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ABSTRACT

Cancer is a class of complex, heterogeneous diseases of which
many types have proven to be difficult to treat due to the high ge-
netic variability between and within tumours. To improve ther-
apy, some cases require a thorough genetic and molecular charac-
terisation that allows to identify mutations and pathogenic pro-
cesses playing a central role for the development of the disease.
Data obtained from modern, biological high-throughput exper-
iments can offer valuable insights in this regard. Therefore, we
developed a range of interoperable approaches that support the
analysis of high-throughput datasets on multiple levels of detail.

Mutations are a main driving force behind the development
of cancer. To assess their impact on an affected protein, we de-
signed BALL-SNP which allows to visualise and analyse single
nucleotide variants in a structure context. For modelling the ef-
fect of mutations on biological processes we created CausalTrail
which is based on causal Bayesian networks and the do-calculus.
Using NetworkTrail, our web service for the detection of deregu-
lated subgraphs, candidate processes for this investigation can be
identified. Moreover, we implemented GeneTrail2 for uncovering
deregulated processes in the form of biological categories using
enrichment approaches. With support for more than 46,000 cat-
egories and 13 set-level statistics, GeneTrail2 is the currently most
comprehensive web service for this purpose. Based on the ana-
lyses provided by NetworkTrail and GeneTrail2 as well as know-
ledge from third-party databases, we built DrugTargetInspector, a
tool for the detection and analysis of mutated and deregulated
drug targets.

We validated our tools using a Wilm’s tumour expression
dataset and were able to identify pathogenic mechanisms that
may be responsible for the malignancy of the blastemal tumour
subtype and might offer opportunities for the development of
novel therapeutic approaches.
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ZUSAMMENFASSUNG

Krebs ist eine Klasse komplexer, heterogener Erkrankungen
mit vielen Unterarten, die aufgrund der genetischen Variabilitat,
die zwischen und innerhalb von Tumoren herrscht, nur schwer
zu behandeln sind. Um eine bessere Therapie zu ermdglichen ist
daher in einigen Féllen eine sorgféltige, genetische und moleku-
lare Charakterisierung notig, welche es erlaubt die Mutationen
und pathogenen Prozesse zu identifizieren, die eine zentrale Rol-
le wéahrend der Krankheitsentwicklung spielen. Daten aus mo-
dernen, biologischen Hochdurchsatzexperimenten kénnen hier-
bei wertvolle Einsichten liefern. Daher entwickelten wir eine Rei-
he interoperabler Ansatze, welche die Analyse von Hochdurch-
satzdatensdtzen auf mehreren Detailstufen unterstiitzen.

Mutationen sind die treibende Kraft hinter der Entstehung
von Krebs. Um ihren Einfluss auf das betroffene Protein beur-
teilen zu konnen, entwarfen wir die Software BALL-SNP, wel-
che es erlaubt einzelne Single Nucleotide Variations in einer Kris-
tallstruktur zu visualisieren und analysieren. Um den Effekt ei-
ner Mutation innerhalb eines biologischen Prozesses modellie-
ren zu konnen, erstellten wir CausalTrail, das auf kausalen bayes-
schen Netzwerken und dem do-calculus basiert. Unter der Ver-
wendung von NetworkTrail, unserem Web-Service zur Detektion
deregulierter Subgraphen, konnen Prozesse identifiziert werden,
die als Kandidaten fiir eine solche Untersuchung dienen kénnen.
Zur Detektion deregulierter Prozesse in der Form von biologi-
schen Kategorien mittels Enrichment-Ansétzen implementierten
wir GeneTrail2. GeneTrail2 unterstiitzt mehr als 46.000 Kategorien
und 13 Statistiken zur Berechnung von Enrichment-Scores. Basie-
rend auf den Analysemethoden von NetworkTrail und GeneTrail2,
sowie dem Wissen aus Drittdatenbanken konstruierten wir Drug-
TargetInspector, ein Werkzeug zur Detektion und Analyse von mu-
tierten und deregulierten Wirkstoffzielen.

Wir validierten unsere Werkzeuge unter Verwendung eines
Wilm’s Tumor Expressionsdatensatzes, fiir den wir pathogene
Mechanismen identifizieren konnten, die fiir die Malignitét des
blastemreichen Subtyps verantwortlich sein kénnen und biswei-
len die Entwicklung neuartiger, therapeutischer Ansitze ermég-
lichen kdnnten.
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INTRODUCTION

You can have data without information, but you cannot have
information without data.
— DANIEL KEYS MORAN

Anthropologists classify eras of human history according to defining
technologies, concepts, or resources that have irreversibly shaped so-
cieties during those times. For example, we refer to ancestral periods
as the stone, bronze or iron age. Later periods became known as the
“age of enlightenment” or the “industrial revolution”. While it is un-
known how future generations will refer to our times, a reasonable
proposition seems to be that, today, we live in the “age of information”.
Via the internet, an unprecedented amount of knowledge is open to
more humans than ever before. The omnipresence of networked elec-
tronic devices allows to capture profiles of our everyday lives. Social
interactions, shopping preferences, location data, and other informa-
tion is routinely stored in tremendous quantities (cf. [McA+12]). How
to make use of this “Big Data”, for better or worse, remains an open
question. Whatever will turn out to be the answer to this question, it
will likely redefine every aspect of our modern society. Science is no
exception. While natural scientists were among the first users of com-
puters, the amount of captured experimental data remained at man-
ageable scales for a long time; with the notable exception of various
high-profile physics projects [BHS09]. However, this has changed dur-
ing the past decade. In biology, thanks to the development of ever
more potent high-throughput methods, the size of recorded data sets
has increased dramatically. It is possible to capture complete genomes,
transcriptomes and sizable parts of both, the proteome and the meta-
bolome with a single experiment each. Projects like ENCODE [ENCO04],
DEEPE, TCGA [McL+08], or 1000 Genomes [[10010] have collected vast
archives of high-throughput datasets.

Stephens et al. [Ste+15] estimate that by 2025 data from genomics 1 exabyte (EB) =
alone will require 2EB to 40 EB of storage. This far exceeds the pro- 1000 petabytes (PB) =
jected requirements of social platforms such as YouTube (1 EB to 2 EB), 107 bytes
Twitter (1 PB to 17 PB), but also of applications from astronomy such as
the data captured by telescopes (1 EB). It is thus fair to say that biology
has arrived in the realm of “Big Data”. Generating a large amount of
information is, however, only a prerequisite for understanding the bio-
logical processes that take place in an organism. The determination of
the human genome’s sequence [Lan+01; Ven+01] already showed con-
clusively that the main challenge posed by an open biological problem
is not necessarily the data generation process, but rather the analysis of
the generated measurements. Similarly, making sense of and interpret-
ing the data repeatedly proofs to be the main bottleneck in biological
high-throughput experiments. For example, knowing the expression

1 http://www.deutsches-epigenom-programm.de/
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Figure 1.1: Most common causes of death in Germany in 2014. The classifica-
tion into categories is according to the ICD-10 definitions. Neoplasms (cancer)
are the second most common cause of death after diseases of the circulatory
system and amounts for ~ 25 % to 30 % of all deaths [Stal6].

value of a single gene at one or even multiple points in time hardly of-
fers any insight into the current state of the cellular program [Gyg+99;
Gre+03]. Instead, the relationships between genes, transcripts, proteins,
metabolites, and how they interact, need to be elucidated to be able to
truly understand the molecular mechanisms of a single cell and, ulti-
mately, an organism. Thus, a primary goal of computational biology
is to unravel the relationships between the various measured entities,
given the available wealth of information.

1.1 MOTIVATION

In bioinformatics a main driver behind the development of better data
analysis methods are complex, heterogeneous diseases that have time
and again proven to be especially difficult to treat without detailed gen-
otypic and phenotypic knowledge. The prime example for a class of
such diseases is cancer. In 2014, roughly 25 % to 30 % of the deaths re-
corded in Germany [Stal6] could be attributed to malign neoplasms
(Figure @). Despite intensive research efforts over the last decades,
the timely detection of a tumour remains as one of the most effective
weapons in the fight against cancer. This is predicated by the nature
of tumourigenesis. Most tumours develop due to (epi-)genetic aber-
rations. These aberrations are governed by a stochastic process and

2



1.1 MOTIVATION

PosT-TRANSLATION  Phosphorylation ®
Ubiquitinylation
Folding

TRANSLATION Ribosome stalling
mRNA structure u@‘

PoST-TRANSCRIPTION RNA interference
Splicing
mRNA degradation

TRANSCRIPTION Transcription factors
Enhancer binding
@ol )

EPIGENOME Methylation
Histone modifications
Chromatin structure

Flow of genetic information

GENOME Promoter strength m@

Figure 1.2: Levels of cellular regulatory mechanisms. The flow of genomic
information is from bottom to top. At each level one or more regulatory mech-
anisms exist that can prevent (or enable) the flow of information to the next
level. Regulatory mechanisms at the lower levels tend to take longer to come
into effect but are also more persistent.

the likelihood with which they occur depends on a variety of patient-
specific factors that include, but are not limited to environmental in-
fluences, lifestyle, and genetic predisposition. As a result, every case
of cancer is unique. Even tumours within the same histopathological
type can display substantially variability. In fact, due to the uncon-
trolled proliferation of cancer cells and thus the increased likelihood of
accumulating additional mutations, each tumour is composed of mul-
tiple cancer cell populations that all carry a unique set of genetic ab-
errations [Sha+09; Weil3]. Thus, each case of cancer must be carefully
examined individually to ensure an “optimal” therapy [Jai05]. Hence,
it is necessary to thoroughly characterise the tumour on a molecular
level to allow biologists and clinicians to decipher the prevalent patho-
genic mechanisms and, accordingly, to decide on the best available
treatment.

High-throughput assays, as mentioned above, are promising tech-
nologies for collecting data on which the analysis of a tumour sample
can be based. However, due to the size and noisy nature of the cap-
tured data, efficient and robust statistical analysis software is needed
for working with this information. In this regard, one of the main chal-
lenges to overcome is the variability of and within the tumour. Cur-
rent data sets commonly contain measurements from a mixture of cells.
This disregards the genetic differences that exist in a population of tu-
mour cells. Recent advances in sequencing technology suggest that in
the near future it will be possible to obtain data for a sizeable popu-
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lation of single cells together with their spatial location in a tumour
biopsy [Ang+16; WN15; Uso+15]. How to handle this kind of data ef-
fectively, however, currently is an open research problem.
Furthermore, it is important to note that although a single high-
throughput method is able to capture comprehensive datasets for one
so-called omics type, the collected information only provides a small
glimpse at the pathogenic processes that actually take place in a tu-
mour. This is due to the fact that many of the cellular processes, and
thus the emergence of complex traits, are subject to a tight regulatory
program constraining the flow of genetic information (Figure [L.2)). This
program manifest as interactions between genes, proteins, miRNAs,
and other biological entities that can be modelled as biological net-
works, where edges represent interactions and nodes represent inter-
action partners. An integrative analysis of data from multiple omics is,
therefore, mandatory to gain deeper insights into the deregulated pro-
cesses that drive tumour development. Performing such an analysis
necessitates theoretical models and software that, in addition to the
above requirements, can also cope with heterogeneous data sets.

1.2 OVERVIEW

This dissertation introduces tools and methods we developed for the
analysis of high-throughput data. Our main goal is to support the ge-
netic and molecular characterisation of tumour samples. Commonly,
this entails an iterative process in which each step provides informa-
tion that is used to guide further, more focused examinations. To sup-
port such workflows, the approaches we conceived are each targeted at
different levels of detail: some methods are especially suited to quickly
narrow down large amounts of data into a set of interesting systems.
These can then be analysed using more specialised software. Natur-
ally, this requires that the employed tools are interoperable, which was
an important concern we considered when designing our approaches.
Finally, as outlined above, the ability to draw on knowledge from het-
erogeneous datasets is essential for understanding complex diseases.
Thus, we put special emphasis on methods that allow to perform in-
tegrative analyses on multi-omics data.

Throughout this thesis, we illustrate the capabilities of the tools
we developed using a Wilm’s tumour dataset (Section @). Wilm’s tu-
mours are childhood renal tumours that, due to various properties
such as the relative independence from environmental influences and a
comparatively low mutation rate, are an ideal model disease. The main
goal of our investigation was the detection of pathogenic mechanisms
that may explain the increased malignancy of blastemal subtype tu-
mours compared to other Wilm’s tumour subtypes. On the basis of
this case study, we highlight contributions that may be suitable for the
creation of systems that assist researchers and physicians in devising
effective, personalised cancer treatments.

The remainder of this work is structured as follows: in Chapter E the
required biological background and experimental techniques are intro-

4



1.2 OVERVIEW

duced. To this end, a basic discussion of cancer biology is provided. Ac-
companying this general discussion, we describe Wilm’s tumours in
more detail. Furthermore, we discuss current treatment options and,
especially, the trend towards targeted therapy. Based on this, we mo-
tivate the need of advanced, computational methods to enable a more
accurate, personalised medicine. Afterwards we introduce some of the
biological assays that are available to create detailed, biological patient
profiles and discuss their properties, advantages, and drawbacks.

An important prerequisite for personalised treatments is that the
pathogenic processes that play a central role for a given tumour have
been identified. As biological networks are a natural way to model reg-
ulatory and other processes, Chapter B introduces a set of methods for
their analysis, along with some of the most common network types.
In particular, we introduce CausalTrail which we implemented to as-
sess the causal dependencies in regulatory cascades. Using predefined
causal Bayesian networks and the do-calculus, CausalTrail is able to
assess the impact of a mutation or a drug on nodes down-stream of a
target regulator. For the end user, both, a command line application
as well as a graphical user interface are provided. With CausalTrail we
developed, to the best of our knowledge, the first, freely available tool
for computing the effect of interventions in a causal Bayesian network
structure.

While many biological networks stem from network databases, ap-
proaches for inferring a topology directly from data exist. Here, we take
alook at the theory behind Gaussian graphical models (GGMs), which can
be used to infer a network representing the partial correlation structure
between a set of variables. While we will not use GGMs for network in-
ference purposes, we later explore their applicability for enrichment
analyses (Section #.4).

A common characteristic of cancer cells is that their regulatory net-
works have been reprogrammed. To detect affected parts of this net-
work, methods for the search of deregulated subgraphs can be em-
ployed. Deregulated subgraphs are small, usually connected parts of a
biological network that contain a large number of e.g. differentially ex-
pressed genes. In Section @, we discuss our integer linear programming
(ILP) formulation for discovering deregulated subgraphs in regulat-
ory biological networks [Bac+12]. In contrast to many competing meth-
ods, our approach computes an exact solution to the rooted maximum-
weight subgraph problem. Furthermore, we describe the first approach
for quantifying the influence of the network topology on the detected
subgraphs using a combination of sampling and machine learning tech-
niques. Our study underlines the need and provides the basis for the
development of a rigorous framework that allows to determine the sig-
nificance of a deregulated subgraph. We later revisit the ILP formula-
tion during the introduction of the NetworkTrail web service in Sec-
tion p.4.

In Chapter @, we turn to approaches that are closely related to the
detection of deregulated subgraphs. While the aforementioned more
or less are free to choose any set of connected genes from an input
network, enrichment methods rely on predefined categories of biological
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entities to detect deregulated pathways. To be able to discuss these al-
gorithms, we first provide an introduction into the theory behind stat-
istical hypothesis tests. Next, a general framework for enrichment ana-
lysis is presented. Guided by this framework, we discuss some popular
enrichment methods in detail. Additionally, we perform an evaluation
of the presented algorithms. Based on its results, we derive a set of
guidelines for choosing the appropriate enrichment method for a spe-
cific set of input data. Finally, an alternative scheme for performing en-
richment analyses based on Hotelling’s T2-test [Hot31] is introduced
and evaluated with respect to its applicability in practice.

Providing and maintaining native, high-performance software that
works on multiple operating systems and computer configurations can
place a substantial burden on a development team. Web services allow
to circumvent this problem by providing a centrally managed installa-
tion of a given tool on which users can rely. To facilitate the construc-
tion of such web services, we created the Graviton platform (Chapter E).
Services based on Graviton automatically are equipped with user ses-
sion management, a self-documenting workflow system, and are script-
able via a RESTful application programming interface. Furthermore,
the platform provides a comprehensive collection of algorithms and
data structures that offer solutions to tasks commonly encountered by
bioinformatics tools, such as identifier mapping and the parsing of in-
put data. Using Graviton, we created the web services GeneTrail2, Net-
workTrail, and DrugTargetInspector (DTI) which facilitate the analysis of
multi-omics datasets.

With GeneTrail2, we implemented a web service for conducting
enrichment analyses on multi-omics datasets (Section @). GeneTrail2
implements most of the enrichment methods presented in Chapter @
and is, at the time of writing, the most comprehensive web service
for enrichment analysis in existence. It supports data from 14 organ-
isms, integrates information collected from over 30 databases and of-
fers novel ways for visualising computed enrichments. Using Gene-
Trail2, we were able to detect molecular mechanisms that may explain
the increased malignancy of blastemal subtype Wilm’s tumours when
compared to other subtypes.

In order to complement our web service for enrichment analysis,
we created NetworkTrail, a web service for detecting deregulated sub-
graphs in regulatory networks (Section @). It provides a user-friendly
web interface to our ILP formulation [Bac+12] as well as the FiDePa
[Kel+09] algorithm that uses ideas from enrichment analysis to search
for the most deregulated path of a predefined length.

A common problem in cancer therapy is that tumours develop a
resistance against anti-cancer drugs. For example, the proteins that are
targeted by a drug may no longer be functional due to mutations and,
thus, the drug will have no effect. We built DTI [Sch+15] with the goal
of assisting with the stratification of treatment options based on user
provided gene expression and mutation data (Section @). In particu-
larly, it allows the detection, annotation, and analysis of deregulated
as well as mutated drug targets. For this, the knowledge from Drug-
Bank [Law+14], Variant Effect Predictor [McL+10], and experimental

6



1.2 OVERVIEW

resistance data from the GDSC project [Bar+12] has been integrated
into DTI. By combining this information with the input data, an over-
view of potential, deregulated drug targets as well as promising treat-
ment options is generated. By leveraging the deep integration of DTI
into GeneTrail2 and NetworkTrail, which is made possible by Graviton,
further advanced analyses can be started by the user with a single click.

For gauging the effect of a drug on a mutated target, it is essen-
tial to take the structure of the affected protein into consideration. To
complement DTI in this regard, we created BALL-SNP [Mue+15]. It al-
lows to examine the effect of point mutations by visualising them in
and performing analyses on the respective crystal structure. To identify
possible collaborative effects between single nucleotide variants, BALL-
SNP allows to detect point mutations that are in close spatial proximity
by performing cluster analyses. Furthermore, BALL-SNP integrates the
output of in silico methods for predicting the impact of a mutation. To
build the software, we relied on the PresentaBALL (cf. Section @) infra-
structure offered by the BALLView molecular viewer [Mol+05; Mol+06],
which is part of the BALL library [KL00; Hil+10]. PresentaBALL was
created specifically with the idea in mind to make the functionality
offered by BALL available for a wider range of applications such as
interactive installations, teaching, and the presentation of research res-
ults. In a similar vein, we integrated BALL and BALLView with the
Galaxy workflow system [Goe+10; Hil+14a]. For this, we created a suite
of command line tools, built on top of BALL, for working with structure
data.

Finally, Chapter H closes with a summary and discussion of the de-
scribed work. In particular, we provide a perspective on possible, fur-
ther developments in the presented fields.

ContriBuTIONS Research projects in bioinformatics often require
the expertise and the effort of more than one person to be success-
ful. Due to this, I cannot claim the exclusive authorship for all of the
work presented in this thesis. To ensure that all contributions can
be attributed fairly, sections that discuss shared work are prefaced
with a short list of the main contributors. More detailed informa-
tion can be found in the author lists and the contributions sections
of the respective publications.






BIOLOGICAL BACKGROUND

If you try and take a cat apart to see how it works, the first
thing you have on your hands is a non-working cat.

— DOUGLAS ADAMS, the salmon of doubt
(2002)

During the last century the life expectancy in developed countries has
increased dramatically. Between 1970 and 2010 alone, the life expect-
ancy at birth has increased by roughly ten years in Germany (see Fig-
ure El]). This change can be attributed to improved living conditions
due to significant advances in technology, sanitation, and medicine
[Ril01]. For example, the introduction of cyclosporin into clinical prac-
tice allowed more reliable organ transplants [Cal+79]. Imaging tech-
niques like magnetic resonance imaging (MRI) and computer tomography
(CT) made it possible to capture high-resolution images from otherwise
difficult to reach regions of the body [Bec14]. The invention of genet-
ically modified organisms [MH70] allowed the production of human
insulin for the treatment of diabetes [Joh83]. During this period, small-
pox were eradicated due to a rigorous vaccination campaign [Fen93].
Thanks to the discovery of antiretroviral drugs and effective treatment
regimens, HIV positive patients at age 20 can expect to live another
30 years or more [ARTO08]. Owing to this development, many of the
once common, deadly diseases are no longer an issue in the 21st cen-
tury. Still, modern medicine suffers from certain flaws and shortcom-
ings. Through the widespread use of antibiotics, resistant strains are
beginning to form that are only treatable with great difficulties [Neu92;
Nik09]. This development has lead to the return of old killers, such as
tuberculosis, in some countries [Kam95]. Diseases like SARS [Cho+04],
bird flu [Pei+04], or Ebola [Tea+15] that spread quickly via aerosols or
body fluids have claimed many victims, especially in lesser developed
countries. Also, genetic diseases such as Huntington’s disease [Wal07]
or cystic fibrosis [Rio+89] pose challenges when it comes to finding a
cure. In particular, many tumour types have eluded effective therapy
for decades, despite remarkable advances that have been made in can-
cer research.

Reasons for these problems are manifold. In the case of most viral
infections only few effective antiviral drugs are available [De 04]. For
influenza, vaccinations exist that, however, only protect against a lim-
ited set of viral strains [Bri+00]. For Ebola, no approved vaccinations ex-
ist [Gal+14], although several candidates are in the drug development
pipeline at the time of writing [[Agn+16]. In the case of genetic disorders
the cause of the disease is not an external influence, but instead is en-
coded in the patient’s genes. Though a set of best practices has been
established for a large number of cancer types (cf. Figure @), the treat-
ment for certain tumours needs to be decided on a case by case basis
due to their heterogeneity. To combat the above diseases, it is necessary
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Figure 2.1: Life expectancy at birth in years. Between 1966 and 2013, life ex-
pectancy at birth in Germany increased from 70 to 81 years. Source: World Bank
http://data.worldbank.org/indicator/SP.DYN.LEQO.IN. Retrieved: 2015-
12-03

to be able to quickly identify and analyse the predominant pathogenic
mechanisms. Based on this information, a treatment that has been spe-
cifically tailored towards the patient needs to be devised. Ideally, this
would entail the possibility to synthesise novel drugs if necessary.
Whilst we are, technologically and ethically, far away from being
able to create new drugs on demand, considerable advances have been
made towards such a personalised medicine (cf. Section @). In particu-
lar, improved experimental methods for data generation provide an es-
sential building block for reaching this goal. For example, the analysis
of DNA/RNA samples is more and more becoming a routine proced-
ure in biological laboratories and has started to enter clinical practice
[BKE11; Biel2; KGH12]. Methods like cDNA microarrays (Section )
and high-throughput sequencing (Section ) allow to analyse the
genetic state of tissue samples in great detail. Recent research suggests
that reliably analysing the mRNA abundances within individual cells
is not too far off in the future [Naw14], promising e.g. the availability of
high resolution profiles of tumour biopsies [NH11]. Other techniques
such as mass spectrometry have enabled capturing sizeable parts of
the metabolome [DBJ05] and proteome [WWYO01]. For the latter, it is
possible to detect protein modifications such as phosphorylations and
ubiquitinations that play an important role in the regulatory circuitry
of our cells [Man+02]. Given this data, it should be possible to con-
ceive more thorough ways of performing personalised medicine. How-
ever, the analysis of high-throughput data proves to be a difficult task
from both a practical as well as a theoretical point of view. To under-
stand some of these issues, this chapter gives an overview of the relev-
ant biological background. In addition we will discuss some of the ex-
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2.1 CANCER

perimental methods that are frequently encountered throughout this
thesis.

We use cancer as a model disease to illustrate the capabilities of our
methods. There are various reasons for this choice: first, the disease
is of great clinical, but also social and economical relevance. Second,
a vast corpus of experimental data derived from tumour biopsies has
been compiled and is publicly available. And third, although cancer re-
search has progressed tremendously over the last decades, many fun-
damental aspects of the acting pathogenic mechanisms remain unre-
solved. Thus, studying cancer not only serves the improvement of ther-
apy, but also promises to yield exciting biological insights.

We start with a discussion of cancer biology in general and the prop-
erties of Wilm’s tumours specifically. We then proceed to a more pre-
cise definition of personalised medicine and outline the problems that
need to be solved for implementing personalised medicine schemes. Fi-
nally, we introduce the basics of gene expression and discuss the cDNA
microarray as well as the RNA-seq technology for capturing expression
profiles.

2.1 CANCER

Cancer is a heterogeneous class of diseases characterised by the ab-
normal growth of tissue. Causes for the development of cancer can be
sought in many factors including life-style, exposure to pathogens and
radiation, mutations or epigenetic alterations. Ultimately, these factors
result in a disruption of the regulatory circuitry of previously healthy
cells, which transforms them into tumour cells.

Somatic mutations are a well researched mechanism that leads to
the formation of tumour cells. While mutations are usually detected
and neutralised by internal cellular controls or the immune system,
some mutations go unnoticed. Interestingly, only few so-called driver
mutations are believed to be sufficient for establishing cancer [SCF09].
Examples are mutations that lead to the transformation of “normal”
genes to oncogenes: genes that have the potential to induce cancer. One
of the first reported transformation mechanisms is the activation of the
T24 oncogene in human bladder carcinomas due to the exchange of a
single nucleotide [Red+82]. Once driver mutations have established a
foothold, additional mutations are accumulated.

As mentioned above, cancer and especially cancer cells are charac-
terised by their ability to form new tissue and, thus, are able to freely
divide. Two non-exclusive hypotheses explain this behaviour. Either,
cancer cells derive from stem cells or they dedifferentiate from ma-
ture cells in order to obtain stem cell like characteristics [Sel93]. The
newly formed tissue is denoted as neoplasm or tumour. Not every neo-
plasm is immediately life threatening. For example moles, also known
as melanocytic nevi are pigmented neoplasms of the skin that are, usu-
ally, harmless. To reflect this, neoplasms are often classified as either
benign or malignant. Whereas benign tumours grow locally and do
not invade adjacent tissues, malignant tumours commonly invade into
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Figure 2.2: The hallmarks of cancer as proposed by Hanahan and Weinberg
[HWOO]. The authors postulate that during tumourigenesis normal cells suc-
cessively acquire the “hallmark stages” as they evolve towards a malignant
tumour. Coloured boxes indicate treatment options for counteracting the mo-
lecular changes constituting the respective hallmark.

nearby, healthy tissues and may also able to spawn new tumours, so
called metastases, at different locations.

In its development from healthy to neoplastic tissue, cancer cells
go through an evolution that allows them to grow successfully in a
host organism. This evolution is driven by selection pressure that is,
for example, exerted by the immune system, the competition for nutri-
ents with surrounding cells, and eventual anti-cancer drugs. Naturally,
each successful cancer cell needs to develop the ability to avoid detec-
tion by the immune system and must resist programmed cell death
(apoptosis). Furthermore, tumours start to induce the growth of new
blood vessels (angiogenesis) to account for the increased energy con-
sumption due to uncontrolled growth and replication. Hanahan and
Weinberg [HWO00] summarised these objectives under the term hall-
marks of cancer. The hallmarks describe a set of characteristics tumour
cells typically achieve during their development (Figure @). In a later
publication, Hanahan and Weinberg [HW11] added four additional
characteristics to the six original hallmarks.

Tumours can be classified according to the cell types they stem from.
The most common type of human tumours, carcinomas, derive from
epithelial cells and are hence also dubbed epithelial tumours. Epithelia
are tissues that can be found throughout the body. They are composed
of sheets of cells and act as covers of organs, blood vessels, and cavities.
The second class of tumours are called sarcomas and only account for
roughly 1 % of all tumours. They stem from e.g. fibroblasts, adipocytes,
osteoblasts, or myocytes. Tumours stemming from blood-forming cells
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2.1 CANCER

are more common. Examples are leukaemias and lymphomas. The last
class are tumours that derive from cells of the nervous system. Ex-
amples are brain tumours such as gliomas and glioblastomas. While
accounting for large part of all cancer types, some tumours such as
melanomas or small-cell lung carcinomas derive from cell lineages that
do not directly fit into this classification, as they stem from different
embryonic tissues or have an unclear origin altogether.

In contrast to healthy tissue that is composed of cells with well-
defined tasks, a tumour is usually significantly more heterogeneous.
The key to this heterogeneity lies in the rapid rate with which tumour
cells tend to accumulate mutations and epigenetic aberrations [LKV9S;
FT04]. As a specific mutation event only occurs locally in a single cell,
it remains specific to this cell and its progeny. This effectively estab-
lishes lineages of cancer cell subpopulations. As a direct consequence,
measurements from tumour samples often only provide values that
have been averaged over an ensemble of genetically diverse cells. Also,
not all cells involved in a tumour necessarily carry a defective (epi-
)genome. For instance, cells forming blood vessels, cells from healthy
tissue, and immune cells can be found there, too. Characterising a tu-
mour or predicting its reaction to treatment reliably is thus difficult.
Experimental techniques such as single cell sequencing only solve this
problem to a certain degree. While they may provide complete know-
ledge about a set of individual cells, no knowledge is obtained about
the billions of remaining cells that make up the tumour.

2.1.1  Wilm’s Tumour

Wilm'’s tumours (WTs) are childhood renal tumours. They comprise 95 %
of all diagnosed kidney tumours and six percent of all cancers in chil-
dren under the age of 15. Most WTs are diagnosed in children younger
than five years [Chu+10]. The clinical name nephroblastoma derives from
the fact that WTs develop from the metanephrogenic blastema, an em-
bryonic tissue. Most often WTs exhibit a triphasic histopathological
pattern composed of blastemal, stromal, and epithelial cells although
other compositions do exist [BP78]. According to the Société Interna-
tionale D’Oncologie Pédiatrique (SIOP) Wilm’s tumours after preoperat-
ive chemotherapy are classified as follows [Vuj+02]: first, the presence
of an anaplasia is determined. For this, the tumour must contain poorly
differentiated cells, e.g. cells that lost defining morphological character-
istics or display other potentially malignant transformations such as a
nuclear pleomorphism. If the tumour is not anaplastic, the reduction in
tumour volume due to the chemotherapy is quantified. If no living tu-
mour tissue can be detected, the tumour is labelled as completely necrotic.
If its volume decreased by more than two thirds the tumour is classified
as regressive. Otherwise, the classification is based on the predominant
cell type. If more than two thirds of the living cells are either blastemal,
epithelial or stromal cells, the tumour is labelled accordingly. Tumours
with an even distribution of cell types are classified as triphasic. Based
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Figure 2.3: An exemplary WT treatment schema as used in the SIOP
2001 study. Tumours are stratified into risk groups based on tumour stage
and histology. Abbreviations: dactinomycin (A), vincristine (V), doxorubi-
cin (D), doxorubicin/carboplatin/cyclophosphamide/etoposide x 34 weeks
(HR). Image taken from Dome, Perlman, and Graf [DPG14].

Risk group Classification

Low risk Completely necrotic
Regressive
Epithelial type

Intermediate risk  Stromal type
Triphasic type

Focal anaplasia

Blastemal type

High risk Diffuse anaplasia

Table 2.1: Wilm’s tumour classification and risk groups after preoperative
chemotherapy according to the SIOP reference []. Blastemal subtype
and diffuse anaplasia tumours are the most aggressive nephroblastoma sub-

types.

on tumour stage, volume, and histology further treatment decisions
are made (Figure @).

While WTs are generally associated with high 5-year survival rates
of ~ 85 % [Chu+10; Sre+09], the prognosis for some subtypes is signi-
ficantly worse. An example for this are the blastemal subtype tumours.
While WTs with a high content of blastemal cells generally respond
well to chemotherapy, this is not true in about 25 % of the cases. Such
resistant, blastema-rich tumours, which account for almost 10 % of all
WTs, are among the most malignant WT types (cf. Table @) [;
Heu+15)].

One of the earliest identified mutations associated with nephro-
blastomas is the inactivation of the tumour suppressor WT1 that likely
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2.1 CANCER

plays an important role in genitourinary development [LHO1; Roy+08]
and is also associated with human leukaemia [MBS92; [no+97]. A more
recent study by Wegert et al. [Weg+15] links mutations in genes such as
SIX1, SIX2, DROSHA, TP53, and IGF2 to specific sub- and phenotypes
of WTs.

While other, more aggressive cancer types such as lung cancer my
be of greater medical interest, WTs possess properties that make them
an ideal model disease. First, while a range of histological subtypes ex-
ist for this tumour, they are relatively homogeneous in the sense that
they carry a comparatively low amount of mutations [Weg+15]. Thus,
most biological processes remain intact, which greatly eases the inter-
pretation of the data. Second, as the disease commonly occurs in young
children, environmental effects play comparatively small roles in the
development of the tumour. Third, as WT are quite rare [BP78], most
cases are treated by a small community of experts. Accordingly, they
are well and consistently documented.

2.1.2  Cancer Therapy

A core problem of cancer therapy is the timely detection of neoplasms.
Many cancers can be treated effectively if detected at an early stage. For
example, early stage melanomas can simply be excised with little to no
adverse effects. Polyps in the colon, which may later develop to can-
cer, can be removed during routine colonoscopies [Win+93]. However,
when a tumour is not detected during early stages, treatment becomes
more difficult. Compared to early stage tumours, late stage tumours
had considerably more time to acquire hallmarks of cancer traits (Fig-
ure @). Consequently, they possess a less well-defined boundary as
they begin to invade healthy, adjacent tissue preventing effective sur-
gery (cf. [Suz+95]). Also, metastases, which spread via blood or lymph
and form new, aggressive tumours in other parts of the body, may have
been established [Fid03]. This makes it difficult to reliably assess the
success of a treatment as it is uncertain whether all cancer cells could
be successfully removed [Bec+98; Wet+02]. While chemotherapy may
be used to combat these developments, drug resistance often limits its
efficacy (cf. [Per99; RY08]). In the following we give a more detailed
overview over the available options for diagnosis and treatment.

Diagnosis

Performing routine cancer screens can considerably lower the risk of
developing cancer [Wen+13; Bre+12]. However, this creates a dilemma
when planning an effective scheme for preventive care. First, no single
test covering all possible tumour classes exists and it can be assumed
that none will exist in the foreseeable future. This means that signi-
ficant parts of the population would need to undergo several med-
ical screenings in fixed or maybe age dependent intervals. However,
schemes relying on unconditional screenings are problematic. Besides
the considerable financial implications, there are also statistical issues
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that make such an approach infeasible. The problem is that the likeli-
hood to develop a certain type of cancer at a certain point is compar-
atively low (let’s assume about 0.1 %). While in itself not problematic,
this fact can have important implications together with a fundamental
property of tests based on empiric data: all tests make errors. Generally,
one can distinguish between two kinds of errors (cf. Table @). The first
class of errors is to detect an effect (e.g. diagnose cancer) when there
is none, while the second class is to not detect an effect when there is
one. Making an error of the second kind may result in an unfavourable
diagnosis because the tumour is detected too late. Making an error of
the first kind means that a healthy person must undergo unnecessary
and potentially risky follow-up examinations such as biopsies. This is
both, a waste of resources [OM15] and a burden on the health of the
patient. Unfortunately, we can expect the first kind of error, diagnos-
ing cancer although the patient is healthy, to occur far more often than
the second kind because we previously assumed that the prevalence
of cancer is only 0.1 % (c.f. [ZSMO04; Etz+02]). The resulting amount of
unnecessary follow-up examinations render broad, regular screenings
both ethically as well as economically questionable. Instead, stratifica-
tion into risk groups and targeted tests based on a patient’s case his-
tory must be used to achieve effective, early diagnostics and is in fact
recommended by studies and treatment guidelines [Wen+13; Bre+12;
Bur+13].

Techniques from bioinformatics may help in this targeted approach.
As sequencing costs for a human genome have dropped dramatically
in the last decade (Figure ), genotype information as a supplement
to classical factors used in risk determination, such as family history
and lifestyle, has the potential to improve the accuracy of diagnosis tre-
mendously. Additionally, the development of minimally invasive tests
with high specificity can help to reduce the risk for patients signific-
antly. To this end, the search for specific biomarkers is a prolific field
of computational biology [Saw08§]. In this context, a biomarker is a mo-
lecule or a set thereof that can be measured objectively and can be used
as an indicator of the state of a pathogenic process. For this purpose
also proteins and miRNA isolated from the blood stream have been
used (cf. [Kel+06; Mit+08]).

Therapy

Cancer therapy is a large field that is impossible to discuss exhaustively.
Here, we give a rough outline of the available treatment options.

For treating cancer three main angles of attack exist: surgery, radi-
ation therapy, and chemotherapy [DLR14]. Each of these approaches
come with distinct advantages and disadvantages. Surgery can be an
extremely efficient treatment option, as possibly large tumour volumes
can be removed. In ideal cases, all tumour mass can be removed in a
single session [Cof+03]. However, it should be noted that the applic-
ability of surgery is severely limited due to its invasiveness: tumours
that are difficult to reach, too large in volume, or have developed meta-
stases can prove difficult to treat with surgery alone [Pet+15]. Besides
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curative purposes, surgery is also an important tool for diagnosis, as
often only a biopsy allows to determine whether cancer is present and
if yes, how treatment should be commenced (cf. [Hei+14]). Also, all ap-
proaches that rely on gene expression analysis or genotyping require
that a biopsy is conducted.

In combination to or instead of surgery, radiation therapy can be
used for treatment [Tim+10]. Commonly, radiation therapy directs a
beam of ionising radiation at a target tumour. Cells along the beam
absorb energy leading to the formation of free radicals that attack and
fragment DNA. In order to minimise the damage to healthy tissue, the
beam is applied from multiple angles leading to an accumulation of
an effective radiation dose only in the tumour [DLR14]. Still, radiation
therapy can have severe adverse effects that can lead to the induction
of secondary cancer (cf. [Tuc+91; Tsa+93; Kry+05; Hal06]).

Complementing surgery and radiation therapy, chemotherapy al-
lows to treat tumours via the administration of drugs. As cancer cells
remain by and large human cells, finding drugs that specifically target
cancer cells is difficult [KWLO07]. To this end, classical chemotherapy
uses cytotoxic or cytostatic agents. These drugs target rapidly divid-
ing cells, where they induce cell death or prevent proliferation. This
often results in harsh adverse effects such as anaemia, fatigue, hair loss,
nausea, or infertility. In contrast to this, targeted therapy attempts to
attack specific molecules, most of the time proteins that are respons-
ible for the deregulation of signalling pathways that takes place in can-
cer cells [Saw04]. Targeted drugs are not universally applicable, but
require tumours to fulfil certain properties in order to be effective. Ex-
amples are the presentation of certain antigenes on the cell membrane
or the target protein carrying a mutation [Saw08]. To achieve the ne-
cessary specificity, often biomolecules such as antibodies, which are
able to detect cancer cell specific epitopes, are used. Thus, to apply tar-
geted therapy effectively, an analysis of the tumour on the molecular
level is necessary. For cases in which the preconditions for targeted
drugs are met, impressive treatment success with comparatively few
adverse effects has been reported. A popular example for targeted ther-
apy are drugs targeting the EGF receptor (EGFR) and are only effect-
ive in (breast) cancers that carry a certain point mutation in the EGFR
kinase domain [Pae+04; Mas+12]. Other types of targeted therapy at-
tempt to attack tumour stem cells or the tumours microenvironment
by e.g. preventing blood vessel formation [AS07; EHO8].

Usually, none of the previously described techniques is used in isol-
ation. Often a combination of surgery, chemotherapy, and radiation
therapy is used in different stages of the therapy. Figure @ shows
the treatment recommendations of the European Society of Medical On-
cology (ESMO) for early breast cancer. In this recommendation, various
factors such as tumour volume or the efficacy of previous treatments
are considered to recommend the next step in the therapy [Sen+15].

Combining multiple therapy options is sensible for various reas-
ons. First, a single treatment option is often not enough to guarantee
the removal of all tumour cells. For example, residues of the tumour
(cf. minimal residual disease [Kle+02]) that are difficult to excise during
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Figure 2.4: Flow chart for the treatment of early breast cancer. Abbrevi-
ations: chemotherapy (Cht), breast-conserving surgery (BCS), endocrine ther-
apy (ET), radiotherapy (RT). Image taken from Senkus et al. [Een+15].

surgery may be treated using adjuvant chemotherapy. Second, as tu-
mours underlie a highly accelerated selection process due to their high
proliferation and mutation rates, it is possible that some tumour cells
develop a resistance against the employed cancer drugs. Similarly to
HIV therapy, using multiple agents and treatment options increases
the selection pressure and thus reduces the amount of escape mutants
[BSO8b|; IHZl2 B lBLlj]. Third, using multiple, cancer specific drugs dur-
ing chemotherapy has been reported to be more effective than using
only a single formulation as this increases the specificity of the treat-
ment [kioi+Oj; lBan+1d].

2.2 PERSONALISED MEDICINE

In classical medicine, a doctor makes a diagnosis based on the patient’s
history (anamnesis), the displayed symptoms, and, if required, addi-
tional measurements. Based on this, the physician chooses an appro-
priate therapy. Often, this means administering one of the drugs de-
signed for treating the disease. In recent years, it has become clear that
for some diseases the genetic, epigenetic, and biomolecular properties
of the patient as well as the disease need to be considered to determine
an optimal therapy. The level of detail that needs to be considered can
vary by a large margin. In some cases, the membership in a particular
ethnic group can provide enough information on the genomic back-
ground. For example the drug BiDil, which was approved by the FDA
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for treating congestive heart-failure, is only effective for the African
American parts of the US population [BHO6]. In HIV therapy the gen-
ome of the virus can provide crucial information on its resistance or sus-
ceptibility to certain antiretroviral drugs [Bee+02]. In heterogeneous
diseases like cancer, taking the genes expressed by the tumour into
account can help to dramatically increase treatment success [Kon+06].
These observations also become increasingly important for “classical”
diseases such as bacterial infections due to the emergence of multi-
resistant strains for which an effective antibiotic needs to be chosen
[Neu92]. The development of treatment strategies that are tailored spe-
cifically towards a specific case of a disease is called personalised medi-
cine. Deploying personalised medicine, however, proofs to be difficult
due to a variety of issues. First, the identification of genomic factors that
contribute to the risk of developing a disease is problematic. To this
end, genome wide association studies (GWAS) are commonly applied. For
them to succeed, large cohorts (> 10,000 samples) are required [HDO05].
Even then, rare variations, which are likely to have a large impact on
the disease risk, continue to elude these studies [CG10].

Even if a molecule or process that plays a key role in a diseases has
been identified, the selection of an appropriate drug is not always pos-
sible. This may be because no appropriate drug exists. However, even
if a drug existed, it may be overlooked as only a small percentage of
the available drugs is annotated with pharmacogenomic information
[Fru+08]. To remedy this situation, studies such as the Cancer Cell Line
Encyclopaedia (CCLE) [Bar+12] and the Genomics of Drug Sensitivity in
Cancer (GDSC) [Gar+12] attempt to compile libraries of the effect of
drugs on cell lines with a known set of mutations. However, these in
vitro measurements are only the first step into the direction of more
comprehensive pharacogenomic information: the overlap between the
studies has been reported as “reasonable” by the authors [C+15] and
as “highly discordant” [Hai+13] by independent researchers.

Drugs that are only effective given a certain mutation must, as all
other drugs, undergo clinical trials to ensure safety and efficacy of the
drug. Unfortunately, classical study designs, where a control group of
patients receiving the standard treatment is monitored in comparison
to a group receiving the modified treatment, are inefficient for valid-
ating the merits of patient specific drugs [Sch15b]. If e.g. the genomic
trait responsible for the susceptibility to a drug is comparatively rare
throughput the population, the number of patients that will respond
can be expected to be low and hence the difference between uniformly
selected control and sample groups is likely small. To reliably determ-
ine drugs that are only effective for parts of the population, improved
study designs need to be employed [Sin05; Fre+10].

For bioinformatics, the development of effective personalised medi-
cine schemes poses several challenges such as the reliable analysis of
large-scale genomic data, the compilation of databases containing phar-
macogenetic knowledge, as well as the training of reliable, statistical
recommendation procedures [Fer+11]. Partly due to this, the road to-
wards an “ideal”, personalised medicine is still long. Nevertheless, sig-
nificant steps are currently being made towards this goal [Les07]. In
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this work, several tools that my have the potential to assist in choos-
ing personalised treatments are presented. The primary example is
DrugTargetInspector (Section @), which employs pharmacogenomic
information to judge the influence of somatic mutations on drug effic-
acy. Similarly, the enrichment and network analyses provided by our
proposed tools GeneTrail2 (Section @) and NetworkTrail (Section @)
can be used to gain insights into patient data.

2.3 BIOLOGICAL ASSAYS

An important task in bioinformatics is the processing of data obtained
from biological experiments using methods from statistics and com-
puter science. While it is convenient to test new algorithms on synthetic
data, every bioinformatics method eventually needs to work with ac-
tual measurements. As a consequence, the developed methods need to
take the properties of the data generation process and, thus, the used
biological assays, into account. Furthermore, with the development of
high-throughput assays such as microarrays, short read sequencing, or
modern mass spectrometry the amount of generated biological data
has grown to a staggering amount [Ste+15]. This places two further
requirements on computational methods. First, the approach needs to
be efficient enough to potentially process terabytes of data. Second, the
employed statistical methods need to be able to cope with the high di-
mensionality of the data.

Here, we discuss the microarray and short-read sequencing tech-
nologies as the remainder of this thesis will mostly be concerned with
data obtained from these two experimental setups. Notably, the focus
will lie on expression datasets. To this end, the next section will provide
abasic introduction of the fundamental mechanisms that underlie gene
expression in eukaryotic cells. Readers familiar with this concept may
want to directly skip to the introduction of the microarray platform in
Section .

2.3.1 Gene Expression

The activity of a gene is usually defined as the rate with which it is
read by the RNA Polymerase 1I (Polll) [Kor99] and subsequently trans-
lated into protein. This process is also known as gene expression. First,
Polll transcribes RNA copies of the gene by reading the anti-sense DNA
strand in a 3’ to 5" direction (Figure @). As these copies carry the in-
formation of the gene out of the nucleus to the translation machinery
they are called messenger RNA (mRNA). After transcription a 5 cap
structure as well as a 3’ polyadenyl tail is added to prevent too rapid de-
gradation of the mRNA [Sha76; BKW93]. As eukaryotic genes do not
only contain protein coding sequences, but rather are organised into
protein coding exons and non-coding introns, further processing is re-
quired prior to export from the nucleus [KMR78]. Via splicing, all non-
coding parts are removed from the precursor mRNA [WL11]. During
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Figure 2.5: Basic overview of transcription in an eukaryotic cell. After RNA
Polymerase Il binds at the promoter of a gene, it translates the DNA anti-sense
strand to mRNA. For transcription, the DNA is temporarily unwound by a
helicase protein creating the so-called transcription bubble. After the mRNA
has been transcribed, a 5" cap and a 3’ polyadenyl tail are added to prevent
degradation. Mature mRNA is created by the (alternative) splicing process,
which excises intronic and sometimes exonic sequences.

this process some exons may be skipped and thus splicing can produce
multiple isoforms of a single gene [Bla03]. This alternative splicing is one
mechanism that explains how relatively few genes can give rise to a far
larger amount of diverse proteins. After splicing, the mRNA is expor-
ted to the cytosol, where it is translated into proteins.

Besides mRNA, non-coding classes of RNAs exist that play import-
ant roles in the regulation and catalysis of cellular processes [Cec87;
Edd01; MMO06]. One such kind of RNA that has increasingly entered
the focus of the scientific community during the last 20 years are so-
called micro RNAs (miRNAs). Each miRNA consist of 21 to 25 nucle-
otides and possesses the ability to bind the 3" untranslated region (UTR)
of a mRNA [Fil+05]. Such binding events can result in the mRNA's de-
gradation or may inhibit its translation into proteins. Thus, miRNAs
form an additional regulatory mechanism that controls the rate with
which a gene is translated into proteins (cf. Figure @) As with tradi-
tional genes, miRNAs are transcribed by Polll yielding a 3" polyaden-
ylated and 5’ capped primary miRNA (pri-miRNA) [Lee+04]. This tran-
script is then processed into precursor miRNA (pre-miRNA) by the Dro-
sha protein [Den+04] and exported to the cytosol. There, it is cleaved
by Dicer and loaded into the Argonaute (AGO) protein of the miRNA-
ribonucleoprotein (miRNP) complex [Fil+05]. The loaded complex then
detects and binds complementary mRNA in its 3" UTR.

21



Due to post-transcriptional
requlation this assump-
tion often breaks down.

Further common use cases
are the measurement of
DNA methylation states
or protein abundances.

BIOLOGICAL BACKGROUND

PRI-MIRNA
Cap Polyadenylation
O AAAAAAAAAAAA. ..
PRE-MIRNA

'

|3
AUGACGCUACUUCCAGYGGGUC
Drosha-DGCRS8
UACUGCGAUAAGGUCCCCAG
I

'

MATURE MIRNA

* 3pmiRNA 3 A GACGCUACUUCCAGUGGGUC
Sp-miRNA 3 S CCCGCUGGAAUUAGCGUCAU °

MIRNA BINDING

miRNP

AGO1
mRNA N
O AAAAAAAAAAAA. ..

3'UTR

Figure 2.6: Maturation and binding of miRNAs. Primary miRNA is tran-
scribed by Polll and carries the same 3’ polyadenyl tail and 5" cap structure as
mRNA. A stem loop is excised by the Drosha protein resulting in precursor
miRNA. This pre-miRNA is further processed by Dicer yielding 5p and 3p
mature miRNAs. The miRNA is then loaded into the AGO domain of the
miRNP complex, which is then guided to a mRNA with a complementary
binding motive in the 3" UTR.

A general assumption is that the expression or effect of a gene is
proportional to the number of mRNA or miRNA transcripts that are
available at a given point. Assays that allow to measure the concentra-
tion of a given transcript should thus allow to deduce the regulatory
state of a sample and, in turn, the currently active biological processes.
With mRNA /miRNA microarrays and RNA-seq, methods for measur-
ing complete transcription profiles have been developed.

2.3.2  Microarrays

Microarrays or gene chips are experimental platforms that are most com-
monly used for measuring gene expression levels. They are based on
the hybridisation of complementary DNA strands. In principle a mi-
croarray is a glass, plastic, or silicon slide onto which patches, so-called
spots, of oligonucleotide probes have been fixated. In general, the probe
sequences are chosen such that they are highly specific for the targeted
transcripts. Modern mRINA microarrays contain millions of probes that
allow them to cover all known exons of the human genome [Kro04].
To analyse a sample (cf. Figure @), the mRNA is extracted and
transcribed back to DNA (reverse transcription). In this process, nuc-
leotides carrying fluorescent labels are incorporated into the resulting,
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Figure 2.7: Overview of a microarray-based differential gene expression
study. The mRNA is extracted from the sample and reference specimens. It is
reverse-transcribed to cDNA, amplified, and labelled with fluorescent nucle-
otides. The cDNA is then hybridised to a microarray. After fixation and wash-
ing steps, the array can be read out using a laser scanner. The obtained raw
expression values are normalised and summarised to obtain per-gene expres-
sion values. Afterwards, differentially expressed genes can be detected.

complementary DNA (cDNA). This labelled cDNA is then given onto the
chip where it hybridises to the respective complementary probes (see
Figure P.7). After a washing step that removes excess cDNA and un-
specific binding events, the chips can be read out. Using a laser, the
amount of fluorescence for every spot and hence the amount of bound
cDNA can be determined.

Though the principles underlying the microarray technology are
straightforward, various practical challenges need to be solved to ob-
tain reliable expression values. A central issue is the fixation of probes
onto the microarray slide. For this purpose, a set of fundamentally dif-
ferent approaches exists. Chips by Affymetrix and Agilent use an in
situ process for creating the probes directly on the chip substrate. Affy-
metrix uses a photolithographic process for synthesising the probes
directly on the substrate (Figure @). Agilent uses and ink-jet-like pro-
cess similar to a regular printer in which nucleotides are successively
sprayed onto the chip and incorporated into the probe sequence. The
length of the synthesised probes is, however, limited, as with grow-
ing probe length errors start to accumulate depending on the used
technology. Thus, the probe length varies from manufacturer to man-
ufacturer. For chips from Affymetrix (e.g. GeneChip HuGene 2.0 ST
arrays), the probe length is 25 bases [Aff07] whereas chips from Agi-
lent (e.g. SurePrint G3 arrays) use 60 bases [LeP08]. To account for
the shorter probe length, Affymetrix chips use multiple probes for the
same transcript, whereas Agilent relies on a single probe [Mul+16].
In addition, Affymetrix chips carry perfect match (PM) and mismatch
(MM) spots for the same transcript that, in theory, should allow to bet-
ter quantify the amount of unspecific cross-hybridisation. In practice,
the value provided by MM probes is questionable [[ri+03]. Chips man-
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Figure 2.8: Manufacturing process of Affymetrix microarrays. (a) The 5’ ends
of the probes are protected with a cap. For extending a probe, a photolitho-
graphic mask is placed on the chip. Ultraviolet light removes the caps and
(b) allows new nucleotides to bind. After a washing step (c), the process is
repeated with a different mask [[INC05].

ufactured by Illumina use the so-called BeadArray technology. Here,
beads carrying probes of length 22 to 24 are immobilised in small wells
etched into the chip surface. In contrast to other microarray technolo-
gies where the location of a probe on the chip is well known, the beads
and hence the probes are randomly distributed across a Bead Array. Ac-
cordingly, the beads occupying the wells need to be identified prior to
measuring. To this end, techniques based on coding theory developed
for “Sequencing by Hybridisation” [SME92] are applied. As no DNA
needs to be synthesised on the chip, higher packing densities are pos-
sible than for the previous two technologies [Gun+04].

Microarray Preprocessing

Microarray data contains measurement errors and uncertainty. Usu-
ally two types of noise are being distinguished: technical noise and
biological noise. Whereas biological noise quantifies the natural fluc-
tuations that can occur between two different samples under the same
conditions, technical noise accounts for the variability introduced by
sample preparation and the experiment itself. In addition, batch ef-
fects and confounding factors need to be taken into account during
data analysis. Batch effects arise whenever a set of samples needs to
be measured in multiple chunks e.g. due to a large sample size. Ex-
amples are changes in external conditions such as temperature or light-
ing. The same is true for samples analysed using different master mix
solutions or conducted by different experimenters from different labs.
These factors introduce systematic errors that can lead to shifts in ex-
pression intensity and variance between groups of chips. Confounding
factors lead to similar problems, but depend on the analysed samples
themselves. For example, the age or gender of the patients in the con-
trol and samples groups can lead to biases in the measured expression
values.

For obtaining expression values from microarray experiments, mul-
tiple steps are necessary.
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Fiqure 2.9: Affymetrix microarrays. Source: https://commons.wikimedia.
org/w/index.php?title=File:Affymetrix-microarray.jpg&oldid=
165509627

Scanning and Image Analysis Capturing the raw data of a chip is
achieved using a laser scanner. This will create a grey-scale image that
needs to be further analysed. Depending on the chip technology mul-
tiple image processing steps are needed to detect and address the fluor-
escence signal from the probes. These may account for slight rotations
and spot irregularities. Once the pixels belonging to a spot have been
identified, a raw expression value for this spot is computed by integ-
rating over the measured intensities.

Background Correction While the washing step in microarray proto-
cols eliminates most unspecific binding events, a residual amount of
unspecific hybridisations remains. To remove this effect from raw data
a background correction step is performed.

Normalisation Once raw expression values have been created, it is
necessary to conduct a normalisation step to ensure the compatibil-
ity between probes (intra-array) as well as samples (inter-array). Intra-
array normalisation also entails the aforementioned background cor-
rection step. For inter-array normalisation, the expression value distri-
butions of the chips are made comparable. Various normalisation al-
gorithms and software packages are available. Examples are the vari-
ance stabilising normalisation (VSN) [Hub+02] or the quantile normalisa-
tion technique [Bol+03].

Summarisation To make the measurements more robust, multiple
probes, or copies of a single probe that all match to the same mRNA are
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distributed across the chip. These raw values need then to be summar-
ised to a single expression value. To protect against outliers, algorithms
such as the median polish procedure [Hol+01] are used during sum-
marisation.

Batch-effect removal As mentioned above, microarray experiments
are highly sensitive to changes in the external conditions. In practice,
this means that experiments that were broken up into batches due to
a high sample count will incur systematic errors that differ between
the batches. This can lead to artefacts that obscure actual, biological
signal when analysing the data using standard workflows [Lee+10].
To account for this effect, batch-effect removal techniques such as SVA
[LS07], COMBAT [Che+11], or RUV2 [GS12] can be applied. Alternat-
ively, it is possible to include batch information in addition to other,
known, confounding factors into the design matrix of the experiment
when computing scores for differential expression. This approach is
chosen by the limma R package [Rit+15]. In all cases, the design of
the experiment must account for batch-effect removal. This means that
one or more samples of every phenotype should be measured in each
batch. Otherwise, assuming a linear batch effect model, the phenotype
and the confounding factor become linearly dependent making it im-
possible to reconstruct the actual expression values.

Differential Expression Once the raw data has been pre-processed, it
is possible to perform the actual analysis. Microarray data is usually as-
sumed to be normally distributed, although other distributions such as
the Laplace distribution can arise (cf. Section ). Nevertheless, stat-
istics such as the t-test are commonly applied and provide good results
when computing differential expression [C+03]. The previously men-
tioned limma package uses ANOVA for this purpose. As the p-value
computed by statistical tests makes no statement about the biological
relevance of the detected effect, it is advisable to examine the effect size
[RCH94]. An increasingly more popular visualisation technique, which
helps to quickly identify significant, biologically interesting genes, is
the so-called wvolcano plot. In a volcano plot the negative logarithm of
the computed p-value is plotted against the log-fold change (e.g. Fig-
ure @1)3 We discuss methods for detecting differentially expressed
genes in more detail in Section @

2.3.3 High-Throughput Sequencing

In this section, the basic principles behind high-throughput sequen-
cing are introduced. As in this thesis sequencing and the RNA-seq tech-
nology will only play a minor role (cf. Sectiong@), we refer the inter-
ested reader to the literature for a more thorough treatment.

The ability to sequence an organism’s genome is an essential build-
ing block for understanding the differences between species or between
individuals within a species. Using the classical Sanger sequencing
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Figure 2.10: Development of the costs for sequencing a complete genome as
reported by the NHGRI. Due to the development of high-throughput sequen-
cing techniques, sequencing costs have dropped exponentially since the pub-
lication of the first human genome [Wet15].

procedure, relatively long reads can be determined. For example, the
Sanger ABI 3730xI platform [GAT16], is able to determine the sequence
of DNA fragments with a length of up to 1100 base pairs (bp) in a single
experiment. This particular platform is also able to sequence 96 reads
in parallel yielding a throughput of roughly 1 Mbp per day. Based on a
back-of-the-envelope calculation, sequencing the human genome con-
sisting of roughly 3 Gbp with a tenfold coverage requires sequencing at
least 30 Gbp or over 30 million reads. Accordingly, 100 machines would
need 300 days for processing all reads. A substantial amount of money
and time was, thus, required to sequence even a single genome and
made it infeasible to sequence a complete genome in routine research
and medical settings, such as analysing cancer biopsies. This changed
roughly a decade ago, with the advent of high-throughput sequencing.
Instead of sequencing a single DNA strand, high-throughput sequen-
cing allows to analyse millions of reads in parallel. This is commonly
achieved by creating micro reaction environments in each of which an
independent sequencing run takes place.

How these environments are created is dependent on the used tech-
nology. For example the Roche 454 sequencers, one of the earliest high-
throughput sequencers, use small beads carrying a short adapter DNA
on their surface (Figure ). These beads are contained in small wa-
ter droplets in a water-in-oil emulsion. The DNA reads are ligated with
complementary adapter DNA and subsequently captured by the beads.
Due to the used dilution, only one read is expected to hybridise with
one bead. The water droplet then serves as a reaction environment for
a PCR. The beads with the amplified DNA are then placed onto a mi-
cro reaction plate (PicoliterPlate) where the actual sequencing takes
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Figure 2.11: Principle of Roche 454 sequencing. Sample DNA is captured in
a reaction microenvironment where it is amplified and attached to a bead.
The beads are placed in a micro reaction plate such that exactly one bead oc-
cupies one well. The sequence of the sample DNA is then recovered using
pyrosequencing. Adapted from: http://www.lifesequencing.com/pages/
protocolo-de-secuenciacion?locale=en

place. Similarly, the Illumina HiSeq platform uses reaction plates on
which clusters of cDNA strands are synthesised in etched nano-wells.
While the Roche 454 platform employs pyrosequencing [], II-
lumina technology relies on fluorescent labels. The Roche 454 GS FLX
Titanium XL+ system produces reads with an average length of 700 bp
[], whereas the Illumina HiSeq X platform produces shorter reads
of length 150 bp []. Newer high-throughput sequencers such as the
Oxford Nanopore MinION or PacBio RS II are able to achieve longer read
length of roughly 1kbp to 2kbp and 10 kbp to 15kbp length, respect-
vy [Lav 15 RCSL3,

The result of a sequencing run is a list of reads with associated qual-
ity scores. After optional error-correction steps (e.g. [ILe+13]; |He0+14|;
]), it is possible to perform a de novo assembly or align the cap-
tured reads to a reference genome. The reference genome based ap-
proach is computationally much less demanding and poses no prob-
lem to modern hardware [; ]. However, especially the re-
liable detection of indels (insertions or deletions) and other genomic ab-
errations remains a challenge []. Fortunately, due to the devel-
opment of sequencers that produce far longer reads, it becomes more
feasible to conduct de-novo assembly for increasingly larger genomes

[Li+10; Kor+12; CWE15].

Applications of High-Throughput Sequencing

The availability of fast, inexpensive sequencing technologies enabled
various, innovative experimental designs beyond “merely” sequencing
a genome. Using the bisulfite technique [Fro+92], which converts un-
methylated cytosine into uracil it is possible to determine the methyla-
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tion state of the genome down to base resolution. Chromatin immuno-
precipitation in combination with sequencing (ChIP-seq) allows to de-
termine the occupancy of DNA with binding proteins [Bar+07b; Par09].
For this, the proteins are cross-linked to the DNA. Then, using nucle-
ases or sonication, the DNA is broken into fragments. After that, all
proteins of interest are selected using specific antibodies. Due to the
cross-linking, these proteins carry a DNA fragment with them. In the
next step, the bound DNA is removed from the purified protein and se-
quenced subsequently. Aligning the obtained reads to a reference gen-
ome reveals occupied protein binding sites. This technique is routinely
applied to analyse the binding sites of transcription factors [Val+08]
and histone variants [Bar+07b]]. Finally, just as mRNA /miRNA microar-
rays, RNA-seq allows to capture the complete transcriptome of a tissue
sample. We will now discuss this particular application in more detail.

RNA-seq

For measuring expression using high-throughput sequencing, RNA is
extracted from a sample and, depending on the used protocol, filtered
for e.g. short RNA or mRNA [Mar+08a]. Subsequently, the purified
RNA is transcribed back into cDNA, which is then sequenced [WGS09].
By determining the amount of sequencing reads that originated from
a given transcript, the abundance of this transcript can be estimated.
Traditionally, alignments against a reference genome or transcriptome
are used to determine the transcripts a read originated from. To this
end, aligners should be used that are able to map reads across splice
junctions such as the STAR aligner [Dob+13]. Recently, alignment free
methods such as Sailfish [PMK14] and Kallisto [Bra+15] have been pub-
lished. These approached rely on k-mer based algorithms for creating
“pseudo-alignments”. Salmon [PDK15] computes “lightweight” align-
ments by detecting approximate positions of a read in the reference. In
contrast to the classical, alignment based workflows these algorithms
offer a much improved runtime behaviour with little to no degradation
in accuracy.

After determining a read-to-transcript assignment, the number of
reads that map to a transcript is computed. To directly compare the
read counts between two transcripts they need to be normalised with
respect to the transcript length. For this purpose the fragments per kilob-
ase of exon per million fragments mapped (FPKM) [Tra+10] and transcripts
per million (TPM) [WKL12] statistics are used. Differentially expressed
genes or transcripts are computed with specialised software such as
DESeq2 [LHA14] or EdgeR [RMS10]. These packages take advantage
of the discrete probability distribution of read counts to detect differen-
tially expressed genes more reliably. Nevertheless, software originally
developed for microarray analysis such as limma is used and produces
good results [Rit+15].
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2.3.4 Comparison of Microarrays and RNA-seq

Microarray have established themselves as a well understood, battle-
proven experimental technology for capturing expression profiles. In
recent years, the RNA-seq technology is gaining popularity, though. A
large advantage of RNA-seq over microarrays is that the raw data can
be easily reanalysed for newer genome builds and annotations as it is
not tied to a particular probe design. As raw reads are available it is also
possible to call genomic variations in coding regions [Che+09]. In ad-
dition, due to the increasing read length for modern high-throughput
sequencers, reliably resolving expressed isoforms becomes more and
more feasible [Chh+15]. A further point in favour of RNA-seq is that
the obtained read counts are a more direct representation of the ac-
tual RNA abundance than the indirect fluorescence signals obtained
from microarrays. Yet, microarray platforms continue to be used due
to well established protocols and analysis pipelines. Furthermore, the
expression profiles generated using current microarray platforms re-
main competitive with RNA-seq based methods in terms of quality.
Ultimately, however, RNA-seq is more versatile and can be expected
to replace microarrays for most use cases [Zha+14; Man+14; Zha+15].

2.4 WILM'S TUMOUR DATA

ContriBuTioONs Most WT tissue samples were collected by the
group of Prof. Manfred Gessler. Some samples as well as clinical
data were provided by the group of Prof. Norbert Graf. The mi-
croarray assays were performed by Nicole Ludwig from the group
of Prof. Eckart Meese. Normalisation of the raw expression values
was performed by Patrick Trampert.

In Section we introduced Wilm’s tumour and some of its com-
mon subtypes. We noted that tumours containing a high amount of
blastemal cells after pre-operative chemotherapy, the so called blastemal
subtype, is one of the most aggressive Wilm’s tumour subtypes. To in-
vestigate why some tumours with a high blastem content respond well
to chemotherapy while others do not, we generated an expression data-
set of Wilm'’s tumours that were treated with pre-operative chemother-
apy according to the SIOP protocol (cf. [Isr+13; DPG14]).

Patient Samples The dataset consists of 40 mRNA and 47 miRNA ex-
pression profiles from 47 tumour biopsies collected from 39 patients.
These biopsies contain four healthy tissue samples as well as 16 blaste-
mal, nine mixed type and 17 miscellaneous tumour samples that were
labelled as described in Section . Before surgery, patients were
treated using the SIOP standard regimen consisting of Actinomycin-D,
Vincristine, and, in the case of metastases, Doxorubicin (cf. Figure @).
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Clinical details of the patients included in the analysis and an overview
over the generated expression profiles is given in Appendix E The re-
search was approved by the local ethical committee (Ethikkommission
der Arztekammer des Saarlandes, No. 136/01; 09/16/2010).

RNA Isolation Total RNA including miRNAs was isolated from tu-
mour and control tissue using the miRNeasy Kit (Qiagen, Hilden, Ger-
many) according to manufacturer’s instructions. The RNA concentra-
tion and integrity were assessed using NanoDrop2000 (Thermo Fisher
Scientific, Waltham, MA, USA) and Bioanalyzer runs using the Pico-
RNA Chip (Agilent Technologies, Santa Clara, CA, USA).

miRNA Expression Profiles miRNA expression profiles were meas-
ured using the SurePrint G3 8x60k miRNA microarray (miRBase v16,
Cat. no. G4870A) according to the manufacturer’s recommendations.
Background-corrected, log-transformed expression values were extrac-
ted using the Agilent Feature Extraction Software and normalised using
quantile normalisation. In total, 47 miRNA expression profiles were
generated.

mRNA Expression Profiles All mRNA expression profile were meas-
ured using SurePrint G3 Human Gene Expression 8x60K v2 microarrays
(Cat. no. G4851B, Agilent Technologies, Santa Clara, CA, USA) accord-
ing to the manufacturer’s recommendations. Expression values were
extracted, background-corrected, and log-transformed using the Agi-
lent Feature Extraction Software and normalised using the GeneSpring
software [CSKO1]. In total 40 mRNA expression profiles were gener-
ated.

31






BIOLOGICAL NETWORKS

The whole is more than the sum of its parts.

— ARISTOTLE, metaphysica

Cells are highly complex, molecular machines, each of which is com-
posed of billions of biological entities such as genes, proteins, RNAs,
and metabolites. These entities fulfil their tasks through interaction.
Examples are proteins binding metabolites to catalyse a metabolic re-
action or two proteins forming a complex. When a complex is formed,
it again can participate in further interactions. Similarly, miRNAs can
bind to mRNAs in order to make the translation process less efficient
or completely inhibit it (Section ). On the genome level, enhancers
and genes can associate with transcription factors. This can lead to the
initiation or repression of expression or even to the remodelling of the
chromatin structure. Which molecules are able to interact is determ-
ined by the chemical and structural properties of the putative interac-
tion partners. In practice, the physical location of the molecules inside
the cell also plays an important role. For example, a molecule inside the
nucleus will not react with another molecule in the cytoplasm as they
are separated by the nuclear membrane. Moreover, not every gene is
expressed in every cell and hence not every protein is available every-
where. Consequently, reactions that are possible in one cell type need
not be possible in another cell type.

Viewed together, the interactions in a cell form a network in which
the entities are connected with edges representing interactions. Con-
sidering that there exist approximately 20,000 human genes encoding
roughly 80,000 proteins, the amount of possible interactions already
ranges in the billions [Har+06; Har+12]. This completely disregards
the vast amount of RNA and metabolites that are present at any point
in time. Even when excluding interactions that are impossible due to
chemical considerations or tissue specificity, it is clear that charting
these networks is a daunting task. In a valiant effort towards reaching
this goal, interaction databases have been created with which research-
ers attempt to catalogue all known biological entities and their inter-
actions in a structured and well-defined fashion. As opposed to the
unstructured representation of knowledge found in the literature, the
availability of databases enables researchers to efficiently search the
stored data. Furthermore, it enables the use of bioinformatics analysis
pipelines, which is imperative for the ability to deal with genome-scale
datasets. This development lead to the emergence of systems biology.
In contrast to the classical, bottom-up approach of biology [Laz02], in
which parts of a biological system are studied in isolation, systems bio-
logy attempts to detect general patterns on a global level [Kir05; Kit02].
This means that instead of studying biological processes in minute de-
tail, systems biology is dedicated to discovering general architectures
and building blocks that nature repeatedly uses to create complex bio-
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logical systems. To achieve this, systems biology relies on computa-
tional methods and machine learning techniques for extracting the in-
formation stored in biological databases.

In this chapter, we will take a look at various methods that assist
researchers in reasoning about biological systems. In each section, we
give a short discussion of the respective state of the art. In addition,
we present algorithms that exploit the knowledge stored in interaction
databases to improve the analysis of experimental data. For this, we
tirst introduce some general terminology. Next, an overview over the
available types of databases is provided. After this, we take a look at
how Bayesian networks (BNs), and especially causal Bayesian networks,
can be employed to test hypotheses about cellular processes. Based on
this, we introduce our tool CausalTrail [Sch15a; St6+15] which, to the
best of our knowledge, is the first tool that allows researchers to evalu-
ate causal queries on a causal Bayesian network structure. Afterwards,
we give a short introduction to Gaussian graphical models (GGMs). While
we will not use GGMs to infer networks, Section @ demonstrates how
to use the underlying theory to construct an “enrichment algorithm”
that corrects for the correlation structure in biological categories.

While the previously mentioned approaches model network struc-
tures from a probabilistic point of view, also purely graph theoretical
algorithms exist. As an example, we present an ILP approach for find-
ing deregulated subgraphs in regulatory networks [Bac+12]. In con-
trast to many other approaches, our algorithm is exact and highly effi-
cient. While algorithms for detecting deregulated subgraphs by design
are influenced by the provided topology, it is unclear how large its im-
pact on the computed results is. To this end we perform an evaluation
demonstrating how the network topology and input scores affect the
produced solutions.

3.1 GRAPH THEORY

Before we begin with the explanation of the methods and concepts
presented in this chapter, we first introduce some basic terminology
from graph theory. In mathematics, graphs describe binary relations
(edges) between a set of objects called nodes or vertices. Thus, graphs
lend themselves for modelling biological networks. Formally a graph
is defined as follows:

Definition 1 (Graph). Let V' be an arbitrary, finite set of nodes or vertices
and £ C V x V the set of edges. We call the pair of node and edge set
a graph and write G(V, E). G is undirected, if for every edge (u,v) € E
also (v, u) € E holds.

A graph G is called simple, if no edge (v,v) € E exists. Unless men-
tioned otherwise, we assume that all graphs mentioned in this thesis
are simple.

An often encountered attribute of nodes are their degrees:
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Definition 2 (In- and out-degree). Given a graph G = (V, E), the in-
degree d;; of a node v is the number of edges that end in v. Conversely,
the out-degree d} of v is the number of edges starting in v.

Another important property of a node is whether it is possible to
reach it from another node. To give a proper definition of this notion,
we first introduce the concept of a path.

Definition 3 (Path). Let G(V, E) be a graph. If the sequence

b= <U1,U2,...,Uk;>

of vertices with k € N, k > 2 fulfils (v;,v;41) € E foralli < k itis
called a path of length k.

If for two vertices u,v € V there exists a path starting in « and
ending in v, we say that v is reachable from w. The set of vertices that
is reachable from w is called the descendants of u, whereas all vertices
that can reach v are called its ancestors. Descendants and ancestors that
are only one edge away are called the children and parents of a node,
respectively.

A graph is called strongly connected if every node v can be reached
from every other node v # u. With E = E U {(v,u)|(u,v) € E} we
denote the symmetric closure of the edge set. G is called connected, if
H(V, E) is strongly connected. A subgraph H C G is a graph H(V', E')
with V! € V and E' C E. A connected component of G is a maximal,
connected subgraph.

In some graphes, it is possible to find paths that start from and end
in the same vertex v.

Definition 4 (Cycle and circle). A path C = (v1,v2,..., vk, v1) is called
a cycle. If no vertex, except vy, appears twice in C, we call C' a circle. If a
graph does not contain any cycle, it is called acyclic.

In some cases, we refer to edge or node labels. Commonly, these can
be thought of as functions mapping the nodes and edges to a value.

Definition 5 (Node and edge labels). Let G(V, E) be a graph. A node la-
bel for G is a function w : V' — X, where X is an arbitrary set. Similarly
an edge label is a function ! : £ — X.

We often refer to vertices using an index i € N. For convenience, we
use the notation w; := w(v;) for referring to the node label of v; € V.
Examples for node labels are scores for differential expression that are
attached to each node. We call such labels node weights or simply scores.
In a regulatory network it is common to label each edge with the type
of the interaction it describes.

35



Also, specialising on
one network type makes
modelling simpler and
allows curators to focus

on their area of expertise.

BIOLOGICAL NETWORKS

3.2 TYPES OF BIOLOGICAL NETWORKS

The sheer number of biological interactions makes it difficult to com-
pletely catalogue them. To simplify this task, repositories that special-
ise in storing one or a selected few interaction types have been cre-
ated. We call the different kinds of networks that are stored in these
databases network types. Various factors have lead to the creation of
a substantial amount of interaction databases for each network type.
For example, the sources from which interaction data is derived can
differ substantially. While some databases rely on manually curated
data obtained from the literature, others use text-mining approaches
or prediction tools. Again, others only consider interactions confirmed
by reliable, highly specific experiments. Finally, some databases also
consider evidence from high-throughput experiments as sufficient.

Here, we shortly discuss the most common network types: protein-
protein interaction, metabolic, and regulatory networks. For each net-
work type, a list of representative databases is provided. In addition,
we introduce methods to infer networks directly from high-throughput
data. Of these methods we only discuss co-expression networks in this
section. Bayesian networks and Gaussian graphical models are intro-
duced separately in Section @ and Section B.4, respectively.

3.2.1 Network Types

Commonly, research has focused on the following three network types:
protein-protein interaction, metabolic, and regulatory networks. We briefly
discuss each of these network types and list databases from which they
can be obtained. However, it should be noted that no single, clear defin-
ition of these network types exists and thus some databases contain
interactions that stem from multiple types.

Protein-Protein Interaction (PPI) Networks

A protein-protein interaction (PPI) network is a, usually undirected,
graph in which nodes represent proteins and edges indicate that two
proteins interact (Figure B.1). PPIs can be determined in a high through-
put fashion using experimental setups such as yeast-two-hybrid [Uet+00;
FS89] or affinity purification screens [Rig+99; Tin11; BVR04]. However,
several lower throughput, but higher confidence methods for detect-
ing PPIs including co-immunoprecipitation [Sal+02; Bar+07a] or Far-
Western Blotting [WLC07], exist. Instances of PPI network databases
are DIP [Sal+04], HPRD [Pra+09], and MINT [Lic+12] that store manu-
ally curated PPI data. DIP provides interactions for a wide range of or-
ganisms, but is limited to a small set of proteins and high-confidence in-
teractions. MINT also provides entries for a large number of organisms,
but is less conservative than DIP. HRPD focuses on human proteins
alone. However, with more than 41,000 PPIs it far more comprehens-
ive than DIP and MINT. STRING [Szk+14] is a metadatabase that incor-
porates knowledge from primary databases such as DIP and MINT as
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Figure 3.1: Part of the STRING v10 [] protein-protein interaction net-
work for human. Coloured edges indicate the types of evidence supporting
the interactions of the incident nodes. This network depicts direct interac-
tion partners of TP53, a transcription factor that plays an important role in
the apoptosis. Proteins such as ATM and MDM2 are known activators and
repressors of TP53 respectively.

well as the results of text-mining and prediction tools (cf. Section ).
Consequently, STRING contains a large number of PPIs that may, how-
ever, be of low confidence.

Metabolic Networks

Metabolic networks describe the chemical reactions that take place in
an organism. As most biological reactions involving small molecules
are catalysed by enzymes, metabolic networks are commonly depic-
ted as directed, bipartite graphs, in which the first node set consists
of metabolites and the second node set consists of enzymes. Alternat-
ively, metabolic networks can be represented as directed hypergraphs,
where nodes are metabolites and edges connect educts with products.
In this case, the edges are labelled with the enzyme or the class of en-
zymes that is able to catalyse the reaction. Examples for databases stor-
ing metabolic information are KEGG [ ], Reactome [M], and
MetaCyc [] An example for a metabohc (sub)network can be
seen in Figure 3 B.2

Regulatory Networks

In contrast to the network types described above, regulatory networks
are less well-defined. In general, a regulatory network comprises inter-
actions that regulate biological processes. Examples for regulatory in-
teractions are transcription factors binding to DNA, thereby regulating
gene expression or the activity of kinases which (de)activate other pro-
teins via phosphorylation. While the interactions in a regulatory net-
work are usually directed, sometimes protein-protein binding events
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Figure 3.2: KEGG [KGO(0] reference pathway for the Citrate cycle (TCA cycle).
Nodes represent metabolites and edges represent conversions between meta-
bolites. Edge labels are enzyme commission numbers [Web+92] that represent
the set of enzymes that is able to catalyse this reaction. Dashed edges repres-
ent links to and from other metabolic pathways.

are contained in the network, if the resulting complex has a regulat-
ory function. This results in heterogeneous graphs with multiple edge
types. When interpreting this network, each of these edge types needs
to be treated differently.

Regulatory networks usually contain interactions that have been ob-
tained by curating the literature. Most databases organise their data
into subnetworks or regulatory pathways that represent well defined sig-
nalling cascades or biological processes. Databases that are organised
in this fashion are KEGG [KG00], Reactome [Jos+05], WikiPathways
[Kel+12], and BioCarta [Nis01]. In the case of KEGG, BioCarta, or Wiki-
Pathways the pathways are stored isolated from each other. To create a
complete regulatory network, they need to be stitched together by the
user. An example regulatory network is given in Figure @

3.2.2  Network Inference

In the discussion above we already discussed some of the methodology
used for constructing biological networks. Most databases are either
manually curated, meaning that interactions are only inserted into the
database after being reviewed by an editor, or employ text mining al-
gorithms, which automatically extract interactions from the literature.
In both cases, the interaction information is usually based on special-
ised assays that provide evidence for an interaction. To exploit available
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Figure 3.3: WNT pathway obtained from WikiPathways [Kel+12; Kan+10a].
Rectangular nodes represent proteins and mRNA whereas edges represent
regulatory interactions.

high-throughput datasets, models using supervised or unsupervised
techniques from statistics and machine learning, which can extract net-
works from expression profiles, have been developed [YVKO04; MVO08S;
DLS00]. In this chapter, we discuss the theory behind three types of
models that are commonly used for network inference: co-expression
networks, Bayesian networks (BNs) and Gaussian graphical models
(GGMs). We will only shortly touch co-expression networks, as they
are closely related to, but not identical with GGMs. We will provide
more details on BNs and GGMs, which are based on substantial corpus
of theoretical work. Both network types are graphical representations
of probability distributions. Due to this, they are commonly referred
to as probabilistic graphical models or simply graphical models. As they are
based on an explicit mathematical model, each interaction (or absence
thereof) has a well defined interpretation.

Co-expression Networks

Co-expression networks capture associations between genes or, to be
more precise, between the expression patterns of genes. They can be in-
terpreted as an approximation to regulatory networks, in the sense that
two genes being co-expressed can be an indication for the presence of a
regulatory mechanism. The associations are commonly inferred from

39



A more thorough in-
troduction to (C)BNs
can be found in Pearl
[Pea09] or Koller and

Friedman [KF09].

BIOLOGICAL NETWORKS

microarray or RNA-seq expression datasets (cf. Section @) by com-
puting the Pearson or Spearman (cf. Section @ and Appendix )
correlation between the measured genes. In theory, co-expression net-
works can be created from any expression dataset. In practice, a large
number of samples is required to reduce the noise inherent to expres-
sion data, though. COXPRESdb [Oka+14] focuses on co-expression net-
works for common model organisms. Most networks therein are de-
rived from microarray expression data obtained from public reposit-
ories. In contrast, the GeneFriends [DCM15] database is built upon
expression profiles measured using the Illumnia HiSeq2000 platform.
Other databases such as BAR [Tou+05] or GeneCat [Mut+08] are dedi-
cated to plants.

3.3 CAUSAL BAYESIAN NETWORKS

Often, regulatory networks are constructed from interactions identi-
fied in the literature. Examining the network structure gives insight
into the cellular processes in which the nodes of the network take part.
To make a quantifiable prediction about the behaviour of the system,
the representation purely as a graph is, however, insufficient. For this,
the network needs to be adorned with a mechanistic or probabilistic
interpretation. One such class of interpretable networks are Bayesian
networks (BNs). Bayesian networks are directed, acyclic graphs (DAGsS).
Each node represents a random variable and each edge encodes a de-
pendence of the target on the source. Due to this structure, BNs are
well suited to model hierarchical dependencies and are especially pop-
ular for modelling signalling cascades. A small example is given in Fig-
ure @ Outside of computational biology, BNs are often employed
for the construction of expert systems [SC92] in medicine [Die+97],
epidemiology [Won+03], psychology [GT07], and in economics [BAOG;
CVY07]. Let us start by giving a more formal definition of a BN. For this,
we need to define when two variables are conditionally independent.

Definition 6 (Conditional Independence [Pea09]). Let X, Y, Z be sets
of random variables. We call X and Z conditionally independent given
Y if

Pr(X|Y,Z)=Pr(X 1Y)

holds whenever Pr(Y, Z) > 0.

Using the notion of conditional independence, it is now possible to
give a definition of a BN.

Definition 7 (Bayesian Network [KF09]). A Bayesian network is a direc-
ted acyclic Graph G(V, E), where eachnode v € V represents a random
variable. Let pa, := {w| (w,v) € E} denote the parents of v. For every
node u € V which is not a descendant of v, it holds that v and v are
conditionally independent given pa, (Markov property).
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Intelligence (I)

Figure 3.4: The student network is an example of a small BN. Each of the nodes
represents a binary variable. Whether a student earns a good grade (G), is
dependent on whether the course was difficult (D) and whether the student
possesses a low or a high intelligence (I). Based on the grade, a lecturer may
be more or less inclined to write a letter of recommendation (L). Whether the
student passes the SAT test only depends on the student’s intelligence.

Given a Bayesian network for a probability distribution, we can
write the joint probability density as a product of conditional probab-
ilities:

n
Pr(Xy,...,Xn) = [[ Pr(Xk|pay,)
k=1

Often, an edge from parent to child in a BN is assumed to model a
causal relationship. Yet, this is not true in general. To see why, let us take
a look at the chain rule that can be used to represent a joint probability
distribution as a product of conditional distributions:

Pr(Xy,..., Xp) = [[ Pr(Xx| X1, ., Xi1)
k=1

Clearly, this factorisation gives us a simple way to represent every prob-
ability distribution as a BN. Each factor in the product represents a
child (X}) to parent(s) (X1,..., X_1) relation. However, this decom-
position is not unique, as it solely depends on the ordering of the vari-
ables [Pea09]. As a consequence, we obtain different graph structures,
depending on the ordering of the variables. In fact, it is possible to gen-
erate cases in which node Xj is a parent of X; and cases where the op-
posite is true. If a causal relationship between the two variables exists,
only one of the directions encodes this relationship faithfully. Hence,
the topological order in a BN cannot be assumed to model a causal
relationship.

When does an edge in a BN stand for an actual, causal dependency?
To answer this question, it is important to understand the concept of in-
terventions. By observing a system, e.g. by measuring the expression of
all genes in a cell, for a sufficient amount of time we are able to deduce
patterns in its behaviour. An example for such a pattern would be: “if
node A is in state a1, then node B is in state by”. However, these obser-
vations are only sufficient to conclude that the state of the two nodes
is correlated. It is uncertain whether node B is in state b, because node
A is in state a; or vice-versa. It is also possible that the state of the
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two nodes causally depends on a third variable and neither direction
represents a valid causal relationship. To determine which of the three
possibilities is the case, the experimental setup needs to be changed. In-
stead of passively observing the system, an external perturbation must
be introduced. For example, if the state of a node A is artificially fixed
at state a1, we can observe the state of node B. If B remains in state
by regardless of the other variables, this indicates that the state of A4 is
causal for the state of B. An example for such perturbations in a biolo-
gical setting is the artificial knock-out or overexpression of a gene.

Pearl [Pea(9] realised that the concept of interventions is not only
helpful for detecting causal relationships, but also is fundamental for
giving a sound definition of causality. Consider the factorisation of the
joint probability induced by the student network (Figure @):

Pr(D,I,G,S,L) =Pr(L|G)Pr(G|D,I)Pr(S|I)Pr(D)Pr(l)

If we want to determine the probability of getting a letter in the case
that we know the grade is good, we set the value of G to “good” and
remove the factor Pr(G | D, I) from the factorisation:

Prg—good(D; 1,8, L) = Pr(L |G = good) Pr(S | I) Pr(D) Pr(I)

We call Prg—go0q an interventional distribution. This allows use to define
a causal Bayesian network (CBN).

Definition 8 (Causal Bayesian network [Pea09]). A causal Bayesian net-
work (CBN) for a distribution P is a Bayesian network which is consist-
ent with all possible interventional distributions Px—,. Here, consistent
means that the network encodes a valid factorisation of Px—, after the
node corresponding to X and all edges going into X have been deleted.

Now we can provide an answer to our initial question: an edge in a
BN can only be interpreted as causal, if the BN is, in fact, a CBN.

This definition gives a natural way to examine the effect of external
influences on the observed system. Given a CBN, the effect of e.g. a
gene knock-out can be modelled by setting the state of the node rep-
resenting the target gene to unexpressed and deleting all edges from
the parent nodes. As the CBN is consistent with the corresponding in-
terventional distribution, we can now query the network for probabilit-
ies using standard algorithms. This approach was formalised by Pearl
[Pea95a] as the so-called do-calculus. It allows to test hypotheses on how
external changes (interventions) such as our gene knockout affect a sys-
tem’s behaviour. Using the do-calculus it is also possible to answer
counterfactual questions such as: “Would the patient have recovered
when given drug B, knowing that he did not recover given drug A?” or
“Would the plane have crashed, if it had been inspected before take-off,
given that it had not been inspected before?”. As such, counterfactuals
allow to re-evaluate decisions retrospectively in the light of new evid-
ence.

Due to the above properties, BNs and CBNs are popular tools in
bioinformatics and have been applied in many scenarios [M+99; Fri+00;
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Hus03; Sac+05]. Accordingly, a considerable amount of software has
been written to train and work with BNs. In general, the available tools
solve problems from one of three classes: topology determination, para-
meter training, and reasoning. Naturally, before being able to use a BN,
its topology must be determined. Unfortunately, even the inference of
an approximate network topology has been shown to be NP-complete
[DL93]. To work around this limitation, a wide variety of heuristic al-
gorithms, ranging from greedy to Monte-Carlo approaches, has been
conceived. Examples for such tools are, among many others, BANJO
[Smi+06], BNFinder2 [Doj+13], or SMILE [Dru99]. CBNs can be de-
termined using variants of the inductive causation (IC) algorithm. In
practice the most commonly used implementation of the IC algorithm
is the PC algorithm [SGS00] as implemented in the pcalg R package
[Kal+12]. Once the topology of the BN has been determined, the para-
meters of the network need to be derived from data. As the parameters
simply correspond to the conditional probabilities of a node given its
parents, this can be accomplished using trivial counting statistics in the
case of discrete data. For scenarios where only few samples are avail-
able, regularisation techniques such as Laplace/Lidstone smoothing
[CGY6] should be utilised. In case of missing data, an efficient Expect-
ation-Maximisation (EM) [DLR77] scheme can be applied [KF09]. While
many tools that infer a topology also compute conditional probability
tables (CPTs) as they go, approaches based on the IC algorithm require
an additional estimation step. Furthermore, if new data becomes avail-
able, retraining the parameters may be preferable to recomputing the
network topology. After parameter training, the model can be subjec-
ted to Bayesian reasoning. Under Bayesian reasoning we understand the
computation of conditional probabilities given a network structure and
trained parameters. In this framework, queries such as “In which state
isnode B, if node A is in state a3?” or “What is the probability of node
C being in state ¢;, if node A and node B are in states a; and b, respect-
ively?” can be answered. If the BN under investigation is a CBN, it is
also possible to evaluate interventional and counterfactual queries as
explained above. We call this causal reasoning.

While a large selection of programs for performing Bayesian reas-
oning, such as SMILE [Dru99] or the Bayes Net Toolbox [Mur+01]], ex-
ists, hardly any tool supports causal reasoning. To fill this gap, we de-
veloped CausalTrail [Schl5a; 5t6+15], a tool for performing causal reas-
oning using the do-calculus. In the remainder of this section, we give
insights into CausalTrail’s implementation and give examples of pos-
sible application scenarios.

3.3.1 CausalTrail

ContriBuTIONS The original implementation of CausalTrail was
written by Florian Schmidt [Sch15a] in the context of his Master’s
thesis supervised by me. The publication on CausalTrail [St6+15]
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INPUT ToroLoGY CoND. PROBABILITIES
A 0.3 0.5 0.2 1.0 Prp_,(E=2) = 0.25
B 2.0 1.3 0.7 2.3
C1.10.02.31.4
D 0.6 0.9 1.1 2.3 QUERIES
E 0.3 1.7 3.0 1.9
Reasoning ?E=2 !do D=1
¢ Discretisation
Di1SCRETISED CPT
A0 101 B A P(B|A)
B2112 1 0 0.5
cloe21 Parameter training 11 0.5
D111?2 2 0 0.5
E0 2202 2 1 0.5

Figure 3.5: The flow of information in CausalTrail. The user provides input
data as well as a predetermined topology. After a discretisation step, the in-
put data is used to determine parameters for the topology. This yields the
conditional probability parameters that fully describe the joint probability
distribution. Using the query language Bayesian and causal reasoning can
be performed.

was written by me with substantial feedback by Florian Schmidt
and Hans-Peter Lenhof. Improvements to the initial code were con-
tributed by me and Florian Schmidt.

Unlike other tools for working with BN structures, CausalTrail does
not attempt to infer the topology of a BN. Instead, the topology as well
as data from which parameters should be learned are specified by the
user. For this, software such as the pcalg [Kal+12] package can be used.
Afterwards, CausalTrail allows to perform Bayesian and causal reason-
ing using a flexible query language. To our knowledge, CausalTrail is
the only freely available software that allows to perform causal reason-
ing, in addition to Bayesian reasoning, on CBNs. The only other tool
we are aware of that also support this is the commercial BayesialLab
softwareH.

Workflow

A typical workflow is structured as follows (Figure @): the user spe-
cifies a network topology which can be provided in the simple inter-
action format (SIF) and trivial graph format (TGF) formats (see below).
Next, a dataset containing measurements for each node in the network
needs to be supplied. Here, it is important to note that the software
is able to cope with missing values. This makes CausalTrail especially
suited for the analysis of multi-omics datasets, where some measure-
ments may be missing or must be discarded due to quality issues. To
simplify the parameter learning process, CausalTrail currently requires
that each variable in the network only assumes discrete values. Thus, if

http://www.bayesialab.com/
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the provided data contains continuous variables, the user must select
one of several implemented discretisation methods for each such vari-
able. After this step, parameters are trained. If the dataset does not con-
tain missing values, a maximum likelihood estimate is computed. Oth-
erwise, the EM algorithm as described by Koller and Friedman [KF09]
is used to provide robust estimates.

Once the model has been trained, the user can perform reasoning
using the provided query language (see below). When using the GUI,
queries can be created interactively or entered manually (Section ).
In this case, the validity of the query is checked during runtime.

We will now take a closer look at the implementation of CausalTrail.
Further details can be found in the Master’s thesis by Schmidt [Sch15a].

File Formats

For specifying topologies the SIF and TGF file formats are supported.  The SIF and NA file

The SIF file format is a simple, line-based format. Each line contains formﬂf specification

one or more edges starting at a single node. Edges are encoded by a Z/S /ivi“;liabi;ﬁ:zz;

single node id followed by an interaction type, followed by multiple bre /Cyfc os cape_Usér_

node ids: Manual/Network_|
Formats .

1->23

The interaction type is ignored by CausalTrail. For specifying inter-
pretable node names, the node attribute (NA) file format is used. Each
NA file starts with a header stating the name of the stored attribute and
the type of the attribute as a Java class name:

NodeName (class=java.lang.String)

1 = NodeA
2 = NodeB
3 = NodeC

The TGF file format allows to store node names and edges in a single
file. The file starts with a newline-separated list of node ids and their
names. After the last node a # character is inserted. Afterwards a list of
edges follows:

1 NodeA
2 NodeB
3 NodeC
#
1
1

For specifying measurements, CausalTrail expects a matrix. Each
row in the matrix corresponds to the name of a node in the network,
and each column corresponds to a sample. Missing values can be spe-
cified using the string "na".
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{
"Grade": {
"method": "bracketmedians", "buckets": "2"
},
"Letter": {
"method": "threshold", "threshold": "2.0"
},
"SAT": { "method": "pearsontukey" },
"Intelligence": { "method": "median" 7},
"Difficulty": { "method": "none" }
}

Listing 3.1: Example JSON file containing discretisation settings for each
variable of the student network.

Discretisation Methods

The ceiling, floor, and round methods discretise the inputs to the nearest
integers. In contrast, thresholding-based methods like the arithmetic or
harmonic mean, median, z-score, and fixed threshold methods create bin-
ary output. The bracket medians and Pearson-Tukey [CCB11] procedures
yield three or more output classes. Discretisation methods can be dir-
ectly specified using the GUI or via a JSON formatted input file (List-

ing B.1).

Parameter Learning

In the case of a dataset without missing values, parameter learning
amounts to counting the frequency with which each combination of
parent and child values occurs. If the data contains missing values, the
EM procedure described by Koller and Friedman [KF09] is used. The
idea behind this algorithm is to estimate the most likely state of a miss-
ing value given the current parameters. Based on this imputation, a new
set of parameters is computed as if no missing values were present.
The procedure is iterated until either the parameters converged to a fi-
nal value or a fixed number of iterations has been reached (Figure @).
As the EM algorithm is a greedy procedure [Edm71; DLR77], the com-
puted parameters are not necessarily the globally optimal parameters.
To increase the chances of reaching the global optimum, the algorithm
is restarted multiple times using different initialisation schemes such
as random sampling.

Bayesian and Causal Reasoning

The basic tool for performing Bayesian reasoning is the ability of com-
puting conditional probabilities of the form Pr(X = z|Z = z), where
X and Z stand for disjoint sets of variables. To do so, the values of
X and Z are kept fixed while all remaining variables Y ¢ X U Z are
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1. Choose Initial
Parameters
2. Estimate Missing 3. Estimate
Values Parameters
4. Converged? * 5. Done

Figure 3.6: The flow of the basic steps of the parameter learning. First a set of
initial parameter is guessed. These parameters are used to impute the miss-
ing values. New parameters are then estimated from the imputed data. If the
parameters only changed slightly compared to the previous iteration, the al-
gorithm terminates.

summed out:

Pr(X =xz|Z=z2) =) Pr(X=2,Y =y|Z=2z)
Yy

This process is called marginalisation. Unfortunately, straight forward
implementations of this algorithm are not useful in practice. This is due
to the fact that for summing out all variables in Y all possible combin-
ations of their values need to be considered. Even for small examples
this quickly leads to a combinatorial explosion of terms inside the sum
and hence to exponential runtime. However, in the case of a BN, the
factorisation of the joint probability can be exploited to perform the
marginalisation more efficiently. The basic idea is that factors which
do not have variables in common can be marginalised successively and
independently:

Pr(X =x|Z=2)=)Y Pr(z|y)Pr(z|w)=> Pr(z|y) > Pr(z|w)
Yy w

y7w

This approach to computing conditional probabilities is called the vari-
able elimination algorithm. While, in theory, it is possible to create fac-
torisations for which the runtime remains exponential in the number
of variables, in practice variable elimination greatly improves the per-
formance for computing conditional probabilities. The algorithm is dis-
cussed in detail in Koller and Friedman [KF09].

Using this basic functionality, it is possible to also compute the
most likely state of a variable, by simply evaluating all possible value as-
signments. The implementation of fixed-value interventions is straight-
forward. For each node that should be fixed, the value of the node is set
to the interventional value. Then all edges from the parents to the fixed
node are removed. Afterwards the remainder of the query is evaluated
using the variable elimination algorithm.

The interventions introduced by the do-calculus allow to compute
counterfactuals using a three step procedure consisting of the abduc-
tion, action, and prediction stages [Pea09]. For illustration, assume we
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Intelligence (I)

Figure 3.7: Twin network for a modified (added edge between “SAT” and
“Letter”) student network and the query ? L = 1 | G = 0 ! do G = 1.
Nodes with a * indicate copies of the original network nodes. The exogenous
variables “Intelligence” and “Difficulty” are connected to their original chil-
dren as well as the respective copies. The intervention was executed on the
node G* and thus the edges to D and I were deleted.

want to compute the probability that a student would have gotten a let-
ter of recommendation (L = 1) if her grade had been good (G = 1),
knowing that, in fact, it was bad (G = 0). First, the joint probabil-
ity distribution Pr(D, I, G, S, L) is updated with the evidence G = 0
provided in the query (abduction). This yields the posterior distribution
Pr(D,I,G,S,L|G =0). Here we use the notation G’ = 0 to differenti-
ate between the current variable G and the evidence that we previously
observed G in state 0. Second, all interventions in our question are ap-
plied (action) yielding Prg—1 (D, I, S, L| G’ = 0). Last, the desired prob-
ability is evaluated on the modified posterior distribution (prediction).
The problem with this approach is that explicitly computing the pos-
terior distribution can require excessive amounts of memory. This is
due to the fact that incorporating the evidence (G’ = 0) can render the
remaining variables dependent which invalidates the factorisation en-
coded in the CBN. Hence, a full probability table needs to be computed
which is often infeasible for larger networks. Instead, CausalTrail uses
the twin network approach [Pea09] for computing counterfactuals. In
this approach, a copy of all endogenous variables (non-source nodes,
here G, L, and S) of the network is created. Exogenous nodes (source
nodes, here D and I) retain their original edges and gain a connection
to the copies of their children. The interventions are then executed on
the copied network. When evaluating the query, the original network
is used for conditioning (abduction) and the copy is used for predic-
tion. In Figure @ the twin network for a modified student network is
given. It should be noted that counterfactuals can only be formulated
for endogenous variables, as only they are fully dependent on the state
of the remaining network. In contrast, exogenous variables depend on
external influences and, thus, cannot be controlled.

In addition to interventions formalised in the do-calculus, Causal-
Trail also supports adding and removing edges to and from the net-
work. To this end, the network is simply retrained with the respective
edge added to or removed from the topology.
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<query> ::= '7' queries condition? intervention?
<queries> ::= 'argmax' '(' Node ')

| assignments
<condition> ::= '|' assignments
<intervention> ::= '!' intervs
<assignments> ::= assign (',' assignments)?
<intervs> ::= ('do' assign | edge) (',' intervs)?
<edge> = ('+'|'-") Node Node
<assign> = Node '=' Value

Listing 3.2: Grammar of the CausalTrail Query Language

Query Language

For formulating hypotheses, CausalTrail provides an intuitive query
language. The goal of the language is to allow users to specify a con-
ditional probability or interventional expression that should be com-
puted by CausalTrail. Accordingly, the language tries to mimic the re-
spective mathematical notation. Consider the student network from be-
fore (Figure @ and Figure @). The question how likely it is that a stu-
dent receives a letter of recommendation (L = 1) given that the student
has obtained a good SAT score (S = 1) and we know that he has a bad
grade (G = 0) can be stated as:

Prg—o(L=1[S=1)
In the query language the same statement is expressed as follows:
?7L=1]8S=1"!1doG=0

Every query starts with a '?” followed by a list of nodes for which the
posterior probability of a certain state should be computed. Alternat-
ively, it is possible to indicate that the most likely state should be com-
puted by using the argmax function. Following the "|” character, it is
possible to list nodes on which the probability should be conditioned.
Similarly, interventions can be stated after "!". They can be expressed
by using the notation do N = v. Edge additions and removals between
thenodes Nand Mare written as +N Mand -N M, respectively. Using edge
removal, we can, for instance, query how likely a good score in the SAT
is, given that the student had a good grade and under the assumption
that the difficulty of the course did not factor into the grade:

?2S=1|G=1!-DG

Further example queries are given in Table @ The full grammar is
given in Listing B.2.

Graphical User Interface

All functionality provided by CausalTrail can be accessed via the com-
mand line interface (CLI). For convenience and better accessibility we
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File  Network Help
P9 Load Netwerk [} Delete Network | [™] Load Samples n Layout Create Batchfile  [¥] Run Batchfile 1 Help
Student.na € Query Control Panel 3
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O Mew Query
Calculating probability of
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Intelligence = i0
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setting
Difficulty = d1
Probability:
Log © | qQuery History o
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Figure 3.8: Screenshot of the CausalTrail main window. The current network
is shown in the central pane. Nodes that are part of the current query (right
pane) are coloured according to their role in the query.
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(a) Load samples dialog

= t ion Meth

Wariable nameDiscretisation method Threshold/Number of bins
Difficulty | Is Discrete “
Intelligence | Median |
SAT | PearsonTukey |
Grade _ BracketMedians v Il 2
Letter _Manual Threshold v| 2.0
. Load | v 0K Save & Cancel

(b) Select discretisation method dialog

Figure 3.9: When loading samples, first, the dataset can be examined. Next, a
discretisation method needs to be chosen for each variable. Selected discret-
isation methods can be saved to and restored from a JSON file.
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also provide a GUI (cf. Figure @). The GUI is centred around a ren-
dering of the Bayesian network as directed, acyclic graph. The layout
for this graph is generated using the Graphviz [GNOO] suite. Quer-
ies can be built intuitively via a context menu that can be invoked by
right-clicking on network nodes and edges. Alternatively, queries can
be entered directly in the “Query Control Panel” (Figureq@, top of
right pane). Queries entered this way are automatically validated while
typing. If detected, syntactical and semantical errors such as mistyped
node names or values, are highlighted. In addition to the plain text rep-
resentation in the input field, the “Query Control Panel” also provides
a structured view, which breaks each query down into components.
Nodes or edges that are part of the current query are colour coded in
the network representation to improve clarity.

An important part of CausalTrail is the management of datasets.
To be able to use a BN for reasoning, a dataset needs to be imported,
examined, and discretised. To this end, when a dataset is loaded, an in-
teractive table showing its contents is displayed to the user that can be
used to exclude certain samples from the analysis (Section ). After-
wards, the user is offered the choice of a discretisation method for each
variable. After choosing appropriate methods, the user can store them
in a JSON file (cf. Section ) for later use. Internally, CausalTrail
manages the state of the application as a session. In each session, mul-
tiple networks can be loaded and worked on simultaneously. The state
of the session can be saved and restored at any point.

Implementation

CausalTrail is written in C++ using features from the C++14 standardE.
To facilitate code reuse, all GUI agnostic functionality such as routines
concerning parameter inference and reasoning are implemented in a
separate, core library. As dependency only the Boost library collection
is usedH. On top of the core library the command line interface (CLI)
and a library providing a graphical user interface (GUI) have been built.
For creating the GUI the Qt5 toolkit® was used, which allows to port
CausalTrail to all major platforms. For computing graph layouts, the
Graphviz [GNO(] suite is automatically detected and used at runtime.
We put special emphasis on the performance and reliability of the
implemented methods. To this end, CausalTrail is equipped with a unit
test suite written using the Google Test framework®. CMake* is used for
the build system. CausalTrail can be compiled on Linux and Windows,
although only the former platform is officially supported. The source
code is licensed under GPLv3 and can be obtained from Github?.

http://www.iso.org/iso/catalogue_detail.htm?csnumber=64029
http://www.boost.org/

https://www.qt.io/

https://github.com/google/googletest

https://cmake.org/
https://github.com/unisb-bioinf/causaltrail
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Figure 3.10: Dependence of the parameter fitting procedure on the number
of samples and network topology. The performance is shown for (a) the Camp
(20 nodes, 25 edges) and (b) the Water (32 nodes, 66 edges) networks obtained
from the Bayesian Network Repository [Scul6]. With increasing sample count
a clear improvement in performance can be seen. In the case of the CHiLD
(c) network, around 1000 samples are enough to achieve excellent parameter
fits. The more complex Water network (d) requires substantially more data.
(Graphs taken from Schmidt [Sch15a]).

3.3.2 Examples

We first demonstrate the quality and convergence properties of the im-
plemented parameter learning algorithm. For this purpose we take a
look at the mean square error (MSE) achieved for the parameters by
training on data sampled from two benchmark networks. These are the
CHILD network, which models child disease due to birth complications
[SC92], and the Water network, which describes an expert system for
the monitoring of waste water treatment [Jen+89]. Both networks were
retrieved from the “Bayesian Network Repository” [Scul6] and are of
medium size. We chose these networks, to show that not only the num-
ber of nodes, but also the connectivity between them can be a limit-
ing factor for the quality of parameter learning. For each network we
drew a varying number of random samples from the joint distribution.
With an increasing number of samples, the parameters for the CHiLp
network, consisting of 20 nodes and 25 edges, quickly converge to the
true values. Already with just 100 samples, the estimates reach an ac-
ceptable error level of ~ 0.03. The more complex WaTer network (32
nodes, 66 edges) requires substantially more data points to obtain good
estimates. Even with 10,000 samples, the MSE remains at ~ 0.19. For
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Figure 3.11: The CBN constructed by Sachs et al. [Sac+05], rendered using
CausalTrail’s SVG export functionality. Nodes represent proteins and edges
represent causal dependencies between phosphorylation states. Nodes for
which probabilities should be computed are coloured light green. Nodes with
fixed values due to an intervention are coloured light yellow. The dashed
edges are not considered during evaluation due to the intervention on ERK.

both networks, parameter training is completed in a few milliseconds.
Considering that the network parameters are probabilities, an error of
0.19 hints at severe problems in the training procedure. While both net-
works have a similar number of nodes, the CaiLp network is substan-
tially less densely connected. This immediately has an impact on the
size of the required CPTs. In addition, the WaTer network also has, on
average, more states for each node than the ChiLp network. This again
increases the size of the CPTs and leads to more variability during para-
meter training.

We further demonstrate an application of CausalTrail using the pro-
tein signalling network inferred by Sachs et al. [Sac+05]. Here, we con-
sider the largest connected component of the network which consists
of eight nodes. Each node represents a protein for which the degree of
phosphorylation was measured. For inferring the topology of the net-
work, the authors used single-cell data obtained from CD4" primary
cells using multicolour flow cytometry. This technique allows to determ-
ine the phosphorylation state of multiple target proteins using fluor-
escently labelled antibodies on a single cell level [PNO2]. A visualisa-
tion of the network, created using CausalTrail’s SVG export functional-
ity, is given in Figure . The authors validated the existence of the
edge between ERK and AKT by showing that an intervention on ERK
changes the phosphorylation level of AKT, but has no effect on PKA.
To this end, the phosphorylation of AKT and PKA was measured with
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Query Result Probability
7 argmax (AKT) 1 0.354
? argmax (AKT) ! do ERK = 2 2 0.774
? argmax(AKT) ! do ERK = 0 0 0.691
7 argmax (PKA) 2 0.336
? argmax(PKA) ! do ERK = 2 2 0.336
7 argmax(PKA) ! do ERK = 0 2 0.336
? argmax(PKA) | ERK = 2 2 0.505
? argmax(PKA) | ERK = 0 0 0.423

Table 3.1: Example queries for the Sachs et al. [Sac+05] dataset. High
phosphorylation levels for ERK increase the likelihood of AKT being phos-
phorylated. In contrast, no such influence is detectable for PKA. The last two
rows show the effect of conditioning on ERK.

ERK being (i) unperturbed, (ii) stimulated, and (iii) knocked down us-
ing siRNAs. Stimulation of ERK was achieved using antibodies target-
ing CD3 and CD28. Whereas this stimulation had no effect on PKA,
it lead to an increase in AKT phosphorylation. For the knockdown,
again no change of PKA phosphorylation could be detected whilst the
phosphorylation of AKT dropped slightly below the level of the unper-
turbed case.

To test whether the inferred network models the experimental data
faithfully, we used the dataset and topology provided by Sachs et al.
[Sac+05] to train the parameters of a CBN. We then examined the edge
between ERK and AKT more closely. The dataset contains 11672 meas-
urements of each protein’s phosphorylation level. These levels were
discretised into the classes low (0), medium (1), and high (2) using the
bracket medians procedure. We then computed the most likely phos-
phorylation state of AKT and PKA in (i) unperturbed, (ii) stimulated,
and (iii) ERK knockout cells, which we modelled using interventions
that fix the ERK phosphorylation level to high and low, respectively.
The computed queries are given in Table El] We find that the in silico
stimulation of ERK leads to an increased AKT phosphorylation level.
When ERK is knocked out, AKT phosphorylation drops to 1ow, show-
ing that the previous increase was in fact mediated by ERK. In contrast
the activity of ERK has no effect on the phosphorylation of PKA. Note
that using an intervention is essential for this observation as condition-
ing on ERK would render PKA dependent on ERK resulting in a differ-
ent prediction.

3.3.3 Summary

While tools for Bayesian reasoning are commonly available, no freely
available programs for causal reasoning exist. With CausalTrail we at-
tempt to fill this gap. CausalTrail enables its users to harness the ad-
ditional expressivity offered by the do-calculus to formulate and test
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biological hypotheses in silico. Our software offers efficient implement-
ations for parameter learning and query evaluation that allow to ex-
amine experimental data in an interactive fashion. The showcased ap-
plication of causal reasoning demonstrates that CausalTrail may be a
valuable addition to a bioinformatician’s toolbox for the interpretation
of Bayesian networks.

3.4 GAUSSIAN GRAPHICAL MODELS

Besides Bayesian networks, Gaussian graphical models (GGMs) are a pop-
ular choice for inferring network structure from data. In contrast to
BNs, GGMs are undirected and encode a multivariate Gaussian dis-
tribution. This means that two nodes in a GGM are connected if and
only if the corresponding random variables are conditionally depend-
ent. As expression data is commonly assumed to be approximately nor-
mal distributed, GGMs are often used for analysing the dependence
structure between gene expression measurements. By assuming a con-
crete underlying distribution, the model is more constrained than BNs.
Still, the size of the networks that can be reliably estimated in practice
strongly depends on the number of available samples. In the follow-
ing, we discuss GGMs in more detail. To this end, we introduce the
central notions of precision matrix and partial correlations. We continue
with methods for training GGMs and give a short example of a GGM
trained on the Wilm’s tumour dataset.

3.4.1 Multivariate Gaussian Distributions

The multivariate Gaussian distribution is a generalisation of the Gaus-
sian distribution to higher dimensional spaces R”. For this, the mean
1 € R is replaced by the vector of means ji € RP. For the variance o>
scaling up to a multivariate distribution is not as simple. This is due to
the fact that the constituent random variables of the distribution can
be dependent. To account for this, a covariance matrix ¥ € RP*P is
used. Its diagonal elements are the variances of each random variable,
while the off-diagonal elements correspond to the covariance between
pairs of random variables. If all variables are independent, the covari-
ance matrix thus reduces to a diagonal matrix. The density function of
a multivariate Gaussian distribution is given by

1 ot l o
S o (-3-nr="a-m)

The matrix 2 := 71 is called the precision matrix. It can be interpreted
as a transformation that rescales the samples such that their covariance
matrix becomes the identity. This idea is pursued further in Section @
In addition, 2 also contains information about the conditional depend-
ences between the dimensions. Whereas X contains the covariance of
the constituent random variables, €2 contains the partial covariances. The

f(@) =
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partial covariance between two random variables can be understood as
the part of their covariance that cannot be explained by the remaining
variables. To explain this in more detail, we first introduce the notion
of a least-squares fit. Assume that f : R? — R is a function of the form
f(&) = Brx1 + Paxa + . .. + Ppxp. Furthermore, assume that the outcome
y is determined via the relation y = f(¥) + ¢ where ¢ ~ N (0,0?) is a
normally distributed noise variable. The task is to find the best estim-
ate f* of f given a set of N samples (y;, Z;). Here, best is defined as the
function minimising the least-squares loss function:

N
(i~ £ =3 (i~ @) = 7 - X5.5- XB)

i=1 =1

Here, we use ¥ € RY as the vector of observations and X € RN*P
as the matrix of predictors. After applying basic calculus, we obtain a
formula for the weight vector [FHT09]: B* = (X'X) 1 X§. We refer
to f* as the least-squares fit of i given X with coefficients 3. It is now
possible to define the partial covariance:

Definition 9 (Partial Covariance [BSS04]). Let X,Y be two random
variables and let Z = {Z;,...,Z,} be a set of random variables. De-
note the coefficients of the least-squares fit of X and Y given Z as fx
and By, respectively. Then, the partial covariance is defined as the co-
variance of the residuals:

rx = X — <Z,,3_;(>
ry =Y —(Z, By)
cov(X,Y|Z) := cov(rx,ry)

As with the usual variance the partial covariance permits the defin-
ition of a measure of correlation. This correlation is called the partial
correlation (cf. [BSS04]).

Definition 10 (Partial Correlation). Let X, Y be two random variables
and let Z = {Z, ..., Z,} be a set of random variables. The partial cor-
relation of X and Y is defined as

cov(X,Y|2)
Vvar(X|2)/var(Y|Z)

PXY|Z =

using var(X|Z) := cov(X, X|Z) or, given

Qxy

PXY|Z = —7%9)“9“/

It can be shown that two variables in a GGM are conditionally in-
dependent if and only if their partial correlation equals zero [Lau96;
BSS04]. Equivalently, two distinct random variables are conditionally
independent if and only if the corresponding entry in (2 is zero.
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3.4.2 Covariance Matrix Estimation

In theory, fitting a GGM is straightforward. First, the sample covariance
matrix is computed. Given a dataset X = {z1,...,2,} withn € N
samples and p € N variables. The sample covariance matrix W is then
given by:
W = L
] ;(ffz ) (i — f)

where /i is the sample mean. More robust estimates of the (co)variances
can be used to obtain estimates of the precision matrix that are less sus-
ceptible to noise in the input data. An example is the method proposed
by Schéfer and Strimmer [SS05] which is based on James-Stein shrink-
age [JS61]. For details the reader is referred to the cited literature.

3.4.3 Precision Matrix Estimation

The precision matrix can be obtained by computing the inverse of W'.
In practice, the required matrix inversion creates various problems. If
few samples are available, compared to the number of variables, small
errors in the estimation of the covariance matrix are amplified by the
condition number of the matrix [Pre+07]. For small sample sizes, where
W is close to singular, the condition number is likely to be high. Ac-
cordingly, large differences between the true and estimated precision
matrix can be expected. To alleviate the effect of small sample sizes, a
regularisation approach should be chosen. A direct way to introduce
regularisation is to exploit the eigenvalue decomposition of ¥. Given a
symmetric matrix A € RP*?, its eigenvalue decomposition is given by

A=VIV!

where V' € RP*? is the orthogonal matrix of eigenvectors and I' € RP*?

is the diagonal matrix of eigenvalues. As X is positive definite, the ei-

genvalues are guaranteed to be non-negative. It is then possible to com-

pute ¥~! = VI~V where I'!is the (pseudo-)inverse of I':

rl— {1/Fii if 'y >.0 31)
0 otherwise

For small eigenvalues this results in large entries in I'"!. Under the
assumption that eigenvectors corresponding to small eigenvalues can
mostly be attributed to noise, setting the inverse of these small eigen-
values to zero prevents the amplification of this noise. We thus define
I'~! in which only eigenvalues above a user-defined threshold p € R{
are retained:

f‘_l {1/Pii if Ty > P (32)

" 0 otherwise
A similar idea can be derived from linear regression. As linear re-

gression requires the inversion of a covariance matrix to compute the
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regression coefficients, it also suffers from cases where ¥ is near singu-
lar and, thus, has a high condition number. To counteract this, a small
constant can be added to the diagonal of the covariance matrix to serve
as a regulariser. This ensures that the solution to the regression prob-
lem is unique. Ledoit and Wolf [LW04] explore this idea for computing
a precision matrix and describe an optimisation problem that allows to
obtain the optimal value of the regularisation parameter.

If only few variables are expected to be conditionally dependent, an
estimator that prefers a sparse precision matrix is advantageous. To this
end, a considerable amount of research has been dedicated towards
the computation of L; penalised estimates of the precision matrix. The
idea of using a L penalty term stems from the popular lasso regression
[Tib96] procedure, which tends toward setting small coefficient to zero,
thereby yielding sparse linear models. For the estimate of a precision
matrix (2 the penalised log-likelihood is given by

1(©) = log(det(©)) — tr(26) — pl[O]|, (3.3)

where © denotes the estimate for 2, tr denotes the trace of a matrix
and ||.||; is the L; matrix norm. The parameter p > 0 determines the
strength of the regularisation. For p = 0, Equation (B.3) reduces to the
conventional log-likelihood of the precision matrix. For larger values
of p the size of the entries of © is increasingly penalised and thus the
resulting matrix tends to include less non-zero values. To see that Equa-
tion (B.3) in fact corresponds to the log-likelihood, we start with the
logarithm of the probability density. W.1.o.g. we assume that the mean
of the samples &; is zero.

N
det(©)'/2 1., .
L(©) =log [H (QET)]D)/?exp(—2 tex;)
N
det(©)"/2 1,
i=1

_N _Np I o
= - log(det(0)) — =~ log(2r) 22%9%

N D 1 N p p
D) log(det(©)) — o log(2m) — 5 Z Z Zﬂb’zl@m%k
i=1 [=1 k=1
= — log(det(©)) — Np log(27) — L Zp: zp: O (X X))
2 2 I=1 k=1

For fitting the model we can omit the constant (Np/2) log(27) and res-
cale with 2/N to obtain Equation (B.3) without the penalty term. To
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find an approximate solution, Meinshausen and Biihlmann [MB06] em-
ploy the lasso in an iterative fashion to compute the partial covari-
ances as in Definition E Based on this work and the results of Baner-
jee, El Ghaoui, and d’Aspremont [BEd0§], Friedman, Hastie, and Tib-
shirani [FHTO8] devised the graphical lasso approach. In contrast to
the method proposed by Meinshausen and Biihlmann [MB06], their
formulation solves the problem accurately and offers a significantly
improved runtime behaviour for sparse precision matrices. As optim-
isation procedure Friedman, Hastie, and Tibshirani [FHTO8] propose
a cyclic gradient-descent-based method, which they published as the
glasso R [R C16] package. The principle behind the cyclic gradient de-
cent is the realisation that all entries of the precision matrix are depend-
ent. Instead of optimising one variable completely, each variable takes
a short step in the direction of the (sub-)gradient in a round-robin fash-
ion. Cai, Liu, and Luo [CLL11] propose an alternate optimisation target,
which they solve for using a set of linear programs. In the remainder
of this work, we restrict ourselves to the more popular graphical lasso
approach.

3.4.4 Example

To illustrate a possible application of GGMs we fitted a coexpression
model using data from the Wilm’s tumour dataset (Section P.4) as in-
put. To restrict the number of genes to a manageable size, we used the
TFs found in the consensus network published by Juan et al. [Jua+16],
which is based on the colocalisation of epigenomic marks. The network
itself was determined using a GGM based on ChIP-seq data. Edge dir-
ections were added based on prior knowledge.

First, we computed the precision matrix for all 47 TFs contained in
the network by pseudo inversion of the covariance matrix (Figure ,
left). As the network contains more genes than Wilm’s tumour samples,
the computed covariance matrix is singular. Accordingly, the precision
matrix does not possess a full rank either. This gives rise to a clearly
visible block structure in the precision matrix due to a linear depend-
ence between the columns and rows. By adding a small constant value
A = 0.01 to the diagonal of the covariance matrix, this block structure is
greatly reduced (Figure , right). This demonstrates that proper reg-
ularisation is crucial to prevent artefacts that hamper the interpretab-
ility of the model. While using the ridge strategy is a clear improve-
ment over naive matrix inversion, the resulting precision matrix still is
dense, meaning that every variable has a non-zero partial correlation
with the other variables. This makes it difficult to visualise the model
as a network structure. Applying the graphical lasso with a relatively
strict regularisation factor of p = 0.5 (Figure ) results in a much
sparser precision matrix.

Of the detected 116 edges, 86 could be verified using a custom data-
base collected from TRANSFAC [Mat+06], SignaLink [Faz+13], ChIP-
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Figure 3.13: Partial correlations computed for the Wilm’s tumour dataset us-
ing the naive, matrix (pseudo)inversion based method (left). A clear block
structure is visible due to the covariance matrix being singular. Adding a
small, constant value A = 0.01 to the diagonal of ¥ greatly reduces this block
structure (right).
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Figure 3.14: Partial correlations inferred from the Wilm’s dataset using the
glasso package. The penalty parameter p was set to 0.5. Red squares represent
negative correlations while blue squares represent positive correlations. The
values range between -0.2 and 0.3.
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Figure 3.15: Gaussian graphical model inferred from the Wilm’s dataset using
the glasso package. Edges correspond to non-zero partial correlations. The
penalty parameter p = 0.5 was used to ensure a network sparse enough for
visualisation. Isolated nodes have been discarded from the network.

Atlash, ChipBase [Yan+13], ENCODE [ENC04], Jaspar [San+04], ChEA
[i:ac+1d], as well as the publications by Cole et al. [] and Mar-
sonetal. [M ar+08ﬂ]. Thus, the graphical lasso procedure yields 30 false
positive edges. To assess the performance of the method we randomly
rewired our computed network ten times and calculated the number
of false positives. We obtained a mean of 18.5 and a standard deviation
of 1.78 false positives. This means that our graphical lasso procedure
performs significantly worse than creating edges at random. Why is
this the case? From the network structure (Figure ), we can clearly
see that MYCN plays a central role in the transcription factor network.
This is surprising, as MYCN only has few verified targets, of which
only POUS5F1 is present in the network of Juan et al. [Jua+16]. In con-
trast, known master regulators [tol+0d; IRizOq; bol+11] such as SOX2,
POUSF1, CTCF, or TCF3, which possess a large amount of targets, are
only connected to one or few other genes. A likely explanation may
lie in the tendency of L; penalised methods such as the lasso to se-

lect exactly one out of a set of correlated variables [; ]. As

the correlation between the genes in the network is high, the fact that

8 http://chip-atlas.org/
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MYCN is chosen as a hub may simply be an artefact of the method. An-
other explanation may lie in the way many of the selected genes fulfil
their functions. Binding sites for transcription factors such as STAT3,
TCF3, CTCF, ZNF384 can be found in a large number of genes. Due to
this, the transcription factors are highly unspecific and rely on build-
ing complexes with more specific partners [Wol99; Rav+10]. However,
GGMs only consider associations between pairs of genes and, thus, are
unable to detect higher-order effects. In addition, the small amount
of data used for training the network is likely to be responsible for
the observed results. The inclusion of prior knowledge in the form
of known TF binding sites could, in theory, help to improve the per-
formance of the method. To this end, the glasso package offers facilit-
ies to adjust the penalty parameter p on a per-edge basis. Accordingly,
edges that are present in databases could receive a lower penalty. Ini-
tial experiments with this approach have, however, not lead to sub-
stantial improvements. Finally, p represents a tuning parameter that
needs to be adjusted to obtain the best possible results. For this, how-
ever, independent test and training networks would be required (cf.
Appendix @)

We are nevertheless positive that GGMs can serve as a valuable tool
given that the initial conditions are appropriate. This is shown by res-
ults such as the network by Juan et al. [Jua+16], which was determ-
ined using GGMs. However, in this case the authors could rely on data
from ChIP-seq experiments from which they derived a wealth of co-
occurrences of transcription factor binding sites and epigenetic marks.
To obtain a similar dataset for gene expression experiments, several
thousand samples would need to be produced. This is also the case
for a recent breakthrough in protein folding that relies on the condi-
tional mutual information, which is closely related to partial correla-
tions, between residues to achieve tremendous improvements for the
accuracy of de novo protein structure prediction [MHS12].

3.5 DEREGULATED SUBGRAPHS

Until now, we have only considered methods, such as causal Bayesian
networks and Gaussian graphical models that operate on comparat-
ively small networks. For larger topologies, such as complete PPI or
regulatory networks (Section B.2), these methods are usually not applic-
able. Nevertheless, a common task during the analysis of e.g. expres-
sion datasets is to identify a portion or subgraph of, for instance, a regu-
latory network that contains a large amount of differentially expressed
genes. The idea behind this is that (connected) subgraphs are likely part
of the same biological process. Hence, identifying a subgraph with a
high amount of differentially expressed genes hints at the fact that the
corresponding process may be deregulated. This is of interest for ana-
lysing tumour samples where the activity of biological processes can be
severely altered due to mutations and other pathogenic mechanisms.
To make this problem definition more precise, consider a graph
G(V, E) with node scores w : V' — R. G represents our regulatory
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network and w are scores that measure the differential expression of
each gene or protein in GG. Assume that a procedure that searches for
“interesting” subgraphs inspects all members of a family of admissible
subgraphs H = {H; C G|i = 1,...,n}. For each H;, the procedure
computes a score s; = S(H;, w) that represents the degree of deregula-
tion of a graph. Each H; that is assigned a score surpassing a predefined
threshold is called a deregulated subgraph. The deregulated subgraph
with the highest score is called the most deregulated subgraph.

In this chapter, we discuss an algorithm for searching the most de-
regulated subgraph in regulatory networks. The central idea behind
its development was the ability to detect molecular key players that
are able to trigger regulatory cascades and are thus likely to be causal
for the deregulation observed for the identified subgraph. To achieve
this, we developed an algorithm based on integer linear programming
(ILP) that searches for a connected subgraph of fixed size that contains
a root node. In this context, a root node is a node from which all other
vertices in the subgraph are reachable.

After introducing the ILP, we turn our attention to an open prob-
lem concerning algorithms for the search of deregulated subgraphs in
general. As described above, a subgraph is considered as deregulated,
whenever its score exceeds a predefined threshold. Yet, this definition
is somewhat arbitrary and is not connected to any measure of statist-
ical significance. It is thus not possible to assess whether the selected
subgraph refers to a significantly deregulated biological process or not.
To remedy this situation, an appropriate Hy hypothesis needs to be
chosen first. However, already this step proves to be difficult, as vari-
ous, equally reasonable but not equivalent choices are possible. Here,
we will not attempt to find an answer to this problem. Instead, we in-
vestigate a closely related, even more fundamental problem. In partic-
ular, we present an approach for estimating the likelihood with which
a node is selected as part of the most deregulated subgraph, given un-
informative scores.

3.5.1 Related Work

Detecting deregulated subgraphs is a large field in computational bio-
logy that has brought forth a wide range of conceptually different ap-
proaches. The first published algorithm for searching deregulated sub-
graphs is the approach by Ideker et al. [I[de+02] which uses a simulated
annealing scheme to iteratively improve the score of the detected sub-
networks. As scoring function they generate a background distribution
of subgraph weights. Each subgraph score is normalised with the num-
ber of vertices. The background generation and the simulated anneal-
ing procedure lead to considerable runtime requirements for larger net-
works. In addition, the size of the detected subgraph is often too large
to be interpretable. To prevent this behaviour, various improvements
to the scoring function and search heuristics have been published (e.g.
Rajagopalan and Agarwal [RAO05]). Ulitsky et al. [Uli+10] reduce the
problem of finding a deregulated subnetwork to the NP-hard connec-
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ted set cover problem. They present a range of heuristics with provable
performance guarantees for solving their problem formulation.

The first formulation allowing for exact solutions on undirected
graphs was stated by Dittrich et al. [Dit+08]. Similarly to Ulitsky et al.
[Uli+10], they reduce the task to a well known problem from computer
science: the prize-collecting Steiner Tree problem. To solve this, they
apply a previously published ILP solution [Lju+06]. In contrast to the
ILP presented in this work, the Steiner Tree based formulation uses
both, edge and node weights. Recently, Bomersbach, Chiarandini, and
Vandin [BCV16] formulated an ILP approach for solving the connec-
ted maximum coverage problem for detecting subnetworks that con-
tain frequently mutated genes in cancer patients. Alcaraz et al. [Alc+11]
use ant colony optimisation for extracting deregulated pathways. Later
versions of their tool, which added support for the inclusion of prior
knowledge as well as robustness analyses [[Alc+14], are also available
as a web service [Lis+16]. Maxwell, Chance, and Koyutiirk [MCK14]
describe an algorithm that allows to efficiently enumerate all induced
connected subgraphs in a biological network that fulfil a predefined
“hereditary property”. Further algorithms can be found in a compre-
hensive review by Al-Harazi et al. [AIH+15].

3.5.2  Subgraph ILP

ContriBuTiOoNs The ILP approach for the detection of deregu-
lated networks was implemented by Alexander Rurainski with
later, maintenance related contributions by me. Christina Backes
wrote the initial draft of the paper, which was completed by Oliver
Miiller, me, and Hans-Peter Lenhof.

Here, we describe our ILP based algorithm for detecting deregulated
subgraphs in directed graphs such as regulatory networks [Bac+12].
As mentioned before, a key characteristics of our algorithm is that it
allows for the detection of molecular key players that sit at the top of
a regulatory cascade. To this end, we require that the subnetwork is
rooted. This means that there exists at least one node from which all
other nodes in the selected subnetwork are reachable. The rational be-
hind this requirement is that a change in a single regulator such as a
mutation or epigenetic aberration can influence the expression level of
a large number of downstream elements. Examples are driver muta-
tions in cancer (cf. Section @) that transform healthy cells into tumour
cells by disrupting key regulatory processes, such as “cell cycle con-
trol” (cf. Section ﬁ). By requiring the presence of a root, we thus aim
to detect possible driver genes, which are causal for the deregulation of
the subnetwork. For undirected graphs, in which every node can serve
as the root node, the problem solved by our algorithm is equivalent to
the maximum-weight connected subgraph (MWCS) problem [Dit+08§].
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Figure 3.16: Two dimensional LP. The constraints of the LP define the poly-
tope of feasible solutions. The optimal solution (red circle) of a LP can be
found in one of the vertices of the polytope. Feasible integer solutions (red
crosses) do not generally coincide with vertices. As a consequence, the op-
timal LP and ILP solution are commonly neither identical nor in direct prox-

imity.

Additionally, our formulation requires that each subnetwork con-
sists of exactly £ nodes. This restriction was added to guarantee that the
size of the computed subnetworks remains interpretable. While this
may seem limiting, it is possible to perform a sweep across a range of
subgraph sizes. This provides additional advantages. For example, the
stability of the computed solutions can be assessed: if the subgraph to-
pology changes dramatically between different values of £ there likely
exist multiple, equally relevant parts of the network that should not be
interpreted in isolation. Before we are able to state the ILP formulation,
we first need to introduce some basic concepts about linear programs.

Linear Programs

A linear program (LP) is an optimisation problem that can be stated in
terms of a linear objective function subject to a set of linear constraints.
Let £ € R" be a vector of variables, ¢ € R" a vector representing the
coefficients of the objective function, A € RP*" a matrix representing
the constraints, and b € R? a vector containing the right-hand sides
of the constraints. We can write every linear program in the following,
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Figure 3.17: Overview of a branch-and-cut algorithm. (a) First, the integrality
constraints are relaxed and the LP is solved. If the found solution is worse
than a previous, integral solution, the instance is discarded. If the solution is
integral and no other instances need to be solved it is returned as the optimal
solution. Otherwise, (b) a cut that removes no integer solution is searched and
added to the LP. If no effective cut could be found, the algorithm branches on
a variable and solves the two resulting instances.

canonical form:

max cxT

z€R™

st. AZ<b
z; >0 V;

Every constraint defines a closed half-space in which a solution must
lie. The intersection of these half-spaces results in a convex polytope
containing all feasible solutions (Figure ).

Linear programs, can be solved in polynomial time, even in the
presence of an exponential amount of constraints using the ellipsoid
method [Kha80; Kar84]. In real-world applications, the solution can be
found using other interior point [LMS91] or simplex [D+55] algorithms.
The latter traces the edges of the polytope in the direction of the ob-
jective function’s gradient. This procedure is guaranteed to reach the
optimal solution, as it can be easily shown that the optimal solution of
a LP can be found in one of the vertices of the polytope.

For solving ILPs the situation is different, though. Integer linear
programs (ILPs) are LPs in which the variables are restricted to integer
values. Due to this additional constraint, vertices seldom coincide with
feasible ILP solutions and hence the optimal solution cannot be found
using algorithms for solving LPs. In fact, it can be easily shown that
solving an ILP is a NP-hard.

However, due to the ubiquity of ILP formulations in both science
and economy, efficient, exact solvers have been developed. These state-
of-the-art solvers typically employ branch-and-cut strategies. In prin-
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(a) Disconnected nodes (b) Connection enforced via Eqn. @

(c) Disconnected cycles (d) Connection enforced via Eqn. @

Figure 3.18: Effect of the in-edge constraint Equation (@) and the cycle con-
straint Equation (@). Without the in-edge constraint the resulting subgraph
does not need to be connected (a). With the constraint a connection to the
root is enforced (b). However, disconnected cycles are still legal (c). With the
cycle constraint, each cycle either needs to contain the root or has an in-edge
from a chosen node outside of the cycle. The root node is indicated by a red
background.

ciple these approaches work as follows (Figure ): in a first step, the
algorithm solves a so called relaxed version of the ILP, in which the
integrality constraints have been dropped. The objective value of this
solution serves as an upper bound on the optimal integer solution. If
the solution is not integer, a new constraint is derived that cuts away
the vertex containing the found solution, thereby tightening the poly-
tope around the contained integral points. If no effective cut could be
found, the algorithm branches on a variable, meaning that the ILP is
divided into two instances. One, where the variable has a value lower
than a computed bound and one where its value is higher. For binary
variables this effectively means that two instances are created where
the value of the branching variable is fixed to zero and one, respect-
ively. Both instances are then solved separately. The objective value of
the best current integer solution is kept as a lower bound. This allows
to prune instances from the search tree whenever its relaxed LP solu-
tion has a lower objective value than the current lower bound. The al-
gorithm iterates until an integer solution can be proven to be optimal.
This is the case when e.g. no other branches remain to be solved. For
more details on (integer) linear programming, we refer the reader to
the comprehensive introduction by Bertsimas and Tsitsiklis [BT97].

ILP Formulation

Our ILP formulation is based around two types of variables. Let n € N
be the number of nodes in the network. Each node i is associated with
a binary variable z; € B that indicates whether it is part of the dereg-
ulated subgraph (z; = 1) or not (z; = 0). We group these variables
into the vector ¥ € B". Similarly, each node is associated with a binary
variable y; € B that is equal to one if and only if the node was selec-
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ted as the designated root node. As with 7, i/ € B" is the vector of the
yi. As we are searching for a maximally weighted subgraph, we aim
to maximise the sum of node weights w; € R yielding the objective
function w'Z = Y 1" | w;x; (Equation (@)). Common sources for node
weights are scores for differential gene expression or differential pro-
tein abundances. Variables for the root nodes are not included in the
objective function as their only purpose is to ensure that each subnet-
work contains exactly one designated root (Equation (@)). Let us now
state the complete ILP formulation:

max w'T (3.4)
T,yeB”
st Y yi=1 (3.5)
i=1
> wi=k (3.6)
=1
Yi < T Vi (3.7)
vi—yi— > ;<0 Vi (3.8)
j€In(4)

St@wi-u) - > w<lol-1 vC (3.9)
i€C jeIn(C)

To understand this, we first introduce additional notation. C denotes
a subset of nodes that make up a cycle. The function In(7) returns the
set of nodes j for which an edge (j, ¢) exists. In(C') is a shorthand nota-
tion for | ;- In(7). The constraint in Equation (B.6) ensures that exactly
k nodes are selected for the final solution. Equation (@) assures that
a node can only be used as a root node, if it is also chosen as part of
the subgraph. So far, the constraints do not guarantee that the solution
is reachable via the root node or that the graph is connect in any way
(Figure (a)). Equation (@) enforces that every node which is part
of the solution is either a root or has a predecessor that is selected, too
(Figure (b)). Unfortunately, this constraint can be satisfied by a set
of disconnected circles, as every node in the circle has a predecessor
(Figure (c)). Thus, a constraint needs to be added for every (direc-
ted) circle in the graph (Figure (d)). To prevent this, Equation (@)
requires that either the root node is in the circle C' or some node in
the circle has a predecessor outside of the circle that is also part of the
solution. Unfortunately, the number of circles in a graph scales roughly
exponentially with the average node degree. This means that enumer-
ating all these constraints is not possible due to runtime and memory
limitations. We will explain how to circumvent these problems in prac-
tice below.

Implementation

We implemented the ILP formulation using the branch-and-cut [PR91]
framework provided by the CPLEX solver [Bac+12; [BM12]. In partic-
ular, we made use of CPLEX’s capabilities to lazily add constraints to
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the problem. This is important as an exponential number of cycle con-
straints can be required. However, only a fraction of these constraints
are likely to be ever evaluated during solving as we can expect that the
most deregulated subgraph will mainly centre around the highest scor-
ing nodes. Thus, it is usually more efficient to first solve the problem
without any cycle constraints at all. After a solution has been obtained,
it can be checked for possibly violated constraints in a callback routine.
If any such constraints can be identified, they are added to the problem
instance. This procedure is iterated until no further violated constraints
can be detected.

Similarly, we use CPLEX's functionality to turn a LP solution into
an ILP solution using a heuristics. To this end, we use a simple, multi-
greedy approach. Given a non-integer solution we select all nodes for
which z; is larger than zero. This induces a subgraph consisting of one
or more connected components. Each of these components is then ex-
panded or shrunk until it contains £ nodes and then returned as a po-
tential solution.

A compiled version of our implementation can be downloaded un-
der http://genetrail .bioinf.uni-sb.de/ilp/Home.html.

3.5.3 Topology Bias

ConrtriBuTions This investigation was adapted from Miriam Bah’s
Bachelor’s thesis [Bah12] supervised by Marc Hellmuth and me.

We previously explained that assessing the significance of a deregu-
lated subgraph is an open problem (Section é). A first issue lies in
the fact that it is unclear on the basis of which Hj hypothesis a p-value
should be computed (cf. Section El!). At least three different formula-
tions with slightly different interpretations come to mind:

1. Is the score obtained for the selected subgraph significant?
2. Is the obtained score significant?

3. Is selecting the current subgraph with the associated score signi-
ficant?

While the first and the second question can probably be answered by
sampling a substantial amount of score permutations, the third ques-
tion is more difficult to answer, as it additionally requires enumerating
all possible subgraphs.

Here, we do not further pursue the computation of a p-value. In-
stead, we concern ourselves with a different, but closely related prob-
lem: was a member of the computed subgraph chosen “by chance” or
because it contributed valuable information? As an example, consider
Figure . There, connected subgraphs of size k = 3 were selected
from a path of length six. To simplify reasoning about the involved
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Figure 3.19: Subgraphs of size k = 3 in a path of length six. The number be-
low each node indicates the probability with which it is part of the selected
subgraph. Numbers next to subgraphs indicate the probability with which
the subgraph is chosen. Probabilities were determined by evaluating all per-
mutations of the scores {2¢|i = 0,...,5}. The two inner subgraphs are less
likely to be chosen than the outermost subgraphs. However, the innermost
nodes are more than twice as likely to be selected than the outermost nodes.
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Figure 3.20: Bias of node selection probabilities (numbers next to nodes) in
a more complex topology. Subgraphs of size k = 4 were selected using all
permutations of the scores {2¢|i = 0, ..., 7}. Node 7 is more than three times
less likely to be chosen than node 1.

probabilities, we generated nodes scores w; as powers of two, such that
each score is larger than the sum of all smaller scores. Thus for every
node i, we have an associated score w; = 2°. This guarantees that the
node with the highest node score is part of the most deregulated sub-
graph. Next, we enumerated all possible permutations of the scores
and computed the probability with which each node and subgraph is
selected given a random score permutation. It can be seen that the prob-
abilities for neither subgraphs nor nodes are uniformly distributed. In-
stead a significant bias towards some subgraphs is present. The prob-
ability of selecting a node is given as the sum of the subgraph prob-
abilities and hence, is similarly biased. It is important to note that this
bias is purely due to the chosen topology as we enumerated all score
permutations. With a slightly more complex topology, such as in Fig-
ure , this effect becomes more pronounced, putting more and more
probability mass on hub-like nodes such as node 1 and 5.

Naturally, finding deregulated subgraphs relies on the topology of
the input network. However, the above observation suggests that the to-
pology has a significant impact on the obtained solutions. To be useful
for analysing e.g. expression data, subgraph methods need to maintain
a balance between the constraints imposed via the topology and the
information provided by the input scores. If, on the one hand, the solu-
tion depends to a large degree on the topology with only minor influ-
ence from the input data, the method is not able to uncover interesting
biological phenomena. On the other hand, if the topology has no influ-
ence on the result, a simpler, topology free method could be employed
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Age < 50?

Medium risk High risk

Female Male

Low risk Medium risk Medium risk High risk

Figure 3.21: Example for a (fictive) decision tree stratifying patients into low,
medium, and high risk groups for congestive heart disease. In each decision
node (round), a predictor (Smoker, Age, BMI, Gender) is used to partition the
training data. Predictions for new datapoints can be made by following a path
from the root to a leaf node (rectangles), which contain the predicted value.

instead. Quantifying the influence of topology and input data on the
results of a deregulated subnetwork algorithm is difficult, though.

Here, we propose a procedure that allows to judge the bias incurred
by methods for the detection of deregulated subgraphs towards certain
nodes due to the network topology. It is based on predicting the prob-
ability that a given node is selected as part of the subnetwork. To this
end, we train a random forest model [Bre01] for predicting node inclu-
sion probabilities that were empirically determined by sampling de-
regulated subnetworks given uniformly distributed input scores. This
model uses a set of node topology descriptors as features. Applying
the trained predictor to an unknown network allows to estimate the
topology bias without a computationally intensive sampling step.

In the following we explain our procedure in detail. To be able to
do so, we first need to introduce the random forest predictor as well as
the used topology descriptors. Next, the used training and validation
scheme is outlined. Finally, we present the results of our study.

Random Forests

Random forests are non-linear models for classification and regression
(cf. Appendix @) In particular, they are an ensemble method that is
based on averaging the output of B € N decision trees f; that were
trained on bootstrap samples of the data (bagging). A decision tree is
a machine learning method that partitions its input space via recurs-
ive, binary cuts [Qui86; Qui93]. These cuts can be represented as nodes
in a tree (cf. Figure @). Which split is used in each node is determ-
ined by evaluating a loss function for each dimension. Examples are
the squared-error loss for regression or the Gini index for classifica-
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tion. The variable that achieves the smallest loss is chosen for cutting.
In contrast to common decision trees, which always evaluate all vari-
ables to decide on a split, the random forest procedure randomly se-
lects k predictors from which the best candidate must be chosen. Fur-
thermore, each tree is built on a bootstrap sample of the training data.
A bootstrap sample for a dataset containing N samples is generated by
randomly drawing /N samples from the dataset with replacement. Each
tree is grown until it perfectly predicts its training data. In a regression
scenario, the final random forest model is defined as the average pre-
diction of all trained decision trees:

In a classification scenario, the output class label is determined via a
majority vote.

Random forests have various advantages that make them especially
suited for quickly obtaining classifiers that offer a performance that is
competitive with other state-of-the-art approaches. A reason for this is
that random forests models are comparatively straightforward to set
up. As inputs they can use continuous, ordinal, and categorical inputs
and therefore require no special feature encoding techniques. In addi-
tion, the model exposes only two tuning parameters: the number of
trees B and the number of features considered in each split k. For both
parameters good default values are known. Choosing different, but
reasonable settings commonly has no critical impact on performance.
Due to this, the model is robust with respect to overtraining [Bre01;
FHTO09].

As each tree is grown on a different bootstrap sample, not every
sample has been used for every tree. Thus, for each tree f, the predic-
tion error for the samples that have not been used to train f; can be
determined. This yields the so-called out-of-bag (OOB) error that can
serve as an estimate of the test error. Thus cross-validation or a separ-
ate tuning set are not strictly required for tuning random forests.

Finally, it is possible to compute feature importances. The feature
importance reflects how large the impact of a feature on the predicted
value is. There are two ways to compute these importances. The first
version is based on the OOB error. For each tree, the OOB error is com-
puted. Then, to obtain the importance of variable j its values are per-
muted and the OOB error is computed again. The difference between
the two values is averaged across all trees and returned as the variable
importance [Bre01]. Alternatively, the decrease of the loss function in
each split gives an indication of the influence of the chosen split vari-
able. These values are accumulated across all trees and splits to obtain
the final importance [FHT09].

Of course, random forests also have disadvantages. Probably the
most important one is that the final model is difficult to interpret. While
we can extract the importance of single variables, random forests are
highly non-linear and thus the importance measure does not permit a
straightforward interpretation such as: “If the value of variable A in-
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creases by 10 % the risk for cancer increases by 20 %.” In contrast, the
weights computed by linear models (Section ) or SVMs with linear
kernels [FHTO09Y; 5S02] have this property. Also, for SVMs with a well-
performing, non-linear kernel, examining the feature maps allows to
gain mechanistic insight into the learning problem. Furthermore, in the
presence of categorical variables, random forests tend to favour those
variables with more levels. Consequently, the computed variable im-
portance measures are not reliable in this case and need to be adjusted
using sampling techniques [Alt+10].

Topology Descriptors

Arguably the most important prerequisites for applying machine learn-
ing algorithms is the selection of a suitable set of features and their
representation. For our task, features are needed that capture the topo-
logical properties of a graph node. To this end we use a set of topology
descriptors which have originally been developed for analysing the im-
portance of nodes in large network structures such as the topology of
the internet. In this section we describe and define the used descriptors.

First and foremost, we use simple, graph theoretical properties such
as the in- and out-degree of a node. These statistics, however, character-
ise the node almost in isolation and pay little regard to the surrounding
topology. To help assessing the importance of a node on a global scale,
more sophisticated measures such as the PageRank [Pag+99] or various
centrality measures have become popular. Let us, however, start with
more basic measures.

A natural choice for topology descriptors are the node degrees as
introduced in Definition E The degree of a node, especially relative to
the degrees of the remaining nodes reflects the number of connections
a node has and should thus be a crude approximation for how “hub-
like” the node is. Nodes with a high in-degree are also more likely to
be leafs in a selected subgraph, whereas nodes with a high out-degree
should be more likely to act as root nodes. The clustering coefficient is
a generalisation of this idea and also considers how the neighbours of
the node are connected. More formally:

Definition 11 (Clustering coefficient). A triangle is a triple of connec-
ted nodes. Let 7 (v) denote the number of triangles containing v € V'
and let k, € N be the number of adjacent nodes. Then the clustering
coefficient for v is defined as

_ 1av)
c(v) = 71%(]% Y

In contrast to the node degrees, centrality measures put a node in
a more global context. For example the betweenness centrality [Fre77]
counts the number of shortest paths that include a given node.

Definition 12 (Betweenness centrality). Let o(s,?|v) denote the num-
ber of shortest paths between nodes s and ¢ that include v. Furthermore,
let o(s,t) be the total number of shortest paths between the two nodes.
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Then the betweenness centrality is given by

1 o(s,tlv)
) = W= DVI= 9 2=, oo.0)

The closeness centrality [Bav50; Bea63] is also based on the notion
of shortest paths. However, it considers the reciprocal of the average
length of all shortest paths starting from the node of interest v. If all
remaining nodes in the graph can be reached quickly, v receives a high
centrality value. Otherwise, if the length of the shortest paths is long,
v has a low centrality.

Definition 13 (Closeness centrality). For a node v € V the closeness
centrality is given by

n—1

colv) = > uex, dist(v, u)
Here dist(v, u) denotes the length of the shortest path from v to u and
X, = {u]|dist(v,u) < co}.

Whereas betweenness and closeness centrality use shortest paths to
determine the importance of a node, Bonacich [Bon72] proposed to use
the dominant eigenvalue of the adjacency matrix as centrality measure.

Definition 14 (Eigenvector centrality). Let A be the adjacency matrix of
G with A,,, = 1if (v,u) € E and 0 otherwise. Then the out-eigenvector
centrality cout(v) is defined as the v-th entry of the principal eigenvector
of A. The in-eigenvector centrality cin(v) is the v-th component of the
principal eigenvector of A’.

The principal eigenvector of a matrix can be easily computed using
the power iteration [MP29]

. Av,
U = —.
RN

Interpreting the eigenvector centrality, though, is not straightforward
as no inherent meaning is attached to an entry of the principal eigen-
vector. Probably the best intuition is that a node is assumed to be more
central, if it is connected to other central nodes [Ruh0(Q].

A measure that is closely related to the eigenvector centrality is the
PageRank. It models the probability with which a user clicking ran-
dom links (edges) on a web page (nodes) ends up on a certain site. To
avoid local attractors such as nodes with no out-edges, the PageRank
includes a constant, uniformly distributed restart probability into its
model:

Definition 15 (PageRank). Let In(v) = {u| (u,v) € E} be the in-neigh-
bourhood of v. The PageRank for v and a damping factor & € RT is

defined as
-« N PR(u)

PR =T 7+ (u)

u€ln(v)
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The damping factor a controls the influence of the random restart.
The recursive formulation of the PageRank can be rewritten in terms
of a matrix power, which allows to obtain the limit distribution via an
eigenvalue decomposition [Pag+99].

The above graph measures are well known and implemented in
popular software packages such as Cytoscape [Sha+03; Ass+08]. As
all of them are general purpose measures, none directly estimates the
number of subgraphs of size k in which a node is contained in. Hence,
to supplement the existing measures, we devised our own descriptor.
It is based on the number of spanning trees that use the outgoing edges
of a node. The idea behind using spanning trees is that every rooted,
deregulated subgraph can be trivially transformed into a spanning tree
of the selected nodes (cf. [Dit+08]). Thus, knowing the number of span-
ning trees that are present in a neighbourhood of a node, should allow
a good estimate of the number of deregulated subgraphs the node is a
part of.

The measure relies on Kirchhoff’s theorem [Kir47] which states that
the number of spanning trees rooted in a vertex can be obtained from
the cofactors of the Kirchhoff matrix. Let us start with the definition of
a cofactor.

Definition 16 (Cofactor). Given a matrix A € R™*", The ij-th cofactor
of A is given by .

Cij (A) = (—1)’+]det(Mij)
where M;; € R("=Dx(m=1) jg the matrix obtained by deleting the i-th
row and j-th column from A.

The Kirchhoff matrix, also known as graph Laplacian, is based on
the adjacency matrix. It can be interpreted as a discrete analogue of
the Laplacian operator from calculus or the Laplace-Beltrami operator
from vector analysis.

Definition 17 (Directed Kirchhoff Matrix). Given the directed graph
G(V, E). Its Kirchhoff matrix K is defined as:

A7 ifi=j
Kij =q-1 if (Z,]) ek
0 otherwise

By construction, K has an eigenvalue of zero corresponding to the
eigenvector ¥, the vector where each component has the value 1. If G
has m connected components, the kernel of K has dimension m + 1
as for every connected component we can create an eigenvector for the
eigenvalue zero by simply setting all coefficients that belong to nodes
inside the connected component to one and all others to zero.

We will now describe the relation between the Kirchhoff matrix and
the number of spanning trees. For this we first need to define the notion
of an out-tree.

Definition 18 (Out-tree). An out-tree is a connected, directed acyclic
graph which is rooted in a single vertex. The root vertex has in-degree
zero and every other vertex has in-degree one.

75



10
11

BIOLOGICAL NETWORKS

Given the definitions above we are able to state the following the-
orem by Tutte [Tut48] that links the number of spanning trees rooted in
a vertex with the cofactors of the Kirchhoff matrix. It is a generalisation
of Kirchhoff’s Matrix-Tree theorem [Kir47] for undirected graphs.

Theorem 3.5.1 (Directed Matrix-Tree Theorem). Let K be the Kirchhoff
matrix of G(V, E). For any vertex i € V, the number of out-trees rooted
at i equals C;;(K) for an arbitrary choice of ;.

We can use this theorem to compute the number of spanning trees
of G. For this, we simply need to select a vertex ¢ from which all other
vertices are reachable. If no such vertex exists, G has no spanning tree.
Otherwise we can select an arbitrary column j and compute the num-
ber of spanning trees as C;;(A). For our purposes, this trick is not dir-
ectly useful, as the number of spanning trees is necessarily the same for
all vertices that can serve as the root of a spanning tree. However, we
can use this technique to compute the number of spanning trees that
use a given edge e by computing the number of spanning trees in G
minus the number of spanning trees that remain in the graph after e
has been removed:

#tspTree(e) = #spTree(G) — #spTree(G — e)

This yields an importance measure for every edge: the more spanning
trees use this edge, the more important it is. For computing vertex im-
portances, we can simply accumulate the importances of all incident
edges.

Definition 19 (Spanning tree weight). Let G(V, E) be a directed graph.
Define E, C E be the set of incident in- and out-edges of the node
v € V. We define the spanning tree weight of v as

sp(v) = Z #spTree(e)

eGEu

For computing the degrees, betweenness and closeness centrality,
and the clustering coefficient we used the NetworkAnalyzer [Ass+08]
Cytoscape [Lop+10] plugin. The PageRank and spanning tree weights
were computed using a C++ implementation based on the BGL [SLLO1],
Eigen 3E, GMP@, and MPFRU libraries. The eigenvalue centrality was
computed using Python [VD09Y] as well as the NetworkX [SS08a] and
SciPy [J+01] packages.

Predicting ILP Counts

We finally have all required pieces in place to predict the likelihood
with which a node is selected as part of a deregulated subgraph. To
this end, our procedure for obtaining the node selection probabilities

http://eigen.tuxfamily.org
https://gmplib.org/
http://www.mpfr.org/index.html
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is structured in the following way: first, we generate uniformly distrib-
uted scores for each node in the network. Subsequently, the scores are
permuted 20,000 times and for each permutation the corresponding
subgraph of size k = 10 is computed. For each node we count the num-
ber of times it is selected as part of a network. When training our ran-
dom forest predictor, these “ILP counts” are used as a surrogate for
each node’s probability to be selected by the algorithm.

To derive our feature set, we computed the topology descriptors
presented above. For training the model, two thirds of the vertices were
randomly assigned to the training set and one third to the test set. We
used the random forest implementation provided in the randomForest
[LWO02] R [R C16] package with default parameters.

Results

Using the above procedure we trained predictors for the KEGG regu-
latory network, as available in the NetworkTrail [St6+13] web server (cf.
Section ), and a random network with the same degree sequence.
The latter was generated using the methodology described by New-
man, Strogatz, and Watts [NSWO01].

Figureg@ shows a scatter plot of the predicted vs. the empirical
ILP counts for the KEGG network. Considering that the model was
not tuned, the overall agreement is remarkable with a normalised root-
mean-square-error (RMSE) of about 0.07. The normalised RMSE is com-
puted by dividing the RMSE with the range of input ILP counts. This
clearly proofs that it is possible to predict the likelihood with which
a node is selected purely from topological features. For the human
KEGG network, our results show that subgraphs obtained using the
subgraph ILP are subject to a substantial bias due to the underlying
topology.

For assessing the importance of the features, we examine both, the
feature importance determined by the random forest model and Spear-
man’s correlation coefficient of the feature with the ILP counts. Spear-
man’s correlation [Spe04] is a non-linear version of Pearson’s correl-
ation coefficient [Pea95b]: given two lists X, Y of length k, each value
xi, y; is assigned its position or rank R(X;), R(Y;) in the sorted lists X.Y.
Spearman’s correlation is then simply the Pearson correlation of the
ranks:

\/zw(x» ~ R(X)2 S (R(Y;) - R(Y))?
Here, R(X) and R(Y) denote the mean ranks of X and Y, respectively.
The obtained importance weights are given in Table B.2. Based on this
data, the spanning tree measure is clearly the most important predictor
for the ILP count.

Similar results can be obtained when training the model on the
mouse KEGG regulatory network (normalised RMSE ~ 0.08) or our
randomly generated graphs (normalised RMSE ~ 0.06). In addition,
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Figure 3.22: Log-log plot of the observed vs. predicted ILP counts for the
human KEGG network test data. The counts were predicted by applying the
random forest model to the test data.

Topology descriptor ps Feature importance
Spanning tree weight 0.8799 1298.23
In-degree 0.4641 376.76
Betweenness centrality 0.4889 324.29
PageRank (d = 0.99) 0.5124 262.57
Clustering coefficient 0.3898 120.18
Out-degree 0.0961 102.25
Out-eigenvector centrality  0.3633 94.26
Closeness centrality -0.1449 93.94
In-eigenvector centrality 0.7369 57.29

Table 3.2: Analysis of the performance of the individual topology descriptors.
Both Spearman’s correlation p5 and the feature importance as determined by
the random forest model is given. The spanning tree measure dominates all
other descriptors.
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training the model on the mouse KEGG network and predicting the
ILP counts for the human network results in a normalised RMSE of
~ 0.09. This result suggests that our predictor is not overfitted for the
network it was trained on. Instead, the model generalises to yet unseen
data. This further confirms that the node selection bias can in fact be
predicted from purely topological properties.

Discussion

We presented theoretical results that suggest that the probability with
which a node is selected as part of the most deregulated subgraph
highly depends on its topological properties. To confirm this, we meas-
ured the bias of the Subgraph ILP induced by the underlying network
topology by using a sampling technique. To further confirm that this
bias is purely based on a nodes topological properties, we trained a ran-
dom forest model on a set of topology descriptors. With this model, we
were able to obtain good predictors for the node inclusion frequency.
In particular, our novel spanning tree measure prove to be an excellent
predictor. This suggests that the most deregulated subgraphs obtained
for scores from an experiment might be influenced considerably by the
network topology. While this is desirable to a certain extent, the user
should keep this bias in mind when interpreting a deregulated sub-
graph.

For counteracting the described effect, a node reweighing strategy
may be employed. We conducted initial experiments in this regard, in
which we down-weighed the scores s; of a node ¢ according to a func-
tion of its probability p; to be selected. Examples for potential functions
are s;/p;, si/+/Pi, and s;/ pf. However, our preliminary results have not
shown a significant impact on the selection probability.

There are various ways to continue the presented study. First, con-
firming the reported results for a different, published algorithm would
demonstrate that the described topology bias is in fact a universal phe-
nomenon and is not linked to the particularities of the Subgraph ILP. A
candidate algorithm would need to support computing a high amount
of random samples to obtain reliable estimates for the node inclusion
probabilities. Unfortunately, we were not yet able to find a second al-
gorithm meeting this requirement. Additionally, the analysis should
be rerun using networks from a different source. While our random
networks share no common nodes with the KEGG networks, they are
based on the same degree sequence and thus contain the same num-
ber of hubs and leaf nodes. Using a completely independent network
could therefore result in different distributions of the inclusion probab-
ilities. We are, however, confident that a similar bias is also detectable
for different algorithms as well as different networks.

Finally, it should be noted that the reported biases were obtained
for random score permutations and thus non-informative scores. In a
real-world scenario the scores used for computing a deregulated sub-
graph are likely to contain a signal that manifests as e.g. the differen-
tial expression of specific gene sets. In this case, the score distribution
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may, to a large degree, overrule the topology bias. For confirming this,
a large scale analysis of diverse expression datasets could be used.
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The analytical power should not be confounded with simple
ingenuity; for while the analyst is necessarily ingenious, the
ingenious man is often remarkably incapable of analysis.

— EDGAR ALLEN POE, the murders in the
rue morgue (1841)

Comparative microarray and RNA-seq studies (Section @) are exper-
imental techniques for detecting the differences in the transcriptional
state between a sample and reference group. Both techniques typically
result in large matrices of measurements where each row corresponds
to all expression values of a single gene and each column contains all
measurements of a single sample. Due to the high number of measured
genes it is difficult to interpret this data manually. Instead, robust stat-
istical methods for performing automated analyses are required that
are capable of condensing the information contained in these high di-
mensional datasets into an interpretable report. Ideally, these reports
would allow to quickly deduce the molecular key players and regulat-
ory mechanisms that are responsible for the difference between sample
and reference groups.

There are several ways to approach this task. For instance, a classi-
fier that uses genes as features can be trained to discriminates between
the two groups. Once training is complete, the parameters of the clas-
sifier can be examined to derive feature importance measures. The &
most important features are then reported as the “key players” that
are likely to be responsible for the observed differences. The drawback
of this approach is that training a good classifier is by no means a trivial
affair. Even then, the identified features are, while certainly discrimin-
ative, not necessarily causal for the observed effect. Thus, the features,
which have not been considered by the classifier in lieu of “more in-
formative” predictors, may still carry valuable information that is not
captured using this approach. Alternatively, techniques that do not fo-
cus on classification performance, but rather on providing better un-
derstanding of the input data can be employed to circumvent these
issues. Examples are techniques such as principal component analysis
(PCA) [Pea01] (see Section @ or partial least squares (PLS) (cf. [FHT09])
that decompose the data into orthogonal coordinates which either ex-
plain the observed variance (PCR) or the group differences (PLS). These
coordinates can, again, serve as feature importances and can, hence, be
used to extract the most relevant features.

The above approaches do not employ any kind of prior knowledge.
However, a large collection of biological databases such as the Gene On-
tology (GO) [/Ash+00] exist that contain carefully collected, functional
annotations for genes, proteins, and other biological entities. Instead of
identifying novel patterns in the data, we can use these annotations to
check whether known categories of entities behave differently between
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the sample and reference group. Enrichment algorithms or enrichment
methods are a class of procedures that make use of this information.
As input, an enrichment algorithm relies on one or more sets of en-
tities, so-called categories. Each category commonly corresponds to an
annotation such as a GO term. In addition, the algorithm requires a
set of measurements such as a gene expression matrix. As output, it
computes an enrichment score, which reflects the overall “degree of de-
regulation”, and an associated significance measure for each input cat-
egory.

Owing to this somewhat loose problem definition a multitude of
enrichment procedures have been devised. In this chapter, we discuss
a selection of popular enrichment methods. In particular, we examine
their strengths and weaknesses as well as the considerations that are
necessary when choosing between algorithms. First, however, as the
computation of the significance of an enrichment score is a central part
of all enrichment algorithms, we introduce the concepts of a hypothesis
tests and p-values.

4.1 STATISTICAL TESTS

A central task in science is the verification or falsification of hypotheses.
To this end, experiments must be conducted which then provide evid-
ence in favour of or against a hypothesis. Evaluating this evidence care-
fully and objectively is thus a common responsibility in a research set-
ting. For this purpose, statisticians have devised testing strategies that
can be used to determine if a hypothesis remains valid or needs to be
rejected in the light of new evidence.

Two frameworks for conducting such hypothesis tests exist. The first
framework was devised by Fisher [Fis25] and is centred around com-
puting a p-value that measures how strongly the data contradicts a
null hypothesis. The framework by Neyman and Pearson [NP33], on the
other hand, has the goal of deciding between a null and an alternat-
ive hypothesis. This is achieved by introducing a significance level «
that controls the admissible rate of cases in which the null hypothesis
is wrongly rejected. In today’s scientific practice a hybrid between the
two models is used that explicitly uses both a p-value and a signific-
ance level [Lew12]. The validity of this hybrid approach is heavily de-
bated asitis, according to some statisticians, an “incoherent mishmash”
[Gig93]. The central point of critique is that the current use of hypo-
thesis tests neither allows the assessment of the strength of evidence
nor allows to control the long-term error rates. Nevertheless, we will
introduce concepts from both frameworks without explicitly differen-
tiating between the two.

4.1.1  Null and Alternative Hypothesis

The central concept of all hypothesis tests is the so-called null hypo-
thesis Hy. It represents a default, commonly accepted believe that is
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assumed to be true unless evidence against it is established. If the H
hypothesis is rejected, a different explanation for an effect needs to
be found. This alternative explanation is commonly formulated as the
alternative hypothesis H;. We will formulate hypotheses in terms of
the parameters of the underlying distribution. For instance, when a de-
cision should be made whether two groups stem from the same or two
different generating normal distributions, we write

Ho :py = po
Hy iy # o

This means that we assume the population means of both groups to
be equal unless our data provides sufficient evidence against this hy-
pothesis. In this case we assume H; to be true. In order to decide the
strength of the evidence for rejecting Hy we compute a test statistics
T. A test statistics is a function transforming input data into a scalar
value. As the input data can be modelled as a random variable, T itself
is a random variable, too. To be able to better gauge the value of a test
statistics, we can assign a so-called p-value to each outcome.

Definition 20 (p-value). Let Hj be the null hypothesis and 7" a test stat-
istics. Let Tj be the value of a test statistic obtained from a dataset. The
p-value is defined as the probability to obtain a result from 7" that is at
least as extreme as 7Tj given that Hj holds. More formally

p = PI‘(T > T() | Ho)
for a suitable definition of 7.

It is important to note that the p-value is a conditional probability.
It can be interpreted as the surprise to obtain a certain sample under
the assumption that the null hypothesis is true. As such, if we obtain a
low p-value we either observed an unlikely event or made an error in
assuming that Hy holds. Unfortunately, the p-value is often misunder-
stood and misused, despite regular warnings from the statistical com-
munity. The gravity of the problem is illustrated by the fact that the
American Statistical Association felt forced to release an offical state-
ment containing basic principles for the use of p-values [WL16].

If a binary decision between Hj and H; is required we need to estab-
lish a significance level . The significance level determines a threshold
for the test statistics above which the user is willing to discard Hy and
adopt H;. Alternatively, it determines the size of the tail(s) of the null
distribution into which the test statistics of an observation has to fall
in order to be considered significant (Figure @) Once we made this
choice, there are four possible outcomes of the test (Table @). If the H
or H; hypothesis holds and is in fact chosen, the test procedure worked
correctly. If, however, Hj holds but is rejected, a so called type I error is
committed. Vice versa, if H; holds and Hj is not rejected, this results in
a type 1l error. The significance level « directly controls the type I error
of the test. This means that the expected number of type I errors when
conducting the experiment n times with different samples is given as
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‘ Hj correct ‘ H, correct

Hy chosen | - Type I error (55)
Hy chosen | Type I error (o) | -

Table 4.1: Possible errors in which applying a significance test can result in.
The type I error can be controlled by choosing an appropriate significance
threshold «. The type II error is more difficult to control and besides « also
depends on the test statistics as well as the number of samples.

a-n. The type Il error (5) is not directly controlled by « alone. Instead it
additionally depends on the sample size and the chosen test statistics.
We call the quantity 1 — 3 the power of the test. Similar to choosing «
a priori an acceptable power level should be chosen while planning the
experiment. Then, in dependence of « the appropriate sample size for
obtaining the required power needs to be determined. In practice an
a priori power analysis can prove difficult, e.g. when analysing public
datasets, as collecting a sufficient number of samples is not possible
then. Also, for some test statistics it is not possible to reliably estim-
ate their power. Due to this, the power analysis is unfortunately often
omitted.

4.1.2  Multiple Hypothesis Testing

In most studies more than one hypothesis is tested. This is especially
true for biological high-throughput experiments such as microarray
analyses, in which thousands of genes are tested for differential expres-
sion or categories are tested for enrichment. For each individual test a
fixed significance threshold « is used to determine whether to keep or
reject the null hypothesis. Remember that the significance threshold
as introduced in Section @, controls the type I error. Thus, when con-
ducting 100 tests at significance level o = 0.05 we can expect «-100 = 5
false positive predictions by chance. In order to control for this effect,
either the significance threshold or the p-values obtained from the hy-
pothesis tests need to be adjusted. Probably the simplest method to do
so is the Bonferroni procedure [Bon35; Bon36]. Assume we conducted
n tests, yielding p-values p1, ..., p,. Instead of accepting p; when it is
below the significance threshold we accept p; if n - p; < a holds. This
ensures that the probability of making one or more errors is less than
a.

Proof. Let Hy, ..., H, be the set of tested hypotheses and let I with ny =
|I| be the subset of true null hypotheses. The probability of making at

least one false discovery is then given by the probability of rejecting
one of the null hypotheses in I

Pr LJ(pZ < )
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Substituting a with a/n and applying Boole’s inequality yields

prilJ(r<2) S;Pr(piﬁ 2)

Iy

<np— <n— <«

3R
3Ie

O]

The probability of making at least one false discovery is also called
family-wise error rate (FWER). Methods that ensure that the FWER is
at most as high as a given threshold are said to control the FWER. As
such, the Bonferroni procedure is one of the strictest available methods.
Other methods that achieve tighter bounds, such as the Sidak [5id68;
Sid71] or the Holm-Bonferroni [Hol79] procedures are available.
In a biological setting, where the statistical power is already low
due to small sample sizes, controlling the FWER is too conservative
[NakO4]. Benjamini and Hochberg [BH95] introduced the concept of
false discovery rate (FDR) as well as a method using this statistics as a
target for adjustment. In contrast to the FWER, the FDR is the expected
proportion of false discoveries among all significant discoveries. Con-
trolling the FDR instead of the FWER gives more control over the num-
ber of acceptable false positive discoveries and is especially helpful in
scenarios, in which false positive detections can be tolerated.
The Benjamini-Hochberg procedure controls the FDR for a set of If the hypothesis are de-
independent hypothesis and works as follows: given the set of input ~ pendent the procedure by
. . . Benjamini and Yekutieli
p-values p1, ..., p, which w.l.o.g. we assume to be sorted in ascending

[BY01] should be used
order, find the largest k such that instead.

Py < Eq
n
where ¢ is the desired FDR level. Given k, reject the null-hypothesis
for all H; with¢ = 1,..., k. Alternatively, each p-value can be adjusted

using the formula [YB99]:
. n
¢; = min {qm, 5 Pis 1}

Note that while the resulting values still fall into the interval [0, 1], they
canno longer be interpreted as p-values. Instead, they indicate the FDR
level that can be obtained by rejecting the null-hypothesis for all ¢; < gq.

4.1.3  Enrichment Methods and Hypothesis Tests

In terms of hypothesis tests, another motivation for the use of enrich-  We made a similar argu-
ment methods, besides the efficient incorporation of prior knowledge, ~ ment concerning dereg-
exists. Consider the search for differentially expressed genes, where ZIO”:d S;’bgmp hs (See-
each gene is tested for a significant difference in its expression level ’

between two groups. A limiting factor for these analyses is the statist-

ical power of the used hypothesis tests. In this case, the power quan-

tifies the ability to detect truly differentially expressed genes. When

85



A detailed description of
the mentioned test statist-

ics follows in Section .

ENRICHMENT ALGORITHMS

applied at large scale, such as screening for differentially expressed
genes, classical hypothesis tests tend to have poor power [Efr07]. Efron
[Efr08] argues that by pooling entities into predefined groups, and thus
performing less tests, a significant increase in statistical power can be
achieved.

Enrichment Method Naming Issues

Unfortunately, the terminology around enrichment methods
is not consistent throughout literature. The terms “gene-set ap-
proaches”, “gene-set analysis”, or “gene-set enrichment analysis”
are used interchangeably. Furthermore, these names imply that the
underlying methodology is only applicable for analysing gene ex-
pression data. In general though, these methods can be applied to
any annotation defined over a set of biological entities such as pro-
teins, genes, or miRNAs. We, thus do not use the term gene-set
enrichment analysis and will instead use the more general term en-
richment method. Furthermore, this choice avoids possible mixups
with the general concept of enrichment algorithms and the gene set
enrichment analysis (GSEA) method published by Subramanian et al.
[Sub+05]. Accordingly, we simply call the result of an enrichment
method an enrichment. Instead of using the term gene, we use (biolo-
gical) entity in order to refer to genes, mRNA, miRNA, or proteins.

4.2 A FRAMEWORK FOR ENRICHMENT ANALYSIS

The basic principle behind an enrichment algorithm is to determine
whether a category contains e.g. more differentially expressed genes
or abundant proteins than expected given the remainder of the data-
set. There are various ways to compute this. The popular gene set en-
richment analysis (GSEA) [Sub+07] sorts the input entities in descending
order with respect to a relevance score (Section ). Next a running-
sum is computed by traversing the list and increasing the sum each
time a member of the category is encountered. Conversely, the sum is
decreased for every entity that is not a member of the category. The
maximum deviation of the sum from zero is then the final enrichment
score for which a p-value can be computed.

Alternatively, we can determine a set of “interesting” entities, e.g.
by imposing a significance cut-off on differential expression. Given a
category, we can then count the number of category members among
these “interesting” entities. Using a combinatorial model it is possible
to determine how likely it is to obtain at least as many category mem-
bers by chance. This is the idea behind the overrepresentation analysis
(ORA) [Dra+03] approach (Section ).

What both approaches have in common is that they first require a
measure or score that reflects the relevance of each input entity. These
entity-level scores, in combination with a set of categories, are then used
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data X € RN*P categories phenotype

enrichment score computation

global tests entity-level statistics
Hotelling's T2 t-test fold-change correlation
global test
global ancova .
transformation
| x| log x? VX
set-level statistics null hypotheses
KS Wilcoxon median  t-test Q Q, Q,

significance assessment

sample-based entity-based restandardisation

| statistical conclusion

Figure 4.2: Schematic of an enrichment method adapted from Ackermann
and Strimmer [AS09]. All enrichment methods depend on data, categories,
and phenotypic information. For computing an enrichment score, either a
global test of a three step procedure is used. Afterwards, a p-value for the
obtained enrichment score is computed.

to compute a set-level statistics for which, in turn, a p-value is com-
puted. Ackermann and Strimmer [AS09] recognised these similarities
and proposed a generalised framework for building and classifying en-
richment methods (Figure ). In this framework, the input is assumed
to be a matrix of (normalised) measurements as well as a set of categor-
ies that should be tested for significance. Additionally, a phenotype
annotation is required to partition the input data into a sample and a
reference group.

Given this input, an enrichment score is computed for each cat-
egory. Here, the framework distinguishes between two schemes for
computing an enrichment score. The first scheme comprises three steps:
evaluating an entity-level statistics, a transformation step, as well as the
set-level statistics. The entity-level statistics reduces the input data from
multiple samples to a single score for each entity and will be introduced
in Section @ In Section we will give a short overview over the
transformations that can be applied to the entity-level scores in order
to improve the overall performance of the method. Given the trans-
formed scores, we can now use one of the set-level statistics presented
in Section @ to compute a final enrichment score for each category.
The second scheme directly transforms the input data into enrichment
scores. As tests adhering to this scheme do not rely on precomputed
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scores but use the complete data matrix, they can explicitly incorpor-
ate interactions between entities into their underlying models. For this
reason, Ackermann and Strimmer [AS09] refer to them as global tests
(see Section ). After enrichment scores have been computed, the
significance of the individual scores must be assessed. For this purpose
three strategies exist: sample-based evaluation, entity-based evaluation,
and the restandardisation method. We will discuss these strategies in
more detail in Section . After this, the raw p-values must be adjus-
ted for multiple testing in order to prevent false positive discoveries
(Section ). First, however, we will start with how to choose the en-
richment method that is the most appropriate for a given research task.

4.2.1  Choosing the Null-Hypothesis

At the beginning of every research task, ideally before any data has
been generated, a hypothesis that should either be confirmed or dis-
proved, must be chosen. Naturally, this is also true for enrichment ana-
lyses. According to Tian et al. [Tia+05], there are two natural ways to
state a null hypothesis for deciding the significance of a single category
(gene set):

Hypothesis ()1: “The genes in a gene set show the same pattern of
associations with the phenotype compared with the rest of the
genes.”

Hypothesis ()2: “The gene set does not contain any genes whose ex-
pression levels are associated with the phenotype of interest.”

It is important to note that although @1 and Q> appear similar, there
is a subtle difference. ()1 considers how strongly the entities in a cat-
egory are associated with the phenotype, compared to entities that are
not members of the category. As a result, even if the category does not
contain entities that are significantly associated with the phenotype, it
can be declared significant, as it (seemingly) shows a stronger pattern
of association than the remaining genes. In contrast, ()2 only considers
the entities in the category of interest and their association with the
phenotype. While @) circumvents the problem of )y, it has its own
drawbacks. In particular larger categories, which are more likely to con-
tain relevant genes by chance, would be significant under 2. Owing to
these interpretations of ; and )2, Goeman and Bithlmann [GB07] cat-
egorise enrichment methods employing 1 as competitive and methods
employing Q)2 as self-contained.

Nam and Kim [NKO08] argue that some enrichment methods, in-
cluding the popular GSEA procedure [Sub+05], neither compute sig-
nificance values with respect to )1 nor to ()2, but rather operate on a
third null hypothesis:

Hypothesis ()3: “None of the gene sets considered is associated with
the phenotype.”
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Data: Entity-level scores .S, Data: Data X, set-level score
set-level score r, and r, and category c.
category c. Result: Empirical p-value for

Result: Empirical p-value for C.

C. Seti=0,k=0

Seti=0,k=0 while i < nperm do

while i < nperm do X = permuteSamples(.X)

S = permuteScores(.S) S = entityStatistics(X )
7 = setStatistics(S, ) 7 = setStatistics(S, )
if # > r then if 7 > r then
I k=k+1 I k=k+1
end end
i=i+1 i=i+1
end end
return p = (k + 1)/nperm return p = (k + 1) /nperm
(a) Entity based. (b) Sample based.

Algorithm 4.1: Algorithms for computing an empirical p-value for a given
category. The essential difference between the entity- and the sample-based
statistics is when and in which dimension the randomisation takes place. In
both cases, a pseudocount is added to avoid p-values of value zero [Kni+09].

In contrast to ()1 and ()2, Q3 does not make a statement about a single
category, but rather assesses a set of categories for a significant asso-
ciation with the phenotype. It can be interpreted as a mixture of @
and 2. Nam and Kim [NKO8§] argue that this is the case for GSEA be-
cause it uses the competitive Kolmogorov-Smirnov (KS) statistics [Kol33;
Smi48] as set-level statistics but employs a self-contained strategy for
significance assessment.

The above observations also have practical implications. First, as in
the case of GSEA, the chosen set-level statistics can implicitly determ-
ine the Hy hypothesis and thus needs to be chosen with this in mind.
Furthermore, the method used for assessing the significance of the en-
richment scores needs to be chosen to match the desired hypothesis. To
this end, a choice can be made between two main alternatives.

Imagine a category C; with a score ¢;. We can now ask ourselves,
how likely it is that another category C}, consisting of |C;| randomly se-
lected entities, has a score larger or equal than ¢;. We call this scenario,
which reflects @1, the entity-based evaluation strategy for which we can
compute empirical p-values by using a permutation test (Algorithm @).
In essence, a permutation test estimates the null distribution of the set-
level scores. This is done by generating random permutations of the
entity-level scores that are then used as input for recomputing a collec-
tion of null set-level scores. The number of times such a permuted set-
level score was equal to or exceeded the original score is counted and
divided by the total number of permutations yielding an empirical p-
value. The advantage of the entity-based strategy is that it takes the dis-
tribution of all entity-level scores into account. Its disadvantage is that
the correlation structure of the entities in a category is neglected. This
correlation structure is likely to be important as categories, by design,
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tend to consist of functionally related entities [ET07].

However, we can also ask the question, how likely it is that C; was
assigned a score larger or equal than ¢; given that the phenotype labels
of the sample were randomly assigned. We call this scenario, which re-
flects D2, the sample-based evaluation strategy. Clearly, permuting the
samples leaves the correlation structure inside a category intact. Unfor-
tunately, the entity-level score distribution is destroyed, as all scores
are recomputed after sample permutation and only the entities in a
category have an influence on the final enrichment score [ET07].

Efron and Tibshirani [ET07] argue that in order to combine the
strengths of the entity-based and the sample-based evaluation strategy,
both should be executed simultaneously. They name this combined
strategy the restandardisation method and apply it together with their
proposed maxmean statistics.

From a computational point of view, the entity-based strategy is
often more efficient, as it can exploit the distribution of the enrichment
scores. For example it is possible to compute p-values for t-test based
methods using Student’s t-distribution. In contrast, the sample-based
as well as the restandardisation strategy always necessitate the use of
permutation tests, which can require considerable amounts of runtime
to compute.

4.2.2 Entity-level Statistics

Entity-level scores are scalar values that reflect the “importance” of an
entity. Commonly, entity-level scores are derived from the differential
analysis of two sample groups. Scores are computed by evaluating a
statistics that reduces the input data to a singe scalar value. Ackermann
and Strimmer [AS09] report that the choice of entity-level score only
has little effect on the overall results of the enrichment procedure. It
should be noted, though, that for small sample sizes the choice of an
appropriate entity-level statistics may well have a higher influence.

In the following we will list a few popular choices for such entity-
level statistics. Let X = (21, x2,...,z,) € RP*"andY = (y1,42,...,Yn) €
RP*™ be the sample and reference set, respectively. The sample mean
and sample variance of entity k are denoted by Z) and s%,, respect-
ively.

Fold-Change The most basic entity-level score is the fold change. It is
defined as the ratio between the mean expression of the two groups X
and Y: 7
k
fe(k) 7
As expression values are larger than zero, the fold change is also posit-
ive and distributed around 1. However, the distribution is asymmetric
as cases where g, > Zj, holds occupy the interval (0, 1) while the con-
verse cases occupy the interval [1, o). To make both ranges comparable

it is common to apply a logarithm yielding the log-fold-difference:
log, (fc(k)) = log, (Tx) — log, (¥x)
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For an expression dataset, a log,-fold-change of 0 is thus equivalent
with no change in expression between X and Y while a log,-fold-dif-
ference of +1 can be interpreted as an over- or under-expression of
factor two, respectively.

The t-Test Family As the fold change is simply defined as the ratio
of two means, it does not respect the variance of the measurements.
This can be problematic as, for instance, a shift of the mean expression
between the sample and reference group for an entity that exhibits a
high variability is not as significant as a similar change for an entity that
exhibits a much lower variability. Accordingly, fold changes are biased
towards entities with high variability as it is more likely that they ob-
tain a larger score than other entities. To account for this, statistics that
incorporate the sample variances should be used. The most common
choice for such a statistics is Welch'’s t-test [Wel47; Sat46], which is ap-
propriate for normally distributed samples.
te = Tk — Yk

Sk 4 S

n m

For paired samples, Student’s t-test can be applied to the pairwise dif-
ferences dj; := x; — yk; resulting in the test statistics:

_/n-dy

SDk

ti

If applicable, the paired version of the t-test has the advantage that it
offers higher statistical power than the independent version. Addition-
ally, simpler versions of the t-test can be applied if the mean of a sample
is to be compared against a known, global mean.

Shrinkage t-Test While high-throughput experiments are able to cap-
ture profiles for thousands of entities simultaneously, most of the time
the number of measured samples is considerably lower. The practical
implication of this is that all estimates obtained from the data, such as
sample means and sample variances, are subject to a sizeable amount
of uncertainty. For the t-test family, errors in the sample variance are
especially problematic, as too small or too large variances can over- or
understate the importance of an entity. To combat this, Opgen-Rhein
and Strimmer [OS07] introduced the shrinkage t-statistic. The idea be-
hind the shrinkage t-statistic is to move (“shrink”) the estimated en-
tity variances closer to the overall median variance, thereby increasing
small and decreasing large variances. James and Stein [JS61] showed
that, if multiple, simultaneous estimates are required for some para-
meters, this combined strategy is guaranteed to perform better than
estimating the parameters individually. Most intriguingly, the estim-
ated quantities do not need to be related in any way [EM77]. This phe-
nomenon is often entitled “Stein’s paradox”. Another advantage of the
James-Stein framework is that the optimal amount of shrinkage is de-
termined from the data alone. As a consequence no additional tuning
parameter is introduced into the estimation process.
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Welch'’s t-test are computed
via the Welch-Satterthwaite
equation.

Paired samples imply that

n=m.

Dimension 2
N
0 O
/.
X

Dimension 1

Figure 4.3: Sketch of the
effect of shrinkage proced-
ures. The original data
points (solid circles) are
shifted towards the shrink-
age target x, resulting in
new, “shrunk” data points.



Just as Spearman’s correl-
ation (Section ) isa
rank-based version of Pear-
son’s correlation, the Wil-
coxon test is a rank-based
version of Student’s t-test.

ENRICHMENT ALGORITHMS

In the following we introduce the estimator for the sample variance
by Opgen-Rhein and Strimmer [OS07]. Recall the usual, unbiased es-
timator for the sample variance (Equation (@))

n

1 2
sk = n_lz(ﬁfki—l‘k)
i=1

Instead of directly using s%, in the denominator of the ¢-statistic, we
replace it with a convex combination of s%, and the median standard
deviation of all genes Spedian:

5;(]@ = A*Smedian + (1 - A*)SXk

This effectively shifts all variances closer to spyedian. The optimal mixing
proportion \* is given by

A* = min <1 i VAT(5x) ) (4.1)

’ ZZ:l(SXk - Smedian)2

The term var(sxy) denotes an estimate of the variance of the sample
standard deviations and can easily be computed using the unbiased
variance estimator. This formula can be interpreted as follows: if the
variances can be reliably estimated from the data and, thus, var(sxy)
is small, only little shrinkage will take place. Conversely, if they can-
not be estimated reliably, the nominator is large and more shrinkage
towards the median is used. On the other hand, the denominator in
Equation (@) measures how well the median standard deviation rep-
resents all standard deviations. If this difference is large, less shrinkage
is used. For large sample counts, the shrinkage t-statistic converges to
the usual t-statistic. This means that the former can be used uncondi-
tionally used as a replacement for the latter.

Z-score In some cases, such as when analysing a patient sample for
treatment optimisation, it is desirable to compare just a single sample
against a larger reference group. As it is not possible to compute vari-
ances for a single sample, it is also not possible to use a t-test for com-
puting entity-level scores. To at least incorporate the variance of the
reference set, the z-score statistics can be used. It is defined as follows:

TE — Yk
SYk

2k

Using the z-score, normally distributed data can be transformed such
that it follows a standard normal distribution N (0, 1), which can be
used to determine a p-value for x;,.

Wilcoxon rank-sum test The Wilcoxon rank-sum test [Rin08] is a non-
parametric test. It shines as an alternative to the independent two-sam-
ple t-test, if the input data does not follow a normal distribution. Even
in cases where the t-test is applicable, the Wilcoxon rank-sum test of-
fers competitive performance and greater robustness against outliers.
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Just as the t-test, it can be used check whether the expected values of
two samples coincide. Compared to the latter, it is solely based on the
relative order of the values between the two samples. The test statistics
is based on the running sum W:

n

W =3 Rx) (42)

=1

Here, R(z;) represents the rank of value z; in the sorted and pooled list
of sample values. For n > 25 and m > 25, W is approximately normally
distributed [Rin08] with mean yyy and variance s¥;.

nn+m+41 n-mn+m+1

For larger sample sizes, this allows to efficiently approximate p-values.
For small sample sizes, the exact p-values for W can be looked up in a
table [Kan06]. When the Wilcoxon rank-sum test is used as a set-level
statistics (see below), these p-values need to be interpreted with respect
to the entity-based strategy.

4.2.3 Transformation

Instead of directly using the computed entity-level scores as input for
the set-level statistics (cf. Section ), it is possible to first apply a
score transformation to them. Examples for such transformations are
the square root, logarithm, absolute value, or square of the input scores.
The main reason for using a transformation is to improve the perform-
ance of the enrichment method. In this regard, the most valuable trans-
formations are probably the absolute value and the square, as they al-
low to fold negative and positive scores together. This is useful when
only the deregulation of a given category is of interest and not, whether
its constituents are up- or downregulated. Also, for some methods in
which positive and negative scores are likely to cancel out, applying the
absolute value of square transformation can be crucial (cf. Section @).
Applying the square root or logarithm transformation can be helpful
for dampening the effect of outliers.

4.2.4 Set-level Statistics

The actual enrichment can be obtained by computing a set-level statist-
ics. Given a list of entity-level scores, it computes a set-level (or enrich-
ment) score for a given category. The choice of the set-level statistics can
have a significant impact on the enrichment method’s ability to detect
enriched categories. Consequently, a large number of set-level statist-
ics has been published. The most popular choices are the KS statistics,
used in GSEA [Sub+05], and the hypergeometric test, used in overrep-
resentation analysis (ORA) [Drd+03]. In the following, we will describe a
selection of the most commonly used set-level statistics in more detail.

93

See Section @



Naturally, paramet-

ric tests tend to have
higher power than non-
parametric competitors,
if their assumptions hold
(cf. [HL56] or [She03]).

The version presented
here is more space effi-
cient than the version pub-
lished by Keller, Backes,
and Lenhof [KBLO7].

ENRICHMENT ALGORITHMS

In order to do so, we categorise the methods into non-parametric, para-
metric, and averaging methods. The hypergeometric test is not directly
comparable to the other methods and will, thus, be treated in its own
section. We start with the discussion of non-parametric statistics.

Non-Parametric Statistics

Many hypothesis tests, such as the t-test, assume that the input data
follows a certain probability distribution. In real measurements, this
is rarely the case. While applying such parametric statistics will non-
etheless yield p-values, these are likely to be skewed. Non-parametric
statistics do not make any assumptions about the distribution underly-
ing their input data. Thus, they are extremely robust and universally
applicable. Even in cases where a parametric statistics applies, non-
parametric statistics offer a competitive, albeit slightly lower power
[HL56].

Two examples for non-parametric set-level statistics that are com-
monly employed for enrichment analysis are the Wilcoxon statistics
and the KS statistics. Both methods are rank-based and are computed
by evaluating a running sum. The formulation of the Wilcoxon statistics
as a set-level statistics is identical to the entity-level version presented
in Section .

Whereas the Wilcoxon statistics counts how often samples from
group X precede samples from group Y and vice-versa, the KS statist-
ics traverses a sorted list of samples and adds or subtracts a constant
value depending on whether a sample from group X or Y has been
encountered. The maximum deviation from zero is then the output of
the KS statistics. More formally, let L = {l1,ls,...,l,} be a list of en-
tities ordered according to their entity-level scores with n := |L| and
C C L be a category with m := |C|. Now, we are able to define the
running sum RS:

RS(0) =0
n—m ifl;eC
-m otherwise

RS(i) = RS(i — 1) + {

The value of the test statistics is the maximum deviation RSy of RS
from zero. Figure @ provides an example for the KS running sum. For
the entity-based strategy, an exact p-value can be computed using dy-
namic programming [KBLO7]. The idea of this approach is to compute
thenumber Z of permutations that achieve an (absolute) score less than
RSmax. The final p-value can then be computed as

Let M € N(mthx(n—m+l) o the dynamic programming matrix. In or-
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Figure 4.4: An example KS running sum. Red dots represent genes in the
category under consideration. The maximum deviation of the running sum
from zero (RSpax) is marked with a dashed line and serves as the value of the
test statistics.

der to initialise M we set

1 ifi-(n—m) < |RSmax|
0 otherwise

1 if k- m < |RSmax]

0 otherwise

M(i,0) = {

M(0,k) = {
The recurrence is given by

M(@i—1,k)+ M(i,k—1) if (x)
0 otherwise

M(i,k) = {

where (%) is |[RSmax| < i - (n —m) — k- m < |RSmax/-

Subramanian et al. [Sub+05] proposed a weighted version of the
KS statistic. For each entity [; € C that is a member of the category, the
value w;, which is derived from the entity’s score w(l;), is added to the
running sum.
w(l)]”

Ng

The term Ny := >, .o |w(l;)[? is used as a normalisation factor. The
parameter p € RJ allows to control how much high scoring entities are
preferred to low scoring ones. For entities that are not a member of C
the value (n —m)~! is subtracted from the running sum. For p = 0 this
formulation is equivalent to the unweighted KS statistics. One benefit
of using weights is that it allows to control for scores that are closely
distributed around zero and thus should have little influence on the
value of the statistics. Additionally, artefacts stemming from entities
with a low abundance, such as transcripts with low copy number, are
mitigated by using weights. Unfortunately, the weighted version of the
test does not allow the computation of an exact p-value even when us-
ing the entity-based strategy. Instead the permutation test approach
presented in Algorithm §.1| needs to be applied.

w; =

Parametric Statistics

Representatives of the parametric set-level statistics are the shrinkage
and Student’s t-test (cf. Section ). As with the Wilcoxon statistics,
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The proof uses Van-
dermond’s identity.
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the formulations for the t-test family statistics are the same as in the
entity-level case. Advantages of using the t-test are that scores as well
as p-values for the entity-based statistics can be computed more effi-
ciently compared to the non-parametric case. Two ways of applying
the t-test are possible. First, the means of the category members and
the remaining genes can be compared (two-sample t-test). Second, the
mean of the category members can be compared to the global mean.
In the latter case, only the variance of the category is considered (one-
sample t-test).

Averaging Statistics

A trivial way to compute an enrichment score for a category, is to com-
pute the average of its member’s entity-level scores. Similarly, the me-
dian or sum of all category entries can be used. Remarkably, these
simple statistics perform competitively compared to more sophistic-
ated methods such as the KS statistics [AS09]. Based on these averaging
methods Efron and Tibshirani [ET07] devised the maxmean statistics. In-
stead of computing the overall mean of the category, the authors pro-
pose to compute the mean of the positive and negative member separ-
ately and using the maximum value as a test statistics in order to avoid
cancellation of large values with opposing signs (cf. Section @).

The Hypergeometric Test

Often a researcher obtains a list of “interesting” entities, which we will
henceforth call the test set. Examples for test sets are list of differentially
expressed genes or the proteins detected in a sample. The question is
whether the members of the test set share a common characteristic. To
this end, functional annotations and thus categories can be used. To
determine whether the members of a category are over- or under rep-
resented relative to what is expected by chance, a simple urn model can
be used. Suppose we are given a universe of possible entities R with
m members, which we will call the reference set. Additionally, we are
given a test set T C R with n := |T'| of entities and a category C' C R
with [ := |C|. We can ask ourselves the question: “Is the number of en-
tities k := |T N C| significantly different from the number expected for
any randomly chosen set 7"?”

The probability of drawing a set of length n containing k elements
from C can be calculated using basic combinatorics (Figure @):

() (o)
()
P (k,1,m,n) is the probability density function of the hypergeometric

distribution (cf. [Riv+07; Bac+07]).

The expected value of hits for a randomly chosen test set with [
members is given by k' = L. It is now possible to compute a one-sided

Py (k,l,m,n) =
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Blue: (’:::,i) possibilities

Reference set (I RI =m) Testset (1T =n)
Contains [ red balls Contains k red balls

Figure 4.5: Urn model for the hypergeometric test. The reference set contains
entities that either belong to the category (red) or not (blue). From the refer-
ence set the test set is drawn.

p-value for our input test set T":

> Py(i,l,m,n) ifk <k
i=k

k
> Py(il,m,n) ifk' >k
i=0

Pec =

If the test set T contains entities that are not members of R, Fisher’s
exact test should be used instead of the hypergeometric test:

Pp(i,k,l,m,n) = 7()7(;1572)
()

The p-values are defined analogously:

ST Pe(ik,l,m,n) ifk' <k

_ i=k
Pc = k
Pp(i k,l,m,n) ifk' >k

=0

)

Due to its reliance on the test and reference sets, the hypergeometric
test is not directly comparable to the other enrichment methods. In
this regard, requiring a test set is both, the biggest advantage and dis-
advantage of the hypergeometric test. On the one hand, the independ-
ence from entity-level scores allows to employ the hypergeometric test
in settings where the remaining methods are not applicable. An ex-
ample would be a differential proteomics pipeline in which the pres-
ence (or absence) of proteins is detected, but no quantitative informa-
tion has been collected. On the other hand, constructing the test set in
cases where entity-level scores are available can be difficult. Consider
a score measuring the degree of differential expression for each gene.
Which cut-off should be chosen to distinguish between differentially
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expressed and “normal” genes? In essence such a thresholding step
introduces a tuning parameter that can have a large influence on the
obtained results. Similarly, the choice of the reference set is also crit-
ical for the performance of the method. A larger reference set makes
it less likely to randomly draw members of a category and, thus, leads
to overall lower p-values. On the other hand, choosing a reference set
that is too small may lead to low statistical power.

How to choose an appropriate reference set is not always clear. In
general, it should comprise all entities that can be detected by the exper-
imental platform. For mRNA microarrays this means that the reference
set should consist of the genes for which probes are present on the ar-
ray. For RNA-seq the answer is less clear. As, in theory, all genes that
can be expressed can be detected by the method, a reasonable choice
for the reference set would be a list of all actively transcribed genes. For
proteomics pipelines, which, at the time of writing, are not capable to
capture all proteins that are present in a sample, there is no clear an-
swer. One approach would be to use the union of all detected proteins
across all samples. Alternatively a list of all proteins can be used. In
this case, the resulting, lower p-values should then be compensated by
a stricter significance threshold.

4.2.5 Global Tests

Tests that directly transform measurement data into enrichment scores
are called “global tests” by Ackermann and Strimmer [AS09]. The ad-
vantage of global tests, as opposed to the previously presented meth-
ods, is that they can incorporate the correlation between entities into
their respective models. Examples are Hotelling’s T-test [Hot31], the
global ANCOVA approach [M+05], and the aptly named global test pro-
cedure [Goe+04].

In the remainder of the thesis, global tests will not play a further
role. An exception is Hotelling’s 7°-test which we will describe and
evaluate in Section . For more details on the remaining methods,
we refer the reader to the cited literature.

4.2.6 Summary

Enrichment analysis is a large field and accordingly a wide variety of
enrichment algorithms has been created. Commonly an enrichment al-
gorithm is composed of a procedure for deriving entity-level scores,
set-level scores, and finally a method for significance assessment. Ow-
ing to the choices made for the above components, each algorithm is
based on different assumptions on how an enriched category is defined.
Hence, each algorithm comes with a trade-off between advantages and
disadvantages that need to be carefully vetted each time an enrichment
analysis is required. Consequently, a wide variety of reviews exist that
attempt to characterise the performance of enrichment methods un-
der different conditions [[AS09; ET07; HSL09; Hun+11; KSB12; Nae+12].
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This shows that choosing an appropriate enrichment method is by no
means a trivial task. In the next section, we also attempt to provide a
comparison of some enrichment algorithms. However, we focus on de-
riving general advice in contrast to recommending a single technique.

4.3 EVALUATION

Choosing a “good” enrichment algorithm is difficult. As outlined be-
fore, there exist no experimental datasets for which the truly enriched
categories are known. Hence, conducting studies on synthetic data re-
mains as the only viable option to obtain performance estimates for an
enrichment method. In this section, we conduct an evaluation based
on synthetic data with the goal to derive general guidelines for choos-
ing an enrichment algorithm that is appropriate for a given situation.
It should be noted that this evaluation by no means provides a full cov-
erage of every possible usage scenario.

Our evaluation is based on the following procedure: first, we ran-
domly create a set of categories. Next, we generate a dataset lacking any
kind of differential expression. We will refer to this dataset as the null
dataset. Evaluating our categories on a null dataset gives us a baseline
for the number of false positives that can be expected for each method.
Then, all methods are run on datasets that were generated to produce
a randomly chosen subset of enriched categories. We can treat the in-
formation whether a category is enriched or not as a class label. This
allows us to compute performance metrics for the individual methods
that are usually used for evaluating classifiers.

Using only categories created by uniformly sampled genes does not
necessarily reflect how collections of categories are structured. As, for
example, some genes fulfil a wider spectrum of functions or are more
thoroughly researched, we expect that they can be found more often
in categories than other genes. Accordingly, the enrichment scores for
real-world categories can be expected to be more correlated than for
our synthetic categories. If this is the case, it may prove difficult to
distinguish the truly enriched from merely correlated categories. To
account for this effect, we also evaluate the algorithms on a set of cat-
egories extracted from Reactome [Jos+05]. In summary, the following
experiments were executed:

1. Synthetic categories on data without differential expression.
2. Synthetic categories on data with differential expression.

3. Real-world categories on data without differential expression.
4. Real-world categories on data with differential expression.

Before we present the results of the experiments, we first outline the
data generation procedure for categories as well as datasets.
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Figure 4.6: Empirical distribution of normalised expression values (black,
solid) in the Wilm’s tumour dataset. The data is well described by a Laplace
distribution (red, dashed). In contrast the fitted normal distribution (blue, dot-
ted) has too little probability mass in the centre and falls off too slowly. Also,
too little probability mass is placed on the tails.

4.3.1  Data Generation

Generating synthetic data for the evaluation of algorithms has various
advantages and disadvantages. The major advantage is that it is pos-
sible to create data following a known theoretical model and, thus, that
all properties of the generated dataset are known. In the context of en-
richment analysis this means that the categories containing significant
enriched genes have been determined a priori. However, this is also the
biggest disadvantage of synthetic data. As the model for data gener-
ation can be freely specified, it is likely that the conducted analyses
are biased towards methods that share the same model assumptions.
If the model does not reflect experimental data well enough, the res-
ults obtained using the generated data only contain limited amounts
of information about the performance of the methods in a real-world
scenario. Nevertheless, using synthetic data allows to learn about the
properties of a method in a controlled environment. Most importantly,
though, using synthetic data is often the only way to validate methods
for which no gold standard is available.

Expression Values

The data generation model used in this study was designed to repro-
duce the Wilm’s tumour microarray expression dataset introduced in
Section @ Generally, the expression of microarray data is assumed to
follow a normal distribution, which works well for most applications.
However, when examining the distribution more carefully, it becomes
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Figure 4.7: Empirical distribution of the per-gene medians and MADs (black,
solid) in the Wilm's tumour dataset. The median follow a Laplace distribution,
while the MADs roughly follow a log-normal distribution (red, dashed).

apparent that a normal distribution does not fit the data perfectly. The
experimental density is narrower and has smaller support than the
theoretical normal fit. A distribution that models the data much more
faithfully is the Laplace distribution:

The Laplace distribution is closely related to the normal distribution.
Both methods are parametrised using the location parameter ;. and the
scale parameter 0. The maximum likelihood estimators for 1 and o in
the normal case are the mean and standard deviation, respectively. In
the Laplace case, they are the median and mean of absolute deviations

(MAD)
LN
N Z |z — p
i=0

are used. To indicate that a random variable x follows a normal distri-
bution with mean p and standard deviation o we write z ~ N(p, 02).
To indicate the same for the Laplace distribution we write z ~ L(u, o),
with p and o representing the median and MAD. Purdom and Holmes
[PHO5] propose to use an asymmetric extension of the Laplace distri-
bution, to better adapt to skewness in expression data sets. Here, we
restrict ourselves to the ideal, symmetric case.

In our data generation scheme, we need to sample expression val-
ues for each gene from a gene-specific distribution. This allows to sim-
ulate differential expression by adding a shift to each genes expression
values. In order to derive per-gene distributions that are compatible
with the overall distribution of the expression values, we examined
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the distribution of the gene medians (19) and MADs (o). Again, the
Laplace distribution is a good fit for the distribution of the medians.
The MADs, however, follow a log-normal distribution (cf. Figure @):

Ho ~ £(07 Um)
In(o0) ~ N (p, 07)

Here, o, represents the MAD of the gene medians. The variables y,
and o, are the mean and standard deviation of the log gene standard
deviations, respectively. Together, 0, 11, and o, are hyperparameters
which we will estimate from the experimental data. We omitted the
median of the gene medians from the model, as a constant shift of all
expression values will cancel out in the entity-level statistics.

Expression values generated following the above scheme do not
correspond to differentially expressed genes. Instead, they constitute
the null model or “normal” genes. To introduce differential expression,
the expression values in the sample group need to be shifted relative to
the expression in the reference group. To create a significant shift, the
median expression value of the sample group is shifted to the corres-
ponding a = 0.05 significance threshold, which corresponds to a shift
of 0 ~ 2.303 for the standard Laplace distribution. To create some vari-
ation in the gene scores, this adjusted median is modified by adding
Gaussian noise. Finally, the shift is scaled with the gene expression
MAD in order to account for the different magnitude of dispersion
across the genes. Put together, this yields the following generative mod-
els for null and differential gene expression:

Znan ~ L(fo, 00)
xiff ~ L(po + €09, 00)
€~ N((S? 062)

The noise parameter o2 is set to a constant value of 0.4.

The above model only generates overexpressed genes. This means
that the distribution of the expression values is asymmetric and all dif-
ferentially expressed genes are being shifted to the right. As this may
unfairly bias the results towards certain methods, we additionally gen-
erate data where the direction of the shift is chosen via a coin flip.

Categories

The used categories were created by uniformly sampling genes from
a list of gene names obtained from the Agilent SurePrint G3 microar-
ray platform which was used for measuring the Wilm’s tumour data.
In total 500 categories were created. As biological categories are usu-
ally not uniformly distributed across the genome, but tend to cluster
around well-studied genes and pathways, we additionally perform the
same evaluation using real biological categories. For both sets of cat-
egories, we randomly selected 10 % of their members to serve as en-
riched categories. To artificially enrich them, we selected 33 % and 66 %
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of their genes as differentially expressed. The expression values were
then generated as described above.

Asbiological categories we use the pathway information contained
in the Reactome database [Jos+05] to examine the behaviour of the
enrichment algorithms on biological categories. In total we extracted
1508 categories from Reactome. As with the artificial categories, we ran-
domly selected 10 % of the categories as differentially expressed and
chose 33 % and 66 % of their members as differentially expressed.

4.3.2 Results

We evaluated the above model using the parameter settings derived
from the Wilm’s tumour dataset (cf. Figure @) as well as the noise
parameter o, which we fix to a small value:

Ly = —0.336 oy =~ 0.499
om ~ 0.167 oe =04

Furthermore, we consider the following algorithms implemented in
the GeneTrail2 server: mean, sum, median, one sample t-test (1s-t-test), two
sample t-test (2s-t-test), Wilcoxon test, weighted and unweighted KS, as well
as ORA. The ORA method could only be evaluated for the entity-based
p-value-strategies, due to limitations in the used C++ implementation.
To create the required test set for ORA, we sorted the gene list by score
and selected the upper and lower 0.025 % into the test set. All compu-
tations were repeated ten times with differing random seeds in order
to compute standard deviations.

Null-Model

In order to judge how the algorithms behave if no signal is present in
the data, we generated a dataset without any differentially expressed
genes. For this experiment, we tested all methods using the entity- and
sample-based p-value strategies. We evaluate the number of false dis-
coveries at the 0.01 significance threshold.

Not many differences for the synthetic categories could be detec-
ted between the methods (Figure §.8). For the entity-based strategy the
ORA method achieves the lowest number of false positives. For the
sample-based strategy no clear winner exists. It should be noted that
in all cases, the number of detected false positives is higher than the
expected proportions of 500 -0.01 = 5 false discoveries. This highlights
the importance of adjusting for multiple hypothesis testing.

For the Reactome based categories (Figure @), the results for the
entity-based p-value strategy show a higher variance, than those for
the sample-based strategy. Again the ORA method on average detects
substantially less false positives than competing approaches. For the
sample-based strategy, as with the synthetic categories, no clear best
algorithm can be identified.
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Figure 4.8: Number of false positive categories detected for the synthetic
null-dataset using both, the entity-based (left) and the sample-based (right)
p-value computation strategy. For both strategies the number of false posit-
ives was evaluated at the p-value cut-off 0.01. ORA was only evaluated for the
entity-based strategy. In total, 500 categories were being evaluated.
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Figure 4.9: Number of false positive categories detected for the Reactome
null-dataset using both, the entity-based (left) and the sample-based (right)
p-value computation strategy. For both strategies the number of false posit-
ives was evaluated at the p-value cut-offs 0.01. ORA was only evaluated for
the entity-based strategy. In total, 1508 categories were being evaluated.
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Figure 4.10: AUC of various set-level statistics on synthetic categories where
differentially expressed genes are distributed asymmetrically or symmetric-
ally. For p-value computation the entity-based strategy was used. If a category
was chosen as significant, 66 % of the genes were generated as differentially
expressed.

Significant Categories

Next, we take a look at the results of the datasets for which significant
categories were generated as explained above. For the datasets where
only 33 % of the genes in an enriched category were chosen as differ-
entially expressed, all methods perform poorly with AUC values of ap-
proximately 0.5. For datasets with 66 % significant genes, the perform-
ance of the methods improved significantly (Figure ). The most ap-
parent difference can be seen between the symmetric and the asym-
metric datasets. Here, all methods except ORA hardly misclassify any
categories for the asymmetrically distributed case. The failure of ORA
in this case can be attributed to the thresholding used to determine
the most up- and downregulated genes, whereas the dataset only con-
tains upregulated genes. In the symmetric case, only the (weighted) KS,
max-mean, and ORA set-level statistics manage to achieve near perfect
scores. The Wilcoxon statistics relies on comparing the sum of ranks of
category members against the ranks of the non-members. If the entity
level scores are symmetrically distributed each category roughly con-
tains the same number low ranking and high ranking genes which ef-
fectively cancel out. This effect is also visible for the remaining methods
that are all based on averaging. As with the Wilcoxon test, if genes with
a positive and a negative enrichment score are member of a category
their sum is expected to lie in the vicinity of zero. Consequently these
methods should only be employed if the scores have been transformed
using the absolute value or square transformation (cf. Section ).
When applying the set-level statistics to the biological categories, no
significant change in behaviour could be detected. (cf. Appendix @).
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4.3.3 Summary

All enrichment methods are able to detect most of the of the enriched
categories, given that the data contains enough signal. If too few genes
are differentially expressed, the detection rate drops severely. To en-
sure optimal performance, the methods and eventual pre-processing
steps need to be chosen carefully depending on the problem setting. If
the scores of the differentially expressed genes are expected to be dis-
tributed symmetrically around zero, a transformation such as squaring
or the absolute value should be applied in order to prevent cancellation
effects. Alternatively, methods like the (weighted) KS or maxmean stat-
istics, which are not as sensitive to the symmetry of the scores, should
be used.

Besides sensitivity to the symmetry of the input scores, the num-
ber of produced false positives can be an issue. To combat this, a more
conservative significance threshold can be used. This choice is likely to
have a larger impact on the number of false positives than the chosen
set-level statistics.

If a clear cut-off for distinguishing differentially from normally ex-
pressed genes is known, the ORA method offers superior performance
for the entity-based permutation scheme. However, as this is seldom
the case, using other methods is recommended in practice. Given the
choice between two equally performing methods, the one offering a su-
perior runtime behaviour should be chosen. To this end, methods that
offer an exact p-value computation method are in an advantageous pos-
ition for the entity-based case. Examples are ORA, the unweighted KS
statistics, the t-tests, and the Wilcoxon test. In the sample-based case,
the performance of the entity-level statistics tend to dominate the com-
putation time.

To close, we would like to reiterate that the analysis presented here
should be taken with a grain of salt. First of all, not all parameters
of the enrichment methods and the data generation procedure were
tested exhaustively. This means that the performance of some meth-
ods may have been underestimated due to unfavourable parameter
settings. The data creation process and especially the creation of sig-
nificantly enriched categories can attribute unfair advantages to some
of the tested methods. Here, especially the shift of differentially ex-
pressed genes to the significance threshold for o = 0.05 can be criti-
cised as too conservative. The reason for this is that, especially together
with the random noise term governed by o, some gene expression val-
ues actually fall below the significance threshold. We argue that this is
not an issue as the gene expression values are symmetrically distrib-
uted around the threshold. Due to this, the mean of the expression
still, on average, coincides with the threshold. Also, the differentially
expressed genes still should have a higher mean expression than the
“null” genes. Hence, as no method used an explicit significance cut-
off to detect differentially expressed genes, the exact magnitude of the
shift should not be an issue. Nevertheless, by examining the distribu-
tion of the differentially expressed genes in experimental data, a more
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realistic, albeit more complex, model could be derived. Another bias
may stem from the fact that the significantly enriched genes are ran-
domly chosen and considered independent from each other. This as-
sumption closely resembles the urn model underlying the hypergeo-
metric test used by ORA. However, for biological datasets, gene ex-
pression is most certainly not independent within a category. There-
fore the sample-based p-value strategy, which considers the correlation
structure within a category in fact is at a disadvantage in this evalu-
ation. On the other hand the ORA method depends on the choice of
the threshold that selects the differentially expressed genes. While in
this case, the 95 % quantile is appropriate due to the data generation
procedure, the true value of the threshold is usually not known a priori.
Nevertheless, the chosen parameters reflect the settings a user of the
GeneTrail2 server would use by default and, therefore, the presented
evaluation gives some insight into possible real-world usage.

4.4 HOTELLING'S T2-TEsT

We previously discussed enrichment procedures, like the Over Repres-
entation Analysis (ORA) [Drd+03] and the Gene Set Enrichment Ana-
lysis (GSEA) [Sub+05], that treat the entities contained in each category
as independent. However, we previously assumed that a category con-
sists of genes that are functionally related and thus are likely to be co-
regulated. Of course, this suggests that these entities are anything but
independent.

Here, we examine the suitability of Hotelling’s 7-test as an enrich-
ment algorithm. Hotelling’s T?-test is a global enrichment procedure
(Figure @) that accounts for the correlation structure between entities.
We structure our presentation as follows: first we give a general intro-
duction to Hotelling’s T?-test. Afterwards, we perform a brief evalu-
ation to illustrate some of its properties.

4.4.1 Mahalanobis Distance

A concept that is central for understanding Hotelling’s 72-test [Hot31]
is the Mahalanobis distance [Mah36]. To explain it, we need to recall the
multivariate generalisation of the Gaussian distribution as introduced

in Section . Again, consider the univariate Gaussian distribution
1 (z — p)?
N(z,p, o) = ex (— 4.4
( w ) \/%O' p 20.2 ( )

Here, 1, 0% € R represent the mean and variance of the distribution,

respectively. Disregarding the normalisation factor in front of the ex-
ponential function, the value of the distribution solely depends on the
squared distance of = to the mean which is scaled inversely by the vari-
ance: (z — u)?/(20%). In the multivariate Gaussian distribution

N@ g5 = o (g - E-n) 6
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this is replaced by the term (7 — @)!~71(Z — ji). In other words, the
distance of & from the centroid i € RP is rescaled by the inverse cov-
ariance (or precision) matrix ¥ ~! € RP*P. The constant
_1 )
c:=det(X)"2/(2m)>2
serves as the normalisation factor.
The covariance matrix and, thus, ¥ ~! are positive definite matrices.

Hence, ¥ ! defines a scalar product and a corresponding metric. This
metric is called the Mahalanobis distance [Mah36].

4.4.2 Hotelling’s T?-Statistics

A common question in statistics is, whether two samples originate from
the same or two different distributions (Section {.1)). The entity- and
set-level statistics presented in earlier sections (cf. Section ) answer
this question for a range of univariate cases. However, if the samples
follow a multivariate Gaussian distribution, Hotelling’s T?-statistics is
the appropriate test statistics. It is a straightforward generalisation of
Student’s ¢-test [Stu08] (Section ). Let N be the number of samples
and n, m the size of each group, respectively. Using Sy := > *, (7; —
pi) (@i — pi)t and the analogously defined S,, we obtain the pooled

covariance matrix S:
Sz + Sy

N -2
This allows us to compute the 72-statistics as the weighted difference
of the sample means

S = (4.6)

Ny

T? =
N

(1 — 15) S ™ (11 — 1) 47)
In order to evaluate the significance of T2, the appropriate quantiles

can be computed from the F-distribution via the relationship

N—-p-—1

MT2 ~ F(p,N —1—-p) (4.8)

The probability density function of the F'-distribution is given as:

(d12)"1.d3
Fsdyydy) = LG (49)
5 (4.%)
where di,d> € Rt and
1
B(z,y) = /t””l(l —t)vat (4.10)
0

is the beta-function. As the parameters of the F-distribution must be
positive, computing an exact p-value requires more samples than ob-
served genes (N > p + 2). Thus, it is infeasible to test for a difference
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Figure 4.11: Density plots of the estimated Mahalanobis distance between
two multivariate Gaussian distributions of dimensionality p € {10,20} com-
puted for increasing sample counts. The sample count in the legend reflects
the number of samples for each distribution. The vertical line represents the
true Mahalanobis distance. More than 100 samples per group are required to
achieve reliable distance estimates. Especially for p = 20 low sample counts
lead to a large variability in the estimated distance.

between a large number of genes, e.g. as obtained from a microarray,
where the number of available samples is much smaller than the num-
ber of genes. However, computing 72 and according p-values for small
gene sets (p ~ 50) is unproblematic for many microarray studies that
are available in public repositories like the NCBI Gene Expression Om-
nibus [Bar+13; EDL02].

In practice, the Hotelling T2-test comes with serious usability prob-
lems. The reason for this lies in the required inversion of S which can
amplify noise in the input data as explained in Section . Further-
more, Hotelling’s 72 has been shown to possess a low statistical power
[BS96]. Chen et al. [Che+12] report that regularised versions of the test
show a considerably improved performance. To this end, they compute
p-values based on an empirical distribution determined via resampling.
In addition they propose using bootstrapping to increase the power for
high-dimensional datasets.
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4.4.3 Evaluation

To ensure a certain power level for a statistical test, an appropriate num-
ber of samples needs to be selected (Section ). The fact that estimat-
ing the covariance matrix requires to effectively determine N (NN —1)/2
parameters suggests that Hotelling’s 72 statistics relies on a consider-
able amount of samples [BS96]. To illustrate this, we created two ran-
dom, multivariate Gaussian distributions of dimensionality p € {10, 20}.
For each of the distributions, a fixed number of samples was drawn
and used to estimate the pooled covariance matrix as well as distribu-
tion means. Next, the Mahalanobis distance between the two sample
groups was computed. Each computation was repeated 10,000 times
and density plots were generated. In Figure it can be seen that the
distance estimates vary considerably for small sample sizes. Only for
samples sizes > 100 for each group (and thus > 200 samples in total)
the estimates become more reliable. Note that this effect becomes more
pronounced as the number of dimensions grows and thus a further in-
crease in the number of samples is required. This makes it infeasible
to directly apply Hotelling’s T2-test in an enrichment scenario, as from
experience the number of available samples in biological studies rarely
is larger than 100.

To give an example for the behaviour of Hotelling’s 72-test in a
real world application, we computed enrichments for categories de-
rived from KEGG (cf. Section @3) using the Wilm’s tumour data (Sec-
tion R.4) as input. To this end, we implemented a version of the test
statistics using ridge regularisation (cf. Section , Tikhonov [Tik63],
or Ledoit and Wolf [LW04]). Empirical p-values were computed us-
ing a sample-based permutation strategy as suggested by Chen et al.
[Che+12]. To determine the effect of the ridge parameter r the settings
r = {0,0.001, 0.005,0.01,0.05,0.1} were used.

In case of no regularisation, p-values could only be computed for
categories with less than 30 members due to the low number of input
samples. The most significant categories were computed for r» = 0.001
with 13 categories being significant at FDR < 0.2 (Table @). Other set-
tings of the ridge parameter yield fewer significant categories. Hence,
in contrast to local enrichment methods that yield in the order of 100
significant categories on the same dataset (Section ), the sensitivity
of the T?-test is comparatively low.

4.4.4 Summary

We described and evaluated the application of Hotelling’s T?-test as a
global enrichment method. Unfortunately, applying this test directly
requires rigorous regularisation, as the number of degrees of freedom
quickly overtakes the number of available observations. To further in-
crease the robustness of the method, Ackermann and Strimmer [AS09]
argue that the estimator for the covariance matrix should be replaced
with their more efficient shrinkage estimator [Str08]. Nevertheless, the

110



4.4 HOTELLING'S t?-TEST

Category P .001 .005 .01 .05 1

Chemical

. . 66 0.014 0.078 0.071 0.071 0.078
carcinogenesis

Protein digestion and

. 8 0.014 0.056 0.028 0.028 0.028
absorption

Drug metabolism -

cytochrome P450 57 0.047 0226 0.234 0.282 0.338

Cytokine-cytokine

. . 256 0.085 0.090 0.090 0.096 0.096
receptor interaction

giztifjnyopathy 90 0102 0423 0432 0502 0548
Rheumatoid arthritis 86 0.122 0.078 0.071 0.071 0.078
Prion diseases 36 0.141 0.384 0420 0569 0.687
;fg:;‘f;?gg;’ bowel o5 0169 0423 0432 0525 0567
Basal cell carcinoma 55 0.169 0.527 0.582 0.691 0.687
Leishmaniasis 70 0.186 0423 0.432 0423 0.426
Pathways in cancer 326 0.2 0.503 0.511 0.525 0.555
Amoebiasis 108 0.2 0.078 0.071 0.071 0.078
Retinol metabolism 53 0.2 0.735 0.722 0.620 0.562

Table 4.2: Significant categories at FDR < 0.2 detected by Hotelling’s 7°-test
using ridge regularisation. Names of the categories as well as the number of
contained genes p are given in the first two columns. Subsequent columns con-
tain Benjamini-Hochberg adjusted p-values for various settings of the ridge
parameter. In the case of no ridge parameter no categories were significant
and no p-values could be computed for the remaining categories. Hence, res-
ults for r = 0 have been excluded.

comparatively low power of the T-test results in many categories be-
ing wrongly classified as not enriched, whereas they are detected by
“classical” enrichment algorithms.

As alternatives to the T-test, various competing approaches have
been conceived. An example, is the SAM-GS procedure [Din+07] which
uses the SAM statistics [I'TCO1] for scoring gene sets. The SAM statist-
ics, in turn, is based on the approximation of Hotelling’s 72-statistics by
Dempster [Dem58]. The global test algorithm by Goeman et al. [Goe+04]
also considers the covariance matrix, but avoids the computation of
its inverse. Kong, Pu, and Park [KPP06] propose a dimensionality re-
duction method based on principal component analysis (PCA). Lu et al.
[Lu+05] avoid the construction of the complete covariance matrix by us-
ing a search algorithm that maximises the 7 distance between sample
and reference group. Methods like Gene Graph Enrichment Analysis
(GGEA) [Gei+11] or EnrichNet [Gla+12] account for the dependencies
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between entities by explicitly including connectivity information ob-
tained from known, biological networks.

112



GRAVITON

All problems in computer science can be solved by another
level of indirection. But that usually will create another prob-
lem.
— DAVID WHEELER, ACCORDING TO beautiful
code (2007)

An important part of bioinformatics is the development of new meth-
ods for the analysis of experimental data. Due to this, a large toolbox
of specialised software is available to the end user. In many areas of
bioinformatics, such as DNA sequencing, the state-of-the-art is con-
stantly evolving. The same is true for biology, where the size of public
databases that organise the available knowledge is constantly growing.
Keeping up with this change requires a considerable amount of time
and sophistication on the user-side. For researchers writing software,
the maintenance burden of ensuring that their code can be deployed
on any available platform takes time away from developing new, im-
proved methods. A way to avoid this burden is to offer tools as web ser-
vices, which comes with the advantage that only a single, centralised
installation of the required third-party software and databases needs to
be maintained. Additionally, web based user interfaces work on every
computer with a browser and, if designed properly, can be easily con-
trolled via client-side scripts. Users of a service no longer need to up-
date their software regularly and do not need to track databases for
updates.

Still, despite the fact that maintaining a web server requires far
less effort than maintaining a native application, useful bioinformatics
web services that integrate well into existing workflows, are challen-
ging to construct. As with traditional software packages a considerable
amount of code for parsing file formats, handling malformed user in-
put, and performing statistical analyses needs to be implemented. In
addition, business logic for handling user data and sessions or con-
trolling database access is required. Furthermore, a functional and ap-
pealing user interface needs to be designed. Especially this latter part is
often not necessary when rolling out a package for a scripting language
or a native command line application.

In order to avoid reimplementing common functionality for every
web service, we built the Graviton framework. To give a comprehens-
ive description of the framework, we first need to familiarise ourselves
with the available technologies for implementing a web service. Next,
we outline the requirements that Graviton should fulfil. We then give a
general overview of the architecture of Graviton followed by a more in-
depth discussion of the individual components GeneTrail2, Network-
Trail, and DrugTargetInspector.
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Figure 5.1: Estimated number of available websites starting from the first
available site. The WWW grows nearly exponentially. Drops in the statistics
are due to changes in the methods used for counting live websites (Total num-
ber of Websites [[L6]; Date of retrieval 12.04.2016).

5.1 THE WORLD WIDE WEB

Berners-Lee et al. [Ber+04], commonly referred to as the “father” of the
World Wide Web (WWW, or simply web), describes this vital communica-
tion infrastructure as follows: “The World Wide Web is an information
space in which the items of interest, referred to as resources, are iden-
tified by global identifiers called Uniform Resource Identifiers (URI).
” The web is accessible via the Internet TCP/IP infrastructure and is
open to everyone with a valid IP address. This openness is reflected
by the fact that, since its inception, the web has grown exponentially
and, at the time of writing, consists of almost 1 billion websites [16] (cf.
Figure EI).

The WWW is built upon a number of standardised technologies
such as HTTP, HTML, CSS, and JavaScript. HTTP serves as the trans-
port mechanism via which documents are transferred to the user. These
documents are typically, but not necessarily, HTML documents (cf. Sec-
tion p.1.2) containing arbitrary, structured data. Their appearance can
be controlled via the CSS stylesheet language (see Section ). Dy-
namic documents that react to user input or retrieve additional data
from the web on demand, can be realised using JavaScript (see Sec-
tion ). In the following, we give short introductions into these and
other web technologies, which will be needed once we discuss the im-
plementation of the Graviton framework. We start with an introduction
to HTTP.
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5.1.1 The Hypertext Transfer Protocol

The web is centred around sending documents from server to client
(and to a lesser extend from client to server, too). The Hypertext Trans-
port Protocol (HTTP) provides the facilities with which server and cli-
ent negotiate e.g. the requested document, the used encoding, and the
document format. Before discussing the protocol in detail, we intro-
duce the terminology and philosophy behind the design of HTTP.

The REST Principle

A way to view the web is as an information space. Each piece of inform-
ation, a so-called resource, is identified by a globally unique uniform re-
source identifier (URI) (see Section ). Each HTTP URI encodes a host
that stores the requested resource, as well as a path on the host to the
location of the resource. HTTP provides the communication channel
with which a client and a server (the host) exchange information about
the state of a resource. The simplest example of such an exchange is
the client issuing a request for obtaining a resource from the server. The
server then sends a response containing a representation of the requested
resource to the client. It is important to note that a resource can never
be sent directly as it represents an abstract piece of information that ex-
ists independently from any particular data format. Thus, an encoding
step that transforms a resource into a representation is required before
the data can be made available. Other possible mutations of the state
of a resource, such as updating or deleting it, are, of course, possible.

Fielding and Taylor [FT02] formalised the above concepts under the
term representational state transfer (REST). In Section we will revisit
REST and explain how it can serve as a guideline for implementing
web application programming interfaces (APIs).

Protocol

HTTP is a stateless, text-based protocol for document retrieval. It was
first defined in the Internet Engineering Taskforce (IETF) request for com-
ments (RFC) 1945 [BFF96] and has been updated multiple times since
then. In 2015, a successor to the first protocol version, HTTP 1.1, was
published under the name HTTP/2. Here, we present the protocol in
terms of HTTP 1.1, as it is in many regards simpler than its successor.
Nevertheless, the introduced concepts apply to both versions.

For each resource that a client wants to obtain or modify, a HTTP
request message is issued to the server. The server answers each request
by sending a response containing the requested data. How the data is
represented (encoded) is negotiated by client and server via the use of
special header fields.

Requests A request starts with a request method, specifying how the
request should be interpreted, followed by a path to a resource and the
protocol version. Several request methods are available. The ones most
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commonly used are GET, POST, PUT, and DELETE. The methods should be
interpreted as follows:

GET Retrieve a document from the server.

POST Upload a new document to the server, where it exists below the
hierarchy of the request URL

PUT Upload a document to the location on the server identified by the
request URI or update an already existing resource.

DELETE Delete the specified document from the server.

In the following lines, a set of header fields can be specified. Each field
consists of a field name and a value separated by a colon. Which val-
ues are admissible, is specific for the respective field. HTTP comes with
a set of predefined header fields. Additional fields are usually stand-
ardised in their own RFC. The end of the header is indicated by an
empty line (carriage return, line feed). As HTTP is a text-based pro-
tocol, simple requests can be created using a terminal software such as
telnet. A sample request is shown in Listing @

Example HTTP request header fields

Host specifies the authority component of the request URIL.

Accept lists the media types the client understands together with
a priority expressing the clients preferences. A list of admiss-
ible media types is maintained by the Internet Assigned Numbers
Authority (IANA) as specified in RFC6838.

Accept-Language lists the preferred languages of the client, with
an associated preference measure.

Accept-Encoding lists the encodings the client is able to handle.
This can be used by the server to compress the data stream
for reducing the bandwidth consumption.

Content-Type states which encoding has been used for the (op-
tional) data that should be transferred to the server. As for
the Accept header, media types are used.

In the case of POST and PUT requests, an additional payload can be
transferred to the server by appending it after the header. This payload
is called the message body. The format of the contained data is not spe-
cified in the protocol and must be communicated to the server using
the Content-Type header.

Responses In order to answer a client request, the server sends a re-
sponse that consists of a status code, header data, and, if the request
was successful, the contents of the requested resource. A sample re-
sponse is shown in Listing @
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POST /api/job/setup/
genetrail2.bioinf .uni-sb.de
Mozilla/5.0 (X11; Fedora; Linux x86_64;
rv:40.0) Gecko/20100101 Firefox/40.0
text/html ,application/xhtml+xml,
application/xml;q=0.9,%*/%;q=0.8
en-GB,en;q=0.5
gzip, deflate
keep-alive

name=gsea

Listing 5.1: Example HTTP POST request. The first line contains the HTTP re-
quest method (red), the path of the requested resource (blue), and the protocol
version ( )- The following lines contain the request header. Each header
is composed of a field name ( ) and a value (black). The optional request
body (grey) starts after an empty line and contains arbitrarily encoded data
for transfer to the server.

Properties From the description of the protocol we can make two ob-
servations that have important implications on how web services can
be implemented. First, the HTTP protocol itself is stateless. This means,
the protocol does not keep track of previous requests by the client or
responses by the server. For web applications that rely on state, such as
user logins, being tracked, custom state handling must be implemented
on top of HTTP. Another implication of statelessness is that subsequent
GET request for the same resource should always receive the same re-
sponse, as GET leaves all resources unchanged. Accordingly, GET re-
sponses can be cached by the browser to avoid unnecessary round-trip
times. In addition, caching can greatly reduce bandwidth consump-
tion, which is especially important on bandwidth constraint connec-
tions such as mobile devices. For web application developers, this im-
plies that to achieve optimal performance the amount of changes to
existing resources should be minimised such that caching can take ef-
fect.

Second, due to the ordering between requests and responses, it is
not possible to send information from server to client without the client
sending a request first. This implies that the client must periodically
query for the status of a long running computation on the server side
in order to be notified about its progress.

5.1.2 The Hypertext Markup Language

The next core technology of the web is the Hypertext Markup Lan-
guage (HTML) [HH16]. HTML allows to represent documents as a se-
mantically annotated hierarchical structure. The hierarchy is created
by nesting so-called elements. An element usually consists of a start
(<p>) and end (</p>) tag that delimit a sequence of text and other ele-
ments. Each element can furthermore be supplied with one or more at-
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200 OK
public
36
text/plain
Sun, 13 Sep 2015 09:46:05 GMT
Fri, 16 0Oct 2015 19:29:07 GMT

This is the content of the response!

Listing 5.2: Example HTTP response. The first line contains the protocol ver-
sion ( ) and a status code (blue). Subsequent lines contain response head-
ers. Each header is composed of a field name ( ) and a value (black). The
end of the header and start of the response body (gray), which contains the
requested document, is indicated by an empty line.

<!DOCTYPE html>
<html lang="en">
<head>
<title>Hello world!</title>
</head>
<body>
<h1>Hello world!</hil>
This is an example HTML page.
<p>And this is a new paragraph.</p>
</body>
</html>
Listing 5.3: Example HTML5 document. The type of the document is con-

trolled via the DOCTYPE statement. Metainformation is encoded in the <head>
tag, whereas user visible information is encoded in the <body> tag.

tributes (<input type="text">) that determine element specific prop-
erties. While HTML offers tags like <i> (italic), <b> (bold), <br> (line
break), and <font> (font properties) that directly control the appear-
ance of the HTML in a browser, the use of these tags is deprecated in
modern documents. Instead, the used annotations should express the
semantics of their content. For example, HTML offers tags to indicate
that some text should be interpreted as an address (<address>), sec-
tion (<section>), paragraph (<p>), dates and times (<time>), or head-
ing (<h1>). One annotation that deserves special attention is the anchor
tag (<a>). It allows the creation of hyperlinks, which are cross-document
and even cross-site references that can point to other resources. The im-
portance of these links cannot be overstated, as they make it possible to
add additional information to a document by referencing other, supple-
mentary or explanatory documents. This allows the creation of discov-
erable document systems such as Wikipedia, that, since its inception
in 2001, has rendered most printed encyclopedize obsolete.

HTML is available in two flavours: the traditional, SGML inspired
syntax (text/html) and a more recent, XML [W3C06] compliant syn-
tax (application/xhtml+xml). While the first version has a few syn-
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tactic irregularities, such as tags lacking end tags or attributes without
values, it is often preferred by web developers due to its relative con-
ciseness when compared to the XML variant. The latter, however, can
be processed using standard XML parsers and thus is better suited for
automatic processing.

The much-hyped fifth version of HTML adds additional semantic
tags to the language that allow the creation of documents that are more
friendly towards algorithms such as screen readers. Examples are tags
like <figure>, <summary>, and <header>. In addition, tags for embed-
ding audio (<audio>) and video (<video>) into sites have been intro-
duced. Moreover, owing to the desire of web developers to offer less
static user experiences, the interoperability with JavaScript has greatly
been improved.

5.1.3 Cascading Style Sheets

An important task of a web browser is to generate a visual represent-
ation of an HTML document. As HTML is meant to only provide se-
mantic annotation, the document itself possesses no explicit informa-
tion on how to visualise its content. This means that the final rendering
is completely up to the browser and cannot be controlled by the user.
While this guarantees a uniform appearance of the documents, the cre-
ation of visually appealing sites requires more direct control over their
styling. This can be achieved via the cascading stylesheet (CSS) language
[Not15]. CSS allows to specify visual properties for HTML elements by
specifying a set of rules. Each rule consists of a selector and a properties
part. Rules can either match to a certain element type, a set of elements
annotated with a given class, or a single element with a given id. Classes
and ids can be assigned to elements via accordingly named attributes.
Once a rule matches an element, the properties specified in the rule
are applied to it. If multiple rules match an element all of their prop-
erties are applied. In the case of conflicts, the most specific rule takes
precedence. Using CSS allows to decouple the semantics of the docu-
ment specified in the HTML file from its representation as determined
by the browser [KN09]. This allows to change the appearance of a doc-
ument by simply exchanging a CSS file. Furthermore, it ensures that
documents are interpretable without the styling information which is
important for implementing accessibility features such as enlarged font
sizes or screen readers.

5.1.4  Uniform Resource Identifier

The anchor tag and its ability to refer to arbitrary documents is a cent-
ral pillar of HTML and the architecture of the web. Unsurprisingly, hy-
perlinks are ubiquitous in web-based applications. The anatomy of a
link, meaning how a valid link needs to be formatted, is specified in
RFC3986 [BFMO5]. Similarly to the HTTP protocol, which is not tied to
one document type, links are not required to refer to other web pages.
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Scheme Document path Fragment
— —— e,
:/ /gt2.bioinf.uni-sb.de/help.html? #start
N
Authority Query string

Figure 5.2: Simplified HTTP URL. Each URL consists of a scheme and scheme-
specific part. For HTTP the scheme-specific part contains the host (authority),
the path to the resource on the host, additional query information, and a frag-
ment string.

Such a generalised link is called an Uniform Resource Identifier (URI). As
the name says, each URI identifies a resource. To this end a namespace
or scheme is given that specifies the domain in which the resource is
valid. In the case of HTTP and other network protocols the used URI
are, in fact, Uniform Resource Locators (URLs), a more constrained subset
of URIs. Each HTTP URL consists of an authority section containing the
host name of the server offering the document and optionally authentic-
ation and port information. This is followed by the path that identifies
the resource. Optional parameters used for refining the query can be
supplied in the query string. For example consider a website offering
scientific publications. Usually the full text of a publication is shown
if its site is accessed. If the query string ?display=abstract is part of
the URL, only the publication’s abstract could be shown instead. Fi-
nally, an optional fragment string, which is often used for indicating a
location in the document, can be appended. An example URL is shown
in Figure @

5.1.5 JavaScript

HTML pages display static information. Whilst this is sufficient for dis-
playing plain documents, web applications that react to user input are
tedious and inefficient to implement using this model, as every reac-
tion to user input requires to reload the whole application.

JavaScript, officially called ECMAScript, is a scripting language that
can be used to create dynamic HTML documents [[15]. JavaScript code
can be added to HTML documents via the <script> tag and is inter-
preted by the browser. The language itself is weakly and dynamically
typed and allows to mix functional, imperative, and object oriented
programming styles.

Once the script has been loaded by the browser, it can arbitrar-
ily manipulate the elements contained in the document. This access is
provided via the document object model (DOM) [W3C16] tree. The DOM
tree represents the element hierarchy as encoded by the HTML tags.
Elements expose events that can be used to trigger JavaScript code on
user input. For example an element representing a button exposes the
onclick event that fires when the button is clicked.
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<record>
<person>
<name>Max</name>
<surname>Mustermann</surname>
<age>35</age>
</person>
<grades>
<grade>1.0</grade>
<grade>2.3</grade>
<grade>5.0</grade>
</grades>
<registered>false</registered>
</record>

Listing 5.4: XML representation of the data of a student. Field names are
stated twice, in the start and end tag. Arrays are represented by nesting tags.

5.1.6 Asynchronous JavaScript and XML

In traditional web applications, a full reload of the application is re-
quired once a user input requires new data to be transferred from the
server. Asynchronous JavaScript and XML (AJAX) is a technique that al-
lows JavaScript web-applications to request additional data from the
server without reloading the current page. It uses regular HTTP re-
quests and thus supports, despite the XML part of the name, the ex-
change of arbitrary data. By avoiding unnecessary full reloads, web
applications employing AJAX behave more like their native counter-
parts. As a side effect, using AJAX significantly reduces the amount of
data that needs to be transferred over the network.

5.1.7 JavaScript Object Notation

Especially for web applications that make use of AJAX, it is useful to
be able to transfer structured data. A common choice for this are XML
formats that can be used to represent arbitrary data structures and data-
bases (cf. Listing @). The disadvantage of using XML is that the format
is comparatively verbose, difficult to read, and slow to parse (cf. [LSO0;
NJO3]).

A much simpler, yet flexible alternative is the JavaScript Object Nota-
tion (JSON) format [Bral4]. As the name suggests, JSON derives from
the JavaScript syntax for defining objects. A valid JSON message can
represent the basic types number, string, bool, null. The types object and
array can be composed of the basic types as well as other objects and
arrays. An example can be seen in Listing @ Due to its lightweight
syntax, JSON has become the “Lingua Franca” of the web and is sup-
ported well by browsers as well as by server-side libraries.
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{
"person": {
"name": "Max",
"surname": "Mustermann",
"age": 35
}
"grades": [1.0, 2.3, 5.0],
"registered": false
}

Listing 5.5: JSON representation of the data of a student. Little information
is duplicated, making it easier to read and modify the data.

5.1.8 RESTful APIs

With the emergence of mobile devices, it has become increasingly more
important to be able to run computationally expensive operations on
compute servers due to power constraints. In the field of bioinformat-
ics, however, dedicated web applications, which are only usable via a
web page, suffer from the fact that they are difficult to integrate into
existing workflows. These are often based on scripting languages such
as Python [VD09] and R [R C16] or workflow systems such as Galaxy
[Goe+10] and Taverna [Wol+13]. To enable these tools to connect to a
web service, it is advantageous to structure web applications as dedic-
ated back and front ends. In this architecture, a pure web service, which
only offers an AP]I, serves as back end. On top of this, specialised front
ends, such as a web page, can be created.

Multiple ways to realise the back end API are imaginable. How-
ever, in recent years the observation that HITP natively covers many
needs of such APIs, has lead to a set of guidelines on how web ser-
vices should be designed. These, so called RESTful APIs focus on the
manipulation of resources, as defined by the REST principle, instead
of providing arbitrary sets of operations. Here, the basic observation
is that most web services provide a thin layer of business logic around
a set of resources, which are often stored in a database server. Typical
database servers provide the basic operations Create, Read, Update, and
Delete (CRUD). In RESTful APISs, these operations are, per convention,
mapped to the HTTP verbs POST, GET, PUT, and DELETE, respectively.
Additionally, HTTP features such as content type negotiation, status
codes, or browser caching are used. These properties result in compar-
atively easy to use APIs that can be seamlessly integrated into existing
web applications. To see further advantages of RESTful API design, we
first must take a look at the disadvantages of competing techniques.

A large variety of protocols for performing so called remote proced-
ure calls (RPC) has been designed in the past. Examples are Sun-RPC,
Corba, or DCOM that require specialised data encodings and transport
protocols. In practice, this means that dedicated library and network-
ing support is necessary for using these technologies. Especially the
networking support can severely limit the reliability of the service, as
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highly controlled environments like corporate networks often limit fire-
wall traversal to a few, well-known protocols such as HTTP. Other, pop-
ular RPC schemes like XML-RPC [MALO06] and its successor Simple Ob-
ject Access protocol (SOAP) [Gud+03] thus support HTTP as a transport
protocol. Both methods send standardised, XML encoded messages.
However, as SOAP supports multiple other transport mechanisms be-
sides HTTP, it is not able to rely on the facilities already provided by
HTTP. These features need to be duplicated in the SOAP protocol lead-
ing to unwanted redundancy. Furthermore, the mandatory XML en-
coding leads to large message size which can be problematic on un-
reliable, bandwidth constrained connections such as mobile networks.
XML-RPC suffers from a similar constraint, as only one content type,
namely XML, is supported.

RESTful APIs avoid all these problems. Thanks to the ubiquity of
HTTP, basically every platform also supports RESTful APIs without
needing to install special software. The transferred data type is, by con-
vention, JSON or XML but can be changed to a different, more appro-
priate format at any time using content type negotiation.

5.2 THE GRAVITON ARCHITECTURE

ContriBuTiONs The initial code for the Graviton platform was writ-
ten by Oliver Miiller and me. Large parts of this code base have
since then been rewritten according to a new design devised by
me. This revised implementation and the underlying C++ library
were created by Tim Kehl and me.

In the previous section we discussed the available technologies for im-
plementing web applications and services. In this section, we introduce
the Graviton platform for implementing bioinformatics web services.
We start by stating the requirements that influenced the design of the
platform. Next, a general overview over the Graviton architecture is
provided. Afterwards, we take a closer look at some core implementa-
tion details.

5.2.1 Requirements

Computational biology is a multi-disciplinary field with researchers
stemming from varying backgrounds, such as biology, mathematics,
physics, chemistry, medicine, and computer science. This heterogen-
eous group of potential users makes developing bioinformatics appli-
cations a challenging task, as a wide range of user experiences and
usage scenarios need to be covered. On the one hand, a simple and
approachable interface, which is applicable in the most common use-
cases, must be provided to be usable by researchers less versed in com-
puter science and statistics. On the other hand, the tool needs to offer
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enough flexibility to cover non-standard usage scenarios and should al-
low bioinformaticians to integrate it into their existing pipelines. Natur-
ally, these requirements are difficult to fulfil simultaneously. Whilst the
ideal user interface for a bioinformatician consists of an API or a soph-
isticated GUI allowing to tweak all parameters, a biologist requires an
interface with few, essential or no parameter settings at all. Similarly,
the presentation of the results needs to be clean and should contain
as little elements as possible to allow the user to focus on relevant
pieces of information. To accommodate both needs, Graviton provides
a RESTful API on top of which specialised user interfaces can be cre-
ated. While expert users can choose to directly access this program-
ming interface to integrate the offered facilities into their workflows,
non-experts may choose the web-based GUI. In case of the GeneTrail2
server (Section E), a simplified and an advanced web interface are
provided.

Another requirement that must be met by a research tool is to pro-
duce reproducible results. At the absolute minimum this entails that all
used input data as well as every parameter setting is recorded. For in-
put data not provided by the user, such as identifier mapping tables or
biological pathways, detailed provenance information containing ori-
gin and date of retrieval, must be made accessible. In some cases, lossy
transformations must be applied to user data. The prime example for
this is identifier mapping (Section ) where an input identifier can
be mapped to multiple targets or not at all. To ensure reproducibility
and minimise unpleasant surprises such transformations should keep
detailed logs that allow to audit the flow of information.

5.2.2 Design

Graviton is a framework for building fully integrated bioinformatics
webservices. To this end, it provides implementations of basic func-
tionality such as identifier mapping, file parsers, database access, job
scheduling and workflow organisation. This functionality is organised
in layers that each provide abstractions over the layers below them. The
following layers can be distinguished:

1. Plumbing layer
2. Resource layer
3. API layer

4. Front end layer

In the lowest layer, the plumbing layer, implementations of largely inde-
pendent, basic functionality is provided. The Resource layer ties these
blocks together by means of the Resource and Job abstractions. Based
on these concepts, the API layer presents a RESTful API to the client.
On top of this AP], a front end can be developed. We will now discuss
the individual layers in more detail.
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GeneTrail 2 Frontend 5
JQuery DataTables ~ Thymeleaf %
g
RESTful API 3
JAX-RS Swagger JavaEE -
Resource Layer
Resource Job PostgreSQL =~ MapDB
GeneTrail2 C++ Identifier Mapping Pathway DBs
Boost GMP EntrezGene  Uniprot KEGG Reactome
Eigen 3 Ensembl GO

Figure 5.3: The GeneTrail2 architecture. Core algorithms are implemented in
an optimised C++ library based on Boost, Eigen 3, and GMP. On top of this
library we implemented a JAX-RS based RESTful APIL The frontend is based
on the Thymeleaf template engine and JQuery. As application server we use
Apache Tomcat. Figure adapted from Stockel et al. [St6+16]

Plumbing Layer

The most common tasks in bioinformatics are the parsing of files and
the conversion between database identifiers. As a web service needs
to support a wide range of user-supplied input data, solid support for
both tasks must be available in Graviton.

At the time of writing, Graviton supports parsers for identifier lists,
score lists, matrices, the variant call format (VCF), the gene matrix trans-
posed (GMT) format, the browser extensible data (BED) format, and the
GEO [Bar+13] GSE and GDS formats. Besides reading the content of a
file, the parsers are also responsible for determining the format of user
supplied data and validating its contents. More information about the
supported file types can be found in Section @ For mapping iden-
tifiers, a flexible system, which can use mapping information from a
wide range of sources (Section ), has been implemented. Further-
more, the plumbing layer offers implementations of statistical meth-
ods such as hypothesis tests (Section @) and enrichment procedures
(Chapter @).

Resource Layer

The Resource layer introduces a first level of abstraction from the ser-
vices offered by the plumbing layer. This is achieved by offering the
interfaces Resource and Job that provide abstractions over data and
analyses. A Session represents a collection of Resources and Jobs that
were created by the same user. Both anonymous as well as authentic-
ated users are supported. For representing the latter the type User is
employed.
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A Resource is a representation of data stored on the file system to-
gether with assorted metadata. Every Resource is associated with a
unique identifier through which it can be accessed from the Graviton
API. Besides the path to the location of the represented file on disk, a
resource stores the used identifier type and organism. For document-
ation purposes, every Resource also tracks the date of its creation as
well as the time its metadata was last modified. A Resource belongs to
exactly one user session. New Resources can be created by uploading
data or by executing an analysis. Once created, the Resource is immut-
able in the sense that the file to which the Resource refers cannot be
changed. However, it is possible to add further metadata and use it as
input for an arbitrary number of Jobs. To model different kinds of data,
Graviton comes with several, predefined Resource subtypes that place
restrictions on the data they represent. Currently available subclasses
are Scores, Identifiers, ExpressionMatrix, Category, Enrichment, Subgraph,
and Variations.

Properties of a Graviton Resource

id A unique id, through which the Resource can be accessed.
creationDate The time a Resource was created.

modificationDate The last time the metadata of a Resource has
been changed.

session The Session this Resource is a part of.

organism The organism from which the data represented by the
Resource has been derived.

identifierType The database identifier used in the represented file.

comment A free text field that can carry any user supplied inform-
ation.

shared Boolean flag indicating that the file represented by this
Resource is shared between multiple sessions. Each user still
owns a private copy of the Resources metadata. This mechan-
ism allows to substantially reduce the on-disk memory con-
sumption of Graviton.

intermediate Boolean flag indicating that the Resource is an inter-
mediate result of an analysis or workflow. This allows front-
ends to hide such Resources unless otherwise requested.

normalized Boolean flag indicating that the identifiers used in the
file are guaranteed to conform to Gravitons internal identifier
database.

displayName A user visible name that should be displayed to
identify the Resource. This name does not necessarily need
to be unique.
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run() succeed()

IDLE RUNNING — SUCCESS
abort () ABORTED
error() error()
L — > ERROR

Figure 5.4: Jobs manage their internal state via a finite state machine. Each
successfully created Job starts in the IDLE state. Once started, it moves to the
RUNNING state. If the Job completes successfully or is aborted by the user, the
state changes to SUCCESS or ABORTED, respectively. In each step runtime errors
can occur. If this is the case the state moves to the ERROR state.

Properties of a Graviton Resource (cont.)

metadata A key-value store of arbitrary metadata that is not
covered by the fields above.

Whereas a Resource represents data, a Job describes any process
that creates or transforms data. Every Resource is created by exactly
one Job and every Job that terminated successfully creates at least one
Resource. The input of a Job are a set of Job-specific parameters and
optionally one or more Resources. As with the Resource type, a Job
has a unique identifier and tracks the time of its creation as well as a
modification date. Besides the obvious purpose of documenting which
analyses were run by the user and which input data was used to create
its results, a Job serves a second important purpose in Graviton. As
bioinformatics analyses can run for a considerable amount of time it
is not feasible to run them inside the web server process. Jobs offer a
simple abstraction for managing long running tasks that can optionally
be executed out of process. To facilitate the creation of such Jobs, Grav-
iton offers the subclass AsyncJob. The status of a Job is tracked via the
finite state machine depicted in Figure @

New kinds of Jobs can be added to Graviton by implementing the
Java Job interface. Essentially, this amounts to writing code for valid-
ating input parameters, preparing the generated results and starting
the actual computation. The Job and its input parameters are recog-
nised by the Graviton system via custom Java annotations. Construct-
ors for detected Job classes are automatically inserted into a factory
object and are made accessible through the RESTful API. Furthermore,
the annotations contain all necessary documentation for the Job and its
parameters. This information is also available through the API which
ensures that the documentation and implementation always stay syn-
chronised.
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Properties of a Graviton Job

id An unique id, through which the Job can be accessed.
creationDate The time the Job was created.
modificationDate The last time the Job was modified.
name The type of Job represented by this object.

displayName An user visible name that should be displayed in
the front end.

command The command line that was run when the Job was ex-
ecuted.

parameters A key-value store of parameters that are required for
the Job to run. Input Resources are kept in a separate list.

session The session this Job is a part of.

status Indicates whether the Job is idle, running, has completed
successfully, or has completed with errors.

inputResources A list of Resources that serve as input to the job
as well as the name of the parameter the Resource should be
used for.

results A list of Resources with associated names that contains all
results generated by the Job.

Together, Resources and Jobs can be represented as a bipartite
directed acyclic graph that models the history of all computations re-
quired for obtaining a specific result (cf. Figure @). In particular, Grav-
iton explicitly models all intermediate steps, such as identifier map-
pings, as a Job-Resource pair. This makes documenting results ob-
tained with Graviton as simple as providing a link to the result itself.
Given the Resource representing the result, it is then possible to navig-
ate to the Job that created it. Given the Job, its input Resources can be
examined in turn. Using this strategy, all necessary parameter settings
for all computations that took place on the server can be viewed.

As previously mentioned, metadata plays an important role when
working with Jobs and Resources. A reason for this is that the file
represented by a Resource cannot be changed once the Resource is
created. This guarantees that code can rely on the fact that the data
associated with a Resource will never change and thus allows shar-
ing as well as reusing it. However, having the ability to add additional
information to the Resource is useful for caching the results of expens-
ive operations. Determining whether a file contains negative values or
which samples are present in an expression matrix are examples for
such operations. In addition, the user can provide and change inform-
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Figure 5.5: Bipartite dependency graph of Jobs and Resources. Each Job can
have zero or more Resources as input and produces at least one results. The
generated resources are annotated with additional, Job-specific metadata.

BASE_URL='https://genetrail2.bioinf.uni-sb.de/api'
SESSION="curl -s ${BASE_URL}/session | \
jq -r .session’
SCORES="curl -s --form file=@scores.txt \
${BASE_URL}/upload?session=${SESSION} | \
jq .results.result.id’
curl -s --data "input=${SCORES}&"\
"categories=['9606-gene-kegg-pathways']" \
${BASE_URL}/job/gsea/setup?session=${SESSION}
Listing 5.6: Unix Shell script for starting a gene set enrichment analysis on the

GeneTrail2 web server. curl is an application for interacting with web servers.
jq is a command line JSON processor.

ation or annotations such as comments or the name of the Resource.
Metadata can be arbitrarily structured. To account for this, Graviton
stores metadata as a JSON object (Section ).

API Layer

While Resources and Jobs make it straight forward to extend Grav-
iton with new functionality, the Resource layer does not handle server-
client interactions. For this purpose a RESTful API (Section ) has
been implemented. As a consequence it is possible to incorporate Grav-
iton based web services into existing programs and scripts with relative
ease. For example, Listing @ shows a Unix Shell script which uploads
a score file to the GeneTrail2 server (Section @) and prepares a gene
set enrichment analysis. The main functionality of the API layer is the
creation and manipulation of Jobs as well as the upload and download
of Resources. The API is self documenting, meaning that it provides
end points that allow to obtain the parameters that are required for
starting a specific Job. Admissible values for the parameters are docu-
mented in the same fashion. In addition to this, basic functionality for
User and Session management as well as useful tools such as identi-
fier mapping of Resources are offered. For conveniently accessing the
API, Julia [Bez+14] and Python [VD09] wrappers are available.
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Figure 5.6: The four problems that can lead to data loss or biases due to iden-
tifier mapping. Note that these cases are not necessarily errors, but can reflect
actual biological processes such as a gene encoding for multiple splice vari-
ants or a gene being targeted by multiple miRNAs.

Front end Layer

The front end layer provides a user interface on top of the RESTful API.
To this end, Graviton provides a templating mechanism built using the
Thymeleafﬂ templating engine and the Boo‘rstrapE CSS framework. This
includes a set of JavaScript bindings for communicating with the API,
as well as reusable components with which workflows and result visu-
alisations can be constructed. It should be noted, though that using the
front end layer is strictly optional as all relevant information is already
provided by the APL

5.2.3 Identifier Mappings

Identifiers are unique names for biological entities. Different biological
databases often use different identifiers. Thus, to be able to work with
data from multiple databases, a way to translate between their identi-
tiers is needed. This identifier mapping is a central (and unsolved) prob-
lem in computational biology [ler+10; Day+11; Dur+09]. In its essence,
identifier mapping reduces to a simple question: “Given an identifier
from database A, determine the identifiers from database B that match
best.” To be more precise, we can distinguish two kinds of tasks: map-

http://www.thymeleaf.org/
https://getbootstrap.com/
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ping between identifier types that describe the same biological entity
and mapping between identifiers for related, but distinct entities. We
call the first intra- and the second inter-species mappings. An example
for intra-species mappings is to map between gene identifiers from the
European Bioinformatics Institute (EBI) and the National Center for Biotech-
nology Information (NCBI). Instances of intra-species mappings are map-
ping genes to their expressed proteins or mapping miRNAs to their
target transcripts.

Inter-species mappings are problematic in so far that the mappings
between the identifiers can be expected to anything but bijective. In fact,
it is possible that an identifier is mapped to zero, one, or more iden-
tifiers or, conversely, that zero, one, or more identifiers are mapped
onto it (cf. Figure p.6). For mappings between miRNAs and their tar-
get genes, the situation is especially grave [GE15; BLG15]. In general
miRNAs target multiple genes, with some miRNAs having hundreds
of experimentally confirmed targets [Cho+16]. Naturally, a gene can
also be targeted by multiple miRNAs. Conversely, for many genes no
targeting miRNA is known or exists.

For intra-species mappings, the situation is substantially less com-
plicated. Still, cases exist where identifiers cannot be properly mapped.
Reasons for this are missing and outdated data or incompatible cura-
tion policies. In the case of gene-gene mappings, the source and target
database might have been created using different genome assemblies.
Also, the definitions of a gene that are used by institutions such as the
EBI and the NCBI differ slightly. Hence, some regions of the genome
may be annotated as a gene in one, but not the other database. Joint
efforts such as the Consensus Coding Sequence (CCDS) [Pru+09] project
by the EBI, NCBI, Wellcome Trust Sanger Institute (WTSI), and University
of Santa Cruz (UCSC) to find a common definition for protein coding
genes may help to eliminate this problem in the future.

A further complication stems from the fact that pure identifier map-
ping is seldom needed alone. Instead, identifiers are often associated
with some additional data. For instance, the entity-level scores used
in enrichment algorithms are usually stored as a list of identifier-score
pairs. When mapping these lists, the associated data needs to be trans-
ferred appropriately. Due to possible ambiguities that occur while map-
ping, this means that in some cases multiple values can be assigned to
the same target entity. In this cases a merge strategy must be applied.

Implementation

The core mapping algorithm employed by Graviton operates as follows.
Given a mapping table, the applied mapping algorithm for translating
identifiers from database A to B simply searches all target identifiers
l},...,1], for a source identifier . If multiple identifiers were mapped
onto the same target identifier, duplicate removal strategies can be ap-
plied. If no scores or expression values were associated with [, either
all, the first, the last, or the middle identifier are kept depending on a
user setting. If scores or other data was associated with the identifiers,
a merge strategy can be specified. To this end, the mean, median, sum,
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Data: List of identifiers L, mapping m : A — P(B),
datad: A — X.
Result: List of mapped identifiers L', mapped datad’' : B — X.
L=
d=10
dtmp - @
/ / Perform mapping and collect data
forl € L do

for!’ € m(l) do

| dinp (') = daep(I) U d(0)

end

L’ = appendAll(L’, m(1))
end
// Merge the mapped data
for!’ € L' do

| d'(I') = merge(dsmp(I'))

end
L’ = removeDuplicates(L’)
return (L', d)

Algorithm 5.1: Core mapping algorithm used in Graviton. The “merge” and
“removeDuplicate” functions can be supplied by the user. We model data as
a function that assigns a value from a set X to each identifier.

maximum, or minimum value can be used. Support for non-numerical
data has not yet been implemented. Pseudo-code for the mapping al-
gorithm is given in Algorithm

Graviton uses identifier mapping to solve three distinct problems.
First, user provided input data needs to be converted to the same iden-
tifier types as used internally. Second, user input must be sanitised
before it can be used for further analysis. Reasons for this may be in-
valid, outdated, or misspelled identifiers in the input data that, when
not corrected for, can bias downstream statistics. Third, Graviton sup-
ports inter-species mappings for advanced analyses and, in the case
of GeneTrail2, for expanding the range of available categories. Each of
these tasks has different requirements on the mapping engine which
we will outline in the following.

Mapping from the identifiers in the user data to internal identifiers
mainly exercises the core mapping algorithm. From a software engin-
eering point of view, its only requirement are the availability of effi-
cient lookup tables. For this, high %erformance dictionary implement-
ations using b-trees such as LMDB LevelDBH, and MapDBE are avail-
able. As Graviton is written in Java, the Java-based MapDB engine was
chosen to ease the integration with the remaining server code.

Sanitising user input requires that a list of known, “good” identi-
fiers is kept for reference. Each identifier that is read from user data

https://symas.com/products/lightning-memory-mapped-database/
http://leveldb.org/
http://www.mapdb.org/
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must then be validated against this list. This lookup must take the pe-
culiarities of some identifier types into account. For example, mirBase
identifiers are case sensitive, whereas gene symbols and other identi-
fiers are commonly case insensitive. In addition, outdated identifiers
and known aliases need to be upgraded to the most current or canon-
ical version. For this, database vendors sometimes provide mapping
files that can be used to upgrade user inputs. If available, these files
are integrated into the Graviton mapping database.

Intra-species mappings are, despite the problems mentioned above,
no different from mappings between external and internal identifiers.
Inter-species mappings, however, commonly exist in multiple versions.
As an example consider miRNA-target mappings, where different cri-
teria can be used to conclude whether a miRNA targets a certain tran-
script or not. Accordingly, a wide range of miRNA-target mappings
have been produced that differ in the considered experimental meth-
ods and chosen significance cut-offs. To accommodate for this, Grav-
iton labels each mapping with a quadruple

(organism, from, to, variant).

While the first three items depend on the source Resource and the de-
sired output identifier type, the variant field allows to choose between
alternative mapping definitions. For example the mapping

(9606, mirBase21, GeneSymbol, mirTarBase-westernBlot)

corresponds to a mapping of human miRNA identifiers to target genes
obtained from mirTarBase [Cho+16] that were validated using a west-
ern blot.

To make the mapping process transparent, Graviton exposes the
available mappings on a web paget and via the RESTful API. Addi-
tionally, for each performed mapping, an audit log is kept that allows
to reconstruct which identifiers of the source Resource were mapped
onto which identifiers in the target Resource.

5.3 GENETRAIL2

ContriBuTiONs The GeneTrail2 web server and the enrichment
methods it offers were implemented by Tim Kehl and me. The
included data was collected and curated by Tim Kehl, Patrick
Trampert, and me. The corresponding manuscript [Sto+16] was
written by me and Hans-Peter Lenhof.

As shown in Chapter @ a large variety of enrichment algorithms ex-
ists. We argued that it is difficult to determine a “best” enrichment al-
gorithm, as the published methods assume different null hypotheses.

6 https://genetrail2.bioinf.uni-sb.de/mappings.html
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Figure 5.7: A comparison of selected enrichment tools. The number of supported
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have been obtained. Databases are counted across all supported species and
omics. The number of supported algorithms refers to the number of algorithms
offered for analysis. Related methods (e.g. network algorithms) have been in-
cluded. A tool was defined as supporting an omics, if it provides dedicated
biological categories for this omics type. Figure adapted from Stockel et al.
[Sto+14].

To assist with this choice, we gave a set of recommendations based
on a small study using synthetic data (Section @). In addition, more
pragmatic reasons for choosing certain algorithms exists. Based on the
available input data, a large range of algorithms can often be ruled out
a priori. For example, global tests and the sample-based permutation
strategy rely on the availability of the full matrix of measurements. If
only a sorted list of identifiers is available, the unweighted KS and the
ORA procedures remain as the only applicable set-level statistics. If just
a set of e.g. differentially expressed genes is provided, only ORA can
be applied.

In order to enable the user to make such an informed choice, we
implemented the GeneTrail2 web server. GeneTrail2 is built atop the
Graviton framework and thus is tightly integrated with other services
based on the same infrastructure. In total, we implemented 13 entity-
level statistics (Section ), 13 set-level statistics (Section ), two
p-value computation strategies (Section ), and eight p-value ad-
justment methods (Section). For human alone, it features over
46,000 categories collected from over 30 databases including KEGG, Re-
actome, GO, WikiPathways, DrugBank, Pfam, miRWalk, and miRDB
(cf. Appendix @). The server supports transcriptomics, miRNomics,
proteomics, and genomics data and can convert between 32 common
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identifier types. Data from all major omics is supported, making it pos-
sible to analyse and explore heterogeneous datasets in an interactive
fashion using GeneTrail2’s web interface. The web interface is built
on top of modern web technologies with special attention on usabil-
ity. Non-expert users can quickly perform comprehensive analyses us-
ing the predefined workflow, which is complemented with thorough
documentation. Moreover, the interface enables users to integrate en-
richments obtained from multiple omics using the integrated mapping
procedures (Section ) and our side-by-side view. For further ana-
lysis tasks, we offer a deep integration into existing applications like the
network visualisation tool BiNA [Ger+14] or the NetworkTrail [Sto+13]
web service (Section @). As GeneTrail2 was built using Graviton, it
exposes a RESTful API, through which power users can execute en-
richment analyses directly from their preferred scripting environment.
This allows the seamless integration of GeneTrail2 into workflow sys-
tems such as Galaxy [Goe+10] or Taverna [Wol+13]. The implementa-
tion of the enrichment methods relies on highly optimised C++ code
leading to excellent runtime behaviour. GeneTrail2 can be accessed at
https://genetrail2.bioinf.uni-sb.de. The C++ code is available
on GitHub?. On average, the service is used by more than 150 unique
visitors each month.

Workflow

GeneTrail2 allows to arbitrarily combine all implemented methods at
every stage of an enrichment algorithm (cf. Figure @). The number of
available algorithms at every stage are:

1. Entity-level statistics: 13

2. Set-level statistics: 13

3. P-value strategies: 3

4. Multiple testing corrections: 2

In addition, various input data formats are supported (see below). Due
to the resulting combinatorics, a considerable number of analysis work-
flows is possible (Figure p.8). A typical interaction with the server looks
as follows: first, the user uploads the data to be analysed, e.g. a matrix
containing expression measurements. Next, the data points contained
in the matrix can be distributed into sample and reference sets. These
groups are then used as input for the computation of entity-level scores.
After score computation, a set-level statistic is applied for the biological
categories chosen by the user.

In each step the user can adjust all parameters exposed by the re-
spective method. As this usually requires considerable expert know-
ledge, we provide defaults that should be applicable for most use-cases
and that have been chosen conservatively in order to prevent false dis-
coveries. Furthermore, uncommon settings are only accessible from an
“advanced” user interface to prevent user errors.

7 https://github.com/unisb-bioinf/genetrail2
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Figure 5.8: Simplified flowchart of the GeneTrail2 workflow. Round green
and red boxes depict start and end states, respectively. Boxes with orange
background represent input files types, whereas a blue background repres-
ents processing steps. Diamonds are decision nodes. Figure adapted from
Stockel et al. [St6+16].

Supported Input Data

GeneTrail2 is able to read various input file formats through which the
user can provide measurement data or categories that should be ana-
lysed. Using the infrastructure provided by Graviton, GeneTrail2 will
try to automatically detect type and format of the uploaded data. In ad-
dition, the database identifiers and the organism, from which the data
stems, are estimated. In the following, we discuss the expected input
formats and the assumptions GeneTrail2 makes about their contents.

Identifier Lists The simplest way to provide input data to GeneTrail2
is to upload a list of identifiers. To this end, GeneTrail2 accepts a plain
text file containing exactly one identifier per line. There are two ways to
interpret such a file: as an unordered set or a sorted list. In the first case,
the list can only be used as an input to ORA as no scores are available
and, thus, all identifiers need to be considered as equally important.
In the second case, the order of the identifiers defines an importance
ranking, which can be used by non-parametric methods such as the
unweighted KS statistics.
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Entity-Level Score Lists Similarly to identifier lists, score lists can be
provided in a text-based format. In addition to an identifier, each line
contains an entity-level score. The two columns are separated by a tab
or space character. In general, score lists are preferable to identifier lists
as a score list can be used as an input for virtually every enrichment al-
gorithm. In addition, score lists are less prone to problems which are
frequently encountered with identifier list. A common example for this
are unsorted identifier lists being used as input to the KS statistics. It
should be noted that GeneTrail2 does not verify whether the uploaded
scores follow a certain distribution or not. While most of the implemen-
ted methods work surprisingly well if their assumptions are violated, it
is strongly recommend to avoid such unsound statistics. If the distribu-
tion of the data is unclear or unknown, the (unweighted) KS-statistics
and the Wilcoxon test are non-parametric enrichment methods that do
not require a specific score distribution (cf. Section ).

Measurements GeneTrail2 provides support for directly analysing
matrices containing high-throughput measurements. These can be nor-
malised expression values obtained from microarray or RNA-seq ex-
periments or protein abundances from mass-spectrometry runs. Addi-
tionally, rudimentary support for analysing raw count data obtained
via RNA-seq is offered. More involved processing steps such as quality
control, batch effect removal, and normalisation must be performed by
the user.

Measurements can be uploaded as a plain text, tab-separated mat-
rix. Optionally, the first row provides names for each of the contained
samples. Each subsequent row contains the measurement data for one
identifier in all samples. Thus each row except the first starts with an
identifier followed by N numerical values, where N € N is the number
of samples.

Samplel Sample2 Sample3
GeneA 0.1 4.3 2.3
GeneB 3.2 -1.2 1.1
GeneC 2.7 9.1 0.3

The main advantage of uploading matrices of measurements instead of
entity-level scores is that sample-based instead of row-based permuta-
tion schemes can be used for determining the significance of enriched

categories (cf. Section ).

Microarray data A major use case of GeneTrail2 is the analysis of mi-
croarray data. For this platform, well established normalisation pipe-
lines exist that usually generate normal or log-normal distributed ex-
pression values. GeneTrail2 can directly work with this normalised
data and offers a range of statistics that can be used to derive scores
from expression matrices.
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RNA-seqdata RNA-seqdata usually comes in the form of count data.
This means that for each transcript, the number of mapped reads is re-
ported. The distribution of this data is fundamentally different to the
distribution of microarray data, and hence specialised methods for the
analysis of count data have been developed (Section ). GeneTrail2
implements basic support for some of these methods. The user can
choose between the DESeq2 [LHA14], edgeR [RMS10], and RUVSeq
[Ris+14] algorithms for computing entity-level scores. All implementa-
tions are based on R packages from the Bioconductor [Gen+04] repos-
itory.

Note that currently sample-based permutations are not possible for
count data due to the prohibitive runtime of the score computation
process. In addition, while the used packages provide some level of
normalisation, GeneTrail2 performs no quality control or batch effect
removal.

miRNA Data Besides mRNA expression data, GeneTrail2 also sup-
ports the analysis of miRNA expression data (cf. Section @). Two main
analysis modes are available: specialised miRNA categories and map-
pings to miRNA target genes. For the first mode, we integrated cat-
egories obtained from the mirWalk 2.0 [DG15], HMDD 2.0[Li+13], and
TAM [Lu+10] miRNA databases. We also defined categories based on
target information from mirTarBase [Hsu+10; Hsu+14; Cho+16]. En-
richments of chromosomal regions can be computed using categories
derived from mirBase [Gri+06]. In addition, custom categories created
by Backes et al. [Bac+16] have been integrated. All performed compu-
tations are completely analogous to the mRNA case.

The target mapping strategy, however, works fundamentally differ-
ent. As miRNAs are able to target a wide range of genes, transferring
miRNA scores directly to target genes would result in a skewed score
distribution that contains many ties. To circumvent this, a set of differ-
entially expressed miRNAs is selected. These are then mapped to their
targets as found e.g. in mirTarBase. These targets then serve as the in-
put to an ORA enrichment using gene categories. The idea behind this
is that the function of a miRNA is defined by its target genes and hence
the annotations of the target genes can be “transferred” to the miRNA.
The advantage of this strategy is that it vastly increases the number of
categories that are available for miRNA data. However, various disad-
vantages exist. As miRNAs can have many targets, the test set for the
subsequent ORA analysis can grow rapidly and unpredictably. Also,
the target genes in the test set are highly dependent, which violates the
assumptions underlying the hypergeometric test. This can lead to low
statistical power and considerable artefacts [BLG15; GE15].

Protein Data Using GeneTrail2, it is also possible to analyse protein
abundances. Basically, the same strategies as for the miRNA data ap-
ply. However, as a protein usually can be mapped unambiguously to
its encoding gene, the mapping based strategy is considerably better
behaved than in the miRNA case. Hence, protein abundances can be
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used as gene scores which allows to use other enrichment methods
such as the KS statistics and averaging based approaches. Neverthe-
less, GeneTrail2 also includes specialised protein categories extracted
from Pfam [Bat+04] and Reactome [Jos+05].

Categories While GeneTrail2 offers a large collection of categories
that have been derived from a number of third-party databases (Ap-
pendix @), it can be desirable to create custom categories that should
be checked for enrichment. An example would be a set of potential
targets of a transcription factor that have been identified by a Chip-seq
experiment. For specifying categories, GeneTrail2 uses the Gene Matrix
Transposed (GMT) format [Sub+07]. In this format every line represents
a category. Each line is divided into columns by a tab character. The
first column corresponds to the name of the category and the second
column to an optional description. Each subsequent column defines a
category member.

CategoryA http://test.url/A GeneA GeneB GeneC GeneD
CategoryB http://test.url/B GeneA GeneD
CategoryC http://test.url/C GeneD GeneE GeneH

Reference Sets Besides the list of relevant entities, the ORA method
requires a second list of identifiers which represents the universe of
identifiers that can be detected by an experiment. The input format
is the same as for identifier lists. As the choice of the reference set is
crucial for the performance of the method, a set should be chosen that
best fits the assay used for data generation (Section ).

5.3.1 Provenance Data

A common problem with bioinformatics tools relying on external data,
such as gene categories, is that the integrated databases require regu-
lar maintenance to remain up to date. Due to the considerable amount
of work that is required to do so, this is often neglected. Further issues
add additional hurdles. For example, the release schedules between
databases are often not coordinated. Consequently, the databases may
use incompatible versions of the same identifiers, making it difficult
to distil the available information into a consistent snapshot. A second,
more technical, problem stems from the fact that database schemas,
formats, URLs, and nomenclature can change between releases. In the
best case, this is detected during integration and can be fixed by updat-
ing the code of the import scripts. In the worst case, wrong information
is silently integrated.

Tools that work on outdated data are prone to creating false, mis-
leading findings, for which there no longer exists any supporting evid-
ence, as well as to missing true positive discoveries due to a lack of
information. To make it possible to confirm that an analysis was con-
ducted using up-to-date information, it is important to make the ori-
gin and date of retrieval of this data transparent. In GeneTrail2 this
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Figure 5.9: GeneTrail2’s comparative enrichment view displaying common
categories of two enrichments for the WT dataset (Section @), . For both en-
richments p-values are shown.

is achieved by maintaining and, more importantly, providing proven-
ance information for any data obtained from a third-party database.
This includes:

e Retrieval date
e Source URL
e Editor (Name & Email)

Here, the editor refers to the person that retrieved and integrated the
database into GeneTrail2. Having this information available allows to
efficiently resolve problems and questions concerning specific parts of
the integrated databases.

5.3.2 Comparative Enrichment View

In some datasets, samples that were taken from different locations, like
blood and tissue, are available for each patient. These sample cannot be
directly compared and, hence, are often analysed in isolation. For en-
richment analysis this means that two separate enrichments are com-
puted. Detecting similarities and differences between these two enrich-
ments can help to reduce false positives and to identify consistently
deregulated pathways. However, no standard tools for this task exist,
making it slow and labour intensive.

To solve this, we implemented the comparative enrichment view: a
specialised view that allows to compare an arbitrary number of enrich-
ments in a side-by-side fashion (Figure p.9). Currently, two modes are
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Figure 5.10: GeneTrail2’s inverse enrichment view showing the top 10 over-
expressed genes in KEGG for the WT dataset (Section ) that are members
of an enriched category.

implemented in the view: intersection and union. While the intersec-
tion mode only displays categories that are significantly enriched in
all enrichments, the union displays any category that is significantly
enriched at least once.

This feature also allows to compare the results from different omics
datasets. For example, protein abundance data can be mapped to genes
in order to compute an enrichment that can then be compared with
an enrichment for gene expression values. Finally, it is possible to use
the view to eliminate false positive discoveries. To this end, multiple
enrichments on the same dataset using different set-level statistics are
computed. Using the intersection mode, only the enriched categories
detected by all methods are retained, yielding a more robust combined
enrichment. We explore this strategy in the evaluation of GeneTrail2

(Section ).
5.3.3 Inverse Enrichment View

Commonly, enrichments are displayed as a list of categories with as-
sociated p-value and enrichment score. Additionally a list of member
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Broad GSEA GeneTrail 2

KS entity 400s (+ 7.3s) *9.3s (£ 0.15s)
sample 428.8s (£4.32s) 84.5s (£ 0.6s)
Mean entity N/A 3s (+0.02)
sample N/A  74.8s(+1.7s)

Table 5.1: Performance data for enrichments computed on the KEGG cat-
egories using the (unweighted) KS and mean set-level statistics. For compar-
ison the KS implementation of the Broad GSEA package [Sub+07] was used.
Mean run times over five runs are given in seconds; standard deviations are
provided in parenthesis. Both, entity- and sample-based p-value strategies
were measured. In the comparison, the t-test was used as scoring method, no
p-value correction has been performed, and 10,000 iterations were used for
permutation tests. Results marked with a * employed an exact p-value com-
putation method. Timings were obtained on an Intel Core i7-3770 processor.
Table adapted from [S5t6+16].

genes is displayed. This view is extremely helpful for quickly identi-
tying deregulated processes. Sometimes, however, it is of interest to
know in which deregulated processes a particular gene takes part. An-
swering this question using the traditional enrichment representation
is tedious. To make this more efficient, we crated the inverse enrichment
view. It shows every gene that is a member of at least one enriched cat-
egory together with its entity-level score as well as the categories it is
contained in (Figure ). This allows to conveniently assess the influ-
ence of a gene on the computed enrichments.

5.3.4 Performance

Enrichment analysis is a basic building block for bioinformatics work-
flows and, hence, the runtime performance of these methods is crit-
ical. To this end, the algorithms included in GeneTrail2 use an effi-
cient C++ implementation to guarantee optimal throughput. In gen-
eral, the main bottleneck concerning execution time is the computation
of p-values. The entity-based strategy commonly executes one order of
magnitude faster than the sample-based strategy (Table @). For the
latter, the choice of the entity-level statistics can have a significant in-
fluence on the computation time, as it needs to be reevaluated for every
sample permutation. In contrast, the used set-level statistics has little
influence on the overall computation time. GeneTrail2 significantly out-
performs the Broad Institute GSEA application [Sub+05] for both, the
entity-based and the sample-based strategy (cf. Table p.1)).

5.3.5 Case study: Wilm’s Tumour

In Section we introduced Wilm'’s tumours (WTs), a type of child-
hood renal tumours. Based on the composition of a biopsy after pre-
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Figure 5.11: Plot of the first two principal components of the WT mRNA ex-
pression dataset. Cancer samples are clearly separated from the healthy con-
trol group. No clear separation of the tumour samples is visible upon visual
inspection. The sample WS901T clusters with control samples and thus been
discarded. Figure adapted from Stockel et al. [S5t6+16].

operative chemotherapy WTs can be categorised into subtypes. A sub-
type of special interest is the so-called blastemal subtype. It is com-
posed to more than two third of living, blastemal cells. While tumours
with a high blastem content generally respond well to chemotherapy,
blastemal subtype tumours count to the most aggressive WT subtypes.
Here, we used GeneTrail2 to analyse a WT expression dataset (Sec-
tion @) in order to determine key players influencing the malignancy
of blastemal subtype tumours. To this end, we compare samples from
the blastemal subtype with samples from other subtypes.

To obtain an overview of the general structure of the dataset, we
computed a principal component analysis [Pea01] of the mRNA data-
set (Figure ). While a clear separation between healthy tissue and
tumours can be seen, there is no reliable clustering of the tumour sub-
types themselves. While blastemal subtype tumours occupy the upper
left region of the plot, the remaining tumour types are scattered over
the upper half. The sample WS901T, which clusters with the control
group, was removed from further analysis as it is likely an outlier.

One of the first analyses that is applied to expression data is to de-
termine the differentially expressed genes. In Figure the adjusted
p-value was plotted against the log-fold difference. Only eight genes
show a significant differential expression at a 20 % FDR level. Of these,
DPP10-AS1 encodes for a non-coding RNA with unknown function.
HOXD1 and ATOH? are transcription factors that play a role in devel-
opmental processes. The activator protein RSPO1 induces crypt cell
proliferation in mice and is associated with an increased resistance to
chemotherapy [Gu+15]. CDH7, MYO15A and PLOD2 play a role in the
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Figure 5.12: Volcano plot of the WT mRNA expression values. At a FDR level
of 20% only few genes are differentially expressed. The adjusted p-values
were computed using the shrinkage t-test and Benjamini-Hochberg adjust-
ment [BHO5; [YB9].
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Figure 5.13: Plot of the first two principal components of the WT miRNA ex-
pression dataset. No clear separation between tumour subtypes can be detec-
ted. Control sami les cluster with other cancer samples. Figure adapted from

Stockel et al. [].
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cytoskeleton and cell-cell adhesion.

In comparison to the mRNA data, the miRNA data seems to carry
less information. For instance, no clear separation between the control
group and the cancer samples is present in the PCA plot (Figure ).
However, substantially more miRNAs are differentially expressed than
in the mRNA case (Table @).

While the analysis of differentially expressed genes uncovers some
interesting results, the information is insufficient to form a hypothesis
about the differences between the two groups. In the following we ap-
ply the algorithms provided by GeneTrail2 to demonstrate that enrich-
ment algorithms in general and the functionality offered by the server
in particular are instrumental for the analysis of biological datasets. To
demonstrate how GeneTrail2 can be used in practice, the results of our
analysis are layed out as a learning process that was guided by the
computed enrichments. In particular we interpret the computed en-
richments in the light of previously reported findings from the literat-
ure. Further, we augment our results by performing simple statistical
analyses that are not directly offered by GeneTrail2.

Methods The following workflow was used for computing enrich-
ments: first, normalised expression matrices were uploaded to Gene-
Trail2. Blastemal tumours were assigned to the sample group and all
remaining tumours were assigned to the reference group. Next, entity-
level scores were computed using the shrinkage t-test (cf. Section ).
For each implemented set-level statistic, except ORA, we conducted an
enrichment analysis using the entity-based p-value strategy (see Sec-
tion ). For using the ORA method a set of differentially expressed
genes needs to be selected. This selection introduces a parameter for
which a tuning step needs to be performed in order to find its “optimal”
value. The method is thus difficult to compare with the remaining set-
level statistics. Thus, to avoid possibly unfair comparisons, ORA was
not considered in the presented study.

For methods requiring a permutation test (Algorithm @), we set
the number of permutations to 1,000,000 leading to a minimal theor-
etical p-value of le-6. In all cases, we used the Benjamini-Hochberg
adjustment procedure (cf. Section ) and a significance threshold
of 0.05. Categories with less than three or more than 700 members
were excluded from the enrichment computations to avoid statistical
artefacts. Similarly, too large categories were excluded, as the results
provided by them are not interpretable enough to be informative.

For computing the enrichments we used the GeneTrail2 RESTful
APl via a Pézthon 3[VDO09] scriptE. The resulting enrichments are avail-
able online? and, due to their size, as supplementary files in the elec-
tronic version of this thesis.

https://github.com/dstoeckel/Graviton.py
https://genetrail2.bioinf.uni-sb.de/results.html?session=
a9e84e92-ead41-42ab-9ee7-c0£8515£9234
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Method #Categories
Two-sample t-test 3866
One-sample t-test 3852
Two-sample Wilcoxon 3685
GSEA 3518
Mean 3424
Sum 3406
Weighted GSEA 2497
Maxmean 2057
Median 1989

Table 5.2: Number of significantly enriched (p < 0.05) mRNA categories found
by each enrichment method for the blastemal vs. non-blastemal score list.

Consensus of Enrichment Approaches We use GeneTrail2’s compar-
ative enrichment view (cf. Figure @) to analyse the computed enrich-
ments. Despite a considerable overlap, the differences between them
are substantial. While the union of all enrichments contains 1436 GO
- Biological Process categories, their intersection only comprises 343 cat-
egories. Especially categories with a p-value close to the significance
level are removed by this procedure. This may indicate that they were
only reported due to idiosyncrasies of the corresponding method. The
number of significant categories per method can be found in Table @

The above observation suggests a simple way to increase the spe-
cificity of the computed enrichments: only categories consistently re-
ported by most set-level statistics are regarded as significant. Doing so
should reduce most method specific false positives at the cost of elim-
inating some true positives. Thus, in the remainder of this case study
we only consider categories that are reported by seven out of nine en-
richment algorithms.

General Observations For mRNA the upregulation of categories like
mRNA Processing, Cell Cycle, and DNA Replication suggests a clear in-
crease in mitotic activity in blastemal tumours which may be explained
by the larger amount of necrotic tissue in the reference group. For the
miRNA data, categories associated with various cancer types, includ-
ing HMDD - renal cell carcinoma, are significantly enriched. The same is
true for miRNA categories involved in hormone regulation, immune
response, apoptosis, and tumour suppression. No miRNA family is
significant in all enrichments. However, the families miR-302, miR-515,
miR-30, miR-17, and let-7 are significant for at least seven out of nine
tests (Supplementary Table 2). The miR-302 and miR-515 families are
associated with the activation of the canonical WNT pathway [Ant+11].
Additionally, the miR-17 family is known for its roles as an oncogene
and in stem cell development [MR13].

Deregulation of let-7 via LIN28B and TRIM71  The let-7 miRNA fam-
ily has previously been reported to play a vital role in WT suppres-
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Figure 5.14: TRIM71 degrades LIN28B wusing ubiquitin-mediated
proteosomal degradation. LIN28B regulates the maturation of let-7
miRNAs [], which promote cell differentiation and act on TRIM71 and
LIN28B via a negative feedback loop []. TRIM71 as well as AGO2 in
complex with miR-290/302 miRNAs repress CDKN1A expression leading
to increased proliferation []. TCF3 acts on most of the above players
[], effectively amplifying the currently predominant signal in the
feedback loop. Figure adapted from Stockel et al. [].

miRNA t Effect Size
hsa-let-7f-5p 3.858 792.184
hsa-let-7a-5p 3.486 1622.645
hsa-let-7g-5p 2.834 199.181
hsa-let-7e-5p 2.566 94.476
hsa-let-7d-5p 2.273 15.424

Table 5.3: Significantly upregulated let-7 miRNA family members. ¢ is the
value of the shrinkage t-statistic as computed by GeneTrail2. The effect size
is the difference between the unlogarithmised means of the sample and refer-
ence groups.

sion []. However, many highly abundant family members are
upregulated (see Table @), which is unexpected due to let-7 miRNAs
acting as tumour suppressors. A possible explanation for this beha-
viour may be the differential expression of TRIM71, which is among
the top-scoring genes (¢t ~ 3.96) and has the highest correlation of all
genes with the absolute blasteme content r ~ 0.76. TRIM71 degrades
LIN28B via ubiquitin-mediated proteosomal degradation [] (cf.
Figure ). However, LIN28B in turn suppresses the maturation of
pri-let-7 miRNA. Hence, the upregulation of TRIM71 induces an up-
regulation of the let-7 family, which, in theory, promotes cell differen-
tiation []. However, Chang et al. [] found that TRIM71
can promote rapid embryonic stem cell (ESC) proliferation in mice and
report that it inhibits the expression of CDKN1A, a cyclin-dependent
kinase inhibitor, which acts as a cell-cycle regulator. As high expression
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Figure 5.15: Expression of TRIM71 and LIN28B in comparison with the cap
mesenchyme stem cell markers CITED1, EYA1, and SIX2. Samples are classi-
tied as normal, necrotic (NE), regressive, epithelial (E), stromal (S), focal anaplasia
(FA), diffuse anaplasia (DA), mixed, and blastemal. The size of a coloured bar
represents the absolute expression value of the associated gene. Figure taken
from Stockel et al. [].

levels of TRIM71 are commonly observed in undifferentiated cells, the
authors conclude that TRIM71 is an important factor for maintaining
proliferation in stem cells. Urbach et al. [] report that LIN28B
is able to induce WTs under certain conditions and note that in these
tumour the cap mesenchymal (CM) specific stem cell markers CITED1,
EYA1, and SIX2 are upregulated. Generally, this trend is present in our
data, however, we find that the expression of the markers is more con-
sistent with TRIM71’s expression pattern (Figure ). In summary,
our initial results indicate that miRNA and genes associated with stem
cell fate play an essential role in blastemal tumours.

Activation of cancer related WNT signalling Deregulation of the
WNT signalling pathway is often prevalent in cancer samples [].
Indeed, our enrichment analysis contains categories associated with
the WNT pathway (see Supplementary Table 1). This is especially vis-
ible in the inverse enrichment view (Section E). There it becomes
apparent that the previously discussed RSPO1 is a member of mul-
tiple, upregulated categories directly associated with WNT signalling
(cf. Table p.4). RSPOL1 has been reported to regulate the WNT pathway
via inhibition of ZNRF3 [Hao+12] and DKK1 [Kim+08]. In fact, DKK1
is downregulated in blastemal tumours, suggesting that the overex-
pression of RSPO1 may causally affect the measured expression signa-
ture. In addition, signalling molecules activated by RSPO1 have been
shown to be sufficient for the induction of ovarian cancer [].
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Category p-value
Positive regulation of canonical WNT signaling pathway 1.144e-2
Regulation of WNT signaling pathway 1.062e-3
Regulation of canonical WNT signaling pathway 1.529e-2
Regulation of endocytosis 3.340e-2
Canonical WNT signaling pathway 8.367e-3
Non-canonical WNT signaling pathway 1.756e-3
Positive regulation of WNT signaling pathway 2.775e-3
Receptor mediated endocytosis 4.959%-2

Table 5.4: Enriched categories for RSPO1. The gene is one of the most dereg-
ulated genes in the blastemal vs. non-blastemal comparison (¢t ~ 5.17) and
plays a role in the activation of WNT signalling.

Besides RSPO1, other members of the WNT signalling pathway such
as TCF21 can be found via the inverse enrichment view. These results
are consistent with the pathway’s previously reported, prominent role
in most WTs and particularly in blastemal WTs [Fuk+09]. The activa-
tion of the canonical WNT pathway usually leads to degradation of
the destruction complex that, as long as it is functional, degrades the
transcriptional coactivator S-catenin [SW13]. Thus degradation of the
destruction complex leads to higher amounts of 3-catenin in the cyto-
plasm that is transported to the nucleus where it builds complexes with
TCF/LEF proteins. Degradation of the destruction complex lies at the
core of developmental processes, ESC self-renewal, and differentiation.
As aresult, it changes the transcriptional landscape of the cell dramatic-
ally. This is also consistent with reports that RSPO1 activates 3-catenin
in mammalian ovaries thereby controlling the differentiation process
[Cha+08].

TCEF3 as potential WT master regulator We argued that factors asso-
ciated with stem cell fate and the canonical WNT pathway play an essen-
tial role in blastemal tumours. To further substantiate this claim we take
a closer look at TCF21. TCF21 has been reported to bind the transcrip-
tion factor (TF) TCFE3, thereby inhibiting the expression of the KISS1, a
known metastasis suppressor [Ara+11]. TCF3 itself is a well known link
between the WNT pathway and the core regulatory circuitry of ESCs.
Together with the pluripotency factors POUSF1 (OCT4), NANOG, and
SOX2, TCF3 constitutes the set of “ESC master regulators” [Col+08]. If
the WNT pathway is inactive, TCF3 is mainly repressing pluripotency
factors and promoting differentiation. However, if the WNT pathway
is activated, the repressive complex converts to an activating complex,
promoting pluripotency [Col+08]. To study the influence of ESC master
regulators, we constructed a new set of gene categories that we subjec-
ted to the KS test using the blastemal vs. non-blastemal scores as input.
For each of the four TFs, we defined two categories containing genes
for which “strong evidence” exists that they are regulated by the re-
spective TF. In particular, we add a gene to a category for a TF if the
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Gene Correlation ‘ Gene Correlation
BMI1 0.91 CCND2 0.75

CDK4 0.83 EYA1 0.91
HMGA2 0.75 IGF2 0.89
LEFTY1 0.74 MAX -0.76

MEIS1 0.68 MYC -0.57
MYCN  0.86 NOTCH1 0.6

SMAD3 0.74 TP53 0.76
TRIM71  0.65

Table 5.5: Pearson correlation coefficient between the expression values of a
set of selected genes and TCF3.

TF occupies a site in the gene’s promoter region and the correlation
between the TF’s and the gene’s expression is larger than 0.5 (positive
category) or smaller than -0.5 (negative category). For the identifica-
tion of the promoters occupied by the master regulators, we used the
mouse ESC ChIP-Chip dataset of Cole et al. [Col+08] and the ChIP-Seq
data set of Marson et al. [Mar+08b]. Using this procedure we obtained
more than 1500 genes, including many other TFs and genes involved
in ESC fate, influenced by mainly TCF3 and OCT4. For a selection see
Table @ Our Kolmogorov-Smirnov enrichment!d revealed that genes
positively regulated by TCF3 (p ~ 107°) and NANOG (p ~ 107'3)
are strongly enriched, whereas genes negatively regulated by TCF3
(p =~ 1074) are strongly depleted. Conversely, genes positively regu-
lated by OCT4 are strongly depleted, and genes negatively regulated
by OCT#4 are strongly enriched. This is consistent with a correlation of
TCF3 with OCT4 of —0.7. SOX2 and NANOG both seem to be of lesser
importance in our data.

However, the four master regulators do not only regulate protein
coding genes. Marson et al. [Mar+08b] revealed that they are also “as-
sociated with promoters for miRNAs that are preferentially expressed
in ESCs”. Examples are the miR-302, miR-515, and let-7 families which
we previously discussed (cf. Figure ). Additionally, our data indic-
ates that TCF3 regulates the expression of the miR-17 cluster (all cor-
relations > 0.5).

IGF2 as Putative WNT Activator In the above section, we have out-
lined how the ESC regulatory circuitry is driven by TCF3 via the WNT
pathway. However, the mechanisms that activate WNT signalling still
remain unclear. Whereas certain genetic mutations occur with relat-
ively low frequency (< 30 %), among them genes that may induce WNT
signalling, the loss of heterozygosity and imprinting at the IGF2/H19
locus have been reported for 81 % of all blastemal WTs [Weg+15] lead-
ing to an overexpression of IGF2. Morali et al. [Mor+01] showed that
IGF2 can induce the expression and import of 3-catenin and TCF3 into

https://genetrail2.bioinf.uni-sb.de/results.html?session=
cbc86903-4248-47a2-b916-bc682924c242
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Figure 5.16: Scatterplot of IGF2 vs. TCF3 expression values. The correlation
is r ~ 0.89. Figure adapted from Stockel et al. [Sto+16].

the nucleus even in the absence of WNT proteins. This triggers a switch-
over from the epithelial to the mesenchymal cell state, which is in ac-
cordance with the expression patterns of the mesenchymal stem cell
markers shown in Figure . Additionally, TCF3 binding sites have
been found in the IGF2 gene [Col+08]. Remarkably, we observe an ex-
treme correlation of ~ 0.89 between the TCF3 and IGF2 expression (see
Figure ). This suggests that TCF3 in turn regulates IGF2 leading to
a self-sustaining feedback loop which is likely to be causal for the stem
cell character of blastemal tumours.

Summary

In the presented case study, we showed how GeneTrail2 can be applied
in a real world research scenario. The computed enrichments help to
quickly identify interesting processes in a sample. This is especially
true when combining multiple enrichments via the comparative en-
richment feature (Section ) or when annotating differentially ex-
pressed genes via the inverse enrichment view (Section ). The abil-
ity to combine the results from multiple enrichment algorithms allows
to focus on the most prominent signal in the data first. In particular,
we were able to detect significant differences between “regular” and
blastemal subtype WTs. Most notably the activation of WNT pathway
via RSPO1 and the subsequent stabilisation of WNT signalling by a
putative 3-catenin — TCF3 feedback loop. This feedback loop manifests
in a correlation of 0.89 between TCF3 and IGF2. Furthermore, our ana-
lysis of the expression pattern of TCF3 regulated genes shows that they
are consistently upregulated. This hints at the important role played by
TCF3 in blastemal tumours.
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5.4 NETWORKTRAIL

ContriBuTiOoNs The NetworkTrail web service and the application
note [St6+13] was written by Oliver Miiller and me. Tim Kehl
created the site design and implemented the Cytoscape.js visual-
isation, the scoring methods, and the FiDePa algorithm. Andreas
Gerasch implemented the BiNA visualisation plugin.

The deregulation of signalling pathways plays an important role dur-
ing tumour development (cf. Section R.1|). Enrichment methods allow
to search for deregulated pathways but treat them as “bags of genes”
(Chapter @). This neglects the interaction data that is stored in pathway
databases. However, methods that exploit this information to improve
their accuracy by explicitly taking network structure into account exist.
In Section B.5 we previously discussed some of the available methods
for detecting deregulated subgraphs. As an example, we presented the
theory around the approach by Backes et al. [Bac+12]. Here, we focus
on the practical side and present NetworkTrail, a webservice for detect-
ing deregulated subgraphs which we built using the Graviton frame-
work. We start with a short survey of available software packages for
detecting deregulated subnetworks.

5.4.1 Software for Searching Deregulated Subgraphs

The simulated-annealing-based method of Ideker et al. [[de+02] for
the detection of active subgraphs is available as a Cytoscape [Sha+03]
plug-in. The BioNet software developed by Dittrich et al. [Dit+08] can
be downloaded as a R package [R C16], which implements an exact
solver for the prize-collecting Steiner-Tree problem. The algorithms de-
veloped by Keller et al. [Kel+09] and Dao et al. [Dao+11] are provided
as C++ source code. The original implementation of the ILP proposed
by Backes et al. [Bac+12] is available as an executable.

The majority of the tools above does neither provide a graphical user
interface (GUI) nor an option to visualise the resulting subgraphs dir-
ectly. Instead, most need to be executed from the command line and
the produced output needs to be processed using third party packages.
Thus, besides installing the software properly, users are also required
to possess intricate technical knowledge of the complete tool chain.
According to our experiences, both tasks can be challenging for non-
expert users. As we argued at the beginning of this chapter, a common
strategy to prevent these problems is to make the tool accessible via a
web interface. The same line of reasoning not only holds for enrichment
methods, but also for algorithms that detect deregulated subnetworks.
The HotNet algorithm [VUR11], for instance, is accessible as MATLAB
source code and via a basic web interface. Also, List et al. [Lis+16] made
the KeyPathwayMiner algorithm [Alc+11; Alc+14] available as a web
service.
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Figure 5.17: The basic workflow of a NetworkTrail analysis. Once data has
been uploaded and scores have been computed, the user can select the net-
work on which the analysis should be conducted. Then, the parameters of the
chosen algorithm can be modified. After the computation has completed, the
network can be visualised using Cytoscape.js or BiNA.

Using Graviton, we are able to provide an approachable web inter-
face that integrates well with other services such as GeneTrail2. Accord-
ingly, we developed a service called NetworkTrail [St6+13] that allows
to detect deregulated subgraphs in biological networks using our ILP-
based approach [Bac+12] and the FiDePa algorithm [Kel+09].

5.4.2 Implementation

In order to integrate network analyses into Graviton, only a few modi-
fications were necessary. To represent computed subnetworks a new
kind of Resource was introduced. This Resource bundles all computed
data into single archive. In particular, it contains the computed subnet-
works, the scores used for the computation, and mappings of nodes
to external database identifiers. Edges are encoded in the Cytoscape
simple interaction format (.sif) whereas node properties are encoded in
the node attribute format (.na) (Section ). For documentation pur-
poses a file containing all used parameters is included in the archive.
Job subclasses handling the respective parameters were created for all
supported algorithms. To ensure optimal efficiency both, the Subgraph
ILP as well as FiDePa, have been implemented in C++. The ILP for-
mulation uses the Branch & Cut framework offered by the commercial
CPLEX library for solving the ILP instances (Section ). We chose
CPLEX as it provides superior performance to open source alternatives
and free licenses are available for academic use.
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5.4.3 Workflow

With Graviton, NetworkTrail and GeneTrail2 share a common basis.
Thus, the accepted input formats are, to a large degree, the same (cf.
Section p.3). As input, a list of entity-level scores is required, which can
either be uploaded directly or computed from an expression matrix or
a Gene Expression Omnibus (GEO) [EDL02] record. Once scores are avail-
able, the user can select the network that should be used for the ana-
lysis. Next, for both implemented algorithms, a range of desired sub-
network sizes can be entered. Subsequently, the algorithm computes
the maximally deregulated subnetwork.

The result can be visualised using a custom, Cytoscape.js [Fra+16]
based view or the Biological Network Analyzer [Ger+14]. Both tools dis-
play the union of all computed subgraphs using a hierarchical layout.
Detailed information about each node is available. For genes, known
aliases and references to external databases are displayed. For protein
families and complexes the respective members are shown recursively.
The subnetworks for specific values of £ can be highlighted individu-
ally. The degree of deregulation of each node is indicated by its colour.
White represents no change and shades of red and green represent up-
and downregulation, respectively. Moreover, the BINA based visualisa-
tion permits the complete customisation of the visualisation, including
layout, colours, and node styles (cf. Figure ).

5.4.4 The KEGG Regulatory Network

The KEGG database [KG00; Kan+10b; Kan+06] is a comprehensive cata-
logue of regulatory and metabolic processes (Section ). Similar to
other pathway databases such as Reactome [Jos+05] and WikiPathways
[Kel+12] it is structured into pathways that describe a specific biolo-
gical process in detail. We extracted the regulatory information con-
tained in KEGG to create a complete regulatory network. To under-
stand this process it is important to know how KEGG structures its
information. Each pathway is described by a file in the KGML format.
Every file contains the pathway’s nodes as well as their interactions. In
general three node types can be distinguished:

Gene A gene, unsurprisingly, represents a single gene.

Family A family represents a group of genes. Each of the genes in a
family are able to perform the interactions the node is a part of.

Complex A complex represents a group of genes or smaller complexes
that must form a physical complex before they can take part in
specific interactions.

Each interaction is labelled with an interaction type. This can be
activation, inhibition, genomic interaction, or association events. Addi-
tional modifiers, such as indicators for phosphorylation and ubiquit-
ination, can be attached to each edge. It also possible that complexes
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Figure 5.18: Most deregulated subgraphs of size 18 and 20 for the Wilm’s
Tumour dataset (cf. Section @). The image was created using the integrated
BiNA [] visualisation. Red and green backgrounds represent up and
downregulated nodes, respectively. Gray backgrounds indicate that no score
could be mapped to this node. The thickness of an edge is proportional to
the number of subgraphs it is a part of (i.e. both target and source node were
selected for a subgraph). Ellipses represent single genes, whereas rounded
rectangles represent families of genes.
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contain families of genes that can take each other’s place in the com-
plex. To import data from KEGG, NetworkTrail uses a custom import
application written in Java. For Homo sapiens the resulting network con-
sists of 4186 interactions and 2579 nodes.

5.4.5 Example

To give an impression of how to apply NetworkTrail in practice, we
present a short example. We used the entity-level scores computed in
the GeneTrail2 evaluation (Section ) to_ compute the most dereg-
ulated subnetwork using our ILP (Section B.5). The scores were com-
puted using the shrinkage t-test. Blastemal and miscellaneous tumour
samples served as sample and reference group, respectively. The scores
were uploaded to NetworkTrail and the KEGG regulatory network was
chosen as network topology. We computed the most deregulated sub-
graphs for sizes 3 to 20. The most deregulated subgraph of size 18 and
20 are shown in Figure .

The computed networks are not stable in the sense that nodes are
successively added to a core deregulated network structure. Instead the
root as well as the remaining selected nodes frequently change for close
values of k. For example the subgraphs depicted in Figure only
share a few common nodes: HRAS, KRAS, NRAS, PIK3, VEGFA, and
BCL2. This may be an indication that several effects are taking place
simultaneously in the sample such that a single key player is insuffi-
cient for explaining all differentially expressed genes.

Interestingly hardly any gene previously discussed in Section
can be found in the computed subgraphs. Instead most genes such
as the PIK3 family or BCL2 can be associated with immune response
mechanisms. A possible explanation for this can be found in the in-
creased resistance of blastemal tumours to chemotherapy. The overex-
pressed BCL2 is known for promoting chemotherapy resistance and
its central role in inducing leukaemia [Ota+07]. Conversely, as non-
blastemal subtypes are less aggressive and responded better to chemo-
therapy, more necrotic cells are present in the collected samples and
hence higher immune system activity can be expected in the reference
group, thus explaining the observed underexpression. Furthermore, as
the KEGG databases contains especially well-curated regulatory path-
ways for the immune system, these subgraphs may have been preferred
to the subgraphs containing our previously identified genes.

Upon further inspection, more limitations of the KEGG network
become apparent. For example multiple family nodes containing PIK3,
CREB, or IL1R genes have been selected. These nodes represent groups
of genes fulfilling the same function at this place of the network. Con-
sequently, family nodes can overlap, but are not necessarily identical.
This makes interpreting the returned subgraph difficult, as the score
of a single gene can have contributions to multiple nodes.
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5.4.6  Summary

Here, we presented NetworkTrail, a web service for detecting deregu-
lated subnetworks in biological network data. The availability of such a
web service allows non-experts to carry out network analyses without
having to struggle with technical details such as compiling/installing
software or learning cryptic commands. We are convinced that such
easy-to-use web services will help to elucidate pathogenic mechanisms
and that they may also proof useful for therapy stratification in cancer
therapy. Our example showed that NetworkTrail makes computing de-
regulated subgraphs simple. The integration with GeneTrail2 allows to
directly reuse scores that were used for computing enrichments. How-
ever, the limiting factor of the analysis is the underlying network. Due
to the topology of KEGG, some pathways seem to be preferred over
other parts of the network (cf. Section ). Also, the concept of fam-
ily nodes and, to a lesser extent, complexes makes arguing about the
network difficult. In the future, NetworkTrail will be enhanced by in-
cluding further analysis methods and more complete, predefined net-
works.

5.5 DRUG TARGET INSPECTOR

ContriBuTIONs DrugTargetInspector [Sch+15] was implemented
by Lara Schneider with design input and code review by me. An-
dreas Gerasch implemented the BiNA visualisation plugin.

As outlined in Section @, a detailed understanding of a tumour’s mo-
lecular properties can be essential for optimising the treatment for a
patient. To this end, biological high throughput assays can provide
valuable information complementing the classical, histological exam-
ination of a biopsy. For example, gene expression profiles allow to de-
tect parts of the metabolism that are deregulated in tumour cells when
compared to healthy tissue (cf. Section @). Mutations can dramatic-
ally alter the function of a protein or even lead to the creation of new,
fusion proteins [Sod+07]. Also, mutations in untranslated parts of the
genome can result in increased or decreased transcriptional efficiencies
for a gene as enhancer or promoter regions my be impacted [Lei+95;
WKG83; BSM93]. Thus, knowledge about the mutations accumulated
by a tumour can provide critical information necessary for interpreting
the obtained expression patterns. Furthermore, epigenetic marks, such
as methylation and histone occupancies, may prove useful for augment-
ing the knowledge derived from the mutation data. Finally, protein
abundances can give a more detailed picture about the actual physiolo-
gical processes that are taking place in a tumour cell. Making sense out
of this host of information is a difficult task. For a physician trying to
determine the optimal treatment for a patient, a succinct summary of
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the data can serve as a stepping stone for assessing treatment options.
As previously discussed, enrichment methods are a useful tool to focus
on essential pathogenic processes. Nevertheless, an enrichment does
not provide a quick way to determine possible treatment options. In-
stead, a considerable amount of work is required to interpret the com-
puted results. For each category, it must be determined whether the
corresponding biological process is of clinical relevance. If this is the
case, the reason why the category is reported as significant needs to be
determined. In particular it is important to identify potential key play-
ers that are e.g. differentially expressed and are the target of a cancer
drug. To do so requires substantial time and expertise. We thus argue
that enrichments alone are a suboptimal starting point for selecting a
treatment.

As an alternative, we created the DrugTargetInspector (DTI) web
service [Sch+15]. DTT integrates expression and mutation data as well
as the knowledge about available (anticancer) drugs and established
treatment regimes into a condensed, single-page overview. Starting
from this overview, additional information can be accessed and ad-
vanced analyses can be performed. The service is built on top of the
Graviton framework (Section @) and, hence, integrates tightly with
GeneTrail2 (Section p.3) and NetworkTrail (Section p.4).

In the following, we give a detailed explanation of DTT’s features.
We start with the information directly visible in the main view. After-
wards we discuss additional information that can be accessed via ana-
lyses. Finally, we describe DTI’s integration into GeneTrail2, Network-
Trail, and the BiNA network visualisation tool.

5.5.1 Integrated Databases

A key feature of DTI is the aggregation of information from external
databases into an internal storage. For each case, DTI uses this know-
ledge base to identify pieces of information that are relevant for the
samples which are currently being examined. This information is then
displayed in a succinct summary. Here, we shortly discuss the integ-
rated databases. As the primary data source we use DrugBank [Wis+06].
The database entries for a wide range of drugs including the known
targets for each drug. We use this information to classify drugs into
categories such as cancer drugs, vitamins, or inhibiting drugs and to as-
sign them to their target genes. The list of recommended drugs for each
cancer type was obtained from the American Cancer Society (ACSIU. To
be able to better assess the influence of a mutation on the efficacy of a
drug we incorporated the pharmacogenomics data provided by the Ge-
nomics of Drug Sensitivity in Cancer (GDSC) project [Gar+12]. Informa-
tion about each gene is provided by the Entrez Gene database [Mag+05].
For each drug—gene combination, links to relevant PubMed [Med97]
publications are displayed.

http://www.cancer.org/
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Figure 5.19: The DrugTargetInspector main view. On the right additional in-
formation, analyses and filters can be accessed. On the left the main table is
depicted. For each gene, the name, possible mutations, gene score, and target-
ing drugs can be seen. Gene specific actions can be triggered using the last
column. Recommended drugs for a specific cancer type are highlighted in
green.

5.5.2  Required Input

DTI primarily operates on entity-level scores. Thus, a list of scores per
gene is sufficient to use the service. As with NetworkTrail, all inputs
that are accepted by GeneTrail2 are accepted, too. However, DTI works
best if more information is provided. To be able to give treatment re-
commendations, the cancer type that is currently being analysed needs
to be supplied by the user. If mutation data is available, the user can
upload it as a VCF file. This file is annotated using the Variant Effect
Predictor (VEP) tool [] to provide a prediction of the mutation’s
effect.

5.5.3 The Main View

DTI exposes most of the aggregated information via a table henceforth
called the main view (Figure @). Each row in the main view corres-
ponds to a known drug target. For every drug target, the following
columns are shown:
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Target Name the HGNC symbol of the drug target. For each gene a
link to the respective Entrez Gene [Mag+05] site is provided.

Mutations Indicates whether mutations for this gene were found. If
so, the detected mutations can be accessed by hovering over the
displayed symbol.

Score The degree of differential expression between the sample and
the reference.

Corresponding Drugs Drugs known to target the current gene.

Analyses Further, gene-specific analyses can be performed by clicking
on the displayed symbol.

Rows in the main view can be sorted in ascending as well as des-
cending order according to the “Target Name” and “Score” column.
Filtering for specific genes or drugs is possible using a search field.
For each drug a link to its DrugBank page as well as a link to relevant
PubMed [Med97] entries is available. Drugs can be shown or hidden
based on whether they are cancer relevant, inhibiting, vitamins or illi-
cit. If the investigated sample is a tumour sample, DTI highlights drugs
recommended by the American Cancer Society for the respective tumour
type. Mutations in drug targets are detected and annotated using the
Ensembl Variant Effect Predictor [McL+10].

5.5.4 Analyses

Besides displaying information aggregated from databases, DTI is able
to perform additional analyses of the input data. For every drug tar-
get, it is possible to compute an enrichment using the Kolmogorov-
Smirnov statistics (Section @) To this end, categories extracted from
the KEGG database [KG00; Kan+10b; Kan+06], which contain the drug
target, are subjected to an enrichment procedure. All categories are
then displayed in the side bar with an indicator for enrichment or de-
pletion of the category. In addition, links to the relevant KEGG site are
provided for each category.

Besides computing enrichments, it is possible to conduct a network
analysis using the ILP formulation by Backes et al. [Bac+12] (cf. Sec-
tion@ and Section @). Here, in contrast to the ILP presented in the
original paper, the root of the network is predetermined as the query
drug target. This allows to identify the most deregulated subnetwork
downstream of the drug target. This information may be helpful for
more reliably assessing the effect of a drug, as often drug targets are
receptors acting via a signalling cascade.

5.5.5 Integration Into Other Tools

DTTis tightly integrated into other tools. For its target specific analyses,
the functionality of GeneTrail2 and NetworkTrail is used. Furthermore,
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Figure 5.20: Consensus network for the deregulated subgraphs of size k €
{3,...,15} rooted in EGFR. The network for size k = 3 is highlighted. The dir-
ect descendants of EGFR, PIK3 and CRK are downregulated. Ellipsoid nodes
represent genes, whereas rounded rectangles represent gene families.

options are offered to analyse DT1’s input directly using the aforemen-
tioned services. For visualisation, DTI uses BiNA’s network visualisa-
tion and genome viewer capabilities. BINA has been extended with a
DTT specific plugin to indicate drug targets and mutations in the dis-
played signalling network (cf. Figure ). Mutations can be examined
in BiNA’s built-in genome viewer. In the future, we plan to integrate
the EpiToolKit service for assisting in the design of custom vaccines
[Fel+08; Fel+08] into NetworkTrail.

5.5.6 Example

We analyse a colon adenocarcinoma dataset obtained from The Cancer
Genome Atlas (TCGA) [Wei+13] to demonstrate the potential of DTI. To
this end, we compare the sample TCGA-AA-3542 against nine normal tis-
sue samples using the z-score entity-level statistics (Section ). We
focused on a single sample to provide a realistic treatment optimisa-
tion scenario. Mutation information was converted from the MAF to
the VCF format using the vef2zmafid tool.

In DTT we selected the option to only show differentially expressed
drug targets for which inhibiting drugs are known. Vitamins or illicit
drugs were hidden. Of the remaining drug targets only EGFR carries a

12 https://github.com/mskcc/vef2maf
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point mutation. Two recommended drugs, Cetuximab and Panitumu-
mab, are targeting EGFR, which is downregulated in this sample (cf.
Figure ). A network analysis with DTI’s NetworkTrail integration
reveals that the direct descendants of EGFR, PIK3 and CRK are down
regulated. As EGFR serves as an activator of both gene families, this
suggests that the mutation may, in fact, be a loss of function mutation.
Thus, a treatment regimen for this patient might want to forego the
recommended drugs Cetuximab and Panitumumab in favour of e.g.
the also recommended Bevacizumab which, amongst other proteins,
targets the slightly upregulated vascular endothelial growth factor A (VE-
GFA).

Further treatment options may include targeting highly upregu-
lated genes such as the DNA polymerase POLB or the matrix metal-
loproteases MMP3 and MMPY7. To this end the drugs Cytarabine and
Marimastat could be administered. The analysis can be accessed at the
GeneTrail2 websiteld.

5.5.7 Summary

We presented DrugTargetInspector, a Graviton-based webservice for
detecting and evaluating deregulated drug targets. DTl integrates user
provided information, such as expression measurements and mutation
data, with knowledge stored in databases such as DrugBank or GDSC.
This is a first step towards assisting users to make informed choices
for optimising e.g. cancer therapy. In this regard, the tool could also be
used to assess the efficacy of recommended treatment options. “Drug
repurposing” is another usage-scenario for which DTI might be em-
ployed. There, the task is to detect drugs that were designed for differ-
ent disease but may be effective in the examined sample as they target
a specific mutation or regulatory pattern that can be observed in the
data.

13 http://genetrail2.bioinf.uni-sb.de/drug_targets.html?session=
c2761£9c-4a3a-430b-9712-8£833d320e2d&scores=10078&vcf=10080&subtype=
colonandrectumcancer
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Structure: the arrangement of and relations between the parts
or elements of something complex.

— DEFINITION BY OXFORD DICTIONARIES
(2016)

In previous chapters, we focused on methods and use-cases centred
around genetic variation and expression data. For example, we used
biological networks (Chapter E) to capture and explain the interplay
of proteins, genes, and other biological entities. Enrichment methods
(Chapter @) allowed us to search for groups of entities that exhibit un-
usual patterns in their input data. DrugTargetInspector (Chapter E)
supports examining the impact of mutations affecting a drug target
on the efficacy of the targeting drug. However, little information has
been provided on why a mutation has the predicted effect. To be able
to explain this, we need to consider the structural change the protein
affected by the mutation undergoes.

The genome is often termed the “blueprint” of an organism. Stick-
ing with this metaphor, proteins can be said to constitute a major part
of its “workforce”. Among other tasks, they play integral parts in meta-
bolic reactions, signal transduction, and transcriptional regulation. Fur-
thermore they form filaments and scaffolds like the cytoskeleton that
lend form and structure to a cell.

Each protein consists of one or more chains of amino acids. Each
amino acid carries a residue that determines its chemical properties.
Hydrogen-bond interactions within the protein backbone are respons-
ible for the formation of secondary structures such as a-helices or 3-
sheets. In the watery cytosol, hydrophilic amino acids form the inter-
face to the cellular environment, whereas hydrophobic amino acids
tend to group towards the centre of proteins. These forces lead to the
formation of the final, tertiary structure. As this process is driven by
properties of the amino acid residues, it is fair to say that the protein’s
amino acid sequence is the major driver behind the protein’s three-
dimensional structure. This structure determines the function of the
protein, as it defines with which molecules the protein can interact. In
the case of an enzyme, the residues that are part of the binding pocket
determine the reactions that can be catalysed by the protein.

The importance of the 3D structure has led to the development
of visualisation tools that allow experts to assess the properties of a
given protein. In fact, some of the first bioinformatics tools and applic-
ations of computer graphics were programs for the visualisation of mo-
lecules. Since the publication of the first, high-resolution structures of
myoglobin [Ken+58] and heemoglobin [Per+60] the number of available
protein structures has grown exponentially. During the same time, the
molecular weights and resolutions of the resolved structures have in-
creased tremendously. In addition, computers have grown more power-
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Figure 6.1: The structure of the 20 human amino acids and Selenocysteine.
Typically, amino acids are classified according to their chemical properties
such as hydrophobicity or charge. Image by Dancojocari [Dan16].

ful allowing to employ more advanced analyses and clearer visualisa-
tion techniques.

In this chapter, we present the Biochemical Algorithms Library (BALL)
[KLOO; Hil+10], a software package for the analysis and visualisation of
molecular structures. In particular, we describe the ballaxy tool suite
[Hil+144] that allows to integrate structure-based analyses into exist-
ing workflow systems such as Galaxy [Goe+10]. In addition, we high-
light the BALL-SNP application for visualising the effect of single nuc-
leotide variants (SN'Vs) on protein structures. For both features, we
first need to describe several, recent additions to BALL and its visu-
alisation component BALLView [Mol+05; Mol+06]. We first start with
a brief introduction of the BALL library itself and then turn to dis-
cussing BALL's plugin system that provides the underlying architec-
ture for creating BALL “extensions”. We then discuss the ballaxy suite,
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which makes use of this system for interfacing with a ballaxy server.
A further application of the plugin system is the PresentaBALL plu-
gin [Nic+13]. PresentaBALL enables researchers to quickly create in-
teractive showcases and presentations without the need to modify the
BALLView source code. BALL-SNP uses the functionality provided by
PresentaBALL to provide an interactive and appealing user interface.

6.1 THE BIOCHEMICAL ALGORITHMS LIBRARY

The Biochemical Algorithms Library (BALL) [KLOG; Hil+10] is a library
designed for rapid prototyping of structure-based bioinformatics tools.
It is being developed by scientists from the Universities Saarbriicken,
Tiibingen, and Mainz. BALL is divided into two main parts: the BALL
library, containing foundation classes as well as the code for working
with and manipulating 3D structures, and the VIEW library that imple-
ments visualisation capabilities and user interface components. Both
libraries are written in C++ and comprise around 347,000 lines of code®.
BALL is available for the MS Windows, MacOS X, and Linux platforms.
For the creation of small, custom extensions which do not warrant to
write or modify C++ source code, BALL provides bindings for the Py-
thon 2 [VD09] scripting language.

BALL represents structures using a hierarchical datastructure. The
root node of the datastructure is called a System and acts as a container
for a set of molecules. Molecules themselves can contain Chains of
Residues or simply a set of Atoms. This hierarchy is realised by imple-
menting the Composite design pattern [V1i+95]. BALL provides parsers
(and generators) for the most common structure file formats such as
PDB filesl, SYBYLE MOL and MOL2 files, as well as HyperChemi HIN
files. The implementation of the parsers is highly efficient and, in some
cases, even beats implementations using template metaprogramming
techniques [LCB10].

Due to experimental constraints, structural data is often incomplete.
To enable scientists to work with 3D structures, while avoiding most of
the tedious preprocessing steps, BALL offers automatic curation facil-
ities via a database of well-known fragments. This allows to complete
missing or partial residue information as well as the physically plaus-
ible placement of hydrogen atoms. For simulating molecular dynam-
ics, implementations of the AMBER [PC03], CHARMM [Bro+83], and
MMFF94 [Hal96] molecular force fields are available. For locally min-
imising the energy of a conformation, various efficient algorithms such
as conjugated gradients [FR64] and the memory-limited BFGS method
[AIB99] have been implemented. Additionally, computing electrostatic
potentials using finite differences Poisson-Boltzmann [NH91] is pos-
sible. Besides molecular mechanics, geometric tools for the design of

1 https://github.com/BALL-Project/ball

2 http://www.wwpdb.org/documentation/file-format

3 https://www.certara.com/software/molecular-modeling-and-simulation/
sybyl-x-suite/

4 http://www.hyper.com/
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Figure 6.2: Screenshot of BALLView using the RTfact-based realtime raytra-
cing renderer. The displayed structure is the glucocorticoid receptor (NR3C1)
interacting with DNA. The crystal structure was taken from the PDB [Ber+00]
record 1GLU [Lui+91]. Image by Andreas Hildebrandt.

docking algorithms [Koh12] and the analysis of docking results are
provided. Examples are binding pocket detection with the PASS al-
gorithm [BS00], procedures for determining the solvent accessible (SAS)
and solvent excluded (SES) molecular surfaces [Con83], as well as an
highly efficient clustering algorithm that is able to deal with large num-
bers of docking poses [Hil+14b].

The VIEW library contains methods for visualising structures and
associated datasets, such as electrostatic fields, as well as components
for building user interfaces. It is based around the concept of Represen-
tations that define how a structure, or a part thereof, should be visual-
ised. Each Representation consists of a collection of geometric objects
such as spheres, cylinders, or meshes together with colouring informa-
tion. Amongst others, available representations are the SES, SAS, Ball-
and-Stick, and Cartoon models. Applications built on top of VIEW, the
prime example here being BALLView, are able to produce interactive,
stereoscopic renderings of the loaded molecules. Publication quality
images can be generated using the integrated, RTfact-based [GS08] re-
altime raytracing renderer (cf. Figure @ Besides traditional keyboard
and mouse input, virtual reality input devices are supported via an in-
tegration of the VRPN daemon [[Tay+01]].
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Figure 6.3: Simplified UML Diagram of the BALL plugin system. Each plu-
gin, such as the SpaceNavigatorPlugin or the PresentaBALLPlugin, inherits
from the interfaces it is going to provide. The PluginManager is responsible
for loading plugins. Once loaded, plugins are dispatched to a PluginHandler
instance that is specialised for the implemented plugin interfaces.

class BALLPlugin {
public:
virtual ~BALLPlugin();
virtual QString getName() const = O;
virtual QString getDescription() const = 0;

virtual bool isActive() = 0;
virtual bool activate() = 0;
virtual bool deactivate() = 0;

+s
Listing 6.1: The BALLPlugin interface. All methods are purely virtual and
must be implemented by every plugin.

6.1.1 The BALL Plugin System

ConrtriBuTiONs The plugin system, on which most of the presented
additions are based, was designed and implemented by me. The
ModularWidgetPlugin and various plugin implementations were
created by the BALL developers.

The aforementioned integration of the VRPN daemon is not directly
a part of BALL, but rather uses the exposed plugin mechanism to ex-
tend the library (Figure @). A plugin is a dynamic library that can be
loaded into the application at runtime. To enable this, every plugin has
a well defined entry point that allows to query which functionality is
offered by it. In BALL, this entry point is defined by the BALLPlugin
interface (Listing @), which allows to query the name, a description,
and the status of the plugin. To provide further functionality, such as
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methods that allow the query the state of an input device, a plugin
needs to implement further interfaces defined in the BALL and VIEW
library. Every plugin is loaded by the PluginManager class. It is then
dispatched by the PluginManager to the appropriate PluginHandler.
The task of a PluginHandler is to provide an interface through which
the application can access loaded plugins. An example is a class man-
aging a list of available input devices.

Currently, BALL comes with interfaces that permit to implement
additional input devices (InputPlugin) and for adding new graphical
user interface (GUI) components (ModularWidgetPlugin). We also cre-
ated a RendererPlugin interface which makes it possible to move the
rendering logic of BALLView into pluginsa. In turn, this allows to sim-
plify the VIEW library considerably, while making it easier to intro-
duce new rendering techniques. As a proof of concept, we created a
new, OpenGL-based [S+09] renderer [Biirl3] H,

6.2 BALLAXY

ContriBuTioNs The ballaxy tool suite was implemented in a joint
effort by researchers of the Universities Tiibingen and Saarbriicken.
The manuscript and the BALLView plugin was written by Anna-
Katharina Hildebrandt and Andreas Hildebrandt.

Workflow systems offer a user-friendly interface for building pipelines
from individual, specialised tools. In contrast to shell scripts, work-
flows can easily be created by researchers that have no prior training in
using the command line and programming. Additionally, the created
workflows are self-documenting, highly reproducible, and allow shar-
ing within research communities. Popular examples for such systems
are Galaxy [Goe+1(], Taverna [Wol+13], and the commercial KNIME
software [Ber+08]. A default distribution of Galaxy is well-equipped
for working with sequencing data. Support for other areas of bioin-
formatics, however, is lacking. For structural bioinformatics only few
platforms such as MoSGrid [Her+12] that offer limited workflow func-
tionality to the user are available. To remedy this situation, we pre-
pared a Galaxy distribution called ballaxy [Hil+14a]. It consists of a
suite of command line programs with associated Galaxy tool defini-
tions (cf. Figure @). In addition we created a ModularWidgetPlugin
that allows to use data from BALLView directly in ballaxy and vice-
versa. The ballaxy suite can be installed from the BALL source code or
via a Docker? image®.

https://github.com/dstoeckel/BALL/tree/renderer_plugins
https://github.com/dstoeckel/BALL/tree/modern_gl_renderer
https://www.docker.com/
https://hub.docker.com/r/anhi/ballaxy/
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6.2 BALLAXY
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Figure 6.4: The starting page of the ballaxy web service. The system is based
on Galaxy [Goe+10]. The tools can be accessed from the left panel. Data and
results are tracked in the right panel.

6.2.1 Tools

The ballaxy tools are regular command line applications. They are be-
ing maintained in the same source code repository as the BALL lib-
rary and are, thus, part of the default installation. As the goal of bal-
laxy is to support a wide range of usage scenarios, it comes equipped
with a broad selection of general tools. Examples are file type conver-
sion, structure creation, bond order assignment [Deh+11], or force field
computations. Additionally, tools for generating output like reports or
plots fall into this category. In addition, utilities for tasks like adding
hydrogen atoms, separating protein chains into individual files, or re-
moving water molecules from a System are provided.

These general tools are complemented by two sets of specialised
applications. In particular, support for preparing, performing, and ana-
lysing docking runs and for predicting NMR shifts has been implemen-
ted [Koh12]. The docking support includes basic building blocks of
docking algorithms, such as the detection of potential binding pockets
and precomputing potential energy grids for the use in scoring func-
tions. For managing and summarising the produced docking poses,
ballaxy provides efficient clustering algorithms [Hil+14b]. Quick and
dirty docking runs can be performed using the included multi-greedy
algorithm. To more reliably filter for promising docking poses, a set of
rescoring functions can be employed.

Besides X-Ray crystallography, nuclear magnetic resonance (NMR) is
the primary experimental technique for revealing new molecular struc-
tures. NMR works by measuring the radiation emitted by the atoms in-
side a magnetic field that have been stimulated with radio waves of
a specific wave length. The difference between the measured waves
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and the expected, theoretical value of an isolated atom, the chemical
shift, allows to derive distance constraints between the atoms. From
these, ensembles of possible models can be determined. The inverse
step, predicting NMR shifts given a structure model, also plays an im-
portant role in structural biology. Various algorithms for predicting
NMR shifts exist that are based on differing methodology. Recently, hy-
brid methods that combine explicit formulas for NMR shift from phys-
ics with machine learning techniques have shown to provide excellent
performance [Han+11]. The NightShift model Dehof et al. [Deh+13] fur-
ther improves upon the performance of previously published methods
and is included in ballaxy.

6.2.2 BALLView Plugin

As already outlined above, working with structure data sometimes re-
quires to examine 3D representations. An important example is veri-
tying that a docking algorithm produces sensible results. For this pur-
pose, molecular visualisation tools such as RasMol [SB92; OS00], Py-
MOL [DeL02], VMD [HDS96], Chimera [Pet+04], and our tool BALL-
View [Mol+06; Mol+05] have been created. Replicating the complete
functionality of one of these tools in a web interface is a monumental
task. To combine the rich functionality of BALLView with the workflow
interface offered by ballaxy, we implemented a ModularWidgetPlugin
that is able to communicate with a running ballaxy instance. As the
communication is bidirectional, the client can start computations on
the server and the server can push data to the client. For example, it is
possible to prepare a structure in BALLView. This structure can then be
directly uploaded to the ballaxy server for running the workflow. Once
the computation has completed, the results can again be downloaded
to be visualised within BALLView.

6.3 PRESENTABALL

ConrtriBuTioNs The PresentaBALL system has been created by me.
It was later substantially improved by Stefan Nickels and Sabine
Miiller.

An important part of academic practice is teaching and the presenta-
tion of results. This is both, simple and difficult at the same time for
structural computational biology. While renderings of protein or RNA
structures are in themselves impressive, it is challenging to generate
renderings that not only are aesthetically pleasing, but also easy to in-
terpret. A reason for this is that 2D depictions of 3D structures can
obscure important details due to the choice of perspective. The same is
true for the choice of representation and colour, which can either help
to emphasise important parts of the structure or distract the viewer
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by adding “visual noise”. On the other hand, interactive renderings
allow users (readers) to examine a structure as they see fit. However,
without additional explanatory information, users are prone to miss
important details. Due to this, an interactive presentation system must
allow to seamlessly incorporate such information. This, however, is not
achievable with the current tools for molecular visualisation. To fill this
gap we implemented PresentaBALL [Nic+13]: a system for creating in-
teractive presentations for structure data. PresentaBALL is realised as
a BALLView plugin and uses the QtWebEngine technology to provide
HTML based annotations and explanatory texts. Custom operations
written in C++ and Python can be triggered via special hyperlinks. This
allows to couple explanatory texts with representational changes such
as changes of perspective or model parameters.

In 2011, PresentaBALL has been deployed in the educational MS
Wissenschaft project funded by the German Ministry for Education and
Science (BMBF). Furthermore, PresentaBALL is the basis of the BALL-
SNP application, which we will now discuss in detail.

6.4 BALL-SNP

ContriBuTiOoNs BALL-SNP was created by Sabine Miiller. The pa-
per was written by Sabine Miiller and Andreas Keller. I contributed
the Windows port of the software.

Mutations play a crucial role in the characterisation of hereditary dis-
eases and the development of cancer. An important class of mutations
are single nucleotide variants (SNVs) which only change a single base
in the genome. The effects of a SNV can vary largely. Due to the ro-
bustness of the genetic code, an exchanged nucleotide can simply res-
ult in another codon of the same amino acid. In these cases the SNV
has no effect at all and is called synonymous SNV (sSNV). The effect of
non-synonymous SNVs (nsSNVs) can be more dramatic. If exchanging
the nucleotide results in a codon for a different amino acid, a slightly
altered protein is created. This alone is sufficient for the development
of serious, hereditary diseases like sickle cell aneemia. There, the ex-
change of a glutamic acid (E) residue into a valine (V) residue leads to
the formation of deformed, sickle-like red blood cells [[ng57; Pau+49].
Such SNVs are called missense mutations. By exchanging a nucleotide,
also a stop codon can be created. This causes the truncation of the pep-
tide chain. Due to this, the resulting proteins often do not share any
structural resemblance or function with the wild type protein. Such
SNVs are referred to as nonsense mutation. In the remainder of this dis-
cussion we focus on non-synonymous SNVs which we will, for the sake
of simplicity, refer to as SN'V.

For assessing the effect of a missense mutation on protein coding
genes, it is important to know which parts of the structure are affected
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by the mutation [WMO1]. Especially mutations in highly conserved re-
gions, which are important for maintaining the structure of the pro-
tein or are a part of the protein’s active site, are likely to have a sig-
nificant impact on the function of the protein [MKO01; NHO06]. For pre-
dicting the effect of a SNV, various packages that use statistical learn-
ing methods or consult databases of known SNVs exist. Examples are
the Variant Effect Predictor [McL+10], SnpEff [Cin+12], and ANNOVAR
[WLH10]. However, as these tools operate on the sequence level, the in-
terpretation of the prediction is difficult. If multiple SNVs accumulate
in the same protein, structure information becomes crucial for investig-
ating potential, synergistic effects. Visualising the mutated residues in
a three-dimensional representation can facilitate the interpretation of
SNV data and allows to quickly check for the presence of interactions
between SNVs. To this end, we developed BALL-SNP: a tool for the
visualisation of SN'Vs in protein structures [Mue+15].

6.4.1 Implementation

BALL-SNP integrates structure data available from the PDB [Ber+00]
with knowledge about non-synonymous SNVs. To display this inform-
ation, it uses the PresentaBALL (Section @) framework which allows
to combine a structural representation of the protein with pathogen-
icity information. This information is derived from annotation data-
bases such as SwissProt/UniProt [Bai+05] and the dbSNV [She+01]
based ClinVar [Lan+14]. Annotation is performed using the ANNO-
VAR [WLH10] package. As input, BALL-SNP accepts the widely used
variant call format (VCF). Alternatively, the user can provide input for
BALL-SNP in a simple, tab-separated file format. Protein structures are
downloaded from the PDB using the largest structure referenced in the
corresponding UniProt annotation. Alternatively, the desired PDB re-
cord can be entered manually.

As isillustrated by the example of sickle cell aneemia, a SNV can im-
pact the structure of a protein. To account for this, BALL-SNP provides
facilities to compute putative changes in protein stability. For this a web
service running the I-Mutant 2.0 software [CFC05] is provided. Similar
to mutations that impact protein stability, mutations in the active site
of the protein can be highly relevant for pathogenicity. In order to help
the user to find these binding pockets, BALL-SNP uses BALL's imple-
mentation of the PASS algorithm for binding pocket detection [BSO00].
To detect groups of potentially interacting SNVs, a cluster analysis of
the SN'Vs can be performed based on the euclidean distance and aver-
age linkage clustering. This is especially useful for identifying cooper-
ative mutations.

6.4.2 Example

To illustrate the capabilities of BALL-SNP, we perform an analysis of
SNP data from a dilated cardiomyopathy (DCM) high throughput sequen-
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Figure 6.5: Example of a BALL-SNP cluster analysis for the SMYD2 gene. The
structure of the protein is displayed as a dark-grey cartoon model. SNVs are
displayed as stick models of the exchanged amino acids. SNVs belonging to
the same cluster are coloured identically. Pink spheres indicate the computed

centers of binding pockets. Here, the clustering for a cut-off of 16 A is shown.
As the crystal structure is a homodimer, the clusters are visible twice.

cing study conducted by Haas et al. []. DCM is a heart disease
that is responsible for 30 % to 40 % of heart failures in large clinical
studies []. It is characterised by the dilation of the left or both
ventricles and is accompanied by impaired muscle contractility [].
The cause of DCM is, as of yet, unknown.

Here, we examine SNV clusters in the SMYD2 gene, which is re-
sponsible for the methylation of lysines in H3 histones as well as tran-
scription factors such as RB1 and TP53 [IBr0+O6|; t[—Iua+Od; Bad+1d]. As
input we use the mutation data provided on the BALL-SNP homepage®.
None of the SNVs in the input data is annotated with pathogenicity
information. However, when examining the computed clusters (Fig-
ure @), it can be seen that several SN'Vs form pairs that may be indicat-
ive of a synergistic effect. In Figure p.€, close-ups of the SNV clusters are
shown. The Cor atoms of the SNVs Y370C and M384V are ~ 9 A apart
and are predicted to decrease protein stability. The remaining pairs
G394C and 1430M as well as V301l and V349A are farther apart with a
distance of 12 A and 16 A, respectively. Intriguingly, in each pair one
SNV leads to an increase in protein stability, whereas the other SNV
leads to a decrease.

6.5 SUMMARY

To understand the effect of mutations at a molecular level, it is import-
ant to understand their effect on protein structure. To this end, tools

9 http://www.ccb.uni-saarland.de/software/ballsnp/
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Figure 6.6: SNV pairs in the SMYD2 protein. Coloured frames indicate close-
ups. SNVs belonging to the same cluster are coloured identically. Pink spheres
indicate the centere of a computed binding pocket. The distances are 9 A for
Y370C and M384V, 12 A for G394C and 1430M, and 16 A for V3011 and V349A.

for the analysis and visualisation of structures are needed. Here, we
presented the BALL library together with several recent additions such
as PresentaBALL, ballaxy, and BALL-SNP. With PresentaBALL we con-
ceived a system for quickly creating appealing presentations and show-
cases featuring structure data. The ballaxy tool-suite allows to integ-
rate structure-based analyses into bioinformatics workflows. Finally,
BALL-SNP allows to assess genetic variation data, obtained from e.g.
high-throughput sequencing experiments, in the light of their impact
on protein structure. In this regard, the program is a first step towards
the integrative analysis of high-throughput data. For example, sets of
interesting, mutated genes can be determined via the DrugTargetIn-
spector (Section @) and the GeneTrail2 (Section @) web services. In-
dividual genes can then be examined more closely using the methods
provided by BALL-SNP. To make this more user friendly, the BALL-
SNP pipeline could be directly coupled with the web-services using
the workflow systems provided by ballaxy and Graviton.
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There is no real ending. It’s just the place where you stop the

story.
— FRANK HERBERT, INTERVIEW WITH PROF.
WILLIS E. MCNELLY (1969)

Advances in research concerning complex, heterogeneous diseases like
cancer have shown that in many cases detailed genomic knowledge is
required for devising optimal treatment regimens (Section @). Thanks
to rapid developments in biological data acquisition techniques, it is
nowadays possible to create comprehensive profiles of the genome,
transcriptome, and the proteome (Section @). To help with the inter-
pretation of the produced results, we created a range of methods and
applications that allow to analyse these high-throughput datasets. In-
stead of creating a set of independent tools, we focused on approaches
that naturally complement each other with the goal of enabling the in-
tegrative analysis of multi-omics datasets. In this chapter, we review
the presented work and provide a short discussion during which we
highlight challenges and opportunities for future research.

7.1 SUMMARY

Biological processes are often represented in the form of biological net-
works. Accordingly, approaches for analysing these networks are im-
portant tools for the identification of potential pathogenic processes.
Chapter E thus introduced methods, such as our application CausalTrail
[Sch15a; 5t6+15], for studying biological networks. Particularly, it al-
lows to examine causal relationships between a set of biological entit-
ies using causal Bayesian networks (CBNs) and the do-calculus. For in-
stance, given a regulatory pathway, CausalTrail can be used to evalu-
ate the impact of inhibiting a regulator with a drug on downstream
elements. Whereas many tools for determining the structure of a CBN
exist, CausalTrail is, to the best of our knowledge, the first, freely avail-
able tool for evaluating causal queries on an existing topology. We il-
lustrated the importance of supporting proper causal queries using a
regulatory network derived by Sachs et al. [Sac+05].

Next, we presented our ILP formulation [Bac+12] for detecting de-
regulated subgraphs in regulatory networks (Section @) As opposed
to previous work, which relies on heuristics, we proposed an efficient
and exact algorithm for solving the rooted maximum-weight connected
subgraph problem on a directed graph. Up until now, little to no re-
search was available on how biases in the network structure affect the
computation of deregulated subgraphs. Using our ILP, we implemen-
ted a sampling and machine-learning-based scheme that allows to in-
vestigate whether certain subgraphs are selected more often than oth-
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ers given non-informative scores (Section ). Based on this we dis-
covered that some nodes are far more likely to be selected as part of a
deregulated subgraph than other nodes, solely due to their topological
properties. This work constitutes a fundamental step towards assessing
the significance of deregulated subgraphs.

Unfortunately, the applicability of network-based methods is lim-
ited as current networks are still lacking entries for many biological
entities as well as the interactions between them. Instead, it is often
necessary to resort to set-based approaches such as enrichment meth-
ods (Chapter @). These algorithms allow to quickly detect deregulated
categories of biological entities in high-throughput data. To make state-
of-the-art enrichment analyses available to all researchers we designed
the Graviton platform (Chapter E): a framework for the creation of bioin-
formatics web-services. The platform offers code for solving common
problems in bioinformatics such as file parsing and identifier mapping.
Moreover, we implemented a generic Job—Resource model that allows
creating arbitrary, self-documenting workflows (Section @). In addi-
tion, a RESTful API (cf. Section @), with which analyses can be con-
trolled from within the user’s preferred scripting environment, is auto-
matically generated for algorithms that are realised as a Graviton Job.

On top of this platform, we created GeneTrail2 [Sto+16] the, at the
time of writing, most comprehensive web service for enrichment ana-
lysis (Section p.3). For a seamless user experience, GeneTrail2 provides
methods for data preprocessing, a large range of integrated categor-
ies, and support for multiple omics types. We demonstrated how Gene-
Trail2 can be instrumental in the analysis of multi-omics datasets and
identified pathogenic pathways that may be responsible for the malig-
nancy of blastemal subtype Wilm’s tumours (Section ). In partic-
ular, our findings indicate that blastemal WTs have reverted to a stem
cell-like state which is maintained by a feedback loop between IGF2
and the master regulator TCF3. Furthermore, WNT signalling may be
stabilised by RSPO1 which is secreted into the extra cellular matrix.

To complement GeneTrail2 and make the power of approaches for
detecting deregulated subgraphs (Section @), such as our ILP formula-
tion [Bac+12] and the FiDePa algorithm [Kel+09], available in the form
of a web interface, we created the NetworkTrail [Sto+13] web service
(Section @).

A further feature of Graviton is that services implemented on top of
it can be trivially integrated with each other; a property we exploit for
our DrugTargetInspector (DTI) [Sch+15] web service, which builds on
the capabilities provided by GeneTrail2 and NetworkTrail (Section @).
Given an expression dataset and, optionally, genetic variation data, DTI
creates an overview of deregulated and mutated drug targets. This in-
formation can be used to assess the efficacy of potential cancer treat-
ment options. To this end, knowledge from a wide range of databases
has been integrated into DTI. This data is made available to the user
by condensing it into a concise report for the analysed sample. From
there, additional, in-depth information and analyses can be accessed
with a single click. Internally, this is achieved by leveraging the tight
integration with GeneTrail2 and NetworkTrail. We demonstrated DTIs
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capabilities using an adenocarcinoma sample from TCGA for which
we could detect a loss-of-function mutation in the EGFR gene. This
suggests that some recommended drugs targeting EGFR may not be
effective in this case and should be foregone in favour of other options.

Unfortunately, determining the effect of genomic variations solely
from sequence information is difficult. To be able to make better pre-
dictions, we implemented BALL-SNP [Mue+15], a tool for visualising
and analysing SNVs in a structure context (Section p.4). For each SNV
its malignancy and its effect on the stability of the affected protein
can be predicted. Possible collaborative SNVs can be detected using
the built-in cluster analysis. For constructing BALL-SNP we relied on
the functionality provided by the Biochemical Algorithms Library (BALL)
[KLOG; Hil+10] maintained by the universities Saarbriicken, Tiibingen,
and Mainz. To make BALL's features available to a more diverse group
of users, we developed technologies that increase the flexibility of the
library. Examples for this are facilities such as PresentaBALL [Nic+13],
which allows to create interactive presentations (Section @), and the
ballaxy [Hil+14a] suite, which integrates BALL into the Galaxy [Goe+10]
workflow system.

7.2 DISCUSSION

The methods outlined in this thesis allow to gain a deeper insight into
the physiological processes that take place in a tumour, as is illustrated
by our Wilm’s tumour study. In particular, our methods enable re-
searchers and physicians to perform analyses on multiple levels of de-
tail. Using GeneTrail2 or NetworkTrail, it is possible to quickly identify
relevant pathological mechanisms. DTI uses this information to enable
the discovery of promising treatment options for a specific tumour. To
this end, drug targets carrying a SNV can be examined on the structure
level using BALL-SNP. This allows to gauge whether the targeting drug
will actually be effective. Finally, if the detected target is part of a reg-
ulatory cascade, it is possible to use CausalTrail to model the response
of downstream elements to e.g. a knockout.

Naturally, for each presented method many details can be improved
and extended in several ways. CausalTrail can be enhanced with sup-
port for continuous random variables and more robust parameter fit-
ting procedures by leveraging shrinkage techniques. Furthermore, we
can expand GeneTrail2, NetworkTrail, and DTI with additional meth-
ods, add more supported data formats, and provide better heuristics
and guidelines for determining optimal parameter settings. BALL and
BALLView can be extended with additional algorithms and advanced
visualisation capabilities, respectively.

Each of these additions may significantly improve the flexibility
and applicability of the discussed methods and may advance the state-
of-the-art of the respective field of computational biology. However,
we also believe that it is of utmost importance to increase the interop-
erability of available approaches to enable examining multi-omics data-
sets. Thus, the major theme of this work has been the attempt to bridge
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gaps between methods to facilitate such integrative analyses. With the
creation of the Graviton framework, we made a significant contribu-
tion in this regard. In particular, the support for a wide range of in-
put formats and datatypes as well as utilities such as the comparative
enrichment view, help to perform joint evaluations of e.g. expression,
protein abundance, and genomic variation data.

As integrative methods require to explicitly take the relationships
between biological entities into account, network-based methods are a
natural choice as an algorithmic basis. Currently, interpreting the res-
ults of, for instance, methods for detecting deregulated subgraphs is
difficult, though. This is due to the fact that it is unknown how to com-
pute the significance of the obtained subgraphs. To chart the terrain
in this direction, we provided a scheme for quantifying the likelihood
with which a subgraph is selected given non-informative node scores.
The presented results (Section @) suggest that there is a pressing
need for a rigorous framework for assessing the significance of deregu-
lated subgraphs that helps to ensure the interpretability of these meth-
ods.

For an application in a medical setting, methods that allow to jointly
analyse multi-omics data are only a part of the puzzle. To assist in
choosing an appropriate treatment for a tumour, assistance platforms
are needed that support the clinician in every step of the decision mak-
ing process. To achieve this, the tools should, on the one hand, aggreg-
ate and visualise relevant information from external databases and, on
the other hand, allow their users to trigger further, in-depth analyses.
DTI and BALL-SNP are examples for how such assistance platforms
could be structured. They allow to study genomic data in combina-
tion with expression profiles and protein crystal structures, respect-
ively. Ideally, the functionality of both applications would be merged
to enable workflows where potential drug targets carrying mutations
can be identified and seamlessly analysed on the structure level.

Bioinformatics methods have shown that they can provide valuable
information for combatting heterogeneous diseases. A prime example
is HIV therapy optimisation for which platforms such as Geno2Pheno
[Bee+03; I'L12] are routinely used in practice. For complex, heterogen-
eous diseases like cancer, which have proven to be even more elusive
than HIV, integrative methods may give physicians and researchers the
means to devise effective, personalised treatments. However, until this
is the case, the task of making these tools reliable enough to be applic-
able in practice, will provide the grounds for a wide range of exciting
and challenging research.
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Ifu = fi(x,y) and v = fa(y, z) be two functions of the three
variables x, vy, z, and these variables be selected at random
so that there exists no correlation between x,y, y,z, or z,x,
there will still be found to exist correlation between v and v.
Thus a real danger arises when a statistical biologist attributes
the correlation between two functions like w and v to organic
relationship.

— KARL PEARSON, on a form of spurious
correlation ... (1896)

The idea behind many of the methods presented in this thesis can be ap-
preciated without a deep mathematical foundation. Nevertheless, the
employed concepts are rooted in probability theory and statistics. Con-
troversies around the proper use of the p-value show that a good grasp
of the underlying theory is, in fact, necessary to work with many bioin-
formatics tools. Here, we lay the mathematical foundations necessary
for understanding the concepts used in this thesis.

A.1 COMBINATORICS AND PROBABILITY THEORY

The field of probability theory is a fundamental part of mathematics
that concerns itself with the study of systems that show random beha-
viour. The discovery of probability theory dates back to the 17th cen-
tury. It was conceived by the, back then, dominant French mathemat-
ical community and was mainly applied to the study of games of dice,
cards, or roulette. The foundations of probability theory were laid by
the mathematician Blaise Pascal in close collaboration with Pierre de
Fermat and Christiaan Huygens [Sha93]. In his book Ars conjectandi
Bernoulli [Ber13] formalised much of combinatorics and probability
theory, most notably giving a proof of a first version of the law of large
numbers. In the 18th century significant contributions were made by
Pierre-Simon Laplace, who conceptualised much of the Bayesian view
of probabilities as well as a first, analytic view of probability theory.
Carl Friedrich Gauf3’ close examination of the normal distribution and
the method of least squares showed that probability theory can be ap-
plied to correct for uncertainties in measurements [Abb71].

In this section, we will give a short introduction to probability the-
ory that is tailored towards the needs in bioinformatics research in
general and the analysis of biological high-throughput data, such as
microarray experiments, specifically. We first start with the basic con-
cepts of a probability space and random variables.
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For our dice example we
have Q = {1,2,3,4,5,6}
and ¥ = P(Q).

The 2nd condition

is not strictly neces-
sary as it follows from
PI'(A-L) = PI‘(A»L U
0) = Pr(A;) + Pr(0)

MATHEMATICAL BACKGROUND

A.1.1  Probability Spaces

In order to be able to talk about probabilities of some events, a formal
definition of an observable event is required. As a next step, a way to
express how probable it is to observe such a result is needed. This will
lead us to the definition of a probability space.

Consider a simple random experiment where a six-sided dice is
rolled once. We can now ask how likely it is that we roll a 6 or that
the number shown is even. Whereas “rolling a 6” corresponds to only
observing the outcome 6, “rolling an even number” corresponds to ob-
serving the outcomes 2, 4, or 6. Observable events can thus consist of
individual or multiple outcomes. This means that the set of events ¥ is
a subset of the power set P(£2) of the set of outcomes (2. In addition to
that, some additional constraints need to be fulfilled:

Definition 21 (0-Algebra). Let (2 be a set. A set ¥ C P(Q) is called a
o-algebra if it fulfils the following conditions:

1.0eXx
2. Closed under complement: A € ¥ - Q\ A€ X
3. Closed under countable unions: Ay, As,... € ¥ = (J; 4, € ¥

The definition of a o-algebra ensures that our events have some con-
venient properties. Given an event A, there is a well defined comple-
mentary event A° such that either A or A° takes place. Furthermore,
given the events A, B, we can ask whether both happened (AN B) or at
least one of both happened (A U B). This is possible as both, the inter-
section as well as the union, of two events are guaranteed to be events
again.

Having defined the space of events, we now need a way to assign
probabilities to each of the events.

Definition 22 (Probability Measure). Let €2 be a set of outcomes and X
a corresponding o-algebra of events. A probability measure on X is a
function Pr : ¥ — [0, 1] that fulfils the following conditions:

1. Pr(Q) =1
2. Pr(0)=0

3. Let {A;} C X be a countable set of pairwise disjoint events, then
Pr (U A,) = ZPI‘(AZ)

We are now ready to define a probability space, which ties the con-
cepts of outcome space, event space, and probability measure together.

Definition 23 (Probability Space). A probability space (2,%,p) is a
triple where (2 is the set of possible outcomes, ¥ C P(f2) is a o-algebra
on (), and p : ¥ — [0, 1] is a probability measure.
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A random experiment is completely described given its probabil-
ity space. Spelling out the probability space explicitly, however, can be
downright impossible. Fortunately, explicit knowledge of the probab-
ility space is often unnecessary, as most of the time we are interested in
quantities derived from the outcomes as well as long-time average beha-
viour of a random system. An example for this are wins and losses dur-
ing gambling. The primary interest of a gambler lies not in which side
of a dice is facing upwards, but rather in how much income a particu-
lar roll translates. Biological systems are real life instances of probabil-
istic systems for which it is infeasible to state the probability space ex-
plicitly. To reason about them, researchers design experiments which
produce indirect readouts such as fluorescence intensity or staining
patterns that serve as proxies for unobservable random processes. For
example, gene expression values measured using microarrays or RNA-
seq (Section ) serve as proxies for a set of complex binding events
and the transcriptional activity of the RNA polymerase II. In probab-
ility theory, such derived quantities are modelled via the concept of
random variables:

Definition 24 (Random Variable). Let (2, X, Pr) be a probability space.
A function X : Q@ — R with the property {w € @ : X(w) < 2} € X for
every x € R is called a random variable [GSO1].

As a convention, upper-case letters X are used for denoting random
variables, while lower-case letters = stand for the value obtained by
evaluating the random variable.

Using random variables, we are now able to answer the question
of how likely it is to make a profit during a game of chance. We write
Pr(X < x) as shorthand notation for Pr({w € © : X(w) < z}). The
likelihood of losing money during gambling is then Pr(X < 0). We
can also compute the probability of an outcome falling into an interval
using the convention

Pr(ze < X < zp) :=Pr(X <uap) — Pr(X < z,)

Evaluating Pr(X < z)is so common in statistics that it deserves its own
name:

Definition 25 (Cumulative Distribution Function.). Let (€2, 3, Pr) be a
probability space and X : 2 — R a random variable.

Fx(x) :=Pr(X <x)
is called the (cumulative) distribution function (CDF) of X.

Until now we silently assumed that the number of outcomes was
countable. This allowed to assign a probability to each individual out-
come and obtain a sensible definition of the probability measure by
simply applying its axioms. This, however, does not work for probabil-
ity spaces with an uncountable number of outcomes. Assume that each
of the uncountably many outcomes was assigned a positive probability.
Then the sum of probabilities would be larger than one contradicting
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Here “most” means: all
except countably many.

T

Figure A.1: The cumu-
lative (red) and prob-
ability (blue) density

function of a Gaussian
normal distribution.

Actually, we use the av-
erage to gain information
about the expected value ...
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the definition of a probability measure. Hence, for most outcomes w
we have Pr({w}) = 0. This is intuitively correct, as a single, infinitesim-
ally small point out of an uncountable set of possibilities should never
be selected twice by a random process. However, when we look at in-
tervals as opposed to single points, some intervals that are more likely
to contain the values of a random variable than other intervals exist.
We can take this observation to the extreme by observing smaller and
smaller intervals around a point x.

Prr—e< X <z)=Pr(X <z)-Pr(X <z—¢)=Fx(x)— Fx(z—¢)

The difference above suggests that we should be able to write Fx as the
antiderivative of some function fx. Let us make this notion concrete:

Definition 26 (Continous random variable). The random variable X is
called continuous if its CDF Fx can be expressed as

FX(:):)—/fX(u)du

for some integrable function fx : R — [0,00) called the (probability)
density function of X [GSO01].

If a random variable only maps to a countable subset of R, a simpler
definition can be given:

Definition 27 (Discrete random variable). The random variable X is
called discrete if it takes values in some countable subset {1, z2,...} €
R, only. The discrete random variable X has the (probability) density
function fx : R — [0,1] given by fx(x) = Pr(X = z) [GSO1].

With random variables we can describe random processes in terms
of higher level statistics instead of the underlying probability spaces.
In the following, two fundamental examples for such statistics are in-
troduced: the expected value and the variance.

A.1.2  Expected Value and Variance

Often the outcome of a single random experiment is not of interest for
an investigation. For example consider a study that tries to determine
the effect of a drug administered to a patient. As every patient reacts
slightly differently to a drug, measuring a single response does not
provide sufficient evidence that a drug is actually working. Instead,
we are interested in the effect the drug has on average. In statistics this
average effect is captured by the expected value.

Definition 28 (Expected Value). Let X : 2 — R be a random variable.
If the limit

[ee]

BX) = [ afi(o)da

— 00
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or, for discreet variables
[o@)
B(X):=> a;Pr(X =)
i=1

exists, F(X) is called the expected value of X.

Per convention the Greek letter 11 is used to designate the expected
value of a random variable. Note that not every random variable pos-
sesses an expected value, as the value of the integral or the series in the
above definitions does not necessarily need to be defined.

While the expected value provides information about the outcome
of a random experiment “on average”, it should not be confused with
the most likely outcome of a random experiment. Instead, the expected
value may be the result of two likely events cancelling each other. For
example in a game where the player wins a set amount of money if a
fair coin shows “heads” and looses the same amount of money if the
coin shows “tails” the expected value is zero. To be able to get a better
understanding of a random experiment a measure is needed that tells
us how the results vary around the expected value. This measure is the
variance:

Definition 29 (Variance). Let X : 2 — R be a random variable with
expected value E(X). Then the variance var(.X) is defined as

var(X) := E [(X — E(X))?]

We will also use o2 to denote the variance. The square root of the vari-
ance o is called the standard deviation.

In other words, the variance measures the expected, squared devi-
ation from the expected value. Again, the variance only makes a state-
ment about the distribution of outcomes in the long run. It furthermore
does not capture any information about the shape of the distribution
with the exception of its spread. It is possible to compute higher (cent-
ral) moments of a distribution, such as the skewness or the kurtosis, to
obtain more information concerning the distributions shape. Here, we
will refrain from defining these concepts, as they will not be needed in
the remainder of this thesis.

The variance measures how the results of a single random variable
are spread. When two dependent random variables are given, it is often
of interest to examine how the variances of the two variables are related.
To this end, we define the covariance of two random variables.

Definition 30 (Covariance). Let X,Y : © — R be two random vari-
ables with expected values £(X) and E(Y'). Furthermore, assume that
E(XY) exists. The covariance cov(X,Y) is defined as

cov(X,Y) :=E[(X — E(X))(Y — E(Y))]

Note that the covariance is a generalisation of the variance and it
holds that var(X) = cov(X, X). A commonly used statistics that can

183



Note that “sample”
can refer to both: a set
of observations and

a single observation.

MATHEMATICAL BACKGROUND

be derived from the covariance is Pearson’s correlation coefficient r

[Pea95b].
cov(X,Y)

var(X)var(Y)

Pearson’s correlation coefficient measures the strength of the linear de-
pendency between two variables. If » = 0 there is no linear dependency.
In contrast, if 7 = £1 then a scatter plot of the two variables would res-
ult in a perfect line. It is important to note that a correlation of 0 does
not imply that the two random variables are independent. Conversely
dependent variables do not guarantee that their correlation is different
from 0.

A.1.3  Populations, Samples, and Estimators

In practice, the exact parameters of a distribution, for example the ex-
pected value or the variance, are unknown. In this case, it may be ne-
cessary to estimate the parameters from observations. The available
observations for doing so are called the population. Populations can be
countable or, at least in theory, uncountable [Ass13]. Examples for pop-
ulations are all products produced by some factory or all citizens of a
country. Given a population, consisting of observations z1, ..., z,, from
a random variable X we can define estimators for the parameters of
X. We call a function f(x1,...,x,) = 0 that estimates the value of a
parameter 6 of the underlying distribution an estimator. We will use
the convention to denote the estimate of some quantity ¢ with ¢. Given
the above definition, a valid estimator for the mean of any distribution
would be the constant function returning 0. Naturally, this is a terrible
estimator for all intents and purposes. A good estimator for the pop-
ulation mean p is given by p := % > i, x;. Similarly, the population
variance o is given by [Liu74]

n

1 1 @&
o? = ;Z(%‘ —p)? = 52%2 — 1
=1

i=1

Sometimes, not the complete population is available. This can be
the case if not all members of the population can be observed or the
population is prohibitively large. In this case we need to draw conclu-
sions from a subset of observations.

Definition 31 (Random sample). Let P be a population of observations
obtained from a random variable X. A subset S = {z1,...,x,} C Pis
called a random sample of P.If the observations are chosen independ-
ently of each other we call them independent identically distributed (iid).

To obtain better estimators the definition of an estimator needs to be
narrowed down by requiring further properties. A reasonable property
is that the estimator should yield better results when we increase the
sample size.
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Definition 32 (Consistent estimator). An estimator f for a property 6
is consistent if it converges in probability to the true parameter. This
means that for a sample S = {z1,...,z,} and alle > 0

Jim P(£(S) 6] > ) =0

Another useful property is that the estimator returns the true value
on average. This leads us to the definition of unbiased estimators.

Definition 33 (Unbiased estimator). Let X ~ D(6) be a random vari-
able following some distribution D with parameters § and furthermore
let S = {1, ..., z, } be samples of X. We call a function f(S) = 0 an un-
biased estimator for 6 iff

E(f(5)) =10

An unbiased estimator for the population mean is given by the
sample mean z := 1 3" | ;.

Proof. The proof is straight-forward and exploits the linearity of the
expected value.

E(z)=FE

= :L;E(X) = —nE(X) = E(X)
O
Similarly the sample variance
IR -2
— ;(ac — ) (A1)

where z denotes the sample mean, is an unbiased estimator for the pop-
ulation variance. We omit the proof that is no more difficult, but some-
what lengthier, than for the sample mean and refer the reader to one
of the many proofs available online (e.g. Anderson [And99]).

Using unbiased estimators guarantees that the obtained estimate
is eventually the true value of some parameter and is not affected by
a systematic error. While generally desirable, a considerable number
of samples may be required for this property to be beneficial. In the
case that only few samples are available, it may pay off to use biased
estimators that introduce a systematic error, while on the other hand
being much less susceptible to outliers and noise in the samples. An
example for such a biased estimator is the shrinkage estimator for the
sample variance presented in Section . Intentionally introducing
bias into an estimator is an instance of the bias variance trade-off, which
we will investigate more closely in Appendix .
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A.2 MACHINE LEARNING

Biological processes and conditions are inherently difficult to observe
without disrupting or even destroying the system. This becomes even
more problematic in a medical application, where invasive procedures
should be avoided if possible. However, in vitro assays are not a pan-
acea as they may consume a considerable amount of time and money
to perform and, most importantly, may not allow to reproduce the de-
sired behaviour. Statistical methods that allow to model biological pro-
cesses from easily obtainable, cheap measurements are thus desirable.
In many cases, theoretical models are the only way to investigate a
given system.

Besides mechanistic modelling techniques that use e.g. differential
equations to simulate reactions, approaches from the field of statistical
learning are frequently applied. In statistical learning, data points are
modelled as samples drawn from unknown probability distributions.
A distinction between two tasks can be made: supervised and unsuper-
vised learning. In a supervised learning scenario the objective is to cre-
ate a model from a training set of samples. A training set consists of
measurements associated with a response or outcome, e.g. a class label or
areal number. This model is then used to predict the response of previ-
ously unseen data called the test set. In contrast, unsupervised learning
does not rely on previously determined outcomes, but rather attempts
to uncover the structure in the data itself. Examples for this are the
detection of clusters of data points or associations between measured
random variables.

A.2.1  Supervised Learning

Consider a set X = {z1,x2,...,x,}, with z; € RP being independent,
identically distributed (iid) samples drawn from a multivariate distribu-
tion. Each x; is called a sample and each entry z;; is a measurement of
the j-th feature or predictor. In addition to the samples, we are given a
set of responses Y = {y1,y2,...yn}. We call the set T' = {(vi,x;) |yi €
Y, z; € X} the training set. We assume that y; and z; are related via a
function f. However, after applying f to z;, a random error term e is
added to the result. Our final model can hence be formulated as:

yi = f(xi) + ¢

The task is now to select a function f € M that best approximates f.
Usually, we are not free to choose any f but restrict ourselves to a cer-
tain class of functions that constitute our model space M. A common
choice for M is the space of linear functions (cf. Section ). We meas-
ure the approximation quality of f using a loss-function L. Accordingly,
we select the f € M that minimises the overall loss:

N

f = arg min Z L(yh f(xz))

feMimy
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Optimal Model

Error

M Training
M Test

Bias Model Complexity Variance

Figure A.2: Training and test error for a supervised model depending on the
model’s complexity. The training error generally decreases with increasing
complexity due to the models ability to better capture the properties of the
training set. This can have detrimental effects on the test error, as the model
is no longer able to generalise well to unseen data.

However, the model that “performs best” on the test set, need not per-
form well on new, unseen data. To this end, the final model needs to
be evaluated on a set of samples and responses that were not used for
fitting the model. This set is henceforth called the test set. How well
the fitted model is able to generalise depends strongly on the choice of
model space M and loss function L. While a small model space may
not offer sufficient flexibility to find a good model (undertraining), a
model space that is large may contain functions that do not only cap-
ture the properties of the original function f, but also adapt to the ran-
dom noise that stems from the error term e (overtraining). The choice
of loss function may push model selection towards “simple” or more
“complex” models and can thus be used to avoid over- and undertrain-
ing.

A.2.2  Bias-Variance Trade-off

Let us examine over- and undertraining more closely. Figure de-
picts the qualitative behaviour of the training and test error depending
on the model complexity. With model complexity or degrees of freedom
of a model, we handwavingly denote how well the model can adapt to
a given training set. In general, model complexity is hard to define, as it
not only depends on offered tuning parameters and the type of model,
but also on the training procedure and used features. Some theory for
formalising model complexity, such as the Vapnik-Chervonenkis the-
ory [Vapl3; FHT09], exists. However, for the discussion in this thesis
the intuitive definition is sufficient.

For supervised regression models, we can decompose the expec-
ted prediction error into a bias and a variance term. To this end, let us
introduce the k-nearest neighbour (k-NN) predictor. Assume a we want
to predict the outcome of a point . The simplest way to do this is to
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Figure A.3: Splitting the available data into independent training, tuning, and
test sets. Commonly splits that achieve a ratio of 2:1:1 are used.

select the £ € N nearest points in the training set Vi (z¢) and to assign
their average outcome to z:

R 1
yO:% Z Yi

1€ N (o)

We denote the fit of the k-NN predictor with fj.. Assume that Y =
f(X) + e with E(e) = 0 and var(¢) = o2. Then the expected prediction

error (EPE) can be written as [ ]

EPEy(z,) = E[(Y — fr(z0))?|X = 0]
= 0% + Bias®(fy(20)) + varr(fi(xo))

Here vary denotes the variance on the training set. The bias measures
the systematic error incurred by the model due to its inability to adapt
to the data. Conversely, for a model with high variance, small changes
in the input features can lead to large changes in the output. Generally,
simple models have a high bias and a low variance as they come with
a large systematic error, whereas complex models have a low bias and
a high variance as they are able to adapt to the random noise in the
training set. Thus, to select the predictor that generalises the best to
unseen data, it might pay off to select a model with a slightly larger
bias if this leads to a substantial decrease in variance and vice versa.

A.2.3 Model Selection and Evaluation

Probably the most important topic in machine learning is proper model
selection and evaluation. Finding the sweet spot of parameters that
yield a good training error without overtraining is fundamental for the
quality of the predictor. Here, it is of utmost importance to properly val-
idate the model on unseen data. For this, the available data is separated
into a training and a test set. If parameters need to be tuned, usually an
additional tuning set, on which the error for various parameter setting
is evaluated, is required (Figure @).

However, in many scenarios from computational biology too few
samples are available to afford the luxury of a completely independ-
ent test set. To work around this issue, strategies such as k-fold cross-
validation are commonly applied. Here, the idea is to divide the train-
ing set into k& equally sized folds. Each of the folds is then used as a test
set once, whereas the remaining k£ — 1 folds serve as the training set.
An approximation of the test error is then computed as the average of
the errors achieved in each fold.
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14 x x x x x 1
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Figure A.4: The required number of data points to for achieving a uniform
sampling grows exponentially with the number of dimensions p. This phe-
nomenon is called the “curse of dimensionality”.

If tuning parameters need to be fitted, it may be necessary to nest
two cross-validations. The outer cross-validation computes an approx-
imation of the test-error. The inner cross-validation again splits the cur-
rent £ — 1 folds and computes the tuning error for the parameter set-
tings.

In addition to cross-validation several other methods for estimating
the test error exist. For example, methods such as random forests use
so-called out-of-bag samples to avoid a cross-validation (Section ).
Also, theoretical models such as the Akaike information criterion (AIC) or
the Bayes information criterion (BIC) [FHT09] can be used to this end.

A.2.4 Feature Selection

A common problem in computational biology and statistical learning
in general, is that more predictors are available than samples (p > n).
Fitting a model under these circumstances would lead to severe over-
training as even simple, linear models would be able to predict all train-
ing points perfectly. Even if more samples are available than predictors
(p < n), problems can arise. This is due to the phenomenon that ran-
domly sampled data points tend to be further apart the more the num-
ber of dimensions increases. As most predictors rely on the assumption
that close data points also have similar outcomes, more and more data
points are required to counteract the influence of increasing dimension-
ality (Figure |A.4)). This effect is often called the “curse of dimensional-
ity” [BelO3].

A way to avoid the above problems is to reduce the set of predictors
prior to model fitting. This processes is often referred to as feature sub-
set selection or simply feature selection. Other tactics include shrinkage
methods that penalise complex models in order to use as few features
as possible (cf. Section ). It should be noted that, in any case, fea-
ture selection is part of the model fitting process and, thus, should be
validated using e.g. a cross-validation.
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WILM'S DATASET - SUPPLEMENTARY TABLES

This chapter contains tables for the Wilm’s Tumour dataset introduced
in Section @ In particular, it contains the phenotypic and clinical an-
notations for all samples, as well as a list of differentially expressed
miRNAs.

Table B.1: A list of the collected biopsies with classification into tumour sub-
types.

SIOP WS Number Histology Comment
9800  WS29T blastemal
9821  WS38T blastemal

11546 WS601TB3 blastemal
11782 WS746T1 blastemal

11831 WS800T necrotic

11844 WS808TB2 blastemal

11882 WSS831T regressiv

11963 WS881Ta blastemal

11966 WS878T regressiv

11966 'WS878Ni normal

11977 WS886T regressiv

11987 WS901T blastemal

11992 WS910Tl1iB blastemal Origin uncertain; Excluded
11992 WS910Tre blastemal Origin uncertain; Excluded
11996 WS906T mixed

11997 WS904T stromareich

12009 WS914TA4  blastemal

12015 WS917T blastemal

12022 WS919T mixed

12032 WS930T diffuse anaplasia

12032 WS930Trez  diffuse anaplasia Relapse

12033 WS927T regressiv

12038 WS933T regressiv

12041 WS938T mixed

12041 WS938Trez  mixed Relapse

12044 WS939T mixed

12044 WS939Ni normal Healty kidney
12055 WS954T regressiv

12058 WS953T focal anaplasia

12069 WS958T blastemal

12082 WS967T regressiv

12096 WS975T necrotic

12101 WS968T regressiv

12101  WS968Ni normal Healthy kidney
12112 WS994T regressiv

12121  WS991T epithelial
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SIOP WS Number Histology Comment
12124 WS988T regressiv

12125 WS1001T regressiv

12146 WS1002T mixed

12171 WS1018T mixed

12171 WS1018Ni normal Healthy kidney
12197 WS1030TA blastemal No WT; Excluded
12197 WS1030TB blastemal

12260 WS1063T2 blastemal

12263 WS1073TA3  blastemal

12322 WS1106TA3  blastemal

12331 WS1098TA4  blastemal
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SIOP BiopsyID  ArrayID Slide Array

9800  WS29T WS29T 253949426868
9821  WS38T WS38T 253949422238
11546 WS601TB3  WS601TB3.1 253949426867
11546 WS601TB3  WS601TB3.2 253949426869
11782 WS746T1 WS746T1 253949422238
11831 WSS800T WS800T 253949422238
11844 WS808TB2  WS808TB2 253949422256
11963 WS881Ta WS881Ta 253949422256
11966 WS878Ni WS878Ni 253949426869
11987 WS901T WS901T 253949422238

ll\)
N W

—_

[O8]

W

—_

W

S

S

I

11992 WS910TliB ~ WS910Tli 253949426867 2_2
11992 WS910Tre WS910Tre 253949422239 2.3
11996 WS906T WS906T 253949426868 1_1
11997 WS904T WS904T 253949422256 1_1
12009 WS914TA4  WS914TA4 253949422256 1.2
12015 WS917T WS917T 253949426868 1_3
12022 WS919T WS919T 253949422238 2.3
12032 WS930T WS930T 253949426869 1_1
12032 WS930Trez  WS930TRez 253949426868 1_4
12033 WS927T WS927T 253949426868 1_2
12038 WS933T WS933T 253949426869 1_2
12044 WS939Ni WS939Ni 253949426869 2_
12058 WS953T WS953T 253949426867 2_4
12069 WS958T WS958T 253949422238 2 4
12096 WS975T WS975T 253949426867 1_2
12101 WS968Ni WS968Ni 253949426869 2_2
12101  WS968T WS968T 253949426868 2_1
12112 WS994T WS994T 253949422239 1.2
12121  WS991T WS991T 253949422239 1.3
12124 WS988T WS988T 253949426867 3

12146 'WS1002T WS1002T 253949426867
12171 WS1018Ni ~ WS1018Ni.1 253949426869
12171 WS1018Ni  WS1018Ni.2 253949426869
12171 WS1018T WS1018T 253949426868
12197 WS1030TA  WS1030TA 253949422238
12197 WS1030TB ~ WS1030TB 253949422238
12260 WS1063T2  WS1063T2 253949426868
12263 WS1073TA3  WS1073TA3 253949422239
12322 WS1106TA3 WS1106TA3 253949426867
12331 WS1098TA4 WS1098TA4 253949426867

—_

W

S

N

—_

N

S

W

.

— R NN PNPNRNNNNNNNNRRNNRE R NNNNRRODNNNRRRBSRNDRFEFERFERERDRN R FE R N =
—_

W

Table B.3: Mapping of biopsy IDs to mRNA array IDs.
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SIOP BiopsyID  ArrayID Slide Array
11546 WS601TB3  WS601TB3 253118114312 2 4
11782 WS746T1 WS746T1 253118113842 1.2
11831 WSS800T WS800T 253118113840 1 4
11844 WS808TB2  WS808TB2 253118113840 2_1
11882 WSS831T WSS831T 253118113874 1_1
11966 WS878Ni WS878Ni 253118113873 1_2
11966 WS878T WS878T 253118113874 1.2
11963 WS881Ta WS881Ta 253118113840 2_3
11977 WS886T WS886T 253118113874 1.3
11987 WS901T WS901T 253118113842 1.3
11997 WS904T WS904T 253118113840 2_2
11996 WS906T WS906T 253118113874 1_4
11992 WS910TliB  WS910TliB 253118114312 1.2
11992 WS910Tre WS910Tre 253118114312 1.4
12009 WS914TA4  WS914TA4 253118113842 1 4
12015 WS917T WS917T 253118113842 2_1
12022 'WS919T WS919T 253118113842 2_2
12033 WS927T WS927T 253118113873 1_1
12032 WS930T WS930T 253118113874 2_1
12032 WS930Trez  WS930TRez 253118113841 2_2
12032 WS938Trez  WS938Trez 253118113874 2_4
12038 WS933T WS933T 253118113874 2.2
12041 WS938T WS938T 253118113874 2_3
12044 WS939Ni WS939Ni 253118113875 1.2
12044 WS939T WS939T 253118113875 1_1
12058 WS953T WS953T 253118113875 1.3
12055 WS954T WS954T 253118113875 1.4
12069 WS958T WS958T 253118113873 1.3
12082 WS967T WS967T 253118113875 2_1
12101 WS968Ni WS968Ni 253118113873 1_4
12101  WS968T WS968T 253118113875 2.2
12096 WS975T WS975T 253118113873 2_2
12124 WS988T WS988T 253118113873 2_1
12121  WS991T WS991T 253118113842 2_3
12112 WS994T WS994T 253118113842 2_4
12125 WS1001T WS1001T 253118113875 2.3
12146 'WS1002T WS1002T 253118113875 2_4
12171 WS1018Ni ~ WS1018Ni 253118113873 2.3
12171 WS1018T WS1018T 253118113873 2_4
12197 WSI1030TA  WS1030TA 253118113840 2_4
12197 WS1030TB ~ WS1030TB 253118113841 2_1
12260 WS1063T2 ~ WS1063T2 253118114312 1.3
12263 WS1073TA3 WS1073TA3 253118114312 2_3
12331 WS1098TA4 WS1098TA4 253118114312 21
12322 WS1106TA3 WS1106TA3 253118114312 2.2
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miRNA p-value log, fold-change

hsa-miR-143-3p  6.5e-06 3.3
hsa-miR-3926 2e-05 2
hsa-miR-126-3p  2.9e-05 2.9
hsa-miR-1825 4.8e-05 -2.1
hsa-miR-4290 5e-05 2.2
hsa-miR-32-3p 5.7e-05 -3.6
hsa-miR-195-3p  5.9e-05 -2.3
hsa-miR-30b-5p  5.9e-05 24
hsa-miR-2278 6e-05 -3.3
hsa-miR-4299 6.1e-05 2.5
hsa-miR-1281 6.4e-05 -2.2
hsa-miR-595 6.6e-05 -3.2
hsa-miR-3148 6.7e-05 -3.3
hsa-miR-3149 6.7e-05 -3.5
hsa-miR-101-3p  8e-05 24
hsa-miR-1306-3p 0.00011 -2.8
hsa-miR-1180 0.00012 -2.8
hsa-miR-574-5p  0.00016 -2.6
hsa-miR-378c 0.00018 2.2
hsa-miR-670 0.00019 -2.8
hsa-miR-340-5p  2e-04 2.1
hsa-miR-130a-3p 0.00022 2.8
hsa-miR-125a-5p 0.00023 2
hsa-miR-4284 0.00023 2.3
hsa-miR-26b-5p  0.00028 2.5
hsa-miR-335-5p  0.00033 3
hsa-miR-26a-5p  0.00039 3
hsa-miR-3653 0.00039 2.5
hsa-miR-1 4e-04 2.3
hsa-miR-297 4e-04 2.5
hsa-miR-539-5p  0.00046 -2.3
hsa-miR-10b-5p  0.00059 2.7
hsa-miR-1228-5p 0.00062 -2.9
hsa-miR-3923 0.00078 -2.2
hsa-let-7f-5p 0.00079 2.3
hsa-miR-99b-5p  9e-04 2
hsa-miR-424-5p  0.0014 2.1
hsa-miR-941 0.0018 -21
hsa-miR-494 0.0019 23
hsa-miR-125b-5p  0.0025 2.3
hsa-miR-19a-3p  0.0026 2
hsa-miR-214-3p ~ 0.0032 2.5
hsa-miR-206 0.0035 -2.1

Table B.5: List of differentially expressed miRNAs (p < 0.05) in the Wilm’s tu-
mour datasets as presented in Section . Only miRNAs with absolute log,
fold-change greater than 2 have been selected. The reported p-values were
corrected using the Benjamini-Hochberg procedure.
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ENRICHMENT EVALUATION - RESULTS

C.1 ENRICHMENTS ON SYNTHETIC CATEGORIES

Method | Sens  Spec AUC | Sens  Spec AUC
Significant | 33.3% | 66.6%

KS 0.092 0912 0505|0954 0.988 0.995
weighted KS | 0.07 0935 0495|0634 099 0.962
max-mean 0.106  0.902 0481 | 0966  0.988 0.998
mean 0.014 0985 0.498 | 0.082 0.989 0.641
median 0.01 0985 0486 | 0404 099 0.803
sum 0.014 0985 0.498 | 0.08 099 0.641
1s-t-test 0.006 0992 05 0.004 099 052
2s-t-test 0.006 0992 05 0.004 0989 0.521
Wilcoxon 0.01 099 0499 | 0.042 0.989 0.602
ORA 0.102 0903 0486 | 0952 0.995 0.991

Table C.1: Performance of various set-level statistics on synthetic categories.
Significantly expressed genes are distributed symmetrically around the mean.
The used p-value strategy is the entity-based strategy.

Method | Sens  Spec AUC | Sens  Spec AUC
Significant | 33.3% | 66.6%

KS 0.1 0.898 0.504 | 0.994 0989 1
weighted KS | 0.104  0.904 0.493 | 0.95 0.994 0.998
max-mean 0.1 0902 0495|0992 099 1
mean 0.106 0.9 0.505 | 0992 099 1
median 0.096 0.9 0.496 | 0988 099 1
sum 0.106 0.9 0.505 | 0.992 0.991 1
1s-t-test 0.106 0.9 0.505 | 0.99 0.99  0.999
2s-t-test 0.106 0.9 0.505 | 0.99 0.989 0.999
Wilcoxon 0.106  0.902 0.508 | 0.99 0.988 1
ORA 0.086 0921 049 |0.39% 0992 0.859

Table C.2: Performance of various set-level statistics on synthetic categor-
ies. Significantly expressed genes are distributed asymmetrically around the
mean. The used p-value strategy is the entity-based strategy.
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ENRICHMENT EVALUATION - RESULTS

Method | Sens  Spec AUC | Sens  Spec AUC
Significant | 33.3% | 66.6%

KS 0.09 0917 0505 | 0964 0.996 0.996
weighted KS | 0.258  0.742 0.503 | 0.882 0.791 0.91
max-mean 0956 0.04 0513 |1 0.011 0.516
mean 0.196 0.804 0.498 | 0.542 0.685 0.649
median 0.026 0971 0.489 | 0.49 0.945 0.797
sum 0.192  0.805 0.498 | 0.53 0.686 0.65
1s-t-test 0.004 0997 0498 |0 0.998 0.522
2s-t-test 0.002 0997 05 0 0.999 0.52
Wilcoxon 0.006 099 0.5 0.01 0.998 0.616

Table C.3: Performance of various set-level statistics on synthetic categories.
Significantly expressed genes are distributed symmetrically around the mean.
The used p-value strategy is the sample-based strategy.

Method ‘ Sens  Spec AUC ‘ Sens  Spec AUC
Significant | 33.3% | 66.6%

KS 0.094 0907 0.505 | 0974 0995 0.999
weighted KS | 0.874  0.133 0.516 | 0.974 0.104 0.56
max-mean 0982 0.024 0499 |1 0.006 0.507
mean 0.532 0469 0.501 |1 0.505 0.754
median 0.26 0.755 0.496 | 1 0.54 0.944
sum 0.532 0468 0.502 |1 0.505 0.756
1s-t-test 0.532 0473 0.506 | 1 0.505 0.754
2s-t-test 0.088 0917 0.505 | 0.928 0.997 0.998
Wilcoxon 0.08 0.915 0.508 | 0.968 0.998 1

Table C.4: Performance of various set-level statistics on synthetic categor-
ies. Significantly expressed genes are distributed asymmetrically around the
mean. The used p-value strategy is the sample-based strategy.
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C.2 ENRICHMENTS ON REACTOME CATEGORIES

C.2 ENRICHMENTS ON REACTOME CATEGORIES

Method | Sens  Spec AUC | Sens  Spec AUC
Significant | 33.3% | 66.6%

KS 0429 0.573 0.504 | 0.75 047 0.648
weighted-KS | 0.286  0.706 0.502 | 0.344 0.727 0.581
max-mean 0.631 0372 0503 | 0.899 0.317 0.635
mean 0.148 0.838 0.494 | 0219 0.83 0.557
median 0.26 0.746 0.498 | 0.674 0.584 0.656
sum 0.146 0.838 0.494 | 0.22 0.831 0.557
1s-t-test 0.009 0994 0.495 | 0.01 0.988 0.484
2s-t-test 0.009 0994 0.495 | 0.01 0.988 0.484
Wilcoxon 0.048 095 0489 | 0.085 0.929 0.538
ORA 0.619 0376 0.503 | 0936  0.292 0.644

Table C.5: Performance of various set-level statistics on the Reactome categor-
ies. Significantly expressed genes are distributed symmetrically around the
mean. The used p-value strategy is the entity-based strategy.

Method | Sens  Spec AUC | Sens  Spec AUC
Significant | 33.3% | 66.6%

KS 0.614 0389 0.505 | 0953 0.295 0.655
weighted-KS | 0.662 0.34 0.503 | 0913 0.3 0.624
max-mean 0.689 0313 0.5 0963 0.273 0.637
mean 0.685 0322 0.502 | 0967 0.273 0.636
median 0.64 0369 0.5 0968 0.285 0.638
sum 0.685 0323 0503 | 0967 0.273 0.638
1s-t-test 0.565 0.441 0.504 | 0.871 0.344 0.644
2s-t-test 0565 0441 0.504 | 0.871 0.344 0.644
Wilcoxon 0.608 0397 0.505 | 0943 0307 0.652
ORA 0.591 0413 0.503 | 0.818 0.415 0.641

Table C.6: Performance of various set-level statistics on the Reactome categor-
ies. Significantly expressed genes are distributed asymmetrically around the
mean. The used p-value strategy is the entity-based strategy.
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Method | Sens  Spec AUC | Sens  Spec AUC
Significant | 33.3% | 66.6%
KS 0427 0.581 0506 | 0.776  0.467 0.653

weighted-KS | 0.448 057 0504 | 0.541 0.553 0.577
max-mean 0.828 0179 0.502 | 0.996 0.132 0.587

mean 0341 0.651 0.495 | 0514 0573 0.563
median 0255 0.753 0.498 | 0.699 0.573 0.661
sum 0341 0.649 0493 | 0511 0572 0.563
1s-t-test 0.001 0999 0495 | 0.001 0.999 0.487
2s-t-test 0.001 0999 0.495 ]| 0.001 0999 0.484

Wilcoxon 0.013 098 0491 | 0.052 096 0.549

Table C.7: Performance of various set-level statistics on the Reactome categor-
ies. Significantly expressed genes are distributed symmetrically around the
mean. The used p-value strategy is the sample-based strategy.

Method ‘ Sens  Spec AUC ‘ Sens  Spec AUC
Significant | 33.3% | 66.6%
KS 0.531 0.469 0504 | 0.921 0.349 0.662

weighted KS | 0.746  0.266 0.5 0.924 0.227 0.581
max-mean 0.854 0.151 0.504 | 0.999 0.111 0.576

mean 0.823 0.181 0.505 | 0.999 0.138 0.591
median 0621 038 0498 | 0994 0.261 0.653
sum 0822 0.181 0.503 | 0.998 0.14 0.592
1s-t-test 0.588 0417 0.5 0.847 0.277 0.559
2s-t-test 0359 0.643 0.501 | 0.613 0.555 0.627

Wilcoxon 0477 0518 0.501 | 0.861 0.396 0.665

Table C.8: Performance of various set-level statistics on the Reactome categor-
ies. Significantly expressed genes are distributed asymmetrically around the
mean. The used p-value strategy is the sample-based strategy.
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D.1 SUPPORTED ORGANISMS
Name KEGG Code TaxonID
Anopheles gambiae age 180454
Arabidopsis thaliana ath 3702
Aspergillus fumigatus afm 746128
Bos taurus bta 9913
Caenorhabditis elegans cel 6239
Canis familiaris cfa 9615
Corynebacterium glutamicum cgl 1718
Danio rerio dre 7955
Dictyostelium discoideum ddi 44689
Drosophila melanogaster dme 7227
Encephalitozoon cuniculi ecu 6035
Escherichia coli K-12 eco 83333
Escherichia coli O157:H7 str. Sakai ecs 386585
Gallus gallus gga 9031
Homo sapiens hsa 9606
Macaca mulatta mmc 9544
Mus musculus mmu 10090
Pan troglodytes ptr 9598
Plasmodium falciparum 3D7 pfa 36329
Rattus norvegicus rno 10116
Saccharomyces cerevisiae sce 4932
Schizosaccharomyces pombe spo 4896
Staphylococcus aureus sau 1280
Sus scrofa ssc 9823
Toxoplasma gondii tgo 508771
Xenopus laevis xla 8355
Xenopus tropicalis xtr 8364

D.2 LIST OF HUMAN CATEGORIES
Omics Database Category Type
GENE GO Biological Process
Cellular Component
Molecular Function
WikiPathways Pathways
KEGG Pathways
SignaLink Pathways
Transcription Factor targets
Pfam Protein families
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Omics Database Category Type
GENE mirDB Predicted targets: score > 50
Predicted targets: score > 70
Predicted targets: score > 90
NIA Phenotypes
Reactome Pathways
BioCarta Pathways
NCI Pathways
SMPDB Pathways
PharmGKB Pathways
HG19 GRCh37 Cytogenic Bands
Chromosomes
HG19 GRCh38 Cytogenic Bands
Chromosomes
miRecords Predicted targets
miRTarBase Validated targets
PicTar Predicted targets
TargetScan Predicted miRNA families
DrugBank Validated targets
ConsensusPathDB ~ BioCarta
EHMN
HumanCyc
INOH
KEGG
NetPath
PharmGKB
PID
Reactome
Signalink
SMPDB
WikiPathways
miRWalk Predicted miRNA targets: 3-UTR
Predicted miRNA targets: 5-UTR
Predicted miRNA targets: CDS
Predicted miRNA targets: Promotor
Validated miRNA targets
Phosphosite Diseases
TRANSFAC Validated miRNA targets
Validated TF targets
Validated TF complex targets
Validated TF family targets
MIRNA HMDD Phenotypes
miRTarBase Targets
ProteEIN  Phosphosite Diseases
SMPDB Pathways
ConsensusPathDB  BioCarta
EHMN
HumanCyc
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D.2 LIST OF HUMAN CATEGORIES

Omics Database Category Type
Protein  ConsensusPathDB  INOH
KEGG
NetPath
PharmGKB
PID
Reactome
Signalink
SMPDB
WikiPathways
NCI Pathway Interaction Database
Pfam Protein families
Reactome Pathways
SNP GWAS catalogue
PheWAS catalogue
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