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Abstract

Over the decades, with the increase of computing resources, the amount of data to
manage also increased tremendously. Besides of the sheer quantity of information,
the quality of it highly varies today.

Indexing all this data with equal effort is cumbersome and wasteful. Thus, adaptive
indexing algorithms refine parts of interest more carefully. Unfortunately, the
adaptivity also introduces a set of new problems. High variance in response times
and low robustness against certain workloads are just two issues to mention. A
vast amount of methods have been proposed to deal with these problems. Thus,
in the first part of this thesis, we will reinvestigate, analyze, and enhance the class
of adaptive indexing methods in a comprehensive evaluation on the algorithmic
level. In total, we discuss 18 cracking methods, 6 sorting algorithms, and 3 full
index structures, including our own proposed methods.

Consequently, we identify data partitioning as the common component. Thus, in
the second part, we analyze the surprising amount of optimizations possible to en-
hance partitioning. Interestingly, they mostly originate from a more sophisticated
mapping of the method to the system properties, thus shifting our perspective to
a system-centric view.

Subsequently, in the third part, we dig down to the ground level by exploiting
a core feature of any modern operating system, the virtual memory system. We
investigate how virtual and physical memory can be separated in user space and
how the mappings between the two memory types can be rewired freely at run-
time. Using rewiring, we are able to significantly enhance core applications of data
management systems.

Finally, we apply the techniques identified in this thesis to the initial adaptive
indexing algorithm to significantly improve it — and close the circle.
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Zusammenfassung

Im Laufe der Jahrzehnte kam es neben dem Anstieg der zur Verfügung stehen-
den Berechnungsressourcen auch zu einem heftigen Anstieg der zu verwaltenden
Datenmengen. Abgesehen von der schieren Größe der Informationsmenge variiert
heutzutage auch die Qualität dieser in großem Maße.

Die Datenmenge mit gleichverteiltem Aufwand zu indizieren ist ein mühseliges und
verschwenderisches Unterfangen. Daher investiert die Klasse der adaptiven Indizes
mehr Indizierungsaufwand auf Bereiche von Interesse. Leider bringt adaptive Indi-
zierung auch einige neue Probleme mit sich, die es zu handhaben gilt. Große Vari-
anz in der Laufzeit und schwache Robustheit gegenüber gewissen Anfragemustern
sind nur zwei der zu benennenden Schwierigkeiten. Um diesen Problemen entge-
genzuwirken kam es in der Vergangenheit zur Entwicklung einer großen Anzahl
verschiedenster Algorithmen. Im ersten Teil dieser Dissertation werden wir daher
die Klasse der adaptiven Indizes in einer allumfassenden Evaluierung auf algorith-
mischer Ebene neu untersuchen, analysieren und erweitern. Insgesamt behandelt
diese Auswertung 18 verschiedene Cracking-Methoden, 6 Sortieralgorithmen und
3 traditionelle Indexstrukturen, inklusive unserer eigenen Algorithmen.

Auf Basis dieser Untersuchungen identifizieren wir Datenpartitionierung als ge-
meinsame Komponente. Daher analysieren wir im zweiten Teil dieser Dissertati-
on die überraschend große Anzahl an möglichen Optimierungen zur Verbesserung
der Partitionierungsphase. Interessanterweise entspringen diese hauptsächlich einer
ausgeklügelteren Abbildung des Problems auf die Gegebenheiten des zu Grunde lie-
genden Systems. Daher verlagern wir unsere Perspektive auf eine system-zentrische
Ebene.

Darauffolgend gelangen wir im dritten Teil dieser Dissertation auf die unterste Ebe-
ne der Betrachtung, indem wir uns der Ausnutzung eines elementaren Bestandteiles
eines jeden modernen Betriebssystems widmen, der virtuellen Speicherverwaltung.
Wir untersuchen wie virtueller und physischer Speicher in der Benutzerumgebung
voneinander getrennt werden können und wie die Abbildungen zwischen den bei-
den Speichertypen zur Laufzeit manipuliert und neu verdrahtet werden können.
Mit Hilfe dieser Technik sind wir in der Lage, Kernapplikationen von Datenbank-
systemen nachhaltig zu verbessern.

Abschließend wenden wir die im Laufe dieser Arbeit identifizierten Methoden auf
den initialen adaptiven Indizierungsalgorithmus an und verbessern diesen signifi-
kant — um den Kreis zu schließen.
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Chapter 1

Introduction

1.1 Motivation

Managing data in an efficient way in terms of maintenance and access time is one
of the core challenges in computer science.

In the early days of information processing, where computing power and memory
space were extremely scarce, algorithms and data structures were constructed very
carefully to utilize the precious resources as cautious as possible. Nowadays, even
a general purpose desktop computer offers a vast amount of computing power in
form of one or multiple CPUs, each consisting of several computing cores, and
has gigabytes of main-memory installed. One could think that these nice circum-
stances solve most of the problems that software engineers faced in the early days.
However, this is clearly not the case.

With the increase of computing capacities, the amount of data to manage and to
process also increased tremendously. Systems have to handle tables with billions
of records that keep changing continuously at a high rate. At the same time, an in-
creasing amount of users is accessing the data concurrently, demanding the results
of their queries within milliseconds. Thus, a careful engineering of the applied
algorithms and data structures is still as crucial as ever and actually demands for
new types of data management techniques.

But what does careful engineering actually mean? We can basically differenti-
ate between two different perspectives, when optimizing methods: the algorithmic
view and the system-centric view. The former one treats the algorithm as a math-
ematical construct with the aim to optimize the method with respect to some
complexity metric. For instance, the optimization goal could be to minimize the

1
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amount of elements the algorithm has to copy during processing. The latter view
treats the algorithm as a physical instance that is executed on a real system. The
main optimization goal is to map the algorithm more efficiently to the properties
of the underlying hardware and the operating system. As we will see, a combina-
tion of both views is necessary to get the most out of a method. Throughout this
thesis, we will perform a shift of perspective. We will start with the algorithmic
perspective at the case of adaptive indexing.

1.1.1 The Lazy Approach — Adaptive Indexing

The vast amount of data that is produced all day introduces another phenomenon
of modern data management: the omnipresence of useless, uninteresting, or even
faulty data. For instance, via social media, users constantly produce posts and
upload images or videos, that may be queried a million times or not at all —
in any case, the system underneath has to store, to manage, and to provide the
content. Another example are ubiquitous sensors, with their presence ranging all
over from cars to phones, that constantly log various kinds of measurements of
their surrounding. They do so not necessarily because there is a need to store
all this information, the main driving force is to gather all the data because it is
possible.

This attitude leads to the demand of new forms of data management software. To
index and search this kind of mixture of important, unimportant, and garbaged
information, new types of data structures are needed. The classical index structure,
that treats all entries with equal priority, seems too wasteful in this scenario. It
is not very efficient to index a billion entries element-wise, as for instance done by
a classical B-Tree, if 99% of the data will never be queried or even thrown away
tomorrow because it is already outdated. Instead, we want to focus our indexing
effort on the 1% that is of interest and ignore the rest. This is the purpose of
adaptive indexing, the first major topic of this thesis.

This mentality is the main driving force for the class of adaptive indexing algo-
rithms, that came up in the last decade. Instead of building the entire index
upfront, it is incrementally refined as a side product of query processing. Instead
of indexing each key individually, only key ranges are indexed in a coarse-granular
fashion.

As only the individual queries fired by the users can tell the system which parts of
the data are important respectively interesting, adaptive index maintenance can
only happen during query answering. Besides of focusing on interesting parts of the
data, adaptive indexing also manages to divide the work of building up the index
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into many small parts, instead of a single huge one. This reduces the pressure on
the system during index maintenance. Figure 1.1 visualizes the difference between
traditional and adaptive indexing. Traditional indexing techniques put a high load
on the system during the long phase of initial index creation. In comparison to
that, adaptive indexing has a very short initialization phase and slowly improves
the index query by query.

build index build finished

Pressure on 
the system

Time

initialize index

Figure 1.1: Traditional Indexing (build the index at once) vs Adaptive In-
dexing (build the index incrementally during query processing).

Within the last decade, a large amount of work has been published on adaptive
indexing, showing the need and interest for this class of algorithms. The largest
part of the research in this field originates from the group of original inventors of
database cracking, the main representative of adaptive indexing, CWI Amsterdam.
As different workloads and situations require different algorithms, they proposed a
vast amount of methods that try to deal with the classical adaptive indexing issues
convergence speed, response time variance, and tuple reconstruction performance.

After studying the literature [15, 39, 14, 17, 23, 22, 20, 21], that tackles these
issues mostly one by one in an independent fashion, the question remains how
these algorithms compare against each other in a unified environment under a
common setup. Which algorithms are really the best to use in practice? Is there a
need for such a large number of different algorithms — and how different are they
actually?

Thus, a major part of this thesis we will spent on the study, improvement, and
extension of adaptive indexing algorithms. We will reinvestigate the large set
of existing algorithms and try to reproduce the results obtained by the original
authors. Further, we will try to improve the methods and show new directions
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on how to approach existing issues of the field. Additionally, we will test the
techniques under setups that have not been tried and discussed so far, to get new
insights into the usability of adaptive indexing and how to avoid the pitfalls.

In Section 1.2.1 and 1.2.2, we outline the detailed contributions of our work in
this field. To ease the discussion, we clearly separate the single-threaded and
multi-threaded algorithms and look at them individually.

1.1.2 Invest It All — Sorting Data

Discussing adaptive indexing is impossible without the discussion of classical sort-
ing algorithms. Sorting can be considered as the most unbalanced form of adaptive
indexing — all the reorganization is done in a single query. It can also be seen
as the most basic form of traditional indexing. If the keys are perfectly sorted, a
queried key can be located via binary search in logarithmic complexity.

This is why throughout this thesis, sorting algorithms will not only serve as the
baseline to compete with for any adaptive indexing method, but also as a possible
alternative. Having the index in a sorted state offers pleasant advantages in query
optimization, such as enabling cheap sort merge joins, apart from fast and stable
index lookup times.

Of course, sorting algorithms are basically as old as computer science itself and
thus, the area has been very well researched both from the theoretical and the
practical perspective. Interestingly, as we will see throughout this thesis, there
is still room for improvements. These do no longer result from deep algorithmic
modifications, but mainly from a more sophisticated mapping to the underlying
system and hardware. For instance, to fully utilize all computing cores across
multiple sockets, the sorting algorithm must be made aware of the structure of the
system and schedule the work accordingly.

In Section 1.2.1 (single-threaded) and Section 1.2.2 (multi-threaded), we outline
the contributions we make in this thesis regarding sorting methods.

1.1.3 The Core of Indexing — Data Partitioning

If we analyze both adaptive indexing, with its main representative of database
cracking, as well as sorting methods, then we realize that all of them are built upon
a single common component — they basically apply a form of data partitioning.
While adaptive indexing algorithms partition the data only with respect to the
seen queries, sorting methods divide the data into a partition per unique key.
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With that omnipresence of partitioning in mind, a reasonable decision is to improve
the raw algorithm as much as possible. This seems hard to achieve due to the
simplicity of the procedure, which does not really offer many options to pick from.
Especially the out-of-place version is extremely primitive as it solely consists of a
first pass counting the partition sizes and a second pass copying the entries to the
designated partitions.

Again, algorithmically not much can be done to improve the performance. Never-
theless, it turns out that surprisingly many low-level optimizations can be applied
to significantly enhance the process of partitioning, without changing its algo-
rithmic nature. With an awareness of certain operating system features and the
underlying hardware characteristics, the raw out-of-place algorithm can be mapped
significantly more efficient to the system.

Our detailed investigation of these techniques clearly shows the path this thesis is
trailing: the transition from an algorithm-centric to a system-centric optimization.

In Section 1.2.3 we discuss the contributions we make in this thesis in the field of
data partitioning.

1.1.4 The Basis of Data Management — Virtual Memory

Our work on the improvement of data partitioning clearly demonstrates the need
for close-to-the-system programming when it comes to processing speed. We want
to push this paradigm of system centric optimization further by an investigation
of the memory management system, that is utilized by basically every algorithm
and data structure out there.

A very interesting system part that is present in state-of-the-art operating systems
is the virtual memory management. Instead of directly delivering physical memory
to the user, the operating system grants only access to virtual memory, that is
internally mapped to physical one in a completely transparent fashion. While this
has many convenient advantages like process separation and over-allocation1, it
adds a level of indirection between virtual and physical memory pages. Further,
by default, the mapping between the layers is not modifiable by the user.

Thus, we will propose a way how to reintroduce physical memory into user space
again — without any modifications of the operating system kernel. With both
virtual and physical memory objects at hand, the user is able to manipulate the
mapping between these types of memory during runtime. We coin this technique

1We refer to over-allocation as the process of virtually allocating more memory than the
system physically has.
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rewiring memory. As we will see, this method can be used in various data man-
agement algorithms.

In Section 1.2.4 we will outline the detailed contributions we make regarding the
rewiring of memory.
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1.2 Contributions

In this thesis, we analyze, evaluate, and extend fundamental components of
database systems.

We start with a thorough analysis of the adaptive indexing paradigm by reevalu-
ating, questioning, and extending the recent work in the field. In Chapter 2, we
focus on single-threaded adaptive indexing entirely. Consequently, in Chapter 3,
we present how adaptive indexing can be realized in a multi-threaded environment.
In both Chapters 2 and 3, sorting methods, as a core building block of classical
indexing, are always present as well and are discussed as counterparts to adaptive
indexing.

Based on the obtained results, in Chapter 4 we dig deeper by investigating a
core building block of any adaptive indexing and sorting algorithm, namely data
partitioning, and investigate how it can be mapped efficiently to the capabilities
of modern hardware.

In Chapter 5, we completely focus on the system-centric perspective by digging
even deeper to the memory management and present rewired memory, a funda-
mental technique that enables the improvement of algorithms and data structures
solely by exchanging the memory management system.

Finally, in Chapter 6 we wrap up the results and close the circle of optimization
by applying the most valuable techniques discussed in this thesis onto the initial
adaptive indexing algorithm to improve it significantly.

1.2.1 Single-threaded Adaptive Indexing and Sorting

Within the last decade, a large amount of publications appeared that cover the
topic of adaptive indexing. They introduced the core technique of adaptive index-
ing in the form of database cracking respectively standard cracking [20, 26] as well
as refining the concept in several ways to address certain problems that appeared
along the way. To improve the convergence speed, a set of so called hybrid crack-
ing methods was introduced [23]. To reduce the variance of query response times,
stochastic cracking [17] was proposed that introduces random decisions into the
index evolution. Efficient tuple reconstruction in the context of database cracking
was addresses by sideways cracking [22]. Predication cracking [39] tried to reduce
the penalty caused by branch misprediction by proposing a branch-free version of
standard cracking.

While all of these works significantly contributed to the overall understanding of
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adaptive indexing algorithms and their applicability to the individual use-cases,
we clearly felt the need for a reevaluation and analysis of all these techniques in a
single environment.

Thus, in Chapter 2, we combine the work of 5 major publications in the field of
adaptive indexing and reevaluate them in a single test framework. We first revisit
the methods of the original authors and try to reproduce and confirm their results.
This covers the reimplementation and reevaluation of standard cracking [20, 26],
hybrid cracking [23] (in three variants), stochastic cracking [17] (MDD1R), predi-
cation and vectorized cracking [39], and sideways cracking [22].

Based on these insights, we propose new directions on how to approach the issues
of convergence speed, variance, and tuple reconstruction. For each category, we
propose one new technique that improves upon the existing leading method in
that field. In terms of convergence speed, we propose buffered swapping, that
buffers entries to swap in a heap before actually reordering them, to converge
more per query. In terms of variance, we introduce a pre-partitioning step, coined
coarse-granular index, that bulk loads the cracker index before the actual query
answering. To improve tuple reconstruction, we propose covered cracking, that
extends sideways cracking by the possibility to keep non-key attributes inside
the cracker column. Accessing to these attributes through the index is therefore
possible without expensive random jumps.

After extending the algorithms, we extend the experimental setup itself. We com-
pare adaptive indexing against different sorting baselines, including quick sort and
radix sort. We then test the impact of the indexing method above, including a
B+ tree, an AVL tree, and the adaptive radix tree (ART) [31]. Further, we vary
the selectivity and breakdown the cost of the individual parts of cracking in detail.
We vary the query access pattern and the cracking depth. Finally, we classify all
tested algorithms and present signatures of them that characterize their behavior.

In Chapter 2, we focus solely on single-threaded algorithms. The multi-threaded
counterpart will be the topic of Chapter 3.

1.2.2 Multi-threaded Adaptive Indexing and Sorting

With the advent of the single-threaded adaptive indexing algorithms, multi-
threaded versions were requested by the community as a logical consequence. How-
ever, until our investigation of the topic, only a single parallel version of standard
cracking was proposed in [14, 15].

Based on the methods, results, and insights gained from the previous chapter, we
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present in Chapter 3 a set of new parallel versions of database cracking algorithms.
We propose another parallel version of standard cracking, coined parallel-chunked
standard cracking, that avoids the high amount of induced serialization in the first
queries, as it is the case in the version in the literature. Connected to that, we test
a parallel version using chunking of vectorized cracking. Additionally, we propose
two parallel versions exploiting the coarse-granular index of the previous chapter.
Further, we implement two parallel versions of sideways cracking using standard
cracking and coarse-granular index underneath.

We evaluate these methods alongside with state-of-the-art parallel sorting-based
methods. We show that full indexing is still a valid alternative — especially on
highly parallel hardware.

We analyze the parallelization problems of parallel standard cracking and show
why chunk-based parallelization is the only way to map nicely to the parallel hard-
ware. Especially of interest is the scaling behavior of the individual algorithms —
an ideal algorithm should be k-times faster on a machine with k physical com-
puting cores compared to the single-threaded version. As the reality is different
for almost all tested methods, we deeply analyze the reasons for that. We inves-
tigate the relationship of computing power to main memory bandwidth, the most
important factor in understanding the scaling capabilities. Further, we compare
the absolute runtimes and realize that for a high number of computing cores, the
difference between fully sorting and adaptive indexing becomes almost negligible.

To complete this chapter, we also test the capabilities of parallel sideways cracking
in comparison with a perfectly and lazily clustered full index. Finally, as in the
single-threaded case, we close the investigation with a test of different query access
patterns and data distributions.

Overall, in Chapter 3, we transport the concepts of adaptive indexing discussed in
Chapter 2 into the world of state-of-the-art parallel hardware.

1.2.3 Understanding and Optimizing Data Partitioning

During the detailed investigation and evaluation of the numerous adaptive indexing
and sorting algorithms, we were faced repeatedly with a common component —
the data partitioning procedure, the basis of all indexing algorithms.

Therefore, in Chapter 4, we want to dig deeper and focus solely on analyzing
and optimizing this very procedure. We focus here on the very standard two-pass
out-of-place radix partitioning, as it is widely used in numerous situations in the
database context. Interestingly, despite the simplicity of the original partitioning
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algorithm, surprisingly many optimizations can be applied to fit the process to the
needs of modern hardware. These range from purely software-based optimizations
to exploiting certain hardware properaties and operating system features.

We start with analyzing the impact of software-managed buffers [40, 45, 5, 52],
that collect entries going to the same partition in a small buffer, that is flushed
when it is full. We show the reduction on the TLB pressure, leading to a
significantly improved runtime. Further, we investigate non-temporal streaming
stores [11, 52, 40, 5], that can be used to bypass the caches when copying memory,
further improving the performance in certain situations. We also test prefetch-
ing in multiple forms to further reduce the amount of cache and TLB misses. In
the context of software-managed buffers, we investigate different possible memory
layouts [40, 5] and the effect of storing working variables directly in the buffers.
Finally, we test the impact of the underlying page size on the different versions of
the algorithm. In all experiments, we vary the number of requested partitions as
it drastically influences all versions. To complete the chapter, we scale the data
and entry size.

As an overall conclusion, we show which optimization path is the most promising
for a certain number of requested partitions — thus providing a strong guideline
for any user of partitioning algorithms.

1.2.4 Rewiring Memory

In Chapter 4, a trend of modern computer science becomes visible: to improve an
algorithm or a data structure in terms of performance, improving its algorithmic
behavior becomes less important than mapping it carefully to the needs of the
system. This becomes visible during the optimization of the partitioning algorithm
and raises the question which parts of the system offer opportunities to be exploited
by current algorithms and data structures.

Thus, in Chapter 5, we introduce the concept of rewiring memory, that manages to
reintroduce physical memory into user-space. This is possible without any changes
of the operating system kernel. We exploit the existing toolset of the standard
linux and describe all components that are necessary to realize rewiring memory.
This encloses the core components of rewiring: main-memory file systems and the
system call mmap. We show how pooling can be supported efficiently.

After presenting the technique itself, we run a set of micro benchmarks to under-
stand the behavior of rewired memory. We inspect different allocation types and
analyze their pros and cons. Further, we investigate the cost of page faults and
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the overhead of remapping virtual to physical pages. Additionally, we analyze the
effect of the allocation type on different access patterns.

With that knowledge, we then include rewiring into two applications, that are not
only widely used in database management systems, but also used by developers
of other communities. We propose a rewired vector, that resizes itself without
any unnecessary physical copies. Further, we present rewired partitioning, that
manages to generate a consecutive result array while avoiding a separate pass for
histogram generation.
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1.3 Publications and Awards

Subsets of the work presented in this thesis have been published in international
conferences and journals and were presented therein. The chapters of this thesis
are organized based on the following publications:

• Chapter 2 — Single-threaded Adaptive Indexing and Sorting

Publications and Award:

[48] Felix Martin Schuhknecht, Alekh Jindal, Jens Dittrich.
The Uncracked Pieces in Database Cracking.
VLDB 2014/PVLDB 2013, Hangzhou, China.
VLDB 2014 Best Paper Award.

[49] Felix Martin Schuhknecht, Alekh Jindal, Jens Dittrich.
An Experimental Evaluation and Analysis of Database Cracking.
The VLDB Journal.
Special issue on best papers of VLDB 2014.
The Sections 1 to 4 as well as Section 6 of the publication are covered in
this chapter.

• Chapter 3 — Multi-threaded Adaptive Indexing and Sorting

Publications:

[49] Felix Martin Schuhknecht, Alekh Jindal, Jens Dittrich.
An Experimental Evaluation and Analysis of Database Cracking.
The VLDB Journal.
Special issue on best papers of VLDB 2014.
The Sections 5 and 6 of the publication are covered in this chapter.

[3] Victor Alvarez, Felix Martin Schuhknecht, Jens Dittrich, Stefan Richter.
Main Memory Adaptive Indexing for Multi-core Systems.
SIGMOD DaMoN 2014, Snowbird, USA.
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• Chapter 4 — Data Partitioning

Publication:

[50] Felix Martin Schuhknecht, Pankaj Khanchandani, Jens Dittrich.
On the Surprising Difficulty of Simple Things: the Case of Radix Partition-
ing.
VLDB 2015/PVLDB 2015, Hawaii, USA.

• Chapter 5 — Rewiring Memory

Publication:

[47] Felix Martin Schuhknecht, Jens Dittrich, Ankur Sharma.
RUMA has it: Rewired User-space Memory Access is Possible!
VLDB 2016/PVLDB 2016, New Delhi, India.





Chapter 2

Adaptive Indexing and Sorting in
the Single-threaded Context

Database cracking has been an area of active research in recent years. The core
idea of database cracking is to create indexes adaptively and incrementally as a
side-product of query processing. Several works have proposed different cracking
techniques for different aspects including updates, tuple-reconstruction, conver-
gence, concurrency control, and robustness. This is the first comparative study
of these different methods by an independent group. Our goal is to critically re-
view several aspects, identify the potential, and propose promising directions in
database cracking. With this study, we hope to expand the scope of database
cracking and possibly leverage cracking in database engines other than MonetDB.

We repeat several prior database cracking works including the core cracking al-
gorithms as well as three other works on convergence (hybrid cracking), tuple-
reconstruction (sideways cracking), and robustness (stochastic cracking) respec-
tively. Additionally, we also look at a recently published study about CPU effi-
ciency (predication cracking). We evaluate these works and show possible direc-
tions to do even better. Altogether, in this chapter we revisit 5 papers on database
cracking and evaluate in total 11 cracking methods, 4 sorting algorithms, and 3
full index structures.

Additionally, we test cracking under a variety of experimental settings, including
high selectivity1 queries, very low selectivity queries, varying selectivity, and mul-
tiple query access patterns. Finally, we compare cracking against different sorting
algorithms as well as against different main-memory optimized indexes, including

1Low selectivity means, that many entries qualify. Consequently, a high selectivity means,
that only few entries qualify.

15
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the recently proposed Adaptive Radix Tree (ART).

Our results show that:

(i) the previously proposed cracking algorithms are repeatable,

(ii) there is still enough room to significantly improve the previously proposed
cracking algorithms,

(iii) cracking depends heavily on query selectivity,

(iv) cracking needs to catch up with modern indexing trends, and

(v) different indexing algorithms have different indexing signatures.

2.1 Introduction

2.1.1 Background

Traditional database indexing relies on two core assumptions: (1) the query
workload is available, and (2) there is sufficient idle time to create the in-
dexes. Unfortunately, these assumptions are not valid anymore in modern ap-
plications, where the workload is not known or constantly changing and the data
is queried as soon as it arrives. Thus, several researchers have proposed adap-
tive indexing techniques to cope with these requirements. In particular, Database
Cracking has emerged as an attractive approach for adaptive indexing in recent
years [26, 20, 21, 22, 23, 14, 17, 39]. Database cracking proposes to create indexes
adaptively and as a side-product of query processing. The core idea is to con-
sider each incoming query as a hint for data reorganization which eventually, over
several queries, leads to a full index. Figure 2.1 recaps and visualizes the concept.

2.1.2 Our Focus

Database Cracking has been an area of active research in recent years, mainly led
by researchers from CWI Amsterdam. This research group has proposed several
different indexing techniques to address different dimensions of database cracking,
including updates [21], tuple-reconstruction [22], convergence [23], and robust-
ness [17]. They also worked on concurrency-control [14, 15], as we will see in
Chapter 3 about parallel adaptive indexing.
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Figure 2.1: Database Cracking Example

In this chapter, we critically review single-threaded database cracking in several
aspects. We repeat the core cracking algorithms, i.e. crack-in-two and crack-in-
three [20], as well as three advanced cracking algorithms [22, 23, 17]. We identify
the weak spots in these algorithms and discuss extensions to fix them. Additionally,
we inspect a recently published work [39], which identifies CPU efficiency problems
in the standard cracking algorithm and proposes alternatives. Finally, we also
extend the experimental parameters previously used in database cracking, e.g.
by varying the query selectivities and by comparing against more recent, main-
memory optimized indexing techniques, including ART [31].

Our goal is to put database cracking in perspective by repeating several prior crack-
ing works, giving new insights into cracking, and offering promising directions for
future work. We believe that this will help the database community to understand
database cracking better and to possibly leverage cracking for database systems
other than MonetDB as well.
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2.1.3 Contributions

Our core contributions in this chapter are as follows:

1. Revisiting Cracking. We revisit the core cracking algorithms, i.e. crack-in-
two and crack-in-three [20], and compare them for different positions of the
pivot elements. We do a cost breakdown analysis of the cracking algorithm
into index lookup, data shuffle, index update, and data access costs. Further,
we identify four major concerns, namely CPU efficiency, convergence, tuple
reconstruction, and robustness. In addition, we evaluate advanced cracking
algorithms, namely predication cracking [39], hybrid cracking [23], sideways
cracking [22], and stochastic cracking [17] respectively, which were proposed
to address these concerns. Additionally, in order to put together the dif-
ferences and similarities between different cracking algorithms, we classify
the cracking algorithms based on the strategy to pick the pivot, the creation
time, and the number of partitions (Section 2.2).

2. Extending Cracking Algorithms. In order to better understand the
cracking behavior, we modify three advanced cracking algorithms, namely
hybrid cracking [23], sideways cracking [22], and stochastic cracking [17].
We show that buffering the swap elements in a heap before actually swap-
ping them (buffered swapping) can lead to better convergence than hybrid
cracking. Next, we show that covering the projection attributes with the
cracker column (covered cracking) scales better than sideways cracking in
the number of projected attributes. Finally, we show that creating more
balanced partitions upfront (coarse-granular indexing) achieves better ro-
bustness in query performance than stochastic cracking. We also map these
extensions to our cracking classification (Section 2.3).

3. Extending Cracking Experiments. As a next step, we extend the crack-
ing experiments in order to test cracking under different settings. First,
we compare database cracking against full indexing using different sorting
algorithms and index structures. In previous works on database cracking
quick sort is used to order the data indexed by the traditional methods that
are used for comparison. Further, the cracker index is realized by an AVL-
Tree [2] to store the index keys. In this chapter, we do a reality check with
recent developments in sorting and indexing for main-memory systems. We
show that full index creation with radix sort is twice as fast as with quick
sort. We also show that ART [31] is up to 3.6 times faster than the AVL-Tree
in terms of lookup time. We also vary the query selectivity from very high
selectivity to medium selectivity down to very low selectivity and compare
the effects. We conclude two key observations: (i) the choice of the index
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structure has an impact only for very high selectivities, i.e. higher than 10−6

(one in a million), otherwise the data access costs dominate the index lookup
costs; and (ii) cracking creates more balanced partitions and hence converges
faster for medium selectivities, i.e. around 10%. We also look at the effect
of stopping the cracking process at a certain partition size. Furthermore,
we apply a sequential and a skewed query access pattern and analyze how
the different adaptive indexing methods cope with them. Our results show
that sequential workloads are the weak spots of query driven methods while
skewed patterns increase the overall variance (Section 2.4).

4. Conclusion. Finally, we conclude by putting together the key lessons
learned. Additionally, we also introduce signatures to characterize the in-
dexing behavior of different indexing methods and to understand as well as
differentiate them visually (Section 2.5).

2.1.4 Experimental Setup

We use a common experimental setup throughout this chapter and try to keep
our setup as close as possible to the earlier cracking works. Similar to previous
cracking works, we use an integer array with 108 uniformly distributed values with
a key range of [0; 100, 000]. Unless mentioned otherwise, we run 1000 random
queries, each with selectivity 1%. The queries are of the form:

SELECT SUM(A) FROM R WHERE A >= low AND A < high

We repeat the entire query sequence three times and take the average runtime of
each query in the sequence. We consider two baselines: (i) scan which reads the
entire column and post-filters the qualifying tuples, and (ii) full index which fully
sorts the data using quick sort and performs binary search for query processing.
If not stated otherwise, all indexes are unclustered and uncovered.

We implemented all algorithms in a stand-alone program written in C/C++ and
compile with G++ version 4.7 using optimization level 3. Our test bed consists of
a single machine with two Intel Xeon X5690 processors running at a clock speed
of 3.47 GHz and supports Intel Turbo Mode. Each CPU has 6 cores and supports
12 threads via Intel Hyper Threading. The L1 and L2 cache sizes are 64 KB and
256 KB respectively for each core. The shared L3 cache has a size of 12 MB. Our
machine has 200 GB of main memory and runs a 64-bit linux with kernel 3.1.
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2.2 Revisiting Cracking

Let us start by revisiting the original cracking algorithm [20]. Our goal in this
section is to first compare crack-in-two with crack-in-three, then to repeat the
standard cracking algorithm under similar settings as in previous works, then to
break down the costs of cracking into individual components, and finally to identify
the major concerns in the original cracking algorithm.

2.2.1 Crack-in-two vs Crack-in-three

crack-in-two: partition the index column into two pieces using one end of a range
query as the boundary.

crack-in-three: partition the index column into three pieces using the two ends
of a range query as the two boundaries.

The original cracking paper [20] introduces two algorithms: crack-in-two and
crack-in-three to partition (or split) a column into two and three partitions re-
spectively. Conceptually crack-in-two is suitable for one-sided range queries,
e.g. A < 10, whereas crack-in-three for two-sided range queries, e.g. 7 < A < 10.
However, we could also apply two crack-in-twos for a two-sided range query. Let
us now compare the performance of crack-in-two and crack-in-three on two-sided
range queries. We consider the cracking operations from a single query and vary
the position of the split line in the cracker column from bottom (low relative po-
sition) to top (high relative position). A relative position of the low key split
line of p% denotes that the data is partitioned into two parts with size p% and
(100−p)%. We expect the cracking costs to be the maximum around the centre of
the column (since maximum swapping will occur) and symmetrical on either ends
of the column.

Figure 2.2 shows the results. Though both 2×crack-in-two and crack-in-three have
maximum costs around the center, surprisingly crack-in-three is not symmetrical
on either ends. Crack-in-three is much more expensive in the lower part of the
column than in the upper part. This is because crack-in-three always starts con-
sidering elements from the top. Another interesting observation from Figure 2.2 is
that even though 2×crack-in-two performs two cracking operations, it is cheaper
than crack-in-three when the split position is in the lower 70% of the column.
Thus, we see that crack-in-two and crack-in-three are very different algorithms in
terms of performance and future works should consider this when designing newer
algorithms.
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2.2.2 Standard Cracking Algorithm

Standard Cracking

Incrementally and adaptively sort the index column using crack-in-three when both
ends of a range query fall in the same partition and crack-in-two otherwise.

We implemented the standard cracking algorithm which uses crack-in-three wher-
ever two split lines lie in the same partition, and tested it under the same settings
as in previous works. As in the original papers, we use an AVL-Tree as cracker
index to be able to compare the results.

Figure 2.3 shows the results. We can see that standard cracking starts with similar
performance as full scan and gradually approaches the performance of full index.
Moreover, the first query takes just 0.3 seconds compared to 0.24 seconds of full
scan2, even though standard cracking invests some indexing effort. In contrast, full
index takes 10.2 seconds to fully sort the data before it can process the first query.
This shows that standard cracking is lightweight and it puts little penalty on the
first query. Overall, we are able to reproduce the cracking behavior of previous
works.

2Note that the query time of full scan varies by as much as 4 times. This is because of lazy
evaluation in the filtering depending on the position of low key and high key in the value domain.



Chapter 2. Adaptive Indexing and Sorting in the Single-threaded Context 22

 0.1

 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000

Q
ue

ry
 R

es
po

ns
e 

T
im

e 
[m

s]

Query Sequence

Standard Cracking
Scan

Full Index
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2.2.3 Cost Breakdown

Next let us see the cost breakdown of the original cracking algorithm. The goal
here is to see where the cracking query engine spends most of the time and how that
changes over time. Figure 2.4 shows the cost breakdown of the query response time
into four components: (i) index lookup costs to identify the partitions for cracking,
(ii) data shuffle costs of swapping the data items in the column, (iii) index update
costs for updating the index structure with the new partitions, and (iv) data access
costs to actually access the qualifying tuples.

We can see that the data shuffle costs dominate the total costs initially. However,
the data shuffle costs decrease gradually over time and match the data access costs
after 1, 000 queries. This shows that standard cracking does well to distribute the
indexing effort over several queries. We can also see that index lookup and update
costs are orders of magnitude less than the data shuffle costs. For instance, after 10
queries, the index lookup and update costs are about 1µs whereas the shuffle costs
are more than 100 ms. This shows that standard cracking is indeed lightweight
and has very little index maintenance overheads. However, as the number of
queries increases, the data shuffle costs decrease while the index maintenance costs
increase.
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2.2.4 Key Concerns in Standard Cracking

Let us now take a closer look at the standard cracking algorithm from four different
perspectives, namely (1) CPU efficiency on modern hardware, (2) convergence to
a full index, (3) scaling the number of projected attributes, and (4) variance in
query performance.

(1) CPU Efficiency. How an algorithm is mapped to the underlying hardware
is crucial in memory resident data processing. Figure 2.5(a) shows the branch
misprediction3 as the weak spot of the crack-in-two algorithm with respect to
the relative position of the split line, making this method clearly CPU bound.
At a worst-case position of the split line dividing the partition in the middle,
more than 50% of the branches are predicted incorrectly.

(2) Cracking Convergence. Convergence is a key concern and major criticism
for database cracking. Figure 2.5(b) shows the number of queries after which
the query response time of standard cracking is within a given percentage
of full index. The figure also shows a bezier smoothened curve of the data
points. From the figure we can see that after 1, 000 queries, on average, the
query response time of standard cracking is still 40% higher than that of full
index.

3Measured with Intel VTune Amplifier 2015.
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(3) Scaling Projected Attributes. By default, database cracking leads to an
unclustered index, i.e. extra lookups are needed to fetch the projected at-
tributes. Figure 2.5(c) shows the query response time with tuple reconstruc-
tion, when varying the number of projected attributes from 1 to 10. For the
ease of presentation, we show only the bezier smoothened curves. We can see
that standard cracking does not scale well with the number of attributes. In
fact, after 1, 000 queries, querying 10 attribute tuples is almost 2 orders of
magnitude slower than querying 1 attribute tuples.

(4) Cracking Variance. Standard cracking partitions the index column based
on the query ranges of the selection predicate. As a result, skewed query range
predicates can lead to skewed partitions and thus unpredictable query perfor-
mance. Figure 2.5(d) shows the variance of standard cracking query response
times using the exponentially weighted moving average (EWMA). The vari-
ance is calculated as described in [13]. The degree of weighting decrease is
α = 0.1. We can see that unlike full index (see Figure 2.3), cracking does not
exhibit stable query performance. Furthermore, we also see that the amount
of variance for standard cracking decreases by five orders of magnitude.

2.2.5 Advanced Cracking Algorithms

Several follow-up works on cracking focussed on the key concerns in standard
cracking. In this section, we revisit these advanced cracking techniques.

Predication & Vectorized Cracking

Decouple pivot comparison and physical reorganization by moving elements
speculatively and correcting wrong decisions afterwards.

The technique of predication cracking [39] directly attacks a major problem in
standard cracking — excessive branch misprediction leading to large amounts of
unnecessarily executed code. In contrast to standard cracking, where based on
the outcome of the comparison of the element with the pivot, pointers are moved
and elements are swapped, predication cracking speculatively performs these re-
organizations and interleaves them with the comparison evaluations of pivot and
elements. When the result of the comparison is available, the incorrectly applied
reorganizations are corrected. To ensure that the speculative writing does not
cause data loss, the overwritten elements are backed up separately. This concept
makes the algorithm completely branch-free and thus, the misprediction penalties



Chapter 2. Adaptive Indexing and Sorting in the Single-threaded Context 26

do not longer exist. On the downside, the speculative writing adds an overhead
compared to standard cracking. The question is now whether this trade-off can
improve the runtime. Algorithm 1 shows the pseudo-code for two-sided predication
cracking.

Algorithm 1: Predication Cracking

1 // Input: "data" array,
2 // "start" and "end" of working area,
3 // "pivot"
4 // Output: position of split line
5 l = start;
6 u = end;
7 b[0] = data[l];
8 b[1] = data[u];
9 for(i = start; i <= end; ++i) {

10 // write speculatively to both sides
11 data[l] = b[i%2];
12 data[u] = b[i%2];
13 // compare current element with pivot
14 aL = b[i%2] < pivot;
15 aU = 1 - aL;
16 // backup next element
17 b[i%2] = aL * data[l+1] + aU * data[u-1];
18 // advance pointer of correct side
19 l += aL;
20 u -= aU;
21 }
22 return l - 1;

In predication cracking, the granularity at which data is backed up is fixed to a
single element. Thus the authors propose a generalization of the concept in form
of vectorized cracking, where data is backed up and partitioned in larger blocks
of adjustable size. This further decouples the costly backing up of data from the
actual partitioning.

In Figure 2.6 we add both predication cracking as well as vectorized cracking with
a vector size of 128B, which showed the best results in our evaluation, to the plot
of Figure 2.5(a). Compared to standard cracking, the problem of branch mispre-
diction vanishes almost entirely. However, we can also observe that the number
of retired instructions drastically increases over the standard version. Thus, the
concept of predication basically trades in a higher reorganization effort for less
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Figure 2.6: CPU Efficiency in Terms of Branch Misprediction and Instructions
Retired.

branching penalties. Vectorized cracking reduces this overhead by using larger
blocks, resulting in a lower number of retired instructions while maintaining a
negligible branch misprediction. This observed tradeoff already indicates that the
actual runtimes between standard and predication/vectorized cracking might be
close to each other. Figure 2.7(a) shows the result when extending the study of
Figure 2.2 with predication and vectorized cracking. Unfortunately, although vec-
torized cracking performs slightly better than predication cracking in all cases,
both methods do not significantly pay off over applying crack-in-two twice. On
first sight, these results look contrary to the ones presented in [39]. However, com-
paring the experimental setups, two differences become clear. Firstly, in [39], the
authors work on pure 4B keys in contrast to our 16B (key, rowID) pairs, that are
in our opinion more realistic to represent an index column. As predication/vector-
ized cracking is write intensive, a larger element size puts more pressure on these
methods than on the standard ones. Secondly, we perform one query consisting of
two cracks here, instead of only a single crack in [39]. As our second crack is 1% of
the data size to the right of the first one, only few swaps must be performed and
the branch prediction works already very well for standard cracking. To confirm
the original results of [39], we rerun the experiment with 4B keys and only a single
crack in Figure 2.7(c). Now, we see a clear benefit of both predication and vec-
torized cracking over standard crack-in-two, if the split line falls between 20% and
80% of the key range. However, when using our standard 16B pairs (Figure 2.7(b))
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the single-crack runtime increases heavily for predication and vectorized cracking,
but only slightly for standard crack-in-two.

Let us finally look at how the predicated methods perform under a sequence of 1000
queries. Figure 2.8 shows the results. In accordance to the results of Figure 2.7(a),
neither predication nor vectorized cracking can beat standard cracking with respect
to accumulated query response time. The best vector size is clearly 128B on our
machine, where other sizes perform significantly worse. However, our previous
insights enable us to use the best of two worlds. By using vectorized cracking for
the first crack and standard cracking for the nearby second crack of a query, we are
able to improve slightly over the standard version. Overall, whether predication
and vectorized cracking pay off highly depends on element size, split line position,
and machine properties.
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Hybrid cracking

Create unsorted initial runs which are physically reorganized and then adaptively
merged for faster convergence.

Hybrid cracking [23] aims at improving the poor convergence of standard cracking
to a full index, as shown in Figure 2.5(b). Hybrid cracking combines ideas from
adaptive merging [16] with database cracking in order to achieve fast convergence
to a full index, while still providing low initialization costs. The key problem
in standard cracking is that it creates at most two new partition boundaries per
query, and thus requires several queries to converge to a full index. On the other
hand, adaptive merging creates initial sorted runs, and thus pays a high cost for
the first query.

Query

...
...

...
...

Crack Sort(Merge)(Distribute)

Fan-In = 
Number of 
Chunks

Cracker Index

Figure 2.9: Visualization of the concept of Hybrid Crack Sort.

Hybrid cracking overcomes these problems by creating initial unsorted partitions
and later adaptively refining them with lightweight reorganization. In addition
to reorganizing the initial partitions, hybrid cracking also moves the qualifying
tuples from each initial partition into a final partition. The authors explore dif-
ferent strategies for reorganizing the initial and final partitions, including sorting,
standard cracking, and radix clustering, and conclude standard cracking to be the
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best for initial partitions and sorting to be the best for final partition. By cre-
ating initial partitions in a lightweight manner and introducing several partition
boundaries, hybrid cracking converges better. We implemented hybrid crack sort,
which showed the best performance in [23], as close to the original description as
possible. Figure 2.9 visualizes the concept.
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Figure 2.10: Revisiting Hybrid Cracking.

Figure 2.10 shows hybrid crack sort in comparison to standard cracking, full index,
and scan. We can see that hybrid crack sort converges faster as compared to
standard cracking.

Sideways Cracking

Adaptively create, align, and crack every accessed selection-projection attribute
pair for efficient tuple reconstruction.

Sideways Cracking [22] uses cracker maps to address the issue of inefficient tuple
reconstruction in standard cracking, as shown in Figure 2.5(c). A cracker map
consists of two logical columns, the cracked column and a projected column, and
it is used to keep the projection attributes aligned with the selection attributes.
When a query comes in, sideways cracking creates and cracks only those crackers
maps that contain any of the accessed attributes. As a result, each accessed column
is always aligned with the cracked column of its cracker map. If the attribute access
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pattern changes, then the cracker maps may reflect different progressions with
respect to the applied cracks. Sideways cracking uses a log to record the state of
each cracker map and to synchronize them when needed. Thus, sideways cracking
works without any workload knowledge and adapts cracker maps to the attribute
access patterns. Further, it improves its adaptivity and reduces the amount of
overhead by only materializing those parts of the projected columns in the cracker
maps which are actually queried (partial sideways cracking).

We reimplemented sideways cracking similar to as described above, except that we
store cracker maps in row layout instead of column layout. We do so because the
two columns in a cracker map are always accessed together and a row layout offers
better tuple reconstruction. In addition to the cracked column and the projected
column, each cracker map contains the rowIDs that map the entries into the base
table as well as a status column denoting which entries of the projected column
are materialized. Figure 2.11 visualizes the concept for answering two queries.

select A, B, C, D 
from   R 
where  R.A > 10 
  and  R.A < 14

A C

> 10 
 && 
< 14

select A, D 
from   R 
where  R.A > 20 
  and  R.A < 25

A D

> 10 
 && 
< 14

> 10 < 14 > 20 < 25Tape

A B

Maps

> 10 
 && 
< 14

> 20 
 && 
< 25

Query 1: Query 2:

Figure 2.11: Visualization of the concept of query answering for sideways cracking.
The first query cracks all cracker maps [A,B], [A,C], and [A,D] with respect to
A > 10 and A < 14 and logs the cracks in the tape. The second query cracks only
the involved cracker map [A,D] with respect to A > 20 and A < 25.

Figure 2.12 shows the performance of sideways cracking in comparison. In this ex-



2.2. Revisiting Cracking 33

 1

 10

 100

 1000

 10000

 100000

 1  10  100  1000

Q
ue

ry
 R

es
po

ns
e 

T
im

e 
[m

s]

Query Sequence

Standard Cracking (# Proj. Attributes: 2)
Scan (# Proj. Attributes: 2)

Full Index (# Proj. Attributes: 2)
Clustered Full Index (# Proj. Attributes: 2)
Sideways Cracking (# Proj. Attributes: 2)

Figure 2.12: Revisiting Sideways Cracking.

periment the methods have to project one attribute while selecting on another. In
addition to the unclustered version of full index, we also show the clustered version
(clustered full index). We can see that sideways cracking outperforms all unclus-
tered methods after about 100 queries and approaches the query response time of
clustered full index. Thus, sideways cracking offers efficient tuple reconstruction.

Stochastic Cracking

Create more balanced partitions using auxiliary random pivot elements for more
robust query performance.

Stochastic cracking [17] addresses the issue of performance unpredictability in
database cracking, as seen in Figure 2.5(d). A key problem in standard cracking is
that the partition boundaries depend heavily on the incoming query ranges. As a
result, skewed query ranges can lead to unbalanced partition sizes and successive
queries may still end up rescanning large parts of the data. To reduce this problem,
stochastic cracking introduces additional cracks apart from the query-driven cracks
at query time. These additional cracks help to evolve the cracker index in a more
uniform manner. Stochastic cracking proposes several variants to introduce these
additional cracks, including data driven and probabilistic decisions. By varying the
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amount of auxiliary work and the crack positions, stochastic cracking manages to
introduce a trade-off situation between variance on one side and cracking overhead
on the other side.

Query Query

Standard Cracking Stochastic Cracking (MDD1R)

Random Pivot

Materialize 
while 

Cracking

Q

Q

Q

Q

Q

Figure 2.13: Visualization of the concept of query answering for Stochastic Crack-
ing (MDD1R) in comparison with Standard Cracking.

We reimplemented the MDD1R variant of stochastic cracking, which showed the
best overall performance in [17]. Figure 2.13 visualizes the concept. In this variant,
the partitions in which the query boundaries fall are cracked by performing exactly
one random split. Additionally, while performing the random split, the result of
each partition at the boundary of the queried range is materialized in a separate
view. At query time the result is built by reading the data of the boundary
partitions from the views and the data of the inner part from the index.

Figure 2.14 shows the MDD1R variant of stochastic cracking. We can see that
stochastic cracking (MDD1R) behaves very similar to standard cracking, although
the query response times are overall slower than those of standard cracking. As
the uniform random access pattern creates balanced partitions by default, the
additional random splits introduced by stochastic cracking (MDD1R) do not have
a positive effect. We will come back to stochastic cracking (MDD1R) with other
access patterns in Section 2.4.7.
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Figure 2.14: Revisiting Stochastic Cracking.

2.2.6 Cracking Classification

Let us now compare and contrast the different cracking algorithms discussed so
far with each other. The goal is to understand what are the key differences (or
similarities) between these algorithms. This will possibly help us in identifying the
potential for newer cracking algorithms. Note that all cracking algorithms essen-
tially split or partition the data incrementally. Different algorithms split the data
differently. Thus, we categorize the cracking algorithms along three dimensions:
(i) the number of split lines they introduce, (ii) the split strategy, and (iii) the tim-
ing of the split. Table 2.1 shows the classification of different cracking algorithms
along these three dimensions. Let us discuss these below.

Number of Split Lines. The core cracking philosophy mandates all cracking
algorithms to do some indexing effort, i.e. introduce at least one split line, when
a query arrives. However, several algorithms introduce other split lines as well.
We classify the cracking algorithms into the following four categories based on the
number of split lines they introduce.

1. Zero: The trivial case is when a method introduces no split line and each
query performs a full scan.

2. Few: Most cracking algorithms introduce a few split lines at a time. For
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DIMENSIONS CATEGORY NO
INDEX

STANDARD
CRACKING /
PREDI-
CATION
CRACKING

HYBRID
CRACKING
(CRACK
SORT)

SIDEWAYS
CRACKING

STOCHASTIC
CRACKING
(MDD1R)

FULL
INDEX

ZERO
NUMBER OF FEW
SPLIT LINES SEVERAL

ALL

NONE
SPLIT QUERY BASED
STRATEGY RANDOM

DATA BASED

NEVER
SPLIT PER QUERY
TIMING UPFRONT

Table 2.1: Classification of Cracking Algorithms.

instance, standard cracking introduces either one or two splits lines for each
incoming query. Similarly, sideways cracking introduces split lines in all
accessed cracker maps.

3. Several: Cracking algorithms can also introduce several split lines at a time.
For example, hybrid crack sort may introduce several thousand initial par-
titions and introduce either one or two split lines in each of them. Thus,
generating several split lines in total.

4. All: The extreme case is to introduce all possible split lines, i.e. fully sort
the data. For example, hybrid crack sort fully sorts the final partition,
i.e. introduces all split lines in the final partition.

Split Strategy. Standard cracking chooses the split lines based on the incoming
query. However, several advanced cracking algorithms employ other strategies.
Below, we classify the cracking algorithms along four splitting strategies.

1. Query Based: The standard case is to pick the split lines based on the
selection predicates in the query, i.e. the low and high keys in the query
range.

2. Data Based: We can also split data without looking at a query. For example,
full sorting creates split lines based only on the data.

3. Random: Another strategy is to pick the split lines randomly as in stochastic
cracking.

4. None: Finally, the trivial case is to not have any split strategy, i.e. do not
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split the data at all and perform full scan for all queries.

Split Timing. Lastly, we consider the timing of the split to classify the cracking
algorithms. We show three time points below.

1. Upfront: A cracking algorithm could perform the splits before answering any
queries. Full indexing falls in this category.

2. Per Query: All cracking algorithms we discussed so far perform splits when
seeing a query.

3. Never: The trivial case is to never perform the splits, i.e. fully scanning the
data for each query.

2.3 Extending Cracking Algorithms

In this section, we discuss the weaknesses in the advanced cracking algorithms and
evaluate possible directions on how to improve them.

2.3.1 Improving Cracking Convergence

Let us see how well hybrid cracking [23] addresses the convergence issue and
whether we can improve upon it. First, let us compare hybrid crack sort from
Figure 2.10 with two other variants of hybrid cracking: hybrid radix sort, and hy-
brid sort sort. Figure 2.15 shows how quickly the hybrid algorithms approach to
a full index. We can see that hybrid radix sort converges similar to hybrid crack
sort and hybrid sort sort converges faster than both of them. This suggests that
the convergence property in hybrid algorithms comes from the sort operations.
However, keeping the final partition fully sorted is expensive. Indeed, we can see
several spikes in hybrid crack sort in Figure 2.10. If a query range is not con-
tained in the final partition, all qualifying entries from all initial partitions must
be merged and sorted into the final partition. Can we do better? Can we move
data elements to their final position (as in full sorting) in a fewer number of swaps,
and thus improve the cracking convergence?
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Figure 2.15: Convergence Speed towards Full Index.

Buffered-swapping

Instead of swapping elements immediately after identification by the cracking
algorithm, insert them into heaps and flush them back into the index as sorted runs.

Let us look at the crack-in-two operation4 in hybrid cracking. Recall that the
crack-in-two operation scans the dataset from both ends until we find a pair of
entries which need to be swapped (i.e. they are in the wrong partitions). This pair
is then swapped and the algorithm continues its search until the pointers meet.
Note that there is no relative ordering between the swapped elements and they
may end up getting swapped again in future queries, thus penalizing them over
and over again. We can improve this by extending the crack-in-two operation to
buffer the elements identified as swap pairs, i.e. buffered crack-in-two.

Buffered crack-in-two collects the swap pairs in two heaps: a max-heap for values
that should go to the upper partition and a min-heap for values that should go to
the lower partition. In addition to the heap structures, we maintain two queues to
store the empty positions in the two partitions. The two heaps keep the elements

4After the first few queries, cracking mostly performs a pair of crack-in-two operations as the
likelihood of two splits falling in two different partitions increases with the number of applied
queries.
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in order and when the heaps are full we swap the top-elements in the two heaps
to the next available empty position. This process is repeated until no more swap
pairs can be identified and the heaps are empty. As a result of heap ordering, the
swapped elements retain a relative ordering in the index after each cracking step.
This order is even valid for entries that were not in the heap at the same time,
but shared presence with a third element and hence a transitive relationship is
established. Every pair element that is ordered in this process is never swapped in
future queries and thus, the number of swaps is reduced. The above approach of
buffered crack-in-two is similar to [32], where two heaps are used to improve the
stability of the replacement selection algorithm. By adjusting the maximal heap
size in buffered crack-in-two, we can tune the convergence speed of the cracked
index. Larger heap size results in larger sorted runs. However, larger heaps incur
high overhead to keep its data sorted. In the extreme case, a heap size equal to
the number of (swapped) elements results in full sorting while a heap size of 1 falls
back to standard crack-in-two.

Of course buffered crack-in-two can be embedded in any method that uses the
standard crack-in-two algorithm. To separate it from the remaining methods we
integrate it into a new technique called buffered swapping that is a mixture of
buffered and standard crack-in-two. For the first n queries buffered swapping uses
buffered crack-in-two. After that buffered swapping switches to standard cracking-
in-two. Figure 2.16 visualizes the concept of the technique.

Figure 2.17(a) shows the number of swaps in standard cracking, hybrid crack sort,
and buffered swapping over 1000 queries. In order to make them comparable,
we force all methods to use only crack-in-two operations. For buffered swapping
we vary the number buffered queries nb along the x-axis, i.e. the first nb queries
perform buffered swapping while the remaining queries still perform the standard
crack-in-two operation. We vary the maximal heap size from 100K to 10M entries.

From Figure 2.17(a), we can see that the number of swaps decrease significantly as
nb varies from 1 to 1000. Compared to standard cracking, buffered swapping saves
about 4.5 million swaps for 1 buffered query and 73 million swaps for 1000 buffered
queries and a heap size of 1M. The maximal size of the heap is proportional to
the reduction in swaps. Furthermore, we can observe that the swap reduction for
1000 buffered queries improves only marginally over that of 100 buffered queries.
This indicates that after 100 buffered queries the cracked column is already close
to being fully sorted. Hybrid cracking performs even more swaps than standard
cracking (including moving the qualifying entries from the initial partitions to the
final partition).

Next let us see the actual runtimes of buffered swapping in comparison to stan-
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Figure 2.16: Visualization of the concept of buffered swapping in comparison with
standard cracking. Buffered swapping uses a heap size of 3 elements in this exam-
ple.

dard cracking and hybrid crack sort. Figure 2.17(b) shows the result. We see that
the total runtime grows rapidly as the number of buffered queries (nb) increases.
However, we also see that the query time after performing buffered swapping im-
proves. For example, after performing buffered swapping with a maximal heap
size of 1M for just 10 queries, the remaining 990 queries are 1.8 times faster than
hybrid crack sort and even 5.5% faster than standard cracking. This shows that
buffered swapping helps to converge better by reducing the number of swaps in
subsequent queries. Interestingly, a larger buffer size does not necessarily imply
a higher runtime. For 100 and 1, 000 buffered queries the buffered part is faster
for a maximum heap size of 10M entries than for smaller heaps. This is because
such a large heap size leads to an earlier convergence towards the full sorting.
Nevertheless, the high runtime of initial buffer swapped queries is a concern. In
our experiments we implemented buffered swapping using the gheap implementa-
tion [1] with a fan-out of 4. Each element that is inserted into a gheap has to sink
down inside of the heap tree to get to its position. This involves pairwise swaps
and triggers many cache-misses. Exploring more efficient buffering mechanisms in
detail opens up avenues for future work.
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2.3.2 Improving Tuple Reconstruction

Our goal in this section is to see how well sideways cracking [22] addresses the
issue of tuple reconstruction and whether we can improve upon it. Let us first see
how the sideways cracking from Figure 2.12 scales with the number of attributes.
Figure 2.18(a) shows the performance of sideways cracking for the number of pro-
jected attributes varying from 1 to 10. We see that in contrast to standard cracking
(see Figure 2.5(c)), sideways cracking scales more gracefully with the number of
projected attributes. However, still the performance varies by up to one order of
magnitude. Furthermore, sideways cracking duplicates the index key in all cracker
maps. So the question now is, can we have a cracking approach which is less
sensitive to the number of projected attributes?

Covered Cracking

Group multiple non-key attributes with the cracked column in a cracker map. At
query time, crack all covered non-key attributes along with the key column for
even more efficient tuple reconstruction.

Note that with sideways cracking all projected columns are aligned with each other.
However, the query engine still needs to fetch the projected attribute values from
different columns in different cracker maps. These lookup costs turn out to be very
expensive in addition to the overhead of cracking n replicas of the indexed column
for n projected attributes. To solve this problem, we generalize sideways cracking
to cover the n projected attributes in a single cracker map. In the following we
term this approach covered cracking. While cracking, all covered attributes of
a cracker map are reorganized with the cracked column. As a result, all covered
attributes are aligned and stored in a consecutive memory region, i.e. no additional
fetches are involved if the accessed attribute is covered. However, the drawback
of this approach is that we need to specify which attributes to cover. To be on
a safer side, we may cover all table attributes. However, this means that we
will need to copy the entire table for indexing. We can think of fixing this by
adaptively covering the cracked column, i.e. not copying the covered attributes
upfront but rather on-demand when they are accessed. An option is to copy the
covered attribute columns when they are accessed for the first time. An even more
fine granular approach is to copy only the accessed values of covered attributes
and thus reflecting the query access pattern in the covering status.

Figure 2.18(b) shows the performance of covered cracking over different numbers
of projected attributes. Here we show the results from covered cracking which
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copies the data of all covered attributes in the beginning. We can see that covered
cracking remains stable when varying the number of projected attributes from 1
to 10. Thus, covered cracking scales well with the number of attributes. Fig-
ure 2.18(c) compares the accumulated costs of standard, sideways, and covered
cracking. We can see that while the accumulated costs of standard and sideways
cracking grow linearly with the number of attributes, the accumulated costs of
covered cracking remain pegged at under 40 seconds. We also see that sideways
cracking outperforms covered cracking for only up to 4 projected attributes. For
more than 4 projected attributes, sideways cracking becomes increasingly expen-
sive whereas covered cracking remains stable. Thus, we see that covering offers
huge benefits.

2.3.3 Improving Cracking Robustness

In this section we look at how well stochastic cracking [17] addresses the issue of
query robustness and whether we can improve upon it. In Figure 2.14 we can
observe that stochastic cracking is more expensive (for first as well as subsequent
queries) than standard cracking. On the other hand, the random splits in stochas-
tic cracking (MDD1R) create uniformly sized partitions. Thus, stochastic cracking
trades performance for robustness. So the key question now is: can we achieve
robustness without sacrificing performance? Can we have high robustness and
efficient performance at the same time?

Coarse-granular Index

Create balanced partitions using range partitioning upfront for more robust query
performance. Apply standard cracking later on.

Stochastic cracking successively refines the accessed data regions into smaller equal
sized partitions while the non-accessed data regions remain as large partitions. As
a result, when a query touches a non-accessed data region it still ends up shuffling
large portions of the data. To solve this problem, we extend stochastic cracking
to create several equal-sized5 partitions upfront, i.e. we pre-partition the data into
smaller range partitions. With such a coarse-granular index we shuffle data only
inside a range partition and thus the shuffling costs are within a threshold.

5Please note that our current implementation relies on a uniform key distribution to create
equal-sized partitions. Handling skewed distributions would require the generation of equi-depth
partitions.
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Note that in standard cracking, the initial queries have to anyways read huge
amounts of data, without gathering any useful knowledge. In contrast, the coarse
granular index moves some of that effort to a prepare step to create meaning-
ful initial partitions. As a result, the cost of the first query is slightly higher
than standard cracking but still significantly less than full indexing. With such a
coarse-granular index users can choose to allow the first query to be a bit slower
and witness stable performance thereafter. Also, note that the first query in stan-
dard cracking is anyways slower than a full scan since it partitions the data into
three parts. Coarse-granular index differs from standard cracking in that it allows
for creating any number of initial partitions, not necessarily three. Furthermore,
by varying the number of initial partitions, we can trade the initialization time for
more robust query performance. This means that, depending upon their applica-
tion, users can adjust the initialization time in order to achieve a corresponding
robustness level. This is important in several scenarios in order to achieve customer
SLAs. In the extreme case, users can create as many partitions as the number of
distinct data items. This results in a full index, has a very high initialization time,
and offers the most robust query performance. The other extreme is to create
only a single initial partition. This is equivalent to the standard cracking scenario,
i.e. very low initialization time and least robust query performance. Thus, coarse-
granular index covers the entire robustness spectrum between standard cracking
and full indexing. Figure 2.19 visualizes the concept of the technique.

Range-partition
while copying

1000 partitions

memcpy

Cracker Index
Cracker Index

... after 1000 
cracks

... from 0

Like starting ...

Index on C

Standard 
Cracking CA B C

Cracked ColumnBase Table

C

Index on C

Coarse-granular 
Index

CA B C

.

.

.

Figure 2.19: Visualization of the concept of coarse-granular index. While for
standard cracking, the cracking starts with an unindexed cracker column, coarse-
granular index pre-partitions the cracker column directly into e.g. 1000 partitions.
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Figure 2.20: Variance in Response Time.

In Figure 2.20, we show the query response time region (convex hull) of different
indexing methods, including stochastic cracking (MDD1R), coarse-granular index,
and full index (quick sort + binary search). We vary the number of initial par-
titions, which are created in the first query by the coarse-granular index from 10
to 100, 000. While stochastic cracking (MDD1R) shows a variance similar to that
of standard cracking, as observed in Figure 2.5(d), coarse-granular index reduces
the performance variance significantly. In fact, for different number of partitions,
coarse-granular index covers the entire space between the high-variance standard
cracking and low-variance full index.

Figure 2.21 shows the results. We can see that the initialization time of stochastic
cracking (MDD1R) is very similar to that of standard cracking. This means that
stochastic cracking (like standard cracking) shifts most of the indexing effort to the
query time. On the other extreme, full sort does the entire indexing effort upfront,
and thus has the highest initialization time. Coarse-granular index fills the gap
between these two extremes, i.e. by adjusting the number of initial partitions
we can trade the indexing effort at the initialization time and the query time.
For instance, for 1, 000 initial partitions, the initialization time of coarse-granular
index is 65% less than full index, while still providing more robust as well as more
efficient query performance than stochastic cracking (MDD1R). In fact, the total
query time of coarse-granular index with 1, 000 initial partitions is 41% less than
stochastic cracking (MDD1R) and even 26% less than standard cracking. Thus,
coarse-granular index allows us to combine the best of both worlds.
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Figure 2.21: Initialization Time Tradeoff.

We can also extend the coarse-granular index and pre-partition the base table along
with the cracker column. This means that we range partition the source table in
exactly the same way as the adaptive index during the initialization step. Though,
we still refine only the cracked column for each incoming query. The source table
is left untouched. If the partition is small enough to fit into the cache, then the
tuple reconstruction costs are negligible because of no cache misses. Essentially,
we decrease the physical distance between external random accesses, i.e. the index
entry and the corresponding tuple are nearby clustered. This increases the likeli-
hood that tuple reconstruction does not incur cache misses. Thus, as a result of
pre-partitioning the source table, we can achieve more robust tuple reconstruction
without covering the adaptive index itself, as in covered cracking in Section 2.3.2.
However, we need to pick the partition size judiciously. Larger partitions do not
fit into the cache, while smaller partitions result in high initialization time. Note
that if the data is stored in row layout, then the source table is anyways scanned
completely during index initialization and so pre-partition is not too expensive.
Furthermore, efficient tuple reconstruction using nearby clustering is limited to
one index per table, same as for all primary indexes.

Figure 2.22 shows the effect of pre-partitioning the source table. We create both
100 and 1, 000 partitions. The cost of pre-partitioning the source table is in-
cluded in the accumulated query response time of coarse-granular index. Both
standard cracking and coarse-granular index in Figure 2.22 start with perfectly
aligned tuples. However, in standard cracking, the locality between index entry
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Figure 2.22: Extending 2.18(c) by Nearby Clustering.

and corresponding tuple decreases gradually and soon the cache misses caused by
random accesses destroy the performance. Coarse-granular index, on the other
hand, exploits the nearby clustering between the index entry and the correspond-
ing tuple. Since tuples are never swapped across partitions, the maximum distance
between an index entry and the corresponding tuple is at most the size of a par-
tition. Thus, we can see from Figure 2.22 that coarse-granular index has a much
more stable performance when scaling the number of projected attributes, without
reorganizing the base table at query time. In fact, coarse-granular index 1K even
outperforms covered cracking for any number of projected attributes.

For example, when projecting all 10 attributes, coarse-granular index 1K is
1.7 times faster than covered cracking, 3.7 times faster than sideways cracking,
and 4.3 times faster than standard cracking. However, for 1, 000 table partitions,
each partition has a size of 8MB and thus fits completely in the CPU cache. For 100
partitions the partition size increases to 80MB and thus, it is over 6.5 times larger
than the cache. The results show that the concept still works. Although coarse-
granular index 100 is slower than covered cracking for more than 4 attributes, it
is still faster than sideways and standard cracking for more than 3 attributes. It
holds: the fewer partitions that we create the closer is the performance to that
of standard cracking. To strengthen the robustness evaluation, we scale all exper-
iments from Figure 2.20, 2.21 and 2.22 to a dataset containing 1 billion entries.
As we want to inspect how well the methods scale with the data size, Table 2.2
shows the factor of increase in time when switching from 100 million to 1 billion
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FACTOR SLOWER (FROM 100M to 1B) INITIALIZATION REMAINING TOTAL

STANDARD CRACKING 10.01 9.92 9.93

STOCHASTIC CRACKING (MDD1R) 12.92 9.57 9.75

COARSE GRANULAR INDEX 10 11.73 9.92 10.56

COARSE GRANULAR INDEX 100 11.72 9.81 10.79

COARSE GRANULAR INDEX 1K 11.69 9.96 11.09

COARSE GRANULAR INDEX 10K 11.31 9.94 10.95

COARSE GRANULAR INDEX 100K 10.90 10.02 10.73

FULL INDEX 11.48 9.97 11.29

SIDEWAYS CRACKING - - 11.92

COVERED CRACKING - - 9.98

COARSE GRANULAR INDEX 100
(NEARBY CLUSTERED)

- - 11.64

COARSE GRANULAR INDEX 1K
(NEARBY CLUSTERED)

- - 13.33

Table 2.2: Scalability under Datasize Increase by Factor 10

entries. For an increase in data size by factor 10, an algorithm that scales linearly
is 10 times slower. Obviously, all tested methods scale very well. As expected,
only nearby clustering suffers from larger partitions which exceed the cache size
by far. Overall, we see that coarse-granular index offers more robust query perfor-
mance both over arbitrary selection predicates as well as over arbitrary projection
attributes.

Finally, Table 2.3 classifies the three cracking extensions discussed above —
buffered swapping, covered cracking, and coarse-granular index — along the same
dimensions as discussed in Section 2.2.6. Please note that the entry of coarse-
granular index classifies only the initial partitioning step as it can be combined
with various other cracking methods as well.

DIMENSIONS CATEGORY NO INDEX BUFFERED
SWAPPING

COVERED
CRACKING

COARSE GRAN-
ULAR INDEX

FULL
INDEX

ZERO
NUMBER OF FEW
SPLIT LINES SEVERAL

ALL

NONE
SPLIT QUERY BASED

STRATEGY RANDOM
DATA BASED

NEVER
SPLIT PER QUERY

TIMING UPFRONT

Table 2.3: Classification of Extended Cracking Algorithms.
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2.4 Extending Cracking Experiments

In this section, we compare cracking with different sort and index baselines in
detail. Our goal here is to understand how good or bad cracking is in comparison
to different full indexing techniques. In the following, we first consider different
sort algorithms, then different index structures, and finally the effect of query
selectivity.

2.4.1 Extending Sorting Baselines

The typical baseline used in previous cracking works was a full index wherein the
data is fully sorted using quick sort and queries are processed using binary search
to find the qualifying tuples. Sorting is an expensive operation and as a result the
first fully sorted query is up to 30 times slower than the first cracking query (see
Figure 2.3). So let us consider different sort algorithms.
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Figure 2.23: Comparing Different Sort Algorithms.

Quick sort is a reasonably good (and cache-friendly) algorithm, better than other
value-based sort algorithms such as insertion sort and merge sort. But what about
radix-based sort algorithms [18]? We compared quick sort with an in-place radix
sort implementation [7]. This radix sort implementation switches to insertion sort
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(lets call this radix-insert) when the run length becomes smaller than 64. This
algorithm is a recursive (in place) Most Significant Digit radix sort, called left
radix sort in [33].

What the algorithm of [33] does to work in place is the following: The input gets
(symbolically) divided into r = 2m buckets, where m is the number of bits of the
sorting digits. Thus, r represents the number of different values of the sorting
digits. Now, instead of exchanging the keys between two arrays according to the
value of the keys in the sorting digit, as in a traditional radix sort, the algorithm
of [33] works in permutation cycles à la Cuckoo [37]. That is, it places an element
in its correct bucket, with respect to the value of its sorting digit. In doing so, it
evicts another element which is then placed in its correct bucket, as so on and so
forth. Eventually, an element gets placed in the bucket of the very first element
that initiated this permutation cycle. Then, the next element that has not been
moved yet starts another permutation cycle, and so on. Eventually, all elements
get moved to their corresponding buckets. At that point, the algorithm recurs in
each of the r bucket that the input was (symbolically) divided into. This ensures
that all the work done previously is not destroyed. In our implementation we treat
the keys as eight-digit numbers, each digit consisting of 8 bits. Thus, r = 28 = 256.

We applied a similar switching to quick sort as well (we call it quick-insert). Fig-
ure 2.23 shows the accumulated query response times for binary search in combi-
nation with several sorting algorithms. We compare these with standard cracking
and hybrid crack sort. The initialization times (i.e. the time to sort) for quick
sort, quick-insert sort, and pure radix sort around 10 seconds are included in the
first query. However, the initialization time for radix-insert sort drops by half to
around 5 seconds. As a result, the first query with radix-insert is only 14 times
slower, compared to 30 times slower with quick sort, than the first standard crack-
ing query. Furthermore, we can clearly identify the number of queries at which one
methods pays off over another. Already after 600 queries radix-insert sort shows
the smaller accumulated query response times than standard cracking. For the
two quick sort variants it takes 12,000 queries to beat standard cracking.

2.4.2 Extending Index Baselines

Let us now consider different index structures and contrast them with simple
binary search on sorted data. The goal is to see whether or not it makes sense to
use a sophisticated index structure as a baseline for cracking. We consider three
index structures: (i) AVL-Tree [2], (ii) B+-Tree [6], and (iii) the very recently
proposed ART [31]. We choose ART since it outperforms other main-memory
optimized search trees such as CSB+-Tree [42] and FAST [28].
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Figure 2.24: Indexing Effort of Diff. Indexes.

Let us first see the total indexing effort of different indexing methods over 1000
queries. For binary search, we simply sort the data (radix insert sort) while for
other full indexing methods (i.e. AVL-Tree, B+-Tree, and ART) we load the data
into an index structure in addition to sorting (radix insert sort). Standard crack-
ing self-distributes the indexing effort over the 1, 000 queries while the remaining
methods perform their sorting and indexing work in the first query. For the B+-
Tree we present two different variants: one that is bulk loaded and one that is
tuple-wise loaded. Figure 2.24 shows the results.

We can see that AVL-Tree is the most expensive while standard cracking is the
least expensive in terms of indexing effort. The indexing efforts of binary search
and B+-Tree (bulk loaded) are very close to standard cracking. However, the
other B+-Tree as well as ART do more indexing effort, since both of them load
the index tuple-by-tuple6. The key thing to note here is that bulk loading an
index structure adds only a small overhead to the pure sorting. Let us now see
the query performance of the different index structures. Figure 2.25 shows the
per-query response times of different indexing methods. Surprisingly, we see that
using a different index structure has barely an impact on query performance. This
is contrary to what we expected and in the following let us understand this in
more detail.

6The available ART implementation does not support bulk loading.
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2.4.3 Effect of Varying Selectivity

To better understand this effect let us now vary the tuple selectivity of queries.
Recall that we used a selectivity of 1% in all previous experiments. Selectivity
is given as fraction of all entries. Figure 2.26(a) shows the accumulated query
response times of different methods when varying the selectivity. We can see that
the accumulated query response times change over varying selectivity for standard
cracking, binary search, B+-Tree (bulk loaded), and ART. However, there is little
relative difference between these methods over different selectivities. To dig deeper,
let us split the query response time into two components: (i) the indexing costs to
sort the data and to build the structure, and (ii) the index lookup and data access
costs to retrieve the result.

Figure 2.26(b) shows the accumulated indexing time for different methods when
varying selectivity. Obviously, the indexing time is constant for all full indexing
methods. However, the total indexing time of standard cracking changes over
varying query selectivity. In fact, the indexing effort of standard cracking decreases
by 45% when the selectivity changes from 10−5 to 10−1. As a result, the indexing
effort by standard cracking surpasses even the effort of binary search (more than
18%) and B+-Tree (bulk loaded) (more than 5%), both based on radix insert sort
for as little as 1, 000 queries. The reason standard cracking depends on selectivity
is that with high selectivity the two partition boundaries of a range query are
located close together and the index refinement per query is small. As a result
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several data items are shuffled repeatedly over and over again. This increases the
overall indexing effort as well as the time to converge to a full index.

Figure 2.26(c) shows the accumulated index lookup and data access costs of differ-
ent methods over varying selectivity. We can see that the difference in the querying
costs of different methods grows for higher selectivity. For instance, AVL-Tree is
more than 5 times slower than ART for a selectivity of 10−8. We also see that
standard cracking is the most lightweight method in terms of the index lookup and
data access costs and is closely followed by ART. However, for high selectivities,
the index lookup and data access costs are small compared to the indexing costs.
As a result, the difference in the index lookup and data access costs of different
methods is not reflected in the total costs in Figure 2.26(a).

Let us now investigate the index lookup costs and the data access costs in com-
parison. Figure 2.27(a) shows the index lookup and data access costs as a fraction
of the costs of Figure 2.26(c) for ART. We can see that the data access costs
dominate the total time for a selectivity lower than 10−6. This means that using
better optimized index structures make sense only for very high query selectivities.
Figure 2.27(b) shows only the index lookup costs without the data access costs
of different methods when varying selectivity. We can see that the index lookup
costs vary with selectivity, indicating different cache behavior for different query
selectivities. Furthermore, we see that ART has the best index lookup times. For a
selectivity of 10−8, ART performs 30% faster index lookups than standard crack-
ing. This is even though cracking has a much smaller index (created over just
1, 000 queries) whereas ART creates a full index over 100M data entries.

Finally, we also vary the number of queries to see how the index lookup times of
standard cracking change in comparison to other indexing methods. Figure 2.27(c)
shows the average per-query index lookup times for different methods when in-
creasing the number of queries in the query sequence from 10 to 1M. We fix the
query selectivity to 10−8. Furthermore, we show stochastic cracking (MDD1R),
coarse granular index 1K, and hybrid crack sort as they introduce additional split
lines or handle them differently. We can see that the average index lookup time of
standard cracking increases by almost one order of magnitude when the number
of queries increase from 10 to 1M. This is because the cracker index grows with
the number of queries7. Coarse-granular index and stochastic cracking (MDD1R)
differ from standard cracking by showing a higher average index lookup time in
the beginning as the additional splits weigh in that early phase. Hybrid crack

7[20] proposed to stop cracking if a sufficiently small partition size is reached. However,
this pays off only for a very large number of queries. As we apply 1, 000 queries in nearly all
experiments, we use unbounded algorithms throughout this chapter. Nevertheless, we test the
effect of stopping cracking at a certain threshold in Section 2.4.6.
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sort shows the overall highest average lookup time which even increases with the
number of queries8. The high selectivity leads to slow convergence and triggers
repeatedly expensive lookups into the 10, 000 initial partitions. In contrast to that,
the average per-query index lookup time of other indexing methods remains stable
(or even improves slightly due to better cache performance) with the number of
queries. Consequently, for 1M queries, the average index lookup time of ART is
3.6 times smaller than the average index lookup time of standard cracking.

To conclude, the take-away message from this section is three-fold: (i) using a
better index structure makes sense only for very high selectivities, e.g. one in a
million, (ii) cracking depends on query selectivity in terms of indexing effort, and
(iii) although cracking creates the indexes adaptively, it still needs to catch up
with full indexing in terms of the quality of the index.

2.4.4 Effect of Very Low Selectivity

In the previous section we tested the methods under selectivities ranging from 10%
down to point queries. Under a workload of such selectivities, standard cracking
applies cracks over the entire column. However, when facing lower selectivities,
cracking can show off its strength of indexing only the parts that are actually
relevant for query answering. Thus, let us now see how low selectivities influence
the indexing effort that standard cracking has to invest.

Figure 2.28(a) shows the accumulated indexing time when varying selectivity from
10−8 to 0.95, i.e. we now extend Figure 2.26(b) to very low selectivities. As in-
tended by the cracking paradigm, the indexing effort decreases continually as we
decrease the selectivity. In particular, the indexing effort drops significantly (al-
most 52%) after 0.50 selectivity. To understand this behaviour, let us see the
actual split lines in the cracker index. Figure 2.29(a) shows the split lines with
0.001 selectivity and (b) shows the split lines with 0.9 selectivity for standard
cracking. We can see that while high selectivity results in split lines in the en-
tire column, very low selectivity results in split lines only at the two ends of the
column, basically resembling a partial index [51].

Thus, very low selectivities (50% or lower) do less indexing effort and yet converge
better since they only index the cracker column partially, as we show in Fig-
ure 2.28(b). We also tried very low selectivities on stochastic cracking (MDD1R)
to see whether it indexes the cracker column more uniformly. Figure 2.29(c) shows
the split lines created by stochastic cracking (MDD1R) with 0.9 selectivity queries.

8The point for 106 queries is missing as the space consumption of 10K AVL-Trees each storing
up to 1M entries exceeds capacity.
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Figure 2.28: Cracking over Very Low Selectivities.
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(a) (b) (c)

Figure 2.29: Split Lines for (a) Standard Cracking with Selectivity 0.001, (b) Stan-
dard Cracking with Selectivity 0.9, and (c) Stochastic Cracking (MDD1R) with
Selectivity 0.9.

We can see that stochastic cracking does a bit better by creating a few split lines
in the middle. However, most split lines are still concentrated towards either end.
Finally, let us see how standard cracking behaves if query selectivity changes. Fig-
ure 2.28(c) shows two curves with changing selectivities. The selectivity changes
from 0.001 to 0.9 in one curve and the other way around in the other curve. We
can see that there is a jump of more than an order of magnitude when changing
the selectivity from 0.9 to 0.001, demonstrating the downside of partial indexing.
On the other hand, the runtimes drop sharply when varying the selectivity from
0.001 to 0.9 since the convergence is much faster in the partial index region.

Overall, we see that with very low selectivities cracking can display its ability
to invest the minimal amount of necessary effort. On the flip side, we can also
observe a certain sensitiveness to changes in query selectivities. This claim is also
confirmed by the accumulated indexing times over all 1000 queries. A selectivity
change from 0.9 to 0.001 leads to an accumulated indexing time of 14.98 seconds,
whereas a change from 0.001 to 0.9 results in an accumulated indexing time of
9.96 seconds. Let us investigate this further below by measuring the per-query
indexing times for different query selectivities. Figure 2.28(b) shows the result.
We show smoothened curves for the ease of presentation. From Figure 2.28(b),
we can see that standard cracking converges faster with very low selectivities than
with high selectivities. For instance, after 1000 queries, standard cracking with 0.9
selectivity is almost 8 times faster than standard cracking with 0.001 selectivity.
This is even though standard cracking with 0.9 selectivity puts 2.25 times less
indexing effort than standard cracking with 0.001 selectivity.
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Figure 2.30: Varying the number of repeated elements in the dataset.

2.4.5 Effect of Duplicates in the Dataset

In all previous experiments, we used a dataset consisting of repeated keys. For
100 million elements, each key is replicated 1000 times, leading to a key range
of [0; 100, 000]. As database cracking is a method to provide lightweight indexing
especially for non-key columns, we find it more realistic to test the methods under
a setup of duplicated keys. Let us now see the impact of the column cardinality
on the individual methods. In this experiment, we consider the main representa-
tives of cracking, namely standard cracking, hybrid crack sort, stochastic cracking
(MDD1R), and coarse-granular index with 1000 partitions. Furthermore, we test
quick sort and radix insert sort in combination with binary search. The number of
duplicates is varied from 100, representing unique keys, to 105, where each key is
repeated 100, 000 times. Figure 2.30 shows the accumulated query response time.
Interestingly, the repetition factor has no significant impact on the cracking meth-
ods. The accumulated query response times of standard and stochastic cracking
remain basically unchanged under variation of the repetition factor, only hybrid
crack sort worsens slightly with the cardinality of the column. As quick sort basi-
cally applies the concept of cracking till the sorted state, we expect to see a similar
behavior there. However, quick sort drastically worsens from 105 to 100 repetitions
by a factor of 1.42x. This is caused by the fact that the additional effort of reorder-
ing unique elements comes into play at deeper recursion levels, which are never
reached by the 1000 queries (2000 cracks) that cracking has to apply. In contrast
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to that, radix sort behaves independently of the repetition factor.

2.4.6 Effect of Varying Cracking Depth

The cracking algorithms tested so far reorganize the cracker column till the fully
sorted state is reached. However, the authors of [20] suggested in their original
work, that it might make sense to stop further reorganization at a certain partition
size and filter the partitions instead. Thus, in the following experiment, we vary
the threshold at which we stop applying standard cracking and inspect the effect
on the runtime. Figure 2.31 shows the results. We present the accumulated query
response time over our query sequence of 1000 queries and split the bars into
indexing time, representing the time to reorganize the partition(s), and index
lookup with data access time, representing the query result computation. This
result computation corresponds to a simple scan if the column has been cracked by
this query or a scan with a filtering, if no cracking has been performed previously.
The threshold at which we stop cracking is varied from 16, 000 (250KB) to 256, 000
(4000KB) entries.
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Figure 2.31: Stopping cracking at a certain partition size.

In Figure 2.31 we can observe that a threshold larger than 64, 000 entries has a
clear impact on the accumulated query response time. The larger the threshold,
the smaller is the indexing time as less cracking effort is needed. As a consequence
of the reduced indexing effort, the querying time increases due to the additional
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filtering. Unfortunately, the savings in indexing effort are eclipsed by the larger
increase in querying time. As a result, the overall runtime increases. Therefore,
stopping cracking at a certain partition size and applying filtering does not improve
performance.

2.4.7 Effect of Query Access Pattern

So far, all experiments applied a uniform random access pattern to test the meth-
ods. However, in reality, queries are often logically connected with each other and
follow certain non-random and non-uniform patterns. To evaluate the methods
under such patterns, we pick two representatives: the sequential access pattern
and the skewed access pattern.

We create the sequential access pattern as follows: starting from the beginning of
the value domain, the queried range is moved for each query by half of its size
towards the end of the domain to guarantee overlapping query predicates. When
the end is reached, the query range restarts from the beginning. The position
to begin is randomly set in the first 0.01% of the domain to avoid repetition of
the same sequence in subsequent rounds. Figure 2.32 visualizes the generated
predicates.
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Figure 2.32: Generated Predicates for Sequential Pattern.

In Figure 2.33(a) we show the query response time under the sequential access
pattern for standard cracking, stochastic cracking, coarse-granular index with 1,000
partitions, and hybrid crack sort. We can clearly separate the figure into the first
200 queries and the remaining 800 queries. As the selectivity is 1% and the query
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range moves by half of its size per query, it takes 200 queries until the entire data
set has been accessed. Within that period the query response time of standard
cracking and hybrid crack sort decreases only gradually. Large parts of the data are
scanned repeatedly and the unindexed upper part decreases only slightly per query.
Furthermore, hybrid crack sort is considerably slower than standard cracking in
this phase. Stochastic cracking reduces this problem significantly by applying
additional splits to the unindexed upper area. Coarse-granular index shows the
most stable performance. After the initial partitioning in the first query, the query
response time does not significantly vary. Additionally, the query response time is
the lowest of all methods (except for the first query). For the remaining 800 queries
the performance differences between all methods decrease as the entire data set
has been queried and is therefore cracked more or less. Now, stochastic cracking
is slower than standard cracking as the additional effort of random cracking and
materializing the result is no more necessary to provide a decent performance.

Finally, let us investigate how the methods perform under a skewed access pattern.
We create the skewed access pattern in the following way: first, a zipfian distri-
bution is generated over n values, where n corresponds to the number of queries.
Based on that distribution the domain around the hotspot, which is the middle of
the domain in our case, is divided into n parts.
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Figure 2.34: Generated Predicates for Skewed Pattern.

After that the query predicates are set according to the frequencies in the distribu-
tion. The k values with the l highest frequency in the distribution lead to k query
predicates lying in the l-th nearest area around the hotspot. Figure 2.34 shows the
generated predicates for α = 2.0. These predicates are randomly shuffled before
they are used in the query sequence. Figure 2.33(b) shows the query response
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time for the skewed pattern. We can observe a high variance in all methods except
coarse-granular index.

Between accessing the hotspot area and regions that are far off, the query response
time varies by almost 3 orders of magnitude. Early on, all methods index the
hotspot area heavily as most query predicates fall into that region. Stochastic
cracking manages to reduce the negative impact of predicates that are far off the
hotspot area. However, it is slower than standard cracking if the hotspot area is hit.
Hybrid crack sort copies the hotspot area early on to its final partition and exhibits
the fastest query response times in the best case. However, if a predicate requests
a region that has not been queried before, copying from the initial partitions to
the final partition is expensive.

Finally, Figure 2.33(c) shows the accumulated query response time for both se-
quential and skewed access patterns. Obviously handling sequential patterns is
challenging for all adaptive methods. Especially hybrid crack sort suffers from
large repetitive scans in all initial partitions and is therefore by far the slowest
method in this scenario. Stochastic cracking (MDD1R) manages to reduce the
problems of standard cracking significantly and fulfills its purpose by providing
a workload robust query answering. In total, coarse-granular index is the fastest
method under this pattern. Overall, for the skewed access pattern the difference
between the methods is significantly smaller than for the sequential pattern.

2.5 Conclusion

Let us now put together the major lessons learned in this chapter.

1. Database cracking is a mature field of research. Database cracking
is a simple yet effective technique for adaptive indexing. In contrast to full
indexing, database cracking is lightweight, i.e. it does not penalize the first
query heavily. Rather, it incrementally performs at most one quick sort step
for each query and nicely distributes the indexing effort over several queries.
Moreover, database cracking indexes only those data regions which are actu-
ally touched by incoming queries. As a result, database cracking fits perfectly
to the modern needs of adaptive data management. Furthermore, apart from
the incremental index creation in standard cracking, several other follow-up
works have looked into other aspects of adaptive indexing as well. These
include updating a cracked database, convergence of database cracking to a
full index, efficient tuple reconstruction, and robustness over unpredictable
changes in query workload. Thus, we can say that database cracking has
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come a long way and is a mature field of research.

2. Database cracking is repeatable. In this chapter, we repeated five pre-
vious database cracking works, including standard cracking using crack-in-
two and crack-in-three [20], predication cracking [39], hybrid cracking [23],
sideways cracking [22], and stochastic cracking [17]. We reimplemented the
cracking algorithms from each of these works and tested them under similar
settings as in the previous works. Our results match very closely to the ones
presented in the previous works and we can confirm the findings of those
works, i.e. hybrid cracking indeed improves in terms of convergence to full
index, sideways cracking allows for more efficient tuple reconstruction, and
stochastic cracking offers more predictable query performance than standard
cracking. We can say that cracking is repeatable in any ad-hoc query engine,
other than MonetDB as well.

3. Still, lot of potential to improve database cracking. There is still a
lot of potential to do better in several aspects of database cracking, includ-
ing faster convergence to full index, more efficient tuple reconstruction, and
more robust query performance. For example, by buffering the elements to be
swapped in a heap, we can reduce the number of swaps and thus have better
convergence. Similarly, by covering the cracked index we can achieve better
scalability in the number of projected attributes. Likewise, we can trade the
initialization time to create a coarse-granular index which improves query
robustness. All these are promising directions in the database cracking land-
scape. Thus, we believe that even though cracking has come a long way, it
still has a lot more to go.

4. Database cracking depends heavily on the query access pattern. As
the presented techniques are adaptive due to their query driven character,
each of them is more or less sensitive to the applied query access pattern.
A uniform random access pattern can be considered the best case for all
methods as it leads to uniform partition sizes across the data. In contrast to
that sequential patterns crack the index in small steps and the algorithms
have to rescan large parts of the data. Skewed access patterns lead to a
high variance in runtime depending on whether the query predicate hits
the hotspot area or not. Overall, stochastic cracking (MDD1R) and coarse-
granular index, which extend their query driven character by data driven
influences, are less sensitive to the query access pattern than the methods
that take only the seen queries into account.

5. Workload selectivities affect the amount of indexing effort in
database cracking. Since cracking reorganizes only the accessed portions
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of the data, the total indexing effort varies with the query selectivities. In
fact, the total indexing effort in standard cracking drops by 45% when the
selectivity changes from 10−5 to 10−1. Although high selectivity queries reor-
ganize smaller portions of the data, the reorganization happens much more
often before reaching the final state. Additionally, earlier cracking works
suggested to stop data reorganization at a certain partition size, in order to
reduce the indexing effort. However, we saw that the overhead of additional
filtering eclipses the savings from indexing effort.

6. Database cracking needs to catch up with modern indexing trends.
We saw that for sorting radix sort is twice as fast as quick sort. After 600
queries the total query response time of binary search based on radix sorted
data is even faster than standard cracking. This means that a full sorting
pays-off over standard cracking in less than 1000 queries. Thus, we need to
explore more lightweight techniques for database cracking to be competitive
with radix sort. Furthermore, several recent works have proposed main-
memory optimized index structures. The recently proposed ART has 1.8
times faster lookups than standard cracking after 1000 queries and 3.6 times
faster lookups than standard cracking after 1M queries. We note two things
here: (i) the cracker index offers much slower lookups than modern main-
memory indexes, and (ii) the cracker index gets even worse as the number
of queries increase. Thus, we need to look into the index structures used in
database cracking and catch up with modern indexing trends.

7. Different indexing methods have different signatures. We looked
at several indexing techniques in this chapter. Let us now contrast the
indexing behavior of different indexing methods in a nutshell. To do so,
we introduce a way to fingerprint different indexing methods. We measure
the progress of index creation over the progress of query processing, i.e. how
different indexing methods index the data over time as the queries are being
processed (Figure 2.35). This measure essentially acts as a signature of
different indexing methods. The x-axis shows the normalized accumulated
lookup and data access time (querying progress) and the y-axis shows
the normalized accumulated data shuffle and index update time (indexing
progress). We can see that different indexing methods have different curves.
For example, standard cracking gradually builds the index as the queries are
processed whereas full index builds the entire index before processing any
queries. Hybrid crack sort and hybrid sort sort have steeper curves than
standard cracking, indicating that they build the index more quickly. On
the other hand, stochastic cracking has a much smoother curve. Sideways
and covered cracking perform large parts of their querying process already
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in the first query by copying table columns into the index to speed up tuple
reconstruction. It is interesting to see that each method has a unique curve
which characterizes its indexing behavior. Furthermore, there is still lot
more room to design adaptive indexing algorithms with even more different
indexing signatures.
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Figure 2.35: Signatures of Indexing Methods.

In the past chapter, we have discussed a vast amount of adaptive indexing algo-
rithms, extended them in various ways, and tested them under different setups. To
gather a deeper understanding of the methods themselves, we focused so far en-
tirely on the single-threaded execution of them. Multi-threading introduces a new
layer of challenges that must be tackled. This will be the focus of the upcoming
chapter.



Chapter 3

Adaptive Indexing and Sorting in
the Multi-threaded Context

As we have seen in the previous chapter, adaptive indexing is a concept that con-
siders index creation in databases as a by-product of query processing, as opposed
to traditional full index creation where the indexing effort is performed up front
before answering any queries. As demonstrated, adaptive indexing has received
a considerable amount of attention, and a large number of algorithms have been
proposed over the past few years.

Until now, however, most adaptive indexing algorithms have been designed single-
threaded, yet with multi-core systems already well established, the idea of design-
ing parallel algorithms for adaptive indexing is very natural. In this regard, and
to the best of our knowledge, only one parallel algorithm for adaptive indexing
has recently appeared in the literature: A parallel version of standard cracking.
Therefore, in this chapter we describe four alternative parallel algorithms for adap-
tive indexing, including a second variant of a parallel standard cracking algorithm.
Additionally, we describe a hybrid parallel sorting algorithm, and a NUMA-aware
method based on sorting. We then thoroughly compare all these algorithms ex-
perimentally in terms of single-column query answering performance.

After that, we extend the two most promising parallel adaptive indexing algo-
rithms to support tuple reconstruction efficiently. We bring the concept of side-
ways cracking to the multithreaded level and experimentally evaluate it against
the aforementioned hybrid parallel sorting algorithm, that we also extended to
support multi-column queries.

The initial set of experiments considered in this chapter indicates that our parallel
algorithms significantly improve over previously known ones. Our results also

69
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suggest that, although adaptive indexing algorithms are a good design choice in
single-threaded environments, the rules change considerably in the parallel case.
That is, in future highly-parallel environments, sorting algorithms could be serious
alternatives to adaptive indexing.

3.1 Introduction

In Chapter 2, we presented a thorough experimental study of all major single-
threaded adaptive indexing algorithms. The experiments we showed there support
the claim that (single-threaded) standard cracking [20] still keeps being the algo-
rithm any other new (single-threaded) algorithm has to improve upon, due to its
simplicity and good accumulated runtime.

For example, in the comparison of standard cracking [20] with stochastic crack-
ing [17], as seen from the experiments shown in Section 2.2.5, Figure 2.14, the lat-
ter is more robust, but the former is in general faster. With respect to the hybrid
cracking algorithms [23], the experiments of the previous chapter indicate that,
although convergence towards full index improves in hybrid cracking algorithms,
this improvement can be seen only after roughly 100 to 200 queries, before that,
standard cracking performs clearly better (Section 2.2.5, Figure 2.10). Moreover,
as discussed in Section 2.4.1, Figure 2.23, with respect to the total accumulated
query time, standard cracking is faster than hybrid cracking up to around 8000
queries. In all cases, standard cracking is the algorithm that is much easier to
implement and to maintain.

In Chapter 2 we also observed that pre-processing the input before applying stan-
dard cracking significantly improves the convergence towards full index, robust-
ness, and total execution time of standard cracking. This pre-processing step is
simply a range-partitioning over the attribute to be (adaptively) indexed, coined
coarse-granular index in the previous chapter. From the experiments we showed in
Figures 2.20 and 2.21 in Section 2.3.3, the improvement of the coarse-granular in-
dex over all other adaptive indexing techniques considered can clearly be seen.
However, the coarse-granular index also incurs in a higher initialization time,
which, as discussed previously, is often not desirable.
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3.1.1 Contributions

All algorithms tested in Chapter 2 were single-threaded, and actually, almost all
adaptive indexing algorithms in the literature are designed for single-core systems.
With multi-core systems not only on the rise, but actually well established by now,
the idea of parallel adaptive indexing algorithms is very natural.

To the best of our knowledge, the work presented in [14, 15] as well as the work
of [39] are the only ones so far that deal with adaptive indexing in multi-core
systems. In [14, 15], a parallel version of the standard cracking algorithm is pre-
sented, while in [39] predication/vectorized cracking is extended to support multi-
threading. In this chapter, we will improve the situation by making the following
contributions:

1. First and foremost, the most important contribution of this chapter is the
critical experimental evaluation of eleven parallel algorithms for adaptive
indexing as well as for creating full indexes (seven methods for single-column
query answering and four methods for multi-attribute queries) — including
the algorithm of [14, 15, 39]. This work can be considered the very first
experimental study of parallel adaptive indexing techniques.

2. We describe four (natural) alternative parallel algorithms for adaptive in-
dexing, one based on standard cracking [20], one based on predication/vec-
torization cracking [39], while the other two are based on the coarse-granular
index presented in Chapter 2.

3. We describe a hybrid parallel sorting algorithm. This algorithm greatly re-
sembles the parallel radix sorting algorithms presented in [30, 34, 43]. Addi-
tionally, we present another method that further improves upon this hybrid
parallel sorting algorithm by adding NUMA-awareness.

4. The set of experiments considered in this chapter suggests that our algo-
rithms significantly improve over the methods presented in [14, 15]. More-
over, these experiments also indicate that, as opposed to the story with
single-threaded algorithms where sorting algorithms are no match in prac-
tice against adaptive indexing techniques, parallel sorting algorithms could
become serious alternatives to parallel adaptive indexing techniques.

Throughout the chapter, we mostly refer to the algorithms by their short names
for simplicity. Additionally, for an easier distinction between single- and multi-
threaded algorithms, the short name of each multi-threaded algorithm starts
with a P.
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Algorithm Reference

Standard cracking [20]
Predication/Vectorized cracking [39]
Hybrid crack/radix/sort sort [23]
Buffered swapping this work
Stochastic cracking (MDD1R) [17]
Coarse-granular Index this work
Sideways cracking, Covered cracking [22], this work
Sorting: Quick( insert) sort, Radix( insert) [19],[18]
Full Index: AVL-tree, B+-tree, ART [2],[6],[31]

Table 3.1: All single-threaded algorithms that were evaluated in Chapter 2.

Algorithm Abbreviation Reference

Parallel standard cracking P-SC [14, 15]
Parallel coarse-granular index P-CGI [3]
Parallel-chunked standard cracking P-CSC [3]
Parallel-chunked vectorized cracking P-CVC variant of [39]
Parallel-chunked coarse-granular index P-CCGI [3]
Parallel range-partitioned radix sort P-RPRS [3]
Parallel-chunked radix sort P-CRS [3]

Parallel sideways cracking (with P-CSC) P-SW-CSC this work
Parallel sideways cracking (with P-CCGI) P-SW-CCGI this work
Parallel range-partitioned radix sort P-PC-RPRS this work
(cluster complete)
Parallel range-partitioned radix sort P-LC-RPRS this work
(cluster lazy)

Table 3.2: All multi-threaded algorithms evaluated in Chapter 3.
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3.2 Multi-threaded Algorithms

In this section we give a short description of all parallel algorithms to be tested.
But before we can discuss the methods, we have to distinct the types of parallelism.

3.2.1 Types of Parallelism

In general, parallel query processing can be realized in two ways: (1) inter-query
parallelism, which interleaves the execution of multiple queries while isolating them
semantically, and (2) intra-query parallelism, which serializes the answering of
the query sequence while each individual query is evaluated in parallel. In the
following, let us look at the main representatives of these two classes of parallelism.

Table 3.2 gives an overview of the methods alongside with their initial sources and
used abbreviations. Additionally, Table 3.1 recaps the single-threaded algorithms,
that were evaluated in Chapter 2. To the best of our knowledge, these algorithms
form the complete set of parallel cracking algorithms known to date. Let us now
look at the different parallel algorithms in detail.

Throughout this chapter, we will denote by A the original column (attribute) of the
base table we want to perform queries on, by B the corresponding cracker column,
by n the number of entries in A, and by k the number of available threads. To
make the explanation simpler, we will assume that n is perfectly divisible by k.
In the experiments and the used implementation, however, we do not make this
assumption.

3.2.2 Parallel Standard Cracking (P-SC)

Interleave answering of multiple queries in isolation by serializing crack-in-two on
the granularity of partitions.

In [14, 15] a multi-threaded version of standard cracking was shown, which we will
denote by P-SC from now on. To describe this multi-threaded version it suffices
to observe that, in standard cracking, as more queries arrive, they potentially
partition independent parts of B, and thus, they can be performed in parallel.

When a query comes, it has to acquire two write locks on the border partitions,
while all partitions in between are protected using read locks. When two or more
queries have to partition or aggregate over the same part of B, read and write locks
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are used over the relevant parts. That is, whenever two or more queries q1, . . . , qr,
r ≥ 2, want to partition the same part of B, a write lock is used to protect that
part; say qi, 1 ≤ i ≤ r, obtains the lock and partitions while the other queries
wait for it to finish. After qi has finished, the next query qj, i 6= j, acquiring
the lock has to reevaluate what part it will exactly crack, as qi has modified the
part all queries q1, . . . , qr were originally interested in. Clearly, as more queries are
performed, the number of partitions in B increases, and thus also the probability
that more queries can be performed in parallel. This is where the speedup of
this multi-threaded version over the single-threaded version stems from. If two
or more queries want to aggregate over the same part of B, then they all can be
performed in parallel, as they are not physically reorganizing any data. However,
if one query wants to aggregate over a part of B that is currently being partitioned
by another query, then the former has to wait until the latter finishes, as otherwise
the result of the aggregation might be incorrect. Also, all queries work with the
same cracker index, thus a write lock is acquired each time the cracker index is
updated. Figure 3.1 visualizes the concept for two overlapping queries Q1 and Q2,
that are executed by two threads T1 respectively T2.

Q1/T1

Q2/T2

Requested Locks

W

R
R W

R R

R R

W R

W

Q1 Q2

⚡︎

✓
✓

✓
✓

✓
⚡︎

Lock
contention

Figure 3.1: Visualization of the concept of parallel standard cracking (P-SC).

As the initialization time of P-SC we consider the time it takes to copy A onto B
in parallel — in contrast to SC, where this initialization is done single-threaded.
That means, for k available threads, we divide A and B into k parts and assign
exactly one part to each thread. Every thread copies its corresponding part from



3.2. Multi-threaded Algorithms 75

A to B. This maximizes the memory bandwidth utilization of the machine.

We immediately see two drawbacks with this multi-threaded version of standard
cracking, which will also become apparent in the experiments: (1) The effect of
having multiple threads will be visible only after the very first executed query has
partitioned B. Before that, B consists of only one partition, and all other queries
will have to wait for this very first query to finish. That is, the very first crack
locks the whole column. (2) Locking incurs in unwanted time overheads.

To address these concerns we describe in this chapter another version of parallel
standard cracking, which as we will see, seems to perform quite good in practice,
in particular, better than P-SC.

3.2.3 Parallel-chunked Standard Cracking (P-CSC)

Divide the cracker column non-semantically into independent chunks and apply
standard cracking on each chunk in parallel.

After copying A onto B in parallel, as in P-SC, we (symbolically) divide B into k
parts, each having n/k elements, and every thread will be responsible for exactly
one of these parts. Now, every query will be executed by every thread on its
corresponding part, and every thread will aggregate its results to a local variable
assigned to it. At the end a single thread aggregates over all these local variables.
Figure 3.2 visualizes the concept.

It is crucial for the performance of P-CSC to ensure complete independence be-
tween the individual parts. Any data that is unnecessarily shared among them can
lead to false sharing effects (propagation of cache line update to a core although
the update did not affect its part of the shared cache line) and remote accesses to
memory attached to another socket. Thus, each part maintains its own structure
of objects, containing its local data, cracker index, histograms, and result aggre-
gation variables. Furthermore, by aligning all objects to cache lines, we ensure
to avoid any shared resources, and each thread can process its part in complete
independence from the remaining ones.

A similar concept as in P-CSC has been used in [39] in combination with vectorized
cracking. Thus, we also test a vectorized version, denoted as P-CVC1 from here on.
Of course, the concept of work division can be applied to more advanced cracking
algorithms as well.

1In contrast to [39], we do not merge the chunks after each query as this results in overhead.
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Figure 3.2: Visualization of the concept of parallel standard cracking (P-CSC).

3.2.4 Parallel Coarse-granular Index (P-CGI)

Apply a parallel range partitioning to bulk-load the cracker index before starting
the query answering using P-SC.

In this chapter we present two parallel versions of the coarse-granular index dis-
cussed in Chapter 2. For the first one it suffices to observe that the coarse-granular
index is nothing but a range partitioning as a pre-processing step to standard crack-
ing. Thus, for the first parallel version of coarse-granular index, which will be de-
noted by P-CGI from now on, we show how to do a range partitioning in parallel.
Afterwards we simply run the parallel standard cracking algorithm (P-SC) [14, 15]
to answer the queries, taking into consideration that B is now range-partitioned.
Our method to build a range partition in parallel requires no synchronization
among threads, which of course helps to improve its performance.

The main idea behind the construction is very simple. Column A is (symbolically)
divided into k parts, of n

k
elements each. Thread Ti, 1 ≤ i ≤ k, gets assigned the

i-th part of A and it writes its elements to their corresponding buckets2 in the
range partition on B, using r ≥ 2 buckets. In order to do so, and not to incur
any synchronization overhead, every bucket of the target range partition on B is
(symbolically) divided into k parts as well, so that thread Ti writes its elements

2Our implementation of range partitioning is radix-based.
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in the i-th part of every bucket. Thus, any two threads read their elements from
independent parts of A and write also to independent parts on B. All this can be
implemented in a way that all but one step are done in parallel3, and every thread
gets roughly the same amount of work. This, as we will see, helps to improve
performance as the number of threads increases. Figure 3.3 visualizes the concept.
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k

...
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A B

T1

T2

Tk

T1
T2

Tk

Range-partition

Figure 3.3: Visualization of the partitioning phase of parallel coarse-granular index
(P-CGI).

The second parallel version of coarse-granular index does not range-partition B.
Instead, it works in the same spirit as P-CSC, thus its name.

3.2.5 Parallel-chunked coarse-granular index (P-CCGI)

Divide the cracker column non-semantically into multiple independent chunks
and apply coarse-granular index on each chunk in parallel. Then, apply standard
cracking locally for the query answering.

Symbolically divide A again into k parts, of n
k

elements each, and assign the i-th
part to the i-th thread. Each thread ti, 1 ≤ i ≤ k, range partitions its part using
single-threaded coarse-granular index, materializing it onto B. Thus, B is also
(symbolically) divided into k parts. Having done this chunked range partition

3This step is the aggregation of an histogram used by all threads.
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of B, thread ti keeps being responsible for the i-th range partition of B. When a
query arrives, each thread executes standard cracking on its part and aggregates
its result in a global variable, for which we again use a write lock to avoid any
conflicts that might occur during aggregation. Again, as for P-CSC, we ensure
that no resources are shared among the parts. All objects are cache-line-aligned
and no trips to the remote memory are necessary at any place.

3.2.6 Parallel Full Indexing

So far we have only described algorithms for adaptive indexing. However, in or-
der to see how effective those algorithms really are, we have to compare them
against full indexes. In Chapter 2 it was observed that when the selectivity of
range queries is not extremely high, as in our case, more sophisticated indexing
data structures such as AVL-trees, B+-trees, ART [31], among others, have no
significant benefit over full sort + binary search + scan for answering queries, as
the scan cost (aggregation) of the result dominates the overall query time. There-
fore, in this chapter, we regard sorting algorithms as a direct equivalent of full
indexing algorithms. With this in mind, and also due to (1) the good performance
of building a range partition in parallel, and (2) the good performance of the radix
sort algorithm (RS) of [33], the following hybrid sorting algorithm suggests itself:

3.2.7 Parallel Range-partitioned Radix Sort (P-RPRS)

Perform P-CGI to create range partitions in parallel. Then, apply radix sort RS
on each partition in parallel.

We build a range partitioning in parallel on B, as in the parallel coarse-granular
index P-CGI. If the number of buckets in the range partitioning is r = 2m, then
it is not hard to see that the elements of B are now sorted with respect to the
m most significant bits. Now, split the buckets of the range partitioning evenly
among all k threads. Each thread then sorts the elements assigned to it on a
bucket basis using the single-threaded radix sort, but starting from the (m+ 1)-th
most significant bit; remember that our radix sort is a MSD radix sort. Since B is
range-partitioned, and sorted with respect to the m most significant bits, calling
radix sort on each bucket locally clearly fully sorts B in-place.

As we will see, P-RPRS performs quite good in practice. However, this algorithm
suffers from a large amount of negative NUMA effects as we will see. To alleviate
this we present the following algorithm.
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3.2.8 Parallel-chunked Radix Sort (P-CRS)

Divide the column non-semantically into multiple independent chunks and apply
coarse-granular index on each chunk in parallel. Then, apply radix sort locally on
all partitions of all chunks in parallel.

Symbolically divide A into k chunks, of n
k

elements each, and assign the i-th part
to the i-th thread. Each thread ti, 1 ≤ i ≤ k, range partitions its part using single-
threaded coarse-granular index, materializing it onto the corresponding chunk ofB.
Afterwards, each thread ti reuses the histogram of its chunk to sort these partitions
using RS starting from the (m+ 1)-th most significant bit (the range-partitioning
already sorts with respect to the m most significant bits). Thus, P-CRS basically
applies the concept of P-RPRS to k chunks. As for all other chunked methods,
we ensure that the chunks do not share any data structures and that all objects
are again cache-line-aligned. Thus, the threads work completely independent from
each other.

The initialization time for the parallel sorting algorithms P-RPRS and P-CRS is
clearly the time it takes them to sort. After that, for P-RPRS the queries can
be answered in parallel using binary search; every thread will answer a different
query (inter-query parallelism). In contrast to that, the chunked P-CRS answers
the individual queries in parallel (intra-query parallelism) by querying the chunks
concurrently.

Table 3.2 in Section 3.1.1 constitutes a summary of the algorithms (experimentally)
considered in this chapter. We have decided to leave the full scan as well as the
hybrid cracking algorithms out of the presentation due to their high execution
time, even in parallel.
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3.3 Experimental Evaluation

Before we can start with the actual experimental evaluation, we have to discuss
the used hardware setup as well as the experimental settings.

3.3.1 Hardware Setup

Our test system is a high-end server consisting of 4 sockets, each equipped with an
Intel Xeon E7-4870 v2 processor with 15 physical and 30 logical cores, running at
2.3 GHz. Therefore, the machine has 60 physical and 120 logical cores available.
The overclocking capabilities of the processors (Intel Turbo Mode) are disabled
for all experiments, as they unnecessarily complicate the analysis. The private L1
and L2 caches of each core have a size of 32KB and 256KB respectively, while the
shared L3 cache of each processor has a size of 30MB. Each processor has 3 QPI4

links such that remote memory access is equally expensive for all neighboring
processors. Each socket is attached to 128GB of 1600 MHz DDR3 RAM running
in Intel Performance Mode, resulting in 512GB of available main memory. The
operating system is a 64-bit Debian with kernel version 3.2. As the memory
bandwidth plays an important role in the following discussion, we measured the
throughput of the machine using the STREAM benchmark [35], that runs a set of
simple read/write vector kernels. Instead of relying on the calculated bandwidth
of the benchmark, we measured the throughput directly at the memory controller
using Intel VTune Amplifier 2015. Figure 3.4 shows the aggregated bandwidth for
all 4 sockets. As we can see, we reach 65 GB/s per socket and thus achieve a total
machine bandwidth of 260 GB/s.

50ms 100ms 150ms 200ms 250ms 300ms 350ms 400ms 450ms 500ms

65.3

65.3

65.3

65.3

Figure 3.4: Stream Benchmark with 60 threads. We can reach 65 GB/s per socket
for the aggregated read/write bandwidth per socket.

4Intel QuickPath Interconnect.
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3.3.2 Experimental Setup

Let us now define the way in which the queries are fired and executed. As in
previous experiments, we have a set of 1000 queries that should be answered as
fast as possible. All queries are directly ready to be processed and there is no
artificial idle time introduced between queries. Depending on the type of the
algorithms, this query batch is processed differently. For algorithms that perform
inter-query-parallelism, like P-SC for instance, we divide the set of queries into
k parts, which are processed using k threads with each thread working 1000

k
queries

sequentially. This resembles the way of firing queries in [14]. In contrast, for
algorithms that perform intra-query parallelism, like P-CSC, the 1000 queries will
be answered sequentially one after another. However, each individual query is
answered by k threads in parallel on a portion of the data. Please note that to
get a more realistic setup, we introduced a barrier in the query execution loop:
the answering of the next query starts only after all threads completed the current
one.

3.3.3 Scaling of Parallel Cracking Algorithms

In Section 3.2, we described the set of algorithms for parallelizing database crack-
ing. Besides the raw query processing times, these parallel methods offer another
important dimension to analyze: the capabilities to scale with the multi-threading
resources of the hardware. An algorithm, which scales poorly might be the winner
in terms of runtime on a small machine, but completely looses the pace on a large
server.

Therefore, in the following we will inspect for each method individually how it
scales with an increase of the number of threads. We run each method using
4, 8, and 15 threads to utilize the computing cores up to 1

4
-th of the machine.

Additionally, we test 30, 45, and 60 threads to investigate the scaling over the
sockets. Finally, we run 120 threads to utilize all logical cores of the machine as
well. We do not apply any form of thread pinning and let the operating system
decide.

Figure 3.5 presents the accumulated speedups of the algorithms relative to their
single-threaded counterparts. We inspect the individual parts (copying, range-
partitioning, sorting, query answering) of the methods to analyze them separately
as well as the total speedup. Let us go through the methods one by one and
analyze their scalability.
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(b) Parallel Coarse-granular Index
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(c) Parallel-chunked Standard Cracking
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(d) Parallel-chunked Vectorized Cracking
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(f) Parallel Range-partitioned Radix Sort

 0

 10

 20

 30

 40

 50

 60

 70

Range Par. Sorting  Query Answ. Total

S
pe

ed
up

 o
ve

r 
R

ad
ix

 S
or

t (
1 

T
hr

ea
d)

(g) Parallel-chunked Radix Sort
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Figure 3.5: Speedup of parallel cracking and sorting algorithms over their single-
threaded counterparts while varying the number of threads. We show both the
speedups of the characteristic phases as well as the overall achieved speedups.
Colored horizontal lines show the expected perfect linear speedup. In Figure 3.5(h),
we show for the chunked algorithms how the chunking itself influences the methods
by serially working the chunks.
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Parallel Standard Cracking (P-SC)

Figure 3.5(a) presents the scaling capabilities of the well known, lock-based P-SC.
Unfortunately, it scales poorly with the increasing number of threads. The highest
total speedup we observe is around 3.7x for 120 threads. The situation is particu-
larly bad in the early phase of the query answering as the measured speedups are
only between 1.5x and 2x. To understand this scaling problem, let us visualize the
processing behavior of the algorithm. To do so, each time a thread is processing
a partition, we log the time it takes as well as the processed area in the cracker
column. This time includes possible waiting to acquire locks as well as the actual
data processing. Figure 3.6 shows the plotted result. A rectangle [x1, y2, x2, y2]
means that within the time from x1 to x2, a thread was processing the cracker
column at the range y1 to y2. The colors indicate the processing type, where red
is modifying access (cracking) and green reading access (querying). Figure 3.6(a)
presents the results for P-SC for 8 threads. We can observe a severe access con-
tention in the first half of the run. The early queries lock huge parts of the cracker
column as there exist only large partitions and thus serialize each other heavily.
Therefore, the algorithm has no chance to scale linearly when starting from an
unpartitioned state. Thus, let us see how the problem decreases when prepending
a range-partitioning step in the next algorithm.

Parallel Coarse-granular Index (P-CGI)

As described before, this algorithm extends P-SC by applying an initial parallelized
range-partitioning step, that creates 1024 partitions right away before any query
answering starts. This should have a positive effect on P-SC and significantly re-
duce the contention that we have measured before. Figure 3.6(b) presents again
the partition processing contention, this time for P-CGI. The blank space between
time 0s and 0.7s is the range-partitioning phase. Afterwards, we see from 0.7s till
1.2s the actual query answering, which indeed parallelizes nicely now. No heavy
contention is visible anymore and the algorithm behaves as intended, as the parti-
tions are already small and the chance of two threads accessing the same partition
is small. This is confirmed by the scaling factors of the P-CGI query answering
phase in Figure 3.5(b), which now reaches a factor of 11x for 45 threads. For more
threads, the performance significantly drops again, as access contention (both on
the column as well as on the protected cracker index) throttles the throughput
again.

Figure 3.7(a) presents a query-wise view on the answering phase. We can see that
directly in the first query, the scaling is still very limited. This is caused by the
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(b) Parallel Coarse-granular Index (P-CGI)

Figure 3.6: Visualization of the partition processing contention for 8 threads. A
rectangle [x1, y1, x2, y2] means that within the time from x1 to x2, a thread was
processing the cracker column at the range y1 to y2. Processing also includes
wait times to acquire a lock. A red square indicates a writing process (cracking a
partition) while a green square visualizes a reading process (querying a partition).
Overlapping squares indicate that multiple threads intent to work on the same
area of the cracker column at the same time.
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setup and assignment of the threads to the tasks, which is expensive in comparison
to the short running queries. Additionally, NUMA remote accesses are throttling
the query answering phase. As the parallel range-partitioning algorithms creates
partitions that are scattered across regions, a thread that answers a query has
consequently a large number of remote accesses. Table 3.3 shows that based on
hardware counters 2 out of 3 accesses are remote for P-CGI.

Let us now look at the range-partitioning itself. For 120 threads, we achieve the
best speedup of factor 15x. Memory bandwidth is clearly not the problem, as it
can be seen in the early phase of Figure 3.7(b), where only the histogram genera-
tion maximizes the bandwidth utilization. Our VTune analysis indicates that the
range-partitioning algorithm is heavily back-end bound by the random-nature of
the partitioning. Advanced partitioning techniques like software-managed buffers
and non-temporal streaming stores might improve upon this problem, as we will
investigate in the next chapter on partitioning.

Method Local Accesses [Mio] Remote Accesses [Mio]

P-SC 107 418
P-CGI 99 202
P-CSC 442 0
P-CVC 357 0.2
P-CCGI 44 0.2
P-RPRS 115 230
P-CRS 365 0.6

Table 3.3: Number of LLC cache misses that are served with local respectively
remote DRAM access presented in millions of measured events. The measured
counters are OFFCORE RESPONSE.DEMAND DATA RD.LLC MISS.LOCAL DRAM
and OFFCORE RESPONSE.DEMAND DATA RD.LLC MISS.REMOTE DRAM.

Parallel-chunked Standard Cracking (P-CSC) / Parallel-chunked Vec-
torized Cracking (P-CVC)

After looking at the inter-parallel version of standard cracking, let us now inspect
the scaling behavior of the intra-parallel version named P-CSC. The results are
shown in Figure 3.5(c). We can see that this algorithms scales considerably better
than the previous ones, which is what we expect from a method that parallelizes
by chunking. However, we can also observe that the scaling is not linear with the
number of threads. The highest total speedup that we achieve for 120 threads is
only around 25x. To understand this behavior, let us inspect the individual parts.
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(a) Scaling of Parallel-chunked Standard Cracking (P-CGI) of the query
answering phase without the range-partitioning phase.
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(b) Parallel-chunked Standard Cracking (P-CGI) with 45 threads. Highest bandwidth
observed: 53.25GB/s

Figure 3.7: Bandwidth of P-CGI measured at 4 sockets in GB/s. The bottom line
shows the CPU utilization in percentage.

Interestingly, the copying phase, which simply duplicates the input column into a
separate array, scales particularly bad with a maximum speedup of 8x. As we can
see from the bandwidth plot of Figure 3.8(a) for 60 threads, the memory bus is not
the limiting factor, which is poorly utilized within the first 150ms. We identified
page faults, which are surprisingly expensive to resolve when touching the cracker
column for the first time during the copying phase as the cause of this behavior.

Let us now see how the query answering part alone scales in P-CSC. In Fig-
ure 3.5(c), we see a maximal speedup of the query answering phase of 33x for
60 threads, which is still not linear. NUMA effects are not a problem here as we
can see in Table 3.3, all accesses are local. Apparently, the scaling is limited from
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45 threads on, so let us inspect the utilized bandwidth of the query answering
phase for 30 threads (Figure 3.8(b)), 45 threads (Figure 3.8(c)), and 60 threads
(Figure 3.8(d)). We can see that in the early phase the bandwidth for 30 threads
is with almost 59 GB/s already close to the cap of 65 GB/s, so we can not ex-
pect a linear scaling when increasing the number of threads by a factor of 1.5x
(45 threads) respectively 2x (60 threads).

From Figure 3.5(d), we can see that Parallel-chunked vectorized cracking
(P-CVC) shows a very similar scaling behavior as P-CSC. It scales slightly worse
than P-CSC due to its nature of being even more bandwidth bound.

Parallel-chunked Coarse-granular Index (P-CCGI)

Let us now inspect the intra-parallel version of coarse-granular index in Fig-
ure 3.5(e). Interestingly, the range-partitioning phase scales almost exactly the
same as the one of P-CGI in Figure 3.5(b), although the former uses a parallel
range-partitioning while the latter one chunks a single-threaded implementation.
This shows again, that the partitioning is heavily back-end bound and that stalls
throttle the algorithm. The query answering phase scales with 20x for 60 threads
much better than that of P-CGI. One reason is that each chunk can be processed
individually without any concurrency control except the barrier at the end of each
query. Another reason is the almost perfect NUMA locality, that we can observe
in Table 3.3.

Parallel Range-partitioned Radix Sort (P-RPRS)

Finally, we want to analyze the scaling capabilities of the sorting baselines. Let
us start with P-RPRS presented in Figure 3.5(f). The initial range-partitioning
phase resembles the one of P-CGI which is why we see exactly the same scaling
behavior. Afterwards, each created partition is sorted individually in parallel.
Obviously, this phase scales much better with 45x for 120 threads at best. The
reason lies in the great cache-locality created by the previous range-partitioning.
By dividing the dataset into 1024 pieces, each partition has a size of 1.49MB. Since
each processor has a L3 cache size of 30MB and 15 physical cores, each core has
basically 2MB of cache available (1MB per logical core). This is obviously enough
to keep all currently worked partitions completely inside the caches in the case
of 60 threads. The scaling of the query answering phase is at best only 13x for
45 threads. This is again due to the high number of remote accesses in Table 3.3
caused by the initial parallel range-partitioning. They also have a negative impact
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on the sorting phase, although the worked partition is loaded once into the cache
and then worked locally.
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(a) Parallel-chunked Standard Cracking (P-CSC) with 60 threads. The initialization
phase (copying the data into the cracker column in parallel) utilizes the bandwidth only
partially (around 8GB/s).
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(b) Parallel-chunked Standard Cracking (P-CSC) with 30 threads without initialization
phase. Highest bandwidth observed: 58.77GB/s
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(c) Parallel-chunked Standard Cracking (P-CSC) with 45 threads without initialization
phase. Highest bandwidth observed: 64.02GB/s
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(d) Parallel-chunked Standard Cracking (P-CSC) with 60 threads without initialization
phase. Highest bandwidth observed: 65.24GB/s

Figure 3.8: Bandwidth measured at 4 sockets with Intel VTune Amplifier 2015 in
GB/s.
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Parallel-chunked Radix Sort (P-CRS)

The second sorting algorithm, which does not create a global sorting, range-
partitions and sorts all chunks locally in parallel. In the scaling result of Fig-
ure 3.5(g), we can see that the sorting phase scales even better than in P-RPRS.
One reason lies in the NUMA local accesses, as we can see in Table 3.3. Another
reason is presented in Figure 3.5(h). As sorting multiple smaller chunks is by de-
fault cheaper than sorting a large one, a part of the speedup also originates from
that. This also causes the super-linear sorting speedup for 30 and 45 threads. The
query answering phase of P-CRS also scales better than the one of P-RPRS due
to the NUMA local processing nature.

3.3.4 Runtime of Parallel Cracking Algorithms

After investigating the scaling capabilities of the algorithms on an individual basis,
let us see how they compete against each other. To do so, we measure and compare
the accumulated query response time over 1000 queries and present the results
using different thread configurations in Figure 3.9. For 4 threads in Figure 3.9(a),
there is a clear difference in runtime between the individual algorithms visible.
Obviously, P-CSC has the lowest initialization time with almost 0.5s, while the
sorting methods need with around 1.7s considerably more time for their first query.
Over 1000 queries, the cracking methods P-CCGI and P-CGI clearly win in terms
of accumulated runtime, while P-SC is far behind the remaining methods due to
its serialization behavior in the early querying phase. When increasing the number
of threads to 15 in Figure 3.9(b) and to 60 in Figure 3.9(c), we see a clear trend:
the different between the sorting and cracking methods significantly decreases. For
60 threads, the time of the first query for P-CSC is with 191ms only 46ms shorter
than that of P-CRS, which fully sorts the chunks and answers the first query in
237ms, caused by the superior scaling of the sort-based algorithms.

This analysis indicates that for a large number of threads, the sorting algorithms
are a clear alternative over the adaptive methods, especially since they are easier
to integrate into the system stack and offer interesting orders. Nevertheless, we
believe that in a real system with many queries processing several columns at the
same time, only a portion of the physical resources are available to initialize a
column. Under such circumstances, cracking remains its advantage of offering the
significantly cheapest option of enabling indexing.



Chapter 3. Adaptive Indexing and Sorting in the Multi-threaded Context 90

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1  10  100  1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e 

T
im

e 
[s

]

Query Sequence

(a) 4 Threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1  10  100  1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e 

T
im

e 
[s

]

Query Sequence

(b) 15 Threads

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 1  10  100  1000

A
cc

um
ul

at
ed

 Q
ue

ry
 R

es
po

ns
e 

T
im

e 
[s

]

Query Sequence

Parallel Standard Cracking (P-SC)
Parallel Coarse-granular Index (P-CGI)

Parallel-chunked Standard Cracking (P-CSC)
Parallel-chunked Vectorized Cracking (P-CVC)

Parallel-chunked Coarse-granular Index (P-CCGI)
Parallel Range-partitioned Radix Sort (P-RPRS)

Parallel-chunked Radix Sort (P-CRS)

(c) 60 Threads

Figure 3.9: Accumulated query response time of parallel cracking algorithms in
comparison with parallel radix-based sorting methods.
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3.3.5 Tuple Reconstruction in the Context of Parallelism

So far, we have looked at the parallel indexing methods without considering tuple
reconstruction in order to focus solely on the cracking and sorting algorithms.
Now, let us see how the tuple reconstruction concepts we have seen already in
the single-threaded case, like sideways cracking [22], can be applied on top of
multi-threaded algorithms. Precisely, we will investigate how sideways cracking
can be combined with parallel cracking algorithms. To the best of our knowledge,
this is the first work to approach this question. Then, we will compare the tuple
reconstruction performance of the parallel cracking algorithms with a clustered
table that has been ordered with respect to the sorted index column using our
parallel range-partitioned radix sort.

As the basis for parallel sideways cracking, we pick the two cracking algorithms
that performed the best in the previous evaluation — P-CSC and P-CCGI. This
allows us to apply the concept of chunking to sideways cracking as well. For each
chunk, we keep separate cracker maps and a separate tape and thus, the chunks can
be worked independently by the individual threads. We name these two methods
P-SW-CSC respectively P-SW-CCGI in the following. The baseline for parallel
sideways cracking is formed by a clustered table, that can be created in two ways.
The first version, coined P-PC-RPRS, clusters the entire table (stored in column
layout) directly in the first query with respect to the selection column. The sorting
is performed using our parallel range-partitioned radix sort. The second version,
called P-LC-RPRS, establishes the clustering in a lazy manner, by copying and
clustering only the columns that are actually touched by a query. In this case, the
clustering of a column is created by applying a fresh sort on the selection column.

To put these methods to the test, we apply different workloads. All share the
property that the selection is performed on a single, fixed attribute of a table
composed of 10 columns following a uniform random distribution. We perform
separate runs projecting 1 and 5 attributes respectively, that are randomly selected
for each query. Figure 3.10 shows the accumulated query response times for 4
and 60 threads. Let us focus on the 4 threaded case first in Figures 3.10(a) and
3.10(b). For all numbers of projected attributes, P-PC-RPRS behaves in the most
predictable way. Clustering the entire table of 10 columns takes around 11 seconds
and the following query answering takes only a small amount of additional time,
even if 5 attributes are projected. P-LC-RPRS, which clusters a column when
it is touched for the first time is heavily affected by the number of projected
attributes. Interestingly, the larger the number of projected attributes, the smaller
is the accumulated query response time. This makes sense as a query projecting
multiple attributes can cluster multiple columns in a single sorting run. We can
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also observe, that the lazy clustering pays off only for the first few queries, at least
for a table consisting of only 10 columns.
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Figure 3.10: Accumulated tuple reconstruction cost for 1000 queries and a table
consisting of 10 columns, shown for 4 and 60 threads. We select on a single fixed
attribute. In Figures 3.10(a) and 3.10(c), each query projects a single randomly
chosen attribute. In Figures 3.10(b) and 3.10(d), each query projects five randomly
selected attributes.

In comparison to that, parallel sideways cracking offers in both implementations a
significantly smaller initialization time. The first query of P-SW-CCGI is slightly
more expensive than that of P-SW-CSC, as it range partitions the dataset during
the initialization of a cracker map. In the long run, it always clearly pays off to
prepend a range-partitioning step. Overall, for 4 threads and 1000 queries, P-
SW-CCGI shows the best accumulated runtime in all tested cases. This picture
changes if we switch to 60 threads in Figures 3.10(c) and 3.10(d). Obviously, all
methods benefit from the increased number of threads, however, the sort based
methods win at a higher degree.



3.3. Experimental Evaluation 93

Obviously, the better scaling capabilities of the sort based methods that we saw in
the previous analysis pay off in the tuple reconstruction case as well. P-PC-RPRS
needs less than 10 queries to beat both Parallel Sideway Cracking implementations.
The difference between the lazy P-LC-RPRS and P-PC-RPRS has also significantly
decreased and even P-LC-RPRS outperforms P-SW-CSC around 40 queries for
1 projected attribute and 8 queries for 5 projections.

Overall, we see the same trend as before: the more threads available, the more
the advantage shifts to the sorting side. Still, if only few threads are available
for the initialization step, parallel sideways cracking shows a significantly smaller
preparation time. Further, for tables consisting of multiple hundreds of attributes,
only on-demand initialization of columns is a viable option, as offered by parallel
sideways cracking.

3.3.6 Skew in the Context of Parallelism

Up to this point, we evaluated the parallel methods under a uniformly distributed
random workload on top of uniformly distributed data. In the following, we will
investigate how different kinds of skewness affect the parallelism. We will test both
skewed query predicates as well as skewed input data. Furthermore, we cluster the
input data into range-partitions and inspect the impact on the methods. Precisely,
we run the following configurations independently:

1. The query predicates follow a normal distribution with mean µ = 263 (middle
of the domain). The deviation is varied from σ = 258 (high skew) to σ = 262

(low skew). This pattern simulates a high interest in certain keys.

2. The keys of the input data follow a normal distribution with mean µ = 263

(middle of the domain). The deviation is varied from σ = 258 (high skew)
to σ = 262 (low skew). This pattern simulates a higher appearance frequency
of certain keys.

3. The keys of the input data follow a uniform distribution. However, the
input is physically clustered into k uniform range-partitions. We test a low
clustering using k = 4 and a high one using k = 60. This pattern simulates
data where the key locality resembles physical locality, typically the case for
sensor or financial data.

Figure 3.11 shows the results in form of speedup factors, that different methods
achieve when switching from the uniformly random distributed data and queries
seen so far to the respective form of skewness. A factor below 1 indicates a speedup.
We compare the runtimes of the entire query sequence of 1000 queries.
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Figure 3.11: Impact of skewness variants on the methods for 60 threads. The shown
numbers present the speedup over the uniform random dataset using uniformly
distributed query predicates. A number smaller than 1 represents a speedup of
the version under skew.
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Figure 3.11(a) shows the influence of skewed query predicates on the methods. We
can observe that only P-SC is affected negatively by the skew with a slowdown
of up to 1.2x, interestingly even the low skew triggers it. All remaining methods
improve with a higher selectivity by factors between 0.67x (P-CSC) and 0.91x
(P-CGI) for a deviation of 258. P-SC suffers from the focus on a certain data
region due to a higher lock contention, P-CGI can outweigh this problem with
the initial range-partitioning. The remaining algorithms exploit the denser access
locality that result in more fine granular cracks and a better cache utilization. The
parallelism of the chunked algorithms is not affected at all by the skewed predicates
as the work balance remains the same.

Figure 3.11(b) presents the impact of skewed input data. As we can see, this
has a more severe influence on some of the methods. P-SC and especially P-
RPRS are heavily slowed down by a factor of 2.10x and 6.42x respectively for the
highest skewness. P-SC suffers from the fact that queries falling into the skewed
region work on a larger part of the column and thus limit the amount of possible
parallelism. P-RPRS has the problem that the range-partitioning phase creates
partitions of unbalanced size and thus, the following sorting work is unequally
divided among the threads. The creation of equi-depth partitions could help here,
however, we leave this to future work. Again, the chunked methods are completely
unaffected by this type of skew.

However, the picture changes when data clustering is introduced in Figure 3.11(c).
We test a lower clustering of 4 partitions and a heavy clustering of 60 partitions.
Under these circumstances, the chunked algorithms experience a severe slowdown.
The pre-clustered input leads to an unbalanced work division, as only some of the
chunks contain data that is relevant for the query. P-CSC suffers the most, as its
entire behavior is query driven and thus influenced by the clustering. For P-CCGI
and P-CRS, at least the range-partitioning and sorting is query independent and
thus balances well. To resolve this problem, a cluster-aware chunk division would
be necessary, e.g. as proposed in [9]. However, this is left for future work.

Overall, we learned that the chunked methods are completely resilient to both
skewed queries and input. However, in their current state, they have severe prob-
lems in handling clustered input. P-RPRS suffers from skewed input as the range-
partitioning phase creates equi-width partitions that do not balance the sorting
work. P-SC reacts negatively to both skewed input and queries due to the higher
contention.
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3.4 Conclusion

Database cracking needs to improve mapping to parallel hardware. In this chap-
ter, we inspected several different parallel cracking algorithms that use either inter-
or intra-query parallelism and compared them in terms of scaling with available
hardware resources and absolute runtimes with sort-based approaches. We iden-
tified lock contention and the shared memory bus as main limitations for parallel
cracking algorithms.

In terms of absolute query response times, the sorting methods are a hard match for
their cracking based competitors and offer nice additional properties like interesting
orders — however, only if a large number of threads is available. This picture is
confirmed in the tuple reconstruction case, where parallel sideways cracking is
the winner over parallel clustering only under limited computing resources. Skew
affects the parallel algorithms at different degrees depending on its type: a higher
skewness is preferred by most algorithms although e.g. clustered input heavily
throttles certain methods in their current realizations.

Overall, in the past two chapters, we have discussed both single- and multi-
threaded adaptive indexing and sorting algorithms to the utmost. We have seen
various algorithmically different techniques, that optimize towards convergence
speed, low variance, high tuple-reconstruction performance, and linear scalability
with computing cores.

Despite their differences, they all share a single common characteristic — they
partition the data. This is why in the upcoming chapter, we want to focus solely
on the procedure of partitioning. The question is: what gains are possible for such
a simple and reduced technique on modern hardware and operating systems?



Chapter 4

Understanding and Optimizing
Data Partitioning

Partitioning a dataset into ranges is a task that is common in various applications
such as the previously discussed adaptive indexing and sorting [40, 52, 45] as
well as hashing [5] which are in turn building blocks for almost any type of query
processing. Especially radix-based partitioning is very popular due to its simplicity
and high performance over comparison-based versions [40].

While the two-sided in-place partitioning algorithm that was used by standard
cracking does not offer much room for improvement, the out-of-place radix-based
partitioning algorithm that we used to create our coarse-granular index has much
potential as we will see.

Thus, in the following chapter, we will analyze the nature of partitioning and
discuss several optimization techniques, that can be applied to enhance the core
algorithm. In total, we manage to improve the runtime by a factor of 2.5x over
the original method. Let us see step by step how such an improvement can be
achieved.

97



Chapter 4. Understanding and Optimizing Data Partitioning 98

4.1 Introduction

Algorithm 2: Original version of radix partitioning.

1 // build histogram
2 for(i = 0; i < num_elems; ++i) {
3 ++histogram[input[i] >> (32 - R)];
4 }
5 // build partition index
6 offset = 0;
7 for(i = 0; i < num_partitions; ++i) {
8 dest[i] = offset;
9 offset += histogram[i];

10 }
11 // partition the data
12 for(i = 0; i < num_elems; ++i) {
13 bucket_num = input[i] >> (32 - R);
14 output[dest[bucket_num]] = input[i];
15 ++dest[bucket_num];
16 }

In its most primitive form, coined original version from here on, radix partitioning
partitions a dataset into 2R (where R ≤ 32) partitions as shown in Algorithm 2:
in the first pass over the data, we count for each partition the number of entries
that will be sent to it (lines 2-4). From this generated histogram, we calculate the
start index of each partition (lines 6-10). The second pass over the data finally
copies the entries to their designated partitions (lines 12-16).

Despite of its simple nature, several interesting techniques can be applied to en-
hance this algorithm such as software-managed buffers [40, 45, 5, 52], non-temporal
streaming operations [11, 52, 40, 5], prefetching, and different memory layouts
[40, 5] with many variables having an influence on the performance like buffer
sizes, number of partitions, and page sizes.

Although being heavily used in the database literature, it is unclear how these
techniques individually contribute to the performance of partitioning. Therefore,
in this work we will incrementally extend the original version by the mentioned
optimizations to carefully analyze the individual impact on the partitioning pro-
cess. As a result this chapter provides a strong guideline on when to use which
optimization for partitioning.
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4.1.1 Experimental Setup

The dataset used in the evaluation of this chapter consists of N = 100 million
entries, where each entry is composed of a 4B key (unsigned int) and a 4B payload1,
which is typically a rowID. The keys follow a uniform and random distribution and
cover the full unsigned 4B space. We repeat each experiment five times and report
the average runtime. All algorithms evaluated are purely single-threaded.

We run all the experiments on a two-socket machine consisting of two quad-core In-
tel Xeon E5-2407 running at 2.2 GHz. The CPU neither supports hyper-threading
nor turbo mode. The sizes of the L1, L2, and L3 caches are 32KB, 256KB, and
10MB respectively. The TLB can cache 64 (L1 dTLB) and 512 (L2 TLB) address
translations for 4KB pages and 32 (L1 dTLB) translations for 2MB pages. The
system is equipped with 48GB of main memory in total and runs a 64-bit open-
Suse 12. All programs are written in C++ and compiled using g++ 4.7.1 with
optimization level O3.

4.2 Experimental Evaluation

In the following evaluation, we incrementally extend and modify the original ver-
sion of radix partitioning by applying both known techniques from the literature
as well as new approaches to analyze the impact of the optimizations on the total
runtime of partitioning. Figure 4.1 shows the paths we follow when incrementally
optimizing the original version alongside with their appearances in the literature.

Original SW Buffers
[3, 6, 7, 9]

Streaming stores
[3, 6, 9]

Micro Row Layout: 
Fillstate [3,6]

Micro Row Layout: 
DestinationPrefetching 

Small (4KB) 
Pages

literature
this w

ork

Figure 4.1: Overview of the applied optimizations.

1We choose these sizes as typical numbers for main-memory indexes. In Section 4.2.6 we vary
the number of entries and entry size.
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4.2.1 Software-Managed Buffers

A well known optimization for accessing multiple data streams are software-
managed buffers, that are used in a variety of works [40, 45, 5, 52]. As writing
to p different streams means accessing p pages (if stream offset is larger than the
page size), we have to cache p address translations in the TLB to avoid page
walks. Unfortunately, as the TLB capacity is scarce, for a larger value of p, TLB-
misses occur frequently [8]. Software-managed buffers try to reduce this problem
by keeping a buffer of b entry slots for each partition, such that these buffers are
filled first. Only if a buffer is full, its b entries are flushed to the final partition.
Thus, the output array is now accessed at buffer granularity and no longer at entry
granularity, reducing the amount of required address translations by a factor of b.
Figure 4.2 visualizes the concept.

On the Surprising Difficulty of Simple Things:
the Case of Radix Partitioning

Felix Martin Schuhknecht          Pankaj Khanchandani                Jens Dittrich
Information Systems Group, Saarland University, infosys.uni-saarland.de
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Figure 4.2: Visualization of radix partitioning using software-managed buffers.

In recent work [40, 5] a partition buffer is set to the size of a single cache-line
to minimize cache-misses when filling the buffers. However, by choosing larger
partition buffers, we might decrease the number of TLB-lookups even more (at
the risk of more data cache misses as buffers are more likely to get evicted). Thus,
we will test a variety of partition buffer sizes to analyze this tradeoff.

Let us start by looking at the partitioning time using software-managed buffers
while varying the size of a partition buffer from one cache-line (64B, capacity for
8 entries) to 1248 cache-lines (78KB, capacity for 9984 entries) and the number
of partitions2 from 25 to 214 in Figure 4.3. As expected, the runtime increases

2We focus on typical numbers of partitions that are used in practice like 256 partitions (byte-
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Figure 4.3: Partitioning time of the software-managed buffers version for varying
partition buffer sizes.

with the requested number of partitions. However, we can also observe that for
all tested numbers of partitions, the runtime improves with the buffer size until
a certain optimal point is reached and then slowly degrades again. The more
partitions we request, the smaller is this optimal partition buffer size. The point at
which the performance degrades also heavily depends on the number of partitions
(2048 elements per buffer for 128 partitions and around 512 elements per buffer for
1024 partitions). Thus, the performance degradation is related to the total space
that the buffers occupy with a degradation point around 2MB (visualized by the
vertical lines).

To get further insights into the behavior of the method, we measured the total
amount of cache-misses for the software-managed buffers version in Figure 4.4
using perf. Compared with the runtimes of Figure 4.3, we observe a clear correla-
tion. The increase in runtime for buffers larger than 2MB is related to the increase
in cache-misses. Furthermore, the fastest runtime is measured around the parti-
tion buffer size that triggers the smallest amount of misses. The question is now
how much we gained over the original version by using software-managed buffers.
Table 4.1 shows a direct comparison.

wise radix sort) and 1024 partitions (initial range-partitioning step in database cracking algo-
rithms, see Chapter 2).



Chapter 4. Understanding and Optimizing Data Partitioning 102

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1  10  100  1000

N
u
m

b
e
r 

o
f 
c
a
c
h
e
 m

is
s
e
s
 [
M

ill
io

n
s
]

Number of cache-lines per partition buffer

32 Partitions

64 Partitions

128 Partitions

256 Partitions

512 Partitions

1024 Partitions

2048 Partitions

4096 Partitions

8192 Partitions

16384 Partitions

Figure 4.4: Total cache-misses (trips to main memory)

# Partitions Original Version [s] SW Buffers [s] ([cl]) Speedup

32 0.79 0.83 (26) 0.95x
64 1.91 0.85 (12) 2.25x

128 2.03 0.85 (12) 2.39x
256 2.12 0.94 (8) 2.25x
512 2.27 1.11 (52) 2.05x

1024 2.41 1.30 (26) 1.85x
2048 2.57 1.57 (12) 1.64x
4096 2.91 2.01 (11) 1.45x
8192 3.32 2.47 (6) 1.34x

16384 3.61 3.00 (4) 1.20x

Table 4.1: Partitioning time of the original version and the software-managed
buffers version (as shown in Figure 4.3). For software-managed buffers, we show
the runtime and the buffer size per partition in number of cache-lines (cl) in brack-
ets.
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In the case of software-managed buffers, we individually picked the best suitable
partition buffer size (shown in the brackets) for the comparison. Obviously, the
buffered version significantly improves the partitioning time for all numbers of
partitions from 64 on, ranging from a speedup of 2.25x for 64 partitions to 1.20x
for 16, 384 partitions. The improvement decreases with the number of partitions,
as the buffers run out of the private caches. Only for 32 partitions, the original
version performs significantly better, as it does not yet suffer from TLB- and
cache-misses.

4.2.2 Non-temporal Streaming Stores

So far, we have flushed the buffers in the traditional way using memcpy. Internally,
this triggers the fetching of the corresponding cache-lines from main memory to
write the new data to them. While this is a valid strategy in general, where
modified cache-lines are likely to be used subsequently, in the case of partitioning
this behavior is wasteful. Instead, we want to directly write the data to main
memory and bypass the caches entirely.

This can be achieved by using non-temporal streaming stores, that are used widely
in write-intensive situations [11] and partitioning tasks [52, 40, 5]. Since we write
entries of size 8B, we can use the following AVX intrinsic to write 4 buffered entries
to the partition at once:

mm256 stream si256( m256i* mem, m256i a)

Furthermore, the processor tries to apply write-combining [11, 40, 52, 5] to fill a
cache-line in its write-combine buffer before writing to main memory. As soon it is
filled (after two subsequent calls to the stream intrinsic), it is flushed out without
ever reading the corresponding cache-line from main memory. Figure 4.5 visualizes
the concept.

However, streaming stores also introduce difficulties: the address we flush to must
be a multiple of 32B. One solution to this problem is padding the partitions of
the output array such that they are cache-line aligned, but this increases the
size of the array unnecessarily. In contrast to that, our implementation simply
offsets the start of the partitioning filling to align it and corrects the few wrongly
written entries afterwards. As there is no runtime difference observable between
the padded and unpadded version, we will not distinguish them in the further
investigation.

We can see in comparison to Figure 4.3 that for a high number of partitions, using



Chapter 4. Understanding and Optimizing Data Partitioning 104

On the Surprising Difficulty of Simple Things:
the Case of Radix Partitioning

Felix Martin Schuhknecht          Pankaj Khanchandani                Jens Dittrich
Information Systems Group, Saarland University, infosys.uni-saarland.de

Original

 0

 1

 2

 3

 4

 5

 1  10  100  1000

R
a

d
ix

 p
a

rt
iti

o
n

in
g

 t
im

e
 [

s]

Number of cache-lines per partition buffer

Number
of

Partitions

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

 0

 1

 2

 3

 4

 5

 1  10  100  1000

R
a

d
ix

 p
a

rt
iti

o
n

in
g

 t
im

e
 [

s]

Number of cache-lines per partition buffer

Number
of

Partitions

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

 0

 1

 2

 3

 4

 5

 1  10  100  1000

R
a
d
ix

 p
a
rt

iti
o
n
in

g
 t
im

e
 [
s]

Number of cache-lines per partition buffer

Number
of

Partitions

2
5

2
6

2
7

2
8

2
9

2
10

2
11

2
12

2
13

2
14

 0

 1

 2

 3

 4

 5

32 64 128 256 512 1024 2048 4096 8192 16384

R
a
d
ix

 p
a
rt

iti
o
n
in

g
 t
im

e
 [
s]

Number of partitions

Original (4KB)
Original (2MB)

SW Buffers + Streaming store (4KB)
SW Buffers + Streaming store (2MB)

S
W

B
U
F
F
E
R
S

S
T
R
E
A
M
I
N
G

S
T
O
R
E
S

P
R
E
F
E
T
C
H
I
N
G

M
I
C
R
O

R
O
W

P
A
G
E

S
I
Z
E

0

0.75

1.5

2.25

Number of partitions
16384819240962048102451225612864R

ed
uc

tio
n 

of
 ru

nt
im

e
ov

er
 o

rig
in

al
 v

er
si

on
 [s

]

64

512

4KB: L1 
dTLB

L2 
TLB

32

-

2MB: L1 
dTLB

L2 
TLB

TLB Characteristics

36
13
67
42
99
78
18
85
28
55
5

47

Input Output

36
42

13
36 42
67

k=4 partition buffer
b=2 entries

k partitions

Cache

Factor b less
trips to main 

memory

memcpy

36
42

Output

13
36 42
67

k partitions

_mm256_stream_si256

Cache

Cacheline
36 42

Hardware
write-combine buffer

flu
sh

Bypass caches
when writing output

Input Output

13 prefetch
36
67 prefetch

k partitions

Cache

prefetch

fill slot i  ➞  prefetch slot i+1

S
U
M
M
A
R
Y

0

0.5

1

1.5

2

2.5

3

3.5

4

32 64 128 256 512 1024 2048 4096 8192 16384
Number of partitions

P
ar

tit
io

ni
ng

 ti
m

e 
[s

]

SW Buffers

SW Buffers + Streaming 

Original (prefetched)

SW Buffers + Streaming Stores 

Original

SW Buffers + Streaming Stores + Micro Row Layout

E1 E2 E3 E4 E5 E6 E7 Fillstate Destination

Cacheline (64B)

8B 8B 8B 8B 8B 8B 8B 8B
Store working 

variables 
in last slot

Minimize number 
of accessed cachelines

36
13
67
42
99
78
18
85
28
55
5

47

_mm256_stream_si256

SW buffer

SW buffer

SW buffer

k=4 partition buffer
b=2 entries

k=4 partition buffer
b=2 entries

Figure 4.5: Visualization of radix partitioning using software-managed buffers and
non-temporal streaming stores.

the non-temporal streaming store clearly improves the runtime of partitioning. The
higher the total number of partitions, the more space the buffers occupy and the
more precious cache memory becomes. In this situation, avoiding cache-pollution
caused by bringing in output cache-lines is clearly beneficial. However, one should
use small buffers (less than 8 cache-lines) to make this technique pay off or else
the cache-misses triggered by buffer filling overshadow the streaming benefit.

In Table 4.2, we compare the streamed version with the plain software-managed
buffers version of Figure 4.3 to see the impact of this technique. In contrast to the
previous optimization (Table 4.1), the positive impact of streaming stores increases
with the number of partitions, up to a speedup of 1.36x for 16384 partitions. The
optimal partition buffer size decreases again with the number of partitions, with
the best size of a single-cache line from 2048 partitions on. We can see that the
streamed version prefers in all cases smaller buffers than the unstreamed version.
This shows that the avoidance of cache-misses when flushing a buffer has a higher
priority when using streaming stores. Nevertheless, we also see that streaming
introduces overhead for a small number of partitions.

Furthermore, the optimal partition buffer size decreases with the number of parti-
tions. From 2048 partitions on, a partition buffer size of a single cache-line shows
the best results. Thus, reducing the pressure on the caches has a higher impor-
tance than reducing the TLB-misses by doing less buffer flushes. Nevertheless, we
also see that streaming introduces overhead for a small number of partitions.
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Figure 4.6: Partitioning time of the buffered & streamed version for varying number
of partitions and partition buffer sizes.

# SW Buffers +
Partitions SW Buffers [s] ([cl]) Streaming [s] ([cl]) Speedup

32 0.83 (26) 0.84 (5) 0.98x
64 0.85 (12) 0.85 (7) 1x

128 0.85 (12) 0.86 (6) 0.99x
256 0.94 (8) 0.84 (6) 1.12x
512 1.11 (52) 0.94 (4) 1.18x

1024 1.30 (26) 1.08 (2) 1.20x
2048 1.57 (12) 1.21 (1) 1.30x
4096 2.01 (11) 1.54 (1) 1.31x
8192 2.47 (6) 1.95 (1) 1.27x

16384 3.00 (4) 2.21 (1) 1.36x

Table 4.2: Partitioning time of the software-managed buffers version (Figure 4.3)
and the software-managed buffers version using non-temporal streaming stores
(Figure 4.6). We show the best runtime and partition buffer size in number of
cache-lines (cl).
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4.2.3 Prefetching

Writing to individual partitions respectively buffers resembles random access that
can cause cache-misses. Ideally, we want to hide these by introducing prefetching
hints to ensure that requested data is cached in time. To do so, we use the following
intrinsic:

builtin prefetch(void* mem, int rw, int l)

This triggers the generation of data prefetch instructions that will prefetch the
memory at address mem, such that it is (hopefully) already available in cache at
access time. We set rw to 1 since we write and l to 0, indicating that the temporal
locality of the memory is low (high eviction chance after first access). Figure 4.7
visualizes the concept. To the best of our knowledge, we are the first group extend-
ing both the original version and the version using buffers and streaming stores in a
way that when writing to an output partition respectively a buffer, the subsequent
slot is prefetched.
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Figure 4.7: Visualization of radix partitioning using software-managed buffers with
prefetching.

Figure 4.8(a) shows the runtime of the version that extends the buffered and
streamed version with previously mentioned prefetching hints. Obviously, the
performance is much more stable with respect to the buffer size, indicating that
the prefetching indeed hides the cache-miss latency nicely. If we compare that with
the versions without prefetching (see Figure 4.8(b)), we can observe a high impact
of the prefetching hints for both the unbuffered and buffered version. From 4096
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(a) Partitioning time of the buffered & streamed & prefetched version.
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Figure 4.8: Analyzing the effect of prefetching hints on the original version and
the buffered & streamed version.

partitions on, both prefetching versions improve over all previous ones, showing
that prefetching can indeed mask the cache misses from random writes. However,
we can also observe that prefetching adds overhead and decreases the performance
if misses are not a major problem, e.g. for less than 1024 partitions.
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4.2.4 Micro Row Layouts

In the trivial implementation using software-managed buffers, each insertion of an
entry into a buffer triggers the access of two cache-lines. First, the buffer fillstate is
read from an array (first cache-line) and then, the entry is inserted (second cache-
line). Additionally, when a buffer is flushed, the destination index is read from
another array, leading to the access of a third cache-line. However, when limiting
the buffer size to a single cache-line, it is possible to guarantee the access of only
one line per entry. To do so, the last slot of each buffer is used to temporarily
store the working variables. The aforementioned fillstate is stored in that way
in [5, 40]. We additionally store the write destination in that slot. Figure 4.9
shows the layout of a single buffer.

E1 E2 E3 E4 E5 E6 E7 Fillstate Destination

64B

8B 8B 8B 8B 8B 8B 8B 8B

Figure 4.9: Storing both fillstate and write destination in the last slot of a buffer.
The buffer has the size of a single cache-line.

Note that this technique does not sacrifice a slot in the partition buffer: the fillstate
and the destination are overwritten by the last entry that is inserted and restored
from a local variable after a flush. In Table 4.3 we present the impact of placing
only the fillstate, or both fillstate and destination on the cache-line (basically a
micro row layout) over the naive approach of storing them separately.

Obviously, these tiny changes have a surprising and significant impact on the
runtime. For 16384 partitions, we see an improvement of factor 1.52x just due to
this effect! Interestingly, we also observe that for less than 1024 partitions, storing
that data in separate arrays (a micro column layout) shows the best runtime as
these structures are small (e.g. 1KB for 128 partitions) and remain in L1 cache.

4.2.5 Small vs. Huge Pages

The initial motivation in using software-managed buffers was to reduce TLB-misses
when writing to a large number of partitions. In this context, the size of the
memory page is directly connected to the amount of required address translations
when writing to the output array. In current linux kernels, pages of size 4KB and
2MB (huge pages) are supported. Huge pages reduce the amount of pages needed
to allocate a consecutive memory area by a factor of 512, therefore decreasing the
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# Partitions Nothing [s] Fillstate [s] Fillstate & Destination [s]

32 0.84 0.91 0.87
64 0.85 0.93 0.89

128 0.86 0.90 0.88
256 0.84 0.88 0.87
512 0.94 0.94 0.92

1024 1.08 0.99 0.96
2048 1.21 1.02 0.99
4096 1.54 1.18 1.11
8192 1.95 1.42 1.31

16384 2.21 1.59 1.45

Table 4.3: Partitioning time of the buffered & streamed version with a partition
buffer size of one cache-line. We distinguish on whether only the buffer fillstate,
destination and fillstate, or nothing is stored on the partition buffer cache-line.

chance of TLB misses at access time. By default, our system was set up such that
transparent huge pages were considered for all allocations, so we were actually
using them in the previous experiments already. Let us now see how a smaller
page size affects the runtime of the algorithms in Figure 4.10.
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Figure 4.10: Partitioning time of the original version and the buffered & streamed
version for 4KB and 2MB pages. 2MB resembles the setup of all previous experi-
ments of this chapter.

For 32 partitions, the impact of the page size is negligible as the translations
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can be cached in any case. From that on till 1024 partitions, we see a clear
advantage of 4KB over 2MB pages for the original version, since for a small number
of partitions, a single partition is still larger than a huge page and thus, we benefit
from the higher number of 4KB page TLB slots. This turns around as soon
as multiple partitions fit on a single huge page. Interestingly, in combination
with software-managed buffers and streaming stores, the 4KB pages do never pay
off. By buffering, the potential TLB miss rate decreased already by factor b (see
Section 4.2.1) and the higher allocation costs for 4KB pages render the advantage
void.

4.2.6 Varying Experimental Setup

So far, we have evaluated all methods over an array of 100 million (key-payload)
pairs of 8B each. Let us now see how the algorithms scale with a ten-fold increase
of the number of entries to 1 billion and when doubling the entry size to 16B for
a pair. Figure 4.11 shows the average slowdown factors over all tested numbers of
partitions. Obviously, the tested methods scale almost linearly with the number of
entries. A doubling of the entry size results in an average slowdown between only
1.31x for Original (prefetched) and 1.69x for SW Buffers + Streaming (prefetched),
although the amount of data to move is twice as large as before. This indicates
again, that not data transfer is the limiting factor but the processing of individual
elements in terms of random access costs.

1 billion entries

Original SW Buffers SW Buffers + Streaming
Original (prefetched) SW Buffers + Streaming (prefetched) SW Buffers + Streaming + Opt. Layout
Opt. Version 1 from [2] Opt. Version 2 from [2]

16B per entry

10x

12x

8x

14x

2x

1x

1.5x

2.5x

3x

6x

Figure 4.11: Slowdown when increasing the number of entries from 100 million to
1 billion and the entry size from 8B to 16B.
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4.3 Conclusion

In this chapter, we saw that even a trivial algorithm such as radix partition can
be significantly improved by making it aware of current hardware features, leading
to an improvement over the original version of factor 2.5x.

Figure 4.12 gives a complete overview over all evaluated methods in comparison
to two state-of-the-art implementations [4] used in [5]. As a side-effect of our
evaluation, we were even able to improve over the existing methods in all tested
configurations. For smaller number of partitions, using larger partition buffers
without micro layouts shows the best performance. For 32 partitions, we recom-
mend using the original version without any optimizations. For larger partition
numbers, the layout-optimized single cache-line version pays off the most. Further,
prefetching hints have a high impact on the runtime and are an option as soon as
cache-space becomes the limiting factor.

Additionally to the identification of an absolute winner in terms of runtime, we
carefully investigated the individual positive and negative impact of each opti-
mization. Figure 4.13 summarizes for all tested optimization paths of Figure 4.1
those, that improved over the original version. This final overview showing the
influenceability of the techniques by the partition count and their varying impact
on the runtime clearly demonstrates a surprising difficulty of simple things.

Overall, in this chapter, we have seen that even simple algorithms with little algo-
rithmic freedom can be drastically improved by mapping them appropriately to the
hardware and operating system. In the upcoming chapter, we push this observation
to the limit and turn around the approach: instead of doing an application-driven
optimization, we investigate how to exploit existing features in the memory man-
agement system of the operating system to enhance algorithms and data structures
from underneath.
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Chapter 5

Rewiring Memory

Memory management is one of the most boring topics in database research. It
plays a minor role in tasks like free-space management or efficient space usage. In
the previous three chapters, it did not play a major role during the investigation
of the algorithms. Here and there we realize its impact on database performance
when worrying about NUMA-aware memory allocation (as seen for instance in
Sections 3.2.7 and 3.2.8 for P-RPRS and P-CRS), or in data compacting, snap-
shotting, and defragmentation. But, overall, let’s face it: the entire topic sounds
as exciting as ‘garbage collection’ or ‘debugging a program for memory leaks’.

What if there were a technique that would promote memory management from
a third class helper technique to a first class citizen in algorithm and systems
design? What if that technique turned the role of memory management in a
database system (and any other data processing system) upside-down? What if
that technique could be identified as a key for re-designing various core algorithms
with the effect of outperforming existing state-of-the-art methods considerably?

We introduce RUMA: Rewired User-space Memory Access. It allows for physio-
logical data management, i.e. we allow developers to freely rewire the mappings
from virtual to physical memory (in user space) while at the same time exploiting
the virtual memory support offered by hardware and operating system. We show
that fundamental database building blocks such as array operations, partitioning,
sorting, and snapshotting benefit strongly from RUMA.

113
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5.1 Introduction

Database management systems handle memory at multiple layers in various forms.
The allocations differ heavily in size, frequency, and lifetime. Many programmers
treat memory management as a necessary evil that is completely decoupled from
their algorithm and data structure design. They claim and release memory using
standard malloc and free in a careless fashion, without considering the effects
of their allocation patterns on the system.

This careless attitude can strike back heavily. A general example to counter this
behavior is manual pooling. With classical allocators (like malloc) it is unclear
whether an allocation is served from pooled memory or via the allocation of fresh
pages, requested from the kernel. The difference, however, is significant. Request-
ing fresh pages from the system is extremely expensive as the program must be
interrupted and the kernel has to initialize the new page with zeroes1, before the
program can continue the execution. Thus, careful engineers implement their own
pooling system in order to gain control over the memory allocation and to reuse
portions of it as effectively as possible.

However, manual pooling also complicates things. To write efficient programs,
engineers rely on consecutive memory regions. Fast algorithms process data that
is stored in large continuous arrays. Data structures store that data as compact
as possible to maximize memory locality. This need is anchored deeply in state-of-
the-art systems. For instance, the authors of [38] argue against storing the input
to a relational operator at several memory locations for MonetDB: “It does not
allow to exploit tight for-loops without intermediate if-statements to detect when
we should skip from one chunk to the next during an operator.”

Unfortunately, it is not always possible to gather large consecutive memory regions
from the pool due to fragmentation. To work around this problem, memory can
be claimed as chunks from the pool, using a simple software-based indirection.
Allocations of memory are served by glueing together individual memory chunks
via a directory. Thus, instead of accessing the entry at offset i by a[i], the access
is performed indirectly via dir[i / chunkSize][i % chunkSize]. Of course,
this relaxes the definition of continuous memory, as every access has to go through
the indirection now. As we will see, depending on the usage of the memory, this
can incur significant overhead.

Obviously, demonstrated at the example of pooling, we face a general trade-off in
memory management: flexibility vs access performance. Apparently, these prop-

1As the page that is served to resolve the page fault might contain freed data from another
process, the page is zeroed by the kernel.
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Figure 5.1: Structural Flexibility vs Lookup Performance — While static
structures like the array provide fast and convenient access performance, their
structure is hard to modify (extend, shrink). While dynamic structures like the
linked list are easy to modify in their structure, the lookup of entries is indirect
and slow. Rewired structures, as proposed in this chapter, offer direct access and
high structural flexibility at the same time.

erties seem to be contradictory to each other. On the one hand, a static fixed-size
array is extremely efficient to process in tight loops, but hard to extend, shrink, or
modify structurally. On the other hand, a chunk-based structure as the linked-list
is highly flexible, but suffers from an access indirection. Figure 5.1 visualizes this
problem. The goal of RUMA is precisely to end this duality as rewired structures
offer both the access performance of a consecutive memory region while providing
the flexibility of a chunk-based structure.

To do so, we exploit a mechanism that is already present in todays operating
systems: the virtual to physical page mapping, realized by a page table maintained
by every process. Thus, instead of replicating this concept on the user level via a
software-indirection, we make the existing virtual memory facility work for us. To
do so, we introduce the concept of rewiring memory, which consists of two parts:

1. we reintegrate the concept of physical memory into user space without mod-
ifying the kernel in any way;

2. we actively manipulate the mapping from virtual to physical pages during
runtime.

This allows us to both reclaim individual pages from a pool and still form actual
continuous memory regions that can be accessed with little to no overhead. Apart



Chapter 5. Rewiring Memory 116

from the benefits in memory allocation, flexible rewiring of individual pages can
come very handy in numerous situations.

We believe that the design of efficient data management algorithms is only possi-
ble with the knowledge of how the internals of the memory system work — and
consequently exploit them as much as possible.

This is exactly what we cover in this chapter, by making the following contribu-
tions:

(1) RUMA. We introduce Rewired User-space Memory Access (RUMA or
‘rewiring’ for short) allowing us to rewire the mapping of virtual memory
addresses to physical addresses at runtime. This remapping happens at the
granularity of pages (both small or huge pages). The technique does not need
any modifications of the operating system and also does not interfere with
process isolation or user security. In particular, we do not disable any virtual
memory mechanisms, i.e. all of the benefits of virtual memory management are
still available to us. The trick is to piggyback on the memory mappings that are
maintained by the operating system anyways and exploit and manipulate the
existing mappings for higher-level tasks. We can realize the entire technique in
user space and purely in software, without modifying the linux kernel. We will
investigate the toolset provided by the Linux kernel to separate virtual and
physical memory in the user space and we will show how to freely manipulate
the mapping from virtual to physical pages at runtime (see Section 5.2 and
Section 5.3).

(2) Micro-Benchmarking. We benchmark the costs of rewiring in depth. First,
we perform a set of micro-benchmarks to analyze both behavior and perfor-
mance for memory allocation and access of rewiring in comparison to their
traditional counterparts. Then, we inspect the costs and types of individual
page faults to see their impact on the techniques and look at the expenses of
shuffling items using rewiring respectively copying. Finally, we measure the
impact of different access patterns on the techniques to understand the need
for rewiring. We will learn that a major effect of rewiring is that it allows us to
push one storage indirection down to the operating system. At the same time,
rewiring drastically increases the flexibility of storage management without
introducing considerable overhead. This has a dramatic runtime effect for all
mass-operations reading or writing memory (see Section 5.4).

(3) Applications. Rewiring can be applied in many places in data management.
It applies whenever data is copied or moved around, e.g. for resizable data
structures, partitioning, merging, hiding of data fragmentation, and realizing
multiple views on the same physical memory. Rewiring also applies in sit-
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uations where data is read-only or very hard to update in place, e.g. when
applying a set of changes collected in a differential file or when adaptively
refining a part of an index. Investigating all of the possible applications of
RUMA is beyond the scope of this work. From the long list of possible appli-
cations of rewiring we will focus on two applications that are central to many
data managing tasks (see Section 5.5) and leave other promising applications
to future work (see Section 6.5).

(4) Rewired Vector. We demonstrate the concept of rewiring at one of the
most fundamental structures in data management: the array. It serves as a
building block for fundamental main-memory structures like columns, hash
tables, and indexes. One array operation that is particularly painful is re-
sizing. We cannot enlarge an array without triggering costly physical copy
operations, fresh page allocations, or wrapping the array in software into a
list of arrays (leading to an additional storage indirection that is painful to
handle for many processing tasks). This resizing problem is also at the heart
of several read-optimized structures like column layouts and read-optimized
indexes including differential indexes. Using STL’s resizing array implemen-
tation (vector) as a pivot for this problem we will introduce a rewired vector.
This data structure grows and shrinks page-wise without any copying of old
entries, thus significantly improving over STL vector. Further, we are still able
to use pooled pages underneath, in contrast to our second baseline using the
system call mremap for the resizing. Finally, we compare the rewired vector
with our third baseline using a software-indirection to realize the resizing. We
show that only our structure manages to integrate comfortable flexibility into
an array-based data structure (see Section 5.5.1).

(5) Rewired Partitioning & Sorting. We now pick an important building block
in database systems: radix-based partitioning. It is a fundamental technique
for indexing, join processing, and sorting. We re-investigate two state-of-the-
art out-of-place partitioning algorithms, including the one we discussed in
Chapter 4, which either perform a histogram generation pass before partition-
ing or maintain a linked list of chunks inside the partitions to handle the key
distribution. We also test a version enlarging the partitions adaptively using
mremap. We propose a rewired partitioning algorithm that manages to avoid
the histogram generation pass altogether while still producing a contiguous
output array by embedding our rewired vector. We show that partitioning
and accessing the partitions in a separate sorting phase is significantly faster
for rewired partitioning than for all the baselines (see Section 5.5.2).
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5.2 A Brief Recap of Virtual Memory Manage-

ment

Let us first briefly recap virtual memory management as supported by the Linux
kernel. We focus on Linux as we believe this is by far the most common platform
for data management applications and particularly servers.

Virtual memory has many advantages: processes may allocate more memory than
physically available, the memory belonging to different processes may easily be
protected, and all binaries may be compiled using static virtual addresses. Tra-
ditionally, the programmer works solely on the level of virtual memory. Physical
memory is simply not accessible to him.

In most situations, the view solely on virtual memory is convenient and handy for
the user. However, in recent years, programmers repeatedly identified situations
in which an awareness of the underlying physical memory can be beneficial. For
instance, the KISS-tree [29], a radix trie, implements an extremely wide root-level
node of 256MB with the argue, that only a portion of it is actually physically
allocated. Another example is the system HyPer [25], that exploits implicit copy-
on-write performed between processes related using fork. The authors of [52]
engineer a virtual-memory aware counting sort, that avoids the initial counting
pass by exploiting massive over-allocation of the output array. Finally, in [10] the
need for a user mode page allocation system is identified, that intends to separate
virtual and physical memory in user space. The author requests the operating
system developers to rewrite the system calls such that physical pages can be
allocated manually by the programmer and mapped freely.

In the following, we will demonstrate that such a deep change of the system is
not necessary at all: we show how existing features in Linux can be exploited
to achieve exactly that: separate physical and virtual memory in user space and
freely manipulate the mappings between them. How could we get access to those
mappings?

5.2.1 Physical Memory — Main-Memory Files

There is a way to work around this limitation in form of main memory files. Linux
provides main memory filesystems that are mounted and used like traditional
disk-based filesystems, but backed by volatile main memory. Widely used repre-
sentatives are tmpfs and hugetlbfs which are typically used for shared memory
objects that can be backed both by small and huge pages. To evaluate the impact
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of the page size, we perform the micro benchmarks in Section 5.4 both with small
and huge pages backed files where appropriate. Let us assume we have mounted
a tmpfs under /mnt/mmfs. We can now create a fresh file using a simple call to
the standard open system call as follows:

int fd = open("/mnt/mmfs/f", FILE_FLAGS, MODE);

This call tries to open the file that is named f. If that file does not exist (which
will be our standard case), open creates the file and sets the permissions to the
provided MODE. Furthermore, the call makes the file ready for read and write access
by setting the FILE FLAGS accordingly. Finally, it returns the file descriptor in
form of an integer, which will serve as a handle to identify the file later on.

Alternatively, we can use the following system call to create an anonymous file,
that does not need a mounted main memory files system:

int fd = memfd_create("f", FILE_FLAGS);

An anonymous file offers the nice property that it is automatically released if all
references to it are dropped.

As a newly created file has a length of zero bytes by definition, we also have to set
its size in the next step to s bytes. This can be done using a system call to the
function ftruncate(fd, s).

From this point on, we have a programmatic representation of physical memory.
Although we do not directly handle physical memory pages, we know that file f

is backed by physical memory. Specifically, for a page size of p, this means that in
file f, the memory at offsets [0; p−1] is backed by some physical page, say physical
page ppage42 and the memory at offsets [p; 2 · p− 1] is backed by another physical
page, say ppage7 and so on. Figure 5.2 visualizes the concept. Notice, that the
mapping from offsets to physical files is handled by the file system and hence we
do not have to reimplement that mapping.

Using a main-memory files system, we could now reimplement our own virtual
memory mechanism. However, like that we would lose the existing hardware and
operating system support for virtual memory management including all their ben-
efits. For instance, we would neither be able to exploit the translation lookaside
buffer of the CPU that caches translations from virtual to physical addresses nor
could we use the hardware page walker in case of a TLB miss. Hence, we need to
perform one additional step.
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Figure 5.2: Backing of a main memory file by physical pages when using
a main-memory file system. The file offsets in interval [i · p, (i+ 1) · p− 1] are
mapped to some physical page by the file system. This mapping is not accessible
for the user.

5.2.2 Virtual Memory — mmap

We need to bring virtual memory into the game. To do so, we have to map a
region of virtual memory to the file. It is important to note that in the following
all accesses to memory will still be performed entirely through virtual memory —
there will not be any direct data accesses to physical memory. On linux, the way
to create a virtual memory mapping onto a main memory file is performed by a
system call to mmap as follows:

void* vmem = mmap(b=NULL, s,
PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

In this example, the mmap call creates a virtual memory area of size s and maps it
to the main memory file fd (as created in Section 5.2.1). Passing b=NULL as the
first argument indicates, that the kernel should decide on the start address b of the
new virtual memory area, which is guaranteed to be at a page boundary. Later on,
we will pass an existing address b to remap existing mappings (see Section 5.3).
MAP SHARED will be explained in Section 5.2.5. The last argument, which is 0 in
this example, specifies the start offset for the mapping into the file. By mapping
a virtual memory area of size s into file fd at offset 0, we basically map s/p many
virtual pages to the physical pages backing the main-memory file (we consider s
to be a multiple of the page size). Thus, we have created a handmade virtual
memory to file offset mapping, which is then again indirected by the file system
to physical pages. Figure 5.3 visualizes this mapping.

In total, we have created a two-level mapping of virtual memory to physical pages.
Sounds expensive? Don’t worry. In the following, the filesystem will only be called
very rarely. Only when accessing a virtual page for the first time, the file system
is involved. The second access to that virtual page does not differ from accessing
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Figure 5.3: Mapping of virtual memory to main memory file. A single call
to mmap maps multiple virtual memory pages to the main-memory file. The start
address of the area is denoted as b. The virtual page vpagei starting at address
b+ i ·p is mapped to the file at offset i ·p which in turn is backed by some physical
page.

normal virtual memory. Hence, all calls except the first one have to resolve a
one-level mapping only.

5.2.3 Virtual Memory: Reserving vs Copy-on-Write

Let us go back to the normal memory allocation using mmap on anonymous mem-
ory, e.g. as used by malloc for large allocations:

char* data = mmap(NULL, 42 * p,
PROT_READ | PROT_WRITE,
MAP_ANONYMOUS | MAP_PRIVATE,
-1, 0);

The incautious programmer might think that this call allocates 42 physical main-
memory pages of size p. What actually happens is the following: the operating
system simply reserves a virtual address space of size 42·p. This is done by creating
a conceptual memory mapping in form of a vm area struct. By maintaining these
structures, the kernel keeps track, for each process independently, which virtual
address ranges have been reserved for that process. Notice that the operating
system makes only one entry for all 42 pages at this point; no entry is inserted
into the page table. The process’ page table will only be populated on demand
whenever the data is accessed. This works as follows.

Let us assume we try to read from some virtual address, e.g. by accessing data[7 ·
p + 16]. In that case, the operating system will try to retrieve the mapping of
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that virtual page to its physical page at the virtual address data + 7 · p. If that
mapping is neither in the TLB cache, nor in the page table, this will trigger a
page fault. The operating system will now inspect the vm area struct instances
to determine how this page fault can be resolved. It finds the previously created
vm area struct instance which determines that data + 7 · p is a valid virtual
address as it was reserved by this process.

Hence, the operating system will insert a new mapping into the page table from
the virtual page starting at data + 7 · p to the so called zero-page. The zero-page
is a read-only page where all bytes are set to zero. Now, we have a valid entry for
this virtual page, hence we can serve the read request to data[7 · p + 16]. It will
return 0. Any read request touching a virtual page that does not have an entry in
the page table will be mapped like this.

Now let’s assume we write to the same page data + 7 · p for the first time say at
address data[7 · p + 20]. What happens? In this case the operating system will
apply copy-on-write (COW). It will get a new physical page, copy the contents
of the zero-page over that physical page, write the new value to that page, and
update the entry in the page table: the virtual page starting at data + 7 · p now
maps to the new physical page. This happens only for the first write to any virtual
memory page.

In summary, a call to mmap does neither allocate physical memory nor does it
modify the page table.

5.2.4 Memory-backed File — Reserving vs Copy-on-Write

As we have discussed the behavior in the two-layered case in the previous Sec-
tion 5.2.2, let us now inspect the differences in the three-layered memory-mapping,
which we have in the case of a file-backing, as displayed in Figure 5.3.

Just like in the two-layered mapping the call to mmap simply creates a
vm area struct without modifying the page table in any sense. What happens
now if we access a virtual page for the first time, i.e. we trigger a page fault? In
that case, the operating system will inspect the vm area struct and notice that
this address space is backed by a file at a certain offset, not by anonymous memory.
The operating system will then request the file system to return the address of the
physical page it uses to back that offset. As the physical page does not yet exist,
the file system allocates it (equivalent to the page fault handling for anonymous
memory), and returns the physical address of it. With this address, the page table
entry can be created. Of course, the page fault handling mechanism employed
by the file system adds some overhead compared to a page fault on anonymous
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memory. But as the page fault through the file system happens only for the first
access to that virtual page, the three-layered mapping is basically turned into
a two-layered mapping after this. Subsequent access costs are equal to those of
anonymous memory. We will micro-benchmark this in detail in Section 5.4.3.

5.2.5 Shared vs. Private Mappings

Especially in the context of file backed memory mappings, two mmap options should
be discussed: MAP SHARED and MAP PRIVATE. These modes steer how changes
are propagated through mappings and whether COW is performed. The option
MAP SHARED propagates2 any changes made through it to the underlying file and
hence to the underlying physical pages (COW is turned off).

The option MAP PRIVATE does not propagate writes to the underlying file. Instead,
the first write attempt to a virtual page through a private mapping triggers COW
on that page. Important to note here is that the new physical page inserted by the
operating system is an anonymous page, even if the mapping is file backed. This
behavior can be very useful in implementing a lazy data copying mechanism.

5.2.6 Page Table Population Strategies

Apart from populating the page table lazily at access time, as described in Sec-
tion 5.2.3, other options are possible. In the following, we list the four possibilities:

1. The first strategy is to populate the page table on demand, i.e. every page
fault triggers an entry into the page table (this strategy was described in
Section 5.2.3).

2. A second strategy is to bulk-load the page table. The mmap function supports
an option to pre-fault the pages (option MAP POPULATE) at mapping time by
performing a read-ahead of the file. Population at mapping time can be
useful when mapping a large number of small pages, in particular when the
mappings are known a priori. However, as the option triggers the reading of
the entire pages, which is wasteful and unnecessary on main-memory files,
we do not recommend using it in this context.

3. A third strategy to populate the page table is by manually reading a byte of
each page. Recall that our mapping is file-backed. Therefore, each of these

2Changes in a disk-backed file system may not be propagated immediately to the file, msync
can be used to force changes to disk.
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reads will insert the correct mapping into the page table rather than the
mapping to the zero page. This has the advantage of avoiding to read the
entire page which is unfortunately done by MAP POPULATE.

4. A fourth strategy is to pre-fault the pages asynchronously in a separate
thread. Thus, the mmap call is not blocked by the actual bulk-loading oper-
ation.

5.3 Rewiring Memory

Up to this point, we have discussed virtual memory that is backed by main memory
files instead of anonymous memory. We did this in order to reintroduce the concept
of physical memory into the user-space, to get separate handles for virtual and
physical pages. However, so far, we did not exploit the power of this new freedom
and what we believe to be the strongest aspect of this approach: the ability to
actively modify, i.e. to rewire the mappings from virtual to physical pages. Doing
so will allow us to use rewiring as a building block for designing algorithms and
data structures.

To get started, let us look at the following simple example. Assume we have an
array data occupying two pages of size p each. Let’s assume we want to swap
the contents of the two pages backing the array. Traditionally, this is done with a
three-way-swap:

char* tmp = malloc(p); // get temporary page
memcpy(tmp, data, p); // three
memcpy(data, data + p, p); // way
memcpy(data + p, tmp, p); // swap
free(tmp); // free tmp page

These operations trigger actual physical copy operations of the data. In total,
three pages are physically copied while an additional physical page is allocated as
helper memory. Using rewiring, we can perform this swap using neither physical
data copying nor any allocation of helper memory.

Figure 5.4 shows the concept. The initial state is shown in Figure 5.4(a). A linear
mapping of a two page sized virtual memory area starting at address b into the
file exists. We created it as follows:
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Figure 5.4: Rewiring two pages. Notice that no data is physically copied across
physical pages.

// (0) create a linear mapping:
char* b = (char*) mmap(NULL, 2 * p,

PROT_READ | PROT_WRITE,
MAP_SHARED, fd, 0);

Precisely, we map the virtual page vpage0, starting at address b, to the file at
offset 0, which is backed by physical page ppage42. Consequently, we map the
virtual page vpage1, starting at address b+ p, to the file at offset p, that is backed
by physical page ppage7.

We now perform the actual page swap solely by rewiring the mapping from virtual
pages to the file respectively the physical pages. Figure 5.4(b) shows the state
after rewiring. Note that no data was physically copied across pages. All we did
is update two links using the following two calls to mmap in combination with the
MAP FIXED option:

// (1) Remap first virtual page to file offset p:
mmap(b, p,

PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED, fd, p);
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// (2) Remap second virtual page to file offset 0:
mmap(b + p, p,

PROT_READ | PROT_WRITE,
MAP_SHARED | MAP_FIXED, fd, 0);

The first mmap call (1) remaps the virtual page vpage0, starting at address b, to the
file at offset p, which is backed by the physical page ppage7. The key component
of this control is using mmap in combination with the argument MAP FIXED. By
providing this option, we can remap a virtual page to a different physical one by
providing a new offset into the file. The second call (2) remaps the virtual page
vpage1, starting at address b + p, to the file at offset 0, which is backed by the
physical page ppage42. After this, the content visible through the virtual pages is
swapped without copying any physical pages.

Obviously, we could have achieved a similar effect by implementing a software-
directory by ourselves. Like that we could have swapped pointers to the two
pages just like we swapped the two mappings through mmap. However, doing so
we would have introduced one additional indirection for every access to an array
slot. Traversing this indirection can be very costly under certain access patterns.
The beauty of rewiring is that virtual memory maintains one indirection anyways.
Instead of adding an auxiliary indirection level, we let the existing one work for
us. Hence, the central question we will be exploring in the following is: when
can we piggy back on the existing virtual to physical page mappings in order to
get rid of one level of indirection in our algorithms? In other words, how could
we change state-of-the-art data processing techniques to delegate some of their
implementations to operating system and hardware?

Before approaching these questions, let us outline how rewiring could be wrapped
inside of a lightweight library, that simplifies the integration of the technique into
existing applications. At the heart of rewiring is the separation of physical and
virtual memory and the mapping between these two memory types. Thus, the
core of the library consists of the following three components: (1) The allocation
of physical memory that wraps the creation, maintenance, and initialization of
main memory files. (2) The allocation of virtual memory that wraps the calls
to mmap and keeps track of the state of the current mappings. (3) The rewiring
functionality, which internally calls mmap to establish and modify the mappings
between virtual and physical pages. The library can further increase the usabil-
ity by rewiring on page identifiers instead of raw memory addresses, while still
exposing them to the user if requested.

Overall, these components already suffice to form the core of a rewiring library,
that can be assembled into existing code. However, before we can actually integrate



5.4. Micro-Benchmarks 127

rewiring into applications, we need to understand the possible overheads of rewiring
in depth.

5.4 Micro-Benchmarks

In this section, we will perform a set of micro-benchmarks to understand the
impact of virtual memory and rewiring. Firstly, we inspect the costs of allocation
and access. Secondly, we evaluate the page fault mechanism in detail. Thirdly, we
dynamically rewire existing mappings and measure the cost. Finally, we look at
the impact of different access patterns on the memory.

5.4.1 Experimental Setup

We run all experiments on a two-socket server consisting of two quad-core Intel
Xeon E5-2407 with a clock speed of 2.2 GHz. The CPU does neither support
hyper-threading nor turbo mode. The sizes of the L1 and L2 caches are 32KB,
respectively 256KB; the shared L3 cache has a size of 10MB. The processor offers
64 slots in the fast first-level data-TLB, to cache translations of virtual to physical
4KB pages. In a slightly slower second-level TLB, 512 more translations can be
stored. For 2MB huge pages, the TLB cache can store 32 translations in L1
dTLB. In total, the system is equipped with 48GB of main memory, divided into
two NUMA regions. For all experiments, we make sure that all memory (both
file-backed and anonymous) is allocated on a single NUMA region and that the
thread is running on the socket attached to that region. The operating system
is a 64-bit version of Debian 8.1 with Linux kernel version 3.16. The codebase is
written in C99 and compiled using gcc 4.9.2 with optimization level 3.

Throughout the following micro benchmarks, we will use a dataset of 1 billion
entries, where each entry is of type uint64 t and has a size of 8B leading to a
total size of roughly 7.45GB, unless mentioned otherwise.

5.4.2 Allocation Types

Before we can start with the evaluation, we have to define what an allocation
actually means in our context. In the following, we distinguish three different
types of allocations, that will serve as the competitors in our evaluation:
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(a) Private Anonymous Memory — Allocating a memory area of n pages means
mapping a consecutive virtual memory area of n pages to n (unfaulted) anony-
mous physical pages. The operating systems resolves all page faults with fresh
physical pages, we can not use a pool. We can access the memory directly.

(b) Software-Indirected Memory — Allocating a memory area of n pages using
a software-indirection means creating a directory of n slots where each slot
contains the virtual address of a page in the pool. We realize the pool using
(faulted) virtual pages. We translate and redirect any access through the
directory.

(c) Rewired Memory — Allocating a memory area of n pages using rewiring means
mapping a consecutive virtual memory area of n pages to n (faulted) pages
in the pool. We realize the pool using a main-memory file and we access the
memory directly.

When we use a page pool in (b) and (c), the way in which we select the mapped
pages can have an influence on the mapping and access performance. In the best
case, where the pool is non-fragmented, the n requested pages can be gathered
consecutively. In the worst case of a highly fragmented pool, we have to gather each
page individually. Thus, we test both extremes in the following where meaningful.
Note that we do not count the effort to find and maintain unused pages in the
pool.

5.4.3 Allocation & Access

The first step in understanding the runtime costs of memory usage is measuring
memory allocation and its implication on access performance. To analyze the
total cost and impact of allocation using different techniques, we perform the
following simple experiment: Firstly, we allocate a memory area. The allocation
of a memory area highly differs depending on the used memory management, see
Section 5.4.2. Secondly, we write random values to the area sequentially from start
to end. Finally, we repeat the sequential write pass. We compare the total time of
the three steps under the allocation types (a), (b), and (c), where for (b) and (c)
using the page pool, we test both a sequential and random assignment of pages.
Figure 5.5 shows the results. For the allocation type (a) using private anonymous
memory, we focus solely on huge pages as the page fault costs for small pages are
significant and render them inferior over huge pages in basically all scenarios. For
the types (b) and (c) we test both small and huge pages, as the page size influences
the flexibility of the memory and both sizes can come handy in certain situations.

We can see that the allocation phase is basically for free in all cases, except when
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Figure 5.5: Allocation costs (red), sequential write costs for the first pass (green),
and sequential write costs for the second pass (grey). The graph compares the al-
location types of Section 5.4.2 using both small and huge pages where appropriate.

randomly rewiring individual small pages. When rewiring on a per huge page
basis (random pool), the 3815 necessary calls to mmap are negligible. When map-
ping small pages, the almost 2 million calls (and the generated vm area struct

instances) are painful. However, mapping each page individually simulates the
extreme case of the most fragmented pool that is possible. With a good pool
management scheme underneath, this is very unlikely to occur [24].

More interesting is the runtime of the first sequential write pass. Here, rewired
memory clearly outperforms the remaining two methods as it manages to combine
the reusing of pages as well as direct access. During the first writing to the rewired
memory, soft page faults are triggered, that are only significant for small pages.
We will inspect the different types of page faults (soft vs hard) in Section 5.4.4
in detail. The software-indirected memory suffers from the offset translation and
the lookup into the directory. Overall, rewired memory is around 1.8x faster than
the software-indirected memory for huge pages. For private anonymous memory,
the first write performs even worse than in the software-indirected case and is 2.2x
slower than rewired memory using huge pages. As the mapping does not rely on
a pool, the first write to a virtual pages triggers a costly hard page fault, that is
served by the operating system with a zeroed physical page.

The second sequential write pass shows for rewired memory the same runtime as
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the first pass in the case of huge pages, for small pages it is significantly cheaper.
The difference between the passes is that the second one can already exhibit a
populated page table. For huge pages, as the number of entries is small, this dif-
ference is negligible. For small pages however, is becomes visible, where the second
pass is 2.2x (sequential pool) to 3.1x (random pool) faster than the first one. The
software-indirected memory still suffers from the translation and directory access
costs. The write runtime of the private anonymous memory is also significantly
faster than in the previous pass and equals the one of rewired memory now. The
reason for this is that the second pass, in contrast to the first one, does not suffer
from page faults anymore.

Overall, we clearly see that rewiring combines the advantages of both base-lines
while avoiding the drawbacks. Rewiring offers the flexibility of individual page
re-usage while offering direct access without a slowdown.

5.4.4 Costs of an Individual Page Fault

In order to understand the high costs of the first write of private anonymous
memory and the advantages of using a page pool in more detail, we perform an
experiment where we trigger a number of page faults and compute the average
costs. We use a dataset of 2GB that is either backed by 1024 huge pages or by
524, 288 small pages.

We simply loop over these pages and write to the first byte on each. Here, we can
evaluate only two out of our three allocation types of Section 5.4.2. Firstly, we
look at (a) (Private Anonymous Memory), which is the two-level memory mapping
where the virtual pages are not yet backed by any anonymous physical pages. Thus,
the first access will trigger a kernel request for a zeroed page. Again, we focus on
huge pages due to the limited usability of small pages in this context.

Secondly, we look at type (c) (Rewired Memory) where the physical pages come
from our pool of initialized pages. Again, we divide between sequentially and
randomly mapped pages and test both small and huge pages. Additionally, we
look at both MAP SHARED and MAP PRIVATE (recall Section 5.2.5), as it influences
the costs and both can be useful in certain situations.

Note that we do not evaluate (b) (Software-Indirected Memory) in this context,
as it is not connected to page faults in any way.

Table 5.1 shows the results. We repeated all measurements 100 times, each run
performed in a fresh process. Let us focus on the “per page” results. We see
that the costs of faulting a page of private anonymous memory are significant
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Backing Pooled Page Mapping Amortized Time
Type Pages? Size Type for page fault [ns]

per page per KB

Private
Anonymous no huge private 600 251 293

Memory
small shared 686 172

yes private 2 048 512
(sequential) huge shared 710 < 1

Rewired private 526 519 257
Memory small shared 1 053 263

yes private 2 727 682
(random) huge shared 810 < 1

private 528 910 258

Table 5.1: Cost of a single page fault for the allocation types (a) (Private
Anonymous Memory) in comparison with (c) (Rewired Memory) from a page pool.
We trigger page faults for a dataset of 2GB and report the average costs amortized
per page and per KB.

with around 600µs. In comparison with its direct counterpart, rewired memory
using huge pages with MAP SHARED option that faults in 710ns, private anonymous
memory is three orders of magnitude slower, i.e. this clearly shows that zeroing
the page is the dominant part of the page fault, not setting up and inserting the
page table entry, which is done by both methods. Therefore, we have to distinct
between two types of page faults: hard and soft page faults. If the page is freshly
claimed from the kernel, we have a hard page fault. If the page exists already,
for instance in a file representing a pool, and only the page table entry must be
inserted, we face a soft page fault. The expensive page cleaning is again confirmed
when using the MAP PRIVATE option, where a fresh anonymous page is used to
resolve the COW. The difference between mapping the pooled pages sequentially
and randomly is only visible for small pages, where in total 524, 288 pages are
mapped. Here, a sequential mapping is up to 1.5x faster than mapping them
individually, as only a single vm area struct is queried in contrast to hundreds
of thousands.

The major takeaway message of this experiment is: the actual page fault costs
are negligible if the physical page pointed to was already created before (soft page
fault), which is the case when we use a user-managed page pool.
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Type Alloc. Time [ms] Write Time [ms] Total Time [ms]
of
Backing

Page
Size

Mapping
Type

MAP
POPULATE

async.
popula-
tion

MAP
POPULATE

async.
popula-
tion

MAP
POPULATE

async.
popula-
tion

untouched small shared 353.76 0.10 158.26 782.33 512.02 782.43
file private 554.25 0.09 105.11 810.73 659.36 810.83

huge shared 180.24 0.17 105.93 209.95 286.17 210.12
private 177.58 0.18 105.69 209.72 283.27 209.91

initialized small shared 47.06 0.12 157.45 168.11 204.50 168.22
file private 327.41 0.12 106.67 500.49 434.07 500.60

huge shared 0.62 0.19 105.90 105.88 106.51 106.08
private 206.40 0.20 105.94 257.33 312.34 257.53

Table 5.2: Effect of page table population strategies under variation of back-
ing type (was the file initialized beforehand or not), page size (small or huge
pages), and mapping type (shared or private). Allocation time encloses the times
to create the main memory file (if requested) and to create the mapping. Write
time presents the time to write to the mapping sequentially.

5.4.5 Page Table Population Strategies

As already described in Section 5.2.6, there are different population strategies
possible. Besides from the lazy population, which is basically the default strategy,
the two most interesting alternatives are using either the option MAP POPULATE to
delegate the page table population to the operating system during the mmap call
or to pre-fault the pages manually in our own routine that writes to the first byte
of each page asynchronously.

To investigate the usability of these two strategies, we create a mapping to a file,
populate it using one of the mentioned methods and then write to it. Table 5.2
presents the allocation time, write time, and total time under a variation of the
backing type (was the file initialized beforehand or not), page size (small or huge
pages), and mapping type (shared or private). First of all, we can observe that the
allocation time using MAP POPULATE is drastically higher than that of the asyn-
chronous approach, as mmap is blocking during the population in the former case.
Especially interesting is the different semantic of MAP POPULATE depending on the
chosen mapping type. In combination with a private mapping, the population is
significantly more expensive than in the shared case, as COW is triggered already
during population. The only exception to this are private mappings to untouched
files, that are backed by huge pages. Further, we also see again that we have to
distinct between two types of page faults: the ones where only the page table entry
is missing (soft page fault) in contrast to those, where also the file has to allocate
a page for backing (hard page fault). The first one is considerably cheaper, as
seen at the allocation time between the untouched and the initialized file. The
times to write are very constant using MAP POPULATE. This is not the case for
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the asynchronous population, which can not completely hide the page faults, as
the sequential writing catches up quickly. Still, in total, it can pay off especially
on initialized files to populate asynchronously, especially, if there is a time frame
between mapping and accessing.

5.4.6 Costs of Rewiring Memory

So far, we have seen how memory allocation, access, and faulting behaves for
rewired memory in comparison with the traditional approaches. Let us now see
how expensive the actual rewiring of memory is. To answer this question, we
perform the following experiment: we form chunks of size 2x · 4KB and randomly
shuffle the data at this granularity. The exponent x is varied3 from 0 to 19.

For the traditional approach using private anonymous memory and memcpy shuf-
fling implies physically copying the chunks into a separate, fresh array. For the
rewired approach, we establish a new virtual memory area that is mapped. All
shuffling can be done through rewiring virtual memory. Figure 5.6 shows the re-
sults for both small and huge pages for rewired memory. The rewired versions are
additionally tested with manual population, i.e. directly after mapping a chunk
of memory, we access the first byte of each page of the chunk to trigger the page
fault.

We can see that the chunk size has a large impact on the runtime of the shuffling
for rewired memory. For very high granularities (e.g. a chunk size of 4KB), the
calls to mmap create a significant overhead (1, 953, 125 calls for 4KB chunks).

Recall that for a single mapping of a contiguous virtual memory area to one phys-
ical offset in the file we only require a single vm area struct which is kept in a
separate tree structure maintained by the kernel. For the shuffling of chunks how-
ever, we need (in the worst case) one vm area struct per chunk. This overhead
can be observed in Figure 5.6. We can see that for small chunk sizes of about 4KB
the costs of rewiring are more expensive than the actual physical copy operation
of private anonymous memory. However, as soon as we start increasing the size of
the chunks, rewired memory clearly outperforms private anonymous memory. We
can also observe that the page table population by triggering soft page faults is
not for free and observable, at least for small pages.

In summary, when using reasonable large chunks sizes, rewiring is considerably
cheaper than the actual copying of the data.

3Notice that 219 · 4KB= 2GB is the largest chunk size fitting two times into the array.
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Figure 5.6: Time to shuffle chunks of 2x · 4KB size. As the test array consists
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compare the traditional shuffling using private anonymous memory and memcpy

with rewired memory (with and without explicit page table population). For huge
pages, the highest granularity we can test is 29 · 4KB = 2MB.

5.4.7 Impact of Access Pattern

Previously, we have seen that a page-wise software-indirection is a possible alter-
native to rewiring when implementing a pool-based memory allocation system.
However, when it comes to accessing the memory, overhead must be factored
in due to additional index translation and access of the auxiliary directory. In
Figure 5.5 of Section 5.4.3 we already saw that sequentially reading through an
indirection is considerably more expensive than scanning a flat array. The ques-
tion arises whether accessing memory through the software-indirection is generally
more expensive than direct memory access. Thus, we now test the following access
patterns on both rewired memory and a software-indirection. For all tests, page
faults are already resolved.

We distinct the following five patterns, which we visualize in Figure 5.7:

• For random, independent pattern (Figure 5.7(a)), we access the memory at
random places where the access index is generated individually.

• For the sequential, independent pattern (Figure 5.7(b)), we scan the memory
from beginning to end where the access index is the iteration variable of the
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Figure 5.7: Visualization of Access Patterns.

loop.

• For random dependent access (Figure 5.7(c)), we access the memory at ran-
dom places where the access index is the result of the previous access. There
is only one cycle in the dependency chain.

• For sequential dependent access (Figure 5.7(d)), we access the memory at
sequential places where the access index is the result of the previous access.
Again, there is only one cycle in the dependency chain.

• Finally, for random, mixed access (Figure 5.7(e)), we access the memory at
random places. However, we interleave accesses based on a random number
generator and accesses based on the result of the previous access.

For rewired memory, we work on a flat array a that can be accessed directly at
index i via a[i]. In the case of software-indirected memory, we have a directory
a where a chunk has the size of a huge page and translate each access at index i
to to a[i / pageSize][i % pageSize].

For the patters of Figures 5.7(a) to 5.7(d), the number of accesses equals 100%
of the data. For the pattern of Figure 5.7(e), the number of independent ac-
cesses equals 20% of the data, where each independent access is followed by four
dependent ones.
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Table 5.3 shows the results for all five patterns. We can see that as expected, the
direct access offered by rewired memory is in any case faster than going through
the indirection. However, the amount of difference depends on the type of access
pattern. The highest difference we observe in the case of sequential access with
factors of 1.88x for independent and 2.12x for dependent access. In contrast to
that, when performing any type of random access, the difference is overall less,
ranging from 1.07x for independent access to 1.53x for mixed access. This is due
to expensive cache-misses triggered by the random accesses both for the direct and
the indirect cases, that overshadow the impact of the access pattern. The overall
message is: software-indirection might be a valid alternative in terms of flexibility,
however, it certainly has a negative impact on the performance, depending on the
type of access pattern. Thus, a software-indirection should be used with caution
and only, if the subsequent access patterns are known. This is in general not the
case. In contrast to that, rewiring offers an equal flexibility without any negative
impact of the access performance.

Access Pattern Software-Ind. [s] Rewired [s] Speedup

5.7(a) random, independent 14.03 13.16 1.07x
5.7(b) sequential, independent 1.58 0.84 1.88x
5.7(c) random, dependent 113.40 106.99 1.05x
5.7(d) sequential, dependent 6.60 3.11 2.12x
5.7(e) random, mixed 58.33 38.19 1.53x

Table 5.3: Comparison of access patterns on both software-indirected memory
and rewired memory when using huge pages. Both methods map sequentially into
a pool of initialized pages.
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5.5 Applications

In Section 5.2 we recapped virtual memory, in Section 5.3 we introduced rewiring,
and in Section 5.4 we micro-benchmarked it. Now, we are in the position to
demonstrate the concept on the basis of concrete applications.

Instead of implementing the technique in a full-fledged database management sys-
tem, we want to use rewiring inside isolated applications, that represent core com-
ponents of basically every DBMS. By this, we are able to analyze the individual
impact of rewiring more carefully than plugging it in at several layers and places in
a complete system at once. Of course, seeing rewiring integrated in a full-fledged
system is the final goal of this research. However, it goes far beyond the scope of
this chapter and we leave it open for future work, see Section 6.5 for more details.

To showcase rewiring, we start with a rewired vector, that is a natural candidate
for our technique as it requires both high flexibility and access performance. We
then present the benefit of this data structure exemplary by embedding it into our
state-of-the-art partitioning algorithm, leading to a significant improvement.

5.5.1 Rewired Vector

Let us start simple and explore a data structure that is not only present at various
layers in database systems, but widely used in basically any kind of software: the
vector, a resizable array.

In a DBMS, a vector-like structure is the fundamental component of every stor-
age layer, representing tables or columns that grow and shrink under inserts and
deletes. Obviously, it is crucial for the storage-structure to provide high access
performance and low update cost at the same time.

Traditionally, there is a tradeoff between the flexibility and adaptiveness of a data
structure and its provided access times. For instance, a plain array grants us direct
access via a static offset, but has a fixed size. In contrast to that, a linked list can
grow and shrink dynamically, but suffers from slower access of individual entries.
The widely used vector structure lies between these two extremes. It offers direct
access into a consecutive virtual memory area but has the ability to grow and
shrink dynamically. Let us see how state-of-the-art implementations offer these
properties.
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Classical Vectors

The vector is easy to handle for the user as it adjusts its size transparently based
on the fillstate (similar to a linked list), but at the same time offers a high access
performance as the underlying data is guaranteed to be stored in a consecutive
memory region. However, a price needs to be paid if the data structure runs
out of internal space and needs to grow. In that case, different resizing policies
are possible: (1) Allocate a consecutive virtual memory area of twice the size,
physically copy all data from the old to the new region, and free the old one. This
is the standard policy of std::vector from STL of C++. (2) Increase the size
of the virtual memory area using the mremap system call. (3) Realize the vector
as a linked list of memory chunks that are hidden through a software-indirection.

From our current point of view, all these techniques seem suboptimal. Policy (1)
leads to performing unnecessary physical copies, (2) is not compatible with a pool
of pages, and (3) disallows storing all entries in a single continuous virtual memory
area. In contrast to that, our rewired vector avoids all these problems entirely.

Rewired Vector

For the rewired vector, in order to double the capacity of the structure, we do not
physically copy any of the data that is already stored in the vector, thus avoiding
the issue of policy (1). Instead, we map the first half of a fresh virtual memory
area of twice the size to the physical pages containing the old data and the second
half to unused physical pages in the pool. The old memory area is unmapped.
Of course, the same concept is applied in the opposite direction for shrinking the
data structure. This solves both the problems of policy (2) and (3) as we are able
to reuse pooled pages freely and provide a single consecutive virtual memory area
storing all the data at any time. The simplicity shows how natural rewiring fits to
the problem: we map and unmap physical pages on demand without giving up the
conveniences of direct memory access. All this is possible with less than 40 lines
of code to setup a fresh rewired vector and around 20 lines for the insert function.

Experimental Evaluation

To evaluate the structure, we compare the rewired vector with representatives
of the resizing policies (1), (2), and (3). The std::vector of STL4 represents

4The std::vector test is written in C++ and compiled using g++ version 4.9.2. The
result is then linked against our C-codebase compiled using gcc. For the experiment inserting n
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Figure 5.8: Insertion of 1 billion random elements into a vector with an initial
size of 2MB. We compare the std::vector of the STL, that physically copies
the content into an area of twice the size when the capacity is reached with the
mremap vector, that uses mremap to grow a private anonymous memory area.
Further, we test a software-indirected vector as well as the rewired vector, that
both claim pages from a page pool. All methods back their memory with huge
pages.

elements, we call the C++ library exactly once passing a pointer to an array with the elements
to insert to avoid interface overhead.
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policy (1), the mremap vector represents policy (2), and the software-indirected
vector represents policy (3).

We create all vectors with an initial capacity of 2MB. All tested methods are backed
by huge pages. We then insert 1 billion entries of 8B each into the vectors, lead-
ing to a total dataset size of 7.45GB. To see the detailed behavior of the vectors,
we measure the time for every batch of 100, 000 consecutive inserts. Figure 5.8(a)
shows the times of the individual batches over the entire insertion sequence, along-
side with a zoom-in of 5 million inserts. Additionally, Figure 5.8(b) shows the ac-
cumulated insertion time over the entire insertion sequence. All structures double
their capacity as soon as they run out of space. As expected, std::vector suffers
from expensive physical copying steps every time it has to double its internal mem-
ory. Over the entire sequence, a significant amount of the runtime is spent purely
on the reallocation process. The last doubling to 8GB after around 536 million
insertions physically copies 4GB of data from the old to the new memory region.
The remaining three techniques avoid physical copying and thus do not show any
significant runtime spikes. Nevertheless, there are differences in the insertion times
observable, when we look at the zoom-in of Figure 5.8(a): the mremap vector as
well as std::vector suffer from hard page faults whereas the rewired vector only
from soft ones. The software-indirected vector also exploits the pool and thus
offers high insertion throughput. However, it is slightly throttled by checking if
page boundaries are crossed.

Overall, rewired vector can insert the entries in the simplest possible way and
thus shows the best accumulated runtime. It improves throughput by 150% over
std::vector and by 40% over mremap vector. Even over the software-indirected
vector, that plays in a lower league as it does not keep the data consecutively, the
pure insertion improvement is still 20%.

Let us now see a concrete application of the vector in the database context: the
partitioning of a dataset. This algorithm requires the flexibility of enlarging the
partitions on the fly. Besides, the further efficient processing of the partitions
requires the data to be stored consecutively. Both is offered by our rewired vector.

5.5.2 Rewired Partitioning & Sorting

Partitioning a dataset into k disjoint partitions based on a key is a fundamental
task in data processing. It is widely used to divide work among threads or as an
intermediate step in sorting [3], and join processing [5]. Despite of its simplicity,
several optimizations can be applied to the base radix partitioning algorithm such
as software-managed buffers [5, 40, 52], non-temporal streaming stores [5, 40, 52,
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11], and clever placing of working variables [5, 40]. In Chapter 4, we thoroughly
studied partitioning and the impact of the different techniques. In this section we
will take this as a baseline and explore how to create a rewired version of state-
of-the-art partitioning, that manages to push the end-to-end performance even
further.

Two-pass Partitioning

One of the most popular partitioning algorithms [5, 36], as already discussed in
Chapter 4, coined two-pass partitioning in the following, aims at generating a con-
secutive and partitioned result area. Let us quickly recap how it works: Initially,
we perform a first pass over the data to build a histogram. The histogram counts
for each partition the number of entries that belong to it. Based on that, we can
compute the start of each partition in the consecutive result area. Afterwards, we
perform a second pass over the input data where we physically copy each entry to
its destination partition. Many low-level optimizations may be applied to this base
algorithm, see Chapter 4. The major drawback of two-pass partitioning is implied
by its name already: we need two complete passes over the input to perform the
partitioning — costs that can be significant if the input is large and/or the table
is wide in row-layout.

Chunked Partitioning

The second option, coined chunked partitioning in the following, partitions the
dataset in a single pass without creating a histogram in the first place. Notice
that chunked partitioning was also used in very recent work [40, 36]. Instead of
computing a histogram upfront to determine the exact partition sizes, we organize
each partition as a list of chunks (respectively pages) that we create on demand.
Each write to a chunk is preceded by a check for sufficient space in the current
chunk. While chunked partitioning indeed partitions the input data in a single
pass, it has a severe drawback — it does not create a consecutive result area, but
only a list of chunks belonging to that partition. That list may lead to additional
costs in further processing, as we will see in the evaluation.

Mremap Partitioning

A third option that is positioned between the previously mentioned two approaches
uses the mremap system call again, thus, we coin it mremap partitioning. Like
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Figure 5.9: Rewired partitioning using chunks partitions a dataset into a
consecutive array without a histogram generation pass.

chunked partitioning, it avoids the generation of a histogram pass. However, in-
stead of forming the partitions out of manually linked chunks, we increase the size
of the partitions adaptively page-wise by calling mremap. On one hand, this has
the advantage that every partition is represented by a consecutive virtual memory
area. On the other hand, it disables the ability of pooling. Furthermore, it is not
possible to create a single consecutive virtual memory area over all partitions.

Rewired Partitioning

To overcome all these limitations, in the following, we propose an algorithm that
combines the best properties of the previously mentioned techniques, while avoid-
ing the disadvantages. We skip the generation of a histogram and thus of a com-
plete pass while at the same time generating a perfectly consecutive result area.
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We use chunked partitioning as the basis and modify it in a sense that each indi-
vidual partition is represented using a rewired vector. In the partitioning phase,
visualized in Figure 5.9(a), we add an entry to a partition by pushing it into the
corresponding rewired vector. Each vector is configured with an initial capac-
ity of a single page and increases its capacity not by doubling, as evaluated in
Section 5.5.1, but by appending individual pages gathered from the pool. This
ensures that the overhead in memory consumption remains small. Subsequent to
the partitioning phase, we want to establish a single consecutive memory region
containing the data of all partitions without any holes or gaps. This is done in
two steps. First we have to fill up the last page of all partitions except the one
of the very last partition. If the last page of the vector representing partition i
has space left for k tuples, then we move k tuples from the end of the vector rep-
resenting partition i + 1 to vector i, if it contains a sufficient amount of entries.
Figure 5.9(b) demonstrates the concept. The application of this algorithm might
clear pages entirely, as it can be seen in the example for vpagek+1. In the second
step, we are now able to rewire the remaining physical pages backing the rewired
vectors into a single consecutive virtual memory area, as we show in Figure 5.9(c).

Experimental Evaluation

Let us now see how our new rewired partitioning performs in comparison to the
traditional counterparts. We vary the number of requested partitions from 2 to
1024 in logarithmic steps and partition 1 billion entries of 8B each. The keys are
uniformly and randomly distributed. We test two-pass partitioning generating a
histogram both when partitioning into fresh and initialized memory. Furthermore,
we evaluate classical chunked partitioning using a linked list as well as mremap

partitioning, enlarging the partitions using the system call. We compare these
baselines agains our rewired partitioning.

In Figure 5.10(a), we display the end-to-end partitioning times achieved by the
different algorithms. To get a more detailed view of the behavior, we additionally
show the individual parts of the processing. As we can see, rewired partitioning,
that outputs the result in form of a single consecutive memory area, offers basically
the same runtime as chunked partitioning, that creates only a linked list of memory
chunks. Rewired partitioning is significantly faster than two-pass partitioning due
to the avoidance of the additional histogram generation. In comparison with two-
pass partitioning into fresh memory, the improvement in throughput ranges from
49% for 2 partitions to 37% for 1024 partitions. Even when making the assumption
of partitioning into initialized memory, the improvement still ranges from 22% to
14% for 2 respectively 1024 partitions.
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Figure 5.10: Partitioning an array of 1 billion entries out of place into 2 to
1024 partitions, which are then sorted in place. We divide the total partition-
ing time into generating the histogram, partitioning, completing the pages using
memcpy, and rewiring into a consecutive region.
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Interestingly, mremap partitioning is the slowest of all methods. In comparison,
rewired partitioning offers an up to 83% higher throughput (1024 partitions). The
relocation of virtual memory regions, that is performed in case an enlargement at
the current place is not possible, turns out to be surprisingly expensive. For rewired
partitioning, physically completing the last pages of the vectors and the subsequent
rewiring into a consecutive area cause negligible costs. Even for 1024 partitions,
where the last page of each partition is filled around 75%, this cost makes only
2.5% of the end-to-end time.

The alerted reader might argue now that chunked partitioning is still a valid al-
ternative to the rewired version. As we will see now, this depends heavily on how
the produced partitions are further processed and whether this processing can be
made aware of the list of chunks. Imaging the very common use-case of locally
sorting the individual partitions to establish a globally sorted state using your fa-
vorite sorting algorithm. It is straight-forward to apply it onto the result of rewired
partition, but it certainly has to be modified to apply it onto the chunked parti-
tions. This can be (1) impossible if the algorithm is black-boxed or (2) very hard,
depending on the type of algorithm. Extending the algorithm with a chunk-wise
indirection is at least always possible if the code is accessible. However, this can
have a tremendously negative effect, as demonstrated in Figure 5.10(b). The sort-
ing time of chunked partitioning, working through the indirection, is significantly
higher in all cases than the direct approach.

Overall, only rewired partitioning manages to truly combine the best of both
worlds: flexibility and processing speed.

5.6 Conclusion

We have presented the basic toolbox to bridge the gap between the duality of
flexibility and access performance. We reinterpreted the usage of memory mapped
files and shared memory to introduce a convenient handle for physical memory in
user-space. We evaluated the properties of the technique in depth under micro-
benchmarks to learn the strengths and pitfalls and integrate the technique in a
set of real-world applications. We showcased how easily rewiring improves the
insertion throughput of a consecutive vector by 40% to 150%. By integrating the
technique into state-of-the-art partitioning algorithms, we managed to improve the
end-to-end throughput by 37% to almost 50%, while still offering a consecutive
result. Overall, we managed to significantly improve these applications solely by
adapting their memory management, not their algorithmic nature.





Chapter 6

Final Discussion

6.1 Adaptive Indexing: A True Alternative?

In this thesis, we have discussed fundamental techniques of data processing. We
started at the algorithmic level and performed an in-depth analysis of the various
forms of adaptive indexing methods. We inspected the single-threaded as well as
the multi-threaded perspective on the topic, learned pros and cons of the methods
and positioned them with respect to traditional indexing structures. To the best
of our knowledge, our survey on adaptive indexing covered basically all techniques
that are known at this point of time. Thus, Chapters 2 and 3 can be considered
as the most comprehensive work on adaptive indexing so far. Apart from evalu-
ating and analyzing the algorithms, our aim was to enhance the state-of-the-art
wherever possible. We achieved this by proposing techniques, that improve over
existing methods in terms of convergence speed, variance, and tuple reconstruc-
tion performance. Further, we introduced a set of adaptive indexing methods
supporting multi-threading, a topic that was mostly untouched so far.

An important aim of this work was also to critically review adaptive indexing in
comparison to classical indexing approaches. As most of the previous analysis of
adaptive indexing techniques was done by the researchers that originally proposed
them, we felt the need for a neutral perspective on the topic. At any time, we
avoided favoring adaptive over classical indexing and put the methods to test under
circumstances, that were challenging for them.

After all these investigations, it is time to come to a final résumé. Should a
database management systems designer consider using adaptive indexing methods
over traditional ones? As we have seen, the answer highly depends on the require-

147
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ments of the user as well as the workload and system circumstances. Obviously,
adaptive indexing can not simply replace traditional indexing. At a first glance at
the topic, one could think of adaptive indexing as a successor to classical up-front
indexing, as it avoids the costly initialization phase and adapts to the workload
requirements. However, our results showed that the situation is not that trivial. It
all depends on the knowledge about the workload: if we know that we frequently
select on a certain attribute, a traditional index is the way to go as it offers stable
response times and besides enables interesting orders on the column. Without any
information about whether a column is accessed frequently or not, it is worth con-
sidering an adaptive index. In this sense, instead of considering adaptive indexing
as a replacement for traditional indexing, it should be seen as a replacement for
full scans.

As we have seen, the available system resources also highly influence any deci-
sion between adaptive and traditional indexing. The more computing cores and
memory bandwidth available, the less significant becomes the difference between
both paradigms. If it is possible to fully sort hundreds of millions of index en-
tries in less than a second using massive parallelism, the question arises whether
there is a need for a more lightweight technique at all. In case a highly parallel
machine is fully available for sorting, we clearly recommend building a traditional
index. It scales better with the available cores besides from simply becoming neg-
ligibly cheap. If only a smaller portion of the resources are available, e.g. because
of load caused by other queries running in parallel, adaptive indexing remains a
lightweight alternative, that offer significantly lower initialization times.

Besides of that, the various different adaptive indexing methods that we have
analyzed in this thesis highly focus on improving a single dimension at a time such
as convergence speed, variance, robustness, and upfront initialization effort. In
most cases, an improvement in one dimension results in a decrease in performance
in the other dimensions. This extends the question of whether to use adaptive
indexing to which adaptive index to integrate in a system.

As a result of our investigation, we can say that standard cracking still offers the
most lightweight type of adaptive index and serves as the best allrounder. It does
not over-emphasize on a single dimension and is simple to integrate in existing
access paths. However, it should not be used on an uninitialized column due to
its severe weaknesses against sequential access patterns. Instead, it should be
combined with a coarse-granular index to highly improve the workload robustness
as well as the variance resistance and the accumulated query response time.

In this sense, we come to the conclusion that the most adaptive (respectively
laziest) approach, which does the least amount of reorganization to answer a query,
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is in general too fragile to be used. The first query, that initializes the index by
copying the data from the base table to a separate array, should certainly invest
time into pre-partitioning the keys. The coarse-granular index positions itself
between the purely query-driven adaptive indexing and the data-driven traditional
indexing. With the right partitioning implementation, its overhead stays small.
But what is the right partitioning implementation?

6.2 Data Partitioning: The Core of Indexing

Surprisingly, there were a large amount of options to analyze in finding the right
partitioning implementation. Mostly, these optimizations did not originate from
algorithmic changes, but from mapping the algorithm more efficiently to the prop-
erties of modern hardware and operating systems. A great example for this were
software-managed buffers: introducing them doubles the amount of copied data
over the unbuffered version, however, at the same time it significantly improves
the runtime for higher numbers of partitions.

Therefore, to create high-performance algorithms, a detailed knowledge of the sys-
tem characteristics must be available in the design phase already and the algorithm
must be tuned specifically to the machine. Even in the simple case of partition-
ing, numerous low-level components of the system were involved critically in the
performance: the cache hierarchy, the virtual memory subsystem of the operating
system (including the page table), the TLB caching address translations from vir-
tual to physical pages (composed of multiple levels), the hardware page-walker of
the CPU, the size of a page, the size of a cache-line, the prefetcher, and available
SIMD instructions. Only with these individual components and their specific sizes
and behaviors on a machine at hand, it is possible to push the performance to the
limits.

This also means that a particular algorithm can only be judged in conjunction
with the machine and operating system it is running on. It might be the case that
algorithm A is faster than algorithm B on system X, but slower on system Y .
To gather the most value out of our experimental evaluation, for all setups used
in this thesis we picked state-of-the-art hardware and operating systems that are
present in nowadays data management infrastructures.
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6.3 Rewiring Memory

Based on our observations during the analysis of the low-level data partitioning
optimizations, we wanted to push the art of system centric optimization to the
limit of what is possible on a given operating system. Instead of starting with an
algorithm to improve, we came from the opposite direction by investigating what is
offered by the system in general. A critical component in terms of performance was
the virtual memory subsystem, that is involved in any algorithm or data structure
we have seen so far in one way or the other. It is present in all modern end-user
operating systems and any memory access is directed through it.

While it is a very convenient concept in general, we often felt being restricted
too much by it. Thus, we broke out by reintroducing the concept of physical
memory into user-space. We showed how to actively manipulate the mappings
from virtual to physical memory at runtime — without making any modifications
to the mainstream linux kernel.

This served as the basis for optimizing various existing algorithms and data struc-
tures — in this thesis, we showcased the technique at the examples of a vector and
data partitioning. In our corresponding conference publication, we also used the
technique to improve virtual memory aware snapshotting, as used by HyPer [25]
for instance. In neither case, we had to change the algorithm or data structure in
its nature. All we did was replacing the way the memory management behaves.

Overall, this work showed another trend in performance optimization: the need to
gain more control over the system. Of course, the operating system and hardware
designers limit the amount of control the individual programmer has to a certain
degree — to ease the use and to let the system decide on critical components.
As a consequence, the operating system for instance handles transparently the
swapping of pages or the scheduling of the running processes. However, to develop
performance critical applications, we have to break these limits. In this case, we
reintroduced physical memory, that was hidden to the user by default. Of course
this slightly complicates the programming but it opens the possibility to map
algorithms and data structures more efficiently to the system characteristics —
the more aware they are of the underlying system, the faster they become.

6.4 Closing the Circle

On our way through this thesis, we started with adaptive indexing, moved down
to data partitioning, and finally down to low-level virtual memory management.
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Our view has changed during the discussion from the algorithmic level to a more
system-centric perspective. Of course, this raises the question whether the insights
gained from this change of perspective can actually flow back to the start of this
journey, namely adaptive indexing, and have a positive impact on it. Thus, in
the following we will propose an algorithm that closes the circle of our journey by
combining the best techniques from all chapters into a single method. We will then
compare this algorithm against the state-of-the-art adaptive indexing techniques
under different workloads and discuss the improvements.

6.4.1 Rewired Radix Cracking

As the basis, we start with standard cracking as the most lightweight form of adap-
tive indexing. We have seen before that it works very well on uniform random and
skewed key distributions and workloads. We will extend it with the most promis-
ing techniques from the previous chapters and see how far we get in comparison to
the state-of-the-art techniques. Our aim is to design an algorithm that is both fast
over a sequence of queries as well as per individual query. Additionally, it should
converge quickly towards a full index and show low variances in response times.

To achieve this, we start with standard cracking and make the following extensions,
that originate partially from an algorithmic perspective as well as from a system-
centric view:

1. We create a coarse-granular index in the very first query to bulk-load the
index, as done successfully in Chapter 2 and Chapter 3. This increases the
robustness against sequential workloads, reduces the variance, and leads to
short response times from the second query on.

2. This initial coarse-granular index should create a large number of partitions,
but it should still keep the response time of the first query low. To achieve
this, we realize the coarse-granular index using the optimized out-of-place
radix partitioning algorithm as discussed in Chapter 4. We activate software-
managed buffers, non-temporal streaming stores, and the optimized buffer
layout.

3. Further, we reduce the pressure on the very first query by avoiding the his-
togram generation pass of the out-of-place radix partitioning using page-wise
rewiring as discussed in Chapter 5.

4. We introduce the creation of coarse-granular indexes also for the remaining
queries to increase the convergence speed. Traditionally, standard cracking
locates the two partitions into which the predicates of the range query fall.
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Then, it applies two times crack-in-two for the reorganization (assuming the
predicates fall into two different partitions). We add one step in between by
radix partitioning the two located partitions before applying the two cracks.
Traditionally, this would require an in-place radix partitioning algorithm, as
the reorganized data has to remain in the cracker column. Unfortunately, the
in-place radix partitioning algorithm has two drawbacks: Firstly, it suffers
from random-accesses due to the cuckoo-style processing nature. Secondly,
it is not stable. This leads to incorrect results if we reorganize a partition
that contains a split line created by a crack-in-two. Thus, we want to apply
the out-of-place radix partitioning algorithm, that is stable and in general
also faster than the in-place version. To be able to do this, we have to apply
a further modification in the next step.

5. Instead of using in-place radix partitioning, we use the out-of-place version
and rewire the content back into the cracker column. Thus, we basically hide
the out-of-place nature of radix partitioning using rewiring and make it look
like an in-place algorithm. Before partitioning a part of the cracker column,
we identify the pages onto which the data resides. Then, we allocate the
same amount of unused pages from the pool and perform out-of-place radix
partitioning from the old to the new pages, respecting the given partition
boundaries. Data that lies on the boundary pages but outside the given
partition boundaries is manually copied. During the partitioning process,
we can safely ignore any existing split lines that have been created by crack-
in-two operations, as they remain valid after partitioning due to the stable
nature of the algorithm. Subsequently, we rewire the new pages into the
cracker column and release the old ones to the pool. Figure 6.1 visualizes
the concept.

6. We stop applying the partitioning step if the overhead becomes too large.
The overhead is the amount of data we have to copy additionally to fit to
the page boundaries (see memcpy in Figure 6.1). If the overhead becomes
larger than the amount of data to copy during partitioning, we do not apply
the partitioning step.

Based on the components assembling our algorithm, we coin it Rewired Radix
Cracking in the following.

6.4.2 Experimental Evaluation

Let us now see how rewired radix cracking performs in comparison to its ancestor
standard cracking. Additionally, we compare it with stochastic cracking (MDD1R)
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Figure 6.1: Hiding the out-of-place nature of radix partitioning using rewiring.
This allows us to use out-of-place radix partitioning on the cracker column in-
place.

as well as hybrid crack sort, which are both state-of-the-art techniques tackling
the issues variance respectively convergence speed. Further, we compare it with
a full index that is realized by sorting the array using radix sort and performing
binary search for query answering. We use the usual setup of 100 million entries
of 16B key-value pairs where the keys follow a uniform random distribution. The
queries are generated following three different patterns: uniform random, sequen-
tial, and skewed, according to the patterns used in Chapter 2. We fire 1000 queries
in total where each query selects 1% of the data. We perform the experiments on
the machine that was used in Chapter 5 and which was described in Section 5.4.1.
Rewired radix cracking is configured such that the first partitioning step creates
128 partitions, while the remaining partitioning steps build 32 partitions. This
configuration was identified empirically as well performing with respect to a low
initialization time as well as a high convergence speed.

In Figures 6.2(a), 6.2(c), and 6.2(e) we present the individual query response times
for all tested methods over the entire sequence of 1000 queries. We can observe that
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(d) Accumulated query response times on a se-
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(f) Accumulated query response times on a
skewed query workload.

Figure 6.2: Closing the Circle — With the optimizations discussed throughout
this thesis, we are able to go back to the start of the investigation and propose
a significantly improved adaptive indexing technique. We exploit the pleasant
properties offered by the coarse-granular indexing approach discussed in Chapter 2
respectively Chapter 3 and design an entire adaptive indexing algorithm around
it, that is driven by radix partitioning. Then, we optimize the radix partitioning
step to the limits by applying the system-centric optimizations of Chapter 4 and
the rewiring capabilities of Chapter 5.
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rewired radix cracking performs considerably better under all workloads than the
baselines in several regards. For any workload, its response times drop to less than
20ms from the second query on, while standard, stochastic, and hybrid cracking
show significantly higher response times even after more than 100 queries. Thus,
we can clearly see the drastically faster convergence towards the performance of
a full index. Further, the variance is highly reduced in the case of rewired radix
cracking. Instead of seeing a mixture of low and high response times, we can clearly
identify three levels depending on how deep the partitioning recursion went already.
Level 1 around 1000ms is seen only for the very first query, level 2 is around 10ms
to 20ms when hitting the initial partitions, and level 3 is around 1ms when hitting
data that has undergone two rounds of partitioning already. Besides of that, we
managed to keep the overhead of the expensive initial partitioning step fairly low
in comparison. With all the partitioning optimizations activated, the first query is
only 300ms slower than the most lightweight one, which is performed by standard
cracking.

Figures 6.2(b), 6.2(d), and 6.2(f) show the accumulated query response times over
the query sequence. As we can see, rewired radix cracking is able to answer the
queries around two times faster than the best baseline for each workload. As we can
see, each of the baselines is vulnerable to certain workloads: stochastic cracking
performs poorly under a random pattern, standard cracking under a sequential
pattern, full index under a skewed pattern, and hybrid cracking trades convergence
speed with accumulated response time — only rewired radix cracking performs
stable and fast under all patterns.
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Overall, with the proposal of this algorithm, we managed to close the circle of
optimization, as depicted in Figure 6.3. As we have seen, to successfully enhance
an algorithm, it is necessary to move back and forth between the algorithmic
and the system-centric view. After introducing the coarse-granular index as a
pre-partitioning step on the algorithmic level and enhancing it using techniques
close to the system, we came back to the algorithmic level by introducing the
enhanced partitioning also to intermediate queries. Thus, as a final résumé we
want to emphasize that both views must be seen together at any time and an
improvement on one side might trigger an advancement on the other side as well.

Adaptive
Indexing

Data
Partitioning

Rewiring
Memory

Algorithmic
View

System-centric
View

Figure 6.3: The Circle of Optimization.
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6.5 Future Work

The work of this thesis opens the way for several research projects, that can be
considered as follow-up work to topics previously discussed. In the following, we
want to outline this future work.

1. Simplifying adaptive indexing. After investigating this vast amount of
adaptive indexing algorithms that are present nowadays, the question arises
whether all of them are actually necessary. Most of the methods where de-
signed to tackle a specific problem, e.g. convergence speed. However, often,
the solution to one problem introduced or enforced another one. Besides, a
system that wants to apply adaptive indexing has to be equipped with vari-
ous different implementations of the concept to handle the different incoming
workloads. Based on the observation that all database cracking algorithms
share the single same component, namely simple data partitioning, we are
currently working on a single adaptive indexing algorithm, that can adapt to
the shape of the existing algorithms, based on the workload and the circum-
stances. This results in an adaptive adaptive indexing algorithm. Rewired
radix cracking, that was presented in the previous section, is a first step into
this direction.

2. Changing the perspective of adaptive indexing. There is another
interesting commonness among the seen adaptive indexing algorithms —
they come to their reorganization decision solely based on the current query.
However, if a stream of queries arrives at a high frequency, it can make
sense to inspect a window of queries before actually making a decision. This
allows to reorder, modify, or even drop reorganizations. By introducing a
window, we could create a trade-off between individual query response time
and knowledge available for reorganization decisions.

3. Introducing RUMA into a full-fledged system. We have seen some
fundamental applications of rewiring. To demonstrate the impact of our
technique, we picked the vector structure as well as the partitioning and
sorting problem. All of these are fundamental use-cases both in database
systems as well as generally in computer science. Further, we showed the
impact on fork-based snapshotting, a naturally candidate to be enhanced by
rewiring, in the corresponding publication [47]. Of course, there are several
other promising applications where we believe that rewiring could be applied
successfully. In future work, an entire DBMS can be build around or adapted
to rewiring memory from the ground. Let us discuss these components and
how they could be assembled in a single system.
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On the storage layer, we can realize the managed tables and columns purely
with rewired memory, as seen in the vector application. Thus, inserts and
deletes are as cheap as possible to handle. Updates to a memory region can
be collected on separate pages in a COW style and rewired into the base ta-
ble from time to time (differential updates). The memory is claimed and
released in a managed pool. Further, multiple different virtual views on
the same physical data are possible. For instance, a view selecting rows on a
table can directly map to only those physical pages, that contain qualifying
rows. Connected to this, classical data duplication can be applied exploit-
ing rewiring. If data is repeated, it is possible to store it physically only once
and map to it from multiple places. Thus, it becomes possible to realize the
inverse operation of COW: merge-on-write (MOW)1. With respect to multi-
socket machines, we can use rewiring to control the distribution of the mem-
ory across the difference memory regions for NUMA-awareness. Rewiring
could be exploited to transparently swap NUMA-remote with NUMA-local
pages, while the thread is working on the corresponding virtual memory area.

On the index layer, rewiring can be exploited at two places: firstly, there is
a tremendous amount of read-optimized or even read-only index structures
as for instance the CSS-tree [41] or FAST-tree [27]. Often, these structures
are very hard to update. Massive physical copying or even a rebuild of the
entire structure is necessary. Rewiring offers the chance to cheaply swap in
and out parts of the structure in a transparent fashion. Secondly, rewiring
can be used to speed up lookups in tree-based index structures by removing
one level of indirection. It can also be used to enhance increasingly popular
hashing methods [44]. For instance, the classical extendible hashing [12]
uses a directory to indirect lookups into its buckets; this directory may be
realized directly in form of the page table which completely removes the costs
for that lookup.

Besides of that, the snapshotting can realized using rewiring to enable
fast concurrent processing of OLAP and OLTP queries. The seen rewired
partitioning can be applied at many places, for instance to divide the data for
join-processing [5, 46] or to split it into horizontal partitions. Obviously,
rewiring can play a role at various places of a data management systems.
Due to the enormous complexity, integrating these concepts in a full-fledged
system will be a future project.

1https://youtu.be/sLl-kyv-DCo

https://youtu.be/sLl-kyv-DCo
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