution to
the rendering equation; however, “spikes” (singularities) can be produced in
parts of the image that strongly depend on a single VPL, since the BRDF
and the geometry term can have a very large value compared to the light
density. This is normally handled by clamping, which often removes interest-

CHAPTER 5. GLOBAL AND LOCAL VPLS 110

ing glossy illumination effects. The virtual spherical light (VSL) approach
[Hašan et al. 2009] addresses the singularities and clamping requirement,
but in some cases the density of the non-adaptively distributed VSLs is in-
sufficient to reproduce sharp details of glossy reflection. This is also true for
lightcuts variants that do adaptively choose a subset of lights for shading,
but the original discrete set itself is usually not sufficient for highly glossy
effects.

The micro-rendering framework of Ritschel et al. [2009] provides inter-
active solutions and does not lead to singularities, but also has no mechanism
to increase the density of samples in areas of spatial proximity or in glossy
BRDF lobes, and cannot be easily extended to multiple bounces. Laurijssen
et al. [2010] replaces sharp BRDFs on a cluster of camera path vertices by
a smoother distribution, thereby reducing noise in indirect highlights.

Adaptive methods. Path Tracing, Bidirectional Path Tracing, and
Metropolis Light Transport [Veach 1997] use a number of strategies based
on BRDF importance sampling to preferentially find paths with strong con-
tributions to image pixels. These are unbiased approaches that can de-
liver highest quality; however, they are wasteful in the sense that expen-
sively constructed paths are usually not reused for many pixels. Kollig and
Keller [2004] compensate for the clamped illumination in instant radiosity
approaches by a recursive path tracing approach. However, in glossy scenes
the compensation can be as slow as pure path tracing. Our local light ap-
proach is very similar in how it computes the compensation for clamping,
but it is capable of doing so in time comparable to the clamped many-light
rendering.

Segovia et al. [2006] introduced a many-light method that traces VPLs
from the camera; this is related to our approach, but their VPLs are used
globally and only applied to diffuse scenes. Path reuse [Bekaert et al. 2002]
uses a similar concept to our local lights in a path-tracing context, but full
visibility is checked for the connections used for path reuse, which limits the
possible speed-up. In contrast, our technique can afford to approximate the
visibility for local lights, since it is computing only the compensation to a
global pass that already handles most shadowing effects.

Photon Mapping with final gathering [Jensen 2001] can utilize adap-
tive BRDF importance sampling from the camera, but the photon distribu-
tion itself is not adaptive, so large numbers of photons and nearest neighbors
are required in glossy scenes. Progressive Photon Mapping [Hachisuka et al.
2008] variants addresses memory requirements of photon mapping by multi-
pass processing, but does not fundamentally improve convergence. Please
see Chapter 4 for more details on these methods.

Other related work. Our visibility clustering solution is similar
to [Dong et al. 2009], which uses k-means on light positions and normals,
while we use a data-driven approach based on a sparse sampling of visibility
and shading. Arikan et al. [2005] decompose irradiance into near and far

CHAPTER 5. GLOBAL AND LOCAL VPLS 111

components, handling them by different approaches. This is related to our
clamping-compensation decomposition, but does not consider glossy inter-
reflection. Cheslack-Postava et al. [2008] introduce a precomputed method
based on visibility approximation. Their data-driven light tree construction
is related to our visibility clustering algorithm.

5.2 Overview

For this analysis, we will use the path integral formulation of global illu-
mination, introduced by Veach [Veach 1997] and described in greater detail
in Section 2.1.4. In this formulation the illumination on a pixel j can be
computed as an integral over all light paths in the scene passing through
the pixel:

Ij =

∫
Ω
fj(x̄)dµ(x̄),

where µ is a measure on the path space Ω =
⋃
k≥1 Ωk, and Ωk is the space of

paths with k segments, x̄ = x0x1 . . . xk, such that x0 is the camera position,
x1 is the surface point directly visible through the pixel, xk is on a light
source and x2, . . . , xk−1 are any light bounce points in the scene. The path
contribution fj(x̄) is a product of BRDF, visibility, and geometry terms on
the vertices of the path, finally multiplied by light emission:

fj(x̄) =

(
k−1∏
i=1

fr(xi−1←xi←xi+1)V (xi↔xi+1)G(xi↔xi+1)

)
Le(xk→xk−1),

where fr(xi−1←xi←xi+1) is a BSDF function, V (xi↔xi+1) is the visibility
term, and G(xi↔xi+1) is the geometry term, and Le(xk→xk−1) is the emis-
sion of the path’s endpoint.

We will assume the scene is lit by a set of direct point light sources
Ld; area lights or environment maps can be handled by discretization to a
large number of point lights. Under this assumption, paths of length 1 and 2
(emission and direct illumination) can be easily handled by summation over
point lights, so the problem is reduced to computing the indirect component
over paths of length 3 or more. Let Ωind =

⋃
k≥3 Ωk. The indirect component

Iindj can be computed by Monte Carlo integration, sampling N random paths
and summing their contributions:

Iindj =

∫
Ωind

fj(x̄)dµ(x̄) ≈
N∑
i=1

fj(x̄i)

ρ(x̄i)
. (5.1)

Here ρ(x̄) is the path density (the number of paths per unit measure), and
has to be positive for all paths with non-zero contributions. If all samples
are independent and identically distributed with probability density p(x̄),

CHAPTER 5. GLOBAL AND LOCAL VPLS 112

then we get the familiar ρ(x̄) = Np(x̄), though this does not have to be the
case; for example, stratification can be applied.

Many-light methods. Algorithms based on the many-light approx-
imation [Keller 1997] provide a sampling strategy for the above integral, by
tracing sub-paths from direct light sources, treating these sub-paths as vir-
tual point lights (VPLs), and connecting them to the visible surface samples
(i.e. camera sub-paths of the form x0x1). This can conveniently be expressed
as a lighting matrix A of light-sample contributions (i.e., the element Aij

will be the contribution of light j to sample i). In theory, this provides
an unbiased solution to the global illumination problem. When compared
to the more traditional Monte Carlo-based methods, such as introduced in
the previous chapters, the main advantages of the many-light algorithms
are: Low number of samples required for a visually smooth image (i.e., low
rather than high frequency noise), the simplicity of the algorithm, and the
possibility of many efficient implementations on various hardware platforms.
All these reasons lead to the significant popularity of many-light methods
in recent research.

Unfortunately, this sampling strategy is not always ideal, since the
VPL density can be insufficient in corners and within glossy lobes. More
precisely, the problem is that the path contribution fj(x̄) contains the fol-
lowing terms that have not been importance-sampled [Hašan et al. 2009]:

fr(x0←x1←x2) G(x1↔x2) fr(x1←x2←x3) (5.2)

If any of these terms is large (which often happens in corners and within
glossy lobes), then a naive application of the algorithm can cause disturbing
artifacts. This is usually handled by clamping the terms in (Eq. 5.2) to
a user-specified constant c, and also by replacing the second BRDF term
by a diffuse approximation (which we do not do). The clamping has an
additional benefit of lowering the rank of A, which improves the convergence
of methods like row-column sampling and lightcuts, but the major drawback
is that much glossy interreflection is lost. Virtual spherical lights [Hašan
et al. 2009] use blurring rather than clamping to lower the rank of A, which
preserves illumination energy, but loses the clarity of glossy reflections.

Compensation. Compensating for the clamped illumination was
proposed by Kollig and Keller [2004], but their solution is most efficient for
diffuse scenes; in the presence of glossy BRDFs it is only marginally more
efficient than pure path tracing. Instead, we notice that the low-rank, dense,
global portion of the transport is handled well by the primary many-light
technique, while the missing illumination tends to be sparse or localized in
position-direction space. We propose to use a second many-light technique
based on local lights to compensate. Clamping only the geometry term is
not sufficient in our case, as highly specular surface interactions will have
objectionable artifacts over longer distances than diffuse surfaces. Therefore,

CHAPTER 5. GLOBAL AND LOCAL VPLS 113

def render(scene, opts):
img = zero img(opts.img size)
dfb = create deep framebuffer(scene, opts.img size)
global lights = scene.direct lights() + trace indirect lights(scene)
render global component(scene, opts, dfb, global lights, img)
render local component(scene, opts, dfb, global lights, img)
return img

def render global component(scene, opts, dfb, global lights, img):
create reduced shading and visibility matrices

S = zeros(opts.num rows, len(global lights))
V = zeros(opts.num rows, len(global lights))
row pixels = choose random pixels(dfb, opts.num rows)

foreach pixel in row pixels:
shading, visibility = render row on gpu(pixel, global lights)
S(pixel.index, :) = shading
V(pixel.index, :) = visibility

visibility clustering

clusters = [initial cluster(global lights, S, V)]

while len(clusters) <opts.num clusters:
c = extract highest cost cluster(clusters)
c1, c2 = split(c) # see Section 5.3

clusters += [c1, c2]

render clusters

foreach c in clusters:
vis mask = render visibility on gpu(dfb, c.rep)
foreach light in c.items:

shading = render shading on gpu(dfb, light, opts.clamp)
img += vis mask * shading

def render local component(scene, opts, dfb, global lights, img):
foreach pixel in dfb.pixels:

for i in range(0, opts.num local lights per pixel):
create local lights by BRDF sampling

direction = pixel.sample brdf()
light = trace(pixel.position, direction)
if light == None: continue

connect to global light to get intensity

and ωi of the local light

intensity, incoming = connect(light, global lights)

local light rejection

clamped term = fr(camera <- pixel <- light) * G(pixel, light) *
fr(pixel <- light <- incoming)

if clamped term <opts.clamp / 2 : continue

choose a tile that contains this pixel

tile = choose random offset tile(pixel)

find the density of this lights, accounts for rejection

rho = 0
foreach p in tile.pixels: rho += eval area pdf on gpu(p, light)

light.incoming = incoming
light.intensity = intensity / rho
foreach p in tile.pixels: img[p] += shade w2 on gpu(p, light)

def connect(local light, global lights):
for simplicity we show a single powe-sampled connection: other schemes

are possible (we use Kollig-Keller compensation)

global light, prob = sample power(global lights)
intensity = shade(local light, global light) / prob
return intensity, normalize(global light.pos - local light.pos)

Algorithm GLL: Global and Local VPLs:Pseudo-code of our algorithm.

CHAPTER 5. GLOBAL AND LOCAL VPLS 114

it is necessary to clamp on the product of the geometry term and the BRDFs.
We define the clamping weights w1 and w2:

w1(x̄) = min

(
1,

c

fr(x0←x1←x2) G(x1↔x2) fr(x1←x2←x3)

)
and w2(x̄) = 1− w1(x̄).

To solve the final indirect illumination we can therefore split the inte-
gral into the clamped part, I1

j , and the compensation part, I2
j :

I1
j =

∫
Ωind

w1(x̄)fj(x̄)dµ(x̄) I2
j =

∫
Ωind

w2(x̄)fj(x̄)dµ(x̄) (5.3)

We can compute I1
j by converting it to a dense, low-rank global light matrix

Ag and applying any suitable many-light algorithm. For our implementa-
tion, we use the method of visibility clustering (Section 5.3). To handle
the compensation I2

j , Section 5.4 introduces novel local lights to convert the
problem into a sparse, high-rank local matrix Al. Figure 5.2 illustrates our
system and Algorithm GLL gives a pseudo-code.

5.3 Visibility Clustering for Global Lights

In this section we introduce a data-driven visibility clustering algorithm that
improves upon the matrix row-column sampling technique of Hašan et al.
[2007], especially in cases where many column samples (and shadow map
computations) are desired. Shadow map computations tend to be more
expensive than shading, but shading is what needs to be sampled more
densely for highly glossy materials. Therefore, we propose to partition the
global lights into c clusters, render a single representative shadow map to
approximate the visibility in each cluster, and combine that with the shading
from all lights in the cluster.

Similar to [Hašan et al. 2007], we first sample a small subset of the rows
of Ag, resulting in the reduced matrix R. We then optimize the clustering
on R and use the clustering for the full columns of Ag. Due to the low-rank
nature of Ag, this produces good results.

Clustering objective. Each element of R expresses the contribu-
tion of a global light to a selected pixel and each such contribution is the
product of visibility and shading. Therefore, we can decouple the matrix
into the visibility and shading components, R = V � S, where � denotes
element-wise matrix multiplication. We will denote the columns of V and
S as vi and si. The key step in our algorithm is finding a clustering of the
columns of R together with associated representatives from V, such that the
error of approximating the visibility within each cluster by the representative
visibility is minimized.

C
H
A
P
T
E
R

5
.

G
L
O
B
A
L
A
N
D

L
O
C
A
L
V
P
L
S

115

(a) global light tracing

(e) local light tracing
(f) local light intensity

computation

(b) dense matrix of global
lights: row sampling

(g) block-diagonal
matrix of local lights

(c) visibility clustering
(d) global solution

(clamped)

(h) local solution
(compensation)

shading

visibility

(i) �nal solution

Figure 5.2: Conceptual overview of our algorithm. Standard (global) virtual point lights are created by particle tracing (a) and a dense,
clamped lighting matrix is assembled and row-sampled as in Hašan et al. [2007] (b). The reduced row matrix is separated into shading and
visibility matrices; a clustering is found, with a binary visibility representative for every cluster (c). The shading is accumulated using the visibility
representatives (d). Local lights are traced from image tiles (e) (here shown for one tile), and their intensities are computed by connection to
global lights and probability density summation (f). This defines a sparse matrix of local light contributions (g) and is used to compute the
clamping compensation (h). Adding (d) and (h) produces the final result (i).

CHAPTER 5. GLOBAL AND LOCAL VPLS 116

Assume that a clustering C = C1, . . . , Cc is given, together with rep-
resentative indices r1, . . . , rc in each cluster. We define the cost of a clus-
ter as the error (in L2-norm) incurred with the optimal representative. A
light’s distance to the representative can be defined as the error incurred
by using the representative’s visibility rather than the lights’s own, i.e.,
di,rp = ‖si�(vi−vrp)‖; note that such a distance measure is non-symmetric.
To find the optimal clustering, we want to minimize the sum of squared dis-
tances from each light to its representative. More formally, the cost of a
clustering can be expressed as:

cost(C) =
c∑

p=1

cost(Cp) =
c∑

p=1

∑
i∈Cp

‖si � (vi − vrp)‖2. (5.4)

This clustering problem is related to the k-means and k-median problems,
but with a different, non-symmetric distance measure.

Clustering algorithm. We use a hierarchical partitioning ap-
proach: starting with all lights in a single cluster, we keep splitting the
cluster with the currently largest cost until the desired number of clusters is
reached. To split a cluster into two, we choose the column that is farthest
from the current representative as a second representative and iterate the
following two steps, each of which is guaranteed not to increase the objective
function:
1. Create two partitions by assigning each column to the closer of the two
representatives based on the non-symmetric distance di,rp
2. Pick an optimal representative for the two partitions. (A representative
of a cluster is optimal if it minimizes the cluster cost.)

We could iterate until convergence, but we found that 1-2 iterations
are sufficient to find a good cluster split. To pick the optimal representative
efficiently, we leverage the fact that visibility is a binary function. For
each row of the cluster submatrix, we compute two numbers: The errors
incurred by approximating the visibility in the row by 0 and by 1; this can
be done in a linear pass. In a second linear pass, we evaluate the error of
any representative by picking and summing the appropriate error values for
each row.

Due to the representative refinement step, the hierarchical partitioning
strategy is slowest in the beginning, when spliting very large clusters. We
improve performance by using the position of the global lights for the first 16
splits, roughly doubling the clustering speed with no negative impact. We
also parallelize the hierarchical splitting algorithm, by keeping a thread-safe
priority queue of the current clusters and using multiple worker threads for
splitting.

Final rendering. Once the clustering has been found, we render
the global lights by iterating over the visibility clusters. For each cluster,
we compute the shadow map for the cluster’s representative, query it to

CHAPTER 5. GLOBAL AND LOCAL VPLS 117

produce a shadow mask that specifies a visibility value for each pixel, and
accumulate the shading for each visible pixel from all lights in the cluster
(unlike row-column sampling, which uses both visibility and shading only
from the representative).

5.4 Local Lights

Recall that we want to find a technique to compute the component I2
j (de-

fined in Equation 5.3) missing (clamped away) from the global solution.
Intuitively, as the global solution leads to a dense, low-rank matrix, one
would expect that the compensation problem can be formulated as a high-
rank, sparse matrix and that an algorithm should exist that takes advantage
of this particular structure. Note that this algorithm has to be a complete
global illumination solution (we could set w1 = 0 and w2 = 1, leaving all
work to the compensation), but ideally we would like it to be well adapted
to handling exactly the localized illumination effects that remain in I2

j . We
have found such a technique, based on the concept of local lights.

Derivation of local lights. Consider a simple gathering algorithm
that would compute the compensation I2

j by tracing r rays using BRDF
importance sampling at point x1, connecting each hitpoint x2 to a single
global light g by importance sampling according to power, and scaling the
contribution by the clamping compensation weight w2(x̄). The global lights
already handle multiple indirect bounces; therefore, so does this gathering
algorithm. This is a variation of the Kollig-Keller approach [2004] and also
bears similarity to our Light Vertex Cache BPT, introduced in Section 4.4.3.

Note that the ray hitpoints x2 could be thought of as “local lights”
that contribute their illumination to only a single pixel: The one they were
sampled from. This thought experiment suggests the wastefulness of the
technique; would it not be better to contribute the illumination to neigh-
boring pixels as well, thus amortizing the effort in creating the local light?

We consider a small image tile of size t × t, where t = 32 is a typical
value, and we let all the local lights that originate from this tile contribute
to all pixels in the tile. The key challenge is to define the contribution of
such a local light at position x2 to any tile pixel x1. Using Equation (5.1),
all we need is to define the contribution and density of the imaginary path
x̄ = x0x1x2xg, where xg is the position of the global light g. We find that
this contribution will be:

w2(x̄)fr(x0←x1←x2)G(x1↔x2)fr(x1←x2←xg)Eg(x2)

ρ(x2)pg
,

where Eg(x2) is the irradiance due to the global light g at point x2, pg is
the discrete probability of choosing g out of all global lights and ρ(x2) is
the density of local lights generated from the current tile, computed as the

CHAPTER 5. GLOBAL AND LOCAL VPLS 118

aggregate density of generating a local light at x2 by BRDF sampling from
all pixels in the tile:

ρ(x2) =
∑

x1∈tile

ρ(x0→x1→x2).

The density ρ(x0→x1→x2) depends on the exact distribution used for BRDF
importance sampling (which may or may not precisely match the BRDF)
and on the number of samples taken.

Visibility. We ignore visibility computation in the above equations,
both in the geometry term G(x1↔x2) and in the density term ρ(x0→x1→x2).
Note that x2 is necessarily visible from the point x1 where the local light
originated, and other points x′1 in the tile will usually also be visible from
x2, especially over short distances (and over long distances we often have
w2 = 0 anyway). This assumption causes very few problems and allows for
an efficient computation of local lights on the GPU. Note that a local light
can sometimes contribute to a part of the tile that is quite distant from the
pixel where it originated, though in practice the compensation weight w2

will often be very low or zero in such situations, and we have not observed
problems caused by this.

Rejection. Local lights often end up in areas that have not been
clamped (where w1 = 1), and will have w2 = 0 and therefore zero contri-
bution. However, checking if w2 is indeed zero over the whole tile would
be expensive; we instead use the following heuristic: If w2 would have been
zero for the generating pixel even if the clamping constant c was halved, the
light is rejected. Note that this does not introduce bias, but care must be
taken to correctly define ρ(x0→x1→x2); it is the density of lights created at
x2 by sampling from x1 that would not have been rejected.

Reusing samples traced from the camera has been explored in [Segovia
et al. 2006] and [Bekaert et al. 2002]; our local lights are distinguished by
several features, including their use only for the compensation I2

j , the pos-
sibility of rejection in areas where compensation is not necessary, and their
locality and visibility approximation that allow for efficient GPU implemen-
tation.

5.5 Implementation Details

This section lists some implementation improvements to the performance
and image quality of the algorithm.

Local light clamping. In scenes with glossy surfaces very close to
each other, the occasional “spikes” (singularities) can still appear even with
local lights. To prevent the resulting artifacts, a small amount of clamping
can be applied to the contribution of a local light to pixels and/or the
connection to the global light. Connection clamping can be compensated

CHAPTER 5. GLOBAL AND LOCAL VPLS 119

MRCS our visiblity clustering

Figure 5.3: Global light methods. Comparison of matrix-row column sampling (left:
202 seconds) and visibility clustering (right: 213 seconds). Both methods use 200,000
VPLs and compute only indirect illumination. MRCS selects 10k lights for shadow map
evaluation and shading, while visibility clustering uses only 5k shadow maps and shades
from all VPLs, yielding less splotchy images.

by the Kollig-Keller technique [2004], applied to the local-global connection.
We use this technique in the Tableau, Disney, and Kitchen 2 scenes, using
3 – 10 compensation rays per local light. This removes the bias introduced
by connection clamping at the expense of additional ray tracing.

Jittered tiling. Subdividing the image into fixed tiles has the
disadvantage that tile boundaries can be perceptible. We overcome this
problem by randomly choosing, for each local light, a corresponding tile that
contains the pixel where the local light originated. Furthermore, we can also
weight the contributions to tile pixels by any kernel that preserves energy;
we use a linear ramp on the tile edges to render them even less perceptible.
These techniques improve the rendering quality while not introducing bias
into the result. The only bias in the local light method comes from ignoring
visibility and their optional clamping.

Antialiasing. For the local lights, as well as for larger visibility
clusters, we employ interleaved sampling antialiasing, where each light con-
tributes to only a single subpixel within a pixel.

5.6 Results

In this section we first provide insight into our methods for each transport
matrix component individually. Next, we show how the strengths of the two
methods complement each other, resulting in fast generation of high quality
images. We then show results for four scenes, each with its glossy-glossy
interaction challenges, and compare them with path tracing and the virtual

CHAPTER 5. GLOBAL AND LOCAL VPLS 120

spherical light (VSL) technique from [Hašan et al. 2009]. The image sizes
are 800× 600 and use 3× 3 anti-aliasing with interleaved sampling. All our
measurements are done on a system with two Intel Xeon X5560 processors
(with 4 cores each), 8 GB RAM, and an NVIDIA GTX 480 graphics card.
Path traced images were generated on a cluster of 16 nodes, where each
node was a dual Xeon 2.83 GHz (4-core) machine. Reported times for path
traced images are the time using only one node of the cluster (computed by
adding the times on all cluster nodes together).

Figure 5.3 shows a detail of our Tableau scene (for the full image see
Figure 5.7) rendered with matrix row column sampling (MRCS) and our
method, both rendered in approximately the same time. It clearly demon-
strates the extra image quality our method is able to achieve in scenes with
curved glossy surfaces because we are able to use more shading samples, even
though we use fewer shadow maps for visibility. However, we note that vis-
ibility clustering and MRCS can be used together, if the difference between
the ranks of the visibility and shading matrices is low. In such a setup the
visibility clusters are used as an initial clustering for MRCS, which can then
further refine them into the desired number of shading clusters. However,
we do not use this approach, because it brings almost negligible speedup
when the method is paired with local light rendering, since local light gen-
eration and rendering accounts for a large (approximately 50%) fraction of
total rendering time.

The sparse high-rank component of the transport matrix is handled
by the newly proposed local light algorithm. While this algorithm excels in
capturing local glossy interactions, Figure 5.4 shows the limitations of the
method as a stand-alone solution. Due to the local visibility approximation,
all shadows smaller than the tile size are effectively smeared away (compare
with Figure 5.5).

While global methods lack local glossy effects and local lights lack
fine shadows, combining both we achieve the desired high quality images.

Kitchen 1 Tableau Disney Kitchen 2

global lights 300k 200k 200k 100k
vis. clusters 10k 5k 15k 10k
local lights 17.1M 55.6M 13.5M 25.1M

Row render 18.6 s 22.6 s 11.3 s 15.4 s
Vis. clustering 19.0 s 13.0 s 28.6 s 12.5 s
Global render 249.6 s 145.6 s 90.8 s 170.5 s
Local render 40.6 s 162.1 s 33.0 s 57.5 s
Total 327.8 s 343.3 s 163.7 s 255.9 s

Table 5.1: Timings and statistics. Number of lights and visibility clusters (top) and
breakdown of the time spent on different parts of the algorithm (bottom).

CHAPTER 5. GLOBAL AND LOCAL VPLS 121

Figure 5.4: Local lights only. We observe that when only local lights are used, fine
shadows may disappear (e.g., there are no shadows behind the bottles).

Figure 5.5 shows a typical glossy scene (Kitchen 1) separated into its global
and local components. Global lights provide the basic illumination and
shadows, but the far wall appears to be diffuse. Local lights correct this
incorrect perception of material properties by providing glossy reflections
of the paper towels and faucet, and of course all the other missing local
interactions. These two components are combined for the final result image.
Note that all three images show indirect illumination only.

Figure 5.6 shows the Kitchen 1 scene (253,433 triangles) rendered
using our method, path tracing, and VSLs for comparison. We also show
insets of areas where our technique is able to accurately compute reflections
that contribute to material perception (where VSLs miss those features).
In fact, VSLs give results similar to the solution using only global lights in
Figure 5.5. The VSL approach misses reflections of the towel rack, faucet,
and the yellow plates on the back wall, the bar stool rods on the base of
the stools, and other reflections on the counter. The two color-coded error
images show that the overall light distribution of our method matches the
reference more closely. However, we can notice that the illumination at the
right side of the glossy wall is not perfectly even. This is result of slight
noise in the connection strategy for local lights.

CHAPTER 5. GLOBAL AND LOCAL VPLS 122

global lights local lights

final image

Figure 5.5: Component separation. Left: the long distance effects captured by global
lights: Notice the shadows behind the bottles on the counter. Center: We show the
local glossy-glossy interaction, mainly between the back wall and the towel rack and
faucet just in front of it. Right: combination of both components, resulting in an image
with both local and global effects. (The images show indirect illumination only.)

C
H
A
P
T
E
R

5
.

G
L
O
B
A
L
A
N
D

L
O
C
A
L
V
P
L
S

123

our approach path tracing VSLs

 VSLsour

our VSLs

our VSLs

Figure 5.6: Kitchen 1. Top-right: Our approach (5 min 28 sec). Top-middle: Reference path traced solution (still noisy, 106 hours). Top-right:
Virtual Spherical Lights (VSLs), after 6 min 25 sec. Insets in the bottom row show some of the glossy interactions captured by our method that
are missing from the VSL rendering. Bottom-right: Color-coded relative error images of our method and VSL against the reference solution.

CHAPTER 5. GLOBAL AND LOCAL VPLS 124

Our approach Path tracing VSLs

5min 43 sec (5kmaps, 200k glob. lights, 55.6M loc. lights) 4 hr 4min (8 cores) 6min 16 sec (1600 rows, 15k columns)

2min 44 sec (15kmaps, 200 glob. lights, 13.5M loc. lights) 2 hr 7min (8 cores) 1min 47 sec (1024 rows, 15k columns)

4min 16 sec (10kmaps, 100k glob. lights, 25.1M loc. lights) 55 hr 43min (8 cores) 4min 24 sec (1024 rows, 10k columns)

Figure 5.7: Results: Tableau, Disney, Kitchen 2 from Hašan et al. [2009] and com-
parisons with path tracing and VSLs. Note that the Tableau scene has higher gloss
than in the original paper. Corresponding times, shadow map numbers, and number
of global and local lights are also reported. Insets show where our technique captures
lighting features that match the path tracer, but are missing in the VSL solutions.

CHAPTER 5. GLOBAL AND LOCAL VPLS 125

Figure 5.7 shows the Tableau, Disney, Kitchen 2 scenes
from [Hašan et al. 2009]. Note that we have increased the gloss of the
floor in Tableau (compared to the original paper) to demonstrate our
ability to render high gloss accurately. We also provide comparison with
Progressive Photon Mapping [Hachisuka et al. 2008] and Stochastic Pro-
gressive Photon Mapping [Hachisuka and Jensen 2009] as supplemental
material in Appendix B.

In Tableau, our technique is able to capture both the long-range and
local reflections when compared to VSLs. In fact, the VSL reflections are
quite blurry, and can cause incorrect material perception [Ramanarayanan
et al. 2007, Křivánek et al. 2010]. In comparison with the path tracer, our
solution in this difficult scene is quite accurate. In Disney our algorithm
is able to capture the two blue caustics (see insets) and the shape of high-
lights accurately when compared with the VSL approach. In Kitchen 2
our technique accurately computes reflections of the cupboards in the back.
However, while it captures reflection of the pot in the front, this reflection
is darker. Similar darkening is also perceivable in Disney on the left wall.
Both are caused by application of slight clamping on local light contribution.

Table 5.1 gives a detailed breakdown of individual stages of our algo-
rithm. To fully utilize the computing power, we run the local light generation
on the CPU concurrently with the global and local light rendering on the
GPU. The local rendering time therefore also includes the time required to
finish local light generation.

Antialiasing. Our interleaved antialiasing scheme enables the effi-
cient computation of antialiased images with less than a 2× cost in perfor-
mance. For example, for Kitchen 1, the regular image takes approximately
130 seconds, while the 3×3 anti-aliased image takes approximately 330 sec-
onds to compute. All results presented are for antialiased images.

5.7 Conclusion

In this chapter we present a component-based rendering algorithm for ren-
dering of highly glossy materials with global illumination. Our approach
is to split the light transport into two parts: A global, low-rank compo-
nent and a sparse, localized, high-rank component. We approximate the
low-rank component using a novel visibility clustering algorithm and the
high-rank component by using local virtual lights to compensate for lost
energy due to clamping. Both CPU and GPU are used in solving both lo-
cal and global component, coupling novel approximations of light transport
components with highly efficient utilization of all hardware resources at our
disposal. Our solution is suitable for previewing in industrial design appli-
cations where materials like metals and plastics are common and should be
reproduced with high fidelity.

CHAPTER 5. GLOBAL AND LOCAL VPLS 126

While this approach expands the range of materials that can be ren-
dered accurately, it has a few limitations. Local VPLs still need clamping
when there are highly glossy or close-range interactions. Fine shadows can
become dull due to the visibility approximation in the local lights compo-
nent. The number of local VPLs required is highly scene dependent. A
progressive algorithm could be designed for the local component. Future
work could explore automated selection of parameters and clamping.

CHAPTER 5. GLOBAL AND LOCAL VPLS 127

CHAPTER 5. GLOBAL AND LOCAL VPLS 128

Chapter 6

Conclusion

It is the author’s strong belief that the growing demand for physically-based
graphics that has emerged in the past decades will not cease in the foresee-
able future. This can be witnessed in the movie industry where, despite the
immense advances in rendering algorithms and hardware capabilities, the
average frame render times have stayed the same, if not increased. Given
that the single-threaded performance of the modern CPUs became more
or less stagnant, it is imperative that graphics research examines not only
new algorithms, but also keeps evaluating a wide variety of more special-
ized hardware options, be it full dedicated hardware accelerators or just
instruction set augmentations.

In this thesis we focused on these hardware options on three levels of
granularity, evaluating a dedicated hardware accelerator of ray casting as
the basic component of all physically based algorithms, investigating GPU
mappings of many such algorithms onto state-of-the-art massively paral-
lel architectures, and proposing a novel algorithm for handling glossy in-
terreflections that utilizes both CPU and GPU to achieve full potential of
available hardware. In this final chapter, we provide a summary of the major
contributions, discuss possible future works, and present closing thoughts.

Ray Traversal Engine

Despite ray casting being the basic element of almost all physically-based
rendering algorithms used in practice, its hardware acceleration is only now
starting to appear in consumer products, for example, in Imagination Tech-
nologies’ PowerVR processors. This puts these algorithms at a distinct
disadvantage when compared to rasterization, which can rely on extremely
efficient rasterization units tightly coupled with general purpose shading
processors of the modern GPU.

To address the issue, Chapter 3 introduced a hardware implementation
of ray traversal engine (RTE) that could be used in the place of traditional

129

CHAPTER 6. CONCLUSION 130

rasterization units. Using a 90 nm process we could synthesize the RTE
to fit into 15 mm2 area (the area of Cell’s SPU unit), run at more than
2 GHz, delivering 100 million rays per second while keeping the required
bandwidth below 5 GB s−1. We believe that using a more advanced, smaller,
process would increase the performance even further, without the bandwidth
requirements going above the capabilities of modern memory systems.

To achieve this performance, we evaluated several configurations of
the RTE, different acceleration structures, and different shader models. We
conclude that best performance is achieved when the acceleration structure
uses treelets to sort ray access to the nodes of the structure, paired with
tail recursive shaders that are suited to providing a large number of rays
that can be sorted, and with a large L2 cache to mitigate memory access
incoherence that the ray sorting did not prevent.

Global Illumination on GPU

Having a hardware ray tracing acceleration on a GPU would be of little use,
if we could not also provide efficient algorithms that utilize it. Chapter 4
presents several such light transport algorithms and their mapping onto
GPU. It evaluates both existing and novel approaches of mapping these
algorithms onto two generations of the NVIDIA GPUs and draws conclusions
on the best ways of implementing each of the algorithms.

The described algorithms follow in logical order, each building on the
conclusions of the previous algorithms. The first introduced algorithm is
Path Tracing, as tracing a single camera (or light) path is the basic pre-
requisite of all the other algorithms. This is followed by Bidirectional Path
Tracing, which brings the added complexity of storing the paths instead of
just tracing them and storing the results. Here we introduced our Light
Vertex Cache, where we took inspiration from implementation of Virtual
Point Lights and applied it to the Bidirectional Path Tracing to introduce
the fastest and simplest implementation of the algorithm.

Next we looked at photon lookup acceleration structures, as ap-
proaches built on Photon Mapping require not only storing the light path
vertices (photons), but also efficient range queries into them. With solutions
for all of these algorithms, we could also provide the first GPU implemen-
tation of the recently introduced Vertex Connection and Merging algorithm
that combines Bidirectional Path Tracing and Progressive Photon Mapping
to efficiently render a wider variety of scenes than either of the algorithms
on its own.

The chapter concludes with a comparison of all of the introduced al-
gorithms on a set of scenes to help us determine which algorithms are most
suitable for which scenes. Here we showed that while Bidirectional Path
Tracing and Vertex Connection and Merging are invaluable when render-

CHAPTER 6. CONCLUSION 131

ing complex scenes, simple scenes can still be best served by simple Path
Tracing.

Global Local Lights

The previous chapter concluded with an overview of many advanced algo-
rithms over a wide spectrum of scenes. Unfortunately, there are still scenes,
such as those containing glossy interreflections, where even the most ad-
vanced light transport algorithms struggle to provide the exact solution in
a practical timeframe.

The algorithm introduced in Chapter 5 focuses on a different approach
to solving this problem, divides the light transport in the scene into a lo-
cal and global component and uses different approximations for each of the
components to provide high quality results in a reasonable time. Both com-
ponents are solved using Virtual Point Lights (VPLs), but each component
uses different method to generate and render its VPLs.

On the global level, the algorithm captures longer distance light trans-
port effects. Solving this components requires several hundred thousand the
required number of VPLs and while this is orders of magnitude lower than
the number used for the local component, it is still impractical to use all
of them. Based on the observation that in the glossy setup the shading
component of the illumination changes significantly faster than the visibil-
ity component, the algorithm utilizes visibility clustering to allow VPLs to
share their visibility using shadow maps. This allowed us to evaluate BRDFs
for all VPLs, but visibility for only several thousand of them, resulting in
significant speed up over the naive solution at virtually no cost to the image
quality.

For the local component, the algorithm generates the VPLs from cam-
era to obtain VPLs relevant to the final image. These VPLs are responsible
only for the localized effects not handled by the global component and, as
such, their contribution can be limited to only a small screen tile around the
pixel they were generated for. This, along with assuming that the visibility
does not change inside this tile, allows us to process tens of millions of such
VPLs, giving the scene the VPL density required to obtain high quality
result.

To achieve the best possible performance, the algorithm leverages both
the CPU (VPL tracing, visibility clustering) and the GPU (shadow maps,
local VPL contributions) of the machine using each for the task it is best
suited for. This allowed us to achieve greater performance than would be
possible should we focus solely on either of the two main processing units
available to us.

CHAPTER 6. CONCLUSION 132

Final Thoughts

In this thesis we presented the idea that while development of new render-
ing algorithms is important, we should always keep in mind their possible
implementation on both the current and future hardware. While previously
there was a strong incentive to move from specialized hardware to general
purpose processing, this has been slowly reversed in the recent years and
many modern processors now include dedicated hardware units for video
decoding, encryption, and other specialized tasks. The author believes that
ray tracing is another area that would greatly benefit from such a unit. We
can already see basic versions of such units emerging in the mobile market,
where the specialized hardware brings not only performance but also high
energy efficiency.

The main open question is whether the unit should be only for static
scenes or also for real-time rendering. This, in turn, opens a questions
of the best acceleration structure and of hardware accelerated building of
such acceleration structures. The author expects that, despite showing the
advantages of hardware ray tracing engine, full adoption is not feasible until
these questions are sufficiently answered. He would encourage researchers
to investigate in this direction.

However, it is not just a mobile market that is influenced by power
consumption considerations. Virtually all modern computers have to con-
sider power consumption and, more importantly, power dissipation in their
basic design, as power dissipation is the chief reason why the CPU frequency
stopped at around 4 GHz and has not moved for a decade. With the instruc-
tion level parallelism almost exhausted, we can no longer depend on single
threads going faster but, instead, have to utilize the fact that the proces-
sors are going wider. More cores in a package, more threads on a core, two,
four, sixteen, or thirty-two identical arithmetic operations driven by a single
instruction. The most powerful current processors even cut down on single
threaded performance, by removing features like out-of-order instruction is-
sue, and tradeoff programmer’s convenience for higher peak performance.

It is therefore essential to keep the hardware architecture in mind when
evaluating rendering algorithms, old and new. Even the best single threaded
algorithm will eventually become worse than simpler algorithms that can
utilize the full power of this hardware evolution. The author believes that
rendering on modern hardware architectures is a problem that can never be
really solved, as long as new hardware keeps being developed. The author
cannot presume in what direction will this lead next, but he strongly believes
that when new types of computers, quantum or otherwise, become a common
computing platform, rendering algorithms should be, and will be, among the
first to explore their capabilities.

CHAPTER 6. CONCLUSION 133

CHAPTER 6. CONCLUSION 134

Appendix A

Supplemental Material for
Light Transport Simulation
on the GPU

A.1 Path Tracing

Figure A.1 shows the performance, in rays per second, of our Path Tracing
algorithms for each tested scene and both GPUs. The results for GTX 580
show that StreamingPTmk outperforms all algorithms irrespective of the
scene. The only scene with behavior not matching the average is Coron-
aWatch. There our NaivePTsk and RegenerationPTsk clearly outperform
RegenerationPTmk at all measured paths per frame, and outperform even
StreamingPTmk up until 106 paths per frame. This is due to the fact that
many paths have length of only one segment (directly hit the area light, or
miss all geometry) or two (reflect off the bezel), which greatly increases co-
herence of the traced rays. On the GTX 680 we, again, see results matching
our previous assessments, with the only outlier being, again, the Coron-
aWatch scene, for the very same reasons as on the GTX 580.

A.2 Bidirectional Path Tracing

Table A.1 shows performance of our Bidirectional Path Tracing (BPT) al-
gorithms not only at 106 samples per frame, as in the paper, but also adds
107 samples per frame. As in Path Tracing, we can see the increase in
performance with more paths per frame. The single-kernel algorithms, i.e.,
NaiveBPT and LVC-BPTsk, exhibit very little performance gain when given
more samples per frame, while the multi-kernel ones gain a boost of up
to 39%. Overall we can see that on GTX 580, at 107 samples per frame,
our LVC-BPTmk has the highest performance on all tested scenes, while

135

APPENDIX A. LIGHT TRANSPORT ON THE GPU 136

on GTX 680, LVC-BPTsk and LVC-BPTmk have a roughly similar perfor-
mance.

A.3 Algorithm Comparison

Figure A.2 shows the RMSE-vs-time convergence on both tested GPUs.
On GTX 580 (top) we used different algorithms for Path Tracing
(StreamingPTmk instead of our RegenerationPTsk) and Bidirectional
Path Tracing (LVC-BPTmk instead of LVC-BPTsk), but the convergence
curves still closely match GTX 680 curves reported in the paper. Figures
A.3-A.8 show the final images (after 15 minutes) rendered by each of the
methods on both GPUs.

APPENDIX A. LIGHT TRANSPORT ON THE GPU 137

CoronaRoom CoronaWatch LivingRoom

S
ce
n
es

G
T
X

58
0

0.33 1 10 100
106 paths per frame

25
30
35
40
45
50
55
60

10
6

 ra
ys

 p
er

 se
co

nd

0.6

0.8

1.0

1.2

Sp
ee

d
up

 o
ve

r
St

re
am

in
gP

Tm
k

0.33 1 10 100
106 paths per frame

30
40
50
60
70
80
90

10
6

 ra
ys

 p
er

 se
co

nd

0.4
0.6
0.8
1.0
1.2
1.4
1.5

Sp
ee

d
up

 o
ve

r
St

re
am

in
gP

Tm
k

0.33 1 10 100
106 paths per frame

30
35
40
45
50
55
60
65

10
6

 ra
ys

 p
er

 se
co

nd

0.6

0.8

1.0

1.2

Sp
ee

d
up

 o
ve

r
St

re
am

in
gP

Tm
k

G
T
X

68
0

0.33 1 10 100
106 paths per frame

20
25
30
35
40
45
50
55

10
6

 ra
ys

 p
er

 se
co

nd

0.4

0.6

0.8

1.0
1.2

Sp
ee

d
up

 o
ve

r
St

re
am

in
gP

Tm
k

0.33 1 10 100
106 paths per frame

30
35
40
45
50
55
60

10
6

 ra
ys

 p
er

 se
co

nd

0.6

0.8

1.0

1.2

Sp
ee

d
up

 o
ve

r
St

re
am

in
gP

Tm
k

0.33 1 10 100
106 paths per frame

25
30
35
40
45
50
55
60

10
6

 ra
ys

 p
er

 se
co

nd

0.4

0.6

0.8

1.0

Sp
ee

d
up

 o
ve

r
St

re
am

in
gP

Tm
k

BiolitFull CrytekSponza GrandCentral

S
ce
n
es

G
T
X

58
0

0.33 1 10 100
106 paths per frame

30

40

50

60

70

10
6

 ra
ys

 p
er

 se
co

nd

0.4

0.6

0.8

1.0

Sp
ee

d
up

 o
ve

r
St

re
am

in
gP

Tm
k

0.33 1 10 100
106 paths per frame

40
50
60
70
80
90

100

10
6

 ra
ys

 p
er

 se
co

nd

0.4

0.6

0.8

1.0

1.2

Sp
ee

d
up

 o
ve

r
St

re
am

in
gP

Tm
k

0.33 1 10 100
106 paths per frame

25
30
35
40
45
50

10
6

 ra
ys

 p
er

 se
co

nd

0.6

0.8

1.0
1.1

Sp
ee

d
up

 o
ve

r
St

re
am

in
gP

Tm
k

G
T
X

68
0

0.33 1 10 100
106 paths per frame

30

40

50

60

70

10
6

 ra
ys

 p
er

 se
co

nd

0.4

0.6

0.8

1.0
1.1

Sp
ee

d
up

 o
ve

r
St

re
am

in
gP

Tm
k

0.33 1 10 100
106 paths per frame

30
40
50
60
70
80
90

10
6

 ra
ys

 p
er

 se
co

nd

0.4

0.6

0.8

1.0

1.2

Sp
ee

d
up

 o
ve

r
St

re
am

in
gP

Tm
k

0.33 1 10 100
106 paths per frame

20
25
30
35
40
45
50

10
6

 ra
ys

 p
er

 se
co

nd

0.4

0.6

0.8

1.0
1.1

Sp
ee

d
up

 o
ve

r
St

re
am

in
gP

Tm
k

NaivePTmk
NaivePTsk (ours)

RegenerationPTmk
RegenerationPTsk (ours)

StreamingPTmk

Figure A.1: Path tracing performance. Performance in rays per second with increasing
number of paths per frame, given for each scene and both GPUs. The right axis shows
performance relative to StreamingPTmk at 106 paths per frame.

APPENDIX A. LIGHT TRANSPORT ON THE GPU 138

106 samples per pass on GeForce GTX 580
StreamingBPT NaiveBPT MultiBPT LVC-BPTsk LVC-BPTmk

CoronaRoom 1.00× 0.91× 0.81× 1.15× 1.21×
CoronaWatch 1.00× 1.41× 0.93× 1.41× 1.15×
BiolitFull 1.00× 0.52× 0.57× 1.53× 1.81×
CrytekSponza 1.00× 1.07× 0.93× 1.35× 1.29×
GrandCentral 1.00× 0.70× 0.70× 1.29× 1.34×

Average 1.00× 0.85× 0.77× 1.33× 1.33×

107 samples per pass on GeForce GTX 580
StreamingBPT NaiveBPT MultiBPT LVC-BPTsk LVC-BPTmk

CoronaRoom 1.18× 0.92× 1.05× 1.18× 1.55×
CoronaWatch 1.13× 1.15× 1.00× 1.18× 1.42×
BiolitFull 1.02× 0.52× 0.95× 1.53× 2.07×
CrytekSponza 1.07× 1.00× 1.05× 1.29× 1.44×
GrandCentral 1.10× 0.71× 0.96× 1.28× 1.50×

Average 1.17× 0.86× 1.07× 1.36× 1.66×

106 samples per pass on GeForce GTX 680
StreamingBPT NaiveBPT MultiBPT LVC-BPTsk LVC-BPTmk

CoronaRoom 0.86× 0.72× 0.69× 1.24× 1.19×
CoronaWatch 0.74× 1.17× 0.80× 1.32× 1.07×
BiolitFull 0.89× 0.42× 0.58× 1.73× 1.92×
CrytekSponza 0.84× 0.92× 0.92× 1.55× 1.12×
GrandCentral 0.97× 0.55× 0.68× 1.39× 1.49×

Average 0.85× 0.68× 0.71× 1.38× 1.27×

107 samples per pass on GeForce GTX 680
StreamingBPT NaiveBPT MultiBPT LVC-BPTsk LVC-BPTmk

CoronaRoom 0.99× 0.73× 0.87× 1.26× 1.37×
CoronaWatch 0.93× 1.18× 1.01× 1.40× 1.21×
BiolitFull 0.94× 0.42× 0.96× 1.76× 2.13×
CrytekSponza 0.92× 0.92× 1.11× 1.57× 1.22×
GrandCentral 1.03× 0.55× 0.91× 1.41× 1.57×

Average 0.95× 0.68× 0.96× 1.42× 1.41×

Table A.1: Relative BPT speed up: Speed up, in the terms of time to a given RMSE,
of different BPT algorithms, relative to StreamingBPT with 106 samples per pass on
GTX 580.

APPENDIX A. LIGHT TRANSPORT ON THE GPU 139

G
eF

or
ce

G
T

X
58

0

Time [s]
10-1 100 101 102 103

10-2

10-1

(a) CoronaRoom

10-1 100 101 102 103

10-2

10-1

(b) CoronaWatch

10-1 100 101 102 103

10-1

100

(c) LivingRoom

10-1 100 101 102 103

10-2

10-1

100

(d) BiolitFull

10-1 100 101 102 103

10-2

10-1

(e) CrytekSponza

10-1 100 101 102 103

10-2

10-1

100

101

(f) GrandCentral

StreamingPTmk
SPPM

LVC-BPTmk (ours)
PBPM (ours)

PPM
VCMsk (ours)

G
eF

or
ce

G
T

X
68

0

Time [s]
10-1 100 101 102 103

10-2

10-1

(g) CoronaRoom

10-1 100 101 102 103

10-2

10-1

(h) CoronaWatch

10-1 100 101 102 103

10-1

100

(i) LivingRoom

10-1 100 101 102 103

10-2

10-1

100

(j) BiolitFull

10-1 100 101 102 103

10-2

10-1

(k) CrytekSponza

10-1 100 101 102 103

10-2

10-1

100

(l) GrandCentral

RegenerationPTsk (ours)
SPPM

LVC-BPTsk (ours)
PBPM (ours)

PPM
VCMsk (ours)

Figure A.2: The log-log plot of the RMSE-vs-time convergence of the six tested
methods on each of the test scenes. Top graphs are results from GTX 580, the bottom
graphs from GTX 680.

APPENDIX A. LIGHT TRANSPORT ON THE GPU 140

G
eF

or
ce

G
T

X
58

0

(a) StreamingPTmk (b) LVC-BPTmk (c) PPM

(d) SPPM (e) PBPM (f) VCMsk

G
eF

or
ce

G
T

X
6
80

(g) StreamingPTmk (h) LVC-BPTmk (i) PPM

(j) SPPM (k) PBPM (l) VCMsk

Figure A.3: CoronaRoom. All image results of Algorithm Comparison.

APPENDIX A. LIGHT TRANSPORT ON THE GPU 141

G
eF

or
ce

G
T

X
58

0

(a) StreamingPTmk (b) LVC-BPTmk (c) PPM

(d) SPPM (e) PBPM (f) VCMsk

G
eF

or
ce

G
T

X
6
80

(g) StreamingPTmk (h) LVC-BPTmk (i) PPM

(j) SPPM (k) PBPM (l) VCMsk

Figure A.4: CoronaWatch. All image results of Algorithm Comparison.

APPENDIX A. LIGHT TRANSPORT ON THE GPU 142

G
eF

or
ce

G
T

X
58

0

(a) StreamingPTmk (b) LVC-BPTmk (c) PPM

(d) SPPM (e) PBPM (f) VCMsk

G
eF

or
ce

G
T

X
6
80

(g) StreamingPTmk (h) LVC-BPTmk (i) PPM

(j) SPPM (k) PBPM (l) VCMsk

Figure A.5: LivingRoom. All image results of Algorithm Comparison.

APPENDIX A. LIGHT TRANSPORT ON THE GPU 143

G
eF

or
ce

G
T

X
58

0

(a) StreamingPTmk (b) LVC-BPTmk (c) PPM

(d) SPPM (e) PBPM (f) VCMsk

G
eF

or
ce

G
T

X
6
80

(g) StreamingPTmk (h) LVC-BPTmk (i) PPM

(j) SPPM (k) PBPM (l) VCMsk

Figure A.6: BiolitFull. All image results of Algorithm Comparison.

APPENDIX A. LIGHT TRANSPORT ON THE GPU 144

G
eF

or
ce

G
T

X
58

0

(a) StreamingPTmk (b) LVC-BPTmk (c) PPM

(d) SPPM (e) PBPM (f) VCMsk

G
eF

or
ce

G
T

X
6
80

(g) StreamingPTmk (h) LVC-BPTmk (i) PPM

(j) SPPM (k) PBPM (l) VCMsk

Figure A.7: CrytekSponza. All image results of Algorithm Comparison.

APPENDIX A. LIGHT TRANSPORT ON THE GPU 145

G
eF

or
ce

G
T

X
58

0

(a) StreamingPTmk (b) LVC-BPTmk (c) PPM

(d) SPPM (e) PBPM (f) VCMsk

G
eF

or
ce

G
T

X
6
80

(g) StreamingPTmk (h) LVC-BPTmk (i) PPM

(j) SPPM (k) PBPM (l) VCMsk

Figure A.8: GrandCentral. All image results of Algorithm Comparison.

APPENDIX A. LIGHT TRANSPORT ON THE GPU 146

Appendix B

Supplemental Material for
Global and Local VPLs

B.1 Stochastic Progressive Photon Mapping

In Figures B.1 and B.2 we provide comparison of our method with CPU
implementation of Progressive Photon Mapping [Hachisuka et al. 2008] and
Stochastic Progressive Photon Mapping [Hachisuka and Jensen 2009]. The
timings are machine with Intel Xeon X5560 processors (with 4 physical, 8
logical cores each). Both algorithms are implemented as CPU only. To
compensated for this, we the reported results are for roughly 5× longer
runtime for each method, when compared to ours. We let the algorithms
run even after this and confirmed that no significant improvement could be
achieved by providing slightly longer time.

147

A
P
P
E
N
D
IX

B
.
G
L
O
B
A
L
A
N
D

L
O
C
A
L
V
P
L
S

148

Our approach Progressive Photon Mapping (PPM) Stochastic PPM

5min 28 sec (10kmaps, 300k glob. lights, 17.1M loc. lights) 26min 40 sec (4525M photons; 16 cores) 27min 49 sec (852.5M photons; 16 cores)

5min 43 sec (5kmaps, 200k glob. lights, 55.6M loc. lights) 28min 28 sec (18100M photons; 16 cores) 29min 32 sec (8840M photons; 16 cores)

Figure B.1: Results: Comparison of our method with Progressive Photon Mapping and Stochastic Progressive Photon Mapping

A
P
P
E
N
D
IX

B
.
G
L
O
B
A
L
A
N
D

L
O
C
A
L
V
P
L
S

149

Our approach Progressive Photon Mapping (PPM) Stochastic PPM

2min 44 sec (15kmaps, 200 glob. lights, 13.5M loc. lights) 13min 54 sec (6025M photons; 16 cores) 14min 20 sec (3275M photons; 16 cores)

4min 16 sec (10kmaps, 100k glob. lights, 25.1M loc. lights) 20min 50 sec (2175M photons; 16 cores) 21min 9 sec (452.5M photons; 16 cores)

Figure B.2: Results: Comparison of our method with Progressive Photon Mapping and Stochastic Progressive Photon Mapping

Bibliography

Timo Aila and Tero Karras. Architecture considerations for tracing in-
coherent rays. In Proceedings of the Conference on High Performance
Graphics, pages 113–122. Eurographics Association, 2010. URL http:

//dl.acm.org/citation.cfm?id=1921497.

Timo Aila and Samuli Laine. Understanding the efficiency of ray traversal on
GPUs. In Proc. High-Performance Graphics 2009, pages 145–149, 2009.

Timo Aila, Samuli Laine, and Tero Karras. Understanding the efficiency of
ray traversal on GPUs – Kepler and Fermi addendum. NVIDIA Technical
Report NVR-2012-02, NVIDIA Corporation, 2012.

John Amanatides and Andrew Woo. A fast voxel traversal algorithm for ray
tracing. In Eurographics, volume 87, page 10, 1987.

AMD. AMD Radeon R9 390 specification. http://www.amd.com/en-
us/products/graphics/desktop/r9, July 2015. URL http://www.amd.

com/en-us/products/graphics/desktop/r9.

Okan Arikan, David A Forsyth, and James F O’Brien. Fast and detailed
approximate global illumination by irradiance decomposition. In ACM
Transactions on Graphics (TOG), volume 24, pages 1108–1114. ACM,
2005. URL http://dl.acm.org/citation.cfm?id=1073319.

Bruno Arnaldi, Thierry Priol, and Kadi Bouatouch. A new space subdivision
method for ray tracing CSG modelled scenes. The Visual Computer, 3
(2):98–108, 1987.

Philippe Bekaert, Mateu Sbert, and John Halton. Accelerating path tracing
by re-using paths. In Proceedings of the 13th Eurographics workshop on
Rendering, pages 125–134. Eurographics Association, 2002. URL http:

//dl.acm.org/citation.cfm?id=581914.

Jǐŕı Bittner, Michal Hapala, and Vlastimil Havran. Fast insertion-based op-
timization of bounding volume hierarchies. In Computer Graphics Forum.
Wiley Online Library, 2013. URL http://onlinelibrary.wiley.com/

doi/10.1111/cgf.12000/full.

150

http://dl.acm.org/citation.cfm?id=1921497
http://dl.acm.org/citation.cfm?id=1921497
http://www.amd.com/en-us/products/graphics/desktop/r9
http://www.amd.com/en-us/products/graphics/desktop/r9
http://dl.acm.org/citation.cfm?id=1073319
http://dl.acm.org/citation.cfm?id=581914
http://dl.acm.org/citation.cfm?id=581914
http://onlinelibrary.wiley.com/doi/10.1111/cgf.12000/full
http://onlinelibrary.wiley.com/doi/10.1111/cgf.12000/full

BIBLIOGRAPHY 151

Ian Buck. The evolution of GPUs for general purpose computing. In Pro-
ceedings of the GPU Technology Conference 2010, 2010.

Nathan A. Carr, Jesse D. Hall, and John C. Hart. The ray engine. In Proc.
Graphics Hardware 2002, pages 37–46, 2002. ISBN 1-58113-580-7. URL
http://dl.acm.org/citation.cfm?id=569046.569052.

Caustic Graphics, Inc. CausticRT platform, 2009.
http://www.caustic.com/.

Ewen Cheslack-Postava, Rui Wang, Oskar Akerlund, and Fabio Pellacini.
Fast, realistic lighting and material design using nonlinear cut approxi-
mation. In ACM Transactions on Graphics (TOG), volume 27, page 128.
ACM, 2008. URL http://dl.acm.org/citation.cfm?id=1409081.

James H Clark. Hierarchical geometric models for visible surface algorithms.
Communications of the ACM, 19(10):547–554, 1976.

Robert L. Cook and Kenneth E. Torrance. A reflectance model for computer
graphics. In Proceedings of the 8th annual conference on Computer graph-
ics and interactive techniques, SIGGRAPH ’81, pages 307–316, New York,
NY, USA, 1981. ACM. ISBN 0-89791-045-1. doi: 10.1145/800224.806819.

Holger Dammertz, Johannes Hanika, and Alexander Keller. Shallow bound-
ing volume hierarchies for fast SIMD ray tracing of incoherent rays. In
Computer Graphics Forum (Proc. 19th Eurographics Symposium on Ren-
dering), pages 1225–1234, 2008.

Tomáš Davidovič and Iliyan Georgiev. SmallVCM renderer. http://www.

smallvcm.com, 2012.

Tomáš Davidovič, Lukáš Maršálek, Nicolas Maeding, Markus Kaltenbach,
Peter-Hans Roth, and Philipp Slusallek. Ray tracing element for Cel-
l/B.E., 2009. URL http://graphics.cg.uni-saarland.de/index.php?

id=452.

Tomáš Davidovič, Jaroslav Křivánek, Miloš Hašan, Philipp Slusallek, and
Kavita Bala. Combining global and local virtual lights for detailed glossy
illumination. ACM Trans. Graph., 29:143:1–143:8, 2010. doi: 10.1145/
1882261.1866169. URL http://graphics.cg.uni-saarland.de/index.

php?id=davidovicsa2010.

Tomáš Davidovič, Lukáš Maršálek, and Philipp Slusallek. Performance con-
siderations when using a dedicated ray traversal engine. In 19th Inter-
national Conference on Computer Graphics, Visualization and Computer
Vision 2011 (WSCG 2011) Pilsen, pages 65–72, February 2011. ISBN
978-80-86943-83-1. URL http://graphics.cg.uni-saarland.de/?id=

davidovicwscg2011.

http://dl.acm.org/citation.cfm?id=569046.569052
http://dl.acm.org/citation.cfm?id=1409081
http://www.smallvcm.com
http://www.smallvcm.com
http://graphics.cg.uni-saarland.de/index.php?id=452
http://graphics.cg.uni-saarland.de/index.php?id=452
http://graphics.cg.uni-saarland.de/index.php?id=davidovicsa2010
http://graphics.cg.uni-saarland.de/index.php?id=davidovicsa2010
http://graphics.cg.uni-saarland.de/?id=davidovicwscg2011
http://graphics.cg.uni-saarland.de/?id=davidovicwscg2011

BIBLIOGRAPHY 152

Tomáš Davidovič, Thomas Engelhardt, Iliyan Georgiev, Philipp Slusallek,
and Carsten Dachsbacher. 3D rasterization: A bridge between ras-
terization and ray casting. In Proceedings of Graphics Interface 2012,
pages 201–208, Toronto, Ont., Canada, Canada, 2012a. Canadian In-
formation Processing Society. ISBN 978-1-4503-1420-6. URL https:

//graphics.cg.uni-saarland.de/2012/3d-rasterization/.

Tomáš Davidovič, Iliyan Georgiev, and Philipp Slusallek. Progressive light-
cuts for GPU. ACM SIGGRAPH 2012 Talks, 2012b. doi: 10.1145/
2343045.2343047. URL https://graphics.cg.uni-saarland.de/2012/

progressive-lightcuts-for-gpu/.

Tomáš Davidovič, Jaroslav Křivánek, Miloš Hašan, and Philipp Slusallek.
Progressive light transport simulation on the GPU: Survey and improve-
ments. ACM Trans. Graph., 2014. ISSN 0730-0301.

Z. Dong, T. Grosch, T. Ritschel, J. Kautz, and H.-P. Seidel. Real-time
indirect illumination with clustered visibility. In Vision, Modeling, and
Visualization Workshop 2009, 2009.

Phil Dutré, Kavita Bala, and Philippe Bekaert. Advanced Global Illumina-
tion, 2nd Edition. A K Peters, Natick, MA, 2006.

Christian Eisenacher, Gregory Nichols, Andrew Selle, and Brent Burley.
Sorted deferred shading for production path tracing. In Computer Graph-
ics Forum, volume 32, pages 125–132. Wiley Online Library, 2013.

B. Flachs, S. Asano, S. H. Dhong, P. Hotstee, G. Gervais, R. Kim, T. Le,
P. Liu, J. Leenstra, J. Liberty, B. Michael, H. Oh, S. M. Mueller, O. Taka-
hashi, A. Hatakeyama, Y. Watanabe, and N. Yano. A streaming process-
ing unit for a CELL processor. In Solid-State Circuits Conference, 2005.
Digest of Technical Papers. ISSCC. 2005 IEEE International, pages 134–
135, 2005. doi: 10.1109/ISSCC.2005.1493905.

Michael J. Flynn. Some computer organizations and their effectiveness.
Computers, IEEE Transactions on, 100(9):948–960, 1972.

Tim Foley and Jeremy Sugerman. Kd-tree acceleration structures for a GPU
raytracer. In Proc. of Graphics Hardware 2005, pages 15–22, 2005. ISBN
1-59593-086-8. doi: 10.1145/1071866.1071869.

Akira Fujimoto, Takayuki Tanaka, and Kansei Iwata. Arts: Accelerated
ray-tracing system. Computer Graphics and Applications, IEEE, 6(4):
16–26, 1986.

R Garćıa, Carlos Ureña, and Mateu Sbert. Description and solution of
an unreported intrinsic bias in photon mapping density estimation with

https://graphics.cg.uni-saarland.de/2012/3d-rasterization/
https://graphics.cg.uni-saarland.de/2012/3d-rasterization/
https://graphics.cg.uni-saarland.de/2012/progressive-lightcuts-for-gpu/
https://graphics.cg.uni-saarland.de/2012/progressive-lightcuts-for-gpu/

BIBLIOGRAPHY 153

constant kernel. In Computer Graphics Forum, volume 31, pages 33–41.
Wiley Online Library, 2012. URL http://onlinelibrary.wiley.com/

doi/10.1111/j.1467-8659.2011.02081.x/full.

Iliyan Georgiev. Implementing vertex connection and merging. Technical
Report Nov. 12, Saarland University, 2012. URL http://www.iliyan.

com/publications/ImplementingVCM.

Iliyan Georgiev. Path Sampling Techniques for Efficient Light Transport
Simulation. PhD thesis, Saarland University, Saarbrücken, Germany,
2015.

Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek.
Light transport simulation with vertex connection and merging. ACM
Trans. Graph., 31(6):192:1–192:10, November 2012. ISSN 0730-0301. doi:
10.1145/2366145.2366211.

Kris Gray. Microsoft DirectX 9 programmable graphics pipeline. Microsoft
Press, 2003.

Johannes Günther, Stefan Popov, Hans-Peter Seidel, and Philipp Slusallek.
Realtime ray tracing on GPU with BVH-based packet traversal. In Pro-
ceedings of the IEEE/Eurographics Symposium on Interactive Ray Trac-
ing, 2007.

Toshiya Hachisuka and Henrik Wann Jensen. Stochastic progressive photon
mapping. ACM Trans. Graph., 28(5):141:1–141:8, December 2009. ISSN
0730-0301. doi: 10.1145/1618452.1618487.

Toshiya Hachisuka and Henrik Wann Jensen. Parallel progressive photon
mapping on GPUs. In ACM SIGGRAPH ASIA 2010 Sketches, pages
54:1–54:1, 2010. ISBN 978-1-4503-0523-5. doi: 10.1145/1899950.1900004.

Toshiya Hachisuka, Shinji Ogaki, and Henrik Wann Jensen. Progressive
photon mapping. ACM Trans. Graph., 27(5):130:1–130:8, December 2008.
ISSN 0730-0301. doi: 10.1145/1409060.1409083.

Toshiya Hachisuka, Jacopo Pantaleoni, and Henrik Wann Jensen. A path
space extension for robust light transport simulation. ACM Trans.
Graph., 31(6):191:1–191:10, November 2012. ISSN 0730-0301. doi:
10.1145/2366145.2366210.

Eric Haines. Spline surface rendering, and whats wrong with octrees. Ray
Tracing News, 1(2), 1988.

Johannes Hanika, Marc Droske, and Luca Fascione. Manifold next event
estimation. Computer Graphics Forum (Proc. of Eurographics Symposium
on Rendering), 34(4):87–97, June 2015.

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2011.02081.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2011.02081.x/full
http://www.iliyan.com/publications/ImplementingVCM
http://www.iliyan.com/publications/ImplementingVCM

BIBLIOGRAPHY 154

Michal Hapala and Vlastimil Havran. Review: Kd-tree traversal algorithms
for ray tracing. In Computer Graphics Forum, volume 30, pages 199–213.
Wiley Online Library, 2011.

Michal Hapala, Tomáš Davidovič, Ingo Wald, Vlastimil Havran, and Philipp
Slusallek. Efficient stack-less BVH traversal for ray tracing. In Pro-
ceedings 27th Spring Conference on Computer Graphics (SCCG) 2011,
pages 29–34, 2011a. URL http://graphics.cg.uni-saarland.de/?id=

hapalasccg2011.

Michal Hapala, Ondrej Karĺık, and Vlastimil Havran. When it makes sense
to use uniform grids for ray tracing. In Proceedings of WSCG, pages
193–200, 2011b.

Bruce Hapke. Theory of Reflectance and Emittance Spectroscopy, 2nd edi-
tion. Cambridge University Press, 2012. ISBN 0521883490.

Vlastimil Havran. Heuristic Ray Shooting Algorithms. PhD thesis, Faculty of
Electrical Engineering, Czech Technical University in Prague, November
2000.

Vlastimil Havran, Jǐŕı Bittner, and Jǐŕı Žára. Ray tracing with rope trees.
In 14th Spring Conference on Computer Graphics, pages 130–140, 1998.

Miloš Hašan, Fabio Pellacini, and Kavita Bala. Matrix row-column sampling
for the many-light problem. ACM Trans. Graph., 26(3), July 2007. ISSN
0730-0301. doi: 10.1145/1276377.1276410.

Miloš Hašan, Jaroslav Křivánek, Bruce Walter, and Kavita Bala. Virtual
spherical lights for many-light rendering of glossy scenes. ACM Trans.
Graph., 28(5):143:1–143:6, 2009.

H. Von Helmholtz. Handbuch der Physiologischen Optik. 1867.

Heinrich Hey and Werner Purgathofer. Advanced radiance estimation for
photon map global illumination. In Computer Graphics Forum, volume 21,
pages 541–545. Wiley Online Library, 2002.

Qiming Hou, Xin Sun, Kun Zhou, Christian Lauterbach, and Dinesh
Manocha. Memory-scalable GPU spatial hierarchy construction. Vi-
sualization and Computer Graphics, IEEE Transactions on, 17(4):466–
474, 2011. URL http://ieeexplore.ieee.org/xpls/abs_all.jsp?

arnumber=5648735.

Greg Humphreys and C Scott Ananian. Tigershark: A hardware accelerated
ray-tracing engine. Senior independent work, Princeton University, 1996.

http://graphics.cg.uni-saarland.de/?id=hapalasccg2011
http://graphics.cg.uni-saarland.de/?id=hapalasccg2011
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5648735
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5648735

BIBLIOGRAPHY 155

Yuchi Huo, Rui Wang, Shihao Jin, Xinguo Liu, and Hujun Bao. A matrix
sampling-and-recovery approach for many-lights rendering. ACM Trans.
Graph., 34(6):210, 2015.

Wenzel Jakob and Steve Marschner. Manifold exploration: A Markov chain
Monte Carlo technique for rendering scenes with difficult specular trans-
port. ACM Transactions on Graphics (TOG), 31(4):58, 2012. URL
http://dl.acm.org/citation.cfm?id=2185554.

Bob Jenkins. Hash functions. Dr Dobbs Journal, 22(9), 1997.

Francis A Jenkins and Harvey E White. Fundamentals of optics 4th edition.
Fundamentals of Optics 4th edition by Francis A. Jenkins, Harvey E.
White New York, NY: McGraw-Hill Book Company, 1976, 1, 1976.

Henrik Wann Jensen. Global illumination using photon maps. In Proceedings
of the eurographics workshop on Rendering techniques ’96, pages 21–30,
London, UK, UK, 1996. Springer-Verlag. ISBN 3-211-82883-4. URL http:

//dl.acm.org/citation.cfm?id=275458.275461.

Henrik Wann Jensen. Realistic Image Synthesis using Photon Mapping. A.K.
Peters, 2001.

David Jevans and Brian Wyvill. Adaptive voxel subdivision for ray tracing.
1988.

James T. Kajiya. The rendering equation. In Computer Graphics (Proc. of
SIGGRAPH), pages 143–150, 1986. ISBN 0-89791-196-2. doi: 10.1145/
15922.15902.

Javor Kalojanov and Philipp Slusallek. A parallel algorithm for construction
of uniform grids. In Proc. of High-Performance Graphics 2009, pages 23–
28, 2009. URL http://dl.acm.org/citation.cfm?id=1572773.

Javor Kalojanov, Markus Billeter, and Philipp Slusallek. Two-level grids
for ray tracing on GPUs. In Oliver Deussen Min Chen, editor, EG
2011 - Full Papers, pages 307–314, Llandudno, UK, 2011. Eurograph-
ics Association. doi: 10.1111/j.1467-8659.2011.01862.x. URL http:

//diglib.eg.org/EG/CGF/volume30/issue2/v30i2pp307-314.pdf.

Michael R Kaplan. The use of spatial coherence in ray tracing. ACM
SIGGRAPH Course Notes 11, 1985.

Tero Karras and Timo Aila. Fast parallel construction of high-quality bound-
ing volume hierarchies. Proc. of High-Performance Graphics 2013, pages
89–99, 2013.

http://dl.acm.org/citation.cfm?id=2185554
http://dl.acm.org/citation.cfm?id=275458.275461
http://dl.acm.org/citation.cfm?id=275458.275461
http://dl.acm.org/citation.cfm?id=1572773
http://diglib.eg.org/EG/CGF/volume30/issue2/v30i2pp307-314.pdf
http://diglib.eg.org/EG/CGF/volume30/issue2/v30i2pp307-314.pdf

BIBLIOGRAPHY 156

Tero Karras, Timo Aila, and Samuli Laine. Understanding the efficiency
of ray traversal on GPUs framework. http://code.google.com/p/

understanding-the-efficiency-of-ray-traversal-on-gpus/, 2012.

Alexander Keller. Instant radiosity. In Computer Graphics (Proc. of SIG-
GRAPH), pages 49–56, 1997. ISBN 0-89791-896-7. doi: 10.1145/258734.
258769. URL http://dx.doi.org/10.1145/258734.258769.

Alexander Keller. Quasi-monte carlo image synthesis in a nutshell. In Monte
Carlo and Quasi-Monte Carlo Methods 2012, pages 213–249. Springer,
2013.

Khronos OpenCL Working Group and Aaftab Munshi. The OpenCL speci-
fication, Version: 2.1, 2015.

Claude Knaus and Matthias Zwicker. Progressive photon mapping: A prob-
abilistic approach. ACM Trans. Graph., 30(3):25:1–25:13, May 2011. ISSN
0730-0301. doi: 10.1145/1966394.1966404.

Thomas Kollig and Alexander Keller. Illumination in the presence of weak
singularities. In Monte Carlo and Quasi-Monte Carlo Methods, pages
245–257, 2004.

D Kopta, K Shkurko, J Spjut, E Brunvand, and A Davis. Memory con-
siderations for low energy ray tracing. In Computer Graphics Forum,
volume 34, pages 47–59. Wiley Online Library, 2015.

Daniel Kopta, Konstantin Shkurko, Josef Spjut, Erik Brunvand, and
Al Davis. An energy and bandwidth efficient ray tracing architecture.
In Proceedings of the 5th High-Performance Graphics Conference, pages
121–128. ACM, 2013.

Jaroslav Křivánek, James A Ferwerda, and Kavita Bala. Effects of global
illumination approximations on material appearance. ACM Transac-
tions on Graphics (TOG), 29(4):112, 2010. URL http://dl.acm.org/

citation.cfm?id=1778849.

Eric P. Lafortune and Yves D. Willems. Bi-directional path tracing. In Proc.
of CompuGraphics ’93, 1993.

Eric P. Lafortune, Sing-Choong Foo, and Kenneth E. Torrance andDonald
P. Greenberg. Non-linear approximation of reflectance functions. In Proc.
SIGGRAPH ’97, volume 31, pages 117–126, 1997. doi: 10.1145/258734.
258801.

Samuli Laine, Hannu Saransaari, Janne Kontkanen, Jaakko Lehtinen, and
Timo Aila. Incremental instant radiosity for real-time indirect illumina-
tion. In Eurographics Symposium on Rendering, pages 277–286, 2007.

http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/
http://code.google.com/p/understanding-the-efficiency-of-ray-traversal-on-gpus/
http://dx.doi.org/10.1145/258734.258769
http://dl.acm.org/citation.cfm?id=1778849
http://dl.acm.org/citation.cfm?id=1778849

BIBLIOGRAPHY 157

Samuli Laine, Tero Karras, and Timo Aila. Megakernels considered harmful:
Wavefront path tracing on GPUs. Proc of High-Performance Graphics
2013, pages 137–143, 2013.

Jurgen Laurijssen, Rui Wang, Ph Dutré, and Benedict J Brown.
Fast estimation and rendering of indirect highlights. In Computer
Graphics Forum, volume 29, pages 1305–1313. Wiley Online Library,
2010. URL http://onlinelibrary.wiley.com/doi/10.1111/j.1467-

8659.2010.01726.x/full.

Christian Lauterbach, Michael Garland, Shubhabrata Sengupta, David
Luebke, and Dinesh Manocha. Fast BVH construction on GPUs.
In Computer Graphics Forum, volume 28, pages 375–384, 2009.
URL http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.

2009.01377.x/full.

Chris Lomont. Introduction to Intel Advanced Vector Extensions. Intel
White Paper, 2011.

J David MacDonald and Kellogg S Booth. Heuristics for ray tracing using
space subdivision. The Visual Computer, 6(3):153–166, 1990. URL http:

//link.springer.com/article/10.1007/BF01911006.

Songrit Maneewongvatana and David M Mount. Its okay to be skinny, if
your friends are fat. In Center for Geometric Computing 4th Annual
Workshop on Computational Geometry, volume 2, 1999.

Don P Mitchell. Consequences of stratified sampling in graphics. In Proceed-
ings of the 23rd annual conference on Computer graphics and interactive
techniques, pages 277–280. ACM, 1996.

Cleve Moler. Matrix computation on distributed memory multiprocessors.
Hypercube Multiprocessors, 86:181–195, 1986. This is for Embarrassingly
Parallel.

Jan Novák, Vlastimil Havran, and Carsten Daschbacher. Path regeneration
for interactive path tracing. In EUROGRAPHICS 2010, short papers,
pages 61–64, 2010.

NVIDIA. Fermi Compute Architecture Whitepaper, 2011.

NVIDIA. CUDA C Programming Guide 5.0. NVIDIA, 2012a.

NVIDIA. NVIDIA GeForce GTX 680 Whitepaper, 2012b.

NVIDIA. NVIDIA GeForce GTX 980 Whitepaper, 2014.

NVIDIA. CUDA C Programming Guide 7.0. NVIDIA, 2015.

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2010.01726.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2010.01726.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2009.01377.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2009.01377.x/full
http://link.springer.com/article/10.1007/BF01911006
http://link.springer.com/article/10.1007/BF01911006

BIBLIOGRAPHY 158

Stuart Oberman, Greg Favor, and Fred Weber. AMD 3DNow! technology:
Architecture and implementations. Micro, IEEE, 19(2):37–48, 1999.

Open SystemC Initiative. IEEE standard SystemC language reference man-
ual. IEEE Computer Society, 2006.

Jiawei Ou and Fabio Pellacini. Lightslice: Matrix slice sampling for the
many-lights problem. ACM Trans. Graph., 30(6):179, 2011.

J. Owczarczyk. Ray tracing: A challenge for parallel processing. Proc
Parallel Processing for Computer Vision and Display, Leeds, 1988.

Anthony Pajot, Löıc Barthe, Mathias Paulin, and Pierre Poulin. Combina-
torial bidirectional path-tracing for efficient hybrid CPU/GPU rendering.
In Computer Graphics Forum, volume 30, pages 315–324, 2011.

Jacopo Pantaleoni and David Luebke. HLBVH: Hierarchical LBVH con-
struction for real-time ray tracing of dynamic geometry. In Proc. of High-
Performance Graphics 2010, pages 87–95, 2010. URL http://dl.acm.

org/citation.cfm?id=1921493.

Jacopo Pantaleoni, Luca Fascione, Martin Hill, and Timo Aila. PantaRay:
Fast ray-traced occlusion caching of massive scenes. In ACM Transactions
on Graphics (TOG), volume 29, page 37. ACM, 2010. URL http://dl.

acm.org/citation.cfm?id=1778774.

Steven G Parker, James Bigler, Andreas Dietrich, Heiko Friedrich, Jared
Hoberock, David Luebke, David McAllister, Morgan McGuire, Keith
Morley, Austin Robison, et al. OptiX: A general purpose ray trac-
ing engine. ACM Trans. Graph., 29(4):66:1–66:13, July 2010. URL
http://dl.acm.org/citation.cfm?id=1778803.

Matt Pharr and Greg Humphreys. Physically Based Rendering: From The-
ory to Implementation. Elsevier Science & Technology Books, 2004. URL
http://www.pbrt.org.

Matt Pharr and William R Mark. ispc: A SPMD compiler for high-
performance CPU programming. In Innovative Parallel Computing (In-
Par), 2012, pages 1–13. IEEE, 2012.

Bui Tuong Phong. Illumination for computer generated pictures. Commun.
ACM, 18(6):311–317, 1975. ISSN 0001-0782. doi: 10.1145/360825.360839.

David Plunkett and Michael Bailey. The vectorization of a ray-tracing al-
gorithm for improved execution speed. IEEE Computer Graphics and
Applications, 8(5):52–60, 1985.

http://dl.acm.org/citation.cfm?id=1921493
http://dl.acm.org/citation.cfm?id=1921493
http://dl.acm.org/citation.cfm?id=1778774
http://dl.acm.org/citation.cfm?id=1778774
http://dl.acm.org/citation.cfm?id=1778803
http://www.pbrt.org

BIBLIOGRAPHY 159

Stefan Popov, Johannes Günther, Hans-Peter Seidel, and Philipp Slusallek.
Stackless KD-tree traversal for high performance GPU ray tracing. In
Computer Graphics Forum, volume 26, pages 415–424, 2007.

Stefan Popov, Iliyan Georgiev, Rossen Dimov, and Philipp Slusallek. Object
partitioning considered harmful: Space subdivision for BVHs. In Proceed-
ings of the Conference on High Performance Graphics 2009, pages 15–22.
ACM, 2009. URL http://dl.acm.org/citation.cfm?id=1572772.

Timothy J. Purcell, Ian Buck, William R. Mark, and Pat Hanrahan. Ray
tracing on programmable graphics hardware. In ACM Trans. Graph.,
volume 21, pages 703–712, July 2002.

Timothy J. Purcell, Craig Donner, Mike Cammarano, Henrik Wann Jensen,
and Pat Hanrahan. Photon mapping on programmable graphics hardware.
In Proc. Graphics Hardware 2003, pages 41–50, 2003.

Srinivas K Raman, Vladimir Pentkovski, and Jagannath Keshava. Imple-
menting streaming SIMD extensions on the Pentium III processor. IEEE
micro, (4):47–57, 2000.

Ganesh Ramanarayanan, James Ferwerda, Bruce Walter, and Kavita Bala.
Visual equivalence: Towards a new standard for image fidelity. ACM
Trans. Graph., 26(3):76:1–76:11, 2007.

Karthik Ramani, Christiaan P Gribble, and Al Davis. StreamRay: A
stream filtering architecture for coherent ray tracing. In ACM Sigplan
Notices, volume 44, pages 325–336. ACM, 2009. URL http://dl.acm.

org/citation.cfm?id=1508282.

James Reinders. An overview of programming for Intel Xeon processors and
Intel Xeon Phi coprocessors. Intel Corporation: Santa Clara, 2012.

Alexander Reshetov, Alexei Soupikov, and Jim Hurley. Multi-level ray
tracing algorithm. In SIGGRAPH ’05: ACM SIGGRAPH 2005 Pa-
pers, pages 1176–1185, New York, NY, USA, 2005. ACM Press. doi:
10.1145/1186822.1073329.

Tobias Ritschel, Thorsten Grosch, Min H. Kim, Hans-Peter Seidel, Carsten
Dachsbacher, and Jan Kautz. Imperfect shadow maps for efficient com-
putation of indirect illumination. ACM Trans. Graph., 27(5):129, 2008.

Tobias Ritschel, Thomas Engelhardt, Thorsten Grosch, H-P Seidel, Jan
Kautz, and Carsten Dachsbacher. Micro-rendering for scalable, parallel fi-
nal gathering. In ACM Transactions on Graphics (TOG), volume 28, page
132. ACM, 2009. URL http://dl.acm.org/citation.cfm?id=1618478.

http://dl.acm.org/citation.cfm?id=1572772
http://dl.acm.org/citation.cfm?id=1508282
http://dl.acm.org/citation.cfm?id=1508282
http://dl.acm.org/citation.cfm?id=1618478

BIBLIOGRAPHY 160

Tobias Ritschel, Carsten Dachsbacher, Thorsten Grosch, and Jan Kautz.
The state of the art in interactive global illumination. In Com-
puter Graphics Forum (STAR), volume 31, pages 160–188, 2012.
URL http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.

2012.02093.x/full.

Randi J Rost, Bill Licea-Kane, Dan Ginsburg, John M Kessenich, Barthold
Lichtenbelt, Hugh Malan, and Mike Weiblen. OpenGL shading language.
Pearson Education, 2009.

Jörg Schmittler, Ingo Wald, and Philipp Slusallek. SaarCOR: A hardware
architecture for ray tracing. In Proceedings of the ACM SIGGRAPH/EU-
ROGRAPHICS conference on Graphics hardware, pages 27–36. Euro-
graphics Association, 2002. URL http://dl.acm.org/citation.cfm?

id=569051.

Benjamin Segovia, Jean-Claude Iehl, Richard Mitanchey, and Bernard
Péroche. Bidirectional instant radiosity. In Proceedings of the 17th Euro-
graphics Workshop on Rendering, to appear, 2006.

Larry Seiler, Doug Carmean, Eric Sprangle, Tom Forsyth, Michael Abrash,
Pradeep Dubey, Stephen Junkins, Adam Lake, Jeremy Sugerman, Robert
Cavin, Roger Espasa, Ed Grochowski, Toni Juan, and Pat Hanrahan.
Larrabee: A many-core x86 architecture for visual computing. In ACM
SIGGRAPH 2008, 2008.

Shubhabrata Sengupta, Mark Harris, Yao Zhang, and John D. Owens.
Scan primitives for GPU computing. In Proc. Graphics Hardware 2007,
pages 97–106, 2007. ISBN 978-1-59593-625-7. URL http://dl.acm.org/

citation.cfm?id=1280094.1280110.

Josef Spjut, Andrew Kensler, Daniel Kopta, and Erik Brunvand. Trax:
A multicore hardware architecture for real-time ray tracing. Computer-
Aided Design of Integrated Circuits and Systems, IEEE Transactions on,
28(12):1802–1815, 2009. URL http://ieeexplore.ieee.org/xpls/abs_

all.jsp?arnumber=5324031.

Josef Spjut, Daniel Kopta, Erik Brunvand, and Al Davis. A mobile accel-
erator architecture for ray tracing. In Proceed-ings of 3rd Workshop on
SoCs, Heterogeneous Architectures and Workloads (SHAW-3), 2012.

Martin Stich, Heiko Friedrich, and Andreas Dietrich. Spatial splits in
bounding volume hierarchies. In Proc. of High-Performance Graphics
2009, pages 7–13, 2009. URL http://dl.acm.org/citation.cfm?id=

1572771.

Dietger van Antwerpen. A survey of importance sampling applications in
unbiased physically based rendering. Technical report, 2011a.

http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2012.02093.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1467-8659.2012.02093.x/full
http://dl.acm.org/citation.cfm?id=569051
http://dl.acm.org/citation.cfm?id=569051
http://dl.acm.org/citation.cfm?id=1280094.1280110
http://dl.acm.org/citation.cfm?id=1280094.1280110
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5324031
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=5324031
http://dl.acm.org/citation.cfm?id=1572771
http://dl.acm.org/citation.cfm?id=1572771

BIBLIOGRAPHY 161

Dietger van Antwerpen. Improving SIMD efficiency for parallel Monte Carlo
light transport on the GPU. In Proc. of High-Performance Graphics 2011,
pages 41–50, 2011b. doi: 10.1145/2018323.2018330.

Dietger van Antwerpen. Unbiased physically based rendering on the GPU.
Master’s thesis, Delft University of Technology, the Netherlands, 2011c.

Eric Veach. Robust Monte Carlo Methods for Light Transport Simulation.
PhD thesis, 1997.

Eric Veach and Leonidas Guibas. Bidirectional estimators for light trans-
port. In Proc. of Eurographics Rendering Workshop, pages 147–162, 1994.

Eric Veach and Leonidas J. Guibas. Optimally combining sampling tech-
niques for Monte Carlo rendering. In Computer Graphics (Proc. of SIG-
GRAPH), pages 419–428, 1995. ISBN 0-89791-701-4. doi: 10.1145/
218380.218498. URL http://doi.acm.org/10.1145/218380.218498.

Jeffrey S. Vitter. Random sampling with a reservoir. ACM Trans. Math.
Softw., 11(1):37–57, March 1985. ISSN 0098-3500. doi: 10.1145/3147.
3165.

Jǐŕı Vorba. Optimal strategy for connecting light paths in bidirectional
methods for global illumination computation. Master’s thesis, Charles
University in Prague, 2011.

Ingo Wald. Realtime Ray Tracing and Interactive Global Illumination. PhD
thesis, 2004.

Ingo Wald, Philipp Slusallek, Carsten Benthin, and Markus Wagner. Inter-
active rendering with coherent ray tracing. In Computer Graphics Forum,
volume 20, pages 153–165, 2001.

Ingo Wald, William R. Mark, Johannes Günther, Solomon Boulos, Thiago
Ize, Warren Hunt, Steven G. Parker, and Peter Shirley. State of the art in
ray tracing animated scenes. In STAR Proceedings of Eurographics 2007,
pages 89–116, 2007.

Ingo Wald, Carsten Benthin, and Solomon Boulos. Getting rid of packets:
Efficient SIMD single-ray traversal using multi-branching BVHs. August
2008.

Bruce Walter, Sebastian Fernandez, Adam Arbee, Kavita Bala, Michael
Donikian, and Donald Greenberg. Lightcuts: A scalable approach to
illumination. ACM SIGGRAPH Conference Proceedings, 2005.

Bruce Walter, Adam Arbree, Kavita Bala, and Donald P. Greenberg. Mul-
tidimensional lightcuts. ACM Trans. Graph., 25(3):1081–1088, 2006.

http://doi.acm.org/10.1145/218380.218498

BIBLIOGRAPHY 162

Bruce Walter, Pramook Khungurn, and Kavita Bala. Bidirectional lightcuts.
ACM Transactions on Graphics (TOG), 31(4):59, 2012. URL http://dl.

acm.org/citation.cfm?id=2185555.

Rui Wang, Rui Wang, Kun Zhou, Minghao Pan, and Hujun Bao. An efficient
GPU-based approach for interactive global illumination. ACM Trans.
Graph., 28(3):91, 2009.

Gregory J. Ward. Measuring and modeling anisotropic reflection. In Proc.
SIGGRAPH 92, pages 265–272, 1992.

Turner Whitted. An improved illumination model for shaded display. Com-
munications of the ACM, 23(6):343–349, 1980. ISSN 0001-0782. doi:
10.1145/358876.358882.

Sven Woop. DRPU: A Programmable Hardware Architecture for Real-time
Ray Tracing of Coherent Dynamic Scenes. PhD thesis, Saarland Univer-
sity, 2006.

Sven Woop, Jörg Schmittler, and Philipp Slusallek. RPU: A programmable
ray processing unit for realtime ray tracing. In ACM Trans. on Graph.
(Proceedings of SIGGRAPH 2005), volume 24, pages 434–444, 2005.

Sven Woop, Erik Brunvand, and Philipp Slusallek. Estimating performance
of a ray-tracing ASIC design. In Interactive Ray Tracing 2006, IEEE
Symposium on, pages 7–14. IEEE, 2006a. URL http://ieeexplore.

ieee.org/xpls/abs_all.jsp?arnumber=4061540.

Sven Woop, Gerd Marmitt, and Philipp Slusallek. B-KD trees for hard-
ware accelerated ray tracing of dynamic scenes. In SIGGRAPH/EURO-
GRAPHICS Conference On Graphics Hardware, volume 3, pages 67–77,
2006b.

Sven Woop, Louis Feng, Ingo Wald, and Carsten Benthin. Embree: Ray
tracing kernels for CPUs and the Xeon Phi architecture. In ACM SIG-
GRAPH 2013 Talks, pages 44:1–44:1, 2013. URL http://dl.acm.org/

citation.cfm?id=2504515.

Fahad Zafar, Marc Olano, and Aaron Curtis. GPU random numbers via
the tiny encryption algorithm. In Proc. of High-Performance Graphics
2010, pages 133–141, 2010. URL http://dl.acm.org/citation.cfm?

id=1921500.

Kun Zhou, Qiming Hou, Rui Wang, and Baining Guo. Real-time kd-tree
construction on graphics hardware. ACM Trans. Graph., 27(5):126:1–
126:11, December 2008. ISSN 0730-0301. doi: 10.1145/1409060.1409079.
URL http://doi.acm.org/10.1145/1409060.1409079.

http://dl.acm.org/citation.cfm?id=2185555
http://dl.acm.org/citation.cfm?id=2185555
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4061540
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4061540
http://dl.acm.org/citation.cfm?id=2504515
http://dl.acm.org/citation.cfm?id=2504515
http://dl.acm.org/citation.cfm?id=1921500
http://dl.acm.org/citation.cfm?id=1921500
http://doi.acm.org/10.1145/1409060.1409079

My Publications

Tomáš Davidovič and Iliyan Georgiev. Smallvcm renderer. http://www.

smallvcm.com, 2012.

Tomáš Davidovič, Lukáš Maršálek, Nicolas Maeding, Markus Kaltenbach,
Peter-Hans Roth, and Philipp Slusallek. Ray tracing element for cel-
l/b.e., 2009. URL http://graphics.cg.uni-saarland.de/index.php?

id=452.

Tomáš Davidovič, Jaroslav Křivánek, Miloš Hašan, Philipp Slusallek, and
Kavita Bala. Combining global and local virtual lights for detailed glossy
illumination. ACM Trans. Graph., 29:143:1–143:8, 2010. doi: 10.1145/
1882261.1866169. URL http://graphics.cg.uni-saarland.de/index.

php?id=davidovicsa2010.

Tomáš Davidovič, Lukáš Maršálek, and Philipp Slusallek. Performance con-
siderations when using a dedicated ray traversal engine. In 19th Inter-
national Conference on Computer Graphics, Visualization and Computer
Vision 2011 (WSCG 2011) Pilsen, pages 65–72, February 2011. ISBN
978-80-86943-83-1. URL http://graphics.cg.uni-saarland.de/?id=

davidovicwscg2011.

Tomáš Davidovič, Iliyan Georgiev, and Philipp Slusallek. Progressive light-
cuts for GPU. ACM SIGGRAPH 2012 Talks, 2012. doi: 10.1145/
2343045.2343047. URL https://graphics.cg.uni-saarland.de/2012/

progressive-lightcuts-for-gpu/.

Tomáš Davidovič, Jaroslav Křivánek, Miloš Hašan, and Philipp Slusallek.
Progressive light transport simulation on the gpu: Survey and improve-
ments. ACM Trans. Graph., 2014. ISSN 0730-0301.

Tomáš Davidovič, Thomas Engelhardt, Iliyan Georgiev, Philipp Slusallek,
and Carsten Dachsbacher. 3D rasterization: A bridge between ras-
terization and ray casting. In Proceedings of Graphics Interface 2012,
pages 201–208, Toronto, Ont., Canada, Canada, 2012. Canadian In-
formation Processing Society. ISBN 978-1-4503-1420-6. URL https:

//graphics.cg.uni-saarland.de/2012/3d-rasterization/.

163

http://www.smallvcm.com
http://www.smallvcm.com
http://graphics.cg.uni-saarland.de/index.php?id=452
http://graphics.cg.uni-saarland.de/index.php?id=452
http://graphics.cg.uni-saarland.de/index.php?id=davidovicsa2010
http://graphics.cg.uni-saarland.de/index.php?id=davidovicsa2010
http://graphics.cg.uni-saarland.de/?id=davidovicwscg2011
http://graphics.cg.uni-saarland.de/?id=davidovicwscg2011
https://graphics.cg.uni-saarland.de/2012/progressive-lightcuts-for-gpu/
https://graphics.cg.uni-saarland.de/2012/progressive-lightcuts-for-gpu/
https://graphics.cg.uni-saarland.de/2012/3d-rasterization/
https://graphics.cg.uni-saarland.de/2012/3d-rasterization/

MY PUBLICATIONS 164

Iliyan Georgiev, Jaroslav Křivánek, Tomáš Davidovič, and Philipp Slusallek.
Light transport simulation with vertex connection and merging. ACM
Trans. Graph., 31(6):192:1–192:10, November 2012. ISSN 0730-0301. doi:
10.1145/2366145.2366211.

Michal Hapala, Tomas Davidovic, Ingo Wald, Vlastimil Havran, and Philipp
Slusallek. Efficient stack-less bvh traversal for ray tracing. In Pro-
ceedings 27th Spring Conference on Computer Graphics (SCCG) 2011,
pages 29–34, 2011. URL http://graphics.cg.uni-saarland.de/?id=

hapalasccg2011.

Beata Turoňová, Lukas Marsalek, Tomáš Davidovič, and Philipp Slusallek.
Progressive stochastic reconstruction technique (psrt) for cryo electron
tomography. Journal of structural biology, 189(3):195–206, 2015.

http://graphics.cg.uni-saarland.de/?id=hapalasccg2011
http://graphics.cg.uni-saarland.de/?id=hapalasccg2011

	Introduction
	Our contributions

	Background
	Light Transport
	Radiometric Quantities
	The Rendering Equation
	The Ray Tracing Operator
	The Path Integral Formulation
	The Bidirectional Scattering Distribution Function

	Monte Carlo Integration
	Random Variables
	Monte Carlo Estimator and Its Error
	Efficient Sampling of Monte Carlo Estimator

	Rendering Techniques
	Direct Illumination
	Whitted-style Ray Tracing
	Path Tracing
	Bidirectional Path Tracing
	(Progressive) Photon Mapping
	Virtual Point Lights

	Acceleration Structures
	Ray Tracing Acceleration
	Photon Mapping Acceleration

	Hardware Acceleration
	Basics of Single Instruction Multiple Data
	General-Purpose computation on Graphics Processing Units
	Dedicated Ray Casting Units

	A Dedicated Ray Traversal Engine
	Ray traversal engine
	Design blocks
	RTE synthesis

	Simulator architecture
	Shader models
	Acceleration structure partitioning

	Results
	Standard implementation
	Treelet implementation
	Using BVH

	Conclusion

	Light Transport Simulation on the GPU
	Related Work
	Overview
	Terminology
	Testing Setup

	Path Tracing
	Algorithm Overview
	Survey of Existing GPU Implementations
	Proposed Alternative Implementations
	Results and Discussion
	Conclusion

	Bidirectional Path Tracing
	Algorithm Overview
	Survey of Existing GPU Implementations
	Proposed Alternative: Light Vertex Cache BPT
	Results and discussion
	Conclusions

	Photon Mapping-Based Approaches
	Survey of Existing GPU Implementations of Photon Map Search Structures
	Rectified Stochastic Hash Grid
	Implementation Detail: Improved Hash Grid Query
	Results and Dicussion
	Conclusions

	Vertex Connection and Merging
	Algorithm Overview
	Proposed GPU Implementation
	Results and Discussion

	Algorithm Comparison
	Path Tracing
	Bidirectional Path Tracing
	Photon Mapping-based Methods
	Vertex Connection and Merging

	Conclusion

	Global and Local VPLs
	Related Work
	Overview
	Visibility Clustering for Global Lights
	Local Lights
	Implementation Details
	Results
	Conclusion

	Conclusion
	Supplemental Material for Light Transport Simulation on the GPU
	Path Tracing
	Bidirectional Path Tracing
	Algorithm Comparison

	Supplemental Material for Global and Local VPLs
	Stochastic Progressive Photon Mapping

