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A B S T R A C T

We need robots that learn from the environment by interact-
ing with it, and deduce models of causal relations and associ-
ations from these interactions. In this dissertation, we address
the particular problem of predicting object trajectories when
manipulating objects, using robot arm pushes. To solve this
problem we derive models which can describe the behavior of
objects put in motion. For a learning robot it is essential to
learn in an incremental and active way when new information
is coming in, and to do so without losing generalization and
without overfitting. First, we tackle this problem by estimating
the density of a sensorimotor space after a robot performs a
new action by using a modification of the incremental Growing
Neural Gas (RobustGNG) algorithm. RobustGNG performs a
space quantization which is robust to noise and overfitting is-
sues. Subsequently, we infer models useful for prediction of
object trajectories in terms of object poses. The same machin-
ery is useful for obtaining more coarse-grained predictions, for
instance categorizations of object behaviors. Last but not least,
these prediction models provide a qualitative and temporal de-
scription of the state space, so that they can eventually be used
in planning tasks. We infer cause-effect models by using Ro-
bustGNG’s results in a new version of the CrySSMEx algorithm
to generate substochastic finite-state machines.
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Z U S A M M E N FA S S U N G

Wir brauchen Roboter, die durch Interaktion mit der Umwelt
von dieser lernen und aus dieser Interaktion Modelle für Kausal-
relationen und -zusammenhänge ableiten können. In dieser
Dissertation wird das spezielle Problem der Vorhersage von
Objektbewegungen durch Manipulation von Objekten durch
Roboterarme behandelt. Um dieses Problem zu lösen, wer-
den Modelle hergeleitet, die das Verhalten von in Bewegung
versetzten Objekten beschreiben können. Für einen lernenden
Roboter ist es essentiell wichtig, schrittweise und aktiv zu ler-
nen wenn neue Informationen kommen, ohne dabei die Gener-
alisierung zu verlieren oder Überanpassung zu generieren. Das
Problem wird zunächst dadurch angegangen, dass die Dichte
eines sensomotorischen Raumes geschätzt wird, nachdem ein
Roboter eine neue Bewegung ausgeführt hat. Hierfür wird eine
Abwandlung des inkrementellen Growing Neural Gas (Robust-
GNG) Algorithmus verwendet. Die durch RobustGNG vorge-
nommene Quantisierung des Raumes ist unanfällig für Störun-
gen und Überanpassung. Daraufhin können Modelle abgeleitet
werden, die für die Vorhersage von Objektbewegungen bezüg-
lich ihrer Objektstellung nützlich sind. Derselbe Mechanismus
ist nützlich, wenn gröbere Vorhersagen getroffen werden sollen,
z.B. bei der Kategorisierung von Objektverhalten. Zu guter
Letzt bieten diese Vorhersagemodelle eine qualitative und zeit-
liche Beschreibung des Zustandsraumes, sodass sie schließlich
auch bei Planungsaufgaben verwendet werden können. Es wer-
den Ursache-Wirkungs-Modelle abgeleitet, indem die Ergeb-
nisse des Robust GNG in einer neuen Version des CrySSMEx-
Algorithmus verwendet werden, um substochastische Zustands-
maschinen zu erzeugen.
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Imagination is more important than knowledge.

Ich habe keine besondere Begabung, sondern bin nur leidenschaftlich
neugierig.

— Albert Einstein

Science may be described as the art of systematic over-simplification
– the art of discerning what we may with advantage omit.

— Karl Popper

Can machines think?

— Alan Turing
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1
I N T R O D U C T I O N

1.1 learning models for manipulation. state of

the art.

Robots need to obtain abilities for manipulating objects, if we
want them to carry out complex tasks which are easily accom-
plished by humans. They need to be able to solve tasks by
identifying physical object properties which are useful in some
context. For instance, a robot might want to move a box by slid-
ing it in order to grasp it properly and then serve its content in a
bowl, as exemplified in Fig. 1. Recognizing these properties im-
plies that a robot should be able to predict the consequences of
certain actions applied to different objects in the environment.
Predicting is a consequence of previous knowledge acquisition.
One possible approach is the encoding of knowledge by means
of predefined rules, which is tedious work given the variety
and complexity of features for objects of any kind that we find
in the world. Moreover, it is impossible to do this robustly,
flexibly and scalably. Therefore, the approach of learning by
interacting with the environment is an evident solution.

We consider here the problem of predicting consequences by
applying a restricted set of actions to simple geometrical objects.
We have developed novel machine learning algorithms (Robust
Growing Neural Gas - RobustGNG and improved Crystalliz-
ing Substochastic Sequential Machine Extractor - CrySSMEx),
which are able to accurately predict an object pose, given some
motor action performed by the robot arm on the object and pre-
vious object poses. Prediction is in turn essential for a robot to
plan and execute actions in order to achieve some desired goal
in the context of solving some task. For example, a robot might
predict that if it pushes an object forward and then laterally,
the object will then be located in an intended position for it to
grasp.

1



2 introduction

In this dissertation, the prediction models are constructed in
such a way that they can be further applied for these planning
or control tasks, because they can infer a set of rules or causal re-
lationships among different features in the environment across
time. Markov Decision Processes (MDPs) are a well established
planning framework which suits our models. However, we only
test the prediction ability of these machines, and leave the eval-
uation of planning for future research.

Figure 1: The robot pushes an object in order to grasp it from the
edge of the sideboard. Photo: Humanoids and Intelligence
Systems Lab/Karlsruhe Institute for Technology [46]

The work presented here is inspired by the fact that humans
and animals in general are able to predict and learn from a dy-
namic environment. Theories of cognitive development like the
theory of affordances [17] attempt to explain how creatures are
able to acquire sensorimotor skills when they are faced with the
different features found in the environment. For instance, sur-
faces afford posture, locomotion, collision, manipulation, and
in general behavior [17]. Moreover, affordances of objects refer
to the perceived and actual properties of objects which deter-
mine how things could possibly be used [44]. It follows from
the above facts that intelligent creatures should then properly
predict the consequences of actions on a surface given their own
body configuration. After this has been accomplished, they
need to be able to plan actions on the basis of newly gathered
experience. For our purposes, we consider here a special case
of affordance learning in robots, namely that of predicting con-
sequences of pushing simple geometrical objects. Pushing is
a useful type of interaction to consider, as already exemplified
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in Fig. 1. Moreover, it can be helpful for identifying dynamical
properties of objects in an unknown environment.

Exploring the surrounding environment in an efficient way is
a key issue for dealing with computational complexity issues.
Robots are faced with many features in the environment, which
they will have to process and compress in an efficient way. Tak-
ing into account the problem we are tackling in this dissertation,
we propose several new methods which aim to reduce the com-
putational complexity with respect to the selection of actions
required for learning about pushing actions. For this purpose,
we argue that we need robots that extend their knowledge in
an incremental, online and active fashion. In robotic contexts,
applying these learning approaches is challenging, because one
needs to address issues like robustness to noisy environments,
overtraining and high dimensionality.

During and/or after these exploratory phases, it is essential
that a robot with manipulation skills induces models which
could be useful for carrying out subsequent manipulation tasks.
Our approach addresses this issue by building models or meth-
ods useful for planning, after the exploratory phase.

Online and active learning strategies have been applied and
studied recently in robotic problems. Online and active den-
sity estimation methods, e.g. based on kernel methods, have
been studied in the context of discriminative models for object
classification [34, 59]. In robotic manipulation, exploratory and
active learning have been applied for the online acquisition of
grasping skills [32, 35]. For instance, in [32] an active rein-
forcement learning approach is applied to enrich object repre-
sentations and object-specific grasp affordances. In [35], an ex-
ploratory developmental learning method is used to first con-
struct object models and then grasp densities.

Although more focused on aspects more relevant for socially
guided learning, the work in [68] looks into exploratory be-
havior for robots with social skills but limited manipulation
skills. They consider socially guided exploration for solving
simple tasks. In this setting (see Fig. 2), the authors consider
self-motivated exploration of a limited set of possible actions,
in a similar way as in [47]. The robot learns the names of
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three buttons and is motivated by a tutor to turn them all
on. Self-motivated exploration can have different motivation

Figure 2: Leonardo robot in a learning scenario with three buttons
and a human tutor [68].

sources. In [68], an activity drive, a novelty drive and a mastery
drive are self-motivated exploratory drives. While performing
exploratory actions, the robot also performs actions aiming to
solve the current task. For these purposes, reinforcement learn-
ing strategies are used, specifically task option policies. The
main drawback of the work is that the set of states is prede-
fined for the task, so that the objective is to learn the policy
for the task given a set of states and actions. In contrast, in our
work the learning drive of the robot can be defined as a mastery
and self-motivated drive, because the robot selects actions with
the purpose of reducing the prediction error. Furthermore, our
work presents an approach for robot learning where the states
and actions are not explicitly given a priori, in a similar way as
in [42]. In this simulated scenario (Fig. 3), the robot can grasp
a block if the hand and block are colliding. In addition, the
agent can observe two floating objects which it cannot interact
with, to test the method with distractor objects. The authors
designed a system which can discover qualitative states and
actions, based on motor, magnitude and direction of change
variables. After this discretising step, rules (models of causal re-
lationships) are learned by using Dynamic Bayesian Networks
(DBNs). The robot learns to move the block, push the block
to the floor and pick up the block. The DBNs principles are
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also similar to the probabilistic models we apply in our meth-
ods, where dynamic state/action pairs are the building blocks
of these prediction models.

Figure 3: Simulated robotic scenario for qualitative learning [42]

The problem of predicting object trajectories after a rigid
body pushes it has already been addressed in previous work.
In [30, 29], the authors applied offline probabilistic models for
density estimation of object poses, specifically Gaussian ker-
nel density methods. A completely different approach with
no learning phase was adopted in [31], where the physics prin-
ciple of mimimum energy was used. In contrast, our work
aims to apply incremental, active and online techniques for
learning. We also focus on learning models which are poten-
tially useful for planning, as stated above. For that purpose, we
apply the CrySSMEx algorithm [25] for extracting rules about
causal relationships of action/outcome pairs. In [58], the au-
thors present a learning system which is conceptually simi-
lar to our approach. A discrete set of actions is predefined
and a probability model of displacement is updated after the
robot performs an action. Then, a task space planner based
on Rapidly-exploring Random Trees is used to solve different
manipulation tasks.

The problem we consider here is closely related to previous
work on affordance learning [62, 47, 72, 51, 3, 32, 35, 24], among
others. In [72], the robotic arms perform some random actions
such as pushing or lifting which are mapped to visual features
during a learning phase. Then, by implementing a planning
framework, these affordance relations can be used for solving
different tasks, for instance bringing an object to a target po-
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sition. [24] describes a system specialized for pushing and
pulling actions for positioning objects, which can learn and con-
trol these behaviours at each time step.

In [47], the robots are more autonomous and enter into dif-
ferent developmental stages on the basis of a learning progress
measure, which enables the robot to decide what action to per-
form next in the presence of different objects, emulating a curi-
ous agent. The authors demonstrate that the agent “discovers”
affordances while it starts to perform certain actions repeatedly.
This approach is related to active learning, in the sense that an
agent needs to choose a learning example so that the informa-
tion gain is maximized, thus minimizing the amount of exam-
ples needed. From now on, we will simply call these learning
strategies active learning.

In [51], the objective was to extract visual features from ran-
dom pushing actions which can be used for obtaining catego-
rizations of affordances via unsupervised learning. In the field
of cognitive robotics, a related theory has also been developed
in recent years, called object-action complexes (OACs) [36]. OACs
aim at providing a universal representation enabling efficient
planning and execution of actions in different levels of a cogni-
tive architecture [36]. OACs combine search capabilities based
on theorem-proving rules and the object and situation oriented
concept of affordance, plus the logical framework of the situa-
tion calculus for planning [36].

Affordances are also strongly related to the emergence of con-
cepts [3]. A new behavior observed in an object or a new way
to adapt the body and apply it to an object to achieve some goal
might lead to new linguistic descriptions of these situations. As
we mentioned above, we use probabilistic methods to discrimi-
nate among different object behaviors given some actions.

The learning processes presented above are elements of the-
ories of Developmental or Cognitive Robotics. Different learn-
ing stages are necessary for a robot to accomplish a certain goal.
Motor skills influence the ability of a robot to express its knowl-
edge about an action and, at the same time, language through
communication can influence the way motor actions are per-
formed. We focus our investigation in the central role that
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plays self-motivated exploration in this developmental learning
chain. This is an essential precondition for further skills like
verbal communication and the achievement of common goals
when robots and humans are interacting. For this purpose, the
robots need to acquire models which are useful for planning
and concept acquisition that can be incorporated in an interac-
tive setting.

Developmental Robotics is a newly established field. “The
basic research assumption of this field is that true intelligence
in natural and (possibly) artificial systems presupposes three
crucial properties: embodiment of the system, situatedness in a
physical or social environment, and a prolonged epigenetic de-
velopmental process through which increasingly more complex
cognitive structures emerge in the system as a result of interac-
tions with the physical or social environment” [63]. Develop-
mental Robotics, according to [63], emerged partly as a need
for having robots with close to human levels of intelligence.
The robotic architectures did not scale up due to the amount of
pre-programming and knowledge engineering that are needed
for addressing the complexity of robotic tasks. Developmen-
tal approaches are inspired by developmental psychology [47].
In [47], two characteristics of child development inspire the ap-
plication of resembling techniques for robots:

• Development is progressive and incremental. “Children
undergo a developmental sequence during which a new
skill is only acquired when the associated cognitive and
morphological structures are ready.” [47].

• Developmental learning presupposes it is autonomous and
active. Children decide what tasks are more interesting,
even when parents help by scaffolding the infant environ-
ment.

1.2 contributions of this dissertation

We set up learning robotic scenarios involving a robotic arm
and a geometrical object to address the problem of predicting
an object pose, given a motor action performed on an aspect
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of the object, and previous object poses. To solve this problem,
we apply learning methods which act upon features from vi-
sion, simulation and manipulation systems. These features are
basically object poses, including finger effector poses, which
together define sensorimotor spaces. By performing pushing
actions on the object, the robot will be able to construct predic-
tion models from these interactions by means of learning algo-
rithms. In order to discretize the feature spaces, we tackle the
problem of density estimation (quantization) of sensorimotor
spaces in an interactive environment. Additionally, we tested
the classification ability of these prediction models to discrimi-
nate among a set of abstract object behaviors.

In this dissertation, we improved and tested new methods
for dealing with these learning problems. They are briefly sum-
marized in the following list:

• We developed incremental and active quantization meth-
ods for density estimation of sensorimotor spaces applied
to robot learning scenarios. In this way, following our rea-
soning, we aim to present new strategies leading to on-
line learning and efficient ways for selecting actions. For
these purposes, we designed and applied an improved
version of the incremental learning algorithm Growing
Neural Gas (RobustGNG).

• We developed and improved the CrySSMEx method to
perform an automatic construction of models which ex-
hibit the dynamics of robot/object interactions as proba-
bilistic finite state machines. These models are useful for
planning, but a proof of this is still future work.

• We prove that these probabilistic finite state models are
useful for classification of more abstract behavior patterns,
i.e., for concept learning.

These three aspects of learning rely on the assumption that
we can derive state space models by using information-theoretic
mechanisms to reduce the dimensionality of the sensorimotor
state space. On the one hand, the RobustGNG algorithm uses
novel information-theoretic algorithmic techniques (based on
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Minimum Description Length) to infer a state space without
specifying a maximum number of iterations or handcrafted
stopping criteria. This is useful for life-long incremental learn-
ing, which is a precondition for developmental robotics. On
the other hand, the improved CrySSMEx is also an information-
theoretic method which applies conditional entropy measures
to derive a dynamic probabilistic model of states and transi-
tions which can accurately but minimally describe the sensori-
motor space. Furthermore, it is useful for deriving models at
different (e.g. higher) levels of abstraction, which is useful for
concept learning.

With respect to previous strongly related works [30, 29], where
offline probabilistic models for density estimation of object poses
are used, our work makes progress in the direction of infer-
ence of dynamic models based on probabilistic state machines,
which is a precondition for planning. Moreover, as already
mentioned, our work also focuses on incremental and active
approaches for learning, which are preconditions for develop-
mental robotics. Last but not least, the accuracy of these mod-
els can be relaxed to obtain coarse-grained models for catego-
rization of object behaviours (concept learning methodology),
which is also an additional layer upon the learning approaches
we mentioned before.

The robot interacts with simple geometrical objects via a push-
ing action. After performing an action, a quantization function
for density estimation is applied to a representation of the sen-
sorimotor space in an incremental manner. In contrast to [30],
which applied an offline method for density estimation of ob-
ject poses, here we additionally apply incremental and active
methods. These methods are described in Chapter 4. Moreover,
the construction of qualitative models which can keep track of
the temporal causality for long data sequences is an additional
contribution of our work (see Chapter 5).

Basically, sequences of finger and object poses (rigid body
transformations) are stored as training instances of the senso-
rimotor space. The functions are gradually refined, after new
training sequences are gathered. The actions selected by the
robot are possibly chosen by means of an active procedure ac-
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cording to an information-theoretic error measure. Then, the
quantized space is split into two subspaces or regions after
some iterations. This divide-and-conquer approach accelerates
the convergence and induces more simple and tractable mod-
els for each region. We present a modification of the Growing
Neural Gas algorithm [16, 49, 50, 53] for quantization which is
robust for finding the right clusters in the presence of noise.
In our algorithm, some modifications are intended to trans-
form the algorithm towards a completely online procedure. In
Fig. 4 the flow of information when quantizing sensorimotor
sequences is presented. The diagram corresponds to both incre-
mental and active cases, where the former corresponds to the
random selection of actions.

Quantizer 1

Quantizer N

Set of quantizers
specialized
in regions

Model efficiency or
quantization error

Learn

Model efficiency or
quantization error

.

.

.

Intrinsic reward
Decision
module

Calculate maximum

Select action with max reward
or random action

Figure 4: Quantization schema. Quantization of input spaces via ac-
tive sample selection.

RobustGNG is robust to noisy data. This is particularly im-
portant for our problem, specially in the context of real sce-
narios, where the information of object pose is derived from
an object tracker, which produces a noisy ground truth. There
is also uncertainty in the pose measurements from the robotic
arm.

When the quantization process finishes, we employ an offline
mechanism for constructing probabilistic models of action/ob-



1.2 contributions of this dissertation 11

ject complexes that makes use of the quantization functions.
They have the potential to be used for planning, since we obtain
a qualitative representation of the sensorimotor space which
encodes action/behavior instances. This method is based on
the CrySSMEx algorithm [25, 53] for extracting substochastic se-
quential machines (SSMs) from dynamical systems. The robot
predicts the object behavior in terms of trajectory information
contained in sequences of object poses, given an arm pose and a
certain action, represented as the target goal of the robot finger.
The probabilistic models that we obtain are substochastic finite-
state models. Moreover, their graph-based nature encodes the
probabilistic transitions that lead to subsequent states, which is
particularly useful in planning. In the experiments we present
in this dissertation, the state space encompasses geometrical
representations of object poses in 3-dimensional space.

The substochastic machines are represented as a special case
of Mealy or Moore machines, which also contain probabilistic
information. These machines allow us to encode a quantization
of the state space, and to encode input functions and output
functions, which are quantization functions. In this problem,
input functions are a quantization mechanism applied to the
representation of the sensorimotor space as mentioned above.
They encode a combination of object/finger pose information.
On the other hand, output functions may be used in different
manners, depending on the discretization degree that we ex-
pect in the probabilistic finite-state machine. More precisely, if
the objective were to accurately predict the trajectories of ob-
jects (in terms of object poses), given some action and some ob-
ject pose, we could apply an output function that would act as
a probabilistic regression, as long as we represent object poses
at subsequent states in this output function.

In our work, we did not use this kind of output function,
but rather a quantization mechanism on vectors of object trans-
formations, to further reduce the space complexity of output
quantizers. This output representation also takes advantage of
the information-theoretic learning properties of CrySSMEx and
allows for prediction of object trajectories. On the contrary, if
we want to group state clusters on the basis of more coarse-
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grained sets (more abstract patterns), we might want to use
other quantization functions. In our experiments, we obtained
classifications for three different types of object behaviors by
means of an alternative output quantization. We only evalu-
ated these coarse-grained classifications in simulated scenarios
to avoid additional complexity introduced by noisy data. A
general learning schema is presented in Fig. 5, where different
colors are used to identify space types.

Figure 5: Learning schema. Quantization of input, output and state
spaces and division of the spaces into regions.

Our learning approaches can also be discriminated in three
models: offline, online, incremental and active learning. The
information flow depending on which of these models is used
is illustrated in Fig. 6.

Our learning scenarios involve a robotic arm, a polyflap (3-
D object, cf. Chapter 3) in the simulated scenario and a box
in the real scenario, as illustrated in Fig. 7. We used in our
experiments only one object due to limited time and resource
constraints such as hardware limitations but also to easily il-
lustrate algorithmic issues associated to incremental and active
learning, as we explain later in the experimental results. How-
ever, experiments with different objects and different shapes is
an obvious extension of our research.



1.3 overview 13

Offline. N samples
in one region

Incremental.
Update
Robust GNG

Online. 1 sample
in region r

Active. 1 sample
in region r

Offline.
N samples
in region r

Run
CrySSMEx
for concept
prediction

Run
CrySSMEx
for trajectory
prediction

Figure 6: Information flow regarding different learning models.

Figure 7: Learning scenario where a Katana robot pushes a tea box.

1.3 overview

This dissertation is organized as follows. In Chapter 2, we re-
view related work. In Chapter 3 we describe the features used
in our learning experiments. In Chapter 4, we report on a study
about the quantization mechanisms implemented and their ap-
plication to synthetic data sets. Afterwards, we explain the pro-
cess of quantizing sensorimotor spaces in a pushing scenario.
In Chapter 5 we describe the process of inducing substochastic
sequential machines. In Chapter 6 we analyze experimental re-
sults for prediction and classification after inducing SSMs. In
Chapter 7 we close this dissertation with conclusions and dis-
cussion.





2
B A C K G R O U N D

In this chapter we will discuss several topics which are rele-
vant for the problem stated in the previous chapter. The so-
lutions implemented in this dissertation are inspired or based
on the subjects presented below. In the first section (2.1) we
explain approaches for learning inspired by neuroscientific re-
search, namely developmental robotics and active learning, es-
sential for designing autonomous intelligent robots. Section 2.2
presents relevant literature about concept learning, i.e., meth-
ods to find out abstract patterns which are meaningful for hu-
mans from learning features. In Section 2.3 we describe meta-
learning aspects to categorize and contextualize the different
learning strategies used in this work in a broad sense. Next, in
Section 2.4 we present theoretical aspects of quantization strate-
gies, which is one of the key features of our learning algorithms
for compressing information. Then, in Section 2.5 we describe
approaches for sequence learning which are related to the ex-
traction of probabilistic finite state models for dynamic inter-
active systems. Finally, in Section 2.6 we present preliminary
results of our work, applying different but related strategies
for solving the problems we are tackling.

2.1 developmental robotics and active learning

As we mentioned in the previous chapter, this dissertation fol-
lows research directions led by several works in the Develop-
mental Robotics field.

In [63], the author proposes five basic principles that describe
the field of developmental robotics:

1. Verification: “An AI system can create and maintain knowl-
edge only to the extent that it can verify that knowledge

15
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itself” [63]. Thus, learning does not happen without veri-
fication.

2. Embodiment: since verification does not happen in the ab-
sence of actions, the robot must have a means of affecting
the world, i.e., it must have a body.

3. Subjectivity: since a robot autonomously learns and veri-
fies its knowledge, learning is a function of what the robot
has experienced through its own sensors.

4. Grounding: successful verification, i.e. grounding, is achieved
through the coupling of actions and their observable out-
comes. It consists of act-outcome (or behaviour-observation)
pairs.

5. Incremental development: exploration for learning is guided
by an attention mechanism that can decide what parts of
the environment are still interesting, i.e., when the levels
of verifiability are still not perfect.

In the next paragraphs we briefly introduce some develop-
mental robotics scenarios taken from different sources which
follow these principles in general terms. In our experiments,
the verification and grounding principles are considered dur-
ing testing (estimation, prediction or classification ability) of
the learning algorithms, as we will see in Chapters 4 and 5.
Incremental development is achieved by applying incremental
and active density estimation methods of sensorimotor spaces,
and the construction of models for prediction of behavior/ob-
servation tuples.

In [68], a robotic agent with social skills but limited manipu-
lation skills uses socially guided exploration for solving simple
tasks by applying the following strategies (see Fig. 2):

• Coupled interaction with a human teacher, where the teacher
is able to infer the current learning state of the robot
through robot demonstrations of the current task and non-
verbal social cues like emotions.

• Communication or feedback from the teacher to attain the
goal of the current task.
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The robot is equipped with a self-motivated exploration sys-
tem and a limited set of actions. Self-motivated exploration
can have different motivation sources. The following drives for
a robot were identified in [68]:

• Activity drive, which reflects the current level of activity.

• Novelty drive, measuring how novel recent events have
been.

• Mastery drive, measuring the level of confidence of the
current system state.

The selection of an action is not only driven by one of the
aforementioned motivation sources but also from task-relevant
actions. In that way, the robot and the tutor are expected to
work as a team to achieve a common goal. The mechanism for
learning how to solve a task is based on reinforcement learn-
ing strategies, in particular task option policies [68]. The name
was chosen by the authors to reflect the similarities with the
well-known options framework from the reinforcement learning
literature [67].

In contrast, in [47] a more autonomous agent performs ac-
tions on the basis of an intrinsic motivation system inspired
by psychological and neuroscientific discoveries, as seen at the
beginning of this section. The authors demonstrate experimen-
tally that the robot enters into different stages of development
during exploration steps where actions are selected according
to a measure of learning progress. In that way, the robot carries
out novel actions and seems to be curious, because it mostly se-
lects actions which maximize the probability of increasing the
learning progress calculated from previous and current error
estimates in predicting the action. In Fig. 8 a setup of this
playground experiment is shown. This approach is inspired by
reinforcement learning techniques where a reward for perform-
ing an action exists [73, 66]. In this case, however, the reward is
intrinsic (self-motivated). This algorithm is called Intelligent
Adaptive Curiosity (IAC). Previous works had implemented
agents with artificial curiosity and novelty drives, based pri-
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marily on reinforcement learning approaches [57, 69, 28, 13].

Figure 8: The playground experiment setup [47].

The work presented in this dissertation is also influenced by
developmental strategies for evolving the prediction machin-
ery of the robot based on IAC. In particular, [47] presented
an experimentally rigorous analysis about the effects of intro-
ducing an intrinsic reward for selecting actions. They did not
implement more complex learning methods as in [67] in order
to reduce the complexity of the problem and focus only on
analyzing the implications of such a reward in a developmen-
tal learning phase. Moreover, given the high dimensionality
and complexity of real robotic environments, implementing re-
inforcement techniques remains a big challenge.

A nearest-neighbor algorithm was implemented for predic-
tion. A sensorimotor context [47] is defined as a vector con-
catenation of the sensory S(t) and motor M(t) inputs at time
t (SM(t)). Sensorimotor regions are defined from the sensori-
motor context and the predicted next step sensory input. Thus,
an exclusive set of instances 〈SM(t), S(t+ 1)〉 are stored for a
certain region. In each region, a corresponding learning expert
is specialized. At the beginning of the developmental learning
phase, there is only one region and it is recursively divided
primarily on the basis of a variance criterion among the corre-
sponding instances. During the learning process, the robot oc-
casionally focuses on interesting and predictable events, such
as biting or pushing objects. These events are correlated to the
increase in learning progress at a certain learning step. In [47]
the authors state that IAC could be applied for slowly learning
machines like backpropagation neural networks. Our prelimi-
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nary experiments [54] implemented an adapted version of IAC
where a recurrent neural network is employed for prediction
(see Section 2.6).

As pointed out in [47], the strategies for selecting actions ef-
ficiently are closely related to the field of active learning [12]
in machine learning terminology, where the objective is to max-
imize the information gain when selecting the next example
and thus reduce the amount of instances needed for concept
learning.

Developmental phases can also be distinguished from the
work in [42]. Their approach for robot learning takes place in
a simulated scenario with individual objects where the states
and actions are not defined explicitly (see Fig. 3). A system
which can find out qualitative states and actions is designed
instead. Firstly, the agent selects random motor values, i.e, the
agent “motor babbles” for many iterations, after which it learns
to predict and control the variables of the environment, defined
as motor, magnitude and direction of change variables. Land-
marks of variables which define discrete states help find discrete
events. Candidate landmarks are for instance discovered by an
information-theoretic criterion which assesses the information
gain among events. The relationships among events are used
to learn rules (models of causal relationships) encoding actions
and states by using dynamic Bayesian networks (DBNs) [42].
Before learning and during qualitative state inference, the agent
usually has to decide which actions are relevant, in which case
the active learning method [47] described above is employed.
The models learned by the DBNs are then transformed into
Markov decision processes (MDPs) to be used for planning
by using the options framework, so that robots learn a given
task [42].

A developmental approach was also followed in [32] for ac-
quiring object and grasping knowledge. Different types of ob-
jects are considered, as seen in Fig. 9. In that work, the robot
performs exploratory actions and refines its models gradually,
during a developmental learning process with different stages.
In the first stage, the robot learns visual models, and in the
second it learns object-specific grasp affordances [32]. A third
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stage involves the use of the acquired competences to execute
a plan for grasping. More concretely, a set of actions aimed for
grasping are triggered by specific 3-D feature sets in the first
stage, storing in an episodic memory the outcome (failure or
success in grasping) and associated relationships among visual
features and proprioceptive information (grasping affordance).
At the end of this stage, this set of features represent the object-
ness or object shape. Then, in the second stage, a pose estima-
tion algorithm, combined with grasping affordances obtained
beforehand, is useful for obtaining a grasping memory associ-
ated to an object. Finally, planning with grounded objects and
grasps is carried out making use of the OAC formalism [48].

Figure 9: Experimental setup for grasping through exploration [32].

2.2 concept learning

Previous work on affordances learning [55] has presented a sur-
vey on formalizing the concept of affordance and proposed an
extended definition:

Definition 1 An affordance is an acquired relation between an ac-
quired effect and a tuple (entity, behavior) such that when the agent
applies the behavior on the entity, the effect is generated. An affor-
dance is then a relation (effect, (entity, behavior)).

In [72], the authors implement the above formalism. The
robot interacts with objects and memorizes the triples obtained
to be further used in a planning framework. The work in [3]
shows the relationship among object concepts and verb con-
cepts with affordance relations that a robot acquires through
interaction with objects. They also use the abovementioned
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formalization and perform two alternative methods for catego-
rization. First, they found clusters in a space 〈e1, . . . , ei . . . , en〉,
where ei is the predicted effect of the ith behavior on the object.
Secondly, a clustering algorithm was applied to the effects of
the behaviors, by applying a feature selection method. For in-
stance, a system learns the behavior “push left” and discovers
that the entities that have led to the effect category “pushed left”
and “rolled left” are distinguishable according to some feature
element f1 [3].

In [51, 52] a similar approach for recognizing affordances was
derived. The experimental setup consists of a tabletop scenario
with a robotic arm which interacts with pushing actions on flat-
surfaced and curve-surfaced objects (see Fig. 10). Visual object
features like shape features or global motion features are ob-
tained in order to train an unsupervised clustering algorithm in
the space of features. Then, either unsupervised or supervised
vector quantization algorithms such as Learning Vector Quanti-
zation (LVQ) are used for the classification of affordances such
as rolling and non-rolling.

Figure 10: Affordance learning scenario [51, 52]

It is clear that concept learning or affordance learning has a
tight connection with the pattern recognition framework, whether
done in a supervised or unsupervised manner. In our work, we
explore in Chapter 5 a pattern recognition process involving
the dynamics of object behaviors, which was not considered
in the work described above. We argue that our approach al-
lows the construction of models of causal relationships which
are useful for analyzing and understanding complex dynam-
ical systems, without the need for predefining specific visual
feature sets. Moreover, as we state in Chapter 1, these models
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can then be useful for planning (control) by querying them to
verify the acquired sensorimotor concepts in an efficient way,
since the rules governing the dynamical systems are verifiable
in the extracted models.

The object-action complexes (OAC) framework [36] provides a
similar theory which makes use of the concept of affordance
which enables planning and execution of actions. In this for-
malization, the OAC theory defines affordances more gener-
ally as state-transition functions suited to prediction. An agent
performing an action to achieve some effect will have to know
about the attributes necessary to execute the action. More for-
mally,

Definition 2 An OAC is a triplet (id, T ,M), where id is a unique
identifier, T : S → S is a prediction function where S is a global
attribute space and M a statistical measure representing the success
in prediction of the OAC over the past.

This framework has been used for the acquisition of grasp
and push affordances. In the case of grasping, a state is defined
as a stable grasp, a collision, a non-successful grasp or a non-
stable grasp. For pushing, initial and final object poses after a
pushing action define the states. In comparison with our work
on pushing actions (Chapters 4 and 5), we also consider infor-
mation about behaviour dynamics, in contrast to the framework
presented above, where the state space is discretized by the pre-
diction function defining the system states.

2.3 metalearning

2.3.1 Learning methods

In robot learning it is essential to come up with learning models
which can be immediately (incrementally) updated after new
information arrives. This precondition imposes requirements
such as proper generalizations (robustness) and processing effi-
ciency.
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Here we follow the distinction made by [18] around different
learning methods, extending it with the concepts of active and
passive learning [69] (see Table 1).

Learning Method Description

Batch After initializing the model, the training data are completely processed
before the model is updated. This is repeated until a certain criterion is
met. An iteration is also called an epoch.

Incremental After initializing the model, in each iteration only one training example
is processed and then the model is updated.

Offline All the data are given in advance. The stored samples can be accessed
repeatedly. Therefore, batch learning is always offline.

Online Each training sample is discarded after it has been processed and the
model is updated. Online learning is always incremental but incremen-
tal learning can be done online or offline.

Passive A stream of training data is generated by the environment according to
some unknown probability distribution. All the above methods can be
applied for passive learning.

Active In contrast to passive learning, where the learning method is a pure
observer, in active learning the learner has the ability to interact with the
environment, in order to generate new samples. More specifically, the
learning method can execute actions which generate new training data.
Thus, here it is important to come up with measures of efficiency for
the selection of actions. Since the learners generate the samples, this is
another case of incremental learning (which could be performed online
or offline).

Table 1: Summary of learning methods.

In our work, apart from offline approaches to learning, we
also focus on incremental and active learning methods.

2.3.2 Lifelong learning

During their entire lifespan, human beings are able to learn
and face different learning problems. They have to acquire
different learning skills to achieve goals. Learning patterns,
communication, logical reasoning and language, among oth-
ers, are different aspects of a lifelong learning process [69].
There are opportunities to transfer knowledge between learn-
ing tasks. For instance, humans can extract relevant features
to generalize a complex target concept well even if the number
of potentially relevant features is huge. This ability relies on
previously learned knowledge, acquired earlier in the lifetime
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of an individual [69]. Thus, concept learning, knowledge trans-
fer and incremental learning are also elements of this lifelong
learning context. This formalization of learning has similarities
to the developmental learning approach in the sense that dif-
ferent learning tasks and transfer of knowledge between tasks
arise during and after developmental phases.

2.4 quantization

2.4.1 Terminology and Definitions

Robots need to cope with large amounts of information which
must be compressed in an efficient way. The process of infer-
ring the underlying structure of a data set can be approached in
different ways. Different terminology and methods have been
also applied in order to obtain qualitative representations of
data sets.

One particular problem is the grouping of similar data items
from a set of input vectors x in clusters, called clustering. This
problem is strongly related to density estimation, which aims to
determine the distribution of data within the input space [6, 21].
In these tasks, there is no information available about the target
values or classes associated to some cluster.

Clustering is a term originating in the pattern recognition lit-
erature. It is also called unsupervised classification. The prob-
lem in clustering is to group a given collection of unlabeled
patterns into meaningful clusters, in contrast to supervised clas-
sification, where the given (labeled) patterns are used to learn
the descriptions of classes which in turn are used to label a
new pattern. In clustering, labels are associated with clusters
but these category labels are data driven (obtained solely from
the data) [26].

A clustering task usually comprises four main steps: a pat-
tern representation step which might include feature extraction
or selection, the definition of a pattern proximity measure ap-
propriate to the data domain, clustering and data abstraction if
needed [26]. Fuzzy clustering techniques assign to an input pat-
tern a fractional membership degree in each cluster, in contrast
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to hard clustering where a specific class label is assigned to each
pattern, identifying a class [26]. To solve the clustering problem,
different machine learning and pattern recognition algorithms
have been employed, including fuzzy clustering, neural net-
works, kernel density estimation, nearest-neighbors, principal
component analysis and self-organizing maps, among others.

On the other hand, the term quantization originated in the
signal processing literature as a process of discretizing signals.
In [19] it is regarded as a tool for clustering or cluster analysis
for quantization of empirical probability measures. As a math-
ematical topic it can be defined as follows [19]:

Definition 3 “Quantization for probability distributions concerns
the best approximation of a d-dimensional probability distribution P
by a discrete probability with a given number n of supporting points
or in other words, the best approximation of a d-dimensional random
vector X with distribution P by a random vector Y with at most n
values in its image.”

Finally, the term density estimation is a statistical concept.
The problem refers to the modeling of a probability distribu-
tion p(x) of a random variable x, given a finite set x1, . . . , xN of
observations [6]. A common probability distribution used for
density estimation is the Gaussian distribution. Introducing
discrete latent variables enables the modeling of more complex
multimodal distributions in the form of mixtures of Gaussians.
A discrete latent variable may have discrete binary values rep-
resenting the relationship between a data point xn and a latent
variable zk associated to the component k of the Gaussian mix-
ture. A well-known method for finding maximum likelihood
solutions for models with latent variables is the expectation-
maximization (EM) algorithm [6]. Whereas in hard clustering
algorithms each data point is associated uniquely with one clus-
ter, the EM algorithm makes a soft assignment based on the
posterior distribution of latent variables, given the observed
variables and distribution parameters [6].
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2.4.2 Model Selection

The problems above mentioned concern the ability of a learning
machine to find a good explanation for the distribution of a
data set. In this work, we use information-theoretic techniques
for finding proper models or hypotheses. A good model is
one that avoids overfitting, offering a good generalization for,
e.g., prediction, pattern classification and parameter estimation.
Finding this model is known as the model selection problem.

Overfitting occurs when a model consists of many parame-
ters which fit the known data set well, but it does not offer
good prediction performance. This absence of good generaliza-
tion ability (robustness) is an important issue in inductive and
statistical inference [22]. In Bayesian inference [6], the overfit-
ting associated with maximum likelihood, which is a common
frequentist estimator, can be avoided by using a Bayesian ap-
proach involving probabilities to represent uncertainty in the
choice of a model. Thereafter, models are compared directly
on the training data. Another common approach is the use of
cross-validation, where some proportion of the data set is used
for training while using all data to assess performance. Other
information-theoretic approaches like the Bayesian information
criterion have been applied to correct for the bias of maximum
likelihood [6].

In order to compare different explanations (quantizers) for
our data sets, we employ the information-theoretic mechanism
called the Minimum description length (MDL) principle. This
inductive inference method provides a generic solution to the
model selection problem, and, more generally, to the overfitting
problem. MDL is based on the following insight: any regularity
in the data can be used to compress the data, i.e., to describe it
using fewer symbols than the number of symbols needed to de-
scribe the data literally [22]. This idea leads to a formalization
of a theory of inductive inference with the following properties,
among others [22]:
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• Occam’s razor. MDL chooses a model that trades off good-
ness-of-fit on the observed data with “complexity” or “rich-
ness” of the model.

• No overfitting. MDL methods automatically and inher-
ently protect against overfitting and can be used to esti-
mate both the parameters and structure of a model.

• Predictive interpretation. Data compression is formally equiv-
alent to a form of probabilistic prediction. Thus, MDL
methods search for a model with good predictive perfor-
mance on unseen data.

MDL has been used for model selection, prediction, param-
eter selection, parametric and non-parametric density estima-
tion, and in general in every type of inductive inference task
such as denoising, similarity analysis and clustering, outlier de-
tection and transduction [22].

For robust vector quantization, the MDL principle was used
in [4]. The problem of vector quantization is defined there as
follows [4]:

Definition 4 Given a finite data set S = {x1, . . . , xn}, xi ∈ Rd with
d ∈ N, where xi are independently and identically distributed (iid)
according to some probability distribution p(x), find a set of refer-
ence vectors A = {c1, . . . , cm}, ci ∈ Rd such that a given distortion
measure (i.e. expected quantization error) E(p(x),A) is minimized.

Since the only information available is the data set S, the
objective is to minimize the expected quantization error

E(S,A) =
m∑
i=1

∑
x∈Si

‖x − ci‖2, (1)

where Si = {x ∈ Rd|i = arg minj∈{1,...,m} ‖x − ci‖} is the Voronoi
region of a vector ci (cf. Fig. 11). This minimization is achieved
by adequately positioning the vectors ci [4].

The authors approach the problem as a minimization of the
description of the training data S. Usually, a description is
given in terms of a coding system [22]. In the formalization
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Si

Figure 11: Voronoi region Si.

given by [4], the goal is to find a set of reference vectors1 A to
encode S optimally. Some data vectors O are considered out-
liers and another set as inliers I, thus I = S−O. Using A, the
length of encoding S is then given by [4]:

• The length of encoding the reference vectors A, L(A).

• The length of encoding I using A, which is subdivided
into two costs:

– The length of encoding the index of A to which the
vectors in I have been assigned, L(I(A)).

– The length of encoding the residual errors, L(ε(IA))

• The length of encoding the outliers, L(O).

Thus, the cost of encoding S using A is given by [4]

L(S(A)) = L(A) + L(I(A)) + L(ε(IA)) + L(O). (2)

The goal is then to minimize L(S(A)), i.e., determine O, m and
ci, 1 6 i 6 m such that L(S(A)) is minimal. Assuming that
these quantities are specified with a finite precision η and that
reference vectors are represented by K bits, Eq. 2 can be refor-
mulated as Eq. 3 [4]:

L(S(A)) = mK+ L(I(A)) +

m∑
i=1

∑
x∈Si

L(x − ci) + |O|K. (3)

1 which can also be called model vectors, prototype vectors or centroids
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In general, any clustering algorithm may be used to adapt the
reference vectors. In this method [4], a vector quantization net-
work is initialized with a high amount of reference vectors, after
which unnecessary reference vectors are removed and outliers
are detected, improving the network quality in terms of MDL.
An advantage of this method with respect to well-known clus-
tering techniques such as K-means and Gaussian mixture mod-
els [6] is that the number of reference vectors m is not given
a priori. Indeed, MDL is used here to select among different
models of a data distribution containing different components.

2.4.3 Growing Neural Gas for Quantization

The algorithm Growing Neural Gas (GNG) [16] was conceived
for unsupervised learning, where there is no available infor-
mation about output classes. GNG is potentially useful for
quantization, yet still needs a method for finding the optimal
reference vectors. To solve this, combining GNG with MDL
has been proposed, as we explain below. The algorithm ini-
tially targeted a problem called topology learning: given some
probability distribution, the objective is to find a topological
structure which closely reflects the topology of the data distri-
bution, represented by a set of centers (reference vectors). For
this purpose, a competitive Hebbian learning (CHL) method is
combined with the vector quantization method Neural Gas [38].
The main advantages of the Neural Gas model according to [40]
are:

1. Faster convergence to low distortion errors.

2. Lower distortion error than that resulting from K-means
clustering, maximum entropy clustering and Kohonen’s
self-organizing feature map.

3. Obeying a stochastic gradient descent on an explicit en-
ergy surface.

Assuming there are a number of centers in Rn, CHL succes-
sively adds topological connections among them. Given a data
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sequence x drawn from some data distribution p(x), the prin-
ciple of CHL is [38]: “for each input x connect the two closest
centers (measured by Euclidean distance) with an edge.” The
resulting graph is a subgraph of the Delaunay triangulation
which has been shown to optimally preserve topology in a gen-
eral sense [38].

To make use of all the centers, they have to be placed in
regions where p(x) > 0. This can be achieved by any vector
quantization algorithm. In [16], the Neural Gas method was
used for that purpose, with the principle: “for each input x
adapt the k nearest centers whereby k is decreasing from a large
initial to a small final value”.

Since the motion of centers might make edges which have
been generated earlier invalid, an edge aging scheme is also
considered for the purpose of removing obsolete edges. Com-
bining CHL and Neural Gas is a proper method for preserv-
ing topology as proven in [39], but the number of centers has
to be decided a priori, which is a common problem in vector
quantization algorithms. The GNG algorithm proposes an in-
cremental solution to this problem, but a maximum a priori
number of nodes or some performance measure is still needed
as a stopping criterion.

A GNG network consists of [16]:

• A set A of units (nodes). Each unit c ∈ A has an associ-
ated reference vector wc ∈ Rn. The reference vectors can
be regarded as positions in the input space of the corre-
sponding units.

• A setN of connections (edges) among pairs of units. These
are not weighted and their sole purpose is to define topo-
logical structure.

The main idea of the method [16] is to successively add new
units to an initially small network by evaluating local statisti-
cal measures gathered during previous adaptation steps. In
summary, the GNG algorithm executes the steps illustrated in
Algorithm 21 [16].

The adaptation steps towards the input samples (lines 8,9)
lead to a general movement of all units towards areas of the



2.4 quantization 31

Algorithm 1 : GNG
1 begin
2 Start with two units at random positions;
3 while A stopping criterion (e.g. net size or some performance measure) is not yet fulfilled

do
4 Generate an input sample x from the data distribution p(x);
5 Find the nearest unit s1 and the second nearest unit s2;
6 Increment the age of all edges emanating from s1;
7 Add the squared distance between the input sample and the nearest unit in

the input space to a local error counter variable: errors1 = ‖ws1 − x‖2;
8 Move s1 and its topological neighbors towards x by fractions εb and εn,

respectively, of the total distance: ∆ws1 = εb(x − ws1);
9 ∆wn = εn(x − wn) for all direct neighbors n of s1;

10 if s1 and s2 are connected by an edge then Set the age of the edge to zero;
11 ;
12 else if such an edge does not exist then
13 create it;
14 Remove edges with an edge larger than amax. If this results in points having

no emanating edges, remove them as well;
15 if the number of input samples generated so far is an integer multiple of a parameter λ

then
16 Insert a new unit as follows;
17 Determine the unit q with maximum accumulated error;
18 Insert a unit r halfway between q and its neighbor f with the largest

error variable wr = 1
2 (wq+ wf);

19 Insert edges connecting the new unit r with units q and f, and remove
the original edge between q and f;

20 Decrease the error variables of q and f by multiplying them with a
constant α. Initialize the error variable of r with the new value of the
error variable of q;

21 Decrease all error variables by multiplying them with a constant d;

input space where p(x) > 0. The insertion of edges (line 10-
12) between the nearest and the second-nearest unit generates
a connection of the “induced” Delaunay triangulation, whereas
in line 13 edges are removed which are no longer part of it. This
is achieved by local edge aging (line 6) and age resetting (line
10) [16]. The accumulation of squared distances (line 7) helps to
identify areas with high accumulated errors, which are reduced
by adding units in these regions.

The GNG algorithm can potentially be used for quantization,
provided some adjustments are applied. GNG was improved
in subsequent work [49, 50] to deal with robust quantization of
noisy data sets. In [49], an outlier resistant strategy, an adap-
tive learning rates and cluster repulsion scheme, and a criterion
for determining the optimal number of clusters were proposed.
The updating rule in GNG (lines 8,9 in Algorithm 21) is inher-
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ently fragile in noisy environments and sensitive to the order
of input vectors [49].

The outlier-resistant strategy is based upon adding a param-
eter used to limit the updating strength caused by some outlier.
In Section 4.1.1.1, specifically in Eq. 12, we can see a general
form of the learning rule including an outlier-resistant parame-
ter σk for some node k.

In [49] adaptive learning rates εb and εn were introduced.
This strategy solves issues introduced by static learning rates in
GNG, which prevent the refinement of the positions of current
prototypes towards actual cluster centers. The adaptive learn-
ing rates take different values for nodes inserted in different
order, and meanwhile make them decrease monotonically with
the increment of nodes. These values depend on the predefini-
tion of a maximum number of nodes. In our work, we apply
a different strategy which depends less on a priori parameters
and is explained in Section 4.1.1.1.

In [49] a repulsion scheme was also proposed, by adding re-
pulsive forces to the updating rule such that two nodes do not
try to approach one cluster simultaneously. In our work, we
avoid the use of repulsive forces by adding a more efficient
node insertion mechanism (Section 4.1.1.2).

Finally, in [49], the MDL principle is proposed for deter-
mining the optimal number of clusters. The authors instan-
tiated the calculation of MDL as in [4] (explained above in
Section 2.4.2). However, they still use a maximum predefined
number of nodes or some predefined performance measure as
a stopping criterion. The minimal MDL value found during
learning helps to identify the network with the optimal cluster
number. In contrast, we use MDL (Sections 4.1.1.3 and 4.1.1.5)
to calculate a network stability measure to be used as a stop-
ping criterion.

The work presented in [50] is a follow-up to the robust quan-
tization mechanism already explained [49]. Here the authors
employ the same methods to make GNG robust. However,
they use MDL and the local error quantities to relocate nodes
in more proper locations of the input space. This method re-
quires many calculations. Therefore, we came up with more
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efficient strategies (Chapter 4) for dealing with computational
complexity issues.

2.5 sequence learning

In this dissertation we deal with learning problems where se-
quences of features are involved. Sequential data can arise in
contexts like time series, natural language sentences, genetic
sequences, financial data [6] or other types of dynamical sys-
tems. The sequence learning problem states that given past
observations, we want to predict the next value in a time series.
Since considering a general dependence of future observations
on all previous observations would be intractable, a Markov as-
sumption is often made, in which we assume that future pre-
dictions are independent of all but recent observations [6]. Al-
though these Markov models are tractable, they are also limited.
Therefore, state space models like hidden Markov models (with
discrete latent variables) and linear dynamical systems (latent
variables are Gaussian) have been introduced [6].

The problem of learning and predicting data sequences from
a dynamical system is closely related to time-series prediction.
An extensive literature review can be found in [11]. Different
methods have been applied to solve these problems, including
neural networks and recurrent neural networks [33]. As [45]
mentions, most of the existing research on time series concerns
supervised forecasting problems. However, in recent years ex-
ploration of unsupervised algorithms for analysis of time-series
has taken place [45, 5, 1]. An example of these methods is the
generative topographic mapping (GTM) through time (a linear
dynamical system), which embeds a mixture model in a hidden
Markov model (HMM). In [45, 5] the hidden states of a HMM
correspond to latent variables in GTM. A different approach is
taken in [1], where time series are predicted by using a recur-
sive growing self-organizing network based on the Growing
Neural Gas (GNG) algorithm. A recent approach is dynamic
conditional random fields (DCRFs) [65] which are undirected
graphical models which repeat their structure and parameters
over a sequence of state vectors to represent hidden states and
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complex interactions among labels in a similar way as in dy-
namic Bayesian networks (DBNs) [43].

It is also worth mentioning that HMMs are equivalent to prob-
abilistic non-deterministic automata [15]. In [25], the concept of
substochastic sequential machines was introduced. Substochas-
tic sequential machines resemble stochastic sequential machines
or probabilistic automata but there is a possibility of model “in-
completeness” due to a finite observed data set [25].

In [25] we find a taxonomy of methods for extracting finite-
state representations from recurrent neural networks. For in-
stance, in [71], stochastic machines are obtained by partition-
ing the RNN state space and calculating probability estimates
to obtain probabilistic transitions. In [25], is is argued that
CrySSMEx distinguishes from earlier rule extraction approaches
in four principles:

• quantization of state,

• observation of the underlying system,

• rule construction,

• rule minimization.

CrySSMEx has been tested for inferring machines which model
formal grammars learned by RNNs (mainly regular grammars
but also context-free grammars). It has also been used in the
analysis of a chaotic function. In general terms, CrySSMEx can
either perform a quantization of the input and output spaces,
or the quantization can explicitly be given in form of symbolic
representations. Then, a mechanism based on the minimization
of conditional entropy between pairs of inputs and states, and
outputs or next states, is performed to construct the probabilis-
tic automaton, gradually splitting the state space.

However, the quantization mechanism for input and output
spaces in CrySSMEx is quite simple, being based on a regular
partitioning of the spaces. This may lead to more complex ma-
chines, inconsistent ones, or simply longer learning times in
the presence of noise. Therefore, as we already pointed out in
Section 2.4.3, in this dissertation we present a new method for
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quantizing spaces in an unsupervised manner by means of an
algorithm based on GNG (see Chapter 4).

The original CrySSMEx algorithm also has some drawbacks
that prevent the extraction of optimal machines for dynam-
ical systems with certain symmetrical features and long de-
pendencies among input, state and output tuples across time.
We carried out experiments with synthetic stochastic systems
with such characteristics (see Section 6.1) and we improved
CrySSMEx correspondingly to handle these issues. We describe
these methods in Chapter 5 and in Section 6.2 we evaluate them
in our robotic learning scenarios.

2.6 preliminary experiments

We carried out preliminary experiments for prediction of an ob-
ject pose, given previous effector (finger) and object poses, as
already stated in Section 1.1. We employed a recurrent neu-
ral network (RNN) to solve the prediction problem as a regres-
sion task. Specifically, we use the Long Short-Term Memory
(LSTM) [20] model of an RNN. The learning scenario with sim-
ulated objects is shown in Fig. 15 (Chapter 3). The features
corresponding to the arm are a starting 6-D pose vector for the
end-effector e0, and a real value denoting a direction angle Θ
ranging from 60 to 120 degrees, parallel to the ground plane
in the direction to the center of the standing polyflap side. To-
gether, these features form the motor command feature vector
denoted as m. The values are all normalized to obtain vectors
with mean 0 and standard deviation 1.0. A 6-D pose vector cor-
responding to the polyflap pose is denoted as pt at time t. The
pose p0 is fixed for all experiments.

Then, the concatenation f0 = [m e0 p0] represents the feature
vector to be fed initially to the neural network. The subsequent
feature vectors fed to the machine have the form ft = [0 et pt],
where the size of 0 is the size of m. This representation allows
the learning machine to attain a better convergence.

During the execution of the arm path, we obtain a series of
poses 〈pt, et〉 to construct a feature vector ft. We then extract n
polyflap- and effector poses and finally we build a sequence set
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S = {fnt=1}. Thus, a particular sequence set (an instance) is used
in each iteration of the experiment, to be fed to the LSTM in
n+ 1 steps. For the time step t, a training tuple 〈ft, tt〉 is used
for the neural network learning procedure, where the feature
vector ft represents the input vector and tt = pt+1 the target
(predicted) vector encoding the predicted polyflap pose.

This representation then encodes the rigid body transforma-
tions of polyflap and effector through these n steps and also
encodes the given robot control command that performs the
pushing movement. In order to discretize and reduce the di-
mensionality of the task, we only used a discrete number of dif-
ferent starting positions for the arm to start the pushing move-
ment.

As mentioned above, a dataset D containing a certain quan-
tity of sequences Si is obtained and we perform offline experi-
ments with these data.

An LSTM machine is usually composed of an input layer, a
hidden layer and an output layer. In general, recurrent neural
networks can have recurrent connections for all their neurons.
In this work we only use recurrent connections for the hidden
layers. We also performed preliminary experiments with net-
works having no recurrent connections and these exhibited de-
creased performance, since sequences usually involve time de-
pendencies which are represented in an LSTM by recurrent con-
nections. The LSTM [20] architecture was developed in order to
solve some learning issues in recurrent neural networks related
to long-term dependency learning. These problems sum up to
the problem that errors propagated back in time tend to either
vanish or blow up. This is known as the problem of vanishing
gradients.

LSTM’s solution to this problem is to enforce constant error
flow in a number of specialized units, called constant error car-
rousels (CECs), corresponding to those CECs having linear acti-
vation functions not decaying over time. CECs avoid transmit-
ting useless information from the time-series by adding other
input gates that regulate the access to the units. Thus, they
learn to open and close access to the CECs at appropriate mo-
ments. Likewise, the access from the CECs to output units is
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controlled by multiplicative output gates and they learn in a
similar way how to open or close access to the output side. Ad-
ditionally, forget gates [20] learn to reset the activation of the
CECs when the information stored in them is no longer useful,
i.e., when previous inputs need to be forgotten. The combina-
tion of a CEC with its associated input, output and forget gate
is called a memory cell, as depicted in Fig. 12. Other addi-
tions are peephole weights, which improve the LSTM’s ability
to learn tasks that require precise timing and counting of inter-
nal states, and bidirectional connections [20].

Output gate

Input gate

Forget gate

Net input

Net output

CEC

h

g
1.0

Figure 12: LSTM memory block with one cell. The internal state of the cell is maintained
with a recurrent connection of fixed weight 1.0. The three gates collect activa-
tions from inside and outside the block, and control the cell via multiplicative
units (small circles). The input and output gates scale the input and output of
the cell while the forget gate scales the internal state. The cell input and output
activation functions (g and h) are applied at the indicated places [20].

In this work, we used 10 memory blocks in the hidden layer,
which was found to be a good compromise between computa-
tional complexity and convergence.

When some input vector is fed to the network, the forward
pass is calculated as follows. Let us denote an output neuron
(unit) activation yo, an input gate activation yin, an output gate
activation yout and a forget gate activation yf. Then, for the
time step t, each of them are calculated in the following stan-
dard way:

yi(t) = fi(
∑
j

wijy
j(t− 1)), (4)

where wij is the weight of the connection from unit j to unit
i, and f the activation function. We only consider one CEC
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activation (one cell) for each memory block. The CEC activation
sc for the memory cell c is computed as follows:

sc(t) = y
fc(t)sc(t− 1) + y

inc(t)g(
∑
j

wcjy
j(t− 1)), (5)

where g is the cell input activation function. The memory cell
output is then calculated by

ysc(t) = youtc(t)h(sc(t)), (6)

where h is the cell output activation function. The backward
pass is a steepest (gradient) descent method which updates the
weights of the different types of units. Consider a network
input aj(t) to some unit j at time t. In general, the gradient is
defined as

δj(t) =
δE

δaj(t)
, (7)

where E is the objective (error) function to be minimized and
used for training. For a detailed explanation of the backward
pass equations for each unit type cf. [20]. Since we are dealing
with a regression problem, we consider the sum of squares er-
ror as a performance measure. The error function is defined as

Et =
1

2K

∑
i

(yi − y
′
i)
2, (8)

where K is a normalization factor which depends on the size
of each sequence ni and the total number of sequences in the
dataset k. yi is the output unit activation and y ′i is the expected
value.

In order to test the convergence of LSTMs we used 10-fold
crossvalidation sets for three different dataset sizes, namely 100,
200 and 500. That allowed us to estimate the approximate num-
ber of samples that are needed to learn the prediction task with
high precision. In Fig. 13 a comparison of the average sum
of squares error (SSE) and maximal and minimal SSE values
is shown. In this case, the SSE is averaged among all the cross-
validation sets. The picture shows that the SSE and its standard
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Figure 13: SSEs are reduced when increasing the dataset size.

deviation is considerably reduced when more samples are used,
as expected.

LSTMs converge satisfactorily for these prediction tasks but
we opted for a strategy based on obtaining qualitative models,
which we describe in the following chapters.





3
L E A R N I N G F E AT U R E S F O R A P U S H I N G
S C E N A R I O

This chapter describes the features our learning algorithms deal
with. In this dissertation, we considered two different learning
scenarios, the first one in simulation and the second one in a
real tabletop environment. In the simulated scenario, the arm
interacts with a polyflap, which is a polygon (concave or con-
vex) cut out of a flat sheet of some material (e.g. cardboard) and
folded once (anywhere) to produce a 3-D object [60], cf. Fig. 14.
For both scenarios, we simulate a pushing action by applying
a linear trajectory over a specified time period until the finger
reaches a desired pose. The learning scenario in simulation is
shown in Fig. 15. The simulated and real arms correspond to
a Neuronics R© Katana 6MTM. In the simulated arm a sphere
acts as a simple finger. The scenario in the real environment is
shown in Fig. 16. The arm has 6 joints, including the last joint
for the finger which is static. The representation of object poses
is given in Euler angles with respect to a reference frame which
is the origin in the scene (6-D pose).

Figure 14: Polyflaps, http://www.cs.bham.ac.uk/∼axs/polyflaps/. Here we
used polyflaps of the shape shown in the bottom-right cor-
ner.

41
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Figure 15: Learning scenario with a polyflap.

Figure 16: Learning scenario with a box.

For the estimation of poses in the real environment we use a
tracker system based on sequential important resampling (SIR)
particle filters [41]. This is a model-based tracking system us-
ing color and edge information from shape and texture. In Fig.
16 the object (tea box) shown in the image is actually a textured
object model during the tracking process. The tracker is also
used for generating the ground truth for evaluating the predic-
tion experiments. The tracking requirements are real-time per-
formance, i.e. within the frame rate of a typical camera (25-50

Hz), robustness to different lighting conditions, partial occlu-
sion and motion blur. To achieve this, the approach is based on
the following methods [41]:

• Tracking-State-Detection (TSD): a TSD method was imple-
mented to know whether the objects are tracked correctly,
whether the object is occluded or whether it is lost. The
knowledge of the tracking state (speed and confidence),
allows for triggering online learning or pose recovery (see
Fig. 17).
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• Texture mapping: if texture is available, which is the case
for our experiments, it is used for boosting robustness.

• Pose recovery: to initialise tracking and recover lost tracks
distinctive features placed on the object’s surface are used.

• Online learning: The feature points and texture of the ob-
ject are automatically learned while tracking. In Fig. 18

we show an example of texture learning.

Figure 17: Tracking-State-Detection: From left to right: ok, occluded
and lost tracking. [41]

Figure 18: Succesively learning the texture of an object (red: matching
edges from a textured face, green: matching edges from a
non-textured face). [41]

[30, 31] provide a complete description of the rigid body
transformations involved in a pushing scenario, assuming that
the physical properties and net forces are constant in time. In
summary, if two rigid bodies are present, where a time frame
A corresponds to one object, a frame B to a second one, and
a frame O for some fixed environment, rigid body transfor-
mations T between these frames at subsequent time steps can
be used for describing the current system state. For instance,
TA(t),A(t+1) represents the transformation of the first object from
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time t to t + 1. The prediction problem is stated as [30, 31]:
given we know the starting states and the motion of the pusher
TA(t),A(t+1), predict the resulting motion of the object TB(t),B(t+1).

In our work, we assume rigid body transformations with re-
spect to a fixed frame O, although alternative representations
are also possible. We assume a quasi-static environment, where
frame velocities are not considered [29]. As in [29], causal re-
lationships between the finger movement and the object move-
ment are implicitly encoded in the representation, as we will
clarify in Defs. 6, 7, 8, and 9. Rigid body transformations are
encoded as rotation matrices which represent poses and can be
transformed to 6-D poses consisting of position and orientation
in Euler angles with respect to O.

Definition 5 Let us denote TE,O, TA(t),O and TB(t),O variables rep-
resenting rigid body transformations with respect to a fixed frame O,
where TE,O denotes the target pose representing the final expected pose
of the finger at the end of a linear trajectory (desired pose), TA(t),O rep-
resents the pose of the finger at time step t and TB(t),O the pose of the
object at t. We represent poses by using a 6-D representation encod-
ing 3-D position and 3-D orientation in Euler angles, so that we have
the vectors m, a(t), b(t) to denote finger target pose, finger pose and
object pose respectively. We call m a motor command. The values are
all normalized to obtain vectors with mean 0 and standard deviation
0.81650.

We want to model a situated discrete time dynamical system
(SDTDS) representing the interaction among these objects in
the scenario. In an SDTDS [25], an input space I ⊆ Rni , a state
space S ⊆ Rns and an output space O ⊆ Rno are defined, where
ni,ns, and no are the finite dimensionalities of the spaces. In an
SDTDS, a transition function γ : S× I → S×O is also defined,
which allows to model the state of the system and its output,
given some input. In Chapter 5, we explain how probabilistic
finite-state machines can be constructed from I, S,O and γ. Be-
low, we explain the process of collecting data for quantization.

Definition 6 An SDTDS transition event at a time t, ω(t), is a
quintuple 〈s(t), i(t), o(t− 1), o(t), s(t+ 1)〉 ∈ Rns ×Rni ×Rno ×
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Rno×Rns , where s(t+1) is the state vector reached after the SDTDS
received input i(t) while occupying state s(t), and o(t) is the output
generated in the transition [25]. Here, in contrast to [25], we also
take into account previous output states (e.g. o(t− 1)) to consider
a longer history of past events, with the intention to avoid the strict
Markov property.

Def. 7 provides a definition of the input space suitable for the
pushing scenario.

Definition 7 We define the input space I as a sensorimotor space
where a set of concatenated tuples of vectors 〈m, a, b〉 represent motor
commands, finger poses and object poses respectively. For a time step
t, i(t) = 〈m, a(t), b(t− 1)〉; b(t− 1) denotes the pose of the object
at the previous time step.

In a similar way, we can define the state space as follows.

Definition 8 A state space S is defined entirely as a set of vectors
representing object poses. For a time step t, s(t) = b(t).

The purpose behind the use of the features presented above
is to eliminate ambiguities when predicting object trajectories.
Given enough evidence about the current situation, represented
in terms of an input vector, a state can be reconstructed with
higher precision. This evidence is basically represented in the
input space by a sensorimotor state.

As mentioned in Chapter 1, we can define different output
functions to quantize an output space. Considering the prob-
lem of object trajectory prediction, we can encode an output
space as a set of object transformations representing the rota-
tion and translation of the object. In Chapter 5 we will clarify
why this representation is useful for the purpose of object mo-
tion prediction.

Definition 9 Let us define an output space O as a set of transfor-
mation vectors representing object motions. For time step t, o(t) is
calculated as follows. Let us define a transformation TB(t),B(t+1) to
denote the rotation and translation of an object, with corresponding
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rotation matrix RB(t),B(t+1) = R>B(t),ORB(t+1),O and translation vec-
tor pB(t),B(t+1) = pB(t+1),O − pB(t),O. Then, o(t) is the correspond-
ing transformation vector describing translation and rotation in Euler
angles.

In Fig. 19, we show a diagram of the features involved in the
learning process.

Figure 19: Features for prediction.

Defs. 7 and 9 define continuous vector spaces which will
be discretized using a quantization algorithm. Alternatively,
we can define an output space O as a set of symbols repre-
senting a class or type of rough object behavior. We carried
out these experiments with simulated polyflaps. We consider
here a discretization of possible object motions. For instance,
O = {−1, 1, 0,−0.5, 0.5} is a set of possible values for an output
symbol o(t), denoting respectively:

• o(t) = −1 when the θ object angle (with respect to Z axis)
decreases (this happens when the object tilts but does not
completely flip over, so that it returns to the original an-
gle).

• o(t) = 1 when the θ angle increases (object falling down)

• o(t) = 0 when the object does not move

• o(t) = −0.5 when the object moves backwards (negative
direction along X axis).

• o(t) = 0.5 when the object moves forwards.

Additionally, we designed the output space to consider the fi-
nal resulting motion, in abstract terms. In this case, we dis-
tinguished three possible behaviors, namely sliding, flipping
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over and tilting. Combined with the discretization presented
above, we have 15 possible output symbols. By applying this
discretization we can obtain predictions of motion categories in
a similar way as in [51, 52].
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R O B U S T V E C T O R Q U A N T I Z AT I O N

When dealing with learning problems, it is essential that infor-
mation coming from sensors is compressed as much as possible.
Learning tasks usually involve a high-dimensional set of vec-
tors where information is often redundant and sparse. Thus,
we need strategies for making generalizations about data, di-
mensionality reduction and efficient data representations. Com-
pressing information is even more important when dealing with
noisy data sets. As pointed out in [22], every regularity in the
data can be exploited to compress information. One naive ap-
proach is the division of a space into regular cells [6], but with
more variables (more dimensions) the number of cells grows ex-
ponentially. Moreover, an a priori division of the space might
not capture the relationships between these variables well. In
this chapter, we explain quantization algorithms used for an
optimal subdivision of sensorimotor spaces. In Section 4.1 we
describe in detail our quantization algorithm and in Section 4.2
quantization experiments with synthetic data sets are presented,
which helps us to visualize optimal information compression
with simple data distributions.

4.1 vector quantization

The ability to estimate a probability density function online is
important for robots to learn in an incremental way, after new
data become available for learning. Before we start explain-
ing our method, it is important to distinguish the concepts of
“online” and “incremental” in contrast to batch (Section 2.3.1).
Here, by incremental we mean that during a learning iteration
where a new data source is present, the learning algorithm can
be updated immediately. However, a future improvement of
our algorithm is the implementation of an online method in

49
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the strict sense, namely that a previously used data set is not
anymore available for learning but only the new data items.

Our approach for density estimation is based on Vector Quan-
tization [19] to partition probability distributions. In this way,
it can model probability density functions. A related field of
research is cluster analysis [26]. The idea is to map a set of
high-dimensional vectors to a prototype vector, thereby identi-
fying clusters in the data set that are statistically similar.

Following the machine learning terminology, a variable that
represents a cluster is defined as a latent variable [6]. This vari-
able defines assignments of data points to specific components
of a mixture of distributions [6]. Technically, we have a data set
D of points xk ∈ Rd where d ∈ N is the space dimensionality,
a set of subsets or distributions {Si ⊂ D}, a prototype vector
xi that represents the cluster Si, and the latent variable or in-
dex i. Moreover, some distance function or metric δ is used to
evaluate the similarities among points in the data set.

Definition 10 A quantizer Λ is a quadruple 〈C,S, δ,γ〉, where C is
a set of prototype vectors, S ⊆ D is a finite collection of M clusters, δ
is a distance or metric function and γ : S → {1, 2, . . . ,M} is a func-
tion that maps an element x ∈ Si ⊂ S to its corresponding prototype
index i.

To find proper quantizations, a learning algorithm has to be
implemented. The work presented here builds upon previous
implementations of an incremental algorithm called Growing
Neural Gas (GNG) [16], which is based on a graph whose nodes
adapt to the topology of the probability distribution. The GNG
algorithm was discussed in Section 2.4.3.

Definition 11 A Growing Neural Gas (GNG) network [16] is a
graph G = 〈A,C〉 where A is a set of M (cf. Def. 10) nodes, in
which each node c ∈ A has an associated weight wc ∈ Rd. There
exists a set of neighborhood connections C which are unweighted and
symmetric. For each node c, there exists a possibly empty set of neigh-
borhood connections Nc = {i ∈ A | (c, i) ∈ C}. A GNG network can
be used as a learning algorithm for a quantizer, by using the weights
and indices associated to nodes in A as the prototype vectors and in-
dices respectively.
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The algorithm has several strengths. It is an incremental al-
gorithm which starts with 2 nodes and gradually adds more
nodes in regions where a global error measure is high. By using
Hebbian learning [16], a winner node and its neighbors grad-
ually move towards regions with higher errors. In this way,
the quantization error is minimized and the prototype nodes
preserve the topology [16]. However, usually a proper quan-
tization needs to be found so that clusters in the data set are
represented by one or at least only a few nodes. For cluster
analysis, this algorithm has several issues, some of them de-
scribed in [49, 50]. For instance, the method suffers from the
overfitting problem given the fact that one has to always define
the maximum number of nodes M needed for representation.
Another important issue is the presence of noise in the form of
outliers. In [49, 50], some techniques were implemented to im-
prove the convergence of the algorithm for efficient cluster anal-
ysis and in the presence of noisy data, as we already pointed
out in Section 2.4.3.

In the algorithms presented in [49, 50] parameters like the
maximum number of nodes and the maximum number of iter-
ations for a training epoch are still used. In this dissertation, we
incorporated modifications in learning rates calculation less de-
pendent on a priori parameters, insertion criteria for nodes, ef-
ficient implementation of nodes deletion, and MDL-based and
network stability stopping criteria. For the purpose of incre-
mental estimation of a probability density function, we are in-
terested in updating the quantizer after a new training instance
is available. These training instances are actually sequences
of vectors containing sensorimotor information. The stopping
decision based on MDL and graph stability is here especially
useful.

In the following sections, we describe and explain the cal-
culation of the different parameters involved in the learning
process: the learning rates, the weight updates, the node inser-
tion criterion and the minimum description length calculation.
Finally, we present the whole learning algorithm, experimental
results and evaluation.
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4.1.1 Learning Parameters

4.1.1.1 Learning rates and weights update

In [16], GNG employs fixed learning rates for a winner node s1
and its neighbors. To balance the contribution of each of them,
in [49, 50] learning rates are monotonically decreased taking
into account the current iteration in a learning epoch, initial
and final expected learning rate values and a predefined maxi-
mum number of nodes, as we noted in Section 2.4.3. To avoid
relying on these predefined a priori parameters, we propose a
new method for obtaining the rates which is dependent on an
instantaneous calculation of mean error change ratio that offers
an alternative solution for decreasing the learning rates.

To obtain an error change ratio, we compute an estimation
of the current mean error and the previous mean error. A simi-
lar approach was followed in [23], but there it was used in the
context of a supervised learning task in a non-stationary dis-
tribution where the error in prediction is calculated from the
expected distance to a target vector. In that work, a ratio is
obtained from a short-term average error and a long-term aver-
age error to obtain a quality measure for learning that is used
for calculating the learning rate. Here, the error change ratio
calculation is inspired by the work presented in [47], where an
exploratory learning agent selects a learning sample via a learn-
ing progress measure derived from a decrease in the mean error
rate in prediction.

We obtain a harmonic mean error rate. This way we obtain
error measures that are not strongly influenced by outliers. As-
suming a data point x(t) is presented to the network and the
corresponding winner weight ws1(t) is activated, the inverse
error es1(t) associated to the node s1 is

es1(t) = ‖x(t) − ws1(t)‖
−1. (9)

In this case, we assume ‖ · ‖ to be the Euclidean norm. Given
a time window parameter τ during which a node s1 was se-
lected as winner node, a harmonic smoothed mean error rate
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for the node s1 at the current time step t and at a previous time
step t− τ is calculated as follows:

〈es1(t)〉 =
(

1
θ+1

∑θ
i=0 es1(t− i)

)−1
〈es1(t− τ)〉 =

(
1
θ+1

∑θ
i=0 es1(t− i− τ)

)−1
,

(10)

where θ is a smoothing parameter.
For every node k ∈ Ns1 ∪ {s1}, the learning rate ηk(t) that we

propose is obtained in the following way:

ηk(t) =


ηk if − (log〈ek(t)〉− log〈ek(t− τ)〉) > 1

−(log〈ek(t)〉− log〈ek(t− τ)〉)ηk if − (log〈ek(t)〉− log〈ek(t− τ)〉) > 0.1

0.1ηk otherwise,

(11)

whereby the default learning rate ηk is modulated by the er-
ror difference −(log〈ek(t)〉− log〈ek(t− τ)〉). We call this value
a learning quality measure. This function is depicted in Fig-
ure 20 for ηk = 0.5 and serves to moderate the impact of the
default learning rate for weights update. The thresholds in
this function are selected by experimentation and should not
be problem specific. Between 0.1 and 1 the error difference is
not high, therefore we use these values to modulate the learn-
ing rate avoiding big changes in the weights update.
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Figure 20: Learning quality function.
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In the weight adaptation rule we also incorporated some
strategies for outlier resistance based on the work described
in [49]. The original formula in [16] is fragile to noisy environ-
ments and sensitive to the order of input vectors x. Here we
propose a new rule of the form:

∆wk(t) = ηk(t)σk(t)
x(t) − wk(t)

‖x(t) − wk(t)‖
, (12)

where ηk(t) is the learning rate in Eq. 11 and σk(t) is the param-
eter for outlier resistance. From now on, we assume the time
variable t = 0 at the beginning of a growth stage, that is, when
a new node is added. The factor σk(t) is used instead of the
absolute distance information ‖x(t) −wk(t)‖, to mitigate the in-
fluence of outliers in the weight adaptation process. σk(t) is
calculated by using a historical restricting distance information
dk(t) [49]:

σk(t) =

dk(t) if ‖x(t) − wk(t)‖ > dk(t− 1)

‖x(t) − wk(t)‖ if ‖x(t) − wk(t)‖ < dk(t− 1)
(13)

where dk(t) serves as a restricting distance for wk(t). dk(t) is
updated when k becomes the winner node, i.e., when k(t) =

s1(t):

dk(t) =


(
1
2

(
dk(t− 1)

−1 + ‖x(t) − wk(t)‖−1
))−1

if ‖x(t) − wk(t)‖ > dk(t− 1)
1
2 (dk(t− 1) + ‖x(t) − wk(t)‖) if ‖x(t) − wk(t)‖ < dk(t− 1),

(14)

and

dk(0) =

(
1

N

N∑
i=1

‖xi − w0
k‖−1

)−1

, (15)

where w0
k is the initial weight at the beginning of the growth

stage and N = |D|. Thus, dk(t) is initialized at the beginning
and reinitialized when a new node is added to the network
or when one or more nodes are deleted. We added a value
ε = 10−2 to Euclidean distances in order to avoid very big re-
stricting distance values. The final updating rule is shown in
Eq. 12, where ε is not shown for simplification.
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4.1.1.2 Criterion for node insertion

Definition 12 The node insertion requirement is fulfilled if for all
nodes c ∈ A the mean error rate ec is not reduced after Te learning
epochs.

A new node is added when the node insertion requirement
is satisfied. The node is inserted in the proximity of a node q
with maximal insertion criterion. An insertion criterion Kc is
defined in our work simply as the highest mean error rate:

Kq(t) = arg maxc∈A(〈ec(t)〉) (16)

In [16, 49, 50, 23] the weight calculation is based on an inter-
polation of the weight vectors of two nodes. The shortcoming
of this method is that new nodes can not be added in proper lo-
cations due to the topological structure of some datasets. There-
fore, in our method the location of the new prototype r is in fact
calculated from the location of q and the direction of the mean
average error vector 〈eq〉 associated to this node. This quantity
is calculated in a similar way as in Eq. 10. When the data point
x(t) is presented to the network, the mean error rate vector of
the winner node s1 is calculated as

〈es1(t)〉 =

(
1

θ+ 1

θ∑
i=0

es1(t− i)

)−1

, (17)

with error vector es1(t) = (x(t) −ws1(t))
−1, where each compo-

nent of a−1 is the inverse of the corresponding component of
some vector a. Thus, we set the weight for an inserted node r
whose parent node is q as

wr(t) = wq(t) + 2〈eq(t)〉. (18)

The idea is to set the weight of the new node in the direction of
the mean average error. It is multiplied by 2 to avoid weights
which are too close each other.

In some cases, a dislocated node will be deleted according
to a criterion explained in Section 4.1.1.4. Moreover, nodes are
occasionally deleted at the end of the learning stage.
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4.1.1.3 Minimum Description Length Principle

We use a Minimum Description Length criterion as proposed
in [50] to determine the optimal number of clusters. It is an
information-theoretic measure that balances the complexity of
the graph and its error.

Definition 13 Given a data set D and the set of prototype node
weights W, the MDL is defined as [50]:

MDL(D) = modelL(D,W) + errorL(D,W), (19)

where errorL(D,W) is the total encoding length or model efficiency
and modelL(D,W) is the model complexity.

The total encoding length and the model complexity for a
network G with M nodes are calculated as follows:

errorL(D,W) = κ

M∑
i=1

∑
x∈Si

d∑
k=1

max
(

log2

(
‖xk − wik‖

ε

)
, 1
)

modelL(D,W) = KM+N log2M,
(20)

where N = |D|, d is the dimension of input vectors, and ε is a
data accuracy constant usually set to 10−4. K is the number of
bits needed to encode a single data vector, which is obtained
according to the average value range ν and data accuracy ε:
K = dlog2

(
ν
ε

)
e. Finally, κ is a parameter to balance the contri-

bution of the model complexity and model efficiency, which is
here usually set to 1. By setting κ > 1, we give more weight
to the network accuracy in terms of error. The value range is
calculated by obtaining the average value in the data set and
substracting its lower limit.

4.1.1.4 Criteria for node deletion

In our work, we define two deletion criteria for nodes, thereby
avoiding adding unnecessary complexity to the model:

1. A node is called inactive and can be deleted if at the end
of a growth stage it is not a representative for any vector
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in the dataset. Usually, new prototypes adapt quickly so
that they approach regions containing data. However, in
some cases clusters might be already represented by other
prototypes and the node might stay isolated from clusters.

2. As in [50], we use the MDL criterion to assess whether a
node is dislocated. Here, we apply the criterion at the end
of the learning process. Assuming that one prototype f is
removed, if the MDL value calculated based on the set of
nodes C \ {f} is smaller than that of C, i.e., if

∆MDL(D, f) = −K+N(log2(M− 1) − log2(M)

+κ

(
M∑

i=1,i 6=f

∑
x∈Si

d∑
k=1

max
(

log2

(
‖xk − wik‖

ε

)
, 1
)

−

M∑
i=1

∑
x∈Si

d∑
k=1

max
(

log2

(
‖xk − wik‖

ε

)
, 1
))

< 0,

(21)

we regard the removed prototype f as dislocated. In our
algorithm, this process is performed recursively on the set
of nodes until there are no more nodes dislocated.

4.1.1.5 Robust GNG Algorithm

We redesigned the learning algorithm in such a way that it can
decide when to stop. This stopping criterion is based on eval-
uating the MDL after a number of Tm learning epochs after
which no minimal graph has been found, in terms of MDL.
The learning process is described in Algorithm 29.

Definition 14 A graph is stable if the MDL criterion is not reduced
after Tm learning epochs.

In summary, the algorithm converges until the network is sta-
ble. We define convergence in terms of finding a graph which is
optimal in the MDL sense. The calculation of MDL as explained
in Section 4.1.1.3 is useful for evaluating graph stability, which
implies that a good explanation of data, i.e. a good model, has
been found. When the criterion of stability is not met, the so-
lution is to add nodes in regions with higher mean error rates
(as seen in Section 4.1.1.2). At the end of the learning phase, it
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is possible that some nodes will be dislocated. In that case, a
more appropriate model with a smaller MDL must be found by
deleting nodes (Section 4.1.1.4). Occasionally nodes are also re-
moved when they do not become active till the end of a growth
stage (Section 4.1.1.4).

Algorithm 2 : RobustGNG(D,G)
Data : A data set D and a set of 2 non-connected nodes {c1,c2} ∈A, whose weights are

initialized randomly considering the data set bounds. Set the constants defined in
Sections 4.1.1.1 and 4.1.1.3. Initialize restricting distances as explained in Eq. 15.
Initialize smoothed mean error rates with the highest distance among the data set.

Result : A graph G which is stable
1 begin
2 while Graph G is not stable do
3 for t = 1 toN do
4 Randomly draw a vector x(t) ∈D;
5 Determine winner s1 and second winner s2, where

s1 = arg mini⊂A ‖x(t)− wi(t)‖ and
s2 = arg mini⊂A\{s1} ‖x(t)− wi(t)‖;

6 Update the weights of nodes k ∈Ns1 ∪ {s1} by using Eq. 12;
7 if t mod λ = 0 where λ is a time window constant then
8 Calculate MDL using Eqs. 19,20;
9 if current MDL is minimal then

10 Store current graph G as the graph with minimal MDL Gmin;

11 if current graph is stable then
12 Store Gmin as the resulting stable graph;
13 Finish the algorithm here;

14 if insertion requirement is fulfilled (Sec. 4.1.1.2) then
15 Delete inactive nodes if necessary according to Section 4.1.1.4.

If a node is deleted, initialize restricting distances dk and
recalculate MDL. Check if MDL is minimal and store it
accordingly. Check if the graph is stable, in which case the
algorithm finishes;

16 Determine nodes q and f with maximal insertion criterions Kq
and Kf according to Eq. 16;

17 Insert a new prototype r and set its reference vector as in
Eq. 18. Set initial smoothed mean error for r,q, and f:
er = eq = ef = 0;

18 Insert edges connecting the new prototype r with prototypes q
and f, removing the original one: C = C∪ {(r,q), (r, f)},
C = C\ {(q, f)};

19 Initialize restricting distances as explained in Eq. 15;

20 Update the smoothed harmonic mean error rates according to Eq. 10;
21 Update the restricting distances dk as in Eq. 14;
22 if a connection between s1 and s2 does not exist already and s1 or s2 has not

been deleted then
23 Create connection: C = C∪ {s1,s2};
24 Set the age of the connection {s1,s2} to 0: age{s1 ,s2} = 0;
25 Increment the age of all edges emanating from s1:

age{s1 ,i} = age{s1 ,i} + 1,∀i ∈Ns1 ;

26 Remove edges with age values greater than a constant α;
27 Remove all nodes without any edge and in such case initialize restricting

distances;

28 Check dislocated nodes according to 4.1.1.4;
29 return G
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4.1.2 Active Learning

After a new traning instance is available, RobustGNG is em-
ployed for quantization of input and output spaces. The action
that a robot performs can be selected randomly or via an active
learning procedure, which takes advantage of the information-
theoretic model efficiency explained in Section 4.1.1.3.

Our method is based on previous work [47, 54] on Intrinsic
Motivation Systems. The general idea of the Intelligent Adap-
tive Curiosity (IAC) algorithm used in these systems [47] is that
a meta-learning system samples a set of actions and selects
one that maximizes the learning progress. This is a measure
based on the difference between smoothed current and previ-
ous mean error quantities.

In our work, we employ a slightly modified method where
the selected action aims to minimize an information-theoretic
measure of error. In that way, the robot will be intrinsically
motivated to minimize the quantization error. However, it is
important to remark that we are assuming here a learnable
scenario, where the robot will not get stuck in unpredictable
situations. Here, we want to evaluate the ability of our active
learning algorithm to properly select actions aiming for min-
imizing a model error, in contrast to the work in [47] which
investigates developmental phases in an almost uncontrolled
scenario with different kinds of actions and objects. We used
a near(ε)-greedy action selection rule with probability ε to al-
low random actions, thus permitting other exploration sources.
Therefore, a random action is selected with a probability of ε
which is usually set to 0.3.

Definition 15 Let us define the normalized total encoding length or
model efficiency for a data set D and the set of prototype node weights
W:

normErrorL(D,W) =
1

N
errorL(D,W) (22)

where errorL(D,W) is the total encoding length or model efficiency.

The current normalized model efficiency normErrorLr is as-
sociated to the input quantizer Λr,i of a region Rr in the sensori-
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motor space. This quantity will be used as the intrinsic reward
for selecting an action in this region.

Definition 16 Let Dr = {Si} denote the set of instances (sequences)
in region Rr. Let us call a sequence tuple (instance) Si = 〈m, ai, bi〉

|Si|
j=1

a tuple of tuples storing the motor command and finger and object
poses obtained during one pushing action.

Starting with one region, successive regions are obtained by
splitting the sensorimotor space depending on a measure of
variance in the data set Dr (exemplars used for Region Rr).
This space splitting makes also the learning process more ef-
ficient, since it is a divide-and-conquer strategy that reduces
the computational complexity for processing large amounts of
data. The division is performed after |Dr| achieves a certain
threshold φ. A dataset Dr for a Region Rr is split in two datasets
Dr+1,Dr+2 (for regions Rr+1,Rr+2). Then the split of Dr defined
by the index c with value vc is performed when the following
criterion (Γ ) is met:

• all the instances Si of Dr+1 have the cth component of
their motor command vector mi smaller than vc.

• all the instances Si of Dr+2 have the cth component of
their motor command vector mi greater than vc.

• the quantity |Dr+1| · σ({[aij bij]
|Si|
j=1 ∈ Dr+1}) +

|Dr+2| · σ({[aij bij]
|Si|
j=1 ∈ Dr+2}) is minimal, where

σ(S) =

∑
v∈S ‖v−

∑
v∈S v
|S|
‖2

|S|
,

and S is a set of vectors.

Each region stores all cutting dimensions and values that were
used in its generation as well as in the generation of its parent
regions. For the region Rr input and output quantizers Λr,i/o
are stored, and these machines are inherited by the child re-
gions. The learning process is described in the Algorithm 3 for
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I iterations (learning samples).

Algorithm 3 : Active learning process

Data : An initial region R0 which encompasses the whole
sensorimotor space.

Result : A set of regions {Rr} with corresponding input
and output quantizers {Λr,i/o}.

1 for i=1 to I do
2 Choose a motor command action

mr,i = arg maxm∈{Rr}{normErrorLr,i} among a set of 1000
candidate actions from all current regions {Rr} by using
a near-to-greedy policy with probability ε;

3 if φ is achieved then
4 Split region Rr into Rr+1 and Rr+2 according to Γ ;
5 Recalculate dislocated nodes according to 4.1.1.4 for

the regions Rr+1 and Rr+2;

6 end
7 Update quantizers with current training sequence Sr,i

and associated error normErrorLr,i;

8 end

The splitting process is shown graphically in Figure 21.
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Figure 21: Region splitting process employing a criterion based on
data set variance.

4.2 quantizing synthetic data sets

We designed several synthetic probability distributions in R2

with a variety of topological properties for testing our quanti-



62 robust vector quantization

zation method. We also used similar ones to those described
in [49, 50]. We added white noise to test the algorithm in the
presence of outliers. In Figure 22, different clean data sets are
used to illustrate the results. The nodes are shown as red cir-
cles and the Voronoi regions they form are also illustrated. The
variances of the Gaussian distributions are also variable, having
values ranging from 0.01 to 0.3.
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Figure 22: Synthetic data sets used for testing vector quantization.

The distribution 1 (Fig. 22a) consists of 5 Gaussian distribu-
tions centered at [0, 2], [0, 1], [2, 0], [−1, 0] and [0,−1] with vari-
ances of [0.1, 0.1], [0.1, 0.1], [0.3, 0.3], [0.2, 0.1] and [0.1, 0.2] respec-
tively. The distributions 2, 5, 6, 7 and 8 (Figs. 22b,22e, 22f, 22g
and 22h) have two different variances ([0.1, 0.1] and [0.01, 0.01]
respectively). The distributions 3 and 9 (Figs. 22c and 22i) have
a variance of [0.1, 0.1] for every component and the distribution
4 (Fig. 22d) a variance of [0.01, 0.01].
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We also generated data sets as described above, adding out-
liers generated by uniformly distributed white noise, as shown
in Figure 23.
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Figure 23: Synthetic data sets with outliers.

We ran 10 experiments for every distribution for evaluation.
The parameters we used for all the experiments were ηs1 = 0.3,
ηi∈Ns1 = 0.001, Te = 3, Tm = 200, α = 50, τ = 30, θ = 50. λ
(the time window for insertions and deletions constant) usually
equals the size of the data set, except for the distribution 9

where λ = 1000. For all distributions except 5 we used the
parameter κ = 1. For the distribution 5 (Fig. 22e) we used
κ = 1.2. As explained in Section 4.1.1.3, here we use κ > 1 to
give more weight to the model efficiency, aiming for obtaining
models that identify clusters with diverging variances.

In Table 2 we show the results of running the experiments on
clean distributions. The column Clusters defines the number of
natural clusters (ground truth). The column No_Cluts illustrates
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the average number of clusters that the algorithm finds during
the 10 runs. The column MSE denotes the Mean Square Error
and corresponding confidence interval for the 10 trials in each
distribution. Here we assume a Gaussian distribution for MSE
and No_Cluts values based on sample means and variances
and a standard normal quantile |z0.975| = 1.96. For every distri-
bution we generated a distinct data set each time (generating
90 data sets in total). In this way, we deploy distributions with
different characteristics to evaluate algorithmic robustness. In
contrast, the algorithms RGNG (Robust Growing Neural Gas)
and ENG (Enhanced Neural Gas) [49, 50] are only tested in 2
data sets for each synthetic distribution (6 data sets in total). In

Distribution Samples Clusters No_Cluts MSE
1 800 5 5± 0.0 0.034± 0.010
2 1000 4 4± 0.0 0.016± 0.002
3 1000 25 25± 0.0 0.028± 0.002
4 1000 25 25± 0.0 0.0028± 0.0001
5 1000 4 3.56± 0.55 0.022± 0.011
6 1000 4 4± 0.0 0.0015± 0.0002
7 1000 4 4± 0.0 0.0017± 0.0002
8 1000 4 4± 0.0 0.008± 0.004
9 5000 121 121± 0.0 0.026± 0.001

Table 2: RobustGNG results for clean synthetic data sets.

Table 3 we show the corresponding results for noisy data sets.
Here an outlier is added to the data set with 9% probability, ex-
cept for the distributions 9 (5% probability) and distribution 1

(10%). Choosing these parameters, the distributions 1, 3 and 9

are similar to the ones presented in [49, 50] which allows us to
do some experimental comparisons. In Table 4 we compare the

Distribution Samples Clusters No_Cluts MSE
1 800 5 5± 0.0 0.037± 0.006
2 1000 4 4± 0.0 0.020± 0.004
3 1000 25 25± 0.0 0.030± 0.002
4 1000 25 24.89± 0.21 0.0036± 0.0007
5 1000 4 2± 0.0 0.059± 0.002
6 1000 4 4± 0.0 0.0022± 0.0005
7 1000 4 4± 0.0 0.0023± 0.0003
8 1000 4 4± 0.0 0.0049± 0.0014
9 5000 121 120.89± 0.21 0.03± 0.003

Table 3: RobustGNG results for noisy synthetic data sets.
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distributions 3 and 9 with the corresponding ones in [49, 50].
However, due to lack of resources, we did not implement the
RGNG and ENG algorithms described in [49, 50]. Thus, a fair
comparison is not possible in this case, since it is not either pos-
sible to replicate the exact distributions in [49, 50]. Neverthe-
less, given the obvious similarities among these distributions,
we present here comparable statistics to get an idea of the effec-
tiveness of our procedure. We take the statistics for RGNG and
ENG algorithms from [49, 50].

Distribution Methods Clusters No_Cluts MSE
Clean 3 RGNG 25 25± 0.0 0.003± 0.001

ENG n.a.
RobustGNG 25 25± 0.0 0.028± 0.002

Noisy 3 RGNG 25 25± 0.0 0.004± 0.001
ENG n.a.
RobustGNG 25 25± 0.0 0.030± 0.002

Clean 9 RGNG n.a.
ENG n.a.
RobustGNG 121 121± 0.0 0.026± 0.001

Noisy 9 RGNG n.a.
ENG 121 121± 0.0 0.0024± 0.0001
RobustGNG 121 120.89± 0.21 0.03± 0.003

Table 4: Comparison of different GNG-based algorithms on synthetic
data sets.

These results show that we can achieve similar results with
a method that assumes less parameters. For the noisy distribu-
tion 9, there was one case when RobustGNG only found 120
clusters. In that case, only one cluster was not identified after
it was discarded by means of the MDL-based deletion mecha-
nism. In that case, this cluster was considered noisy informa-
tion, since there were not enough data items representing it and
were considered outliers. This is illustrated in Fig. 24.

In Figure 25 we illustrate the evolution of MDL values. We
ran an experiment with distribution 9 with both clean and noisy
data sets. After the optimal number of clusters is found, MDL
does not decrease and eventually, after Tm epochs, the algo-
rithm stops. Finally, the graph with minimal MDL is stored,
after checking possible dislocated nodes.

The quantization results show a good reliability of the algo-
rithm, taking into account a variety of topological properties of
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Figure 24: Suboptimal quantization for distribution 9.
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Figure 25: MDL history for distribution 9.

the distributions and in the presence of outliers. The reduction
of parameters for the algorithm is an additional gain, compared
to previous GNG implementations. Likewise, an online calcu-
lation of the error and a learning rate based on this quantity
makes the algorithm suitable to be subsequently implemented
as an online learning algorithm (cf. discussion in Chapter 7).
The modification of the weight calculation for a new inserted
node is useful to find proper quantizations for the distributions
5, 6 and 8. The results also show that the procedure is invari-
ant to different scale parameters (variances), so that it is not
necessary to normalize data for the cases presented here. How-
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ever, the algorithm is unable to identify clusters in the presence
of noise for the distribution 5, due to the fact that one of the
clusters has a high variance with respect to the others and the
proximity of three clusters with a similar variance. Moreover,
the insertion rule still favors the insertion of nodes with high
average errors. A possible solution is to consider a density es-
timate of each distribution based on a frequentist approach to
improve the insertion criterion.





5
I N D U C T I O N O F S U B S T O C H A S T I C
S E Q U E N T I A L M A C H I N E S

In this chapter, we summarize the methods that we apply for in-
ducing sequential models of dynamical systems. In Section 5.1
we present the formalism of substochastic sequential machines,
which are the models we infer from our learning scenarios. This
formalism builds upon the quantization methods described al-
ready in Section 4.1. In Section 5.2 we describe the method
for discretizing state spaces and in Section 5.3 the complete al-
gorithm for extraction of models (Crystallizing Substochastic
Sequential Machine Extractor - CrySSMEx).

5.1 substochastic sequential machines

Definition 17 A substochastic sequential machine (SSM) is a quadru-
ple 〈Q,X, Y,P = {p(qj,yl|qi, xk)}〉 where Q is a finite set of state
elements (SEs), X is a finite set of input symbols, Y is a finite set of
output symbols, and P is a finite set of conditional probabilities (cf.
explanation in [25] and eqs.23-25) where qi,qj ∈ Q, xk ∈ X and
yl ∈ Y.

We remarked in Section 2.5 that the original quantization
mechanism in CrySSMEx is too simple to be applied to real
noisy data sets. We use the vector quantization method de-
scribed in Section 4.1 for discretization of input and output
spaces and the CrySSMEx algorithm for the induction of SSMs
which model dynamical systems. An SSM models a situated
discrete time dynamical system (SDTDS). A stochastic dynam-
ical model of such a system is a joint probability mass func-
tion pΩ induced from a transition event set Ω, and quantizer
functions Λo, Λi and Λs for output, input and state spaces re-
spectively. Ω consists of selected transition events recorded
from a given set of input sequences. Thus, the joint probabil-
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ities of observed and quantized transitions (pΩ) are translated
into joint probabilities of SSM transitions according to P. As
already mentioned, we define Λi(i(t)) and Λo(o(t)) according
to the discretization described in Section 4.1, and Λs(s(t)) us-
ing a modified version of the original state space quantization
method (Crystalline Vector Quantizer - CVQ) explained in [25].
Thus, we have:

p(qi, xk,yl,qj) =

pΩ(Λs(s(t)) = i,Λi(i(t)) = k,Λo(o(t)) = l,Λs(s(t+ 1)) = j)
(23)

The conditional probability is calculated with:

p(qi, xk) =
|Q|∑
j=1

|Y|∑
l=1

p(qi, xk,yl,qj) (24)

p(qj,yl|qi, xk) =


p(qi,xk,yl,qj)
p(qi,xk)

if p(qi, xk) > 0

0 if p(qi, xk) = 0
(25)

Definition 18 The translation procedure from Ω to an SDTDS and
then into an SSM will be called create_machine(Ω,Λs,Λi,Λo).

The substochasticity of the extracted machines is due to the
possibility that the sample of input sequences in Ω will not nec-
essarily provide examples of all possible input symbols in all
possible enumerations of the quantized space of the dynamical
system. As a consequence, the probability distributions can be-
come substochastic [25]. This, in turn, has the effect of deriving
models which assume a closed world. Therefore, transitions
which are not observed are not included in the model a priori.

The details of the procedure for extracting substochastic se-
quential machines are described in [25]. In summary, there is
a recursive state splitting, starting from only one SE. Then, a
decision to split data into different SEs is based primarily on
the maximal output entropy

arg maxH(Y|Q = qi,X = xk) = H(Py(qi, xk)), (26)
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and then on the maximal next state entropy

arg maxH(Q|Q = qi,X = xk) = H(Pq(qi, xk)). (27)

This yields that state vectors that convey the most information
(i.e., highly indeterministic) are used for splitting [25]. Here,

H(P) = −

n∑
i=1

pi logpi, (28)

and

p(q(t+ 1)) = Pq(qi, xk)

p(y(t)) = Py(qi, xk)
(29)

are marginal distributions of P. Each split node has associated
model vectors that point to other split states, merged ones, or
leaf nodes. The model vectors are calculated from the average
of the vectors which they represent. Additionally, states are
possibly merged if there exists an equivalence relation between
two states based on determining when two SEs are not equiv-
alent if they, in their outgoing transitions, share some input
symbols and transitions that lead to discrepancies in the future
output. The procedure finishes when the machine is determin-
istic, i.e., when the entropies for all states equal to 0. However,
since it is improbable to converge completely to deterministic
machines in a robotic learning scenario, we define in Section
5.3 a stopping criterion by setting a threshold on the number of
iterations remaining until no improvement is achieved.

5.2 an improved cvq

As mentioned above, the quantization procedure for the state
space is based on the CVQ quantizer. This method has similar-
ities with hierarchical decision trees and learning vector quan-
tization [25]. In principle, this is a supervised classification
method. In this work, we redefined the quantization procedure
of a CVQ with respect to [25], in order to solve issues regard-
ing symmetrical properties present in the evolution of some
dynamical systems (see Fig. 26 discussed below). A CVQ is
defined as follows [25]:
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Definition 19 A CVQ Graph is a quadruple CVQ = 〈NLeaf,NVQ,
NMerged,nroot〉 where nroot is the root node of the CVQ graph and the
constituents are defined below.

Definition 20 A leaf node n ∈ NLeaf has only one constituent, n =

〈i〉, where i ∈ N is an enumeration of the node within the CVQ and
1 6 i 6 |NLeaf|.

Definition 21 A Vector Quantizer (VQ) node n ∈ NVQ is a tuple
n = 〈M,H〉 where M is a list of L model vectors [m1, m2, . . . , mL],
where mi ∈ Rd and H is a nonrepetitive list of child nodes [h1,h2, . . . ,hL]
where hi ∈ NLeaf ∪NVQ ∪NMerged and d ∈N is the dimensionality
of the vector space.

Definition 22 A merged node in a CVQ graph, n ∈ NMerged, con-
tains only a “link”, n = 〈ngroup〉, where ngroup ∈ NLeaf ∪NVQ ∪
NMerged.

The model vectors in a VQ-node are associated with a list [`1, `2, . . . , `L]
of classifications (labels). An element `i is a tuple 〈y(ti),y(ti +
1)〉 which are the output symbols observed at some time step
ti and the subsequent ti + 1. In this work, we redefine a CVQ
quantizer function Λcvq in terms of a function winner : NLeaf ∪
NVQ ∪NMerged ×Rd × 〈N, N〉 → {1, 2, . . . ,M}:

Λcvq(s(t)) = winner(nroot, s(t), 〈y(t),y(t+ 1)〉), (30)

which in turn is recursively defined as:

winner(n, s(t), 〈y(t),y(t+ 1)〉) =



ID if n ∈ NLeaf

winner(ngroup, s(t), 〈y(t),y(t+ 1)〉)

if n ∈ NMerged

winner(hw, s(t), 〈y(t),y(t+ 1)〉)

if n ∈ NVQ,

(31)

where we determine w, the index of the winning child of a
VQ-node, according to

w = arg min ‖s(t) − mi‖, s.t. `i = 〈y(t),y(t+ 1)〉. (32)
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The symmetry problem can be visualized in Fig. 26, where two
model vectors with identical geometrical locations have differ-
ent associated outputs. Thus, depending on the context, one
of these model vectors has to be selected to eliminate the am-
biguity. For instance, this problem may arise in our robotic
learning scenario where we identify three subsequent states
(defined by object poses) xi, xi+1, xi+2 for a situation when an
object bounces. The object starts in state xi, then goes to xi+1
and then returns to the original pose xi. That is, xi = xi+2.
In that case, two model vectors with the same value will have
different outputs. Thus, by defining `i = 〈y(t),y(t + 1)〉 we
withdraw the strict Markov assumption, because we define an
output function which considers an additional time step.

m
1

,m
2

o
1

o
2

Figure 26: The symmetry issue in model vectors

We refer to [25] for more detailed explanations of CVQ train-
ing. When a CVQ leaf node is completely split [25], a recursive
method is devised that splits data points in regions that sepa-
rate them on the basis of labels for vectors as seen above. Model
vectors are determined by averaging the data points in a region.
Given the slightly different labeling used in this work, we refor-
mulate the complete split in Def. 23. In Section 5.3 we describe
the procedure for labeling vectors when splitting a data set.

Definition 23 The complete split of several VQ nodes using several
data sets at once is denoted cvq = split_cvq(cvq,D) where cvq is
the CVQ to be split and D = [D1,D2, . . . , D|Λcvq|] is a list of data
sets where Di is the data set for splitting the leaf node with ID = i

(if the node should not be split, then Di = ∅). The elements of a data
set are pairs 〈s, `〉 where s is the data vector and ` ∈ 〈N, N〉 is a label
or class of the data vector. The leaf nodes are re-enumerated after the
completion of all splits.
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In our work, most of the experiments were performed by
applying a basic split [25] in order to avoid larger training times
and, in our case, this decision apparently avoids less precise
SSMs. The basic split does not involve the recursive splitting
step in case that data vectors are not completely separated after
the first split.

5.3 cryssmex learning loop

The principal components of the CrySSMEx algorithm are listed
below [25]:

• the SDTDS, which represents the class of systems for CrySSMEx
to analyze.

• the data set, i.e., the SDTDS transition event set Ω.

• SSMs, a subtype of SDTDSs.

• SDTDS transformation into SSM by quantizing input, out-
put and state (cf. Sections 4.1 and 5.2).

• generation of UNDI-equivalence (universally not decisively
inequivalent) sets in SSMs, which is the process that helps
to determine when to merge states (function
generate_UNDI_equivalence_sets).

• use of CVQ as a state space quantizer (cf. Section 5.2).

• merging (function merge_cvq) and splitting of CVQ leaf
nodes (cf. Definition 23).

• selection and labeling of state vectors of Ω based on SSM
information-theoretic properties (Algorithm 17).
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Algorithm 4 : collect_split_data(Ω,Λi,Λs,Λo)
Data : A transition event set, Ω, an SSM, ssm, an input quantizer, Λi, a

state quantizer, Λs and an output quantizer, Λo.
Result : A list of data sets D, one data set per q ∈ Q. An element of

each data set is described in Def. 23.
1 begin
2 D = [∅, ∅, . . . , ∅];
3 for ∀〈s(t), i(t), o(t), s(t+ 1) ∈ Ω do
4 qi = Λs(s(t));
5 xk = Λi(i(t));
6 yl = Λo(o(t));
7 ym = Λo(o(t+ 1);
8 qj = Λs(s(t+ 1);
9 if ∃xr : Hssm(Y|Q = qi,X = xr) > 0 then

10 xmax = arg maxxr∈XHssm(Y|Q = qi,X = xr);
11 if xk = xmax then
12 Di = Di ∪ 〈s(t), 〈yl,ym〉〉;

13 else if ∃xr : Hssm(Q|Q = qi,X = xr) > 0 then
14 xmax = arg maxxr∈XHssm(Q|Q = qi,X = xr);
15 if xk = xmax then
16 Di = Di ∪ 〈s(t), 〈yl,ym〉〉;

17 return D

In Algorithm 17, data sets are first split if output is indeter-
ministic. If not, but the next state is not deterministic, data sets
are then split and labeled accordingly. The diagram in Fig. 27

illustrates this process.

root
VQ

Initial SE

VQ VQ

Leaf Leaf

Model vector

Figure 27: Partition of VQ states by the CVQ quantizer.

Finally, an improved version of the CrySSMEx main loop can
be observed in Algorithm 16, where we added a stopping crite-
rion.
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Definition 24 Let us define a constant τ needed to stop the algorithm
when no improvement is observed after τ iterations. We set τ = 5. In
that case, the algorithm reaches a stability state.

Algorithm 5 : CrySSMEx(Ω,Λi,Λo)
Data : An SDTDS transition event set, Ω, an input space quantizer Λi,

an output space quantizer Λo.
Result : A deterministic SSM mimicking the SDTDS within the domain

Ω as described by Λo.
1 begin
2 i = 0;
3 ssm0 = create_machine(Ω,Λi,Λcvq0 ,Λo) (ssm0 has Q = {q1} with

all transitions to itself);
4 repeat
5 i = i+ 1;
6 D = collect_split_data(Ω, ssmi−1,Λi,Λcvqi−1 ,Λo);
7 cvqi = split_cvq(cvqi−1,D);
8 ssmi = create_machine(Ω,Λi,Λcvqi ,Λo);
9 if ssmi has UNDI-equivalent states then

10 E = generate_UNDI_equivalence_sets(ssmi);
11 cvqi = merge_cvq(cvqi,E);
12 ssmi = create_machine(Ω,Λi,Λcvqi ,Λo);

13 if ssmi = ssmi−1 then
14 Set ι = i the last iteration where improvement was found.

15 until ssmi is deterministic or no improvement after τ = i− ι iterations;
16 return ssmi

For every region Rr, we executed the CrySSMEx algorithm,
obtaining one SSM associated to some region.

An informative output function is essential for splitting the
state space optimally. In our learning scenarios, object motion
predictions and classifications benefit from the efficient state
quantization which is obtained by applying the output func-
tions described in Chapter 3. In the case of prediction, the ap-
proach was to use the quantized transformation vector as a way
to eliminate ambiguities in next-state prediction. As for classi-
fication, the main purpose is to investigate the ability of the
extracted SSMs to predict correct classifications and to analyze
the state quantization which is produced. In the next chapter,
we evaluate the prediction and classification ability of SSMs in
an artificial dynamical system and in our robotic learning sce-
nario, both of these having symmetrical properties and noisy
state spaces.
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E X P E R I M E N TA L R E S U LT S F O R P R E D I C T I O N
A N D C L A S S I F I C AT I O N

As seen in Chapter 4, we developed RobustGNG to be inte-
grated into our redesigned CrySSMEx algorithm (cf. Chapter 5).
In this chapter, we use these learning methods to analyze the be-
havior of dynamical systems by inferring corresponding prob-
abilistic models. In Section 6.1, we describe the analysis of the
behavior of a noisy automaton and inference of the correspond-
ing machine. This is useful for testing our algorithms with sim-
ple dynamical systems with symmetrical properties and noisy
state spaces. In 6.2 we test and evaluate our algorithms on our
robotic learning problem.

6.1 experimental results for ssm induction with

synthetic data sets

To test the ability of the algorithm 16 to infer probabilistic ma-
chines from noisy data we carried out experiments with noisy
automata. Experiments with noisy automata were proposed
by [64]. Some GNG-based algorithms adapted to learn time
series have already been used to solve this problem [1]. As
seen in Section 2.5, state space models [6] and supervised spa-
tiotemporal connectionist networks [33] have been applied for
time series prediction. In previous work [64, 1], unsupervised
algorithms have focused only on prediction, but not on models
with optimal quantization and optimal rule construction from
sequential data, as we do here. The goal is to evaluate the den-
sity estimating capabilities of a temporal model by reconstruct-
ing the transition probabilities of a second-order Markov model.
Input vectors in R2 are generated from three Gaussian distribu-
tions with means a = [0, 0], b = [1, 0] and c = [0, 1] and common
standard deviations σ. Figure 28 shows the automaton where
transition probabilities are set depending on the parameter x.
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Figure 28: Transition probabilities of the noisy automaton.

We used the vector quantization algorithms to quantize the
input spaces. In this case, the input space is derived from the
probability distribution of the Gaussians. Thus, they generate
three input clusters {a,b, c} associated to means {a, b, c}. For
different values of σ and x = 0.1, Figure 29 shows the corre-
sponding quantization for 1000 points.
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Figure 29: Input space quantization of noisy automata.

Here, we carried out experiments with 103 data points with
standard deviation σ ∈ {0.0, 0.1, 0.2, 0.3} and transition probabil-
ities x ∈ {0.0, 0.1, 0.2, 0.3}. In this experiment, an output vector



6.1 experimental results for ssm induction with synthetic data sets 79

space is derived from the transition between a data point i(t−
1) and i(t). We define an output vector o(t) = i(t) − i(t− 1).
Thus, the quantization algorithm RobustGNG is also used for
discretization as the output quantizer Λo. In this case, it is easy
to verify that the output space is discretized in 4 components.

After the quantization of input and output spaces, we run
the CrySSMEx algorithm. It is possible to induce either Moore-
like SSMs or Mealy-like SSMs. Induced probabilistic Moore
machines using the RobustGNG output quantization are visu-
alized in Figure 30. The circles denote the states with corre-
sponding output symbols. Here, an output symbol like ab de-
notes a transition where the input is a and next input is b. The
boxes denote the transitions with corresponding input symbols
and transition probabilities when applicable. For further splits
the same transition probabilities are obtained but using more
VQ-nodes. In Figure 31 the final CVQ tree for σ = 0.0, x = 0.1
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Figure 30: Substochastic Moore Machines extracted from noisy au-
tomata

is visualized with the corresponding SSM, where boxes denote
VQ nodes, points merge nodes and circles leaf nodes.
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Figure 31: CVQ Graph and corresponding SSM.

In Figure 30a, we observe that x was found to be 0.0 in both
transition cases. In Fig. 30b, x is induced as 0.11 and 0.10, and
in Fig. 30c to 0.23 and 0.21 respectively. Thus, transition prob-
abilities were inferred with high accuracy. In Table 5 and 6 we
present the reconstructed probabilities based on the induced
probabilistic Moore machines. We show results for standard
deviations σ ∈ {0.0, 0.1}. These results are similar to the ones
shown by the Merge Growing Neural Gas (MGNG) algorithm,
which was tested with σ ∈ {0.1, 0.2, 0.3, 0.4, 0.5} [1]. We compare
our method with MGNG in Table 6. Notice that the starting
input symbol for all experiments was always a. For greater val-
ues of σ, the Gaussian distributions overlap, leading to more
complex machines that are more difficult to analyze. In such
cases, a point generated by some Gaussian distribution might
be quantized as a member of other Gaussian distribution, since
the margins that the Voronoi regions form are not sufficient to
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split points accordingly. In Fig. 32, the result for σ = 0.2 and
x = 0.0 is illustrated.

x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
P(a|ba) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P(b|ba) 0.0 0.08 0.2 0.32 0.42 0.51 0.63 0.68 0.8 0.91 1.0
P(c|ba) 1.0 0.92 0.8 0.68 0.58 0.49 0.37 0.32 0.2 0.09 0.0
P(a|ca) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P(b|ca) 1.0 0.88 0.8 0.68 0.58 0.52 0.39 0.29 0.18 0.12 0.0
P(c|ca) 0.0 0.12 0.2 0.32 0.42 0.48 0.61 0.71 0.82 0.88 0.0

Table 5: Reconstructed probabilities for σ = 0.0.

CrySSMEx
x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P(a|ba) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P(b|ba) 0.0 0.1 0.23 0.29 0.39 0.5 0.59 0.68 0.85 0.89 1.0
P(c|ba) 1.0 0.9 0.77 0.71 0.61 0.5 0.41 0.32 0.15 0.11 0.0
P(a|ca) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
P(b|ca) 1.0 0.89 0.79 0.72 0.6 0.48 0.41 0.26 0.2 0.09 0.0
P(c|ca) 0.0 0.11 0.21 0.28 0.4 0.52 0.59 0.74 0.8 0.91 0.0

MGNG
x 0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

P(a|ba) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 n.a. n.a.
P(b|ba) 0.0 0.098 0.201 0.302 0.398 0.498 0.603 0.699 0.796 n.a. n.a
P(c|ba) 1.0 0.901 0.798 0.697 0.601 0.501 0.396 0.3 0.203 n.a. n.a.
P(a|ca) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 n.a. n.a.
P(b|ca) 1.0 0.9 0.798 0.7 0.6 0.498 0.398 0.3 0.2 n.a. n.a.
P(c|ca) 0.0 0.099 0.201 0.299 0.399 0.501 0.601 0.699 0.799 n.a. n.a.

Table 6: Reconstructed probabilities for σ = 0.1.

In summary, in contrast to previous work, we are not only
able to obtain probabilistic models which can predict well the
transitions of a noisy automaton, but to infer their qualitative
models by constructing an SSM version of this simple dynami-
cal system via the unsupervised mechanism CrySSMEx. With-
out the redesign applied to CrySSMEx, this algorithm could not
have been used for second-order Markov models with symmet-
rical properties. In the next section we show how our algorithm
can be applied to the complex interactive dynamical systems
involved in our learning robotic scenario, which also have the
quality of being noisy and symmetrical.
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Figure 32: A complex automaton extracted from overlapping Gaus-
sian distributions.

6.2 experimental results for prediction and clas-
sification

For evaluation purposes, we discuss two learning scenarios
(real and simulated) where a robotic arm interacts with one
object at the time. In the implementation we use the Golem
library [29] which uses the Nvidia R© PhysXTM library enabling
us to perform realistic physical simulations and to obtain fea-
ture vectors which are used for learning and evaluation. This
learning setting can easily be re-adapted to real scenarios. Al-
though they provide an idealized scenario, these experiments
are necessary to establish a baseline from which we can start ad-
dressing noisy information in a real environment. In the simu-
lated scenario the arm interacts with a polyflap, whereas in the
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real scenario, the arm interacts with a tea box, as shown in Fig.
7. The simulated and real arms correspond to a Neuronics R©
Katana 6MTM.

6.2.1 Feature selection assessment and learning parameters in the
robotic scenario

Chapter 5 refers to the automatic construction of SSMs which
will be useful for prediction and eventually planning tasks. Sec-
tion 6.1 showed that CrySSMEx can be applied to noisy data
sets and symmetrical second-order Markov models, which is
the case in the interactive robotic learning scenario. However,
the conditional entropy evaluation which is linked to SSMs is
also useful to evaluate the degree of uncertainty which will
produce a certain selection of features for learning. After some
initial tests and the evaluation of the conditional entropy associ-
ated to all possible combinations of states and input symbols in
an SSM, a decision was taken favoring the feature selection pre-
sented in Chapter 3. These preliminary checkings triggered the
decision of using Mealy machines instead of Moore machines.
Conditional entropy values closer to 0 were preferred. How-
ever, an examination of the way a Mealy machine processes an
input can shed light on the reason why Mealy machines are
more efficient in this case.

In a Mealy machine, the output state is determined both by
its current state and the current input, in contrast to the Moore
machine, whose output is only determined by its current state.
Thus, the more information we give about the current situation,
in terms of input and state, the less ambiguous is the output
value. Moreover, learning experiments such as the ones de-
scribed in [47] involving a sensorimotor description of the state
of the system use a similar configuration to define the features
which serve as evidence in the current predicting situation.

In the learning scenario, the arm starts a pushing action from
18 different poses. The robot applies a pushing angle ranging
from 60 to 120 degrees, parallel to the ground plane in the direc-
tion of the object center, as shown in Fig. 33, where the spheres



84 experimental results for prediction and classification

show the starting poses of the finger. We set a constant speed
for the robot movements.

Figure 33: Pushing actions.

For input and output spaces quantized by means of Robust-
GNG, we used the parameters ηs1 = 0.8, ηi∈Ns1 = 0.001, Te = 1,
Tm = 100, α = 50, τ = 30, θ = 50, and λ equal to the size of the
corresponding data set. For input spaces we used the param-
eters κ = 1 and ε = 10−3 corresponding to the MDL criterion.
For output spaces we used κ = 10 and ε = 10−4. The difference
in the last parameters lies in the fact that the scale of output
vectors is very small. Thus, we adjusted these parameters to
find more precise and informative quantizations. The splitting
criterion φ is set to 10 iterations.

6.2.2 Learning aspects

We already defined in Defs. 7 and 9 the input and output spaces
to be discretized and we described in Section 4.1 the discretiza-
tion method. As we observed in 4.1.2, starting with one region,
two associated quantizers are used for input and output space
quantization, respectively, and each region Rr is potentially sub-
divided according to a variance measure in the dataset Dr. In
Figure 34 we illustrate the evolution of MDL values for a cer-
tain region. Initially, the algorithm runs with the first data set.
After the optimal number of clusters is found, MDL does not
decrease and eventually, after Tm epochs, the algorithm stops.
Finally, the graph with minimal MDL is stored, after checking
possibly dislocated nodes. When the data set is updated with
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new incoming data, we identify a new peak in the MDL and
eventually it is again minimized.
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Figure 34: MDL history for a given sensorimotor region.

In the case of active quantization, when the normalized model
efficiency normErrorLr for an input quantizer in some region
Rr becomes maximal, actions associated to this region are ex-
ecuted more frequently. Figure 35 illustrates the evolution of
normErrorLr and the frequency of actions for a region Rr by us-
ing a window of size 20 iterations. The actions are categorized
according to one of the 18 possible starting positions of the
pushing action. The figure shows the whole history of the re-
gions, including the history inherited from parent regions since
the creation of the root region.
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Figure 35: History of normalized model efficiency for the input quan-
tizer of a given sensorimotor region.

Likewise, diagrams illustrating frequencies of actions as in
Figure 36 give us information about the evolution of the ac-
tive learning quantization procedure. The graphs show contin-
uously changing peaks in the frequency of actions starting from
certain poses, suggesting that the robot focuses on actions cor-
responding to regions where the normalized model efficiency
is higher. Thus, the robot is inherently motivated to minimize
such an error measure. However, the graph also shows that
the type and the order of actions performed can vary for each
experiment, which is natural given the stochastic nature of the
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greedy policy for selecting random actions. In contrast, a dia-
gram for the online incremental learning case would obviously
show uniform frequency values for all actions, as shown in Fig.
37.
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Figure 36: Three runs of the active learning quantization experiment.
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Figure 37: A run of the online quantization experiment.

6.2.3 Prediction results

The outcome of the quantization process is a set of quantizers
Λr,i/o for all regions. CrySSMExr(Ωr,Λi,Λo) (algorithm 16) is
run for every region Rr to obtain corresponding SSMs ssmr. To
test the prediction results, we applied the prediction process
explained in [25], which is called a parsing process, because
of its applicability to formal languages and automata. We per-
formed experiments for both one-step ahead and long-term pre-
dictions.

6.2.3.1 One-step ahead prediction

Let p(q(t)) = [p(q1(t)),p(q2(t)), . . . ,p(qn(t))] be a substochas-
tic vector denoting the distribution over Q at time t and xk(t) ∈
X be the input symbol fed to the machine. The resulting distri-
bution vector over Q, p(q(t+ 1)), is calculated by [25]

p(q(t+ 1)) = Pq(p(q(t)), xk(t)) (33)
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where each element p(qj(t + 1)) of p(q(t + 1)) is calculated
by [25]

p(qj(t+1)) =

|Q|∑
i=1

p(qi(t)) · |Y|∑
l=1

p(qj(t+ 1),yl(t)|qi(t), xk(t))


(34)

These equations describe the prediction distribution of a state,
given an input and a previous state. Likewise, the distribution
of output symbols p(y(t)) over Y is generated in the transition
by [25]

p(y(t)) = Py(p(q(t)), xk(t)), (35)

where each element p(yl(t)) of p(y(t)) is calculated by [25]1

p(yl(t)) =

|Q|∑
i=1

p(qi(t)) · |Q|∑
j=1

p(qj(t+ 1),yl(t)|qi(t), xk(t))


(36)

In order to obtain the model vectors from the CVQ and calcu-
late the normalized root mean square error in prediction, we ob-
tained a map of model vectors and corresponding quantization
indices to obtain an inverse quantization function Λ−1

s . Since a
VQ node in the CVQ quantizer may have more than one model
vector, we obtained the map associating a VQ node index and
a model vector by calculating the mean of its associated model
vectors obtained using CrySSMEx.

We performed training experiments in simulation with 100,
200 and 500 sequences. In a first experiment, we applied an
online incremental learning mechanism, by setting the greedy
policy with probability ε = 1.0, i.e., the robot only chooses ran-
dom actions. In a second experiment, we applied the usual
active learning procedure with ε = 0.3. We repeated both ex-
periments three times to obtain accurate statistics. The best
results were obtained for 500 sequences and the online quanti-
zation procedure. Figure 38 shows the normalized root mean

1 We modified the notation used in [25] expecting to make the mathematical
description more clear. For instance, an output yl(t) (instead of yl(t+ 1)) is
associated to the current input xk(t) and current state qi(t).
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Figure 38: Normalized RMS error in prediction.

square error (RMSE) in prediction for these 3 cases, by using 10

different sets of 500 ground truth validation sequences. Here,
the confidence interval for the mean of the RMSE is calculated
from the sample mean and variance assuming a Gaussian dis-
tribution and a standard normal quantile |z0.975| = 1.96. More
iterations would give more accurate results, as the trend in the
RMSE results shows. In Table 7 we show the average number
of SSM states obtained for 3 online learning experiments and
3 active learning experiments, each for 3 different number of
sequences.

Quantizers Avg No. of States

100 sequences 200 sequences 500 sequences

Online 1697 3942 10873

Active 1731 3526 10748

Table 7: Average number of SSM states for 3 experimental cases in the
simulated scenario for object trajectory prediction.

In Fig. 39 we exemplify the prediction results.
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(a) Predicting the flipping over affordance

(b) Predicting the sliding affordance

(c) Predicting the tilting affordance

Figure 39: Short-term prediction of affordances. Red contour depicts
last prediction.

The algorithm was also tested within a real environment ob-
taining comparable results to the ones obtained in simulation.
Here, we used the object tracking system to generate both learn-
ing and ground truth data, as described in Chapter 3. The
learning scenario involves 120 pushing actions starting from
one pose and applying a pushing angle ranging from 60 to 120
degrees parallel to the ground plane in the proximity of a tea
box. We tested the online version of the algorithm, where the
greedy policy is ε = 1.0 as in the previous experiments. Like-
wise, we tested an offline version of the algorithm where there
was no subdivision of the sensorimotor space in regions. Thus,
each action was selected randomly and the sequences for learn-
ing the input and output spaces were stored. After this process,
we first ran the quantization of input and output spaces, and
then the space quantization as explained in Algorithm 16. As
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for offline learning, due to memory and time constraints, the
algorithm did not reach a stopping criterion (neither machine
determinism nor stability). This is because of the space com-
plexity of the quantization mechanisms, which is overcome in
the active (online) process by splitting the space in regions. Ta-
ble 8 shows the normalized RMSE in prediction for both online
and offline cases. The results obtained are close to the ones
in simulation (Fig. 38), considering 200 or more training se-
quences. However, the SSMs we obtained are much more com-
plex, taking into account the number of SSM states. In the real
scenario, 100 ground truth sequences were used for testing.

Considering the results and the learning parameters and con-
ditions, we observe that apparently more sequences are needed
to learn in a real scenario. Possible reasons are that the physical
properties like friction parameters, object and arm properties,
noisy features and other external aspects can have impact on
the learnability of the environment, and they are poorly mod-
eled by physics simulators. In previous work [30, 29], the sce-
nario was set up to match the physical properties of a simulated
scenario and to use the features from the physics simulator in
the learning phase. Here, we use the visual features coming
from the object tracker, which are always at least slightly noisy.
However, this can be seen as an additional gain of our work,
because we are trying to generalize object behaviors from noisy
information which is a challenge in robotic learning scenarios.
Additionally, we achieved this also by using incremental learn-
ing mechanisms.

Quantizers Normalized RMS Error Mean Confidence Interval No. of States

Online 0.0116155743 ±0.0004263449 12058

Offline 0.0120611487 ±0.0004473294 12832

Table 8: Results for short-term prediction in a real scenario.

In Fig. 40 the prediction process during the pushing move-
ment is shown. The results were obtained under different light-
ing conditions.
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(a) Pushing to the right

(b) Pushing to the front

(c) Pushing to the left

Figure 40: Short-term prediction for pushing actions. Red countour
depicts last prediction.

6.2.3.2 Long-term prediction

In Eq. 33 we saw the general form of the equation for pre-
dicting the distribution of a next state, given a previous state
and an input symbol. We showed in Def. 7 that an input
i(t) = 〈m, a(t), b(t− 1)〉. Thus we have xk(t) whose correspond-
ing latent variable k is obtained by

k(t) = Λi(i(t)) = Λi(〈m, a(t), b(t− 1)〉) (37)

To obtain long-term predictions, we can use the inverse quanti-
zation function Λ−1

s instead of using b(t− 1). Thus, the index
k can now be obtained by modifying the input as follows:

k(t) = Λi(i(t)) = Λi(〈m, a(t),Λ−1
s (q(t− 1))〉) (38)
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For the first prediction, that is, to predict the second item in a
sequence (i.e. for t = 1), we use the initial pose of the object
which is xk(0) for some k, so that

k(1) = Λi(i(1)) = Λi(〈m, a(1), xk(0)〉) (39)

We then use Eqs. 33 and 35 with the modified xk(t) for predic-
tion, starting with the initial perceived state xk(0).

Long-term predictions were also accurate although less pre-
cise than short-term predictions, as one might intuitively sus-
pect. For comparison, in Table 9 we show the results for short
and long-term prediction for 500 sequences in the simulated
scenario. The SSMs learned by using 10 different sets of 500
sequences are used for both cases. In Table 10 we show long-
term prediction results for online and offline experiments in
the real scenario using 100 sequences, which can be compared
with short-term prediction results presented in Table 8. The re-
sults show a higher error for long-term prediction and higher
uncertainty, as mean confidence interval values show.

Quantizers Normalized RMS Prediction Error

Short-term Long-term

Online 0.0089± 0.00030 0.0135± 0.00038
Active 0.0122± 0.00040 0.0151± 0.00045

Table 9: Results for short and long-term prediction for 500 sequences
in a simulated scenario.

Quantizers Normalized RMS Error Mean Confidence Interval

Online 0.02664327 ±0.001506291
Offline 0.02728574 ±0.002769571

Table 10: Results for long-term prediction in a real scenario.

6.2.3.3 Concept prediction

To test the ability of the CrySSMEx algorithm to infer proba-
bility distributions of more abstract patterns in the learning se-
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quences, we applied the discretization explained in Chapter 3.
As we mentioned there, 15 possible output values can be ob-
tained. 5 of them correspond to one of the possible three ab-
stract object motions (sliding, flipping over, tilting). These 5
values for each abstract motion correspond to the more fine-
grained predicted object motion (going backwards, forwards,
falling down, going up and not moving). We used 500 train-
ing sequences obtained during the trajectory prediction exper-
iment and we ran CrySSMEx on them with the original input
quantization already available (Section 6.2.2) and the new out-
put quantization. We tested the prediction with 10 different
sets of 500 sequences for both online and active density esti-
mation cases. Table 11 shows misclassification statistics of ob-
ject motions, where the confidence interval for the average mis-
classification percentage is calculated from the sample mean
and variance, assuming a normal distribution with quantile
|z0.975| = 1.96. The results show that the prediction of fine-
grained classifications is not satisfactory. However, although
the fine-grained classifications were not accurately obtained, in
most of the cases the output values obtained matched the cor-
responding coarse-grained classification. This leads us to the
conclusion that at least an abstract pattern can be predicted by
extracting SSMs from sensorimotor sequences.

Quantizers Avg. Misclassification Percentage No. of States

Fine-grained Mean Confidence Coarse-grained Mean Confidence

Interval Interval

Online 0.1815458 ±0.0058833743 0.010212387 ±0.0025574519 4174

Active 0.1986604 ±0.004320878 0.02150257 ±0.0044678776 4114

Table 11: Classification of abstract object motions.

The SSMs obtained for this categorization experiment can
also be applied for trajectory prediction, though the predictions
are approximate and coarse-grained because these SSMs pos-
sess less states. We illustrate these results in Figure 41.
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(a) Predicting the flipping over affordance

(b) Predicting the sliding affordance

(c) Predicting the tilting affordance

Figure 41: Prediction of affordances by SSMs trained for abstract con-
cept learning. Red contour depicts last prediction.

We also performed experiments for long-term classification
prediction, by using the equations described in Section 6.2.3.2
with the proper output space discretization. The results are pre-
sented in Table 12 and again show that long-term predictions
are still accurate.

Quantizers Avg. Misclassification Percentage

Fine-grained Mean Confidence Coarse-grained Mean Confidence

Interval Interval

Online 0.1952707 ±0.006386257 0.01561242 ±0.003947912
Active 0.2106821 ±0.005725652 0.02736386 ±0.003201882

Table 12: Long-term prediction of object motion categories.

The results presented in this chapter show the ability of the
SSMs to predict an object pose, given previous object and finger
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poses. Moreover, these predictions can be obtained in the long
term. Thus, SSMs are able to predict object trajectories given
a motor command. We show that abstract concepts can also
be predicted accurately by using specialized output functions
during SSM induction.



7
C O N C L U S I O N S

We investigated the problem of predicting the object behavior
after a robot pushes it in terms of trajectory estimation and be-
havior categorization. Our approach uses Vector Quantization
algorithms to discretize the sensorimotor space of action/ob-
ject behavior pairs. After this, we infer probabilistic models
which describe quantitative states and transitions which model
cause-effect interactions between robotic arm actions and object
movements.

More specifically, we applied an unsupervised learning algo-
rithm (RobustGNG) to quantize the sensorimotor space after a
new training sequence is available. This algorithm is incremen-
tal and allows to add or delete prototypes representing clusters
in the probability distributions of these spaces in an online man-
ner. Stopping criteria are crucial to decide the right number of
latent variables. Information-theoretic criteria like Minimum
Description Length were used for these purposes.

We also used a divide-and-conquer strategy to split the sen-
sorimotor spaces into different regions, in order to accelerate
convergence and deal with space complexity issues. Addition-
ally, an active learning procedure for the quantization of senso-
rimotor spaces was implemented and some comparative results
are presented, which show a potential for the applicability of
active learning strategies for robotic learning tasks. Finally, the
quantized spaces were used for obtaining qualitative models of
object behavior and classification in the form of substochastic
finite-state machines, by applying an improved version of the
CrySSMEx algorithm. The prediction and classification ability
of the learning algorithms were demonstrated here experimen-
tally for both one-step ahead and long-term prediction cases.

The RobustGNG algorithm addresses some issues of previ-
ous implementations of GNG regarding online learning and
efficient cluster identification. We managed to reduce the num-

99
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ber of parameters compared to previous GNG implementations.
Moreover, an online calculation of the error and a learning rate
based on this quantity makes the algorithm suitable to be sub-
sequently implemented as an online learning algorithm. For
that purpose, the challenge is to implement strategies for iden-
tifying latent spaces (clusters) in an online manner. A possible
solution is an approximate or online version of the minimum
description length criterion, but other information-theoretic or
probabilistic inference strategies might be applied.

In recent years considerable theoretical work has been carried
out in online classification learning where active exploration
can influence the training samples the learner is exposed to [37,
59]. Exploiting cluster structure in data has also been addressed
in active learning models for classification tasks [14].

More theoretical or experimental work has to be done in or-
der to compare offline, online and active learning approaches.
For now, there is not enough evidence about the amount of
instances needed after the active learning procedure becomes
more efficient than simple random online selection of actions.
Moreover, we applied active learning techniques for density
estimation, which is a challenging task given the space com-
plexity of the possible object behaviors produced. For this,
CrySSMEx can also be helpful since we use conditional entropy
for learning models and evaluating uncertainty. Active learn-
ing strategies can also be applied for the learning problem of
identifying concepts or patterns from sequences.

For now, we use an offline algorithm (CrySSMEx) for infer-
ring substochastic machines. We improved this algorithm to
take into account information from the past to eliminate the
ambiguities originated by the first-order Markov assumption.
A next step in this work is to implement online strategies for
building these probabilistic models in “real-time”. After a se-
quence of object poses is obtained, information-theoretic ap-
proaches could be useful to decide which features are infor-
mative. A key aspect in this process pertains to the ability of
an algorithm to correctly identify latent spaces in a constructive
manner, after new information arrives.
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In the future, the inferred probabilistic models obtained by
employing CrySSMEx need to be tested to evaluate their suit-
ability as planning tools. Planning is a final step in a devel-
opmental process which is relevant for robots when they learn
and reproduce complex manipulation, spatial reasoning and
language production tasks. Probabilistic finite-state machines
are similar to hidden Markov models, where states are partially
observable (see Section 2.5). HMMs in turn can be regarded as
partially observed Markov decision processes (POMDPs) when
actions (and eventually rewards) are present. There is a rich
amount of information about decision-theoretic planning based
on these Markov models [70].

An alternative approach is the use of SSMs as graphs with
probabilities. Planning with graphs is possible through mecha-
nisms such as evaluating reachability among different vertices
of a graph. Additionally, it is useful to evaluate and compare
different learning and inference approaches employed by vari-
ous models such as HMMs, DBNs, DCRFs, among others (Sec-
tion 2.5), which have commonalities and share similar applica-
tions. For instance, DCRFs possess advanced probabilistic in-
ference methods, while SSMs make it possible to model incom-
pleteness in their structure, but both deal with similar issues.

Other sequence learning models such as recurrent neural net-
works, like LSTMs, are useful as prediction tools, as we showed
in Section 2.6. CrySSMEx is certainly a proper tool for extract-
ing rules and qualitative states from them, as demonstrated in
previous work. However, we showed that by using CrySSMEx
and RobustGNG directly for learning and discretizing models
of interactive dynamical systems, we obtain adequate results.

Active or online learning can also be accelerated by means
of social interaction. As we already mentioned in Section 2.1,
some works [68, 9] already address socially guided learning
aspects. Autonomous learning can also benefit from imitation
or demonstration learning environments [2]. Reciprocally, so-
cially guided learning can benefit from active learning. In [10],
the authors propose active learning applied to a socially guided
learning environment, where the robot can query an external
entity about areas of uncertainty in its hypothesis space. In
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[56], the robot decides which features of the sensorimotor state
vector are more salient to select actions or sensors only if their
associated information gain is non-zero.

Autonomous robots should also be able to acquire abstract
knowledge through verbal communication. There exist several
stages of language or concept acquisition but there is still a lack
of understanding about the interrelationships among different
stages and processes. Thus, it is certainly useful to understand
these developmental processes to implement them in robotic
systems. As an example, there is an extensive literature on
topics about verbal and motor lexicon acquisition through lan-
guage games in robotic environments, including [61].

Additionally, robots need strategies for deciding the focus of
attention in a visual scene, so that the space complexity is again
reduced. One possible approach uses social cues from human
tutors [68]. There are more technical approaches like segment-
ing a scene in order to identify possible places containing ob-
jects, as proposed in [7], or learning state representations to find
a mapping from observations of the world to states that allow
for choosing the right actions [27]. To make our systems more
scalable, we call for the use of point clouds, optical flow estima-
tion or similar strategies instead of model tracking systems. Tra-
ditionally, manipulation tasks have been addressed using algo-
rithms specialized for certain problems. For instance, there are
many approaches for grasping [32, 8, 46] including active learn-
ing and exploration, as we pointed out in Section 2.1. However,
it is useful to develop more integrated systems which can gen-
eralize different behaviors or learning stages. To achieve that,
a theory of developmental or cognitive robotics needs to be re-
fined to strive for intelligent robots. For instance, the decisions
on the motor actions to be performed have to be incorporated
in a complex cognitive architecture which should be able to
make decisions given different motivation drives and different
contexts. A theoretical model of affordances or object-action
complexes (see Section 2.2) needs to be incorporated in a cog-
nitive architecture together with developmental approaches, in-
cluding different aspects such as active/online learning, explo-
ration, attention, planning and communication [74]. In sum-
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mary, we argue that our approach can be incorporated in sys-
tems that involve social interaction, where developmental learn-
ing stages can make these systems more scalable by bringing
more autonomy and self-motivation.

Last but not least, more features involving other object prop-
erties such as weight, shape or surface conditions have to be
incorporated in the input space to make our systems scalable
to real world tasks, as well as additional robotic control param-
eters such as velocity and tactile information.
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