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THÈSE
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Résumé

Les réseaux pair-à-pair (P2P) constituent un modèle de plus en plus populaire
pour la programmation d’applications Internet car ils favorisent la décentralisation,
le passage à l’échelle, la tolérance aux pannes et l’auto-organisation. à la différence
du modèle traditionnel client-serveur, un réseau P2P est un système réparti
décentralisé dans lequel tous les nœuds interagissent directement entre eux et
jouent à la fois les rôles de fournisseur et d’utilisateur de services et de res-
sources. Une table de hachage distribuée (DHT) est réalisée par un réseau
P2P et offre les mmes services qu’une table de hachage classique, hormis le
fait que les différents couples (clef, valeur) sont stockés dans différents nœuds
du réseau. La fonction principale d’une DHT est la recherche d’une valeur
associée à une clef donnée. Parmi les protocoles réalisant une DHT on peut
nommer Chord, Pastry, Kademlia et Tapestry. Ces protocoles promettent de
garantir certaines propriétés de correction et de performance ; or, les tenta-
tives de démontrer formellement de telles propriétés se heurtent invariable-
ment à des cas limites dans lesquels certaines propriétés sont violées. Tian-
xiang Lu a ainsi décrit des problèmes de correction dans des versions pu-
bliées de Pastry. Il a conçu un modèle, appelé LuPastry, pour lequel il a
fourni une preuve partielle, mécanisée dans l’assistant à la preuve TLA+ Proof
System, démontrant que les messages de recherche de clef sont acheminés
au bon nœud du réseau dans le cas sans départ de nœuds. En analysant la
preuve de Lu j’ai découvert qu’elle contenait beaucoup d’hypothèses pour
lesquelles aucune preuve n’avait été fournie, et j’ai pu trouver des contre-
exemples à plusieurs de ces hypothèses. La présente thèse apporte trois contri-
butions. Premièrement, je présente LuPastry+, une spécification TLA+ révue
de LuPastry. Au-delà des corrections nécessaires d’erreurs, LuPastry+améliore
LuPastryen introduisant de nouveaux opérateurs et définitions, conduisant à
une spécification plus modulaire et isolant la complexité de raisonnement à
des parties circonscrites de la preuve, contribuant ainsi à automatiser davan-
tage la preuve. Deuxièmement, je présente une preuve TLA+ complète de
l’acheminement correct dans LuPastry+. Enfin, je démontre que l’étape finale
du processus d’intégration de nœuds dans LuPastry(et LuPastry+) n’est pas
nécessaire pour garantir la cohérence du protocole. Concrètement, j’exhibe une
nouvelle spécification avec un processus simplifié d’intégration de nœuds, que
j’appelle Simplified LuPastry+, et je démontre qu’elle garantit le bon ache-
minement de messages de recherche de clefs. La preuve de correction pour
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Simplified LuPastry+est obtenue en réutilisant la preuve pour LuPastry+, et
ceci représente un bon succès pour la réutilisation de preuves, en particulier
considérant la taille de ces preuves. Chacune des deux preuves requiert plus
de 30000 étapes interactives ; à ma connaissance, ces preuves constituent les
preuves les plus longues écrites dans le langage TLA+ à ce jour, et les seuls
exemples d’application de preuves mécanisées de théorèmes pour la vérification
de protocoles DHT.



Abstract

A distributed hash table (DHT) is a peer-to-peer network that offers the func-
tion of a classic hash table, but where different key-value pairs are stored at
different nodes on the network. Like a classic hash table, the main function pro-
vided by a DHT is key lookup, which retrieves the value stored at a given key.
Examples of DHT protocols include Chord, Pastry, Kademlia and Tapestry.
Such DHT protocols certain correctness and performance guarantees, but for-
mal verification typically discovers border cases that violate those guarantees.
In his PhD thesis, Tianxiang Lu reported correctness problems in published
versions of Pastry and developed a model called LuPastry, for which he pro-
vided a partial proof of correct delivery of lookup messages assuming no node
failure, mechanized in the TLA+ Proof System. In analyzing Lu’s proof, I dis-
covered that it contained unproven assumptions, and found counterexamples
to several of these assumptions. The contribution of this thesis is threefold.
First, I present LuPastry+, a revised TLA+ specification of LuPastry. Aside
from needed bug fixes, LuPastry+ contains new definitions that make the spec-
ification more modular and significantly improve proof automation. Second,
I present a complete TLA+ proof of correct delivery for LuPastry+. Third, I
prove that the final step of the node join process of LuPastry/LuPastry+ is
not necessary to achieve consistency. In particular, I develop a new specifica-
tion with a simpler node join process, which I denote by Simplified LuPastry+,
and prove correct delivery of lookup messages for this new specification. The
proof of correctness of Simplified LuPastry+ is written by reusing the proof
for LuPastry+, which represents a success story in proof reuse, especially for
proofs of this size. Each of the two proofs amounts to over 32,000 proof steps;
to my knowledge, they are currently the largest proofs written in the TLA+

language, and—together with Lu’s proof—the only examples of applying full
theorem proving for the verification of DHT protocols.
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Zusammenfassung

Eine verteilte Hashtabelle (DHT) ist ein P2P Netzwerk, das die gleiche Funk-
tion wie eine klassische Hashtabelle anbietet, wo aber verschiedene Schlüssel-
Inhalt Paare an verschiedenen Knoten im Netzwerk gespeichert werden. Chord,
Pastry, Kademlia und Tapestry sind einige bekannte Implementierungen von
DHT. Solche Protokolle versprechen bestimmte Eigenschaften bezüglich Kor-
rektheit und Leistung. Die formale Verifikation von diesen Protokollen führt
jedoch normalerweise zu Widersprüchen dieser Eigenschaften. In seiner Dok-
torarbeit entdeckt Tianxiang Lu Gegenbeispiele zu veröffentlichten Versionen
von Pastry und entwickelt LuPastry, ein Pastry Model ausschließlich des Kno-
tenausfalles. Zusätzlich bietet Lu einen Teilbeweis für korrekte Lieferung von
Suchnachrichten in LuPastry in der Sprache TLA+ an. Lus Beweis basiert
auf unbewiesenen Annahmen. Beim Untersuchen des Beweises habe ich Ge-
genbeispiele zu mehreren dieser Annahmen entdeckt. Diese Doktorarbeit deckt
drei Hauptthemen ab. Erstens, es wird LuPastry+ entwickelt: eine revidier-
te TLA+ Spezifikation zu LuPastry. Neben den benötigten Fehlerkorrektu-
ren, bietet LuPastry+ zusätzlich neue Definitionen an, welche die Spezifika-
tion modularer machen, und die Automatisierung des Beweises signifikant ver-
bessern. Zweitens, biete ich einen vollständigen TLA+ korrektheitsbeweis für
LuPastry+ an. Drittens, zeige ich, dass der letzte Schritt des Beitrittsprotokol-
les in LuPastry/LuPastry+ nicht notwendig für Korrektheit ist. Insbesondere,
biete ich eine neue Spezifikation mit einem einfacheren Beitrittsprotokoll an,
und einen Korrektheitsbeweis dafür. Nach bestem Wissen sind diese Beweise (2
Beweise je von über 32.000 Schritten) bis dato die größten in TLA+ geschrie-
benen Beweise.
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Chapitre 1

Introduction

Les réseaux pair-à-pair (P2P) constituent un modèle qui est de plus en plus
utilisé pour la programmation d’applications Internet modernes. à la différence
du modèle traditionnel client-serveur qui repose sur un serveur central four-
nissant des ressources aux clients, un réseau P2P est un système distribué et
décentralisé dans lequel tous les nœuds (aussi appelés pairs) interagissent di-
rectement entre eux et jouent à la fois les rles de fournisseurs et d’utilisateurs
de services et de ressources.

Le modèle P2P a connu sa première heure de gloire en 1999 avec la popula-
rité du système Napster de partage de fichiers qui permettait à ses utilisateurs
de chercher et de télécharger des fichiers mis à disposition par d’autres utilisa-
teurs [23]. Cependant, Napster peut être considéré comme un réseau P2P de
première génération qui nécessitait encore un serveur central d’indexe conte-
nant des informations sur les utilisateurs et sur leurs contenus partagés. Ce
serveur était responsable pour la recherche de fichiers, alors que l’échange de
fichiers était réalisé directement entre deux utilisateurs. Plus tard, les services
évoluaient vers un modèle tout à fait décentralisé, à la base d’applications
comme Gnutella et Kazaa qui fonctionnaient en l’absence de tout serveur cen-
tral. Ces applications sont souvent appelées des applications P2P de seconde
génération.

Les réseaux P2P favorisent le passage à l’échelle et la robustesse car ils ne
nécessitent pas de serveur central qui représente un point unique de défaillance
ou encore un goulot d’étranglement pour la performance. Ils sont aussi moins
coteux et plus faciles à déployer car ils s’auto-organisent et ne nécessitent pas
d’équipements spécifiques concernant les serveurs ou les systèmes d’exploita-
tion. Ceci étant dit, certaines applications P2P à large échelle optent pour une
architecture semi-distribuée en utilisant un ou plusieurs nœuds spéciaux, par-
fois appelés super-nœuds, qui sont toujours en ligne et garantissent ainsi au
réseau une connectivité et fiabilité accrues.

Aujourd’hui la technologie P2P se trouve dans des applications très di-
verses, allant du partage de fichiers au visionnage de contenus multi-média et
à la téléphonie par Internet. Ainsi Skype, l’application populaire de téléphonie
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2 CHAPITRE 1. INTRODUCTION

audio et vidéo, repose-t-il sur un réseau P2P entièrement décentralisé, ainsi
qu’un certain nombre de super-nœuds. Le site Web officiel indique que chaque
nouveau nœud ajouté au réseau contribue à la puissance de traitement et à
la bande passante. Ainsi, en décentralisant les ressources, les réseaux P2P de
seconde génération ont réussi à quasiment éliminer les cots associés à une in-
frastructure centralisée importante [14]. Le site Web argumente aussi que le
modèle P2P correspond au modèle prévu à l’origine pour le Web, dans lequel
les utilisateurs contribuent de nouveaux contenus (des pages Web) et accèdent
aux contenus créés par d’autres utilisateurs.

Un exemple supplémentaire d’une application P2P populaire est le flash
player d’Adobe Systèmes, un des visionneurs de médias le plus utilisés sur
Internet, qui repose désormais sur la technologie P2P pour visionner du contenu
en temps réel et sur demande. Adobe indique qu’une page Web fournissant de
l’audio et vidéo à votre ordinateur peut livrer le contenu avec une meilleure
performance si les utilisateurs qui visionnent le même contenu partagent leur
bande passante. De cette manière, l’audio ou vidéo peut être servie de manière
plus lisse, sans coupures ou pauses dues à l’approvisionnement. Ceci est appelé
du réseautage assisté par les pairs car les pairs sur le réseau assistent les uns
les autres afin de fournir une meilleure expérience [22].

D’autres applications reposaient sur la technologie P2P à un certain mo-
ment mais l’abandonnaient plus tard en faveur du modèle centralisé. Pendant
un certain temps, la British Broadcasting Corporation (BBC) utilisait un pro-
tocole P2P pour soutenir son iPlayer BBC bien connu, une application qui
permettait aux utilisateurs de visionner des vidéos de la BBC. Dans un entre-
tien datant de 2008 avec Anthony Rose du groupe BBC Controller Vision and
Online Media, celui-ci affirmait que deux ans auparavant l’utilisation de P2P
offrait des bénéfices clairs et substantiels mais que l’abandon de cette techno-
logie était justifié par les baisses dramatiques du prix de la bande passante
qui rétablissaient la faisabilité du modèle client-serveur [36]. Rose se réservait
également la possibilité d’un retour ultérieur au P2P. Le service Spotify de
streaming audio faisait aussi appel à la technologie P2P pour son client sur or-
dinateur jusqu’en 2014 quand il revenait à un modèle client-serveur, pour des
raisons similaires [39]. Enfin, la plate-forme Livestation pour la distribution en
temps réel de la télévision et de la radio utilisait également une technologie
P2P rachetée à Microsoft Research.

L’application qui est probablement la plus fortement associée avec la tech-
nologie P2P dans l’opinion publique est BitTorrent, un protocole de commu-
nication pour l’échange P2P de fichiers par Internet. En effet, en date de 2013
le trafic BitTorrent à lui seul est responsable de 3,35% de la bande passante
utilisée par toutes les applications Internet dans le monde [34]. Les utilisa-
teurs installent un client BitTorrent au choix parmi plusieurs disponibles,
alors qu’un tracker BitTorrent fournit une liste de fichiers disponibles pour
l’échange et assiste le client établir une communication avec d’autres pairs qui
possèdent le fichier. Il s’agit d’un modèle proche de celui de Napster dans le-
quel le tracker représente un serveur central qui initie la communication parmi
les pairs mais o ceux-ci continuent à interagir de manière décentralisée sans
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l’aide du serveur. Cependant, de nombreux clients BitTorrent actuels utilisent
un système sans tracker dans lequel chaque pair agit comme tracker, résultant
en un modèle entièrement décentralisé. De nombreuses entreprises distribuant
du logiciel ou du multi-média se servent de la technologie BitTorrent pour of-
frir des téléchargements. Cette méthode de distribution est particulièrement
recommandée par d’importants projets du logiciel libre comme la distribution
Linux Ubuntu1 ou la suite bureautique LibreOffice2, afin d’améliorer la dispo-
nibilité des téléchargements et de réduire la charge des serveurs propres à ces
projets.

Un problème majeur concernant les réseaux P2P à large échelle purs, c’est
à dire entièrement décentralisés, réside dans la gestion efficace des ressources
disponibles. Un réseau P2P non-structuré sans contrainte sur la topologie des
nœuds participants est très inefficace : une fonction comme la recherche d’un
fichier donné demanderait dans un tel réseau d’inonder le réseau avec une
requête de recherche jusqu’à ce que cette requête atteigne un pair possédant le
fichier demandé. Ceci donnerait lieu à une quantité importante de trafic réseau
inutile, ainsi qu’à des charges importantes d’utilisation de la CPU et de la
mémoire.

Une table de hachage distribuée (distributed hash table, DHT) offre un
moyen de structurer un réseau P2P de manière à organiser les ressources dis-
ponibles, et de rendre les communications entre les pairs fiables et efficaces. Une
DHT est un réseau P2P qui sert de table de hachage, répartissant les couples
(clef, valeur) parmi les différents nœuds du réseau. Les nœuds qui forment
la DHT se voient affectés des identifiants uniques, et les messages entre les
nœuds sont acheminés par une route impliquant des nœuds intermédiaires et
déterminée en fonction de l’identifiant du nœud cible, plutt que par inonda-
tion du réseau. Comme une table de hachage classique, une DHT offre deux
fonction principales : put(k , v) associe la valeur v à la clef k , alors que get(k)
récupère la valeur associée à la clef k . En raison de l’absence de serveur cen-
tral ayant une vue globale du réseau, les nœuds d’une DHT doivent collaborer
pour déterminer l’ensemble de clefs stockées à chaque nœud, ainsi que pour
acheminer les requêtes put et get au nœud concerné.

Les tables de hachage distribuées bénéficient des avantages combinés des
réseaux P2P et des tables de hachage, de par une conception simple et élégante
permettant la localisation d’une donnée demandée avec une très bonne effica-
cité, et ne nécessitant aucune information globale. Dans la plupart des appli-
cations pratiques, les réseaux P2P/DHT sont sujets à un taux important de
churn, des nœuds rejoignant et quittant le réseau en permanence, ainsi qu’à
des défaillances spontanées de nœuds qui partent sans en informer au préalable
d’autres nœuds du réseau. L’implémentation d’une DHT doit être capable de
gérer ces turbulences de manière efficace et gracieuse, assurant une reconfigura-
tion du réseau vers un état stable qui garantit une connectivité entre les nœuds
vivants et un consensus sur l’ensemble de clefs affectées à chaque nœud.

1www.ubuntu.com
2www.libreoffice.org

www.ubuntu.com
www.libreoffice.org


4 CHAPITRE 1. INTRODUCTION

La dernière décennie a vu de grands efforts de recherche dans le domaine des
réseaux P2P, et en particulier des DHT. De nombreuses implémentations de
DHT ont été proposées dans la littérature scientifique, et beaucoup de travaux
ont été entrepris afin d’étudier les propriétés de ces implémentations et com-
ment les améliorer. Parmi les protocoles DHT les plus connus figurent Pastry,
Chord, Kademlia et CAN [37, 38, 32, 35]. Ces protocoles sont similaires dans
le sens qu’ils se focalisent sur la gestion efficace de données stockées de manière
répartie parmi un grand nombre de nœuds. Cependant, ils diffèrent par rap-
port à des caractéristiques telles que la topologie du réseau logique, la fonction
pour calculer la distance entre deux nœuds du réseau, et le modèle de routage.
Par exemple, Chord organise les nœuds dans un cercle virtuel appelé l’anneau
Chord. Pastry repose sur une structure arborescente de nœuds, assistée par une
structure annulaire similaire à celle de Chord et qui sert de base au routage
quand la structure arborescente est incapable de déterminer la cible appro-
priée. Dans Chord, ainsi que dans d’autres protocoles, les nœuds exécutent
périodiquement un algorithme de stabilisation, en échangeant des messages de
ping afin de maintenir à jour leurs informations locales concernant le réseau.
L’article [46] donne un excellent aperçu des différentes variantes de DHT, leurs
théories sous-jacentes, et leurs applications.

Alors que les entreprises optant pour la technologie P2P utilisent généralement
des implémentations propriétaires, comme dans les exemples cités précédemment,
ces implémentations reposent souvent sur des protocoles proposés dans la littérature
scientifique. Un exemple bien connu d’applications fondées sur des DHT est le
tracking réparti des systèmes BitTorrent sans trackers explicites mentionnés
plus haut qui est implanté par de nombreux clients BitTorrent. Ainsi, l’implémentation
Mainline DHT de tracking réparti pour BitTorrent, fondée sur Kademlia, est
probablement l’implémentation la plus importante de DHT en pratique. Une
étude menée en 2013 estimait le nombre d’utilisateurs de Mainline DHT entre
10 et 25 millions, avec un churn quotidien d’au moins 10 millions [40]. Des
implémentations propriétaires de DHT incluent Oracle Coherence, la grille de
données résidant dans la mémoire vive d’Oracle implantée en Java et le service
DynamoDB de bases de données proposé par Amazon.

Les publications concernant les protocoles DHT typiquement affirment cer-
tains taux de stabilité et de fiabilité de ces protocoles en fonction du churn. Ce-
pendant, ces affirmations ne sont généralement fondées que sur des démonstrations
papier, au mieux. Observant les problèmes de connectivité de certaines applica-
tions P2P populaires soumises au churn, on s’est rendu compte au cours de ces
dernières années que la technologie DHT actuelle ne peut pas garantir des ni-
veaux de fiabilité tels qu’imaginés à l’origine. Par exemple, l’application Skype
fondée sur une implantation P2P qui est très certainement une DHT, a subi
deux coupures massives en 2007 et en décembre de 2010, cette dernière étant
due à une défaillance spontanée d’un nombre important de super-nœuds. Dans
quelques heures à peine, le nombre d’utilisateurs connectés à Skype tomba de
23,3 millions à environ 1,6 millions, et la coupure dura deux jours.

De telles coupures représentent bien évidemment une facture importante
pour les entreprises. Ce risque, couplé à une utilisation en augmentation de
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la technologie P2P/DHT dans de nombreuses applications demandant de la
tolérance aux pannes, a motivé des travaux de recherche s’intéressant à la
vérification de protocoles P2P, et particulièrement DHT, en employant des
méthodes formelles telles que la modélisation formelle, la simulation et la
vérification automatique par model checking. Naturellement, l’analyse et la
vérification de tels systèmes répartis de large échelle sont tout sauf triviales.
En effet, en raison de la taille et de la complexité de tels systèmes, les efforts
de vérification ont le plus souvent été limités à l’étude de certains fragments
de ces protocoles – tels que la recherche de clefs dans un réseau statique sans
arrivée ou départ de nœuds – et ils ont typiquement fait appel à des méthodes
légères telles que la modélisation et la simulation.

La présente thèse s’insère dans cette ligne de recherche : elle propose une
étude de la correction de Pastry sur la base de la preuve de théorèmes mécanisée.
Plus précisément, je vérifie le protocole de la recherche de clefs (requêtes
get) pour deux variantes de Pastry en donnant des preuves de correction
complètes et rigoureuses dans l’assistant interactif à la preuve TLA+. Il a
déjà été démontré dans [27] qu’aucune version publiée de Pastry ne garan-
tit cette propriété de correction car des ajouts et départs de nœuds peuvent
causer une séparation irréversible du réseau, conduisant à un acheminement
erroné de messages de recherche de clefs. Dans cette thèse je démontre que
le modèle de Pastry sans départ de nœuds garantit l’acheminement correct
de messages de recherche de clefs. Je montre également que, toujours dans
le modèle sans départ de nœuds, la correction est maintenue par un proces-
sus d’ajout de nœuds qui est plus simple que ceux proposés pour Pastry, par
exemple dans les articles [21, 27].

Dans ce qui suit, je discute certains travaux connexes traitant du sujet de
la vérification formelle de protocoles P2P. Ensuite, je décris la contribution de
cette thèse à ce domaine de recherche. Ceci est suivi d’une courte description
des outils et techniques utilisés dans cette thèse, et en particulier de l’assistant
à la preuve TLA+. Enfin, je donne un court résumé de la suite de la thèse.

Travaux connexes

Un grand nombre d’études scientifique a été dédié pendant ces dernières années
au protocole de DHT Chord qui présente de fortes similarités à Pastry. Il im-
plante une table de hachage distribuée de la manière suivante. Une fonction fixe
de hachage associe à chaque clef et à chaque nœud vivant de Chord un iden-
tifiant de m bits (l’identifiant d’un nœud est calculé en appliquant la fonction
de hachage à son adresse IP alors que l’identifiant d’une clef est déterminée en
hachant la clef). L’espace d’identifiants est assimilé à un cercle appelé l’anneau
Chord qui contient les 2m identifiants possibles entre 0 et 2m − 1. La clef k est
associée au premier nœud n dont l’identifiant est égal à celui de k ou qui le
suit dans le sens de l’anneau ; n est appelé le nœud successeur de k . Chaque
nœud n maintient une liste de ses successeurs dans l’anneau, ainsi qu’un ta-
bleau de doigts (finger table) pour un routage efficace, ce dernier contenant
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les adresses d’au plus m nœuds à différents catégories de distance de n. Plus
spécifiquement, la i -ème entrée dans cette table contient le premier nœud à une
distance d’au moins 2i−1 identifiants de n sur l’anneau. Les nœuds de Chord
utilisent un algorithme périodique de stabilisation pour maintenir à jour leurs
listes de successeurs et tableaux de doigts. Un routage correct des requêtes est
garanti si chaque nœud connat son nœud successeur immédiat sur l’anneau.
En présence de défaillances de nœuds, cette hypothèse ne peut être maintenue
à tout moment, et l’effet de défaillances de nœuds est mitigé par la réplication,
conduisant au maintien de listes de successeurs : plus grande la taille de la
liste de successeurs et plus grande sera la probabilité que la requête d’une clef
renvoie le nœud correct.

Bakhshi et al. [4] décrivent un modèle abstrait de réseaux P2P structurés
en anneau dans le π-calcul. Ils utilisent ce modèle pour vérifier l’algorithme de
stabilisation de Chord en exhibant une bisimulation faible entre la spécification
de Chord en tant que réseau en anneau et l’implémentation de l’algorithme de
stabilisation. Cette étude est menée dans un modèle d’ajout pur de nœuds
mais sans défaillances, et des entités comme les tableaux de doigts ou listes de
successeurs ne sont pas prises en compte.

Zave a mené beaucoup de travaux au sujet de la vérification de Chord. Uti-
lisant Alloy pour modéliser formellement et pour vérifier Chord, elle démontre
que le modèle d’ajout pur – c’est à dire dans lequel aucun nœud ne part du
réseau – est correct mais que le protocole complet n’assure pas forcément les
invariants affirmés [44]. Dans l’article [45] elle présente une version de Chord
assortie d’une preuve partiellement mécanisée de correction.
DKS [1] est une implémentation d’une table de hachage distribuée dont le

nom est dérivée de recherche k-aire répartie. DKS(N , k , f ) décrit un protocole
P2P pour un réseau de taille maximale N , une arité de recherche de k dans
le réseau et un paramètre f de tolérance aux pannes. Brièvement, la recherche
k -aire répartie garantit que n’importe quelle clef t peut être localisée dans au
plus logk (N ) sauts. Initialement, l’espace de recherche est identique à l’espace
entier de clefs dans la table de hachage. à chaque pas de la recherche distribuée,
l’espace de recherche actuel est divisé en k parties de tailles égales, dont chacune
est sous la responsabilité d’un nœud différent. En répétant ces sous-divisions
jusqu’à ce que chaque partie ne contienne qu’un élément, l’algorithme aboutit
à la partie contenant la clef t qui correspond à la cible de la recherche.
DKS peut être vu comme une généralisation de systèmes comme Chord,

Pastry ou Tapestry. Comme Chord, DKS repose sur une structure en anneau,
bien que les auteurs affirment que cette structure soit arbitraire et que les algo-
rithmes proposés fonctionnent également pour d’autres topologies de réseaux.
Le point distinctif de DKS est que, contrairement à d’autres protocoles, il ne
requiert pas de routine corrective pour maintenir à jour des tableaux de routage
ou d’autres informations locales. En effet, les tableaux de routage sont corrigés
à la volée pendant les opérations de recherche et d’insertion. Cette idée re-
pose sur l’observation que, dans les systèmes P2P o le nombre de recherches
et insertions est beaucoup plus grand que celui d’ajouts de nœuds, de départs
ou de défaillances, la correction des tableaux de routage à la volée pendant
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que le protocole effectue des opérations de recherche et d’insertion évite une
consommation inutile de la bande passante due à un mécanisme périodique de
correction.
DKS permet aux nœuds de rejoindre ou de quitter le réseau à n’importe

quel moment. Comme dans le cas de Chord, un nœud rejoint un réseau DKS en
envoyant une requête correspondante à son successeur sur l’anneau. Rejoindre
l’anneau est un événement atomique dans le sens qu’un nœud i recevant plus
d’une requête à rejoindre l’anneau ne peut en traiter plus d’une à la fois. Un
nœud peut soit quitter l’anneau de manière gracieuse en informant d’autres
nœuds de son intention de partir, soit il peut échouer abruptement. Il est affirmé
que le système continue à fournir un service fiable de recherche de clefs pourvu
que pas plus de f nœuds consécutifs n’échouent en même temps.

Les auteurs deDKS mènent des expériences par simulation afin de déterminer
l’effet du churn sur l’efficacité du traitement des requêtes de clefs [1]. Le pro-
tocole DKS est décrit en détail dans la thèse de Ghodsi [20]. Dans cette thèse,
Ghodsi discute plusieurs problèmes tels que des demandes d’intégration à l’an-
neau concurrentes à des défaillances de nœuds, et il affirme qu’on ne peut pas
garantir la correction en présence de défaillances arbitraires de nœuds, à cause
d’une possible séparation du réseau. Toujours concernant DKS, citons le travail
de Borgstrm et al. [9] qui utilise CCS pour la vérification formelle du protocole
de recherche de clefs dans le cas statique, c’est à dire sans la prise en compte
de l’arrivée ou du départ de nœuds.

Le travail le plus proche, et qui constitue également le point de départ de
cette thèse, a été mené par Lu [29, 30, 27] concernant Pastry. Pastry [37] est
un réseau structuré en anneau, de manière similaire à Chord, et chaque nœud
maintient des listes de successeurs et de prédecesseurs, appelées l’ensemble de
feuilles (leaf set) du nœud. Au lieu du tableau de doigts de Chord, chaque
nœud dispose d’un tableau de routage dont les entrées sont déterminées par la
longueur du préfixe de bits commun entre les identifiants de l’entrée et du nœud.
Comme dans le cas de Chord, l’acheminement correct de requêtes de clefs peut
être garanti par Pastry si chaque nœud a un ensemble de feuilles correct, ou
au moins connat ses successeur et prédecesseur sur l’anneau, indépendamment
du contenu du tableau de routage.

Lu modélise Pastry en TLA+, et il utilise l’outil TLC de model checking,
ainsi que l’assistant TLAPS à la preuve, pour vérifier formellement le bon ache-
minement de de requêtes de clefs (messages get) : à tout moment il existe au
plus un nœud qui puisse répondre à une requête de recherche de clef, et ce nœud
est le nœud vivant le plus proche à la clef. Comme dans le cas de Chord, Lu
découvre plusieurs problèmes dans le protocole Pastry original, même après
avoir pris en compte des améliorations proposées. Enfin il présente une va-
riante de Pastry appelée LuPastryet ne prenant en compte que l’intégration
de nœuds, et il vérifie l’acheminement correct sous l’hypothèse forte qu’aucun
nœud ne fait défaillance. Il est à noter que la variante de Pastry proposée par
Lu repose aussi sur des ajouts atomiques de nœuds dans le sens qu’un nœud
vivant est seulement autorisé à assister un seul nœud à la fois à rejoindre l’an-
neau, comme dans le cas de DKS. Dans sa preuve, Lu réduit la propriété du
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bon acheminement à un ensemble d’environ 50 invariants que le protocole est
affirmé vérifier, et ces invariants sont démontrés à l’aide de TLAPS. Dans ce
sens, LuPastryreprésente un effort majeur dans le domaine de la vérification
formelle mécanisée d’algorithmes répartis.

Néanmoins, la preuve de Lu repose sur de nombreuses hypothèses présentées
sans preuve concernant l’arithmétique et les structures de données spécifiques
au protocole. En examinant la preuve, j’ai découvert des contre-exemples à plu-
sieurs de ces hypothèses de base. Alors que j’ai pu démontrer des variantes plus
fortes de plusieurs de ces hypothèses, ceci n’a pas été possible pour d’autres.
En effet, j’ai pu trouver un contre-exemple à l’un des invariants affirmés par
Lu, la preuve duquel n’a été possible grce à des hypothèses incorrectes. Cette
observation m’a conduit à concevoir une nouvelle preuve de correction pour
LuPastry, et ce faisant à améliorer la spécification TLA+ du protocole dans
plusieurs respects. Au cours de mon travail de preuve j’ai observé que le sous-
protocole d’intégration de nœuds peut être simplifié de manière significative
sans en affecter la correction. Plus précisément, l’étape finale appelée échange
de bail (lease exchange) que le nouveau nœud doit effectuer avec ses nœuds
voisins avant de participer activement au protocole n’est pas nécessaire pour
démontrer la correction dans les scénarios o il n’y a que des ajouts de nœuds
au réseau. En effet, cet échange de bail ne faisait pas partie du protocole d’ori-
gine publié dans [37] mais a seulement été introduit par les auteurs dans un
article ultérieur, parmi d’autres améliorations au protocole. Bien qu’aucune
raison explicite n’ait été donnée, on peut considérer que la raison probable à
l’ajout de cette étape était d’améliorer la justesse des ensembles de feuilles et,
par conséquent, la fiabilité de la recherche de clefs. Comme démontré par Lu,
le protocole entier dans lequel des nœuds peuvent arriver et partir librement
ne garantit pas le bon acheminement de messages de recherche de clefs, même
en présence d’échange de bail. Par contre, j’observe qu’en absence de départ
de nœuds, le protocole est correct même sans cette étape. à la suite de cette
observation, j’ai formalisé une variante plus simple de la spécification de Lu-
Pastryqui s’affranchit de l’étape d’échange de bail, et j’ai démontré que cette
variante garantit le bon acheminement de messages.

Contributions de cette thèse

Cette thèse fait les contributions suivantes.

1. LuPastry+. Une version améliorée de la spécificaton TLA+ de LuPastry[27]
est proposée. Au-delà de la correction d’erreurs, la structure de la spécification
est plus modulaire, en introduisant de nouveaux opérateurs qui per-
mettent d’améliorer notablement le degré d’automatisation de la preuve
de correction.

2. Preuve de correction de LuPastry+. Une preuve complète et rigou-
reuse en TLA+ du bon acheminement de requêtes de clefs par LuPastry+est
présentée.
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3. LuPastry+simplifié. Une variante de LuPastry+est définie dans la-
quelle le protocole d’intégration de nœuds est simplifié en omettant l’étape
d’échange de bail.

4. Preuve de correction pour LuPastry+simplifié. Une preuve complète
et rigoureuse en TLA+ du bon acheminement de messages de requêtes de
clefs par LuPastry+simplifié est présentée. Cette preuve est une adapta-
tion de la preuve de correction de LuPastry, et représente en cela un bon
succès en matière de réutilisation de preuves.

Cette thèse présente une contribution originale dans les sens suivants. D’abord,
elle représente une étude de deux variantes dynamiques de Pastry, sans se res-
treindre à une vue statique du réseau, en permettant à des nœuds d’intégrer
le réseau de manière concurrente. Ensuite, la vérification du protocole repose
sur la preuve mécanisée de théorèmes plutt que sur des méthodes moins ri-
goureuses comme la simulation ou le model checking d’instances finies. En-
fin, la preuve de correction de LuPastry+simplifié, obtenue en adaptant celle
de LuPastry+, représente une réussite unique en matière de réutilisation de
preuves, spécialement pour une preuve de taille aussi importante contenant
plus de 32000 interactions de preuve.

Outils et techniques

Vérification formelle

La vérification formelle d’un système informatique (matériel ou logiciel) est
le fait de s’assurer de la correction du système, c’est à dire que le système
fonctionne comme prévu en garantissant un ensemble d’exigences ou propriétés
spécifiques, sur la base de méthodes mathématiques formelles.

Il existe différentes approches à la vérification formelle qui varient de par
leur rigueur, et par conséquent de par le temps et effort nécessaires à leur
application. Quelle que soit l’approche choisie, la première étape consiste en
une spécification du système : un modèle du système décrivant son compor-
tement attendu, rédigé dans une notation mathématique choisie, qu’elle soit
fondée sur la logique, les automates, les réseaux de Petri, les algèbres de pro-
cessus ou la théorie des ensembles. Une spécification doit être aussi précise,
non-ambigue, concise et complète que possible. Cette thèse implique deux tech-
niques de vérification formelle : le model checking et la preuve mécanisée.

Model checking. Par model checking, on entend un ensemble de techniques
pour vérifier que toute exécution du système vérifie les propriétés énoncées.
Pour des systèmes à nombre d’états fini, cette approche est rigoureuse. Il est
également possible d’utiliser le model checking pour des modèles infinis, à condi-
tion que des ensembles infinis d’états puissent être représentés de manière fi-
nitaire. Pour des systèmes de taille arbitraire, le model checking suffit pour
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vérifier des instances du système de taille fixe, et ceci aide à découvrir des er-
reurs et à gagner en confiance en la correction de la spécification du système
entier, mais ne sert pas de preuve dans l’absolu. En d’autres termes, le mo-
del checking est utile pour démontrer la présence plutt que l’absence d’erreurs
[6]. Model checking présente l’avantage d’être entièrement automatisé et de
ne demander que peu d’interaction de la part de l’utilisateur. Cependant, un
problème typique avec le model checking est l’explosion d’états car pour la plu-
part des systèmes pratiques l’espace d’états est soit infini soit crot de manière
exponentielle avec le nombre de paramètres variables du système [3].

Preuve mécanisée. La vérification déductive dénote le processus de générer
une collection d’obligations de preuve mathématiques dont la véracité implique
la correction du système. Ces obligations sont alors déchargées, ou démontrées,
à l’aide d’un outil dédié à la preuve mécanique. Un outil automatique de preuve
de théorèmes essaie de démontrer ou d’infirmer une obligation de preuve donnée
de manière entièrement automatisée, sans interférence de la part de l’utilisateur.
De tels outils peuvent être généralistes tels que Spass [41] ou Zenon [8], ainsi que
des prouveurs SMT (satisfiabilité modulo théories) tels que CVC4 [5] ou Z3 [16]
qui se chargent d’obligations de preuve relatives à une certaine théorie comme
l’arithmétique ou la théorie des ensembles.3 Pour des systèmes de grande taille,
un outil interactif de preuve, aussi appelé assistant à la preuve, est un outil lo-
giciel qui assiste un utilisateur en la rédaction de preuves mathématiques dont
les obligations de preuve élémentaires sont déléguées à un outil de preuve auto-
matique. L’application de la preuve de théorèmes à la vérification de systèmes
de grande taille peut être un processus long et coteux, et il demande une très
fine compréhension du système, ainsi que de nombreuses interactions avec l’as-
sistant à la preuve.

TLA+

TLA+ est un langage de spécification formelle dédié à la modélisation et la
vérification de systèmes répartis. TLA+ permet d’écrire une spécification du
système, d’en énoncer les propriétés et enfin d’écrire des preuves de ces pro-
priétés.

Le langage de spécification est fondé sur la logique temporelle des actions
(temporal logic of actions, TLA), une variante de la logique temporelle de temps
linéaire définie par Leslie Lamport en 1994, pour la spécification du compor-
tement dynamique du système, et sur la théorie non-typée des ensembles due
à Zermelo et Fraenkel pour décrire les structures de données. Les systèmes
sont décrits en tant que machines à états opérant sur des n-uplets de variables
d’états, en définissant un prédicat d’états Init et un prédicat de transitions
Next qui contraignent respectivement les états initiaux possibles du système

3Plus correctement, étant donné que ces deux théories sont très expressives et
indécidables, les solveurs SMT se focalisent typiquement sur des fragments décidables de
ces théories comme l’arithmétique linéaire sur les entiers ou les réels, sans quantificateurs.
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et sa relation de transition. Un prédicat de transition (appelé aussi action) est
une formule de la logique du premier ordre contenant de variables non-primées
et primées qui dénotent respectivement les valeurs de ces variables dans les
états avant et après la transition.

Les propriétés énoncées d’une spécification TLA+ sont elles aussi exprimées
en tant que formules de la logique temporelle. Ces propriétés peuvent être
vérifiées sur des instances finies de la spécification en faisant appel à TLC [43],
le model checker par énumération explicite d’états associé à TLA+. Pour des
instances de taille infinie ou arbitraire, les propriétés peuvent être démontrées
en rédigeant une preuve qui peut être certifiée à l’aide de TLAPS (TLA+ Proof
System, [15]), dont l’architecture est présentée à la figure 2.1. La base de TLAPS
est un langage hiérarchique de preuves : l’utilisateur rédige une preuve TLA+

formée d’une hiérarchie d’étapes de preuve. Chaque étape est interprétée par le
gestionnaire de preuves qui génère des obligations de preuve correspondantes et
les envoie à des outils automatiques de preuve incluant Zenon, Isabelle/TLA+

et des solveurs SMT. Des étapes plus difficiles qui ne peuvent être démontrées
immédiatement par les outils automatiques peuvent être décomposées en de
multiples sous-étapes. à cause de la nature non-typée du langage, une partie
de l’effort de preuve consiste en la démonstration d’un invariant de typage qui
fixe en particulier les domaines et co-domaines des fonctions et opérateurs.

TLA+ et ses outils sont accessibles depuis l’interface TLA+ toolbox. La
toolbox est un environnement intégré de développement qui permet aux utili-
sateurs de rédiger des spécifications TLA+, d’exécuter le model checker TLC et
de rédiger et certifier des preuves en faisant appel au gestionnaire de preuves.
Les langages de spécification et de preuves TLA+ sont brièvement expliqués
au chapitre 3.

Méthodologie

Je démontre la propriété de sreté qui exprime le bon acheminement des requêtes
pour deux variantes différentes de Pastry. La propriété affirme qu’à tout mo-
ment d’une exécution il existe au plus un nœud qui puisse répondre à une
requête de clef, et ce nœud est le nœud vivant le plus proche à cette clef [27].

Pour chaque variante de Pastry, la méthodologie empruntée pour trouver la
preuve est illustrée à la figure 2.2. La variante de Pastry en question est décrite
par une spécification TLA+ et la propriété de bon acheminement est démontrée
en la réduisant à des invariants inductifs de la spécification. Une propriété P
est un invariant d’une spécification si elle est vraie à tous les états initiaux de la
spécification, ainsi qu’à tous les états accessibles à partir des états initiaux. La
propriété P est un invariant inductif si elle est vraie à tous les états initiaux de
la spécification, et si sa véracité est préservée par toutes les transitions. D’après
cette définition tout invariant inductif est un invariant car une propriété vraie à
tous les états initiaux et préservée par toutes les transitions est nécessairement
vraie à tous les états accessibles. Le plus grand défi dans l’élaboration de la
preuve est de trouver les invariants inductifs qui sont suffisants et corrects.
Ce processus de découverte des invariants sous-jacents se déroule comme suit.
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Je commence par exprimer une propriété P qui m’apparat à la fois comme
utile pour la preuve du bon acheminement et comme invariant correct de la
spécification. Je me sers du model checking pour vérifier s’il y a des contre-
exemples à cette propriété dans un réseau de petite taille, par exemple de
quatre ou huit nœuds. Si TLC trouve un contre-exemple, alors P n’est pas
un invariant de la spécification, et il est nécessaire de reformuler la propriété
de manière appropriée. Si aucun contre-exemple n’est trouvé alors on peut
avoir assez de confiance pour procéder à l’étape suivante en démontrant par
induction, à l’aide de TLAPS, que P est un invariant inductif. Ce processus
peut toujours révéler des contre-exemples à la propriété P qui n’ont pas pu
être trouvés par model checking, et dans ce cas la propriété doit toujours être
révisée. Si la démonstration établit P comme un invariant de la spécification,
alors la propriété est ajoutée à la liste d’invariants qui peuvent être utilisés dans
la preuve du bon acheminement. Cette dernière preuve se déroule en parallèle
au processus de générer et de modifier des invariants : les invariants découverts
sont motivés par la preuve du bon acheminement, et ils influent à leur tour sur
cette preuve.

Organisation

Cette thèse est organisée comme suit. Le chapitre 3 contient des notions préliminaires
sur les réseaux pair-à-pair, les tables de hachage distribuées, la vérification for-
melle et le langage et l’assistant à la preuve TLA+. Dans le chapitre 4 je
présente le modèle LuPastry+ainsi que sa spécification en TLA+. Dans le cha-
pitre 5 je décris les améliorations que ma nouvelle spécification LuPastry+apporte
à la spécification originale de LuPastrypar Lu. Je résume également mon ana-
lyse de la preuve partielle de correction par Lu et décris des contre-exemples
que j’ai pu découvrir à certaines de ses hypothèses, et à l’un des invariants
affirmés dans la preuve. Enfin, j’explique la structure de ma nouvelle preuve
rigoureuse de correction pour LuPastry+. Cette preuve elle-même est décrite
au chapitre 6. Dans le chapitre 7 je présente le protocole LuPastry+simplifié
dans lequel la phase d’échange de bail est éliminée du processus d’intégration
de nœuds, et je montre comment j’adapte la preuve TLA+ de LuPastry+pour
obtenir une nouvelle preuve de correction du protocole simplifié. Enfin, le cha-
pitre 8 contient des remarques de conclusion et une discussion des limitations
de ce travail, ainsi que d’éventuels travaux futurs dans cette direction.



Chapter 2

Introduction

Peer-to-peer (P2P) networks are an increasingly popular model for modern
internet applications. In contrast to the traditional client/server model, which
relies on a centralized server providing resources to clients, a P2P network is
a distributed, decentralized system in which all nodes, or peers, communicate
directly with each other and act as both providers and users of services and
resources.

The P2P model came to popularity with the rise of the file sharing system
Napster in 1999, which allowed users to search and download files found on
other users’ devices [23]. However, Napster can be seen as a first generation
P2P network, which still relied on a central index server that indexed users and
their shared content. Searching for files took place through the server, while file
transfer took place directly between two users. Later on, the trend moved to-
wards a completely decentralized model with applications like Gnutella, which
could operate without any central servers. These applications are often termed
second generation P2P applications.

P2P networks are favored for their scalability and robustness, since there is
no central server representing a single point of failure or a performance bottle-
neck. They are also cheaper and easier to set up, since they are self-organized
and there is no need for any special server equipment or operating system. That
said, some large-scale P2P applications opt for a semi-distributed approach,
making use of one or more special nodes, sometimes termed supernodes, that
remain online to provide the network with better connectivity and reliability.

Today, P2P technology is used in a large variety of applications from file
sharing to multimedia streaming and online telephony. Skype, the popular
voice and video chatting application, relies on a completely decentralized P2P
network with a number of supernodes. According to their official web site,
“Each new node added to the network adds potential processing power and
bandwidth to the network. Thus, by decentralizing resources, second genera-
tion (2G) P2P networks have been able to virtually eliminate costs associated
with a large, centralized infrastructure” [14]. It is also argued on the web page
that the P2P model was the original model envisioned for the world wide web

13
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at the time of its creation, with users both creating new content (web pages)
and accessing content created by other users.

Another example of a popular P2P application is Adobe System’s flash
player, which is one of the most widely-used media players on the internet, and
now based on P2P technology for support of live and on-demand streaming.
Adobe states that “A website that serves audio and video to your computer
can deliver the content with better performance if users who are playing the
same content share their bandwidth. Sharing bandwidth allows the audio or
video to play more smoothly, without skips or pauses from buffering. This is
called peer-assisted networking, since peers on the network assist each other to
provide a better experience” [22].

Other applications relied on P2P technology at some point, but later aban-
doned it in favor of the centralized model. For some time, the British Broad-
cast Corporation (BBC) used P2P as the underlying model for its famous BBC
iPlayer, a desktop application which allows users to stream BBC videos. In a
2008 interview with Anthony Rose, BBC Controller Vision and Online Media
Group, he stated that “there were definite and substantial benefits from using
P2P two years ago”, but that the shift away from P2P was justified because of
the dramatic decline in the price of bandwidth, making the client/server model
feasible once more [36]. Rose also expressed the possibility of a return to P2P
in the future. Spotify, the music streaming service, also relied on P2P tech-
nology for music streaming on their desktop client until they moved back to a
client/server model in 2014, citing similar reasons [39]. Livestation, a platform
for distributing live television and radio online, also started out based on P2P
technology acquired from Microsoft Research.

Perhaps the application that is most strongly associated in the minds of the
public with P2P technology is BitTorrent, a communications protocol for P2P
file sharing over the internet. In fact, as of 2013, BitTorrent traffic amounts to
3.35% of all internet application bandwidth worldwide [34]. Users install one of
the several available BitTorrent clients, and a BitTorrent tracker provides a list
of files available for transfer and helps the client communicate with other peers
that have the file. This is a Napster-like model where the tracker represents a
central server that initiates the communication between peers, but where peers
continue to communicate in a decentralized way without the help of the server.
However, many BitTorrent clients now use a trackerless system, where every
peer acts as a tracker, resulting in a completely decentralized model. Many
software and multimedia companies now offer some downloads using BitTorrent
technology. It is particularly encouraged as a download method by major open-
source and free software projects such as the Linux distribution Ubuntu1, or the
LibreOffice office suite2, in order to improve download availability and reduce
the load on the project’s own servers.

A key problem with pure, completely decentralized P2P networks, and in
particular large-scale networks, is how to efficiently manage the available re-

1www.ubuntu.com
2www.libreoffice.org

www.ubuntu.com
www.libreoffice.org
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sources. A completely unstructured P2P network where no topology is imposed
on the participating nodes is highly inefficient, since in such a network, func-
tions like search for a given file would have to resort to flooding the network
with a search request until the request reaches a peer that has the required
file. Flooding causes a very high amount of unnecessary network traffic and
CPU/memory usage [47, 19].

Distributed hash tables (DHT) are a way of structuring P2P networks so
that the available resources are organized, and communication among peers is
reliable and efficient. A DHT is a P2P network that acts as a hash table where
different (key-value) pairs are stored at different nodes on the network. Nodes
forming a DHT are assigned unique identifiers, and messages from one node to
another—instead of being flooded through the network—are routed through a
number of intermediate nodes, the route being determined by node identifiers.
Like a classic hash table, a DHT offers two main functions: put(k , v) stores the
value v at key k , and get(k) retrieves the value associated with key k . Due to
the lack of a central server with a global view of the network, nodes in a DHT
must collaborate to decide on their respective key storage range, and to route
put and get requests to the appropriate node.

Distributed hash tables tap the advantages of both P2P communication and
hash tables, with a simple and elegant design that enables locating a required
piece of data with high efficiency, and without the need for global information.
In most practical applications, P2P/DHT networks are subject to a high level
of churn; nodes are continuously joining and leaving the network, and may
fail abruptly without giving notice to other nodes on the network. The DHT
implementation should handle this turbulence efficiently and smoothly and
ensure that the network always recovers into a stable state where connectivity
among the live nodes is maintained and there is no confusion as to which node
stores which portion of the key space.

The past decade has seen extensive research in the area of P2P networks,
and especially DHT. Numerous implementations of DHT have been proposed
in research publications, and a lot of work has been done to study the properties
of these implementations and how to improve them. Among the most popular
DHT protocols are Pastry, Chord, Kademlia and CAN [37, 38, 32, 35]. These
protocols are similar in that they focus on the efficient management of data
stored in a distributed fashion over a large number of nodes, but they differ in
some characteristics such as the topology of the overlay network, the distance
function between nodes on the network, and the routing model. In Chord,
for example, nodes are organized in a circle called the Chord ring. Pastry
uses a tree-like structure of nodes, aided by a ring structure similar to that of
Chord that is used for routing when the tree structure cannot find the proper
target. In Chord and other protocols, nodes employ a periodic “stabilization
algorithm” by exchanging ping messages to keep their local information about
the network up to date. An excellent survey of the different variants of DHT,
the underlying theory and applications can be found in [46].

While companies opting for P2P technology typically base their services on
their own proprietary implementations as in the examples mentioned above,
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these implementations are often based on or similar to the implementations
proposed in scientific publications. A prominent example of DHT-based appli-
cations is “distributed tracking” for trackerless BitTorrent systems mentioned
above, supported by many popular BitTorrent clients. Arguably the largest
practical implementation of DHT is the distributed BitTorrent tracking im-
plementation Mainline DHT, based on Kademlia. In 2013, a study measured
Mainline DHT users to range from 10 million to 25 million, with a daily churn of
at least 10 million [40]. Proprietary DHT implementations include Oracle Co-
herence, Oracle’s Java-based in-memory data grid, and Amazon’s DynamoDB
database service [17].

Published proposals of DHT protocols typically make claims regarding the
reliability and stability of the given protocol under churn. However, these
claims are usually supported by paper-and-pencil arguments at best. With
popular P2P-based applications suffering from connectivity problems due to
churn, it has become increasingly clear over the years that the reliability of
current DHT technology cannot be guaranteed as was once believed. Skype,
for example, which is based on a proprietary P2P implementation that is most
likely a DHT, has suffered two major outages in 2007 and December of 2010,
the latter being due to the abrupt failure of a large number of “supernodes”. In
just a few hours, the number of online Skype users dropped from 23.3 million
users to around 1.6 million. The outage lasted for two days.

Such outages obviously come with a huge bill for business. This risk, along
with the increasing usage of P2P/DHT technology in many applications where
fault-tolerance is required, has motivated a line of research that looks into the
verification of P2P protocols, and in particular DHT, using formal methods like
formal modeling, simulation and model checking. Naturally, the analysis and
verification of such large distributed systems is anything but trivial. In fact,
due to the size and complexity of such systems, most verification efforts have
been limited to studying only fragments of these protocols—such as lookups in
a static network where nodes do not join or leave—typically using lightweight
methods such as modeling and simulation.

This thesis is a work in this line of research that studies the correctness
of Pastry using full theorem proving. I verify the correctness of lookups (get
requests) for two variants of Pastry by giving a complete proof of correctness
using the interactive proof assistant TLA+. It has already been shown in [27]
that all published versions of Pastry violate this correctness property, since
node leaves and failures may cause the network to separate irreversibly, leading
to incorrect delivery of lookup messages. In this thesis, I prove that the pure-
join model of Pastry is correct w.r.t. delivery of lookup messages. I also show
that in the pure-join model, correctness still holds using a node join process
that is simpler than the ones proposed for Pastry, for example in [21, 27].

In what follows, I discuss some of the relevant literature on the subject
of formal verification of P2P protocols. Next, I describe the contribution of
this thesis to this research area. This is followed by a brief description of the
tools and techniques used in this thesis, in particular the proof assistant TLA+.
Finally, I give a short outline of the remainder of this thesis.
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Related Work

Chord [38] has been one of the most studied DHT implementations in recent
years, and operates in a way that is very similar to Pastry. It implements a
distributed hash table as follows. A consistent hash function assigns each key
and each live Chord node an m-bit identifier (a node’s identifier is determined
by hashing its IP address, while a key’s identifier is determined by hashing
the key). The identifier space is arranged as a “circle” called the Chord ring,
containing the 2m possible identifiers ranging from 0 to 2m − 1. A key k is
assigned to the first node n whose identifier is equal to or follows that of k on
the ring; n is called the successor of k . Each node n maintains a successor
list of its successor nodes on the ring, and a finger table for efficient routing,
which contains the addresses of up to m nodes at different “distance classes”
from n. In particular, the i th entry is the first node at least 2i−1 identifiers
after n on the ring. Chord nodes employ a periodic “stabilization algorithm”
to keep their successor lists and finger tables up to date. Correct lookups can
be guaranteed if each node knows its immediate successor on the ring. Due
to node failure, however, this may not be the case. The effect of node failure
is mitigated by replication, hence the successor lists; the bigger the size r of
the successor list, the higher the probability that a lookup request for a key
returns the correct node.

Bakhshi et al. describes an abstract model for structured P2P networks with
a ring topology in π-calculus, and uses this model to verify the stabilization
algorithm of Chord by establishing weak bisimulation between the specifica-
tion of Chord as a ring network and the implementation of the stabilization
algorithm [4]. This is a pure-join model in which node failure is not taken into
account, and features such as finger tables and successor lists are not modeled.

Zave has done a lot of work verifying Chord. Using Alloy to formally model
and verify Chord, she shows that the pure-join protocol—i.e. where nodes do
not leave the network—is correct, but that the full version of the protocol may
not maintain the claimed invariants [44]. In [45], she presents a full version
of Chord (where both node joins and leaves are modeled) with a partially-
automated proof of correctness. The correctness of this version of Chord relies
on the assumption that there is a stable base of r +1 permanent ring members,
where r is the size of the successor list.
DKS [1] is a distributed hash table implementation, where the name is

short for distributed k-ary search. DKS(N , k , f ) describes a P2P protocol for
a network of maximum size N , a search arity of k within the network, and a
fault-tolerance parameter f . Briefly, distributed k -ary search performs a lookup
for any key t in at most logk (N ) hops. Initially, the search space is the entire
key space of the hash table. At each step of the distributed search, the current
search space is divided into k equal parts, each part being the responsibility
of a different node. This partitioning is repeated until each partition contains
only one element, at which point the part containing key t is the lookup target.
DKS can be seen as a generalization of other systems like Chord, Pastry or

Tapestry. Like Chord, DKS also has a ring structure, though, according to the
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authors, this structure is arbitrary and the algorithms provided work for other
network topologies as well. The distinguishing feature of DKS is that unlike
other protocols, it does not employ an active correction routine for the nodes’
routing tables or other local information. Instead, routing tables are corrected
on-the-fly while performing lookups and insertions. This idea is based on the
observation that, in P2P systems where the number of lookups and insertions
is significantly higher than the number of node joins, leaves and failures, cor-
recting routing tables on the fly during lookup and insertion operations saves
the unnecessary bandwidth consumption incurred by a periodical correction
mechanism.
DKS allows nodes to join and leave the network freely. Like Chord, a

node joins a DKS network by sending a join request to its successor on the
ring. Joins are “atomic” in the sense that a node i receiving more than one
join request at a time has to handle at most one at a time. A node may leave
gracefully by informing other nodes of its leaving, or fail abruptly. It is claimed
that the system can still provide reliable lookup if no more than f consecutive
nodes fail simultaneously.

The authors of DKS conduct some experiments using simulation to observe
how lookup efficiency is affected by churn [1]. DKS is also described in detail in
the Ph.D. thesis of Ghodsi [20]. In this thesis, Ghodsi discusses several issues
such as concurrent joins and node failure, and claims that it is impossible to
guarantee correctness where node failure is possible, due to the possibility of
network separation. Another work on DKS is by Borgström et al., who use
CCS for the formal verification of lookups in the static case of the protocol,
i.e. without taking node joins or failure into account [9].

The most relevant work as well as the starting point of this thesis was done
by Lu [29, 30, 27] on Pastry. Pastry has a ring structure that is very similar
to Chord, and employs successor as well as predecessor lists for each node,
called the “leaf set” of that node. Instead of Chord’s finger table, each node
possesses a routing table, whose entries are determined by the length of the
common prefix of bits between the entry’s ID and the ID of the node. Like
Chord, correct delivery of lookup messages can be guaranteed in Pastry if each
node has a correct leaf set, or at least correct information about its direct
successor/predecessor on the ring, regardless the content of the routing table.

Lu models Pastry in TLA+, and uses the accompanying TLC model checker
and the TLAPS proof assistant to formally verify correct delivery of lookup
(get) messages: at any point in time, there is at most one node that answers a
lookup request for a key, and this node must be the closest live node to that key.
As in the case of Chord, Lu discovers several problems in the original Pastry
protocol. He also shows that the improvements proposed in later publications
on Pastry, as in [21], still do not guarantee consistency. Finally, he presents
a pure-join variant of Pastry, which he calls LuPastry, for which he verifies
correct delivery under the strong assumption that nodes never fail. Notably,
Lu’s Pastry variant also enforces “atomic” joins where a live node may only
facilitate the joining of one new node at a time, as in the case of DKS. Lu’s
proof reduces correct delivery to a set of around 50 claimed invariants, which
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are proven with the help of TLAPS. As such, LuPastry represents a major effort
in the area of computer-aided formal verification of distributed algorithms.

Still, Lu’s proof relies on many unproven assumptions relating to arithmetic
and to protocol-specific data structures. This is likely due to the sheer size of
the proof and the lack of maturity of the TLA+ proof assistant at the time.
Upon examining Lu’s proof, I discovered counterexamples to several of the
underlying assumptions. While I was able to prove weaker variants of many
assumptions, this was not possible for others. In fact, I was able to find a
counterexample to one of Lu’s claimed main invariants, for which the TLA+

proof was only possible because of incorrect assumptions. This has led me
to redesign the overall proof of correctness for LuPastry, and, in the process,
improve the TLA+ specification of the protocol in many ways.

While working on the new proof, I also realized that the node join process of
the protocol can be made significantly simpler without impacting correctness.
In particular, the final “lease exchange” step, a handshaking step between a
new node and its neighbor nodes before it becomes an active participant, is
unnecessary for correctness in the join-only scenario. In fact, this exchanging
of leases was not part of the original Pastry protocol published in [37], but
introduced by the authors in a later paper, among other improvements to the
protocol [21]. While not explicitly stated, the likely reason behind introducing
this additional step was improving the accuracy of the leaf sets and, conse-
quently, the consistency of lookups in the protocol. As Lu shows, however, this
lease exchange step does not guarantee lookup consistency; the full dynamic
protocol where nodes join and leave freely violates correct delivery of lookup
messages, even with the implementation of lease exchange. I observe, on the
other hand, that the pure-join model is correct without this step. As a result
of this observation, I have formalized a simpler variant of the LuPastry speci-
fication where the lease exchange step is omitted, and proven correct delivery
of messages for this simpler variant.

Contribution of This Thesis

The contributions of this thesis are as follows.

1. LuPastry+. An improved version of the TLA+ specification of LuPastry
[27]. Aside from fixing bugs, the specification is rewritten in a more
modular way using new operators which greatly improve the level of
automation in the correctness proof.

2. LuPastry+ Correctness Proof. A complete, rigorous proof of correct
delivery of lookup messages for LuPastry+ in TLA+.

3. Simplified LuPastry+. A variant of LuPastry+ with a simpler node
join process in which the lease exchange step is omitted.

4. Simplified LuPastry+ Correctness Proof. A complete, rigorous
proof of correct delivery of lookup messages for Simplified LuPastry+ in
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TLA+. This proof is adapted from the correctness proof for LuPastry+,
and represents a success story in proof reuse.

This thesis presents a unique contribution in the following ways. First, it is
a study of two dynamic variants of Pastry that is not only limited to the static
view of the network, but also allows for nodes to join the network concurrently.
Second, the form of verification used here is full theorem proving, instead of
less rigorous methods such as simulation or model checking. Third, the proof
of correctness for Simplified LuPastry+, which was adapted from the original
proof for LuPastry+, presents a unique success story in proof reuse, particularly
for such a large proof of over 32,000 proof interactions.

Tools and Techniques

Formal Verification

Formal verification of a (hardware or software) system is the act of checking
the correctness of the system—i.e. that the system operates as intended by
satisfying a set of specific requirements/properties—using formal methods of
mathematics.

There are different approaches to formal verification that vary in rigor, and
accordingly in the time and effort required to apply them. Regardless the
approach taken, one has to start with a specification of the system: a model
of the system describing its desired behavior, written in the mathematical
notation of choice, such as logic, automata, Petri nets, process algebra or set
theory [7]. A specification should be as precise, unambiguous, concise and
complete as possible. Two approaches of formal verification are relevant to
this thesis: model checking and theorem proving.

Model checking. Model checking consists of checking that every possible
state the system can reach from its initial state fulfills the desired properties.
For finite-state systems, this approach is rigorous. It is also possible to apply
model checking on infinite models where infinite sets of states can be effectively
represented finitely. In systems with arbitrary size, model checking can be used
to verify instances of the system that have a fixed size, which helps find bugs
and gain confidence in the correctness of the full system specification, but does
not serve as proof. That is, model checking is helpful in proving the presence,
rather than the absence, of bugs [6]. Model checking has the advantage of
being fully automatic and requiring little interaction from the user. However,
a typical problem with model checking is “state explosion”, since for many
practical systems, the state space is either infinite or increases exponentially
with the number of variable parameters of the system [3].

Theorem proving. Deductive verification is the process of generating a col-
lection of mathematical proof obligations, the truth of which implies the cor-
rectness of the system, which are then discharged or proven by a dedicated
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theorem prover. An automated theorem prover attempts to prove or disprove a
given proof obligation in a completely automated manner, without interference
from the user. Such provers can be general-purpose provers like Spass [41] or
Zenon [8], or SMT (Satisfiability Modulo Theory) provers like CVC4 [5] or Z3
[16], which handle proof obligations relating to a certain theory such as the
theory of arithmetic or set theory.3 For large systems, an interactive theorem
prover, also called a proof assistant, is a software tool that assists a user in writ-
ing large proofs, where the individual proof obligations are sent to a back-end
automated theorem prover. Applying theorem proving to large systems can be
a very lengthy and expensive process, and requires a very deep understanding
of the system and many interactions with the proof assistant.

TLA+

TLA+ is a formal specification language for modeling and verifying distributed
systems. In TLA+, one can write a specification of the system, assert properties
of the system, and write proofs for these properties.

The specification language is based on Temporal Logic of Action (TLA),
a variant of linear-time temporal logic designed by Leslie Lamport in 1994,
for specifying system behavior, and untyped Zermelo-Fränkel set theory for
describing data structures. Systems are specified as state machines over a
tuple of state variables by defining a state predicate Init and a transition
predicate Next that constrain the possible initial states and the next-state
relation. Transition predicates (also called actions) are first-order formulas
that contain unprimed and primed state variables for denoting the values of
the variables in the state before and after the transition.

Asserted properties of TLA+ specifications are also expressed as logic for-
mulas. These properties can be verified for finite instances of the specification
using TLC [43], TLA+’s explicit-state model checker. For instances of infinite
or arbitrary size, the properties can be proven by writing proofs in the TLA+

Proof System TLAPS [15], shown in Figure 2.1. TLAPS is based on a hierar-
chical proof language; the user writes a TLA+ proof in the form of a hierarchy
of proof steps. Each step is interpreted by the proof manager, which gener-
ates corresponding proof obligations and passes them to automatic back-end
provers, including Zenon, Isabelle/TLA+, and SMT solvers. Larger steps that
cannot be proven directly by any of the back-end provers can be broken fur-
ther into sub-steps. Because the language is untyped, part of the proof effort
consists in proving a typing invariant that expresses the shapes of functions
and operators.

TLA+ and tools can be used from within the TLA+ toolbox. The toolbox
is an all-in-one IDE that allows users to write TLA+ specifications, run the
TLC model checker, and write and verify proofs using the proof manager. The
TLA+ specification and proof language are briefly explained in Chapter 3.

3More accurately, since both of these theories are very expressive and undecidable, SMT
solvers typically focus on decidable fragments of these theories such as quantifier-free linear
arithmetic over integers or reals.
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TLA+

Toolbox

(IDE)
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Call back-end provers
to attempt proof.

Certify proof
(optional, when possible).

SMT Solvers Zenon Isabelle PTL (ls4) . . .

Figure 2.1 – The TLA+ proof system.

Methodology

I prove the safety property “correct delivery” for two different variants of Pas-
try. The property states that at any point in time, there is at most one node
that answers a lookup request for a key, and this node must be the closest live
node to that key [27].

For each variant of Pastry, the methodology used for finding the proof is
illustrated in Figure 2.2. The variant of Pastry in question is expressed as a
TLA+ specification, and the property correct delivery is proven by reducing
it to a number of inductive invariants of the specification. A property P is
an invariant of a given specification if it holds at every initial state of the
specification, as well as all states reachable from the initial states. P is an
inductive invariant if it holds at every initial state of the specification, and
is preserved by all transitions. By this definition, every inductive invariant is
an invariant, since properties valid at the initial state(s) and preserved by all
transitions are valid at all reachable states.

The most challenging part of the proof process is coming up with the nec-
essary and correct inductive invariants. The process of inferring the needed
correctness invariants works as follows. First, I express a property P that
seems both useful to the proof of correct delivery and also a correct inductive
invariant of the specification. I use model checking to check if there are any
counterexamples to this property in a small-size network of e.g. four or eight
nodes. If TLC finds counterexamples, then P is not an invariant of the speci-
fication and needs to be reformulated accordingly. If no counterexamples are
found, there is enough confidence to proceed to the next step of proving P to
be an inductive invariant using TLAPS by induction. This process may still
reveal counterexamples to P that could not be revealed by model checking,
again requiring the property to be revised. If P can be proven as an invari-
ant of the specification using TLAPS, it is added to the list of invariants that
can be used to prove correct delivery. The proof of correct delivery itself is a
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Figure 2.2 – Methodology used for the formal verification of Pastry using
TLA+.

process that runs in parallel to that of creating and modifying invariants; the
invariants found are motivated by the proof of correct delivery, and, in turn,
shape this proof.

Organization

This thesis is organized as follows. Preliminaries of peer-to-peer networks,
distributed hash tables, and the TLA+ language are presented in Chapter 3.
In Chapter 4, I present LuPastry+ and its specification in TLA+. In Chapter 5,
I describe the improvements that my new specification LuPastry+ introduces
to Lu’s original specification of LuPastry. I also summarize my analysis of Lu’s
partial proof of correctness and describe counterexamples I have discovered to
some of the assumptions and one claimed invariant in the proof. Finally, I show
the structure of my new, complete correctness proof for LuPastry+. The proof
itself is described in Chapter 6. In Chapter 7, I present Simplified LuPastry+,
in which the lease exchange phase of the node join process is eliminated, and
show how I adapt the TLA+ proof for LuPastry+ into a new proof of correctness
for the simplified protocol. Finally, Chapter 8 contains concluding remarks and
a discussion of limitations as well as possible future work.





Chapter 3

Preliminaries

3.1 Peer-to-Peer (P2P) Networks

In the traditional client/server architecture, which has been the de facto model
for internet applications since the early days, a client makes a service request
to a designated server, whose task is to receive and fulfill the request. This is
a centralized network model where clients and servers are two distinct types of
participants, with different capabilities and responsibilities, as shown in Figure
3.1a; clients are recipients of the service and do not share their own resources
with other network participants, and servers are providers of the service and
share their resources with the client. A typical example of the client/server
architecture is the HyperText Transfer Protocol (HTTP), where the client ini-
tiates a request to retrieve a certain web page, and the server responds to
the request. In this model, the centralized server holds most of the resources
and therefore represents the most important part of the system, as well as the
bottleneck.

In contrast to this model, peer-to-peer (P2P) is a decentralized application
architecture in which all participant nodes, or peers, are both suppliers and
consumers of the given service. Peers are considered to have equal capabilities,
and tasks or work loads are distributed among all peers. Each peer makes a
portion of its resources directly available to all other peers. Peers communicate
with each other without the need for coordination by a central server (see Figure
3.1b). P2P came into popularity through Napster, the file sharing system
released in 1999. Since then, it has become the underlying communications
model for many internet applications in many domains such as content delivery,
file sharing and multimedia streaming.

Participating nodes in a P2P network form a virtual overlay network on
top of the physical network. Communication still happens directly over the
underlying TCP/IP network, but at the application layer peers communicate
directly with each other via logical links. Each “logical” path in the overlay net-
work corresponds to an actual path in the underlying physical network. These
logical overlay links make the P2P network independent from the topology of

25
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Server

Clients

(a) Client/Server Model

Peers

(b) Peer-to-Peer Model

Figure 3.1 – The client/server model versus the decentralized P2P model.

the underlying physical network.

Because they utilize the resources of all peers, P2P networks have the char-
acteristics of decentralized control, self-organization, adaptation and scalabil-
ity.

However, all P2P networks were not created equal. P2P models can be clas-
sified as either pure or hybrid. Pure P2P networks are completely decentralized
and server-free, and all nodes are seen as identical in responsibilities and ca-
pabilities. Pure P2P models can be further classified as either structured or
unstructured. In their early days, pure P2P networks were unstructured. In an
unstructured P2P network, there is no structure or topology that is globally
imposed upon the different peers. Because of this lack of network topology,
added to the lack of a central server, when a peer issues a search for certain
piece of data in the network, the request is “flooded” through the network to
find as many peers as possible that have the required data [19]. While easy
to implement, this lack of structure causes a very high amount of unnecessary
network traffic and CPU/memory usage [47, 19].

This lack of structure caused the trend to shift for a period of time towards
a “hybrid” P2P architecture, which is a compromise between the client/server
model and the pure P2P model. Hybrid networks are P2P networks that still
employ some special servers (sometimes referred to as supernodes) for cer-
tain functions, for example to facilitate log-ins (joins), to coordinate part of
the node-to-node communication, or to maintain network connectivity. Com-
pared to pure unstructured P2P networks, hybrid models have the advantage
in applications where certain functions like search benefit from a centralized
structure while other functions benefit from the decentralized aggregation of
the resources of all nodes [42].

A key problem with pure P2P networks, and in particular with large-scale
networks, is how to efficiently manage the available resources. To compete with
the hybrid model, a structure is needed to efficiently utilize the resources of
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all peers. This motivated the rise of what is called structured P2P networks.
In a structured P2P network, a specific topology is enforced, and the protocol
ensures that using this structure, any node can efficiently search the network
for a particular piece of data and retrieve it. The most common structure
for a structured P2P network is a distributed hash table. Pastry, the focus of
this thesis, is a structured P2P protocol that implements a distributed hash
table. Other examples include Chord, CAN, Tapestry, Kademlia and DKS, all
mentioned in the previous chapter. Structured P2P networks like Chord and
CAN have been shown to outperform unstructured P2P networks with respect
to search functionality by several orders of magnitude [19].

Distributed Hash Tables (DHT)

A distributed hash table (DHT) is a decentralized distributed system that pro-
vides a lookup service similar to that of a hash table, but where different nodes
in the system are responsible for storing different (key, value) pairs (see Figure
3.2). Like a classic hash table, a DHT offers two main functions: put(k , v)
stores the value v at key k , and get(k) retrieves the value associated with key
k . As with a regular hash table, any participating node should be able to
efficiently retrieve the value associated with a given key. Most DHT imple-
mentations promise a lookup performance of O(log N ), where N is the number
of active nodes. Due to the lack of a central server with a global view of the
network, nodes in a DHT must collaborate to decide on their respective key
storage range, and to route put and get requests to the appropriate node.

Nodes forming a DHT are assigned unique identifiers. These identifiers
determine the topology of the network; messages from one node to another are
routed through a number of intermediate nodes, the route being determined
by node identifiers. Also, nodes determine their respective key storage range
based on their own identifiers.

Distributed hash tables have a variety of potential applications. For exam-
ple, they can be used to implement a distributed file-sharing system, where,
instead of all files being stored on one central server, different files can be stored
at different network nodes depending on the file’s hash key. In order to retrieve
a certain file, a node sends a lookup/get request with the hash key of the file.
The underlying DHT protocol ensures that the lookup message arrives at the
node storing the file in question.

From the perspective of this thesis, where correct delivery of messages is
concerned, put requests can be seen as get requests where the node receiving
the request performs the additional operation of storing a given value at a given
key that it manages. Therefore, only lookup/get requests are modeled in the
DHT protocols presented here.

3.2 Pastry

Pastry was first introduced in [37] as a “completely decentralized, fault-resilient,
scalable, and reliable” DHT with good locality properties. Each node in the
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P2P Network

Key Value

0 . . .
. . . . . .

63 . . .

Key Value

64 . . .
. . . . . .

127 . . .

Key Value

128 . . .
. . . . . .

191 . . .

Key Value

192 . . .
. . . . . .

255 . . .

Figure 3.2 – An example distributed hash table with four nodes and 256 keys.

Pastry network is assigned a unique identifier, which ranges from 0 to 2128− 1.
This identifier is assigned randomly when the node joins the network, and it
is assumed that the generated identifiers are uniformly distributed across the
identifier space. For example, a node’s ID may be generated as a cryptographic
hash of the node’s ID address or its public key. Because of this uniform distri-
bution, nodes with adjacent identifiers are likely to be in different geographical
locations.

As a DHT, the main function of Pastry is to efficiently route a given message
with a given key to the node whose ID is numerically closest to that key among
all live Pastry nodes. The expected performance of Pastry is O(log N ) routing
steps, where N is the number of live Pastry nodes.

The distinguishing feature of Pastry as opposed to other protocols like
Chord is that Pastry takes locality into account. It seeks to minimize not
only the number of routing steps in the overlay network, but also the distance
traveled by the message according to some proximity metric such as the num-
ber of IP routing hops. Two applications based on Pastry are the large-scale
storage utility PAST [18] and the publish/subscribe platform Scribe [13].

Node State Each node maintains a routing table, a neighborhood set, and a
leaf set. For the purpose of routing, node identifiers can be seen as numbers
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in base 2b . The routing table of a node contains entries at various distances
away from the node, based on the digits in the node’s identifier. In particular,
the entry at row r and column c of node i ’s routing table should contain a
node whose ID shares an r digit prefix with i ’s ID, and where the (r + 1)st

digit is c. This setup of the routing table achieves logarithmic-time routing in
the number of nodes. A node’s neighborhood set contains N nodes that are
closest to the node in terms of the predefined proximity metric (representing,
for example, the geographical location). This set is taken into account during
routing to enhance locality. A node’s leaf set, on the other hand, contains the
2L nodes with identifiers that are numerically closest to the node’s identifier
on both the left and right sides of the ring. A typical value for L is 2b . The
leaf set serves as the base case for routing, but its main function is to maintain
the structure of the Pastry ring and improve fault-tolerance. The leaf set is
the part of the Pastry node state that is most relevant to the correctness proof
presented in this thesis.

Node Joins When a new node wishes to join the network, the Pastry al-
gorithm assigns it a random identifier i . It is assumed that the node knows
about some Pastry node j . Node i sends a join request to j , and j forwards the
request through the network until it reaches the numerically closest node k to
i . Each node along the route of the join request message updates its informa-
tion to include i , and send i a message to “introduce itself”, attaching to the
message its own state (leaf set, routing table and neighborhood set). When
node k receives i ’s join request, it responds to it and sends i its own state.
Node i builds its own leaf set, neighborhood set and routing table from the
information it receives from k and other nodes. Finally, i contacts all nodes
in its leaf set, neighborhood set and routing table, sending them a copy of its
state. At this point, i is ready to fully participate in the Pastry network and
route and receive messages.

Node Leaves/Failure Pastry nodes may fail or leave the network silently,
without giving warning to other nodes. A Pastry node is considered failed
when its neighbors in the ID space cannot communicate with it. In the event
of node failure, the neighboring nodes lazily update their leaf sets as follows.
If node i fails, and nodes j and k are its immediate left and right neighbors on
the ID ring, then j contacts k and uses k ’s right leaf set to repair its own right
leaf set, and k uses j ’s left leaf set to repair its own left leaf set. This procedure
guarantees that nodes eventually repair their leaf sets if no more than L nodes
with adjacent identifiers fail at the same time.

Since its introduction, Pastry has been the subject of several publications.
In [11], the authors of Pastry present a study of its locality properties. They
also introduce some refinements to the node join and leave process, but these
refinements are mainly concerned with how routing tables are updated while
maintaining good locality properties. In [12], the authors propose a design
sketch of bootstrapping a Pastry network. In [10], the authors study attacks
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aimed at preventing correct message delivery in Pastry and similar structured
P2P networks, and presents defenses to these attacks, describing techniques
for secure node joining, routing table maintenance and message routing in the
presence of malicious nodes. In [31], the authors discuss techniques to reduce
overhead incurred by the stabilization mechanism, which nodes use to repair
their state under continuous joins and leaves.

Lease Exchange

In a 2005 paper, the authors introduce a new leaf set stabilization protocol
for Pastry nodes [21]. In a Pastry network, a node’s responsibilities is mostly
determined by the portion of the ID space that its ID is numerically closest
to. Therefore, consistency in Pastry is determined first and foremost by the
reliability of nodes’ leaf sets. The authors introduce a new leaf set stabilization
protocol that aims to guarantee that, with high probability, only one node con-
siders itself responsible for a given key at any time, despite routing anomalies.
Essentially, this is the same property of interest in this thesis.

Briefly, the new leaf set stabilization mechanism relies on the concept of
key ownership, which I also denote in this thesis by key coverage, following the
convention of Lu in [27]. A node may only accept lookup messages and join
request messages for a key that it owns or covers. Ideally, a node should cover
exactly the set of keys that its ID is numerically closest to among all Pastry
nodes. The join process is modified so that at the end of the join process, a
node must explicitly agree on its key ownership/coverage range with both its
right and left neighbor nodes (according to its leaf set). Each neighbor releases
part of its key ownership, and the new node claims it. This takes place by
exchanging a series of messages, which are called leases in this thesis. While
it is not explicitly stated in the paper exactly which inconsistent behavior this
additional lease exchange step was designed to mitigate, it is claimed that
using this new mechanism, lookup messages can be guaranteed to arrive at the
correct node “with high probability”. In his Ph.D. thesis, Lu shows that this
lease exchange step does not guarantee correct delivery of lookups in all cases
[27]. In this thesis, I show that correct delivery of lookups is guaranteed in the
pure-join model of Pastry, even without lease exchange.

3.3 The TLA+ Language

I will illustrate the TLA+ specification and proof language first using a concise
summary taken from [24], and then by aid of an example of a simple specifi-
cation, taken from Leslie Lamport’s “TLA+ Hyperbook” [26] with some slight
modifications. The aim here is not to formally describe the TLA+ syntax and
semantics, but to give an intuitive understanding of the language that is suffi-
cient for understanding the TLA+ specifications and proof fragments presented
in the next chapters. For the interested reader, Merz presents a very clear and
compact explanation of TLA+ in [33]. An in-depth explanation can be found
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in Lamport’s 2002 textbook “Specifying Systems” [25], or the more up-to-date
“TLA+ Hyperbook” [26], available online as open-source and continuously be-
ing updated by Lamport.

A Summary of TLA+

A TLA+ specification consists of three main types of statements: declarations
of constant and variable parameters, definitions of functions and operators, and
assertions of assumptions and theorems.

Constant parameters are parameters whose values may differ from one in-
stance of the system to another, but that have fixed values during the entire
execution of one system instance. Variable parameters are parameters whose
values may change during system execution. The state of a system is defined
by the values of its variable parameters.

Definitions of operators and functions as well as the assertions in the specifi-
cation are expressed as logical formulas. TLA+ distinguishes between two types
of formulas: transition (or action) formulas and temporal formulas. Transition
formulas describe states and state transitions. Temporal formulas describe
behaviors, i.e. infinite sequences of states.

TLA+ specifications are organized in modules. A module may incorpo-
rate declarations, definitions, assumptions and theorems from other modules
M1, . . . ,Mn using the keyword extends.

extends M1, . . . ,Mn

Constants and variables are declared using the keywords constant and
variable (alternatively constants and variables).

constants C1, . . . ,Cn

variables V1, . . . ,Vm

Properties can be asserted as assumptions using the keyword assumption
or the synonymous assume, as axioms using the keyword axiom, or as theo-
rems using the keyword theorem or the synonymous lemma and corollary.
Assumptions, axioms and theorems may be given optional identifiers by insert-
ing id

∆
= after the keyword.

assumption P

theorem id
∆
= P
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Functions and operators are defined as follows. F (x1, . . . , xn)
∆
= exp

defines the operator F with arity n such that F (e1, . . . , en) equals exp with
every occurrence of xi replaced by ei . f [x1 ∈ S1, . . . , xn ∈ Sn ]

∆
= exp defines a

function f with arity n and domain S1×· · ·×Sn , such that f [x1, . . . , xn ] = exp
for all x1 ∈ S1, . . . , xn ∈ Sn .

F (x1, . . . , xn)
∆
= exp

f [x1 ∈ S1, . . . , xn ∈ Sn ]
∆
= exp

Functions are allowed to have recursive definitions, so the symbol f may
occur in the expression exp.

TLA+ expressions mainly inherit their syntax and semantics from both
Zermelo-Fränkel set theory and first-order logic. In the examples above, I use
P to denote expressions of assumptions and theorems, and exp for expressions
of function and operator definitions, implying a distinction between logical
formulas and general TLA+ expressions which may or may not have a boolean
type. However, TLA+ is based on purely untyped set theory that does not even
make a distinction between formulas and terms that exists in first-order logic.
In TLA+, every value is a set. The following, for example, is a syntactically-
correct statement of a lemma in TLA+.

lemma Strange
∆
= 3

Attempting to prove this lemma in TLA+, however, would fail using any
of the available back-end provers, since basically it is asking to prove that
3 = true, which is not provable (or disprovable) given TLA+ semantics.

Figure 3.3 shows the main constant operators of TLA+ that are relevant
for this thesis, extracted from Lamport’s compact summary of TLA+ syntax
in [24]. The first two parts of the table list operators from set theory and
first-order logic.

The TLA+ keyword choose is Hilbert’s choice operator. The TLA+ ex-
pression choose x : P(x ) (or choose x ∈ S : P) denotes some fixed but
arbitrary element x (in the set S ) for which the property P holds, if some such
x exists. If there is no such x , as in choose x ∈ Nat : x ∗ 0 = 1, the result of
the choose expression is not specified.

The next part in the table describes syntax for functions, tuples and records.
A tuple e = 〈e1, . . . , en〉 is a special kind of function whose domain is {1, . . . ,n}
for a natural number n, such that e[i ] = ei for i ∈ {1, . . . ,n}. A string is a
tuple of characters where the string “abc” is the same as 〈a,b, c〉. A record
is a function whose domain is a finite set of strings. For a record e = [h1 7→
e1, . . . , hn 7→ en ], e.hi denotes e[hi ], the hi component of the record e.

Finally, the last part of the table describes syntax for actions and temporal
operators.
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Sets

=, 6= Equality and negated equality.
∈ , /∈ Set membership and its negation.

∪,∩,⊆, \ Union, intersection, subset and set difference.
{e1, . . . , en} The set of elements e1, . . . , en .
{x ∈ S : P} The set of elements x in set S satisfying P .
subset S The power set of set S .

Logic

∧,∨,¬,⇒,≡ Conjunction, disjunction, negation, implication
and equivalence.

∀x : P For all x , P holds.
∃x : P For some x , P holds.

∀x ∈ S : P For all x in the set S , P holds.
∃x ∈ S : P For some x in the set S , P holds.

true, false Boolean constants for truth > and falsehood ⊥.
boolean The set {true, false}.

choose x : P(x ) An x satisfying P .
choose x ∈ S : P(x ) An x in the set S satisfying P .

Functions, Tuples and Records

f [e] The application of function f to expression e.
domain f The domain of function f .
[X → Y ] The set of functions with domain X and range

Y .
[x ∈ X 7→ e] A function f such that f [x ] = e for x in X .

[f except ![e1] = e2] A function f̂ equal to f except f̂ [e1] = e2. An @
in e2 equals f [e1].

e.h The h-component of record e.
[h1 7→ e1, . . . , hn 7→ en ] A record whose hi component is ei .

[h1 : S1, . . . , hn : Sn ] The set of all records with hi component in Si .
e[i ] The i th component of tuple e.

〈e1, . . . , en〉 An n-tuple with i th component ei .
S1 × · · · × Sn The set of all n-tuples with i th component in Si .

d1 . . . dn or d1 . . . dm .dm+1 . . . dn Integers and real numbers where di is a digit.

Actions and Temporal Operators

e ′ The value of e in the final state of an action.
unchanged e e ′ = e

[A]e A ∨ (e ′ = e)
enabled A An A action is possible.

Figure 3.3 – A summary of TLA+ syntax.
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TLA+ By Example

Consider two jugs, a big jug and a smaller jug. Initially, the two jugs are
empty. The following are the possible actions: (1) empty the small jug, (2)
empty the big jug, (3) fill the small jug from the faucet, (4) fill the big jug from
the faucet, (5) fill the small jug by pouring from the big jug, and (6) fill the
big jug by pouring from the small jug. Figure 3.4 shows a TLA+ specification
of this system in one module named TwoJugs.

First, because arithmetic operators such as +,− are not built-in operators
in TLA+, the module imports TLA+’s standard Naturals module. TLA+ pro-
vides standard modules for Naturals, Integers and Reals that define arithmetic
operators like the following.

a + b, a − b, a ∗ b Addition, subtraction, multiplication.
a < b, a ≤ b, a > b, a ≥ b Binary comparisons.

a . . b {n ∈ N : a ≤ n ≤ b}
ab Exponentiation.

a%b a mod b, such that 0 ≤ a%b < b
a ÷ b Division such that a = b ∗ (a ÷ b) + (a%b)

These modules also define the sets Nat , Int and Real of naturals, integers
and real numbers respectively.

The next two lines declare the constant and variable parameters of the spec-
ification. The constants BigCapacity and SmallCapacity denote the maximum
capacities of the big and small jug, respectively. The variables big and small
denote the amount of water in the big and small jugs at a specific point in
time, respectively.

The first definition of the module defines an operator Min, where Min(x , y)
returns the minimum of two numbers x and y . This operator will be useful for
later definitions in the specification.

The next line defines vars to be the tuple of variables of the specification,
vars

∆
= 〈big , small〉. At any point in time, the state of the system is defined by

the values of the variables vars. Specifications are defined as state-transition
systems, which means we need to define the initial state, and the next-state
relation.

The initial state is described by a TLA+ formula Init , which states that
initially, big = 0 and small = 0. The next six definitions in the module specify
the six possible actions of the system. In these formulas, unprimed occurrences
of a variable name denote the value of this variable before the transition, and
primed occurrences denote its value after the transition. The action FillSmall ,
for example, sets the next value of small to the maximum capacity of the small
jug, keeping the other variable big unchanged. TLA+ allows local declarations
in the form of let-in statements, as can be seen in the definition of action
SmallToBig .

The formula Next describes the next-state relation as a disjunction of all
the possible actions. Note that disjunctions and conjunctions can be written in
the form of “bulleted lists”, where the indentation indicates the nesting level.
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As mentioned above, TLA+ distinguishes between two types of formulas:
transition formulas and temporal formulas. Transition formulas describe states
and state transitions, like the definitions of Init ,Min,Next and the six action
formulas in our example. Temporal formulas describe behaviors, i.e. infinite
sequences of states. The system specification in our example is defined by the
following temporal formula, using the box symbol as in classic temporal logic
to mean “always”.

Spec
∆
= Init ∧2[Next ]vars

The formula Spec is a conjunction of the initial state Init and the formula
2[Next ]vars , which specifies that every transition either satisfies the action
formula Next or leaves vars unchanged.1

Proving in TLA+

Let us complete the module in Figure 3.4 with more definitions and a mean-
ingful proof, shown in Figure 3.5. Properties to be verified are also specified
in TLA+ as logical formulas. The invariant we would like to prove is the type
invariant of the specification variables.

TypeInvariant
∆
= big ∈ 0 . . BigCapacity ∧ small ∈ 0 . . SmallCapacity

Since practically nothing can be proven about constant parameters (there
are no definitions), we must make assumptions about their types, as in the
assumption ConstantTypes. Operators and functions have TLA+ definitions
from which the types can be inferred, as in the lemma MinType which states
the type of the operator Min by expanding its definition (using the keyword
def ).

We prove the type invariant by induction. The lemma InitTypeInvariant
represents the induction base case, and proves that the type invariant holds ini-
tially by definition of the initial state and the type invariant itself. The lemma
NextTypeInvariant represents the induction step and states that whenever the
type invariant holds immediately before a transition in Next , it will hold im-
mediately after the execution of that transition. The proof of this lemma is
more involved, and proceeds by a case distinction on the possible actions in
Next (part of the proof has been omitted for compactness). The proof consists
of steps, each of which is processed by the proof manager into one or more
proof obligations and sent to one or more of the back-end automated theorem
provers to solve. It is possible to specify exactly which back-end prover to use
on a particular step, as in the last step in the proof of this lemma which is sent
to the SMT back-end. A step that is too big for the back-end prover to handle
can be broken further into sub-steps; i.e. the proof is nested. Because this is

1Of course, the names Spec, Init and Next are not significant; they can be substituted
for other names.
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module TwoJugs

extends Naturals

constants BigCapacity , SmallCapacity
variables big , small

Min(x , y)
∆
= if x ≤ y then x else y

vars
∆
= 〈big , small〉

Init
∆
= big = 0 ∧ small = 0

FillSmall
∆
= small ′ = SmallCapacity ∧ big ′ = big

FillBig
∆
= big ′ = BigCapacity ∧ small ′ = small

EmptySmall
∆
= small ′ = 0 ∧ big ′ = big

EmptyBig
∆
= big ′ = 0 ∧ small ′ = small

SmallToBig
∆
=

let poured
∆
= Min(big + small , BigCapacity)− big

in ∧ big ′ = big + poured
∧ small ′ = small − poured

BigToSmall
∆
=

let poured
∆
= Min(big + small , SmallCapacity)− small

in ∧ big ′ = big + poured
∧ small ′ = small − poured

Next
∆
= ∨ FillSmall
∨ FillBig
∨ EmptySmall
∨ EmptyBig
∨ SmallToBig
∨ BigToSmall

Spec
∆
= Init ∧2[Next ]vars

Figure 3.4 – TLA+ specification of the “Two Jugs” problem.
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TypeInvariant
∆
= big ∈ 0 . . BigCapacity ∧ small ∈ 0 . . SmallCapacity

assume ConstantTypes
∆
=

∧ BigCapacity ∈ Nat
∧ SmallCapacity ∈ Nat
∧ BigCapacity > SmallCapacity

lemma MinType
∆
=

∀ x , y ∈ Nat : Min(x , y) ∈ Nat ∧Min(x , y) ≤ x ∧Min(x , y) ≤ y
proof by def Min

lemma InitTypeInvariant
∆
= Init ⇒ TypeInvariant

proof by ConstantTypes def Init , TypeInvariant

lemma NextTypeInvariant
∆
=

TypeInvariant ∧ [Next ]vars ⇒ TypeInvariant ′

proof
〈1〉 suffices assume TypeInvariant , [Next ]varsprove TypeInvariant ′

obvious
〈1〉1.case FillSmall
by 〈1〉1 def FillSmall , TypeInvariant
〈1〉2.case FillBig
by 〈1〉2 def FillBig , TypeInvariant
〈1〉3.case EmptySmall
by 〈1〉3, ConstantTypes def EmptySmall , TypeInvariant
〈1〉4.case EmptyBig
by 〈1〉4, ConstantTypes def EmptyBig , TypeInvariant
〈1〉5.case SmallToBig
proof omitted
〈1〉6.case BigToSmall
proof omitted
〈1〉7.case unchanged vars
by 〈1〉7 def TypeInvariant , vars
〈1〉 qed by SMT , 〈1〉1, 〈1〉2, 〈1〉3, 〈1〉4, 〈1〉5, 〈1〉6, 〈1〉7

def Next , vars

theorem AlwaysTypeInvariant
∆
= Spec ⇒ 2TypeInvariant

by PTL, InitTypeInvariant , NextTypeInvariant def Spec

Figure 3.5 – TLA+ example proof for the “Two Jugs” problem.
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a simple example, all proof steps have a depth of 1, as indicated by the prefix
〈1〉.

Finally, we prove the invariance of TypeInvariant in the specification Spec
using the two previous lemmas. This last theorem is proven using the Propo-
sitional Temporal Logic prover LS4.



Chapter 4

LuPastry+

This chapter presents LuPastry+ and its specification in TLA+. LuPastry+ is
based on Lu’s specification of Pastry, LuPastry [27]. Essentially, LuPastry+ is
an implementation of LuPastry with improved TLA+ definitions of functions
and operators and a number of bug fixes. As will be discussed in Chapter 5, the
improvements introduced in LuPastry+ are not only necessary for a rigorous
proof (because of the bug fixes), but also result in a shorter, more modular and
more readable proof of correctness.

4.1 An Overview of the LuPastry+ Model

The Network Ring, Coverage and Leaf Sets

In Pastry, the set of possible keys is the interval 0 . . 2M − 1 for some positive
integer M . Every live Pastry node is randomly assigned a unique identifier
from the same key space—i.e. node identifiers are also keys. The Pastry key
space can therefore be visualized as a ring with size 2M (see Figure 4.1a).

I use the convention that keys increase in a clockwise direction on the ring.
I also use the notion of right and left sides of a key: 0 is directly on the left
side of 1, while 2 is directly on its right side.

For the implementation of a distributed hash table, live nodes1 need to
distribute among them the responsibility for storing (key, value) pairs. Each
live node needs to determine its coverage: a contiguous range of keys, including
the node’s own ID, that the node is responsible for, or covers. If a node i covers
key k , then i considers itself (1) the proper recipient of all lookup messages
addressed to k , and (2) the node responsible for facilitating the joining of any
new node that is assigned ID k . In the absence of a central server and shared
memory, live nodes need to rely on message passing and local information to
agree on a proper division of coverage.

An ideal distribution of coverage among live nodes is shown in Figure 4.1b:
each two consecutive live nodes on the ring divide the coverage of keys that lie

1Fully-active network members that are not still in the process of joining.
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(b) Ideal distribution of coverage
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Figure 4.1 – An example of a Pastry ring of size 16, and the ideal distribution
of coverage among its live nodes.

between them (roughly) equally. For example, consider node 11 in the figure.
On one side of the node, there are four keys that lie between it and node 0,
which are {12, 13, 14, 15}. Therefore, node 11 should cover the two keys closest
to it, {12, 13}, while node 0 should cover the other two keys, {14, 15}. On the
other side of node 11, there are three keys between itself and node 7. Because
there is an odd number of keys, the tie is arbitrarily (but deterministically)
broken in favor of the left side. Therefore, node 7 covers the two keys closest
to it, namely {8, 9}, while node 11 covers the key 10. So the coverage of node
11 should be the keys {10, 11, 12, 13}.

A node i determines its coverage by maintaining a leaf set : a set containing
what i believes to be its L live neighbor nodes on both the left and right sides,
for a positive integer L. The left and right neighbors of a leaf set ls are the
closest nodes to the leaf set owner among all leaf set members.

In Figure 4.1b, for example, assuming correct leaf sets and L = 2, the leaf
set of node 11 would look like this.

Left Node Right
{4, 7} 11 {0, 4}

The left and right neighbors of node 11 on the ring are nodes 7 and 0,
respectively. Note that the left and right parts of the leaf set may overlap,
i.e. one node may be in both the right and left leaf sets. Also, in this example,
the leaf set is complete or full, i.e. it contains the maximum number of members
L on both sides.

Finally, the coverage end-points of a node are computed as the midpoints
between the node and its leaf set neighbors, and so the coverage of node 11 in
the example would be the interval [10, 13].
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Node 10233102
XXXXXXXXXXPrefix

Digit
0 1 2 3

0 -0-2212102 1 -2-2301203 -3-1203203
1 0 1-1-301233 1-2-230203 1-3-021022
2 10-0-31203 10-1-32102 2 10-3-23302
3 102-0-0230 102-1-1302 102-2-2302 3
4 1023-0-322 1023-1-000 1023-2-121 3
5 10233-0-01 1 10233-2-32
6 0 102331-2-0
7 2

Figure 4.2 – An example routing table of a node with ID 10233102, where node
IDs are interpreted as 8 digits in base 2B = 4.

The Routing Table

Theoretically speaking, one could rely completely on the leaf set for the routing
of messages among nodes. In order for node i to send a message to some other
node j , i would look for j in its leaf set. If i does not find j , it forwards the
message to some other leaf set member k1 on the way to j . Node k1, in turn,
becomes responsible for routing the message further on, either to j or some
other node k2 along the way, and so on. Because leaf sets only contain the
closest few neighbors of a node, routing in this way would take linear time in
the number of nodes. While sufficient for correct routing, this method is highly
inefficient.

Instead, it is possible to achieve logarithmic-time routing if each node main-
tains a routing table, which contains not only the closest neighbors to it, but
nodes at different ”distance classes” away from it. For example, each node i
may keep the addresses of nodes that are roughly at distances 2, 4, 8, 16, . . .
and so on away from i .

In Pastry, this is implemented as follows. The protocol takes as a parameter
a positive number B . All keys on the ring are interpreted as numbers in base
2B . Note that M has to be divisible by B . And so a key or node ID k will
have M ÷ B digits in base 2B , each digit in the range 0 . . 2B − 1.

The routing table of node i is essentially a matrix, with M ÷ B rows and
2B columns. The value at row r and column c in the matrix is either NIL if no
entry is present, or a node j that has the same r -digit prefix as i , and whose
(r + 1)st digit is c.

Routing tables can be illustrated using the following example taken directly
from [37]. In this example, M = 16, B = 2 and therefore the base is 2B = 4.
A node ID is read as an 8-digit number in base 4. Shaded cells indicate the
corresponding digit in the node’s ID. Figure 4.2 shows an example routing table
for a node with ID 10233102. Entries at row r have a shared prefix of exactly
r digits with the node.
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Node Failure

LuPastry+ operates under the same assumption of LuPastry that nodes do not
fail or leave the network.

Node Join

The node join process is illustrated in Figure 4.3. In LuPastry+, each node
is either “Dead” (not shown), “Waiting” (white), “OK” (gray) or “Ready”
(black). “Dead” nodes simply refer to keys in the key space that are not
assigned as identifiers to some node on the network. Only “Ready” nodes
facilitate the joining of new nodes into the network, and based on the join
model in the original LuPastry, a “Ready” node may only help at most one
new node join the network at a time.

Suppose some “Dead” node i that decides to join the network. It is assumed
that node i has the means of obtaining the address of some “Ready” node j ,
for example through some dedicated server. Node i starts the join process by
changing its status to “Waiting” and sending a join request to node j . Node j
forwards the join request to the “Ready” node k that covers key i . We denote
node k by the node responsible for i .

When node k receives the join request message, and when it is not handling
the joining of any other node, it responds to i with a join reply message. Node
k attaches its own leaf set and routing table to the join reply message, so that
node i can use them to eventually build its own leaf set and routing table.

When node i receives k ’s join reply message, containing k ’s leaf set, it
begins the probing phase: in order for node i to construct its proper leaf set
(and routing table), i sends probe messages to the nodes in the leaf set received
from k . More accurately, i only sends probe messages to the nodes that are
close enough to it on the ring to be contained in its leaf set.

All non-dead nodes that receive the probe from i potentially add i to their
leaf set, and respond to i with a probe reply message, attaching their own
leaf set. Node i continues to receive probe replies and to probe more newly-
discovered nodes. This process continues until i has probed all nodes it has
heard of that are close enough to i to be in i ’s leaf set.

When i has received probe replies to all its probes, and no new nodes have
been discovered, i finishes probing and changes its status to “OK”. “OK” nodes
can be viewed as semi-live nodes that have finished constructing their leaf sets
and routing tables, but must await confirmation from their leaf set neighbors
before becoming fully live, or “Ready”. In order for i to become “Ready”, i
has to exchange leases with both its left and right leaf set neighbors. Note that
one of those neighbors must be k , since k is the facilitator of i ’s join process
and therefore must be closest to i on the ring on either the right or the left
side (this is also proven in the correctness proof).

Node i sends out lease request messages to both its leaf set neighbors. If
i ’s neighbor is “Ready” or “OK”, and also considers i to be its neighbor, it
grants i the lease in a lease reply message. When i has received lease replies
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from both its neighbors, it switches to “Ready”, and grants its neighbors leases
in turn by sending them lease reply messages. When k receives i ’s lease reply
message, it may help other new nodes join the ring.

Because i is joining through k , k must be Ready, and i and k must be in
agreement that they are each other’s leaf set neighbors. Therefore, k must grant
i ’s lease request. Let us assume k is i ’s left neighbor, and i is k ’s right neighbor,
as in Figure 4.3. There is a possibility, however, that i ’s other neighbor r does
not see i as its left neighbor. Provably, this can only happen if there is another
Waiting node u between i and r that has started a join process through r ,
and has become r ’s left leaf set neighbor. In this case, i ’s lease request to r
is denied, and i cannot turn “Ready”; it must autonomously repeat the lease
request again at a later time until it is granted. This scenario is not relevant
for the safety property this thesis is interested in verifying. However, under
fairness conditions, i will eventually hear from u and update its leaf set to have
u as its right leaf set neighbor. Node i will repeat its lease request, this time
to u, and u will grant this request. Eventually, i will be able to turn “Ready”.

Communication

Communication is modeled as a set of messages that are “in transmission”,
i.e. pending messages that have been sent from the source node, but not yet
received by the destination node. Nodes send messages by adding them to
this set, and receive messages by removing them from this set. There is no
guarantee as to the order in which sent messages are read by the destination
node; the messages are not timestamped and message interleaving is fully al-
lowed. However, as will be seen in the TLA+ specification, a node may be
prevented from “receiving” a certain message—i.e. removing it from the set of
pending messages—until certain preconditions have been fulfilled. For exam-
ple, a Waiting node may not pick up any probes addressed to it until its leaf
set is non-empty. Message loss is simulated by arbitrarily dropping messages
from the set of pending messages.

4.2 The TLA+ Specification of LuPastry+

The complete picture of the TLA+ specification of LuPastry+ is shown in Fig-
ure 4.4. At the very bottom, the specification starts with the declaration of
constant parameters. Then, the network ring and the accompanying distance
functions are defined, followed by definitions of the necessary data structures or
“types”, like the leaf set, routing table and messages exchanged between nodes.
The dynamic aspect of the specification is described as a state-transition sys-
tem, where a state is defined by the values of the variables of the specification.
The variables are declared, followed by the definition of the initial state, and a
next-state relation given by a set of possible actions or events.
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Figure 4.3 – The LuPastry/LuPastry+ join protocol.
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The Next-State Relation

The Initial State

Specification Variables

Data Structures
The leaf set, routing table, message, and other types.

Ring Description
Distance functions and other arithmetic definitions.

Specification Parameters

Figure 4.4 – An overview of the LuPastry+ specification in TLA+.

Constant Parameters

The LuPastry+ specification takes the following constant parameters.

Definition 1 (LuPastry+ Constants).

constants A, B , M , L, NIL

These constants can be described as follows.

A The set of nodes that are live in the initial state.
B Keys are interpreted as numbers in base 2B .
M Decides the size of the Pastry ring 2M . Keys and node

identifiers are in the range 0 . . 2M − 1.
L The size of the left (right) leaf set of a node.
NIL Represents an empty slot in the routing table.

Ring Description and Distance Metrics

The ID interval and ring size are defined as follows.2

Definition 2 (Ring Interval and Size).

RingSize
∆
= 2M

I
∆
= 0 . . (RingSize − 1)

Two main distance metrics are used in LuPastry+, the clockwise distance
from one node to another, and absolute (shortest) distance between two nodes.

2As will be discussed in Chapter 5, the actual LuPastry+ definitions of ring size, leaf set
operations, leaf set neighbors and coverage rely on auxiliary operators but are “flattened”
here for clarity.
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Definition 3 (Clockwise Distance).

ClockwiseDistance(x , y)
∆
=

if y ≥ x then y − x else RingSize − x + y

Definition 4 (Absolute/Shortest Distance).

AbsoluteDistance(x , y)
∆
=

let d1
∆
= ClockwiseDistance(x , y)

d2
∆
= ClockwiseDistance(y , x )

in if d1 ≤ d2 then d1 else d2

In Figure 4.1, for example, where RingSize = 16, the clockwise distance
from node 1 to node 14 is ClockwiseDistance(1, 14) = 13, but the shortest
distance between them is counter-clockwise, AbsoluteDistance(1, 14) = 3.

Leaf Sets and Routing Tables

The leaf set data structure is defined as the following set of records.

Definition 5 (Leaf Set).

LeafSet
∆
= {ls ∈ [node : I , left : subset I , right : subset I ] :

∧ ls.node /∈ ls.left
∧ ls.node /∈ ls.right
∧ Cardinality(ls.left) ≤ L
∧ Cardinality(ls.right) ≤ L}

The content of a leaf set ls is the set of all nodes contained in this leaf set,
including its owner ls.node. The empty leaf set of a node i is a leaf set whose
owner is i and which has no members in the left or right sides.

Definition 6 (Leaf Set Content).

LeafSetContent(ls)
∆
= ls.left ∪ ls.right ∪ {ls.node}

Definition 7 (Empty Leaf Set).

EmptyLS (i)
∆
= [node 7→ i , left 7→ {}, right 7→ {}]
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A new leaf set may be obtained by adding nodes to, or removing nodes from,
another leaf set. The two operations are almost identical; the only difference
is the pool of nodes from which the new leaf set members are selected. When
adding a set of nodes a to a leaf set ls, the selection pool is the original members
of ls and the new nodes in a. When removing a set of nodes a from a leaf set ls
the selection pool is the original members of ls, excluding those in a. Members
of the new leaf set are selected as the (right and left) closest nodes to the leaf
set owner ls.node.

Definition 8 (Adding To Leaf Set).

AddToLS (a, ls)
∆
=

let i
∆
= ls.node

C
∆
= (ls.right ∪ ls.left ∪ a) \ {i}

NL
∆
= if Cardinality(C ) ≤ L then C

else choose S ∈ subset C :
Cardinality(S ) = L ∧ ∀ x ∈ (C \S ), y ∈ S :

ClockwiseDistance(y , i) < ClockwiseDistance(x , i)
NR

∆
= if Cardinality(C ) ≤ L then C

else choose S ∈ subset C :
Cardinality(S ) = L ∧ ∀ x ∈ (C \S ), y ∈ S :

ClockwiseDistance(i , y) < ClockwiseDistance(i , x )
in [node 7→ i , left 7→ NL, right 7→ NR]

Definition 9 (Removing From Leaf Set).

RemoveFromLS (a, ls)
∆
=

let i
∆
= ls.node

C
∆
= (ls.right ∪ ls.left) \ ({i} ∪ a)

NL
∆
= if Cardinality(C ) ≤ L then C

else choose S ∈ subset C :
Cardinality(S ) = L ∧ ∀ x ∈ (C \S ), y ∈ S :

ClockwiseDistance(y , i) < ClockwiseDistance(x , i)
NR

∆
= if Cardinality(C ) ≤ L then C

else choose S ∈ subset C :
Cardinality(S ) = L ∧ ∀ x ∈ (C \S ), y ∈ S :

ClockwiseDistance(i , y) < ClockwiseDistance(i , x )
in [node 7→ i , left 7→ NL, right 7→ NR]

Leaf set neighbors of a leaf set ls are defined to be the closest nodes to the
leaf set owner ls.node among all leaf set members.
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Definition 10 (Leaf Set Neighbors).

LeftNeighbor(ls)
∆
=

if ls.left = {} then ls.node
else choose n ∈ ls.left : ∀m ∈ ls.left :
ClockwiseDistance(n, ls.node) ≤ ClockwiseDistance(m, ls.node)

RightNeighbor(ls)
∆
=

if ls.right = {} then ls.node
else choose n ∈ ls.right : ∀m ∈ ls.right :
ClockwiseDistance(ls.node, n) ≤ ClockwiseDistance(ls.node, m)

A leaf set is complete if both the left and right parts contain L nodes.

Definition 11 (Complete Leaf Set).

IsComplete(ls)
∆
= Cardinality(ls.right) = L ∧ Cardinality(ls.left) = L

Finally, the interval [LeftCoverage(ls),RightCoverage(ls)] is the coverage
region of leaf set ls. The TLA+ predicate Covers(ls, k) is true if key k is in
the coverage range of leaf set ls. If every node knows its true right and left
neighbors on the ring, this interval computes the ideal coverage as shown in
Figure 4.1b. However, if a node’s leaf set is not up-to-date, the leaf set neighbor
of a node may not be its true live neighbor on the ring. Therefore, a node may
under- or over-estimate its coverage region.

Definition 12 (Coverage).

LeftCoverage(ls)
∆
=

if LeftNeighbor(ls) = ls.node then ls.node
else (LeftNeighbor(ls) +
(ClockwiseDistance(LeftNeighbor(ls), ls.node)÷ 2 + 1))%RingSize

RightCoverage(ls)
∆
=

if RightNeighbor(ls) = ls.node
then (RingSize + ls.node − 1)%RingSize
else (ls.node +
ClockwiseDistance(ls.node, RightNeighbor(ls))÷ 2)%RingSize

Covers(ls, k)
∆
=

ClockwiseDistance(LeftCoverage(ls), k)
≤ ClockwiseDistance(LeftCoverage(ls), RightCoverage(ls))
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Because the routing table is irrelevant to the correctness proof presented
here, most TLA+ specifics are omitted for the sake of compactness and clarity.
Analogously to the leaf set, the routing table data structure is defined by
RoutingTable. EmptyRT denotes the empty routing table (i.e. where all entries
are NIL), and RTContent(rt) is the set of nodes in routing table rt , excluding
NIL entries. AddToRT (a, rt , i) defines the operation of adding the set of nodes
a to the routing table rt belonging to node i .

The TLA+ formula NextHop(i , j ) determines the next node on the path
from i to j , based on i ’s leaf set and routing tables. If there is no route possible,
e.g. if i ’s leaf set and routing tables are empty, then NextHop(i , j ) = i . If j is
a member of i ’s leaf set or routing table, then NextHop(i , j ) = j . Otherwise,
NextHop(i , j ) = k for some k 6= i , k 6= j such that k is closer to j than i is in
terms of absolute distance on the ring.

Messages

Nodes can exchange messages of the following types: (1) a lookup message,
“Lookup”, (2) a routing error message, “IllegalRoute”, (3) a join request, “Join-
Request”, (4) a join reply, “JoinReply”, (5) a probe message, “Probe”, (6) a
probe reply message, “ProbeReply”, (7) a lease request message, “LeaseRequest”,
and (8) a lease reply message, “LeaseReply”. A message in TLA+ is defined as
a record with a destination and a content. The content of a message contains
all relevant information, such as the message type, its sender, or any other
attachments like a leaf set or a routing table.

Definition 13 (Message).

msg Lookup
∆
= [type : {“Lookup”}, node : I ]

msg NoLegalRoute
∆
= [type : {“NoLegalRoute”}, key : I ]

msg JoinRequest
∆
= [type : {“JoinRequest”}, rt : RoutingTable,

node : I ]
msg JoinReply

∆
= [type : {“JoinReply”}, rt : RoutingTable,

ls : LeafSet ]
msg Probe

∆
= [type : {“Probe”}, node : I , ls : LeafSet ,

failed : subset I ]
msg ProbeReply

∆
= [type : {“ProbeReply”}, node : I , ls : LeafSet ,

failed : subset I ]
msg LeaseRequest

∆
= [type : {“LeaseRequest”}, node : I ]

msg LeaseReply
∆
= [type : {“LeaseReply”}, ls : LeafSet ,

grant : boolean ]
MessageContent

∆
= msg Lookup ∪msg NoLegalRoute
∪msg JoinRequest ∪msg JoinReply
∪msg Probe ∪msg ProbeReply
∪msg LeaseRequest ∪msg LeaseReply

Message
∆
= [destination : I , content : MessageContent ]
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Variable Parameters

The state of a LuPastry+ network is represented as the tuple vars of variables.

Definition 14 (LuPastry+ Variables).

vars
∆
= 〈MessagePool , Status, LeafSets, RoutingTables, Probing ,

Leases, Grants, ToJoin, Failed〉

MessagePool represents the set of messages currently in transmission. Mes-
sages are added to this set by the sending node and removed when they are re-
ceived by the destination node. Variables Status, LeafSets, and RoutingTables
are arrays whose i th entries are the current status, leaf set, and routing table of
node i . Similarly, Probing [i ] is the set of nodes that node i has probed but has
not heard back from yet, Leases[i ] and Grants[i ] are the set of nodes i has ac-
quired leases from, and granted leases to, respectively. Lastly, ToJoin[i ] desig-
nates the node that is currently joining through i , if any, otherwise ToJoin[i ] =
i . Lastly, Failed [i ] is the set of nodes that i suspects to have died. Because
of the restriction imposed in LuPastry+ that nodes do not leave the network,
failure recovery is not modeled in the protocol and therefore the set Failed [i ]
is always provably empty.

The Initial State

The initial state of the LuPastry+ network is given by the formula Init .

Definition 15 (Initial State).

Init
∆
=

∧MessagePool = {}
∧ Status = [i ∈ I 7→ if i ∈ A then “Ready” else “Dead”]
∧ ToJoin = [i ∈ I 7→ i ]
∧ Probing = [i ∈ I 7→ {}]
∧ Failed = [i ∈ I 7→ {}]
∧ Leases = [i ∈ I 7→ if i ∈ A then A else {i}]
∧Grants = [i ∈ I 7→ if i ∈ A then A else {i}]
∧ LeafSets = [i ∈ I 7→ if i ∈ A

then AddToLS (A, EmptyLS (i))
else EmptyLS (i)]

∧ RoutingTables = [i ∈ I 7→ if i ∈ A
then AddToRT (A, EmptyRT , i)
else AddToRT ({i}, EmptyRT , i)]

Initially, there are no messages being exchanged, so MessagePool is empty.
The status of each node i is Ready if i belongs to the set A of initially-live
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nodes. No nodes are in the process of joining, so ToJoin[i ] = i for all i . No
node is probing other nodes, and no nodes are suspected as failed. An A-node
is assumed to have granted leases to, and obtained leases from, all other A-
nodes. Also, A-nodes include each other in their leaf sets and routing tables,
while Dead nodes have empty leaf sets and routing tables.

The Next-State Relation

The next-state relation defines the possible actions of the protocol and is given
by the following TLA+ formula Next .

Definition 16 (Next-State Relation).

Next
∆
=

∃ i , j ∈ I :
∨ Lookup(i , j )
∨ RouteLookup(i , j )
∨DeliverLookup(i , j )
∨ Join(i , j )
∨ RouteJoinRequest(i , j )
∨ ReceiveJoinRequest(i)
∨ ReceiveJoinReply(i)
∨ ReceiveProbe(i)
∨ ReceiveProbeReply(i)
∨ RequestLease(i)
∨ ReceiveLeaseRequest(i)
∨ ReceiveLeaseReply(i)
∨ LoseMessage

The last action in the formula, LoseMessage models message loss by drop-
ping an arbitrary message from the set MessagePool . This action is not relevant
for proving the safety property of interest in this thesis, but is included in the
specification since the underlying network is not assumed to be reliable. It can
be seen from the definition of Next and the high-level description in Section
4.1 that, with the exception of action LoseMessage, the actions of LuPastry+

can be divided into four main categories: lookups, join handling, probing and
lease exchange. The next section describes these actions in more detail.

Actions In Detail

Lookups

Lookups are modeled using three actions. A lookup message for some key j is
issued to any non-dead destination i through the action Lookup(i , j ).

A node i that receives a lookup message for some key j that it does not
cover has to forward this message to the closest node k to key j that it can
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find in its leaf set or routing table (possibly j itself). If no such k is found, an
error message is returned. This is modeled in the action RouteLookup.

Of particular relevance to the correctness proof is the action DeliverLookup,
where a node i receives a lookup request for a key j that it covers. Note that the
actual response to the lookup message is irrelevant to correctness and therefore
not modeled in the specification; the lookup message is simply received by i
and discarded.

Definition 17 (Action Lookup).

Lookup(i , j )
∆
=

let msg
∆
= [destination 7→ i , content 7→ [type 7→ “Lookup”, node 7→ j ]]

in ∧ Status[i ] 6= “Dead” ∧ i 6= j
∧MessagePool ′ = MessagePool ∪ {msg}
∧ unchanged 〈Status, RoutingTables, LeafSets, Probing ,

Failed , Leases, Grants, ToJoin〉

Definition 18 (Action Route Lookup).

RouteLookup(i , j )
∆
=

Status[i ] 6= “Dead” ∧ ∃m ∈ MessagePool :
∧m.content .type = “Lookup” ∧m.destination = i
∧m.content .node = j ∧ ¬Covers(LeafSets[i ], j )
∧ let nh

∆
= NextHop(i , j )

msg1
∆
= [destination 7→ nh, content 7→ m.content ]

msg2
∆
= [destination 7→ i ,

content 7→ [type 7→ “NoLegalRoute”, key 7→ j ]]
in ∧MessagePool ′ = (MessagePool \ {m}) ∪

if nh 6= i then {msg1} else {msg2}
∧ unchanged 〈Status, RoutingTables, LeafSets, Probing ,

Failed , Leases, Grants, ToJoin〉

Definition 19 (Action Deliver Lookup).

DeliverLookup(i , j )
∆
=

∧ Status[i ] = “Ready” ∧ Covers(LeafSets[i ], j )
∧ ∃m ∈ MessagePool :
∧m.content .type = “Lookup” ∧m.destination = i
∧m.content .node = j ∧MessagePool ′ = (MessagePool \ {m})
∧ unchanged 〈Status, LeafSets, RoutingTables, Probing , Leases,

Grants, Failed , ToJoin〉



4.2. THE TLA+ SPECIFICATION OF LUPASTRY+ 53

Join Handling

The join handling phase of the protocol is modeled in four actions. The first
action is Join, where a new node gets assigned the unused identifier j and
wishes to join the network. The node changes its status to Waiting, and issues
a join request message to some Ready node i . As can be seen in the definition,
Join(j , i) is an action executed by node j , but it refers to the local variable
Status[i ] of a different node i . This is the only place in the specification where
this is allowed; it is assumed that j has some means of obtaining the address of
some Ready node on the network, for example through the designated server
that is also responsible for assigning j its ID.

A node i that receives a join request from a node j that it does not cover
has to forward this request to the next node k along the way. This is modeled
by the action RouteJoinRequest .

If a Ready node i receives a join request message from a node j that it
covers, it can only handle this join request if it is not handling any other join
requests at the moment, i.e. if its to-join field is clear. In this case, i handles
the join request by setting its to-join field to j , adding j to its leaf set, and
responding to j with a join reply message. Node i attaches its leaf set to the
join reply message. This is modeled by the action ReceiveJoinRequest .

Finally, in action ReceiveJoinReply , a Waiting node i receives a reply to its
join request. Node i adds all content of the attached leaf set to its own leaf set.
Note that, in case of an overflow, only the L closest nodes to i from the left
and right sides will remain in i ’s new leaf set. Node i now enters the probing
phase by sending probe messages to those nodes that have been successfully
added to its leaf set, i.e. those nodes that are sufficiently close to it.

The TLA+ expression ProbeSet(i , ls, a, b) is simply a set of probe messages
from i to each node in a set of nodes b. Attached to each probe message is the
leaf set ls and a set of nodes a suspected by i to be failed nodes.

Definition 20 (Action Join).

Join(j , i)
∆
=

let msg
∆
= [destination 7→ i ,

content 7→ [type 7→ “JoinRequest”, rt 7→ EmptyRT ,
node 7→ j ]]

in ∧ Status[j ] = “Dead” ∧ Status[i ] = “Ready”
∧ Status ′ = [Status except ! [j ] = “Waiting”]
∧MessagePool ′ = MessagePool ∪ {msg}
∧ unchanged 〈RoutingTables, LeafSets, Probing , Failed , Leases,

Grants, ToJoin〉
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Definition 21 (Action Route Join Request).

RouteJoinRequest(i , j )
∆
=

Status[i ] 6= “Dead” ∧ ∃m ∈ MessagePool :
let nh

∆
= NextHop(i , j )

msg1
∆
= [destination 7→ nh, content 7→

[type 7→ “JoinRequest”,
rt 7→ AddToRT (RTContent(RoutingTables[i ]),

m.content .rt , i), node 7→ j ]]
msg2

∆
= [destination 7→ i ,

content 7→ [type 7→ “NoLegalRoute”, key 7→ j ]]
in ∧m.content .type = “JoinRequest” ∧m.destination = i

∧m.content .node = j ∧ ¬Covers(LeafSets[i ], j )
∧MessagePool ′ = (MessagePool \ {m}) ∪

if nh 6= i then {msg1} else {msg2}
∧ unchanged 〈Status, RoutingTables, LeafSets, Probing ,

Failed , Leases, Grants, ToJoin〉

Definition 22 (Action Receive Join Request).

ReceiveJoinRequest(i)
∆
=

Status[i ] = “Ready” ∧ ToJoin[i ] = i ∧ ∃m ∈ MessagePool :
∧m.content .type = “JoinRequest” ∧m.destination = i
∧ Covers(LeafSets[i ], m.content .node)
∧ let cont

∆
= [type 7→ “JoinReply”, rt 7→ m.content .rt ,

ls 7→ LeafSets[i ]]
msg

∆
= [destination 7→ m.content .node, content 7→ cont ]

in ∧MessagePool ′ = (MessagePool \ {m}) ∪ {msg}
∧ ToJoin ′ = [ToJoin except ! [i ] = m.content .node]
∧ LeafSets ′ = [LeafSets except ! [i ] =

AddToLS ({m.content .node}, @)]
∧ unchanged 〈Status, RoutingTables, Probing , Failed ,

Leases, Grants〉
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Definition 23 (Action Receive Join Reply).

ReceiveJoinReply(i)
∆
= Status[i ] = “Waiting” ∧ ∃m ∈ MessagePool :

∧m.content .type = “JoinReply” ∧m.destination = i
∧ let nrt

∆
= AddToRT (LeafSetContent(m.content .ls)

∪ RTContent(m.content .rt), RoutingTables[i ], i)
nls

∆
= AddToLS (LeafSetContent(m.content .ls), LeafSets[i ])

prb
∆
= LeafSetContent(nls) \ {i}

msg
∆
= ProbeSet(i , nls, {}, prb)

in ∧ RoutingTables ′ = [RoutingTables except ! [i ] = nrt ]
∧ LeafSets ′ = [LeafSets except ! [i ] = nls]
∧ Probing ′ = [Probing except ! [i ] = prb]
∧MessagePool ′ = (MessagePool \ {m}) ∪msg
∧ unchanged 〈Status, Leases, Grants, ToJoin, Failed〉

Probing

As mentioned above, a node begins the probing phase as soon as it has received
its join reply message. A node always attaches its own leaf set to any probe
message that it sends out. Nodes that receive a probe message may also start
probing new nodes that they discover in the attached leaf set of the message.

Therefore, two main actions describe the probing phase. In the action
ReceiveProbe, a node i receives a probe message from a node j . Node i adds
j to its leaf set and routing table, and looks in the attached leaf set for new
nodes that are potential members of its own leaf set. That is, i looks for nodes
that are close enough to it to be in its leaf set, but are not. Node i then sends
probe messages to those new nodes.

Action ReceiveProbeReply describes what happens when a node i receives
a reply to its probe from node j . Similarly to the action ReceiveProbe, node
i adds node j to its leaf set and routing table, and then looks in the message
attachment for new nodes to probe. Additionally, node i also removes j from
the set of nodes it is probing. Node i then checks to see if it has finished its
probing phase. If node i is a Waiting node and there are no more nodes left
for i to probe, node i changes its status to OK and starts a new phase, which
is the lease exchange phase. Node i sends lease request messages to its left and
right leaf set neighbors.
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Definition 24 (Action Receive Probe).

ReceiveProbe(i)
∆
=

∧ Status[i ] = “Ready” ∨ LeafSets[i ] 6= EmptyLS (i)
∧ ∃m ∈ MessagePool :
∧m.content .type = “Probe” ∧m.destination = i
∧ let j

∆
= m.content .node

nf
∆
= Failed [i ] \ {j}

nls1
∆
= AddToLS ({j}, LeafSets[i ])

nls2
∆
= AddToLS ((LeafSetContent(m.content .ls) \nf ), nls1)

pm
∆
= LeafSetContent(nls2)

prb1
∆
= (LeafSetContent(nls1) ∩m.content .failed) \ {i}

prb2
∆
= pm \LeafSetContent(nls1)

prb3
∆
= (prb1 ∪ prb2) \ (Probing [i ] ∪ nf ∪ {j})

cont
∆
= [type 7→ “ProbeReply”, node 7→ i ,

ls 7→ LeafSets[i ], failed 7→ nf ]
in ∧ Failed ′ = [Failed except ! [i ] = nf ]

∧ RoutingTables ′ = [RoutingTables except ! [i ] =
AddToRT ({j}, @, i)]

∧ LeafSets ′ = [LeafSets except ! [i ] = nls1]
∧ Probing ′ = [Probing except ! [i ] = @ ∪ prb3]
∧MessagePool ′ = (MessagePool
∪ {[destination 7→ j , content 7→ cont ]}
∪ ProbeSet(i , nls1, nf , prb3)) \ {m}

∧ unchanged 〈Leases, Status, Grants, ToJoin〉
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Definition 25 (Action Receive Probe Reply).

ReceiveProbeReply(i)
∆
=

Status[i ] 6= “Dead” ∧ ∃m ∈ MessagePool :
∧m.content .type = “ProbeReply” ∧m.destination = i
∧ let j

∆
= m.content .node

ls
∆
= m.content .ls

nf
∆
= Failed [i ] \ {j}

nls1
∆
= AddToLS ({j}, LeafSets[i ])

nls2
∆
= AddToLS ((LeafSetContent(ls) \nf ), nls1)

pm
∆
= LeafSetContent(nls2)

prb1
∆
= (LeafSetContent(nls1) ∩m.content .failed)

\ (Probing [i ] ∪ nf ∪ {i})
prb2

∆
= pm \ (LeafSetContent(nls1)

∪ Probing [i ] ∪ nf ∪ prb1)
prb3

∆
= (Probing [i ] ∪ prb1 ∪ prb2) \ {j}

fin
∆
= Status[i ] = “Waiting” ∧ prb3 = {}

msg1
∆
= [destination 7→ LeftNeighbor(nls1),

content 7→ [type 7→ “LeaseRequest”, node 7→ i ]]
msg2

∆
= [destination 7→ RightNeighbor(nls2),

content 7→ [type 7→ “LeaseRequest”, node 7→ i ]]
in ∧ RoutingTables ′ =

[RoutingTables except ! [i ] = AddToRT ({j}, @, i)]
∧ LeafSets ′ = [LeafSets except ! [i ] = nls1]
∧ Failed ′ = [Failed except ! [i ] = if fin then {} else nf ]
∧ Probing ′ = [Probing except ! [i ] = prb3]
∧ Status ′ = [Status except ! [i ] =

if fin then “OK” else @]
∧MessagePool ′ = (MessagePool
∪ ProbeSet(i , nls1, nf , prb1) ∪ ProbeSet(i , nls1, nf , prb2)
∪ if fin then {msg1, msg2} else {}) \ {m}

∧ unchanged 〈Leases, Grants, ToJoin〉

Lease Exchange

The lease exchange phase begins when a Waiting node i receives the last probe
reply message, changes its status to OK, and sends lease request messages to
its left and right leaf set neighbors.

A Ready/OK node i that receives a lease request grants the lease only if
the request comes from a leaf set neighbor. This is described in the action
ReceiveLeaseRequest .

There is a possibility that a node i issues a lease request to its leaf set
neighbor j , but by the time the request arrives at j , i is no longer j ’s leaf
set neighbor. This can happen if a new node k between i and j on the ring
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starts the join process through node j , becoming its new leaf set neighbor. In
this case, j does not grant i ’s lease request, and i must autonomously repeat
the request at a later time, when it may have updated its leaf set neighbor.
This case is handled by the action RequestLease, where a node i autonomously
requests a lease from one of its leaf set neighbors.

Finally, a node that receives a lease reply from its neighbor granting it the
lease, responds by granting its neighbor a lease in return. If the node has been
granted leases from both its neighbors, it switches from OK to Ready. This is
described by the action ReceiveLeaseReply .

Definition 26 (Action Receive Lease Request).

ReceiveLeaseRequest(i)
∆
=

Status[i ] ∈ {“OK”, “Ready”} ∧ ∃m ∈ MessagePool :
let gr

∆
= m.content .node ∈ {LeftNeighbor(LeafSets[i ],

RightNeighbor(LeafSets[i ])}
msg

∆
= [destination 7→ m.content .node,

content 7→ [type 7→ “LeaseReply”,
ls 7→ LeafSets[i ],
grant 7→ gr ]]

in ∧m.content .type = “LeaseRequest” ∧m.destination = i
∧Grants ′ = [Grants except ! [i ] =

if gr then @ ∪ {m.content .node} else @]
∧MessagePool ′ = (MessagePool \ {m}) ∪ {msg}
∧ unchanged 〈Status, RoutingTables, LeafSets, Probing ,

Failed , Leases, ToJoin〉

Definition 27 (Action Request Lease).

RequestLease(i)
∆
=

let ln
∆
= LeftNeighbor(LeafSets[i ])

rn
∆
= RightNeighbor(LeafSets[i ])

msg(d)
∆
= [destination 7→ d ,

content 7→ [type 7→ “LeaseRequest”, node 7→ i ]]
in
∧ Status[i ] = “OK”
∧ ¬(ln ∈ Leases[i ] ∧ rn ∈ Leases[i ])
∧MessagePool ′ = MessagePool
∪ if ln /∈ Leases[i ] then {msg(ln)} else {}
∪ if rn /∈ Leases[i ] then {msg(rn)} else {}

∧ unchanged 〈Status, LeafSets, RoutingTables, Probing , Failed ,
Leases, Grants, ToJoin〉
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Definition 28 (Action Receive Lease Reply).

ReceiveLeaseReply(i)
∆
=

Status[i ] ∈ {“Ready”, “OK”} ∧ ∃m ∈ MessagePool :
∧m.content .type = “LeaseReply” ∧m.destination = i
∧ let ln

∆
= LeftNeighbor(LeafSets[i ])

rn
∆
= RightNeighbor(LeafSets[i ])

nl
∆
= if m.content .grant

then Leases[i ] ∪ {m.content .ls.node}
else Leases[i ]

fin
∆
= ln ∈ nl ∧ rn ∈ nl ∧ Status[i ] = “OK”

msg(d)
∆
= [destination 7→ d ,

content 7→ [type 7→ “LeaseReply”,
ls 7→ LeafSets[i ], grant 7→ true]]

in ∧m.content .ls.node ∈ {ln, rn}
∧ Leases ′ = [Leases except ! [i ] = nl ]
∧ ToJoin ′ = [ToJoin except ! [i ] =

if ToJoin[i ] = m.content .ls.node then i
else @]

∧ Status ′ = [Status except ! [i ] = if fin then “Ready”
else @]

∧Grants ′ = [Grants except ! [i ] = if fin then @ ∪ {ln, rn}
else @]

∧MessagePool ′ = if Fin then (MessagePool \ {m})
∪ {msg(ln), msg(rn)}

else (MessagePool \ {m})
∧ unchanged 〈LeafSets, RoutingTables, Probing , Failed〉

As can be seen from the above definitions, a dead node has one capability,
which is to turn Waiting and issue a request to join the network. All non-Dead
nodes can initiate lookups and route lookup and join request messages. Only
Ready nodes handle lookup and join request messages. All non-Dead nodes
can exchange probe messages except Waiting nodes that have not received a
reply to their join request. Even after finishing the probing phase, a Ready/OK
node may still receive probes from other nodes, triggering a new probing phase;
these additional probing phases do not affect the Ready/OK status of a node
but only the content of its leaf set. Only Ready/OK nodes exchange lease
request and reply messages.

This concludes the TLA+ specification of LuPastry+. In the next chapter,
I present the key differences between LuPastry+ and the original specification
and proof of LuPastry by Lu.





Chapter 5

Improvements in LuPastry+ to
LuPastry

LuPastry+ is an improved version of the LuPastry specification in TLA+, ac-
companied with a complete proof of correct delivery of lookup messages. Sec-
tion 5.1 starts with an analysis of Lu’s partial proof of correct delivery for Lu-
Pastry, pointing out several counterexamples to assumptions used in Lu’s proof,
and highlighting the need for the new, complete proof I present in this thesis.
In Section 5.2, I describe the changes I introduce to Lu’s TLA+ specification
of LuPastry that make both the specification and the final correctness proof
more modular, readable and concise. Finally, Section 5.3 gives an overview of
the structure of the new correctness proof.

5.1 Lu’s Partial Proof of Correct Delivery

Figure 5.1 shows the structure of the original TLA+ specification and partial
correctness proof of LuPastry by Lu [27].1

1. At the bottom-most layer is Lu’s TLA+ specification of LuPastry.

2. The Arithmetic and Theory layer consists of a large number of unproven
mathematical assumptions, mostly stated as TLA+ lemmas where the
proof is omitted.

3. The Leaf Set Properties layer consists of a large number of unproven
assumptions on the leaf set data structure, which is the main relevant
data structure for proving correct delivery.

4. The Reduction to Invariants layer contains the main theorems that reduce
the safety property of correct delivery to a set of 50 claimed invariants

1Visualization and names assigned to proof layers are my own. Line counts represent the
total line counts of the individual TLA+ files, which may include whitepace and comments.
However, I exclude all trailing comments in a file.

61
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Proof of Invariants
50 Proven Invariants, 14,500 Lines

Type Lemmas and Invariant
3 Proven, 6 Unproven Lemmas, 1230 Lines

Reduction to Invariants
16 Proven Lemmas, 620 Lines

Leaf Set Properties
112 Unproven Lemmas, 1270 Lines

Arithmetic and Theory
140 Unproven Lemmas, 930 Lines

LuPastry Specification
1,575 Lines

Figure 5.1 – Structure of the original LuPastry specification and proof.

formulated by Lu. The lemmas and theorems in this layer are proven in
TLA+, but using the underlying unproven mathematical assumptions in
the Arithmetic and Theory layer, as well as unproven assumptions about
the leaf set data structure in the Leaf Set Properties layer.

5. The Type Lemmas and Invariant layer is concerned with the types of cer-
tain TLA+ operators, as well as the types of all specification variables in
vars which are given by the type invariant. This layer contains both un-
proven assumptions, and some lemmas proven relying on other unproven
assumptions.

6. Finally, the Proof of Invariants layer contains a complete TLA+ proof
of the 50 claimed invariants of the protocol. Naturally, this layer of the
proof relies heavily on the unproven assumptions about the leaf set data
structure and ring arithmetic.

The fact that Lu’s proof relied on a large number of unproven assumptions is
due to the sheer size of the proof, and the lack of maturity of the TLA+ proof
assistant at that time. For example, a large part of Lu’s proof was written
before the SMT back-end of TLA+ was developed, and therefore it was a
sensible decision at the time to make a separation between lemmas about data
structures, which often required theory reasoning and remained unproven, and
proven invariants relating to the behavior of the system.

I have attempted to prove Lu’s unproven assumptions, and found coun-
terexamples to many of them, such as arithmetic assumptions ignoring border
cases. Moreover, several assumptions were stated but not actually used later
in the proof. My analysis of Lu’s proof can be summarized in the following
points.
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1. Many assumptions in the Arithmetic and Theory layer were not used
later in the proof. Also, many assumptions were stated in such a way
that made them difficult to prove in TLA+ using the available encodings
from TLA+ to the back-end provers (for example, by relying heavily on
the division operator). Some assumptions ignored border cases, which
means they had to be reformulated (i.e. weakened). I did not attempt to
reformulate and prove all the lemmas in this layer, since it seemed more
efficient to start from the top-level proof and go back to prove only as
many arithmetic facts as needed. Moreover, as will be discussed in Section
5.2, I have changed some definitions in the LuPastry specification in order
to make arithmetic reasoning much simpler, for example, by replacing
division by multiplication whenever possible.

2. The Leaf Set Properties layer contains 112 unproven assumptions about
the leaf set data structure. Upon examining these assumptions, I could
prove only 21 directly. I discovered that 34 assumptions were unneeded
later in the proof. The rest of the assumptions were incorrect. I at-
tempted to reformulate and prove all incorrect assumptions in this layer.
For six of the assumptions, it was not possible to find a correct formula-
tion; i.e. the assumption could not be weakened in such a way that would
still make it useful for the proof. See Figure 5.2. As will be discussed
later, the new, complete proof required a new layer of leaf set lemmas in
which I include lemmas from Lu that could be reformulated and proven,
as well as many new lemmas that were required in the top-level proof.

3. The theorems in the Reduction to Invariants layer rely heavily on the
unproven arithmetic and leaf set assumptions, and reduce correct delivery
to a set of 50 claimed invariants by Lu. As I will point out in what follows,
I have discovered a counterexample to one of these claimed invariants.
Therefore, my conclusion was that a new reduction proof was needed,
reducing correct delivery to a set of proven correctness invariants, where
both the reduction proof and the proof of the correctness invariants would
rely only on proven facts about arithmetic and the leaf set data structure.

4. The Type Lemmas and Invariant layer also contains some unproven as-
sumptions. More importantly, it contains only a few lemmas and is miss-
ing lemmas about the types of most operators and functions of the spec-
ification. Because TLA+ is an untyped language, a significant part of
the proof of any TLA+ proof obligation is proving types for the TLA+

expressions appearing in that obligation. Therefore, a rigorous, complete
proof of correctness would require a much more comprehensive layer of
type lemmas. Also, this layer would need to appear much earlier in the
proof hierarchy, since it is also useful for proving leaf set properties and
for the reduction proof.

5. The Proof of Invariants layer is the largest part of Lu’s proof, and contains
a complete TLA+ proof of 50 claimed invariants, based largely on the
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Assumptions Count
Proven 21

Unneeded 34
False, Weakened 51

False 6
Total 112

Figure 5.2 – Analysis of Lu’s unproven assumptions about the leaf set data
structure.

unproven and partly wrong assumptions in the previous layers. Using
the TLC model checker for TLA+, I discovered a counterexample to one
of these claimed invariants. Because of this discovery, and the large size
of this layer, I decided against an attempt to re-prove Lu’s invariants,
opting instead for writing a new correctness proof.

Counterexamples to Lu’s Assumptions

In what follows, I give some examples of incorrect assumptions in Lu’s proof.2

Counterexamples to Leaf Set Assumptions

Consider the following assumption3, which states that after adding some set
of nodes a to a leaf set ls1, the right neighbor of the resulting leaf set ls2 can
only be closer to the leaf set owner i than the original right neighbor of ls1.

∀ ls1, ls2 ∈ LeafSet , i ∈ I , a ∈ subset I :
i = ls1.node ∧ ls2 = AddToLS (a, ls1)⇒
ClockwiseDistance(i , RightNeighbor(ls2)) ≤

ClockwiseDistance(i , RightNeighbor(ls1))

This assumption does not hold if the right-hand part of the leaf set is empty.
If ls1.right = {}, then RightNeighbor(ls1) = i , and i is closer to itself than to
any other node; ClockwiseDistance(i , i) = 0. Instead, the assumption needs to
be weakened as follows.

∀ ls1, ls2 ∈ LeafSet , i ∈ I , a ∈ subset I :
i = ls1.node ∧ ls1.right 6= {} ∧ ls2 = AddToLS (a, ls1)⇒
ClockwiseDistance(i , RightNeighbor(ls2)) ≤

ClockwiseDistance(i , RightNeighbor(ls1))

2Adapting notation for better readability.
3See AddToLSetInvCo in module ProofLSetProp of Lu’s LuPastry files, [2].
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Similarly, the following assumption states that the leaf set obtained by
adding a node k to some leaf set ls, contains the same nodes in ls, and possibly
also k . 4

lemma ∀ ls ∈ LeafSet , k ∈ I :
LeafSetContent(AddToLS ({k}, ls)) \ {k} = LeafSetContent(ls)

This is not true: if ls is full (complete), then adding a new node k to
it will generally result in some other node being removed from the leaf set,
invalidating the claimed equality. There is no obvious weaker alternative of
this assumption that is useful to the proof.

Counterexample to Claimed Invariant

Using the TLC model checker, I discovered a counterexample to one of the 50
claimed correctness invariants in Lu’s proof.5

∀m ∈ MessagePool : m.content .type = “JoinReply”⇒
let n

∆
= m.content .node

in ∧ ClockwiseDistance(LeftNeighbor(LeafSets[n]), n)
≤ ClockwiseDistance(LeftNeighbor(m.content .ls), n)

∧ ClockwiseDistance(n, RightNeighbor(LeafSets[n]))
≤ ClockwiseDistance(n, RightNeighbor(m.content .ls))

The formula asserts that if some node n sends a JoinReply message, then
n’s current neighbors are closer to it than its neighbors were at the time when
the message was sent. This is not true, however, if n’s leaf set was empty at
the time the message was sent. In case of an empty leaf set, the left and right
neighbors of node n are n itself. Any new neighbors of n will be farther away
from n than n itself.

5.2 Improvements to the LuPastry Specification

In analyzing Lu’s proof, I was able to gain a better insight into the main
complexity bottlenecks.

1. Many proof obligations in Lu’s top-level proof are repetitive because they
require the same reasoning about integer arithmetic, including division,
exponentiation and the modulus operator. Many of these obligations fail
due to the inability of the SMT back-end to deal with these obligations.

2. Most of Lu’s assumptions about the leaf set data structure could only
be proven by strengthening the assumptions to include more information

4See AddAndDelete in module ProofLSetProp of Lu’s LuPastry files, [2].
5See SemJoinLeafSet in module MSPastry of Lu’s LuPastry files, [2].
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about how leaf set members are distributed within the leaf set (left or
right parts).

3. All proof obligations in Lu’s proof that contain choose fail due to the
lack of necessary lemmas, as I will show in what follows.

Exchanging Division for Multiplication

A small change that greatly simplified the task of proving necessary arithmetic
assumptions was changing the definition of RingSize. In the original specifica-
tion of LuPastry, the size of the Pastry ring was defined as, RingSize

∆
= 2M .

Reasoning about shortest (absolute) distance on the ring requires frequent men-
tion to the value RingSize ÷ 2.

However, the division operator is a rather difficult operator to reason about,
especially given the current TLA+ to SMT encoding. In LuPastry+, I define
the operator HalfRingSize to denote half the size of the ring. RingSize is then
defined as twice HalfRingSize.

HalfRingSize
∆
= 2(M−1)

RingSize
∆
= 2 ∗HalfRingSize

This change eliminates the division operator from many arithmetic assump-
tions, making them easier to prove automatically using the available SMT
back-end.

Isolating Theory Reasoning Using New Operators

I rewrite some TLA+ definitions in LuPastry using new operators that abstract
away from arithmetic calculations and reduce the use of TLA+’s choose
operator, which is difficult for back-end provers to reason about and hence
restrains automation.

Arithmetic calculations, which mainly involve comparisons between dis-
tances between nodes on the ring, appeared so extensively in LuPastry that
arithmetic reasoning was frequently needed at the top level of the original proof.
For example, one of the most typical subformulas is the comparison,

ClockwiseDistance(i , j ) ≤ ClockwiseDistance(i , k),

which appears extensively in LuPastry, as in the definitions of RightNeighbor ,
AddToLS , or Covers (see Definitions 10, 8 and 12).

In these definitions, the exact distances between nodes are actually irrele-
vant; the definitions are only concerned with whether some key j lies on the
clockwise path from key i to key k . However, reasoning about each such com-
parison still requires that the definition of ClockwiseDistance be unfolded.

The standard way of avoiding this problem and simplifying the proof is
by renaming the repetitive parts in the definition using new predicates. I
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have relied on this idea to make the specification of LuPastry more modular,
readable, and concise.

In LuPastry+, I introduce a new predicate called ClockwiseArc, where
ClockwiseArc(i , j , k) holds if j lies on the clockwise path from i to k . I replace
all expressions of the form ClockwiseDistance(i , j ) ≤ ClockwiseDistance(i , k)
in definitions by ClockwiseArc(i , j , k).

Definition 29 (Clockwise Arc).

ClockwiseArc(i , j , k)
∆
=

ClockwiseDistance(i , j ) ≤ ClockwiseDistance(i , k)

In the bottom-most Arithmetic and Theory layer of the proof, I then prove
once and for all the necessary properties of this relation in TLAPS, using the
SMT back-end for arithmetical reasoning. The following are some examples of
proven arc properties.

Definition 30 (Examples of Arc Properties).

theorem ArcReflexivity
∆
=

∀ x , y ∈ I : ClockwiseArc(x , y , y) ∧ ClockwiseArc(x , x , y)

theorem ArcAntiSymmetry
∆
= ∀ x , y , z ∈ I :

∧ ClockwiseArc(x , y , z ) ∧ ClockwiseArc(x , z , y)⇒ y = z
∧ ClockwiseArc(x , y , z ) ∧ ClockwiseArc(y , x , z )⇒ x = y

theorem ArcRotation
∆
= ∀ x , y , z ∈ I :

∧ x 6= y ∧ ClockwiseArc(x , y , z )⇒ ClockwiseArc(y , z , x )
∧ y 6= z ∧ ClockwiseArc(x , y , z )⇒ ClockwiseArc(z , x , y)

These theorems are now used heavily in the new proof so that unfolding
of the definition of ClockwiseDistance (or ClockwiseArc) is no longer needed.
It is clear that this abstraction helps automate the proof process, since now
automatic back-ends like Zenon or Spass without native support for integer
arithmetic are able to solve larger steps.

Similarly to ClockwiseArc, I define the following predicates for absolute
distance. AbsoluteCloser(x , y , z ) holds if y is closer to x than z is, in terms of
absolute distance. StrictlyAbsoluteCloser defines the same notion but in the
strict sense.
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Definition 31 ((Strictly) Absolute Closer).

AbsoluteCloser(x , y , z )
∆
=

AbsoluteDistance(y , x ) ≤ AbsoluteDistance(z , x )

StrictlyAbsoluteCloser(x , y , z )
∆
=

AbsoluteDistance(y , x ) < AbsoluteDistance(z , x )

A related issue is the extensive use of the choose operator of TLA+, which
is Hilbert’s ε-operator for definite choice. As explained in Chapter 3, the TLA+

expression choose x ∈ S : P(x ) denotes some fixed but arbitrary element x
in set S for which the property P holds, if some such x exists. If P holds
for no x ∈ S , as in choose x ∈ Nat : x ∗ 0 = 1, the result of the choose
expression is not specified.

Many LuPastry operators are defined using the choose operator, such as
the operator RightNeighbor (see Definition 10). It is unwieldy to reason about
operator RightNeighbor by unfolding its definition because we would invariably
have to show the existence of a node contained in ls.right , if ls.right is non-
empty, whose distance to ls.node is minimal among all these nodes. Formally,
we need the following lemma.

lemma ClosestExists
∆
= ∀ x ∈ I , S ⊆ I : S 6= {} ⇒

∃ y ∈ S : ∀ z ∈ S : ClockwiseDistance(x , y) ≤ ClockwiseDistance(x , z )

The proof of this lemma requires induction, and set theory and arithmetic
reasoning. Such a lemma does not appear at all in Lu’s proof, which is why
all proof obligations in Lu’s proof that contain choose fail to be proven using
any of the available back-end provers.

Therefore, similar to the operator ClockwiseArc, I isolate occurrences of the
choose operator by introducing a new set of closeness operators.
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Definition 32 (LuPastry+ Closeness Operators).

ClosestFromTheLeft(x , a)
∆
=

if a = {} then x
else choose y ∈ a : ∀ z ∈ a : ClockwiseArc(z , y , x )

ClosestFromTheRight(x , a)
∆
=

if a = {} then x
else choose y ∈ a : ∀ z ∈ a : ClockwiseArc(x , y , z )

ClosestNodesFromTheLeft(x , a, n)
∆
=

if Cardinality(a) ≤ n then a
else choose sub ∈ subset a :

∧ Cardinality(sub) = n
∧ ∀ in ∈ sub, out ∈ (a \ sub) : ClockwiseArc(out , in, x )

ClosestNodesFromTheRight(x , a, n)
∆
=

if Cardinality(a) ≤ n then a
else choose sub ∈ subset a :

∧ Cardinality(sub) = n
∧ ∀ in ∈ sub, out ∈ (a \ sub) : ClockwiseArc(x , in, out)

AbsoluteClosest(x , a)
∆
=

if a = {} then x
else choose y ∈ a : ∀ z ∈ a : AbsoluteCloser(x , y , z )

The expression ClosestFromTheLeft(x , a) evaluates to the closest node y in
the set of nodes a to the node x from the left side. If a is empty, then y = x .
ClosestFromTheRight is defined similarly for the right side. The expression
ClosestNodesFromTheLeft(x , a,n) evaluates to the n closest nodes in a to x
from the left side. If a contains no more than n elements, then the expression
evaluates to a. ClosestNodesFromTheRight is defined similarly for the right
side. Finally, AbsoluteClosest(x , a) returns the closest node y to x in a, in
terms of absolute distance.

In LuPastry+, all LuPastry definitions that use choose are rewritten in
terms of closeness operators instead, to abstract away from the choose ex-
pression. For example, the definition of RightNeighbor in LuPastry+ is as
follows.

RightNeighbor(ls)
∆
= ClosestFromTheRight(ls.node, ls.right)

For each closeness operator (all of which are defined using choose, I prove
three lemmas.

1. A choice lemma, which proves the existence of a value satisfying the
characteristic predicate of choose.
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2. A type lemma, which proves the type of the operator.

3. An expansion lemma, which proves any other relevant properties of the
operator, so that they can be used later in the proof without expanding
the definition of the operator.

The following would be the choice, type and expansion lemmas for the
operator ClosestFromTheRight .

lemma choose ClosestFromTheRight
∆
=

∀ x ∈ I , a ∈ subset I :
a 6= {} ⇒ ∃ y ∈ a : ∀ z ∈ a : ClockwiseArc(x , y , z )

lemma type ClosestFromTheRight
∆
=

∀ x ∈ I , a ∈ subset I : ClosestFromTheRight(x , a) ∈ I

lemma def ClosestFromTheRight
∆
=

∀ x ∈ I , a ∈ subset I :
∧ a = {} ⇒ ClosestFromTheRight(x , a) = x
∧ a 6= {} ⇒ ClosestFromTheRight(x , a) ∈ a
∧ ∀ y ∈ a : ClockwiseArc(x , ClosestFromTheRight(x , a), y)

Of course, type and expansion lemmas are also a useful thing to have for
other TLA+ expressions. Type lemmas are crucial for all TLA+ constants,
variables, functions and operators. It is useful to have expansion lemmas for
all TLA+ functions and operators that occur heavily in the proof, to avoid
constantly having to expand their definitions. The following are the type and
expansion lemmas for operator RightNeighbor .

lemma type RightNeighbor
∆
=

∀ ls ∈ LeafSet : RightNeighbor(ls) ∈ I
proof by type ClosestFromTheRight def RightNeighbor , LeafSet

lemma def RightNeighbor
∆
=

∀ ls ∈ LeafSet :
∧ ls.right = {} ⇒ RightNeighbor(ls) = ls.node
∧ ls.right 6= {} ⇒ ∧ RightNeighbor(ls) ∈ ls.right

∧ ∀ p ∈ ls.right :
ClockwiseArc(ls.node, RightNeighbor(ls), p)

proof by def ClosestFromTheRight def RightNeighbor , LeafSet

Defining Additional Leaf Set Properties

By observing Lu’s assumptions on the leaf set data structure, I noticed that
most of them require some additional properties that were not defined in Lu-
Pastry.
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Definition 33 (Balanced Leaf Set). A leaf set is balanced if its left and
right parts contain the same number of nodes.

IsBalanced(ls)
∆
=

Cardinality(ls.left) = Cardinality(ls.right)

Definition 34 (Proper Leaf Set). A leaf set is proper if members that
are exclusively in the left (right) part are left- (right-)closer to the leaf set
owner than other members.

IsProper(ls)
∆
=

∧ ∀ x ∈ ls.left \ ls.right , y ∈ ls.right : ClockwiseArc(y , x , ls.node)
∧ ∀ x ∈ ls.right \ ls.left , y ∈ ls.left : ClockwiseArc(ls.node, x , y)

Definition 35 (Organized Leaf Set). A leaf set is organized if the pres-
ence of exclusively left or right members indicates that the leaf set is full.

IsOrganized(ls)
∆
=

(ls.left \ ls.right 6= {} ∨ ls.right \ ls.left 6= {})⇒ IsComplete(ls)

Effect of New Abstractions on Proof Automation

While the new operators make the TLA+ specification more modular, concise
and readable, the most significant gain lies in improving proof automation.

Because all arithmetic comparisons and occurrences of the choose opera-
tor are grouped into only a few definitions, and with the help of a few lemmas
on arc properties as well as choice, type and expansion lemmas, I claim that the
final correctness proof is much more concise, and therefore more automated,
than it would be without these operators. I illustrate this using a simple lemma
about adding new nodes to the leaf set data structure, that I prove once with
and once without the use of the new operators.

lemma ∀ ls ∈ LeafSet , a ∈ subset I : IsProper(AddToLS (a, ls))

Basically, the lemma says that the leaf set obtained by adding some new
nodes to a leaf set is proper.

The proof of this lemma using the original definitions of LuPastry consists
of 23 interactive proof steps that generate 64 proof obligations. With the new
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definitions of LuPastry+, the same proof consists of only 12 interactive proof
steps (40 proof obligations). This significant difference comes from the fact that
the new operators allow back-end provers to succeed directly on some steps,
which would otherwise have to be broken down into further substeps using the
original definitions. Already for this simple example there is a 50% reduction
in the number of steps, i.e. user interactions.

Other Changes

I introduce some additional changes to the specification that can be summarized
as follows.

1. I simplify the definitions of clockwise and absolute distances, which, in
turn, simplifies the Arithmetic and Theory layer of the proof. I also
eliminate some LuPastry definitions of distance that are unnecessary for
the proof. In particular, Lu defined a notion of vector distance or “dis-
placement” from node x to node y ; a value that is positive or negative
depending on the direction (clockwise or counter-clockwise). Both clock-
wise and absolute distances were defined in terms of displacement. In-
stead, I remove the definition of displacement and flatten the definitions
of clockwise and absolute distances, as seen in Definitions 3 and 4.

2. I fix some bugs in some of the definitions of the original specification. In
particular, definitions relating to message routing and the routing table
data structure were not well-defined; they ignored some border cases.
This was not discovered by Lu during the proof process, since the proof
is partial and is more dependent on the leaf set data structure than the
routing process.

3. I modify the probing process so that the node does not attempt to probe
itself, which is clearly unnecessary. This simplifies some parts of the
proof.

4. Perhaps contrary to convention, I find it more natural to visualize node
IDs as increasing in the clockwise direction on the ring, and not vice versa.
Therefore, in the new specification, and in the explanation of LuPastry
in Chapter 4, the definitions are changed from those of Lu so that the
notions of “right” and “left” are reversed.

5.3 LuPastry+ Proof Structure

I have written a new, complete proof of correct delivery for LuPastry. The
new proof is based on the same assumptions as in Lu’s original partial proof.
Additionally, I impose the assumption that the node leaf set size L is at least
three, L ≥ 3. The motivation behind this additional assumption is explained
in Chapter 6. The structure of the new LuPastry+ proof can be seen on the
right side of Figure 5.3, in comparison to Lu’s partial proof on the left side.
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Proof of Invariants
50 Proven Invariants, 14,500 Lines

Type Lemmas and Invariant
3 Proven, 6 Unproven Lemmas, 1230 Lines

Reduction to Invariants
16 Proven Lemmas, 620 Lines

Leaf Set Properties
112 Unproven Lemmas, 1270 Lines

Arithmetic and Theory
140 Unproven Lemmas, 930 Lines

LuPastry Specification
1,575 Lines

(a) LuPastry

Proof of Invariants
80 Proven Invariants, 24,000 Lines

Reduction to Invariants
15 Proven Lemmas, 1800 Lines

Leaf Set Properties
155 Proven Lemmas, 5,000 Lines

Abstraction Lemmas
81 Proven Lemmas, 1100 Lines

Arithmetic and Theory
82 Proven Lemmas, 1,000 Lines

LuPastry+ Specification
1,500 Lines

(b) LuPastry+

Figure 5.3 – Structure of the original LuPastry proof versus the new, complete
proof.

Refined LuPastry Specification At the bottom layer is the new TLA+

specification of LuPastry, including the improvements discussed in Section 5.2.

Arithmetic and Theory This is the bottom-most layer of the correctness
proof, containing all lemmas on ring arithmetic and set theory. All the nec-
essary properties of the distance and closeness operators are proven in this
layer.

Abstraction Lemmas This layer of the proof contains all the necessary type
lemmas for all TLA+ variables, functions and operators, as well as choice and
expansion lemmas, as discussed in Section 5.2. This layer also contains the
proof of the overall type invariant of the LuPastry+ variables.

Leaf Set Properties This layer contains a large number of proven lemmas
about the leaf set data structure. The lemmas in this layer contain the lemmas
reformulated from Lu’s proof - as discussed in Section 5.1 - as well as many
more I have added as necessary to a rigorous top-level proof.

Reduction to Invariants This layer contains the main theorems reducing
the property of correct delivery to 80 correctness invariants I have formulated
for LuPastry+.

Proof of Invariants This layer contains proofs for the 80 correctness invari-
ants of LuPastry+.
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Because the LuPastry+ proof is rigorous, there was a need for a larger
number of invariants than in Lu’s proof. Naturally, there is an overlap between
the invariants of LuPastry and those of LuPastry+. However, there is no one-
to-one correspondence between the two sets of invariants. In particular, while
Lu’s original proof of correct delivery relies more on the lease exchange phase
of the protocol, my own proof relies completely on the probing process. In
fact, in Chapter 7, I adapt the correctness proof of LuPastry+ to a simplified
specification of LuPastry+, where the lease exchange phase is entirely omitted
from the join process.



Chapter 6

The LuPastry+ Correctness
Proof

This chapter presents the TLA+ proof of correct delivery of lookup messages
in LuPastry+. I prove that the safety property correct delivery is an invariant
of the TLA+ specification of LuPastry+. Correct delivery was defined by Lu
in [28] as follows.

Invariant 1 (Correct Delivery). Let i and k be two keys on the ring. If
DeliverLookup(i , k) is enabled, then, (1) i is closer to k than any other
Ready node j 6= i is, in terms of absolute distance, and (2) the action
DeliverLookup(j , k) is not enabled for any key j 6= i .

CorrectDelivery
∆
=

∀ i , j , k ∈ I : j 6= i ∧ enabled DeliverLookup(i , k)⇒
∧ Status[j ] = “Ready”
⇒ AbsoluteDistance(i , k) ≤ AbsoluteDistance(j , k)

∧ ¬enabled DeliverLookup(j , k)

As per Definition 19 of the action DeliverLookup, DeliverLookup(i , k) is
enabled if and only if i is Ready, its leaf set covers k , and there is a pending
lookup message with destination i and key k .

DeliverLookup(i , k)
∆
=

∧ Status[i ] = “Ready” ∧ Covers(LeafSets[i ], k)
∧ ∃m ∈ MessagePool :

m.content .type = “Lookup” ∧m.content .node = k
∧m.destination = i ∧MessagePool ′ = MessagePool \ {m}

∧ unchanged 〈Status, LeafSets, RoutingTables, Probing , Leases,
Grants, ToJoin, Failed〉

75
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Currently, TLAPS requires that the enabled predicate be unfolded man-
ually in the machine-checked proof. Therefore, my proof uses this stronger
definition of correct delivery. The first occurrence of enabled at the left
hand side of the implication is replaced by the preconditions of the action
formula DeliverLookup. The second occurrence at the right hand side of the
implication is replaced by only one of the preconditions relating to coverage,
making the property StrongCorrectDelivery stronger than the original property
CorrectDelivery .

Invariant 2 (Strong Correct Delivery).

StrongCorrectDelivery
∆
= ∀ i , j , k ∈ I :

∧ Status[i ] = “Ready” ∧ Status[j ] = “Ready”
∧ j 6= i ∧ Covers(LeafSets[i ], k)

∧ ∃m ∈ MessagePool : m.content .type = “Lookup”
∧m.content .node = k ∧m.destination = i

⇒ ∧AbsoluteDistance(i , k) ≤ AbsoluteDistance(j , k)
∧ ¬Covers(LeafSets[j ], k)

Lu also eliminates the keyword enabled, but by replacing both of its oc-
currences with preconditions of action DeliverLookup. His partial proof aims
at proving the following property which he calls CorrectCoverage.

CorrectCoverage
∆
= ∀ i , k ∈ I :

∧ Status[i ] = “Ready”
∧ ∃m ∈ MessagePool :
∧m.content .type = “Lookup” ∧m.destination = i
∧m.content .node = k ∧ Covers(LeafSets[i ], k)

⇒ ∧ ∀n ∈ I : Status[n] = “Ready”
⇒ AbsoluteDistance(i , k) ≤ AbsoluteDistance(n, k)

∧ ¬∃ j ∈ I \ {i} : ∧ Status[j ] = “Ready”
∧ ∃m ∈ MessagePool :
∧m.content .type = “Lookup”
∧m.destination = j
∧m.content .node = k
∧ Covers(LeafSets[j ], k)

It is clear from the above definitions that StrongCorrectDelivery entails
CorrectDelivery . I show this in the following theorem.

Theorem. Correct delivery follows from strong correct delivery.

StrongCorrectDelivery ⇒ CorrectDelivery
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Proof of Invariants Reduction to Invariants

Auxiliary Lemmas
Arithmetic, Set Theory, Abstraction, Leaf Set

Underlying Assumptions and Axioms

Figure 6.1 – Structure of the LuPastry+ correctness proof.

Proof. Assume that StrongCorrectDelivery holds. Consider i , j , k ∈ I , where
j 6= i and DeliverLookup(i , k) is enabled. Because DeliverLookup(i , k) is en-
abled, i is Ready. It is required to show that (1) if j is Ready, then j is farther
from k than i is in terms of absolute distance, and (2) DeliverLookup(j , k) is
not enabled. The first obligation can be readily discharged by definition of
StrongCorrectDelivery . It is left to show that DeliverLookup(j , k) is not en-
abled. If j is not Ready, then DeliverLookup(j , k) is not enabled by definition
of DeliverLookup. If j is Ready, then by StrongCorrectDelivery , j ’s leaf set
does not cover k . Therefore, DeliverLookup(j , k) is not enabled. Therefore,
CorrectDelivery holds.

Figure 6.1 shows a more abstract view of the structure of the proof depicted
in Figure 5.3b. At the very bottom are a few underlying assumptions and arith-
metic axioms, which will be explained in Section 6.2. The middle layer consists
of a large number of proven lemmas on arithmetic, set theory, types, the leaf
set data structure and coverage among other things, as explained in Chapter
5. The top-level proof reduces (strong) correct delivery to a number of other
correctness invariants (right side of the top layer), and proves these invariants
with respect to the specification (left side of the top layer). The proof of the
invariants alone, without the reduction proof of correct delivery, makes up over
80% of the total proof, and is over 24,000 lines long – it is one and a half times
larger than the largest Harry Potter book. Therefore, instead of presenting
the proof of the invariants in detail, I will focus on the two most important
invariants for the reduction proof: network stability and exclusive coverage.
In Section 6.1, I give the intuition behind these properties and how they are
proven to be invariants of LuPastry+. In Section 6.2, I list the assumptions
and arithmetic axioms that were necessary for the proof. The proof uses only
three unproven arithmetic axioms relating to division, exponentiation and the
modulus operator which cannot be proven by the current arithmetic back-ends
in TLA+. In Section 6.3, I list all the invariants in the proof.1 Finally, an out-
line of the reduction proof, reducing strong correct delivery to the correctness
invariants, is given in Section 6.4.

1The TLA+ representation of the invariants has been compressed for better readability
and compactness.
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i

j

k

(a) Node i ’s coverage oversteps
into j ’s coverage if i ’s leaf set
neighbor is farther from i than j .

i

j

(b) Nodes i and j are each other’s
leaf set neighbors. Each node re-
spects the other’s coverage range.

i

. . .

j

(c) Nodes i and j are separated
by other leaf set neighbors. Their
coverage end-points are even fur-
ther apart.

i

j

k

(d) Only i is aware of a node k
between itself and j . The cover-
age ranges of i and j still do not
overlap.

Figure 6.2 – Possible arrangements for two Ready nodes i and j and their
coverage ranges.

6.1 Intuition

The idea behind the proof is very intuitive. The main task in proving cor-
rect delivery is proving that coverages of different Ready nodes are mutually
exclusive; i.e. that no two Ready nodes i and j cover the same key k .

Proving Exclusive Coverage

Consider two Ready nodes i , j such that i 6= j . Both i and j compute their
coverage ranges with respect to the content of their leaf set. Figure 6.2 shows
the different ways i and j may compute their coverage depending on their leaf
sets. It suffices to only consider one side of coverage for each node, e.g. i ’s
right coverage range with j ’s left coverage range. We can guarantee that the
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coverage ranges of i and j do not overlap if i and j “are aware of each other”.
Consider Figure 6.2a, for example, where node i ’s right leaf set neighbor is k ,
but j is right-closer to i than k is. Node i is “unaware” of j , since the closest
right leaf set member it knows about is farther than j . Node i computes its
coverage to end at the midpoint between itself and k , thereby overstepping its
boundary and overlapping with what should be j ’s coverage range.

Figure 6.2b, on the other hand, shows the situation where i and j are each
other’s leaf set neighbors. In this case, both i and j compute their coverage
ranges with respect to each other, and so the coverages cannot overlap.

Another situation is depicted in Figure 6.2c, where nodes i and j are not
each other’s leaf set neighbors, but their leaf set neighbors lie between them
on the ring. Also in this case the coverages of nodes i and j cannot overlap;
the midpoint between i and its right leaf set neighbor is before the midpoint
between it and j . Similarly, the midpoint between j ’s left leaf set neighbor and
j is after the midpoint between i and j . This is another case where i and j are
“aware” of each other, even without them being each other’s leaf set neighbors.

Finally, it may be that i and j are aware of each other, but there is a node
k between i and j that only node i is aware of, as in Figure 6.2d. For example,
node k is i ’s right leaf set neighbor, but j ’s left leaf set neighbor is i , not k .
In this case, j ’s coverage starts from the midpoint between i and j , but i ’s
coverage extends only up to the midpoint between itself and k . The coverages
of i and j do not overlap, but the coverages of j and k do. Because we want
to guarantee non-overlapping coverage for all Ready nodes, this situation is
benign only for a non-Ready k .

From these examples, it becomes clear that if each Ready node is aware of
its right and left Ready neighbors on the ring, we can show non-overlapping
coverage. In fact, I observe that it is possible to show non-overlapping coverage
for all Ready and OK nodes. That is, I prove that in LuPastry+, a Ready/OK
node always has its Ready/OK neighbors as members of its leaf set, and is
therefore “aware” of them. This observation is the motivation behind the
Simplified LuPastry+ protocol I present in Chapter 7, where I show that correct
delivery is still guaranteed even if the lease exchange phase of LuPastry+–which
helps a node turn from OK to Ready–is eliminated entirely.

More formally, I define exclusive coverage for Ready/OK nodes as follows.

ExclusiveCoverage
∆
=

∀ i , j ∈ ReadyOKNodes, k ∈ I :
i 6= j ∧ i 6= k ∧ j 6= k
⇒ ¬Covers(LeafSets[i ], k) ∨ ¬Covers(LeafSets[j ], k)

Let a node i be stable if its leaf set contains its Ready/OK neighbors on
the ring. A LuPastry+ network is a stable network if all Ready/OK nodes are
stable.
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Stable(i)
∆
=

∧ ClosestFromTheRight(i , ReadyOKNodes \ {i})
∈ LeafSetContent(LeafSets[i ])

∧ ClosestFromTheLeft(i , ReadyOKNodes \ {i})
∈ LeafSetContent(LeafSets[i ])

StableNetwork
∆
=

∀ i ∈ ReadyOKNodes : Stable(i)

For example, the ring in Figure 6.3a is stable if nodes 0, 2, 7, 11 are stable.
It is clear that if we show that StableNetwork is an invariant of LuPastry+,

we can prove exclusive coverage between all Ready/OK nodes, thereby proving
correct delivery.

Proving Network Stability

For a minimum leaf set size L = 3, it can be shown that StableNetwork is an
invariant of LuPastry+ as follows. First, I make the following (proven) remarks
about LuPastry+.

1. Because LuPastry+ excludes node failure, all protocol actions that modify
a node’s leaf set do so through the operation AddToLS , as can be seen
from Section 4.2. Therefore, nodes are never purposely removed from
a leaf set, but a node j may only be evicted from the leaf set of node i
through an AddToLS operation that results in an overflow; i.e., if the leaf
set of i becomes full and j is replaced by another node k that is closer to
i than j is.

2. A new node i joins the network through a Ready node r that initially
covers it, and so i will remain the closest participating node to r on one
side (right or left) until it finishes its join process. Only after i has finished
joining and turned Ready can other nodes join the network between r
and i . As a result, any Waiting participating node that lies between two
Ready/OK neighbors i and j is either the to-join of i or the to-join of j .

3. Let i be a Waiting node, joining through a Ready node r . As soon as
r receives i ’s join request, i is a member of r ’s leaf set. As soon as i
receives r ’s join reply, r is a member of i ’s leaf set.

4. Let i and j be two consecutive Ready or OK nodes on the ring (see Figure
6.3b). There can be at most two participating nodes k1, k2 between i and
j : the to-join nodes of i and j . Any other non-Dead node between i and j
must be a Waiting node whose join request has not been picked up by i or
j (since they are busy facilitating the joins of k1 and k2). Therefore, any
Ready/OK node cannot be separated from the Ready/OK node closest
to it by more than two nodes.
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5. If the leaf set size is three or more, we can ensure that stable i and j
remain stable even if new nodes are added to their leaf sets.

From the previous remarks, it is clear that a stable node cannot be destabi-
lized simply by adding new members to its leaf set, since the leaf set is always
large enough to accommodate a node’s Ready/OK neighbor. Therefore, the
main task of proving network stability is to show that as soon as a node turns
OK, it is stable, and by turning OK, does not destabilize any previously-stable
Ready/OK nodes. This is the most involved and lengthy part of the proof
of network stability. A node turns OK as soon as it has finished the probing
process and received replies to all its outgoing probes. Let i be a Waiting
node in the probing phase joining through some Ready node r , and let j be
i ’s Ready/OK neighbor at the time i turns OK. If we can prove that i has
exchanged probes with j before it turned OK, then we can show that at the
time when i turns OK, it is stable, and other Ready/OK nodes are aware of it
and so remain stable.

There are three different possibilities for the relationship between node j
and node i .

Case 1 Node j is the node responsible for i ’s joining, j = r . In this case, it is
guaranteed that j and i are members of each other’s leaf sets. Therefore,
i is stable when it turns OK, and previously-stable j is still stable when
i turns OK.

Case 2 Node j was already a member of r ’s leaf set when r responded to i ’s join
request. This means that j was in the leaf set which r attached to i in
its join reply message. Therefore, i has issued a probe to j and cannot
turn OK before it has received a probe reply from j . Therefore, i and j
must have exchanged probes before i turned OK.

Case 3 Node j was not a member of r ’s leaf set when r responded to i ’s join
request. Because r is a stable Ready node, it must be that j was
Dead/Waiting. If j were Ready/OK, it would be a Ready/OK neigh-
bor of r and a member of r ’s leaf set. Therefore, j was a Dead/Waiting
node at the time r responded to i ’s join request, and not a member of r ’s
leaf set. It turned Ready/OK while i was in the probing phase. Let r2 be
the Ready node responsible for j ’s joining. When j was Dead/Waiting,
r and r2 were each other’s Ready/OK neighbors2, and therefore, r2 was
in the leaf set attached to i ’s join reply message. Therefore, it must be
that i has probed and received a reply from r2 before turning OK. There
are two possibilities.

Case 3a Node i ’s probe to r2 reach r2 before j ’s join request. In this case,
r2 added i to its leaf set and responded to i ’s probe, and then

2In fact, it is possible that r2 itself was in the process of joining the network, but in
this case the same proof applies recursively on r2 instead of j . For the sake of this abstract
discussion, let us ignore this case and assume r2 was Ready when j started joining.
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(a) This ring is stable if nodes
0, 2, 7, 11 are stable. Node 0 is sta-
ble if its left leaf set contains 11 and
its right leaf set contains 2.

i
k1

k2

j

(b) For L ≥ 3, i ’s leaf set
can always accommodate k1 =
ToJoin[i ], k2 = ToJoin[j ], and
i ’s Ready/OK neighbor j .

Figure 6.3 – Network stability.

responded to j ’s join request. This means that i was in the leaf set
that r2 attached to j ’s join reply. This means that j could not have
turned OK before probing and receiving a reply from i .

Case 3b Node j ’s join request reached r2 before i ’s probe did. In this case,
j was already in r2’s leaf set, which r2 attached to the probe reply
to i . Therefore, i could not have turned OK before probing and
receiving a probe reply from j .

This informal proof of correct delivery is a behavioral-style proof, which
focuses mainly on events from a local point of view of a node, and the possible
histories of execution leading up to these events. In contrast, the formal TLA+

proof of correct delivery is an assertional-style or invariant-inductive proof,
which focuses on global states and uses induction to prove a set of properties
to be invariants, i.e. true at every reachable state of the system. Nevertheless,
the behavioral argument presented above shows the motivation behind the
invariants chosen for the proof and listed in Section 6.3.

6.2 Assumptions and Arithmetic Axioms

The starting point of the proof are assumptions that have to be made about
the specification parameters. The proof relies on the following assumptions.

Assumption 1. NIL is not a valid node.

NIL /∈ I
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Assumption 2. A is non-empty set of nodes.

A ⊆ I ∧A 6= {}

Assumption 3. M and L are positive integers.

M ∈ Nat \ {0} ∧ L ∈ Nat \ {0}

Assumption 4. B is a positive integer that is strictly less than M and
divides M .

B ∈ Nat ∧ B > 0 ∧ B < M ∧M %B = 0

Assumption 5. The size of the left (right) leaf set is at least 3.

L ≥ 3

In addition, the following are arithmetic facts that cannot be proven by
any of the current back-ends in TLA+, and therefore have to be stated as
TLA+ axioms without proofs. These are axioms relating to the exponentiation,
division and modulus operator respectively.

Axiom 1. (Exponentiation Properties)

∀ a, b ∈ Int :
∧ a 6= 0⇒ a1 = a
∧ a 6= 0⇒ ∀m, n ∈ Int : a(m+n) = am + an

∧ b 6= 0⇒ 0b = 0
∧ 0 < a ∧ 0 < b ⇒ ∀ c ∈ Int : a(b∗c) = (ab)c

∧ 0 < a ∧ 0 < b ⇒ ∀ c ∈ Int : b ≤ c ⇒ ab ≤ ac

Axiom 2. (Whole Integer Division)

∀ x , y , q ∈ Nat : 0 < y ∧ x = q ∗ y ⇒ q = x ÷ y
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Axiom 3. (Modulus Properties)

∀ x , y ∈ Nat : 0 < y ∧ x ≥ y ⇒ (x%y) = (x − y)%y

6.3 Correctness Invariants

This section contains a list of the proven correctness invariants of LuPastry+.
In Section 6.4, it is proved that strong correct delivery follows from these cor-
rectness invariants. I denote by CorrectnessInvariants the TLA+ conjunction
of all the correctness invariants listed here.

The TLA+ proof files reduce correct delivery to 80 correctness invariants.
In this presentation, however, many of these invariants have been clustered
together or formulated in a more compact way for readability, resulting in fewer
formulas in total. In the TLA+ files, it is sometimes much easier to prove a
large number of small formulas than a smaller number of larger formulas. This
is particularly true for Pastry, because of the symmetry between the “left” and
“right” components of the proof. Many invariants consist of a right and left
component; for example, the same invariant may need to be proven for both
the right and left Ready/OK neighbor of a node. These two components are
easier to prove separately in TLA+, since the proof for one side is simpler, and
can later be directly reused for the other side. Here, I group right and left
components of the same property in one big formula.

To relate this list of invariants to the intuitive proof discussed in Section
6.1 and make the presentation more meaningful, the invariants can be (very
roughly) grouped into the following categories: basic invariants, invariants re-
lating to the joining and probing phases, and invariants relating to coverage
and stability.

Basic Invariants

These invariants refer to types and some elementary properties of the variables,
the possible relationship between the values of different variables, or properties
of the exchanged messages between nodes. For example, we need to show that
any node that has a to-join node other than itself is a Ready node, that a node
does not send duplicate messages to the same recipient, or that the sender of a
lease reply message is always a Ready/OK node. This group of invariants can
be seen as the beginning of the invariant food chain, being straight-forward to
prove and heavily used in the proof of the more complex invariants.
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Invariant 3 (Type Invariant).

∧ Status ∈ [I → {“Ready”, “OK”, “Waiting”, “Dead”}]
∧ Leases ∈ [I → subset I ] ∧Grants ∈ [I → subset I ]
∧MessagePool ∈ subset Message ∧ ToJoin ∈ [I → I ]
∧ RoutingTables ∈ [I → RoutingTable]
∧ LeafSets ∈ [I → LeafSet ] ∧ ∀ i ∈ I : LeafSets[i ].node = i
∧ Probing ∈ [I → subset I ] ∧ Failed ∈ [I → subset I ]

Invariant 4. There is always at least one Ready node, and therefore at
least one participating node.

ReadyNodes 6= {} ∧ ReadyOKNodes 6= {} ∧ ParticipatingNodes 6= {}

Invariant 5. All leaf sets are balanced, proper, and organized.

∀ i ∈ I : let ls
∆
= LeafSets[i ]

in IsBalanced(ls) ∧ IsProper(ls) ∧ IsOrganized(ls)

Invariant 6. The leaf set of a participating node consists solely of other
participating nodes.

∀ i ∈ ParticipatingNodes :
LeafSetContent(LeafSets[i ]) ⊆ ParticipatingNodes

Invariant 7. A Dead node is not a to-join node, and consequently, not
a participating node.

DeadNodes ∩ (ToJoinNodes ∪ ParticipatingNodes) = {}

Invariant 8. The probe set of a node i consists of participating nodes.

∀ i ∈ I : Probing [i ] ⊆ ParticipatingNodes
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Invariant 9. A Ready/OK node i only has leases from other Ready or
OK nodes. A node i that is not Ready/OK does not have leases from any
other nodes.

∧ ∀ i ∈ ReadyOKNodes : Leases[i ] ⊆ ReadyOKNodes
∧ ∀ i ∈ I \ReadyOKNodes : Leases[i ] = {i}

Invariant 10. Only Ready nodes can have to-join nodes. No two nodes
can have the same to-join node.

∧ ∀ i ∈ I : ToJoin[i ] 6= i ⇒ Status[i ] = “Ready”
∧ ∀ i , j , k ∈ I : ToJoin[i ] = k ∧ ToJoin[j ] = k ∧ i 6= k ∧ j 6= k ⇒ i = j

Invariant 11. A node that has issued a pending join request is Waiting,
not participating, and has an empty leaf set and probe set.

∀m ∈ MessagePool : m.content .type = “JoinRequest”⇒
∧ Status[m.content .node] = “Waiting”
∧m.content .node /∈ ParticipatingNodes
∧ LeafSets[m.content .node] = EmptyLS (m.content .node)
∧ Probing [m.content .node] = {}

Invariant 12. Let m be a pending join reply message. Then m is issued
by a Ready node x to a Waiting node y, where ToJoin[x ] = y. Addition-
ally, y is not contained in the leaf set attached to m, and has an empty
leaf set and probe set.

∀m ∈ MessagePool : m.content .type = “JoinReply”⇒
∧ Status[m.content .ls.node] = “Ready”
∧ Status[m.destination] = “Waiting”
∧m.destination = ToJoin[m.content .ls.node]
∧m.destination /∈ LeafSetContent(m.content .ls)
∧ LeafSets[m.destination] = EmptyLS (m.destination)
∧ Probing [m.destination] = {}
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Invariant 13. Nodes do not send messages to themselves.

∀m ∈ MessagePool :
∧m.content .type ∈ {“Probe”, “ProbeReply”, “LeaseRequest”}
⇒ m.content .node 6= m.destination
∧m.content .type ∈ {“JoinReply”, “ProbeReply”, “LeaseReply”}
⇒ m.content .ls.node 6= m.destination

Invariant 14. There is at most one pending join request per node.

∀m1, m2 ∈ MessagePool :
∧m1.content .type = “JoinRequest” ∧m2.content .type = “JoinRequest”
∧m1 6= m2
⇒ m1.content .node 6= m2.content .node

Invariant 15. There is at most one pending join reply per node.

∀m1, m2 ∈ MessagePool :
∧m1.content .type = “JoinReply” ∧m2.content .type = “JoinReply”
∧m1 6= m2
⇒ m1.destination 6= m2.destination

Invariant 16. For any node, there cannot be a pending join request from
and a pending join reply to that node at the same time.

∀m1, m2 ∈ MessagePool :
m1.content .type = “JoinReply” ∧m2.content .type = “JoinRequest”
⇒ m2.content .node 6= m1.destination
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Invariant 17. No two pending probe messages are identical.

∀m1, m2 ∈ MessagePool :
∧m1.content .type = “Probe” ∧m2.content .type = “Probe”
∧m1.content .node = m2.content .node
∧m1.destination = m2.destination
⇒ m1 = m2

Invariant 18. No two pending probe reply messages are identical.

∀m1, m2 ∈ MessagePool :
∧m1.content .type = “ProbeReply” ∧m2.content .type = “ProbeReply”
∧m1.content .node = m2.content .node
∧m1.destination = m2.destination
⇒ m1 = m2

Invariant 19. Let m be a pending message that is either a join reply,
probe, probe reply, lease request or least reply. Then both the sender and
recipient of m are participating nodes.

∀m ∈ MessagePool :
∧m.content .type ∈ {“Probe”, “ProbeReply”, “LeaseRequest”}
⇒ m.content .node ∈ ParticipatingNodes

∧m.content .type ∈ {“JoinReply”, “ProbeReply”, “LeaseReply”}
⇒ m.content .ls.node ∈ ParticipatingNodes

∧m.content .type ∈ {“JoinReply”, “Probe”, “ProbeReply”,
“LeaseRequest”, “LeaseReply”}

⇒ m.destination ∈ ParticipatingNodes

Invariant 20. For any two nodes x and y, there cannot be a pending
probe from x to y and a pending probe reply from y to x at the same
time.

∀m1, m2 ∈ MessagePool :
∧m1.content .type = “ProbeReply” ∧m2.content .type = “Probe”
∧m1.destination = m2.content .node
∧m1.content .node = m2.destination
⇒ false
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Invariant 21. If there is a pending join reply to x , then there cannot be
a pending probe or probe reply message from x.

∀m1, m2 ∈ MessagePool :
∧m1.content .type = “JoinReply”
∧m2.content .type ∈ {“Probe”, “ProbeReply”}
⇒ m2.content .node 6= m1.destination

Invariant 22. If there is a pending join reply to x , then there cannot be
a pending probe reply message to x .

∀m1, m2 ∈ MessagePool :
m1.content .type = “JoinReply” ∧m2.content .type = “ProbeReply”
⇒ m2.destination 6= m1.destination

Invariant 23. If there is a pending probe message from a node x to a
node y, then y is in the probe set of x .

∀m ∈ MessagePool : m.content .type = “Probe”⇒
m.destination ∈ Probing [m.content .node]

Invariant 24. If there is a pending probe reply message from a node x
to a node y, then x is in the probe set of y.

∀m ∈ MessagePool : m.content .type = “ProbeReply”⇒
m.content .node ∈ Probing [m.destination]

Invariant 25. The sender of a pending lease request or lease reply mes-
sage is Ready or OK.

∀m ∈ MessagePool :
∧m.content .type = “LeaseRequest”
⇒ Status[m.content .node] ∈ {“OK”, “Ready”}
∧m.content .type = “LeaseReply”
⇒ Status[m.content .ls.node] ∈ {“OK”, “Ready”}
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Invariant 26. Let m be a lease reply message where the lease is granted,
i.e. m.content .grant = true. Then the destination of m is a Ready or
OK node.

∀m ∈ MessagePool : m.content .type = “LeaseReply” ∧m.content .grant
⇒ Status[m.destination] ∈ {“Ready”, “OK”}

Invariant 27. The failed set of any node is empty. Also, the failed set
attached to any pending message is empty.

∧ ∀ i ∈ I : Failed [i ] = {}
∧ ∀m ∈ MessagePool :

m.content .type ∈ {“Probe”, “ProbeReply”} ⇒
m.content .failed = {}

Invariant 28. Dead nodes do not send messages.

∀m ∈ MessagePool :
∧m.content .type ∈ {“JoinRequest”, “Probe”,

“ProbeReply”, “LeaseRequest”}
⇒ Status[m.content .node] 6= “Dead”
∧m.content .type ∈ {“JoinReply”, “LeaseReply”}
⇒ Status[m.content .ls.node] 6= “Dead”

Invariant 29. Dead nodes have empty leaf sets and probe sets. If a Ready
node has an empty leaf set, it is the only Ready node on the network.

∧ ∀ i ∈ DeadNodes : LeafSets[i ] = EmptyLS (i) ∧ Probing [i ] = {}
∧ ∀ i ∈ ReadyNodes : LeafSets[i ] = EmptyLS (i)⇒ ReadyNodes = {i}
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Invariant 30. A Waiting node that has issued a join request and has not
yet received a join reply has an empty leaf set.

∀m ∈ MessagePool :
∧m.content .type = “JoinRequest”

⇒ LeafSets[m.content .node] = EmptyLS (m.content .node)
∧m.content .type = “JoinReply”

⇒ LeafSets[m.destination] = EmptyLS (m.destination)

Invariant 31. A node that sends or receives probes does not have an
empty leaf set.

∧ ∀ i ∈ I : Probing [i ] 6= {} ⇒ LeafSets[i ] 6= EmptyLS (i)
∧ ∀m ∈ MessagePool :
∧m.content .type = “ProbeReply”

⇒ LeafSets[m.content .node] 6= EmptyLS (m.content .node)
∧m.content .type = “ProbeReply”

⇒ LeafSets[m.destination] 6= EmptyLS (m.destination)

Invariant 32. Leaf set objects attached in messages are balanced, proper
and organized, and comprised solely of participating nodes.

∀m ∈ MessagePool :
m.content .type ∈ {“JoinReply”, “ProbeReply”, “LeaseReply”} ⇒
∧ IsBalanced(m.content .ls)
∧ IsProper(m.content .ls)
∧ IsOrganized(m.content .ls)
∧ LeafSetContent(m.content .ls) ⊆ ParticipatingNodes

Invariant 33. The Waiting to-join node of a Ready node r is in the leaf
set of r , and is the closest participating node to it on the ring from one
side.

∀ r ∈ ReadyNodes : ToJoin[r ] /∈ ReadyOKNodes ⇒
∧ ToJoin[r ] ∈ LeafSetContent(LeafSets[r ])
∧ ∨ ∀ i ∈ (ParticipatingNodes \ {r}) : ClockwiseArc(r , ToJoin[r ], i)
∨ ∀ i ∈ (ParticipatingNodes \ {r}) : ClockwiseArc(i , ToJoin[r ], r)
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Invariant 34. If there is a pending probe reply message from node i to
node j , then either j is a member i’s leaf set, or i ’s leaf set is full with
closer members than j .

∀m ∈ MessagePool :
m.content .type = “ProbeReply”⇒
∨m.destination ∈ LeafSetContent(LeafSets[m.content .node])
∨ ∧ IsComplete(LeafSets[m.content .node])
∧ ∀ x ∈ LeafSets[m.content .node].right :

ClockwiseArc(m.content .node, x , m.destination)
∧ ∀ x ∈ LeafSets[m.content .node].left :

ClockwiseArc(m.destination, x , m.content .node)

The Join-Probe Relation

These invariants are concerned with the relationship between a joining node
and its neighbors, which is necessary to prove the stability of this joining node
once it has finished joining. In particular, the aim of these invariants is to show
that a Waiting node i does not turn OK before probing node j , its Ready/OK
neighbor at the time it turns OK. This is done by analyzing the different
possible orderings of events that led up to i and j being both Ready/OK, in a
manner that corresponds to the discussion in Section 6.1.

These invariants represent, by far, the most challenging part of the proof,
being the most difficult to come up with and to prove.

Invariant 35. Let i and j be two participating nodes, where j is a joining
node that has not yet received its join reply message. If j is a member of
i ’s leaf set, then either j is joining through i, or i is probing j .

∀ i , j ∈ ParticipatingNodes , m ∈ MessagePool :
∧ i 6= j ∧ j ∈ LeafSetContent(LeafSets[i ])
∧m.content .type = “JoinReply” ∧m.destination = j
⇒ j ∈ Probing [i ] ∨ j = ToJoin[i ]
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Invariant 36. Let m be a pending join reply message from r to i. Then
the leaf set attached to m contains the Ready/OK neighbors of both r and
i. Moreover, any node j in the leaf set attached to m that lies between i
and its Ready/OK neighbor is the to-join node of that neighbor.

∀m ∈ MessagePool :
m.content .type = “JoinReply”⇒

let CR1
∆
= ClosestFromTheRight(m.destination,

ReadyOKNodes)
CL1

∆
= ClosestFromTheLeft(m.destination,

ReadyOKNodes)
CR2

∆
= ClosestFromTheRight(m.content .ls.node,

ReadyOKNodes \ {m.content .ls.node})
CL2

∆
= ClosestFromTheLeft(m.content .ls.node,

ReadyOKNodes \ {m.content .ls.node})
in
∧ CR1 ∈ LeafSetContent(m.content .ls)
∧ CL1 ∈ LeafSetContent(m.content .ls)
∧ CR2 ∈ LeafSetContent(m.content .ls)
∧ CL2 ∈ LeafSetContent(m.content .ls)
∧ ∀ j ∈ LeafSetContent(m.content .ls) :
∧ j 6= CR1
∧ ClockwiseArc(m.destination, j , CR1)
⇒ j = ToJoin[CR1]

∧ ∀ j ∈ LeafSetContent(m.content .ls) :
∧ j 6= CL1
∧ ClockwiseArc(CL1, j , m.destination)
⇒ j = ToJoin[CL1]
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Invariant 37. Let i be a non-Ready/OK node that is joining through
some Ready node r. Let CR and CL be r’s right and left Ready/OK
neighbors. If another non-Ready/OK k is currently joining through CR
(or CL), then one of the following must hold: (1) The leaf set of i is
empty; that is, i has not yet received its join reply or begun the probing
phase. (2) the leaf set of k is empty; that is, k has not yet received its
join reply or begun the probing phase, (3) i is probing k, (4) k is probing
i, (5) k is probing r, (6) k is a member of i ’s leaf set.

∀ i ∈ ParticipatingNodes \ReadyOKNodes, r ∈ ReadyNodes :
∀ k ∈ {ClosestFromTheRight(r , ReadyOKNodes \ {r}),

ClosestFromTheLeft(r , ReadyOKNodes \ {r})}
∧ i = ToJoin[r ] ∧ ToJoin[k ] 6= k ∧ ToJoin[k ] 6= i
∧ ToJoin[k ] /∈ ReadyOKNodes
⇒ ∨ LeafSets[ToJoin[k ]] = EmptyLS (ToJoin[k ])
∨ LeafSets[i ] = EmptyLS (i) ∨ ToJoin[k ] ∈ Probing [i ]
∨ i ∈ Probing [ToJoin[k ]] ∨ r ∈ Probing [ToJoin[k ]]
∨ ToJoin[k ] ∈ LeafSetContent(LeafSets[i ])

Invariant 38. Suppose there is a pending join reply message to some
node x , and a pending probe reply message to some node y, both messages
from the same node r (note that r must be a Ready node by Invariant 12).
Then one of the following must hold: (1) x is in the leaf set attached to
the message to y, (2) y is in the leaf set attached to the message to x ,
(3) y is not in r’s leaf set, and the leaf set of r is full with closer nodes
to it than y.

∀m1, m2 ∈ MessagePool :
∧m1.content .type = “JoinReply”
∧m2.content .type = “ProbeReply”
∧m1.content .ls.node = m2.content .node
⇒ ∨m1.destination ∈ LeafSetContent(m2.content .ls)
∨m2.destination ∈ LeafSetContent(m1.content .ls)
∨ ∧ IsComplete(LeafSets[m2.content .node])
∧m2.destination /∈ LeafSetContent(LeafSets[m2.content .node])
∧ ∀ x ∈ LeafSets[m2.content .node].right :

ClockwiseArc(m2.content .node, x , m2.destination)
∧ ∀ x ∈ LeafSets[m2.content .node].left :

ClockwiseArc(m2.destination, x , m2.content .node)
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Invariant 39. Let i be a Ready/OK node, and k be a non-Ready/OK
node joining through i’s right or left Ready neighbor r. If k is not a
member of i ’s leaf set, then either k’s leaf set is empty or k is probing i.

∀ i ∈ ReadyOKNodes :
∀ r ∈ {ClosestFromTheRight(i , ReadyOKNodes \ {i})

ClosestFromTheLeft(i , ReadyOKNodes \ {i})} :
ToJoin[r ] /∈ (LeafSetContent(LeafSets[i ]) ∪ ReadyOKNodes)⇒

LeafSets[ToJoin[r ]] = EmptyLS (ToJoin[r ]) ∨ i ∈ Probing [ToJoin[r ]]

Invariant 40. Let m be a pending join reply from r to i. Let n be i’s
right or left participating neighbor. Then if n is not Ready/OK, one of
the following must hold: (1) n is in the leaf set attached to m, (2) n’s leaf
set is empty; that is, n has not yet received its own join reply or begun
the probing phase, (3) n is probing i, (4) n is probing r.

∀m ∈ MessagePool :
let r

∆
= m.content .ls.node

i
∆
= m.destination

in ∀n ∈ {ClosestFromTheRight(r , ParticipatingNodes \ {r}),
ClosestFromTheLeft(r , ParticipatingNodes \ {r})}

m.content .type = “JoinReply” ∧ n /∈ ReadyOKNodes ⇒
∨ n ∈ LeafSetContent(m.content .ls) ∨ LeafSets[n] = EmptyLS (n)
∨ i ∈ Probing [n] ∨ r ∈ Probing [n]

Invariant 41. Let i be a non-Ready/OK node joining through a Ready
node r. Let k be another non-Ready/OK node joining through one of r’s
Ready neighbors n (here the right or left Ready/OK neighbor). If i is
a member of k’s leaf set, then one of the following must hold: (1) i is
probing k, (2) k is probing i, (3) k is a member of i ’s leaf set.

∀ i ∈ ParticipatingNodes \ReadyOKNodes, r ∈ ReadyNodes :
∀n ∈ {ClosestFromTheRight(r , ReadyOKNodes \ {r}),

ClosestFromTheLeft(r , ReadyOKNodes \ {r})}
∧ ToJoin[n] 6= n ∧ ToJoin[n] 6= i
∧ ToJoin[n] /∈ ReadyOKNodes ∧ i = ToJoin[r ]
∧ i ∈ LeafSetContent(LeafSets[ToJoin[n]])
⇒ ∨ ToJoin[n] ∈ Probing [i ] ∨ i ∈ Probing [ToJoin[n]]
∨ ToJoin[n] ∈ LeafSetContent(LeafSets[i ])
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Invariant 42. Let i be a non-Ready/OK node joining through a Ready
node r. Let k be a non-Ready/OK node joining through one of r’s Ready
neighbors n (here the right or left Ready/OK neighbor of r). If there is
a pending probe reply message m from r to k, then one of the following
must hold: (1) i ’s leaf set is empty, (2) i is in the leaf set attached to m,
(3) i is probing k, (4) k is a member of i ’s leaf set.

∀ i ∈ ParticipatingNodes \ReadyOKNodes, r ∈ ReadyNodes,
m ∈ MessagePool :
∀n ∈ {ClosestFromTheRight(r , ReadyOKNodes \ {r}),

ClosestFromTheLeft(r , ReadyOKNodes \ {r})}
∧ i = ToJoin[r ] ∧m.content .type = “ProbeReply”
∧m.content .node = r ∧m.destination = ToJoin[n]
∧ ToJoin[n] 6= n ∧ ToJoin[n] 6= i
∧ ToJoin[n] /∈ ReadyOKNodes ∧ LeafSets[i ] 6= EmptyLS (i)
⇒ ∨ i ∈ LeafSetContent(m.content .ls)
∨m.destination ∈ Probing [i ]
∨m.destination ∈ LeafSetContent(LeafSets[i ])

Invariant 43. Let m be a pending join reply message to some node i
from some node j . Let k be another non-Ready/OK node joining through
one of j ’s Ready neighbors r. Then one of the following must hold: (1)
k is in the leaf set attached to m, (2) k’s leaf set is empty; that is k has
not yet received its join reply or begun the probing phase, (3) k is probing
i, (4) k is probing r.

∀m ∈ MessagePool :
∀ r ∈ {ClosestFromTheRight(m.content .ls.node,

ReadyOKNodes \ {m.content .ls.node}),
ClosestFromTheLeft(m.content .ls.node,

ReadyOKNodes \ {m.content .ls.node})} :
∧m.content .type = “JoinReply” ∧m.destination 6= ToJoin[r ]
∧ r 6= ToJoin[r ] ∧ ToJoin[r ] /∈ ReadyOKNodes
⇒ ∨ ToJoin[r ] ∈ LeafSetContent(m.content .ls)
∨ LeafSets[ToJoin[r ]] = EmptyLS (ToJoin[r)
∨m.destination ∈ Probing [ToJoin[r ]]
∨m.content .ls.node ∈ Probing [ToJoin[r ]]
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Invariant 44. Let i be a non-Ready/OK node and r its left or right
Ready/OK neighbor. Then either i ’s leaf set is empty; that is i has not
yet received its join reply message or begun the probing phase, r is a
member of i ’s leaf set, or i is probing r.

∀ i ∈ ParticipatingNodes \ReadyOKNodes :
∀ r ∈ {ClosestFromTheRight(i , ReadyOKNodes),

ClosestFromTheLeft(i , ReadyOKNodes)} :
∨ LeafSets[i ] = EmptyLS (i) ∨ r ∈ LeafSetContent(LeafSets[i ])
∨ r ∈ Probing [i ]

Invariant 45. Let i be a non-Ready/OK node and r its left or right
Ready/OK neighbor. Then either i ’s leaf set is empty; that is i has not
yet received its join reply message or begun the probing phase, i is a
member of r ’s leaf set, or i is probing r.

∀ i ∈ ParticipatingNodes \ReadyOKNodes :
∀ r ∈ {ClosestFromTheRight(i , ReadyOKNodes),

ClosestFromTheLeft(i , ReadyOKNodes)} :
∨ LeafSets[i ] = EmptyLS (i) ∨ r ∈ Probing [i ]
∨ i ∈ LeafSetContent(LeafSets[r ])

Coverage and Stability

Finally, the following invariants relate to exclusive coverage between different
Ready/OK nodes and are the main invariants used to prove correct delivery.
The proof of these invariants and the join/probe invariants of the previous
section are heavily inter-dependent. The difficulty in proving these invariants
lies in the rather involved arithmetic reasoning on coverage.
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Invariant 46. A Ready node i does not cover a non-Ready/OK k that
is the to-join node of (1) itself, (2) its leaf set neighbor, (3) any node j
that has granted i a lease, and (4) any node j that i has probed and from
which there is a pending probe reply message to i.

∀ i , j ∈ ReadyNodes :
∧ ∨ j = i ∨ j ∈ Leases[i ]
∨ j = LeftNeighbor(LeafSets[i ]) ∨ j = RightNeighbor(LeafSets[i ])
∨ ∃m ∈ MessagePool :
∧m.content .type = “ProbeReply”
∧m.content .node = j ∧m.destination = i

∧ ToJoin[j ] /∈ ReadyOKNodes
⇒ ¬Covers(LeafSets[i ], ToJoin[j ])

Invariant 47. A Ready node r does not cover any to-join node i.

∀ i ∈ ToJoinNodes, r ∈ ReadyNodes : r 6= i ⇒ ¬Covers(LeafSets[r ], i)

Invariant 48 (Exclusive Coverage). Two Ready/OK nodes i and j do
not both think they cover the same key k.

∀ i , j ∈ ReadyOKNodes, k ∈ I :
i 6= j ∧ i 6= k ∧ j 6= k
⇒ ¬Covers(LeafSets[i ], k) ∨ ¬Covers(LeafSets[j ], k)

Invariant 49 (Stable Network). Let i be a Ready/OK node and r its left
or right Ready/OK neighbor. Then r is a member of i ’s leaf set.

StableNetwork
∆
=

∀ i ∈ ReadyOKNodes :
∧ ClosestFromTheRight(i , ReadyOKNodes \ {i})
∈ LeafSetContent(LeafSets[i ])

∧ ClosestFromTheLeft(i , ReadyOKNodes \ {i})
∈ LeafSetContent(LeafSets[i ])
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6.4 An Outline of the Reduction Proof

In what follows, I show that strong correct delivery can be derived from the
correctness invariants presented above.

Lemma 1. A proper, balanced and organized leaf set does not cover its
own members.

∀ ls ∈ LeafSet : ∀ i ∈ (ls.left ∪ ls.right) :
IsProper(ls) ∧ IsBalanced(ls) ∧ IsOrganized(ls)⇒ ¬Covers(ls, i)

Proof. By definition of coverage and the leaf set properties “proper”, “bal-
anced” and “organized”.

Lemma 2. In a stable network where the leaf set invariants hold, the
leaf set of a Ready/OK node i does not cover any other Ready/OK node
j .

StableNetwork ∧ LeafSetInvariants ⇒
∀ i , j ∈ ReadyOKNodes : i 6= j ⇒ ¬Covers(LeafSets[i ], j )

Proof. For the sake of contradiction, let i and j be Ready/OK nodes where
i 6= j and i ’s leaf set covers j . Let l , r be the closest Ready/OK nodes to i
from the left and right, respectively. By Lemma 1, j is not a member of i ’s
leaf set. Because the network is stable, this means that j 6= l and j 6= r . This
means that j is separated from i by leaf set members l and r on both sides.

Theorem 1. Correct delivery follows from the correctness invariants
listed in Section 6.3.

CorrectnessInvariants ⇒ StrongCorrectDelivery

Proof. Recall the definition of StrongCorrectDelivery (Invariant 2). Let i and
k be two different Ready nodes and assume i covers some key j . Let m be a
pending lookup message for key j addressed to i . It is required to show that
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(1) i is closer to j than k is in terms of absolute ring distance, and (2) k does
not cover j .

∧AbsoluteDistance(i , j ) ≤ AbsoluteDistance(k , j )

∧ ¬Covers(LeafSets[k ], j )

For brevity, let us denote AbsoluteDistance(i , j ) and AbsoluteDistance(k , j )
by Di and Dk , respectively. The leaf sets of i and k are denoted by ls i and lsk .
The right and left leaf set neighbors of i are RN i and LN i , respectively, and
similarly for k , we use RN k and LN k . The right and left coverage bounds of
i ’s leaf set are denoted by RC i and LC i (RC k and LC k for k).

We can safely assume that i 6= j , since for i = j it is trivial to conclude that
(1) i is closer to i than k is (the distance between a node and itself is zero),
and (2) k does not cover i , by Lemma 2. Similarly, we also know that j 6= k ,
since i covers j but cannot cover k , also by Lemma 2.

That lsk does not cover j now follows directly from Invariant 48, which says
that no two Ready/OK nodes can cover the same key. It is left to show that
Di ≤ Dk .

Without loss of generality, we can assume that j is right-covered by i (the
proof works similarly for the left side). The situation is shown in Figure 6.4.
Note that k and RN i may be the same node, but the figure shows the general
case where k is a node after RN i on the clockwise direction from i .

By definition of coverage, the clockwise distance from i to j is no more than
half the distance from i to its right neighbor RN i ,

ClockwiseDistance(i , j ) ≤ ClockwiseDistance(i ,RN i)÷ 2.

From this, it can also be deduced,

ClockwiseDistance(i , j ) ≤ ClockwiseDistance(j ,RN i)

ClockwiseDistance(i , j ) ≤ RingSize ÷ 2

Therefore, it must be that Di = ClockwiseDistance(i , j ). That is, the short-
est distance between i and j is the clockwise distance from i to j .

The absolute/shortest distance Dk between j and k can be either the clock-
wise distance from k to j , or the clockwise distance from j to k . Assume that
Dk = ClockwiseDistance(k , j ). This means that the shortest path between k
and j passes through i . In this case,

Dk = ClockwiseDistance(k , i) + Di

Dk > Di

On the other hand, if Dk = ClockwiseDistance(j , k), then,

Dk = ClockwiseDistance(j , k)

= ClockwiseDistance(j ,RN i) + ClockwiseDistance(RN i , k)

≥ ClockwiseDistance(i , j ) + ClockwiseDistance(RN i , k)

≥ ClockwiseDistance(i , j )

Dk ≥ Di
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i

RN i

k

j

Figure 6.4 – Possible arrangement for Ready/OK nodes i and k with respect
to a key j right-covered by i .

In both cases, we reach the conclusion that Di ≤ Dk .

With the TLA+ proof summarized in this chapter, I establish the following.
Given a leaf set size of at least three, the LuPastry+ network is always stable;
that is, every Ready/OK node always knows its true left and right Ready/OK
neighbors on the ring. As a consequence, the coverage regions of Ready/OK
nodes do not overlap. It is therefore guaranteed that for any lookup request
for some key k , at most one Ready node i receives this request, and this node
i is (1) the node with the closest ID to key k in terms of shortest distance on
the ring, and (2) the only Ready node that covers key k .

In the next chapter, I present a simplified join process for LuPastry+, and
show how the proof presented here can be adapted to prove correct delivery
for the simplified version of the protocol.





Chapter 7

Simplified LuPastry+

By examining the proof of correctness of LuPastry+ presented in Chapter 6, it
becomes clear that the lease exchange phase of the join process does not play
a role in preserving the invariance of correct delivery. In this chapter, I show
that this lease exchange phase is, in fact, unnecessary for achieving correct
delivery and can be omitted. I present a modified version of LuPastry+, which
I denote by Simplified LuPastry+, where a Waiting node directly turns Ready
after finishing the probing process, without exchanging leases with its leaf set
neighbors. I also show how the TLA+ proof of correct delivery in Chapter 6
is adapted for the simplified specification, thereby obtaining a new, complete
proof of correct delivery for Simplified LuPastry+.

7.1 A Simplified Join Process for LuPastry+

The main difference in Simplified LuPastry+ to the original specification of
LuPastry+ is a simpler join process, shown in Figure 7.1. Compare this figure
to the original join process in Figure 4.3.

The simplified process starts in the same manner as the original one–a
Dead node i that wishes to join the network issues a join request, which is
eventually forwarded to the Ready node k that covers key i . If k is not currently
facilitating the join of any other node, it responds to i ’s join request, attaching
its own leaf set. Node i receives k ’s reply and begins the probing phase.

The key difference is introduced at the point when i has finished the probing
phase. In Simplified LuPastry+, as soon as i has finished the probing phase, it
directly changes its status to Ready, instead of OK. At this point, i has officially
finished the join process; it can directly help new nodes join the network. It
does not need to send lease requests to its leaf set neighbors, but instead, sends
a notification message to the responsible node k , letting it know that it has
finished joining. Once node k has received i ’s notification, it may help other
new nodes join the network.
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Figure 7.1 – The Simplified LuPastry+ join protocol.
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7.2 The TLA+ Specification of Simplified LuPastry+

I adapt the specification of LuPastry+ explained in Section 4.2 as follows.
The specification constants, ring description and distance operators remain
unchanged in Simplified LuPastry+. Similarly, the data structures for the
routing table and leaf set are identical in both specification. The only change
to the specification data structures relates to the types of messages exchanged
between nodes. Lookup, joining and probing messages work as before. Lease
request and reply messages are no longer needed and therefore eliminated from
the specification. A new type of message is needed for the final notification at
the end of the join process.

Definition 36 (Simplified LuPastry+ Message).

msg Lookup
∆
= [type : {“Lookup”}, node : I ]

msg NoLegalRoute
∆
= [type : {“NoLegalRoute”}, key : I ]

msg JoinRequest
∆
= [type : {“JoinRequest”},

rt : RoutingTable, node : I ]
msg JoinReply

∆
= [type : {“JoinReply”},

rt : RoutingTable, ls : LeafSet ]
msg Probe

∆
= [type : {“Probe”}, node : I ,

ls : LeafSet , failed : subset I ]
msg ProbeReply

∆
= [type : {“ProbeReply”}, node : I ,

ls : LeafSet , failed : subset I ]
msg Notify

∆
= [type : {“Notify”}, node : I ]

MessageContent
∆
=

msg Lookup ∪msg NoLegalRoute ∪msg JoinRequest ∪msg JoinReply
∪msg Probe ∪msg ProbeReply ∪msg Notify

Message
∆
= [destination : I , content : MessageContent ]

The variables of the new specification are given by the following definition.

Definition 37 (Simplified LuPastry+ Variables).

vars
∆
= 〈MessagePool , Status, LeafSets, RoutingTables, Probing ,

ToJoin, Responsible, Failed〉

Compared to the state variables of LuPastry+ in Definition 14, the orig-
inal LuPastry+ variables Leases and Grants were omitted, since nodes do
not exchange leases. Instead, a new variable Responsible is added, where
Responsible[i ] is the Ready node, if any, that is currently helping or has
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helped i join the network.1 If i is a non-participating or an initially Ready
node, Responsible[i ] = i . There is a need for this new variable in Simplified
LuPastry+ so that a joining node i notifies its responsible node as soon as it has
turned Ready. In the original LuPastry+, this notification was done implicitly
through the process of lease exchange: the responsible node k for i is always
one of i ’s leaf set neighbors, and by exchanging leases with i , k is notified that
i has finished its join process.

The new type invariant is given by the following formula.

Invariant 50 (Simplified LuPastry+ Type Invariant).

∧ MessagePool ∈ subset Message
∧ Status ∈ [I → {“Ready”, “Waiting”, “Dead”}]
∧ RoutingTables ∈ [I → RoutingTable]
∧ LeafSets ∈ [I → LeafSet ] ∧ ∀ i ∈ I : LeafSets[i ].node = i
∧ Probing ∈ [I → subset I ] ∧ Failed ∈ [I → subset I ]
∧ ToJoin ∈ [I → I ] ∧ Responsible ∈ [I → I ]

Because nodes never have the status “OK” in Simplified LuPastry+, it
is always the case that OKNodes = {}, and therefore ReadyOKNodes =
ReadyNodes. In the TLA+ files, I simply omit the definitions of OKNodes and
ReadyOKNodes, and replace all references to ReadyOKNodes with ReadyNodes.
For the scope of this chapter, ReadyOKNodes and ReadyNodes are interchange-
able.

The initial state of Simplified LuPastry+ is modified from the original Def-
inition 15 to accommodate the change in variables.

Definition 38 (Simplified LuPastry+ Initial State).

Init
∆
=

∧MessagePool = {}
∧ Status = [i ∈ I 7→ if i ∈ A then “Ready” else “Dead”]
∧ ToJoin = [i ∈ I 7→ i ]
∧ Responsible = [i ∈ I 7→ i ]
∧ Probing = [i ∈ I 7→ {}]
∧ Failed = [i ∈ I 7→ {}]
∧ LeafSets = [i ∈ I 7→ if i ∈ A then AddToLS (A, EmptyLS (i))

else EmptyLS (i)]
∧ RoutingTables = [i ∈ I 7→ if i ∈ A

then AddToRT (A, EmptyRT , i)
else AddToRT ({i}, EmptyRT , i)]

1Since each node joins only once, there is no need to reset Responsible[i ] to i after it has
finished joining.
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The next-state relation in Simplified LuPastry+ is defined as follows.

Definition 39 (Simplified LuPastry+ Next-State Relation).

Next
∆
=

∃ i , j ∈ I :
∨ Lookup(i , j )
∨ RouteLookup(i , j )
∨DeliverLookup(i , j )
∨ Join(i , j )
∨ RouteJoinRequest(i , j )
∨ ReceiveJoinRequest(i)
∨ ReceiveJoinReply(i)
∨ ReceiveProbe(i)
∨ ReceiveProbeReply(i)
∨ ReceiveNotification(i)
∨ LoseMessage

The actions Lookup, RouteLookup, DeliverLookup, Join, RouteJoinRequest ,
ReceiveJoinRequest , ReceiveProbe and LoseMessage had no effect on the vari-
ables Leases and Grants in the original specification. Therefore, they are de-
fined in the same way in Simplified LuPastry+, aside from replacing the post-
conditions unchanged Leases and unchanged Grants by the post-condition
unchanged Responsible.

The action ReceiveJoinReply also had no effect on the variables Leases
and Grants in the original specification. However, on receiving a join reply, a
node must set its Responsible variable to the sender of the join reply message.
Therefore, in the new action formula, the post-conditions unchanged Leases
and unchanged Grants are removed, and the variable Responsible is updated
as follows.
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Definition 40 (Simplified LuPastry+ Action Receive Join Reply).

ReceiveJoinReply(i)
∆
=

Status[i ] = “Waiting” ∧ ∃m ∈ MessagePool :
∧m.content .type = “JoinReply” ∧m.destination = i
∧ let ls

∆
= m.content .ls

lsc
∆
= LeafSetContent(ls)

nrt
∆
= AddToRT (lsc ∪ RTContent(m.content .rt),

RoutingTables[i ], i)
nls

∆
= AddToLS (lsc, LeafSets[i ])

prb
∆
= LeafSetContent(nls) \ {i}

msg
∆
= ProbeSet(i , nls, {}, prb)

in ∧ RoutingTables ′ = [RoutingTables except ! [i ] = nrt ]
∧ LeafSets ′ = [LeafSets except ! [i ] = nls]
∧ Probing ′ = [Probing except ! [i ] = prb]
∧MessagePool ′ = (MessagePool \ {m}) ∪msg
∧ Responsible ′ = [Responsible except ! [i ] = ls.node]
∧ unchanged 〈Status, ToJoin, Failed〉

Similarly, the action ReceiveProbeReply had no effect on the variables Leases
and Grants in the original specification. However, it is modified so that on
receiving the last expected probe reply (finishing the probing phase), a Wait-
ing node i turns Ready, and, instead of sending lease request messages to its
neighbors, notifies its responsible node that it has finished joining. The variable
Responsible remains unchanged.
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Definition 41 (Simplified LuPastry+ Action Receive Probe Reply).

ReceiveProbeReply(i)
∆
= Status[i ] 6= “Dead” ∧ ∃m ∈ MessagePool :

∧m.content .type = “ProbeReply” ∧m.destination = i
∧ let j

∆
= m.content .node

ls
∆
= m.content .ls

nf
∆
= Failed [i ] \ {j}

nls1
∆
= AddToLS ({j}, LeafSets[i ])

nls2
∆
= AddToLS ((LeafSetContent(ls) \nf ), nls1)

pm
∆
= LeafSetContent(nls2)

prb1
∆
= (LeafSetContent(nls1) ∩m.content .failed)

\ (Probing [i ] ∪ nf ∪ {i})
prb2

∆
= pm \ (LeafSetContent(nls1) ∪ Probing [i ] ∪ nf ∪ prb1)

prb3
∆
= (Probing [i ] ∪ prb1 ∪ prb2) \ {j}

fin
∆
= Status[i ] = “Waiting” ∧ prb3 = {}

msg
∆
= [destination 7→ Responsible[i ],

content 7→ [type 7→ “Notify”, node 7→ i ]]
in ∧ RoutingTables ′ = [RoutingTables except ! [i ] =

AddToRT ({j}, @, i)]
∧ LeafSets ′ = [LeafSets except ! [i ] = nls1]
∧ Failed ′ = [Failed except ! [i ] = if fin then {} else nf ]
∧ Probing ′ = [Probing except ! [i ] = prb3]
∧ Status ′ = [Status except ! [i ] =

if fin then “Ready” else @]
∧MessagePool ′ = (MessagePool
∪ ProbeSet(i , nls1, nf , prb1) ∪ ProbeSet(i , nls1, nf , prb2)
∪ if fin then {msg} else {}) \ {m}

∧ unchanged 〈Responsible, ToJoin〉

Actions RequestLease, ReceiveLeaseRequest and ReceiveLeaseReply from
the original specification are no longer needed and are omitted here. Instead,
I define an action ReceiveNotification, where a node i receives a notification
from its to-join node, letting it know that it has finished the join process and
turned Ready. Node i resets its to-join field so that it can help new nodes join
the network in the future.
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Definition 42 (Simplified LuPastry+ Action Receive Notification).

ReceiveNotification(i)
∆
= Status[i ] = “Ready” ∧ ∃m ∈ MessagePool :

∧m.content .type = “Notify” ∧m.destination = i
∧m.content .node = ToJoin[i ] ∧ ToJoin ′ = [ToJoin except ! [i ] = i ]
∧MessagePool ′ = (MessagePool \ {m})
∧ unchanged 〈Status, RoutingTables, LeafSets, Probing , Failed ,

Responsible〉

This concludes the list of changes to the specification of LuPastry+. In
what follows, I describe the similar changes that had to be made to the proof
to adapt it to the simplified specification.

7.3 Correct Delivery in Simplified LuPastry+

Adapting the proof of correct delivery for the original LuPastry+ specification
to the simplified version is straight-forward. In fact, the proof described in
Chapter 6 focuses mainly on the probing process and proves properties relating
to the set of Ready/OK nodes as a whole, instead of just the set of Ready nodes.

In Chapter 6, I show that the set of Ready/OK nodes in a LuPastry+

network is always stable, since every Waiting node must probe or be probed by
its left and right Ready/OK neighbor before it turns OK. That is, the probing
phase already establishes (and maintains) stability for both Ready and OK
nodes.

Eliminating the lease exchange phase and the intermediate OK status in
Simplified LuPastry+ effectively reduces the set of Ready/OK nodes to the set
of Ready nodes. Therefore, we can show that the set of Ready nodes are always
stable in Simplified LuPastry+, due to the probing phase.

Since exclusive coverage and correct delivery follow from stability, as shown
in the reduction proof of Section 6.4, it is straight-forward to prove (strong)
correct delivery for Simplified LuPastry+. The property proven is the same as
in Definition 2 in the previous chapter.

∀ i , j , k ∈ I :
∧ Status[i ] = “Ready” ∧ Status[j ] = “Ready”
∧ j 6= i ∧ Covers(LeafSets[i ], k)

∧ ∃m ∈ MessagePool : m.content .type = “Lookup”
∧m.content .node = k ∧m.destination = i

⇒ ∧AbsoluteDistance(i , k) ≤ AbsoluteDistance(j , k)
∧ ¬Covers(LeafSets[j ], k)

Adapting the TLA+ proof required the following steps.
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1. Removing invariants. Invariants relating to the lease exchange phase were
no longer needed and therefore eliminated. These are invariants relating
to either exchanged lease request and reply messages, or the variables
Leases and Grants, like Invariant 9, which says that for any node i ,
all nodes in the set Leases[i ] are Ready/OK. Since the proof of other
invariants is mostly independent from invariants on lease exchange, this
step did not cause any significant disturbance to the flow of the overall
proof.

2. Modifying invariants. The proof of the remaining invariants had to be
adjusted for the new next-state relation. Induction steps for the elimi-
nated actions RequestLease, ReceiveLeaseRequest and ReceiveLeaseReply
were removed. For the new action ReceiveNotification, one induction step
is added.

3. Adding invariants. A few very simple invariants were added as necessary,
to prove some properties about the new variable Responsible, such as
Invariant 51 below.

Invariant 51. Let i be a to-join node that is not Ready. If i ’s leaf set is
not empty, then i’s Responsible field is not set to itself.

∀ i ∈ (ToJoinNodes \ReadyNodes) :
LeafSets[i ] 6= EmptyLS (i)⇒ i 6= Responsible[i ]

In summary, it was possible to adapt the TLA+ specification of LuPastry+

described in Chapter 4 to have a simpler join process, and prove correct delivery
for this join process by introducing only a small number of changes to the proof
presented in Chapter 6.





Chapter 8

Conclusion

This thesis is concerned with the formal verification of Pastry, a popular im-
plementation of a Distributed Hash Table (DHT). A DHT is a peer-to-peer
network that acts as a hash table where different key-value pairs are stored at
different nodes on the network. Pastry nodes are randomly assigned identifiers
from the key space of the hash table. Each node is responsible for managing
the portion of the key space numerically closest to its identifier. Like a clas-
sic hash table, the main function provided by Pastry is key lookup: a node
may issue a lookup request for a certain key, and the request is routed to the
Pastry node that manages this key. Pastry is a dynamic network where nodes
may join the network at any time by following the join protocol, and leave/fail
spontaneously without giving notice to other nodes.

The work presented here is a continuation of Tianxiang Lu’s work on ver-
ifying the correct delivery of lookup requests in Pastry. Lu defines “correct
delivery” as follows: “at any point in time, there is at most one node that
answers a lookup request for a key, and this node must be the closest live node
to that key.” He shows that the full published version of Pastry violates cor-
rect delivery, and presents LuPastry, a pure-join variant of Pastry where node
failure is not modeled and where a live node on the network may help at most
one other node join the network at a time. Lu also gives a partial proof of
correct delivery for LuPastry, mechanized in the TLA+ proof assistant.

Upon examining Lu’s proof, I found that it is based on a large number of
unproven assumptions. This is likely due to the sheer size of the proof (over
10,000 lines) and the lack of maturity of the TLA+ proof assistant at the time.
In attempting to prove these assumptions, I found counterexamples to many
of them, such as arithmetic assumptions or assumptions about protocol data
structures that ignoring border cases. As a consequence, I was able to find a
counterexample to one of Lu’s claimed invariants of LuPastry which he uses to
prove correct delivery. These discoveries highlighted the need for a new and
complete proof of correct delivery in LuPastry.

The contribution of this thesis is manyfold.

1. I present LuPastry+, a TLA+ specification based on Lu’s specification of
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LuPastry, which introduces a number of bug fixes and improvements to
the definitions of some operators. The improvements make the specifica-
tion more readable and modular, and significantly improve the automa-
tion of the correctness proof.

2. I present a complete proof of correct delivery of lookup requests for
LuPastry+ in TLA+.

3. I observe that the final step of the node join process of LuPastry/LuPastry+,
denoted by the “lease exchange” step, is in fact unnecessary for correct
delivery. I present a simplified version of LuPastry+ where the lease
exchange step is eliminated. I denote the simplified specification by Sim-
plified LuPastry+.

4. I present a complete proof of correct delivery of lookup requests for Sim-
plified LuPastry+ in TLA+. This proof is adapted from the TLA+ proof
for LuPastry+, by introducing the necessary changes.

The lease exchange phase eliminated in Simplified LuPastry+ was, in fact,
not published as part of the original specification of Pastry, but in a later paper
by the authors [21]. It was included by Lu in his specification of LuPastry in his
attempt to devise a variant of Pastry for which correct delivery can be proven
[27]. Lu shows that in the full specification of Pastry where node failure is
modeled, the lease exchange phase does not prevent the protocol from violating
the correctness property, since network separation is still possible if too many
nodes fail within a small period of time. The proof presented here shows that,
in fact, this phase of the join process is not necessary for correctness in the
pure-join model.

Aside from the necessary technical differences, both proofs presented here
have the same basic idea, and are comparable in size w.r.t. the number of
interactive proof steps and the number of invariants proven. Each proof consists
of over 32,000 lines. To my knowledge, both Lu’s partial proof and the two
proofs presented here represent the only two works that employ full theorem
proving for formal verification of a DHT protocol, and the proofs presented
here may well be the largest proof examples written using the TLA+ proof
assistant.

Experience and Challenges

Since both TLA+ specifications of LuPastry+ and Simplified LuPastry+ are
based on Lu’s TLA+ specification of LuPastry, I was spared the initial task of
creating a specification from scratch, with the challenges that this task entails,
such as determining the right level of abstraction, designing the data structures,
and resolving ambiguities in the informal specifications found in the literature.
In fact, my starting point was analyzing Lu’s partial proof, and attempting
to complete it by proving the unproven assumptions. It is through this task
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that I learned the TLA+ specification and proof language, also consulting the
available references from time to time.

I found the TLA+ language natural, expressive, and well-suited for model-
ing and verifying Pastry. The learning curve was not too long; within the first
months I was sufficiently competent in TLA+ to write involved proofs for some
of Lu’s assumptions, and, more importantly, to identify room for improvement
in Lu’s specification to enhance proof automation. Due to the expressiveness
of the language, it is typically possible to express one property in many differ-
ent ways that are semantically equivalent, but where the performance of the
back-end theorem provers varies greatly according to the chosen syntax. For
me, this was the first main task which gave me insight into both TLA+ and
Pastry. At this point, I decided to improve the specification of LuPastry into
LuPastry+ as described in Chapter 5, before proceeding to write a new and
complete proof of correctness.

The second task was to prove a large number of lemmas on arithmetic, set
theory and the Pastry data structures. Many of the data structure lemmas
were inspired by Lu’s unproven assumptions. The arithmetic and set theory
lemmas, on the other hand, as well as many more data structure lemmas,
were formulated and proven on-the-go whenever the need for them arose in the
higher levels of the proof.

The most difficult task was to develop a coherent story for the proof and
find the right invariants to prove. Model checking was crucial at this point. I
performed model checking on networks of four and sometimes eight nodes for
every property I intended to prove as an invariant. For the model checking
to be efficient, the key trick is to model-check a restricted specification where
actions for lookup and message loss are disabled.1 Since the safety property
“correct delivery” is concerned with the correctness of the node’s local view of
the network, these actions cannot contribute to any potential counterexamples.
The lookup actions only move lookup messages through the network and do
not change the node state. Similarly, message loss bears no effect on correct
delivery; it can only affect liveness by causing a node to deadlock, waiting on
a message that was lost in communication. With these actions disabled, the
LuPastry+ (and Simplified LuPastry+) models have a finite number of states;
the protocol stabilizes after every key in the key space corresponds to the
identifier of a live node. At this point, all join processes have completed, and
no more messages are exchanged. This means that model checking takes less
than a minute on a network of four nodes instead of days. I found the TLC
model checker easy to use from within the TLA+ toolbox.

Another challenge in proving the invariants using TLAPS was the lack of
counterexamples provided by the back-end provers. When proof obligations
fail, the toolbox cites either timeout, or, rarely, a false proof obligation. In
the case of a timeout, it takes some effort to determine whether the timeout
occurred because the proof obligation was false, or because it was more than

1Actions Lookup, RouteLookup, DeliverLookup and LoseMessage in the TLA+ specifica-
tion presented in Chapter 4.
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the back-end could handle. In my experience, many SMT-reported timeouts
were due to a true proof obligation being too involved for the SMT solver to
handle, while timeouts reported from general-purpose provers like Zenon and
Spass typically meant the input proof obligation was false.

Room for Improvement and Future Work

Node failure. The proof presented here proves correct delivery of lookup
messages for pure-join variants of Pastry, where node failure is not modeled. As
Lu already shows in [27], the full published version of Pastry is inconsistent; the
property of correct delivery is violated when node failure is taken into account.
Similar results have been found for similar protocols like Chord [44]. In fact,
it is argued that one cannot achieve consistency where node failure is allowed,
due to the possibility of network separation [20]. However, there is still no
definitive answer to this question. There is no doubt that a full DHT protocol
that is formally specified and provably correct using rigorous formal methods
would be a remarkable achievement in this research area. A good start would
be Pamela Zave’s version of Chord presented in [45], which she supports with
a proof of correctness that is carried out by automated analysis of an Alloy
model. Zave’s model of Chord operates under the assumption that the key
space has a certain minimum size n, and that there is a stable base of n nodes
that are permanently online to guarantee connectivity. It would be interesting
to apply formal methods like theorem proving to full specifications of Pastry
or Chord which allow nodes to join and leave freely, and see if correct delivery
holds under the assumption of a stable base.

Proof reuse for other DHT protocols. The strong similarities among
the available DHT implementations indicate that there is great potential for
proof reuse. This thesis already serves as an example in this direction, where
a complete proof as large as 32,000 lines for LuPastry+ was directly adapted
to prove correctness of a simplified variant of the specification. There is also
the possibility of applying formal methods to verify certain properties of a
“generic” specification of DHT protocols, from which existing DHT protocols
like Pastry can be instantiated. In his thesis, Ghodsi mentions that DKS
is a generalization of DHT protocols, from which Pastry and Chord can be
instantiated [20]. DKS may serve as a good starting point in this direction.
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