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Short Summary

Infection with Human immunodeficiency virॿ type 1 (HIV-1) requires treatment with a combination of an-
tiretroviral drugs. This combination of drugsmust be selected under consideration of its prospects for attaining
sustained therapeutic success. Genotypic therapy-success interpretation systems can be used for selecting a com-
bination of antiretroviral compounds. However, a number of shortcomings of these systems have prevented
them from reaching the bedside.

In this work, I present and validate novelmethods for deriving interpretable genotype interpretation systems
that are trained on HIV-1 data from routine clinical practice. One method produces scores that are correlated
with previous exposure of the virus to the drug and with drug resistance. A further, novel genotype interpre-
tation system produces a prognostic score correlated with the time for which the antiretroviral therapy with a
certain drug combination will remain effective.

The methods presented in this work represent an important advance in techniques for the interpretation of
viral genotypes. Validation of the methods shows that their performance is comparable or, most frequently,
superior to that of previously available methods. The methods are interpretable and can be retrained without
the need for expert intervention. Last but not least, long-term therapeutic success is considered by the methods
such that their predictions are in line with the results of clinical studies.

Kurzfassung

Eine Infektion mit dem Humanen Immunodefizienz-Virus Typ 1 (HIV-1) erfordert die Behandlung des Pa-
tienten mit einer Kombination von antiretroviralen Wirkstoffen. Die Auswahl dieser Wirkstoffkombination
muss unter Berücksichtigung der Aussichten für einen lang anhaltenden Behandlungserfolg stattfinden. Bei
der Auswahl von Wirkstoffkombinationen können Systeme zur Vorhersage des Behandlungserfolgs eingesetzt
werden. Bisher verfügbare Systeme weisen jedochmehrere Defizite auf, sodass sie in der klinischen Praxis kaum
Verwendung finden.

In dieser Arbeit werden neuartige Methoden zur Aufstellung von Systemen zur Genotypinterpretation
präsentiert und validiert. Eine dieser Methoden bewertet einen HIV-1-Genotyp bezüglich der vorhergehen-
den viralen Wirkstoffexposition und der Wirkstoffresistenzen. Eine weitere Genotypinterpretationsmethode
errechnet eine prognostische Zahl, welche mit der Zeit korreliert, die eine antiretrovirale Therapie effektiv sein
wird.

DieseArbeit stellt einewichtigeWeiterentwicklung derMethoden zur Interpretation von viralenGenotypen
dar. Zum Einen ist das Vorhersagemögen der Modelle dieser Arbeit vergleichbar oder sogar höher als diejenige
von bisher verfügbaren Modellen. Zum Anderen sind die Modelle dieser Arbeit interpretierbar und können
ohne Expertensupervision neu trainiert werden. Darüber hinaus berücksichtigen die Methoden den Langzeit-
therapieerfolg, sodass ihre Vorhersagen mit den Ergebnissen klinischer Studien übereinstimmen.
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Abstract

Infection with Human immunodeficiency virॿ type 1 (HIV-1) requires treatment with antiretroviral drugs.
Without treatment, patientswithHIV-1 infectiondevelop symptoms referred to as acquired immunodeficiency
syndrome (AIDS), ultimately leading to the death of the patient. Thehighproductivity and variability ofHIV-1
results in the continuous emergence of drug-resistant viral variants. In order to be able to suppress viral replica-
tion, several drug compounds must be used simultaneously in antiretroviral therapy. For this reason, a combi-
nation of drug compounds must be selected under consideration of the drug resistance of the virus and of the
prospects that the drug combination has for attaining sustained therapeutic success.

Genotypic drug-resistance interpretation systems are frequently used for selecting combinations of antiretro-
viral drug compounds. These systems interpret HIV-1 genotypes in order to predict the susceptibility of the
virus to each individual antiretroviral drug. However, the actual selection of an optimal drug combination
needs to be carried out by the treating physician. In contrast, genotypic therapy-success interpretation systems
provide their users with predictions for the success of antiretroviral drug combinations. However, a number of
shortcomings of these systems have prevented them from reaching the bedside.

In this work, I present and validate novel methods for deriving genotype interpretation systems that are
trained on HIV-1 data from routine clinical practice. All of these systems provide the user with an interpre-
tation of their predictions. One system produces numbers called drug exposure scorॽ (DES) for each available
antiretroviral drug. DES are correlatedwith previous exposure of the virus to the drug andwith drug resistance.
I also present and validate methods for converting DES into clinically meaningful categories, such that they can
readily be used by human experts for selecting optimal antiretroviral therapies. DES can be used as features for
further analyses relating to antiretroviral therapy. I present a further, novel genotype interpretation system that
is trained on DES to produce a prognostic score correlated with the time for which the antiretroviral therapy
with a certain drug combination will remain effective.

The methods presented in this work represent an important advance in techniques for the interpretation of
viral genotypes. Validation of the methods shows that their performance is comparable or, most frequently,
superior to that of previously available methods. Their data-driven methodology allows for automatic retrain-
ing without the need for expert intervention. Their interpretability helps them gain the confidence of the users
and delivers a rationale for predictions that could be considered surprising. Last but not least, the ability of the
therapy-success interpretation system to consider cumulative, long-term therapeutic success allows it to produce
predictions that are in line with the results of clinical studies.
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List of Abbreviations

/c cobicistat boosting dose.

/r ritonavir boosting dose.

3TC lamivudine.

ABC abacavir.

AIDS acquired immunodeficiency syndrome.

APV amprenavir.

ARS acute retroviral syndrome.

ATV atanazavir.

AUC area under the receiver operating characteristic curve.

AZT azidothymidine, also called zidovudine (ZDV).

CA capsid.

cART combination antiretroviral therapy.

CCR5 C-C chemokine receptor type 5.

CD4 cluster of differentiation 4.

cDNA complementary deoxyribonucleic acid.

CRF circulating recombinant form.

CTL cytotoxic T lymphocyte.

CXCR4 C-X-C chemokine receptor type 4.

d4T stavudine.

ddC zalcitabine.

ddI didianosine.

DES drug-exposure score(s).

DLV delavidrine.
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DNA deoxyribonucleic acid.

DRC Democratic Republic of Congo.

DRV darunavir.

DTG dolutegravir.

EFV efavirenz.

EI entry inhibitor.

EIDB EuResist Integrated Database.

env envelope.

ERM empirical risk minimization.

ETR etravirine.

EVG elvitegravir.

FC fold-change in the 50% inhibitory drug concentration.

FDA Federal Drug Administration.

FI fusion inhibitor.

FPR false-positive rate.

FPV fosamprenavir.

FTC emtricitabine.

gag group-specific antigen.

GPP genotype-phenotype pair.

GSS genetic susceptibility score.

GTHP genotype-therapy-history pair.

HAART highly active antiretroviral therapy.

HIV-1 Human immunodeficiency virॿ type 1.

HIV-2 Human immunodeficiency virॿ type 2 .

IDV indinavir.

IN integrase.
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INI integrase strand-transfer inhibitor.

ITT intent-to-treat.

kb kilo base pairs.

KDE kernel density estimation.

LANLSD Los Alamos National Laboratory Sequence Database.

LPV lopinavir.

MA matrix.

MISE mean integrated square error.

mRNA messenger ribonucleic acid.

MSE mean square error.

MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide.

MVC maraviroc.

NAS number(s) of aviremic semesters.

NC nucleocapsid.

Nef negative regulatory factor.

NFV nelfinavir.

NNRTI non-nucleoside reverse-transcriptase inhibitor.

NRTI nucleotide or nucleoside reverse-transcriptase inhibitor.

NVP nevirapine.

OT on-treatment.

PBMC peripheral blood mononuclear cell.

PCR polymerase chain reaction.

PEP post-exposure prophylaxis.

PI protease inhibitor.

pNAS predicted number(s) of aviremic semesters.

POE probability of exposure to a drug.
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pol polymerase.

PON probability of naïvety.

PR protease.

PrEP pre-exposure prophylaxis.

RAL raltegravir.

Rev regulator of expression of virion proteins.

RF resistance factor.

RKHS reproducing kernel Hilbert space.

RNA ribonucleic acid.

RPV rilpivirine.

RT reverse transcriptase.

RT-PCR reverse-transcription polymerase chain reaction.

RTI reverse-transcriptase inhibitor.

RTV ritonavir.

SD standard deviation.

SIR susceptible-intermediate-resistant.

SIV Simian immunodeficiency virॿ.

SQV saquniavir.

SVC Support Vector classifier.

SVM Support Vector machine.

T thymus.

T-20 enfuvirtide.

TAF tenofovir alafenamide fumarate.

Tat transactivator of transcription.

TCE treatment-change episode.

TDF tenofovir disproxil fumarate.

TDR transmitted drug resistance.
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TE treatment episode.

TFE treatment-failure episode.

TFV tenofovir.

tMRCA time to most common recent ancestor.

TPV tipranaivr.

URF unique recombinant form.

V3 third hypervariable loop of gp120.

Vif viral infectivity factor.

VL viral load.

Vpr viral protein R.

Vpu viral protein unique.

ZDV zidovudine, also called azidothymidine (AZT).
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When you give rise to thatwhich iswithin you, what youhavewill save you. If you do not
give rise to it, what you do not have will destroy you.

GTh, Nag Hammadi Library. Davies Translation.
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0
Introduction

Since the first antiretroviral drug was approved by the Federal Drug Administration (FDA) in 1987,
antiretroviral therapy for treatingHuman immunodeficiency virॿ type 1 (HIV-1) infectionhasmade remarkable
progress. During its early days, the success of antiretroviral therapy was often hampered by (1) the development
of drug resistance by the virus and by (2) the toxic effects of antiretroviral drugs. Over the last three decades,
the frequency with which these two problems occur has declined steadily. Therefore, the rates of success of an-
tiretroviral therapy have steadily increased, to such an extent thatHIV-1 infection no longer amounts to a death
sentence for those affected. Modern antiretroviral therapy has transformed HIV-1 infection into a chronic dis-
ease. Nevertheless, antiretroviral drugs cannot cure HIV-1 infection, such that life-long treatment is necessary.
Improvements in antiretroviral therapy have been achieved through (1) the discovery and release of better an-
tiretroviral drugs and (2) the continuous acquisition of knowledge on how to use antiretroviral drugs. In com-
parison to older antiretroviral drugs, newer antiretroviral drugs present a more favorable side-effect profile and
are less prone to reductions in efficacy due to resistance development. Furthermore, novel drug formulations
have augmented intake convenience for the patient by reducing both the size and number of tablets that have
to be ingested each day, as well as the number of daily doses.

Successful antiretroviral treatment requires the simultaneous intake of several drug compounds. Therapeu-
tic success (or failure) results from the interaction of the chosen drug compounds with the virus and with the
body of the patient. Drug combinations act in concert, such that the effect of a given drug compound may
change if the coadministered drug compounds are changed. For these reasons, knowledge on the effective use of
antiretrovirals, i.e. knowledge on which antiretroviral drug compounds can be used in a given setting, and on
how these compounds can be combined, is decisive for attaining therapeutic success. Furthermore, knowledge
on the effective use of antiretrovirals is not only important for attaining therapeutic success, but also for pre-
venting the spread of drug-resistant HIV-1 variants. It is known that inappropriate use of antimicrobial drugs
can result in the development of drug resistance by microbes. HIV-1 is capable of developing resistance to an-
tiretroviral drugs. Resistance to a certain antiretroviral drugmay entail resistance to other, similar antiretroviral
drugs, a phenomenon called cross resistance. At the same time, resistant viral variants can be transmitted from
one host to another. Thus, the emergence and transmission of HIV-1 variants that are simultaneously resis-
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tant against many (or even all) antiretroviral drugs is possible. The inappropriate use of antiretroviral drugs can
increase the frequency with which this undesirable scenario takes place.

In order to effectively select an appropriate drug combination for a patient, the following information is
necessary. First, the drug susceptibility of the patient’s viral variant(s) must be known, since drug resistance can
impede therapeutic success. The results of drug-resistance testing are intended to help the treating physician to
exclude ineffective drugs. For this reason, they are frequently conveyed to the physician in a simplified manner
such that they can be easily understood and applied to the drug-selection process. Specifically, the results of drug
resistance testing are frequently stated in terms of resistance categories, although drug resistance is a continuum
which is better expressed in a quantitative form. Additionally, drug resistance is stated for each antiretroviral
drug separately, in spite of the fact that antiretroviral drug combinations act in concert. Second, patient-specific
characteristics must be considered in order to exclude drugs that could be unfavorable for the patient. For ex-
ample, hypersensitivity of the patient to a specific drug compound can preclude its use in therapy. Third, the
overall propensities of antiretroviral drug combinations to elicit therapeutic success must be known, i.e. the
probability that a certain drug combination will lead to short- or long-term therapeutic success regardless of
the patient in question. This information is frequently obtained from governmental agencies regulating the
prescription of antiretrovirals, from the scientific literature, from discussion with scientists and other treating
clinicians, and from experience. Once the information on drug resistance, relevant patient-specific factors, and
efficacy of drug combinations becomes available, the treating physician must integrate it in order to select a
promising drug combination. In order to make this task feasible, simplification of the informationmay be nec-
essary, which can result in a loss of accuracy when judging which drug combinations are effective and which are
ineffective. Furthermore, effective drug combinations can present different degrees of efficacy. An antiretrovi-
ral therapy is considered more effective if it can control viral replication for a longer time while causing fewer
and less severe side effects. Obviously, clinicians strive for selecting the most effective drug combination for a
certain patient. In light of the process withwhich drug combinations are selected, it can be said that an improve-
ment of the tools clinicians use for selecting antiretroviral therapies will result in the selection of more effective
therapies, which translates in a direct benefit for the patient.

Since HIV-1 drug resistance results from alterations in the genetic material of the virus, the quantification
of drug resistance can be accomplished through the interpretation of the genotype. For this purpose, geno-
typic drug-resistance interpretation systems are employed. Given an HIV-1 genotype, these systems output an
assessment of the susceptibility of the viral variant to different antiretroviral drugs. Further developments of
techniques for the interpretation of HIV-1 genotypes led to the emergence of genotypic therapy-success inter-
pretation systems. These systems do not quantify the susceptibility of HIV-1 to individual drugs, but provide
the user with an assessment of the prospects of different drug combinations. They reach this goal by integrating
information on drug resistance and on the efficacy of different drug combinations. Therefore, they are a means
of improving the process with which antiretroviral therapies are selected. While genotypic drug-resistance in-
terpretation systems are routinely used for selecting antiretroviral therapies, therapy-success prediction systems
are used less frequently and have not yet entered clinical routine broadly.

There are several facts that contribute to the lack of popularity of genotypic therapy-success interpretation
systems. First, none of the available systems provide the user with interpretations for the predictions theymake.
Interpretability can boost the confidence of the users in a system and is of special relevance when the system
makes predictions that strongly deviate frompredictions obtainedwith establishedmethods. In the case of such
a deviation, the user is given little or no support for deciding whether the deviation can be deemed plausible or
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not. Second, most available systems are constrained, by design, to provide predictions for a specific group of
patients, e.g. treatment-experienced patients. Third, the systems often provide predictions that are in stark
contradiction with the results of clinical studies. For example, combinations including drugs that have been
deemed too toxic for use inmost casesmay receive an overly positive rating. This usually results from the lack of
ability of the system to consider the long-term outcome of therapies. This work describes several improvements
to genotypic therapy-success interpretation that contribute to their establishment as therapy selection tools in
routine clinical practice.

0.1 Outline

This work is structured as follows. Chapter 1 provides the reader with a summary of important biological and
medical concepts relating toHIV-1 infection. Furthermore, the history of theHIV-1 pandemic and of antiretro-
viral treatment are recounted in this chapter. Information on the structure, morphology and replication cycle of
HIV-1 can be found in Section 1.1. The features of the transmission of HIV-1 as well as the clinical course of an
untreated HIV-1 infection are reviewed in Section 1.2. Section 1.3 briefly narrates which events are thought to
have led to theHIV-1 pandemic, and describes the evolution of the pandemic over time. The diversity ofHIV-1
is dealt with in Section 1.4. Lastly, Section 1.5 provides the reader with an account of the history of antiretroviral
therapy and with an introduction to the mechanisms of action of antiretroviral compounds, the development
of drug resistance, and the future prospects of antiretroviral chemotherapy.

A summary on principles and methods for learning from datasets is given in Chapter 2. Section 2.1 pro-
vides the reader with a brief summary of the inductive principles that are commonly used by these methods.
Then, Sections 2.2 and 2.3 review Support Vector machines (SVMs) and kernel density classification, which are
methods used in this work.

Several methods relating to the interpretation of genotypes of HIV-1 with respect to drug resistance are pre-
sented in Chapter 3. Section 3.1 describes a popular wet-lab method with which HIV-1 drug-resistance data
can be generated. Then, the interpretation of HIV-1 genotypes with respect to drug resistance is reviewed in
Section 3.2. In Section 3.3, I present and validate a novel method for predicting therapeutic history and drug
resistance from the genotype. The remainder of the chapter is devoted to describing and validatingmethods for
obtaining cutoffs for continuous predictions related to drug resistance. The purpose of cutoffs is the translation
of these quantities into categories that indicate their clinical meaning.

Chapter 4 is devoted to interpretation systems for predicting therapeutic success. The chapter starts by sum-
marizing established definitions of therapeutic success (Section 4.1). After this, different therapy-success predic-
tion systems are reviewed in Section 4.2. Subsequently, I present and validate a novel therapy-success prediction
system. Themethod uses a measure for cumulative therapeutic success, such that it can produce long-term pre-
dictions for the course of a therapy. Furthermore, the method features interpretability. I propose a graphical
depiction of the model weights in order to provide the user with an interpretation of the prediction, as well
as a novel tree-based representation of therapy combinations that can make the process of comparing different
therapy options more efficient.

The use of statistical models in a biomedical context dictates increased requirements for the robustness of
these models. In Chapter 5, I first give an overview on the sources from which variability arises in the process
of Sanger sequencing. Then, I describe a novel method for simulating the variability that is inherent to Sanger
sequencing. Lastly, I present an analysis on the robustness of two genotypic interpretation systems used in the
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context of antiretroviral therapy.
This work is concluded with Chapter 6. In this chapter, I recount the main achievements and provide and

outlook for further improvements.
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1
Biomedical Background

Thischapteraimsatproviding essential background knowledge onHIV-1, including its origins and repli-
cation cycle, as well as its pathogenic nature and currently available therapeutic options. In the final sections of
this chapter, I briefly present future prospects of antiretroviral therapy that are foreseeable. Many facts included
in this chapter have been extracted from the following texts [1–3]. The summary on HIV-1 and antiretroviral
therapy that is presented in this chapter is by no means exhaustive. The interested reader can consult the cited
references in order to obtain more detailed information on the subject.

1.1 HIV-1: Structure and Replication Cycle

HIV-1 is a virus that belongs to genus Lentivirॿ in the family Retroviridae [4]. As such, HIV-1’s genome is
encoded by single-stranded positive-sense ribonucleic acid (RNA), that is reversely transcribed into double-
stranded deoxyribonucleic acid (DNA) by a viral RNA/DNA-dependent DNA polymerase, also called reverse
transcriptase (RT). Viral DNA is then integrated into the genome of the host cell, which allows for messenger
ribonucleic acid (mRNA) transcription for the production of new viral particles. Further characteristics that
HIV-1 shares with other lentiviruses include [1, 2]

• Association with a disease with a long incubation period
• Impairment of the immune, hematopoetic, and central nervous systems
• Host-species specificity
• Selective cytopathogenicity
• Latent or persistent infection in certain cells
• Three main genes coding for viral proteins and appearing in the order 5’-gag-pol-env-3’
• Highly glycosylated envelope gene (Figure 1.2).

In the next sections, I provide a summary of the structure and replication cycle of HIV-1.
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Figure 1.1: Morphology of HIV-1. A schemaঞc representaঞon of themorphology of HIV-1 can be found above. Source: Wikimedia
Commons, with modificaঞons.

1.1.1 Structure of HIV-1

Themorphology of HIV-1 concerns the way viral particles are constructed. The blueprint for the construction
of these particles is contained in the genome of HIV-1. The genome of HIV-1 presents a distinct arrangement
of genes and open reading frames. In the following, I summarize the main features of the morphology and
genomic organization of HIV-1.

Morphology of HIV-1

Most HIV-1 proteins have a distinctive name. However, some of them are only known by their molecular
weight in kilodaltons, which is appended to the letter p for protein or gp for glycoprotein. That being said, I
proceed to describe the morphological structure of an HIV-1 particle. HIV-1 is a diploid virus. Specifically,
the viral particles of HIV-1 enclose two copies of the single-stranded viral RNA, along with three viral enzymes
that are necessary for viral replication: RT (consists of two subunits, p66+p51), integrase (IN, p31), and pro-
tease (PR, p15; Figure 1.1). In the viral particles, HIV-1 RNA is closely associated with the proteins RT and
nucleocapsid (NC, p7). Viral RNA is enclosed along with other proteins in a conical structure made out of the
capsid (CA, p24) protein. This conical structure is called the core or capsid. The proteins viral infectivity factor
(Vif) and negative regulatory factor (Nef) are closely associated to the capsid, while viral protein R (Vpr) is likely
to be located within the viral particle, but outside of the capsid. The capsid is surrounded by a phospholipid
layer, whose inner side is associated to various copies of the viral matrix (MA; p17) protein. This phospholipid
layer integrates trimers of two envelope (env) proteins: surface glycoprotein gp120, which remains outside the
viral particle, and transmembrane glycoprotein gp41, which has a transmembrane domain. An overview of the
known function of HIV-1 proteins can be seen in Table 1.1. See alsoHIV-1 Replication Cycle below.
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Table 1.1: HIV-1 Protein Funcধon. A summary of the funcঞon of most HIV-1 proteins is tabulated below. Gag spacer proteins SP1
and SP2 were excluded since li�le is known about their funcঞon. HLA: human leukocyte anঞgen.

Protein Name Designation by Function
Size (kDa)

Capsid (CA) p24 Structural protein [1]; Important for viral
particle maturation [5]

Matrix (MA) p17 Membrane targeting and assembly of viral
precursor polyproteins gag and gag-pol [2]

Nucleocapsid (NC) p7 Nucleic acid chaperone during reverse tran-
scription [5]; Encapsulation of viral RNA
[5];

gag p6 p6 Release of viral particles from cell surface [5]
Reverse transcriptase (RT) p66+p51 Transcription of viral RNA into DNA [1]
Protease (PR) p10 Cleavage of gag and gag-pol precursor

polyproteins [2]
Integrase (IN) p32 Integration of viral DNA into host genome

[5]
Envelope surface protein gp120 Entry into cell [1]
Envelope transmembrane protein gp41 Entry into cell [1]
Transactivator (tat) p14 Transcriptional activator of integrated

provirus [2]
Rev p19 Transport of viral mRNA out of cell nucleus

[2, 5]; Regulation of expression of structural
and regulatory HIV-1 genes [1]

Nef p27 Downregulation of CD4 and HLA class I
molecules [2]

Viral infectivity factor (Vif) p23 Inhibits degradation of proviral DNA by the
host factor APOBEC3G [2]

Vpr p15 Component of the preintegration complex
[5, 6]

Vpu p16 Mediates virus release [1, 2]; Degradation of
gp160:CD4 complexes [1, 2]
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Figure 1.2: Genomic Organizaধon of HIV-1. Above, rectangles represent open reading frames. These rectangles are colored by
the number of the reading frame (first, second, or third) in which the corresponding gene is encoded. Note that the open reading
frames of Tat and Rev are represented by their spliced exons. A[er http://www.hiv.lanl.gov/content/sequence/
HIV/MAP/landmark.html.

Genomic Organization of HIV-1

HIV-1 shares the viral genes group-specific antigen (gag), polymerase (pol), and envelope (env) with other retro-
viruses [7]. Additionally, the genome of HIV-1 includes the accessory genes Vif, viral protein unique (Vpu),
viral protein R (Vpr), transactivator of transcription (Tat), regulator of expression of virion proteins (Rev), and
Nef (Figure 1.2). In the following, I describe the genomic organization of HIV-1. The size of the genome of
HIV-1 is 9.2 kilo base pairs (kb), and a schematic representation of its organization can be seen in Figure 1.2.
The primary transcript of HIV-1 is a full length mRNA which is translated into the gag and pol polyproteins
[1]. Through proteolytic cleavage by PR, the viral proteins CA,MA,NC, p6, p2, and p1 are produced from the
gag precursor polyprotein (p55). In the sameway, autocleavage of the pol polyprotein gives rise to the viral pro-
teins PR, RT, and IN. In 95% of viral mRNA translation events, a gag polyprotein is produced. However, in
5% of viral mRNA translation events, a 1-ribosomal frame shift occurs, and a gag-pol polyprotein is translated,
which is cleaved into proteins encoded by both gag and pol genes. Translation of the env polyprotein, gp160,
requires a singly spliced mRNA from the full-length viral mRNA.However, proteolytic cleavage of gp160 into
gp41 and gp120 is not catalyzed by PR, but by furin, a cellular endoprotease [1].

1.1.2 HIV-1 Replication Cycle

The replication cycle of HIV-1 is depicted in Figure 1.3. Before explaining the details of the replication cycle of
HIV-1, I would like to briefly explain the concept of viral tropism. Aswith any virus, execution of the replication
cycle ofHIV-1 requires the infection of a cell byHIV-1. For a viral infection to occur, HIV-1 needs to encounter
a suitable cell, which happens by chance as the virus roams in blood and other body compartments. The ad-
jective suitable in the preceding sentence makes reference to the fact that, in general, viruses cannot infect just
any cell they encounter since they have evolved to infect only certain types of cells. The process by which a virus
discerns between target cells and other cells is governed by the interaction of the virion with the receptors on the
cell surface. A viral receptor is a molecule on the cell surface to which the virion attaches in order to initiate in-
fection. Sometimes, a single viral receptor is sufficient for the virus to initiate infection. In other cases, however,
an additional viral receptor is necessary for infection to take place. This additional viral receptor is called the
coreceptor. The presence of certain receptors on the cell surface determines whether a certain cell is susceptible
to infection by a specific virus. However, intracellular factors are also essential determinants of viral infectivity.
Cells with intracellular factors that allow for infection by a specific virus are called permissive for infection by
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that virus. A concept that encapsulates both susceptibility and permissiveness to infection by a certain virus is
that of viral tropism. Viral tropism is the preference of a virus to invade and replicate a certain type of cell. In ad-
dition to susceptibility and permissiveness, accessibility is a further determinant of viral tropism. For instance,
a physical barrier can prevent the virus from making contact with its target cells, therefore rendering these cells
inaccessible [7].

In the following, I provide a summary of the most important events that occur during the replication cycle
of HIV-1. These can be divided into three main steps: (1) entry into the cell, (2) reverse transcription and
integration, and (3) production of new viral particles.

Entry into The Cell

The primary receptor for HIV-1 is the cluster of differentiation 4 (CD4) molecule, a 58 kDa monomeric gly-
coprotein located on the surface of monocytes, macrophages, eosinophils, dendritic cells, microglial cells of the
central nervous system, thymus (T) cell precursors within the bone marrow and thymus, as well as on approx-
imately 60% of T lymphocytes. Interaction of HIV-1 with the CD4 receptor is necessary but not sufficient for
entry into the cell. Additional interaction with a chemokine receptor is necessary as well. While many different
chemokine receptors can mediate HIV-1 entry into the cell, HIV-1 most frequently uses the C-C chemokine
receptor type 5 (CCR5) and the C-X-C chemokine receptor type 4 (CXCR4). R5-tropic HIV-1 strains use only
the CCR5 coreceptor, X4-tropic HIV-1 strains use solely the CXCR4 coreceptor, and dual tropic HIV-1 strains
can use either coreceptor. The first step in the replication cycle ofHIV-1 is the attachment of the gp120 env sur-
face protein to the CD4molecule of the target cell. This induces conformational changes in gp120 that allow for
binding to the coreceptor and subsequent exposure of a fusion peptide in gp41. This fusion peptide penetrates
the plasma membrane of the cell, ultimately resulting in fusion of the viral and cellular membranes [1, 2, 8].
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Reverse Transcription and Integration

After fusion of viral and host membranes, the viral core enters the cytoplasm and uncoats. This is followed
by the formation of reverse-transcription complexes and the initiation of reverse transcription by RT. RT first
produces an antisense complementary deoxyribonucleic acid (cDNA) copy of the viral RNA, which is subse-
quently duplicated in order to form a double-stranded DNA structure with long terminal repeats at each end.
Double-stranded proviral DNA forms a preintegration complex with the proteins PR, RT, IN, and Vpr. After
this preintegration complex is transported into the nucleus, integration into the host genome takes place. The
integrated proviral DNA is called a provirus.

HIV-1 may infect CD4+ cells that exist in a resting or quiescent state. Specifically, mature T cells are released
into the bloodstream after their production in the thymus. At first, these cells are immunologically naïve and
exist in a resting or quiescent state. Upon recognition of an antigen, naïve T cells become active, which leads
to their proliferation and differentiation into effector cells. Once the antigen is no longer present, most of the
activated T cells die by apoptosis. However, a certain number of activated T cells become memory T cells,
that do not die and return to a quiescent state instead [9]. Infection of quiescent cells by HIV-1 may result
in the accumulation of non-integrated proviral DNA. For proviral DNA to become integrated into the host’s
genome, activation of the cells is necessary. In-vivo, activation occurs as a result of antigen contact, vaccination
or opportunistic infection. Even if the proviral DNA is integrated into the genome of a quiescent cell, HIV-1
replication will be inhibited for as long as the cell does not become activated. Thus, infection of quiescent cells
can build enduring cellular HIV-1 reservoirs. Antiretroviral compounds do not attack (pro-)viral DNA and
are therefore inactive against viral reservoirs. Even after prolonged periods of antiretroviral therapy, previously
unintegrated proviral DNA of replication-competent strains can be integrated into the host genome. For these
reasons, eradication of HIV-1 through therapy with currently available antiretroviral drugs is not possible.

Production of New Viral Particles

Initial transcription of the provirus is mediated by cellular transcription factors. This results in the synthesis
of the viral regulatory proteins Tat and Rev, which stimulate the transcription of further viral genes in turn.
Further structural and regulatory viral proteins are produced from full-length and spliced mRNA. Specifically,
the polyprotein gp160 is produced from a singly spliced full-length mRNA. The cellular protease furin sub-
sequently cleaves this polyprotein into the viral env proteins gp41 and gp120. The gag and gag-pol polypro-
teins (see above) form the core of the nascent viral particle. Viral assembly occurs at the cell membrane, where
viral RNA is enclosed into capsids that bud from the cell membrane, simultaneously incorporating env pro-
teins. During or after budding, final maturation takes places. During the maturation process, gag and gag-pol
polyproteins are cleaved by PR into their functional subunits.

1.2 HIV-1 Transmission and Pathogenesis

HIV-1 infection primarily occurs through sexual contact, needle sharing, pregnancy, delivery, and blood trans-
fusion. Following infection of a patient with HIV-1, the pathogenic effects of the virus will begin to become
noticeable. Left untreated, HIV-1 infection almost invariably leads to the death of the patient. In the following,
I review the routes and probabilities of transmission for HIV-1. Subsequently, I describe the effects of the virus
on the body, from the moment of infection until the death of the patient.
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Table 1.2: Probabiliধes of Transmission of HIV-1. Depending on the exposure type, different probabiliঞes of transmission of HIV-1
have been esঞmated.

Exposure Type Probability of Infection per Contact (%)
Receptive penile-anal intercourse ∼ 1
Receptive penile-vaginal intercourse 0.1− 0.32
Insertive penile-anal intercourse 0.06
Insertive penile-vaginal intercourse 0.01− 0.1
Needle sharing for drug consumption 0.5− 1
Pregnancy and delivery 12− 50
Consumption of breast milk 12
Reception of blood transfusion > 90

1.2.1 HIV-1 Transmission

Infectious HIV-1 particles and cells infected with HIV-1 can be isolated from diverse body fluids. Among iso-
lates extracted from HIV-1-infected individuals, free HIV-1 could be found in blood plasma, semen, and cere-
brospinal fluid, aswell as in tears, ear secretions, saliva, urine, breastmilk, and cervicovaginal fluid, albeit at lower
concentrations and in fewer isolates. Cells infected with HIV-1 could be isolated from blood, saliva, bronchial
fluid, cervicovaginal fluid, and semen. HIV-1 spreadsmainly through sexual contacts, needle sharing, pregnancy
and delivery, and blood transfusions. The main factor determining whether a certain body fluid is a source of
HIV-1 transmission is the infectious virus titer. Since saliva, tears, and urine (among other body fluids) contain
few infectiousHIV-1 particles orHIV-1-infected cells, they are not sources ofHIV-1 infection. In contrast, high
titers of infectious HIV-1 can be found in blood, genital fluids, and breast milk for which they are sources of
HIV-1 infection [1]. The probability that an exposure toHIV-1 will result in anHIV-1 infection depends upon
a variety of factors. Some of these factors are listed in the following:

• The amount of virus present in the inoculum*, and thus in bodily fluids, has a positive correlation with
disease transmission [10–12]

• DifferentHIV-1 exposure types, also called transmission routes, are associatedwith distinct probabilities
of transmission (Table 1.2)

• Condomuse, antiretroviral therapy, andmale circumcision [11] can significantly reduce risk of transmis-
sion [10]

• The concomitant presence of ulcerations or inflammation in the genitalmucosa can increase risk of trans-
mission [10, 13, 14].

HIV-1 infection can occur through the transmission of cell-free viral particles or of HIV-1 infected cells that
produce viral particles in the new host [10, 15]. In comparison to the viral strains that replicate in a chronically
infected patient (see below), transmitted founder virus seems to be exclusively R5-tropic. Transmitted founder
virus targets cells expressing a large number of CCR5 receptors, has decreased replication capacity, as well as
shorter and less glycosylated env proteins [10, 16]. However, transmitted founder viruses also seem to be more
infectious and to containmore envprotein copies per particle than those present in a chronically infected patient
[17]. Transmission of the virus across an intactmucosal barrier represents a viral population bottleneck [16, 18].
A single transmitted founder virus is responsible for 60% to 80%of productive infections [17, 19]. Nevertheless,

*An inoculum is a substance carrying an infectious or antigenic agent.
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there are factors that can decrease the bottleneck effect of mucosal barriers [14, 20, 21].

1.2.2 HIV-1 Pathogenesis

After infection with HIV-1, dendritic cells are among the first cells to come into contact with the transmitted
founder virus. Infection can occur within the mucosa, where HIV-1 can infect CD4+ cells, or through the
action of dendritic cells, as they transport HIV-1 to to the lymphoid tissue, where it can infect additional CD4+
cells [22, 23]. The infection of the first CD4+ cells initiates the process of HIV-1 pathogenesis. In untreated
infections, this process can be divided into three phases:

1. Acute and primary HIV-1 infection
2. Chronic HIV-1 infection
3. Symptomatic HIV-1 infection

Figure 1.4 displays a schematic representation of the trajectory of the viral load (VL) and the CD4+-cell count
after infection. The VL and the CD4+-cell count are the most important clinical parameters for an individual
with untreated HIV-1 infection. The CD4+-cell count indicates the number of CD4+ cells that present in a
microliter of blood, while the VL quantifies the number of HIV-1 RNA copies contained in one milliliter of
blood serum. In the following, I describe the major features of the three phases of HIV-1 pathogenesis, as they
occur in an untreated HIV-1 infection.
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Acute and Primary HIV-1 Infection

Acute HIV-1 infection is defined as a period lasting from one to four weeks after virus transmission, with the
particularity that no anti-HIV-1 antibodies can be detected. During the first weeks post infectionem, no immune
response is present and HIV-1 can replicate and spread within the body at an increased rate. Seven to ten days
after transmission, HIV-1 RNA can be detected in blood. From this point on, HIV-1 viremia begins to rise,
with an average doubling time of nine to 20 hours during the first two to three weeks of infection. Within
six to 21 days, virus quantities in blood reach a peak (106 to 107 HIV-1 RNA copies per milliliter of blood
serum) [1, 2, 24, 25]. During this early period, a large number of cells become infected, and a predominant
viral strain emerges. The viral population is very homogeneous during the acute phase. The virus is seeded in a
variety of tissue reservoirs [26] andCD4+T lymphocytes are destroyed, particularly in the lymphoid tissues and
in the gut. The first immunologic response against HIV-1 involves the activation of HIV-1-specific cytotoxic
T lymphocytes (CTLs) [24, 27], which reduces the VL [28, 29]. The emergence of an initial immunologic
response, as well as the onset of acute retroviral syndrome (ARS; described in the following) are the events that
tend tobeused inorder todefine thebeginningof primaryHIV-1 infection,whichbegins before the endof acute
HIV-1 infection [26]. One to four weeks after transmission, 50% to 80% of newly infected personsmay present
a clinical state termed ARS. The most common symptoms present during ARS are loss of appetite, malaise,
fever, rash, swollen lymph nodes, as well as pain in muscles and joints. Further symptoms can include central
nervous system disorders, oral candidiasis, and ulcerations in the esophagus, anus, and vagina. These symptoms
usually disappear within one to three weeks, although lymphadenopathy, malaise, and lethargy can persist for
severalmonths. Absence ofARSmaypredict a slowprogression towards disease, while the severity andduration
of ARS symptoms correlates with the speed of disease progression. The end of acute HIV-1 infection is defined
by the appearance of anti-HIV antibodies in the blood of the patient. This event is termed seroconversion.
ARS usually occurs before seroconversion [1, 2, 24, 26, 30, 31]. Some weeks after acute infection, viremia is
substantially reduced as a result of immune response againstHIV-1. However, immune response comes too late
to control the infection. After seroconversion, neutralizing antibodies appear to be present only transiently [1].
After immunologic activation involvingCTL response, theVLdecreases until a set point is reached following the
production of anti-HIV-1 antibodies, as well as the production of broadly neutralizing antibodies (Figure 1.4)
[1, 2, 25, 26]. Primary HIV-1 infection is usually defined to end when the VL reaches its initial set point [26].
This set point is a prognostic marker of the future course of disease [1, 32].

Chronic HIV-1 Infection

Three to six months following primary infection, CD4+-cell counts rise to almost normal levels. However,
from this point on, CD4+ cells will be depleted at a rate of 25 to 60 cells per microliter of blood per year. An
asymptomatic period follows, lasting up to ten years. During this period, viral replication continues, at first at at
a low level and especially in the lymph nodes [33, 34]. At this stage, HIV-1 RNA levels vary among individuals
and range from less than 50 to more than one million HIV-1 RNA copies per milliliter of blood plasma. Even
if viremia in plasma is undetectable, HIV-1 proviral DNA can still be detected in peripheral blood mononu-
clear cells (PBMCs) [35]. The suppression of HIV-1 replication during chronic HIV-1 infection appears to be
mediated by CD8+ cells. The presence of a strong immune response results in diversification of the viral popu-
lation. Specifically, as new viral variants continuously emerge, most of them are subsequently eliminated by the
immune system, but some of themmanage to escape immune pressure and proliferate [1]. As the infection pro-
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gresses, the VL rises, while CD4+ cell counts decrease (Figure 1.4). Chronic HIV-1 infection is asymptomatic.
However, during this stage, the virus is highly dynamic, replicating in high titers [35]. At the same time, the
immune system is progressively damaged [29]. During chronicHIV-1 infection, the VL is themost informative
prognostic marker for disease progression, followed by the CD4+ cell count [29, 32–34].

Symptomatic HIV-1 Infection

Within two to ten years after infection, the prodromes of acquired immunodeficiency syndrome (AIDS) may
show up. At this stage, CD4+ cell counts usually drop below 350 cells per microliter of blood, the VL increases
substantially, and antiviral CD8+ cell responses are reduced. As a result of damage and therefore reduced action
of the immune system, the viral population becomes again homogeneous, as in the acute phase of the disease.
As the CD4+ lymphocytes are depleted, the risk for developing opportunistic infections and cancer rises (Fig-
ure 1.5). The onset of AIDS in HIV-1-infected patients is defined as the occurrence of one or more specific
diseases (see [1] for a list of these diseases) or a decrease in the CD4+ cell count below 200 cells per microliter of
blood [29]. Left untreated, HIV-1 infection will almost inevitably lead to the death of the patient.

1.3 History of the HIV-1 Pandemic

In 1981, increasing numbers of deaths of previously healthy homosexual men were reported [36]. The clinical
state of these men included unusual and severe opportunistic infections and malignancies. This initiated the
process of recognition and definition of AIDS. Epidemiological studies at the time suggested that the disease
is transmitted horizontally through sexual contact, intravenous drug administration, and blood transfusion
[37]. For this reason, a pathogenic etiology of AIDS was suspected. In 1983, HIV-1 was isolated from a patient
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presenting the prodromes of AIDS [37]. Further studies isolated the same pathogen from a number of patients
suffering fromAIDS and its prodromes [38, 39], contributing to the establishment ofHIV-1 as a causative agent
of AIDS. However, the history of the HIV-1 pandemic begins with the emergence of HIV-1 in Africa. Many
analyses have been performed in order to clarify the etiology ofHIV-1 and in order to reconstruct the pathogen’s
epidemiological history predating 1981. The results of these analyses are summarized in the following sections.

Several clues on the etiology of HIV-1 lead to Central and Equatorial Africa. Between 1983 and 1984, many
cases of AIDSwere reported. These cases concerned black patients from this African region [40–43] and white
patients who had traveled to that region [41–44]. In 1984,HIV-1was isolated from amarried couple fromZaire
[45]. A study published in 1985 compared the nucleotide sequence of HIV-1 with that of the visna lentivirus,
providing support for the inclusionofHIV-1 into the retroviral subfamilyLentivirinae [46]. Apathogen related
to HIV-1 was isolated from West African patients suffering from AIDS in 1986 [47]. This pathogen was later
sequenced and namedHuman immunodeficiency virॿ type 2 (HIV-2) [48], and its relationship to a variant of
Simian immunodeficiency virॿ (SIV) was established [49]. The recognition of the similarities between this SIV
variant and HIV-2 suggested that the etiology of HIV-1 could be elucidated by examining other SIV variants.

The etiology ofHIV-1 has been reconstructed usingmolecular epidemiology, phylogenetic analyses, and his-
torical information. In the following, I provide a chronological account of the history of the HIV-1 pandemic,
including both reconstructed and recorded facts.

1.3.1 Zoonotic Transmission and Spread of HIV-1

Zoonoses are infectious diseases that are transmitted from animals to humans. The term zoonosॾ is also used
to refer to the event of cross-species pathogen transmission [50]. The origins of HIV-1 lie in West-Central
Africa, where multiple zoonotic transmissions of SIV from non-human primates to humans occurred [51].
This claim is supported by molecular phylogenetic analyses (Figure 1.7). Molecular phylogenetics studies the
evolutionary relationships between and among organisms, based on comparative analyses of the nucleotide and
protein sequences of their genomes. Phylogenetic analyses can deploy a molecular clock, a statistical model that
describes the relationship between evolutionary distances and calendar time [52]. In the following, I first give a
brief introduction to SIVs, and then describe how HIV-1 is thought to have originated via zoonosis.

Simian Immunodeficiency Virus

Serological methods have delivered evidence for SIV infection in over 40 primate species [53]. Most of these
species only harbor a specific SIV strain. This has been shown with phylogenetic analyses in which the viral
sequences frommembers of the same species cluster into the same subtree (Figure 1.7). Although almost all SIV
transmissions occur within the same species, there are also several inferred cases in which SIV zoonoses have
occurred [54, 55].

Depending on the primate species that an SIV lineage primarily infects, an additional three-letter abbrevi-
ation is appended to SIV. Thus, SIVcpz denotes SIV infecting chimpanzees. SIVcpz found in Pan troglodytॽ
troglodytॽ has a close relationship toHIV-1 [54–56], and it is thought that this SIVcpz variant gave rise toHIV-
1 type M (see below). P. t. troglodytॽ probably acquired SIVcpz from other primates [54], as the animal is
known to hunt and kill other mammals, including other primates. Isolated groups of P. t. troglodytॽ living in
Cameroon form natural reservoirs of SIVcpz (Figure 1.6) [54, 56].
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Human Immunodeficiency Virus Type 1

HIV-1 comprises distinct lineages classified into the groupsM,N,O, and P. Each one of these groups havemost
likely resulted from an independent zoonosis and subsequent adaptation to the host (Figure 1.7) [50, 54, 56].
While the global pandemic is caused by HIV-1 group M, infections with other HIV-1 groups are much less
prevalent and mainly confined to Cameroon, the Democratic Republic of Congo (DRC), Gabon, and other
neighboring countries [50, 54]. Due to the biology of SIV, these zoonoses must have occurred through the
exposure of cutaneous or mucous membranes to infected ape blood or other bodily fluids [54, 55]. It is likely
that this occurred during hunting, capture, butchering or trade of nonhuman primates, or while a primate was
kept as a pet by a human [50, 57].

The oldest existing HIV-1 samples were obtained in 1959 [58] and 1960 [59] in Kinshasa, DRC (formerly
Leopoldville, Zaire and Leopoldville, Belgian Congo). Reconstruction of the history of HIV-1 infection can
be achieved with phylogenetic analyses coupled with molecular clocks. These analyses can provide estimates of
the time at which a group of related nucleotide sequences diverged from their most recent common ancestor
(tMRCA). Several phylogenetic analyses have estimated that HIV-1 group M is the oldest HIV lineage (Table
1.3), with a tMRCA between 1920 and 1937 [60]. A phylogenetic study analyzing SIVcpz and HIV-1 group M
nucleotide sequences simultaneously dates their most common recent ancestor to 1853 (1799-1904) [62]. With
some uncertainty on the time atwhich it occurred, cross-species transfer resulting inHIV-1 groupM is therefore
inferred to have taken place between 1853 and the early 1900s [50].

Spread of HIV-1 in Central Africa

Central Africa is thought to be the epicenter of the globalHIV-1 pandemic [50, 63]. In the following, Imention
someof the arguments supporting this hypothesis. Strains ofHIV-1 groupMare further classified into subtypes
and circulating recombinant forms (CRFs) (Section 1.4). CRFs are thought to have emerged at a later point in
time than subtypes (Table 1.4). Subtypes andCRFs have specific distribution patterns in different regions of the
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Table 1.3: tMRCA of Various HIV-1 Types. Phylogeneঞc analyses can be used to determine the ঞme to the most recent common
ancestor of a group of nucleoঞde sequences. Below, a summary of several such analyses for different HIV-1 types can be found.
CI: 95% confidence interval; tMRCA: ঞme to most recent common ancestor; * 99% confidence interval. A[er [50].

HIV-1 group tMRCA CI
Group M 1920 1909 - 1930 [61]
Group M 1921 1908-1933
Group M 1920/1937 1902-1949*
Group M 1931 1915-1941
Group O 1920 1890-1940
Group N 1963 1948-1977
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world (Figure 1.8). However, all HIV-1 groups and subtypes (not including themore recent CRFs) are found in
Central Africa. Furthermore, the highest HIV-1 sequence diversity is found in this region as well. Specifically,
the diversity in Kinshasa, DRC, is comparable to that among global strains [56, 65, 66] (Figure 1.8).

In a phylogenetic analysis, isolates from the DRC have a basal position in a phylogenetic tree that includes
global strainswith diverse subtypes. Thus, each global subtype is probably the result of the exportation ofHIV-
1 strains from the DRC [66]. Furthermore, the two oldest HIV-1 samples stem from Kinshasa (as mentioned
above). These arguments indicate thatHIV-1 originated in colonialwest-centralAfrica [54]. Zoonosis probably
took place in Cameroon, after which the disease spread along the Sangha and Congo rivers, reaching the city
of Kinshasa, where the global epidemic probably initiated [50, 56, 67]. As mentioned above, phylogenetic
analyses estimate the tMRCA of HIV-1 group M to be between 1920 and 1937. The necessary conditions for a
zoonosis from simians to humans have existed for hundreds or thousands of years. One could assume that such
transmission events have occurred in the past. In the twentieth century, however, urban centers grew rapidly
and medical procedures involving injections [68, 69] and blood transfusions [70, 71] became widespread. This
key difference can explainwhy initialHIV-1 groupMinfections couldbecome apandemic [55, 72, 73], although
the sexual transmission probability of HIV-1 is at most one percent (Table 1.2).

Even though the zoonosis of an HIV-related pathogen has been possible for a long time, it was only in the
twentieth century that conditions for a wide spread of the pathogen were met [67]. In the following, some of
the factors that may have contributed to the adaptation to the initial HIV-1 infection, and its spread in Cen-
tral Africa can be found. Central Africans have long been in contact with great apes. Key factors facilitating
the spread of HIV-1 gradually came into place during the eighteenth and nineteenth centuries. Specifically,
human mobility rose considerably in the region, and Central African societies began to engage in short- and
long-distance trade [72]. At the beginning of the twentieth century, colonial authorities in Central Africa con-
scripted people as forced labor to work on railroads and other infrastructure projects. People were forced to
harvest large quantities of rubber, which was coupled with a harsh quota system in the Belgian Congo. Con-
scription for hard forced labor led people to flee villages and settle in the forests. At the same time, those con-
scripted had allegedly little opportunity to gain their sustenance through agriculture, due to the hard work they
were forced to perform. This probably increased people’s reliance on bush meat, and hunting of large animals
such as chimpanzees was facilitated through the availability of firearms. Brazzaville became the capital of the
French Congo in 1910, while Leopoldville (now Kinshasa) served as the capital of Belgian Congo from 1923.
Following the denomination of these cities as capitals, employment opportunities as well as the establishment
of schools, hospitals, and churches attracted ruralmigrants, thus contributing to urban growth. As populations
of Kinshasa and Brazzaville grew, their population became denser (Figures 1.9 and 1.6) [72, 73]. Male African
rural migrants lived in temporary settlements in these cities. At the same time, single womenwere banned from
these cities until the mid 1930s. In 1928, about 21,500 African men, but only 358 legally married women lived
in Leopoldville. However, more than 5,000 women were smuggled into the city. Transactional sex probably
offered the only means of survival for many of the women who illegally resided in Leopoldville. Transactional
sexual services in Leopoldville were provided by femmॽ librॽ who served a few regular clients. In exchange
for a regular income, these women provided their clients with sex, conversation, cooking, laundering, and hair
care. Iantrogenesis represents yet another factor probably contributing to the spread of HIV. Specifically, I
refer to the possible spread of HIV-1 through the use of unsterile syringes [68, 69] as well as through the trans-
fusion of contaminated blood [70–72]. In 1929, the first of twoDispensairॽ Antivénériens was established in
Leopoldville. The Dispensairॽ Antivénériens were clinics for treating sexually transmitted diseases. Male and
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Figure 1.9: Populaধon Growth in Kinshasa and Brazzaville. A[er the foundaঞon of Kinshasa (blue line) and Brazzaville (red line) at
the end of the 19th century, the populaঞons of these ciঞes experienced a strong and conঞnuous growth. A[er [73].
■ Kinshasa ■ Brazzaville

female patients with genital complaints who presented to these clinics were treated free of charge. Furthermore,
migrants from outside Leopoldville and femmॽ librॽ were required to periodically attend a Dispensaire An-
tivénérien for screening. Every person who was tested serologically positive for syphilis was treated with intra-
venous drug injections. Unfortunately, yaws, a non-venereal cutaneous disease caused by Treponema pallidum,
cannot be serologically distinguished from syphilis. Given the high incidence of yaws in the rural areas from
which migrants originated, this resulted in many unnecessary treatments. Moreover, patients with a former
syphilis infection test serologically positive for syphilis for several months after the infection has been cleared.
Patients continued to receive injections for as long as they tested serologically positive for syphilis. The num-
ber of injections that Dispensairॽ Antivénériens administered annually peaked in 1953 at 154,572 injections.
Evidence of iantrogenical transmission of Hepatitis through Dispensairॽ Antivénériens is strongly suggestive
of inadequate sterilization of injection equipment in these clinics. Therefore, parenteral, iatrogenic transmis-
sion of HIV-1 probably took place in these clinics as well. For this reason, it has been hypothesized that the
spread of HIV-1 was iantrogenically boosted byDispensairॽ Antivénériens in the community of femmॽ librॽ,
their customers, and further people sexually relating to them. In June 1960, the Congo became independent.
This brought about many changes in sex labor, which shifted from transactional sex to high-risk prostitution,
in which some women entertained up to 1,000 customers per year. Starting from the established infection in
the community of (former) femmॽ librॽ, HIV-1 spread sexually after 1960, substantially amplifying the num-
ber of infected people [74]. The growth rate of HIV-1 group M in Kinshasa has been estimated for the period
between 1920 and the early 2000s [61]. While the growth of HIV-1 group M is estimated to be exponential
over the whole period, the estimates also indicate a three-fold increase in this growth rate around 1960. This is
consistent with the hypothesis of iatrogenic origins of the HIV-1 pandemic I have described above.
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Figure 1.10: Mulধple Simultaneous Lesions of Kaposi’s Sarcoma. Kaposi’s sarcoma is a malignancy caused by an infecঞon with
Human herpes virus 8 (HHV-8). The virus is predominantly transmi�ed by saliva, but also via sexual contacts and blood products. In
some regions of the world, HHV-8 has a prevalence of up to 50% of the general populaঞon. However, the development of Kaposi’s
sarcoma appears to be related to immune suppression in the host, andmay be present at advanced stages of HIV-1 infecঞon [1, 79].
See also Figure 1.5. Image courtesy of AIDS Images Library http://www.aids-images.ch.

Spread of HIV-1 to the Rest of the World

HIV-1 subtype B infections are most common in the United States and Canada, the Caribbean, and Western
Europe (Figure 1.8). Phylogenetic analyses have shown that in phylogenetic trees, HIV-1 subtype B nucleotide
sequences derived from archived blood samples of Haitian patients fall basal to other subtype B nucleotide
sequences derived frompatients around theworld. The findings imply thatHaiti experienced the oldest-known
HIV-1 epidemic outside of Africa [75]. While the DRC hosts the most diverse HIV-1 groupM epidemic in the
world (as mentioned above), the most diverse HIV-1 subtype B epidemic in the world is hosted by Haiti [75].
Between the early 1960s and the mid-1970s, several thousand Haitian professionals temporarily migrated to
Zaire, as mentioned in [76]. It is thought that they became infected with HIV-1 in Zaire, and brought back the
disease to Haiti, the United States, and Europe [56, 63, 77]. The tMRCA of subtype B is estimated to be 1966
(Table 1.4), whichmatches the time at whichHaitian emigrated to Zaire. For the epidemic in the United States,
the tMRCA is estimated to be somewhere around 1968 (Table 1.4, [76, 78]), 13 years before the clinical picture
of AIDS was recognized in that country (see below).

In 1981, the infection of four homosexual men with Pneumocystॾ carinii pneumonia was reported. These
patients were treated in three hospitals in Los Angeles and presented symptoms of immunosuppression [36].
Further, unusual cases of patientswithPneumocystॾ carinii pneumonia andKaposi’s sarcoma (Figure 1.10)were
reported. Epidemiological studies at the time suggested that the cause for the illness was a sexually-transmitted
pathogen [80]. However, other etiologic agents were also proposed, such as sperm, amyl nitrate, or “chronic
overexposure to foreign proteins” (as mentioned in [77]). By the beginning of 1983, the causative agent of this
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immunodeficiency-related clinical picture had not been identified, however, the main transmission routes had
been described, as reviewed in [81]. Later that year, the pathogen causing this clinical state was identified [37].

1.3.2 The HIV-1 Pandemic after 1983

Following the identification of HIV-1 as the etiologic agent of AIDS, key scientific accomplishments allowed
for treating and preventing HIV-1 infection. In the following, I mention the most important ones. The identi-
fication of CD4 asHIV-1’s main receptor in 1984 [82, 83] paved the way for an important diagnostic parameter
in HIV-1 infection: the CD4 cell count. However, the development of the ability to quantify the VL in plasma
required further nine years [32, 34]. (The diagnostic value of the CD4 count and of the VL determination is
explained in Section 1.2.2). Preceded by the identification of antibodies in the sera of HIV-1-infected patients
[84, 85], antibody testing became widely available in 1985 [86, 87]. This permitted infected patients without
symptoms to become aware of their infection and prevent further transmission of the virus. Furthermore, the
screening of blood supplies for HIV-1 halted the transmission of the virus by blood transfusion (at least in in-
dustrialized countries) [88]. In 1985, the nucleotide sequence of anHIV-1 variant was published, which opened
the doors for phylogenetic analyses and molecular epidemiology [89]. Section 1.5.1 reviews the history of an-
tiretroviral therapy. Here, Imention fivemilestones in the history of antiretroviral therapy that had a significant
influence on the course of theHIV-1 pandemic. (1) The first efficacy trial for zidovudine, an antiretroviral drug,
was performed in 1987 [90]. (2) This same drug was shown to be able to prevent mother-to-child transmission
in 1994 [91]. (3) In 2010, the iPrex trial gave proof of the effectiveness of antiretroviral drugs as pre-exposure
prophylactics [92]. (4) One year later, in 2011, it was shown that antiretroviral therapy could be effectively
used by an infected person to prevent the transmission of HIV-1 [93]. (5) Last, but not least, I mention the
functional cure of anHIV-1-infected patient who received a transplantation ofHIV-resistant stem cells in 2009
[94].

Over the decade following 1983, knowledge on theHIV-1 infection evolved fromdescribing a disease believed
to be only prevalent in the United States, and to affect only men who have sex with men, to a global pandemic
also affecting heterosexual men and women [81]. In 1989, the World Health Organization reported the exis-
tence of AIDS cases in all continents [95]. For a review of the state of the pandemic in 1990, see [96]. The
world-wide incidence† ofHIV-1 infection in 1990 was estimated to be twomillion, resulting in a prevalence‡ of
nine million, and 320 thousand AIDS-related deaths (Figure 1.11). More than 150 countries started to imple-
ment AIDS prevention and control programs, involving the epidemiological surveillance of HIV-1 infection,
the promotion of behavioral changes in order to prevent infection by HIV-1, and the screening of blood prod-
ucts [96]. Nonetheless, HIV-1 incidence rose to a peak between 1996 and 1998 with an estimate of 3.4 million
new infections in each of those years (Figure 1.11(a)). By 1998, HIV-1 infection was the fourth most frequent
cause of death in the world, and the leading cause of death in sub-Saharan Africa ([97] and Figure 1.11(c)). This
was partly a consequence of the following facts. (1) The great majority of the people infected with HIV-1 lived
in developing countries (and still do; Figure 1.12), and (2) in these countries, HIV-1 is predominantly transmit-
ted through heterosexual contacts [98]. Since most developing countries did not have sufficient resources for
diagnosing and treating HIV-1 infection, the virus could continue to spread without hindrance. Furthermore,

†In epidemiology, the incidence (rate) is the number of persons acquiring a medical condition within the population
at risk per given time period.

‡In epidemiology, the prevalence is the number of people or population proportion suffering from amedical condition
at a certain point in time.
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Figure 1.11: Prevalence, Incidence, and Mortality of HIV. Yearly esঞmates of the world-wide incidence (a) and prevalence (b) of
HIV are plo�ed above, along with the numbers of AIDS-related deaths (c). The polygons surrounding the black curves indicate the
range between the yearly lower and upper esঞmates. Source: http://aidsinfo.unaids.org/, accessed December 9th,
2015.
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the fact that heterosexual contacts are more frequent than homosexual contacts increases the probability of
new infections, even if the risk of transmission is higher for homosexual contacts (Table 1.2). In contrast, HIV-
associated morbidity and mortality was decreasing at the time in the United States as a result of the advances in
antiretroviral therapy [99] (Section 1.5.1). Fortunately, national AIDS control and prevention programs did
result in a contention of the epidemic, and theworld-wide incidence ofHIV-1 began to decrease (Figure 1.11(a)).
Nonetheless, a peak in the number of AIDS-related deaths was reached between 2004 and 2006 (Figure 1.11(c)).
In 2007, there was a reduction in the number of deaths due to HIV-1. This was partly attributed to the scaling
up of access to treatment [100]. The incidence of HIV-1 and the numbers of deaths attributed to HIV-1 have
been continuously declining. However, since HIV-1 incidence is still considerable (Figure 1.11(a)) and people
with HIV-1 are living longer, the prevalence of HIV-1 in the world continues to rise (Figure 1.11(b)).

In 2000, the United Nations Millennium Summit took place. Following that summit, eight international
development goals were established, including the improvement of global health, education, environmental
protection and gender equality by 2015 [101]. Goal number six includes halting and reversing the HIV-1 epi-
demic. This intent was complemented by two declarations adopted in 2006 and 2011 which bear the titlePoliti-
cal Declaration on HIV/AIDS. These declarations recognize the urgency in providing universal access toHIV-1
treatment, prevention, support, and care. The 2011 Political Declaration on HIV/AIDS includes the following
targets and elimination commitments, due 2015 [102]:

1. Reduce sexual transmission of HIV-1 by 50 percent
2. Reduce HIV-1 transmission among drug users by 50 percent
3. Eliminate mother-to-child HIV-1 transmission
4. Provide HIV-1 treatment for 15 million people
5. Eliminate obstacles that hinder low- and middle-income countries in providing treatment and diagnos-

tics for HIV-1 infection as well as measures for preventing infection.

In the following, I mention some figures that can assess the extent to which these goals have been achieved,
by comparing figures for the years 2011 and 2014. There has been a 13 percent reduction in the world-wide
incidence ofHIV-1 (Figure 1.11(a)). The percentage of pregnant, HIV-1 infectedwomen receiving antiretroviral
drugs for preventing mother-to-child transmission has increased from 58 percent in 2011 to 73 percent in 2014.
The percentage of HIV-infected people receiving antiretroviral therapy has increased from 27 percent in 2011
to 40 percent in 2014 (AIDSinfo; http://aidsinfo.unaids.org; accessed November 20, 2015). Further
targets regarding world-wide access to antiretroviral treatment have been defined by UNAIDS in 2014: the 90-
90-90 treatment target, which I summarize in the following. By 2020, 90 percent of all people livingwithHIV-1
should be diagnosed. Of those infected, 90 percent should be on treatment. And of those treated, 90 percent
should be virally suppressed [103] (see Section 4.1 for a definition of viral suppression).

1.4 Diversity of HIV-1

The biological characteristics of HIV-1 have resulted in substantial diversification of the virus. The variability
of HIV-1 is noticeable both within a host and between different hosts. Furthermore, groups of closely related
HIV-1 strains have a distinct geographical distribution. In the following, I summarize the molecular basis for
HIV-1 variability and I explain thenomenclature that has been established in order to label closely related groups
of HIV-1 variants that have emerged in the course of the pandemic. Furthermore, I briefly mention differences
between groups of closely related HIV-1 variants with respect to their transmissibility and pathogenicity.
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1.4.1 Molecular Basis for HIV-1 Variability

Compared to other pathogens, HIV-1 presents a very high degree of variability. The reasons for this large de-
gree of variability lie in the lack of a proof-reading ability of the viral enzyme RT [104] (3.4× 10−5 mutations
per bp per cycle [105]), the mutations induced by the host DNA deaminase APOBEC3G [106], as well as the
high titers in which HIV-1 replicates. Specifically, 10.3 × 109 new virions are produced each day, on average
[107]. Furthermore, HIV-1 is a diploid virus with the capacity of recombination. Two viral RNA copies are
packaged into assembling virions, and these need not be identical. Recombination of viral genetic material re-
sults from the ability of the viral enzyme RT to alternate between RNA templates during the process of reverse
transcription (Sections 1.1.1, 1.1.2, and 1.4.2) [108]. Last but not least, selective pressure exerted by antiretro-
viral chemotherapy is a further factor driving HIV-1 evolution. A consequence of this selective pressure is the
emergence of drug resistance, which is reviewed in Section 1.5.3.

Asmentioned in Section 1.2.2,HIV-1 infectionbeginswith anearly homogeneous viral population that starts
to diversify as selective pressure from the immune system kicks in. While HIV-1’s high productivity, combined
with the sloppiness of its enzymeRT, leads to the production ofmany viral variants, mutations that allowHIV-
1 to escape the immune system are fixated [108]. This leads to the emergence of a quasispecies in the host, a set
of closely related yet genetically distinct viral variants [109, 110]. The distribution of variants in the quasispecies
changes over time, as different forms of immune or drug pressure are exerted on the pathogen [111, 112]. Even
if some viral variants cease to be present in blood, they can be archived in proviral DNA with the capacity
to reemerge, depending on the selective pressure exerted at a given point in time. The mechanics of HIV-1
transmission represent a genetic bottleneck, as few transmitted founder HIV-1 variants initiate new infections
(Section 1.2.1). Therefore, the transmission of the variability within a host to another host is severely limited
[113].

1.4.2 HIV-1 Group M Subtypes

Over the course of epidemiological history, HIV-1 groupMhas formed distinct and wide-spread lineages called
subtypes (Table 1.4). Initially, ten different subtypes, denoted by the letters A to J, were defined. However, the
phenomenon of dual infection was not well characterized at the time. Dual infection is the result of simultane-
ous or sequential infection with two heterologous viral strains. Infection of a cell with more than one provirus
may result in heterozygous packaging of the progeny virus. Upon infection of further cells with diploid and
heterozygous progeny virus, multiple template switching events might occur during reverse transcription, giv-
ing rise to recombinant viral variants [50]. Eventually, it became evident that subtypes E and I emerged as a
result of recombination from other subtypes. Because of this, subtypes E and I were removed from the lineage
classification and the concept of a CRF was introduced. CRFs are viral lineages with genome regions that can
be clearly mapped to other subtypes (Figure 1.13). CRFs are denoted by the abbreviation CRF, appended to a
two-digit index designating the order of CRF discovery, an underscore, and the letters designating the subtypes
from which the recombinant form emerged. For example, CRF01_AE, was the first recombinant form that
was discovered, and it was determined to have emerged from subtypes A and E (see below). A recombinant
form of HIV-1 is called CRF if it is detected in at least three individuals, and unique recombinant form (URF)
if it could be detected in at most two individuals (http://www.hiv.lanl.gov/, accessed November 11th,
2015). An exception in the rules of nomenclature was made for Subtype E, which was determined to be a re-
combinant of subtype A and another subtype (Figure 1.13). Specifically, subtype E was renamed to CRF01_AE
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Figure 1.13: Recombinaধon of CRF01_AE. Iniঞally, the circulaঞng recombinant form (CRF) CRF01_AE was though to be a pure
subtype and therefore named subtype E. However, it was later determined that subtype E emerged through recombinaঞon of
subtype A, and a further subtype for which no full-length sequence is available. Subsequently, the former subtype E was re-
named to CRF01_AE. Above, the segments of the genome of CRF01_AE that correspond to subtype A and to the hypotheঞcal
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breakpoints.html , with modificaঞons. Accessed December 7th, 2015.
■ Segment originaঞng from subtype A ■ Segment originaঞng from a hypotheঞcal subtype E ■ Segment with unknown origin

although no full-length sequence of a subtype-E representative has been found. No further exceptions in the
rules of nomenclature shall be made, as it was established that an unknown parent subtype of further, emerg-
ing CRFs should be denoted by U, for unknown [114]. In CRF nomenclature, emergence of a novel CRF as
a result of recombination of a previously established CRF is denoted with the two digits indexing the parent
CRF instead of the letter denominating the subtype. Furthermore, CRFs resulting from the recombination of
more than two subtypes or CRFs are denoted with the letters cpx for complex. Thus, former subtype I was
determined to have arisen from subtypes A, G, H, K, and a further, unknown lineage, and was subsequently
renamed as CRF04_cpx. Up to now, 72 CRFs are known ([114] and extended version accessed November 11th,
2015 on http://www.hiv.lanl.gov/). Differences between subtypes have been established in terms of the
speed at which the host progresses towards AIDS if the infection remains untreated. Specifically, subtype-D
infection has been associated with a faster disease progression to death than subtype A [50, 115–118], and than
other subtypes as well [119]. Some studies assert differences betweenHIV-1 subtypes in transmission efficiency,
replicative capacity, and virulence. These are reviewed in [120, 121]. However, the findings are partially contra-
dictory such that I prefer not to summarize them, in this work. Note that HIV-1 subtypes have a differential
geographical distribution (Figure 1.8).

Depending on intra-subtype variability, subtypes may be further split into sub-subtypes. Sub-subtypes are
labeled by appending a number to the letter identifying the subtype. In retrospect, it appears that subtypes B
and D should have been labeled as sub-subtypes B1 and B2, respectively. However, relabeling has been avoided
in order to retain the subtype labels that have been used in many scientific publications ([114] and extended
version on http://www.hiv.lanl.gov/ accessed November 11th, 2015). Lastly, I mention that since HIV-1
groupMoriginated (Table 1.4), its genetic diversity has been increasing, in termsof both inter- and intra-subtype
diversity, as well as the number of recombinant strains [56].

1.5 Antiretroviral Therapy

The following sections aim at providing a comprehensive overview of antiretroviral therapy. First, I review the
history of antiretroviral therapy. Then, I present currently approved antiretroviral compounds alongwith their
mechanism of action and review the consequences of the selection of drug-resistance mutations in HIV-1 for
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these drug compounds. Subsequently, I summarize key features of state-of-the art antiretroviral therapy. Lastly,
I provide a perspective on likely future developments of antiretroviral chemotherapy.

1.5.1 History of Antiretroviral Therapy

In this section, a historical account of antiretroviral therapy can be found. This account begins by detailing
on treatment of HIV-1 with single drug compounds, describes the discovery of HIV-1 drug resistance, and the
development of combination antiretroviral therapy (cART). The development of novel drug compounds and
drug classes is recounted in its treatment-historical context. Furthermore, I outline the progress of antiretroviral
therapy in terms of antiviral efficacy, side-effect profiles, and pill burden. Last but not least, I showhowprogress
in antiretroviral therapy has resulted in the recommendation for immediate treatment with antiretroviral drugs
for every patient with HIV-1 infection, which was not the case in the early years of antiretroviral therapy.

The Age of Monotherapy

After the identification of HIV-1 as the etiologic agent of AIDS in 1983 (Section 1.3), great efforts were under-
taken in order to find a way to control the virus. By 1987, two molecular targets used by modern antiretroviral
drugs had been proposed: (1) RT, through the use of nucleotide analogs as chain terminators, and (2) PR,
through the use of effective inhibitors. However, other drug targets that have not led to the development of
effective antiretroviral drugs were proposed as well [122, 123]. Among the compounds being tested as antiretro-
viral drugs at the time [122], the thymidine analog azidothymidine (AZT), a nucleotide reverse-transcriptase in-
hibitor (the abbreviation NRTI encompasses both nucleotide and nucleoside reverse-transcriptase inhibitors),
showed a significant reduction inpatientmortality at 24weeks after treatment initiation (1/145deaths vs. 19/137
deaths compared to placebo) [90]. (AZT was later called zidovudine (ZDV), and the abbreviations AZT and
ZDV are now used interchangeably). Approval of AZT by the FDA followed in 1987 (Table 1.5). Further stud-
ies showed that the intake of four or five daily doses of AZT (up to 1,500 mg/day; the currently recommended
dose is 500 mg/day) in patients infected with HIV-1 led to a significant delay in progression towards AIDS
when compared to placebo [124, 125]. The benefits were evident for patients with more than 200 but less than
500 CD4+ cells per microliter of blood. However, patients who started AZT after receiving an AIDS diagno-
sis showed decreased mortality only in the first year of therapy, compared to placebo [126, 127]. Furthermore,
patients with more than 500 CD4+ cells per microliter of blood had no benefit in starting AZT therapy im-
mediately, when compared to patients who started therapy after their CD4+ cell count dropped below 500
cells per microliter of blood [127–129]. Since AZT therapy also resulted in neutropenia and anemia in a dose-
dependent fashion [124, 129], it was clear that the risks and benefits of AZT therapy had to be weighed against
each other. The benefits derived fromAZT intake mainly consisted in a transient increase in CD4+-cell counts
and a delay in disease progression. In-vitro AZT-susceptibility testing of isolates from patients who had been
treated with the drug showed that HIV-1 developed resistance against AZT [130]. Comparative sequencing of
AZT-resistant andwild-typeHIV-1 variants showed thatAZT-resistant variants accumulated certainmutations
[131]. Subsequently, the development of drug resistance by HIV-1 delivered an explanation for the transient
nature of the benefits of therapy with AZT. Following AZT’s approval by the FDA, three further NRTIs were
approved for treating HIV-1 infection: didianosine (ddI; 1991), zalcitabine (ddC; 1992), and stavudine (d4T;
1994; Table 1.5). After the HIV-1 variant infecting a patient developed resistance to AZT, the use of another
antiretroviral drug resulted again in a transient benefit for the patient with a delay in disease progression, but
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Table 1.5: NRTIs by Date of Approval by the FDA. Nucleoside and nucleoঞde reverse-transcriptase inhibitor (NRTI) formulaঞons
that have been approved by the Federal Drug Administraঞon (FDA) are tabulated below, by date of approval. All currently approved
NRTIs present risk of lacঞc acidosis, indicated in their respecঞve black-box warnings. Extracted from http://www.fda.gov/
ForPatients/Illness/HIVAIDS/Treatment/ucm118915.htm, accessed November 25th, 2015.

Brand Name Generic Name Approval Date Comments
Retrovir Zidovudine, azidothymi-

dine, ZDV, AZT
March 19th, 1987 Risk of hematological toxic-

ity, myopathy
Videx Didanosine, dideoxyinosine,

ddI
October 9th, 1991 Risk of potentially fatal ad-

verse reactions, pancreatitis,
severe hepatomegaly with
steatosis

Hivid Zalcitabine, ddC June 19th, 1992 Risk of potentially fatal ad-
verse reactions, severe pe-
ripheral neuropathy, pancre-
atitis, severe hepatomegaly
with steatosis, hepatic fail-
ure. No longer marketed

Zerit Stavudine, d4T June 24th, 1994 Risk of hepatomegaly with
steatosis, pancreatitis

Epivir lamivudine, 3TC November 17, 1995 Risk of lactic acidosis and
severe hepatomegaly with
steatosis

Combivir 3TC and AZT coformula-
tion

September 27, 1997 See 3TC and AZT

Ziagen Abacavir sulfate, ABC December 17th, 1998 Risk of severe hepatomegaly.
High risk of hypersensitivity
reaction in patients who
carry the HLA-B*5701 allele

Videx EC Enteric coated didanosine,
ddI EC

October 31st, 2000 See ddI

Trizivir ABC, AZT, and 3TC cofor-
mulation

November 14, 2000 See ABC, AZT, and 3TC

Viread Tenofovir disoproxil fu-
marate, TDF

October 26, 2001 Risk of severe hepatomegaly
with steatosis

Emtriva Emtricitabine, FTC July 2nd, 2003 Risk of severe hepatomegaly
with steatosis

Epzicom ABC and 3TC coformula-
tion

August 2nd, 2004 See ABC and 3TC

Truvada FTC and TDF coformula-
tion

August 2nd, 2004 See FTC and TDF
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Table 1.6: PIs by Date of Approval by the FDA. Protease inhibitor (PI) formulaঞons that have been approved by the Federal
Drug Administraঞon (FDA) are tabulated below, by date of approval. Extracted from http://www.fda.gov/ForPatients/
Illness/HIVAIDS/Treatment/ucm118915.htm and https://aidsinfo.nih.gov/drugs, accessed November
25th, 2015.

Brand Name Generic Name Approval Date Comments
Invirase Saquinavir mesylate December 6th, 1995
Norvir Ritonavir RTV March 1st, 1996 Risk of life threatening

drug-drug interactions
Crixivan Indinavir, IDV March 13th, 1996 Risk of nephrolithiasis and

renal toxicity
Viracept Nelfinavir mesylate, NFV March 14th, 1997
Fortovase Saquinavir November 7th, 1997 Soft-gel-capsule formulation

which is no longer marketed
Agenerase Amprenavir, APV April 15th, 1999 No longer marketed
Kaletra Lopinavir and RTV cofor-

mulation, LPV/r
September 15th, 2000 Coformulation with RTV

as a pharmacokinetic en-
hancer

Reyataz Atazanavir, ATV June 20th, 2003
Lexiva Fosamprenavir Calcium,

FPV
October 20th, 2003

Aptivus Tipranavir, TPV June 22nd, 2005 Risk of hepatotoxicity and
intracranial hemorrhage

Prezista Darunavir, DRV June 23rd, 2006
Evotaz ATV and cobicistat cofor-

mulation, ATV/c
January 29th, 2015 Coformulation with cobici-

stat as a pharmacokinetic
enhancer

Prezcobix DRV and cobicistat cofor-
mulation, DRV/c

January 29th, 2015 Coformulation with cobici-
stat as a pharmacokinetic
enhancer

no benefit on the long run [132]. Furthermore, antiretroviral drugs approved until 1994 displayed a very unfa-
vorable toxicity profile ( [133–135]; reviewed in [136, 137]). This motivated the attempt to improve therapy by
alternating monotherapy regimens [138, 139]. In 1995, a drug with a new mechanism of action was approved
by the FDA: saquniavir (SQV; Table 1.6), a protease inhibitor (PI). Although the drug was substantially better
tolerated than nucleoside analogs of the time [140], monotherapy with the drug failed to produce a sustained
decline in plasma VL due the development of drug resistance by the virus [141].

Progress Towards Triple Therapy

In order to attempt to delay the emergence of drug-resistant HIV-1 strains, the benefits of chemotherapy with
combinations of AZT and the nucleoside analogs ddC or ddI were investigated. When compared tomonother-
apy, dual therapywith nucleoside analogswas found to provide significant improvements in the survival, CD4+
depletion, and AIDS progression rates of patients [142, 143]. Nevertheless, the benefits were still not durable.
A further NRTI, lamivudine (3TC), was approved by the FDA in 1995. In-vitro experiments had shown that
3TC and AZT presented synergistic effects in inhibiting HIV-1 replication. This effect was due to the fact that

45

http://www.fda.gov/ForPatients/Illness/HIVAIDS/Treatment/ucm118915.htm
http://www.fda.gov/ForPatients/Illness/HIVAIDS/Treatment/ucm118915.htm
https://aidsinfo.nih.gov/drugs


Table 1.7: NNRTIs by Date of Approval by the FDA. Non-nucleoside reverse-transcriptase inhibitor (NNRTI) formulaঞons
that have been approved by the Federal Drug Administraঞon (FDA) are tabulated below, by date of approval. Ex-
tracted from http://www.fda.gov/ForPatients/Illness/HIVAIDS/Treatment/ucm118915.htm and https:
//aidsinfo.nih.gov/drugs, accessed November 25th, 2015.

Brand Name Generic Name Approval Date Comments
Viramune nevirapine NVP June 21, 1996 Immediate release formula-

tion
Rescriptor Delavirdine DLV April 4th, 1997
Sustiva Efavirenz EFV September 17th, 1998
Intelence Etravirine ETR January 18th, 2008
Viramune XR Nevirapine NVP March 25, 2011 Extended release formula-

tion
Edurant Rilpivirine RPV May 20th, 2011

viral variants that had selected for a resistance mutation against 3TC remained sensitive to AZT [144]. The
synergy of the drug combination was confirmed in clinical trials [145–149].

The possible benefits of triple therapy were tested with the PI SQV. While triple therapy with SQV, AZT,
and ddC was superior when compared to dual therapy, there was a progressive loss of antiviral efficacy in all
study arms [150]. This was partially due to the fact that SQV presents poor oral bioavailability [151]. In 1996, a
further drug with a novel mechanism of action was approved by the FDA: nevirapine (NVP; Table 1.7), a non-
nucleoside reverse-transcriptase inhibitor (NNRTI). Phase I/II clinical trials demonstrated that as a monother-
apy, the drug remained fully active for less than four weeks, after whichHIV-1 developed resistance to the drug.
In combination with AZT, however, the drug remained active for up to 12 weeks [152, 153]. Nonetheless, the
antiviral activity of dual therapy waned with time. Sustained antiviral activity lasting more than one year was
only seen in clinical trials testing triple therapy with AZT, ddI, andNVP. Specifically, in treatment-experienced
patients, the antiviral activity of AZT + ddI + NVP decreased with time and VLs tended to return to baseline
levels after 48 weeks of treatment [154]. In therapy-naïve patients, however, antiviral activity with this drug
combination was sustained [155]. Two further PIs were approved by the FDA in 1996: ritonavir (RTV) and
indinavir (IDV). RTV presented favorable pharmacological properties, including drug absorption over a pro-
longed period of time and a comparatively extended half life. This permitted twice-daily dosing of the drug
[156], a major break through at the time. Used as monotherapy, RTV resulted in a reduction in the VL that
tended to be less pronounced after 12 weeks of therapy. Nonetheless, after one year of monotherapy, at the
latest, resistant viral variants emerged [156, 157]. In combination with two nucleoside analogs, RTV therapy
lead to comparatively strong and sustained reductions in the VL, as well as increases in CD4+ cell counts. How-
ever, the drug presented a very unfavorable toxicity profile, with over 80% of patients experiencing side effects,
including peri-oral paresthesia and taste perversion [158, 159]. This forced 24% of the patients in one study
to discontinue medication with the drug [159]. In clinical trials testing IDV together with AZT and 3TC, an
unprecedented degree of viral suppression could be demonstrated. After 52 weeks of treatment, more than
80% of the patients presented VLs less than 500 copies per milliliter of blood serum, andmore than 60% of the
patients presented VLs below the limit of quantification of 50 copies per milliliter of blood serum [143, 160].
After two years of therapy, viral suppression below 500 copies per milliliter of blood serum was still given for
78% of the patients [161]. These results were very encouraging and made the drug combination very popular.
However, in the long run, IDV produced significant renal toxicity, with nephrolithiasis occurring in 9% of the
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patients [162]. The PIs SQV, RTV, IDV, and nelfinavir (NFV; approved by the FDA in 1997; Table 1.6) are
often classified as first-generation PIs. Common to all of them (except for RTV) is their poor oral bioavailability
[163], resulting in a high pill burden and low concentrations in blood. In contrast, RTV is an inhibitor of the
enzyme cytochrome P450 3A4. This enzyme metabolizes many drugs, including PIs. As mentioned before,
RTV is tolerated poorly at virologically active doses. However, a smaller dose of RTV (100mg) is well tolerated
and, coadministrated with other PIs, greatly improves their bioavailability and half life [164]. (This is called
boosting with ritonavir, denoted with /r). Around 1995, important scientific progress was made with respect to
the understanding of the disease. First, the fact that the quantity ofHIV-1 RNA in plasma predicts the progres-
sion of the disease was proven [32]. Second, it was discovered that HIV-1 also replicates during the clinically
latent stage of the disease [33, 34], and that this replication occurs in high titers, and is characterized by a rapid
viral turnover [107, 165]. Both scientific achievements significantly contributed to the understanding and diag-
nostics of the disease. In conjunction with the benefits of triple therapy, these achievements lead to significant
reductions in the morbidity and mortality caused by HIV-1 infection [99]. A further noteworthy achievement
is the discovery that AZT prevents mother-to-child transmission of HIV-1 [91].

Improving Combination Antiretroviral Therapy

cART, also called highly active antiretroviral therapy (HAART), is defined as treatment ofHIV-1 infectionwith
at least three different drugs of at least two different classes. Before cARTwas introduced into the clinic, HIV-1
was a death sentence for those infected. The introduction of cART transformed this deadly infection into a
manageable, chronic disease [99]. Although early cART rescued many lives, life quality of patients on early
cART was poor. cART is associated with short-, mid-, and long-term side effects, and early cART had espe-
cially severe side effects (reviewed in [136, 137]). Less severe side effects of antiretrovirals include headache, rash,
diarrhea, mood problems, insomnia, nightmares, nausea, vomiting, fatigue, and dizziness. The most detrimen-
tal adverse events occurring with all NRTIs result from the mitochondrial toxicity of these drug compounds.
This toxicity arises from the fact that NRTIs not only inhibit the viral RT (Sections 1.1.2 and 1.5.2), but also
the mitochondrial DNA polymerase γ [166, 167]. Inhibition of the mitochondrial DNA polymerase γ results
in reductions in the amount of mitochondrial DNA present in the cell [168], and in the production of dys-
functional mitochondrial protein. This, in turn, results in severely impaired mitochondrial function [169],
often manifesting as myopathy, neuropathy, lipoatrophy ([170, 171], Figure 1.14), lactic acidosis, and hepatic
steatosis (reviewed in [136, 172–174]; see also Table 1.5). The more recently approved nucleoside analogs 3TC,
abacavir (ABC), and emtricitabine (FTC), as well as the nucleotide analog tenofovir (TFV), are also toxic for
mitochondria, but to a decreased extent [136] (Table 1.5). For improving antiviral action, TFV is formulated
as the prodrug tenofovir disproxil fumarate (TDF), which is converted in the body to TFV (Section 1.5.2).
Recently, a combination tablet containing a new prodrug of TFV has been approved, tenofovir alafenamide
fumarate (TAF; Table 1.8). TAF promises an improved side-effect profile with regard to renal and bone toxi-
cities [175, 176], when compared to TDF. The PIs SQV, lopinavir (LPV), IDV, tipranaivr (TPV), and RTV
(Table 1.6) have been associated to dislipidemia (abnormal quantities of lipids in blood) [136, 177]. Improve-
ment of PIs has also taken place since the more recently approved PIs fosamprenavir (FPV), atanazavir (ATV),
and darunavir (DRV) (Table 1.6) do not seem to cause dislipidemia [136]. The reduced toxicity of newer com-
pounds represents an improvement in cART.

The reduction of the pill burden is a further improvement that cART has undergone over time. The
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Figure 1.14: Lipoatrophyof the Face. Therapywith nucleoside reverse-transcriptase inhibitors is associatedwith lipoatrophy, which
is part of larger clinical picture of changes in the fa�y-ঞssue distribuঞon in the body. Lipoatrophy is the result of asymmetric loss
of body fat in the extremiঞes and face. Lipodystrophy addiঞonally includes the accumulaঞon of body fat in the trunk. While
lipodystrophy does not directly cause harm, it is psychologically detrimental to the paঞent, and may affect drug adherence when
paঞents blame HIV-1 chemotherapy for this condiঞon. Image courtesy of AIDS Images Library http://www.aids-images.
ch.

high pill burden during early antiretroviral therapy was mainly due to three causes. First, during the time at
which monotherapy was widespread, there were attempts to retain drug activity in spite of drug resistance
with high and frequent doses (reviewed in [178]). Second, early PIs were characterized by low bioavailabil-
ity (as mentioned above), which required frequent intake of a large number of pills [179, 180]. Third, there
has been a need to counteract the side effects of antiretrovirals with further medication. Furthermore, ad-
ditional drugs are needed for treating opportunistic infections [181–183]. The pill burden in a patient co-
hort from South Alberta, Canada, was calculated for the years 1990 to 2010 [184]. Canada boasts different
private and public health insurance schemes that facilitate access to antiretroviral drugs for most residents of
the country (http://www.catie.ca/en/practical-guides/managing-your-health/19, Accessed
March 1st, 2016), such that the SouthAlberta Cohort can be thought to be exemplary for a resource-rich setting.
In 1990, patients in this cohort had a totalmeanpill burden of 4.9 (the standard deviation is given in parenthesis,
in the following; 3.1) pills per day, which is decomposed in 4.6 (2.5) pills per day, on average, for antiretrovirals
and 0.2 (1.9) pills per day, on average, for other medication. Thereafter, the total mean number of pills per day
peaked in 1998, with 12.1 (6.9), which is decomposed in a mean of 10 (6.1) pills per day for antiretrovirals, and
1.7 (3.2) pills per day, on average, for other medication. After this peak, the total mean number of pills per day
decreased to 6.8 (5.6) in 2006, decomposed in 3.8 (3.0) pills per day, on average, for antiretrovirals and 2.4 pills
per day, on average, for other medication. In the years following 2006, and until 2010, these figures did not
change much. With respect to intake frequency, from 1990 to 1996, most patients in the South Alberta Co-
hort had to take their medication three times a day. The intake frequency of most patients could be reduced to
twice daily between 1998 and 2006, with a further reduction to once-daily from 2008 on. The following factors
contributed to the reduction of pill burden over time. (1) The use of drug formulations with improved phar-
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Table 1.8: Mulধ-Class coformulaধons by Date of Approval by the FDA. Mulঞ-class coformulaঞons that have been approved
by the Federal Drug Administraঞon (FDA) are tabulated below, by date of approval. Extracted from http://www.fda.
gov/ForPatients/Illness/HIVAIDS/Treatment/ucm118915.htm and https://aidsinfo.nih.gov/drugs,
accessed November 25th, 2015. Note: cobicistat is a pharmacokineঞc enhancer.

Brand Name Generic Name Approval Date Comments
Atripla FTC, TDF, and EFV cofor-

mulation
July 12th, 2006 See Tables 1.5 and 1.7

Complera FTC, TDF, and RPV cofor-
mulation

August 10th, 2011 See Tables 1.5 and 1.7

Stribild FTC, TDF, EVG, and cobici-
stat coformulation

August 27, 2012 Coformulation with cobici-
stat as a pharmacokinetic
enhancer. See Table 1.5

Triumeq 3TC, ABC, and DTG cofor-
mulation

August 22, 2014 See Tables 1.5 and 1.9

Dutrebis 3TC and RAL coformula-
tion

February 6th, 2015 See Tables 1.5 and 1.9

Genvoya Tenofovir alafenamide fu-
marate (TAF), FTC, EVG,
and cobicistat coformulation

November 5th, 2015 Risk of fatal hepatomegaly
with steatosis. See Tables 1.5
and 1.9.

macological properties [185, 186]; (2) the use of RTV ([185]; see above), and later also cobicistat (boosting with
cobicistat is denoted by /c) [187], as a pharmacokinetic enhancers; (3) the introduction of tablets containing
more than one drug compound (coformulation tablets; Tables 1.5, 1.6, 1.8). The reduction in the pill burden of
cART has improved patient adherence, and thus lowered therapy failure rates [188, 189], as well as enhanced
the quality of life of HIV-1-infected patients.

After the introduction of reverse-transcriptase inhibitors (RTIs) and PIs, drugs with other mechanisms of
action have followed. Specifically, enfuvirtide (T-20) [190], a fusion inhibitor (FI), was approved by the FDA
on March 13th, 2003. T-20 must be administered by subcutaneous injection, and reactions localized in the in-
jection site occur in 98 percent of patients treated with T-20. These include pain, erythema, pruritus (itching),
and enduration (hardening). Due to the inconvenient administration form of the drug (parenterally with the
need to reconstitute § the drug prior to use) and its side effects, T-20 is only used as a further active compound in
patients with HIV-1 drug resistance who cannot be treated otherwise. Nonetheless, T-20 represents a further
therapy option. Maraviroc (MVC) [191] is an entry inhibitor (EI) that is only active on CCR5-tropic viruses
(Section 1.1.2). It was approved by the FDA on August 6th, 2007. In three clinical studies, the drug showed
favorable tolerability with less (91.9%) therapy-naïve patients experiencing adverse events when treated with
MVC as compared to treatment with efavirenz (EFV) (94.2 %; Table 1.7) [192, 193]. Nonetheless, the FDA has
issued a black-box warning regarding the hepatotoxicity of MVC (http://www.fda.gov/ForPatients/
Illness/HIVAIDS/Treatment/ucm118915.htm, accessed November 25th, 2015). MVC has not been very
successful in terms of the fraction of patients treated with the drug, for the following reasons. (1) Viral tropism
determination must precede prescription of the drug [191]. (2) It is not possible to take the drug (only) once
daily. (3) In therapy-naïve patients, the drug failed to show non-inferiority against efavirenz [193] and, in com-

§In the context of injectable drugs, reconstitution is the process of mixing a drug that is present in a powdered form
with a diluent. This is done in order to be able to inject the drug in a liquid form into a patient’s body.
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Table 1.9: INIs by Date of Approval by the FDA. Integrase-inhibitor (INI) formulaঞons that have been approved by the Federal
Drug Administraঞon (FDA) are tabulated below, by date of approval. Extracted from http://www.fda.gov/ForPatients/
Illness/HIVAIDS/Treatment/ucm118915.htm and https://aidsinfo.nih.gov/drugs, accessed November
25th, 2015.

Brand Name Generic Name Approval Date Comments
Isentress Raltegravir RAL October 12th, 2007
Vitekta Elvitegravir EVG September 24, 2014
Tivicay Dolutegravir DTG August 13th, 2013

binationwithDRV/r, against TDF+FTC [194]. Even so,MVC is an effective andwell-tolerated therapy option
for patients harboring CCR5-tropic viruses. Last, but not least, three integrase strand-transfer inhibitors (INIs)
have been approved by the FDA for use in antiretroviral therapy (Table 1.9), along with coformulations of INIs
with other antiretroviral drugs (Table 1.8). Raltegravir (RAL) [195, 196] was the first INI approved by the
FDA, in 2007. In a phase III clinical trial on treatment-naïve patients, VL decay in patients treated with RAL
was significantly faster than in patients treated with EFV [197], which was unprecedented up to that point in
time. RAL is well tolerated, with less than 2.4% of the patients experiencing a severe study-drug-related clini-
cal adverse event, and fewer therapy-naïve patients experiencing clinical adverse events while treated with RAL
(90%), when compared to those treated with EFV (96.5%) [197, 198]. Despite these favorable characteristics,
once-daily dosing of RAL is not possible. In part, this is due to the fact that pharmacokinetic enhancement of
RAL with RTV is not possible, as the drug is not metabolized by cytochrome P450 enzymes. In contrast, the
second INI approved by the FDA, elvitegravir (EVG) [199], can be boosted with a pharmacokinetic enhancer
such as RTV or cobicistat, which allows for once-daily dosing [199, 200]. In one study comparing EVG to
RAL, 75% of patients treated with EVG had a VL below 50 copies per milliliter of blood serum 48 weeks after
treatment initiation, as compared to 73% of the patients treated with RAL [201]. With respect to toxicities,
1.1% of patients treated with EVG experienced a severe, study-drug-related adverse event, compared to 2% of
patients treated with RAL. Thus, both drugs have similar efficacy. However, EVG, in contrast to RAL, permits
once-daily dosing and an EVG-containing, once-daily combination tablet has been approved by the FDA (Table
1.9). Unfortunately, extensive cross-resistance between RAL and EVG can occur, with five out of six mutation
patterns conferring high-level drug resistance to RAL also conferring high-level resistance to EVG, and vice
versa (http://hivdb.stanford.edu/pages/phenoSummary/Pheno.INI.Simple.html, accessed De-
cember 2nd, 2015; see also Section 1.5.3). The third INI approved by the FDA (in 2013), dolutegravir (DTG)
[202, 203], has surpassedRAL andEVG in several aspects. First, DTG remains active in several EVG- andRAL-
resistant HIV-1 variants, and has a higher genetic barrier to drug resistance ¶ [204–206]. Up to now, no cases
of development of resistance to DTG have been reported in therapy-naïve patients who started therapy with
DTG [204]. Second, DTG can be dosed once daily without the need for a pharmacokinetic enhancer. This is
advantageous, as boosting of antiretrovirals is associated with an increased risk of drug-drug interactions [202].
A DTG-containing once-daily single combination tablet has been approved by the FDA (Table 1.9). Third, in
several clinical trials, DTG has been shown to be statistically superior to RAL [207], DRV/r [208], and EFV
[209], 48weeks after treatment initiation. At the same time, DTGhas a favorable toxicity profile, with the odds

¶The genetic barrier to drug resistance is the probability that anHIV-1 variant will develop resistance to a certain drug
within a certain amount of time. This probability is sometimes expressed with a correlated measure, e.g. the number of
substitutions in the nucleotide sequence of an HIV-1 gene that are necessary for the virus to become resistant to the drug
in question.
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of experiencing an adverse event while on DTG therapy being significantly lower when compared to ATV/r,
EFV, and LPV/r, and insignificantly different when compared to DRV/r, EVG/c, RAL, and rilpivirine (RPV;
Table 1.5) [210]. In summary, the development of further drugs with novelmechanisms of action has improved
cART in four aspects. (1) Several single-tablet once-daily regimens have become available, fostering adherence
and improving intake convenience. (2) Improved and novel drug mechanisms of action allow for full antiviral
activity in viral strains that could have been previously deemed untreatable. Furthermore, drugs with a higher
genetic barrier to drug resistance have become available. (3) The side-effect profiles of these newer drug com-
pounds aremore favorable. (4) The efficacy of the drugs has risen, with faster, more prevalent andmore durable
viral suppression below the limit of quantification of 50 HIV-1 RNA copies per milliliter of blood serum.

Recommendations on when to start antiretroviral therapy have changed over time. In the time at which
monotherapy was widespread, the first guidelines for the treatment of HIV-1 infection were published in 1990,
recommending initiation of AZT monotherapy only after the CD4+-cell count had dropped below 500 cells
per microliter of blood [129]. After the development of effective cART, theoretical reasoning led to the rec-
ommendation of initiating triple therapy early (Table 1.10). The reasons for this recommendation were the
observation that treatment during primary infection had shown a clinical benefit and the understanding that
the viral population in a patient becomesmore diverse as the disease progresses. However, this recommendation
was not backed by clinical data, as they were lacking at the time [211, 212]. Later on, however, experience with
cART showed that treatment was disadvantageous for the patient, as it bore the risk of serious drug-related ad-
verse effects and of limitation of future treatment options due to resistance development (Section 1.5.3). cART
has the ability to protect and therefore allow for the restoration of CD4+ cells and general immune function,
and to avoid HIV-associated complications that may occur regardless of CD4+-cell count. Furthermore, it can
reduce the risk of HIV-1 transmission to nearly zero. However, it was thought that the risks of initiating treat-
ment (serious drug-related adverse effects and limitation of future treatment options), with a CD4+ cell count
above 350 cells per microliter of blood, outweighed the benefits of viral suppression, as the risk of progression
is inversely proportional to CD4+-cell counts [213, 214]. As further and better antiretroviral drugs were ap-
proved (see above), the risks associated with cART decreased. Specifically, (1) single-tablet, once-daily regimens
substantially increased the convenience for the patient. (2) Concerns about the preservation of future treat-
ment options were substantially diminished as more potent drugs and drugs with novel mechanisms of action
were approved. (3) Newer drugs present a better tolerability and are associated with fewer toxicities. As clinical
studies showed that the benefits of new drugs and new formulations of these drugs translated into a clinical ad-
vantage for patients who start treatment earlier, recommendations on when to start treatment gradually raised
the CD4+-cell-count treatment-initiation threshold [215]. The most recent guidelines recommend treatment
of all persons with HIV-1 infection as early as possible, regardless of CD4+-cell counts (Table 1.10).

1.5.2 Mechanism of Action of Antiretroviral Drugs

In the following, the mechanism of action of the most important classes of antiretroviral drugs is summarized.
First, NRTIs and NNRTIs are presented, which are both RT inhibitors. Then, PIs and INIs are briefly re-
viewed. Last, antiretroviral drugs preventing the entry of HIV-1 into the cell are presented.

Nucleoside and Nucleotide Reverse-Transcriptase Inhibitors

Phosphorylated NRTIs (Figure 1.15) are analogs of cellular 2’-deoxynucleotides (Figure 1.16). All NRTIs
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Table 1.10: IAS-USARecommendaধons for Treatment Iniধaধon by Publicaধon Year. IAS-USA guidelines (http:/www.iasusa.
org/guidelines-archive/; accessed December 2nd, 2015) on when to start anঞretroviral therapy have changed over ঞme.
Below, CD4+-count-dependent criteria for treatment iniঞaঞon are tabulated. The term individualize ellipঞcally refers to paঞent-
specific treatment iniঞaঞon depending on CD4+-cell count, CD4+-cell decline, viral load, comorbidiঞes, and other paঞent-specific
factors. CD4+-cell counts are expressed in terms of cells per microliter of blood, and viral loads in terms of HIV-1 RNA copies per
milliliter of blood serum. VL: viral load

Year / CD4+
cell count < 200 200− 350 350− 500 > 500
1996 Treat Treat Treat Treat if symp-

tomatic or VL
greater than 30
000 copies/ml or
rapid decline in
CD4+ cells

1998 Treat Treat Treat if VL
greater than 5,000
copies/ml, oth-
erwise consider
treatment initia-
tion

See left

2002 Treat Treat if symp-
tomatic. Other-
wise, individualize

See left See left

2004 Treat Treat if symp-
tomatic. Other-
wise, individualize

Treat if symp-
tomatic. Other-
wise defer treat-
ment

See left

2006 Treat Treat if symp-
tomatic. Other-
wise, individualize

Treat if symp-
tomatic. Other-
wise defer treat-
ment

See left

2010 Treat Treat Treat Treat if symp-
tomatic or in acute
phase. Otherwise,
individualize

2012 Treat Treat Treat Treat
2014 Treat Treat Treat Treat

http:/www.iasusa.org/guidelines-archive/
http:/www.iasusa.org/guidelines-archive/
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ঞon into nucleoside triphosphates. The affinity of cellular polymerases for the phosphorylated forms of NRTIs is much reduced,
compared to endogenous nucleoঞdes. This results from their chemical differences to cellular 2’-deoxynucleoঞdes. However, the
affinity of HIV-1 reverse transcriptase for phosphorylated NRTIs is comparable to its affinity for endogenous nucleoঞdes. NRTIs
lack a 3’-hydroxl group, making their phosphorylated forms 2’-3’-dideoxynucleoঞde analogs. Therefore, their incorporaঞon by the
viral reverse transcriptase into a growingDNAmolecule leads to the inability of the enzyme to incorporate further nucleoঞdes, thus
impeding reverse transcripঞon of viral RNA into DNA. Source: https://pubchem.ncbi.nlm.nih.gov/. 3TC: lamivudine;
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are formulated as prodrugs. A prodrug is a drug compound that requires metabolization in the body in or-
der to become pharmacologically active. In order to be antivirally active, NRTIs need to be converted from
2’-3’-dideoxynucleosides (except for TFV) to 2’-3’-dideoxynucleoside triphosphates through several phospho-
rylation reactions. TFV presents two particularities. First, TFV is formulated as either the prodrug TDF or
the prodrug TAF. Second, TFV is a nucleotide analog, specifically, a 2’-3’-dideoxynucleoside monophosphate
that requires further phosphorylation in order to be converted to the triphosphate, active form. Phosphory-
lation rates differ among NRTIs, which affects the concentrations of their active forms. Due to the chemical
differences between cellular 2’-deoxynucleosides and NRTIs, most endogenous polymerases have a substan-
tially reduced binding affinity to the triphosphate forms of NRTIs. However, the binding affinity of the viral
RT to NRTI triphosphates is equal or only slightly reduced in comparison to endogenous deoxynucleotides.
Thus, NRTI triphosphates compete with cellular deoxynucleoside triphosphates for incorporation by the viral
RT during proviral DNA synthesis. Once incorporated into a growing DNA chain, their lack of a 3’-hydroxl
prevents the incorporation of further nucleotides, thus interrupting proviral DNA synthesis [216, 217].

Non-Nucleoside Reverse-Transcriptase Inhibitors

NNRTIs (Figure 1.17) are non-competitive inhibitors of the viral RT. This inhibition occurs through the in-
duction of theNNRTI binding pocket by the inhibitor and subsequent binding of the inhibitor to this pocket.
The NNRTI binding pocket is not present in RT when no NNRTI is bound. The NNRTI binding pocket is
hydrophobic and consists of the residues L100, K101, K103, V106, T107, V108, V179, Y181, Y188, V189, G190,
F227, W229, L234, and Y318 of the RT subunit p66, and the residue E138 of the other RT subunit, p51 (Fig-
ure 1.18). The NNRTI binding pocket is located at a distance of approximately 10 Å from the catalytic site
of RT. Binding of NNRTIs to RT results in conformational changes that reduce the catalytic activity of the
enzyme. In contrast to NRTIs, NNRTIs present a comparatively high target selectivity which makes them
HIV-1-specific RT inhibitors [217, 218].

Protease Inhibitors

PIs (Figure 1.19) prevent viral maturation by inhibiting the viral enzyme PR. PR (Figure 1.20) cleaves viral

54

https://pubchem.ncbi.nlm.nih.gov/


(a) View of the Acঞve Site (b) View of the Region behind the Acঞve Site

Figure 1.18: NNRTI Binding Pocket. Two views of the molecular surface of HIV-1 reverse transcriptase can be seen above. (a)
shows the acঞve site of the protein, while (b) shows the region behind the acঞve site of the protein. The reverse transcriptase
consists of two funcঞonal subunits: p51 and p66. In both figures, p51 is displayed in green, while p66 is displayed in blue. The
residues L100, K101, K103, V106, T107, V108, V179, Y181, Y188, V189, G190, F227, W229, L234, and Y318 of p66, and the
residue E138 of p51 consঞtute theNNRTI binding pocket. These residues are displayed in red. Coordinate axes have been included
in the lower le[ corners. Source: http://www.rcsb.org/. ID: 3HVT. Images generated with PyMOL.

gag and gag-pol polyproteins into their functional forms. All PIs but TPV are competitive peptidomimetic in-
hibitors, with a structure similar to that of the natural substrate of PR. In contrast, TPV is not peptidomimetic.
All PIs bind to the active site of PR.Cleavage of peptidomimetic inhibitors is prevented through a hydroxylethy-
lene core (Figure 1.19). [185].

Integrase Strand-Transfer Inhibitors

The viral enzyme IN (Figure 1.21) binds to the double-stranded proviral DNA that results from reverse tran-
scription, and mediates the integration of proviral DNA into the host cell’s genome. INIs (Figure 1.22) bind to
the active site of IN following a DNA-induced conformational change. This active site is formed by the amino
acids with reference-alignment positions 50 to 212. Probably, proviral DNA is part of the binding site of INIs.
Their binding to IN sequesters metal ions that are essential for the strand-transfer reaction that is responsible
for incorporating the proviral DNA into the cellular DNA. In this way, the integration of proviral DNA into
the host’s genome is inhibited [219, 220].

MVC and T-20

EIs constitute an antiretroviral drug class of which onlyMVC (Figure 1.23) has been approved for treatment of
HIV-1 infection. MVC binds to a hydrophobic pocket in the transmembrane helices of CCR5 (Section 1.1.2),
altering the conformation of the extracellular portions of the loops formed by the transmembrane helices. It is
believed that this conformation change disturbs the binding of HIV-1 to CCR5. Since the CCR5 binding site
of MVC is different from the CCR5 binding site of gp120 (Sections 1.1.1 and 1.1.2), entry inhibition by MVC
is allosteric. The CXCR4 coreceptor is not inhibited byMVC.Hence, MVC is only active against CCR5-tropic
viruses (Section 1.1.2), and viral tropism determination must precede MVC prescription [221].

FIs block gp41-mediated membrane fusion. The drug T-20 is the only representative of this class that has
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binding to HIV-1 protease. All protease inhibitors except for TPV are pepঞdomimeঞc and feature a hydroxylethylene core that
prevents their cleavage by the viral protease. (Conঞnued in the next figure.) Source: https://pubchem.ncbi.nlm.nih.
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(a) View of the Acঞve Site (b) View of the Region behind the Acঞve Site

Figure 1.20: HIV-1 Protease. Two views of the molecular surface of HIV-1 protease can be seen above. (a) shows the acঞve site
of the protein, while (b) shows the region behind the acঞve site of the protein. HIV-1 protease consists of two idenঞcal subunits,
colored in green and blue above. Each one of these subunits consists of 99 amino acids. Coordinate axes have been included in
the lower le[ corners. Source: http://www.rcsb.org/. ID: 3OXC. Images generated with PyMOL.

been approved for treatment of HIV-1 infection. T-20 is a linear synthetic peptide composed of 36 amino
acids: Ac-Y-T-S-L-I-H-S-L-I-E-E-S-Q-N-Q-Q-E-K-N-E-Q-E-L-L-E-L-D-K-W-A-S-L-W-N-W-F-NH2. The fi-
nal step in the process ofHIV-1 entry into the cell is the fusion of the viral membranewith themembrane of the
infected cell. This last step involves the formation of a six-helix bundle structure through the interaction of two
heptad-repeat domains in gp41: HR1 and HR2. The amino-acid sequence of T-20 is identical to a fragment
of the sequence of HR2. Thus, T-20 is an inhibitor of the HR1-HR2 domain interaction through competitive
binding to the HR1 domain. The disruption of the HR1-HR2 domain interaction precludes the fusion of the
viral and cellular membranes [221].

1.5.3 The Emergence of Drug Resistance

Two characteristics of HIV-1 result in the continuous generation of many new viral variants. (1) HIV-1 repli-
cates in high titers, with 10.3× 109 new virions produced each day, on average [107]. (2) The viral enzyme RT
lacks proof-reading ability [104], resulting in 3.4×10−5 mutations per bp per replication cycle [105]). Further-
more, the cellularDNAdeaminase APOBEC3G contributes to the generation of new viral variants by inducing
G-to-A mutations in the HIV-1 genome [222]. An antiretroviral drug exerts a selective pressure that can filter
out viral variants that are susceptible to that drug, while drug-resistant variants are selected. This process is fur-
ther facilitated if drug concentrations, in the body as a whole or in certain compartments of the body, sink to
subinhibitory levels. Thus, the probability that drug-resistant variants will emerge is correlated with the extent
of viral replication while the drug is present in the body of a patient. Usually, the simultaneous intake of at least
three drugs is required in order to reduce viral replication to levels that allow for several years of antiretroviral
treatment before clinically-relevant drug-resistant variants are selected [217]. The emergence of drug-resistant
HIV-1 strains through treatment can occur with each of the available antiretroviral drugs. Furthermore, resis-
tance selected by one drug can also confer resistance to other drugs that have not been previously used by the
patient. This phenomenon, named cross-resistance, occurs among drugs with the same mechanism of action
(Section 1.5.2).
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(a) Zinc-Binding Region (b) Catalyঞc Core Domain

(c) DNA-Binding Region

Figure 1.21: HIV-1 Integrase. HIV-1 integrase is conformed by three domains: the zinc-binding domain (a), the catalyঞc core
domain (b), and the DNA-Binding domain (c). To my knowledge, no crystal structure of the enঞre protein exists. Source: http:
//www.rcsb.org/. IDs: 1K6Y, 1QS4, and 1EX4, respecঞvely. Images generated with PyMOL.
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Figure 1.23: Chemical Structure of MVC. Maraviroc (MVC) binds to the CCR5 chemokine receptor on the surface of the cell and
hinders the entry into the cell by CCR5-tropic HIV-1 strains. Source: https://pubchem.ncbi.nlm.nih.gov/.

Once a resistant variant has been selected in a patient, it can be transmitted to another patient. When drug
resistance is transmitted, the therapy options of the newly infected patient can be limited. Treatment-selected
drug-resistant variants often revert to the wild type when drug pressure is removed [223]. This can occur when
the treatment of a patient is interrupted or when a drug-resistant viral strain is transmitted to a new host. Re-
version to wild type becomes apparent through longitudinal sequencing of the virus circulating in the blood
plasma (before and after reversion). However, drug-resistant variants can be archived in the body of the patient
and promptly reemerge upon resumption of drug pressure [224].

Resistance to NRTIs

There are two known general mechanisms by which HIV-1 can become resistant to NRTIs. The first one in-
volves the selection of discriminatory mutations at the RT reference-alignment positions 65, 74, 115, 151, and
184 (Figure 1.24), among others. Residues at these reference positions make important contacts with NRTIs,
and are thus crucial for the binding affinity of the viral RT to NRTIs. Discriminatory mutations reduce the
binding affinity of RT to phosphorylated NRTIs, but not to endogenous deoxynucleotides. This diminishes
the incorporation of NRTIs into the growing proviral DNA, and allows for the continuation of the viral repli-
cation cycle in the presence of the drug. The second general resistance mechanism involves mutations at the
reference-alignment positions 41, 67, 210, 215, and 219 (Figure 1.24), among others. Mutations at these residues
can lead to an increased rate of excision of incorporated NRTIs, thus reversing chain termination and allow-
ing for continuation of the polymerization reaction [216, 217, 220]. For tables summarizing NRTI-resistance
mutations by drug, see [225].
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Figure 1.24: NRTI Drug-Resistance Mutaধons. Two views of the molecular surface of HIV-1 reverse transcriptase can be seen
above. Both views depict the acঞve site of the protein. The reverse transcriptase consists of two funcঞonal subunits: p51 and
p66. In both figures, p51 is displayed in green, while p66 is displayed in blue. The residues K65, L74, Y115, Q151, and M184 of
p66 (shown in red) are involved in the selecঞon of drug-resistance mutaঞons that confer HIV-1 the ability to discriminate between
cellular nucleoঞdes and nucleoঞde analogs. The residuesM41, D67, L210, T215, and K219 of p66 (shown inmagenta) are involved
in the selecঞon of drug-resistance mutaঞons that increase the rate of excision of incorporated NRTIs. Coordinate axes have been
included in the lower le[ corners. Source: http://www.rcsb.org/. ID: 3HVT. Images generated with PyMOL.

Resistance to NNRTIs

Resistance mutations at the RT reference-alignment positions 100, 101, 103, 106, 179, 181, 188, 190, and 236 can
confer resistance to NNRTIs (Figure 1.18). Most NNRTI resistance mutations are found in and around the
NNRTI binding pocket (Section 1.5.2). Three general mechanisms forNNRTI resistance have been described.
(1) Loss or change of key hydrophobic interactions betweenNNRTIs andRT throughmutations of the amino-
acid residues Y181, Y188, and F277. (2) Steric hindrance of NNRTI binding through mutations at amino-
acid residues L100 and G190. These two residues are in the central region of the NNRTI binding pocket. (3)
Mutations at residues K101 and K103 which are located at the entrance of the NNRTI binding pocket. These
mutations cause interference with the entry of NNRTIs into the NNRTI binding pocket [217]. For tables
summarizing NNRTI-resistance mutations by drug, see [225].

Resistance to PIs

The development of resistance to PIs is a gradual process resulting from the accumulation ofmajor andminor
PI-resistance mutations. Major PI-resistance mutations (Figure 1.25) confer drug resistance by themselves, are
usually selected first, and result in a widening of the active site of PR. This widening causes decreased binding of
PIs to PR, but at the same time, it reduces the catalytic activity of PR, thus decreasing viral replication. Minor
PI-resistance mutations do not confer drug resistance by themselves, but rather restore the decreased replica-
tion capacity caused by the selection of major resistance mutations. Minor PI-resistance mutations are usually
selected after major PI-resistance mutations have been selected. However, some minor PI-resistance mutations
occur naturally, i.e. in the absence of PI pressure. In addition to the selection of minor PI-resistance mutations,
co-evolution of the PR cleavage sites in gag and gag-pol and their surrounding regions play a role in the restora-
tion of replication capacity after major PI mutations have been selected [185, 220]. For tables summarizing
PI-resistance mutations by drug, see [225].
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Figure 1.25: PI Major Drug-Resistance Mutaধons. Two views of the molecular surface of HIV-1 protease can be seen above. In
both views, the acঞve site of the protein can be seen. The protease consists of two idenঞcal subunits, colored in green and blue
above. In both figures, residues D30, V32, M46, I47, G48, I50, I54, Q58, T74, L76, V82, N83, I84, N88, and L90 are marked in red,
as they are involved in the selecঞon of major drug-resistance mutaঞons against at least one protease inhibitor. Coordinate axes
have been included in the lower le[ corners. Source: http://www.rcsb.org/. ID: 3OXC. Images generated with PyMOL.

Resistance to INIs

Themechanismbywhich resistance to INIs is developed is not yet sufficiently understood. Currently, the struc-
ture of the full-length IN enzyme is not available, although structures of fragments of the enzyme containing
its catalytic core (residues 50-212) do exist ([205, 226] and search query on http://www.pdb.org, December
10th, 2015). Even though the bindingmode of INIs to IN fragments has been analyzed [205], resistance against
INIs can only be described in terms of the mutations that are present in INI-resistant HIV-1 strains. For ta-
bles summarizing INI-resistance mutations by drug, see [225]. Resistance against RAL has been characterized
with clinical data, showing that twomain resistance pathways exist, as well as a third, less frequent one. The first
resistance pathway involves development of the IN substitutionsQ148H/K/R, often followed by accessorymu-
tations at the IN residues number 74, 92, 97, 136, 138, 140, and 151 (Figure 1.26). The second resistance pathway
usually starts with the substitutionN155H, with occasional subsequent development of accessorymutations at
the IN residues number 74, 97, 157, and 163 (Figure 1.26). The third, less frequent resistance pathway is charac-
terized by the appearance of the substitutions Y143C/H/R, followed by accessory substitutions at IN residues
number 74, 97, and 163 (Figure 1.26). The resistance-mutation profile of EVG is similar to that of RAL. Specif-
ically, resistance to EVG occurs with pathways involving mutations at IN residues number 148 and 155, and
their corresponding accessory substitutions. The resistance pathway involving IN residues number 143, how-
ever, does not affect EVG susceptibility. DTG remains effective on viruses that have selected INI drug-resistance
mutations includingmutations at IN residues number 148, 155, and 153 [220]. Furthermore, DTGpresents the
particularity that no de novo resistance mutations against the drug have been reported in previously treatment-
naïve patients treated with the drug. However, this does not hold for treatment-experienced patients, even if
they are INI naïve, as the emergence of DTG-resistance mutations in IN have been reported. Nonetheless, suc-
cess rates with treatment-experienced patients treated with DTG remain high [227]. In vitro, the selection of
DTG resistance mutations at IN residues number 121, 153, 118, 138, and 263 have been reported, with muta-
tion R263K being the most common mutation. Although R263K confers low-level resistance to DTG, it also
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Figure 1.26: INI Drug-Resistance Mutaধons. Two views of the molecular surface of catalyঞc core of HIV-1 integrase can be seen
above. In both figures, residues Q148, N155, and Y143 are colored in red, blue, and orange, respecঞvely. Each of these residues is
involved in a disঞnct resistance pathway. Residues L74, E92, T97, K136, E138, G140, E157, and G163 are colored in gray. These
residues are involved in the selecঞon of accessory mutaঞons which follow the selecঞon of mutaঞons at residues Q148, N155,
and Y143. Coordinate axes have been included in the lower le[ corners. Source: http://www.rcsb.org/. ID: 2ITG. Images
generated with PyMOL.

impairs strand-transfer activity and viral replication capacity. Therefore, it has been suggested that during ther-
apy with DTG, the virus is unable to select for further resistance mutations against DTG and also against other
antiretroviral compounds used in the therapy [204].

Resistance to MVC and T-20

HIV-1 resistance to MVC can be given in two ways. (1) CXCR4-tropic strains exhibit a natural resistance to
MVC, as the drug only inhibits theCCR5 coreceptor. Thus, the presence or emergence ofCXCR4-tropic strains
results in resistance to the drug compound. (2) CCR5-tropic strains can select formutations in the env gene that
will allow them to use the MVC-bound CCR5 coreceptor while remaining phenotypically CCR5 tropic. Key
residues forMVC resistance are 316 and 326, located in the third hypervariable loop of gp120 (V3). Resistance to
T-20 ismediatedby substitutions at gp41 residuesnumber 36 to 38, located atHR1, aswell as other substitutions
located in the vicinity of these residues. Since these mutations have a negative impact on the replicative capacity
of the virus, compensatory mutations in HR2 may appear as well [226].

1.5.4 Antiretroviral Therapy Today

In this section, I summarize the goals of and recommendations for modern antiretroviral therapy, as defined by
panels of American and European experts [228, 229]. Due to the high extent of infrastructure and monetary
resources required to carry them out, many of the recommendations are only feasible in resource-rich settings.

Goals of Antiretroviral Therapy

The goals of antiretroviral therapy for HIV-1 infection can be summarized as follows.

• Stop replication of HIV-1
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• Restore and/or preserve immune function
• Prevent transmission of HIV-1
• Alleviate symptoms of HIV-1 infection
• Stop viral diversification
• Reduce inflammation and persistent immune activation
• Preserve lymphoid tissue integrity
• Allow for pre- and post-exposure prophylaxis against HIV-1 infection.

These goals can be reached with antiretroviral chemotherapy, many times at the expense of drug toxicity and
the inconvenience associated with the therapy.

When Should Antiretroviral Therapy Be Started?

As reviewed in Section 1.5.1, recommendations onwhen to start antiretroviral therapy are based on the presence
or absence of symptoms in persons withHIV-1 infection, as well as on their CD4+ counts. Currently, initiation
of antiretroviral therapy at the earliest possible time is recommended, as this is thought to bear no additional
harm, entail health benefits, and be cost effective. However, the recommendation to initiate treatment is given
more emphasis during primary HIV-1 infection (Section 1.2.2), if HIV-1 infection is symptomatic, or if CD4+-
cells counts have sunk below 350 cells per microliter of blood. Antiretroviral treatment during primary HIV-1
infection promises benefits that can be retained throughout the life of the patient (Section 1.2.2): reduction
of symptoms of ARS; reduction of VL set point and of the size of the viral reservoir; reduction of viral diver-
sity; preservation and robust reconstitution of immune function with CD4+-cell counts above 900 cells per
microliter of blood serum; preservation of lymphoid tissue integrity; reduction of inflammation and immune
activation. A further, important benefit promised by treatment of primaryHIV-1 infection is the prevention of
HIV-1 transmission, as most transmissions of the virus occur during primary infection. Primary HIV-1 infec-
tion is thought to be a major driver of the pandemic. The recommendation to start treatment in asymptomatic
patients with chronic HIV-1 infection, and CD4+-cell counts above 350 cells per microliter of blood serum is
formulated in a less pressing fashion, with an emphasis on patient readiness to start treatment. Once initiated,
antiretroviral therapy should not be interrupted, probably for the rest of the patient’s life. Therefore, a strong
commitment to therapy is required from the patient, especially in light of the possible short- and long-term
drug toxicities that are to be expected as a result of treatment and the inconvenience associated to the treatment.
Patient adherence is crucial to successful treatment, since lack of adherence can compromise viral suppression
and foster the development of resistance.

Treatment with Antiretroviral Drugs

Genotypic resistance testing (Section 3.2) must precede initiation and, if possible, any changes in treatment.
Among the possible treatment regimens for which safety and efficacy data are available, only a subset is recom-
mended as first-line regimens (Table 1.11). The selection of these first-line regimens is based on their comparative
efficacy, side-effect profiles, and convenience for the patient. The choice of the first-line regimen, among those
recommended, should be based on the results of resistance testing, and on patient characteristics and prefer-
ences. Further, alternative first-line regimens have been defined for cases in which recommended regimens are
not feasible [228, 229]. Following treatment change or treatment initiation, VL and CD4+-cell counts should
be monitored every four weeks until suppression of the VL below the limit of quantification of 50 copies per
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Table 1.11: Recommended First-Line Regimens. Recommended first-line regimens are tabulated below, along with important
characterisঞcs of these regimens. HLA-B*5701 refers to a certain human leukocyte anঞgen (HLA). 3TC: lamivudine; ABC: aba-
cavir; ATV: atazanavir; CNS: central nervous system; DRV: darunavir; DTG: dolutegravir; EFV: efavirenz, EVG: elvitegravir; FTC:
emtricitabine; INI: integrase strand-transfer inhibitor; NRTI: nucleoside or nucleoঞde reverse-transcriptase inhibitor; NNRTI: non-
nucleoside reverse-transcriptase inhibitor; PI: protease inhibitor; RAL: raltegravir; RPV: rilpivirine; STR: single-tablet regimen; TDF:
tenofovir disoproxil fumarate.

Regimen Comments
2 NRTIs + INI

3TC+ABC+DTG Once-daily STR; do not use ABC if HLA-B*5701 positive
FTC+TDF+DTG Once-daily regimen; long-term use of TDF is associated with increased risk

of kidney injury
FTC+TDF+EVG/c Once-daily STR; intake with food required; long-term use of TDF is associ-

ated with increased risk of kidney injury
FTC+TDF+RAL Twice-daily regimen; long-term use of TDF is associated with increased risk

of kidney injury
2 NRTIs + NNRTI

FTC+TDF+EFV Once-daily STR; EFV associated with risk of CNS symptoms; long-term
efficacy and tolerability data available; inferior to INI-based regimens, mainly
due to tolerability; long-term use of TDF is associated with increased risk of
kidney injury

3TC+ABC+EFV Once-daily regimen; risk of CNS symptoms; do not use ABC if HLA-B*5701
positive

FTC+TDF+RPV Once-daily STR; intake with food required; RPV is not recommended for
patients with VL > 100,000 copies / ml; greater risk of resistance develop-
ment than other regimens; long-term use of TDF is associated with increased
risk of kidney injury

2 NRTIs + PI
FTC+TDF+DRV/r Once-daily regimen; intake with food required; DRV causes rash in 10% of

patients; long-term use of TDF is associated with increased risk of kidney
injury

3TC+ABC+ATV/r Once-daily regimen; ATV is associated with risk of jaundice, nephrolithiasis,
cholelithiasis, and chronic kidney injury; do not use ABC if HLA-B*5701
positive

FTC+TDF+ATV/r Once-daily regimen; ATV is associated with risk of jaundice, nephrolithiasis,
cholelithiasis, and chronic kidney injury; long-term use of TDF is associated
with increased risk of kidney injury



milliliter of blood serumhas occurred. Thereafter, VL andCD4+-cell counts can bemonitored every 3months.
After one year of viral suppression, if CD4+-cells are at a stable level above 350 cells per microliter of blood
serum, and if the patient is adherent, VL andCD4+-cell-countmonitoring frequency can be reduced to once ev-
ery sixmonths. Furthermore, toxicitymonitoringof antiretroviral therapy throughmeasurement of biomarkers
is recommended as well.

The VL is the primary marker of treatment success and patient adherence. Therefore, an important goal of
antiretroviral therapy is the suppression of the VL below the limit of quantification. Virological therapy failure
is defined as two subsequent VL measurements above 50 copies per milliliter of blood serum, six months after
the initiation of a treatment. Reasons for virological therapy failure include: the development of drug resis-
tance by the virus, lack of patient adherence, and/or insufficient plasma drug concentrations due to drug-drug
interactions and/or pharmacogenetic factors. After failure, genotypic resistance testing should be attempted.
(Sequencing might not be possible if the VL is not sufficiently high.) Once virological therapy failure has been
detected, the presumed reason for failure, as well as the VL measured at failure, will determine which course of
action that should be taken. WithVLs above 1,000HIV-1 RNA copies permilliliter of blood serum, immediate
treatment change is almost always recommended. If the VL is above 200, but below 1,000 HIV-1 RNA copies
per milliliter of blood serum, a change of treatment should be considered. It is not clear if the treatment should
be altered if the VL is below 200 HIV-1 RNA copies per milliliter of blood serum. In the case that resistance
against the drugs in the failing regimen has been detected, it is recommended that the new therapy contain a
fully active boosted PI and a drug class not previously used.

Virological failure is not the only important reason for which treatment should be switched. Further impor-
tant reasons include alleviation and prevention of drug toxicities, avoidance of drug-drug interactions, planned
pregnancy, aging or comorbidities, and treatment simplification. Common, nowadays avoidable drug toxic-
ities include lipoatrophy (d4T, AZT), adverse events of the central nervous system (EFV), diarrhea (boosted
PIs), and jaundice (ATV). Treatment simplification entails the possibility to get rid of treatment-related food
restrictions, as well as to reduce the pill burden of the treatment in terms of the number of pills and their intake
frequency.

1.5.5 Future Prospects of Antiretroviral Therapy

This last section on antiretroviral therapy is devoted to summarizing future developments of antiretroviral ther-
apy that can be foreseen. First, I summarize attempts to reduce the toxicity of antiretroviral therapy by restrict-
ing the use ofNRTIs. Then I explain the challenges related to an increasingly aging population of patients with
HIV-1 infection. After brieflymentioning further antiretroviral drugs thatmay get approved in the near future,
I lastly provide the perspective of reducing the incidence of HIV-1 with antiretroviral drug compounds.

NRTI-Sparing for Reduction of Side Effects

NRTIs have been the backbone of antiretroviral therapy since chemotherapy for HIV-1 infection exists. This
has both historical and empirical reasons. Since NRTIs have been around for a long time (Section 1.5.1), there
is a wealth of data available on their safety and efficacy. Furthermore, their pharmacological properties allow
them to reach concentrations in the cell that cannot be easily equaled by other drugs. Several NRTIs (especially
AZT, d4T, and ddI) are increasingly falling into disuse due to their associationwithmitochondrial toxicity (Sec-
tion 1.5.1), neuropathy, and anemia. Even so, data on the long-term toxicity profile of newer, safer NRTIs (e.g.
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TDF and ABC) has been accumulating. These include nephrotoxicity, increased risk of osteoporotic fracture,
and increased risk of heart failure. This has motivated the investigation of NRTI-sparing regimens (also called
nuke-sparing regimens) for treatment of HIV-1 infection. Deployed NRTI-sparing strategies are of two types.
(1) Therapy with a drug combination including only one NRTI or no NRTIs (and further compounds), and
(2) initiation of therapy with two NRTIs and further compounds (induction phase) with subsequent inter-
ruption of NRTI intake after suppression of the VL below the limit of detection (maintenance phase) [230].
Retainment of only one drug compound after viral suppression is called monotherapy maintenance. An excit-
ing approach being tested at the moment involves nanoformulations of the drugs cabotegravir (Table 1.12) and
RPV. During the induction phase, lasting 24 weeks, patients receive therapy with cabotegravir and two NR-
TIs. After the induction phase, the therapy is switched to nanoformulations of cabotegravir and RPV, which
require intramuscular administration every one to three months. The use of the nanoformulations bears the
risk that the drugs remain in the body for extended periods of time, even if treatment interruption should be
indicated. The first study using this strategy, but without deploying nanoformulations, has been recently suc-
cessfully completed [231]. The second part of the trials, which use the nanoformulations is underway. The
use of NRTI-sparing regimens appears promising but still requires substantial research for a wide-scale roll out.
The desired benefit of reduced toxicity is yet to be demonstrated in long-term clinical trials [230, 232, 233].

Aging with HIV

The success of cART is reflected by the fact that, nowadays, the life expectancy of people with HIV-1 is almost
the same as that of the general population [234]. Furthermore, the mean age of people living with HIV-1 is
increasing all over the world. At the same time, this development has brought up issues concerning the health
of older people living with HIV-1 infection, as they are prone to acquiring the following comorbidities:

• Cardiovascular disease
• Cancer
• Declining kidney function
• Liver-associated morbidities
• Decreased bone mineral density
• Cognitive impairment
• Sexual dysfunction
• Mental disease
• Frailty

While these morbidities are frequent in persons of older age, people living with HIV-1 acquire them more fre-
quently and at a younger age. In the general population, the age threshold at which increased monitoring and
intervention is considered beneficial to health and/or required for maintaining good health lies between 60 and
75 years of age. For people living withHIV-1, however, this threshold sinks to 50 years of age. Disregarding an-
tiretroviral treatment, older patients with HIV-1 infection are at an increased risk of progressing to AIDS than
younger patients. Furthermore, old age is accompanied by immunosenescence, which is the age-related deteri-
oration of the innate and the adaptive immune systems. Immunosenescence is believed to result in increased
infectious and autoimmune disease, as well as to contribute to the development of osteoporosis, cognitive im-
pairment and arteriosclerosis. Furthermore, HIV-1 infection and antiretroviral therapy contribute to the devel-
opment of the morbidities mentioned above. Summarizing, the success of antiretroviral treatment is reflected
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in an increased life expectancy of persons living with HIV-1. However, the effects of years of HIV-1 infection
and antiretroviral therapy on the body result in further disease. For this reason, an increasing specialization of
antiretroviral treatment for the elderly in the near future is inevitable [235–238].

Upcoming Antiretroviral Drugs

Several antiretroviral compounds are currently being developed. Table 1.12 gives an overview of compounds
completing phase II and III clinical trials. In the following, I give some highlights on three new drugs to come.
(1) Fostemsavir (BMS-663068) is the prodrug of temsavir, a gp120 inhibitor that has completed phase II clini-
cal trials and is currently being tested in phase III clinical trials on heavily pretreated patients (clinicaltrials.gov
trial ID: NCT02362503). Due to its novel mechanism of action, fostemsavir presents a new alternative for
patients with multi-drug resistant HIV-1 strains. (2) Doravirine, a novel NNRTI is currently being tested
in a phase III clinical trial (clinical trials.gov trial ID: NCT02275780). Doravirine presents an enhanced re-
sistance profile when compared to other NNRTIs, as it remains active in the presence of frequent resistance
mutations that render other NNRTIs inactive. 24-week results from a phase II clinical trial comparing do-
ravirine to efavirenz indicated that the drug has similar virologic activity to efavirenz with half of the side effects
(http://www.aidsmap.com/page/2987389). Last but not least, (3) nanoformulated cabotegravir, an INI
recently completed a phase II clinical trial, the LATTE trial [231]. As mentioned above, in this trial, cabote-
gravir is given with two NRTIs in an induction phase, after which the NRTIs are replaced by RPV (mainte-
nance phase). The second version of this clinical trial, LATTE-2, is underway, and will explore a maintenance
phase using long-acting nanoformulations of cabotegravir and RPV. Apart frommoving away from the imper-
ative of including three active drugs in antiretroviral therapy, the nanoformulations used in LATTE-2 could
substantially improve antiretroviral therapy by doing away with adherence-associated therapy issues, as well as
enhancing the convenience of therapy.

Antiretroviral Therapy for Reducing the Incidence of HIV-1

Antiretroviral therapy can be used for preventing HIV-1 infection in three manners:

1. Treatment as Prevention: Prevention of HIV-1 transmission through antiretroviral chemotherapy for
an HIV-1-infected person [93].

2. Pre-Exposure Prophylaxis (PrEP): Prevention of an HIV-1 infection through intake of antiretroviral
drugs before a potential exposure to HIV-1 takes place [92, 239–241].

3. Post-Exposure Prophylaxis (PEP): Prevention of an HIV-1 infection through intake of antiretroviral
drugs after a potential exposure to HIV-1 has occurred [242].

Thus, antiretroviral therapy is not only a tool for preserving the health of HIV-1-infected persons, but also
for reducing HIV-1 incidence. On July 16th 2012, Truvada ®, a once-daily combination tablet that contains
FTC and TDF, has been approved by the FDA for use in PrEP (http://www.fda.gov, accessed December
15th, 2015). Studies on the efficacy of other antiretroviral drugs in PrEP have been completed or are ongoing.
However, challenges to the implementation of antiretrovirals as a means of containing the HIV-1 pandemic
remain.

Several findings support the statement that treatment is effective in preventing transmission of HIV-1: re-
duction of HIV-1-transmission in serodiscordant couples, the negative correlation between cART programs
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Table 1.12: Invesধgaধonal Anধretroviral Drugs in Current Development. Invesঞgaঞonal drug compounds currently in phases II
and III of clinical development are listed below. Source: http://aidsinfo.nih.gov, accessed December 15th, 2015.

Name Phase Originator Comments
Entry and Fusion Inhibitors

Cenicriviroc IIb Takeda CCR5 and CCR2 antagonist
Fostemsavir III Bristol-Myers Squibb gp120 inhibitor
Ibalizumab II Biogen Idec
PRO-140 II Progenics Intravenous or subcutaneous

administration
UB-421 II United Biomedical Fusion inhibitor
Histone deacetylase inhibitors

Vorinostat II
Immunostimulants

AGS-004 II Argos Intradermal administration
HIV-1 DNA vaccine II Genetic Immunity Topical administration
Peginterferon alpha-2a II Roche Subcutaneous administration
vCP1521 III Sanofi Pasteur Intramuscular administration
Integrase Strand-Transfer Inhibitors

Cabotegravir II ViiV
Maturation Inhibitors

BMS-955176 II Bristol-Myers Squibb
Non-Nucleoside Reverse-Transcriptase Inhibitors

Doravirine III Merck (US)
Fosdevirine II Idenix
Nucleoside Reverse-Transcriptase Inhibitors

Amdoxovir II RFS
Censavudine II Kagoshima and Yale Universities
Racivir II Gilead
Protease Inhibitors

TMC-310911 II Tibotec
Undefined Mechanism of Action

PEHRG-214 II Virionyx Intravenous administration

http://aidsinfo.nih.gov


and incidence of HIV-1, and the negative correlation between HIV-1 VL and infectiousness. It has been even
suggested that, under ideal conditions, eradication ofHIV-1 through treatment could be possible. However, an
effective implementation of treatment as prevention on a large scale is hindered by a number of obstacles. These
obstacles relate to the difficulty in fulfilling the cascade of care: (1) diagnosis of HIV-1 infection, (2) treatment
of HIV-1 infection, and (3) suppression of the VL below the limit of quantification of 50 HIV-1 RNA copies
per milliliter or blood serum. It is important that HIV-1 infection be diagnosed as early as possible, as it is the
prerequisite for antiretroviral treatment. The risk ofHIV-1 transmission is substantially higher in patients with
primaryHIV-1 infection. Although the risk of transmission is decreased after the chronic phase of the infection
begins, several asymptomatic years can pass, offering many chances for transmission of the pathogen. Thus,
HIV-1 testing must be performed frequently, especially in individuals at high risk of contracting HIV-1 infec-
tion. Diagnosis ofHIV-1 infectionmust occur, at best, when patients present symptoms ofARS (Section 1.2.2),
and if not, before symptomatic chronicHIV-1 infection begins. Access to antiretroviral treatment, and further,
access to effective antiretroviral treatment is constrained by the lack of monetary resources in many countries of
the world [93, 243–245]. The 90-90-90 strategy of UNAIDS aims at containing the HIV-1 pandemic through
treatment with antiretroviral drugs (Section 1.3.2).

There are several challenges for the large-scale implementation of PrEP. A low awareness of PrEP has been
reported among potential users, although many of them express interest in using PrEP after learning about the
chemoprophylaxis. Furthermore, people at high-risk of contracting HIV-1 infection may not consider them-
selves being at risk, which prevents them from using PrEP. Among healthcare professionals, lack of training
for prescribing PrEP, as well as the belief that condoms and other behavioral interventions should be priori-
tized over PrEP, deter them from prescribing chemoprophylaxis. This belief is partly based on concerns that
PrEP use may encourage risky behavior. PrEP with Truvada ® has a cost of over 10,000 US dollars per year
per person, which limits access to chemoprophylaxis for people without insurance or who cannot afford the
insurance copayments . Even if a person has access to PrEP, a certain stigma is associated to it, which might
make the person reluctant to use it. Long-term safety data for PrEP are not available, although it is known that
there are toxicities associated with TDF and with FTC. Last but not least, adherence is crucial for the efficacy of
orally administered PrEP. With respect to adherence, investigational compounds and formulations in the con-
text of PrEP look very promising. Specifically, clinical phase II studies on the safety and efficacy of long-acting
nanoformulations of RPV (Table 1.7) and cabotegravir (Table 1.12) for PrEP are underway. These long-acting
nanoformulations could allow for monthly or even quarterly dosing of the drugs. Further routes of admin-
istration for PrEP that are currently being tested include topical administration, and administration with an
intervaginal ring [241, 242].

69



70



2
Methods for Learning from Datasets

This chapter aims at providing a summary of key concepts andmethods of the field of statistical learning
that are required for understanding this work. After a brief introduction to statistical learning, I present several
variants of SVMs, a family of models from the field of statistical learning. In the last sections of this chapter,
I present a statistical-learning method called kernel density estimation (KDE) with an application to the task
of classification. The information presented in this chapter can be regarded as a dense summary, intended to
refresh previously acquired knowledge. Interested readers can consult the references cited in this chapter, should
they require a deeper understanding of the concepts herein presented.

2.1 Statistical Learning

The following paragraphs are mainly based on [246]. In order to make this introduction to statistical learning
more tangible, I will begin by describing a dataset which we would like to analyze. Suppose our dataset arises
from the treatment of HIV-1-infected patients with a certain combination of RTIs (Section 1.5). The dataset
consists of the RT amino-acid sequence (Section 1.1) of the HIV-1 variant that each patient harbors before
treatment initiation, and a set of VL measurements for each patient (Section 1.2.2) that were performed while
the patient was taking the drug combination. We know that the selection of resistancemutations inHIV-1’sRT
gene (Section 1.5.3) canpreventRTI-based cART frombeing effective in the treatment ofHIV-1-infection. The
presence of drug resistance toRTIswillmanifest itself asVLmeasurementswithhighnumeric values. Using this
dataset, we can aim at extracting different types of knowledge. For example, we could choose to learn (how) to
predict whether the drug combination will be successful in terms of reducing the VL below a certain threshold
in a patient harboring a specific viral strain. The patient’s viral strain is characterized by the amino-acid sequence
of theRT gene. The field of statistical learning offers models and methods for selecting the parameters of these
models. Common to many of the techniques offered by the field is that they use a training set in order to select
the model parameters. The process by which model parameters are selected is called training.

For predicting the success of cART with a statistical-learning model, it would be appropriate to define vari-
ables describing the amino-acid sequence of the virus as input variables, since we desire to input these variables
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into a model with which we can produce a prediction for therapeutic success. Therapeutic successwould be best
captured with a binary variable stating whether after treatment initiation, the VL declined below the threshold
that we selected or not. Thus, it would be appropriate to define therapeutic success as an output variable, since
it is the variable that we wish to predict and that should be output by our model. In the context of statistical
learning, input variables are also called featurॽ, predictors, or independent variablॽ. Output variables, in turn,
are also called responsॽ or dependent variablॽ. We may choose not to use all of the variables that are available
to us as input variables, disregarding some of them instead. We would disregard some variables if we thought
that rather than helping us in predicting the value of the output variable, these variables could lead us astray, be-
cause they are non-informative (in which case they could cause confusion) or because they are highly correlated
to other variables (in which case they would be redundant). This is known as the problem of feature selection.
The field of statistical learning offers methods for tackling the problem of feature selection as well. If we choose
to encode the information contained in the amino-acid sequence of the RT gene with p input variables, then
our vector of input variables x = (x1, . . . , xp) has dimensionality p. Wemay choose tomodel the dependency
between x and our output variable y as

y = f(x) + ϵ, (2.1)

where f is a function that takes an instance of x as an input, in order to produce an output. ϵ is an error term
thought to assume values according to a certain probability distribution with mean equal to zero. We include
this error term in (2.1) in order to accommodate for factors that influence the value of y although they are not
captured by x (due to randomness or because we do not have measurements for these factors). Such factors are
often referred to as noise. In (2.1), noise is modeled as being additive, since it is added to the value assumed by f .
Note that noise can be modeled in many ways, depending on what is appropriate, e.g. as being multiplicative.
In order to accomplish our goal of learning (how) to predict whether the drug combination will be successful,
we need to estimate f . When selecting a method for estimating f , we need to decide whether our goal is predic-
tion or inference. If we solely want to get themost accurate estimate for y, then our goal is prediction. However,
if we additionally want to understand the relationship between the input and the output variables, then our
goal is inference. The reason why we need to decide whether we want to perform prediction or inference has
to do with the characteristics of the models used in statistical learning. When comparing the characteristics of
statistical-learning models, we can see that there is a tradeoff between the models’ interpretability and their ac-
curacy. Interpretable models are those that can help us in understanding the relationship between the input
and the output variables. Models that can easily provide quantitative summaries of the relationship between
input and output variables cannot capture complex relationships between the input and the output variables.
In contrast, models that are able to accurately capture intricate relationships between the input and the output
variables tend to encode these relationships in an equally intricate way, such that they provide little help in un-
derstanding these relationships, but produce accurate predictions. Only if the relationship between input and
output variables is sufficiently simple will we be able to select a method that simultaneously features prediction
accuracy and interpretability. The degree of complexity of the relationship between input and output variables
is tantamount to the complexity of the function that we want to estimate. Examples of questions that can be
answered with interpretable models are the following. Which input features have the largest influence on the
output features? What is the correlation of the input features with the output features? Is the relationship
between the input and the output features linear or non-linear?

Statistical learning can be regarded as a problem of function estimation (e.g. estimation of f in (2.1)). Func-
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tion estimation subsumes three problem types. (1) Classification, (2) regression, and (3) density estimation. The
problem of predicting therapeutic success, as described above, is a classification problem, since we create a bi-
nary output variable (therapeutic success) which can assume discrete values that correspond to categoriॽ (in this
case, yॽ or no). Function-estimation problems in which the output variables are quantitative are called regres-
sion problems. If we choose to predict the difference between the VL at treatment initiation and the lowest VL
measured while the patient was on therapy, we deal with a regression problem, since we try to predict a contin-
uous quantity. In density estimation, we assume that the data in the training set was drawn from a certain joint
probability distribution, and we want to use the training set in order to estimate this probability distribution.
All methods in statistical learning implement an inductive principle in order to perform prediction or inference
using a dataset. In the following, I briefly characterize the two most wide-spread inductive principles.

2.1.1 Frequentist Induction

Frequentist inference has the goal of making inference about the (fixed) parameters of a distribution. Data
are viewed as a random sample from a probability distribution. Thus, propositions are generated in terms of
repeated sampling of that probability distribution. The basis of the propositions is the frequency or proportion
of the data, linked to the frequentist interpretation of probability:

P(x) = lim
n→∞

nx
n
, (2.2)

where x denotes an event, nx the number of samples in which event x occurred, and n the total number of
samples. A particular experiment is considered to be one of an infinite number of possible repetitions of that
experiment. The events in each experiment occurwith a certain relative frequency, and the probability of a given
event is considered to be the limit of the relative frequency as the number of experiments goes to infinity. In fre-
quentist inference, distribution parameters are estimated with unbiased estimators and the estimates converge
in probability to the true parameters. The value of parameters is given as a point estimate with a confidence
interval. The uncertainty in the value of the parameters is considered to be due to randomness [247–250].

In the context of the problem of function estimation (see above), frequentist induction principles revolve
around the idea of minimizing the risk functional

R(θ) =
∫

L(z, θ) df(z), (2.3)

where z = (x, y) are the input and output variables, θ ∈ Θ is a choice for the parameters of a certain model
mθ(x), f(z) is an unknown probability measure, and L is a loss function quantifying the discrepancy between
the output of the model (using the selection of parameters) and the output variable. In other words, the risk
functional quantifies the cumulative discrepancy between the (measured) output variable and the output of the
model. Each individual discrepancy is quantified by a loss function. Popular loss functions include:

• Squared loss: L(z, θ) = (y −mθ(x))
2 , used in regression

• Zero-one loss: L(z, θ) =

0 if y = mθ(x)

1 if y ̸= mθ(x)
, used in classification

• Log likelihood: L(z, θ) = − log(mθ(x)) , used in density estimation.

A frequentist inductive principle is that of empirical risk minimization (ERM). Specifically, this inductive
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principle selects model parameters using a set of observations zi, i ∈ {1, . . . , n}. This set of observations is the
training set. Model parameters are selected such that they minimize the empirical risk functional:

argmin
θ∈Θ

Remp(θ) = argmin
θ∈Θ

1

n

n∑
i=1

L(zi, θ). (2.4)

Note that while the risk functional R(θ) (2.3) quantifies the risk for all possible observations, the empirical risk
functional Remp(θ)

Remp(θ) =
1

n

n∑
i=1

L(zi, θ) (2.5)

does so for a certain set of observations (the training set). In a roughmanner, the principle of ERM is said to be
consistent for a certain model and a certain training set if the value of both R(θ) and Remp(θ) decreases as the
size of the training set increases [251], until they reach the lowest possible value. Thus, if ERM is consistent,
the predictions of the model should gain accuracy as the size of the training set is incremented.

Selection of a parameter θ ∈ Θ such that the empirical risk functional is minimized by a model is called
training the model. As mentioned in Section 2.1, models differ in the maximum complexity of the functions
that they are able to estimate. If the function that we want to estimate is more complex than the maximum
complexity of the model, ERM will not be consistent for the model, i.e. the model will not become more
accurate if the size of its training set is incremented. Models for which the principle of ERM is consistent can
differ with respect to the size of the training set that they require in order to reach the highest possible accuracy.
Typically, ERM-consistent learning methods that minimize the empirical risk functional to a very low number
are at risk of reproducing the noise in the limited number of observations that is available for their training.
This phenomenon is called overtraining or overfitting. Thus, for a small number of observations, the empirical
risk might be very low, but the expected risk (for observations outside the training set) high. The concept of
the generalization ability of the learningmethods refers to the capacity of the learningmethods tominimize the
(unknown) expected risk based on a limited number of observations.

2.1.2 Bayesian Induction

The goal of Bayesian inference is the assignment of a probability distribution to the parameters of the distribu-
tion of the data. Bayes’ theorem builds the core of Bayesian inference:

P (θ | X) =
P (θ ∩X)

P (X)

=
P (X | θ)P (θ)

P (X)
,

(2.6)

where θ is the parameter of the distribution of the data andX is the data. The following terminology is used
for the components of (2.6):

• P (θ): prior distribution of the parameters
• P (X | θ): likelihood or sampling distribution (given the model parameters θ)
• P (X): marginal likelihood (independent of the model parameters θ)
• P (θ | X): posterior distribution
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Bayesian inference requires the specification of the prior distribution. The prior distribution represents the
state of knowledge before the experiment was performed with which the data was generated. In the Bayesian
inference process, the prior distribution P (θ) is updated by multiplying it with the likelihood P (X | θ) .
Normalization of P (X | θ)P (θ) with the marginal likelihood P (X) yields the posterior distribution. The
marginal likelihood is the distribution of the observed data marginalized over the parameters,

P (X) =

∫
θ
P (X | θ) dθ. (2.7)

Bayesian inference allows for the combination of data with prior beliefs. The prior distribution encodes and
quantifies which hypotheses are believed to be likely and which hypotheses are believed to be unlikely, accord-
ing to one’s prior beliefs. These prior beliefs exist before examining any data. The likelihood of the data under a
certain hypothesis is quantified by the sampling distribution. Thus, Bayesian inference states that a hypothesis
(regarding the value of the parameters) should be rejected if it is not compatible with the data (as quantified by
the sampling distribution), but also if it contradicts prior beliefs (as quantified by the prior distribution), even if
itmatches the data. The prior distribution requires specification and an arbitrary distribution can be specified as
a prior. However, Bayesian inference allows for sequential application of Bayes’ theorem as further experiments
are carried out: the posterior of an older experiment becomes the prior of a newer one. Through sequential ap-
plication of Bayes’ theorem, the effects of the initially selected prior distribution are diminished. Thus, Bayesian
inference assumes that initial prior beliefs exist (these are represented with the prior distribution), and provides
a method for updating these prior beliefs according to the data (bymultiplication of the prior distribution with
the sampling distribution). The posterior is the result of updating prior beliefs with the data (and normalizing).
In contrast to frequentist inference, where variability is regarded to be caused solely by randomness, Bayesian
inference accepts the notion of variability as the result of lack of knowledge [250, 252–255].

2.2 Support Vector Machines

SVMs are a family ofmethods for solving problems inmachine learning. In this section, I review several variants
of SVMs. Section 2.2.1 reviews the idea of using a hyperplane for separating two classes of points. Section 2.2.3
showshow functions computing the inner product in enlarged feature spacॽ are an efficientmeans for increasing
classification performance. SVMs for classification are reviewed in Section 2.2.2, followed by SVMs for regres-
sion (Section 2.2.4). Finally, SVMs for the regression of right-censored data are presented in Section 2.2.5. This
review on SVMs is mostly based on [256, 257].

2.2.1 The Concept of a Separating Hyperplane

Let us consider the concept of a hyperplane which is used for separating points xi ∈ Rp, i ∈ {1, . . . , n},
of two classes, labeled with −1 and +1. Let the class of each of these points be denoted by yi ∈ {−1,+1}.
Furthermore, let these two classes of points be linearly separable inRp. Thismeans that a separating hyperplane
exists, h : {x | β · x + β0 = 0} , β ∈ Rp, β0 ∈ R, such that all points of one class lie on one side of the
hyperplane, and all points of the other class lie on the other side of the hyperplane. Let β be normal to the
hyperplane and let ∥β∥ be its Euclidean norm. Thus, β0

∥β∥ is the signed Euclidean distance of h to the origin,
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and the signed distance of h to some point xi is given by

d(h, x) =
βT · x+ β0
∥β∥

. (2.8)

A classification rule for each xi is then given by

yi = sign(d(h, xi)), (2.9)

which is equivalent to
yi(β

T · xi + β0) ≥ 0. (2.10)

Note that there are an infinite number of different hyperplanes h for which (2.10) holds. However, each hyper-
plane will differ with respect to its classification margin, 2C , with

C = min
xi

d(h, xi), i ∈ {1, . . . , n}. (2.11)

Among all separating hyperplanes h, some of them separate the classes -1 and +1 with amaximummargin, their
parameters given by

argmax
β,β0

C

subject to
1

∥β∥
yi(β

T · xi + β0) ≥ C, ∀i ∈ {1, . . . , n}.
(2.12)

Normalization ofβ leads to a unique solution of (2.12) and therefore, we (arbitrarily) normalizewith ∥β∥ = 1
C ,

yielding

argmax
β,β0,∥β∥= 1

C

C

subject to Cyi(β
T · xi + β0) ≥ C, ∀i ∈ {1, . . . , n}.

(2.13)

In the inequality in (2.13), C cancels out, and we can see that maximizing C is equivalent to minimizing ∥β∥.
Thus, we can restate (2.13) as

argmin
β,β0

1

2
∥β∥2

subject to yi(β
T · xi + β0) ≥ 1, ∀i ∈ {1, . . . , n}.

(2.14)

The constraints in (2.14) require that there is an empty space of thickness 1
∥β∥ to each side of the linear classi-

fication boundary, the classification margin. This problem is quadratic with linear inequality constraints, and
can be solved with Lagrange multipliers, as follows. The Lagrange primal function is

Lp =
1

2
∥β∥2 −

n∑
i=1

αi[yi(β
T · xi + β0)− 1]. (2.15)
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In order to minimize Lp, and in partial fulfillment of the Karush-Kuhn-Tucker conditions [258], we set its
derivatives to zero:

∂Lp

∂β
= β −

n∑
i=1

αiyixi
!
= 0⇔

β =

n∑
i=1

αiyixi

(2.16)

∂Lp

∂β0
=

n∑
i=1

αiyi
!
= 0⇔

0 =
n∑

i=1

αiyi

(2.17)

Substituting (2.16) and (2.17) into Lp (2.15), yields the Wolfe dual:

LD =

n∑
i=1

αi −
1

2

n∑
i=1

n∑
k=1

αiαkyiykx
T
i · xk

subject to αi ≥ 0, ∀i ∈ {1 . . . , n}.

(2.18)

Maximization of LD leads to the solution of (2.14). In order to fully fulfill the Karush-Kuhn-Tucker conditions
[258], the following condition must be satisfied as well:

αi[yi(β
T · xi + β0)− 1] = 0, ∀i ∈ {i, . . . , n}. (2.19)

The vector β, satisfying the constraints above, will be a linear combination of the points xi (2.16). Further-
more, only a subset of points xi will be used in this linear combination (2.19). Specifically, if αi is not equal
to zero, then yi(βT · xi + β0) = 1, and therefore xi is on the classification margin. Such a point xi is called
a support vector. Since the points are separable, αi equal to zero implies that xi is on the correct side of the
hyperplane, further away from the hyperplane than the margin.

Summarizing, a hyperplane can be used for determining the class labels of two classes of points that are lin-
early separable inRp. Furthermore, among all possible separating hyperplanes, someof them separate the classes
with a maximum margin. In addition to being unique for a given set of points xi with respective class labels
yi, i ∈ {1, . . . , n}, it can be shown that the normalized maximum-margin separating hyperplane has the best
prospects or generalization among all separating hyperplanes[251, 259–261] . Figure 2.1 was created for facili-
tating intuitive understanding of this fact.

2.2.2 Support Vector Machines for Classification

Let us expand the concept of amaximum-margin separating hyperplane for the case inwhich the pointsx ∈ Rp

are not separable. For attaining this goal, we introduce slack variables ξi ≥ 0 into (2.14):

argmin
β,β0

1

2
∥β∥2 + γ

n∑
i=1

ξi

subject to yi(β
T · xi + β0) ≥ 1− ξi, ξi ≥ 0, ∀i ∈ {1, . . . , n},

(2.20)
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Figure 2.1: Maximum-Margin Separaধng Hyperplane. The hyperplane h = {x | (1,−1) · (x − (1, 3))T = 0} was defined
to be the classificaঞon boundary of linearly separable points xi, i ∈ {1, . . . , n}, of two classes yi ∈ {−1,+1} (a). These
two classes of points, −1 and +1, are represented by green and red colors, respecঞvely. Three sets of points Xn with cardi-
nality n, n ∈ {10, 100, 1000}, were sampled from [0, 10]x[0, 12] according to the uniform distribuঞon. Class labels were
generated for each point with the funcঞon sign((1,−1) · (x− (1, 3))T). A maximum-margin separaঞng hyperplane was fi�ed
for separaঞng the two classes in eachXn. Figures (b), (c), and (d) show the true classificaঞon boundary along with the esঞmated
maximum-margin separaঞng hyperplanes forX10,X100, andX1000, respecঞvely. Asn increases, the maximum-margin separat-
ing hyperplane converges to the true classificaঞon boundary. Other separaঞng hyperplanes could also be fit to the data. However,
their convergence to the true classificaঞon boundary would require more sample points than the maximum-margin separaঞng hy-
perplane.
■ Class−1 ■ Class+1 — True Classificaঞon Boundary — Esঞmated Classificaঞon Boundary
–Margin of Esঞmated Classificaঞon Boundary



with γ ≥ 0. In (2.20), a sum with two terms is minimized. The first term, 1
2∥β∥

2, ensures that β’s norm is as
small as possible while still satisfying the classification constraint yi(βT ·xi + β0) ≥ 1− ξi, ∀i ∈ {1, . . . , n}.
This classification constraint is relaxed by including the slack variables ξi which allow a certain point xi to
be on the wrong side of the corresponding classification margin by the amount ξi. The second term of the
minimization in (2.20), γ

∑n
i=1 ξi, enforces that the slack variables ξi assume values that are as small as possible.

γ is a variable that controls the tradeoff between empirical riskminimization and the sparseness ofβ. Specifically,
setting γ to a small value will reduce the value of γ

∑n
i=1 ξi, therefore reducing its influence in the selection of

the minimizing β. At the same time, the influence of 1
2∥β∥

2 in selecting the minimizing β will be increased.
Hence, small values of γ favor values of the minimizing β that have a small norm and are therefore sparser.
In comparison to larger values of γ, smaller values of γ may allow a larger number of points to be located
on the wrong side of the corresponding margin. In contrast, larger values of γ will result in less points being
located on the wrong side of the margin, but will also translate into more complex classifiers. γ is also called
the cost parameter of the SVM. The separable case (2.14) corresponds to γ = ∞. In the same way as in the
maximum-margin classifier presented in Section 2.2.1, the problem canbe solved using quadratic programming.
The maximum-margin classifier for non-separable classes is called an SVM for classification or a Support Vector
classifier (SVC).

2.2.3 The Kernel Trick

Let us review the concept of a reproducing kernelHilbert space (RKHS). LetX be annon-empty set. AnRKHS
is a Hilbert spaceH of functions f : X → C, in which the evaluation functionals, Fx : (X → C)→ C; f 7→
f(x), are continuous for all f ∈ H. It can be proven that there is a one-to-one correspondence between each
RKHSH and a kernel function k : X × X → Cwith the reproducing property:

f(x) = ⟨f(y), k(·, x)⟩H,∀f ∈ H, k(·, x) ∈ H. (2.21)

Furthermore, it can be shown that all positive definite functions satisfy (2.21) in some RKHS, and therefore,
defining a positive definite function is equivalent to defining a RKHS, and vice-versa. From (2.21), it follows
that the kernel function is identical with the inner product ofH [262]:

⟨k(·, x), k(·, y)⟩H = k(x, y). (2.22)

Let ϕ : Rp → Rq , with q > p, be a function that maps a point x ∈ Rp to another point x′ ∈ Rq

using q orthogonal functions ϕi, i ∈ {1, . . . , n}. Furthermore, letHϕ = {f | ∃a ∈ Rq such that f(x) =

aTϕ(x)} be a RKHS space. The kernel function for Hϕ is kϕ(x, y) = ϕ(x)Tϕ(y). Such a map ϕ can be
useful in cases in which two classes of points xi ∈ Rp, i ∈ {1, . . . , n} are not separable in Rp, but separable
in the higher-dimensionalRq , after application of ϕ. A naïve approach for attaining separability would be the
substitutionofxi byϕ(xi) in (2.20). However, there is another approach that is computationally less expensive:
the substitution of the scalar product in (2.20) with the kernel function kϕ. This is known as the kernel trick.
Application of a kernel function does not require explicit knowledge of the RKHS to which it belongs. Thus,
every positive definite function is adequate for this goal. In the following, I list three popular kernel functions:

• Polynomial kernel of degree p: k(x, y) = (x · y + 1)p

• Radial basis kernel: k(x, y) = exp(−∥x− y∥2/c)
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• Neural network kernel: k(x, y) = tanh(κ1x · y + κ2).

Scalar products can be interpreted to be similarity functions. Let us recall the geometric definition of the
scalar product of two Euclidean vectors a, b ∈ Rp :

a · b = ∥a∥∥b∥ cos(θa,b), (2.23)

where θa,b is the angle between a and b. Let us consider what happens with the value of a · b if a and b retain
their lengths, but θa,b changes. If a and b are pointing in the same direction, θa,b is zero and the value of the
cosine function in (2.23) will be equal to one. Hence, a · bwill assume its highest possible value (the exact value
depends on the lengths of a and b). If the value of θa,b is increased, the value of the cosine function in (2.23)
will decrease, reaching its minimumwhen θa,b is equal to 180 degrees. At this value of θa,b, the cosine function
is equal to minus one and a · b assumes the smallest possible value. Hence, the scalar product quantifies the
similarity of two vectors in terms of the similarity of the directions at which they are pointing. If we examine
(2.8) and (2.16), we can see that the (not normalized) signed distance of a point to the hyperplane of an SVC is
given by

f̂(x) = β̂T · x+ β̂0 =

n∑
i=1

αiyixi · x+ β̂0, (2.24)

where β̂ and β̂0 parametrize amaximum-margin classifier obtainedwith the training set (xi, yi), i ∈ {1, .., n},
as described above. β̂ is a linear combination of the vectors xi with the scalars αiyi. The value of f̂(x) can be
interpreted to be a weighted sum of similarity values, the similarity values being xi · x and the weights being
αiyi.

As I explain in this section, kernel functions compute the scalar product of two vectors in spaces of a larger
dimension than the input space. In the following, I propose two approaches for gaining intuitive understanding
of the kernel functions I list above. The first approach is based on consideration of the computations performed
when applying the kernel to two specific vectors. Let us consider two two-dimensional vectors x = (x1, x2)

T

and y = (y1, y2)
T, x1, x2, y1, y2 ∈ R, and the polynomial kernel of degree two, k(x, y) = (x · y + 1)2.

Then,

k(x, y) = (x · y + 1)2

= (1 + x1y1 + x2y2)
2

= 1 + 2x1y1 + 2x2y2 + (x1y1)
2 + (x2y2)

2 + 2x1y1x2y2.

(2.25)

In comparison to the scalar product in Euclidean space, x · y = x1y1 + x2y2, (2.25) includes terms that
consider the square of the components of the vectors,x21y21 andx22y22 , aswell as a term thatmixॽ the coordinates
multipicatively, 2x1y1x2y2. Thuswe can see that in this example, the polynomial kernel of degree two virtually
expands the dimensionality of the feature space by incorporating the squared value of the features as well as
the multiplication of the two coordinates (see also Training of Final Models in Section 4.2.1). The second
approach that I propose for gaining intuitive understanding of a kernel function is based on the consideration
of the values produced by the kernel, which can be interpreted to be similarity values. The radial basis kernel
k(x, y) = exp(−∥x−y∥2/c) computes the squared distance between two vectors and applies the exponential
function to this distances after division by−c. Figure 2.2 shows the values that the kernel assumes as the squared
distance between two points is increased from zero to three for three different values of c. As can be seen, the
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Figure 2.2: Radial Basis Kernel. The radial basis kernel k(x, y) = exp(−∥x − y∥2/c) applies the exponenঞal funcঞon to the
squared distance between x and y divided by−c. Above, the value of the kernel is plo�ed as a funcঞon of the distance between
x and y for different values of c. If the distance between x and y is equal to zero, the kernel will assume its maximal value, 1. As
the distance between x and y increases, the value that the kernel assumes decreases exponenঞally. The minimum value that the
kernel can assume is zero (asymptoঞcally). The parameter c can be used in order to control the slope of the decrease in the values
of the kernel as the distance between x and y increases.
■ c = 0.5 ■ c = 1 ■ c = 2

radial basis kernel assumes its highest value, one, if the distance betweenx and y is zero. As the distance between
x and y increases, the values produced by the kernel decrease exponentially. Thus, when an SVC is trained with
the radial basis kernel, it will classify a given point on the basis of its proximity to training points of one class
or the other class and of the Lagrange multipliers αi in ( 2.24). Note that αi ̸= 0 if and only if xi is a support
vector (Section 2.2.1).

2.2.4 Support Vector Machines for Regression

The concept of an SVM can be expanded for performing regression. In this case, points xi ∈ Rp are associated
with values yi ∈ R, i ∈ {1, . . . , n}, and we require β ∈ Rp and β0 ∈ R that minimize a loss function
L(yi, βTxi + β0) for all i ∈ {1, . . . , n}. This can be attained by solving

argmin
β,β0

1

2
∥β∥2 + γ

n∑
i=1

(ξi + ξ∗i )

subject to



βT · xi + β0 ≥ yi − ξi − ϵ

−(βT · xi + β0) ≥ −yi − ξ∗i − ϵ

ξi ≥ 0

ξ∗i ≥ 0

∀i ∈ {1, . . . , n},

(2.26)
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Figure 2.3: Support Vector Machines For Regression. Fi[y real numbers xi ∈ [0, 10], i ∈ {1, . . . , 50} were drawn from the
uniform distribuঞon. These were used in order to obtain yi = 2xi + 2 + E , E ∼ N (0, 1). A Support Vector machine for
regression was trained with (xi, yi), i ∈ {1, . . . , 50}, selecঞng ϵ = 1. Above, (xi, yi), i ∈ {1, . . . , 50} are plo�ed as
circles, and the insensiঞvity margin is plo�ed in light blue. Circles inside the insensiঞvity margin are plo�ed in green while those
outside or on the insensiঞvity margin are plo�ed in red. These red circles are the support vectors.
◦ Training points inside margin ◦ Training points outside margin (support vectors)
— Esঞmated linear funcঞon ■ Error margin

for γ ≥ 0 and ϵ > 0. Let us compare (2.20) with (2.26). Both optimization problems strive for minimization
of the absolute values of the coefficients in β, as well as of the values of the slack variables ξi. The slack variables
ξ∗i are additionally included in (2.26) and are subject to minimization as well. ξi (and ξ∗i ) also appear in the
minimization constraints of (2.20) and (2.26). On the one hand, minimization constraints that do not include
β and β0 require that the slack variables be non-negative. On the other hand, the slack variables appear in the
constraints related to β and β0, counteracting these constraints whenever the slack variables are greater than
zero. This is done in order to make the optimization problem feasible for all possible training sets. While the
minimization constraints in (2.20) require β and β0 to parametrize a maximum-margin separating hyperplane,
the minimization constraints in (2.26) strive for obtaining the coefficients of a linear function, β and β0, such
that βT · xi + β0 − ϵ ≤ yi ≤ βT · xi + β0 + ϵ. Thus, the value of βT · xi + β0 is allowed to deviate from
the value of yi by ϵ, thereby defining a margin of error tolerance or insensitivity (Figure 2.3). The insensitivity
margin is sometimes called ϵ-tube [263], however, I do not like this term, as it conveys the idea of roundness.
However, the insensitivity margin is not round. In SVMs for regression, mathematical optimization strives for
finding β and β0 such that the values yi associated to the vectors xi lie inside the insensitivity margin, for all i ∈
{1, . . . , n}. Examination of the Karush-Kuhn-Tucker conditions [258] allows us to spot the support vectors:
those xi whose yi lie on or outside the regression margin. As in Section 2.2.2, γ is a parameter controlling the
tradeoff between empirical riskminimization and the sparseness ofβ. Formore information on Support Vector
regression, the interested reader can consult [263].
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2.2.5 Support Vector Machines for the Regression of Right-Censored Data

When analyzing datasets originating from clinical studies, it is not uncommon to find data points that are cen-
sored. A typical scenario in which this can be observed is a clinical study in which a new drug is tested, e.g. in
order to find out whether the drug can prevent or delay an undesired event. Typically, four different outcomes
are possible in such a setting: (1) the patient experiences the undesired event during the study, (2) the patient is
lost to followup (and possibly experiences the undesired event thereafter), (3) the patient experiences the unde-
sired event after the study has finished, or (4) the patient does not experience the undesired event during his or
her lifetime. Since, in this example, the clinical study is the only setting in which information from the patients
can be gained, the undesired event can only be observed while the patient is participating in the clinical study.
Typically, we know how much time passes between the initiation of the study and the occurrence of the unde-
sired event in a certain patient. In the same way, we know when was the last time that a patient presented if he
or she was subsequently lost to followup. Let us count time in days after initiation of the study. If ti denotes
the time at which the undesired event occurred in patient i and the undesired event occurs in patient i at time
d1, then ti = d1. However, if the patient is lost to followup at time d2, before the undesired event occurs, then
all we know is ti ≥ d2. In the same way, if the study ends at time d3 and the undesired event is not observed
before this time, then ti ≥ d3. Measurements whose exact value is not known, but for which a lower bound to
their value is known, are called right-censored. If only an upper bound to their value is known instead, then we
call them left-censored. If we do not know the exact value of a measurement, but we know both an upper and a
lower bound to its value, then we call the measurement interval-censored [264].

In Section 3.3.1, I define ameasure for the effectiveness of an antiretroviral therapy, the number(s) of aviremic
semesters (NAS). In the following, I briefly explain how the NAS works, as it can be right-censored and is thus
related to this section. Typically, before an antiretroviral treatment is initiated, the patient is viremic, which
means that at least a certain quantity of viral particles (or viral RNA copies) can be detected in the blood of the
patient. This quantity is called the VL. If the therapy is (initially) effective, we should observe a reduction in the
VL to such a lowquantity that we cannot quantify it or detect it any longer. We call this quantity the lower limit
of quantification or the (lower) limit of detection, respectively. If this is the case, viremia has been suppressed
and the patient has transitioned frombeing viremic to being aviremic. If, in contrast, the therapy is not effective,
the VLwill remain above the limit of detection. Among the therapies that are initially effective, some therapies
remain effective for longer than other therapies. The NAS aims at quantifying the effectiveness of a therapy
by counting the number of semesters during which the therapy suppressed viremia. However, there are three
situations in which the NAS can produce a right-censored value (Figure 2.4). (1) If we decide to compute the
NAS for a therapy while the therapy is still ongoing. This might cause right censoring since the NAS for that
therapy will increase if the therapy continues to be successful and if we consider later VL measurements. (2)
If we do not know whether the patient is viremic or aviremic during some therapy semester. This can happen
if, for example, the patient does not present to the doctor when he or she should and no VL measurement is
performed for some therapy semester. However, the fact that VL measurements are missing does not entail
therapy failure. We just do not knowwhether the therapy was being effective during this period of time or not.
Thus, if we compute theNAS even thoughVLmeasurements for at least one semester aremissing, the resulting
value will be right censored. (3) If the treating physician decides to interrupt the treatment while the patient
is aviremic. The treating physician might take such a decision if, for example, the treatment causes side effects
in the patient. If we compute the NAS in such a case, we could choose to think of this value as being right-
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Figure 2.4: Censoring of the Number of Aviremic Semesters. A schemaঞc representaঞon of the viral-load trajectory of four
paঞents receiving anঞretroviral therapy can be found above. The viral-load measurements for each paঞent are represented with
a disঞnct color. Conঞguous viral-load measurements are joined with a line. The horizontal, black, do�ed line represents the
lower limit of quanঞficaঞon of the viral-load assay. Each therapy semester is delimited with a verঞcal black line. The therapy
of Paঞent 1 was not effecঞve, as it could not suppress the viral load (below the limit of quanঞficaঞon). Thus, it a�ained zero
uncensored aviremic semesters. A[er iniঞaঞon of the therapy of Paঞent 2, 5 semestral viral-load measurements below the limit
of quanঞficaঞon were measured. In the eighth therapy semester, a strong rebound in the viral load led to treatment interrupঞon.
Note that a viral-load measurement for the fourth semester a[er treatment iniঞaঞon is missing. For this reason, the number of
aviremic semesters for this therapy is censored. If the missing viral-load measurement were available, and if the paঞent’s viral load
had been below the limit of quanঞficaঞon during that semester, then the number of aviremic semesters would had been six, and
it would had been uncensored. The therapy of Paঞent 3 is sঞll ongoing. For this reason, the last viral-load measurement for this
paঞent is not marked with an X. This therapy could a�ain nine censored aviremic semesters, up to the last measurement. If the
therapy conঞnues to be successful, the number of aviremic semesters that it a�ains will increase. The therapy for Paঞent 4 could
a�ain 7 aviremic semesters. In the eighth therapy semester, the treaঞng physician decided to interrupt the treatment due to
severe side effects. In this case, we could choose to regard this measurement as censored, since conঞnuaঞon of therapy could
have led to further aviremic semesters. However, we could also choose to regard this measurement as uncensored, since severe
side effects are as undesired as the rebound of the viral load.

 Viral-load measurement X Viral-load measurement with subsequent therapy interrupঞon



censored, for the following reason. If the treating physician had not decided to interrupt the treatment, then it
could have resulted in further aviremic semesters. However, we could also choose to think of this value as being
uncensored, if we assume that the reason for treatment interruption was as undesirable as a rebound in the VL.

The fact that the NAS can be censored may pose a problem if we wish to train statistical models in order to
predict them using other, uncensored input variables. Some statistical models may be able to cope with data in
which some data points have been censored, if the difference between the censored values and the true values is
not too large. However, we typically do not know whether this difference is large or not. For this reason, it is
necessary to adapt the models such that they can be trained with censored data. In the following, I introduce a
modification of the SVM for regression (2.26) that is able to handle right-censored data (i.e. it is able to handle
the NAS). This modification was extracted from [265]. Subsequently, I use an artificial dataset in order to
explore the differences in performance between the regular SVMs for regression and SVMs for the regression of
right-censored data. Let xi ∈ Rp be vectors with associated, possibly right-censored responses yi ∈ R, with
associated uncensored responses ri ∈ R, and with associated censoring labels δi ∈ {0, 1}, for i ∈ {1, . . . , n}.
If a response yi is censored, then δi = 0 and yi ≤ ri. If a response yi is uncensored, then ri = yi and δi = 1.
We do not allow cases where ri ≤ yi. Typically, ri is latent * if di = 0. We wish to find β ∈ Rp and β0 ∈ R
that minimize a loss function L(ri, βT · xi + β0), ∀i ∈ {1, . . . , n}, in a setting in which we know yi, xi, and
δi, but we do not know ri. We produce the estimate r̂i = βT · xi + β0 by solving the following minimization
problem:

argmin
β,β0

1

2
∥β∥2 + γ

n∑
i=1

(ξi + ξ∗i )

subject to



βT · xi + β0 ≥ yi − ξi − ϵ

−δi(βT · xi + β0) ≥ −δiyi − ξ∗i − δiϵ

ξi ≥ 0

ξ∗i ≥ 0

∀i ∈ {1, . . . , n},

(2.27)

where γ ≥ 0 is a regularization parameter controlling the tradeoff between empirical risk minimization and
the sparseness of β, and ϵ ≥ 0 is an error-insensitivity parameter (as in Section 2.2.4). In (2.27), we use the
censoring labels δi in order to annul the constraint δi(βT · xi + β0) ≥ −δiyi − ξ∗i − δiϵ for right-censored
data points, since δi = 0 for these points. In this way, βT · xi + β0 can be larger than yi without the need for
ξ∗i > 0. Note that in the minimization in (2.27), the value of ξ∗i (and of ξi) trades off with the value of ∥β∥.

In order to demonstrate the differences between SVMs for regression and SVMs for the regression of right-
censored data, I present an analysis on synthetic data, in the following. The data consists of the independent and
dependent variables, which are initially uncensored. The setX of independent variables,xi, was created by ran-
domly sampling 1,000 points from [0, 100]4, according to the uniformdistribution. Thus, i ∈ {1, . . . , 1000}.
FromX , the dependent, uncensored variables ri were created with the following function,

ri = 4xi,1 − 3xi,2 + 2xi,3 − xi,4, (2.28)

*Alatent variable is a variable that is not directly observed, but inferred fromother variables bymeans of amathematical
model.
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Figure 2.5: Regression of Arধficial, Right-Censored Data with SVMs. Arঞficial, independent data points xi were created by sam-
pling 1,000 data points from [0, 100]4, according to the uniform distribuঞon. These were used for creaঞng the dependent data
points yi,σ,p,m = (4xi,1− 3xi,2+2xi,3−xi,4)ci+ ϵi, where xi,j denotes the j-th component of xi , ci ∼ U(m, 1)with
probability p or ci = 1 with probability 1− p, and ϵi ∼ N (0, σ2). For each tested value of σ, p, andm, 900 data points were
used for training an SVM for regression (2.26) and an SVM for regression of right-censored data (2.27). The remaining 100 data
points were used for tesঞng. Above, the censoring probability (p) is plo�ed against the resulঞng test mean squared error (MSE) of
the trained SVMs for regression and for the regression of right-censored data, for different values of σ, the standard deviaঞon of
the addiঞve Gaussian noise, andm, the minimum censoring factor. Note that MSE were calculated with the predicted ŷi,σ,p,m
and their uncensored, denoised counterparts. MSE for σ = 1 is shown in (a), while MSE for σ = 4 is shown in (b).
■m = 0.5 ■m = 0.6 ■m = 0.7 ■m = 0.8 ■m = 0.9 ■m = 1
- - SVM for Regression — SVM for the Regression of Right-Censored Data

where xi,j denotes the j-th component of xi. Using ri, i ∈ {1, . . . , 1000}, several sets Yσ,p,m containing
censored, noisy versions of ri were created, using the following function,

yi,σ,p,m = rici + ϵi, (2.29)

where ci ∼ U(m, 1) with probability p or ci = 1 with probability 1 − p and ϵi ∼ N (0, σ2). In (2.29), ri is
censored if ci < 1. The number of ri that are censored is controlled by the censoring probability p, while the
extent to which ri are shrunk, if they are shrunk, is controlled by the lower bound of the censoring factorm.
After potential censoring of ri, additive Gaussian noise with standard deviation σ is added to it. For each tested
value of σ, p, andm, (xi, yi,σ,p,m)with i ∈ {1, . . . , 900}were used for training an SVM for regression (2.26)
and an SVM for the regression of right-censored data (2.27). SVMswere trained with all possible combinations
of the SVMparameters γ ∈ {2−5, . . . , 24} and ϵ ∈ {2−5, . . . , 24} (2.26 and 2.27). The remaining 100 points
were used for testing the SVMs, using themean square error (MSE) as a loss function. MSEwas calculated with
the predicted ŷi,σ,p,m and their uncensored, denoised counterparts, ri = 4xi,1−3xi,2+2xi,3−xi,4. For each
testedσ, p, andm, theMSE for the best-performing set of SVMparameters is displayed in Figure 2.5. As can be
seen, SVMs for regression and SVMs for the regression of right-censored data donot differmuch in performance
(MSE), as long as the censoring probability p is less than 0.5. However, for censoring probabilities greater than
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0.5, theMSE of the SVM for regression is higher than that of the SVM for the regression of right-censored data.
For both SVM formulations,MSE increases with p, but SVMs for the regression of right-censored data perform
better, for all tested values ofp. Theminimumvalue of the censoring factorm also influences performance, with
higher values ofm leading to higherMSE. Again, SVMs for the regression of right censored data perform better
than SVMs for regression for all tested values ofm. The tested values for the standard deviation of the additive
Gaussian noise, however, do not influence prediction performance much. In conclusion, this artificial example
supports the use of SVMs for the regression of right-censored when the data presents variable degrees of right
censoring.

When training a statistical model with right-censored data, we typically know whether a variable has been
censored or not. However, if a variable has been censored, we do not know what its value would have been if it
had not been censored. The SVM for the regression of right-censored data deals with right censoring of the data
by disabling the constraint that the predicted value ŷj = βT ·xj+β0 of right-censored responses yj be less than
yj + ϵ, j ∈ {j : δj = 0}). It is correct that ŷj be larger than yj if yj is right-censored, since the true value of yj
is larger than has been empirically observed. However, it is challenging to decide how much larger the value of
ŷj should be with respect to the (right-censored) value of yj if uncensored versions of yj are not available. The
SVM for the regression of right-censored data strives to capture the functional relationship between xi and yi,
i ∈ {1, · · · , n} by choosing β and β0 such that they reproduce what is considered to be certain. Specifically,
ŷk strives not to deviate from yk by more than an acceptable or inevitable extent ϵ, ∀k ∈ {k : dk = 1}, since
we deem certain that the empirical measurement of value of yk was sufficiently accurate. However, ŷj only
strives to be larger than yj − ϵ, ∀j ∈ {j : dj = 0}, since we deem certain that the empirical measurement
of the value of yj resulted in a value that is too small (but not too large). The increase in the value of ŷj , when
compared to yj , results from the consistency of ŷj with the functional relationship that was estimated with
those characteristics of the dataset which we consider to be certain.

2.2.6 Harrel’s Concordance Index

Popular measures for evaluating the predictive performance of regressionmodels (for uncensored data), such as
the mean squared error [256] and the Pearson correlation coefficient [266], are not adequate for evaluating the
prediction for right-censored data points, for the following reason. Predictions for right-censored data points
that are larger than their empirically observed counterpartswill result in a less favorable value of the performance
measure, although the larger, predicted valuemight be closer to the unknown, uncensored value. Therefore, the
assessment of the predictive performance of statistical models for the regression of right-censored data requires
a performance measure that accounts for the fact that the data consist of both right-censored and uncensored
points. In the following, I presentHarrel’s concordance index [267, 268], a performance measure designed for
evaluating the predictive performance of regression models that are tested on right-censored data.

Let yi ∈ R be possibly right-censored measurements with uncensored counterparts ri ∈ R and with as-
sociated censoring labels δi ∈ {0, 1}, for i ∈ {1, . . . , n}. If a measurement yi is censored, then δi = 0 and
yi ≤ ri. If a measurement yi is uncensored, then ri = yi and δi = 1. Let r̂i be estimates for the values of ri.
We would like to assess the accuracy of the estimates r̂i in a setting where we know yi and δi, but ri is latent.
Consider all pairs (j, k) of the indices i ∈ {1, . . . , n}, with j ∈ {1, . . . , n− 1}, k ∈ {2, . . . , n}, and j < k

such that the sets {j, k} do not repeat and (i, i) is excluded. In the following, I state the rules for assigning each
pair (j, k) one of three labels.
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• Concordant pairs (j, k) are those for which yj < yk and r̂j < r̂k. Furthermore, δj = 1 for all concor-
dant pairs.

• Discordant pairs (j, k) are those for which yj < yk and r̂j > r̂k. Furthermore δj = 1 for all discordant
pairs.

• All pairs that are neither discordant nor concordant are unusable.

Additionally, we label pairs that are either concordant or discordant as usable. Harrel’s concordance index (C)
is defined as the fraction of usable pairs that are concordant. C can be interpreted to be the probability of
concordance given usability. Let I be the indicator function. We can express Harrel’s concordance index in
symbols as follows

C =

∑
{i|i<j}

∑
{j|i<j}

{I(δi = 1)I(yi < yj)I(r̂i < r̂j) + I(δj = 1)I(yj < yi)I(r̂j < r̂i)}∑
{i|i<j}

∑
{j|i<j}

{I(δi = 1)I(yi < yj) + I(δj = 1)I(yj < yi)}
. (2.30)

Harrel’s concordance index assesses the accuracy of the estimates r̂i based on the order relationships between
two censored measurements yi < yj and the corresponding uncensored predictions r̂i < r̂j , without consid-
eration for the differences between the values of yi and r̂i or yj and r̂j , for i < j. When calculating C , only
such yi < yj and r̂i < r̂j are considered for which δi = 1. This means that yi, which have been empirically
measured, are smaller than yj and uncensored, i.e. yi = ri. This requirement ensures that the true value ri is
never greater than the true value rj . Thus,C quantifies the number of usable pairs of predictions (r̂i, r̂j)which
respect the order relationship of their measured counterparts (yi = ri, yj ≤ rj). This number is normalized
by the total number of usable pairs and can thus assume a value between zero and one. Note thatC is a measure
of correlation that does not account for the deviation between predicted and true (or measured) values.

2.3 Kernel Density Classification

Kernel density classification relies on KDE for nonparametric classification. Therefore, in this section, I first
review KDE, after which I review kernel density classification. KDE is a method for estimating a probabil-
ity density function from observations drawn from that function. Although KDE can be used for estimating
multivariate densities, I only review the univariate KDE. This section is based on [256, 269] to a large extent.
Furthermore, I extensively quote from [269].

2.3.1 Kernel Density Estimation

KDE is a local method for estimating the probability density of a continuous distribution with points sampled
from that distribution. In comparison to histogramdensity estimation, KDEpresents the advantage of yielding
smooth estimateswhile inherently providing the possibility of interpolation. Supposewe drawnpointsxi ∈ R
independently from the probability density f(x) of a continuous distribution. The kernel density estimate of
f(x) at x0 is given by

f̂(x0) =
1

n

n∑
i=1

kλ(x0 − xi), (2.31)

where kλ(x) is a symmetric kernel function with bandwidth λ > 0. Popular choices for the kernel function
include:
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• Epanechnikov kernel: k(x) =

|34 1−x2

λ | if |x|≤ 1;

0 otherwise
• Gaussian kernel: k(t) = ϕλ(t), the probability density of a normal distribution with mean equal to

zero and standard deviation equal to λ

• Tricube kernel: k(x) =

|
(1−|x|3)

λ | if |x|≤ 1;

0 otherwise.

λ is a smoothing parameter that determines the width of a local neighborhood around x0. The points in this
neighborhood are considered for producing the estimate f̂(x0). Larger values of λ amount to averages over
more observations. While the Epanechnikov and the tricube kernels are compact, the Gaussian kernel has in-
finite support. Thus, when using the Gaussian kernel, all observations are always considered for producing a
density estimate, albeit to different degrees. While the choice of the probability density function does not have
a large influence on the quality of the estimates, an adequate choice of λ is crucial for obtaining good results
[270]. In the following, I briefly review a bandwidth estimation method that is used in this work.

The performance of a kernel density estimator as a function of its bandwidth λ can be quantified using the
mean integrated square error (MISE),

MISE(λ) = E

∫
R
|f̂λ(x)− f(x)|2 dx. (2.32)

Thus, the optimal bandwidth λ can be determined by minimizing the MISE. However, in general, the MISE
does not have a closed form, which is computationally disadvantageous. For this reason, the MISE is often
replaced by an asymptotic estimate

AMISE(λ) =
1

2
√
λπn

+
1

4
λ2ψ2, (2.33)

where ψ2 =
∫
R f

(2)(x)f(x) dx is an integrated density derivative functional of order 2. As can be seen,
AMISE (2.33) depends on the target density f through ψ2. Plug-in bandwidth estimation methods estimate
ψ2 from the data in order to select an adequate bandwidth. This estimate is given by

ψ̂r(g) =
1

n

n∑
i=1

f̂ (r)(xi; g) =
1

n2

n∑
i=1

n∑
j=1

k(r)g (xi − xj), (2.34)

where kg(x) is the selected kernel function with bandwidth g which, in turn, must be estimated. Since the
selection of g is not as important as the selection of λ for the quality of the density estimates, rough estimates
suffice. Further details on bandwidth estimation go beyond the scope of this work. However, the interested
reader can consult [271–273].

KDE can also be performed in a weighted fashion. This is useful when the frequencies of available observa-
tions sampled from a probability distribution do not match that probability distribution, and weights for each
observation are available. Let xi ∈ R, i ∈ {1, . . . , n} be drawn from a probability density function f(x), and
wi ∈ R+ be the corresponding weight for xi. The weighted kernel density estimate for f(x) at x0 is

f̂w(x0) =
1∑n

i=1wi

n∑
i=1

wikλ(x0 − xi), (2.35)
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where kλ(x) is a symmetric kernel function with bandwidth λ > 0 [274].

2.3.2 Use of Kernel Density Estimation for Classification

KDE in conjunction with Bayes’ theorem (Section 2.1.2) can be used for classification, as follows. Let f̂j(x),
j ∈ {1, . . . , J}, be the kernel density estimates for J different classes, and let πj be the corresponding class
priors. An estimate of the posterior probability of class j given an observation x0 is

P (C = j |X = x0) =
πj f̂j(x0)∑J
k=1 πkf̂k(x0)

. (2.36)

Using (2.36), we can calculate the probability estimates for each of the classes j ∈ {1, . . . , J} given an obser-
vation x0, and classify x0 to the class of highest probability:

C(x0) = argmax
j∈{1,...,J}

P (C = j|X = x0). (2.37)

This is known as kernel density classification. Kernel density classification presents a number of advantages,
some of which are listed in the following. (1) Due to its non-parametric nature, kernel density classification can
beused for solving linear andnon-linear classificationproblems. (2) For thepurpose of interpretation, the kernel
density estimates for each of the classes can be easily plotted along with their posterior probability estimates.
This yields very intuitive plots (Section 3.5). (3) Multivariate KDE allows for straight-forward integration of
heterogeneous measurements which can be jointly used for performing classification.
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3
Inferring Drug Resistance and Drug Exposure

from the Genotype

Prolonged chemotherapy against HIV-1 bears the risk of selection of resistant viral strains, ultimately
leading to therapy failure (Section 1.5.3) [199, 228, 275–278] . Once a drug-resistant HIV-1 variant has been se-
lected in a host, it can be transmitted to another host [278, 279]. In order to prevent premature therapy failure,
the susceptibility of anHIV-1 variant to available antiretroviral drugs can be measured phenotypically or geno-
typically [228, 280–283]. Due to the high cost, limited accessibility and high turnaround time of phenotypic
resistance tests, genotypic resistance testing has become the standard of treatment [228, 280]. This chapter is
mainly concerned with genotypic resistance testing. The first two sections of this chapter give a brief review on
phenotypic and genotypic determination of resistance. Section 3.3 describes a method for training a system for
genotypic drug-resistance interpretation without the need of expert intervention. This system outputs num-
bers that are correlated with drug exposure, drug resistance, and therapeutic success. However, the use of this
system by experts requires the translation of these numbers into clinically meaningful categories. For this rea-
son, I devoted Section 3.4 to methods for the determination of cutoffs for the system. Using these cutoffs, the
numerical output of the system can be translated into clinically meaningful categories regarding drug exposure,
drug resistance, and therapeutic success, which are partially discriminative of these three matters. Section 3.5 is
also devoted to cutoff determination for the translation of a numerical quantity related to resistance into clin-
ically meaningful categories. However, the methods presented in Section 3.5 are designed to be applied to an
established genotypic drug-resistance interpretation system, geno2pheno[resistance]. Since geno2pheno[resistance]
provides genotypic drug-resistance interpretation, the methods presented in Section 3.5 only aim at translating
the numerical output of geno2pheno[resistance] into categories that describe the extent of drug resistance.

3.1 Overview of Phenotypic Drug-Resistance Testing

Phenotypic drug-resistance testing involves in-vitro cultivation of a reference HIV-1 strain and of a patient-
derived HIV-1 strain with different concentrations of a tested drug compound. HIV-1 resistance (or hypersus-
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ceptibility) to the drug compound is quantified as the minimum fold difference in drug concentrations that
is required to elicit a 50% inhibition of the viral replication of patient-derived HIV-1 when compared to the
reference strain. For example, if the drug concentration required to elicit 50% inhibition of a reference strain is
0.02 µM, and the patient-derived strain requires 0.1 µM in order to reach 50% inhibition, the fold difference
is 5. This number is called fold-change in the 50% inhibitory drug concentration (FC) or resistance factor (RF)
[284–290].

First-generationphenotypic resistance tests usePBMCs isolated fromthepatient for assessingdrug resistance.
These PBMCs are subsequently cultivated with uninfected, HIV-1-permissive cells [284, 285]. However, this
approach exhibits a number of drawbacks. First, it is technically difficult to culture virus from PBMCs [290].
Second, the use of PBMCs fromdifferent patients introduces variability into themeasurements. Third, distinct
viruses present differential replication kinetics, which has to be compensated with assay modifications [284].
Fourth, at least four weeks of in-vitro virus cultivation are required for obtaining results [284, 285]. Cultiva-
tion of the virus involves sequential passaging of the clinical isolate, which in turn, influences the results of
the experiment. Most importantly, the in-vitro virus-cultivation proceduremay select for unrepresentative viral
populations [285]. Fifth,HIV-1 integrated into PBMCsmay be in itself an unrepresentative viral population, as
drug resistant HIV-1 variants may be produced by other cells in the body while not being produced by PBMCs
[290–292].

The secondgenerationofphenotypic drug-resistance tests addresses these issues byusing replication-deficient
viral vectors that lack the genes that are the targets of antiretroviral drugs. After isolation of HIV-1 RNA from
the patient’s blood, replication-competent viral vectors are created from the replication-deficient viral vectors
and from the isolated viral RNA via genetic recombination. Specifically, the viral genes that the replication-
deficient viral vectors lack are provided by the patient-derived viral RNA . Subsequently, the newly created,
replication-competent viral vectors are inserted into HIV-1 permissive cells, and cultured in-vitrowith different
concentrations of the drug in question [286, 287]. While the second generation of phenotypic drug-resistance
tests (e.g. Antivirogram®) solved many issues concerning the first-generation of tests, other issues remained.
First, in second generation tests, measurement of viral replication is performed indirectly with cell-viability as-
says. Therefore, the extent of viral replication is correlated with its cytopathic effects [286, 287]. Furthermore,
in second generation tests, cell viability is very frequently determined by using 3-(4,5-dimethylthiazol-2-yl)-2,5-
diphenyltetrazolium bromide (MTT) [287], which is reduced by viable cells to formazan, resulting in a purple
coloration. However,MTThas been shown to have a cytotoxic effect on the cells whose viability is being tested
[293]. Second, a turn-around time of several weeks remains necessary for obtaining results. This time is mainly
spent in in-vitro cultivation of the virus, which can potentially select for certain viral populations, as mentioned
above. The non-specific number of viral replication cycles occurring during in-vitro virus cultivation introduces
additional variability into the measurement.

Third-generation phenotypic drug resistance tests (e.g. PhenoSense®) represent an improvement over
second-generation tests in the following respects. Viral vectors used in third-generation phenotypic drug re-
sistance tests do not only lack the genes that are targets of the tested antiretroviral drugs, but also lack an env
gene (Section 1.1.1), as it is replaced by a luciferase reporter gene. For production of viral particles with the viral
vectors, recombinationwith genes providedby theHIV-1 variant infecting the patient is not sufficient. Since the
env gene in the viral vectors has been replaced with another gene, these can only produce replication-competent
viral particles if the viral env proteins are present in the cell in which they assemble. Third-generation pheno-
typic drug resistance tests are designed in such a way that the env proteins are only present in transfected cells,
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but not in cells that are infected by the viral particles produced in the transfected cells. Therefore, replication
will be limited to one cycle. This decreases turn-around time and diminishes inter-assay variability, when com-
pared to multiple-cycle assays. Viral replication is quantified by measuring the amount of luciferase produced
in the cell, which is more direct and precise than using cell-viability assays [288]. Furthermore, luciferase-based
quantification of viral replication avoids potentially cytotoxic effects associated with cell-variability assays.

When compared to genotypic drug-resistance tests (Section 3.2), phenotypic drug-resistance tests present the
advantage that they inherently consider all possible patterns of viral mutations. Depending on their pattern,
HIV-1 mutations can elicit drug resistance or drug hypersusceptibility. Furthermore, the FC is easier to inter-
pret (Section 3.5) than a list of HIV-1 mutations. Interpretation of HIV-1 mutations requires prior knowledge
of their correlation with drug resistance. However, in contrast to genotypic drug-resistance testing, phenotypic
resistance tests may underestimate resistance in-vivo since susceptible and resistant viral strains may coexist in
the tested sample and appear in the consensus sequence of the gene in question [294]. Furthermore, viral strains
withmutations that donot directly cause resistance, but are strongly associatedwith the emergence of drug resis-
tance, may be deemed susceptible by in-vitro phenotypic drug-resistance assays. If the respective drugs are taken
by patients harboring these strains, resistant variants may promptly emerge, preventing the drugs from inhibit-
ing viral replication [295]. Last but not least, certain patterns of drug resistance mutations are associated with
a loss in viral replication capacity. For this reason, the procedure used for testing drug resistance phenotypically
can potentially select viruses that have fewer drug-resistance mutations and have therefore higher replication
capacities.

3.2 Genotypic Drug-Resistance Testing: Past Work

Interpretation of the genotype of HIV-1 with respect to drug resistance is called genotypic drug-resistance test-
ing. In order to perform this interpretation, knowledge on the relationship betweenHIV-1mutations and drug
resistance is required. This knowledge can be attained through the analysis of associations ofHIV-1mutational
patterns and drug resistance. While HIV-1 mutational patterns can be measured through sequencing, drug
resistance can be observed in-vivo during therapy failure and through in-vitro testing (Section 3.1). The least
complex form of genotypic drug-resistance interpretation is given by drug-resistance mutation tables [296].
These tables list drug-resistance mutations for each drug. For some drugs, mutations are classified into minor
and major drug resistance mutations. While major drug resistance mutations cause drug-resistance by them-
selves, minor drug-resistance mutations may only act when they occur in certain patterns, which may include
major drug-resistance mutations. Some minor drug-resistance mutations have the effect of restoring the loss in
replicative capacity that is caused by some major drug-resistance mutations.

Genotypic drug-resistance interpretation systems affordmore complex and also accurate estimation of drug-
resistance. Rules-based genotypic drug-resistance interpretation systems apply a series of expert derived-rules
for producing a drug-resistance score or classifying the genotype into one of several categories describing drug
resistance. Experts produce rules for genotypic drug-resistance interpretation systems based on genotype-
phenotype pairs (GPPs), HIV-1 genotypes obtained during or preceding therapy failure, and other experi-
mental observations that allow for the association of HIV-1 mutations to drug resistance. An example of
such a rule follows: If reverse-transcriptase residue K101 is substituted by 101P in the genotype of a pa-
tient’s viral strain, then none of the currently available NNRTIs will be effective in inihibiting the replica-
tion of that viral strain. Popular rules-based genotypic drug-resistance interpretation systems include ANRS
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(http://www.hivfrenchresistance.org/), GRADE [297], HIVdb [298], and REGA (http://rega.
kuleuven.be/). Genotypic drug-resistance interpretation can also be performed with data-driven geno-
typic drug-resistance interpretation systems. Data-driven genotypic drug-resistance interpretation systems are
trained on pairs consisting of a genotype and a measurement informative of drug resistance, such as the FC
value. geno2pheno[resistance] (http://www.geno2pheno.org) [299] is a popular data-driven genotypic drug-
resistance interpretation systems that is trained on GPPs. Phenotypic drug-resistance testing is associated with
several advantages and disadvantages (Section 3.1), and therefore, genotypic drug-resistance interpretation sys-
tems trained solely on GPPs can potentially inherit these advantages and disadvantages. In the following, I
present a method for deriving a genotypic drug-resistance interpretation system that uses GPPs and also HIV-1
genotypes derived after exposure to antiretroviral drugs. Once programmed, the system does not require expert
intervention for training.

3.3 Inference of Drug Exposure from Clinical Data

In this section, I present a method with which a data-driven genotypic drug-resistance interpretation system
was developed. The system does not require quantitative phenotypic resistance measurements for training and
canmake use of HIV-1 data generated during routine medical practice. I consider important that such a system
allow for automatic retrainingwithout intervention by human experts. I expect that such a tool, in conjunction
with a frequently updated, large clinicalHIV-1 database, will be easy to keep up to date andwill interpretHIV-1
genotypeswith a reduced risk of expert bias. This section additionally provides an analysis of the predictive value
of polymorphisms located at positions in the amino-acid sequence where established drug-resistancemutations
do not occur and an identification of in-vivo genetic drug footprints through the novel method. The term in-
vivo genetic drug footprint refers to a set of amino-acid substitution weights indicating the propensity of a drug
to select for the respective substitution in patients treated with the drug. At the same time, these genetic drug
footprints are used as a means for interpretation of the predictions of the method.

3.3.1 Materials and Methods

In the following, I describe the datasets and methods that were used for developing the interpretation system
described in this section.

Drugs Considered in this Method

The interpretation system described in this section considers the following antiretroviral drugs: 3TC, ABC,
AZT, d4T, ddC, ddI, FTC, TDF, delavidrine (DLV), EFV, etravirine (ETR), NVP, RPV, amprenavir (APV),
ATV, DRV, FPV, IDV, LPV, NFV, SQV, TPV, RAL, and EVG. Other antiretroviral drugs were not considered
due to insufficient data.

Nucleotide Sequences and Drug-Exposure Information in PRRT and IN

The PRRT dataset was constructed by pooling 70,304 HIV-1 PR and RT nucleotide sequences from two
sources: 37,799 sequences from the EuResist Integrated Database (EIDB; http://www.euresist.org;
downloadedonApril 11th, 2014)[300], 9,627ofwhichwerederived fromdrug-naïvepatients (short: drug-naïve
sequences), and 32,506 drug-naïve sequences from the Los Alamos National Laboratory Sequence Database
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(LANLSD; http://www.hiv.lanl.gov/; downloaded on March 31st, 2015). Among the sequences in the
PRRT dataset derived from therapy-experienced patients (short: drug-exposed sequences), 18,328 sequences
were derived frompatients whose complete drug historywas available at the time of sequencing. The IN dataset
includes a total of 5,523 IN nucleotide sequences with the following characteristics: 3,382 sequences were ex-
tracted from EIDB, 1,240 of which are drug-naïve, 397 have been exposed to an INI and possibly other drugs,
and 1,745 have been exposed only to drugs whose target is different from IN. The complete drug history is avail-
able for 1,432 of the drug-exposed IN sequences. Additionally, 3,782 drug-naïve IN sequences from LANLSD
(downloaded onMarch 31st, 2015) were added to the IN dataset. In bothPRRT and IN datasets, drug exposure
lasting for less than 30 days was disregarded. The inclusion criteria applied to the sequences were the following.
(1) Alignment with the MutExt software (http://www.schuelter-gm.de/mutext.html) must not have
produced an error due to low sequence similarity to the reference sequence, (2) at most 10% of the residues of
the considered protein regions could not be determined by the sequencing procedure (considered protein re-
gions are listed in the section entitled Subtype Determination, Sequence Alignment and Encoding, which is part
of Section 3.3.1), (3) the amino-acid sequence resulting from nucleotide translation was enforced to be unique
within the dataset, unless drug exposure differed between duplicates. The order of appearance of the sequences
in the dataset determined which duplicate sequence was excluded, with sequences appearing first preempting
inclusion of sequences appearing later. Older RT sequences not covering amino-acid positions 221-230 were
excluded as well.

Nucleotide Sequences inNaivePRRT andNaiveIN

Transmitted drug resistance (TDR) in PI- and RTI-naïve sequences was defined as the presence of at least one
mutation in the list of drug resistance mutations for surveillance of transmitted HIV-1 drug resistance [279].
Since the list of transmitted drug-resistance mutations only contains PR and RT mutations, TDR in IN se-
quences was defined in terms of the presence of an INI drug-resistance mutation in the 2013 IAS list [296].
Following the methodology used for establishing the list of transmitted drug-resistance mutations, INI drug-
resistance mutations with a prevalence greater than 0.5% among sequences from the LANLSD in IN were not
regarded as indicative of TDR [301]. The NaivePRRT and NaiveIN were created by randomly sampling 2,500
LANLSD sequences without TDR from the PRRT and IN datasets, respectively. These datasets are used by
our web service for z-score calculation. I do not refer to them further, in this work.

Definition of Treatment Episode

In the context of the analysis of treatment success, the notion of a treatment-change episode (TCE) has been
established [302]. In summary, a TCE documents relevant clinical parameters concerning a change in the drug
compounds of cART. Treatment episodes (TEs) differ from TCEs in that no treatment change is required, i.e.
TEs encompass first-line therapies as well. In this analysis, a TE consists of a baseline PR and RT genotype, a
list of drug compounds used in a therapy, follow-up VLs and, optionally, a baseline VL. The baseline genotype
and the baseline VL must have been obtained no earlier than 90 days before treatment initiation, in line with
previously developed definitions of the standard datum of the EIDB [300, 302]. However, baseline genotypes
for first-line therapies are exempt from this requirement, as the virus has not been subject to selective pressure
by drug therapy. In the presence of multiple data points, baseline measurements obtained at the date closest
to therapy initiation are preferred. TEs containing drugs not considered in this analysis or with unboosted PIs
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(except for nelfinavir) do not satisfy the TE definition. Furthermore, VL measurements were constrained to
those not reaching a lower limit of quantification greater or equal than 50 HIV-1 RNA copies per milliliter of
blood serum.

Definition of Treatment Success of the EuResist Standard Datum

According to the definition of the EuResist Standard Datum, treatment success is determined with a follow-
up VL, and optionally, a baseline VL, as follows. A follow-up VL must have been obtained between four and
twelve weeks after therapy initiation, preferring the VL measurement whose measurement date is closest to
eight weeks after therapy start. TEs in which this follow-up VL is below 400 HIV-1 RNA copies per milliliter
of blood serum or comparison with the baseline VL shows an at least 100-fold reduction in the VL are labeled
as successes. TEs for which a baseline VL is available, the follow-up VL is above 400 HIV-1 RNA copies per
milliliter of blood serum, and the VL reduction is less than 100-fold are labeled as failures [300, 302].

Definition of Number of Aviremic Semesters

Treatment success, as defined above, is concerned with short-term therapeutic success or failure. In the fol-
lowing, I describe the NAS, a measure that accounts for long-term therapeutic success. By definition, a ther-
apy semester is one of possibly many contiguous, non-overlapping periods of 26 weeks during a therapy. The
first therapy semester begins on the first day of the therapy. For computing the NAS, follow-up VL measure-
ments are grouped by the therapy semester during which they were performed, and VLmeasurements for each
semester are averaged. A therapy semester is considered aviremic if itsmeanVL is less than some threshold in the
mean number ofHIV-1 RNA copies permilliliter of blood serum. For determining the success of antiretroviral
therapy, a threshold of 50 HIV-1 RNA copies per milliliter of blood serum has become standard [228, 280] *.
However, one can choose a higher threshold in order to accommodate blips [278] into the aviremic semesters
(Section 4.1.2). The NAS can be right-censored. Specifically, if a therapy is still ongoing when it is stored in the
EIDB or a therapy semester is devoid of VL measurements, the NAS might be right-censored, as the missing
VL measurements could lead to an increase of this quantity. Furthermore, therapy switches while a patient’s
VL is suppressed can also be regarded as censoring, as therapy continuation could have led to further aviremic
semesters. I do not compute the NAS for therapies for which the number of therapy semesters without a VL
measurement is greater than 10% of the total number of recorded therapy semesters, or for therapies lasting less
than four weeks. Figure 3.1 shows an example for the computation of the NAS following treatment initiation.
For the analysis presented in Section 3.3, a threshold of 50 HIV-1 RNA copies per milliliter of blood serum
is used for computing the NAS. Furthermore, therapy switches while a patient’s average VL is under this VL
threshold are regarded as right censoring.

*For defining therapeutic success, the EuResist Standard Datum uses a threshold of 400 HIV-1 RNA copies per
milliliter of blood serum in conjunction with the extent of VL decay, eight weeks after initiation of treatment. How-
ever, a threshold of 50 HIV-1 RNA copies per milliliter of blood serum has become standard. There are two reasons for
the use of this higher VL threshold in the definition of the EuResist Standard Datum. (1) For many patients, eight weeks
of chemotherapy are not sufficient to reduce the VL below 50 HIV-1 RNA copies per milliliter of blood serum. There-
fore, the use of a threshold of 50 HIV-1 RNA copies per milliliter of blood serum (disregarding the extent of VL decay)
would be inadequately stringent, as theVLmay decrease further during the course of therapy. (2) The EuResist Integrated
Database includes older VLmeasurements with a lower limit of quantification of 400HIV-1 RNA copies per milliliter of
blood serum. The use of a VL threshold below 400 makes exclusion of these older VL measurements necessary.
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Figure 3.1: Computaধon of Aviremic Semesters (Example). For compuঞng the number of aviremic semesters, the viral-load tra-
jectory of a paঞent is divided into conঞguous periods of 26 weeks (therapy semesters). The first period begins on the first day
of therapy. The viral-load trajectory of a paঞent on anঞretroviral therapy is depicted in Figure (a). The value of viral load prior to
therapy iniঞaঞon is truncated in Figure (a), which is indicated by the scissors. Verঞcal black lines delimit therapy semesters. Viral-
load measurements for each semester are averaged (Figure (b)), and the number of aviremic semesters is computed as a funcঞon
of the chosen viral-load threshold. For the therapy in Figure (b), a VL threshold of 50 HIV-1 RNA copies per milliliter of blood
serum (green line) would yield 8 aviremic semesters, while a VL threshold of 125 HIV-1 RNA copies per milliliter of blood serum
(red line) would yield 9 aviremic semesters. The number of aviremic semesters can be right-censored if any therapy semester
is devoid of viral-load measurements or if the therapy is sঞll ongoing when this measure is computed. Furthermore, a number
of aviremic semesters can be considered to be right-censored if the therapy was interrupted while the viral load was below the
chosen detecঞon threshold.
— 50 HIV-1 RNA copies per milliliter of blood serum — 125 HIV-1 RNA copies per milliliter of blood serum
— Viral-load trajectory



Definition of Treatment-Failure Episode

TEs with baseline sequences indicating drug resistance to some of the therapy’s drug compounds are rare in
EIDB.Therefore, I resort to nucleotide sequencesmeasured after the initiation of a therapy, which often implies
therapeutic failure, as a certain degree of viral replication is required for sequencing. Towards this end, I define
a treatment-failure episode (TFE) as follows. A TFE consists of a list of drugs used during a therapy and an
HIV-1 sequence obtained during the therapy. The therapy is required to have lasted at least four weeks, and the
genotype is required to have been obtained no earlier than four weeks before therapy stop. In TFEs, I assume
that the treating clinician changed the therapy based on the results of the genotypic drug resistance test.

Treatment Episodes in EuResistTE

The EuResistTE dataset was constructed by extracting a total of 9,201 TEs from the EIDB [300]. These TEs
were constructed according to the definition of treatment episodes and labeled as successes or failures according
to the definition of the EuResist standard datum (see above) [302]. In summary, each TE includes a PR and
RT baseline sequence, the compounds that were prescribed to the patient, a baseline and a follow-up VL, and a
binary label indicating whether the therapy was successful or not. Additionally, the NAS (see above) was com-
puted for each TE, unless a VL measurement was available for less than 10% of the recorded therapy semesters.
To facilitate performance comparison, only therapies including the following antiretroviral drugs were consid-
ered: 3TC, ABC, AZT, d4T, ddI, FTC, TDF, EFV, ETR, NVP, APV, ATV, DRV, FPV, IDV, LPV, NFV,
SQV, TPV, and RTV as a boosting agent.

Treatment-Failure Episodes in TFE

The treatment-failure episode dataset TFE was constructed by extracting a total of 2,454 EIDB PR and RT
genotypes and corresponding therapy compounds obtained during therapy failure, as defined above. Con-
straints on the investigated drugs were identical to those applied for obtaining EuResistTE (see above). Ther-
apies were required to have lasted at least four weeks, and the genotype was required to have been obtained no
earlier than four weeks before therapy stop.

Datasets for the Training and Testing of Models for Predicting Drug Exposure

For the purpose of training and testingmodels for predicting drug exposure, several datasetswere created. These
datasets were extracted from PRRT, IN, EuResistTE, and TFE, which are described above. In order to con-
struct training and test sets that are patient-wise disjoint, a dataset of test patientsPwas iteratively created. With
the exception ofP, the names given to the datasets described in the following consist of two parts. The first part
is an abbreviation related to the purpose for which the dataset was created. The second part, in subscript, indi-
cates the dataset from which it was extracted. The therapy-pause dataset TPPRRT was extracted from PRRT.
TPPRRT was created in order to test the capability of drug-exposure models to detect drug exposure in viral
sequences that were measured during therapy pauses. Since TPPRRT is a test dataset, patients with sequences
in TPPRRT were added to P. For the purpose of testing the capability of drug-exposure models to detect drug
exposure in arbitrary HIV-1 sequences, I created the test setsTPRRT andTIN. In order to assign approximately
10% of the number of sequences in PRRT and IN to TPRRT and TIN, respectively, while keeping training and
development sets patient-wise disjoint, sequences included in TPRRT and TIN were defined to be those origi-
nating from patientsP. Starting with the patients with sequences inTPPRRT,Pwas successively enlarged with
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patients fromPRRT and IN. In each iteration of the enlargement ofP, one patient fromPRRT and INwas se-
lected at randomand appended toP. The enlargement ofP induced the enlargement ofTPRRT andTIN in turn.
Iterative enlargement ofPwas repeated until the number ofPRRT and IN sequences derived from the patients
in P was approximately 10% of the number of sequences in PRRT and IN, respectively. Note that TPPRRT

is a subset of TPRRT. In order to train models for predicting drug exposure, the development setsDPRRT and
DIN were created. DPRRT and DIN contain the sequences in PRRT and IN, respectively, that are not included
inTPRRT orTIN, respectively. In order to estimate cutoffs for drug-exposure models (Section 3.4) and in order
to test the capability of drug-exposure models of predicting therapeutic success, I created development and test
sets containing TEs, as follows. The baseline sequences of the TEs in EuResistTE partially overlap with the
sequences in TPRRT, TIN, DPRRT, and DIN. I created a development dataset DEuResistTE which includes all
TEs with baseline sequences in DPRRT. The TEuResistTE dataset was created for testing purposes and it con-
tains all TE baseline sequences not included in DPRRT. Furthermore, I created a dataset TEuResistTETP which
includes TEs whose baseline sequence was measured during a therapy pause. TEuResistTETP contains TEs from
TEuResistTE whose baseline sequences are also included in TPPRRT. Determination of cutoffs for drug expo-
suremodels did not only requireTEs, but alsoTFEs. However, noTFE including a sequence selected for testing
purposes should be used for cutoff determination. Thus, I created theDTFE dataset with the sequences inTFE
which are included inDPRRT.

Genotype-Phenotype Pairs in Pheno,DPheno, and TPheno

For the purpose of determining cutoffs for drug-exposure models (Section 3.4), as well as testing the capability
of drug-exposuremodels to predict drug resistance, a total of 7,597GPPswere downloaded from theHIVDrug
Resistance Database [294] on April 15, 2015 (Pheno dataset). The phenotypic drug-resistance assays used for
producing the phenotypes were constrained to Antivirogram® [287] and PhenoSense® [288]. The genotypes
are provided in the form of substitutions with respect to the reference sequence consensॿ B [294]. 3,323 GPP
quantify PI resistance, 3,477 RTI resistance, and 797 INI resistance. The TPheno dataset was created from the
Pheno dataset by randomly sampling approximately 10% of the GPP. The rest of the GPPs in Pheno were
assigned to theDPheno dataset.

Independent Test SetsHIVdbExposure andHIVdbTCE

For the purpose of generating independent test sets, the TCE repository in the HIV Drug Resistance Database
was downloaded in its entirety on November 21, 2013. [294]. A total of 1,441 sequences with drug-exposure
information could be extracted from the repository (HIVdbExposure dataset). For creating the HIVdbTCE
dataset, the EuResist Standard Datum definition was applied to therapies in HIVdbTCE whose drug com-
pounds are investigated in this study (with the exception of ddC and RAL for the sake of performance com-
parison). The NAS was computed for the therapies in HIVdbTCE, excluding those with VL measurements
reaching a lower limit reaching a lower limit of quantification greater than 50 HIV-1 RNA copies per milliliter
of blood serum.

Phenotypic Resistance Cutoffs

In this study, two sets of phenotypic resistance cutoffs were used. The drug-independent cutoff set categorizes
RFs into susceptible and resistant with the values one and ten. Specifically, RFs smaller or equal to one are
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classified as susceptible, while those greater or equal to ten are classified as resistant. RFs between one and ten
are not used for training. The set of clinically relevant cutoffs for PhenoSense GPPs was obtained from the
HIVdb website [294] and is composed as follows. 3TC: 3 and 20; ABC: 3 and 6; AZT: 3 and 10; d4T: 1.5 and 2;
ddI: 1.5 and 2; TDF 1.5 and 4; all NNRTIs: 3 and 10; and all INIs: 4 and 20. The clinically relevant cutoff set
discretizes PhenoSense GPPs into the classes susceptible, intermediate, and resistant.

Subtype Determination, Sequence Alignment, and Encoding

The subtype distribution in the PRRT and IN datasets was determined with the COMET subtyping tool
[303, 304]. Nucleotide sequences in PRRT and IN were aligned to the wild-type reference strain HXB2
and translated, usingMutExt (http://www.schuelter-gm.de). The resulting amino-acid sequences, along
with amino-acid sequences in the Pheno dataset, were represented vectorially with a binary encoding. The
vectorial representation considers substitutions, deletions, and the presence of insertions within the following
HXB2 amino-acid positions: PR 3-99, RT 40-230, and IN 30-260. The presence of deletions and insertions
was encoded for each amino-acid position, while the sequence of a specific insertion was not encoded. For each
nucleotide sequence set, three versions of the vectorial representation were produced: Vfull considers all amino
acids, VnoIASPos disregards amino-acid positions at which drug-resistance mutations in the IAS 2013 list [296]
occur, and VonlyIASPos only considers such amino-acid positions.

Creation of Exposure and ExposurePheno Cross-Validation Sets

For the purpose of cross-validation and training of models for predicting drug exposure, the Exposure and
ExposurePheno cross-validation sets were created. Exposure cross-validation sets only consist of nucleotide se-
quences with drug-exposure information, while ExposurePheno cross-validation sets additionally include nu-
cleotide sequences fromGPPs. DPRRT andDINwereused for constructing the cross-validation setsExposuredrug
for drug ∈ {ABC, AZT, d4T, ddC, ddI, 3TC/FTC, TDF, EFV, ETR,NVP, RPV, ATV,DRV, APV/FPV,IDV,
LPV, NFV, SQV, TPV, RAL} which contain an equal number of sequences exposed and not exposed to a cer-
tain drug. Sequences not exposed to the drug were randomly selected from the development set, as they were
in excess; these sequences were required to have been derived from patients whose complete drug exposure his-
tory is recorded. Where possible, half of the sequences not exposed to the drug were drug-naïve, and half of
themwere exposed to some other drug. A cross-validation setExposurenaivePPRT containing an equal number
of drug-naïve and drug-experienced PR and RT sequences was constructed as well. An ExposurenaiveIN cross-
validation set was not created due to the fact that only a sufficient number of RAL-exposed IN sequences was
available. The ExposurePhenodrug cross-validation sets were created from the Exposuredrug cross-validation
sets, with additional supplementation of some genotypes from the DPheno dataset. Specifically, genotypes
with corresponding RFs classified as resistant via the drug-independent cutoffs were treated as drug-exposed
sequences while those with corresponding RFs classified as susceptible were treated as sequences not exposed
to the drug in question (see Phenotypic Resistance Cutoffs). Genotypes with corresponding RFs between the
two cutoffs were not used for training. This procedure incremented the number of available drug-exposed se-
quences and allowed for the creation of the cross-validation setsExposurePhenoRPV andExposurePhenoEVG,
as the number of available drug-exposed sequences for RPV and EVG was very low. Cross-validation sets for
DTG could not be created, as neither a sufficient number of resistant phenotypes nor a sufficient number of
drug-exposed sequences were available.
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Training and Selection of Models for Predicting Drug Exposure

For performing five repetitions of a 10-fold cross validation, each cross-validation set was randomly partitioned
five times into ten folds. Each fold contained an equal proportion of sequences with and without exposure to
the drug in question. Thepartitionswere used to cross validate linear SVCs [305] (Section 2.2.2), discriminating
between sequences with andwithout exposure to a certain drug. Three versions of eachmodel were trained: the
first one is based onVfull, the second one is based onVnoIASPos, and the third one is based onVonlyIASPos. The
vectorial representation used to train each drug-specific model was constrained to the vector elements describ-
ing the drug’s target protein (PR, RT or IN). Each cross validation was performed with a certain value for the
regularization parameter γ for the SVC, specifically, γ ∈ {2−8, 2−7, . . . , 22}. Performance was measured in
terms of the area under the receiver operating characteristic curve (AUC) [306, 307]. The signed distance to the
classification hyperplane (also called decision value)was used as a score for predicting drug exposure. Thus, I call
such decision values drug-exposure scores (DES). For each cross-validation set and vectorial representation, the
model with the lowest value of γ whose average performance was not significantly lower than the best average
performance was selected (Benjamini-Hochberg-corrected Wilcoxon signed-rank test [308] with a significance
threshold of 0.05). Finally, each cross-validation set and vectorial representation was used without partitioning
to train a final SVC with the selected value of γ. I refer to these SVCs as the final drug-exposure models, and I
groupmodels by the cross-validation set they originated from (Exposure orExposurePheno) and the vectorial
representation thatwas used to train them (Vfull,VnoIASPos, orVonlyIASPos). I use the name of a cross-validation
set in conjunctionwith the name of an encoding (in subscript) to refer to themodels trained with the respective
cross-validation set and encoding, e.g. Exposurefull.

Comparison of Performance to geno2pheno[resistance]

The performance of continuousDESwas compared to that of geno2pheno[resistance] version 3.3 (http://www.
geno2pheno.org, accessed on March 31st, 2015) [299]. The output of geno2pheno[resistance] includes a pre-
diction of the RF, an estimated probability of resistance, and a susceptible-intermediate-resistant (SIR) clas-
sification for each drug and nucleotide sequence. Comparison of the performance of DES with other popular
drug-resistance interpretation systems forwhich only discrete SIR predictions are available, can be found in Sec-
tion 3.4. In this section, I only compare DES to continuous geno2pheno[resistance] predictions (RFs and prob-
ability of resistance). Since each interpretation system uses its own alignment program, performance compari-
son was constrained to the set of sequences which could be aligned without errors by all interpretation systems
(including those mentioned in Section 3.4). Furthermore, the drug ddC was also excluded from performance
comparison, as it is not supported by other interpretation systems any more.

Assessment of Performance

Sequences inTPRRT,TIN ,TPPRRT,TPheno,TEuResistTE,HIVdbTCE, andHIVdbExposurewere interpreted
with the final drug-exposure models and geno2pheno[resistance]. Performance was quantified in terms of AUC
(unless stated otherwise). The capability of the systems to predict drug exposurewas assessedwithDES and pre-
dicted RFs calculated with TPRRT, TIN, TPPRRT, andHIVdbExposure. For assessing each system’s capability
to predict therapy success, a score for each therapy in TEuResistTE andHIVdbTCE and for each interpretation
system was calculated as follows. DES were normalized by fitting a sigmoidal function to each of the models,
as described before [309]. The sigmoidal function aims at estimating the probability that a certain genotype
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belongs to the class of genotypes exposed to a certain drug, given the DES for that genotype and drug (short:
probability of exposure to a certain drug; POE). The complements of POEs (i.e. one minus the POEs) for the
drugs that were used in a therapy were added in order to calculate scores for that therapy. For performance
comparison, the complement of probabilities of resistance [299] from geno2pheno[resistance] were used for cal-
culating a score for each therapy, in the sameway as the complements of POEswere used. Scores for each therapy
were used for predicting therapeutic success, as defined by the EuResist Standard Datum (see above). Further-
more, concordance of therapy scores with the NASwas assessed for therapies in theTEuResistTE andHIVdbTE
datasets in terms of Harrell’s concordance index (C ; Section 2.2.6) [267]. The capability of the DES to predict
drug resistance as assessed by the RFs of GPPs inTPheno was quantified with the Pearson correlation coefficient
[266]. Specifically, the correlation between DES and the log RFs in TPheno was calculated. Comparison to the
performance of geno2pheno[resistance] whenpredicting drug resistancewas not possible due to the fact that geno-
types inGPPswere only available in the formof amino-acid sequences. geno2pheno[resistance], however, requires
nucleotide sequences for prediction. Performance of DES in predicting phenotypic resistance is compared to
other drug-resistance interpretation systems in Section 3.4. Significance values in the Section 3.3.2 section were
calculated with a two-sided Wilcoxon signed-rank test [308].

Linear Weights for Drug-Exposure-Score Models

Linear SVCs can be represented as linear functions (Sections 2.2.1 and 2.2.2). Summarizing, DES are of the
form

DES(x) = βx, (3.1)

whereβ ∈ Rp is a vector of featureweights, andx ∈ Rp is a vector encoding a nucleotide sequence, according to
one of the used encodings, Vfull, VonlyIASPos, or VnoIASPos (Subtype Determination, Sequence Alignment, and
Encoding above). β is a linear combination of the vectors in the training set, and it results from mathematical
optimization with Lagrange multipliers:

β =

n∑
i=1

αiyixi, (3.2)

where yi ∈ {−1,+1} are the class labels in the training set (not exposed or exposed, respectively), xi ∈ Rp

are the encoded nucleotide sequences in the training set, and αi ∈ R are Lagrange multipliers resulting from
mathematical optimization (Sections 2.2.1 and 2.2.2). For interpretation of DES, the vector β was computed
for each of the drug-exposure models. For the sake of simplicity, I call the coefficients contained in β linear
weights.

3.3.2 Results

In the following, the results of data preprocessing and drug-exposure model training are presented. First, I
describe the results of the data preprocessing steps which yield the datasets on which drug-exposure models are
trained. Then, I describe the resulting datasets. Finally, I present the performance of the drug-exposure models
in predicting drug exposure, drug resistance, and therapeutic success. These performances are compared to
those of RFs predicted by geno2pheno[resistance].
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Table 3.1: Number of Nucleoধde Sequences by Subtype and Dataset. Nucleoঞde sequences in the PRRT, IN, and
HIVdbExposure datasets were subtyped with the COMET subtyping tool. Sequence counts for the ten most frequent sub-
types are tabulated below.

Subtype PRRT IN HIVdbExposure
B 42,634 2,721 1,377
C 6,243 1293 1
A1 3,704 166 1
G 3,223 270 0
02_AG 3,010 66 1
01_AE 4,275 596 1
D 1,169 53 1
F1 971 69 0
06_cpx 312 89 0
07_BC 651 4 0
Other 4,112 196 2
Total 70,304 5,523 1,384

Preprocessing of Drug-Exposure Datasets and Resulting Composition

Prior to alignment, 48,666 EIDB sequences were extracted from the database. The alignment procedure as-
signed 38,754 sequences to thePRRT dataset and 6,214 sequences to the IN dataset. PRRT and INwere further
complemented with 36,774 and 5,262 sequences, respectively, from LANLSD. The number of sequences in
PRRTwas reduced to 75,239 sequences after excluding sequences withmore than 10% undetermined residues.
After removal of duplicate sequences, PRRT included a total of 70,304 sequences (approximately 93% of the
initially included sequences). After excluding sequences with more than 10% undetermined residues, the num-
ber of sequences in IN was reduced to 7,076. After duplicate removal, 5,523 sequences (approximately 48%)
were left. Sequences inPRRT, IN andHIVdbExposurewere subtyped. The number of sequences per subtype
for these datasets can be seen inTable 3.1. Table 3.2 shows the number of sequences in the datasetsDPRRT,DIN,
TPRRT,TIN,TPPRRT and,HIVdbExposure by drug exposure. InDPRRT, 37,557 sequences are therapy naïve,
of which 3,757 (10.0%) present TDR. A total of 1,917 sequences inDIN are therapy naïve, of which 97 (approx-
imately 5%) present TDR. TPRRT contains 2,056 therapy-naïve sequences, among which 219 (approximately
11%) present TDR, whileTIN contains 154 therapy naïve sequences with 5 (3%) presenting TDR.

Preprocessing of Therapy-Change-Episode Datasets and Resulting Composition

Application of the definition of the EuResist Standard Datum to clinical HIV-1 data yielded the EuResistTE
(n = 9, 201) and the HIVdbTCE (n = 1, 000) datasets. Figure 3.2(a) depicts the most frequent therapies
in the EuResistTE, while Figure 3.2(b) does so for the TEs in HIVdbTCE. The construction of the DPRRT

and DIN datasets induced the DEuResistTE (n = 7, 551) and TEuResistTE (n = 1, 650) datasets; TEuResistTE

includes 619TEswhose baseline sequences are not included inPRRT. DEuResistTE contains 4,202 (55.6%) first-
line therapies amongwhich 415 present TDR in their baseline sequences (9.9%), whileTEuResistTE contains 313
first-line therapies (19.0%) among which 44 (14.1%) present TDR in their baseline sequences. Among the NAS
computed for the therapies in TEuResistTE, 1,017 were censored and 550 uncensored. In HIVdbTCE, 77 NAS
were censored, while 346 were uncensored. Figure 3.3(a) displays a histogram of the NAS for the therapies in
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Figure 3.2: Drug-Combinaধon Counts for Therapies in EuResistTE and HIVdbTCE. The counts of the 20 most-frequent drug com-
binaঞons in EuResistTE (a) and HIVdbTCE (b) datasets are displayed above.

TEuResistTE, while Figure 3.3(b) shows a histogram for theNAS inHIVdbTCE. Drug-wise and overall therapy-
success proportions for the therapies inDEuResistTE,DEuResistTE∪DTFE,TEuResistTE, andHIVdbTCE can be
found in Table 3.3.

Preprocessing of Datasets of Genotype-Phenotype Pairs and Resulting Composi-
tion

The Pheno dataset was split into the DPheno and TPheno datasets. Subsequently, the RF cutoffs one and ten
were applied to the GPPs in the datasets in order to classify them as resistant or susceptible. The resulting
compositions ofDPheno andTPheno are displayed in Tables 3.4 and 3.5, respectively.

Cross-Validation Performances

After creation of the Exposuredrug , ExposurenaivePRRT, and ExposurePhenodrug , cross-validation sets, ten
repetitions of a five-fold cross validation were performedwith each cross-validation set and encoding for a series
of values for the SVM γ parameter (Sections 2.2.2 and 3.3.1). One value of the γ parameter was chosen for each
cross-validation set, encoding, and drug. The mean drug-wise cross-validation performances (AUC) for the
chosen values of γ ranged between 0.61 and 0.99. Individual performances are displayed in Tables 3.6 and 3.7.
Note that two values for the mean performance across drugs are provided in the tables. The first mean value,
to which the term common drugs is appended, only considers performances for drugs for which both Exposure
and ExposurePheno models were trained. The second mean value, to which the term all drugs is appended,
considers all drugs for which predictions were available. Thus, means for common drugs allow for performance
comparison betweenExposure andExposurePhenomodels. Themaximalmodel-wisemean performancewas
higher for models trained on ExposurePheno cross-validation sets (µ = 0.82; σ = 0.05), than for models
trained on Exposure cross-validation sets (µ = 0.79; σ = 0.07).
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Table 3.3: Drug-Wise and Overall Therapy-Success Proporধons. Therapy-success proporঞons for therapy episodes including a
certain drug are tabulated below forDEuResistTE,DEuResistTE ∪DTFE, TEuResistTE, andHIVdbTCE. Overall therapy-success
rates for each of the datasets can be found below as well. 3FTC: lamivudine or emtricitabine, ABC: abacavir, AZT: zidovudine,
d4T: stavudine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavirdine, EFV: efavirenz, ETR: etravirine, NVP: nevi-
rapine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir, IDV: indinavir, LPV: lopinavir, NFV: nelfinavir, SQV:
saquinavir, TPV: ঞpranavir.

DEuResistTE DEuResistTE ∪ DTFE TEuResistTE HIVdbTCE
3FTC 0.84 0.71 0.79 0.65
ABC 0.81 0.65 0.71 0.59
AZT 0.82 0.64 0.77 0.71
d4T 0.65 0.44 0.58 0.56
ddI 0.65 0.48 0.63 0.59
TDF 0.84 0.74 0.78 0.71
EFV 0.89 0.75 0.83 0.66
ETR 0.81 0.75 0.67 1
NVP 0.77 0.50 0.73 0.67
AFPV 0.73 0.62 0.62 0.43
ATV 0.83 0.74 0.78 0.80
DRV 0.88 0.84 0.80 1
IDV 0.68 0.48 0.57 0.55
LPV 0.82 0.74 0.75 0.66
NFV 0.65 0.41 0.73 0.48
SQV 0.65 0.52 0.66 0.58
TPV 0.51 0.38 0.56 1
Overall 0.81 0.67 0.76 0.62



Table 3.4: Number of Phenotypes by Drug in the DPheno dataset. The numbers of phenotypes by drug in the DPheno dataset
are tabulated below. Phenotypes were measured with the Anঞvirogram® or PhenoSense® assays. Drug-independent resistance-
factor cutoffs one and tenwere used for categorizing phenotypes into suscepঞble and resistant. 3FTC: lamivudine or emtricitabine,
ABC: abacavir, AZT: zidovudine, d4T: stavudine, ddC: zalcitabine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavir-
dine, EFV: efavirenz, ETR: etravirine, NVP: nevirapine, RPV: rilpivirine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV:
darunavir, IDV: indinavir, LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV: ঞpranavir, RAL: raltegravir, EVG: elvitegravir.

Antivirogram PhenoSense Susceptible Resistant Total
3TC 905 1,546 346 1,362 2,451
ABC 840 1,473 531 186 2,313
AZT 855 1,567 801 773 2,422
d4T 889 1,573 1,031 60 2,462
ddC 821 451 371 47 1,272
ddI 891 1,575 654 59 2,466
TDF 633 1,234 850 33 1,867
DLV 1,016 1,638 794 1,091 2,654
EFV 1,106 1,652 924 1,127 2,758
ETR 363 476 304 156 839
NVP 1,170 1,653 772 1,447 2,823
RPV 91 176 62 75 267
ATV 774 1,134 401 978 1,908
DRV 282 629 400 178 911
FPV 1,088 1,695 917 859 2,783
IDV 1,151 1,734 782 1,229 2,885
LPV 1,040 1,468 665 1,279 2,508
NFV 1,185 1,780 483 1,584 2,965
SQV 1,181 1,741 985 1,039 2,922
TPV 742 854 584 191 1,596
EVG 97 598 112 137 695
RAL 97 630 336 148 727



Table 3.5: Number of Phenotypes by Drug in the TPheno dataset. The numbers of phenotypes by drug in the TPheno dataset
are tabulated below. Phenotypes were measured with the Anঞvirogram® or PhenoSense® assays. Drug-independent resistance-
factor cutoffs one and tenwere used for categorizing phenotypes into suscepঞble and resistant. 3FTC: lamivudine or emtricitabine,
ABC: abacavir, AZT: zidovudine, d4T: stavudine, ddC: zalcitabine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavir-
dine, EFV: efavirenz, ETR: etravirine, NVP: nevirapine, RPV: rilpivirine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV:
darunavir, IDV: indinavir, LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV: ঞpranavir, RAL: raltegravir, EVG: elvitegravir.

Antivirogram PhenoSense Susceptible Resistant Total
3TC 115 166 37 158 281
ABC 107 166 60 25 273
AZT 107 165 92 88 272
d4T 110 168 122 6 278
ddC 105 46 38 5 151
ddI 111 168 72 7 279
TDF 87 132 87 4 219
DLV 126 169 81 125 295
EFV 141 171 105 136 312
ETR 43 52 36 15 95
NVP 146 175 82 170 321
RPV 14 21 13 10 35
ATV 85 131 42 115 216
DRV 22 79 50 20 101
FPV 110 193 88 105 303
IDV 125 194 76 142 319
LPV 113 172 76 151 285
NFV 127 199 48 189 326
SQV 129 195 105 119 324
TPV 80 106 56 22 186
EVG 17 61 9 11 78
RAL 17 65 36 21 82



Table 3.6: Mean Cross-Validaধon Performance for Drug-Exposure Predicধon, Exposure Models. For each group of cross-
validaঞon sets, encoding, and tested γ parameter, five repeঞঞons of a 10-fold cross validaঞon were performed. Each perfor-
mance figure shown below corresponds to the selected γ parameter. Performances were calculated in terms of AUC, and per-
formances were averaged for drugs common to all interpretaঞon systems and for all models. The highest performance in each
row is underlined. Standard deviaঞons are shown in parentheses. 3FTC: lamivudine or emtricitabine, ABC: abacavir, AZT: zi-
dovudine, d4T: stavudine, ddC: zalcitabine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavirdine, EFV: efavirenz,
ETR: etravirine, NVP: nevirapine, RPV: rilpivirine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir, IDV: indi-
navir, LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV: ঞpranavir, RAL: raltegravir, EVG: elvitegravir, CD: drugs common to all
models, AM: all models, NA: not available, SD: standard deviaঞon.

ExposureonlyIASPos ExposurenoIASPos Exposurefull
3FTC 0.83 (0.01) 0.79 (0.01) 0.88 (0)
ABC 0.71 (0.01) 0.7 (0.01) 0.74 (0.01)
AZT 0.8 (0.01) 0.78 (0.01) 0.86 (0.01)
d4T 0.79 (0.01) 0.78 (0.01) 0.83 (0.01)
ddI 0.79 (0.01) 0.77 (0.01) 0.83 (0.01)
ddC 0.81 (0.01) 0.81 (0.01) 0.85 (0.01)
TDF 0.69 (0.01) 0.66 (0.01) 0.72 (0.01)
EFV 0.75 (0.01) 0.68 (0.01) 0.78 (0.01)
ETR 0.76 (0.07) 0.77 (0.06) 0.8 (0.05)
DLV 0.89 (0.06) 0.84 (0.08) 0.9 (0.06)
NVP 0.78 (0.01) 0.73 (0.01) 0.81 (0.01)
AFPV 0.82 (0.02) 0.74 (0.02) 0.83 (0.02)
ATV 0.65 (0.02) 0.61 (0.02) 0.67 (0.02)
DRV 0.65 (0.03) 0.65 (0.03) 0.68 (0.03)
IDV 0.76 (0.01) 0.69 (0.01) 0.78 (0.01)
LPV 0.69 (0.01) 0.65 (0.01) 0.71 (0.01)
NFV 0.77 (0.01) 0.68 (0.01) 0.79 (0.01)
SQV 0.81 (0.01) 0.72 (0.01) 0.83 (0.01)
TPV 0.88 (0.03) 0.8 (0.04) 0.89 (0.03)
RAL 0.65 (0.06) 0.64 (0.07) 0.67 (0.07)
Naïve PRRT 0.87 (0) 0.82 (0.01) 0.9 (0.00)
Mean CD (SD) 0.76 (0.06) 0.72 (0.06) 0.79 (0.07)
Mean AM (SD) 0.77 (0.07) 0.73 (0.07) 0.8 (0.07)



Table 3.7: Mean Cross-Validaধon Performance for Drug-Exposure Predicধon,ExposurePhenoModels. For each group of cross-
validaঞon sets, encoding and tested γ parameter, five repeঞঞons of a 10-fold cross validaঞon were performed. Each perfor-
mance figure shown below corresponds to the selected γ parameter. Performances were calculated in terms of AUC, and per-
formances were averaged for drugs common to all interpretaঞon systems and for all models. The highest performance in each
row is underlined. Standard deviaঞons are shown in parentheses. 3FTC: lamivudine or emtricitabine, ABC: abacavir, AZT: zi-
dovudine, d4T: stavudine, ddC: zalcitabine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavirdine, EFV: efavirenz,
ETR: etravirine, NVP: nevirapine, RPV: rilpivirine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir, IDV: indi-
navir, LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV: ঞpranavir, RAL: raltegravir, EVG: elvitegravir, CD: drugs common to all
models, AM: all models, NA: not available, SD: standard deviaঞon.

ExposurePhenoonlyIASPos ExposurePhenonoIASPos ExposurePhenofull
3FTC 0.84 (0.01) 0.79 (0.01) 0.88 (0.01)
ABC 0.73 (0.01) 0.71 (0.01) 0.76 (0.01)
AZT 0.81 (0.01) 0.78 (0.01) 0.85 (0.01)
d4T 0.79 (0.01) 0.78 (0.01) 0.83 (0.01)
ddI 0.79 (0.01) 0.77 (0.01) 0.83 (0.01)
ddC 0.8 (0.02) 0.8 (0.01) 0.84 (0.01)
TDF 0.7 (0.01) 0.69 (0.01) 0.73 (0.01)
EFV 0.77 (0.01) 0.68 (0.01) 0.8 (0.01)
ETR 0.87 (0.04) 0.72 (0.05) 0.88 (0.04)
DLV 0.95 (0.01) 0.7 (0.03) 0.96 (0.01)
NVP 0.79 (0.01) 0.72 (0.01) 0.82 (0.01)
RPV 0.95 (0.06) 0.67 (0.15) 0.94 (0.06)
AFPV 0.86 (0.01) 0.75 (0.02) 0.87 (0.01)
ATV 0.71 (0.02) 0.67 (0.02) 0.75 (0.01)
DRV 0.76 (0.03) 0.71 (0.03) 0.78 (0.03)
IDV 0.77 (0.01) 0.7 (0.01) 0.8 (0.01)
LPV 0.73 (0.01) 0.66 (0.01) 0.75 (0.01)
NFV 0.8 (0.01) 0.7 (0.01) 0.82 (0.01)
SQV 0.82 (0.01) 0.72 (0.02) 0.84 (0.01)
TPV 0.91 (0.02) 0.81 (0.03) 0.92 (0.02)
RAL 0.86 (0.03) 0.78 (0.05) 0.89 (0.03)
EVG 0.98 (0.02) 0.8 (0.08) 0.99 (0.02)
Mean CD (SD) 0.79 (0.06) 0.73 (0.04) 0.82 (0.05)
Mean AM (SD) 0.82 (0.08) 0.74 (0.05) 0.85 (0.07)
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Figure 3.3: Histogram of the Numbers of Aviremic Semesters. For each therapy-change episode inTEuResistTE andHIVdbTCE,
the number of therapy semesters with an average viral load below 50 copies per milliliter of blood serum was quanঞfied (aviremic
semesters). Database records on ongoing therapies, therapy semesters without viral load measurements, and therapy changes
despite viral suppression result in a right-censored quanঞficaঞon of the number of aviremic semesters. Among the numbers
of aviremic semesters computed for the therapies in TEuResistTE (a), 1,017 were censored and 550 uncensored. A total of 77
HIVdbTCE (b) numbers of aviremic semesters were censored, while 346 were uncensored.

Assessment and Comparison of Performance Using the Test Sets

The performance of the final drug-exposuremodels was assessed and compared to that of geno2pheno[resistance].
After the application of cutoffs for discretizing DES, performance was also compared to other popular drug-
resistance interpretation systems (Section 3.4). Among the 7,275 PR and RT nucleotide sequences that were
available for testing, 23 (<0.01%) were not processed by either geno2pheno[resistance] or another drug-resistance
interpretation system to which DES are compared (Interpretation Systems for Performance Comparison in Sec-
tion 3.4.1), due to low similarity to the reference sequence. For the sake of performance comparison, these
sequences were excluded. In the following, mean model-group-wise performances are stated. In order to be
able to compare the different models, these means were calculated only with the performances of the drugs that
are common to Exposure and ExposurePhenomodels, as well as to the drug-resistance interpretation systems
that are used for performance comparison in this chapter. Note that in the tables found in the following, two
values for the mean performance across drugs are provided. The first mean value, to which the term common
drugs is appended, only considers performances for drugs common to all drug-exposuremodel groups anddrug-
resistance interpretation systems used for performance comparison. The secondmean value, to which the term
all drugs is appended, considers all drugs for which predictions were available. Thus, means for common drugs
allow for performance comparison between different model groups and drug-resistance interpretation systems.
p-values were calculated with a two-sided Wilcoxon signed-rank test.
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Table 3.8: Drug-Exposure Predicধon Performance (AUC) on TPRRT and TIN for Conধnuous Drug-Exposure Scores, Exposure
Models. Drug-exposure predicঞon performance on sequences in theTPRRT andTIN datasets was calculated for each final drug-
exposure-scoremodel group. The highest performance in each row is underlined. 3FTC: lamivudine or emtricitabine, ABC: abacavir,
AZT: zidovudine, d4T: stavudine, ddC: zalcitabine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavirdine, EFV:
efavirenz, ETR: etravirine, NVP: nevirapine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir, IDV: indinavir,
LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV: ঞpranavir, RAL: raltegravir, CD: drugs common to all models, AM: all models,
NA: not available, SD: standard deviaঞon.

Exposurefull ExposurenoIASPos ExposureonlyIASPos
3FTC 0.85 0.77 0.82
ABC 0.73 0.69 0.72
AZT 0.84 0.76 0.81
d4T 0.86 0.79 0.82
ddC 0.84 0.79 0.82
ddI 0.85 0.78 0.82
TDF 0.71 0.66 0.69
DLV 0.86 0.62 0.88
EFV 0.76 0.69 0.74
ETR 0.75 0.65 0.75
NVP 0.77 0.7 0.75
AFPV 0.8 0.69 0.8
ATV 0.66 0.6 0.65
DRV 0.69 0.63 0.67
IDV 0.79 0.7 0.78
LPV 0.75 0.66 0.73
NFV 0.76 0.66 0.74
SQV 0.82 0.71 0.81
TPV 0.85 0.81 0.86
RAL 0.62 0.55 0.69
Naïve 0.89 0.82 0.87
Mean CD (SD) 0.78 (0.06) 0.7 (0.06) 0.76 (0.06)
Mean AM (SD) 0.78 (0.07) 0.7 (0.07) 0.77 (0.07)

Performance of Drug-Exposure and Drug-Resistance Prediction Using the Test
Sets

DES performances when predicting drug-exposure on the TPRRT, TIN, and HIVdbExposure datasets can
be seen in Tables 3.8, 3.9, and 3.10, while that of geno2pheno[resistance] is shown in Table 3.11. In the
following, p-values quantify the difference in the AUC distributions between a given drug-exposure model
group and geno2pheno[resistance]. The best mean performance with lowest standard deviation (SD) on the
TPRRT dataset could be attained by the Exposurefull models (µ = 0.78; σ = 0.06), while the perfor-
mance of geno2pheno[resistance] was lower (µ = 0.71; σ = 0.07; p < 10−4). The model trained with the
ExposurePhenoRAL cross-validation set and theVfull encoding showed the best performance on theTIN dataset
(AUC = 0.71). DES obtained from Exposurefull models performed best in discriminating therapy-naïve se-
quences from therapy-experienced sequences in the TPRRT dataset (AUC = 0.89). On the HIVdbExposure
dataset, the best mean performance with lowest SD could be attained with the Exposurefull models (µ =

0.76; σ = 0.09), while geno2pheno[resistance] achieved a lower mean performance (µ = 0.74; σ = 0.14; p =

112



Table 3.9: Drug-Exposure Predicধon Performance (AUC) on TPRRT and TIN for Conধnuous Drug-Exposure Scores,
ExposurePhenoModels. Drug-exposure predicঞon performance on sequences in the TPRRT and TIN datasets was calculated
for each final drug-exposure-score model group. The highest performance in each row is underlined. 3FTC: lamivudine or emtric-
itabine, ABC: abacavir, AZT: zidovudine, d4T: stavudine, ddC: zalcitabine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV:
delavirdine, EFV: efavirenz, ETR: etravirine, NVP: nevirapine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir,
IDV: indinavir, LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV: ঞpranavir, RAL: raltegravir, CD: drugs common to all models,
AM: all models, NA: not available, SD: standard deviaঞon.

ExposurePhenofull ExposurePhenonoIASPos ExposurePhenoonlyIASPos
3FTC 0.85 0.77 0.82
ABC 0.73 0.69 0.72
AZT 0.84 0.76 0.81
d4T 0.85 0.79 0.82
ddC 0.84 0.79 0.81
ddI 0.85 0.78 0.82
TDF 0.7 0.65 0.69
DLV 0.83 0.46 0.83
EFV 0.76 0.69 0.73
ETR 0.74 0.62 0.72
NVP 0.76 0.69 0.74
AFPV 0.8 0.72 0.79
ATV 0.63 0.61 0.62
DRV 0.69 0.67 0.66
IDV 0.79 0.71 0.76
LPV 0.74 0.68 0.72
NFV 0.76 0.68 0.74
SQV 0.82 0.72 0.8
TPV 0.85 0.78 0.84
RAL 0.71 0.55 0.69
Mean CD (SD) 0.77 (0.06) 0.71 (0.06) 0.75 (0.06)
Mean AM (SD) 0.78 (0.06) 0.69 (0.09) 0.76 (0.06)



Table 3.10: Drug-Exposure Predicধon Performance (AUC) on HIVdbExposure for Conধnuous Drug-Exposure Scores. Drug-
exposure predicঞon performance on sequences in the HIVdbExposure dataset was calculated for each final drug-exposure-
score model group. The highest performance (with the lowest standard deviaঞon) in each row is underlined. 3FTC: lamivudine or
emtricitabine, ABC: abacavir, AZT: zidovudine, d4T: stavudine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavir-
dine, EFV: efavirenz, ETR: etravirine, NVP: nevirapine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir, IDV:
indinavir, LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV: ঞpranavir, SD: standard deviaঞon.

Exposurefull ExposurenoIASPos ExposureonlyIASPos
3FTC 0.74 0.56 0.72
ABC 0.71 0.61 0.7
AZT 0.62 0.61 0.62
d4T 0.64 0.62 0.63
ddI 0.72 0.63 0.71
TDF 0.66 0.55 0.64
EFV 0.84 0.56 0.8
ETR 0.97 0.83 1
NVP 0.78 0.59 0.77
AFPV 0.8 0.54 0.81
ATV 0.68 0.5 0.69
DRV 0.83 0.79 0.95
IDV 0.77 0.6 0.77
LPV 0.66 0.54 0.66
NFV 0.76 0.55 0.76
SQV 0.76 0.56 0.77
TPV 0.9 0.79 0.91
Mean (SD) 0.76 (0.09) 0.61 (0.1) 0.76 (0.11)

ExposurePhenofull ExposurePhenonoIASPos ExposurePhenoonlyIASPos
3FTC 0.75 0.56 0.73
ABC 0.71 0.62 0.7
AZT 0.63 0.62 0.62
d4T 0.65 0.62 0.64
ddI 0.72 0.63 0.71
TDF 0.67 0.56 0.64
EFV 0.85 0.56 0.85
ETR 0.96 0.72 0.97
NVP 0.79 0.61 0.76
AFPV 0.81 0.59 0.82
ATV 0.62 0.57 0.59
DRV 0.94 0.73 0.91
IDV 0.78 0.6 0.77
LPV 0.66 0.57 0.66
NFV 0.76 0.55 0.76
SQV 0.77 0.56 0.77
TPV 0.94 0.73 0.94
Mean (SD) 0.76 (0.11) 0.61 (0.06) 0.75 (0.11)



Table 3.11: Drug-Exposure Predicধon Performance (AUC) on TPRRT and HIVdbExposure for Predicted Resistance Factors.
Drug-exposure predicঞon performance on sequences in the TPRRT and HIVdbExposure datasets was calculated with resis-
tance factors predicted by geno2pheno[resistance]. 3FTC: lamivudine or emtricitabine, ABC: abacavir, AZT: zidovudine, d4T: stavu-
dine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, EFV: efavirenz, ETR: etravirine, NVP: nevirapine, AFPV: amprenavir or
fosamprenavir, ATV: atazanavir, DRV: darunavir, IDV: indinavir, LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV: ঞpranavir,
SD: standard deviaঞon.

TPRRT HIVdbExposure
3FTC 0.79 0.76
ABC 0.69 0.65
AZT 0.72 0.69
d4T 0.74 0.64
ddI 0.78 0.55
TDF 0.63 0.52
EFV 0.7 0.83
ETR 0.58 0.98
NVP 0.7 0.74
AFPV 0.76 0.8
ATV 0.6 0.56
DRV 0.68 0.95
IDV 0.73 0.77
LPV 0.72 0.64
NFV 0.7 0.74
SQV 0.75 0.76
TPV 0.83 0.96
Mean (SD) 0.71 (0.07) 0.74 (0.14)



0.46). Table 3.12 shows the performance of the drug-exposure-score models in predicting drug exposure on
sequences derived during therapy pauses (TPPRRT dataset), while the performance of geno2pheno[resistance]
on the same dataset is shown in Table 3.13. The best mean performances on TPPRRT could be attained
with models trained with the Vfull encoding (µ = 0.61; σ = 0.08), while geno2pheno[resistance] displayed
a lower performance (µ = 0.59; σ = 0.10; p = 0.2247). Tables 3.14 and 3.15 show the correlation of
the continuous DES with the logarithmized resistance factors from the PhenoT dataset. When testing the
models with Antivirogram® resistance factors, ExposurePhenofull models show the highest mean correlation
(µ = 0.46; σ = 0.20). The best mean correlation with experimentally measured PhenoSense® resistance
factors was attained by the ExposurePhenofull and ExposurePhenoonlyIASPos models (µ = 0.51; σ = 0.17).

Performance of Prediction of Therapy Success

Performance in predicting therapy success on theTEuResistTE,TEuResistTETP, andHIVdbTCE datasets are dis-
played in Table 3.16. Performance in predicting short-term therapeutic success was assessed using dichotomous
therapy-success labels and the AUC. Performance in predicting long-term therapeutic success was assessed us-
ing the NAS and Harrel’s concordance index. On the TEuResistTE dataset, DES models with the Vfull and
VonlyIASPos encodings could attain the highest AUC (AUC = 0.71), while DES models with the Vfull en-
coding could attain the best concordance (C = 0.65). The highest AUC on the TEuResistTETP dataset was
achieved by the ExposureonlyIASPos models (AUC = 0.74), while the highest concordance was achieved by
the ExposurePhenofull models (C = 0.63). geno2pheno[resistance] and ExposurePhenoonlyIASPos models per-
formed best in terms of AUC on the HIVdbTCE dataset (AUC = 0.64), while the best concordance was
achieved by geno2pheno[resistance] (C = 0.61).

Linear Weights for Drug-Exposure-Score Models

Linear SVCs used for obtainingDESwere represented as linear functions. With these functions, the calculation
of the DES amounts to the addition of the weights corresponding to the substitutions, insertions and dele-
tions in a genotype. An excerpt of the ten smallest and ten largest linear DES weights for selected drugs from
ExposurePhenofull models can be found in Table 3.17.

3.3.3 Discussion

DESmodels constitute a data-driven interpretation system forHIV-1 PR, RT, and IN sequences. The interpre-
tations provided by this system can be used to address three questions: (1) Was a sequence exposed to a certain
drug? (2) Is the HIV-1 variant from which the sequence was derived resistant against a certain drug? and (3)
Will a certain drug be useful as a component of a therapy against anHIV-1 variant? In the following, I will refer
to these three questions by the number I assigned to them above.

Different versions ofDESmodels were trained and tested. Specifically, I assessed the value of includingGPPs
into the models’ training sets (ExposurePhenomodels), as opposed to training the models solely on genotypes
with drug-exposure information (Exposure models). Furthermore, I used three different encodings for the
genotype sequences used to train the models: Vfull considers all amino acids, VnoIASPos disregards amino-acid
positions at which drug-resistance mutations in the IAS 2013 list [296] occur, and VonlyIASPos only considers
such amino-acid positions. WhileExposureDESmodels show a comparatively high performance in predicting
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Table 3.12: Drug-Exposure Predicধon Performance (AUC)TTPPRRT for Conধnuous Drug-Exposure Scores. Drug-exposure pre-
dicঞon performance on TTPPRRT (therapy-pause sequences) dataset was calculated for each final drug-exposure-score model
group. The highest performance in each row is underlined. 3FTC: lamivudine or emtricitabine, ABC: abacavir, AZT: zidovudine, d4T:
stavudine, ddC: zalcitabine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavirdine, EFV: efavirenz, ETR: etravirine,
NVP: nevirapine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir, IDV: indinavir, LPV: lopinavir, NFV: nelfi-
navir, SQV: saquinavir, TPV: ঞpranavir, RAL: raltegravir, CD: drugs common to all models, AM: all models, NA: not available, SD:
standard deviaঞon.

Exposurefull ExposurenoIASPos ExposureonlyIASPos
3FTC 0.45 0.47 0.41
ABC 0.61 0.59 0.61
AZT 0.63 0.65 0.63
d4T 0.66 0.64 0.61
ddI 0.68 0.61 0.67
TDF 0.52 0.47 0.52
EFV 0.54 0.54 0.56
ETR 0.79 0.65 0.73
NVP 0.58 0.53 0.59
AFPV 0.6 0.62 0.61
ATV 0.55 0.5 0.51
DRV 0.53 0.53 0.53
IDV 0.64 0.61 0.62
LPV 0.58 0.53 0.62
NFV 0.63 0.66 0.59
SQV 0.63 0.65 0.6
TPV 0.73 0.74 0.81
Mean (SD) 0.61 (0.08) 0.59 (0.08) 0.6 (0.09)

ExposurePhenofull ExposurePhenonoIASPos ExposurePhenoonlyIASPos
3FTC 0.44 0.45 0.4
ABC 0.61 0.6 0.6
AZT 0.61 0.62 0.56
d4T 0.66 0.63 0.61
ddI 0.69 0.62 0.66
TDF 0.5 0.44 0.53
EFV 0.51 0.54 0.53
ETR 0.74 0.85 0.71
NVP 0.57 0.53 0.61
AFPV 0.61 0.61 0.67
ATV 0.54 0.53 0.54
DRV 0.63 0.63 0.42
IDV 0.62 0.62 0.62
LPV 0.62 0.52 0.64
NFV 0.62 0.63 0.61
SQV 0.64 0.64 0.6
TPV 0.74 0.72 0.8
Mean (SD) 0.61 (0.08) 0.6 (0.1) 0.59 (0.1)



Table 3.13: Drug-Exposure Predicধon Performance (AUC) TTPPRRT for Predicted Resistance Factors. Drug-exposure pre-
dicঞon performance on TTPPRRT (therapy-pause sequences) dataset was calculated for resistance factors predicted with
geno2pheno[resistance]. 3FTC: lamivudine or emtricitabine, ABC: abacavir, AZT: zidovudine, d4T: stavudine, ddC: zalcitabine, ddI:
didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavirdine, EFV: efavirenz, ETR: etravirine, NVP: nevirapine, AFPV: am-
prenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir, IDV: indinavir, LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV:
ঞpranavir, SD: standard deviaঞon.

3FTC ABC AZT d4T ddI TDF EFV ETR NVP
0.46 0.61 0.48 0.54 0.63 0.55 0.6 0.79 0.55
AFPV ATV DRV IDV LPV NFV SQV TPV Mean (SD)
0.58 0.49 0.48 0.61 0.58 0.62 0.65 0.82 0.59 (0.1)

drug exposure and therapeutic success (questions (1) and (3)), their correlation with GPP (question (2)) is infe-
rior to that of ExposurePhenomodels. The training sets of ExposurePhenoDES models included genotypes
from GPPs with RFs less or equal than one or greater or equal than ten. For training these models, clinically
relevant categorization of GPPs into susceptible and resistant is not intended, since drug susceptibility may be
given even if the virus has mutated due to the drugs. Instead, I aimed at discriminating fully susceptible GPPs
from those that have developed at least some extent of resistance (questions (1), (2), and (3)). The inclusion
of genotypes from GPP allowed for the training of models for two additional drugs (EVG and RPV). When
comparing the performance of the different amino-acid encodings I tested, it can be seen that theVnoIASPos en-
coding always attains the worst performance. However, the performance of models trained with this encoding
is well above that of a random prediction. Thus, substitutions occurring at other protein residues than those
at which IAS drug-resistance mutations can be present are informative of drug exposure (question (1)), drug
resistance (question (2)), and therapeutic success (question (3)). Models trained with theVonlyIASPos encoding
display a performance similar to that of models trained with the Vfull encoding. However, the performance of
Vfull modelswas slightly better inmany cases †. Therefore, I conclude that the additional information contained
in Vfull, as compared to the VonlyIASPos, is highly similar to the information already contained in VonlyIASPos.
Still, this additional information canbe used to attain a slight increase in performance. The use of expert-derived
mutation tables for crafting theVonlyIASPos encoding represents a potential source of bias and could prevent the
exploitation unestablished, yet predictive resistance patterns. However, usingVfull instead ofVonlyIASPos makes
the models less robust with respect to sequencing errors (Section 5.3). Nonetheless, I think that the benefits of
the Vfull encoding (higher performance, decreased bias) outweigh the disadvantage of decreased robustness to
sequencing errors. For this reason, I prefer ExposurePhenofull models over all other models.

Correlation of ExposurePheno DES with log RFs (question (3)) is weak to strong, depending on the drug
in question (Tables 3.14 and 3.15). The correlation is sufficient for predicting the SIR label of GPPs discretized
with clinically relevant cutoffs (Section 3.4; question (2)). Furthermore, it should be taken into account that
the between-assay correlation of PhenoSense and Antivirogram is weak (r = 0.36) [282].

Performance assessment of ExposurePhenofull models shows their validity and utility. In comparison to
geno2pheno[resistance], DES performance was superior or comparable, depending on the task and the dataset.
DESmodels exhibit superior performancewhen predicting cumulative, long-term therapeutic success (C-index;
Table 3.16; question (3)). The models present a strong difference in performance when predicting therapeutic

†Computing a p-value for the higher performance ofVfull models when compared toVonlyIASPos models is challenging
due to the fact that the comparison refers the to tasks of predicting drug exposure, drug resistance, and therapeutic success
at the same time. Note that different performance measures were used for assessing performance for these different tasks.
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Table 3.14: CorrelaধonofConধnuousDESwithAnধvirogramResistanceFactors. With each final drug-exposure-score (DES)model
group, DESwere calculated for Anঞvirogram®genotype-phenotype pairs inTPheno. The correlaঞons betweenDES and resistance
factors are tabulated below. The highest correlaঞon in each row is underlined. AD: All drugs; CD: Drugs Common to all DES model
groups; NA: Not Available; SD: Standard Deviaঞon. 3FTC: lamivudine or emtricitabine, ABC: abacavir, AZT: zidovudine, d4T:
stavudine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavirdine, EFV: efavirenz, TR: etravirine, NVP: nevirapine,
RPV: rilpivirine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir, IDV: indinavir, LPV: lopinavir, NFV: nelfinavir,
SQV: saquinavir, TPV: ঞpranavir, RAL: raltegravir, EVG: elvitegravir.

Exposurefull ExposurenoIASPos ExposureonlyIASPos
3FTC 0.49 0.15 0.43
ABC 0.41 0.11 0.5
AZT 0.1 0.22 0.13
d4T 0.19 0.07 0.16
ddI 0.15 0.03 0.08
TDF 0.15 0.31 0.11
DLV 0.19 0.06 0.19
EFV 0.31 0.05 0.31
ETR 0.09 -0.13 -0.08
NVP 0.37 0.09 0.41
AFPV 0.64 0.27 0.64
ATV 0.4 0.22 0.39
DRV 0.55 0.12 0.4
IDV 0.55 0.41 0.62
LPV 0.6 0.42 0.61
NFV 0.09 0.06 0.08
SQV 0.59 0.32 0.61
TPV 0.16 0.17 0.12
RAL 0.32 0.21 0.75
Mean CD (SD) 0.34 (0.2) 0.17 (0.14) 0.35 (0.24)
Mean AD (SD) 0.33 (0.19) 0.17 (0.14) 0.34 (0.24)

ExposurePhenofull ExposurePhenonoIASPos ExposurePhenoonlyIASPos
3FTC 0.55 0.15 0.52
ABC 0.51 0.15 0.55
AZT 0.13 0.24 0.14
d4T 0.3 0.09 0.19
ddI 0.22 0.06 0.14
TDF 0.23 0.34 0.23
DLV 0.71 0.2 0.68
EFV 0.42 0.05 0.38
ETR 0.47 0.29 0.45
RPV 0.81 -0.31 0.8
NVP 0.53 0.11 0.51
AFPV 0.74 0.29 0.75
ATV 0.64 0.3 0.64
DRV 0.58 0.1 0.45
IDV 0.65 0.41 0.65
LPV 0.62 0.45 0.63
NFV 0.09 0.05 0.08
SQV 0.68 0.35 0.67
TPV 0.25 0.18 0.24
RAL 0.63 -0.07 0.67
EVG 0.52 0.18 0.52
Mean CD (SD) 0.46 (0.2) 0.2 (0.14) 0.44 (0.22)
Mean AD (SD) 0.49 (0.21) 0.17 (0.17) 0.47 (0.22)



Table 3.15: Correlaধon of ConধnuousDESwith PhenoSense Resistance Factors. With each final drug-exposure-score (DES) model
group, DES were calculated for PhenoSense® genotype-phenotype pairs inTPheno. The correlaঞons between DES and resistance
factors are tabulated below. The highest correlaঞon in each row is underlined. AD: All drugs; CD: Drugs Common to all DES model
groups; NA: Not Available; SD: Standard Deviaঞon. 3FTC: lamivudine or emtricitabine, ABC: abacavir, AZT: zidovudine, d4T:
stavudine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavirdine, EFV: efavirenz, TR: etravirine, NVP: nevirapine,
RPV: rilpivirine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir, IDV: indinavir, LPV: lopinavir, NFV: nelfinavir,
SQV: saquinavir, TPV: ঞpranavir, RAL: raltegravir, EVG: elvitegravir.

Exposurefull ExposurenoIASPos ExposureonlyIASPos
3FTC 0.65 0.27 0.58
ABC 0.65 0.48 0.66
AZT 0.17 0.38 0.17
d4T 0.55 0.51 0.55
ddI 0.37 0.24 0.32
TDF 0.1 0.07 0.13
DLV 0.05 -0.04 0.07
EFV 0.56 0.18 0.54
ETR 0.33 0.2 0.28
NVP 0.58 0.11 0.62
AFPV 0.5 0.18 0.48
ATV 0.39 0.39 0.35
DRV 0.47 0.27 0.44
IDV 0.39 0.14 0.38
LPV 0.57 0.26 0.56
NFV 0.45 0.18 0.46
SQV 0.44 0.13 0.46
TPV 0.12 0.04 0.17
RAL 0.14 -0.09 0.7
Mean CD (SD) 0.41 (0.18) 0.22 (0.15) 0.44 (0.17)
Mean AD (SD) 0.39 (0.19) 0.21 (0.16) 0.42 (0.19)

ExposurePhenofull ExposurePhenonoIASPos ExposurePhenoonlyIASPos
3FTC 0.69 0.27 0.69
ABC 0.68 0.49 0.67
AZT 0.2 0.42 0.18
d4T 0.55 0.46 0.56
ddI 0.41 0.23 0.37
TDF 0.14 0.11 0.17
DLV 0.58 0.16 0.6
EFV 0.72 0.22 0.69
ETR 0.58 0.45 0.51
RPV 0.62 0.33 0.51
NVP 0.79 0.2 0.75
AFPV 0.52 0.17 0.54
ATV 0.48 0.43 0.52
DRV 0.58 0.28 0.59
IDV 0.41 0.17 0.39
LPV 0.55 0.3 0.56
NFV 0.47 0.22 0.47
SQV 0.5 0.28 0.5
TPV 0.32 0.06 0.3
RAL 0.58 0.38 0.71
EVG 0.45 0.1 0.48
Mean CD (SD) 0.51 (0.17) 0.29 (0.13) 0.51 (0.17)
Mean AD (SD) 0.52 (0.16) 0.27 (0.13) 0.51 (0.16)



Table 3.16: Performance of Therapy-Success Predicধon forDrug-Exposure Scores andPredictedResistance Factors. Performances
for the predicঞon of therapy success with drug-exposure scores and resistance factors predicted with geno2pheno[resistance] were
calculated on the TEuResistTE, TEuResistTETP, and HIVdbTCE datasets. Below, performances in terms of the area under the
receiver-operaঞng-characterisঞc curve (AUC) and Harrell’s concordance index (C ) are tabulated separately. The highest perfor-
mance in each column is underlined.

TEuResistTE TEuResistTE TEuResistTETP

(AUC) (C) (AUC)
geno2pheno[resistance] 0.68 0.59 0.66
Exposurefull 0.71 0.65 0.72
ExposurenoIASPos 0.62 0.58 0.56
ExposureonlyIASPos 0.71 0.63 0.74
ExposurePhenofull 0.71 0.65 0.73
ExposurePhenonoIASPos 0.63 0.59 0.59
ExposurePhenoonlyIASPos 0.71 0.63 0.73

TEuResistTETP HIVdbTCE HIVdbTCE
(C) (AUC) (C)

geno2pheno[resistance] 0.53 0.64 0.61
Exposurefull 0.62 0.62 0.56
ExposurenoIASPos 0.55 0.58 0.54
ExposureonlyIASPos 0.61 0.63 0.57
ExposurePhenofull 0.63 0.63 0.56
ExposurePhenonoIASPos 0.57 0.58 0.55
ExposurePhenoonlyIASPos 0.62 0.64 0.56

success with baseline sequences obtained during therapy pauses. Thus, DES use can be recommended when
prediction of drug exposure (question (1)), drug resistance (question (2)), or therapy success (question (3)) is
required. I propose the use of DES in two applications. The first application is the drug-wise interpretation of
the genotype with respect to drug exposure (question (1)) and drug resistance (question (2)). This application
can be useful when optimizing a therapy for a patient by hand (question (3)), but also as a tool facilitating the
evaluation of other studies concerningHIV-1. DES are correlated with drug exposure and drug resistance, with
very highDES indicating both drug exposure and drug resistance. Depending on the concrete application, the
use of DES cutoffs in order to translate them into clinically meaningful categories related to drug exposure and
drug resistancemay be required. Discrimination between drug exposure and drug resistance can be achieved by
determining different sets of DES cutoffs for drug exposure and for drug resistance (Section 3.4). The second
application that I propose is the use ofDES as input features for trainingmodels that predict therapeutic success
based on a genotype and a drug combination (Section 4.2; question (3)).

Table 3.17 shows an excerpt of the linear mutation weights from which ExposurePhenofull DES are calcu-
lated. For a particular drug, the DES for an HIV-1 genotype amounts to the sum of the individual weights for
the substitutions in the genotype and themodel’s intercept. DES for a particular drug exhibit a positive correla-
tion with the probability of exposure to the drug and to the fold-change in the drug’s IC50 value. Insights into
the inference that DES perform in order to predict drug exposure (question (1)) and drug resistance (question
(2)) can be obtained from Table 3.17. For instance, among the weights for 3TC and FTC with the largest val-
ues, weights scoring NNRTI drug-resistance mutations can be found. While there is no data supporting the
contribution of NNRTI drug-resistance mutations to phenotypic resistance against 3TC or FTC, they present
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Table 3.17: Linear Weights for Selected DES Models. Support vectors in selected ExposurePhenofull DES models translated
into linear funcঞons, yielding linear weights for each considered subsঞtuঞon. Below, the ten smallest and ten largest weights for
selected DES models are displayed. 3FTC: lamivudine or emtricitabine, TDF: tenofovir disoproxil fumarate, EFV: efavirenz, RPV:
rilpivirine, DRV: darunavir, EVG; elvitegravir

3FTC TDF EFV RPV DRV EVG
65K -0.6 134G -0.66 190G -1.17 181Y -1.15 43K -0.49 148Q -0.77
185D -0.57 113N -0.61 188Y -0.89 101K -0.84 84I -0.38 155N -0.7
211D -0.51 210Y -0.48 100L -0.5 138E -0.83 50L -0.34 92E -0.64
210Y -0.48 77F -0.43 227F -0.41 100L -0.52 11V -0.34 66T -0.38
205L -0.47 103Q -0.4 101K -0.25 227F -0.45 50I -0.32 140G -0.34
228N -0.38 163A -0.39 101N -0.22 230M -0.38 35Q -0.25 97T -0.26
181Y -0.38 126K -0.38 77L -0.22 118I -0.35 87R -0.25 113I -0.2
178F -0.38 110N -0.38 208F -0.22 173K -0.34 42W -0.25 101I -0.16
184M -0.37 145C -0.38 230M -0.21 179V -0.31 33L -0.24 143Y -0.15
40I -0.37 69P -0.38 117S -0.2 74L -0.31 73A -0.24 212E -0.13
215F 0.66 69E 0.61 103S 0.42 118V 0.34 84V 0.32 113V 0.17
215I 0.68 122K 0.62 179E 0.42 181V 0.36 73T 0.32 234V 0.21
65R 0.76 106M 0.63 230L 0.48 230L 0.38 89V 0.36 232N 0.25
106M 0.85 142M 0.63 190E 0.6 173I 0.38 54M 0.37 140S 0.26
190S 0.87 70E 0.78 190Q 0.6 138K 0.41 47A 0.38 97A 0.3
103N 0.9 65Ins 0.98 190S 0.81 100I 0.52 74P 0.44 148H 0.32
215Y 0.93 69Ins 1.04 101P 1.05 190E 0.54 69N 0.51 66I 0.33
70R 0.97 214F 1.09 188L 1.07 181I 0.7 50V 0.54 148R 0.4
184I 1.57 184I 1.26 106M 1.17 227C 0.74 33F 0.55 92Q 0.73
184V 1.81 65R 1.4 103N 1.82 101P 1.1 82F 0.64 155H 0.9



evidence for possible 3TC or FTC resistance and exposure, as 3TC and FTC are co-administered with NNR-
TIs very frequently. The resistance-driven failure of a therapy including 3TC/FTC and a NNRTI will likely
select both 3TC/FTC and NNRTI drug-resistance mutations. Among the negative weights for 3TC and FTC,
wild-type mutations can be found. These weights present a mechanism with which DES can be lowered when
counter-evidence for drug exposure and drug resistance is found in the genotype. Furthermore, linear muta-
tion weights define in-vivo drug fingerprints, i.e. mutation weights that show which mutations are likely to be
present in the viral genotypes of patients who have failed a certain drug, and which mutations are not likely to
present in these viral genotypes.

DES can be automatically derived from therapy history andGPPs. Themethod demonstrates that the prob-
lem of determining the drug susceptibility of an HIV-1 variant (questions (2) and (3)) can be reduced to the
determination of its distance to a classification boundary in a mathematical space encoding the genotype. Fur-
thermore, it could be shown that models trained on nucleotide HIV-1 sequences from patients with known
drug history have a comparatively high performance in predicting drug resistance, even if no GPPs are used.
When GPPs are used, they are categorized into susceptible and resistant with drug-independent cutoffs. In no
case do I resort to RFs in training, which affords, for instance, merging of data from different phenotypic assays.
Thus, quantitative measurements of drug resistance are not necessary for producing a quantitative output that
is sufficient for predicting clinically-relevant degrees of resistance (Section 3.4; question (2)). The methodol-
ogy has a comparatively high performance in predicting drug exposure (question (1)) and short- and long-term
therapeutic success (question (3)), as well as a sufficiently strong correlation with phenotypic drug resistance
(question (2)). In conjunction with a frequently updated database with HIV-1 data from routine clinical prac-
tice, such as the EIDB, DES models can be automatically updated on a regular basis. Thus, these models allow
for a reduction on the dependency on hard-to-obtain GPPs for offering a publicly available data-driven geno-
typic drug-resistance interpretation system that is kept up to date. While regularly updatable interpretation
systems are evidently the appropriate method for accounting for the growing richness of clinical data, inno-
vative procedures may have to be put in place for adequate certification of such systems. DES models for PIs
and RTIs have been made available on the geno2pheno[resistance] server http://www.geno2pheno.org. Af-
ter a sequence has been submitted for prediction, the tab labeled Drug Exposure must be selected in order to
view DES predictions. On the website, mutations with the highest influence on the prediction are displayed
(see above and Linear Weights for Drug-Exposure-Score Models). These are ordered by the magnitude of their
influence. Mutations colored in red increase DES, while those colored in green decrease it.

3.4 Determination of Cutoffs for Drug-Exposure Models

In Section 3.3, I present a method for deriving a genotypic drug-resistance interpretation system from clini-
cal data. The models used in the system are trained on clinical HIV-1 genotypes along with the antiretroviral
drug-use history of the patient from which the sequenced HIV-1 variant was isolated. The training set of some
of these models was supplemented with genotypes from GPPs. Furthermore, three different amino-acid en-
codings were tested. The best performances could be obtained with models whose training sets include GPPs
(ExposurePheno models) and which were trained with the Vfull encoding (Subtype Determination, Sequence
Alignment, and Encoding in Section 3.3.1). In this section, I present four methods for deriving DES cutoffs
which aim at translating DES into clinically meaningful categories. The following goals are addressed by each
method: (1) prediction of drug-exposure, (2) prediction of phenotypic in-vitro resistance, and (3) prediction of

123

http://www.geno2pheno.org


therapy-success (two methods are presented for this last goal). Since ExposurePhenofull models present supe-
rior performance (Section 3.3.2), alongwith other desirable characteristics, I only derive cutoffs for thesemodels,
in this chapter.

3.4.1 Materials and Methods

In the following, I present four methods for obtaining DES cutoffs. Each method determines a set of cutoffs
for each finalExposurePhenofull drug-exposuremodel (Section 3.3). The following goals are addressed by each
set of cutoffs: (1) prediction of drug-exposure, (2) prediction of phenotypic in-vitro resistance, and (3) and (4)
prediction of therapy success. Each set of cutoffs includes a lower and an upper cutoff for the corresponding
drug-exposure models.

(1) Cutoffs Maximizing the Performance of the Prediction of Drug Exposure (DE-
Max Cutoffs)

ExposurePhenofull cross-validation sets were interpretedwith the corresponding finalmodels thatwere trained
on them (which is also called calculation of reinsertion predictions). For each cross-validation set, an upper and a
lower cutoffwere estimated such that theAUCof the drug-exposure prediction ismaximized. I call these cutoffs
the DEMax cutoffs, and they allow for the discretization of a DES for a drug into the categories unexposed (U),
possible exposure (PE) and exposed (E). A detailed description of the procedure with which DEMax cutoffs were
determined follows. Function (3.3) was defined for discretization of a value δs ∈ R associated to a sequence s
by using the lower and upper cutoffs cL, cU ∈ R.

discretize(cL, cU , δs) =


1, ifδs < cL

2, ifcL ≤ δs ≤ cU
3, ifcU < δs

(3.3)

Let ∆drug ∈ Rn be a vector of DES predicting the drug exposure of each of n sequences s to drug, and let
Edrug ∈ {0, 1}n be the corresponding vector of class labels, indicating whether each sequence s was exposed
to the drug or not. Application of cutoffs cL, cU and function (3.3) to a vector of DES ∆drug results in the
discrete DES vector discretize(cL, cU,∆drug). For each bootstrap replicate, an upper and a lower cutoff cL
and cU were determined as

argmax
cL,cU

AUC(discretize(cL, cU ,∆drug), Edrug), (3.4)

whereAUC(discretize(cL, cU ,∆drug), Edrug) is theAUCquantifying theperformanceof discretize(cL, cU ,∆drug)

in predicting exposure to drug for each sequence with a DES in∆drug . ExposurePhenodrug cross-validation
sets were interpreted with the corresponding final models that were trained on them. Two thousand bootstrap
replicates of the DES of each cross-validation set were created. For each bootstrap replicate and the correspond-
ing class labels, an upper and a lower cutoff were determined by AUC maximization (3.4). The resulting 2,000
upper and 2,000 lower cutoffs for each final drug-exposure model were averaged to yield the final set of cutoffs,
i.e. those that are used for discretization of DES. I call these cutoffs the DEMax cutoffs. If a DES for a drug is
less than the lower cutoff for that drug, then I discretize that DES as unexposed (U). If a DES is greater or equal
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than the lower cutoff, but less or equal than the upper cutoff, I discretize that DES as possible exposure (PE).
Finally, if a DES is greater than both cutoffs, then I discretize that DES as exposed (E).

(2) Phenotypically Guided Cutoffs for Prediction of Phenotypic in-vitroDrugRe-
sistance (Pheno Cutoffs)

Clinically-relevant cutoffs were used for discretizing PhenoSense GPPs inDPheno into the categories susceptible
(S), intermediate (I) or resistant (R), henceforth called the true labels. The genotypes associatedwith theseGPPs
were interpreted with the final ExposurePhenofull drug-exposure models. For each drug, an upper and a lower
DES cutoff yield predicted GPP labels. These cutoffs, which I call Pheno cutoffs, are determined such that the
sum of the penalties quantifying the differences between the true labels and the predicted labels is minimized.
An individual penalty equals one, if the true label was R and the predicted label was S. If the true label is I,
and the predicted label S, the penalty equals 0.75. All other differences between true and predicted labels were
penalized with the value 0.5, while the equality of true and predicted labels was not penalized. Pheno cutoffs
allow for discretization of a DES for a drug as susceptible (S), intermediate (I) or resistant (R). Further details on
the cutoff-determination procedure, including the rationale for choosing the penalty values follow.

The error matrixE ∈ R3×3 (3) was defined for penalizing themisclassification of a discretized value δs with
label l ∈ {1, 2, 3} and predicted label l̂ ∈ {1, 2, 3}

E(l,l̂) =

 0 0.5 0.5

0.5 0 0.5

1 0.75 0

 (3.5)

The rationale for choosing the values of the error matrix follows. Diagonal entries are zero, as correct classifica-
tion incurs no penalty. From a clinical perspective, the worst kind of misclassification that can occur is the clas-
sification of a resistant viral strain (label 3) as susceptible (label 1), since the prescription of a therapy including a
thus misclassified compound could compromise the susceptibility of all compounds in the therapy. Therefore,
this kind ofmisclassificationwas assigned themaximumpenalty, i.e. one. Misclassification of a resistant strain as
intermediate (label 2) deserves a smaller penalty, since surpassing the lower cutoff indicates a clinically-relevant
decrease in susceptibility, albeit implying that some susceptibility is given. Therefore, this kind of misclassifica-
tion was assigned the penalty 0.75. All other types of misclassifications are considered equally undesirable, but
less severe than the first two, andwere assigned the penalty 0.5. Clinically-relevant cutoffs were used to discretize
PhenoSense GPPs in DPheno with function (3.3), yielding their labels. The genotypes s associated with these
GPPs were interpreted with the final ExposurePhenofull drug-exposure models. For each drug involved in a
GPP, 2,000 bootstrap replicates of the PhenoSense GPPs in DPheno were sampled. In order to assign to each
of the three classes the same weight in this procedure, each bootstrap replicate was constructed using an equal
number of GPPs with each label. For each drug, this number was equal to the maximum number of GPPs
with a certain label. Each bootstrap replicate was used to determine a lower and an upper cutoff ĉL, ĉU which
minimizes the sum of the penalties E(l,l̂) for each label l = discretize(cL, cU , RFs) with corresponding pre-
diction l̂ = discretize(ĉL, ĉU , DESs) for a resistance factorRF and a drug-exposure score(s)DES associated
with genotype s. The resulting 2,000 cutoff pairs for each drug and drug-exposure-model groupwere averaged,
yielding the final phenotypically guided cutoffs. If a DES for a drug is less than both cutoffs for that drug, then
I discretize that DES as susceptible (S). If a DES is greater or equal than the lower cutoff, but less or equal than
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the upper cutoff, I discretize that DES as intermediate (I). Finally, if a DES is greater than both cutoffs, then I
discretize that DES as resistant (R).

(3)CutoffsMaximizingthePerformanceofthePredictionofTherapy-Success (ThMax
Cutoffs)

LetD = (d1, . . . , dm) ∈ {0, 1}1×m be a vector indicating which of them available drugs were used in a TE.
For a given vector of lower (ciL) and upper (ciU ) cutoffsC = (c1L, c1U , . . . , cmL, cmU ) ∈ R2m, I score the
susceptibility of an HIV-1 variant s to a certain drug with index i and DES δs,i with the function

susceptibility(ciL, ciU , δs,i) =


1, if δs,i < ciL

0.5, if ciL ≤ δs,i ≤ ciU
0, if ciU < δs,i

(3.6)

The genetic susceptibility score (GSS) for a TE baseline sequence swith DES∆s = {δs,1, . . . , δs,m} ∈ Rm is
computed with the function

GSS(C,D,∆s) =
∑

i∈{i|di=1}

susceptibility(ciL, ciU , δs,i) (3.7)

LetD ∈ {0, 1}n×m be thematrix of vectorsD indicating the compoundsused in a certain set ofTEsof sizen
with corresponding matrices of DES vectors∆ ∈ Rn×m. Then, GSS(C,D,∆) ∈ Rn is the vector containing
theGSS for each of theTEs obtainedwith cutoff vectorC . LetS ∈ {0, 1}n be the vector containing the success
labels for the TEs. The function calculating the AUC is AUC(GSS(C,D,∆), S). I determine the cutoff setC
as

argmax
C

AUC(GSS(C,D,∆), S). (3.8)

ThMax cutoffs were determined for each final model group by maximization of the AUC for a GSS predicting
therapy success, as follows. DEuResistTE TE baseline sequences and DTFE sequences were evaluated with the
final drug-exposure models. Simulated annealing was used for maximization of the AUC (3.8) of 2,000 boot-
strap replicates of DEuResistTE. For this purpose, the R [306] package GenSA [310] was used. The maximum
number of calls to the objective function was constrained to 1,500,000. This yielded 2,000 cutoff sets for each
final model group, which were averaged for obtaining the final sets of cutoffs [311].

(4) Therapy-Success Probability Cutoffs (ThSucc Cutoffs)

Drug-wise therapy-success probabilities conditioned on the DES for the corresponding drug were estimated
with the TEs in DEuResistTE, and failing therapies in DTFE. A DES for a drug is discretized as low success
probability (L) if the corresponding therapy-success probability is less or equal than 0.45. If the estimated
therapy-success probability is greater than 0.45 but less than 0.7, the DES is discretized as intermediate suc-
cess probability (IP). Last, if the estimated therapy-success probability is greater or equal than 0.7, the DES
is assigned to the category high success probability (H). I call the DES corresponding to success probabilities
of 0.45 and 0.7 ThSucc cutoffs. The rationale for the choice of these probability thresholds is given in Sec-
tion 3.4.2. In the following, further details on this cutoff-selectionmethod are given. LetTEdrug be a sequence
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of TEs of length n in which drug is used, for drug ∈ {3TC,ABC,AZT, d4T, ddI, FTC,TDF, EFV, ETR,
NVP,APV,ATV,DRV, FPV, IDV,LPV,NFV, SQV,TPV}. Each TE in TEdrug includes a success label
S ∈ {0, 1}, indicating whether the therapy was successful or not. Interpretation of the baseline sequence
of each TE with the drug-exposure model for drug results in a DES δ. The probability of therapeutic success
given DES δ is then estimated as

P (S = 1 | δ, drug) =
f1,drug(δ)π1

f1,drug(δ)π1 + f0,drug(δ)π0
(3.9)

where f1,drug(δ) is the therapy-success density, f0,drug(δ) the therapy-failure density, and π1 and π0 are prior
probabilities for therapy success and therapy failure, respectively (Section 2.1.2). Let TFEdrug be the set of
therapy-failure sequences for which the failing therapy involves drug. KDEwas used for computing f1,drug(δ)
by using TEdrug ⊂ DEuResistTE with S = 1 (Section 2.3.1). For this purpose, drug-exposure scores δ were
calculated with the final ExposurePhenofull drug-exposure model for drug. Analogously, a therapy-failure
density for drug, f0,drug(δ), was estimated with the TEs in TEdrug for which S = 0, along with the failing
therapies in TFEdrug ⊂ DTFE. KDE was performed with the R [306] package ks [312]. The bandwidth
matrix for KDE was selected with the plug-in method, allowing for derivatives up to the second order [312].
Prior probabilities π1 and π0 were set to the corresponding success and failure proportions, respectively. For
increasing the smoothness of the therapy-success estimates, a logistic curve was fit to the conditional therapy-
success probabilities obtained with KDE, such that

P (S = 1 | δ, drug) = a

1 + exp(−b(δ − c))
(3.10)

with a ∈ [0, 1] and b, c ∈ R. Logistic-curve parameters a, b, and c, were determined with the minipack.lm
[313] library of the R programming language. Logistic curves were fit for each possible value of drug on 2,000
bootstrap replicates of DEuResistTE, yielding 2,000 logistic curves per drug. Each logistic curve was used for
cutoff determination. For each curve, the lower cutoff was selected at the DESwhereP (S = 1 | drug) = 0.7,
and the upper cutoff at the DES where P (S = 1 | drug) = 0.45. As mentioned above, the rationale for the
choice of these probability thresholds is given in Section 3.4.2. Lower or upper cutoffs could not be obtained
from logistic curves with values for a lower than 0.7 or lower than 0.45, respectively. In these cases, the lower
or upper cutoff equaled the minimum DES for drug in the bootstrap replicate. Lower and upper cutoffs were
averaged across bootstrap replicates, yielding the final set of cutoffs.

Interpretation Systems for Comparison of Performance

HIValg, a program for rules-based interpretation ofHIV-1 sequences, was downloaded from http://hivdb.
stanford.edu [294] for performance comparison. XML rule-definition files for the following interpreta-
tion systems were obtained from HIV-GRADE (http://www.hiv-grade.de): ANRS 09/2012 (http://
www.hivfrenchresistance.org/), GRADE 06/2013 [297], HIVdb 6.0.6 [298], and REGA 8.0.2 (http:
//rega.kuleuven.be/). HIValg outputs a (discrete) SIR prediction for each drug, rule set and nucleotide se-
quence. Furthermore, geno2pheno[resistance] version 3.3 (http://www.geno2pheno.org, accessed on March
31st, 2015) [299] was also used for performance comparison. The output of geno2pheno[resistance] includes a RF
prediction and a SIR classification for each drug and nucleotide sequence. For performance assessment with the

127

http://hivdb.stanford.edu
http://hivdb.stanford.edu
http://www.hiv-grade.de
http://www.hivfrenchresistance.org/
http://www.hivfrenchresistance.org/
http://rega.kuleuven.be/
http://rega.kuleuven.be/
http://www.geno2pheno.org


AUC, SIR classifications were converted to an integer score via R→ 2, I→ 1, and S→ 0. Since each interpreta-
tion system uses its own alignment program, performance comparison was constrained to the set of sequences
which could be aligned without errors by all programs. Furthermore, the drug ddC was also excluded from
performance comparison, as it is not supported by these systems any more. Since the downloadable version
of HIValg does not support predictions for drugs whose target is IN, the HIV-GRADE website was used for
performing predictions for INIs.

Assessment of Performance Using Test Sets

Sequences inTPRRT,TIN ,TPPRRT,TPheno,TEuResistTE,HIVdbTCE, andHIVdbExposurewere interpreted
with the final ExposurePhenofull drug-exposure models, the four rule sets (via HIValg and the HIV-GRADE
website), and geno2pheno[resistance]. For discretization of DES, the cutoff sets obtained with the procedures
described in above were used. In the following, performance was quantified in terms of AUC [307] unless
stated otherwise. Significance values in theMethods section were calculated with a two-sidedWilcoxon signed-
rank test [308].

Assessment of Performance in Predicting Therapy Success

Each system’s capability to predict therapy success was assessed with TEuResistTE and HIVdbTCE. For this
purpose, a GSS for each therapy was calculated. Specifically, SIR classifications for the drugs in each regimen
were converted to integer via S→ 1, I→ 0.5 and R→ 0. Analogously, DES for the drugs in each regimen were
discretized based on their respective cutoff sets. TheGSS for each therapy consisted of the sumof the individual
integer scores for each drug in the regimen. Concordance of each system’s GSS with the NAS was assessed for
therapies in theTEuResistTE andHIVdbTCE datasets in terms ofHarrell’s concordance index (C ; Section 2.2.6)
[267].

Assessment of Performance in Predicting Resistance in Genotype-Phenotype Pairs

The capability of discrete DES and of the other interpretation systems to predict drug resistance as assessed by
the RFs of GPPs inTPheno was quantified as follows. I computed drug-wise misclassification rates of the tested
systems when predicting the SIR label derived from RFs from PhenoSense GPPs and PhenoSense clinically-
relevant cutoffs. In addition to computing misclassification rates with all GPPs, susceptible-to-resistant and
resistant-to-susceptible misclassification rates were computed for each drug and tested interpretation system.

3.4.2 Results

DES cutoffs were estimated with four different methods for each final ExposurePhenofull drug-exposure
model: DEMax, pheno, ThMax, and ThSucc. DEMax cutoffs can be seen in Table 3.18, pheno cutoffs are
shown in Table 3.19, ThMax cutoffs are displayed in Table 3.20, and ThSucc cutoffs in Table 3.21. Drug-wise
therapy-success proportions for DEuResistTE, DEuResistTE ∪ DTFE, TEuResistTE, and HIVdbTCE can be seen
in Table 3.3. Therapy-success rates in DEuResistTE ∪ DTFE form two groups (Figure 3.4 and Table 3.3). The
first group includes drugs with low success rates, with an average success rate of 0.46. The second group in-
cludes drugs with higher success rates, with an average success rate of 0.72. These two average success rates were
rounded to the next 0.05 and used as cutoffs for estimated success probabilities, leading to the ThSucc cutoffs
(Therapy-Success Probability Cutoffs in Section 3.4.1).
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Table 3.18: DEMax cutoffs for ExposurePhenofull models. The final DEMax cutoffs were obtained by averaging the cutoffs
obtained with 2,000 bootstrap replicates of the cross-validaঞon sets. SD: Standard Deviaঞon; 3FTC: lamivudine or emtricitabine,
ABC: abacavir, AZT: zidovudine, d4T: stavudine, ddC: zalcitabine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavir-
dine, EFV: efavirenz, ETR: etravirine, NVP: nevirapine, RPV: rilpivirine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV:
darunavir, IDV: indinavir, LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV: ঞpranavir, RAL: raltegravir, EVG: elvitegravir.

Lower Cutoff (SD) Upper Cutoff (SD)
3FTC -0.9 (0) 0.22 (0.07)
ABC -0.8 (0.02) 0.68 (0.07)
AZT -0.9 (0.01) 0.58 (0.06)
d4T -0.77 (0.07) 0.49 (0.13)
ddI -0.83 (0.05) 0.61 (0.11)
ddC -0.69 (0.05) 0.8 (0.05)
TDF -0.75 (0.05) 0.54 (0.12)
EFV -1 (0) -0.5 (0.07)
ETR -0.81 (0.04) 0.81 (0.15)
DLV -0.9 (0.02) 0.34 (0.24)
NVP -0.9 (0) 0.87 (0.05)
RPV -0.49 (0.19) 0.11 (0.11)
AFPV -0.9 (0) 0.79 (0.05)
ATV -0.9 (0.01) 0.46 (0.14)
DRV -0.91 (0.03) 0.34 (0.3)
IDV -0.9 (0) 0.18 (0.12)
LPV -0.91 (0.03) 0.61 (0.33)
NFV -1 (0) -0.08 (0.12)
SQV -0.9 (0.02) 0.55 (0.11)
TPV -0.9 (0) 0.7 (0.08)
RAL -0.88 (0.04) 0.11 (0.13)
EVG -0.53 (0.42) -0.2 (0.06)
Naïve PRRT -0.51 (0.12) 0.89 (0.02)



Table 3.19: pheno cutoffs for ExposurePhenofull models. The final pheno cutoffs were obtained by averaging the cutoffs ob-
tained with 2,000 bootstrap replicates of the cross-validaঞon sets. SD: Standard Deviaঞon; 3FTC: lamivudine or emtricitabine,
ABC: abacavir, AZT: zidovudine, d4T: stavudine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavirdine, EFV:
efavirenz, ETR: etravirine, NVP: nevirapine, RPV: rilpivirine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir,
IDV: indinavir, LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV: ঞpranavir, RAL: raltegravir, EVG: elvitegravir.

Lower Cutoff (SD) Upper Cutoff (SD)
3FTC 0.1 (0.07) 1.95 (0.11)
ABC -0.05 (0.17) 0.66 (0.27)
AZT 0.53 (0.16) 0.59 (0.16)
d4T -0.24 (0.07) 0.24 (0.1)
ddI -0.16 (0.11) 0.19 (0.29)
TDF -0.51 (0.13) 0.11 (0.46)
EFV -0.65 (0.02) 0.87 (0.08)
ETR -0.55 (0.41) 0.9 (0.02)
DLV -0.74 (0.11) 0.79 (0.14)
NVP -0.79 (0.04) 0.07 (0.25)
RPV -0.43 (0.09) 0.69 (0.22)
AFPV -0.07 (0.07) 1.4 (0.17)
ATV -0.42 (0.15) 0.99 (0.05)
DRV 0.55 (0.16) 1.9 (0.02)
IDV -0.36 (0.16) 1.36 (0.08)
LPV 0.32 (0.06) 1.18 (0.08)
NFV -0.81 (0.03) 0.84 (0.04)
SQV -0.1 (0.04) 1.44 (0.08)
TPV -0.67 (0.11) 0.97 (0.02)
RAL 0.04 (0.29) 1.04 (0.06)
EVG -0.4 (0.02) 0.89 (0.01)



Table 3.20: ThMax cutoffs for ExposurePhenofull models. The final ThMax cutoffs were obtained by averaging the cutoffs
obtained with 2,000 bootstrap replicates of the cross-validaঞon sets. SD: Standard Deviaঞon; 3FTC: lamivudine or emtricitabine,
ABC: abacavir, AZT: zidovudine, d4T: stavudine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, EFV: efavirenz, ETR: etravirine,
NVP: nevirapine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir, IDV: indinavir, LPV: lopinavir, NFV: nelfi-
navir, SQV: saquinavir, TPV: ঞpranavir.

Lower Cutoff (SD) Upper Cutoff (SD)
3FTC -1.01 (0.42) 0.12 (0.44)
ABC -1.49 (0.2) -0.62 (0.6)
AZT -1.33 (0.12) -0.64 (0.55)
d4T -2.11 (0.48) -1.83 (0.45)
ddI -1.17 (0.13) -1.03 (0.2)
TDF -1.36 (0.46) 0.4 (0.9)
EFV -0.6 (0.15) -0.09 (0.35)
ETR -0.81 (0.54) -0.41 (0.68)
NVP -0.93 (0.15) -0.48 (0.2)
AFPV -1.15 (0.26) 0.51 (0.54)
ATV -1.01 (0.25) 0.78 (0.68)
DRV 0.14 (0.7) 1.53 (1)
IDV -1.15 (0.17) 0.1 (0.64)
LPV -0.77 (0.44) 1.26 (0.14)
NFV -1.14 (0.04) -0.58 (0.39)
SQV -1.06 (0.22) -0.37 (0.36)
TPV -2.02 (0.32) -0.18 (1.31)

Table 3.21: ThSucc cutoffs for ExposurePhenofull models. The final ThSucc cutoffs were obtained by averaging the cutoffs
obtained with 2,000 bootstrap replicates of the cross-validaঞon sets. SD: Standard Deviaঞon; 3FTC: lamivudine or emtricitabine,
ABC: abacavir, AZT: zidovudine, d4T: stavudine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, EFV: efavirenz, ETR: etravirine,
NVP: nevirapine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir, IDV: indinavir, LPV: lopinavir, NFV: nelfi-
navir, SQV: saquinavir, TPV: ঞpranavir.

Lower Cutoff (SD) Upper Cutoff (SD)
3FTC 0.43 (0.05) 2.03 (0.08)
ABC -0.26 (0.06) 0.62 (0.07)
AZT -0.15 (0.09) 1.3 (0.1)
d4T -2.5 (0.39) 0.59 (0.21)
ddI -3.4 (1.19) 1.03 (0.15)
TDF 0.12 (0.04) 1.14 (0.07)
EFV -0.28 (0.15) 0.05 (0.23)
ETR -0.04 (0.49) 0.98 (0.42)
NVP -0.62 (0.06) -0.26 (0.13)
AFPV -0.52 (0.31) 0.77 (0.16)
ATV 0.31 (0.27) 1.29 (0.14)
DRV 0.75 (0.38) 1.62 (0.75)
IDV -1.36 (0.28) 0.31 (0.19)
LPV 0.18 (0.08) 1.19 (0.09)
NFV -1.19 (0.04) -0.12 (0.13)
SQV -1.36 (0.57) 0.35 (0.21)
TPV -2.5 (0.39) -0.03 (1.13)
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Figure 3.4: Histogram of Drug-Wise Therapy Success Rates in DEuResistTE ∪ DTFE. Drug-wise therapy success rates in
DEuResistTE ∪ DTFE were calculated. The histogram shows the distribuঞon of the success rates of 17 drug compounds. This
histogram makes two groups of drugs apparent: drugs with low success rates and drugs with high success rates.
■ Low-success-rate therapy group ■ High-success-rate therapy group

Assessment and Comparison of Performance Using Discrete Predictions

The performance of the final ExposurePhenofull drug-exposure models was assessed with the continuous DES
(Section 3.3.2) and after discretization with the estimated cutoff sets. Where possible, performance was com-
pared to that of popular drug-resistance interpretation systems. In the following, performances averaged over
individual drug performances are stated. In order to be able to compare the different models, these means were
calculated only with the drug-wise performances of the drugs that are common to all model groups and drug re-
sistance interpretation systemsused for performance comparison in this chapter. Note that in some tables found
in the following, two values for themean performance across drugs are provided. The firstmean value, towhich
the term common drugs is appended, only considers performances for drugs common to all drug-exposuremodel
groups and drug-resistance interpretation systems used for performance comparison. The second mean value,
to which the term all drugs is appended, considers all drugs for which predictions were available. Thus, means
for common drugs allow for performance comparison between different model groups and drug-resistance in-
terpretation systems. p-values were calculated with a two-sided Wilcoxon signed-rank test.

Performance of Discrete Drug-Exposure and Drug-Resistance Predictions

Performances of prediction of drug exposure calculated via application of DEMax to the DES in TPRRT, TIN

datasets are displayed in Table 3.22, along with the performances of HIVdb, REGA, ANRS, GRADE, and dis-
cretized geno2pheno[resistance] predictions. The best average performance for drug-exposure prediction with a
discrete score on the TPRRT dataset was attained by discrete DES (µ = 0.75; σ = 0.06). Among the drug-
resistance interpretation systems I compare to, HIVdb, REGA, and GRADE performed best (µ = 0.70; σ =

0.06), although GRADE’s mean performance is lower than that of the DES models (p < 10−4). On the
TIN dataset, discrete DES predictions, HIVdb, REGA, and GRADE attained the best performance (AUC =
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Table 3.22: Performance of Predicধon of Drug-Exposure (AUC) with Discrete Output, TPRRT and TIN Datasets. For each final
ExposurePhenofull DES model, drug-exposure predicঞon performances on sequences in the TPRRT and TIN datasets were
calculated a[er DES discreঞzaঞon with DEMax cutoffs. Discrete HIVdb, REGA, ANRS, GRADE and geno2pheno[resistance] (g2p)
performances were calculated as well. The highest performance in each row is underlined. AM: All Models; CD : Drugs Com-
mon to all interpretaঞon systems; NA: Not Available; SD: Standard Deviaঞon, 3FTC: lamivudine or emtricitabine, ABC: abacavir,
AZT: zidovudine, d4T: stavudine, ddC: zalcitabine, ddI: didanosine, TDF: tenofovir disoproxil fumarate, DLV: delavirdine, EFV:
efavirenz, ETR: etravirine, NVP: nevirapine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir, DRV: darunavir, IDV: indinavir,
LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV: ঞpranavir, RAL: raltegravir.

ExposurePhenofull HIVdb REGA ANRS GRADE g2p
3FTC 0.83 0.73 0.74 0.71 0.72 0.72
ABC 0.7 0.68 0.66 0.65 0.66 0.68
AZT 0.81 0.72 0.72 0.71 0.73 0.72
d4T 0.82 0.77 0.76 0.75 0.77 0.71
ddC 0.8 NA NA NA NA NA
ddI 0.82 0.77 0.76 0.66 0.77 0.74
TDF 0.68 0.62 0.6 0.6 0.64 0.61
DLV 0.79 NA NA NA NA NA
EFV 0.73 0.69 0.69 0.69 0.7 0.68
ETR 0.73 0.71 0.69 0.62 0.71 0.58
NVP 0.74 0.69 0.68 0.66 0.69 0.67
AFPV 0.77 0.75 0.73 0.72 0.74 0.73
ATV 0.63 0.58 0.58 0.58 0.57 0.58
DRV 0.67 0.64 0.66 0.5 0.66 0.65
IDV 0.76 0.7 0.69 0.7 0.7 0.69
LPV 0.71 0.67 0.67 0.67 0.67 0.67
NFV 0.73 0.7 0.7 0.69 0.69 0.7
SQV 0.79 0.73 0.73 0.69 0.73 0.73
TPV 0.82 0.82 0.77 0.5 0.73 0.77
RAL 0.7 0.7 0.7 0.7 0.69 NA
Mean CD (SD) 0.75 (0.06) 0.7 (0.06) 0.7 (0.05) 0.65 (0.07) 0.7 (0.05) 0.68 (0.05)
Mean AM (SD) 0.75 (0.06) 0.7 (0.06) 0.7 (0.05) 0.66 (0.07) 0.7 (0.05) NA (NA)



Table 3.23: Performance of Predicধon of Drug-Exposure (AUC) with Discrete Output, HIVdbExposure dataset. For each
final ExposurePhenofull drug-exposure-score (DES) model, drug-exposure predicঞon performances on sequences in the
HIVdbExposure dataset were calculated a[er DES discreঞzaঞon with DEMax cutoffs. Discrete HIVdb, REGA, ANRS, GRADE
and geno2pheno[resistance] (g2p) performances were calculated as well. The highest performance in each row is underlined. SD:
StandardDeviaঞon, 3FTC: lamivudine or emtricitabine, ABC: abacavir, AZT: zidovudine, d4T: stavudine, ddI: didanosine, TDF: teno-
fovir disoproxil fumarate, EFV: efavirenz, ETR: etravirine, NVP: nevirapine, AFPV: amprenavir or fosamprenavir, ATV: atazanavir,
DRV: darunavir, IDV: indinavir, LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV: ঞpranavir.

ExposurePhenofull HIVdb GRADE REGA ANRS g2p
3FTC 0.59 0.75 0.76 0.75 0.75 0.75
ABC 0.66 0.66 0.66 0.67 0.66 0.62
AZT 0.56 0.66 0.67 0.66 0.65 0.67
d4T 0.6 0.65 0.62 0.63 0.61 0.62
ddI 0.68 0.68 0.66 0.66 0.66 0.55
TDF 0.62 0.56 0.56 0.56 0.59 0.51
EFV 0.8 0.81 0.8 0.77 0.77 0.79
ETR 0.94 0.98 0.97 0.89 0.92 0.98
NVP 0.77 0.74 0.74 0.74 0.71 0.72
AFPV 0.78 0.76 0.78 0.76 0.73 0.78
ATV 0.6 0.54 0.57 0.57 0.56 0.54
DRV 0.89 0.89 0.59 0.94 0.5 0.83
IDV 0.74 0.74 0.74 0.75 0.74 0.75
LPV 0.64 0.62 0.62 0.65 0.63 0.62
NFV 0.71 0.71 0.71 0.71 0.74 0.72
SQV 0.74 0.75 0.76 0.73 0.7 0.73
TPV 0.93 0.86 0.77 0.85 0.5 0.94
Mean 0.72 (0.12) 0.73 (0.11) 0.7 (0.1) 0.72 (0.1) 0.67 (0.11) 0.71 (0.13)

0.70). Performances of discretized prediction of drug-exposure onHIVdbExposure can be seen in Table 3.23.
HIVdb displayed the best mean performance on the HIVdbExposure dataset (µ = 0.73; σ = 0.11), while
the performance of the DES models was lower (µ = 0.72; σ = 0.12; p = 0.89). Table 3.24 shows the
performance of discretized DES in predicting drug exposure in TPPRRT. For comparison, the drug-wise per-
formances of other genotype interpretationmethods can be found in Table 3.24 as well. The best average drug-
wise performance was achieved by the DES models discretized with DEMax cutoffs (µ = 0.58; σ = 0.08).
Among the drug-resistance interpretation systems I compare to, HIVdb displayed the best mean performance
(µ = 0.56; σ = 0.10; p = 0.0093).

Performance in predicting the SIR class on PhenoSense GPPs discretized with clinically relevant cutoffs can
be seen inTables 3.25 and 3.26. The lowestmeanmisclassification ratewas attained byREGA (µ = 0.23; σ =

0.10), while ExposurePhenofull models with pheno cutoffs performed worse (µ = 0.28; σ = 0.1; p =

0.02667). The lowest mean R to S misclassification rates were obtained with REGA (µ = 0.01;σ = 0.03),
while themeanR to Smisclassification rate ofExposurePhenofullwithpheno cutoffsmodelswas insignificantly
higher (µ = 0.02 σ = 0.03; p = 0.5992). The lowest S to R misclassification rate was attained by HIVdb
(µ = 0.03; σ = 0.03), while the ExposurePhenofull models with pheno cutoffs displayed an insignificantly
higher S to R misclassification rate (µ = 0.08; σ = 0.11; p = 0.1424).
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Table 3.24: Performance of Drug-Exposure Predicধon for Discrete Drug-Exposure Scores and Other Interpretaধon Sys-
tems, TPPRRT Dataset. Drug-exposure predicঞon performances on the TPPRRT dataset were calculated for each final
ExposurePhenofull drug-exposure-score (DES) model, a[er discreঞzaঞon with DEMax cutoffs. Discrete HIVdb, REGA, ANRS,
GRADE and geno2pheno[resistance] (g2p) performances were calculated as well. The highest performance in each row is under-
lined. SD: Standard Deviaঞon, 3FTC: lamivudine or emtricitabine, ABC: abacavir, AZT: zidovudine, d4T: stavudine, ddI: didanosine,
TDF: tenofovir disoproxil fumarate, EFV: efavirenz, ETR: etravirine, NVP: nevirapine, AFPV: amprenavir or fosamprenavir, ATV:
atazanavir, DRV: darunavir, IDV: indinavir, LPV: lopinavir, NFV: nelfinavir, SQV: saquinavir, TPV: ঞpranavir.

ExposurePhenofull ANRS HIVdb GRADE REGA g2p
3FTC 0.41 0.49 0.41 0.49 0.41 0.41
ABC 0.56 0.53 0.56 0.53 0.54 0.58
AZT 0.61 0.5 0.53 0.53 0.51 0.52
d4T 0.6 0.56 0.57 0.6 0.56 0.56
ddI 0.64 0.57 0.61 0.62 0.62 0.61
TDF 0.5 0.47 0.49 0.51 0.47 0.51
EFV 0.53 0.54 0.55 0.55 0.55 0.56
ETR 0.77 0.47 0.89 0.75 0.83 0.71
NVP 0.59 0.51 0.56 0.56 0.56 0.53
AFPV 0.55 0.57 0.59 0.57 0.56 0.56
ATV 0.5 0.49 0.44 0.45 0.44 0.45
DRV 0.58 0.5 0.48 0.52 0.48 0.49
IDV 0.6 0.55 0.54 0.54 0.53 0.54
LPV 0.56 0.51 0.51 0.51 0.52 0.53
NFV 0.6 0.58 0.58 0.56 0.57 0.57
SQV 0.59 0.59 0.6 0.58 0.59 0.58
TPV 0.74 0.5 0.6 0.47 0.45 0.57
Mean (SD) 0.58 (0.08) 0.53 (0.04) 0.56 (0.1) 0.55 (0.07) 0.54 (0.09) 0.55 (0.07)
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Table 3.27: Performance of Predicধon of Therapy-Success for Therapies in TEuResistTE, TPPRRT, and HIVdbTCE. Therapy-
Success (EuResist Standard Datum) was predicted for therapies in the TEuResistTE, TPPRRT, and HIVdbTCE datasets with a
geneঞc suscepঞbility score based on discreঞzed drug-exposure score predicঞons and that of the interpretaঞon methods HIVdb,
GRADE, REGA, ANRS, and geno2pheno[resistance] (g2p). Drug-exposure score predicঞonswere discreঞzedwith ThMax and ThSucc
cutoffs. The highest performance in each row is underlined.

ExposurePhenofull HIVdb GRADE REGA ANRS g2p
ThMax ThSucc

TEuResistTE AUC 0.72 0.71 0.7 0.69 0.69 0.69 0.71
TEuResistTE C-Index 0.68 0.66 0.64 0.63 0.63 0.62 0.64
TPPRRT AUC 0.69 0.68 0.64 0.64 0.63 0.66 0.67
TPPRRT C-Index 0.65 0.66 0.6 0.61 0.61 0.59 0.63
HIVdbTCEAUC 0.63 0.64 0.66 0.62 0.64 0.63 0.64
HIVdbTCEC-Index 0.63 0.59 0.57 0.53 0.57 0.55 0.59

Performance of Discrete Predictions for Therapy Success

DES discretized with ThMax and ThSucc cutoffs were used for calculating a GSS for the compounds used
in the therapies recorded in TEuResistTE, TPPRRT, and HIVdbTCE. Performance in predicting short-term
therapeutic success was assessed using dichotomous therapy-success labels and the AUC. Performance in pre-
dicting long-term therapeutic success was assessed using the NAS and Harrel’s concordance index. The per-
formances and concordances for predicting therapeutic success for the TEs are displayed in Table 3.27. For
comparison, GSS were calculated with other drug-resistance interpretation methods. The resulting perfor-
mances and concordances can be seen in Table 3.27 as well. On the TEuResistTE dataset, the best perfor-
mance and concordance could be attained with ThMax-discretized ExposurePhenofull DES (AUC = 0.72;
C = 0.68). Among the drug-resistance interpretation systems I compare to, geno2pheno[resistance] displayed
the best performance and concordance (AUC = 0.71; C = 0.67). The distribution of the GSS calculated
with geno2pheno[resistance]’s predictions is significantly different from that of the GSS calculated with the pre-
dictions of the ExposurePhenofull models with ThMax discretization (p < 10−15). On the TPPRRT dataset,
ThMax-discretized ExposurePhenofull DES could attain the best performance (AUC = 0.69), while ThSucc-
discretizedExposurePhenofull DES could attain the best concordance (C = 0.66). Among the drug-resistance
interpretation systems I compare to, geno2pheno[resistance] could attain the best performance and concordance
(AUC = 0.67; C = 0.63). The difference of the GSS distributions estimated with geno2pheno[resistance]
and ThMax-discretized ExposurePhenofull DES is statistically significant (p < 10−16). The best perfor-
mance on HIVdbTCE is displayed by HIVdb (AUC = 0.66), while the best concordance was displayed by the
ExposurePhenofull models with ThMax discretization (C = 0.63). The difference of the GSS distributions
estimated withHIVdb and ThMax-discretized ExposurePhenofull DES is statistically significant (p < 10−16).

3.4.3 Discussion

As mentioned in Section 3.3.3, DES models form a data-driven interpretation system for HIV-1 PR, RT, and
IN sequences. The interpretations provided by this system can be used to address three questions: (1) Was a
sequence exposed to a certain drug? (2) Is the HIV-1 variant from which the sequence was derived resistant
against a certain drug? and (3) Will a certain drug be useful as a component of a therapy against an HIV-1
variant? While continuous DES can be used as an input for higher-level models (Section 4.2), discretization of
DES into clinically meaningful categories facilitates their use by experts.
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Four different cutoff sets were estimated for solving three different tasks: (1) prediction of drug exposure, (2)
prediction of drug resistance, and (3) prediction of therapy success. This maximized predictive performance.
On average, ThMax cutoffs are smaller than DEMax cutoffs which, in turn, are smaller than ThSucc cutoffs.
Pheno cutoffs are largest, on average. Thus, evidence for drug exposure does not necessarily entail phenotypic
drug resistance. At the same time, evidence indicating a certain degree of phenotypic drug resistance (or lack
thereof) is not sufficient for predicting the usefulness of a certain drug compound in an antiretroviral regimen.
In addition to HIV-1 resistance to the compounds used in a therapy, the determinants of therapeutic success
include compound tolerability and potency. This is reflected in distinct drug-wise therapy-success proportions
(Table 3.3).

Both ThMax and ThSucc cutoffs were estimated for predicting therapeutic success. However, the methods
used for estimating each of these two sets of cutoffs differ in important aspects. First, ThMax cutoffs are opti-
mized tomaximize predictive performance on the training set, while ThSucc cutoffs are selected at two values of
an estimated DES-dependent success probability. These two values of the DES-dependent success probability
were chosen on the basis of empirical drug-wise therapy-success rates (Figure 3.4 andTable 3.3). ThMax cutoffs
are slightly better, on average, at estimating therapeutic success. However, the categories into which DES are
discretized by ThMax cutoffs could be deemed devoid of clinical meaning by clinical experts, for the following
reasons. In the context of expert-guided antiretroviral therapy optimization, a DES above the clinically relevant
upper cutoff for a drugmeans that no clinical benefit is to be expected from including that drug in a therapy (see
introduction of Section 3.5). Many upper ThMax Cutoffs (Table 3.20) are negative, while DES are positively
correlated with the probability of exposure and with phenotypic drug resistance (Section 3.3.2). Since DES for
each drug are identical to the decision values of the SVCs of the individual models, negative DES suggest no
drug exposure, positive DES indicate drug exposure, and DES equal to zero lie on the classification boundary
(Section 2.2.1). Thus, negative upper cutoffs might be regarded as too low. A further hint at the discordance of
ThMax cutoffswith the categories experts are used to canbe found in the fact thatThMax cutoffs are, on average,
smaller than all other cutoffs, including pheno cutoffs. Pheno cutoffs are optimized to emulate expert-defined
SIR categories, andThSucc cutoffs are closest to pheno cutoffs, on average. Selection of cutoffs at specific values
of estimated probabilities of therapeutic success, as donewithThSucc cutoffs, results in categories that aremore
close to established SIR categories. Second, ThMax cutoffs are optimized for all drugs jointly, while ThSucc cut-
offs are individually estimated for each drug. This characteristic of ThMax cutoffs can foster further deviance
from established resistance categories, since thresholds of frequently co-administered drugs can interact with
each other. For these reasons, and in light of the small differences in performance, I prefer ThSucc cutoffs over
ThMax cutoffs.

In my opinion, the use of three different cutoff sets for solving these three different tasks is justified. ThSucc
cutoffs are trained to produce a GSS that reflects the probability of short-term therapeutic success. Thus, in-
formation on drug resistance as well as on general drug efficacy is encoded in these cutoffs. Values for discretiz-
ing therapy-success probabilities were determined by analyzing therapy-success proportions (Table 3.3 and Fig-
ure 3.4). For this reason, these result from the therapy-success rates that are currently feasible, and therefore,
these values need to be periodically revised as new antiretroviral drugs are introduced and further evidence
for drug efficaciousness is obtained. ThSucc cutoffs were estimated by using a dataset composed of TEs and
therapy-failure sequences. Therapy-failure sequences were included in order to compensate for the lack of TEs
in which a drug is prescribed although resistance against this drug is present. Correlation ofDESwith log RFs is
weak to strong, depending on the drug in question (Tables 3.14 and 3.15). However, the correlation is sufficient
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for predicting the SIR label of GPPs discretized with clinically relevant cutoffs (Table 3.25). While a mean mis-
classification rate of 27% seems high, most of errors arise from misclassification of intermediate-labeled GPPs,
for which the clinical relevance is uncertain [283]. On average, only 3% of resistant-labeled GPPs are predicted
to be susceptible, which is on parwith rules-based drug-resistance interpretation systems (Tables 3.25 and 3.26).
Misclassification of susceptible-labeled GPPs as resistant is higher for both drug-exposure models and rules-
based interpretation systems. However, it is known that certain mutations do not result in in-vitro phenotypic
resistance, although their presence precludes response to antiretroviral chemotherapy [314].

Performance assessment of the models shows their validity and utility. In comparison to other drug-
resistance interpretation systems, discretized DES performance was comparable or significantly superior, de-
pending on the test set. Discretized DES exhibit superior performance when predicting cumulative, long-term
therapeutic success (C-index; Table 3.27). The models present a strong difference in performance when pre-
dicting therapeutic success with baseline sequences obtained during therapy pauses. Thus, discretized DES use
can be recommended when prediction of drug exposure, drug resistance, or therapy success is required. In Sec-
tion 3.3, I present a novel approach with which a data-driven genotypic drug-resistance interpretation system
can be automatically derived from therapy history and GPPs. This is complemented by the methods presented
in Section 3.4, with which clinically-meaningful categories from DES can be obtained. Drug-exposure models,
along with DEMax and pheno cutoffs, have been integrated into the geno2pheno[resistance] prediction system
(http://www.geno2pheno.org).

3.5 Determination of Cutoffs for Predictions of Phenotypic Drug Resistance

In Section 3.4, methods were presented for estimating cutoffs for models predicting drug exposure. In this
section, I present a method for estimating clinically relevant cutoffs for geno2pheno[resistance]. This method
presents some similarity to ThSucc cutoffs (Section 3.4). In the following, I mention two differences between
the method presented in this section and the method for determination of ThSucc cutoffs. First, the method
presented in this section uses a weighting procedure in order to correct for the effect of backbone compounds
in cART, as well as for the fact that some therapies fail to succeed even if full susceptibility of HIV-1 to the
drug compounds is given. Second, the method presented in this section makes use of the form of the sigmoid
function for deciding where cutoffs should be selected. In this way, the need for manual selection of cutoff
values for estimated probabilities of success is circumvented.

Drug resistance ofHIV-1 can bemeasured in-vitrowith phenotypic resistance tests (Section 3.1). The output
of these tests is the FC between a certain HIV-1 variant and a reference strain. This quantity is called the FC or
RF and is also referred to as phenotype, in this context. Statistical models trained on GPPs afford accurate
prediction of the RF, given a genotype [299, 315]. The utility of phenotypes in optimizing cART has been
established [316–319]. However, phenotypes require interpretation with respect to the in-vivo activity of the
tested variant, i.e. the range of possible RFs for a drug (called dynamic range) has to be divided into a suitable
number of clinically meaningful intervals [318–323]. These intervals are drug-dependent and defined in terms
of cutoffs of the RF. Historically, refinement of the interpretation of the RF has undergone several iterations.
Initially, a cutoff per drug was defined in terms of the reproducibility of the phenotypic tests (technical cutoffs)
as, for instance,mentioned in [324]. Later, the distribution ofRFs of (samples from) therapy-naïve patientswas
used for defining a susceptible-to-resistant RF cutoff for each drug (biological cutoffs) [325, 326]. Finally, it was
recognized that theRF, an in-vitromeasurement, requires explicit translation for its intended in-vivo application,

140

http://www.geno2pheno.org


namely the prediction of the suppression of the VL. Efforts in defining clinically relevant cutoffs (short: clinical
cutoffs) gave rise to the notion of the division of the dynamic range into the idealized categories susceptible,
intermediate, and resistant, using two cutoffs per drug. Susceptible indicates full drug activity, intermediate
decreased drug activity, and resistant no drug activity [318, 321, 324]. While drug compounds in cART act
in concert, the RF quantifies the activity of a drug in-vitro and in isolation. Thus, RF cutoff determination
with clinical data requires correcting for the activity of the backbone compounds [318, 321]. This correction
can be achieved by using hard-to-obtain (pseudo-) monotherapy data for cutoff determination. Specifically, the
addition of an examined drug compound to a failing regimen allows for observing the activity of the drug with
reduced influence of the backbone [318, 319, 327]. Correction for the backbone activity can also be achieved
mathematically [311, 322, 328]. However, no methodology exists for calculating cutoffs that produce clinically
meaningful SIR categories without requiring the expert selection of thresholds for drug activity.

In this section, I establish a novelmethodology for calculating clinically relevant phenotypic resistance cutoffs
from routine clinical data. Although drug resistance is a continuum, I aim at calculating cutoffs with which the
dynamic range can be divided into intervals that best approximate the SIR categories, as defined above. I correct
for the activity of the backbone compounds mathematically, as well as for lack of therapeutic success in spite of
full susceptibility against the drug compounds in cART.

3.5.1 Materials and Methods

In the following, I present themethodsused for estimating cutoffs for theRFpredictionsof geno2pheno[resistance].

Drugs Considered in this Analysis

The following antiretroviral drugs are considered in this analysis: 3TC, ABC, AZT, d4T, ddI, FTC, TDF, EFV,
NVP, APV, ATV, DRV, FPV, IDV, LPV, NFV, SQV, TPV. Other antiretroviral drugs were excluded due
to insufficient representation in the EIDB or lack of a model for genotypic drug-resistance interpretation in
geno2pheno[resistance] [299] version 3.4.

Data Sources

A total of 36,744 PR and RT sequences from treatment-naïve patients were obtained from LANLSD [329]
(http://www.hiv.lanl.gov/; downloaded onMarch 31st, 2015). HIV-1 data from routine clinical practice
was obtained from two sources: the EIDB (http://www.euresist.org; downloaded April 11th, 2014) and
the HIVdb TCE repository [330] (http://hivdb.stanford.edu; downloaded November 21st 2013). The
EIDB contains data from 66,254 patients, including HIV-1 genotypes, VL measurements, CD4 counts, and
compounds used in antiretroviral therapies. The HIVdb TCE repository stores 1,527 TCEs from four data
sources, including 58 TCEs from the EIDB. In the context of the HIVdb TCE repository, a TCE documents
relevant clinical parameters concerning a change in the drug compounds of cART.

Distribution of Fold-Change for Therapy-Naïve Patients

Nucleotide sequences fromLANLSDwere aligned, translated, and interpretedwith geno2pheno[resistance] 3.4, a
data-driven genotypic drug-resistance interpretation system that predicts the RF from the genotype for various
PIs and RTIs. Sequences resulting in an alignment error or producing a warning due to missing important
sequence regions were discarded. Since I require an RF distribution for susceptible virus variants, sequences
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containing at least onemajor drug resistancemutation [296] were excluded as well, since therapy-naïve patients
may carry drug resistant variants [279, 295]. The remaining sequences were used for calculating a therapy-naïve
RF distribution for the drugs considered in this study.

Calculation of Probabilities of Susceptibility

Using geno2pheno[resistance] 3.4, all nucleotide sequences in EIDBwere aligned. Sequences resulting in an align-
ment error or producing a warning due to missing important sequence regions were discarded. The remaining
PR and RT sequences were translated and interpreted. The resulting RF predictions were used for fitting a
sigmoid function for approximating the probability of susceptibility given a predicted RF, as described before
(probability of resistance; [299]). Briefly, a two-component Gaussian-mixture model is fitted to the RF predic-
tions for each drug. These two Gaussians represent the susceptible and resistant viral populations, respectively.
A sigmoid function is then fitted to approximate theprobability of resistance, given anRF, that canbe calculated
with these two Gaussians. I define the probability of susceptibility as one minus the probability of resistance.

Calculation of Probabilities of Success

After application of the TE and therapy success definitions (Section 3.3.1) to EIDB, approximately 10% of the
resulting TE were selected at random and set aside for testing purposes. The remaining TEs were merged with
TFEs (Definition of Treatment Failure Episode in Section 3.3.1) obtained from EIDB, labeled as failures. The
resulting dataset was used for estimating RF-conditional probabilities of success for each drug, as follows. TE
baseline genotypes were interpreted with geno2pheno[resistance], resulting in predicted RFs for the drugs in each
TE. For each drug considered in this analysis, weighted KDE (Section 2.3.1) was applied to the predicted RFs
of success-labeled TEs containing the drug in question. Specifically, letX = (x1, . . . , xn) ∈ Rn be a vector of
RFs for a drug andW = (w1, . . . , wn) ∈ R+

0 a vector of weights for these RFs. Weighted KDE estimates the
probability density of an RF distribution at x as

f̂(x) =
1∑n

k=1wk

n∑
k=1

wkϕ(x− xk), (3.11)

where ϕ is the probability density function of the normal distribution. When estimating the probability of
success, I correct for the activity of the backbone compounds of a therapy by down-weightingRFs from success-
labeledTEswith the probability of susceptibility of the backbone compounds. The probability of susceptibility
of the involved drugs enter (3.11) through an appropriate definition of the weightswi. For some success-labeled
TE containing c drugs, let d ∈ R be the predicted RF for the drug in question, let b = (b1, . . . , bc−1) ∈ Rc−1

be the predicted RFs for the backbone compounds, and let ps,i(x) be the probability of susceptibility for a
certain drug indexed by i, given its RF. The weights for success-labeled RFs are given by

ws(d, b) =
1

2− ps,c(d) +
∑c−1

i=1 ps,i(bi)
(3.12)

The constant, 2, is used in order to avoid negative weights and division by zero. In the same way, for each drug
considered in this analysis, weighted KDE was applied to failure-labeled TEs containing the drug in question.
A minority of failure-labeled TEs present small RFs for their drug compounds. Therefore, I correct for lack of
success in the absence of resistance by down-weighting failures with the probability of susceptibility of their
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drug compounds. Specifically, let t = (t1, . . . , tc) ∈ Rc be the predicted RFs for the drug compounds, and let
ps,i(x) be the probability of susceptibility for a certain drug given its RF. The weights for success-labeled RFs
are given by

wf(t) =
1

1 +
∑c

i=1 ps,i(ti)
(3.13)

As in (3.12), 1 is a constant used for avoiding division by zero. For each considered drug, probability densities for
RFdistributions of success and failure-labeledTEs, f̂s,i(x) and f̂f,i(x), respectively, were obtainedwithweighted
KDE (3.11). For this purpose, weights were calculated with the weight functions described above, ws(d, b) and
wf(t), for success and failure densities, respectively. f̂s,i(x) and f̂f,i(x)were used for calculating probabilities of
success, as follows. The probability of success for a therapy including some drug with RF x is given by

Pi(x) =
0.5f̂s,i(x)

0.5f̂s,i(x) + 0.5f̂f,i(x)
. (3.14)

In (3.14), 0.5 is the prior probability (Section 2.1.2). For obtaining a non-informative prior, I chose to give both
classes equal weight and thus this term cancels. For a certain drug, I denote probabilities of success for all TE
containing the drug with Pi(x). Aiming at noise reduction and analytical determination of cutoffs, I fit the
following sigmoid function to the probabilities of success. Let a, b, c, d ∈ R+

0 be the parameters of the sigmoid
function

P̂i(x) =
a− d

1 + exp(−b(x− c))
+ d. (3.15)

I use non-linear least squares in conjunction with the Levenberg-Marquardt algorithm [331] for fitting the pa-
rameters a, b, c, and d to the probabilities of success. (In my experience, the Levenberg-Marquardt algorithm
is more robust with respect to different starting solutions than the Gauss-Newton algorithm.) For determining
the susceptible-to-intermediate (lower) and the intermediate-to-resistant (upper) cutoffs, I use the roots of the
third derivative of (3.15), as these are located at the extrema of the curvature of P̂i(x). Thus, they are located
at RF values at which the probability of success is significantly reduced or marginal, respectively. Cutoff deter-
mination for each drug was performed with 1,000 bootstrap replicates [256] of each subset of TEs including
that drug. However, for some drugs, this procedure selected the lower cutoff at anRF below the 95th percentile
of the RF distribution of therapy-naïve patients. In order to avoid what could be interpreted as overcalling of
intermediate resistance, the lower cutoff for a drug was selected either at the smaller root of the third derivative
of (3.15) or at the 95th percentile of the RF distribution of therapy-naïve patients for that drug, whichever is
larger [327].

Assessment and Comparison of Performance

I assess the performance of the cutoffs calculated with the procedures I used on two test datasets: the first test
dataset includesTEs fromEIDBwhichwere not used for cutoff determination (approximately 10%of the total).
The second test dataset contains TEs extracted from theHIVdbTCERepository by applying the TE definition
to it. For each TE, a GSS was calculated. Specifically, RFs predicted for the drug compounds in the TEs were
obtained with geno2pheno[resistance], subsequently producing SIR labels via the cutoffs. Each drug was assigned
an integer score, depending on its SIR label: S→ 1, I→ 0.5, R→ 0. The GSS for a TE amounted to the sum
of its integer scores. Performance of the GSS in predicting therapeutic success was calculated in terms of AUC.

For performance comparison, the baseline genotypes of the TEs in the test datasets were interpreted with
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HIVdbv.6.0.6 [298], resulting in SIR labels for the drug compounds in theTEs. GSSwas calculated as described
above, and the performance of the GSS in predicting therapeutic success was quantified in terms of AUC as
well. p-values were calculated with a two-sided Wilcoxon signed-rank test [308]. Whenever multiple testing
was performed, p-values were corrected using the Benjamini-Hochberg method [332].

3.5.2 Results

Among 36,744 nucleotide sequences of the PR and RT genes downloaded from LANLSD, 43 (< 1%) PR and
75 (< 1%) RT sequences were discarded due to alignment problems or sequence-quality warnings. Further 860
(2.3%)PRand 680 (1.8%)RT sequenceswere discarded because they contained somemajor drug-resistancemu-
tation. In addition, a total of 74,764 nucleotide sequences from EIDB were submitted to geno2pheno[resistance]
for interpretation, some of which did not correspond to either the PR orRT genes. Of these, 21,199 (28%)were
discarded due to alignment problems or since they triggered a sequence-quality warning. RF percentiles for the
resulting RF distributions for therapy-naïve patients, along with the corresponding probabilities of susceptibil-
ity, can be found in Table 3.28. On average, RFs at the 95th percentile of the RF distribution of therapy-naïve
patients have a probability of susceptibility of 0.87 with a standard deviation of 0.13. Baseline characteristics for
the TEs and TFEs extracted from EIDB and the HIVdb TCE repository can be found in Table 3.29, while the
drug-compound distribution for these datasets can be found in Table 3.30. Upper and lower RF cutoffs ob-
tainedwith the procedure described in Section 3.5.1 are displayed inTable 3.31. Lower cutoffs for the drugs ddI,
TDF, NVP, and NFV were replaced by the 95th percentile of the RF distribution of therapy-naïve patients, as
theywere smaller than this percentile. For performance assessment and comparison, GSS for theTEs in two test
sets were computed with predicted RFs, discretized with the obtained cutoffs, as well as with HIVdb discrete
predictions. On the EIDB test set, this method and HIVdb performed equally well (AUC = 0.68). However,
this method (µ = 2.55; σ = 0.88) produced lower GSS than HIVdb (µ = 2.66; σ = 0.75; p < 10−16).
This method’s integer scores for NRTIs (µ = 0.83; σ = 0.35; vs. µ = 0.86; σ = 0.30), NNRTIs (µ = 0.92;
σ = 0.24; vs. µ = 0.95; σ = 0.20), and PIs (µ = 0.88; σ = 0.30; vs. µ = 0.92; σ = 0.23) were lower
than those produced with HIVdb (corrected p < 0.0043). On the HIVdbTCE test set, this method (AUC =
0.63) and HIVdb (AUC = 0.65) performed comparably well. On average, this method (µ = 1.82; σ = 0.97)
produced lower GSS thanHIVdb (µ = 2.18; σ = 0.88; p < 10−16) on theHIVdbTCE test set. Integer scores
of this method for NRTIs (µ = 0.16; σ = 0.33; vs. µ = 0.21; σ = 0.37), NNRTIs (µ = 0.19; σ = 0.39;
vs. µ = 0.19; σ = 0.39), and PIs (µ = 0.06; σ = 0.23; vs. µ = 0.07; σ = 0.24) were also lower than those
produced with HIVdb (corrected p < 0.043).

3.5.3 Discussion

In Section 3.5, I present a method for calculating clinically-relevant cutoffs for the RF without the need for ex-
pert intervention. The method offers the following advantages. (1) The cutoffs produced with this method are
tightly coupled with the clinically meaningful definition of lower and upper RF cutoffs for producing SIR cat-
egories (see the introduction of Section 3.5). I achieve this by providing a mathematical procedure for deriving
the relevant cutoffs. Specifically, the method chooses cutoffs at the curvature extrema of a sigmoid function
approximating the probability of success (Figure 3.5). By doing so, I circumvent the need for manual selec-
tion of (arbitrary) drug activity thresholds [322]. (2) The method corrects for the activity of backbone drug
compounds, but does not achieve this by using coarse, discrete weights, as with GSS [322]. Instead, I correct
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Table 3.28: Fold Changes and Probabiliধes of Suscepধbility at Percenধles of the Distribuধon of Therapy-Naïve Paধents. RF: resis-
tance factor; POS: probability of suscepঞbility; 3FTC: lamivudine or emtricitabine; ABC: abacavir; AZT: zidovudine; d4T: stavudine;
ddI: didanosine; TDF: tenofovir disoproxil fumarate; EFV: efavirenz; NVP: nevirapine; AFPV: amprenavir or fosamprenavir; ATV:
atazanavir; DRV: darunavir; IDV: indinavir; LPV: lopinavir; NFV: nelfinavir; SQV: saquinavir; TPV: ঞpranavir.

5th 25th 50th 75th 95th
Percentile Percentile Percentile Percentile Percentile

3FTC RF 1.2 1.4 1.7 2 2.5
POS 1 1 1 1 1

ABC RF 1 1.1 1.3 1.4 1.7
POS 1 1 1 0.98 0.75

AZT RF 0.5 0.9 1.3 1.8 2.9
POS 1 1 1 1 0.94

d4T RF 0.9 1.1 1.1 1.2 1.4
POS 1 1 1 0.99 0.91

ddI RF 1.1 1.2 1.4 1.5 1.8
POS 1 0.99 0.97 0.92 0.62

TDF RF 0.8 1 1.1 1.3 1.7
POS 1 0.99 0.97 0.9 0.56

EFV RF 0.3 0.8 1.1 1.6 2.7
POS 1 1 1 1 0.95

NVP RF 0.3 0.7 1.4 2.3 5.3
POS 1 1 1 0.98 0.82

AFPV RF 0.7 0.9 1.1 1.4 1.9
POS 1 1 1 1 0.96

ATV RF 0.8 1 1.2 1.5 2.2
POS 1 1 1 1 0.93

DRV RF 0.6 0.8 1.1 1.4 2
POS 1 1 1 1 0.92

IDV RF 0.7 0.9 1.2 1.5 2.3
POS 1 1 1 1 0.95

LPV RF 0.6 0.7 0.9 1.2 1.7
POS 1 1 1 1 0.99

NFV RF 0.7 1 1.2 1.6 2.6
POS 1 1 1 1 0.94

SQV RF 0.6 0.8 1 1.3 1.9
POS 1 1 1 0.99 0.92

TPV RF 0.5 0.7 1 1.4 2.2
POS 1 1 1 0.98 0.82
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Figure 3.5: Density and Probability Plots (Selected Compounds). Weighted kernel density esঞmaঞon was used for esঞmaঞng a
success and a failure density for each drug compound. These densiঞes were used for calculaঞng RF-dependent empirical success
probabiliঞes, towhich a sigmoid funcঞonwas fi�ed. A lower and an upper RF cutoffwere chosen at the roots of the third derivaঞve
of the sigmoid funcঞon. However, the lower cutoff was replaced by the 95th percenঞle of the RF distribuঞon of therapy-naïve
paঞents, if it was lower than this percenঞle. Success and failure densiঞes, as well as empirical and sigmoid success probabiliঞes are
plo�ed above for the drug compounds lamivudine or emtricitabine (a), tenofovir disoproxil fumarate (b), efavirenz (c), and ritonavir-
boosted darunavir (d). 95th percenঞles of the RF factor distribuঞon, as well as lower and upper cutoffs determined with the roots
of the third derivaঞve are indicated by verঞcal dashed lines. Resistance-factor density is also depicted as a rug plot at the top of
each individual plot. Note that success and failure densiঞes are rescaled to the interval between zero and one in these plots.
— Success Density — Failure Density — Sigmoid Success Probability ◦ Empirical Success Probability
- - 95th Percenঞle of Naïve Distribuঞon - - Lower Cutoff - - Upper Cutoff



Table 3.30: Drug CompoundDistribuধons. The numbers of drug compounds in the development and test sets are tabulated below.
TE: therapy episode; TFE: therapy-failure episode; 3FTC: lamivudine or emtricitabine; ABC: abacavir; AZT: zidovudine; d4T: stavu-
dine; ddI: didanosine; TDF: tenofovir disoproxil fumarate; EFV: efavirenz; NVP: nevirapine; AFPV: amprenavir or fosamprenavir;
ATV: atazanavir; DRV: darunavir; IDV: indinavir; LPV: lopinavir; NFV: nelfinavir; SQV: saquinavir; TPV: ঞpranavir

EuResist TE EuResist TFE EuResist TE HIVdbTCE TE
Development Set Development Set Test Set Test Set

3FTC 6,069 1,093 674 484
ABC 1,445 313 157 265
AZT 1,756 525 181 169
d4T 833 463 90 407
ddI 928 396 99 338
TDF 3,669 442 411 307
EFV 1,831 357 204 287
NVP 502 246 60 111
AFPV 336 64 31 117
ATV 926 98 117 76
IDV 136 65 14 103
LPV 2,306 258 244 223
NFV 344 188 39 72
SQV 205 70 27 115
TPV 55 13 7 3
DRV 569 27 63 6

for backbone activity in success-labeled TEs with fine-grained RF weights that depend on the probabilities of
susceptibility of all therapy compounds. (3) In failure-labeled TEs, I correct for failures not associated with
resistance, which is especially important since I use data from routine clinical practice for calculating the cutoffs.

The computation of RF weights for an antiretroviral therapy with three drug compounds is exemplified in
Table 3.32. For failure-labeled TEs, weights decrease with the sum of the probabilities of susceptibility for all
compounds in the therapy. The maximum weight, 1, is awarded to RFs from TEs for which the sum of prob-
abilities of susceptibility is equal to zero. Thus, the influence of RFs from failure-labeled TEs is the greater the
less susceptible the virus is to the administered drug compounds, which corrects for non-resistance associated
failure. In contrast, for calculating RF weights for success-labeled TEs, the probability of susceptibility of the
drug in question is subtracted from the sumof probabilities of susceptibility for the backbonedrug compounds.
Themaximumweight, 1, is awarded to RFs of the drug in question indicating full drug susceptibility, while the
virus is not susceptible to the backbone drug compounds. Hence, RFs from success-labeled TEs have a greater
influence the higher the susceptibility of the drug in question and the lower the susceptibility of the backbone
drug compounds. This corrects for the activity of the backbone compounds. For selected drug compounds, a
comparison of the densities obtainedwith andwithoutRFweighting is shown in Figure 3.6. As can be seen, the
weighting procedure had the largest influence on the failure densities. On both success and failure densities, the
influence of the weighting procedure is largest for older, less effective drug compounds (ddI and IDV/r in Fig-
ure 3.6). The definition of SIR categories takes the activity of a drug into account, and (intentionally) does not
account for the differential capacities of antiretroviral drugs to elicit virological success (for instance, Table 3.3).
For instance, at the same probability of success, the virus may be classified as susceptible to one drug whereas at
the same probability level it is classified as intermediate for another drug. Taking this into consideration, cut-
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Table 3.31: Clinically Relevant Phenotypic Resistance Cutoffs. For each considered drug, sigmoid funcঞons were fi�ed to empir-
ical probabiliঞes of success. Lower and upper clinically-relevant fold-change cutoffs for each drug were selected at the roots of
the third derivaঞve of the corresponding sigmoid funcঞon (sigmoid cutoffs). Below, these cutoffs are tabulated along with the
percenঞle of the RF distribuঞon of therapy-naïve paঞents to which they correspond (Sigmoid Cutoff Percenࣅle). Lower sigmoid
cutoffs corresponding to a percenঞle of the RF distribuঞon of therapy-naïve paঞents below the 95th percenঞle were replaced by
the 95th percenঞle of this distribuঞon (underlined). SD: standard deviaঞon; 3FTC: lamivudine or emtricitabine; ABC: abacavir;
AZT: zidovudine; d4T: stavudine; ddI: didanosine; TDF: tenofovir disoproxil fumarate; EFV: efavirenz; NVP: nevirapine; AFPV: am-
prenavir or fosamprenavir; ATV: atazanavir; DRV: darunavir; IDV: indinavir; LPV: lopinavir; NFV: nelfinavir; SQV: saquinavir; TPV:
ঞpranavir.

Lower Sigmoid Lower Sigmoid Selected Upper Sigmoid Upper Sigmoid
Cutoff (SD) Cutoff Percentile Lower Cutoff Cutoff (SD) Cutoff Percentile

3FTC 3.18 (1.02) 0.99 3.18 5.44 (1.05) 1
ABC 1.78 (1.03) 0.98 1.78 2.97 (1.1) 1
AZT 3.31 (1.06) 0.97 3.31 7.15 (1.1) 1
d4T 1.53 (1.02) 0.99 1.53 2.12 (1.08) 1
ddI 1.46 (1.09) 0.69 1.82 3.32 (1.2) 1
TDF 1.6 (1.03) 0.92 1.71 2.33 (1.03) 1
EFV 3.66 (1.08) 0.98 3.66 7.81 (1.09) 1
NVP 5 (1.08) 0.94 5.34 13.7 (1.08) 1
AFPV 2.69 (1.09) 0.99 2.69 5.93 (1.19) 1
ATV 2.65 (1.1) 0.98 2.65 4.97 (1.21) 1
IDV 3.23 (1.29) 0.99 3.23 9.48 (2.11) 1
LPV 2.44 (1.11) 0.99 2.44 8.52 (1.3) 1
NFV 2.44 (1.08) 0.93 2.6 5.73 (1.17) 1
SQV 2.64 (1.13) 0.99 2.64 6.06 (1.24) 1
TPV 3.1 (2.82) 0.99 3.1 13.86 (4.69) 1
DRV 3.97 (9.36) 1 3.97 12.87 (27.62) 1

Table 3.32: Example Values for RF Weights. Resistance factor weights were calculated as described in Secঞon 3.5.1. For a com-
binaঞon anঞretroviral therapy with three anঞretroviral drugs, values for RF weighঞng are tabulated below. Depending on the
probabiliঞes of suscepঞbility for the compounds of a therapy, resistance-factor weights will assume values between those tabu-
lated below. POS: probability of suscepঞbility; RF: resistance factor; TE: treatment episode.

Sum of POS for Drug RF Weight for RF Weight for
Backbone POS in Question Success-Labeled TEs Failure-Labeled TEs
2 1 1/3 1/4
2 0 1/4 1/3
1 1 1/2 1/3
1 0 1/3 1/2
0 1 1 1/2
0 0 1/2 1
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Figure 3.6: Comparison of Weighted and Unweighted Densiধes (Selected Compounds). Empirical success and failure densiঞes
were esঞmated with weighted kernel density esঞmaঞon, as described in Secঞon 3.5.1. Above, the weighted densiঞes for the
drug compounds lamivudine or emtricitabine (a), didanosine (b), ritonavir-boosted darunavir (c), and ritonavir-boosted indinavir (d)
are plo�ed along with their unweighted versions. Resistance-factor density is depicted as well, as a rug plot at the top of each
individual plot.
—Weighted Success Density —Weighted Failure Density - - Unweighted Success Density - - Unweighted Failure Density



off determination via mathematical optimization is hampered by the difficulty in finding an adequate objective
function for optimization that is universal for all drugs. In the past, cutoff calculation has been attempted by
maximization of ameasure quantifying the performance of prediction of therapeutic-success (CutoffsMaximiz-
ing the Performance of the Prediction of Therapy-Success in Section 3.4 and [311]). Briefly, cutoffs are iteratively
optimized by producing a GSS with a given set of cutoffs. Subsequently these cutoffs are modified such that
there is an increase in the AUC. This procedure involves the calculation of cutoffs for all drugs in the dataset
simultaneously, and may be less effective in separating the effects of individual drugs. Furthermore, the use of
such an objective function is bound to maximize predictive performance in terms of the AUCwhile producing
inconsistencies of the applied SIR categories. I avoid this undesired effect by estimating cutoffs for each drug
separately. Nonetheless, the separation of the contributions of individual drugs to therapeutic success remains
challenging, as antiretroviral drugs may interact with each other [333, 334]. Lower cutoffs for the drugs ddI,
TDF, NVP, and NFV were replaced by the 95th percentile of the RF distribution of therapy-naïve patients, as
they were smaller than this percentile (Table 3.31). Before this was done, the lower cutoffs for TDF, NVP, and
NFV were above the 91st percentile the RF distribution of therapy-naïve patients, which can be said to be very
close to the 95th percentile. The lower cutoff for ddI, however, was originally selected at the 69th percentile of
theRFdistribution of therapy-naïve patients. Replacement of lower cutoffs below the 95th percentile of theRF
distribution of therapy-naïve patients was performed following advice of clinical cooperation partners. They
felt that the greatmajority of therapy-naïve patients without transmitted drug resistance should be awarded sus-
ceptible predictions for all drugs. I chose to follow this advice for the following reasons. First, the lower cutoffs
for the great majority of drugs are above or very close to the 95th percentile of the RF distribution of therapy-
naïve patients, such that I felt that following their advice would foster their confidence in geno2pheno[resistance]
without significantly alteringmy findings for these drugs. Second, the data suggest that there are negative differ-
ences in the therapy-success rates patients to whom ddI was prescribed and for whom the RF of ddI at baseline
is below the 69th percentile of the RF distribution of therapy-naïve patients. ddI is a drug that has fallen into
disuse due to its side effects (Section 1.5.5), such that it is nearly impossible to prospectively validate this cut-
off in order to find out whether it should be selected at the 69th percentile or at the 95th percentile of the RF
distribution of therapy-naïve patients. Thus, I thought that it would be futile to start an undecidable scien-
tific dispute over the correct selection of the lower cutoff of a drug that nobody uses. Except for DRV/r and
TPV/r, the standard deviation of the calculated cutoffs is at most 1.5 (Table 3.31). The higher variability of the
cutoffs for DRV/r can be explained by the drug’s comparatively high barrier to resistance [335]. The dataset
that I use contains only few DRV/r-containing TEs with an RF above the upper cutoff (Figure 3.5). There-
fore, significantly different numbers of TEs with a high resistance to DRV/r at baseline will be selected across
bootstrap replicates, which results in increased variability. The increased variability for the cutoffs for TPV/r
is due to the low numbers of TEs containing this drug (Table 3.30). I tested the calculated cutoffs on two test
sets. The performance of cutoffs was equal or comparable to that ofHIVdb. However, the GSS calculated with
the cutoffs were significantly smaller than those calculated with HIVdb. Therefore, the cutoffs have a higher
tendency to label an RF with non-susceptible SIR categories than HIVdb. I interpret this to be a result of the
strict adherence to SIR categories in the cutoff estimation procedure. Specifically, genotypic drug-resistance
interpretation systems produced by experts may take the propensities of individual drugs to elicit therapeutic
success more into account. This results in fewer resistant predictions for drugs with a high potency and a high
barrier to resistance.

This method for cutoff determination did not lead to a greater predictive performance when compared to
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HIVdb; the predictive performance of geno2pheno[resistance] and the cutoffs was comparable to that of HIVdb.
When interpreting this fact, one should bear in mind that the experts who created and update the rules-based
interpretation systemHIVdb use more sources of information for crafting the rules than are available for train-
ing of geno2pheno[resistance]. Specifically, the rules of HIVdb are based on HIV-1 nucleotide sequences with
drug exposure information, GPPs, and clinical data on the baseline characteristics and outcome of cART. In
contrast, geno2pheno[resistance] only uses GPPs. The method presents the following advantages. (1) It pro-
vides a valid method for cutoff selection that does not require expert intervention. In the past, retraining of
geno2pheno[resistance] almost inevitably entailed calling for ameeting of clinical experts for the purpose of cutoff
determination. Thanks to thismethod for cutoff determination, this laborious and time-consuming step can be
now avoided. (2) Intuitive plots of the procedure leading to the selection of cutoffs can be generated. This can
foster the confidence of clinical experts in the cutoffs, since the plots substantially facilitate the understanding
of the method. (3) In the future, the method could be applied for understanding the role of different drugs in
cART.
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4
Improving the Prediction of Therapy Success

Overthelast 15 years, cART for treatingHIV-1 infectionhas improved remarkably [336–339]. This is due
to the continuous acquisition of knowledge on how to treat HIV-1-infected patients [228, 280, 340], the sys-
tematic collection of data on the interplay between applied drug therapy and evolutionary response of the virus
[294, 329, 341], the introduction of novel drug compounds with improved potency [335], growing control
over side-effect profiles [342], increased understanding of the genetic barrier to drug resistance [343, 344], and
increased intake convenience [345]. In resource-rich settings, the risk of therapy failure has therefore decreased
steadily over the last 15 years [339, 346]. Nowadays, selecting a cART that will achieve initial virologic response
has become significantly more effective [207, 347–350]. However, the selection of durable antiretroviral reg-
imens still remains challenging. For this reason, this chapter is devoted to statistical models for predicting the
success (or failure) of antiretroviral chemotherapy.

I begin this chapter by reviewing the goals of antiretroviral therapy, from which several therapy-success def-
initions have been derived. Then, I review past work on computational systems that can support the treating
clinician in the process of antiretroviral therapy selection by predicting the success of individual therapy com-
binations. Lastly, I present a model that represents a further development of these systems.

4.1 Definitions of Therapy Success

A summary on how therapy success is defined from the perspective of a treating physician can be found in the
following. This summary is based to a large extent on [3, 228, 229, 280]. In Section 4.1, citations only refer to
sources other than these ones.

4.1.1 The Goals of Antiretroviral Therapy

At current, eradication of HIV-1 is not possible for the large majority of infected patients. However, HIV-
1 infection can be kept under control with cART, under the premise that treatment is effective and that an-
tiretroviral drugs are continuously taken by the patients for the rest of their lives. Section 1.5 reviews the history
of cART, gives an overview on antiretroviral drug compounds, and summarizes current recommendations for
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cART. In the following, I will summarize the goals of cART that relate to treatment of chronicHIV-1 infection.
For determining the success of cART, virological, immunological, and clinical criteria are used. The primary

marker for determining the virological success of cART is theVL .When treatment is successful, theVLdeclines
in twophases. During the first phase, a rapid decline of theVL can be observed. In the secondphase, this decline
slows down. The greater the initial decline in VL , the more durable the response to cART. Although patients
can profit from any decline in the VL, virological success of a cART is generally defined as a reduction of the
VL below 50 HIV-1 RNA copies per milliliter of blood serum. This VL threshold is somewhat arbitrary, as it
is based on the detection threshold of wide-spread VL assays. Historically, the VL threshold for determining
treatment success has been decreased several times as a result of the availability of more sensitive VL assays and
of more potent drug combinations. Currently, reduction of the VL below 50 HIV-1 RNA copies per milliliter
of blood serum is often simply referred to as suppression of the VL. A patient with HIV-1 infection who has
reached this state is often referred to as being (virologically) suppressed.

Immunological treatment success is generally defined as an increase in the CD4+ cell count. For determining
immunological treatment success, no definitions on the extent of CD4+-cell count increase have been estab-
lished. Thus, immunological success definitions vary from study to study. These range from an increase in the
CD4+-cell count of 50 to 200 cells permicroliter of blood (when compared to baseline) or to levels above 200 or
500 cells per microliter of blood (presupposing that they CD4+-cell counts were lower at baseline). Immuno-
logical failure is considered to be the lack of increase or the decrease of the CD4+ cell count. Immunological
treatment success usually follows virological treatment success. However, the incidence of immunological treat-
ment success is subject to variability among individuals. On the one hand, early treatment initiation is associated
with larger increases in CD4+-cell counts. On the other hand, some baseline factors are negatively correlated
with a future increase in the number of CD4+ cells:

• Low CD4+-cell count
• High VL
• Old age
• Bad condition of the thymus
• Myelo- and immunosuppressive concomitant therapies
• Autoimmune diseases
• Liver cirrhosis.

When compared to virological success, immunological success is more difficult to influence. The patient profits
from any reduction of the VL , such that cARTmay elicit immunological success even if the VL stays above 50
HIV-1 RNA copies per milliliter of blood serum. Nonetheless, this precludes virological success, per definition.

Clinical treatment success usually follows immunological success. In studies of antiretroviral treatment, clin-
ical treatment success is usually evaluated via clinical end points, i.e. the lack of occurrence of AIDS-defining
illnesses (see [1] for a list of these illnesses) or of death. However, other patient-specific characteristics of the
outcome of the treatment are important as well, such as the improvement of constitutional symptoms. The
lack of disease progression should also be regarded as clinical success. On the contrary, the onset of serious side
effects due to medication should be clearly regarded as treatment failure. Less severe side effects are important
as well, but are not sufficient to determine clinical failure.

Summarizing, treatment success is determined with virological, immunological, and clinical criteria. Im-
munological success usually follows virological success. Nevertheless, immunological success is more difficult
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to influence than virological success. Clinical success usually follows immunological success. Since a suppressed
VL stands at the beginning of a potential virological, immunological and clinical success cascade, the VL is the
most important parameter for the determination of treatment success. Thus, the primary goal of antiretroviral
therapy is the sustained reduction of the VL below 50 HIV-1 RNA copies per milliliter of blood serum.

4.1.2 Blips and Low-Level Viremia

While using cART, suppression of the VL below 50 HIV-1 RNA copies per milliliter of blood serum may be
interrupted by transient, relatively small increases of the VL. For these transient VL increases to be considered
blips, they are constrained, by definition, to reach less than 200HIV-1RNAcopies permilliliter of blood serum.
Little is known about the causes of blips. They have been not conclusively associatedwith compliance, a certain
drug combination, resistance, or other clinical data. Their frequency seems to be negatively correlatedwith early
treatment initiation, which is why it has been speculated that they could result from the interaction between
immunological mechanisms and latent viral reservoirs (Section 1.1.2). Concomitant infections are known to
cause blips, which probably results from the immune activation they cause. While there does not seem to be an
association between blips and treatment failure, transient viremia above 200 HIV-1 RNA copies per milliliter
of blood serum should be a matter of concern for the treating clinician.

Blips should be distinguished from low-level viremia. Low level viremia is defined as persistent HIV-1 repli-
cation leading to aVLbelow 1,000 (or sometimes constrained to be below 500)HIV-1RNAcopies permilliliter
of blood serum. The prognostic value of low-level viremia is not clear, although some publications shed some
light on the topic [351–353]. Apparently, low-level viremia is associated with treatment failure (see below), but
not with disease progression or mortality. The detection of drug-resistance mutations during low-level viremia
seems tobe an indicator for imminent treatment failure. Nonetheless,HIV-1 treatment guidelines donot clearly
state which procedure a clinician should undertake when low-level viremia is detected in a patient [228, 229].

4.1.3 Specific Features of First-Line Therapies

The first antiretroviral therapy that anHIV-infected person receives presents the best chance of prolonged suc-
cess. This goal can be hampered byTDR, and factors negatively influencing compliance, such as side effects and
the complexity of the drug regimen [354–357]. Therefore, a first-line antiretroviral therapy must be selected
under consideration of these determinants. Antiretroviral drug combinations require approval by regulatory
institutions in order to be used as first-line therapies. This results in a small number of compound combina-
tions accounting for the majority of first-line antiretroviral therapies (Table 1.11). When TDR is detected, a PI-
orDTG-containing therapy is recommended, due to their high genetic barrier [204–206, 358–360]. Otherwise,
the low pill count of regimens containing an NNRTI is often preferred (even one pill a day is possible [355]),
leaving the PI and INI options open.

The transmission of a resistant viral strain can lead to an earlier therapy failure in first-line antiretroviral
therapies. Available aids for selection of first-line antiretroviral therapy are limited. Suitable first-line antiretro-
viral therapies are recommended by various guidelines, summarized in Table 1.11. Therapies in this table have
to be narrowed down by using mutation tables [279, 296] or interpretation systems (Section 3.2) in order to
exclude potentially ineffective drug combinations. For the selection of antiretroviral therapy combinations,
bioinformatics systems are available (Section 4.2). However, these systems have been designed for therapy-
experienced patients and may over- and also underestimate the short- and long-term efficacy of drug combi-
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nations in therapy-naïve patients. In the case of TDR, single drug-resistance mutations have been anecdotally
reported to be indicative of other drug-resistance mutations that are present in viral minority populations that
do not show up in the consensus sequence of the patient sample (Section 5.1) [314, 358, 360–362]. However,
sequencing of minority viral populations in patients with single TDR mutations has rarely revealed additional
drug-resistance mutations, suggesting that the aforementioned scenario may also be rare [352, 363–366]. In
addition to the viral activity of a regimen, its tolerability is of particular importance for the success of a first-line
antiretroviral therapy and has to be incorporated into a prediction system.

4.1.4 Modification of Antiretroviral Therapy Due to Failure

The most frequent situations that justify the modification of antiretroviral therapy are threefold:

1. Acute side effects
2. (Potential) long-term toxicity
3. Virological treatment failure.

Even modern cART is associated with a number of toxicities (Section 1.5.1). Common side effects following
treatment initiation include mild forms of nausea, diarrhea, allergic reactions, and CNS disorders. Usually, the
treating physician can intervene in order to mitigate or even eliminate these initial side effects. Modification of
antiretroviral therapy is only justified by severe side effects. These include:

• Severe untreatable diarrhea
• Severe untreatable nausea
• Persistent sleeping disorder
• Polyneuropathy
• Severe anemia
• Severe, progressive muscular weakness
• Pancreatitis
• Lactic acidosis
• Severe allergies
• Renal failure
• Hepatotoxicity
• Jaundice
• Rhabdomyolysis (rapid breakdown of skeletal striated muscle, potentially resulting in kidney damage

due to the released breakdown products)
• Depression, psychosis.

Long-term toxicities are a special case of side effects. They are cumulative in nature and appear after long-term
use of antiretroviral compounds. The most frequent long-term toxicities are lipodystrophy (Figure 1.14) and
dyslipidemia (abnormal quantities of lipids in blood). Since some compounds have a higher propensity to cause
long-term toxicities than others (Improving Combination Antiretroviral Therapy in Section 1.5.1), treating clin-
icians may bemotivated tomodify virologically successful therapies hoping that the patient will be spared from
long-term toxicities.

Virological treatment failure justifies modification of antiretroviral therapy. Virological treatment failure is
defined as repeated VL measurements above 50 HIV-1 RNA copies per milliliter of blood serum. However,
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transient viremia (below 1,000 HIV-1 RNA copies per milliliter of blood serum) is not considered virological
failure (Section 4.1.2). Virological failure can result from lack of treatment adherence by the patient, malab-
sorption of the drug compounds, insufficient dosing, drug-drug interactions, or by the development of drug
resistance by the virus (Section 1.5.3). In any case, therapy failure is a matter of concern, as replication in the
presence of subinhibitory concentrations of antiretroviral compounds quickly lead to the development of (a
higher degree of) drug resistance, potentially compromising future therapy options. The amount of time a
physician may wait before reacting to virological treatment failure depends upon the drug combination used
in the failing therapy. While NNRTIs and first-generation INIs are more prone to resistance development, PIs
and DTG have a higher genetic barrier to resistance (Section 1.5.3), giving the physician more time to perform
an intervention.

4.2 Predicting Therapy Success with Statistical Models

The presence of drug-resistant HIV-1 variants in a patient impedes virologic response to cART (Section 1.5.3)
[199, 228, 276, 280]. For this reason, the use of genotypic drug-resistance interpretation systems has become
the standard of care when selecting drug compounds for cART prescription (Section 3.2) [367]. These sys-
tems interpret the genotypes of the viral genes whose protein products are targets of antiretroviral drugs. Their
output consists of one out of maximally six categories indicating various degrees of resistance [297, 298], or a
continuous score for drug resistance, such predicted RFs (Chapter 3). Viral variants presenting some degree of
resistance against at least one drug compound in cART are likely to obstruct (long-lasting) virologic response.
However, the absence of genotypic drug resistance at baseline does not guarantee therapeutic success. Even in
the presence of full drug susceptibility, individual drugs and drug combinations differ in their propensities to
achieve (long-lasting) therapeutic success (Table 3.3) [354–357]. Drug-resistance interpretation systems do not
consider these propensities and rate drugs solely with respect to clinically relevant drug resistance.

Therapy-success prediction systems aim at predicting the suppression of the VL below some threshold by a
certain cART in vivo [300, 368–375]. Therapy-success prediction systems are trained on clinical HIV-1 data,
mainly arising from routine clinical practice. Available therapy-success prediction systems differ in several re-
spects. In the following, I comment on (1) the patient group they target, (2) the input that they require for
making a prediction, (3) the type of prediction they deliver, and (4) the predictive performance that has been
reported. Some therapy-success prediction systems are constrained by design to predict therapeutic success on
certain groups of patients, e.g. pretreated patients with drug-resistance mutations at baseline [370]. The mini-
mal input that is required for obtaining a prediction varies considerably from system to system. Most therapy-
success prediction systems require a genotype as an input [300, 368, 371, 374], while some do not require it
[376–378]. Further necessary variables may include date of birth and sex of the patient, a recent VL measure-
ment and CD4+-cell count, the complete or partial treatment history of the patient, and a list of drug combina-
tions that are admissible or considered for therapy [368, 370, 374]. The target of predictionof all therapy-success
prediction systems is the VL (either as a continuous value or discretized in some manner). However, the point
in time, relative to treatment initiation, at which this prediction is targeted, varies from system to system. This
point in timemight be fixed [300], selected by the user [370], or undefined [373, 374]. One published therapy-
success prediction system does not aim at predicting whether the VL will be suppressed at some point in time,
but rather, how long will it take for virologic failure to occur [368]. The predictive performance reported by
the authors of available therapy-success prediction systems is frequently expressed in terms of the AUC. The
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reported performances of different therapy-success prediction systems have been assessed with several different
treatment-success definitions and datasets, which makes direct comparison of the performance of the different
systems difficult.

4.2.1 Materials and Methods

In the following, I describe five related, yet different models for therapy-success prediction. The similarity of
these models consists in the fact that all of them are trained on subsets of the same dataset. Themodels differ in
the definition they use for determining therapeutic success. Specifically, three of these models use only one VL
measurement for determining therapeutic success, each one at a different point in time. One of these models
uses at most two VL measurements (baseline and follow-up). The remaining model uses all VLs measured
during a therapy for quantitatively defining therapeutic success. I validated these models on two independent
datasets. While doing so, I tested the capability of themodels to predict short-, mid-, and long-term therapeutic
success. Furthermore, I discriminate between their performance with therapy-naïve and therapy-experienced
patients. When designing these models, I chose to require solely a PR and RT genotype as the minimal input,
for the following reason. While further input variables may improve predictive performance of therapy-success
prediction systems, they can also represent a limitation for their use, if these variables are unknown. Last but not
least, the methods used for training the models are linear, which allows them to deliver interpretable weights.

Drugs Considered in this Study

The following antiretroviral drugs are considered by the models described in this section: 3TC, ABC, AZT,
d4T, ddC, ddI, FTC, TDF, EFV, ETR, NVP, APV, ATV, DRV, FPV, IDV, LPV, NFV, SQV, TPV, EVG, DTG,
and RAL. Other antiretroviral drugs were excluded due to insufficient representation in the therapies extracted
from EIDB [300].

EuResist Integrated Database and HIVdb TCE Repository

EIDB [300] (http://www.euresist.org, downloadedApril 11th, 2014) containsHIV-1 data from routine clinical
practice. The downloaded version of EIDB contains data from 66,254 patients, predominantly from Europe,
but also including 865 patients fromRwanda. Available clinical data types include: HIV-1 genotypes, VLmea-
surements, CD4+-cell counts, compounds used in antiretroviral therapies, among others. The HIVdb TCE
Repository [330] (downloadedNovember 21st, 2013) archives 1,527TCEs from four data sources, including 58
TCEs from the EIDB. In the context of theHIVdbTCERepository, a TCE contains relevant clinical parameters
documenting the outcome of a change in the drug compounds of cART.

Definition of Treatment Episode

The following definition of treatment episode is essentially the same as the one found in Section 3.3.1. However,
the inclusion of INIs made slight modifications of the definition necessary. For the sake of clarity and of the
comfort of the reader, I repeat the definition in the following. TEs differ fromTCEs [302] in that no treatment
change is required, encompassing first-line therapies as well. A TE consists of a set of drug compounds used in
a therapy, a baseline RT and PR genotype for that therapy, and a sequence of dated VLmeasurements obtained
during the therapy. TEs in which INIs are used were required to include either an IN genotype or to indicate
whether the corresponding patient had used INIs in therapies predating the TE. Inclusion criteria for TEs are
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as follows. (1) The therapy must have lasted at least four weeks, because shorter therapies might not allow for
sufficient manifestation of the effects of the drugs. (2) The drug compounds in the TEsmust not include drugs
that are not considered in this study. TEs with unboosted PIs (except for NFV) were excluded as well [334]. (3)
Baseline genotypes must have been measured before treatment initiation, choosing the genotype closest to the
treatment-initiation date. For treatment-experienced patients, baseline genotypes were required to have been
measured no earlier than 90 days before treatment start. In accordance with the EuResist Standard Datum
(http://www.euresist.org), no treatment lasting for longer than 14 days may have taken place during this
period. (4) Baseline genotypes must comply with previously described quality criteria (Section 3.3.1) (5) TE
VL measurements must have been performed with an assay whose lower limit of quantification is 50 HIV-
1 RNA copies per milliliter of blood serum or lower, as this has become standard [228, 280]. I require that
TE VL measurements must have taken place regularly after treatment initiation. A minimum VL-monitoring
frequency of once per semester (26 weeks) is desired [228, 280], with a tolerance of at most 10% of the total
number of recorded therapy semesters not having a VL measurement.

Dichotomization of Therapies into Successes and Failures

I dichotomize therapies into successes and failures with two different definitions. The first definition stems
from the Standard Datum of the EIDB (Section 3.3.1). This definition requires one follow-up VL, and option-
ally, one baseline VL. Follow-up VLs must have been obtained between four and twelve weeks after therapy
initiation, preferring VL measurements whose measurement date is closest to eight weeks after therapy start.
With regard to the time at which they were measured, baseline VLs must fulfill the same requirements as base-
line genotypes (see (3) above). TEs with a follow-up VL below 400 HIV-1 RNA copies per milliliter of blood
serum or presenting at least 100-fold reduction in the VL are labeled as successes. TEs for which a baseline VL is
available, the follow-upVL is above 400HIV-1RNA copies permilliliter of blood serum, and theVL reduction
is less than 100 fold are labeled as failures [300, 302]. I call these success and failure labels the EuResist labels.

The second definition I use is solely based onVLs obtained at a specific number ofweeks following treatment
initiation. A week-w VL, w ∈ N, is defined as a VL obtained during the course of a therapy, no earlier than
w − 4 weeks, and no later than w + 4 weeks after its initiation. If several VL measurements are performed
during this period of time, the measurement closest tow is chosen. I label a TE as a weekw success if a week-w
VL measurement is available, and the measured VL is below some threshold t in the number of HIV-1 RNA
copies per milliliter of blood serum. Conversely, if the week-w VL is above t, then I label the TE as a week-w
failure. I call such labels week-w labels with threshold t.

Computation of the Numbers of Aviremic Therapy Semesters

The NAS is a measure that accounts for long-term therapeutic success. This measure is described in detail in
Section 3.3.1. In summary,VLmeasurements performedduring a therapy are averaged for each therapy semester
(comprising 26 weeks). A threshold for the average VL is then used to dichotomize therapy semesters into
viremic or aviremic. Counting of aviremic semesters results in the NAS. Two criteria are used for determining
right-censoring of therapies: the intent-to-treat (ITT) and the on-treatment (OT) censoring criteria. An NAS
is marked as right-censored by the ITT criterion if the therapy has not been terminated at the time when it was
stored in the EIDBor noVLmeasurements are available for some therapy semester. TheOTcensoring criterion
additionallymarks anNAS as right-censored if it was terminatedwhile theVLwas below the selected threshold.
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Definition of Therapy Failure Episode

Therapy-failure episodes have been defined in Section 3.3.1. For the sake of the comfort of the reader, I repeat
the definition in the following. A TFE consists of a set of drug compounds used during a therapy, and a PR
and an RT (and optionally also an IN) genotype obtained during the therapy. The therapy is required to have
lasted at least four weeks, and the genotype is required to have been obtained no earlier than four weeks before
therapy stop.

Training of Drug-Exposure Models

Statistical models for interpreting genotypes with respect to drug exposure and drug resistance were computed
as described in Section 3.3. In summary, these models are trained to discriminate between HIV-1 genotypes
derived from patients who have taken a certain drug and those who have not taken that drug. Before the mod-
els are trained, HIV-1 genotypes from routine clinical practice are complemented with genotypes from GPPs,
treating genotypes with RFs below a certain threshold as not drug exposed, and those with RFs above another
threshold as drug exposed. Interpretation of a genotype with one of these models results in a number called
DES which relates to a specific drug. In order to normalize DES, a sigmoidal function was fitted to each one of
the models, as described before [309]. The sigmoidal function aims at estimating the probability that a certain
genotype belongs to the class of genotypes exposed to a certain drug, given the DES for that genotype and drug
(short: probability of exposure to a drug; POE). One drug-exposure model delivers the probability that a cer-
tain genotype was obtained from a treatment naïve patient (short: probability of naïvety; PON). As described
in the following, POEs and the PON were used as input features in models for the prediction of therapeutic
success.

Preparation of Development and Test Set

The TE definition was applied to EIDB andHIVdbTCE. A random selection of approximately 10% of the TEs
from EIDB was set aside as a test set, which I call EuResistT. The random selection was performed such, that
the inclusion of a TE from a patient in EuResistT triggered the inclusion of all available TEs from that patient.
TEs containing the drugs ddC, RPV, APV, EVG, andDTGwere not eligible for inclusion inEuResistT, as ddC
and APV are not produced anymore, and as RPV, EVG, and DTG are insufficiently represented in the EIDB.
Thus, I train onTEs including these drugs in order to exploit the information on co-administered drugs that the
TEs contain, but I do not test on them or provide predictions for them (except for an example for discussion).
A further, independent test set comprised TEs in the HIVdb TCE repository not arising from EIDB. I call this
set of TEs HIVdbTCE. The development set EuResistD was created from all TEs from EIDB which are not
included in EuResistT. A dataset containing therapy failures, TF, was created by applying the TFE definition
to EIDB while excluding patients with TE in EuResistT.

Drug-exposure models were trained as described in Section 3.3. However, in order to avoid overtraining
[256], cross-validation partitions were constructed such, that the HIV-1 genotypes contained in the different
folds are patient-wise disjoint, i.e. that all genotypes derived from a given patient are contained in the same
fold. Furthermore, genotypes from patients with TEs in EuResistT were excluded from the development sets
of the drug-exposure models. POEs and the PON for each RTI and PI were calculated for the genotypes in
EuResistD and TF. POEs for INIs were calculated for TEs including an IN genotype. Since EuResistD, TF,
and the datasets on which drug-exposure models were trained are not patient-wise disjoint, POE calculation
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was performed with cross-validation models, such that the prediction model was not trained on any sequence
derived from the patient associated to a given TE or TFE. Since some TEs included INIs without including
an IN baseline genotype, INI-use history was used as a surrogate for POEs to INIs. However, INI-use history
was predicted for TEs including an IN baseline genotype, assuming drug exposure if the POE for the drug in
question was greater than 50%. For training, therapy drugs and INI history were encoded in binary.

Training of Models for Prediction of Dichotomous Labels

TEs were dichotomized into successes and failures, using EuResist labels, and week-w labels with threshold t,
for w ∈ {8, 24, 48} and for t ∈ {50, 100, 200, 400, 800, 1600}. TFEs in TE were labeled as failures and
merged with EuResistD. Subsequently, SVCs (Section 2.2.2) were trained to predict success or failure labels
with probabilistic outputs [309]. The input features of these models consist of the binary encoding for the
therapy drugs and for INI use history, as well as the POEs and the PON. For each of the used success-failure
definitions, EuResistD ∪ TF was randomly partitioned into ten folds, such that each fold was patient-wise
disjoint. The partition was used to calculate the cross-validation predictions for therapy-success labels. In order
to incorporate interactions of the input features, SVMs with a polynomial kernel (Section 2.2.3) were used.
All combinations of the following two SVM parameters were tested: the degree of the polynomial kernel p ∈
{1, 2, 3} and the complexity parameter γ ∈ {2−14, 2−13, . . . , 2−2} (Sections 2.2.3 and 2.2.2).

Training of Models for Prediction of the NAS

For quantifying cumulative therapeutic success, the NAS for each TE in EuResistD was calculated, using the
ITT censoring criterion, and the following average VL thresholds: 50, 100, 200, 400, 800, and 1,600 HIV-
1 RNA copies per milliliter of blood serum. TFEs in TE were assigned zero uncensored aviremic semesters,
and merged with EuResistD. SVMs for the regression of right-censored data (Section 2.2.5) were trained to
predict the NAS. The same input features encoding the therapy drugs, the INI use history, the POEs and the
PONswere used as in themodels for prediction of dichotomous labels (above). EuResistD∪TFwas randomly
partitioned into ten folds, such that each fold was patient-wise disjoint. The partition was used to calculate the
cross-validationpredictions for theNAS.As in themodels for predicting dichotomous labels, SVMswith a poly-
nomial kernel (Section 2.2.3) were used. All combinations of the following three SVM parameters were tested:
the degree of the polynomial kernel p ∈ {1, 2, 3}, the complexity parameter γ ∈ {2−14, 2−13, . . . , 2−2}, and
the insensitivity parameter ϵ ∈ {2−10, 2−9, . . . , 2−2} (Sections 2.2.3 and 2.2.5). Furthermore, the regression
of logarithmized NAS was tested as well.

Model Selection

For model selection, Harrell’s concordance index (C ; Section 2.2.6) [267, 268, 368] was applied for assessing
cross-validated predictions, i.e. even models trained on dichotomous success-failure labels were assessed using
the NAS. This yielded cross-validated performances for each parameter combination and therapy success def-
inition used for training. Among all trained models, one was selected for each therapy success definition. In
order to avoid overtraining (Section 2.1.1), models were selected as follows. For each therapy-success defini-
tion, p-values comparing the performance of the best performing parameter combination with that of all other
parameter combinations were computed with a one-sided Wilcoxon’s signed-rank test [308]. After p-value
correction with the Benjamini-Hochberg method [332], models performing significantly worse than the best
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performing model were discarded. The significance threshold used was 0.05. Among the remaining models,
the model with the minimum p and minimum γ (and maximum ϵ, if applicable) parameters was selected.

Training of Final Models

With the procedure described above, parameters for training each final model were selected. Final models were
trained with the entire development set. In light of the obtained cross-validation performances, and since a VL
threshold of of 50 copies per milliliter of blood serum has become standard (Section 4.1) [228, 280], I only
trained final models for this VL threshold, in addition to the models trained with the EuResist labels, which
are created using a fixed VL threshold (Section 3.3.1). For final model training, POEs and PON were not cal-
culated on cross-validation models, but on drug-exposure models trained on sequences from patients not in
EuResistT. Furthermore, the SVM was not trained with a polynomial but with a linear kernel in order to af-
ford interpretability. The polynomial kernel was replaced by explicitly calculating all interactions of the input
features, such that the inner products in the enlarged feature space are equivalent to the output values of the
polynomial kernel in the original feature space. In the following, I include an abstract example of how the
feature interactions implicitly considered by a polynomial kernel can be explicitly calculated [256]. Let our
example feature be two-dimensional with inputs x1 and x2. Consider the polynomial kernel of degree two,
k(x, x′) = (⟨x, x′, ⟩+ 1)2. Then,

k(x, x′) = (⟨x, x′⟩+ 1)2

= (1 + x1x
′
1 + x2x

′
2)

2
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′
1 + 2x2x
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′
1)

2 + (x2x
′
2)

2 + 2x1x
′
1x2x

′
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(4.1)

In order to be able to compute the inner product (4.1) with the standard scalar product ⟨· , · ⟩ as the outermost
function, a transformation of the input feature space is necessary. This transformation is given by
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2x1,
√
2x2, x

2
1, x

2
2,
√
2x1x2)

T, (4.2)

since ⟨h(x1, x2), h(x′1, x′2)⟩ = (⟨x, x′⟩+1)2. By proceeding in the fashion exemplified above, I used a suitable
transformation of the input features in order to be able to use linear SVMs for the final models, while maintain-
ing the higher performance ofmodels with a polynomial kernel. In this way, I could extract interpretable, linear
weights from the models.

Assessment and Comparison of Performance

Performance of the finalmodels was assessed onEuResistT andHIVdbTCE. For performance comparison, the
baseline sequences of the TEs in these datasets were interpreted with the HIVdb drug-resistance interpretation
system version 6.0.6. [298]. The interpretations were used for calculating a GSS for each TE. Specifically, SIR
predictions for each drug compound in theTEswere converted to a number via S→ 1, I→ 0.5, andR→ 0. The
drug RAL was always assigned the score one, as no RAL-including TEs had an IN baseline genotype available.
The addition of the numeric scores for all compounds in a TE yielded the GSS for that TE.

For calculating performance figures for the final models and GSS, the NAS, EuResist labels, and week-w
labels with threshold 50 forw ∈ {8, 24, 48} were calculated for the TEs in EuResistT andHIVdbTCE. Cen-
soring labels for NAS were calculated with both the ITT and the OT criteria. Performance in predicting the
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NAS was assessed with Harrell’s concordance index (C ; Section 2.2.6) [267, 268, 368]. Furthermore, the AUC
[307] was used for calculating the performance of predicting EuResist labels and week-w labels. These figures
were calculated on all TEs, as well as on the subsets containing either TEs with at least onemajor drug-resistance
mutation [296] in their baseline genotypes or containing none, respectively. Furthermore, performance fig-
ures were also computed on TEs from treatment-naïve and treatment-experienced patients (including those for
whom the number of previous therapy lines is uncertain), separately.

Ranking of Drug Combinations

The behavior of the final model for predicting the NAS when ranking drug combinations was explored, as
follows. A list of 12 drug combinations was constructed with threeNRTI backbonॽ, FTC+TDF, 3TC+ABC,
and 3TC+AZT, which were complemented with each of the drug compounds EFV, DRV/r, IDV/r, and RAL
*. Twelve NASs were predicted for each TE in EuResistT by replacing the drug combination used in the TE
with each one of the 12 drug combinations in the list. Ranks for drug combinations are calculated by sorting
the resulting predicted numbers of aviremic semesters (pNAS). The drug combination with the highest NAS
has the highest rank, by this definition. For analyzing the results of drug-combination ranking for first-line
therapies, TDR mutations [279] in the baseline genotypes were quantified by drug class.

Assessment of Statistical Significance

Differences in the distributions of continuous variables of development and test sets were assessed statistically
using a two-sided Wilcoxon rank-sum test [308]. For quantifying statistical association between two discrete
variables, a two-sided Fisher’s exact test [379] was used. Where necessary, p-values were corrected for multiple
testing with the Benjamini-Hochberg method [332].

4.2.2 Results

In the following, I present the results of training and testing different models for predicting therapeutic success.
The models differ in the definitions that they use for defining therapeutic success. Since some therapy-success
definitions require that VL measurements be obtained a certain number of weeks after treatment initiation,
some therapy-sucess definitions may constrain the number of samples that can be used to train them. For this
reason, models trained with EuResist and week-w labels only use a subset of the TEs in EuResistD.

Summary of the Composition of the Datasets

In the following, I report on analyses describing the compositions ofEuResistD,TF,EuResistT, andHIVdbTCE.
The distribution of the most frequent subtypes can be seen in Table 4.1 [304]. The fraction of non-B subtypes
in the datasets is 29% (EuResistD), 20% (TF), 31% (EuResistT), and 1% (HIVdbTCE). Histograms for the
most frequent therapies are plotted in Figure 4.1, while counts for the most frequent compounds in the ther-
apies can be found in Table 4.2. The most frequent drug combinations in the datasets are the following:
TDF+FTC+EFV (EuResistD), 3TC+AZT+NVP (TF), TDF+FTC+EFV (EuResistT), and d4T+ddI+EFV
(HIVdbTCE). As can be seen, therapies including fewer than three drug compounds were also included in the
datasets. A summary of other characteristics of the datasets, including therapy baseline parameters, as well as

*Therapy combinations in ranking were selected for purposes of the exposition. Lists of hunderts of therapies are
possible.
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Table 4.1: Subtype Distribuধon. Subtypes in EuResistD, TF, EuResistT and HIVdbTCE were determined with the COMET
subtyping tool. The numbers of sequences with the ten most frequent subtypes are tabulated below.

Subtype EuResistD TF EuResistT HIVdbTCE
B 8,043 1,579 834 577
C 712 76 80 0
02_AG 573 66 58 0
01_AE 512 34 52 0
A1 470 49 44 1
G 174 37 16 0
F1 180 28 32 0
D 121 23 23 1
06_cpx 61 8 2 0
42_BF 32 3 5 0
Other 474 76 66 1
Total 11,352 1,979 1,212 580

Table 4.2: Most FrequentDrug Compounds. Themost frequent drug compounds inEuResistD,TF,EuResistT andHIVdbTCE
are tabulated below.

EuResistD TF EuResistT HIVdbTCE
3TC 5,005 1,137 539 255
ABC 2,110 410 210 192
AZT 2,457 605 297 94
d4T 1,005 477 118 278
ddC 18 18 0 0
ddI 1,279 458 173 213
FTC 4,534 290 447 33
TDF 6,235 690 623 172
EFV 2,718 424 279 141
ETR 157 14 25 2
NVP 693 327 79 77
RPV 31 1 0 0
APV 123 34 0 90
ATV 1,468 135 151 37
DRV 1,083 47 117 5
FPV 417 54 43 12
IDV 157 65 19 45
LPV 3,628 354 402 124
NFV 401 203 55 51
SQV 261 79 26 69
TPV 104 26 11 2
DTG 16 0 0 0
EVG 27 0 0 0
RAL 510 36 62 7
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Figure 4.1: Therapy Distribuধon. Histograms for the 20 most frequent therapies in EuResistD (a), TF (b), EuResistT (c), and
HIVdbTCE (d) are shown above.



outcomes, can be found in Table 4.3. In the following, I state the most striking differences as quantified in
Table 4.3. The distributions of the numbers of recorded past treatment lines differ significantly among all four
datasets (corrected p < 0.02), as do the proportions of genotypes presenting major drug resistance mutations
(corrected p < 0.02). Among EuResistD, EuResistT, andHIVdbTCE, the distributions of therapy durations
differ significantly (corrected p < 0.01). There is a large difference in therapy success rates between therapies
extracted from EIDB and those inHIVdbTCE. For week 48, the difference between therapy-success-rate distri-
butions in EuResistD and EuResistT is statistically significant (corrected p < 10−3), however, this difference
is much stronger when these datasets are compared to HIVdbTCE (corrected p < 10−32). As expected, the
number of available therapy VLs for weeks 8, 24, and 48 decrease with increasing week numbers. Furthermore,
therapy-success rates for the aforementionedmeasurementweeks rise with increasingweek numbers. Therapies
inHIVdbTCE are of amuch shorter duration than those inEuResistD andEuResistT (Table 4.3), and present
significantly lower NAS (Figure 4.2; µEuResistD = 2.52; σEuResistD = 3.09; µEuResistT = 2.15; σEuResistT =

2.89; µHIVdbTCE = 0.12; σHIVdbTCE = 0.42; corrected p < 10−15).

Results of the Model-Selection Procedure

Cross-validation performances of the selected models for different VL thresholds can be seen in Table 4.4. The
best cross-validation performance was attained by the model trained with week 48 labels and a VL threshold
of 800 HIV-1 RNA copies per milliliter of blood serum (C̄ = 0.8930; σ = 0.0200). For VL thresholds
between 50 and 400HIV-1RNAcopies permilliliters of blood serum, performance increases as these thresholds
are increased. Past 400 HIV-1 RNA copies per milliliters of blood serum, performance continues to increase
for week 8 and week 24 labels. For week-48 labels and NAS, performance decreases as VL thresholds exceed
800 and 400 HIV-1 RNA copies per milliliters of blood serum, respectively. For week-w labels, performance
increases asw increases. However, performances cannot be directly compared between different therapy-success
definitions, as these definitions induce cross-validation sets of different compositions. The reason for differential
cross-validation set composition is the differential availability of week-w VLs in the TEs, for different values of
w (Table 4.3). Asw increases, the number of training and test instances decreases.

Results of the Assessment of Performance

For reasons explained in Section 4.2.3, I decided to only assess the performance of final models that use a VL
threshold of 50HIV-1RNA copies permilliliter of blood serum, in addition to assessing the performance of the
finalmodel trainedwith EuResist labels. p-values for differences in performance are not givenbecause of the lack
of an appropriate statistical test. Performance of therapy-success prediction on the EuResistT andHIVdbTCE
test sets is shown in Figure 4.3. Since bothAUC [380] andHarrell’s concordance index [267] express predictive
performance in terms of a probability, in the following, I average performances across both datasets and all
therapy-success definitions. pNAS could attain the best average performance (µ = 0.71; σ = 0.07), followed
by GSS (µ = 0.62; σ = 0.05). The average performance of predicted EuResist (µ = 0.61; σ = 0.09), week
48 (µ = 0.61; σ = 0.0.08), week 24 (µ = 0.60; σ = 0.09), and week 8 (µ = 0.58; σ = 0.07) labels
was lower. When therapies with drug-resistance mutations at baseline are evaluated separately (Figure 4.4(a)),
pNAS attains the best average performance (µ = 0.72; σ = 0.07), followed by GSS (µ = 0.63; σ = 0.05)
and predicted EuResist labels (µ = 0.63; σ = 0.10). The average performance of predicted week 48 (µ =

0.60; σ = 0.07), week 24 (µ = 0.60; σ = 0.08), and week 8 (µ = 0.58; σ = 0.08) labels is lower. On
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Table 4.3: Therapy Characterisধcs. For therapies in EuResistD, TF, EuResistT, and HIVdbTCE, the following characterisঞcs
are summarized below: baseline viral load, baseline CD4+-cell count, number of recorded past treatment lines, number of first-line
therapies, therapy drug-class composiঞon, genotypic resistance by drug class, therapy duraঞon, and therapy success figures at
weeks 8, 24, and 48. Virologic suppression was defined as a viral load below 50 HIV-1 RNA copies per milliliter of blood serum.
IN: integrase; INI: integrase inhibitor; IQR: interquarঞle range; NA: Not Available; NNRTI: non-nucleoside reverse-transcriptase
inhibitor; NRTI: nucleoঞde/nucleoside reverse-transcriptase inhibitor; PI: protease inhibitor; VL: viral load.

EuResistD TF EuResistT HIVdbTCE

n 11,352 1,979 1,212 580

Log Baseline VL

Available 10,413 (92%) NA 1,105 (91%) 580 (100%)
Mean 4.4 NA 4.4 4.4
Median 4.6 NA 4.6 4.4
IQR 5.2 - 3.7 NA 5.2 - 3.8 4.9 - 3.9

Baseline CD4 Count

Available 9,123 (80%) NA 989 (82%) 580 (100%)
Mean 287.6 NA 277.8 268.9
Median 263 NA 257 229.5
IQR 410 - 100 NA 390 - 105 370.5 - 111.8

Number
of Recorded Past
Treatment Lines

Mean 2.6 4.9 3.4 4.7
Median 0 4 1 4
IQR 4 - 0 7 - 1 5 - 0 6 - 2

Compound
Frequency

NRTI 11,070 (96%) 1,905 (96%) 1,170 (97%) 571 (98%)
NNRTI 3,590 (31%) 761 (38%) 383 (32%) 220 (38%)
PI 7,471 (66%) 941 (48%) 805 (66%) 435 (75%)
INI 551 (5%) 34 (2%) 62 (5%) 7 (1%)

INI-including Therapies with
Baseline IN Genotype 111 (20%) 18 (53%) 12 (15%) 0 (0%)

First-Line Therapies 4,828 (43%) NA 426 (35%) 0 (0%)

Genotypic Resistance

NRTI 3,767 (33%) 1,482 (75%) 456 (38%) 507 (87%)
NNRTI 3,483 (30%) 1,114 (56%) 399 (33%) 323 (56%)
PI 1,804 (16%) 697 (35%) 232 (19%) 378 (65%)
INI 4 (<1%) 10 ( 1%) 1 (< 1%) NA
No Resistance 6,203 (55%) 310 (16%) 594 (49%) 18 (3%)

Therapy Duration
(Weeks)

Mean 98.1 NA 91.1 40.2
Median 67 NA 60 52
IQR 138 - 31 NA 129 - 26 52 - 28

Week 8 VLs Available 9,142 (81%) NA 964 (80%) 425 (73%)
Suppressed 3,024 (33%) NA 303 (31%) 21 (5%)

Week 24 VLs Available 5,862 (52%) NA 586 (48%) 300 (52%)
Suppressed 4,014 (68%) NA 362 (62%) 25 (8%)

Week 48 VLs Available 2,392 (21%) NA 245 (20%) 252 (43%)
Suppressed 1,770 (74%) NA 156 (64%) 32 (13%)
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Figure 4.2: Numbers of Aviremic Semesters. Histograms of the numbers of aviremic semesters with a viral load threshold of 50
HIV-1 RNA copies per milliliter of blood serum are displayed above. For EuResistD (a), EuResistT (b), and HIVdbTCE (c),
the intenঞon-to-treat censoring criterion marked 4,516 / 11,352, 422 / 1,235, and 85 / 581 numbers of aviremic semesters as
censored, respecঞvely. In contrast, the on-treatment censoring criterion marked 7,951 / 11,352, 767 / 1,235, and 121 / 581
numbers of aviremic semesters as censored, respecঞvely. All therapy-failure episodes in TF were assigned zero uncensored
aviremic semesters.
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Figure 4.3: Performance of Therapy-Success Predicধon (1). Six different therapy-success definiঞons were applied to EuResistT
and to HIVdbTCE: the number of aviremic semesters (NAS) with intent-to-treat (ITT) or on-treatment (OT) censoring criterion,
EuResist labels, week 8 labels, week 24 labels, and week 48 labels. Six different models were used for predicঞng therapeuঞc
success according to each of these definiঞons: Support Vector Machines (SVMs) trained for predicঞng the NAS, EuResist labels,
week 8 labels, week 24 labels, or week 48 labels, as well as a geneঞc suscepঞbility score (GSS) based on the HIVdb rule set. Above,
performance on all therapies in the datasets is shown for each predicঞon model and therapy-success definiঞon. Performance in
predicঞng dichotomous therapy-success labels are stated in terms of the area under the receiver-operaঞng characterisঞc (ROC)
curve, while performance in predicঞng the NAS is stated in terms of Harrell’s concordance index.
Solid bars: EuResistT Shaded bars: HIVdbTCE
■ GSS ■ SVM Predicঞng EuResist Labels ■ SVM Predicঞng Week 8 Labels
■ SVM Predicঞng Week 24 Labels ■ SVM Predicঞng Week 48 Labels ■ SVM Predicঞng the NAS
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(a) Therapies with Drug Resistance at Baseline
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(b) Therapies with No Drug Resistance at Baseline

Figure 4.4: Performance of Therapy-Success Predicধon (2). Six different therapy-success definiঞons were applied to EuResistT
and to HIVdbTCE: the number of aviremic semesters (NAS) with intent-to-treat (ITT) or on-treatment (OT) censoring criterion,
EuResist labels, week 8 labels, week 24 labels, and week 48 labels. Six different models were used for predicঞng therapeuঞc
success according to each of these definiঞons: Support Vector Machines (SVMs) trained for predicঞng the NAS, EuResist labels,
week 8 labels, week 24 labels, or week 48 labels, as well as a geneঞc suscepঞbility score (GSS) based on the HIVdb rule set. Above,
performance on therapies with (a) or without (b) resistance at baseline is shown for each predicঞon model and therapy-success
definiঞon. Performance in predicঞng dichotomous therapy-success labels are stated in terms of the area under the receiver-
operaঞng characterisঞc curve (ROC), while performance in predicঞng the NAS is stated in terms of Harrell’s concordance index.
Of note: HIVdbTCE only contains 18 TEs without drug-resistance mutaঞons at baseline.
Solid bars: EuResistT Shaded bars: HIVdbTCE
■ GSS ■ SVM Predicঞng EuResist Labels ■ SVM Predicঞng Week 8 Labels
■ SVM Predicঞng Week 24 Labels ■ SVM Predicঞng Week 48 Labels ■ SVM Predicঞng the NAS



therapies with no drug-resistance mutations at baseline (Figure 4.4(a)), pNAS (µ = 0.63; σ = 0.11) and
EuResist labels (µ = 0.63; σ = 0.16) could attain the best average performance. The average performance
predicted week 48 (µ = 0.60; σ = 0.09), week 8 (µ = 0.54; σ = 0.09), and week 24 (µ = 0.54; σ =

0.16) labels, as well as GSS (µ = 0.43; σ = 0.10) could attain was lower. Average performance on first-
line therapies (Figure 4.5(a)) was highest with pNAS (µ = 0.61; σ = 0.06), followed by week 48 labels
(µ = 0.60; σ = 0.07). The average performance of predicted week 24 (µ = 0.57; σ = 0.05), EuResist
(µ = 0.56; σ = 0.03), and week 8 (µ = 0.56; σ = 0.01) labels, as well as that of GSS (µ = 0.51; σ = 0.02)
is lower. On therapies of therapy-experienced patients (Figure 4.5(b)), pNAS could attain the best average
performance (µ = 0.71; σ = 0.06), followed by GSS (µ = 0.63; σ = 0.04). The average performance of
predicted EuResist (µ = 0.62; σ = 0.09), week 24 (µ = 0.60; σ = 0.07), week 48 (µ = 0.60; σ = 0.06),
and week 8 (µ = 0.58; σ = 0.07) labels could attain was lower. Of note: all patients in HIVdbTCE are
treatment-experienced. Note that these results are discussed in Section 4.2.3.

Results of the Ranking of Drug Combinations

A list of 12 drug combinations was constructedwith the drug compounds EFV,DRV/r, IDV/r, andRAL. Each
of these compounds was appended to each of the NRTI backbones FTC+TDF, 3TC+ABC, and 3TC+AZT.
Twelve NAS predictions were made for each TE in EuResistT, by replacing the drug combinations used in
the TEs with each of the combinations in the list. The pNAS for all drug combinations ranged from -0.3 to
8.7 (Figure 4.6(a)). Among the top-ranked drug combinations, pNAS ranged from 0.5 to 8.8 (Figure 4.6(b)).
The drug combination FTC+TDF+EFV was most frequently in the top rank, while drug combinations with
3TC+AZT as a backbone and those including IDV/r were never in the top rank (Figure 4.6(c)). The drug
combination FTC+TDF+DRV/r was most frequently in the top rank of TEs with drug-resistance mutations
in their baseline genotypes (Figure 4.7(a)), while FTC+TDF+EFV was the top-ranking drug combination for
TEs without drug-resistance mutations in their baseline genotypes (Figure 4.7(a)). The association between
DRV/r-containing drug-combinations being ranked at the top of the list and the presence of drug-resistance
mutations at baseline is significant (p < 10−15). In contrast, the frequency with which other drug combina-
tions were ranked at the top of the list for TEs without drug-resistance mutations in their baseline genotypes
was very low. FTC+TDF+EFV was most frequently in the top rank of both first-line therapies (Figure 4.7(c))
and therapies on treatment-experienced patients (Figure 4.7(d)). However, while drug combinations other
than FTC+TDF+EFV were ranked at the top of the list for 450 (57%) TEs of treatment-experienced patients,
FTC+TDF+EFV was ranked at the top for 395 (93%) of first-line therapies. Among the baseline genotypes
of first-line therapies in which FTC+TDF+EFV was ranked at the top of the list, 22 (6%) contained NRTI, 1
(<1%) contained NNRTI, and 7 (2%) contained PI TDR mutations. DRV/r-containing drug combinations
were ranked at the top of the list in 24 (6%) TEs. Among the baseline genotypes of these TEs, 11 (46%) con-
tained NRTI, 11 (46%) contained NNRTI, and 2 (8%) contained PI TDR mutations. For first line therapies,
the association between a DRV/r-containing drug combination being ranked at the top of the list and TDR
mutations being present in the baseline genotypes is significant (p < 10−13).

Results of the Analysis of Misclassifications

An excerpt of TEs from EuResistT with the largest or smallest pNAS contradicting their week 8, week 24, and
week 48 labels is shown in Tables 4.5, 4.6, and 4.7, respectively. Contradiction occurs when a large NAS is
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Figure 4.5: Performance of Therapy-Success Predicধon (3). Six different therapy-success definiঞons were applied to EuResistT
and to HIVdbTCE: the number of aviremic semesters (NAS) with intent-to-treat (ITT) or on-treatment (OT) censoring criterion,
EuResist labels, week 8 labels, week 24 labels, and week 48 labels. Six different models were used for predicঞng therapeuঞc
success according to each of these definiঞons: Support Vector Machines (SVMs) trained for predicঞng the NAS, EuResist labels,
week 8 labels, week 24 labels, or week 48 labels, as well as a geneঞc suscepঞbility score (GSS) based on the HIVdb rule set. Above,
performance on first-line therapies with (a) or therapies on treatment-experience paঞents (b) resistance at baseline is shown for
each predicঞon model and therapy-success definiঞon. Performance in predicঞng dichotomous therapy-success labels are stated
in terms of the area under the receiver-operaঞng characterisঞc (ROC) curve, while performance in predicঞng the NAS is stated in
terms of Harrell’s concordance index. Note thatHIVdbTCE does not contain first-line therapies.
Solid bars: EuResistT Shaded bars: HIVdbTCE
■ GSS ■ SVM Predicঞng EuResist Labels ■ SVM Predicঞng Week 8 Labels
■ SVM Predicঞng Week 24 Labels ■ SVM Predicঞng Week 48 Labels ■ SVM Predicঞng the NAS
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Figure 4.6: Ranking of Drug Combinaধons (1). A list of 12 drug combinaঞons was constructed using three NRTI backbones,
FTC+TDF, 3TC+ABC, and 3TC+AZT in addiঞon to the drug compounds EFV, DRV/r, IDV/r, and RAL. Each of the drug combi-
naঞons in the list was used for predicঞng the NAS for each TE in EuResistT. Histograms of the resulঞng pNAS for all drug
combinaঞons (a) and drug combinaঞons in the top rank (b) are shown above. The distribuঞon of drug combinaঞons in the top
ranks is shown as well (c). Drug combinaঞons with AZT+3TC as the NRTI backbone and drug combinaঞons including IDV/r were
never at the top rank and are therefore not plo�ed in (c).
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Figure 4.7: Ranking of Drug Combinaধons (2). A list of 12 drug combinaঞons was constructed using three NRTI backbones,
FTC+TDF, 3TC+ABC, and 3TC+AZT, in addiঞon to the drug compounds EFV, DRV/r, IDV/r, and RAL. Each of the drug combi-
naঞons in the list was used for predicঞng the NAS for each TE in EuResistT. The distribuঞons of drug combinaঞons in the top
ranks for treatments with (a) and without (b) major drug-resistance mutaঞons at baseline, first-line therapies (c), and therapies
on treatment-experienced paঞents (d) are shown above. Drug combinaঞons that were never at the top ranks of a specific sub-
set of therapies are not shown in the corresponding plots. Drug combinaঞons with AZT+3TC as the NRTI backbone and drug
combinaঞons including IDV/r were never at a top rank and are therefore not plo�ed above.
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predicted for a failure-labeled TE or a small NAS is predicted for a success-labeled TE. Thus, the three largest
and three smallest pNAS were selected for each week and contradicting label instance. In the following, TE
numbers are stated as displayed in the aforementioned tables. TEs with numbers 1, 2, 3, 7, 8, 11, 12, and 13 are
all labeled as failures and do not present resistance mutations relevant to their drug compounds. In all of them,
suppression of theVL is attained at some other point in time. TEswith numbers 4 and 9 are labeled as successes.
Viral suppression is attained in these TEs in spite of the presence of several drug-resistance mutations that are
relevant to their drug compounds. TEs with numbers 5, 6, 10 and 14 are labeled as successes as well, but do not
present resistance mutations that are relevant to their drug compounds. Nonetheless, they attain at most two
ITT uncensored aviremic semesters. Note that these results are discussed in Section 4.2.3.

Description of Linear Model Weights

Among the 1,128 features (including feature interactions) on which the model for predicting the NAS was
trained, 1,014 (90%) had non-zero weights (Figure 4.8(a)). Predictions are calculated by multiplying the value
of the feature (binary drug indicator, binary past INI-use indicator, or POE) by the value of the weight, and
subsequently adding the resulting values. Features can be classified as either drug-dependent or solely sequence-
dependent. Solely sequence-dependent features are those which do not involve drugs and whose value does
not change given a baseline genotype. In contrast, drug-dependent features change their value according to the
therapy for which the prediction is required. Figure 4.8(b) displays a graphical representation of a subset of
drug-dependent weights.

4.2.3 Discussion

In this chapter, I present a method for deriving a genotypic interpretation system that can predict which cART
can be expected to bemore durable for suppressing the VL before it needs to be replaced by another cART. For
this purpose, a novel measure for retrospectively assessing a cART was employed, the NAS.

Quantifying Virologic Success with NAS

In clinical settings, virologic success of cART is determined with VL measurements (Section 4.1). Among the
parameters used for making clinical decisions, the VL is one of the most important ones. After treatment initi-
ation, each VL measurement evaluates the performance of cART. The measurement of a VL above 50 HIV-1
RNA copies per milliliter of blood serummay trigger the decision of changing the treatment, depending on the
time since treatment initiation and other patient-related factors. Conversely, VLs below 50HIV-1 RNA copies
per milliliter of blood serum speak for the decision of continuation of treatment. Indeed, the gold standard for
determining therapeutic success of cART is the dichotomization of VLs measured at a certain week after ini-
tiation of treatment [228, 280]. Probably, this has motivated researchers designing therapy-success prediction
systems to use dichotomous, cross-sectional VLmeasurements in definitions of treatment success for the train-
ing of models. While I believe that the testing of models for predicting therapeutic success must be aligned with
established definitions of therapeutic success, other definitions of treatment success may be more appropriate
for training of the models. Specifically, the testing of models must allow for comparability with previously per-
formed analyses from the literature. The training ofmodels, however, can be carried out in such away that their
performance is increased, including the use of more appropriate therapy-sucess definitions. In the following, I
elaborate on this.
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Figure 4.8: Linear Model Weights. Linear weights were extracted from the final linear Support Vector Machine trained on the
number of aviremic semesters. Among a total of 1,128 feature weights, 1,1014 (90%) were non-zero. In Figure (a), a histogram of
non-zero feature weights is depicted. In Figure (b), an excerpt of the model weights that depend on the therapy drugs are graphi-
cally represented. The size of the boxes in Figure (b) is proporঞonal to the absolute value of the weights. The 20 negaঞve weights
with the largest absolute value are represented by red boxes, while the 20 largest posiঞve weights are represented by green boxes.
Features can be either drugs, e.g. drug.EFV; probabiliঞes of exposure, e.g. POE.EFV; the probability that the sequence is naïve,
PON; or drug-use history, e.g. past.RAL. Interacঞons between features are denoted by a cross, e.g. drug.EFV x POE.EFV. 3TC:
lamivudine; 3FTC: lamivudine or emtricitabine; AFPV: amprenavir or fosamprenavir; APV: amprenavir; ATV: Atazanavir; AZT: Zi-
dovudine; d4T: stavudine; ddC: zalcitabine; DRV: darunavir; EFV: efavirenz; FPV: fosamprenavir; FTC: emtricitabine; LPV: lopinavir;
NVP: nevirapine; RAL: raltegravir; TDF: tenofovir; TPV: ঞpranavir.
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In this chapter, I use the NAS as a success definition for training a model for predicting the success of cART.
The arguments in favor of using the NAS in the context of data from routine clinical practice are the following.
(1) Since the NAS averages VLs by treatment semester, it corrects for differential intervals of VL monitoring.
Dependingon the country of treatment, treatingphysician, patient, and treatment stage, VLsmaybemonitored
in intervals from one to six months [228, 280]. (2) The NAS is robust to transient increases of the VL that
are not due to virologic failure, as well as to slow decrease of the VL after treatment initiation (Section 4.1.2).
Treatment guidelines recommend a change of treatment if the VL rebounds to or remains above 50 to 500
HIV-1 RNA copies per milliliter of blood serum 24 weeks after treatment initiation [228, 280]. Among 4,000
TEs in EuResistD with a NAS greater than two, 990 (25%) TEs present two consecutive VL measurements
below 50 HIV-1 RNA copies per milliliter of blood serum after which the VL rebounds above 50 HIV-1 RNA
copies per milliliter of blood serum with subsequent re-suppression of the VL below 50 HIV-1 RNA copies
per milliliter of blood serum. 483 (49%) of these transient rebounds consist of VLs greater than 200 HIV-1
RNA copies per milliliter of blood serum, and 171 (17%) consist of VLs greater than 1,000 HIV-1 RNA copies
per milliliter of blood serum. Furthermore, in 1,064 (27%) TEs with a NAS greater than two, the first of two
consecutive VL measurements below 50 HIV-1 RNA copies per milliliter of blood serum occurred later than
24 weeks after treatment initiation. (3) The NAS indirectly considers the potency, side-effect profile, and the
adherence-fostering characteristics of a cART. Specifically, less potent therapies take longer to suppress the VL ,
resulting in a smallerNAS.Under the assumption that physicians undertake everythingwithin their possibilities
in order to offer their patients the best possible therapy, a cARTwith an unfavorable side-effect profile will tend
to be replaced by a more promising alternative, resulting in a smaller NAS. Furthermore, if patients tend to
be more adherent to some therapies than to others, adherence-fostering therapies should incur in less virologic
failure due to resistance development and result in less transient VL rebounds, which results in a greater NAS.

Comparison of NAS to Other Therapy-Success Definitions

Asmentioned above, a significant proportion of theTEs inEuResistD, whichwere generated in clinical routine,
document therapies that have elicited a considerable degree of viral suppression (at least two aviremic semesters)
although the treating physician did not follow treatment guidelines. In the context of training models for pre-
dicting the success of antiretroviral therapies, theuse of fewVLmeasurements for determining treatment success
is not robust to transient viremia and cannot simultaneously consider treatment potency, side-effect profile, and
propensity to success. Furthermore, treatment-success definitions based on VLs measured at a certain number
of weeks after treatment initiation constrain the number of available training samples. These issues are solved
by using the NAS. Improvements in model training have been achieved with a model that considers all VLs
measured during the first year of therapy [370]. The parameters of this model include the number of the week
after treatment initiation at which the VL was measured. This approach presents the following disadvantages.
First, only the initial year of therapy is considered, which makes the model blind for therapies that work (or do
not work) for a longer time. Second, prediction of therapeutic success with this model requires the selection of
a target-week number. Both of these disadvantages can be avoided by using the NAS. A further advancement
in model training was attained by regressing the area under the VL curve [381]. While cumulative VL seems
to have a prognostic value [382, 383], the area under the VL curve fails to correct for differential intervals of
VL monitoring and can potentially penalize long-lasting therapies. Specifically, the more frequently a therapy
is monitored, the higher the chance that a transient increase in the VL is observed. Furthermore, the longer a
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therapy lasts, the longer it has the chance to blip. TheNAS considers cumulative VLwhile correcting for differ-
ential VLmonitoring intervals. Additionally, penalization of long-lasting therapies due to transient viremia can
be avoided by selecting an appropriate VL threshold. Another approach used by a further therapy-success pre-
diction system quantifies therapeutic success with time it takes for the VL to rebound [368]. However, again,
this measure in not robust to transient increases of the viral load.

Discussion of Model Selection

Model parameters were selected using cross-validation, yielding parameters for each tested treatment-success
definition and VL threshold. The cross-validation performance of all tested treatment-success definitions was
higher with VL thresholds above 50HIV-1 RNA copies permilliliter of blood serum. Nonetheless, I decided to
only train final models with a VL threshold of 50 HIV-1 RNA copies per milliliter of blood serum, in addition
to a final model trained with EuResist labels, which use a fixed VL threshold, for the following reasons. Both
a VL threshold of 50 HIV-1 RNA copies per milliliter of blood serum [228, 280] and the the EuResist labels
[300, 302] have been established as treatment-success definitions. Regarding week-8 labels, a threshold of 50
HIV-1 RNA copies per milliliter of blood serum is probably too low, as patients with high VLs at baseline
may require longer for attaining virologic suppression. Instead, a higher VL threshold and the consideration
of the extent of VL reduction is more appropriate. EuResist labels use both a higher VL threshold for week-
8 viral loads and consider the extent of VL reduction. Regarding week-24 and week-48 labels, VL thresholds
above 50HIV-1 RNA copies permilliliter of blood serum are regarded as unsuitable, since treatment guidelines
prescribe VL suppression 24 weeks after treatment initiation, and since these definitions determine therapeutic
success with only one VL measurement. Thus, although week-w labels with higher VL thresholds are easier
to predict correctly, I think that they deviate from clinical definitions of therapeutic success in such a way that
would be deemed unacceptable by clinical experts. With regard toNAS as a treatment-success definition, higher
VL thresholds lead to only slightly higher performances, such that a deviation from the standard VL threshold
cannot be justified. When evaluating the cross-validation performances of the selected models, one should bear
two things in mind. First, the number of training, and therefore also test samples, decreases as the target VL
week increases (Table 4.3). Second, virological suppression increases with the target VL week (Table 4.3), as
failing therapies are interrupted at earlier time points. Thus, cross-validation performances for week-w labels
with higher values of w neither account nor correct for failing therapies that are interrupted prior to week w.
For these reasons, I prefer models trained with NAS and a VL threshold of 50 HIV-1 RNA copies per milliliter
of blood serum threshold over models trained with other treatment-success definitions, in spite of their higher
cross-validation performances.

Discussion of the Prediction of Therapy Success

As mentioned in Section 4.2.2, the test sets used for assessing the performance of pNAS in predicting thera-
peutic success, EuResistT and HIVdbTCE, differ significantly from the development sets EuResistD and TF

in several ways. The most striking differences between these datasets can be found in the numbers of recorded
past treatment lines, the duration of the therapies, the frequency of drug-resistance mutations in the baseline
genotypes, and the therapy success rates (Table 4.3). In spite of all these differences, pNAS generalize well.
Overall performance in predicting ITT NAS on EuResistT is very close to cross-validation performance, with
performances on the subsets of EuResistT not decreasing below 0.69 (Figures 4.3, 4.4, and 4.5). Overall per-

182



formance in predicting ITT NAS on HIVdbTCE is comparatively lower. However, treatment length in this
dataset is very often 52 weeks and never greater than 52 weeks, which is suggestive of undeclared censoring of
the therapy VLs after 52 weeks. Inspection of performances in predicting therapeutic success for a certain target
week uncovers high performances comparable or higher than those attained onEuResistT (Figures 4.3, 4.4, and
4.5). When performance figures are averaged across all therapy-success definitions, pNAS average performance
is higher than that ofGSSor of almost allmodels trainedwith other therapy-success definitions, regardless of the
test data set and subset. The only exception to this was the equal average performance of themodel trainedwith
EuResist labels on therapies without drug-resistancemutations at baseline. Models trainedwith EuResist labels
showed a high performance on 18 HIVdbTCE TEs, but not on 594 EuResistT TEs without drug-resistance
mutations at baseline. pNAS performance remains comparatively high even when tested on treatment-naïve
patients or on patients with no resistance mutations on the baseline genotype, which is a factor common to
the majority of treatment-naïve patients. One therapy-success prediction system reports a performance of 0.87
(AUC) on 375 TEs fromHIVdbTCE [371]. This performance figure was computed on a TE set which smaller
than the one I use for performance assessment (n = 580). Furthermore, performance was computed on all
available VL measurements at once, as the model allows for selection of the desired target week. Therefore,
direct comparison to pNAS is not possible.

Discussion of the Ranking of Drug Combinations

Ranking of a list of 12 drug combinations showed strong preference of FTC+TDF+EFV over other drug com-
binations when no drug-resistance mutations are present in the baseline genotypes. FTC+TDF+EFV is most
frequently prescribed as a single-tablet regimen and the regimen has shown superior short- and long-term ef-
ficacy in patients without drug-resistance mutations at baseline, including therapy-naïve patients [345, 384].
However, EFV has a low genetic barrier to resistance, such that single mutations in HIV-1 can render the drug
ineffective [385]. In the presence of drug-resistance mutations, FTC+TDF+DRV/r and 3TC+ABC+DRV/r
were significantly preferred by themodel over other drug combinations. In light of the high potency and genetic
barrier todrug resistance ofDRV/r [335], its use inpatientswithdrug-resistantHIV-1 canbe generally said tobe
more appropriate than the use of EFV. Furthermore, IDV/r-containing drug combinations were never ranked
at the top of the list. Being a boosted PI, IDV/r has a higher barrier to drug resistance than NNRTIs, such as
EFV [185]. However, the unfavorable side-effect profile of IDV/r [162] has discouraged its use. This has been
captured by the models trained with NAS. With respect to the backbones, 3TC+AZT-containing drug com-
binations were never ranked at the top of the list. This is in line with clinical studies suggesting the inferiority
of 3TC+AZT as an NRTI backbone when compared to FTC+TDF and 3TC+ABC [386, 387]. With regard
to first-line therapies, the correctness of ranking of FTC+TDF+EFV at the top of the list in TEs with TDR
mutations at baseline is disputable, due to EFV’s low genetic barrier to drug resistance. Specifically, with Sanger
bulk sequencing, single drug-resistance mutations have been anectodally reported to be indicative of further
drug resistance mutations in minority viral populations. In contrast, studies in which minority viral popula-
tions have been sequenced do not report additional drug-resistance mutations than those revealed by Sanger
bulk sequencing (Section 4.1.3). However, ranking of FTC+TDF+EFV at the top of the list only occurred in
a minority of first-line therapies with TDR mutations at baseline. DRV/r-containing drug combinations were
significantly more often ranked at the top of the list when TDR mutations were present at baseline.
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Discussion of the Analysis of Misclassifications

Analysis of (apparent) misclassifications with the most extreme pNAS (Tables 4.5, 4.6, and 4.7) revealed the
following facts. All apparently misclassified failure-labeled TEs do not present relevant drug-resistance muta-
tions in their baseline genotypes. Relevant drug-resistance mutations are those which are likely to preclude
therapeutic success. Furthermore, all TEs presented viral suppression at some point in time other than the one
used for label determination. Along with the rates of transient VL rebound mentioned above, this is a reason
against the use of a fixed week for dichotomization of TEs into success and failure, for training the therapy-
success prediction system. Success-labeled misclassified TEs are of two kinds: (1) TEs with numbers 4 and 9
present drug-resistancemutations which are relevant for their drug compounds. Success of TE number 4 could
be attributed to the resensitizing effect of RT mutation 184V on AZT, along with the fixating effects 3TC has
on this mutation [333]. Among the TEs in EuResistD, 333 (3%) present RT mutation 184V while including
AZT and 3TC in their drug compounds. The mean NAS for this TE subgroup is 1.65 with a median of 0 and
an interquartile range of 2-0, confirming that drug regimens including AZT and 3TC do not perform well, in
general, when the baseline genotype presents 184V [388]. Five drug compounds are used in TE 9, including
ddI [389] and TPV/r [390], which have several disadvantages (Section 1.5). Although the regimen suppresses
the VL , it has a brief duration, and attains one aviremic semester. (2) TEs with numbers 5, 6, 10 and 14 do not
present relevant drug resistance mutations at baseline. However, none of them could attain more than 2 ITT
uncensored aviremic semesters.

Interpreting Therapy-Success Predictions

Themodel for predicting theNAS features interpretability through the use of a linear SVM.The resulting linear
model weights can be interpreted to be a statistical summary of the relationship between the input features in
EuResistD ∪ EuResistTF and the NAS. In my view, many of the model weights depicted in Figure 4.8(b) are
directly interpretable since they are in line with basic knowledge on antiretroviral therapy. For instance, I deem
intuitive that the inclusion of a drug in a cART (e.g. drug.FTC) or the interaction of the inclusion of a drugwith
the PON (e.g. drug.FTC x PON) obtain positive weights, since the drugs have antiretroviral activity that can be
reduced in the case of drug resistance. In the samemanner, it is intuitive that interactions of a drugwith the POE
for the baseline genotype and that drug (e.g. drug.EFV x POE.EFV) or a drug exhibiting cross-resistance (e.g.
drug.EFV x POE.NVP) obtain a negative weight. The POE is correlated with drug resistance (Section 3.3), and
drug resistance can preclude antiviral activity of the drugs. Other model weights are less intuitive and require
examination of the development set for satisfying interpretation. For example, the interaction ofDRV, a potent
PI [335], with the PON resulted in a negative weight (not shown in Figure 4.8(b)). In the development set, the
baseline genotypes of 270DRV-containing TEs have a PON above 80%, with a meanNAS of 1.81, a median of
1, and an IQR of 3-0. In contrast, 377 DRV-including TEs have a PON below 20%, with a mean NAS of 2.48,
a median of 2, and an IQR of 4− 0 (p = 0.028 for the difference in the NAS). In contrast, 840 EFV-including
TEs have a PON above 80%, with a mean NAS of 3.7, a median of 3, and an IQR of 6-1. EFV-including TEs
with a PON below 20% (n = 838) present a mean NAS of 1.2, with a median of 0, and an IQR of 1 − 0

(p < 10−15 for the difference in the NAS). Thus, analysis of the development set could deliver a justification
for the negative weight of the interaction between DRV and the PON.

Individual therapy-success predictions can be interpreted by using the linear weights of the model as well.
As mentioned in Section 4.2.2, input features can be classified as either drug-dependent or solely sequence-
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Figure 4.9: Interpretaধon of Therapy-Success Predicধons. Above, a graphical depicঞon of the component values for predicঞon
of the NAS is shown. Red rectangles represent negaঞve component values, while green rectangles represent posiঞve component
values. The areas of the rectangles are proporঞonal to the absolute values of the component values. Only the largest rectangles are
labeled in order to avoid incurring in excessive detail for the interpretaঞon of the predicঞon. Component values solely dependent
on features related to the genotype are summarized in the form of a sequence component value. Figure (a) depicts the interpretaঞon
of a predicঞon for a treatment episode with a baseline genotype with nomajor drug-resistance mutaঞons and the drug compounds
FTC, TDF, and EFV. Figure (b) depicts the interpretaঞon of a predicঞon for a treatment episode in which the drug-resistance
mutaঞons 103N, 184V, and 190A are present in the baseline genotype and the drug combinaঞon 3TC+AZT+EFV is used. More
details on the interpretaঞon of the predicঞon can be found in the main text. Feature interacঞons are denoted by a cross. 3TC:
lamivudine; 3FTC lamivudine or emtricitabine; AZT: zidovudine; EFV: efavirenz; FTC: emtricitabine; POE: probability of exposure;
PON: probability of naïvety; TDF: tenofovir disoproxil fumarate.
■ Negaঞve Component Values ■ Posiঞve Component Values

dependent. Solely sequence-dependent input features are those which do not involve drugs and whose value
does not change given a baseline genotype and information on past INI-use. In contrast, drug-dependent fea-
tures change their value according to the therapy for which the prediction is required. pNAS is calculated by
multiplying the value of each input feature by the value of the corresponding model weight, and subsequently
adding the resulting component values. The component values resulting from multiplication of input features
with model weights can be used for interpretation of the prediction. I propose the following interpretation.
Component values resulting frommultiplication of solely sequence-dependent features with their correspond-
ing model weights should be added and thus summarized in a solely sequence-dependent component value.
This sequence value can be interpreted to be an offset representing the easiness or difficulty of eliciting thera-
peutic success with a given baseline sequence. Drug-dependent component values can be displayed individually,
thus exhibiting individual components of the prediction. Positive and negative component values can be repre-
sented by green and red rectangles, respectively, whose area is proportional to the absolute values. Two examples
for the interpretation of predictions of the NAS for TEs in EuResistT can be found in Figure 4.9. Figure 4.9(a)
depicts the interpretation for a prediction for the drug combination FTC+TDF+EFV and a baseline genotype
with no major drug-resistance mutations. For this TE, 4.5 aviremic semesters were predicted. The sequence-
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specific component value for this prediction is positive, and is represented by a green rectangle. The drugs FTC,
TDF, and EFV, as well as the interaction between FTC and TDF, are always assigned positive component val-
ues, and are represented by green rectangles. Additionally, positive component values for FTC and EFV result
from multiplication of the PON with the corresponding model weights. A negative component value results
from the multiplication of the PON with a model weight relating to TDF. Finally, the multiplication of the
POE for EFV with the corresponding model weight results in a negative weight. Component values with small
absolute values are representedwith unlabeled rectangles in Figure 4.9. In this way, their influence is graphically
represented without incurring in excessive detail for interpretation of the prediction. In Figure 4.9(a), one can
see that the positive component values outweigh the negative component values, resulting in a prediction of
several aviremic semesters. The interpretation for a prediction for the drug combination 3TC+AZT+EFV and
a baseline genotype with major drug-resistance mutations is shown in Figure 4.9(b). The drug-resistance mu-
tations 103N, 184V, and 190G are indicative of drug resistance against 3TC and EFV. For this TE, -0.1 aviremic
semesters where predicted. As in Figure 4.9, a positive sequence component value is shown, albeit smaller. Fur-
thermore, positiveweights result from the inclusion of the drug 3TC, and from themultiplication of POEswith
some of the included drugs. The positive weights, however, are outweighed by the negative weights, resulting
in a slightly negative prediction for the NAS. Note that a negative prediction of the NAS is tantamount to a
prediction of the NAS equal to zero, i.e. the therapy is predicted to fail. Negative component values decrease
the pNAS due to resistance to 3TC and EFV, which is expressed in the model in terms of the POEs. Due to
cross-resistance (Section 1.5.3) between EFV and NVP, the POE for NVP also decreases the pNAS. The nega-
tive component value for AZT can be attributed to a generally comparatively bad efficacy of the drug, which
can be compensated in certain situations. Specifically, it is known that resistance to FTC and 3TC can increase
susceptibility toAZT[333], which is accounted for in the positive component value considering the use ofAZT
and resistance to FTC or 3TC. Predictions for POEs and the POE are interpretable as well, due to the fact that
these are calculated with linear SVMs as well (Section 3.3).

Interaction of the User with Therapy-Success Predictions

Therapy-success prediction systems are oftenmade available through aweb service. The typicalmodॿ operandi
of these systems is the following [302, 370]. Theuser inputs patient baseline information into systemand selects
a list of drug combinations. Using the patient baseline information, the system produces a prognostic score
for each drug combination in the list. The output of the system is a table containing the drug combinations
sorted by the prognostic score, which is included in the table as well. In addition to the ranking of lists of
drug combinations, I propose the following mode of operation for therapy-success prediction systems. Users
should be allowed to interactively obtain therapy-success predictions, such that they can incrementally compose
different drug combinations. This can be especially useful when composing a therapy for a patient whose drug
options are limited, e.g. due to a combination of viral drug resistance and restrictions with respect to possible
drug combinations. Specifically, the treating clinician can input into the system the drug combinations the
patient can take and view a prediction for the therapeutic prospects of these drug combinations. In order to
achieve a clear arrangement of therapy alternatives, trees should be used for representing drug combinations
with drug compounds in common (Figure 4.10). In these trees, parent nodes represent the drug compounds
that the combinations have in common. Furthermore, predictions performedwith adequate drug-combination
lists can be visualized with either a list view or a tree view. In the context of patients with many therapy options,
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Figure 4.10: Tree Visualizaধon for Therapy Success Predicধons. Above, therapy-success predicঞons for a baseline genotype with-
out major drug resistance mutaঞons and several different drug combinaঞons are depicted in the form of trees. Drug combinaঞons
containing drug compounds in common are grouped in a tree, with parent nodes represenঞng the compounds that the combi-
naঞons have in common. pNAS are displayed in each node of the tree. When parent nodes contain NRTI backbones, a direct
comparison of the predicted efficacy of the backbones is possible. Furthermore, interacঞons between the backbones and further
compounds are depicted as well. Tree visualizaঞon for therapy-success predicঞon can be constructed from a list of drug combi-
naঞons or by the user, manually. For discussion in the main text, non-validated predicঞons for the drug compounds dolutegravir
(DTG) and rilpivirine (RPV) are shown as well. /r: ritonavir as a boosঞng agent; 3TC: lamivudine, ABC: abacavir, ATV: atazanavir;
DRV: darunavir, DTG: dolutegravir; EFV: efavirenz; RAL: raltegravir; RPV: rilpivirine; TDF: tenofovir disoproxil fumarate

the tree view is a form of visualization of the prediction that can be especially useful when the user desires to
compare different NRTI backbones (Figure 4.10).

Concluding Remarks

In the following, I state some important remarks regarding the use of models for predicting the NAS. (1) The
NAS is a quantity that assumes non-negative integer values. However, I do not enforce this property when
computing the pNAS, such that these can also assume negative and non-integer values. Note that a negative
prediction of the NAS is tantamount to a prediction of the NAS equal to zero, i.e. the therapy is predicted not
to be successful at all. (2) Harrell’s concordance index was used for selecting model parameters and assessing
the performance of the model. While the concordance index quantifies concordance between the NAS and
the pNAS, it does not consider their possible numerical deviation (Section 2.2.6)). Therefore, the pNAS is a
prognostic score correlated to the NAS without necessarily predicting its exact value. For this reason, neither
integrality nor positivity are enforced when computing the pNAS. (3) The pNAS is estimated with an SVM
for the regression of right censored data. SVM ϵ-regression can be phrased as a regularized regression with
an error-insensitivity parameter (Section 2.2.5). Due to regularization, function coefficients (model weights)
are estimated with the smallest possible value. This characteristic of the regression method that I employ has
consequences for novel drug compounds. Specifically, the model can be expected to have a bias towards drug
combinations that have worked well in the past, since in the development set, many TEs including these drug
combinations have high NAS. Due to their performance in clinical studies, some novel drug compounds may
be expected to be more efficacious than older compounds. From the perspective of the development set, how-
ever, drug combinations including novel drug compounds have not had the time to show whether they can be
associated to large NAS or not. Even if most of the NAS for novel drug combinations are marked as censored,
regularization will not allow for large pNAS. An example for this can be found in Figure 4.10. In the figure,
non-validated pNAS for the drug compounds DTG and RPV are included. These novel drug compounds are
said to be superior than EFV [202, 229, 356, 391]. However, pNAS for drug combinations including these
drugs are lower than similar drug combinations including EFV. Thus, the availability of predictions for drug
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combinations including novel drug compounds might need to be deferred until sufficient evidence for the ef-
ficacy or these novel drug compounds can be found in the development set (or not). There is no proxy for
this evidence since the long-term performance of novel compounds is unknown. (4) The model for predicting
the NAS does not include a mechanism for lowering the value of the prediction if too many drug compounds
are included in a drug combination. Standard cART includes three different drug compounds. Even though
some patientsmight requiremore than three drug compounds in order to attain viral suppression, therapywith
more than three drug compounds is associated with therapeutic failure, mainly due to the toxicities of the drug
compounds (Section 1.5). However, this shortcoming of the models can be easily counteracted by normalizing
the pNASwith respect to therapies consisting of three drug compounds in which full drug susceptibility of the
virus against all drug compounds is given.

In thiswork, a novel, quantitativemeasure for therapeutic success is presented, theNAS.Retrospective evalu-
ation of cARTwith theNAS presents a number of advantages. (1) It provides an evaluation of the performance
of a drug combination that considers the entire duration of the therapy. (2) The measure is robust to transient
viremia. (3) Themeasure implicitly considers side effects and adherence-fostering characteristics of the different
drug combinations. (4) NAS is anticorrelated to cumulative viral load, which has a negative prognostic value
[382, 383]. In contrast, the established method for determining virologic success dichotomizes a therapy into
success and failure with a VL obtained at a certain point in time. When several VLs are available for a therapy,
dichotomization can result in discordant labels for one therapy. In this chapter, I present a method for predict-
ing the NAS. With this method, pNAS, a prognostic score for therapy success can be calculated. pNAS not
only considers determinants of long-term therapeutic success that are related to drug-resistance development,
but also to other characteristics of the drug combinations. This fact manifests itself in the sustained perfor-
mance on both TEs with and without drug-resistance mutations at baseline. Furthermore, pNAS incorporates
POEs and the PON, which are derived from a methodology for predicting therapeutic history from the viral
genotype. It has been shown that therapeutic history is a strong predictor of therapeutic success that can signif-
icantly boost the performance of a therapy-success prediction system [302, 370], and that therapeutic history
alone is sufficient for accurately predicting therapeutic success [376, 378]. However, complete therapeutic his-
torymay not be available for every patient, and if it is available, it might not always be efficiently communicated
to diagnostic laboratories, where patient samples are analyzed and diagnostic reports written. For this reason, I
believe that improvement of therapy-success prediction systems will not be achieved by disregarding the geno-
type, but bymaking better use of the genotype. pNAS affords interpretability which is important in the context
of health care, as it can both foster confidence in the interpretation system and explain (apparently) implausible
predictions.
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5
Assessing the Robustness of Genotype

Interpretation Systems

Nobody wants to be responsible for an erroneous diagnosis or for a failed therapy, as this could result in
detrimental consequences for the patient. The use of statisticalmodels in a biomedical context dictates increased
requirements for the robustness of these models. The robustness of a model is the extent by which its output
changes when its input presents a certain degree of noise or variability. Since the genotype is the input of all
models presented in this work, in this chapter, I present a method for assessing the robustness of genotype in-
terpretationmodels with respect to sequencing variability. First, I present a summary on the limits of the Sanger
sequencing technology. After this, I introduce geno2pheno[coreceptor], a genotype interpretation method whose
robustness is assessed in this chapter. Lastly, I present an analysis on the robustness of geno2pheno[coreceptor]
and ofmodels for predicting drug exposure from the genotype. This chapter is based to a large extent on [392].

5.1 Variability and Limits of Sanger Nucleotide Sequencing

The term Sanger sequencing refers to a family of methods for determining the sequence of nucleotides of a
sample of DNA molecules. In Sanger sequencing, DNA is amplified using a mixture of deoxynucleotides and
of labeled dideoxynucleotide chain terminators, resulting in amplicons of different lengths. Subsequently, a
sequence of nucleotides is resolved by detecting the labeled dideoxynucleotides of the electrophoretically sepa-
rated amplicons. In the following, I state the typical steps that are carried out whenHIV-1 from a clinical isolate
is sequenced with the Sanger method. These steps aim at obtaining the nucleotide sequence of a specific region
of the genome of HIV-1. They are a summary of the relevant standard operating procedures of the Institute of
Virology of the University Clinic of Cologne ([361, 393, 394] and personal communication).

1. Collection of blood samples
2. Isolation of HIV-1 RNA and/or proviral DNA
3. Amplification of the genomic region of interest. Reverse-transcription polymerase chain reaction (RT-

PCR) is used in samples containing viral RNA and polymerase chain reaction (PCR) is used in samples
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containing proviralDNA. Initial amplification is usually followed by a further amplificationwith nested
PCR

4. Amplification in sequencing PCR with fluorescent-dye-marked dideoxynucleotides
5. Purification of sequencing-PCR products
6. Separation of purified sequencing-PCR products with capillary electrophoresis and subsequent detec-

tion of fluorescent-dye-marked dideoxynucleotides
7. Automated base calling with subsequent manual editing of the automatically generated sequence.

The steps listed above describe what is known as a direct, bulk, or population Sanger-sequencing approach. This
approach results in a consensus sequence of the most frequent variants in the viral population. Due to the vari-
ability of HIV-1, viral RNA and DNA extracted from clinical isolates exists as a mixture of closely related vari-
ants (Section 1.4). For this reason, multiple, non-identical DNA templates participate in PCRs performed for
sequencing (a region of) the viral genome. Population sequencing with the Sanger method has been validated
for the simultaneous detection ofmutations inmixtures ofHIV-1 variants [395, 396]. Minority populations in
the sequenced sample can be reliably detected when they account for more than 20% of the sample. However,
minority populations representing more than approximately 10% of the sample may be detected with Sanger
sequencing as well [395, 396]. In addition to the inconsistent detection ofminority populations accounting for
less than 20%of the total population, further variability in replicate sequencing experiments can be observed. In
the following, I list possible sources for this variability. (1) Multitemplate PCR is subject to amplification bias.
When single mismatches between primer and template are present, amplification efficiency for such primer-
template duplexes is substantially decreased [397]. (2) Multitemplate PCR may produce chimeric amplicons.
Chimerasmay result from template switching duringDNApolymerization or incomplete extension of primers.
DNA molecules arising from incomplete extension of primers may act, in turn, as primers in PCR cycles [397]
following their synthesis. (3) Random events such as misannealing of primers and misincorporation of bases
occur during PCR. These random events may produce artifacts. If artifacts are produced at an early cycle in
PCR, these may be amplified to large quantities [397]. (4) Deterioration of the capillary used for electrophore-
sis decreases the resolution of the sequencing instrument [398]. The quality of capillaries for electrophoresis is
guaranteed to remainhigh for a certainnumber of runs. However, diagnostic laboratoriesmayuse the capillaries
for a number of runs greater than the number of runs covered by the warranty (personal communication). (5)
Determination of the nucleotide consensus sequence depends on the base calling procedure. While automatic
base calling generally produces accurate results, manual post-editing of the automatically generated sequence
can lead to improved sequencing accuracy. Manual post-editing is reported to be especially accurate in assign-
ing nucleotide mixtures or pure base calls [399].

While Sanger sequencing is still considered the gold standard in terms of combined sequencing accuracy and
read length, other sequencing methods exist. Within the last decade, novel high-throughput sequencing meth-
ods have emerged, often referred to as next-generation ormassively parallel sequencingmethods. Thesemethods
can produce up to 2 giga base pairs of data in a single run (Ion Torrent ®; [400]). When compared to Sanger
sequencing, massively parallel sequencing methods require significantly less time and monetary resources. In
the context of sequencing of heterogeneous viral populations, such as those found in patients withHIV-1 infec-
tion, massively parallel sequencing methods present the advantage that they can easily produce a large number
of sequence fragments representing the same genomic region. This characteristic allows for the resolution ofmi-
nority variants accounting for as little as 0.1% of the total viral population [400]. Massively parallel sequencing
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methods are currently mainly used in research settings, and not in clinical diagnostics settings, due to a number
of hurdles for their wide-scale implementation. First, the technology has high start-up costs. Second, the error
rates of massively parallel sequencing are reported to range from approximately 0.1% to 13%, depending on the
sequencing plattform [400]. In contrast, error rate of Sanger sequencing ranges from 0.1% to 1% [401]. Due to
the increased error rates of some of these sequencing methods, regulatory authorities often require certification
of the methods with respect to their ability to differentiate low-level mutant populations from sequencing and
amplification errors. Third, the handling of the large amounts of data that these methods produce requires a
high degree of bioinformatics expertise. Fourth, the diagnostic value of the additional information provided by
massively parallel sequencing methods is still uncertain. Nonetheless, a growing number of laboratories have
validated massively parallel sequencing methods for routine diagnostics [400, 402–404].

5.2 Genotypic Determiniation of Tropism

HIV-1 employs two host molecules in order to enter the host cell: the CD4 receptor and a coreceptor (Sec-
tion 1.1.2). In vivo, either of two coreceptors can be: CCR5 and CXCR4. The capability to use a certain core-
ceptor is called viral tropism. HIV-1 so-called R5 strains can only use CCR5. CXCR4-capable strains can use
either CXCR4, exclusively (X4 strains), or both coreceptors (dual/mixed tropic viruses) [1]. MVC is an an-
tiretroviral drug that inhibits HIV-1 entry into the cell by binding to CCR5, and is thus ineffective against
X4-capable strains. Therefore, viral tropism determination must precede MVC prescription [191].

Tropism can be determined phenotypically or genotypically [277, 405–407]. Phenotypic determination
in cell cultures is expensive, time-consuming, and requires specialized labs. Furthermore, samples with VLs
up to 1000 HIV-1 RNA copies per milliliter of blood serum often yield indefinite results, although proviral
DNA testing is performed as well [408]. Genotypic determination of tropism requires sequencing V3 with
subsequent computer-based interpretation. Several methods for interpreting sequences in order to determine
HIV-1 tropism have been developed [407]. geno2pheno[coreceptor] [409] is an extensively validated bioinfor-
matic method for genotypic determination of tropism [277, 405–407, 410–412]; its use as an alternative to
phenotypic determination is recommended by the European and the Austrian-German HIV-treatment guide-
lines [413–415]. geno2pheno[coreceptor] interprets V3 with an SVM (Section 2.2) trained on GPPs. The output
of geno2pheno[coreceptor] is the false-positive rate (FPR) with X4-capable being defined as positive [409]. FPR
dichotomization yields a (predicted) viral classification intoX4-capable orR5. When the FPR is in a rangewhere
MVC antiviral action is considered possible, yet uncertain, the virus is classified as X4-capable. Alternatively,
this intermediate FPR range can be translated into an additional intermediate category, as is customary for in-
terpretation of drug resistance to other antiretroviral drugs (Section 3.2). Thus, MVC administration with an
FPR in the intermediate range could bemade dependent onwhether other therapy options co-exist, rather than
excluding it altogether. stablishment of the most suitable cutoff for FPR dichotomization has been a matter of
substantial debate. Currently, there is no universally accepted cutoff.

5.3 Simulation of the Variability Resulting from Sanger Sequencing

The input to geno2pheno[coreceptor] is a V3 sequence (Section 5.2). Therefore, the quality of its predictions de-
pends on the quality of these sequences. With Sanger bulk sequencing, themeasured sequence is a consensus of
the dominating strains in the viral population. Here, minorities comprising less than 10%-20% of the viral pop-
ulation are unreliably represented, due to the limits of the experimental technology (Section 5.1). X4-capable
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minorities may renderMVC ineffective. Therefore, some labs have suggested that performing the amplification
step of the sequencing procedure in triplicate increases the chances of detecting minorities. Indeed, sequenc-
ing errors can be reduced by performing amplification in replicate and mixing of the replicate amplification
products prior to sequencing [397]. The use of duplicate amplification with subsequent amplicon mixing and
sequencing was reported to increase the specificity and sensitivity of genotypic determination of tropism when
compared to phenotypic tropism determination as a gold standard [416]. Replicate amplification is not rou-
tinely performed when sequencing the pol gene, but suggested when sequencing V3, since env is subject to
higher selective pressure than pol, resulting in higher variability of the gene [410]. Contrary to the established
approach of mixing amplification products, treatment guidelines considered performing both amplification
and sequencing in triplicate, leading to the production of three nucleotide sequences [410, 414, 417]. Interpre-
tation of these three nucleotide sequences with geno2pheno[coreceptor] was recomended, with subsequent use of
the minimum FPR for genotypic determination of tropism, ignoring the potential multiple-testing problem
associated with this approach. For this reason, I performed an analysis that addresses two related, previously
unresolved questions: (1) How robust is geno2pheno[coreceptor] with respect to sequencing / base-calling vari-
ability in terms of change of predicted tropism? (2) What is the influence of undetected minority populations
on the predictions of geno2pheno[coreceptor]? Both issues are of critical importance for assessing the reliability of
geno2pheno[coreceptor] for clinical purposes. In a further analysis included in this chapter, I test the robustness of
models for predicting drug exposure (Section 3.3). Since variability in the sequencing procedure is not a matter
of concern when interpreting the sequence of the pol gene, the results concerning the drug-exposuremodels are
much less detailed than the results concerning geno2pheno[coreceptor]. Note that this section is largely based on
[392]. Futhermore, I amply quote from this publication.

5.3.1 Materials and Methods

LADataset

Adataset of 163,958HIV-1V3nucleotide sequenceswasdownloaded fromtheLANLSD(http://www.hiv.lanl.gov/)
on September, 19th 2013. Nucleotide sequences with duplicate V3 regions were discarded, resulting in the Los-
Alamos dataset (LA) which comprises 67,997 nucleotide sequences. Subtypes in LA were determined with
COMET [303, 304]. LAwas used to create further datasets by altering its sequences in silico.

TPRRT,TIN

TheTPRRT andTIN datasets were used for testing several drug-resistance interpretation systems, as described in
Section 3.3. TPRRT contains 6,641 PRandRTnucleotide sequences from theEuResist IntegratedDatabase and
the Los Alamos National Laboratory database, whileTIN contains 444 IN sequences from the aforementioned
databases.

ElectropherogramV3, ElectropherogramPRRT, and ElectropherogramIN Datasets

The ElectropherogramV3, ElectropherogramPRRT, and ElectropherogramIN datasets were obtained from
the Institute of Virology of the University of Cologne. ElectropherogramV3 arises from genotypic determina-
tion of tropism [393] in 164 clinical blood samples. This dataset comprises four electropherograms per blood
sample, one for each of the forward sequencing primers Env2 and Env6 and one for each of the reverse se-
quencing primers Env7 and Env11 (Table 5.1). Furthermore, for each blood sample, an automatically generated
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Table 5.1: Sequencing Primers. Sequencing primers used for generaঞng the ElectropherogramV3, ElectropherogramPRRT,
and ElectropherogramIN datasets are tabulated below. Genomic coordinates (short: coordinates) are given with respect to the
HIV-1 variant HXB2. Arrows between coordinates indicate whether the primers are forward or reverse. Arrows poinঞng right
indicate forward primers. ENV: envelope; IN: integrase; PRRT: protease and reverse transcriptase.

Primer Name Gene(s) Nucleotide Sequence Coordinates
Env2 ENV GTACAATGYACACATGGAATTAGGC 6957→ 6981
Env6 ENV GGCCAGTAGTATCAACTCAAC 6979→ 6999
Env7 ENV TGTCCACTGATGGGAGGGGC 7530← 7549
Env11 ENV TACATTGCTTTTCCTACTTTCTGCCAC 7502← 7528
A PRRT GAGCCAACAGCCCCACC 2149→ 2165
B PRRT CAATGGCCATTGACAGAAG 2616→ 2634
C PRRT GGATCACCAGCAATATTCCA 3012→ 3031
D PRRT GGAACTGTATCCTTTARCTTCCC 2232→ 2254
F PRRT TGGGCCATCCATTCCTGGCTT 2586← 2606
G PRRT CATCCCTGTGGAAGCACATT 2988← 3007
H PRRT TCTGCTATTAAGTCTTTTGAT 3512← 3532
PRRT-2F PRRT GGCTGTTGGAAATGTGGAAAGGA 2023→ 2045
3p31 IN ATCCTGTCTACYTGCCACACAA 5066← 5087
5’-INT IN ATTGGAGGAAATGAACAAGT 4173→ 4192
IN-F IN GGAATTGGAGGAAATGAACAAGTAGATAAA 4170→ 4199
SEQ1 IN GAATTTGGSATTCCCTACAATCC 4641→ 4663
SEQ2 IN GGATGAATACTGCCATTTGTACTGC 4752← 4776

nucleotide sequence for V3 is included. This sequence arises from automatic base calling based on the four
electropherograms. Manual post-editing of the sequence based on inspection of the corresponding electro-
pherograms is performed for quality control, and results in a final sequence called manually edited sequence.
The ElectropherogramPRRT and ElectropherogramIN datasets arise from genotypic determination of resis-
tance [361, 394], and present a similar structure toElectropherogramV3. TheElectropherogramPRRT dataset
originates from3,104 blood samples, while 1,288 blood sampleswere used for creating theElectropherogramIN

dataset, and they comprise eight or five electropherograms per blood sample, respectively. For generating the
ElectropherogramPRRT dataset, the following sequencing primers were used: A, B, C, D, F, G,H, and PRRT-
2F (Table 5.1). The following primers were used in order to generate the ElectropherogramIN dataset: 3p31,
5’-INT, IN-F, SEQ1, and SEQ2 (Table 5.1). As inElectropherogramV3, an automatically generated and aman-
ually edited nucleotide sequence is included for each blood sample. ElectropherogramPRRT contains PR and
RT sequences, while ElectropherogramIN contains IN sequences.

Estimation of Position-Wise Alteration Rates for Sanger Sequencing

I used the ElectropherogramV3, ElectropherogramPRRT, and ElectropherogramIN datasets to estimate the
variability resulting from Sanger sequencing. For this purpose, I performed automated base calling on each of
the 164, 3,104, and 1,288 groups, respectively, of four, eight, or five electropherograms, respectively, that were
used to create the automatic sequences. Position-wise alteration rates resulted from comparison of nucleotide
sequences obtained from a single electropherogram with the corresponding manually edited sequence. This
procedure quantifies what would happen if sequencing was performed with only one electropherogram and
without manual post-editing. In the following, I describe this procedure in detail, which was partly inspired
by Recall, an automated base-caller [418]. Specifically, I used Phred [401] to preprocess electropherogram files,

193



yielding a quality file and a polymorphic-base file for each one of them. The quality file contains Phred quality
scores for each called base. Among other information, the polymorphic-base file contains, for each nucleotide
sequenced, the area of the called base peak in the electropherogram and the area of an “uncalled” base peak
(i.e. the second-best candidate peak). Polymorphic-base files were used for performing base calling in each of
the electropherograms. In a first step, nucleotide sequences were produced by examining each base call and
calling a mixture if the ratio of the areas of the uncalled and the called bases was larger than 0.2 [418]. Oth-
erwise, only the called base was considered. Each of the resulting sequences was aligned to its corresponding
manually edited sequence. After alignment, Phred quality files were used to mark regions in the aligned se-
quences with Phred quality scores below 20 as unsuitable [418]. The resulting annotated sequences are called
single-electropherogram sequences. Disagreement between the single-electropherogram sequence and theman-
ually edited sequence is considered an alteration, as the manually edited sequence is a more accurate genotype
measurement [399]. Five alteration types were quantified by comparing the single-electropherogram sequences
with the manually edited sequences. I use IUPAC ambiguity codes (M, R, W, S, Y, K, V, H, D, B, and N) to
refer to ambiguous bases [419]. The following alteration types were quantified.

1. Including ambiguousbase: these are alterations that result in an ambiguousbase in the single-electropherogram
sequence which at least partially includes the definite or ambiguous base contained in the manually
edited sequence

2. Excluding ambiguous base: these alterations result in an ambiguous base in the single-electropherogram
sequence that does not even partially include the definite or ambiguous base contained in the manually
edited sequence

3. Including definite base: alterations resulting in definite bases in the single-electropherogram sequence
that are contained in the ambiguous base in the manually edited sequence

4. Excluding definite base: those alterations resulting in definite bases in the single-electropherogram se-
quence that are not contained in the ambiguous base or are different from the definite base in the man-
ually edited sequence

5. Insertionordeletion (indel): alterations involving an insertionor adeletion in the single-electropherogram
sequence with respect to the manually edited sequence.

In the following, I detail the procedurewithwhich alterationswere quantified. Manually edited sequences were
aligned to the corresponding gene reference sequence. For V3 sequences, consensॿ B (105 nucleotides) was used
as a reference sequence, since this reference is used by geno2pheno[coreceptor]. In contrast, HXB2 was used as a
reference sequence for PR (297 nucleotides), RT (first 720 nucleotides), and IN (864 nucleotides). I quanti-
fied the number of alterations present in single-electropherogram sequences by using (1) the alignment of the
single-electropherogram sequence to themanually edited sequence and (2) the alignment of themanually edited
sequence to the reference sequence. The first alignment was used to determime the alterations, and the second
alignment was used to determine the alignment position number, corresponding to the reference sequence,
at which the alteration occurs. I tabulated the numbers of alterations separately for each primer, reference-
sequence alignment position, and alteration type. Only segments of the sequences that were not marked as
unsuitable were considered in alteration quantification. Sequences with more than 10% of their bases marked
as unsuitable due to low Phred scores were excluded as a whole. V3 in HXB2 has the genomic coordinates
7110 - 7217 (108 nucleotides), and typically V3 presents the same or a similar length. The typical read length
for Sanger sequencing is 400 to 900 base pairs [420]. Since the sequencing primers used for generating the
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ElectropherogramV3 dataset (Table 5.1) anneal to a region of the HIV-1 genome close to, but outside V3,
single-electropherogram sequences typically cover V3 entirely. However, single-electropherogram sequences
for the PR and RT genes, as well as for the IN gene, typically only partially cover these genes. For this reason,
only the gene regions covered by at least 50% of all single-electropherogram sequences produced with a given
primer were used for quantification of alterations.

Let ϵ ∈ {Including Ambiguous, Excluding Ambiguous, Including Definite, Excluding
Definite, Indel, None} denote an alteration type, let p ∈ {Env2, Env6, Env7, Env11, A, B, C,
D, F, G, H, PRRT-2F, 3p31, 5'-INT, IN-F, SEQ1, SEQ2} denote a primer, let β ∈ {Ambiguous,
Definite} denote whether the ith-base in the manually edited sequence is ambiguous or definite, with i ∈ N
denoting the position number of an alignment. Using the alterations quantified for each primer, alteration
type, and reference-sequence alignment position, as described above, alteration rates were calculated in terms of
the probabilities of ϵ, conditioned on p, β, and i:

P (ϵ | p, β, i). (5.1)

The procedure described above yielded position-wise alteration rates for each primer and alteration type. Since
error rates for Sanger sequencing increase linearly in 3’ direction [401, 421], alteration rates were linearly re-
gressedon thenucleotidepositionnumber. Inorder todeterminewhether a linear functiondescribes the change
in the alteration rates well, a t-test was used to assess whether the regression coefficients for the nucleotide po-
sition numbers were significantly different from zero. The resulting p-values were corrected using the method
by Benjamini and Hochberg [332]. If the difference was significant at the 0.05 level, the linear regression was
used for alteration estimation. Otherwise, the mean alteration rate was used. Alteration rates calculated with
the ElectropherogramV3, ElectropherogramPRRT, and ElectropherogramIN datasets are called the EPV3,
EPPRRT, and EPIN alteration rates, respectively.

SangerAlterationV3, SangerAlterationPRRT, and SangerAlterationIN Datasets

In order to simulate the variability that arises from Sanger sequencing, primer-specific sequences were created
from each sequence in the LA,TPRRT,TIN datasets. Specifically, for sequences in LA, primer-specific sequences
were created for each of the primers Env2, Env6, Env7, and Env11. For sequences inTPRRT, primer-specific se-
quences were created for each of the primers A, B, C, D, F, G, H, and PRRT-2F. Primer-specific sequences for
the primers 3p31, 5’-INT, IN-F, SEQ1, and SEQ2 were created for sequences in TIN. Primer-specific sequence
generation was accomplished by introducing alterations of the types described above, according to the EPV3,
EPPRRT, and EPIN alteration rates, respectively, at the nucleotide position in question. All primer-specific se-
quences derived from a given original sequence were combined to one final sequence that possibly contains al-
terations. The details of this procedure are as follows. The defined alteration types allowmany possible changes
(ambiguous or definite bases) at a certain position. For creating a primer-specific sequence, one changewas sam-
pled from the uniform distribution. When the alteration was of the type indel, a deletion or an insertion was
chosen with equal probability. Insertions consisted of a definite nucleotide chosen according to the uniform
distribution. From each group of primer-specific sequences derived from an original sequence, a single sequence
was created in the following manner: bases or indels present at each sequence position in the primer-specific se-
quences were tabulated. Bases or indels with a relative frequency less than 50%were discarded as putative errors
[418]. The remaining bases were used for determining a definite or ambiguous base for the considered position,
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or an indel. In case both indels and bases remained, preference was given to the non-indel alteration. Whenever
the original sequence was longer than the corresponding reference sequence, the alteration rate for the highest
alignment position number was used. The procedure for generating sequences with simulated variability was
repeated ten times for each sequence in the LA,TPRRT,TIN datasets. The datasets of sequences with simulated
variability are called SangerAlterationV3, SangerAlterationPPRT, and SangerAlterationIN datasets, respec-
tively.

SEV3 Dataset

The single-error dataset (SEV3) was created by generating sequences from each LA sequence by systematically
exchanging every nucleotide in V3 by each of the 15 possible definite and ambiguous bases, independently of
their probability of occurrence. Thus, fromeach sequence inLA, all possible sequences divergingbyonedefinite
or ambiguous base were generated.

MV3 andMSV3 Datasets

The mixture dataset (MV3) was created from sequences in LA containing ambiguities (excluding N). Ambi-
guities in each of these sequences were combinatorially resolved into all possible sequence alternatives without
ambiguities. To avoid combinatorial explosion, sequences that would result in more than 20,000 derived se-
quences were excluded from this procedure. The mixture-sampling dataset (MSV3) was created to simulate a
scenario in which sequencing depth is insufficient to resolve all sequence variants in the sample. From each se-
quence group in MV3 derived from the same LA sequence, a certain proportion of sequences was extracted at
randomby uniform sampling without replacement, and a new sequence was created by retaining positions that
are identical among the sequences in the subset and representing differential positions with the correspond-
ing ambiguities. Proportions represent sequencing depth and ranged from 1% to 100% in steps of 2%; each
sequence group was sampled 3 x 100 times (100 repetitions that allow for triplicate FPRs).

Quantification of Changes in Predictions

Sequences in LA, SangerAlterationV3, SEV3, MV3, and MSV3 were interpreted with geno2pheno[coreceptor].
For each sequence interpreted with geno2pheno[coreceptor], the FPR shift was calculated as the difference be-
tween the FPR of the altered sequence and that of its unaltered counterpart in LA. When I consider n FPRs
from variability-simulation replicates on the same sequence, I call the FPR obtained with the first sequence sin-
gleton FPR. For all further sequences, I take the minimum FPR among the first n FPRs and call it nth replicate
FPR. The 3rd replicate FPR is also called triplicate FPR. geno2pheno[coreceptor]’s FPR was used to determine
coreceptor tropism as X4-capable or R5. Four different FPR cutoff sets were used for tropism determination:

• {5, 10}: FPR < 5⇒X4-capable, 5≤ FPR < 10⇒ Intermediate, FPR≥ 10⇒R5
• {5, 15}: FPR < 5⇒X4-capable, 5≤ FPR < 15⇒ Intermediate, FPR≥ 15⇒R5 [415]
• {10} : FPR < 10⇒X4-capable, FPR≥ 10⇒R5 [414]
• {20}: FPR < 20⇒X4-capable, FPR≤ 20⇒R5 [414]

According toAustrian-German treatment guidelines,MVCcanbe effectivewhen a tropismprediction is labeled
intermediate albeit with much less certainty than for R5 variants [415]. The probability the tropism predicted
by geno2pheno[coreceptor] changed due to the introduced sequence alterationswas calculated by sample counting
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as P (TA,C | TU,C), with TA,C denoting the tropism of the altered sequences as determined with cutoff setC ,
and TU,C denoting the tropism of the unaltered sequences as determined with cutoff set C . The reference
sequence used to number V3 nucleotide positions is consensus B (105 nucleotides), which is the reference used
by geno2pheno[coreceptor].

All available ExposurePhenoonlyIASPos and ExposurePhenofull drug-exposure models (Section 3.3) were
used for interpretation of sequences in SangerAlterationPPRT, TPRRT, SangerAlterationIN, and TIN. Sub-
sequently, the obtained DES were discretized with DEMax cutoffs (Section 3.4). Note that DEMax cutoffs for
ExposurePhenoonlyIASPos were different than cutoffs for ExposurePhenofull drug-exposure models. Lastly,
changes in the discretized predictions of ExposurePhenoonlyIASPos and ExposurePhenofull models resulting
from the introduction of sequence alterations were quantified.

5.3.2 Results

In the following, the results comparative interpretation of unaltered nucleotide sequences and nucleotide se-
quences with simulated Sanger variability are presented. First, the results for geno2pheno[coreceptor] are pre-
sented. Subsequently, I present the results for drug-exposure models. Since errors resulting from sequencing
variability are not amatter of concernwhen interpreting pol nucleotide sequences, the results for drug-exposure
models are much less detailed than the results for geno2pheno[coreceptor].

Robustness of geno2pheno[coreceptor] in the Presence of Sequencing Alterations

The electropherograms and nucleotide sequences in ElectropherogramV3 were used for estimating the EPV3

alteration rates. These rates are shown in Table 5.2. As can be seen, linear regression was only invoked for the
estimation of four types of alteration rates: the indel rate for the Env2 primer, and the definite-to-including-
ambiguous rates for the primers Env2, Env7, and Env11. Nucleotide sequences in LA were interpreted with
geno2pheno[coreceptor], resulting in an FPR per sequence. The resulting FPR distribution in LA is illustrated
in Figure 5.1. A peak in the distribution can be seen for FPRs between zero and ten, while the rest of the FPR
brackets present a more even distribution. For subtype determination, LA was interpreted with the COMET
subtyping tool. The resulting numbers of strains by subtype are tabulated in Table 5.3. Subtype B accounted
for most subtypes in LA (52%), followed by subtype C (16%). In LA, 0.24% of the bases are ambiguous, while
99.76% of the bases are definite.

Among the FPR shifts between the altered SangerAlterationV3 sequences and their unaltered counterparts
in LA, 79% are equal to zero, 11% are below zero and 10% are above zero (Figure 5.2). Figure 5.3 shows how
the probability of obtaining FPRs lower than the singleton FPR increases with the number of amplifications.
Finally, Figure 5.4 depicts the probabilities of change of predicted tropism for different cutoff sets (probabilities
labeled S for singleton FPRs and T for triplicate FPRs). Figure 5.4 shows that geno2pheno[coreceptor] is more
likely to reduce than to raise FPRwhen sequence alterations are present, slightly favoring a false prediction ofR5
viruses as X4-capable over the reverse misprediction (see also Figure 5.2). Since the FPR shifts are both negative
and positive, FPR determination in triplicate will always reduce FPRs, as the minimum FPR is selected. When
determining FPR in triplicate, there is a 27% chance that the triplicate FPRwill be lower than the singleton FPR
(Figure 5.3).

The overall average FPR shift between the altered sequences in SEV3 and their unaltered counterparts in LA
is −2.22 (σ = 13.87); 23% of these shifts are zero, 36% are above zero and 40% are below zero (Figure 5.5).
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Table 5.2: Esধmated EPV3 Sequencing Variability Rates. Posiঞon-wise alteraঞons were esঞmated with the
ElectropherogramV3 dataset. Alteraঞon rates were regressed linearly on the nucleoঞde posiঞon and a t-test was per-
formed to assess whether the regression coefficient was significantly different from zero. p-values were corrected using the
Benjamini-Hochberg method. If the coefficient had a significant corrected p-value at the 0.05 level, the linear funcঞon was used.
Otherwise, the average alteraঞon rate was used. Significant p-values are underlined. NA: not available.

Primer Original Base Error Type Error Rate Error Rate Corrected p-value
Position 1 Position 105

Env2

Ambiguous

Excluding Ambiguous 0.0002 0.0002 0.9121
Excluding Definite 0.0061 0.0061 0.4967

Including Ambiguous 0.0096 0.0096 0.9376
Including Definite 0.3016 0.3016 0.9121

Indel 0.1835 0.1835 0.9951

Definite

Excluding Ambiguous 0.0002 0.0002 0.2561
Excluding Definite 0.0043 0.0043 0.0912

Including Ambiguous 0.0056 0.0174 0.0005
Indel 0.0145 0.0077 2× 10−08

Env6

Ambiguous

Excluding Ambiguous 0 0 NA
Excluding Definite 0.0037 0.0037 0.8966

Including Ambiguous 0.0108 0.0108 0.3463
Including Definite 0.3361 0.3361 0.9951

Indel 0.0492 0.0492 0.8326

Definite

Excluding Ambiguous 0 0 NA
Excluding Definite 0.0033 0.0033 0.2561

Including Ambiguous 0.0143 0.0143 0.0778
Indel 0.0066 0.0066 0.2561

Env7

Ambiguous

Excluding Ambiguous 0 0 NA
Excluding Definite 0.0119 0.0119 0.9121

Including Ambiguous 0.039 0.039 0.9376
Including Definite 0.2328 0.2328 0.9121

Indel 0.0413 0.0413 0.2561

Definite

Excluding Ambiguous 0 0 NA
Excluding Definite 0.0038 0.0038 0.4605

Including Ambiguous 0.0472 0.0273 0.0313
Indel 0.0018 0.0018 0.9121

Env11

Ambiguous

Excluding Ambiguous 0 0 NA
Excluding Definite 0.0032 0.0032 0.9121

Including Ambiguous 0.0136 0.0136 0.8969
Including Definite 0.2208 0.2208 0.8578

Indel 0.1442 0.1442 0.9038

Definite

Excluding Ambiguous 0.0008 0.0008 0.8326
Excluding Definite 0.0037 0.0037 0.9121

Including Ambiguous 0.0509 0.0274 0.0171
Indel 0.0064 0.0064 0.8326
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Figure 5.1: Histogram of FPRs in the LA Dataset. The histogram depicts the distribuঞon of FPRs in the LA dataset. Each bar
represents a range of FPRs, its height indicates the number of sequences falling within that FPR range.

Table 5.3: Number of Strains by Subtype, Circulaধng Recombinant Form or Group, LA Dataset. The numbers of strains of each
subtype, circulaঞng recombinant form (CRF) or group in the LA dataset are tabulated above.

Subtype, CRF or Group Number of Strains
B 35,312
C 11,056
A1 10,187
01_AE 4,986
D 2,691
G 1,422
F1 1,308
F2 324
O 226
A2 207
H 121
CPZ 68
J 46
K 27
N 11
P 5
Total 67,997
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Figure 5.2: Histogram of the FPR Shiđs between the LA and SangerAlterationV3 Datasets. The histogram displays the dis-
tribuঞon of the shi[s in FPR between sequences in the LA dataset and their altered counterparts in the SangerAlterationV3
dataset. Each bar represents a FPR-shi[ range, its height indicates the number of sequences falling within that FPR-shi[ range.
Zero-valued shi[s were excluded from the histogram and are represented by the red peak instead. 79% of the shi[s are equal to
zero (red peak), 11% are below zero (bars le[ of red peak) and 10% are above zero (bars right of red peak).
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Figure 5.3: Probabiliধes of Decreasing FPR as More Replicates are Performed. FPRs in SA dataset were compared with their
unaltered counterparts in the LA dataset. The probabiliঞes of obtaining nth replicate FPRs lower than the singleton FPRs are
plo�ed with increasing values for n (replicate number) in the chart above.
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Figure 5.4: Condiধonal Probabiliধes of Change in Predicted Tropism. Cutoff sets {5,10} (a), {5,15} (b), {10} (c), and {20} (d) were
applied to FPRs in the LA, SangerAlterationV3,MV3, andMSV3 datasets to calculate the condiঞonal probabiliঞes of change in
predicted tropism. Results are shown for SangerAlterationV3 dataset singleton (S), SangerAlterationV3 dataset triplicate (T),
MV3 dataset (M),MSV3 dataset singleton (MSS), andMSV3 dataset triplicate (MST) FPRs. There are no replicates on theMV3

dataset since its sequences contain no ambiguiঞes. The circles in the figure represent the predicted tropism. The arrows indicate
a change in predicted tropism with the head of the arrow poinঞng towards the change. The arrow labels contain the probabiliঞes
for the respecঞve changes in predicted tropism as calculated with the dataset menঞoned above.
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Figure 5.5: Histogram of the FPR Shiđs between the LA and SEV3 Datasets. The histogram displays the distribuঞon of the shi[s
in FPR between sequences in the LA dataset and their altered counterparts in the SEV3 dataset. Each bar represents a FPR-shi[
range, its height indicates the number of sequences falling within that FPR-shi[ range. Zero-valued shi[s were excluded from the
histogram and are represented by the red peak instead. 23of these shi[s are zero (red peak), 40% are below zero (bars le[ of red
peak) and 36% are above zero (bars right of red peak).

Here again we see the tendency of geno2pheno[coreceptor] to reduce FPR when sequence alterations are present.
Figure 5.6 shows a plot of FPR shifts averaged by nucleotide position. Alterations in some parts of V3 have a
higher propensity for changing coreceptor tropism than others, as expected. The magnitude and sign of the
average shifts vary greatly with the nucleotide position. Shifts averaged by nucleotide or ambiguity code can be
seen in Table 5.4. Among these average FPR shifts, the smallest equals−4.85, while the largest equals−1.20.
Gaps induced an average FPR shift of 0.26.

In LA, 6,133 sequences contained ambiguous bases. The sequences in the MV3 dataset were derived from
6,118 of these sequences by resolving their ambiguities. Fifteen sequences were excluded to avoid combinatorial
explosion. Among the 6,133 original sequences, 41% resulted in two derived sequences while 59% resulted in
more than two sequences (Figure 5.7). Figure 5.8 shows a plot of the average shift in MSV3 against the sam-
pling proportion, for triplicate and for singleton FPRs. The magnitude of the shift decreases as the proportion
increases, and was zero for proportions of 85% of the sequences or more. The lowest proportion tested, 1%,
yielded a mean singleton FPR shift of 0.61 (σ = 10.91), and a mean triplicate FPR shift of -4.5 (σ = 9.35).
Since conditional change-of-predicted-tropism probabilities decrease as the sampling proportion increases, Fig-
ure 5.4 only displays those for sampling 1% of the variants in MV3, labeled MSS for singleton FPRs and MST
for triplicate FPRs. Change-of-predicted-tropism probabilities calculated with all the sequences inMV3 are also
displayed in Figure 5.4 (probabilities labeled M).

Robustness of Drug-Exposure Models in the Presence of Sequencing Alterations

The EPPRRT (Tables 5.5 and 5.6) and EPIN (Table 5.7) alteration rates were estimated using the nucleotide
sequences and electropherograms in the ElectropherogramPRRT and ElectropherogramIN datasets, respec-
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Figure 5.6: Mean FPR Shiđs Averaged by Nucleoধde Posiধon, SEV3 Dataset. The graphic above shows the mean shi[ in the FPR
averaged by nucleoঞde posiঞon. Shi[s were calculated by comparing FPRs in the SEV3 dataset with their unaltered counterparts
in the LA dataset. Each bar represents a nucleoঞde posiঞon, its height indicates the mean FPR shi[ resulঞng from an alteraঞon
at that posiঞon. Error bars show standard deviaঞon. Inserঞons are labeled with the preceding nucleoঞde posiঞon, the character I
and an index.



Table 5.4: MeanFPRShiđAveragedbyNucleoধdeBase,SEV3 Dataset. The table shows themean FPR shi[ and standard deviaঞon
(SD), averaged by subsঞtuঞng nucleoঞde base a[er alignment. Shi[s were calculated by comparing FPRs in theSEV3 dataset with
their unaltered counterparts in the LA dataset. Although gaps were not considered when generaঞng the SEV3 dataset, some
nucleoঞde alteraঞons were transformed to gaps by the alignment program of geno2pheno[coreceptor].

IUPAC Base Mean Standard Deviation
A -3.33 20.01
C -1.77 17.98
G -4.85 17.49
T -2.40 18.33
B -2.57 12.98
D -2.18 12.12
H -1.77 13.26
K -2.65 12.94
M -1.88 13.35
N -2.19 12.50
R -2.86 12.72
S -2.89 13.06
V -2.42 12.26
W -1.63 13.12
Y -1.20 14.25
- 0.26 18.07
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Figure 5.7: Histogram of the Number of Derived Sequences in theMV3 Dataset. TheMV3 dataset was created from sequences
in the LA dataset containing ambiguous bases and having an FPR below 20. The ambiguiঞes in each of these sequences were
resolved by deriving further sequences with all nucleoঞde combinaঞons represented by the ambiguiঞes. Each bar represents a
range in the number of derived sequences, its height indicates the number of LA sequences that resulted in an amount of derived
sequences falling within that range.
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tively. Using the EPPRRT and EPIN rates, ten nucleotide sequences with in-silico simulated Sanger-sequencing
variability were generated from each sequence in the TPRRT and TIN datasets (these datasets are described in
Section 3.3), respectively. The resulting sequences, called SangerAlterationPRRT and SangerAlterationIN,
respectively, were interpreted with ExposurePhenoonlyIASPos and ExposurePhenofull drug-exposure mod-
els (Section 3.3). Subsequently, continuous drug-exposure predictions were discretized with DEMax cutoffs.
The fraction of predictions that changed as a result of simulated sequencing variability is shown in Table 5.8.
ExposurePhenoonlyIASPosmodels presented a higher fractionof unchangedpredictions (µ = 0.96; σ = 0.01)
than ExposurePhenofull models (µ = 0.93; σ = 0.02)

5.3.3 Discussion

The analysis presented in Section 5.3 addresses two related questions: the robustness of geno2pheno[coreceptor]
with respect to sequence alterations in terms of change of predicted tropism, and the influence of minority
populations on the predictions of geno2pheno[coreceptor]. I have subjected geno2pheno[coreceptor] to a challenge
involving the systematic introduction of simulated sequencing variability into a large set of V3 nucleotide se-
quences in order to generate four datasets: SangerAlterationV3 simulates alterations due to the Sanger sequenc-
ing technique. SEV3 explores the effects of systematically introduced single nucleotide exchanges. With MV3

andMSV3 I investigated the influence of simulated viral minorities undetected by bulk sequencing. Addition-
ally, the SangerAlterationPRRT and SangerAlterationIN datasets were created for assessing the robustness of
drug-exposure models.

The effect of sequencing X4-associated codons at amino-acid positions 11, 13, 24, 25, and 32 (nucleotide

205



Table 5.5: Esধmated EPPRRT Sequencing Variability Rates (1). Posiঞon-wise alteraঞons were esঞmated with the
ElectropherogramPRRT dataset. Alteraঞon rates were regressed linearly on the nucleoঞde posiঞon and a t-test was performed
to assess whether the regression coefficient was significantly different from zero. p-values were corrected using the Benjamini-
Hochberg method. If the coefficient had a significant corrected p-value at the 0.05 level, the linear funcঞon was used. Otherwise,
the average alteraঞon rate was used. Significant p-values are underlined. NA: not available.

Primer Original Error Type First Last Error Rate Error Rate Corrected
Base Pos. Pos. First Pos. Last Pos. p-value

PRRT-2F

Ambiguous

Excluding Ambiguous 1 436 0.0002 0.0002 1.0
Excluding Definite 1 436 0.0007 0.0007 0.76

Including Ambiguous 1 436 0.0244 0.008 0.03
Including Definite 1 436 0.144 0.144 0.72

Indel 1 436 0.005 0.005 0.07

Definite

Excluding Ambiguous 1 436 0.0001 0.0001 0.69
Excluding Definite 1 436 0.0012 0.0012 0.84

Including Ambiguous 1 436 0.0671 0.0401 < 10−16

Indel 1 436 0 0.0006 < 10−10

A

Ambiguous

Excluding Ambiguous 1 564 0.0001 0.0001 0.29
Excluding Definite 1 564 0.0008 0.0008 0.69

Including Ambiguous 1 564 0.023 0.023 0.09
Including Definite 1 564 0.2789 0.2789 0.10

Indel 1 564 0.0193 0.0193 0.43

Definite

Excluding Ambiguous 1 564 0.0001 0.0001 0.33
Excluding Definite 1 564 0.0012 0.0008 0.02

Including Ambiguous 1 564 0.0599 0.0599 0.12
Indel 1 564 0.0001 0.0005 < 10−4

B

Ambiguous

Excluding Ambiguous 409 885 0.0001 0.0001 0.26
Excluding Definite 409 885 0.0002 0.0002 0.84

Including Ambiguous 409 885 0.0029 0.0099 0.04
Including Definite 409 885 0.2511 0.1476 0.02

Indel 409 885 0.0166 0.0166 0.17

Definite

Excluding Ambiguous 409 885 0 0.0001 < 10−3

Excluding Definite 409 885 0.0008 0.0014 0.02
Including Ambiguous 409 885 0.0196 0.0453 < 10−14

Indel 409 885 0.0008 0.0008 0.39

C

Ambiguous

Excluding Ambiguous 799 994 0.0002 0.0002 0.81
Excluding Definite 799 994 0.0005 0.0005 0.29

Including Ambiguous 799 994 0.0043 0.0043 0.25
Including Definite 799 994 0.162 0.162 0.37

Indel 799 994 0.0268 0.0268 0.38

Definite

Excluding Ambiguous 799 994 0.0001 0.0001 0.19
Excluding Definite 799 994 0.0013 0.0013 0.10

Including Ambiguous 799 994 0.0195 0.0195 0.78
Indel 799 947 0.0054 0 0.03



Table 5.6: Esধmated EPPRRT Sequencing Variability Rates (2). Posiঞon-wise alteraঞons were esঞmated with the
ElectropherogramPRRT dataset. Alteraঞon rates were regressed linearly on the nucleoঞde posiঞon and a t-test was performed
to assess whether the regression coefficient was significantly different from zero. p-values were corrected using the Benjamini-
Hochberg method. If the coefficient had a significant corrected p-value at the 0.05 level, the linear funcঞon was used. Otherwise,
the average alteraঞon rate was used. Significant p-values are underlined. NA: not available.

Primer Original Error Type First Last Error Rate Error Rate Corrected
Base Pos. Pos. First Pos. Last Pos. p-value

D

Ambiguous

Excluding Ambiguous 28 643 0 0 NA
Excluding Definite 28 504 0.0014 0 0.04

Including Ambiguous 28 643 0.0086 0.0086 0.37
Including Definite 28 643 0.1495 0.1495 0.84

Indel 28 643 0.0167 0.0167 0.21

Definite

Excluding Ambiguous 28 643 0.0001 0.0001 0.43
Excluding Definite 28 643 0.002 0.0004 < 10−12

Including Ambiguous 28 643 0.0294 0.061 < 10−11

Indel 28 643 0.0005 0.001 0.01

F

Ambiguous

Excluding Ambiguous 1 301 0.0001 0.0001 0.29
Excluding Definite 82 301 0 0.0026 0.02

Including Ambiguous 1 301 0.0041 0.0041 0.42
Including Definite 1 301 0.1963 0.316 0.03

Indel 1 301 0.0472 0.0472 0.36

Definite

Excluding Ambiguous 1 301 0.0002 0 0.01
Excluding Definite 1 301 0.0014 0.0014 0.21

Including Ambiguous 1 301 0.0176 0.0176 0.07
Indel 83 301 0 0.0175 < 10−2

G

Ambiguous

Excluding Ambiguous 69 715 0.0001 0.0001 0.18
Excluding Definite 69 715 0.0008 0.0008 0.84

Including Ambiguous 69 715 0.0159 0.0062 0.02
Including Definite 69 715 0.3674 0.3674 0.07

Indel 69 682 0.0765 0 < 10−12

Definite

Excluding Ambiguous 69 715 0.0001 0 < 10−3

Excluding Definite 69 715 0.0013 0.0005 < 10−12

Including Ambiguous 69 715 0.0376 0.0224 < 10−24

Indel 69 715 0.0018 0.0018 0.81

H

Ambiguous Excluding Ambiguous 583 993 0 0 NA
Excluding Definite 583 993 0.0002 0.0002 0.19

Including Ambiguous 583 993 0.002 0.002 0.09
Including Definite 583 993 0.0531 0.0531 0.21

Indel 583 993 0.0111 0.0111 0.31

Definite

Excluding Ambiguous 583 993 0.0001 0.0001 0.29
Excluding Definite 583 993 0.0035 0.0008 < 10−10

Including Ambiguous 583 993 0.0335 0.0225 < 10−2

Indel 583 965 0.0027 0 < 10−21



Table 5.7: EsধmatedEPIN Sequencing Variability Rates. Posiঞon-wise alteraঞons were esঞmatedwith theElectropherogramIN

dataset. Alteraঞon rates were regressed linearly on the nucleoঞde posiঞon and a t-test was performed to assess whether the
regression coefficient was significantly different from zero. p-values were corrected using the Benjamini-Hochberg method. If the
coefficient had a significant corrected p-value at the 0.05 level, the linear funcঞon was used. Otherwise, the average alteraঞon
rate was used. Significant p-values are underlined. NA: not available.

Primer Original Error Type First Last Error Rate Error Rate Corrected
Base Pos. Pos. First Pos. Last Pos. p-value

5’-INT Ambiguous Excluding Ambiguous 1 649 0 0 NA
Excluding Definite 1 649 0.0004 0.0004 0.95

Including Ambiguous 1 649 0.0044 0.0044 0.33
Including Definite 1 649 0.1162 0.1162 0.63

Indel 1 649 0.0162 0.0162 0.71
Definite Excluding Ambiguous 1 507 0.0002 0 < 10−6

Excluding Definite 1 649 0.0019 0.0008 < 10−6

Including Ambiguous 1 649 0.0486 0.0164 < 10−27

Indel 1 649 0.0012 0.0033 < 10−2

IN-F Ambiguous Excluding Ambiguous 1 643 0.0001 0.0001 0.46
Excluding Definite 1 643 0.0001 0.0001 0.86

Including Ambiguous 1 643 0.0038 0.0038 0.76
Including Definite 1 643 0.0908 0.0908 0.29

Indel 1 643 0.003 0.003 0.86
Definite Excluding Ambiguous 1 643 0.0002 0 < 10−2

Excluding Definite 1 643 0.0014 0.0003 < 10−5

Including Ambiguous 1 643 0.0285 0.0285 0.80
Indel 1 643 0.001 0.001 0.36

3p31 Ambiguous Excluding Ambiguous 151 806 0 0 NA
Excluding Definite 151 806 0.0006 0.0006 0.65

Including Ambiguous 151 806 0.0022 0.0022 0.83
Including Definite 151 806 0.1844 0.0562 < 10−4

Indel 151 721 0.0419 0 < 10−4

Definite Excluding Ambiguous 151 806 0.0001 0.0001 0.65
Excluding Definite 151 806 0.0024 0.0004 < 10−18

Including Ambiguous 151 806 0.0254 0.0392 < 10−6

Indel 151 806 0.0031 0.0002 < 10−16

SEQ1 Ambiguous Excluding Ambiguous 459 856 0.0002 0.0002 0.31
Excluding Definite 459 856 0 0 NA

Including Ambiguous 459 856 0.0005 0.0005 0.48
Including Definite 459 856 0.0267 0.0267 0.29

Indel 459 856 0.0006 0.0006 0.27
Definite Excluding Ambiguous 459 780 0.0001 0 0.03

Excluding Definite 459 823 0.0009 0 < 10−4

Including Ambiguous 459 856 0.0069 0.0324 < 10−4

Indel 459 763 0.0061 0 < 10−5

SEQ2 Ambiguous Excluding Ambiguous 1 496 0 0 NA
Excluding Definite 1 496 0 0 0.80

Including Ambiguous 1 496 0.0043 0.0043 0.83
Including Definite 1 496 0.0492 0.0492 0.48

Indel 1 496 0.0008 0.0008 0.66
Definite Excluding Ambiguous 1 496 0.0001 0.0001 0.29

Excluding Definite 1 496 0.0008 0.0008 0.29
Including Ambiguous 1 496 0.0584 0.0584 0.76

Indel 93 496 0 0.0027 < 10−11



Table 5.8: Fracধon of Unchanged Drug-Exposure Predicধons under Simulated Sequencing Variability. From each sequence
in TPRRT and TIN, ten sequences with simulated sequencing variability were constructed. A[er evaluaঞon with each
ExposurePhenoonlyIASPos and ExposurePhenofull drug-exposure model, and discreঞzaঞon with DEMax cutoffs, the fracঞon
of predicঞons that did not change as a result of the simulated sequence alteraঞons was quanঞfied. SD: Standard Deviaঞon.

ExposurePhenoonlyIASPos ExposurePhenofull
3FTC 0.97 0.92
ABC 0.97 0.91
AZT 0.98 0.93
d4T 0.97 0.93
ddC 0.98 0.94
ddI 0.97 0.93
TDF 0.96 0.89
DLV 0.97 0.92
EFV 0.95 0.87
ETR 0.95 0.92
NVP 0.97 0.92
RPV 0.98 0.96
AFPV 0.94 0.94
ATV 0.95 0.92
DRV 0.93 0.94
IDV 0.96 0.94
LPV 0.94 0.93
NFV 0.95 0.93
SQV 0.96 0.94
TPV 0.97 0.94
EVG 0.99 0.97
RAL 0.98 0.93
Naïve PRRT 0.95 0.92
Mean AM (SD) 0.96 (0.01) 0.93 (0.02)



position numbers 30-33, 37-39, 69-72, 73-75, and 94-96) more accurately by using specific primers has been
studied [422]. The primer sets were specifically designed for subtype B. The study I present extends to other
subtypes, as about half of the 67,997 sequences were non-Bs (Table 5.3).

The FPR shifts between the original and the in-silico mutated sequences in SEV3 have been analyzed (Fig-
ure 5.5 and Table 5.4). 9.1% are less than -20 and 11% are greater than 10. These two shift values were chosen
to be multiples of 10, close to the 10th and 90th percentile of the shift distribution. The shift cutoff -20 iden-
tifies amino-acid positions 7, 8, 11 (nucleotide position numbers 19-21, 22-24, and 31-33), and insertions after
amino-acid positions 21, 22 and 23 (nucleotide position numbers 61-63, 64-66, and 67-69) as highly relevant for
detectionofCXCR4-capable viruseswith geno2pheno[coreceptor]. Using a shift cutoff of 10, positions 9, 10, 17, 28
and 31 (nucleotide positions 25-27, 28-30, 48-51, 82-84, 91-93) are highly relevant for the detection ofR5 viruses
with geno2pheno[coreceptor]. Mean shifts averaged by nucleotide base are negative, unless the sequence alteration
is replaced with a gap by the alignment program. The smallest mean shift is−4.85. These results indicate that
the position at which the alteration occurs is far more important than the nucleotide base the alteration consists
of, as expected.

Triplicate sequencing is performed with the intention of improving the detection of X4-capable minority
variants. In triplicate testing, the lowest FPR is considered the correct one, without comparing the obtained
nucleotide sequences. Thus, if the lowest FPR is caused by a nucleotide sequencing error, triplicate testing will
bias the prediction towards favoring X4-capable. If the obtained sequences are not manually inspected, errors
in the individual sequences remain undetected. Thus, themore sequencing replicates are performed, the higher
the chance you get an FPR lower than the first one, even if X4-capable minority variants are absent. In this
case, triplicate testing can result in an exclusion of MVC-eligible patients, without increasing the safety of the
prediction.

Figure 5.4 shows the influence of introduced variability for change of predicted tropism depending on the
FPR cutoffs, for both single and triplicate testing. geno2pheno[coreceptor] is robust when introduced variability
is present: for all cutoff sets, the probability of no change of predicted tropism is above 98% (or above 93% if
the intermediate tropism prediction is considered) for singleton FPRs. In this scenario, triplicate FPRs raise the
probability that predicted X4 capability will not change by up to 2%, but reduce the probability that predicted
R5 tropism will not change by up to 4%.

In order to address the study of minorities, I created theMV3 andMSV3 datasets. MV3 contains the variants
from which the sequence with ambiguities could have arisen, but might also contain variants absent in the
sample. In contrast, MSV3 presents a more realistic picture, since a sequence that may contain ambiguities is
constructed froma sample of the sequences inMV3 representing the limited sequencing depth of an experiment.
For the smallest fraction tested, 1%, the probability predictedX4 tropism does not change is 90%with singleton
FPRs, and 98%with triplicate FPRs. Thus, triplicate FPRs raise the probability predicted X4 tropism does not
change by 9%, at most, for the lowest tested proportion (Figure 5.4).

The lowest value obtained for the probability that there is no change of predicted tropism is 90% with
geno2pheno[coreceptor]. In order to put this number into context, we mention Trofile’s reported sensitivity to
detect MVC responders, 92% [412]. geno2pheno[coreceptor] proved to be robust in the presence of sequence al-
terations and when detectable minorities are missed by bulk sequencing. False R5 predictions were either rare
or absent in our analysis, depending on the selected cutoffs. If a change of predicted tropism occurs, it is much
more likely that sequence alterations result in falseX4-capable predictions than falseR5predictions. This speaks
for the safety of MVC prescription to patients with predicted R5 viruses.
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Simulated Sanger-sequencing variability was introduced into the test sets of models for predicting drug ex-
posure (Section 3.3). The consequences of this variability were assessed by quantifying the number of discrete
drug-exposurepredictions that changed as a result of the introducedvariability. BothExposurePhenoonlyIASPos
and ExposurePhenofull drug-exposure models proved to be robust when simulated sequencing variability is
present in the nucleotide sequences they interpret. Among all drug-exposure models, the ExposurePhenofull
for TDF showed the highest fraction of predictions that changed as a result of the simulated sequencing vari-
ability (11%; Table 5.8). For predicting drug exposure, ExposurePhenofull models consider more residues than
ExposurePhenoonlyIASPos models. This results in a higher performance of ExposurePhenofull models in pre-
dicting drug exposure when compared to ExposurePhenoonlyIASPos models (Tables 3.9 and 3.10). However,
the fact that ExposurePhenofull models consider more alignment positions than ExposurePhenoonlyIASPos

models makes them more susceptible to variability in the input sequences (Table 5.8).

211



212



6
Conclusion and Outlook

This final, concluding chapter of this work is structured as follows. First, I provide a summary of the
problem in question and of the state of the art. Next, I argue why the methods described in this work represent
an advancement of the state of the art (Section 6.1). Last, I propose research topics related to this work that
could further advance the state of the art (Section 6.2).

HIV-1 is a pathogen that causes a deadly infection. Left untreated, HIV-1 infection almost inevitably leads
to the death of the human host, who will develop AIDS in the advanced stages of the disease and who will
probably succumb to an opportunistic infection (Section 1.2.2). HIV-1 emerged through zoonosis in West-
Central Africa between 1853 and the early 1900s. After its emergence, the pathogen, carried by its human hosts,
traveled along the Sangha and Congo rivers until it reached the city of Kinshasa. The conditions in this city
allowed for the spread of the disease to a large number of persons. Probably, the establishment of the HIV-1
epidemic in Kinshasa was only possible due to iantrogenesis. FromKinshasa, HIV-1 infection spread to the rest
of the world, evolving into a pandemic (Section 1.3).

In 1983, HIV-1 was identified as the etiologic agent of AIDS. Over the course of the decades following 1983,
outstanding progress was made towards the treatment and the prevention of the disease. Regarding the treat-
ment of the disease, themost important scientific accomplishments are related to the development of antiretro-
viral drugs and the acquisition of knowledge on how to effectively use antiretroviral drugs for treating HIV-1
infection (Section 1.5.1). cART, the current standard of care in HIV-1 infection, involves the simultaneous
intake of several antiretroviral drugs. cART presents the best chances of therapeutic success if the drug combi-
nations used for treatment are tailored to each individual patient. Effective choice of the drug compounds of
cARTmust consider the potential ofHIV-1 to develop drug resistance, as well as several patient-specific factors.
Molecular diagnostics are essential for the accurate selection of the drug compounds in cART, as well as for
monitoring the effectiveness of therapy (Section 1.5.4).

Drug resistance of HIV-1 will preclude therapeutic success if drug compounds are used against whichHIV-1
is resistant (Section 1.5.3). For this reason, determination of HIV-1 drug resistance prior to treatment initiation
is decisive for therapeutic success. Determination of HIV-1 drug resistance is performed with aid of molecular
diagnostics. There are two approaches with which HIV-1 drug resistance can be determined. One approach
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involves the in-vitro measurement of the replicative capacity of HIV-1 in the presence of different concentra-
tions of an antiretroviral compound. Comparison of the replicative capacity of an HIV-1 strain isolated from
a clinical blood sample to that of a reference HIV-1 strain allows for the determination of the FC (Section 3.1).
Interpretation of the FC values for the drugs considered for therapy is necessary. Specifically, a decision regard-
ing the prospects that the drug combination has for success must be made on the basis of individual, in-vitro
resistance measurements for each drug. This decision must take into account the following issues. First, the
extent of drug resistance indicated by a certain FC value is drug-specific, i.e. the FC value for a drug may indi-
cate susceptibility of HIV-1 to the drug, while the same value for the FC of another drugmay indicate HIV-1 to
this other drug. Second, there are differences in the mechanics of the replication of HIV-1 in-vivo, as compared
to in-vitro. Third, although FC values are determined for each drug individually, compounds in cART act in
concert (Section 3.5). The second approach for determination of drug resistance involves sequencing the viral
genes that are target of antiretroviral drugs. The extent of viral resistance to available antiretroviral drugs can
be determined through interpretation of the resulting amino-acid sequences of the viral target proteins. This
requires prior knowledge of the association of the mutations of HIV-1 to drug resistance (Section 3.2).

Genotypic drug-resistance interpretation systems facilitate the interpretation of an HIV-1 genotype with re-
spect to drug resistance andwith respect to the prospects that a certain drug combinationhas for therapeutic suc-
cess. Two generations of these systems exist. The key feature of the first generation of genotypic drug-resistance
interpretation systems is that they rate each individual antiretroviral drug with respect to the resistance that an
HIV-1 variant may present and do not do so for combinations of drugs. The treating clinician must therefore
interpret the ratings for each individual drug in order to decide whether a certain drug combination has good
prospects for success. First-generation genotypic drug-resistance interpretation systems can be classified into
two types, according to the basis on which they rate drug resistance. The first type, rulॽ-based, comprises in-
terpretation systems that operate on set of rules crafted by human experts in order to estimate drug resistance.
The second type, data-driven, comprises interpretation systems that use a statistical model that was trained on
a dataset in order predict drug resistance (Section 3.2). Second-generation genotypic drug-resistance interpre-
tation systems offer a more advanced interpretation in that they rate drug combinations with respect to their
prospects for therapeutic success. For this reason, their use in the selection of drug combinations for cART
is less dependent on interpretation by human experts. I think that genotypic therapy-success interpretation sys-
tem is a more accurate name for this second generation of systems. While several data-driven therapy-success
interpretation systems exist, rules-based interpretation systems are not known to me (Section 4.2).

First-generation genotypic drug-resistance interpretation systems are an integral part of the standard of care
for treating HIV-1 infection. However, genotypic therapy-success interpretation systems have not yet reached
broad acceptance. Genotypic therapy-success interpretation systems described prior to the publication of this
work are confronted with a number of obstacles that have prevented them from reaching the bedside. First,
for apparently no good reason, their predictions contradict the results of clinical studies on the effectiveness of
antiretroviral therapy, as well as the intuition of treating clinicians. Second, the systems do not provide the users
with an insight on the basis with on drug combinations are rated. Third, treating clinicians may doubt whether
the predictions of a system are robust to the variability that is inherent to nucleotide sequencing. Fourth, cer-
tification of the systems by an authority is challenging due to their data-driven nature. Specifically, procedures
for certifying the systems are not yet in place. In the sameway, it is not clear how retraining of a system, possibly
involving the expansion of the capabilities of the system (e.g. providing predictions for previously disregarded
drug compounds), should affect a previously granted certification for the system (Section 4.2).
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6.1 Conclusion

In the following, I recapitulate the main findings of this work and highlight, how these findings have advanced
the state of the art.

In Section 3.3, I present a statistical method that is trained on bothGPPs and genotype-therapy-history pairs
(GTHPs). Themethod produces scores that I call DES. DES are correlated with the drug exposure and drug re-
sistance ofHIV-1, while simultaneously being predictive for the therapeutic success of cART. In the following, I
refer to figures describing the best-performingDES-model variants. The performance ofDES in predicting drug
exposure was tested on the TPRRT and on the HIVdbExposure datasets. Compared to geno2pheno[resistance]
(µ = 0.71 and µ = 0.74, respectively), the average performance of DES on these two datasets is superior
(µ = 0.78; p < 10−4) or comparable (µ = 0.76; p = 0.46), respectively. The average correlation of the
method with FC values from GPPs measured with the PhenoSense® assay is 0.51, which is sufficient for ac-
curate classification of HIV-1 genotypes as susceptible or resistant (Section 3.4.2). The performance of DES
in predicting therapeutic success was tested on the TEuResistTE and on the HIVdbTCE datasets. Compared
to geno2pheno[resistance] (AUC = 0.68 and AUC = 0.64, respectively), the performance of DES was higher
(AUC = 0.71) or comparable (AUC = 0.64), respectively. These higher performances represent an improve-
ment of the state of the art.

An important advantage of rules-based interpretation systems is that the rules on which they base their in-
terpretations consider different types of information. Specifically, these rules are crafted under consideration of
three sources of information that are associated to HIV-1 genotypes: in-vitromeasurements of drug resistance,
drug use history, and the therapeutic success of drug combinations (e.g. http://hivdb.stanford.edu).
The information contained in each of these three sources presents a high pairwise similarity. Nonetheless, there
are specific reasons why the exploitation of all three sources of information leads to a better performance in
predicting therapeutic success (Sections 3.5, 3.2, 4.1, and 4.2.3). geno2pheno[resistance] is trained on GPPs and
therefore only exploits one source of information. DES models are trained on both GPPs and GTHPs. DES
feature two advances of the state of the art, which originate from their incorporation of bothGPPs andGTHPs.
First, the additional information provided to the training sets by GTHPs results in a higher performance. The
higher performance of DES when compared to geno2pheno[resistance] (Section 3.3.2) can be attributed to the
additional source of information that they exploit. Additionally, the models allow for the exploitation of the
information contained in the EuResist database to an extent that had not been accomplished before. This man-
ifests itself in the predictive performance of DES as well as in the in-vivo drug fingerprints that were extracted
from the models. Furthermore, the in-vivo drug fingerprints allow for interpretation of the predictions of the
method. Second, DES models are easier to keep up to date than geno2pheno[resistance], since GTHPs are easier
to obtain than GPPs and since DES models allow for automatic retraining without the need for expert inter-
vention. While GPPs are currently not widely used in routine clinical practice, molecular diagnostics involving
the sequencing of HIV-1 are part of the standard of care. Therefore, GTHPs are constantly being generated.

In Section 4.2, I present a system for predicting the success of cART. This system is trained on TEs, which
describe instances of the course of cART when specific factors are given at baseline (i.e. a specific viral geno-
type and a specific drug combination). For training the system, I used DES as input features and the NAS, a
measure for cumulative, long-term therapeutic success, as the prediction target. Furthermore, the system was
trained with an SVM for the regression of right-censored data. These characteristics allow the therapy-success
prediction system to advance the state of the art in several ways, which I detail in the following. The use of DES
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as input features is advantageous. Specifically, the system makes better use of the genotype by using DES, since
DES are correlated with both therapeutic history and drug resistance. It is known that information on thera-
peutic history and drug resistance at baseline is very useful in predicting the outcome of cART (Sections 4.2
and 1.5.4). Thus, the use of DES as input features allows for the incorporation of more information into the
predictions of therapeutic success, than that which is contained in the training set of the system. Furthermore,
the use of DES in conjunction with TEs allows for the simultaneous use of the three sources of information
mentioned above, which eliminates the main competitive advantage of rules-based interpretation systems. The
therapy-success prediction system uses theNAS as a prediction target, which has a number of advantages. First,
the NAS allows for evaluation of the success of cART based on the course of the entire therapy, and not only
based on a snapshot or a number of snapshots. Second, the measure implicitly considers the side-effect profile,
the potency, and adherence-fostering characteristics of drug combinations. Third, the measure accommodates
transient increases of the VL, rating therapies with these transient increases lower, but without labeling them as
failures altogether. Last, the NAS can accommodate differential VL monitoring intervals, as long as the VL is
measured at least once every six months, allowing for a maximum of ten percent of the total number of therapy
semesters without VL measurements. The models output a predicted version of the NAS called the pNAS.
The pNAS has a comparatively high performance in predicting therapeutic success. Specifically, averages of the
performances across multiple datasets and multiple test prediction targets indicate that pNAS could attain a
higher average performance (0.71) than a GSS obtained with the HIVdb rule set (0.61; Section 4.2.2). pNAS
performs comparatively better when used for predicting the NAS and also when used for predicting therapy
success at a certain number of weeks after treatment initiation. The analysis of the ranking of drug combina-
tions shows that pNAS are, at least grosso modo, in line with the results of clinical studies. More importantly,
pNAS are in line with the intuition of treating clinicians. Specifically, the list of drug combinations that was
ranked includes currently used drug compounds and drug compounds that are not used any more due to their
comparatively low efficacy and unfavorable side-effect profile. pNAS never placed disused drug combinations
into the top rank. At the same time pNAS correctly ranked NNRTI-containing drug combinations at the top
for patients without drug resistance mutations at baseline. In contrast, when drug-resistance mutations were
present at baseline, pNAS correctly ranked a PI-containing drug combination at the top. pNAS can be used
for composing a therapy incrementally in an interactive fashion (Section 4.2.3). This can be especially useful in
patients with limited drug options. Both DES, which are used for calculation of pNAS, and pNAS themselves
are interpretable (Section 4.2.3). This is important, since it can both foster confidence in the interpretation
systems and provide an explanation for (apparently) implausible predictions. Last but not least, both DES and
pNAS are generated by completely data-driven models that are trained on data from routine clinical practice.
The fact that the models are data-driven reduces or even eliminates the risk of expert bias, as compared to rules-
based interpretation systems. The training set of the model, whichmainly consists of data from routine clinical
practice, gives them a comparatively strong anchor to reality, when compared to models that are solely mainly
trained on data from in-vitro experiments or data from clinical studies.

In Sections 3.4 and 3.5, I present several methods for the translation of therapeutically relevant quantities
into clinically meaningful categories (cutoff determination). These methods are important since they allow for
the interpretation anduse ofmolecular diagnostics by treating clinicians in order to improve antiretroviral treat-
ment. The cutoffs generated with the methods presented in Section 3.4 allow for interpretation of DES with
respect to drug exposure, drug resistance, and the prospects a therapy has for success. Furthermore, with aid
of the cutoffs, discrimination between drug exposure, drug resistance, and the prospects for therapy success is
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made possible. Themethod presented in Section 3.5 tackles the long-standing problem of cutoff determination
for (predicted) phenotypic resistance measurements. This method allows for FC-cutoff determination using
data from routine clinical practice without the need for expert intervention. The main advances that are pro-
vided by themethod, when compared to the state of the art, are two fold. First, themethod does not require the
explicit selection of cutoffs for the determination of the cutoffs. Specifically, previously described methods [322]
translate the FC values for each individual drug (which are not comparable between drugs) into a quantity that
is comparable between drugs. Cutoff determination for FC values is then achieved by applying (expert-selected)
cutoffs to this quantity. The method presented in Section 3.5 selects cutoffs for FC values based on the form of
a sigmoid function, such that it does not need cutoffs for selecting the cutoffs. Furthermore, the method pro-
duces cutoffs that translate FC values into categories that are in line with the clinical definition of the categories
susceptible, intermediate, and resistant. Second, themethod can produce intuitive plots that greatly enhance the
method’s interpretability.

In Section 5.3, I subject two data-driven genotypic interpretation systems, geno2pheno[coreceptor] andDES, to
an in-silico challenge in order to test their robustness with respect to variability of the input sequence. Themost
important finding for geno2pheno[coreceptor] concerns the suggested practice of performing genotypic determi-
nation of tropism in triplicate and subsequently only considering the prediction with the lowest FPR while
discarding the other two predictions. I show that this practice does little for avoiding false R5 predictions, while
substantially increasing false X4 predictions. Furthermore, my analysis showed that both geno2pheno[coreceptor]
andDES are robust to the variability that is inherent to Sanger sequencing. This addresses the valid concern for
obtaining proof of the robustness of systems that are used in a healthcare context.

6.2 Outlook

In the following, I delineate some ideas that could be used in order to improve the accuracy and utility of meth-
ods for the prediction of the success of cART.

An important, pending improvement of genotypic drug-resistance interpretation systems concerns their
adaptation such that they can interpret nucleotide sequences generatedwithmassively parallel sequencingmeth-
ods (Section 5.1). When compared to Sanger sequencing, massively parallel sequencing methods present two
main advantages. First, they require significantly less time and monetary resources per sequenced sample. (De-
pending on the sequencing platform, this might only be true if the number of samples available for simultane-
ous analysis is sufficient for operating the sequencing device at full capacity.) Second, they can resolve minor-
ity HIV-1 variants accounting for as little as 0.1% of the population in the patient sample. The are two main
challenges that need to be solved in order to adapt genotypic drug-resistance interpretation systems such that
they can analyze data produced with massively parallel sequencing methods. First and foremost, it is unclear
to which extent minority HIV-1 variants that cannot be detected with Sanger sequencing are clinically relevant
[423, 424]. Second, since massively parallel sequencing methods can produce up to 2 giga base pairs of data in
a single run (Section 5.1), effective strategies and methods must be implemented in order to compress the data
prior to transmission via the internet.

Software used for interpretation ofmeasurements performed in the context ofmolecular diagnostics canben-
efit from third-party certification in many ways. Certification of the software results in substantially increased
user confidence. This, in turn, has the potential to largely increase the popularity and impact of the software.
Furthermore, certification can reduce the risk of releasing versions of the software that contain programming
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errors. In the worst of cases, these errors could result in false predictions. However, procedures for certifying
statistical models that are trained on datasets are yet to be established. A great advantage of the novel interpreta-
tion models described in this work lies in the fact that they can be easily updated, as new data become available.
However, this advantage could stand in the way of certification. The following questions are still open. Does
retraining of a model invalidate its certification, without regard to the extent with which the training set was
modified? If a model needs to be re-certified due to re-training, does the re-certification procedure need to be
as extensive as the initial certification procedure? (One has to bear in mind that certification procedures can be
very expensive.)

There are a number of settings in antiviral therapy for which currently available genotypic interpretation
systems, including the ones presented in this work, were not designed. In the following, I mention some of
them. (1) During the course of cART, older drug compounds are often replaced by newer drug compounds
if the treating clinician fears that prolonged therapy with the older drug compounds will cause long-term tox-
icities (Section 1.5.1). The switch from older drug compounds to newer drug compounds is often performed
while the VL is suppressed below the level of detection. Undetectability of the VL entails that it will not be
possible to obtain conventional HIV-1 genotypes from blood, i.e. nucleotide sequences of circulating HIV-
1 particles. Thus, in this setting, prediction of therapeutic success must be based on historical genotypes and
therapy history. Additionally, the proviral DNA (which is integrated in the host’s genome) can be isolated from
PBMCs and sequenced. However, onemust consider that the predictive value of nucleotide sequences of provi-
ral DNA from PBMCsmight be limited, since it may not be representative of resistant viral variants archived in
other compartments of the body. (2) With the intent of reducing the risk of long-term toxicity, NRTI-sparing
therapy strategies are currently being tested (Section 1.5.5). One therapeutic strategy comprises the initiation
of cARTwith a popular drug combination that includes NRTIs (induction phase), with subsequent interrup-
tion of NRTI intake after suppression of the VL below the limit of detection (maintenance phase). In this
therapeutic setting, prediction of therapeutic success at baseline must consider both the induction phase and
themaintenance phase. The following questions could probably be answeredwith a therapy-success prediction
system that has been tailored for this therapeutic setting. Which are the most-promising drug compounds for
the induction phase? Which drug compounds should be used during the maintenance phase? Should drug-
resistance criteria be more stringent with respect to the drug compounds used during the maintenance phase?
(3)Hepatitॾ B virॿ andHepatitॾ C virॿ are transmitted via the same routes as HIV-1. For this reason, there
are a number of patients with HIV-1-hepatitis co-infection. Treatment of HIV-1-hepatitis co-infected patients
is especially challenging due to the immunosuppressive effects ofHIV-1 infection and due to possible drug-drug
interactions resulting simultaneous treatment of HIV-1 infection and hepatitis. A particularity regarding the
treatment ofHIV-1-hepatitis-B co-infection lies in the fact that someNRTIs used for treatment ofHIV-1 infec-
tion are also active againstHepatitॾ B virॿ [425, 426]. Thus, treatment can be optimized to target both viruses.
Alike HIV-1 infection, Hepatitis C is treated with a combination of drugs [427]. Thus, successful treatment
of Hepatitis C is also dependent upon the optimal selection of a drug combination. (4) No therapy-success
interpretation system for therapy against human immunodeficiency virॿ type 2 is known to me.

Currently available therapy-success prediction systemsmainly consider factors relating toHIV-1 and the drug
compounds used in therapy. However, these systems could benefit from consideration of patient-specific fac-
tors other than the viral variant harbored by the patient. Patient-specific factors that alter the effect of drug
compounds can be grouped into two categories: pharmacogenetic and pharmacoecologic factors (reviewed in
[428]). Pharmacogenetic factors comprise variants in the genes of the patients which result in a differential
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effect of the drug compounds. These include:

• The human-leukocyte-antigen (HLA) type
• Gene variants that influence the absorption, distribution, metabolization, and excretion (ADME) of

drugs
• Gene variants that influence the behavior molecules in the body which transport drugs.

Pharmacoecologic factors influence the effect of drug compounds and are related to the health and behavior of
the patient. Examples for pharmacoecologic factors include:

• The lifestyle of the patient
• The adherence of the patient to the medication
• Interactions between coadministered drugs
• Comorbidities that are not related to HIV-1
• Reduced organ function
• Pregnancy

At current, antiretroviral therapy is allegedly the best example for personalizedmedicine. Interpretationmodels
used in cART have contributed immensely to the personalization of antiretroviral therapy by providing accu-
rate interpretation of the effect of viral genes in cART. I expect that the consideration of further, patient-specific
factors will greatly boost the success of antiretroviral therapy. Beyond antiretroviral therapy, the investigation of
non-viral patient-specific factors for the personalization of treatment harbor a great potential for the improve-
ment of human health.
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