
Causality-based Verification

Dissertation zur Erlangung des Grades des Doktors der Naturwissenschaften der
Naturwissenschaftlich-Technischen Fakultäten der Universität des Saarlandes

Andrey Kupriyanov

Saarbrücken, 2016

Tag des Kolloquiums 28.06.2016
Dekan Univ.-Prof. Dr. Frank-Olaf Schreyer

Prüfungsausschuss

Vorsitzender Prof. Dr. Jörg Hoffmann

Berichterstattende Prof. Dr. Bernd Finkbeiner
Prof. Dr. Rupak Majumdar

Akademischer Mitarbeiter Dr. Swen Jacobs

i

Abstract

Program verification is one of the central research topics in computer science
since its inception – we can consider the field to be initiated as early as in 1949,
with Alan Turing’s pioneering paper “Checking a Large Routine.” Yet, we are
still far from the dream of automatically proving every computer program cor-
rect. Two aspects make this problem particularly challenging: concurrent pro-
gram execution on parallel processors, and large, or even infinite, state spaces of
data-manipulating programs. Nowadays, with concurrency entering everywhere,
from smartphones to aircrafts, proving the correctness of infinite-state concur-
rent programs becomes increasingly more important: we do want to be sure that
the program that controls the airplane we are flying in is correct.

In this thesis we propose a new approach to the verification of infinite-
state concurrent programs. We call it causality-based, because it captures in an
automatic proof system the “cause-effect” reasoning principles, which are often
used informally in manual correctness proofs. While traditionally automatic
methods are based on the state space exploration, our method is based on a
new concurrency model, called concurrent traces, which are the abstractions of
the history of a concurrent program to some key events and the relationships
between them. Causality-based proof rules relate concurrent traces with each
other, by formally tracking what are the necessary consequences (the “effects”)
from a particular analysis situation (the “cause”). The full correctness proof is
then a composition of such primitive proof steps.

We study the syntactic and language-based properties of concurrent traces,
and characterize the complexity of such operations as emptiness checking and
language inclusion. Regarding the program correctness, we develop proof sys-
tems for the broad classes of safety and liveness properties, and provide algo-
rithms for the automatic construction of correctness proofs. We demonstrate
that for practically relevant classes of programs, such as multi-threaded pro-
grams with binary semaphores, the constructed proofs are of polynomial size,
and can be also checked in polynomial time. The methods of the thesis have
been implemented in Arctor, the first scalable termination prover for concur-
rent programs, which is able to handle programs with hundreds of non-trivial
threads.

ii

Zusammenfassung

Die Programmverifikation ist seit den Anfängen der Informatik eines ihrer
zentralen Forschungsfelder. Als Beginn dieser Forschungsrichtung kann bereits
das Jahr 1949 betrachtet werden, in dem Alan Turings bahnbrechende Arbeit
“Checking a Large Routine” erschien. Der Traum, die Korrektheit von Pro-
grammen stets automatisch beweisen zu können, ist aber auch heute noch weit
davon entfernt, Realität zu sein. Es gibt zwei Aspekte, die dieses Problem zu
einer solch großen Herausforderung machen: die nebenläufige Ausführung von
Programmen auf Parallelrechnern, und die großen, oder sogar unendlichen, Zu-
standsräume von datenverarbeitenden Programmen. Nebenläufige Programme
werden in immer mehr Anwendungsbereichen, von Handys bis zur Luftfahrt,
eingesetzt. Automatische Korrektheitsbeweise werden daher immer wichtiger:
wenn wir mit dem Flugzeug reisen, möchten wir sicher sein, dass das Programm,
das das Flugzeug steuert, auch tatsächlich korrekt ist.

In dieser Arbeit schlagen wir einen neuen Ansatz für die Verifikation von
nebenläufigen Programmen mit unendlichem Zustandsraum vor. Wir nennen
den Ansatz “kausalitätsbasiert”, weil er im Rahmen eines automatischen Beweis-
systems die “Ursache-Wirkung”-Beziehungen erfasst, die sonst eher informell in
manuellen Korrektheitsbeweisen benutzt werden. Anders als traditionelle au-
tomatische Methoden, die den Zustandsraums explorieren, baut unser Ansatz
auf einem neuen nebenläufigen Berechnungsmodell, dem der “nebenläufigen
Spuren”, auf. Eine nebenläufige Spur ist eine Abstraktion der Vergangenheit
eines nebenläufigen Programms im Hinblick auf bestimmte Schlüsselereignisse
und die Beziehungen zwischen diesen Ereignissen. Kausalitätsbasierte Beweis-
regeln setzen nebenläufige Spuren zueinander in Bezug, indem die Konsequenzen
(die “Wirkungen”) einer bestimmten analytischen Situation (der “Ursache”) auf
eine formale Art und Weise verfolgt werden. Der vollständige Korrektheitsbe-
weis setzt sich dann aus solchen einfachen Beweisschritten zusammen.

Wir untersuchen die syntaktischen und sprachtheoretischen Eigenschaften
von nebenläufigen Spuren, und charakterisieren die Komplexität von Opera-
tionen wie den Tests auf leere Sprache und Sprachinklusion. Wir entwickeln
Beweissysteme zum Nachweis der Programmkorrektheit für die allgemeinen
Klassen der Sicherheits- und Lebendigkeitseigenschaften, und stellen Algorith-
men vor, die solche Beweise automatisch konstruieren. Für aus praktischer
Sicht relevante Klassen von Programmen, wie Multi-Thread Programme mit
binären Semaphoren, zeigen wir, dass die konstruierten Beweise polynomiell groß
sind und auch in polynomieller Zeit geprüft werden können. Die in der Arbeit
vorgestellten Methoden wurden im Verifikationswerkzeug Arctor implemen-
tiert. Arctor is der erste skalierbare Terminierungsbeweiser für nebenläufige
Programme. Arctor kann Programme mit Hunderten nicht-trivialer Threads ve-
rarbeiten.

iii

Acknowledgments

First and foremost, I would like thank my adviser Bernd Finkbeiner. I have
used his open-door policy countless times, and also abused his semi-open one,
to discuss my ideas. I thank him for his interest, patience, willingness to discuss
everything up to and including implementation details, and for his ingenious
remarks, capable of instantaneously rekindling ideas on the verge of abandon-
ment and bringing back to life the most tangled and terrible mess. It is these
qualities from which I have always drawn and will continue to draw inspiration
and guidance throughout my career. It was only the infinite time Bernd devoted
to me that permitted my ideas to crystallize into the present thesis.

I am grateful to Rupak Majumdar for reviewing my thesis, for joining my
thesis committee, and for the interest he has shown in the topic of my research.

I want to thank all members of the Reactive Systems group at Saarland Uni-
versity, with whom I have had the pleasure to work together at different times:
Rayna Dimitrova, Klaus Dräger, Rüdiger Ehlers, Peter Faymonville, Michael
Gerke, Swen Jacobs, Felix Klein, Lars Kuhtz, Hans-Jörg Peter, Markus Rabe,
Christa Schäfer, Leander Tentrup, Hazem Torfah, Martin Zimmermann. I will
always cherish fond memories of our experiences together: our coffee breaks
with endless opportunities to learn about German culture, from the language
through the humor to politics, the delicious cakes you baked, our lovely walks in
Saarbrücken, Freiburg, and Oldenburg, and many other things, far too numerous
to list here.

I am grateful to the German Research Foundation (DFG) for supporting this
work as part of the Transregional Collaborative Research Center “Automatic
Verification and Analysis of Complex Systems” (SFB/TR 14 AVACS).

I am indebted to my colleagues from the AVACS project – among them
Matthias Heizmann, Jochen Hoenicke, Ernd-Rüdiger Olderog, Andreas Podel-
ski, Mani Swaminathan, and all members of the Reactive Systems group – for
the insightful discussions we had together.

Finally, I would like to thank my family – my wife Ksenia, and our daughter
Uljana – for all the joy they bring into my life. Their unconditional love and
unwavering support are the crucial foundation without which this thesis would
never have materialized.

iv

Contents

1 Introduction 1

2 The Verification Problem 5
2.1 Safety . 6
2.2 Liveness . 8
2.3 Verification as Proof Search . 9

3 Preliminaries 13
3.1 Assertion Language and SMT Solving 13
3.2 Graphs and Graph Transformations 15
3.3 Linear Temporal Logic . 15
3.4 Transition Systems . 16
3.5 Synchronized Transition Systems 18

4 Concurrent Traces 21
4.1 Syntax and Semantics . 21
4.2 Language Intersection, Union, Emptiness 28
4.3 Complementation and Language Inclusion 35

5 Causality-based Verification: Safety 45
5.1 Proofs with Trace Transformers 47
5.2 Representation of Safety Properties 48
5.3 Safety Trace Transformers . 51
5.4 Trace Unwinding . 62
5.5 Trace Tableau . 71
5.6 Causal Loops and Looping Trace Tableau 77
5.7 Abstract Trace Tableau . 82
5.8 Polynomial Verification of Semaphore Programs 85

6 Causality-based Verification: Liveness 89
6.1 Infinite Concurrent Traces . 91
6.2 Representation of Liveness Properties 94
6.3 Liveness Trace Transformers . 96
6.4 Tableau Proofs of Liveness Properties 103

7 Experimental Evaluation 109

8 Conclusion and Future Work 113

v

Chapter 1

Introduction

Concurrency fascinated many generations of computer scientists – the intriguing
interdependence between concurrent events, and how they cooperate to achieve
a common goal. A concurrent program can do many things in parallel, with its
components either physically or logically distributed, thus achieving the pro-
cessing speed unattainable by sequential programs. And precisely this power
gives rise to problems: many more things can also go wrong.

This is where formal methods such as verification come in. They try to prove
that a given program satisfies some specification, and, therefore, will serve its
intended design purpose. Among verification methods, model checking attempts
to construct a proof or to find a counterexample completely automatically – it
provides a system designer with an appealing “push-button” approach to pro-
gram verification. While very successful for sequential programs, model checking
of concurrent programs suffers from the so-called state space explosion problem:
the number of control states of a concurrent program grows exponentially fast
with the addition of new components. The problem is exaggerated with large
data domains for program variables.

In this thesis we focus on the verification of temporal properties for concur-
rent programs. The solution we describe aims to uncover the intricate interplay
between dependency and independence. For concurrent programs, it is often the
case that not many concurrent events depend on each other – most events are,
in fact, independent, and precisely this allows concurrent programs to achieve
better performance than sequential ones. On the other hand, the dependencies
do exist. Moreover, they complicate the reasoning about concurrency to such
extent that no general solution to the state space explosion problem is possible:
there will always be programs requiring exponential resources for their analysis.

Despite this theoretical complexity, in many cases a human reasoner is able
to devise either a short proof of correctness, or a small counterexample; this
holds even for large systems, which are out of reach for any automatic method.
Thus, the more general questions we want to answer are: “why are systems built
by humans often easy to reason about, despite high theoretical complexity?”,
and “can we, to some extent, capture the human intuition and reasoning power
within a formal proof system?”. The more technical problem, which we seek a
solution for, is “can we produce polynomial proofs for concurrent programs?”

1

2 CHAPTER 1. INTRODUCTION

Our approach aims to answer these questions by capturing causality. In
most general terms, causality can be defined as the relation between two events,
where the first event (the cause) is understood to be partly responsible for the
second (the effect). Reasoning by causality is the usual style of constructing
proofs: assume some situation (the effect) to be present, and derive all possible
explanations (the causes). Consider the following proof from Leslie Lamport’s
paper [45] introducing the Bakery algorithm for mutual exclusion:

Assertion 1. If processors i and k are in the bakery and i entered the
bakery before k entered the doorway, then number [i] < number [k].

Proof. By hypothesis, number [i] had its current value while k was
choosing the current value of number [k]. Hence, k must have chosen
number [k] ≥ 1 + number [i].

Here, we assume the situation where the event “i entered the bakery” pre-
cedes the event “k entered the doorway”, and, moreover, number [i] preserves
its value between two events. We derive from this situation another necessary
fact (notice the words “must have chosen”): (number [k] ≥ 1 + number [i]). In
this thesis we propose a formal proof system as well as an automatic method of
constructing concurrency proofs along the lines of causal reasoning.

Organization of the Thesis

• Chapter 2 introduces in more details the verification problem, puts it into
a historical perspective, and discusses the related work.

• In Chapter 3 we formally define the necessary preliminaries such as SMT
solving, temporal logic, and graph transformations. We also describe our
model of synchronized transition systems, which we use to uniformly treat
different flavors of concurrent programs.

• Chapter 4 introduces the model of concurrent traces, which captures sets
of program computations in a succinct partial order representation. We
discuss syntax, semantics, and different characterizations of concurrent
traces, as well as computational complexity and algorithmic aspects of the
standard language-theoretic notions such as emptiness, complementation
and language inclusion.

• In Chapters 5 and 6 we show how transformations of concurrent traces,
or trace transformers, can describe primitive proof steps, and how com-
plete concurrency proofs are constructed as tableaux on top of them. We
demonstrate that tableau-based proofs not only reflect the intuitive causal
reasoning, but are often also of polynomial size. We specialize the the proof
system and the verification algorithms for the two broad classes of tem-
poral properties: safety and liveness.

• Chapter 7 briefly discusses the prototype implementation of the approach
in a tool called Arctor, the first termination prover able to analyze
termination of non-trivial concurrent programs with hundreds of processes.

• Finally, in Chapter 8 we conclude with the discussion of the possible di-
rections for future research.

3

The results of the thesis were presented in the following publications:

• K Dräger, A. Kupriyanov, B. Finkbeiner and H. Wehrheim. SLAB: A Cer-
tifying Model Checker for Infinite-State Concurrent Systems. In J. Esparza
and R. Majumdar, eds., Tools and Algorithms for the Construction and
Analysis of Systems (TACAS), 2010, LNCS 6015, pp. 271–274. Springer,
2010.

• A. Kupriyanov and B. Finkbeiner. Causality-based Verification of Multi-
threaded Programs. In P. R. D’Argenio and H. C. Melgratti, eds., Con-
currency Theory (CONCUR), 2013, LNCS 8052, pp. 257–272. Springer,
2013.

• A.Kupriyanov and B.Finkbeiner. Causal Termination of Multi-threaded
Programs. In A. Biere and R. Bloem, eds., Computer Aided Verification
(CAV), 2014, LNCS 8559, pp. 814–830. Springer, 2014.

4 CHAPTER 1. INTRODUCTION

Chapter 2

The Verification Problem

The problem we approach in the thesis is that of verification: given some pro-
gram, probably written in a high-level programming language, and a specifica-
tion of functional properties the program should meet, establish whether the
program indeed satisfies the properties or not. The verification problem admits
classification according to the class of programs and the class of properties we
consider.

In this thesis we focus on the verification of concurrent programs. For the
verification of sequential programs, known also as software verification, a wide
variety of very successful techniques was developed, ranging from abstract in-
terpretation to counterexample-guided abstraction refinement. The verification
of concurrent programs is inherently more complex: already a control skeleton
of a concurrent program is of exponential size with respect to the program de-
scription. Combined with usually large ranges of the program data variables,
this gives rise to the infamous state space explosion problem, that limits the
applicability of software verification methods.

With respect to the program properties we consider the standard classifica-
tion into safety and liveness properties due to Lamport [46]. Informally, a safety
property means that ”something bad will not happen“. A liveness property, on
the other hand, expresses that ”something good will eventually happen“. This
classification very clearly manifests itself in the shape of counterexamples: a
counterexample to a safety property is always a finite program computation.
On the other hand, a counterexample to a liveness property can be only an
infinite program computation, as any finite counterexample computation, not
containing the required good event, can be turned into a satisfying computation
by appending the corresponding event.

The safety-liveness classification can be also approached from the point of
view of canonical problems that belong to the corresponding property class.
The canonical safety property is that of reachability : to decide whether some
program state is reachable from the initial one. The canonical liveness property is
non-termination: to decide, whether an infinite program computation (probably,
with some additional restrictions) exists.

Finally, the language of Linear Temporal Logic (LTL) [64] combines both
safety and liveness properties in a unified logical framework. As it is shown in
[41], every temporal property can be represented as the intersection of a safety
property and a liveness property.

5

6 CHAPTER 2. THE VERIFICATION PROBLEM

2.1 Safety

The main characteristics that distinguishes safety from liveness is that proper-
ties in the former class can be specified as a set of bad prefixes. This set describes
all violations to a safety properties, and contains only finite prefixes of program
computations. Any extension of a prefix from the set remains a violation of the
safety property. Here are some examples of safety properties and their corre-
sponding language of bad prefixes:

• for a local assertion ”l: assert ϕ“ at location l, the language of bad
prefixes is the set of program computations that can reach location l, and
the formula ϕ evaluates to false.

• a more general case of a safety invariant asks whether some formula ϕ
holds at all reachable program states. The bad prefixes are those program
computations that reach a state where ¬ϕ holds. The property of reach-
ability is the exact opposite of invariance: here, for a formula ϕ, we ask
whether there exist a reachable program state where ϕ holds.

• an example of a temporal safety property is absence of unsolicited
response: whenever some response event β happens, a request event α
should have happened before. The bad prefixes are exactly the program
computations where event β happened, and there was no preceding event
α.

Any safety property can be transformed to reachability by using monitor au-
tomata [42]. A monitor automaton for a safety property encodes the set of bad
prefixes for the property: an error location in the monitor automaton is reached
only by violating program computations. A monitor automaton can be then
combined synchronously with the system; checking reachability of the monitor
error location for the combined system is then equivalent to checking the safety
property for the original system. This construction justifies calling reachabil-
ity the canonical safety property: any method that can solve the reachability
problem efficiently can be adapted for checking general safety properties.

Historically, the first approaches for safety analysis of programs are axiomatic
proofs by Robert Floyd in 1967 [30] and Tony Hoare in 1969 [37], the so-called
Floyd-Hoare logic. In this approach a proof of the shape {P}S{Q} is constructed,
where P is a pre-condition, S is a program, and Q is a post-condition. The above
proof means that program S started in a state satisfying P , if it terminates, will
end in a state that satisfies Q. The key points in the program control flow are
annotated with state assertions, and the logic provides inference rules to derive
new intermediate assertions and discharge proof obligations.

The Floyd-Hoare logic is targeted at sequential programs, where a clearly
defined control flow of linear size is readily available. A concurrent program has
a control flow of exponential size, and an efficient extension is not straightfor-
ward. This extension was nicely done by Susan Owicki and David Gries in 1976
[61, 60]. In their method control flows of individual processes are annotated
with assertions similarly to the Floyd-Hoare logic. But in order for the proof
to be valid, an additional condition of non-interference is imposed: an asser-
tion in a given process should remain valid under arbitrary interference with all
statements in concurrently evolving processes.

2.1. SAFETY 7

Floyd-Hoare and Owicki-Gries methods allow us to construct proofs of cor-
rectness for sequential and concurrent programs, respectively, which are small
(of linear size), and efficiently verifiable (in linear and quadratic time, respec-
tively). The only drawback of the approaches is that the assertions should be
provided manually; this can be automated to some degree, but requires human
ingenuity in the general case.

Addressing this drawback, automatic analysis of program properties, often
referred to as model checking, started around 1980 by several authors; a nice
account of its history is described in [14]. In model checking, we ask, given a
program model M (often obtained by abstracting the real program), and a prop-
erty in some temporal logic ϕ, whether the model satisfies the property, written
M |= ϕ. On the theoretical side, the pioneering works of Edmund M. Clarke
and E. Allen Emerson characterized correctness properties using fixed points
[27, 15]. Approximately at the same time, Gerard Holzmann created at AT&T
the network protocol analyzer Pan [39], which evolved later into the famous
explicit-state model checker SPIN [40]. Partial order reduction methods such
as [72, 63, 32] modify the search procedure of explicit-state model checking, and
allow it to explore a reduced state space, by ignoring the order between inde-
pendent transitions. Symbolic model checking [13] brought explicit-state model
checking to the new level of efficiency by symbolically characterizing sets of
states using BDDs. While partial order reduction and symbolic model checking
do allow to analyze some concurrent designs in polynomial time (see, e.g., [55]),
in most cases they still require exponential resources.

Concurrently to the model checking community, the Abstract Interpretation
framework was evolving, starting with the foundational works of Patrick Cousot
and Radhia Cousot [22, 23]. Traditionally, abstract interpretation has been lim-
ited to sequential programs and safety properties; recently, extensions to con-
current programs [57] and more general temporal properties [71] appeared. In
this framework, the semantics of a program is abstracted by constructing some
abstract domain, where the abstract semantics can be analyzed efficiently. Ex-
amples of abstract domains include the domain of intervals and the domain of
octagons. The analysis in an abstract domain is usually very fast and scales to
millions lines of code. The abstract program semantics overapproximates the
concrete semantics (the method is incomplete): a proof in the abstract seman-
tics is a valid proof for the program, but there may be false negatives, as an
abstract error doesn’t necessarily correspond to a real error.

Predicate abstraction [33] is a particular instance of an abstract domain,
where the abstract states are valuations of a given set of predicates. Abstrac-
tion of a given program gives a finite-state boolean program [6], which can
be efficiently model checked. As the initial set of predicates is often insufficient,
predicate abstraction is usually equipped with the automatic predicate discovery
in the framework of Counterexample-guided abstraction refinement (CEGAR)
[16], thus making the method complete. This very successful combination was
many times refined by different authors; here we would like to mention three re-
finements. Lazy abstraction [35] coined the idea of local refinement, when a new
predicate is applied at a particular program location where it is relevant; this
reduces the abstract state space substantially. Another refinement is the usage
of Craig interpolants for predicate discovery [56], allowing to employ CEGAR-
based model checking for infinite-state systems. Both of these works were lim-
ited to sequential programs; in the Slicing Abstractions framework [12] these

8 CHAPTER 2. THE VERIFICATION PROBLEM

two lines of research were extended to concurrent programs. Author’s own work
on the model checker SLAB [25], which implements the ideas of [12], influenced
to a large degree the development of the present thesis.

2.2 Liveness

Liveness properties are of a very distinct nature compared to safety properties:
they can be violated only by an infinite computation. Any finite computation,
even if the liveness property is not yet fulfilled, can be extended in such a way
that the property is satisfied. Examples of liveness properties include:

• Termination: for a program P that performs some computational task,
we expect that it finally terminates and delivers the computation result.

• Consider a set of processes, that coordinate their activity through the use
of critical sections. We expect that any process wanting to enter its critical
section will eventually succeed – this is the property of accessibility.

• For processes communicating over an unreliable channel, the property of
eventual reliability requires that if some process keeps sending a mes-
sage, it will be eventually delivered.

Similarly to invariance/reachability for safety, termination/non-termination
can be referred to as the canonical liveness property. Proving termination re-
lies on the discovery of ranking functions, which map the program state into a
wellfounded domain. The classical approach due to Alan M. Turing is to build a
single ranking function that strictly decreases in each step of the program [70].
Ranking function synthesis is a well-developed area; in particular, there are
methods for the synthesis of ranking functions for such theories as linear ar-
ihmetic [17][65] and bit-vectors [18]. For quite some time, the common belief
was that Counterexample-guided abstraction refinement (CEGAR) is limited
to safety — until a new generation of CEGAR-based model checkers, notably
the termination checkers Terminator [19] and T2 [10, 20], proved capable of
verifying the termination of difficult recursive functions, such as McCarthy’s 91
function [50], as well as of reasonably complicated industrial software, such as de-
vice drivers. The CEGAR-based termination provers Terminator and T2 build
on the Ramsey-based approach, introduced by Podelski and Rybalchenko [66],
which searches for a termination argument in the form of a disjunction of well-
founded relations. If the transitive closure of the transition relation is contained
in the union of these relations, we call the disjunction a transition invariant ;
Ramsey’s theorem then implies that the transition relation is wellfounded as
well. The approach is attractive, because it is quite easy to find individual rela-
tions: one can look at the available program statements and take any decreasing
transitions as hints for new relations. Unlike the model checkers for safety, how-
ever, the termination provers have been targeted to sequential programs only,
and experiments show that they indeed scale badly for multi-threaded programs.

The first approach for proving liveness properties of concurrent programs
was presented by Leslie Lamport in [47], where he has introduced the notion
of proof lattices. Lattices are constructed from predicates, and arrows from
some predicate P to the set of predicates Q1, . . . , Qn means that after a state

2.3. VERIFICATION AS PROOF SEARCH 9

Algorithm 1: Verification as Proof Search

Input : program P , property ϕ
Output: property holds/counterexample
Data: proof queue Q
begin

Q←− InitialAbstraction(P,ϕ)
while not FixedPoint(Q) do

take some q from Q
if CheckSatisfiability(q, ϕ) then

return counterexample
else

Q←− Q ∪GenerateSuccessors(q)

return property holds

satisfying P appears in the computation, a state that satisfies one of Q1, . . . , Qn
should appear thereafter. This work was generalized by Leslie Lamport and
Susan Owicki in [62], where they replaced predicates in the lattice by arbitrary
temporal formulas. The work of Zohar Manna and Amir Pnueli [51] extends the
approach of [62] by allowing to use well-founded induction principles in diagram
proofs, thus enabling proofs of liveness properties for infinite-state programs.
The method has been automated in the interactive theorem prover STeP [8].
These works come closest to the approach developed in this thesis.

2.3 Verification as Proof Search

A substantial number of verification frameworks can be loosely modeled as a
proof search procedure: see Algorithm 1. Here, given a program P and a property
ϕ, we are interested in establishing the truth or finding a violation of ϕ by P .
To make the discussion more concrete, we assume that the program P has a
large but finite state space, and ϕ is a safety property. In the proof search view,
we choose a proof object, and accumulate the set of objects seen so far in a proof
queue Q. The search starts with some initial abstraction of the system with
respect to the property. At each search iteration we select some object from
the proof queue, and check whether it represents a property violation. If yes, we
report a counterexample; otherwise we generate successors of the object, and put
them into the proof queue. The search continues until either a counterexample
is found, or our proof queue has reached a fixed point, when no new successors
can be generated.

The concrete parameters of the above scheme can be instantiated differently,
giving varying performance characteristics. We are interested in comparing the
complexity of verification approaches for the case of concurrent programs; see
Table 2.1. Here, for each verification method, we list what kind of proof objects
it uses, what is the typical size of the proof with respect to the program descrip-
tion (P stands for polynomial, and EXP for exponential), and how expensive
(in which complexity class) is the fixed point check with respect to the com-
bined size of the program and the proof. We should note that this comparison
is neither complete nor formal: it reflects the author’s view on strengths and

10 CHAPTER 2. THE VERIFICATION PROBLEM

Method Proof Size Fixed Point
Explicit State set of states EXP P
Predicate Abstraction set of predicates P PSPACE
Lazy Abstraction product of predicates EXP P
Automata-based set of automata P PSPACE
Causality-based tableau of traces P NP / GI

Table 2.1: Proof size and complexity for different verification methods

weaknesses of particular approaches. For example, there are some cases when
partial order reduction for explicit-state model checking can reduce the state
space of a concurrent program from exponential to polynomial; yet, there are
even more cases when the state space after the reduction remains exponential.

For explicit state model checking, as represented, e.g., by the model checker
SPIN [40], the proof object is an explicit program state (a valuation of its
variables), and the proof queue is the set of states explored so far. Explicit state
model checkers typically do explore the exponential number of states, but they
do it very quickly (millions of states per second): this is because the proof object
is so simple.

In the predicate abstraction framework, represented by such model checkers
as SLAM [5] and ARMC [67], the proof object is a set of predicates, and the proof
queue is the set of reachable abstract states represented by predicate valuations.
Typically, the set of predicates is refined iteratively using the CEGAR paradigm
[16]. The set of predicates is usually small, but at each iteration the whole set
of reachable abstract states is constructed anew, and it has exponential size.

Lazy abstraction as introduced in [35], later refined by using Craig inter-
polants in [56], and brought to the concurrent setting in [12], is implemented
in such model checkers as BLAST [7] and SLAB [25]. In this framework the
abstract state space is not thrown away after each iteration, but preserved in
order not to redo unnecessary work (as the refinement usually happens locally).
As a result, the work done at each iteration is minimal, but the proof size as
kept in memory becomes exponential.

In automata-based frameworks such as Refinement of trace abstraction [34]
and Inductive data flow graphs [29], the proof object is either a set of automata,
or a single automaton over the alphabet of program statements, which describes
the set of program traces. The verification is successful, when the full set of
program traces is included into the intersection of languages represented by the
automata. Unfortunately, even if the automata themselves are of polynomial
size, the later fixed point check is computationally expensive.

There is one particular point we want to make using the above comparison
of different verification methods: no matter which proof object is used, there is
always the same tradeof – either the proof has exponential size or its validation
requires exponential time. Can we find a proof object and a verification method
such that: a) most proofs for concurrent programs will have polynomial size,
and b) the proof validation can be done in polynomial time?

The causality-based method of the present thesis is our (partial) answer to
this question. It uses as a proof object concurrent traces, and the proof is a
tableau built from them. In the following chapters we show that, on the one
hand, concurrent traces are sufficiently succinct so that most concurrent pro-

2.3. VERIFICATION AS PROOF SEARCH 11

grams do have polynomial proofs, and, on the other hand, the proof validation
can be done in non-deterministic polynomial or quasipolynomial time. More
specifically, the fixed point check for the tableau of concurrent traces amounts
either to the precise language inclusion test, which, as we show later, can be done
in NP under some restrictions, or to the under-approximating concurrent trace
inclusion, which is an instance of the complexity class GI (for Graph Isomor-
phism). Although no polynomial algorithm is still known, recently a quasipoly-
nomial algorithm for the problems in this class was described [4]. In practice,
problems in GI can be solved very efficiently.

12 CHAPTER 2. THE VERIFICATION PROBLEM

Chapter 3

Preliminaries

3.1 Assertion Language and SMT Solving

We are interested in the analysis of programs that comprise data such as integers,
floats, bit-vectors, or arrays. In the verification literature such programs are
generally described as infinite-state, although the infinity here is more of an
abstraction, justified by the fact that the state space of such programs is too
large to be handled explicitly. We abstract from concrete program statements
and assume that their semantics can be expressed in some first-order assertion
language; in the following we denote the set of quantifier-free formulas from the
assertion language over some set of variables V by Φ(V).

To specify program semantics we need to define program transitions that
modify program state, and, thus, connect two states: the current and the next
one. For a set of variables V, we define a set of primed variables V ′ , { x′ | x ∈
V }; primed variables represent the state of the program after executing a tran-
sition. We call formulas from the sets Φ(V) and Φ(V ∪ V ′) state predicates and
transition predicates, respectively. We denote by > and ⊥ the boolean constants
true and false, respectively (the valid and the unsatisfiable predicates).

We extend the primed variables notation to an arbitrary number of primes:
this will allow us to specify sequences of program states of arbitrary length. For
a finite set of variables V, we define a countable family of primed variable sets
Vk , { xk | x ∈ V }; we have that V1 = V ′, V2 = V ′′, and so on. We denote the
set of all primed variables up to some number k of primes by Vk =

⋃
i∈0..k Vi.

For the methods we develop further we rely on the existence of a Satisfi-
ability Modulo Theories (SMT) solver that is able to handle assertions from
the assertion language. A number of very efficient SMT solvers exist, and their
performance is steadily improving; SMT competition [2] can serve as a good
reference for solver comparison. We assume that an SMT solver satisfies the
following requirements:

• For any ϕ ∈ Φ(Vk), its satisfiability can be efficiently tested, i.e. there
exists function sat : Φ(Vk)→ B. We define auxiliary function unsat(ϕ) ,
¬sat(ϕ). We extend these functions to sets: for a set of assertions Γ ⊆
Φ(Vk), let sat(Γ) , sat(

∧
ϕ∈Γ ϕ); similarly for unsat .

• For a set of assertions Γ ⊆ Φ(Vk) such that their conjunction is un-
satisfiable, an unsatisfiable core, i.e. a subset of assertions that is also

13

14 CHAPTER 3. PRELIMINARIES

unsatisfiable, can be efficiently extracted. Formally, we assume the ex-
istence of the function unsat core : P

(
Φ(Vk)

)
→ P

(
Φ(Vk)

)
such that

unsat core(Γ) ⊆ Γ ∧ unsat(Γ) =⇒ unsat(unsat core(Γ)). We extend
unsat core to formulas: in that case, unsat core(ϕ), where ϕ ∈ Φ(Vk),
is meant to be applied to the set of top-level conjuncts of ϕ.

• For any two formulas ϕA ∈ Φ(VkA), ϕB ∈ Φ(VkB) such that their con-
junction is unsatisfiable, it is possible to compute a Craig interpolant : a
formula ϕ that is implied by ϕA, contradicts ϕB , and is expressed us-
ing only the variables shared by both formulas. Formally, we assume the
function interpolate : Φ(VkA) × Φ(VkB) → Φ(VkA ∩ VkB) such that if
ϕ = interpolate(ϕA ; ϕB) then a) ϕA =⇒ ϕ, and b) unsat(ϕ ∧ ϕB).

The above set of functions is enough for the purpose of the analysis of safety
properties. For the analysis of liveness properties we additionally assume the
existence of a Ranking Function Synthesis tool. This is also a well-developed
area; in particular, there are methods for the synthesis of ranking functions for
such theories as linear arihmetic [17][65] and bit-vectors [18]. Still, there is a
big difference to the SMT solving: as the halting problem even for such simple
models as counter machines is undecidable [58], it can be shown by an easy
reduction that the ranking function synthesis is undecidable as well. Thus, we
require the existence of a semi-decision procedure rank , described as follows:

• For any two formulas ϕs, ϕc ∈ Φ(Vk), which collectively represent an SMT
encoding of a lasso-shaped path, with ϕs encoding a stem, and ϕc encod-
ing a cycle, a ranking function synthesis tool either produces a ranking
function for the cycle, or it fails (e.g., after a timeout). Formally, we as-
sume that there is a function rank : Φ(Vk)×Φ(Vk)→ Φ(V ∪ V ′)∪⊥ such
that if ψ = rank(ϕs, ϕc) ∈ Φ(V ∪ V ′), then for any sequence of states
s0, s1, . . . , si1 , . . . , si2 , . . . we have the following. If a) ϕs(s0, s1, . . . , si1)
holds, and b) for all j ≥ 1, ϕc(sij , . . . , sij+1

) holds, then we have that
for all k ≥ i1, ψ(sk, sk+1) holds, and ψ is a well-founded relation, i.e.,
there is no infinite chain s0, s1, s2, . . . such that ψ(sk, sk+1) holds for all k.

We also use the following notations concerning assertions in the language:

• ϕ[V/V′] denotes the substitution of V variables in formula ϕ by correspond-
ing variables V ′.

• pres(V) ,
∧
v∈V(v′ = v) encodes the preservation of values for variables

from V.

• For a transition predicate τ ∈ Φ(V ∪ V ′), and a state predicate ϕ ∈ Φ(V),
we denote by postτ (ϕ) =

(
∃V . ϕ(V) ∧ τ(V, V ′)

)
[V′/V]

the post-condition

of ϕ with respect to τ .

• Similarly, we denote by preτ (ϕ) = ∃V ′ . ϕ(V ′)∧ τ(V, V ′) the pre-condition
of ϕ with respect to τ .

In this thesis we concentrate on the complexity stemming from concurrency,
and want to abstract from the complexity associated with solving logical formu-
las. Therefore, we assume the existence of a polynomial SMT oracle: an SMT

3.2. GRAPHS AND GRAPH TRANSFORMATIONS 15

solver that requires only polynomial time to answer a conjunctive SMT for-
mula (with respect to the formula size). Note that the assumption holds strictly
for simple theories, such as the quantifier-free theories of Equality and Uninter-
preted Functions (EUF) or Difference Logic (DL), for which polynomial decision
procedures exist.

3.2 Graphs and Graph Transformations

A directed graph, or simply a graph, is a tuple G = 〈N,E〉, where N is a set
of nodes, and E ⊆ N × N is a set of edges. The source and target functions
s, t : E → N map each edge to its first and second component, respectively. In
this thesis we use exclusively directed acyclic graphs (DAGs): a DAG is such a
graph G = 〈N,E〉 that no node is reachable from itself by following the edges:
∀n ∈ N . (n, n) 6∈ E∗.

Graph transformations define formal rules for transforming one graph into
another by adding and deleting elements of the graph. We borrow the notation
from [21, 26], where the authors describe the so-called single-pushout (SPO)
and double-pushout (DPO) approaches to graph transformations.

Given two graphs G = 〈N,E〉 and G′ = 〈N ′, E′〉, a graph morphism f : G→
G′ is a pair f = 〈fN : N → N ′, fE : E → E′〉 of functions, preserving sources
and targets: fN ◦ t = t′ ◦ fE , and fN ◦ s = s′ ◦ fE .

For our purposes, a graph production p : (L
r−→ R) is an injective graph

morphism r : L → R. The graphs L and R are called the left-hand side and
the right-hand side of p, respectively. A given production p : (L

r−→ R) can be
applied to a graph G if there is an occurrence of L in G, i.e. an injective graph
morphism m : L→ G, called a match. In this case the resulting graph H can be
obtained from G by adding all elements of R with no pre-image in L, removing
all elements of L with no image in R, and contracting all elements of L with the
same image in R. The application of a production p to a graph G with a match
m is called a direct derivation; we will denote it with pm(G).

3.3 Linear Temporal Logic

As a specification language for system properties we use Linear Temporal Logic
(LTL). Traditionally, state formulas are used as atomic propositions in LTL
(state-based semantics); in the present work we use transition predicates (action-
based semantics). For the finite-state case, formulas in one of the semantics can
be encoded into another; for the infinite-state case, the action-based semantics
is strictly more expressive than the state-based one.

For ψ ∈ Φ(V ∪ V ′), LTL formulas are given by the following grammar:

ϕ ::= ψ
∣∣ ϕ1 ∧ ϕ2

∣∣ ϕ1 ∨ ϕ2

∣∣ ¬ϕ ∣∣ ϕ
∣∣ ϕ

∣∣ ϕ
∣∣ ϕ1 U ϕ2

∣∣ ϕ1Rϕ2

In the following we denote the set of LTL formulas over Φ(V ∪ V ′) by Λ.
The temporal operators (Next) and U (Until) form the temporal basis of

LTL: the other temporal operators can be encoded by them. Nevertheless, the
temporal operators (Globally), (Finally), and R (Release) are widely used
in practice; therefore, we treat them explicitly. Having both U and R operators
allows us to employ the so-called Release positive normal form: negations can

16 CHAPTER 3. PRELIMINARIES

be propagated to the level of atomic formulas at the price of at most linear
increase in the formula size.

LTL formulas are interpreted over a model, which is in our case a system
computation π = s1, s2, . . . (we define transition systems formally in the next
section; for now it is enough to see a transition system S as a generator of its
computations). Given a model π, an atomic formula ψ, and temporal formulas
ϕ1, ϕ2, we have the following inductive definition for the notion of the formula
ϕ holding at position j ≥ 1 in π, denoted by (π, j) |= ϕ:

(π, j) |= ψ iff ψ(sj , sj+1) holds
(π, j) |= ϕ1 ∧ ϕ2 iff (π, j) |= ϕ1 and (π, j) |= ϕ2

(π, j) |= ϕ1 ∨ ϕ2 iff (π, j) |= ϕ1 or (π, j) |= ϕ2

(π, j) |= ¬ϕ iff (π, j) 6|= ϕ
(π, j) |= ϕ iff (π, j + 1) |= ϕ
(π, j) |= ϕ iff ∀i ≥ j (π, i) |= ϕ
(π, j) |= ϕ iff ∃i ≥ j s.t. (π, i) |= ϕ
(π, j) |= ϕ1 U ϕ2 iff ∃k ≥ j s.t. (π, k) |= ϕ2 and ∀j ≤ i < k (π, i) |= ϕ1

(π, j) |= ϕ1Rϕ2 iff ∀i ≥ j (π, i) |= ϕ2,
or ∃k ≥ j s.t. (π, k) |= ϕ1 and ∀j ≤ i ≤ k (π, i) |= ϕ2.

We say that a transition system S satisfies the LTL specification ϕ, written
S |= ϕ, if all computations π of S satisfy ϕ at position 1: (π, 1) |= ϕ. We denote
by L¬ϕ(S) the set of counter-models of ϕ in S, i.e. the set of computations of S
that do not satisfy ϕ at position 1. We verify that S |= ϕ by proving that the
set L¬ϕ(S) is empty; otherwise we provide a counterexample from L¬ϕ(S).

3.4 Transition Systems

For describing programs we use the simple and general formalism of transition
systems [52, 53]. It serves as a basic model capable to directly represent sequen-
tial programs as well as concurrent programs with interleaving semantics. Later
we extend it to the more general model of synchronized transition systems.

We assume the vocabulary V of variables, which is partitioned into the set of
flexible variables V and rigid variables U . Flexible variables describe program
control and data, and are allowed to change their value from one point in time to
another. Rigid variables are used for specification purposes and are assumed to
preserve their value throughout the program lifetime. Variables in V are typed,
and each variable in V has its corresponding domain of values.

Definition 3.1 (Transition system). A transition system is a tuple S =
〈V, T,Θ〉, where:

• V is a finite set of (flexible) system variables;

• T ⊆ Φ(V ∪ V ′) is a finite set of system transitions;

• Θ ∈ Φ(V ′) is the initial condition: a predicate that characterizes the set of
states where the program can start. Θ can be interpreted as a transition
which brings the system into its initial state.

3.4. TRANSITION SYSTEMS 17

A state of S is a valuation of the system variables V , that assigns each
flexible variable a value from its domain.

We call a sequence of system states s0, s1, s2, . . . a computation. We call it a
system computation of S, if:

1. Θ(s1) holds, i.e. the computation starts in some initial state; and

2. for all i ≥ 1, there is a system transition ti ∈ T such that ti(si, si+1) holds.

We denote the set of system computations of S by L(S).

For illustrative purposes we use the following transition system of a special-
ized form that allows us to make comparisons of concurrent traces with finite
automata.

Definition 3.2 (Event transition system). An event transition system over

a finite alphabet of events Σ = {â, b̂, ĉ, . . .} is a tuple S = 〈V, T,Θ〉, where:

• V =
{
vi ∈ {0, 1} | i ∈ Σ

}
is the set of variables, one per event. We use

the notation x ≡ v′x̂ 6= vx̂, ¬x ≡ v′x̂ = vx̂, for an event x̂ ∈ Σ. That is,
event x̂ happens iff the corresponding variable x changes its value.

• T = { x ∧
∧
ŷ 6=x̂ ¬y | x̂ ∈ Σ } is the set of transitions; at each transition

exactly one event happens;

• Θ ≡ >.

The language of the event transition system is in one-to-one correspondence
with the set Σ∗ ∪Σω of all (finite or infinite) strings over the event alphabet Σ.

Often programs have some fixed skeleton, called control flow : there is a finite
set of locations L with a given initial location; each transition t is assumed to go

from some start location s to some end location e, denoted graphically s
t−→ e.

We allow to extend any transition system with this construction.

Definition 3.3 (Transition system with control flow). A transition system
S = 〈V, T,Θ〉, with a control flow over the set of locations L with initial location
pc0, implicitly defines another transition system S′ = 〈V ′, T ′,Θ′〉, where:

• V ′ = V ∪ {pc}, for a fresh variable pc (program counter), defined over L;

• T ′ = { t ∧ (pc = s) ∧ (pc′ = e) | for all t ∈ T such that s
t−→ e };

• Θ′ ≡ Θ ∧ (pc′ = pc0).

We use the following shorthand notation: for a location l, we write l to denote
the formula pc = l, and l′ to denote the formula pc′ = l.

We represent control flow graphically in figures, where locations are drawn
as circles, and transitions are represented as arrows between locations annotated
with transition predicates.

18 CHAPTER 3. PRELIMINARIES

3.5 Synchronized Transition Systems

Our aim is the analysis of concurrent programs that comprise several compo-
nents running in parallel and interacting in different ways to achieve a com-
mon goal. We model individual components using transition systems as de-
fined above, and call them processes in this context. Interaction between pro-
cesses may be organized using various mechanisms such as shared variables,
binary/broadcast/lock-step synchronization, or communication channels. The
methods we develop in the next chapters are sufficiently general to handle vari-
ous types of interaction; therefore we want to abstract from a concrete interac-
tion mechanism and propose a unified representation, which we call a synchro-
nized transition system. The formulation we use is inspired by the representa-
tion of labeled formal concurrent systems of Godefroid in [32], and by products
of transition systems of Esparza and Heljanko in [28], but we extend it in this
thesis to be able to handle programs with infinite data.

Definition 3.4 (Synchronized transition system). A synchronized transi-
tion system is a tuple S = 〈S1, . . . , Sn,T,∆〉, where:

• Si = 〈Vi, Ti,Θi〉, with i ∈ {1, . . . , n}, are the constituent processes; we
assume that for all i, j ∈ {1, . . . , n}, Ti and Tj are disjoint sets. We define
V = V1 ∪ . . . ∪ Vn and V ′ = V ′1 ∪ . . . ∪ V ′n;

• T ⊆ P(T1∪ . . .∪Tn) is a synchronization constraint such that for all τ ∈ T
we have |τ | > 0 and |τ ∩ Ti| ≤ 1;

• ∆ : T → Φ(V ∪ V ′) is a synchronization mechanism. We require that if
τ = ∆

(
{τ1, . . . , τk}

)
, then for all τi it holds that τ =⇒ τi.

A synchronization constraint specifies which transitions from different pro-
cesses can participate in a joint transition. At least one process should always
participate, and each process can participate with at most one of its transi-
tions. A synchronization constraint is usually represented implicitly, using such
methods as synchronization of events in the common alphabet of the processes.

A synchronization mechanism, given a set of transitions selected by the syn-
chronization constraint, defines how the relation of the composite transition
is constructed from the relations of individual process transitions. The addi-
tional requirement ensures that the composite transition relation agrees with
the changes that are allowed by its constituent transitions. A simple way to
satisfy the requirement is to construct the composite transition relation as a
conjunction of the constituent relations and the preservation constraint for the
variables outside of the alphabets of participating processes.

Example 3.5 (Synchronization methods). Here we show what synchroniza-
tion constraints and mechanisms correspond to different ways of interaction. For
a transition τ that synchronizes over a synchronization event a, we assume that
synchronization is encoded as part of the transition relation (e.g., using a dedi-
cated boolean variable â), and define the shorthand a ∈ τ , sat(τ ∧ â).

• with interleaving semantics a transition from any process can be ex-
ecuted independently; each transition preserves variables that are not in
the alphabet of its process:

3.5. SYNCHRONIZED TRANSITION SYSTEMS 19

– T =
{
{τ} | τ ∈ T1 ∪ . . . ∪ Tn

}
;

– ∆
(
{τ}
)

= τ ∧ pres(V \ Vi), for τ ∈ Ti.

Processes that are composed using interleaving semantics and operate on
shared memory objects are often called threads in the literature; the corre-
sponding programs are called multi-threaded. We will also use these notions
for processes and programs with interleaving composition.

• with binary synchronization over an alphabet Σ, any two transitions
from different processes that share complementary communication sym-
bols, say a! and a?, evolve synchronously, or a transition from a single
process is executed, if it doesn’t require a communication partner:

– T =
{
{τi ∪ τj} | τi ∈ Ti ∧ τj ∈ Tj ∧ i 6= j ∧ a! ∈ τi ∧ a? ∈ τj

}
∪
{
{τ} | τ ∈ T1 ∪ . . . ∪ Tn .∀a ∈ Σ . a! 6∈ τ ∧ a? 6∈ τ

}
;

– ∆
(
{τi, τj}

)
= τi ∧ τj ∧ pres(V \ Vi \ Vj), for τi ∈ Ti, τj ∈ Tj ;

∆
(
{τi}

)
= τ ∧ pres(V \ Vi), for τi ∈ Ti.

• related are synchronous communication channels. For a channel γ ∈
Σ, a sending action γ e and a receiving action γ x complement each
other, resulting in the assignment of expression e to variable x:

– T =
{
{τi ∪ τj} | τi ∈ Ti ∧ τj ∈ Tj ∧ i 6= j ∧ γ e ∈ τi ∧ γ x ∈ τj

}
∪
{
{τ} | τ ∈ T1 ∪ . . . ∪ Tn ∧ ∀γ ∈ Σ . γ e 6∈ τ ∧ γ x 6∈ τ

}
;

– ∆
(
{τi, τj}

)
= τi ∧ τj ∧ x′ = e ∧ pres(V \ Vi \ Vj), for τi ∈ Ti, τj ∈ Tj ;

∆
(
{τi}

)
= τ ∧ pres(V \ Vi), for τi ∈ Ti.

• explicit synchronization declares explicitly the constituent local tran-
sition for each global transition. Variables outside of the alphabets of par-
ticipating processes preserve their values:

– T is given as an explicit enumeration;

– ∆(τ) =
∧
τi∈τ (τi) ∧ pres

(
V \

⋃
i.|τ∩Ti|=0(Vi)

)
.

• in lock-step synchronization all processes do each step simultaneously.
In this model each global transition corresponds to a conjunction of one
transition from every process:

– T =
{
{τ1 ∪ . . . ∪ τn} | ∀i . τi ∈ Ti

}
;

– ∆
(
{τ1 ∪ . . . ∪ τn}

)
= τ1 ∧ . . . ∧ τn.

A synchronized transition system induces a standard transition system in a
natural way; we call such an induced transition system fully expanded.

Definition 3.6 (Fully expanded system). For a synchronized transition
system S = 〈S1, . . . , Sn,T,∆〉, where Si = 〈Vi, Ti,Θi〉 for i ∈ {1, . . . , n}, we
define a fully expanded transition system S = 〈V, T,Θ〉 as follows:

• V = V1 ∪ . . . ∪ Vn;

• T = {∆(τ) | τ ∈ T };

20 CHAPTER 3. PRELIMINARIES

• Θ = Θ1 ∧ . . . ∧Θn.

Please note that in some cases, such as lock-step synchronization, the number
of transitions of the fully expanded system may be exponential compared to
the description of the synchronized system. On the other hand, this definition
allows us first to concentrate on generic analysis methods, applicable to any
transition system, and only afterward extend them to more specialized methods
for particular synchronization mechanisms.

Chapter 4

Concurrent Traces

In abstraction-based verification [16, 5, 7, 25], infinite state spaces are parti-
tioned and represented compactly by using predicates, thus providing a reduc-
tion from infinite to finite. Yet, there is another source of difficulties, the state
explosion problem [24] that is due to the combinatorial explosion of the number
of states of a concurrent program.

A very natural way to describe analysis situations that arise in concurrency
is to employ partial orders over events in a concurrent history. Examples of such
representations include Event Structures of Glynn Winskell [73], Dependency
Graphs in the Trace Theory of Antoni Mazurkiewicz [54], and, more recently,
Concurrent Kleene Algebra of Tony Hoare et. al. [38]. The distinctive features
of all these formalisms are the finiteness assumption for the set of events as well
as the static dependency relation between events.

We combine both approaches of predicate abstraction and partial orders in a
unified model that captures the concurrent evolution of a potentially infinite set
of events; we call the structures we propose for that purpose concurrent traces.

In the next chapters we outline the methods for the verification of both
safety and liveness properties. To deal with the former class of properties, finite
concurrent traces are adequate; for the latter class we represent infinite program
computations using infinite concurrent traces; they will be described in the next
chapter.

We start by introducing the formal notion of a concurrent trace, define its
language, and consider its syntactic properties. Then we consider, in order,
the problems of intersection, union, emptiness, complementation, and language
inclusion for concurrent traces. In order to provide efficient algorithms for these
problems we formulate some restrictions on the general concurrent trace model.

4.1 Syntax and Semantics

Definition 4.1 (Finite concurrent trace). A finite concurrent trace is a
tuple F = 〈E , C, , λE , λC〉, where:

• E is a set of events; we assume that E always contains two special events
e/ (entry) and e. (exit);

21

22 CHAPTER 4. CONCURRENT TRACES

• C ⊂ E × E is a set of causal links; for (e, e′) ∈ C we write e � e′; we call
� the causality relation. We require that 〈E , C〉 is simple directed acyclic
graph; i.e., there is at most one link between each pair of events, and � is
acyclic. We require also that for all e ∈ E we have e/ � e � e..

• ⊆ E × E is a symmetric conflict relation; we require that all events are
in conflict with the exit event: for all e ∈ E . e 6= e. =⇒ e e..

• λE : E → Φ(V ∪ V ′) and λC : C → Φ(V ∪ V ′) are labelings of events and
causal links with transition predicates; we restrict λE(e.) ∈ Φ(V).

We use the source and target functions src, tgt : C → E , which map each
causal link to its first and second component, respectively. We denote the set of
finite concurrent traces by F , and call them concurrent traces or simply traces
within this and next chapters. For a particular concurrent trace F ∈ F , we write
E(F) to denote its set of events, and C(F) to denote its set of causal links.

Note that we use the words “event” and “link” to describe concurrent traces,
which are essentially labeled DAGs, instead of “node” and “edge”: these are
reserved for the later use to describe composite structures built on top of con-
current traces.

A concurrent trace describes a set of program computations. For a particular
concurrent trace its events specify what state changes should necessarily occur
in a computation, while its causal links represent the partial ordering between
such changes and constrain the ones that occur in-between. While it is possible
that several logically distinct state changes are performed by a single system
transition, the conflict relation may restrict such transition sharing.

We postpone the formal description of concurrent trace language in favor of
some examples to build the intuition.

Graphical Notation. We show event identities in circles, and labeling for-
mulas in squares. Causal links are shown as solid lines with arrows, and conflicts
as crossed zigzag lines. We omit any of these parts when they are not important
or would create clutter in the current context.

Example 4.2 (Some concurrent traces). Consider the Figure 4.1; here we
use the event transition system (see Example 3.2) with events a, b, c.

In the trace F1, we require that events a, b, and c all happen in the computa-
tion, at some unspecified order. When there are several states in the computation
that satisfy a, then the corresponding event can be matched to any such position
in the computation.

In the trace F2, we again require that all of the events a, b, and c happen,
but this time we additionally require that, after we match event a, no other
event a occurs in the computation; similarly for b and c. Thus, whenever a, b,
and c occur in a computation, the trace F2 can be matched in a unique way to
the last positions where these events happened. Trace F2 is deterministic: we
will return to this notion later.

Formally, we describe the set of computations that a concurrent trace rep-
resents as follows.

4.1. SYNTAX AND SEMANTICS 23

F1

e/

a

b

c

e.

F2

e/

a

b

c

e.

¬a

¬b

¬c

Figure 4.1: Examples of concurrent traces

Definition 4.3 (Trace language). The language of a concurrent trace F =
〈E , C, , λE , λC〉 is defined as a set L(F) of finite computations such that for each
computation π = s0, . . . , sn ∈ L(F) there exists a mapping σ : E → {s0, . . . , sn},
called a run of F on π, such that:

1. for each event e ∈ E and si = σ(e) the formula λE(e)
(
si, si+1

)
holds;

moreover, s0 = σ(e/), sn = σ(e.);

2. for each causal link c = (e1, e2) ∈ C, and si = σ(e1), sj = σ(e2), we have

a) i ≤ j, and

b) for all i < k < j, the formula λC(c)
(
sk, sk+1

)
holds;

3. for each pair of conflicting events e1 e2, and si = σ(e1), sj = σ(e2), we
have i 6= j.

We call a concurrent trace F = 〈E , C, , λE , λC〉 contradictory if any of its
events is labeled with an unsatisfiable predicate, i.e. if there exists e ∈ E such
that unsat(λE(e)) holds. Obviously, the language of such a trace is empty. We
call a concurrent trace F malformed, if any condition in definition 4.1 is violated
for F . We consider the language of such a trace empty as well. Malformed traces
may result from applications of some transformation rules that are described
later in this thesis.

The main motivation for introducing the computational model of concur-
rent traces is succinctness: concurrent traces can succinctly represent natural
situations, arising in concurrency. Formally, we can state the following:

Proposition 4.4 (Succinctness of concurrent traces). There is an indexed
family of computation languages Lc(n), such that for each n the set of computa-
tions Lc(n) can be represented by a concurrent trace of size O(n), but a minimal
non-deterministic finite automaton accepting Lc(n) has 2n states.

Proof. For a given n, let A = {a1, . . . , an} be the alphabet of events. Let Lc(n)
be the language of words containing all events from A:

Lc(n) = { s1, . . . , sk | ∀a ∈ A .∃i ∈ [1, k] . si |= a }

Consider the following concurrent trace F cn = 〈E , C, , λE , λC〉, where:

24 CHAPTER 4. CONCURRENT TRACES

F c3

e/

a1

a2

a3

¬a1

¬a2

¬a3

e.

Ac3

s0

∅

s1

{a1}

s2

{a2}

s3

{a3}

a1

a2

a3

s4

{a1, a2}

s5

{a2, a3}

s6

{a1, a3}

a1, a2

a2, a3

a1, a3

a2

a3

a1

a1

a3

a2

a2

a1

a3

s7

{a1,
a2,
a3}

a3

a1

a2

a1, a2, a3

Figure 4.2: Succinctness of concurrent traces. The concurrent trace on the left
and the finite automaton on the right accept the same language.

• E = {e/, a1, . . . , an, e.};

• C = { (e/, a), (a, e.) | a ∈ {a1, . . . , an} };

• = E × E \ { (e, e) | e ∈ E };

• λE = {e/ → >, e. → >} ∪
{
ai → ai | ai ∈ {a1, . . . , an}

}
;

• λC =
{

(e/, a
i)→ ¬ai, (ai, e.)→ > | ai ∈ {a1, . . . , an}

}
.

An instance of F cn for n = 3 is shown in the left part of Figure 4.2. The trace
F cn has n + 2 events, and it can be easily verified that it accepts the language
Lc(n).

On the other hand, the minimal finite automaton for n = 3 has 2n = 8
states, and is shown in the right part of Figure 4.2. There, each automaton state
is marked additionally with the set of events seen so far in the computation,
and there should be one state for every subset from n events.

Formally, we prove, for arbitrary n, that the minimal finite automaton ac-
cepting Lc(n) cannot have less than 2n states. Suppose the opposite, namely
that there is an automaton A′n with N < 2n states, which accepts Lc(n). Then,
by pigeonhole principle, there should exist two computations π1, π2, with dif-
ferent sets A1 6= A2 of events that occurred in them, but both computations
leading from some initial state to the same state s of A′n. W.l.o.g., assume that
A1 \ A2 6= ∅. Now, consider the computation π′, which is an arbitrary permu-
tation of events from A \ A1. Given π′, A′n should lead from s to an accepting
state, because in the full computation π1 ·π′ the whole set A of events is present.

4.1. SYNTAX AND SEMANTICS 25

But then the computation π2 · π′ should be also accepted, and the set of events
in it is A2 ∪ (A \ A1) (A. Thus, computation π2 · π′ is accepted, but is not in
the language Lc(n), a contradiction.

We turn to the language-based characteristics of concurrent traces such as
emptiness or language inclusion later in this chapter; here, we first define some
syntactic characterizations and transformations.

Definition 4.5 (Trace equality). We say that two traces F = 〈E , C, , λE , λC〉
and F ′ = 〈E ′, C′, ′ , λ′E , λ′C〉 are equal, denoted F = F ′, if

1. E ′ = E , C′ = C, ′ = ;

2. ∀e ∈ E . λE(e)⇐⇒ λ′E(e), and ∀(e1, e2) ∈ C . λC
(
(e1, e2)

)
⇐⇒ λ′C

(
(e1, e2)

)
.

Two traces are equal if they share the same set of events and causal links
which are labeled by logically equivalent formulas in different traces. This notion
is very restrictive, but useful in some contexts; obviously it can be decided in
linear time. Less restricted notions are trace inclusion and trace isomorphism;
to define them we first need to define the notion of trace morphism.

Definition 4.6 (Trace morphism). Given two concurrent traces F =
〈E , C, , λE , λC〉 and F ′ = 〈E ′, C′, ′ , λ′E , λ′C〉, a trace morphism µ : F → F ′

is a pair µ = 〈µE : E → E ′, µC : C → C′〉 of injective mappings for events and
causal links of one trace to those of another such that:

1. it preserves sources and targets: µE ◦ tgt = tgt ′◦µC , and µE ◦ src = src′◦µC ;

2. it maps entry and exit events of F to entry and exit events of F ′, i.e. it
holds that µE(e/) = e′/ and µE(e.) = e′..

Definition 4.7 (Trace inclusion). For two concurrent traces F =
〈E , C, , λE , λC〉 and F ′ = 〈E ′, C′, ′ , λ′E , λ′C〉 we define the trace inclusion re-
lation ⊆ as follows: F ′ ⊆ F iff there exists a trace morphism µ = 〈µE : E →
E ′, µC : C → C′〉 such that:

1. event labels of F ′ are stronger than those of F : for all e ∈ E we have
λ′E
(
µE(e)

)
=⇒ λE(e);

2. labels of causal links of F ′ are stronger than those of F : for all c ∈ C we
have λ′C

(
µC(c)

)
=⇒ λC(c);

3. conflicting events in F are mapped to conflicting events in F ′: for all e1 e2

we have µE(e1) ′ µE(e2).

We write F ′⊆µF if trace inclusion holds for a particular trace morphism µ.

Trace inclusion F ′ ⊆ F holds if we can embed F into F ′. When we require
inclusion in both directions, we get trace isomorphism, a weaker variant of trace
equality.

Definition 4.8 (Trace isomorphism). We say that two traces F and F ′ are
isomorphic, denoted F ≈ F ′, if both F ′ ⊆ F and F ⊆ F ′.

26 CHAPTER 4. CONCURRENT TRACES

Both trace inclusion and trace isomorphism belong to the class GI (Graph
Isomorphism). Although no polynomial algorithm is still known, recently a
quasipolynomial algorithm for the problems in this class was described [4]. In
practice, problems in GI can be solved very efficiently.

For a concurrent trace we can often deduce some deterministic facts
about it. Consider an example, when a causal link (e1, e2) is in scope of
some other link (e1, e3), i.e. when the following constellation of links exists:
(e1, e2), (e2, e3), (e1, e3) ∈ C. Then, whenever some event is in the scope of
(e1, e2), it is also in the scope of (e1, e3). Thus, we can deterministically con-
junct the label λC

(
(e1, e3)

)
to the label λC

(
(e1, e2)

)
. We identify such cases as

deterministic proof rules: these rules do not introduce any case distinctions.
These rules are extensively described in Section 5.3; here we give a preliminary
definition, which is sufficient for our immediate purposes.

Definition 4.9 (Deterministic proof rules). We call deterministic any of the
following proof rules which transform a trace F = 〈E , C, , λE , λC〉 to another
trace F ′ = 〈E ′, C′, ′ , λ′E , λ′C〉. All elements of F ′, not mentioned explicitly, are
equal to the corresponding elements of F .

• LinkRestriction: if (e1, e2), (e2, e3), (e1, e3) ∈ C, then
set λ′C

(
(e1, e2)

)
←− λC

(
(e1, e2)

)
∧ λC

(
(e1, e3)

)
.

• EventRestriction: if (e1, e), (e, e2), (e1, e2) ∈ C, (e1, e), (e, e2) ∈ , then
set λ′E(e)←− λE(e) ∧ λC

(
(e1, e2)

)
.

• CausalTransitivity : if (e1, e2), (e2, e3) ∈ C, then
set C′ ←− C ∪ (e1, e3),

λ′C
(
(e1, e3)

)
←− λC

(
(e1, e2)

)
∨λE(e2)∨λC

(
(e2, e3)

)
.

• ConflictTransitivity : if (e1, e2), (e2, e3) ∈ C, (e1, e2) ∈ then
set ′ ←− ∪ (e1, e3).

We denote the set of deterministic proof rules by DPR. A proof rule R ∈
DPR can be applied in several places for a particular trace; therefore, R : F →
P(F) maps traces to sets of traces. The set of deterministic proof rules induce
a partial ordering between concurrent traces: F 4DPR F ′ when there is a rule
R ∈ DPR such that F ′ ∈ R(F).

Deterministic proof rules increase the trace size at most quadratically; we
assume that they are applied whenever possible till saturation. We call such de-
terministically saturated traces to be in normal form. In the graphical notation
though, we draw only the minimal set of trace elements, which is enough to
derive the trace normal form.

Definition 4.10 (Normal form). A concurrent trace F is said to be in normal
form when any application of a deterministic proof rule R doesn’t change the
trace, i.e., when for all F ′ ∈ R(F) we have that F ′ = F . A trace in normal form
is maximal in the partial order 4DPR.

Deterministic proof rules do not change the language of a concurrent trace.
We consider also the proof rules that may restrict the language of a trace to
some subset; we call them restricting proof rules and denote RPR.

4.1. SYNTAX AND SEMANTICS 27

Definition 4.11 (Restricting proof rules). We call restricting any of the
following proof rules which transform a trace F = 〈E , C, , λE , λC〉 to another
trace F ′ = 〈E ′, C′, ′ , λ′E , λ′C〉. All elements of F ′, not mentioned explicitly, are
equal to the corresponding elements of F .

• EventOrdering : if (e1, e2), (e2, e1) 6∈ C∗, then
set C′ ←− C ∪ (e1, e2), λ′C

(
(e1, e2)

)
←− >.

• EventContraction: if (e1, e2) 6∈ , then
set E ′ ←− E \ e1 \ e2 ∪ e′, λ′E(e′) ←− λE(e1) ∧ λE(e2),
C′ ←− { (x, y) ∈ C | x, y 6∈ {e1, e2} } ∪

{ (e′, y) ∈ C | x ∈ {e1, e2}, y 6∈ {e1, e2} } ∪
{ (x, e′) ∈ C | x 6∈ {e1, e2}, y ∈ {e1, e2} },

 ′ ←− { (x, y) ∈ | x, y 6∈ {e1, e2} } ∪
{ (e′, y) ∈ | x ∈ {e1, e2}, y 6∈ {e1, e2} } ∪
{ (x, e′) ∈ | x 6∈ {e1, e2}, y ∈ {e1, e2} },

λ′C is equal to the corresponding elements of λC .

The set of restricting proof rules induce a partial ordering between concur-
rent traces: F 4RPR F ′ when there is a rule R ∈ RPR such that F ′ ∈ R(F).

Application of restricting proof rules till saturation leads to two subclasses
of concurrent traces: linear and compact.

Definition 4.12 (Linear trace, linearization). A linear trace is a concurrent
trace F = 〈E , C, , λE , λC〉, where the transitive closure of the causality relation
C is total: for all e, e′ ∈ E we have that (e, e′) ∈ C∗ or (e′, e) ∈ C∗. We denote
the set of finite linear traces by FL.

We say that a linear trace F ′ ∈ FL is a linearization of F , if F ′ can be ob-
tained from F as a result of a sequence of applications of the rule EventOrdering .
We denote the set of linearizations of F by Linearizations(F).

Definition 4.13 (Compact trace, contraction). A compact trace is a con-
current trace F = 〈E , C, , λE , λC〉, where the conflict relation is total: for all
e, e′ ∈ E we have that (e, e′) ∈ . We denote the set of finite compact traces by
FC .

We say that a compact trace F ′ ∈ FC is a contraction of F , if F ′ can be
obtained from F as a result of a sequence of applications of EventContraction.
We denote the set of contractions of F by Contractions(F).

Note that there can be exponentially many possible linearizations and con-
tractions of a given concurrent trace. For the former, take the trace that consists
of n unordered events (not counting e/ and e.): there are n! linearizations. For
the latter, take n triples of events such that all events in different triples are in
conflict, and within each triple e1, e2, e3, only e1 and e2 are in conflict. Then e3

can be contracted with either e1 or e2; this choice can be done independently
for each triple, and we have 2n possible contractions.

One obvious notion of size for a concurrent trace is the number of events
|E| in it. But, as events can be contracted, this measure doesn’t allow to assess,
e.g., the shortest computation which a trace accepts. Contractions allow us to
define this kind of measure.

28 CHAPTER 4. CONCURRENT TRACES

Definition 4.14 (Trace size). We define the size |F | of a concurrent trace F
as the minimum of the number of events between all contractions of F :

|F | , min { |E(F ′)|
∣∣ F ′ ∈ Contractions(F) }.

Linearizations, on the other hand, allow us to partition the language of a
concurrent trace.

Proposition 4.15. For any concurrent trace F = 〈E , C, , λE , λC〉,

L(F) =
⋃
{ L(F ′) | F ′ ∈ Linearizations(F) }.

Proof. Take a computation π = s0, . . . , sn ∈ L(F); then there exists a run
σ : E → {s0, . . . , sn} of F on π. Construct a linearization F ′ of F by adding
all causal links (e1, e2) such that σ(e1) = si and σ(e2) = si+1, for some i, but
(e1, e2) 6∈ C∗. Obviously, σ is also a run of F ′ on π.

Now, take a computation π ∈ L(F ′) for some linearization F ′ of F : then any
run σ of F ′ on π is also a run of F , because F imposes less constraints on σ.

A linear trace admits a particularly useful and simple variant of the normal
form. For an arbitrary linear trace F ∈ FL we can construct it as follows:
apply the deterministic proof rules EventRestriction and LinkRestriction till
saturation, and then keep only the links between the neighboring events in the
trace.

Definition 4.16 (Linear normal form). Let F ∈ FL be a linear trace.
The events of F are ordered; thus, we can write them as a sequence E(F) =
{e1, e2, . . . , en}. Let F ′ be the result of applying the rules EventRestriction and
LinkRestriction to F till saturation. We define the linear normal form NL(F)
as a sequence of formulas ϕ1, ψ1, ϕ2, ψ2, . . . , ψn−1, ϕn, where ϕi = λE(ei), and
ψi = λC

(
(ei, ei+1)

)
.

4.2 Language Intersection, Union, Emptiness

Here we study the language-based properties of the concurrent trace model.
The first one is language intersection: given two concurrent traces F1 and F2,
find another concurrent trace F such that L(F) = L(F1) ∩ L(F2). Concurrent
traces are in their nature conjunctive objects: all trace events should be present
in the computation, and all state changes in the scope of a causal link should
satisfy its label. Taking this into account, it is clear that juxtaposition of two
concurrent traces will represent the intersection of their languages.

Proposition 4.17. Given two concurrent traces F1 = 〈E1, C1, 1 , λE1 , λC1〉 and
F2 = 〈E2, C2, 2 , λE2 , λC2〉, the intersection of their languages is represented by
a concurrent trace F = 〈E , C, , λE , λC〉, where:

• E = E1] E2, with e/ and e. from E1 and E2 identified;

• C = C1 ∪ C2, with a single entry for (e/, e.);

• = 1 ∪ 2 , with a single entry for (e/, e.);

• λE = λE1∪λE2 , with λE(e/) = λE1(e/)∧λE2(e/), λE(e.) = λE1(e.)∧λE2(e.);

4.2. LANGUAGE INTERSECTION, UNION, EMPTINESS 29

• λC = λC1 ∪ λC2 , with λC
(
(e/, e.)

)
= λC1

(
(e/, e.)

)
∧ λC2

(
(e/, e.)

)
.

Proof. Given a computation π = s0, . . . , sn ∈ L(F1) ∩ L(F2), there exists a
pair of runs σ1 : E1 → {s0, . . . , sn} and σ2 : E2 → {s0, . . . , sn} of F1 and
F2 on π. Then σ1 ∪ σ2 is a run of F on π. Conversly, given a computation
π = s0, . . . , sn ∈ L(F), the run σ : E → {s0, . . . , sn} gives a pair of runs for
both traces F1 and F2.

For an example of language intersection, consider Figure 4.3; x, y, z, u, v, w
are boolean variables. Concurrent trace F1 specifies that states satisfying x and
y should happen in order, and all states in between should satisfy z. Similarly,
F2 specifies that states satisfying u and v should occur sequentially, and all
intermediate states should satisfy w. A trace on the right represents the inter-
section of the languages of both traces, and it is achieved by putting the traces
side by side.

e/ x y e.
z

F1

e/ u v e.
w

F2
e/

x y

u v

e.

z

w

F1 ∩ F2

Figure 4.3: Illustration of language intersection for concurrent traces

Now we turn to language union. As concurrent traces are conjunctive objects,
it is easy to show that a union of languages of two concurrent traces cannot be
represented by a single concurrent trace.

Proposition 4.18. There are concurrent traces F1, F2 such that the union of
their languages L(F1) ∪ L(F2) is not representable by any concurrent trace.

Proof. Take as F1 and F2 the traces from Figure 4.4. Suppose there is a concur-
rent trace F that accepts the union of their languages. Then, it should accept
the computation π1 = (¬x∧¬y∧¬u), (x∧¬y∧¬u), (¬x∧¬y∧¬u), (¬x∧y∧¬u),
and reject the computations π2 = (¬x∧¬y∧¬u), (¬x∧¬y∧¬u), (¬x∧ y∧¬u),
and π3 = (¬x ∧ ¬y ∧ ¬u), (x ∧ ¬y ∧ ¬u), (¬x ∧ ¬y ∧ ¬u). It can be easily seen,
that for that F should contain at least two distinct events e1, e2 such that
λE(e1) =⇒ x, λE(e2) =⇒ y, and e1 � e2. By a similar reasoning, the trace
should contain an event e3 such that λE(e3) =⇒ u. By considering different
cases with respect of e3 being the same as or different from e1, e2, we obtain that
either F accepts some computation not from L(F1) ∪ L(F2), or doesn’t accept
some computations from that language.

From the above proposition it is clear that a set of traces is necessary, in
general, to represent the union of languages of concurrent traces.

30 CHAPTER 4. CONCURRENT TRACES

e/ x y e.

F1

e/ u e.

F2

Figure 4.4: Illustration of language union for concurrent traces

Now we turn our attention to the most fundamental question for verifica-
tion, namely emptiness checking : given a concurrent trace F , decide whether its
language L(F) is empty. Our traces are parametrized by the logic used for the
labels of events and causal links; but it is easy to show that checking emptiness
becomes undecidable already for very simple logics.

Theorem 4.19. The emptiness problem for concurrent traces over any logic
that includes atoms of the form x−y = c, for variables x, y ranging over N, and
constants c ∈ [0, 1], is undecidable.

Proof. We show that we can reduce the halting problem of an arbitrary Minsky
machine to the emptiness problem of a concurrent trace over the outlined logic.
As the halting problem is undecidable already for Minsky machines with two
counters [58], we get the desired result. Let a Minsky machine M = 〈C,P 〉 with
a set C of counters (or registers) and a list P of numbered instructions be given.
We proceed in two steps.

1. We construct a transition system S = 〈V, T,Θ〉 that encodes all compu-
tations of M . In the following, for any x, y ∈ V , we write x = y instead of
x− y = 0; this allows us, for example, to use the pres() predicate.

We take V = {000, pc, init , halt}]VC]VP , where |VC | = |C| and |VP | = |P |; all
variables range over N. 000 is a variable that encodes constant 0, pc is a program
counter, init is a special initialization variable, and halt is assigned 1 when
the machine halts. We have a dedicated variable c ∈ VC for each counter from
C, with the same meaning, as well as a dedicated variable li ∈ VP for each
instruction label i from P , encoding its constant value. W.l.o.g., we assume
that the instruction labels range over 1 . . . |P |. In the following, for an arbitrary
variable v ∈ V ∪ V ′, (v = 0) denotes the constraint (v − 000 = 0), and (v = 1)
denotes the constraint (v − 000 = 1).

The initial condition is:

Θ ≡ (pc′ = 1)∧(l′1 = 1)∧(init ′ = 0)∧(halt ′ = 0)∧
∧

li∈VP \l1

(l′i = 0)∧
∧
c∈VC

(c′ = 0)

We have the set of transitions T = Tinit] {tstart}] Tmain . The transitions
Tinit of the initialization phase are as follows:

Tinit =

{
(init = 0) ∧ (l′i+1 − li = 1)
(pc = li) ∧ (pc′ − li = 1)

∧ pres(V \ {pc, li+1})
∣∣∣∣ li ∈ 1 . . . |P | − 1

}
In this phase each variable li ∈ VP gets shifted by i with respect to 000.
The starting transition tstart finishes the initialization phase, and starts ex-

ecuting the main program:

tstart ≡ (pc = l|P |) ∧ (pc′ = l1) ∧ (init ′ = 1) ∧ pres(V \ {pc, init}).

4.2. LANGUAGE INTERSECTION, UNION, EMPTINESS 31

The transitions of the main program Tmain are in one to one correspondence
with the instructions of P . We encode each instruction as follows:

• i:INC(r,j): the instruction is labeled with i, increments the register r,
and jumps to j. This is encoded as

(init = 1)∧ (pc− li = 0)∧ (pc′− lj = 0)∧ (c′r− cr = 1)∧pres(V \{pc, cr}).

• i:JZDEC(r,j,k): the instruction is labeled with i, and tests whether the
register r equals 0. If yes, it jumps to j; otherwise it decrements r and
jumps to k. This is encoded as

(init = 1)
∧ (pc − li = 0)

∧
[(

(cr = 0) ∧ (pc′ − lj = 0) ∧ pres(V \ {pc})
)
∨(

¬(cr = 0) ∧ (pc′ − lk = 0) ∧ (cr − c′r = 1) ∧ pres(V \ {pc, cr})
)]

• i:HALT: the instruction is labeled with i and halts the machine. We encode
it as

(init = 1) ∧ (pc − li = 0) ∧ (halt ′ = 1) ∧ pres(V \ {halt}).

This finishes the construction of the transition system S. The transition system
is constructed in such a way that all transitions from Tinit should be executed in
order, followed by the execution of tstart , before any transition from Tmain can
be executed. By construction, machine M halts if and only if transition system
S reaches a state satisfying (halt = 1).

2. In the second step we encode the reachability problem of the halting state
of S = 〈V, T,Θ〉 as a concurrent trace F = 〈E , C, , λE , λC〉, where:

• E = {e/, e.};

• C = {(e/, e.)};

• = {(e/, e.)};

• λE = {e/ → Θ,
e. → (halt = 1)};

• λC = {(e/, e.)→
∨
t∈T t}.

Θ
e/

halt = 1
e.

∨
t∈T t

‖‖‖

F describes all computations s0, . . . , sn where (s0, s1) satisfies Θ, sn satisfies
(halt = 1), and all state pairs (sj , sj+1), 1 ≤ j < n, satisfy one of the transitions
from T . It is easy to see that the language of F is not empty if and only if M
reaches a halting instruction. Thus, we reduced the problem of termination of
M to the language emptiness of F .

The natural question to ask is: what use is a model for which even such
a basic problem as language emptiness is undecidable? The answer is that we
develop concurrent traces to describe not the complete behavior of programs,
but rather some basic scenarios that allow to split the set of program behaviors
into cases, and then proceed with the reasoning for each case separately. In
order to do this we impose a set of natural restrictions that concurrent traces
should satisfy. The first such restriction, allowing us to reduce the complexity
of emptiness checking, is transitivity.

32 CHAPTER 4. CONCURRENT TRACES

Definition 4.20 (Transitive concurrent trace). We call a concurrent trace
F = 〈E , C, , λE , λC〉 transitive if all causal links are labeled with transitive
formulas; formally, if the following holds:

∀c ∈ C, ∀s0, s1, s2 . (s0, s1) |= λC(c) ∧ (s1, s2) |= λC(c) =⇒ (s0, s2) |= λC(c).

If a causal link is labeled with a transitive formula ϕ(V, V ′), then the end
points of any sequence of states in the scope of the link satisfy ϕ. Examples of
transitive formulas are >; x′ > x; x′ = x. Formulas which talk only about the
present-state variables ϕ(V, ∅), or only about the next-state variables ϕ(∅, V ′)
are also transitive for any choice of ϕ. Another class of transitive formulas
includes those which are satisfiable only over a computation consisting of a
single step, such as x = 0 ∧ x′ = 1 ∧ ϕ, for any formula ϕ. A conjunction of
transitive formulas is always transitive as well.

It turns out that under the transitivity restriction concurrent trace emptiness
becomes tractable, as the following proposition shows.

Theorem 4.21. The emptiness problem for transitive concurrent traces is NP-
complete.

Proof. First, we show that the problem is in NP. Fix some concurrent trace
F . Remember that in Proposition 4.15 we have shown that the language of a
concurrent trace is equal to the union of languages of its linearizations. Guess
some linearization F ′ of F : this requires at most quadratic number of binary
ordering choices. Let ϕ1, ψ1, ϕ2, ψ2, . . . , ψn−1, ϕn be a linear normal form of F ′;
here ϕi are event labels, and ψi are link labels. For each 1 ≤ i ≤ n − 1, we
guess a) whether there are state changes in the scope of causal link ψi; if not,
then b) whether the events ϕi and ϕi+1 are mapped to different states in the
computation or not. Note that these guesses partition the set of computations
possibly accepted by F ′, and there is a linear number of such guesses. Now
construct an SMT formula Ψ as follows:

1. initialize Ψ to >, and j to 0.

2. Repeat for each i ∈ [1, n− 1]:

• set Ψ←− Ψ ∧ ϕi(V j , V j+1)

• if a) holds, then set Ψ←− Ψ ∧ ψi(V j+1, V j+2), set j ←− j + 2

• if a) doesn’t hold, but b) holds, then set j ←− j + 1

3. set Ψ←− Ψ ∧ ϕn(V j , V j+1)

The algorithm outlined above constructs a conjunctive SMT formula in SSA
form of at most linear size in n. Due to F being transitive, this formula is
satisfiable if and only if there is a computation π such that F has a run on π
under the guesses made. Indeed, for each causal link, say ψi, if a sub-computation
with more than one state change, say sk, sk+1, sk+2, . . . , sl is in scope of ψi, then
a shorter sub-computation sk, sl also satisfies ψi. Thus, if F has a run on some
computation, then it has a run on a computation where at most one state
change occurs within each causal link. Due to the assumption on the existence
of a polynomial SMT solver, the satisfiability of Ψ can be checked in polynomial
time.

4.2. LANGUAGE INTERSECTION, UNION, EMPTINESS 33

Now we turn to NP-hardness: we prove it by a reduction from 3-SAT. Let a
3-CNF formula over the variables x1, . . . , xm, with clauses C1, . . . , Cn be given.
We construct a linear trace F with 2 + (k + 1) + 4n events over the variables
V = { xi | i ∈ [1,m] } ∪ { ci | i ∈ [1, n] } such that L(F) is not empty if and only
if the given 3-CNF formula is satisfiable. F contains 2 fixed entry (e/) and exit
(e.) events, and two segments between them. In the first segment the values for
the variables are chosen, in the second segment the clauses are encoded.

The first segment consists of the following:

• events ei, for each xi, and event em+1, such that λE(e1) ≡ (x′1 = 0),
λE(ei) ≡ (x′i−1 = xi−1 ∧ x′i = 0), for 1 < i ≤ m, λE(em+1) ≡ (x′m = xm);

• link (e/, e1) such that λC
(
(e/, e1)

)
≡ >;

• links (ei, ei+1), for 1 ≤ i ≤ m, such that λC
(
(ei, ei+1)

)
≡ (x′i = 1);

• links (ei, e.), for 1 < i ≤ m+ 1, such that λC
(
(ei, e.)

)
≡ (x′i−1 = xi−1).

The first two events of the first segment are depicted below.

x′1 = 0
e1

x′1 = x1 ∧ x′2 = 0
e2x′1 = 1

· · ·
x′2 = 1

e.

x′1 = x1

e/

The second segment of F follows after the first, and contains the following:

• four events ei,k, where 1 ≤ k ≤ 4, for each clause Ci such that λE(ei,1) ≡
(c′i = 0), and λE(ei,k) ≡ (c′i = ci), for 2 ≤ k ≤ 4;

• link (em+1, e1,1) such that λC
(
(e/, e1)

)
≡ >;

• links (ei,k, ei,k+1), for each 1 ≤ i ≤ n and 1 ≤ k ≤ 3, such that
λC
(
(ei,k, ei,k+1)

)
≡ (xj = l ∧ c′i = 1), where l = 1 if the k-th literal of

Ci is xj , and l = 0 if the k-th literal of Ci is ¬xj ;

• links (ei,4, ei+1,1), for each 1 ≤ i < n, such that λC
(
(ei,4, ei+1,1)

)
≡ >;

• links (ei,4, e.), for each 1 ≤ i ≤ n, such that λC
(
(ei,4, e.)

)
≡ (c′i = ci).

The i-th quadruple of events for the example clause Ci ≡ x2 ∨ ¬x5 ∨ ¬x7 is
illustrated graphically below.

c′i = 0

ei,1
c′i = ci

ei,2
c′i = ci

ei,3
c′i = ci

ei,4
x2 = 1
∧ c′i = 1

x5 = 0
∧ c′i = 1

x7 = 0
∧ c′i = 1

· · · e.

c′i = ci

· · ·

Finally, the exit event e. is labeled as follows: λE(e.) ≡
∧
i∈[1,n](ci = 1).

This finishes the construction of F .
Let the 3-CNF formula be satisfiable, and let l1, . . . , lm be the satisfying

assignment. Then F has an accepting run on the computation where there
is a state change within each link (ei, ei+1) if and only if li = true. In this
computation, the first segment chooses xi = 1 iff li = true; otherwise xi = 0.

34 CHAPTER 4. CONCURRENT TRACES

Function SSA(F)

In : concurrent trace F
Out: formula in SSA form
begin

select F ′ ∈ Compactizations(F)
let NC(F ′) = ϕ1, . . . , ϕn
set ψ ←− >
foreach i ∈ [1, n] do

set ψ ←− ψ ∧ ϕi(V i−1, V i)

return ψ

Function Satisfiable(F)

In : concurrent trace F
Out: true / false
begin

set ψ ←− SSA(F)
return sat(ψ)

Function UnsatSubtrace(F)

In : concurrent trace F
Out: trace F ′ ⊇ F
begin

set ψ ←− SSA(F)
set Ψ = unsat core(ψ)
set F ′ ←− 〈∅, ∅, ∅, ∅, ∅〉
let add(e) ≡ if e 6∈ E ′ then

set E ′ ←− E ′ ∪ e
foreach ψi ∈ Ψ do

if ψi is from λE(ej) then
add(ej)
λ′E(ej)←− ψi

if ψi is from λC
(
(ej , ek)

)
then

add(ej); add(ek)
C′ ←− C′ ∪ (ej , ek)
λ′C

(
(ej , ek)

)
←− ψi

set ′ ←− ∩ E ′ × E ′

Figure 4.5: Utility functions for emptiness checking

After the choice is made, the values of xi are preserved for the rest of the
computation.

In the second segment there is a state change within each link (ei,j , ei,j+1) if
and only if the j-th literal of clause Ci is equals true. Because there is at least
one true literal for each clause, the value of ci is assigned to 1 at least once, and
this value is preserved for the rest of the computation. Thus, the label of event
e. is satisfied, and F accepts the computation.

By a similar reasoning, if there is a computation which is accepted by F ,
then we can construct a satisfying assignment l1, . . . , lm for the 3-CNF formula.
We take li = true if and only if there is a state change within link (ei, ei+1),
where xi is assigned 1. By construction of the second segment, each variable ci
is assigned 1 if and only if the corresponding clause Ci has at least one true
literal in it. This condition is checked by the label of event e..

Note that the trace we used in the proof above is linear : thus, emptiness
checking is NP-hard already for linear transitive traces. The essential property
of linear traces (i.e., concurrent traces without any concurrency aspects) which
makes their emptiness checking hard is the existence of causal links: they allow
to model disjunction. In the algorithms for system analysis, which we describe
in the next chapters, we use an even simpler model than linear traces, com-
pactization. For a given trace F , we obtain it by first producing some compact
linearization of F (here is where the name stems from), and then “gluing” to-
gether the events by prohibiting any state changes to occur in between. The
trace obtained in such a way can be considered as an underapproximation of F :
if the language of compactization of F is not empty, then the language of F is
not empty as well.

4.3. COMPLEMENTATION AND LANGUAGE INCLUSION 35

Definition 4.22. For a given concurrent trace F = 〈E , C, , λE , λC〉, we call its
compactization any trace F ′ = 〈E ′, C′, ′ , λ′E , λ′C〉 such that:

• there are traces FL ∈ Linearizations(F) and FCL ∈ Contractions(FL); let
ϕ1, ψ1, ϕ2, ψ2, . . . , ψn−1, ϕn be the linear normal form of FCL;

• E ′ = E is an ordered set of events {e1, e2, . . . , en};

• C′ = { (ei, ei+1) | 1 ≤ i < n };

• ′ = { (ei, ej) | 1 ≤ i ≤ n, i 6= j };

• λ′E = { ei → ϕi | 1 ≤ i ≤ n };

• λ′C = { (ei, ei+1)→ ⊥ | 1 ≤ i < n }.

We call the sequence ϕ1, ϕ2, . . . , ϕn a compactization normal form of F ′,
NC(F ′). We denote the set of all compactizations of F by Compactizations(F).

A compactization of a trace F is some linear sequence of events, which cannot
be “pumped”: the given compactization F ′ of F can accept only a computation
where the number of state changes equals exactly to the number of events in
F ′. This makes its emptiness checking trivial: the language of F ′ is not empty
exactly when the SSA-shaped conjunction of formulas from its normal form is
satisfiable. But what happens when such an SSA formula is unsatisfiable? In
that case we can use the unsatisfiable core of the formula to pinpoint the events
and links of the original concurrent trace which lead to the unsatisfiability.

In Figure 4.5 we outline the three utility functions, SSA, Satisfiable and
UnsatSubtrace, which will be used in the next chapters. SSA builds an SSA
formula from some compactization of a concurrent trace, while Satisfiable checks
this SSA formula for satisfiability. As for UnsatSubtrace, note that SSA(F) is a
conjunction of formulas such that each can be easily identified as a label of either
an event or a causal link from F . Indeed, the conjuncts result from applications
of the rules EventRestriction, LinkRestriction, or EventContraction. Under this
observation, the behavior of UnsatSubtrace is clear: given these conjuncts, it
reconstructs the corresponding events, links, and conflicts of the original trace.

4.3 Complementation and Language Inclusion

We have defined the syntactic trace inclusion relation before (see Definition 4.7).
Here we show that it can be used to underapproximate the language inclusion
between concurrent traces.

Proposition 4.23. Structural inclusion between concurrent traces implies also
their language inclusion: if F ′ ⊆ F then L(F ′) ⊆ L(F).

Proof. Let F = 〈E , C, , λE , λC〉, F ′ = 〈E ′, C′, ′ , λ′E , λ′C〉 be two concurrent
traces. Suppose that for some trace morphism µ = 〈µE : E → E ′, µC : C → C′〉
we have F ′ ⊆µ F , and there is a computation s0, . . . , sn ∈ L(F ′). Then, by
definition 4.3 we have an injective mapping σ′ : E ′ → {s0, s1, . . . , sn}, for which
all conditions of the definition are satisfied. We show that for the mapping
σ = σ′ ◦ µE : E → {s0, s1, . . . , sn} these conditions hold as well:

36 CHAPTER 4. CONCURRENT TRACES

1. By assumption, for each e ∈ E we have some e′ = µE(e) ∈ E ′ and si =
σ′(e′) = σ(e) such that the formula λ′E(e

′)
(
si, si+1

)
holds. By the definition

of trace inclusion, λ′E(e
′) =⇒ λE(e), thus the formula λE(e)

(
si, si+1

)
holds

as well. Moreover, we have s0 = σ′(e′/), sn = σ′(e′.) by definition 4.3,
and e′/ = µE(e/), e

′
. = µE(e.) by definition 4.6. Therefore, we have that

s0 = σ(e/) and sn = σ(e.).

2. By assumption, for each c = (e1, e2) ∈ C we have some c′ = (e′1, e
′
2) ∈ C′

such that c′ = µC(c) and there are states si = σ′(e′1), sj = σ′(e′2), for
which i ≤ j, and for all i < k < j the formula λ′C(c

′)
(
sk, sk+1

)
holds. By

definition 4.6 we have e′1 = µE(e1) and e′2 = µE(e2), therefore si = σ(e1)
and sj = σ(e2). By the definition of trace inclusion, λ′C(c

′) =⇒ λC(c), thus
the formula λC(c)

(
sk, sk+1

)
holds.

3. By assumption, for each e1, e2 ∈ E we have some e′1, e
′
2 ∈ E ′ such that

e′1 = µE(e1) and e′2 = µE(e2). Then, there are states in the computation
si = σ′(e′1) = σ(e1) and sj = σ′(e′2) = σ(e2). If e1 e2 then e′1 ′e′2, and,
by definition 4.3, i 6= j.

The above conditions show that s0, . . . , sn ∈ L(F).

Proposition 4.23 demonstrates that structural inclusion between concurrent
traces represents a sufficient condition for the inclusion of their languages. Is
it also a necessary condition? Unfortunately, the answer is negative, as the
following counterexample shows.

x = 1
a

x = 2
b

y = 3
d

x = 3
c

y = 1 y = 2

F ′

x = 1
a

y < 3
b

x = 3
c

F

Figure 4.6: Counterexample to trace inclusion (all events are in conflict)

Example 4.24 (Counterexample to trace inclusion). Consider the con-
current traces in Figure 4.6. All events are in conflict; we do not show conflict
edges to avoid clutter. The right trace, F , accepts all computations where there
are at least three events, satisfying the predicates x = 1, y < 3, x = 3 in
that order. The language of the left trace F ′ is the union of languages of two
possible linearizations: where event b comes before d, and vice versa. The first
linearization contains at least the events x = 1, x = 2 ∧ y = 1, y = 3, x = 3;
while the second contains at least the events x = 1, y = 3, x = 2 ∧ y = 2,
x = 3. It can be easily seen that both linearizations belong to the language of
F . Nevertheless, the structural language inclusion F ′ ⊆ F doesn’t hold, because
x = 2 6=⇒ y < 3 and y = 3 6=⇒ y < 3; thus, no trace morphism F → F ′

exists.

4.3. COMPLEMENTATION AND LANGUAGE INCLUSION 37

In fact, we can show that language inclusion is undecidable even for transitive
concurrent traces. Remember how in the proof of Theorem 4.19 we use a simple
concurrent trace encoding all computations of a Minsky machine. For that we
labeled the single causal link of the trace with the disjunction of all transitions
corresponding to the Minsky machine instructions; this encoding represented a
universal constraint for an unbounded number of events. The transitivity restric-
tion disallows such disjunctive labels, and reduces the complexity of emptiness
checking to NP. For language inclusion we can use the second trace to encode
the universal constraint without violating the transitivity restriction.

Theorem 4.25. The language inclusion problem for transitive concurrent traces
over any logic that includes atoms of the form x−y = c, for variables x, y ranging
over N, and constants c ∈ [0, 1], is undecidable.

Proof. Let M be the Minsky machine, and S = 〈V, T,Θ〉 – the transition system
as defined in the proof of Theorem 4.19. We encode the reachability of a halting
state of M as a language inclusion problem between two transitive concurrent
traces F ′ and F : M reaches a halting state exactly when L(F ′) 6⊆ L(F). Define
F ′ and F as follows.

F ′ = 〈E ′, C′, ′ , λ′E , λ′C〉, where:

• E ′ = {e′/, e′.};

• C′ = {(e′/, e′.)};

• ′ = {(e′/, e′.)};

• λ′E = {e′/ → Θ,
e′. → (halt = 1)};

• λ′C = {(e′/, e′.)→ >}.

Θ
e′/

halt = 1
e′.

‖‖‖

F = 〈E , C, , λE , λC〉, where:

• E = {e/, a, e.};

• C = {(e/, a), (a, e.)};

• = {(e/, a), (a, e.)};

• λE = {e/ → >, a→ ¬
∨
t∈T t,

e. → >};
• λC = {(e/, a)→ >, (a, e.)→ >}.

e/ ¬
∨
t∈T t

a
e.

‖‖‖ ‖‖‖

The language inclusion between F ′ and F is violated precisely when there is
a computation that starts in a state satisfying the initial condition Θ, ends in
a halting state, satisfying (halt = 1), and where all intermediate state changes
satisfy the formula

∨
t∈T t (the negated label of event a); i.e., each state change is

one of the transitions of S. As was observed already in the proof of Theorem 4.19,
such a computation corresponds to the halting computation of the machine M .

An easy way to recover decidability for language inclusion is to find the
way to complement a concurrent trace. As we have seen already in the previous
section, a set of concurrent traces is needed to represent the language union,
which naturally arises in complementation. Therefore, we define the complemen-
tation problem as follows: given a concurrent trace F , find a set of concurrent
traces F1, . . . , Fn such that L(F1)∪ . . .∪L(Fn) = L(F). We call the set of trace
L(F1) ∪ . . . ∪ L(Fn) a complementation set.

38 CHAPTER 4. CONCURRENT TRACES

Unfortunately, even very simple concurrent traces cannot be complemented.
The reason, intuitively, is that a concurrent trace specifies a constraint of the
shape ∃∗∀∗: there exists a set of events such that for all events in between some
condition hold. A complement of the above represents a reversed quantification
prefix, namely ∀∗∃∗: for all sets of events, there is some event in between that
violates the condition. Such constraints cannot be represented by concurrent
traces.

Before continuing with complementation, we prove the following useful char-
acterization of concurrent traces: an analogue of pumping lemmas for regular
and context-free languages.

Lemma 4.26 (Pumping lemma for concurrent traces). For every concur-
rent trace F = 〈E , C, , λE , λC〉 there is a function f : N→ N such that for any
natural p > 0 and any computation π of length at least f(p) accepted by F , there
is a formula ϕ such that π can be written as π = π1π2π3, where πi = si0, . . . , s

i
ni

,
and the following holds:

1. |π1π2| ≤ f(p) and |π2| ≥ p;

2. (s2
j , s

2
j+1) |= ϕ for all 0 ≤ j < n2, and (s1

n1
, s2

0) |= ϕ and (s2
n2
, s3

0) |= ϕ

3. F accepts any “pumped” computation π′ = π1π
′
2π3, where π2 is replaced

by π′2 in π, and π′2 satisfies the above condition.

Proof. The idea is that for any number p, in any sufficiently long computation
from L(F) we can find a subcomputation of length at least p that “falls in
scope” of some causal link of F without any events from F mapped to this
subcomputation.

Let m = |E|, and π = s0, . . . , sn ∈ L(F) be some computation from the
language of F ; then there is a run σ : E → {s0, . . . , sn} of F on π. Order
events of F according to their occurrence in π: E = {e1, . . . , em} such that
if σ(ei) = si′ , σ(ej) = sj′ , and i′ < j′, then i < j. We always have that
σ(e1) = s0 and σ(em) = sn. Each event, except the last one, “controls” two
states: a label of an event ei, mapped into si′ , is a formula over si′ and si′+1.
Thus, all m events “control” at most 2(m− 1) + 1 states. The remaining states
all fall in scope of some causal links. The worst case happens when these states
are distributed evenly between m − 1 intervals between events. In that case

each interval contains at least p = (n+1)−2(m−1)+1
m−1 = n

m−1 − 2 states. Thus,
f(p) = n+ 1 = (p+ 2)(|E| − 1) + 1 is the desired function. In a computation of
length at least f(p) there will be a subcomputation π2 = s2

0, . . . , s
2
n2

of length
at least p, where no events are mapped into states of π2. Then take as ϕ a
conjunction of labels of all causal links that “span” π2, i.e. of all causal links
(ei, ej) such that σ(ei) < s2

0 and σ(ej) > s2
n2

.

Now we use the pumping lemma to prove that some concurrent traces cannot
be complemented.

Proposition 4.27. There is a concurrent trace F such that the complement
of its language cannot be represented by any finite union of concurrent traces:
@F1, . . . , Fn such that L(F1) ∪ . . . ∪ L(Fn) = L(F).

Proof. Take as F the trace shown in Figure 4.7; it is the same as the trace
F1 from Figure 4.3. It specifies the set of computations s0, . . . , sn such that

4.3. COMPLEMENTATION AND LANGUAGE INCLUSION 39

e/ x y e.
z

Figure 4.7: A non-complementable concurrent trace

∃ si, sj . i ≤ j ∧ si |= x ∧ sj |= y ∧ ∀ k ∈ (i, j) . sk |= z. The complement can be
represented as follows:

(
∃ si, sj . i≤j ∧ si |=x∧ sj |=y

)
=⇒

(
∃ k∈(i, j) . sk |=¬z

)
.

Suppose there is a set of concurrent traces that accepts the complement of
the language of F . Then, it should also accept the computation π, which is a
cyclic repetition of the following sequence of five states π0 = x, z, z,¬z, y. Take

p = 11, and repeat the previous sequence f(p) times: π = π
f(p)
0 . Then, from the

pumping lemma, we have that there should be a subcomputation π2 of length at
least 11, and a formula ϕ such that the conditions of the pumping lemma hold.
We have that π2 should contain π0 in exactly the described order at least once
such that π0 occurs in the middle of π2, and that ϕ should be sufficiently weak
to accept all pairs of states from π0. Then the computation where the middle
π0 is replaced by π′0 = x, z, z, y should also be accepted. But this computation
belongs to the language of F ; a contradiction.

Finite automata are divided into deterministic and non-deterministic ac-
cording to whether they have a unique run on any input word or not. As it was
shown by Alur and Dill in case of timed automata, determinization helps to
recover decidibility of the complentation and language inclusion. Here we draw
a similar distinction with respect to concurrent traces. Finite automata admit
a simple syntactic characterization of determinism: a given finite automaton is
deterministic exactly when for all its states there is at most one transition going
to another state for each input letter. In a similar way, whether a concurrent
trace is deterministic can be described syntactically; but in that case the char-
acterization is slightly more complex, and uses the notion of event anchoring.

Definition 4.28 (Event anchoring). For a concurrent trace F =
〈E , C, , λE , λC〉, we call an event e′ ∈ E relatively left-anchored with respect
to an event e, if the following two conditions hold:

1. e′ is in conflict with e: (e, e′) ∈ ;

2. there is a causal link from e to e′, and its label is unsatisfiable with the
label of e: (e, e′) ∈ C ∧ λC

(
(e, e′)

)
=⇒ ¬λE(e′).

We call an event e′ ∈ E (absolutely) left-anchored if one of the following
conditions hold:

1. e′ = e/, i.e. it is an entry event, or

2. e′ is relatively left-anchored with respect to some absolutely left-anchored
event e.

We define relatively right-anchored and (absolutely) right-anchored events in
a symmetric way.

40 CHAPTER 4. CONCURRENT TRACES

According to the above definition the set of left-anchored events is defined
recursively, starting from the entry event: an event is left-anchored if we can
establish that it is relatively left-anchored to the event that is itself established
absolutely left-anchored. Left- or right anchoring of an event uniquely determines
the position where it can be matched in any given computation; a concurrent
trace where all events are anchored is deterministic.

Definition 4.29 (Deterministic trace). We call a concurrent trace F =
〈E , C, , λE , λC〉 deterministic if every event in E is either left- or right-anchored.

Proposition 4.30. If a concurrent trace F = 〈E , C, , λE , λC〉 is deterministic,
then for any computation π = s0, . . . , sn there is at most one run σ : E →
{s0, . . . , sn} of F on π.

Proof. Suppose that every event is left- or right-anchored. Fix a computation
π = s0, . . . , sn and suppose there is a run σ : E → {s0, . . . , sn}. We prove,
by induction, that in any alternative run σ′ : E → {s0, . . . , sn}, any left- or
right-anchored event is mapped by σ′ to the same state as by σ.

Induction basis: e/ is always mapped to s0. Induction step: suppose that an
event e′ is relatively left-anchored with respect to another event e. By induction
hypothesis, we have σ′(e) = σ(e) = si for some i. Suppose that σ(e′) = sj ,
σ′(e′) = sj′ . We have that i < j and i < j′, because e � e′ and e e′. Suppose
that j′ < j; we have that for all k such that i < k < j, the formula ¬λE(e′)(sk)
holds, due to the condition of e′ being relatively left-anchored. This shows that
it can’t be the case that σ′(e′) = sj′ , for j′ < j. Similarly, it’s impossible that
j < j′. The only remaining case is j′ = j. We can prove, in a similar way, that
any relatively right-anchored event e′ ∈ E is mapped by any σ′ to the same state
as by σ. Because any event is either left- or right-anchored, there is a at most
one run for any given computation.

The main purpose of introducing deterministic concurrent traces is to make
complementation possible. If a trace is deterministic, then we can list one by one
the conditions under which some computation does not belong to the language
of the original trace. We illustrate the idea with a small example, and then
formally prove its correctness.

Example 4.31 (Complementation of a deterministic trace). Consider the
concurrent trace F shown in Figure 4.8. It requires that two events satisfying a
and b are present in the trace, that they are in conflict, and, moreover, all events
before and after a satisfy, respectively, ϕ1 and ϕ2, and all events before and after
b satisfy, respectively, ϕ3 and ϕ4. The trace is deterministic, as indicated by the
boldface formulas: that is, we have ϕ1 =⇒ ¬a, and ϕ4 =⇒ ¬b.

The complementation process starts with the most basic trace, consisting
only of entry and exit events, and gradually refines it by introducing new com-
ponents. Each new component describes one particular situation, where the
satisfying computation does not belong to the language of F .

The first round of refinements is related to event a. Because it is anchored
with respect to e/, we can describe the refinements as a search for a state that
satisfies a. There are several possibilities. The first possibility, represented by
trace F1, is when we have searched through the whole computation, and all
states satisfy ϕ1, which implies that no state satisfying a exists. An alternative

4.3. COMPLEMENTATION AND LANGUAGE INCLUSION 41

e/

a

b

e.

ϕ1ϕ1ϕ1

ϕ3

ϕ2

ϕ4ϕ4ϕ4

‖‖‖
‖‖‖

‖‖ ‖
F

L(F) = L(F1) ∪ . . . ∪ L(F7)

e/ ϕ1

e.ϕ1

F1

e/ ¬ϕ1 ∧ ¬a e.
ϕ1

‖‖‖

F2

e/ a ¬ϕ2 e.
ϕ1 ϕ2

‖‖‖ ‖‖‖ ‖‖‖

F3

ϕ4

e/

a

e.

ϕ1
ϕ2

ϕ4

‖‖‖

F4

e/

a

¬ϕ4 ∧ ¬b

e.

ϕ1

ϕ3

ϕ2

ϕ4

‖‖‖
‖‖‖

F5

e/

a

b

¬ϕ3

e.

ϕ1

ϕ3

ϕ2

ϕ4

‖‖‖

‖‖‖‖‖‖

‖‖‖

F6

e/ a ∧ b e.
ϕ1 ∧ ϕ3 ϕ2 ∧ ϕ4

‖‖‖ ‖‖‖

F7

Figure 4.8: Example of a deterministic trace complementation

42 CHAPTER 4. CONCURRENT TRACES

situation is when we have encountered a state, satisfying ¬ϕ1. Then we can
consider two other possibilities: either this state satisfies ¬a, which means that
the constraint ϕ1 of the causal link is violated (this is represented by trace F2);
or this state satisfies a; i.e., we have found a in the computation. After we have
fixed the position for a, we can continue with the remaining components of the
original trace that relate a to other, already present, events. Such a component
is the causal link labeled with ϕ2. With respect to it we again consider two
possibilities: either it’s constraint is violated, which means that a state satisfying
¬ϕ2 should exist (see trace F3); or all states in the scope of the link satisfy ϕ2,
and the refinement continues.

Now, we continue with the next event, labeled with b, which is still missing
from the last trace. Here we repeat the same steps as for a. Trace F4 represents
the situation where all states satisfy ϕ4, which implies that a state satisfying b
doesn’t exist. Another possibility is when we encounter a state satisfying ¬ϕ4

before a state satisfying b (trace F5). Finally, when we have fixed the position
of b, we consider the missing components relating it to other events. The first
component is the causal link labeled with ϕ3: trace F6 represents a situation
when this constraint is violated. The last missing component is the conflict edge
between a and b. Trace F7 describes computations when the positions of a and
b coincide in a computation. This is the last possibility for a computation to
violate the conditions imposed by trace F .

The complementation algorithm, sketched above for an example, is described
formally in Figure 4.9. Throughout the algorithm execution, two data structures
are maintained: the current set S of of the traces in the complementation set,
and the last refined trace F ′, which is always a subtrace of the original trace.
The set is initialized with two traces, each one characterized by the negated
label for the entry or exit events. Trace F ′ is initialized to contain only the
appropriately labeled entry and exit events. In the main loop of the algorithm
three checks are executed till saturation, which insert missing links, conflicts,
and events. From the algorithm it is clear that the final complementation set is
at most of linear size with respect to the size of the original trace.

Proposition 4.32. The complementation algorithm of Figure 4.9 is correct.

Proof. There are two possibilities for a computation not to belong to the lan-
guage of F . The first one is when the first or the last states of the computation
do not satisfy the labels of the entry or exit events. The traces, describing such
situations, are contained in the initial set S. All other possibilities can be de-
scribed with the following induction scheme:

Induction basis. there are events in the prefix and in the suffix of the trace,
which can be mapped properly and deterministically to the computation (entry
and exit events constitute the basis).

Induction step. With respect to these fixed events, there are again several
possibilities:

• some of the events occur in the computation in the order, which violates
some causal link of F . The first trace added to S in function InsertLink
describes such situation.

4.3. COMPLEMENTATION AND LANGUAGE INCLUSION 43

Algorithm 2: Complement(F)

In : deterministic concurrent trace F = 〈E , C, , λE , λC〉
Out: set of concurrent traces F1, . . . , Fn such that L(F1) ∪ . . . ∪ L(Fn) = L(F)
Data: set of concurrent traces S, last refined trace F ′ = 〈E ′, C′, ′ , λ′E , λ′C〉
/* W.l.o.g. assume that all events are relatively left-anchored; */

/* relatively right-anchored events are processed in a symmetric way */

begin
set S ←−

{
〈{e/, e.}, ∅, {(e/, e.)}, {e/ → ¬λE(e/), e. → >}, ∅〉,
〈{e/, e.}, ∅, {(e/, e.)}, {e/ → λE(e/), e. → ¬λE(e.)}, ∅〉

}
set F ′ ←− 〈{e/, e.}, ∅, {(e/, e.)}, {e/ → λE(e/), e. → λE(e/)}, ∅〉
while F ′ 6= F do

if ∃ e, e′ ∈ E ∩ E ′ and (e, e′) ∈ C \ C′ then
set 〈S, F ′〉 ←− InsertLink(F, F ′, S, e, e′)

else if ∃ e, e′ ∈ E ∩ E ′ and (e, e′) ∈ \ ′ then
set 〈S, F ′〉 ←− InsertConflict(F, F ′, S, e, e′)

else if ∃ e′ ∈ E ′ \ E such that e′ is relatively anchored to some e ∈ E ′ then
set 〈S, F ′〉 ←− InsertEvent(F, F ′, S, e, e′)

return S

Function InsertLink(F, F ′, S, e, e′)

In : trace F , last refined trace F ′, set of traces S, events e, e′

Out: updated set of traces S, updated refined trace F ′

begin
let ϕ be the label of link (e, e′): ϕ ≡ λC

(
(e, e′)

)
set S ←− S ∪

{
〈E ′, C′ ∪ {(e′, e)}, ′ ∪ {(e′, e)}, λ′E , λ′C ∪ {(e, e′)→ >}〉,
〈E ′ ∪ {e′′}, C′ ∪ {(e, e′′), (e′′, e′)}, ′ ∪ {(e, e′′), (e′′, e′)},
λ′E ∪ {e′′ → ¬ϕ}, λ′C ∪ {(e, e′′)→ ϕ}, (e′, e)→ >〉

}
set F ′ ←− 〈E ′, C′ ∪ {(e, e′)}, ′ , λ′E , λ′C ∪ {(e, e′)→ ϕ}〉
return 〈S, F ′〉

Function InsertConflict(F, F ′, S, e, e′)

In : trace F , last refined trace F ′, set of traces S, events e, e′

Out: updated set of traces S, updated refined trace F ′

begin
let ϕ be the label of link (e, e′): ϕ ≡ λC

(
(e, e′)

)
set S ←− S ∪

{
EventContraction(F ′, e, e′)

}
set F ′ ←− 〈E ′, C′, ′ ∪ {(e, e′)}, λ′E , λ′C〉
return 〈S, F ′〉

Function InsertEvent(F, F ′, S, e, e′)

In : trace F , last refined trace F ′, set of traces S, events e, e′

Out: updated set of traces S, updated refined trace F ′

begin
let ϕ be the label of link (e, e′): ϕ ≡ λC

(
(e, e′)

)
let e′′ ∈ E ∩ E ′ be the smallest in the order � between all events { x | (e′, x) ∈ C }
set S ←− S ∪

{
〈E ′, C′ ∪ {(e, e′′)}, ′ , λ′E ∪ {e′′ → λ′E(e

′′) ∧ ϕ}, λ′C ∪ {(e, e′′)→ ϕ}〉,
〈E ′∪{e′}, C′∪{(e, e′)}, ′ ∪{(e, e′)}, λ′E ∪{e′ → ¬ϕ∧¬λE(e′)}, λ′C∪{(e, e′)→ ϕ}〉}
set F ′ ←− 〈E ′ ∪ {e′}, C′ ∪ {(e, e′)}, ′ ∪ {(e, e′)},

λ′E ∪ {e′ → λE(e
′)}, λ′C ∪ {(e, e′)→ ϕ}〉

return 〈S, F ′〉

Figure 4.9: Deterministic trace complementation

44 CHAPTER 4. CONCURRENT TRACES

• some computation state in between two of the fixed events violates the
label of some causal link of F . The second trace added to S in function
InsertLink describes such scenario.

• two events are mapped to the same computation state, although they
are declared to be in conflict. Function InsertConflict takes care of this
possibility.

• there is another event of the trace, besides the currently fixed ones, which
can’t be properly mapped to the computation. Function InsertEvent de-
scribes all possible cases how this is possible.

It is also clear that the algorithm terminates, because with each iteration of
the main loop at least one new component is added to the refined trace F ′, and
the number of the components is limited by the original trace F .

Notice that if the original concurrent trace is deterministic and transitive,
then, by construction, all traces in the complementation set are also determin-
istic and transitive. This opens the way perform the language inclusion test. To
check if L(F ′) ⊆ L(F), for some transitive deterministic traces F and F ′, it is
enough to do the following:

1. Compute the complementation set of F ; let it be {F1, . . . , Fn};

2. For each i ∈ 1 . . . n, test F ′ ∩Fi for emptiness. If, for some i, L(F ′ ∩Fi) is
not empty, then answer the original question negatively; otherwise, answer
positively.

To conclude, we now have two ways to test language inclusion for concurrent
traces. If the traces are transitive and deterministic, then the precise language
inclusion can be checked as outlined above. If the traces do not satisfy these
conditions, then we still have the under-approximating language inclusion test
via the syntactic trace inclusion relation; see Proposition 4.23. In the following
chapters we use both ways to check language inclusion.

Chapter 5

Causality-based
Verification: Safety

In this and the subsequent chapter we outline our solution to the verification
problem described in Chapter 2. Our approach aims to answer these questions
by capturing causality. In most general terms, causality can be defined as the
relation between two events, where the first event (the cause) is understood to
be partly responsible for the second (the effect). Anyone, who ever searched
for an error in his or her program, should remember chains of reasoning as the
following:

1. Why is variable a equal to 0 at location l13, when I expect it to be 1?
Because some instruction should have assigned 0 to a.

2. Which instruction is that? It should be one of l3 : a = x− 1 or l7 : a = y;
other instructions do not change a.

3. What if l3 has changed a? Then x should be equal to 1. How . . .?

4. What if l7 has changed a? Then y should be equal to 0. Why . . .?

We can easily decompose this chain of reasoning, or, how we call it, the causal
chain, into primitive components. In step 1 we define the effect: (a=0∧pc =13).
In step 2 we ask what are the possible causes for the effect? They should have
happened in the past, i.e., we build causal chains backwards in time. We identify
instructions l3 and l7 as the possible causes for the effect. Then our reasoning
bifurcates, or performs a case split : we consider each of the causes separately.
We continue building causal chains, till one of them allows us to identify the
ultimate cause for the observed error.

This informal example illustrates well the underlying principles of causality-
based verification. As a formal foundation we employ the model of concur-
rent traces: it allows us to capture both dependency (though causal links), and
independence (through absence of ordering). Concurrent traces describe well
one particular analysis situation, like the ordering between instructions at loca-
tions l3 and l13 above. For building causal chains we apply what we call trace
transformers: primitive transformation rules which, given one concurrent trace
(the premise), derive a set of possible conclusions, described also as concurrent

45

46 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

A1

B1

a1!an?

an?

a1!

A2

B2

a2!a1?

a1?

a2!

A3

B3

a3!a2?

a2?

a3!

. . .

An

Bn

an!an−1?

an−1?

an!

Figure 5.1: Chain of n automata with binary synchronization over a1, . . . , an

traces. These transformation rules capture case splits. Finally, we build com-
posite structures on top of trace transformers, which we call trace unwindings
or trace tableaux : they capture the whole proof or counterexample derivation.

The example above describes counterexample search; but how can we use
trace tableaux to build proofs? The answer lies in the notion of causal loops.
A causal loop is a circular dependency between events that are all necessary to
achieve some effect. If event a requires event b to happen before, but event b, in
turn, requires event a to precede it, then there is a causal loop between events
a and b, and no finite computation containing these events can exist.

Consider the example in Figure 5.1. It consists of n automata, each with
two locations Ai and Bi; the automata employ binary synchronization over the
alphabet a1, . . . , an. The i-th automaton starts in its top location Ai; we want to
check whether the system state where each automaton is in its bottom location
Bi is reachable. The following causal loop proves that this state is unreachable:

• The first automaton needs to execute a1! to go from A1 to B1. The syn-
chronization partner for a1! is a1?; it brings the second automaton to A2.

• Similarly, the second automaton needs to execute action a2! to go from
A2 to B2, but this brings the third automaton to A3.

• . . .

• The last automaton needs to execute action an! to go from An to Bn, but
this brings the first automaton again to A1.

The causal loop is now closed, and it constitutes the proof that system state
(B1, . . . , Bn) is not reachable from (A1, . . . , An). Note that most transitions in
the system are independent: automata can go forth and back between locations
Ai and Bi almost unconstrained. In fact, exactly 2n − 1 states are reachable,
and we are not aware of any automatic method that doesn’t require exponential
time and space to analyze this system. On the contrary, the proof with causal
loops has only linear size, and it concisely captures human intuition about the
system behavior. The presented proof is informal; we return to the example in
Section 5.6, and formalize it in the form of a trace tableau.

5.1. PROOFS WITH TRACE TRANSFORMERS 47

5.1 Proofs with Trace Transformers

We generalize graph productions described in Section 3.2 to concurrent traces.

Definition 5.1 (Trace production). A trace production p : (L
r−→ R) is a

trace morphism r : L → R, where L,R ∈ T are concurrent traces. The traces
L and R are called the left-hand side and the right-hand side of p, respectively.
A given production p : (L

r−→ R) can be applied to a trace A if there is an
occurrence of L in A, i.e. a trace morphism m : L → A, called a match. The
resulting trace A′ can be obtained from A by adding all elements of R with no
pre-image in L, removing all elements of L with no image in R, and contracting
all elements of L with the same image in R. The application of a production
p to a trace A with a match m is called a direct derivation; we denote it with
pm(A). The set of trace productions is denoted by Π.

Later we will need an additional property of trace productions which we call
context-boundedness. All trace productions we employ are context-bounded.

Definition 5.2 (Context-bounded trace production). We say that a trace

production p : (L
r−→ R) is context-bounded if all new events introduced in R

are bound to occur in the scope of the context defined by L. Formally, for every
event e′ ∈ E(R) with no pre-image in L, @e ∈ E(L) . e′ = r(e), we require that:

1. there are e1, e2 ∈ E(L), and e′1, e
′
2 ∈ E(R), such that e′1 = r(e1), e′2 = r(e2);

2. there are causal links (e′1, e
′), (e′, e′2) ∈ C(R).

For the purpose of system analysis we use combinations of trace productions;
we call them trace transformers.

Definition 5.3 (Trace transformer). For a given transition system S =
〈V, T,Θ〉, a trace transformer τ : {τ1, . . . , τn} is an ordered set of trace pro-

ductions τi : (L
ri−→ Ri), where all productions share the same left-hand side

L; we denote L by pre(τ), and call it the transformer premise; we call the set
post(τ) = {R1, . . . , Rn} the transformer conclusions. We can consider a trace
transformer as one proof step, describing a case split. Given some analysis situ-
ation (its premise), expressed as a concurrent trace, it makes a case distinction,
and transforms the given trace into a set of other traces (its conclusions).

Definition 5.4 (Sound, precise, and exact trace transformer). We say
that a trace transformer τ is sound if the condition below holds:

∀F ∈ F . F ⊆m pre(τ) =⇒ L(F) ∩ L(S) ⊆
⋃
τi∈τ
L
(
τmi (F)

)
∩ L(S).

We say that a trace transformer τ is precise if the inverse inclusion holds:

∀F ∈ F . F ⊆m pre(τ) =⇒ L(F) ∩ L(S) ⊇
⋃
τi∈τ
L
(
τmi (F)

)
∩ L(S).

We say that a trace transformer τ is exact if it is both sound and precise.

A sound trace transformer constructs over-approximations for the set of
system computations; thus, it is suitable for building proofs. A precise trace

48 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

transformer, on the other hand, constructs under-approximations, and can be
used to find refutations for properties, i.e., errors in programs. An exact trace
transformer can be used for both purposes because it exactly transforms the set
of computations of its premise into the set of runs of its conclusions. Most trace
transformers we consider in this thesis are exact.

We first specialize the causality-based verification to the most basic class
of safety properties; the historical perspective on the previous approaches to
safety verification is presented in Section 2.1. We continue with the description
of how concurrent traces can be used to represent violations of typical safety
properties (Section 5.2), define safety-specific trace transformers (Section 5.3),
and outline a sequence of increasingly more powerful proof structures as well as
algorithms for their construction in Sections 5.4–5.7. Finally, in Section 5.8 we
present a class of multi-threaded semaphore programs for which our causality-
based verification algorithm can prove safety in polynomial time.

5.2 Representation of Safety Properties

As a first step towards the verification algorithm for safety properties, we use
concurrent traces to represent their possible violations. We assume the existence
of the function Abstract , which, given a transition system and a safety prop-
erty, described, e.g., in LTL, provides a set of concurrent traces that encode all
possible system computations that violate the property.

Definition 5.5 (Abstract). For a transition system S = 〈V, T,Θ〉 and a safety
property ϕ, the function Abstract(S, ϕ) ∈ P(F) gives a set of concurrent traces
such that:

L(S) ∩ L(¬ϕ) =
⋃

F∈Abstract(S,ϕ)

L(F)

Below we describe the encoding of some typical cases of safety LTL formulas;
the example LTL formulas are taken from [52].

Global Invariants. Let q be a state predicate. A general safety property that
q remains invariant throughout the computation is expressed by the temporal
formula

q.

We represent all violations of such property by the following concurrent trace:

Θ ¬q

Mutual Exclusion. Suppose a transition system S represents two processes
P1 and P2 that require mutually exclusive access to their critical sections. In the
schematic representation of Figure 5.2, each process Pi, i = 1, 2, consists of an
endless loop. The body of the loop contains three sections: Ni (“noncritical”),
Ti (“trying”), and Ci (“critical”). The property of mutual exclusion for such a
program is described by the temporal formula

5.2. REPRESENTATION OF SAFETY PROPERTIES 49

loop forever do

N1

T1

C1

P1 ::

loop forever do

N2

T2

C2

P2 ::‖

Figure 5.2: Schematic mutual exclusion program

¬(in C1 ∧ in C2).

All violations of the formula are contained in the language of the trace

Θ in C1 ∧ in C2

Strict Precedence. Consider again the program that provides mutually ex-
clusive access to critical sections for processes P1 and P2. We may want to state
strict precedence with respect to order of entries into the critical sections:

if P1 is in the trying section T1 and has priority over P2, then P1

will precede P2 in entering the critical section.

If we interpret P1 having priority over P2 as the situation in which P1 is already
in the trying section T1, while P2 is still in N1, then the above requirement can
be expressed by the formula(

(in T1 ∧ in N2) =⇒ (¬in C2)W in C1

)
.

We can represent all violations of such property by the following trace:

Θ in T1 ∧ in N2 in C2

¬in C1

Bounded Overtaking. For the same program, we may want not to specify
a strict precedence, but instead to provide upper bounds on the amount of
overtaking, where overtaking means that one process enters the critical section
ahead of its rival. For example, the property of 1-bounded overtaking states that

from the time P1 reaches T1, P2 may enter the critical section ahead
of P1 (overtake P1) at most once.

This property may be expressed by the temporal formula(
in T1 =⇒ (¬in C2)W(in C2)W(¬in C2)W(in C1)

)
.

The violations of the property can be described by the concurrent trace

50 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

Θ in T1 in C2 ¬in C2 in C2 ∧ ¬in C1

¬in C1

The concurrent trace above provides a clear intuition for a violation of the
1-bounded overtaking property. Indeed, it is violated exactly when process P1

was trying to get access, i.e. it is in section T1, but after that event there exist
two accesses to the critical section C2 by process P2, while process P1 is forced
to stay outside of its critical section C1.

Invariances over Communication Events. Let P be a nonterminating
program that computes and prints the sequence of all prime numbers on channel
γ. We can express the requirement “nothing but primes are ever printed” by the
temporal formula(

[γ m] =⇒ prime(m)
)
.

The formula states that, whenever the event [γ m] happens, a new value m
that is printed to γ must be prime. We can capture all violations of this property
by the trace

Θ [γ m] ∧ ¬prime(m)

Monotonicity. For the same nonterminating prime-printing program, con-
sider the property “the printed primes form a strictly increasing sequence”. We
can express this by the safety formula(

[γ m] ∧ ̂ [γ m′]
)

=⇒ (m′ < m).

We represent all violations of such property by the following concurrent trace:

Θ [γ m′] [γ m] ∧m ≤ m′
‖‖‖

Absence of Unsolicited Response. Let S implement a buffer that has input
channel α and output channel β:

Buffer
α β

The purpose of the system is to collect messages from α and eventually transmit
them on β; we assume that all messages are distinct. An important property for
such a system is that every message transmitted on β must have been previously
received on α. This property is expressed by the formula

5.3. SAFETY TRACE TRANSFORMERS 51

(
[β m] =⇒ [α m]

)
.

The violations of the property can be described by the concurrent trace

Θ [β m]
¬[α m]

The trace represents all system computations where a message m is sent to the
output channel β, and m was not received before on the input channel α.

First-In-First-Out Ordering. For the same buffer system consider the fol-
lowing property: messages are transmitted over β in the same order that they
are transmitted over α. One possibility to express such a requirement is with
the following formula:((

[β m′] ∧ ̂ [β m]
)

=⇒
(

[α m′] ∧ ̂ [α m]
))

.

This formula states that, if m′ is sent on β at t′β and m is sent on β at tβ ,
tβ < t′β , then there exist tα and t′α, tα < t′α ≤ t′β , such that m′ is sent on α at
t′α and m is sent on α at tα.

The system computations that violate the above formula lie in the union of
languages of two concurrent traces

Θ [β m] [β m′]

¬[α m′]

‖‖‖
Θ [β m] [β m′]

[α m′]
¬[α m]

‖‖‖

The first trace describes a situation when message m′ was not received on α
before it was sent on β. The second trace describes another possible case: when
message m′ was received on α, but there was no previous event of receiving m.
Notice that the first trace is a refined version of the trace that specifies violations
for the absence of unsolicited response property, and can be safely omitted if
that property is guaranteed.

5.3 Safety Trace Transformers

Here we describe the basic trace transformers appropriate for the analysis of
safety properties. Our trace transformers are actually parametrized trace trans-
former schemas, which can be instantiated for arbitrary values of a predefined
set of parameters. We write the schema parameters in parentheses after the
trace transformer name.

All of the described trace transformers are precise in the sense of defini-
tion 5.4. The reason is that for any transformer (besides ConflictSplit) we do
not remove events or links, and the labels of events and links of its conclusions

52 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

either stay the same as in the premise, or become stricter by adding new con-
juncts. By combining that fact with the existence if a trace morphism from the
premise to any conclusion, we have that all conditions of the definition 4.7 hold,
and the language of the conclusion is included in the language of the premise.
Therefore, the inclusion holds also for the union of languages of all conclusions,
and the trace transformer is precise. For the ConflictSplit transformer we give
a separate proof of its preciseness.

All of the described trace transformers are also sound. To save the space we
introduce now some notation that will be used uniformly in all the soundness
proofs further down. For any trace transformer τ , let pre(τ) = 〈E , C, , λE , λC〉,
and F= 〈′E , ′C, ′ , ′λE , ′λC〉 be a concurrent trace such that F ⊆µ pre(τ) for the
trace morphism µ. Let π = s0, s1, s2, . . . ∈ L(F) be some system computation
from the language of F ; then there are mappings ′σ : ′E → {s0, s1, . . . , sn} and
σ = ′σ ◦ µE : E → {s0, s1, . . . , sn} satisfying the conditions of definition 4.3. In
each soundness proof below we show that there exists a trace production τi ∈ τ
such that π ∈ L

(
τµi (F)

)
. We let τµi (F) = F ′, where F ′ = 〈E ′, C′, ′ , λ′E , λ′C〉.

Order Split (Figure 5.3). The OrderSplit(a, b) trace transformer considers
alternative orderings of two concurrent events a and b. Formally, we have

pre
(
OrderSplit(a, b)

)
= 〈E , C, , λE , λC〉, where:

• E = {a, b};
• λE = {a→ >, b→ >};
• C = = λC = ∅.

post
(
OrderSplit(a, b)

)
= {R1, R2}, where:

• R1 = 〈E , {(a, b)}, , λE , {(a, b)→ >}〉;
• R2 = 〈E , {(b, a)}, , λE , {(b, a)→ >}〉.

a b

L

a b

R1

=⇒ a b

R2

Figure 5.3: The OrderSplit trace transformer

Proposition 5.6. The OrderSplit trace transformer is sound.

Proof. Let σ(a) = si and σ(b) = sj . If i ≤ j, then π ∈ L
(
τµ1 (F)

)
, otherwise

π ∈ L
(
τµ2 (F)

)
.

Event Split (Figure 5.4). The EventSplit(a, ϕ, ψ) trace transformer, given
some event a in the trace, labeled with a transition predicate ψ, and another
arbitrary transition predicate ϕ, considers two alternatives: either a satisfies ϕ
or not. Formally, we have

pre
(
EventSplit(a, ϕ, ψ)

)
= 〈E , C, , λE , λC〉, where:

5.3. SAFETY TRACE TRANSFORMERS 53

• E = {a};
• λE = {a→ ψ};
• C = = λC = ∅.

post
(
EventSplit(a, ϕ, ψ)

)
= {R1, R2}, where:

• R1 = 〈E , C, , {a→ ψ ∧ ϕ}, λC〉;
• R2 = 〈E , C, , {a→ ψ ∧ ¬ϕ}, λC〉.

ψ
a

L

ψ ∧ ϕ
a

R1

=⇒ ψ ∧ ¬ϕ
a

R2

Figure 5.4: The EventSplit trace transformer

Proposition 5.7. The EventSplit trace transformer is sound.

Proof. Let σ(a) = si. If the formula ϕ(si, si+1) holds, then π ∈ L
(
τµ1 (F)

)
,

otherwise π ∈ L
(
τµ2 (F)

)
.

Conflict Split (Figure 5.5). The ConflictSplit(a, b, ϕ, ψ) trace transformer,
given two events a and b in the trace, labeled with ϕ and ψ respectively, considers
two possibilities: either these events coincide in time, or they are distinct, i.e.,
they are in conflict. Formally we have the following:

pre
(
ConflictSplit(a, b, ϕ, ψ)

)
= 〈E , C, , λE , λC〉, where:

• E = {a, b};
• λE = {a→ ϕ, b→ ψ};
• C = = λC = ∅.

post
(
ConflictSplit(a, b, ϕ, ψ)

)
= {R1, R2}, where:

• R1 = 〈{ab}, C, , {ab→ ϕ ∧ ψ}, λC〉;
• R2 = 〈E , C, ∪ {(a, b)}, λE , λC〉.

ConflictSplit is the only rule that modifies the context in the trace where
it is applied; therefore we need to specify this modification. Let ConflictSplit
be applied to the trace F = 〈′E , ′C, ′ , ′λE , ′λC〉; we have that F ⊆µ L. Let
Ea,b = {µ(a), µ(b)} be the events of F , where a and b are mapped to. We denote

by C̀ = {(x, y) ∈ ′C | x 6∈ Ea,b, y ∈ Ea,b} and Ć = {(y, x) ∈ ′C | x 6∈ Ea,b, y ∈ Ea,b}
the set of incoming and outgoing causal links to and from Ea,b, without. Let
F ′ = τµ1 (F) = 〈E ′, C′, ′ , λ′E , λ′C〉 be the result of applying the transformer
L→ R1 to F . We define F ′ as follows:

• E ′ = ′E \ {µ(a), µ(b)} ∪ {ab};

• λ′E = ′λE \ {(µ(a), ϕ), (µ(b), ψ)} ∪ {(ab, ϕ ∧ ψ)};

54 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

ϕ
a

ψ
b

L

ϕ ∧ ψ
ab

R1

=⇒ ϕ
a

ψ
b

‖‖‖

R2

Figure 5.5: The ConflictSplit trace transformer

• C′ = ′C \ C̀ \ Ć ∪ { (x, ab) | (x, y) ∈ C̀ } ∪ { (ab, x) | (y, x) ∈ Ć };

• λ′C .

Proposition 5.8. The ConflictSplit trace transformer is sound and precise.

Proof. Soundness. Let σ(a) = si and σ(b) = sj . if i = j then π ∈ L
(
τµ1 (F)

)
,

otherwise π ∈ L
(
τµ2 (F)

)
. Preciseness. Suppose that for some i = 1, 2 we have

that π = s0, s1, s2, . . . ∈ L
(
τµi (F)

)
. Then there is a mapping σ : E

(
τµi (F)

)
→

{s0, s1, . . . , sn}. We modify σ to obtain mapping σ′ : E(F) → {s0, s1, . . . , sn}
as follows: for i = 1, we remove

(
µ(ab), σ(ab)

)
, and add

(
µ(a), σ(ab)

)
,(

µ(b), σ(ab)
)
; for i = 2, we take σ′ = σ.

Conflict (Figure 5.6). The Conflict(a, b, ϕ) trace transformer, given two
events a and b in the trace, labeled with the formulas ϕ1, ϕ2 such that
unsat(ϕ1 ∧ ϕ2) holds, establishes that these events are in conflict. Technically,
this condition can be expressed by a single predicate ϕ = interpolate(ϕ1 ; ϕ2),
because in that case we have that ϕ1 =⇒ ϕ and ϕ2 =⇒¬ϕ. Formally:

pre
(
Conflict(a, b, ϕ)

)
= 〈E , C, , λE , λC〉, where:

• E = {a, b};
• λE = {a→ ϕ, b→ ¬ϕ};
• C = = λC = ∅.

post
(
Conflict(a, b, ϕ)

)
= {〈E , C, ′ , λE , λC〉}, where ′ = {(a, b)}.

ϕ
a

¬ϕ
b

L

ϕ
a

¬ϕ
b

‖‖‖

R

=⇒

Figure 5.6: The Conflict trace transformer

Proposition 5.9. The Conflict trace transformer is sound.

Proof. Let σ(a) = si and σ(b) = sj . It cannot be the case that both ϕ(si, si+1)
and ¬ϕ(si, si+1) hold; therefore, i 6= j and π ∈ L

(
R
)
.

5.3. SAFETY TRACE TRANSFORMERS 55

Event Restriction (Figure 5.7). The EventRestriction(a, b, c, ϕ, ψ) trace
transformer, given an event b, labeled with ψ, which is in the scope of a causal
link (a, c), labeled with ϕ, allows to restrict b with ϕ. In a formal setting we
have:

pre
(
EventRestriction(a, b, c, ϕ, ψ)

)
= 〈E , C, , λE , λC〉, where:

• E = {a, b, c};
• C = {(a, b), (b, c), (a, c)};
• = {(a, b), (b, c)};
• λE = {a→ >, b→ ψ, c→ >};
• λC = {(a, b)→ >, (b, c)→ >, (a, c)→ ϕ}.

post
(
EventRestriction(a, b, c, ϕ, ψ)

)
= {〈E , C, , λ′E , λC〉}, where

• λ′E = {a→ >, b→ ψ ∧ ϕ, c→ >}.

a

ψ
b

cϕ

‖‖‖ ‖‖‖

L

a

ψ ∧ ϕ
b

cϕ

‖‖‖ ‖‖‖

R

=⇒

Figure 5.7: The EventRestriction trace transformer

Proposition 5.10. The EventRestriction trace transformer is sound.

Proof. Let σ(a) = si, σ(b) = sj , and σ(c) = sk. We have that i < j < k, the
formula ψ(sj , sj+1) holds, and for all i < x < k the formula ϕ(sx, sx+1) holds.
Thus, we have that the formula (ψ∧ϕ)(sj , sj+1) holds as well, and π ∈ L

(
R
)
.

Link Restriction (Figure 5.8). The LinkRestriction(a, b, c, ϕ, ψ) trace trans-
former, given a causal link (a, b), labeled with ψ, which is in the scope of another
causal link (a, c), labeled with ϕ, allows to restrict (a, b) with ϕ. Formally, we
have:

pre
(
LinkRestriction(a, b, c, ϕ, ψ)

)
= 〈E , C, , λE , λC〉, where:

• E = {a, b, c};
• C = {(a, b), (b, c), (a, c)};
• = ∅;
• λE = {a→ >, b→ >, c→ >};
• λC = {(a, b)→ ψ, (b, c)→ >, (a, c)→ ϕ}.

post
(
LinkRestriction(a, b, c, ϕ, ψ)

)
= {〈E , C, , λE , λ′C〉}, where

• λ′C = {(a, b)→ ψ ∧ ϕ, (b, c)→ >, (a, c)→ ϕ}.

56 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

a

b

c

ψ

ϕ

L

a

b

c

ψ ∧ ϕ

ϕ

R

=⇒

Figure 5.8: The LinkRestriction trace transformer

Proposition 5.11. The LinkRestriction trace transformer is sound.

Proof. Let σ(a) = si, σ(b) = sj , and σ(c) = sk. We have that i ≤ j ≤ k, for
all i ≤ x < j the formula ψ(sx, sx+1) holds, and for all i ≤ y < k the formula
ϕ(sy, sy+1) holds. Therefore, for all i ≤ x < j the formula (ψ ∧ ϕ)(sx, sx+1)
holds, and π ∈ L

(
R
)
.

Causal Transitivity (Figure 5.9). The CausalTransitivity(a, b, c, ϕ1, ψ, ϕ2)
trace transformer, given two causal links (a, b), (b, c) ∈ C, labeled with ϕ1 and
ϕ2 respectively, and an event b labeled with ψ, derives by transitivity a new
causal link (a, c), labeled with ϕ1 ∨ ψ ∨ ϕ2.

Formally it is expressed as follows:

pre
(
CausalTransitivity(a, b, c, ϕ1, ψ, ϕ2)

)
= 〈E , C, , λE , λC〉, where:

• E = {a, b, c};
• C = {(a, b), (b, c)};
• = ∅;
• λE = {a→ >, b→ ψ, c→ >};
• λC = {(a, b)→ ϕ1, (b, c)→ ϕ2}.

post
(
CausalTransitivity(a, b, c, ϕ1, ψ, ϕ2)

)
= {〈E , C′, , λE , λ′C〉},

where

• C′ = C ∪ {(a, c)};
• λ′C = λC ∪ {(a, c)→ ϕ1 ∨ ψ ∨ ϕ2}.

a ψ
b

c
ϕ1 ϕ2

ϕ1 ∨ ψ ∨ ϕ2

L

a ψ
b

c
ϕ1 ϕ2

ϕ1 ∨ ψ ∨ ϕ2

R

=⇒

Figure 5.9: The CausalTransitivity trace transformer

5.3. SAFETY TRACE TRANSFORMERS 57

Proposition 5.12. The CausalTransitivity trace transformer is sound.

Proof. Let σ(a) = si, σ(b) = sj , and σ(c) = sk. We have that i ≤ j ≤ k, for
all i < x < j the formula ϕ1(sx, sx+1) holds, for all j < y < k the formula
ϕ2(sy, sy+1) holds, and the formula ψ(sj , sj+1) hold. Therefore for all i < z < k
the formula (ϕ1 ∨ ψ ∨ ϕ2)(sz, sz+1) holds, and π ∈ L

(
R
)
.

Conflict Transitivity (Figure 5.10). The ConflictTransitivity(a, b, c) trace
transformer, given a conflict a b and causal links (a, b), (b, c) ∈ C, derives by
transitivity a new conflict a c (conflict propagates over causal links). Formally,
we have:

pre
(
ConflictTransitivity(a, b, c)

)
= 〈E , C, , λE , λC〉, where:

• E = {a, b, c};
• C = {(a, b), (b, c)};
• = {(a, b)};
• λE = {a→ >, b→ >, c→ >};
• λC = {(a, b)→ >, (b, c)→ >}.

post
(
ConflictTransitivity(a, b, c)

)
= {〈E , C, ∪ {(a, c)}, λE , λC〉}.

a b c
‖‖‖

‖‖‖

L

a b c
‖‖‖

‖‖‖

R

=⇒

Figure 5.10: The ConflictTransitivity trace transformer

Proposition 5.13. The ConflictTransitivity trace transformer is sound.

Proof. Let σ(a) = si, σ(b) = sj , and σ(c) = sk. We have that i < j ≤ k;
therefore, i < k and π ∈ L

(
R
)
.

Necessary Event (Figure 5.11). The NecessaryEvent(a, b, ϕ) trace trans-
former, given two causally related and conflicting events a and b in a concurrent
trace, and a state predicate ϕ ∈ Φ(V), such that the label of a implies ϕ′, and
the label of b implies ¬ϕ, introduces a new “bridging” event c in between. This
condition can be interpreted as a contradiction between events a and b (a “ends”
in the region ϕ, while b “starts” in the region ¬ϕ). In a formal setting we have:

pre
(
NecessaryEvent(a, b, ϕ)

)
= 〈E , C, , λE , λC〉, where:

• E = {a, b};
• C = {(a, b)};
• = {(a, b)};
• λE = {a→ ϕ′, b→ ¬ϕ};

58 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

• λC = {(a, b)→ >}.

post
(
NecessaryEvent(a, b, ϕ)

)
= {〈E ′, C′, ′ , λ′E , λ′C〉}, where

• E ′ = E ∪ {c};
• C′ = C ∪ {(a, c), (c, b)};
• ′ = ∪ {(a, c), (c, b)};
• λ′E = λE ∪ {c→ ϕ ∧ ¬ϕ′};
• λ′C = λC ∪ {(a, c)→ >, (c, b)→ >}.

The NecessaryEvent(a, b, ϕ) trace transformer can be applied to two arbi-
trary ordered and conflicting events a and b, in case the SSA formula built from
their labels is unsatisfiable. The predicate ϕ is obtained by Craig interpolation
between the labels of a and b as follows: if unsat(λE(a) ∧ λE(b)′), then we let
ϕ = interpolate(λE(a) ; λE(b)

′)[V′/V]; we have λE(a) =⇒ ϕ′ and λE(b) =⇒¬ϕ.

ϕ′
a

ϕ ∧ ¬ϕ′
c

¬ϕ
b

‖‖‖

L

ϕ′
a

ϕ ∧ ¬ϕ′
c

¬ϕ
b

‖‖‖

‖‖‖ ‖‖‖

R

=⇒

Figure 5.11: The NecessaryEvent trace transformer

Proposition 5.14. The NecessaryEvent trace transformer is sound.

Proof. Let σ(a) = si and σ(b) = sj . We have that i < j, the formulas ϕ′(si, si+1)
and ¬ϕ(sj , sj+1) hold. Because ϕ is a state formula, we have that the formulas
ϕ(si+1) and ¬ϕ(sj) hold. They cannot hold for the same state, thus we have
that i + 1 < j. We show that there is an index k such that i + 1 ≤ k < j and
the formula (ϕ ∧ ¬ϕ′)(sk, sk+1) holds. We proceed by well-founded induction
over k. Induction base: ϕ(sk) holds for k = i + 1. Induction step: consider two
alternatives: either ¬ϕ(sk+1) or ϕ(sk+1) should hold. In the first case we have
found the desired k; in the second we have the base case for k + 1. The process
cannot continue forever, because for k = j − 1 we have that ¬ϕ(sk+1) holds.

First/Last Necessary Event (Figure 5.12). The trace transformers
FirstNecessaryEvent(a, b, ϕ) and LastNecessaryEvent(a, b, ϕ) have the same
premise as NecessaryEvent(a, b, ϕ), but in their conclusion they require, addi-
tionally, that the newly introduced event c is the first (resp. last) of the sequence
of several such events that cross the half-space from ϕ to ¬ϕ (see the figure on
the right).

This can be achieved by marking the corresponding causal link with the
predicate ¬(ϕ∧¬ϕ′) = ¬ϕ∨ϕ′; but we can easily strengthen this requirement.
Indeed, suppose we want event c to be the last in the sequence of possible

5.3. SAFETY TRACE TRANSFORMERS 59

necessary events; the only events allowed by the above predicate are of the type
u (ϕ ∧ ϕ′), v (¬ϕ ∧ ¬ϕ′), or w (¬ϕ ∧ ϕ′). But, if an event of type u or w
happens, then an event of type c becomes necessary again, and it is not allowed:
a contradiction. Thus, we can safely allow only events of type v to happen, and
strengthen the above predicate to ¬ϕ ∧ ¬ϕ′. Similarly, if we want c to be the
first necessary event, we can allow only events of type u, and strengthen the
predicate to ϕ ∧ ϕ′. Formally, we have:

pre
(
FirstNecessaryEvent(a, b, ϕ)

)
= pre

(
NecessaryEvent(a, b, ϕ)

)
post

(
FirstNecessaryEvent(a, b, ϕ)

)
= {〈E ′, C′, ′ , λ′E , λ′C〉}, where:

• E ′, C′, ′ , λ′E are the same as in post
(
NecessaryEvent(a, b, ϕ)

)
;

• λ′C = λC ∪ {(a, c)→ ϕ ∧ ϕ′, (c, b)→ >}.

pre
(
LastNecessaryEvent(a, b, ϕ)

)
= pre

(
NecessaryEvent(a, b, ϕ)

)
post

(
LastNecessaryEvent(a, b, ϕ)

)
= {〈E ′, C′, ′ , λ′E , λ′C〉}, where

• E ′, C′, ′ , λ′E are the same as in post
(
NecessaryEvent(a, b, ϕ)

)
;

• λ′C = λC ∪ {(a, c)→ >, (c, b)→ ¬ϕ ∧ ¬ϕ′}.

ϕ′
a

ϕ ∧ ¬ϕ′
c

¬ϕ
b

‖‖‖

ϕ ∧ ϕ′

‖‖‖ ‖‖‖

Rfirst

ϕ′
a

ϕ ∧ ¬ϕ′
c

¬ϕ
b

‖‖‖

¬ϕ ∧ ¬ϕ′

‖‖‖ ‖‖‖

Rlast

Figure 5.12: The (First/Last)NecessaryEvent trace transformers

Proposition 5.15. The (First/Last)NecessaryEvent trace transformers are
sound.

Proof. For the FirstNecessaryEvent transformer we employ the same proof as for
the NecessaryEvent transformer, and take as k the first index that contradicts
the base case of the induction. Then, by construction, we have that for all n,
i < n < k, the formula (ϕ∧ϕ′)(sn, sn+1) holds. For the LastNecessaryEvent we
can use the proof construction of NecessaryEvent , but going backwards from j.
This way we will find an index k, i + 1 < k < j, such that (ϕ ∧ ¬ϕ′)(sk, sk+1)
holds, and for all n, k < n < j, the formula (¬ϕ ∧ ¬ϕ′)(sn, sn+1) holds.

Instantiate (Figure 5.13). The Instantiate(a, ϕ, ψ) trace transformer, given
some event a in a trace, labeled with a transition predicate ϕ, instantiates it
with all possible system transitions that satisfy ϕ. An additional predicate ψ
can be used to restrict the potentially large set of conclusions of this trace
transformer. In that case we instantiate all transitions satisfying ϕ ∧ ψ, and do

60 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

not instantiate the ones satisfying ϕ ∧ ¬ψ. This additional restriction can be
used to limit the instantiation scope, for example, to transitions of a particular
process i (by using ψ ≡ pc′i 6= pci), or to transitions that modify a particular
variable x (with ψ ≡ x′ 6= x). Formally, given a transition system S = 〈V, T,Θ〉,
this is expressed as follows:

pre
(
Instantiate(a, ϕ, ψ)

)
= 〈E , C, , λE , λC〉, where:

• E = {a};
• λE = {a→ ϕ};
• C = = λC = ∅.

post
(
EventSplit(a, ϕ, ψ)

)
= {R0, R1, . . . , Rk}, where:

• R0 = 〈E , C, , {a→ ϕ ∧ ¬ψ}, λC〉;
• let {t1, . . . , tk} = { t ∈ T | sat(t ∧ ϕ ∧ ψ) };

then Ri = 〈E , C, , {a→ ti ∧ ϕ ∧ ψ}, λC〉.

ϕ
a

L

ϕ ∧ ¬ψ
a

R0

=⇒ t1 ∧ ϕ ∧ ψ
a

R1

tk ∧ ϕ ∧ ψ
a

Rk

. . .

Figure 5.13: The Instantiate trace transformer

Proposition 5.16. The Instantiate trace transformer is sound.

Proof. Let σ(a) = si; we have that ϕ(si, si+1) holds. If ¬ψ(si, si+1) holds, then
π ∈ L

(
τµ0 (F)

)
. Otherwise ψ(si, si+1) holds. Because π is a system computation,

it should be the case that there exists a system transition ti ∈ T such that
ti(si, si+1) holds. Thus, sat(t ∧ ϕ ∧ ψ) holds, and π ∈ L

(
τµi (F)

)
.

Forward Unrolling (Figure 5.14). Similarly to the case of NecessaryEvent ,
we have two ordered and conflicting events a and b that cannot follow immedi-
ately one after another: the label of a implies ϕ′, and the label of b implies ¬ϕ.
In that case the ForwardUnrolling(a, b, ϕ) trace transformer explores all system
transitions that can follow after event a. Formally, given a transition system
S = 〈V, T,Θ〉, let {t1, . . . , tk} = { t ∈ T | sat(ϕ ∧ t) } be the set of transitions
that can follow immediately after a. Then we have:

pre
(
ForwardUnrolling(a, b, ϕ)

)
= 〈E , C, , λE , λC〉, where:

• E = {a, b};
• λE = {a→ ϕ′, b→ ¬ϕ};
• = {(a, b)};
• C = {(a, b)};
• λC = ∅.

5.3. SAFETY TRACE TRANSFORMERS 61

post
(
ForwardUnrolling(a, b, ϕ)

)
= {R1, . . . , Rk}, and:

• Ri = 〈E ′, C′, ′ , λ′Ei, λ′C〉, where:

• E ′ = E ∪ {c};
• C′ = C ∪ {(a, c), (c, b)};
• ′ = ∪ {(a, c), (c, b)};
• λ′Ei = λE ∪ {c→ ti};
• λ′C = λC ∪ {(a, c)→ ⊥, (c, b)→ >}.

ϕ′
a

¬ϕ
b

‖‖‖

L

ϕ′
a

t1
c⊥

‖‖‖
¬ϕ
b

‖‖‖

R1

=⇒ ϕ′
a

tk
c⊥

‖‖‖
¬ϕ
b

‖‖‖

Rk

. . .

Figure 5.14: The ForwardUnrolling trace transformer

Proposition 5.17. The ForwardUnrolling trace transformer is sound.

Proof. Let σ(a) = si, and σ(b) = sj . We have that i < j, and the formulas
ϕ(si+1, si+2), ¬ϕ(sj , sj+1) hold. It follows that i+1 6= j and, therefore. i+1 < j.
Because π is a system run, it should be the case that there exists a system
transition ti ∈ T such that ti(si+1, si+2) holds. Thus, sat(ϕ ∧ ti) holds, and
π ∈ L

(
τµi (F)

)
.

Backward Unrolling (Figure 5.15). In the same manner as
ForwardUnrolling , the BackwardUnrolling(a, b, ϕ) trace transformer ex-
plores all system transitions that can precede event b. Formally, given a
transition system S = 〈V, T,Θ〉, let {t1, . . . , tk} = { t ∈ T | sat(t∧¬ϕ′) } be the
set of transitions that can precede b. Then we have:

pre
(
BackwardUnrolling(a, b, ϕ)

)
= pre

(
ForwardUnrolling(a, b, ϕ)

)
.

post
(
BackwardUnrolling(a, b, ϕ)

)
= {R1, . . . , Rk}, and:

• Ri = 〈E ′, C′, ′ , λ′Ei, λ′C〉, where:

• E ′ = E ∪ {c};
• C′ = C ∪ {(a, c), (c, b)};
• ′ = ∪ {(a, c), (c, b)};
• λ′Ei = λE ∪ {c→ ti};
• λ′C = λC ∪ {(a, c)→ >, (c, b)→ ⊥}.

Proposition 5.18. The BackwardUnrolling trace transformer is sound.

Proof. Along the same lines as for the ForwardUnrolling .

62 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

ϕ′
a

¬ϕ
b

‖‖‖

L

ϕ′
a

t1
c

‖‖‖
¬ϕ
b⊥

‖‖‖

R1

=⇒ ϕ′
a

tk
c

‖‖‖
¬ϕ
b⊥

‖‖‖

Rk

. . .

Figure 5.15: The BackwardUnrolling trace transformer

5.4 Trace Unwinding

Trace transformers, as described above, lay the foundation for the construction
of proofs for concurrent programs. While they are the basic building blocks of
such proofs, we are interested in the algorithms that construct proofs incremen-
tally by composing the primitive trace transformers into larger structures. The
most basic such structure, suitable for constructing composite trace transform-
ers, is called trace unwinding.

Definition 5.19 (Trace unwinding). For a transition system S = 〈V, T,Θ〉,
we define a trace unwinding as a tuple Υ = 〈N,E, γ, δ, µ〉, where:

• N is a set of unwinding nodes;

• E ⊂ N×N is a set of unwinding edges. We require that 〈N,E〉 is a directed
forest, and partition the forest nodes into internal nodes and leaves: N =
NI]NL, where NI = {n ∈ N | ∃ (n, n′) ∈ E}, NL = {n ∈ N | @ (n, n′) ∈
E}. Among nodes we also distinguish roots: NR = {n ∈ N |@ (n′, n) ∈ E};

• γ : N → F is a labeling of nodes with concurrent traces;

• δ : E → Π is a labeling of edges with trace productions. We require that
for all edges with the same source n, the labeling productions have the
same left-hand side. Thus, we have an induced labeling of internal nodes
n ∈ NI with trace transformers: δ(n) = { δ

(
(n, n′)

)
| (n, n′) ∈ E };

• µ is a labeling of internal nodes with trace morphisms: for all n ∈ NI we
have µ(n) : pre

(
δ(n)

)
→ γ(n).

A trace unwinding is a forest, which can be seen as an unrolling of the system
causality relation from some set of initial nodes. If we take as initial a set of nodes
labeled with the traces from Abstract(S, ϕ), then the unwinding represents the
computations of S that violate the property ϕ. By applying trace transformers
we perform case splits; the label γ(n) of a node n represents possible violating
computations for one specific case.

Definition 5.20 (Properties of trace unwinding). For a given transition
system S, we call a trace unwinding Υ = 〈N,E, γ, δ, µ〉 correct if for all internal
nodes n ∈ NI the following conditions hold:

1. γ(n) ⊆µ(n) pre
(
δ(n)

)
: the trace transformer δ(n) can be applied, under

the trace morphism µ(n), to the concurrent trace γ(n) that labels node n;

5.4. TRACE UNWINDING 63

2. for all (n, n′) ∈ E it holds that δ
(
(n, n′)

)µ(n)(
γ(n)

)
= γ(n′), i.e. the trace

production of each edge (n, n′) transforms trace γ(n) into trace γ(n′).

For a given transition system S, we call a trace unwinding Υ = 〈N,E, γ, δ, µ〉
sound (precise, exact) if it is correct and, additionally, for all internal nodes
n ∈ NI the trace transformer δ(n) is sound (precise, exact).

For a given transition system S and a safety property ϕ, we say that a trace
unwinding Υ = 〈N,E, γ, δ, µ〉 is sound (precise, exact) for ϕ, if it is sound
(precise, exact), and for all traces A ∈ Abstract(S, ϕ) there is a node n ∈ N
such that A ⊆ γ(n) (A ⊇ γ(n), A = γ(n)).

Finally, we say that a trace unwinding Υ = 〈N,E, γ, δ, µ〉 is complete if for
all its leaves n ∈ NL their labels γ(n) are contradictory.

By applying either sound or precise trace transformers we can construct
different algorithms that search for a proof or for a counterexample. When
a trace unwinding is sound, the full exploration of the set of consequences is
guaranteed, thus preserving the set of all system computations that possibly
violate the property. Indeed, we have:

L
(
γ(n)

)
⊆

⋃
(n,n′)∈E

L
(
δ
(
(n, n′)

)µ(n)(
γ(n)

))
=

⋃
(n,n′)∈E

L
(
γ(n′)

)
.

When we find out that each leaf of the unwinding is contradictory, in other words
the unwinding is complete, we can be sure that no violating computations exist
for the given property.

On the other hand, when an unwinding is precise, we have:

L
(
γ(n)

)
⊇

⋃
(n,n′)∈E

L
(
δ
(
(n, n′)

)µ(n)(
γ(n)

))
=

⋃
(n,n′)∈E

L
(
γ(n′)

)
.

Thus, when we find a satisfiable trace at one of the unwinding leaves, we can
be sure that the language of one of the unwinding roots is not empty, and a
violating computation does exist.

Finally, an exact trace unwinding can be used both for constructing the
proof and for the counterexample search.

Consider the example synchronized system shown in Figure 5.16: it was
used by Esparza and Heljanko in [28] to illustrate the exponential succinctness
of Petri net unfoldings. There are n+1 processes, and we want to check whether
the global transition c is executable. Note that the state space of this system
is exponential with respect to n: the system contains 3 · 2n−1 reachable states.
Thus, approaches based on state space exploration will suffer from the state
space explosion problem. The authors of [28] show that the Petri net unfolding
of the example system contains 2 · n+ 3 places, i.e., a linear size unfolding can
represent succinctly the exponential state space. We use the same example to
demonstrate that the trace unwinding of the example system never exceeds n+6
nodes, but a constant size unwinding of just 7 nodes also suffice.

In Figure 5.17 we show the constant size trace unwinding for the exam-
ple system. We first explain the unwinding construction informally, and then
proceed to the formal definition of the algorithm.

Node 1, the root of the unwinding, captures all system traces where c is exe-
cuted. One of it’s preconditions is that the first process should be at location r2;

64 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

r1

r2

r3

a0

c0

s1

s2

s3

s4

b1a1

c1

t1

t2

t3

b2

c2

u1

u2

u3

b3

c3

· · ·

v1

v2

v3

bn

cn

T =
{
a = {a0, a1}, b1 = {b1}, . . . , bn = {bn}, c = {c0, c1, c2, c3, . . . , cn}

}
Θ ≡ r′1 ∧ s′1 ∧ t′1 ∧ u′1 ∧ . . . ∧ v′1

Figure 5.16: Example system with explicit synchronization

but the initial condition says that the system is at location r1: a contradiction.
Thus, a transition that goes from r1 to r2 is necessary, and we insert the only
such transition, a, into the trace of node 2. Formally, this is done by applying
the trace transformer LastNecessaryEvent , this is where the link label r2 ∧ r′2
comes from: it enforces to select the last transition that goes into location r2. By
a similar reasoning we conclude that transition b1 is also necessary, and include
it into the trace of node 3. Notice that these events occur concurrently, i.e. no
specific order between them is specified till now.

But in the next iteration, when we try to put them in some linear order, we
find out that these transitions contradict each other: a goes to location s4, b1

goes to location s2, but both can start only at location s1. Therefore, we perform
a case split between two possible linearizations using the transformer OrderSplit ,
and obtain the traces of nodes 4 and 5. In node 4 the contradiction between now
linearly ordered transitions a and b1 is enforced by the trace, and we again apply
the transformer LastNecessaryEvent . It inserts an event between transitions a
and b1 which needs to change the location from s4 (the postcondition of a)
to s1 (the precondition of b1). Formally, this requirement is captured by the
Craig interpolant between between the post- and pre-conditions of a and b1,
respectively, which happens to be ¬s1. As there is no transition that goes from
a location different from s1 to s1, this trace is declared as contradictory, and the
left branch of the unwinding is closed. For the right branch of the unwinding,
consisting of nodes 5 and 7, we proceed in the same way, and also close it as
contradictory. Thus, the unwinding is complete, and we conclude that transition
c is not executable.

The unwinding of Figure 5.17 has constant size, independent on the number
of processes in the example system. In the worst case it could have linear size:
for that to happen, the other necessary transitions b2 through bn would have
to be introduced into concurrent before transitions a and b1 are introduced.
But note that these transitions do not form any contradictions both with each
other as well as with a and b1; therefore, they would stay concurrent in any
trace that involves them, and no ordering splits would be necessary. In fact, a

5.4. TRACE UNWINDING 65

1: Θ c 2: Θ a c
r2 ∧ r′2

3: Θ

a

b1

c

r2 ∧ r′2

s2 ∧ s′2

4:
Θ a b1 c

r2 ∧ r′2

s2 ∧ s′2

6: Θ a b1 c

r2 ∧ r′2

s2 ∧ s′2
¬s1 ∧ s′1 s1 ∧ s′1

⊥

5: · · · b1 a · · ·

7:
· · · b1 a · · ·

¬s1 ∧ s′1 s1 ∧ s′1

⊥

Figure 5.17: Trace unwinding for the example system of Figure 5.16

simple heuristic is able to select transitions a and b1 first, and it will always
produce the trace unwinding of constant size.

Algorithm 3 in Figure 5.18 formalizes the above reasoning for an arbitrary
transition system S and a safety property ϕ. The algorithm starts by construct-
ing the set of roots labeled with concurrent traces from the set Abstract(S, ϕ). It
maintains a queue Q of unexplored unwinding leaves, initialized with the set of
unwinding roots. At each iteration of the algorithm’s main loop we select some
node n from Q, and check whether the trace γ(n) can be concretized. Function
Satisfiable builds a compactization of γ(n), and checks it for emptiness as de-
scribed in Section 4.2. If the language of the compactization is not empty, then
we report a counterexample.

The unsatisfiable subtrace is analyzed in function SafetyRefinement . The
purpose of the function is to select the trace transformer that will be applied
to the trace under consideration. This function can be instantiated in different
ways yielding algorithms with different properties. Here we show one possible
instantiation of SafetyRefinement , which is generic and applicable for both proof
and counterexample search as it uses only exact trace transformers.

First, function UnsatSubtrace extracts from the trace an unsatisfiable sub-
trace, comprising only a subset of trace events, links, and conflicts. Then
SafetyRefinement checks whether there are two events in the unsatisfiable sub-
trace which are not in conflict. If there are, it means that they were contracted
in the compactization, but there is a possibility that they are actually in con-
flict. Thus, we should consider both cases, which is implemented by applying the
ConflictSplit trace transformer. Second, it checks whether all events of the un-
satisfiable subtrace are ordered. If not, then the OrderSplit trace transformer is
applied, which considers both possible orderings between two unordered events.

66 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

Algorithm 3: Exploration of Trace Unwinding

Input : transition system S = 〈V, T,Θ〉, safety property ϕ
Output: property holds / counterexample
Data: trace unwinding Υ = 〈N,E, γ, δ, µ〉, queue Q ⊆ NL of unexplored nodes,

trace transformer τ , trace morphism m
begin

set Υ←− InitialAbstraction(S, ϕ)
set Q←− N
while Q not empty do

select some n from Q
if Satisfiable

(
γ(n)

)
then

return counterexample γ(n)

else
set 〈τ,m〉 ←− SafetyRefinement

(
γ(n)

)
Apply

(
Υ, τ,m, n

)
set Q←− Q ∪ { n′ | (n, n′) ∈ E } \ {n}

return property holds

Function SafetyRefinement(F)

In : concurrent trace F = 〈E , C, , λE , λC〉
Out: transformer τ , morphism m : pre(τ)→ F
begin

set F ′ = 〈E ′, C′, ′ , λ′E , λ′C〉 ←− UnsatSubtrace
(
F
)

if ∃ e1, e2 ∈ E ′ . (e1, e2) 6∈ then return ConflictSplit(e1, e2)
else if ∃ e1, e2 ∈ E ′ . (e1, e2) 6∈ C∗ then return OrderSplit(e1, e2)
else switch E ′ do

case {e1} return Contradiction(e1)
case {e1, e2}

φ←− interpolate
(
λE(e1) ; λE(e2)′

)
return Instantiate(c) ◦ LastNecessaryEvent(a→ e1, b→ e2, φ[V ′/V])

otherwise {e1, e2, . . . , ek}
ϕ←− interpolate

(
λE(e1) ∧ λE(e2)′ ∧ . . . ∧ λE(ek−1)k−2 ; λE(ek)k−1

)
return EventSplit(a→ ek−1, ϕ[V k−1/V ′])

Function InitialAbstraction(S, ϕ)

In : system S, property ϕ
Out: unwinding Υ = 〈N,E, γ, δ, µ〉
begin

set all of {N,E, γ, δ, µ} ←− ∅
foreach F ∈ Abstract(S, ϕ) do

set N ←− N ∪ n,
where n is a new node

set γ(n)←− F

Procedure Apply(Υ, τ,m, n)

In: unwinding Υ = 〈N,E, γ, δ, µ〉,
transformer τ , morphism m, node n

begin
set µ(n)←− m
foreach τi ∈ τ do

set N ←− N ∪ n′,
where n′ is a new node

set E ←− E ∪ (n, n′)
set γ(n′)←− τmi

(
γ(n)

)
set δ

(
(n, n′)

)
←− τi

Figure 5.18: Exploration of trace unwinding

5.4. TRACE UNWINDING 67

If all events are ordered, we consider different cases with respect to the cardi-
nality of the set of events in the subtrace.

If there is only one event, the trace is surely contradictory; the Contradiction
transformer doesn’t produce any new traces. If there are two events, we apply
the LastNecessaryEvent transformer, which tries to repair the conflict by in-
troducing a new event in the middle. For that purpose we compute the Craig
interpolant between contradictory events. Finally, if there are more than two
events in the subtrace, we shorten it by splitting the last but one event with
the Craig interpolant between the last event and all the others; this is done
by the EventSplit trace transformer. Note that we have the freedom to split
any event in the unsatisfiable subtrace with the properly computed Craig in-
terpolant, namely between the subtrace up to and including this event, and the
rest; different choices can be appropriate depending on the context.

Theorem 5.21 (Soundness of trace unwinding exploration). Let a tran-
sition system S and a safety property ϕ be given. For any instantiation of
the function SafetyRefinement the following holds. If Algorithm 3 terminates
and returns property holds, and only sound trace transformers are applied in
SafetyRefinement, then all system computations of S satisfy ϕ. If Algorithm 3
terminates and returns counterexample, and only precise trace transformers
are applied in SafetyRefinement, then there exists a computation of S that vio-
lates ϕ.

Proof. Assume that Algorithm 3 terminates and returns property holds. In
that case the queue Q is empty, and all leaves of Υ are contradictory. Any
violating system computation is contained in the language of one of the roots.
Due to the soundness criteria of definition 5.20, the language of the roots is
contained in the union of the languages of all the leaves. But, as the latter one
is empty, the former one is empty as well, and no violating system computation
exists.

Assume that Algorithm 3 terminates and returns counterexample . Then
there is a node n that is labeled with a satisfiable concurrent trace γ(n). Also,
because the trace unwinding is precise, there is a chain of precise trace trans-
formers from some root node in the unwinding forest to node n. Due to the
inverse language inclusion along each trace transformer, the language of such a
root node is not empty, and a violating system computation exists.

Our main purpose in outlining the Algorithm 3 is its conceptual simplicity:
the only thing it does is unwinding of the system causality relation by applying
appropriate trace transformers. If the transition system is, actually, correct, the
above algorithm will not terminate in most cases: it will continue constructing
larger and larger traces. There are, however, two cases where this simple-minded
approach can be adequate.

The first case is program falsification, or, in other words, bug finding. If the
system does contain an error, i.e. a violating system computation exists, Algo-
rithm 3 will eventually find it, provided that a suitable exploration strategy is
used. One possible choice for a strategy is to explore the causality relation in the
breadth-first manner by always selecting an unwinding leaf that is marked with
the smallest concurrent trace among others. In that way, the shortest violating
computation will be eventually found.

68 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

Another interesting case is acyclic transition systems. We call a transition
system acyclic if no system transition can appear more than a predefined finite
number of times in any system computation. Such systems comprise syntac-
tically acyclic programs, but are not necessarily limited to them. Individual
components of a synchronized concurrent program can still contain cycles; but
if, whenever a cycle in a concurrent component is executed, the corresponding
transition synchronizes with a different partner, the global transition system will
still be acyclic. Acyclic transition systems arise naturally as models of input-
driven applications, where the input sequence is finite.

Theorem 5.22 (Completeness of trace unwinding exploration). Algo-
rithm 3 is complete for acyclic transition systems, i.e. it always terminates for
such systems.

Proof. The trace unwinding constructed by Algorithm 3 has a finite branching
degree: indeed, all transformers except Instantiate introduce a fixed number of
branches, and the Instantiate transformer introduces the number of branches
that is bounded by the number of system transitions. Suppose that Algorithm 3
doesn’t terminate. Then, by König’s lemma, the unwinding should have an
infinite branch. Consider a sequence of trace transformers applied along this
branch. We show that the combination of Instantiate and LastNecessaryEvent
transformers should be applied infinitely often along this branch.

Suppose, this is not the case. Then, after some node n, having k events, only
the other trace transformers are applied. Notice, that they do not introduce new
events into the concurrent trace. Contradiction can be applied only once as it
doesn’t produce any children. We can apply neither ConflictSplit nor OrderSplit
infinitely often: the number of their applications is limited by k2, when all events
are in conflict, resp. ordered. The only remaining case is to apply EventSplit
infinitely often. This can’t be the case either, due to the fact that ϕ is an
interpolant between the first k−1 events and the last one. The first child, where
event ek−1 is labeled with ϕ, will have an unsatisfiable subtrace consisting of
events ek−1 and ek only. The second child, where event ek−1 is labeled with
¬ϕ, will have an unsatisfiable subtrace comprising only the events e1, . . . , ek−1.
In both cases the size of the unsatisfiable subtrace decreases, and this process
cannot take more than k steps.

Thus, Instantiate and LastNecessaryEvent transformers are applied infinitely
often along the infinite branch. Each application of Instantiate introduces an
event labeled with some system transition. By pigeonhole principle, there should
be a system transition that occurs infinitely often in a system computation, but
this cannot happen for acyclic transition systems.

There are at least two complementary views on completeness. The above
theorem belongs to the class that we would call algorithmic completeness: it
specifies a class of programs for which some algorithm is guaranteed to ter-
minate and give a conclusive answer. Another view is logical completeness: it
concerns more the proof system than the actual algorithm to build a proof,
and asks whether the proof system is powerful enough to represent a proof for
any program which is known to be correct. The completeness proofs in the
later category are usually relative to some assumptions; e.g., relative to first-
order reasoning (for a nice example of such a completeness proof see, e.g., [53],

5.4. TRACE UNWINDING 69

p.220). In the logical view, trace unwinding is already complete for arbitrary
programs.

Theorem 5.23 (Relative completeness of trace unwinding). If a tran-
sition system S satisfies a safety property ϕ, then there exists a sound and
complete trace unwinding for S and ϕ.

Proof. Let, according to Definition 5.5, the set of violating computations be
represented by the set Abstract(S, ϕ), and assume that S satisfies ϕ. We assume
that the construction of [42] is applied, and safety checking is reduced to reacha-
bility. Then all traces in Abstract(S, ϕ) consist of two events: the first is labeled
with the initial condition Θ, and the second with one of the reachability goals.

Similar to [53], we use as given the assertion Acc that characterizes the set
of reachable (accessible) system states. Now, consider an arbitrary node n; let
its first event be n1 (labeled with Θ), and its second event be n2 (labeled with
some goal g). We apply the EventSplit trace transformer to n2, and split it with
the predicate Acc. We get two traces, where in the first one n2 is labeled with
(g ∧ Acc), and in the second one with (g ∧ ¬Acc). The first one is closed as
contradictory, because the formula (g∧Acc) is unsatisfiable (S is safe, therefore
g implies ¬Acc). The second one is closed as contradictory, because we know
that no state satisfying ¬Acc can be reached. We apply this construction to
every node: all branches are closed as contradictory, and we obtain a sound and
complete trace unwinding for S.

The above proof shows that for logical completeness having a single trace
transformer EventSplit suffice. Surely, the assumption of having such a powerful
assertion as Acc is completely unrealistic: for any non-trivial program this
assertion would be overly complicated. Yet, such proofs do allow to highlight
what are the most important constituents of a proof system.

We illustrate the refinement procedure of algorithm 3 with another example;
we use it also to motivate the efficiency improving modifications of the algorithm,
which are outlined in the next section. Consider the synchronized system with
interleaving semantics presented in Figure 5.19. This is an acyclic transition
system: it represents an abstraction of the initialization protocol, which proceeds
in n phases, with k processes participating in every phase. In each phase one
device needs to be started; this event is represented by the increment of variable
d. The participating processes coordinate in such a way that the device is started
exactly once, and all processes visit their respective final location ui,j only when
the device is started. The coordination is attained by checking and assigning
values to variable p (at the end of the i-th phase p has value i), as well as
individual lock variable li for each phase.

The natural safety requirement can be formulated as follows: at the end of
each phase i, exactly i devices have been started:

∧
i∈[1,n] (p = i =⇒ d = i).

The negation of this requirements can be written as∨
i∈[1,n]

(p = i ∧ d < i) ∨
∨

i∈[1,n]

(p = i ∧ d > i).

Let us restrict our attention only to the first phase for now, and consider
only the first disjunct. It represents the error condition e ≡ (p = 1 ∧ d < 1): if

70 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

s1,1 t1,1 u1,1

a1,1:
p=0 ∧
l1 =0 ∧
l′1=1

b1,1:
p=0 ∧
p′=1 ∧
d′=d+1

c1,1: p > 0

..
.

s1,k t1,k u1,k

a1,k:
p=0 ∧
l1 =0 ∧
l′1=1

b1,k:
p=0 ∧
p′=1 ∧
d′=d+1

c1,k: p > 0

. . . sn,1 tn,1 un,1

an,1:
p=n−1 ∧
ln=0 ∧
l′n=1

bn,1:
p=n−1 ∧
p′=n ∧
d′=d+1

cn,1: p > n−1

. . .

..
.

sn,k tn,k un,k

an,k:
p=n−1 ∧
ln=0 ∧
l′n=1

bn,k:
p=n−1 ∧
p′=n ∧
d′=d+1

cn,k: p > n−1

S = 〈S1,1, . . . , Sn,k,T,∆〉, Si,j = 〈Vi,j , Ti,j ,Θi,j〉
T and ∆ are defined in the interleaving semantics

Vi,j = {pci,j , p, d, li}
Ti,j = {ai,j ≡ (si,j ∧ t′i,j ∧ p= i−1 ∧ li=0 ∧ l′i=1 ∧ p′=p ∧ d′=d) ,

bi,j ≡ (ti,j ∧ u′i,j ∧ p= i−1 ∧ p′= i ∧ d′=d+1 ∧ l′i= li)

ci,j ≡ (si,j ∧ u′i,j ∧ p>i−1 ∧ p′=p ∧ d′=d ∧ l′i= li)}
Θi,j ≡ (s′i,j ∧ p′ = 0 ∧ d′ = 0 ∧ l′i= 0)

Figure 5.19: Initialization protocol with n phases, and k processes per phase

a state, satisfying it, is ever reached, then the system is erroneous, because the
first device was not started at all. The trace unwinding which analyzes this error
condition is shown in Figure 5.20. Node 1 is labeled with the trace where the er-
ror is required to happen. This trace is unsatisfiable: initial condition Θ specifies
that p = 0, while e requires that p = 1. This unsatisfiable trace consists only of
two events; therefore, our refinement procedure applies the LastNecessaryEvent
transformer with the Craig interpolant p 6= 1, the consequence of Θ. The newly
introduced event, labeled with p 6= 1 ∧ p′ = 1 is instantiated with all possible
transitions that satisfy its label, namely b1,1 through b1,k. We show here only
the analysis for b1,1, which occurs in the label of node 2.

The trace of node 2 is again unsatisfiable, because its events are labeled
with the formulas d = 0, d′ = d + 1, and d < 1. This time the unsatisfiable
trace consists of 3 events; thus, SafetyRefinement executes the last branch. It
computes the Craig interpolant between the first two events and the last one;
this interpolant is d′ ≥ 1. The procedure splits the middle event with this
formula, and obtains nodes 3 and 4. Now, consider node 3: its trace cannot be
concretized, but now the unsatisfiable subtrace is shorter: it consists of only the
last two events. The refinement procedure applies LastNecessaryEvent (the new
edge label is not shown for readability). The Craig interpolant is d ≥ 1, and the
newly introduced event is labeled with the formula d ≥ 1 ∧ d′ < 1. This time,

5.5. TRACE TABLEAU 71

1: Θ e

2: Θ b1,1 e
p=p′=1

3: Θ
b1,1

d′ ≥ 1
e

p=p′=1
4: Θ

b1,1

d′ < 1
e

p=p′=1

5:

Θ
b1,1

d′ ≥ 1
d ≥ 1
d′ < 1

e

p=p′=1

6: Θ
d ≥ 0
d′ < 0

b1,1

d′ < 1
e

p=p′=1

· · · b1,2 · · ·

··
·

· · · b1,k · · ·

⊥

⊥

Figure 5.20: Trace unwinding for the system of Figure 5.19 and error condition
e ≡ (p=1 ∧ d<1)

however, the event cannot be instantiated: there is no transition in the system
which decreases d. Therefore, node 5 is closed as contradictory.

Similarly for node 4: the unsatisfiable subtrace now consists of the first two
events, and the interpolant is is d ≥ 0. Again, there is no transition in the
system satisfying d ≥ 0∧ d′ < 1, and the branch is closed. The same process, as
outlined, will close the branches with the transitions b1,1 through b1,k, and we
conclude that the error (p = 1 ∧ d < 1) is unreachable. Note that the number
of nodes in the tableau is linear, despite the exponential number of reachable
states.

5.5 Trace Tableau

As we have demonstrated above, trace unwinding is adequate for program falsi-
fication. As some studies of real world concurrency bugs show [48], “almost all
(92%) of the examined concurrency bugs are guaranteed to manifest if certain
partial order among no more than 4 memory accesses is enforced.” From that
observation we may conclude that no algorithmic improvements to the trace
unwinding exploration are needed for program falsification. Indeed, most errors
will be caught by choosing an appropriate heuristic, which selects the unwind-
ing branch that contains the erroneous computation (this leaves, though, a wide
field for the development of heuristics for particular application domains; the
area that we leave for future research).

But what do we do, when we have caught most errors? Is 92% assurance
enough? For some applications it may be true, but for the vast majority this
is definitely not enough: no one will fly an airplane having only 92% chance to

72 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

reach its destination. Therefore, for most applications we need a formal proof of
their correctness. Thus, in this and subsequent sections we focus solely on proof
construction.

As we have seen, trace unwinding can also be applied for constructing proofs
for acyclic programs. Still, even for this simple class of programs its efficiency
can be improved. Consider again the initialization example from Figure 5.19,
and suppose that we want now to verify the second part of the negated safety
requirement, namely

∨
i∈[1,n] (p = i ∧ d > i). This error condition specifies

that after the end of phase i more than i devices have been started. With pen
and paper we can disprove this requirement by induction: show that the base
case, for i = 1, holds; then show that the requirement holds for the phase i+ 1,
assuming it holds for the phase i. In this section we propose an extension of
trace unwinding, which we call trace tableau, that automates such inductive
reasoning.

Trace tableau extends trace unwinding with the possibility to refer to other
parts of the proof, if they are applicable at the current point, without duplicating
them. We first explain the concept by way of example, and then provide the
formal definition. Consider the negated safety requirement for the initialization
protocol from the above paragraph; let us restrict our attention to the first two
disjuncts only: e1 ≡ (p = 1 ∧ d > 1) and e2 ≡ (p = 2 ∧ d > 2). Figure 5.21
represents the trace tableau for these two error conditions. Everything in the
tableau is as defined for the unwinding, with the exception of the double dashed
arrow: we will return to it later. In the figure, we omit or replace with “. . .”
many irrelevant details.

The analysis starts with two root nodes 1 and 2, labeled with the traces
where e1 and e2 are reached, respectively. Suppose, we have carried out the
analysis of node 1 already, and fugired out that the subtree underneath node 1
is closed. This will be our base case. The subtree of node 1 is equivalent, modulo
constants, to that of node 2, so we do not show it here.

Consider now node 2: it’s trace is unsatisfiable because on the conditions
on variable p, and we consider one possible extension of it with transition b2,1.
The trace of node 3 is again unsatisfiable: transition a2,1 needs to be executed
before b2,1; we introduce it, and get the trace of node 4. This trace is, in turn,
unsatisfiable because of the following conditions on variable d: d = 0, d′ = d,
d′ = d+ 1, d > 2. We apply EventSplit twice, and split events labeled with a2,1

and b2,1 with Craig interpolants d′ ≤ 1 and d′ ≤ 2 respectively. As a result, we
get the nodes 5, 6, and 7.

One important point to observe now is that the trace of node 5 contains
the trace of node 1 as a subtrace; namely, the two initial conditions match, and
we can match event e1 to event a2,1. We have that the label of a2,1, which is
(s2,1 ∧ t′2,1 ∧ p=1 ∧ l2=0 ∧ l′2=1 ∧ p′=p ∧ d′=d ∧ d′>1), implies the label of
e1, which is (p=1∧d>1). Thus, the trace inclusion holds between the traces of
nodes 5 and 1, which implies their language inclusion. We do know already that
the language of node 1 is empty; thus, we conclude that the language of node 5
is empty as well. In the tableau construction we cover node 5 with node 1, which
tells us that we can reuse the proof of node 1, and apply it to the subtree of
node 5.

The remaining parts of the tableau are analyzed in the same way as for the
unwinding. Consider node 6: here the conditions on variable d require the intro-
duction of some event that increases it. It can be shown that only the transition

5.5. TRACE TABLEAU 73

1: Θ e1 2: Θ e2

3: Θ b2,1 e2

p=p′=2

4: Θ a2,1 b2,1 e2

t2,1∧t′2,1 . . .5: Θ
a2,1

d′ > 1
b2,1

d′ > 2
e2

. . .

7: Θ a2,1
b2,1

d′ ≤ 2
e2

. . .
6: Θ

a2,1

d′ ≤ 1
b2,1

d′ > 2
e2

. . .

8: Θ a2,1 b2,2 b2,1 · · ·

9:
Θ a2,1 b2,2 b2,1 · · ·

a2,2

. . .

. . .

.

. . .

Figure 5.21: Trace tableau for the system of Figure 5.19 and error conditions
e1 ≡ (p=1 ∧ d>1) and e2 ≡ (p=2 ∧ d>2)

74 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

from the process of the same phase is applicable; suppose, it’s transition b2,2.
After we introduce it in node 8, execution of transition a2,2 becomes necessary,
and we introduce it in node 9. Now, the trace of node 9 represents the mutual
exclusion between events a2,1 and a2,2 over the same lock variable l2. We will
consider this example in more details in the next section; now it is sufficient to
say that node 9 can be closed after a few more steps.

Note that covering in the tableau allowed us to separate the reasoning for
the initialization example into layers, each layer corresponding to one phase of
the protocol execution. In Figure 5.21 the reasoning at layer 2 was split into
proving that the processes of phase 2 do not start the device twice (node 6
and beyond), and that the processes of the previous phase 1 do not start the
device twice (node 5). The last part is delegated to layer 1. It is also worth
noting that without covering, which represents proof reuse, the tableau would
be exponential in n, because the reused parts would have to be repeated for
each layer. On the contrary, with covering, the tableau is quadratic in n and k.

Definition 5.24 (Trace tableau). For a transition system S = 〈V, T,Θ〉, we
define a trace tableau as a tuple Γ = 〈N,E, γ, δ, µ, 〉, where:

• Υ = 〈N,E, γ, δ, µ〉 is a trace unwinding;

• ⊂ NL × NI is a covering relation; for (n, n′) ∈ we call n a covered
node, and n′ a covering node;

A trace tableau is a trace unwinding extended with the covering relation ,
which specifies sharing between proof parts. We cover a node n by another node
n′ when the trace of node n is more specific that the trace of node n′, i.e., when
language inclusion holds between these traces. This is expressed formally by the
following definition.

Definition 5.25 (Properties of trace tableau). For a given transition sys-
tem S, we call a trace tableau Γ = 〈N,E, γ, δ, µ, 〉 correct if:

1. Υ = 〈N,E, γ, δ, µ〉 is a correct trace unwinding;

2. for all (n, n′) ∈ we have that L
(
γ(n)

)
⊆ L

(
γ(n′)

)
.

We call a trace tableau Γ = 〈N,E, γ, δ, µ, 〉 sound , when the corresponding
trace unwinding Υ = 〈N,E, γ, δ, µ〉 is sound. We call Γ acyclic if the relation
(E ∪) is acyclic. We say that a trace tableau Γ is complete if for all its leaves
n ∈ NL which are uncovered, i.e. there is no (n, n′) ∈ , their labels γ(n) are
contradictory.

A trace tableau, as defined above, represents in a compact way a trace un-
winding, where for each covering (n, n′) ∈ we can reuse for node n the proof
constructed for node n′. The language inclusion can be tested by the algorithm
of Section 4.3. One very simple way to cover n by n′ is when the trace of n con-
tains the trace of n′ as a subtrace. In that case we have trace inclusion, which,
as Proposition 4.23 shows, implies language inclusion. A nice feature of using
trace inclusion instead of more general language inclusion is its visual appeal:
if trace inclusion holds, then we can “plug in” the subtree of node n′ at the
position of node n, and reproduce all proof steps.

5.5. TRACE TABLEAU 75

S = 〈V, T,Θ〉
V = {x, y}
T = {a ≡ (x′=1 ∧ y′=y), b ≡ (y′=1 ∧ x=1 ∧ x′=0), c ≡ (y′=0 ∧ x′=x)}
Θ ≡ (x′=0 ∧ y′=0)

e ≡ (x=0 ∧ y=0)

1: Θ a e 2: Θ b e

3: Θ a b e 4: Θ a b e

Figure 5.22: Unsoundness of trace tableau with loops

It is important that the covering relation does not create loops in the tableau:
in the presence of loops a complete tableau does not represent a valid proof. This
can be demonstrated by the following counterexample.

Example 5.26 (Unsoundness of trace tableau with loops). Figure 5.22
shows a transition system S with three transitions a, b, c over the variables x,
y. The lower part of the figure shows the trace tableau with two root nodes 1
and 2. Their traces specify the following two error conditions: transitions a or
b happen, which assign 1 to variables x and y respectively, but after that the
system returns to its initial state (x = 0 ∧ y = 0), represented by e. Applying
NecessaryEvent to node 1 produces node 3: transition b is necessary between
a and e. Similarly for node 4: transition a is necessary between b and Θ. At
this point trace of node 3 includes trace of node 2 as a subtrace, while trace
of node 4 includes trace of node 1 as a subtrace; consequently, we cover node
3 by node 2, and node 4 by node 1 (represented as dashed double lines in the
figure). The resulting trace tableau is complete, and we wrongly conclude that
no violating system computation exists. In fact, extending traces of nodes 3 and
4 with transition c between b and e would produce a counterexample trace.

Algorithm 4 constructs a proof for a given transition system and a safety
property. It is a slight modification of Algorithm 3: before applying refinement
to the concurrent trace γ(n), it checks whether node n can be covered by an-
other node n′. Functions InitialAbstraction, Apply , and SafetyRefinement are
inherited from Algorithm 3 without changes.

Theorem 5.27 (Soundness of trace tableau exploration). Let a transition
system S and a safety property ϕ be given. If Algorithm 4 terminates and returns
property holds, only sound trace transformers are applied in SafetyRefinement,
and the resulting tableau is acyclic, then all system computations of S satisfy ϕ.

Proof. Assume that algorithm 4 terminates with the final trace tableau Γ =
〈N,E, γ, δ, µ, 〉, and returns property holds. In that case the queue Q is
empty, and all leaves of Γ are either contradictory, or covered by other nodes in
the tableau.

76 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

Algorithm 4: Exploration of Trace Tableau

Input : transition system S = 〈V, T,Θ〉, safety property ϕ
Output: property holds/counterexample
Data: trace tableau Γ = 〈N,E, γ, δ, µ, 〉, queue Q ⊆ NL of unexplored nodes,

trace transformer τ , trace morphism m
begin

set 〈N,E, γ, δ, µ〉 ←− InitialAbstraction(S, ϕ)
set ←− ∅
set Q←− N
while Q not empty do

select some n from Q
if Satisfiable

(
γ(n)

)
then

return counterexample γ(n)

else if exists n′ ∈ N such that L
(
γ(n)

)
⊆ L

(
γ(n′)

)
and

(
E ∪ ∪{(n, n′)}

)
is acyclic then

set ←− ∪{(n, n′)}
else

set 〈τ,m〉 ←− SafetyRefinement
(
γ(n)

)
Apply

(
Γ, τ,m, n

)
set Q←− Q ∪ { n′ | (n, n′) ∈ E } \ {n}

return property holds

Figure 5.23: Exploration of trace tableau

Assume that only trace inclusion is used for the language inclusion test. As
the resulting tableau is acyclic, we can construct from it a sound and complete
trace unwinding. For that, repeat the following process till saturation:

1. Take any pair (n, n′) ∈ , such that no other such pair is reachable from
n′ in the relation E ∪ (it exists do to the acyclicity of E ∪).

2. Add a fresh node n′′, and duplicate the subtree of n′ to n′′. This subtree
doesn’t contain covering edges by the condition above.

3. Remove the covering edge (n, n′) from , and add a standard edge (n, n′′)
to E. This edge can be labeled with the sound trace transformer because
of the soundness condition of trace trableau.

The process is guaranteed to terminate, and at the end we obtain a sound and
complete trace unwinding. Therefore, by Theorem 5.21, no violating system
computation exists.

Alternatively, if the more general language inclusion test is used, then we
can traverse the tableau bottom-up, like it is done above, and, because of its
acyclicity, show that the language of any covering node is empty. Therefore, we
can replace covering edges with closing the covered nodes as contradictory.

Theorem 5.28 (Completeness of trace tableau exploration). Algorithm 4
is complete for acyclic transition systems, i.e. it always terminates for such
systems. Moreover, there are acyclic transition systems and properties, for which
trace tableaux are exponentially more succinct than trace unwindings.

5.6. CAUSAL LOOPS AND LOOPING TRACE TABLEAU 77

Proof. The first part is the same as in Theorem 5.22. The initialization protocol
example proves the second part: any trace unwinding for it has exponential size
in n, while its trace tableau is of polynomial size, as we have shown before.

5.6 Causal Loops and Looping Trace Tableau

We have shown that trace tableaux can represent compactly proofs for acyclic
concurrent programs. But most programs do contain cycles; how do we extend
trace tableau to cyclic state spaces? At the beginning of the chapter we talked
informally about causal loops: this is the notion we use to mirror state space
cycles in tableau proofs. Now we are in a position to formalize this notion.

Definition 5.29 (Causal path). We define a causal path as an ordered se-

quence τ1, . . . , τk of trace productions τi : (Li
ri−→ Ri) such that for all 1 ≤ i < k

we have Ri ⊆ Li+1.
For any trace F ⊆ L1 we define the application of the causal path to the

trace as a sequence F0 = F , Fi = τi(Fi−1), for 1 ≤ i ≤ k.

If the the starting trace production τ1 can be applied again at the end of a
causal path, we get a causal loop.

Definition 5.30 (Causal loop). We define a causal loop as a causal path

τ1, . . . , τk, where τi : (Li
ri−→ Ri), such that Rk ⊆ L1.

For any trace F ⊆ L1 we define the application of the causal loop to the
trace as a sequence F 0

0 = F , F ji = τi(F
j
i−1), for 1 ≤ i ≤ k, and F j+1

0 = F jk .

Thus, a causal loop is simply a cyclic sequence of trace transformations.
But, as Example 5.26 shows, allowing such unrestricted loops in a trace tableau
leads to unsoundness. What we need is to restrict ourselves to causal loops
which, when applied to any trace, would pump it infinitely with new events.

Definition 5.31 (Soundness of causal loops). We say that a causal loop

τ1, . . . , τk, where τi : (Li
ri−→ Ri), is sound, if for any concurrent trace F ⊆ L1

its size increases beyond any bound under the application of the causal loop:

∃k ≥ 0 . ∀i ≥ k . |F i+1
0 | > |F i0|.

If a causal loop is sound, we can allow it to be present in a trace tableau
without affecting its soundness. We define looping trace tableaux as an extension
of standard trace tableaux with causal loops.

Definition 5.32 (Looping trace tableau). We define a looping trace tableau
Γ = 〈N,E, γ, δ, µ, 〉 in the same way as the standard trace tableau; we extend
labeling µ to covered nodes: for all (n, n′) ∈ we have µ : γ(n′)→ γ(n). For a
given transition system S, we call a looping trace tableau Γ correct if:

1. Υ = 〈N,E, γ, δ, µ〉 is a correct trace unwinding;

2. for all (n, n′) ∈ we have that γ(n) ⊆µ(n) γ(n′).

Given any finite or infinite path in a tableau as an ordered sequence of edges
Λ = (n1, n2), (n2, n3), . . . where (ni, ni+1) ∈ E ∪ , we define its correspond-
ing causal path as a sequence of trace productions labeling the edges from E:

78 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

1: Θ e 1: A′1 e

2: Θ
A1 ∧B′1
a1 ∧A′2

e 2: A′1 A′2 e

3: Θ
A1 ∧B′1
a1 ∧A′2

A2 ∧B′2
a2 ∧A′3

e 3: A′1 A′2 A′3 e

· · · · · ·

n: Θ · · · An−1 ∧B′n−1

an−1 ∧A′n
An ∧B′n
an ∧A′1

e n: A′1 . . . A′n A′1 e

Figure 5.24: Trace unwinding (left) and looping trace tableau (right) for the
example of Figure 5.1. Θ ≡ (A′1 ∧ . . . ∧A′n), and e ≡ (B1 ∧ . . . ∧Bn)

δ
(
(ni1 , ni2)

)
, δ
(
(ni2 , n3)

)
, . . ., where (nij , nij+1) ∈ Λ∩E. We have a causal loop

in a tableau if for some k we have nk = n1.
We call a looping trace tableau sound, when the corresponding trace un-

winding Υ = 〈N,E, γ, δ, µ〉 is sound, and, additionally, all causal loops of Γ are
sound. We say that a looping trace tableau Γ is complete if for all its leaves
n ∈ NL which are uncovered, i.e. there is no (n, n′) ∈ , their labels γ(n) are
contradictory.

Now we can return to the example from Figure 5.1, consisting of a chain of
n automata with binary synchronization. Consider the left part of Figure 5.24:
it shows the trace unwinding for the example; for simplicity, we do not outline
any labels on causal links. Node 1 is labeled with the trace, representing the
error scenario: all automata start in their top locations Ai, and finish in their
bottom locations Bi. The trace is unsatisfiable, and in node 2 we extend it with
the necessary event that synchronizes over a1, and brings the first automaton
to B1, and the second automaton to A2.

The trace of node 2 is again unsatisfiable, but this time only because of the
last two events: the post-condition of the first event requires that the second
automaton is in the state A2, while event e requires that it is in location B2. We
extend, the trace with the next necessary event, and obtain the trace of node 3.
The process continues, till we insert all n necessary events, and get the trace of
node n.

Semantically, the sequence of trace productions, labeling the edges between
the tableau nodes, represents a causal loop. Indeed, starting from node n we
could repeat the outlined trace transformations infinitely, inserting the same
events over and over again. There is a small syntactic problem though: the
trace of node n does not contain the trace of node 1 as a subtrace. The only
obstruction here is that the initial condition Θ specifies more information than

5.6. CAUSAL LOOPS AND LOOPING TRACE TABLEAU 79

needed: it gives the initial locations for all of n automata, while it is enough to
specify only that the first automaton is in location A1.

This is where the second ingredient of incorporating causal loops in the
tableau construction comes in. We abstract the traces of the node labels in such
a way that they contain only the information necessary to repeat all transfor-
mations in the subtree of a particular node. The right part of Figure 5.24 shows
the (abstract) looping trace tableau for the example. The only information that
we need to preserve for the event introduced in the trace of node i is the post-
condition A′i. Now, we see that the trace of node n does contain the trace of
node 1 as a subtrace, and we can cover node n with node 1, thus completing the
causal loop and the proof of error unreachability. Note that the single causal
loop is sound, because after each iteration of it the length of any trace in its
language is increased by n.

Looping trace tableaux are our ultimate goal: they are enough to prove
safety of any transition system for which a finite proof exists, as the following
two theorems show.

Theorem 5.33 (Soundness of looping trace tableau). Let a transition
system S and a safety property ϕ be given. If there exists a correct, sound and
complete looping trace tableau Γ such that every trace from Abstract(S, ϕ) is
subsumed by the label of some node of Γ, then all system computations of S
satisfy ϕ.

Proof. We prove by contradiction. Suppose some system computation π ∈ L(S)
violates ϕ; note that this computation should be finite, because ϕ is a safety
property. Then, there is a trace F ∈ Abstract(S, ϕ) such that π ∈ L(F). By
assumption, there is a correct, sound and complete looping trace tableau Γ =
〈N,E, γ, δ, µ, 〉, and a node n1 ∈ N such that L(F) ⊆ L

(
γ(n)

)
. The tableau is

correct and sound; thus, we can build a tableau path Λ = (n1, n2), (n2, n3), . . .,
where (ni, ni+1) ∈ E ∪ , such that π ∈ L

(
γ(ni)

)
for all i. There are two

possibilities:

1. Λ is finite. Then it ends in a contradictory node nf , and π ∈ L
(
γ(nf)

)
= ∅.

2. Λ is infinite. Then, there should be a node n∞ which appears infinitely
often in Λ. Let F1, F2, F3, . . . be the sequence of traces from the application
of the causal path of Λ to F , which we get when Λ passes through n∞.
Each sequence of edges between a pair of neighboring occurrences of n∞
forms a causal loop in Γ, and by assumption, all these causal loops are
sound. Therefore, we have that |F1| < |F2| < |F3| < . . ., and π ∈ L(Fi).
Thus, π cannot have finite length; a contradiction.

In [36], Henzinger, Majumdar and Raskin establish a classification of infinite-
state transition systems into five increasingly comprehensive classes STS1 to
STS5 with respect to the decidable properties; the authors describe also sym-
bolic algorithms for each system class. These symbolic algorithms work pro-
vided some region algebra exists, which describes such operations on symbolic
regions as intersection And , difference Diff , emptiness check Empty , and pre-
decessor computation Pre (we refer the reader to [36] for further details). The

80 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

most comprehensive class the authors describe, STS5, has decidable reacha-
bility properties, and can be analyzed by the symbolic semi-algorithm Reach,
which aggregates predecessors starting from some set of goal regions. As it is
described in [42] by Kupferman and Vardi (see also Section 2.1 for more details),
such reachability checking algorithm can decide general safety properties using
the monitor automaton construction. In the next theorem we show that loop-
ing trace tableau can simulate algorithm Reach, and is thus complete for the
most comprehensive class STS5 of infinite-state systems with decidable safety
properties.

Theorem 5.34 (Completeness of looping trace tableau). Suppose that a
transition system S = 〈V, T,Θ〉 has a finite bounded reachability quotient (i.e.,
it belongs to the class STS5). If S satisfies a safety property ϕ, then there exists
a correct, sound and complete looping trace tableau Γ for S and ϕ.

Proof. We assume that the construction of [42] is applied, and safety checking
is reduced to reachability. By assumption, there is a region algebra with all
necessary operations, and Reach terminates for S and the reachability prop-
erty obtained from ϕ. We prove the theorem by providing a simple algorithm
that can simulate Reach. Our algorithm constructs a looping trace tableau
Γ = 〈N,E, γ, δ, µ, 〉, where all nodes are labeled with linear traces consist-
ing of two events. For any tableau node n, let n1 and n2 denote the first and
the second event of its label, respectively. The algorithm works as follows:

1. Create a tableau, where nodes are labeled by the traces from the set
Abstract(S, ϕ): these traces all consist of two events, where the first one
is the system initial condition Θ, and the second describes one of the goal
regions.

2. Apply Contradiction to all leaf nodes with contradictory labels (this re-
moves them from the set of leaves). If there is a leaf node n′ ∈ NL such
that its label is satisfiable, return unsafe; if there are no more leaf nodes,
return safe; otherwise proceed to step 3. We use the region algebra oper-
ation Empty for the contradiction and satisfiability checks.

3. Take the set of leaf nodes NL. For every leaf node n ∈ NL, apply
BackwardUnrolling to n and events n1, n2 of its label (we use the re-
gion algebra operation Pre), and abstract the result by keeping only the
first two trace events. We obtain a new leaf node n′ for each former leaf
node n.

4. For each leaf node n′ ∈ NL, and each internal node n ∈ NI , do

a) Apply EventSplit to node n′, its event n′2, and predicate λE(n2), and
obtain two new nodes n′+, n′− (we use the operations And and Diff
from region algebra). Event n′+2 is labeled with λE(n

′
2)∧λE(n2), while

event n′−2 is labeled with λE(n
′
2)∧¬λE(n2). Add a covering edge from

n′+ to n; this is possible, because we can map event n1 to n′+1, and
event n2 to n′+2, and the label of n′+2 implies the label of n2.

b) Assign n′ ←− n′−

5. Go to step 2.

5.6. CAUSAL LOOPS AND LOOPING TRACE TABLEAU 81

The algorithm above, at each execution of its main cycle, unrolls the transi-
tion relation backwards one step more, starting from the set of goal regions.
After each unrolling we slice away those regions, that we already encoun-
tered before, and cover these sliced regions by other nodes. The set of labels
of the second events of leaf nodes at the end of each iteration of the main
loop represents the onion slice: the set of regions, obtained by applying the
transition relation to the previous onion slice, and never encountered before:∨
n′∈N ′L

(
λE(n

′
2)
)

= preT
(∨

n∈NL
λE(n2)

)
∧
∧
n∈NI

(
¬λE(n2)

)
. Due to the exis-

tence of a finite-state quotient, the algorithm terminates.
Moreover, all causal loops in the tableau are sound. To observe this, take

into account, that the set of leaves after the i-th iteration of the algorithm main
loop, represents the set of backward system computations of size i from one of
the goal regions (due to the application of BackwardUnrolling). We always cover
the current leaf nodes with the nodes from one of the previous iterations. Thus,
the size of any trace, when any causal loop from the tableau is applied to it, is
increased by at least 1 with each iteration of the loop.

We have shown that a looping trace tableau is able to succinctly represent a
safety proof, whenever such proof exists. Another desirable property for a proof
is its efficient certification: given a proof, can we check in polynomial time
with respect to its size, whether the proof is indeed correct? Unfortunately, the
soundness condition for causal loops doesn’t satisfy this criterion: even a small
tableau may contain an exponential number of loops (consider, e.g., the classical
chain-of-diamonds construction, as in [69]). The problem is that soundness of
causal loops is a global condition on the whole tableau. What we need, is a local
condition, which can be checked efficiently at the time when we cover one node
by another, and which would guarantee that all newly created causal loops are
sound. There are many possible localizations of the soundness condition; here
we outline the one which is particularly simple.

Definition 5.35 (Forgetful trace inclusion). Let the trace inclusion F ′ ⊆µ F
hold for a trace morphism µ = 〈µE : E → E ′, µC : C → C′〉. Let µE be the image
of µE : µ

E = { e′ ∈ E ′ | (e, e′) ∈ µE }. We say that the above trace inclusion is
left-forgetful (resp. right-forgetful), if for all e′ ∈ µE there exists e′× ∈ E ′ \ µE
such that (e′×, e

′) ∈ C ∩ (resp. (e′, e′×) ∈ C ∩). We call the trace inclusion
forgetful if it is either left- or right-forgetful.

Intuitively, F ′ ⊆µ F is a forgetful trace inclusion, if we “forget” some event
on the left or on the right when moving from F ′ to F , and this event is in conflict
with all events that remain: this requirement ensures that |F ′| > |F |. Recover
that all trace productions in a tableau are context-bounded. The definition
above, together with context-boundedness, allows us to simplify the check for
soundness of causal loops in a tableau.

Proposition 5.36. Let a tableau Γ = 〈N,E, γ, δ, µ, 〉 be given. If all trace
productions in Γ are context-bounded, and for all coverings (n, n′) ∈ in Γ we
have that γ(n) ⊆µ(n) γ(n′) is a forgetful trace inclusion, then all causal loops in
Γ are sound.

Proof. Suppose, that all coverings are forgetful. Take any causal loop Λ =
(n1, n2), (n2, n3), . . . , (nk, n1), where (ni, nj) ∈ (E ∪), . The loop should
contain at least one covering edge; w.l.o.g., let (nk, n1) ∈ . For some trace F ,

82 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

let the sequence F ji be the application of Λ to F : F 0
0 = F , F ji = τi(F

j
i−1), for

1 ≤ i ≤ k, and F j+1
0 = F jk .

We have that F j0 ⊆ γ(n1), F j+1
0 = F jk ⊆ γ(nk), and γ(nk) ⊆µ(n) γ(n1)

is a forgetful trace inclusion. All trace productions in Γ are context-bounded;
therefore, we can partition events of the traces as follows (for some event e×,
and sets E0, E1): F j0 = E0] E

(
γ(n1)

)
, F j+1

0 = E0] E
(
γ(nk)

)
, and E

(
γ(nk)

)
=

E
(
γ(n1)

)
]{e×}]E1, where event e× is in conflict with all events from E

(
γ(n1)

)
.

Thus, after j iterationd of the causal loop we have at least j events which
are linearly ordered and in conflict with each other (one event e× from each
iteration). Therefore, |F j0 | ≥ j, and the causal loop is sound.

5.7 Abstract Trace Tableau

The analysis shown in Figure 5.24 suggests the way to construct a looping trace
tableau: keep side by side a trace unwinding and a looping trace tableau, and
mirror in the looping tableau the proof steps taken in the unwinding. At the
same time, in each node of the looping tableau keep track of the premises which
are sufficient to repeat the proof steps in the subtree of that node. We formalize
this idea as an abstract trace tableau below.

Definition 5.37 (Abstract trace tableau). We define abstract trace tableau

as a tuple ∆ = 〈N,E, γ, δ, µ, , γ̂, δ̂, µ̂, σ〉, where:

• Υ = 〈N,E, γ, δ, µ〉 is a (concrete) trace unwinding;

• Γ̂ = 〈N,E, γ̂, δ̂, µ̂, 〉 is an (abstract) looping trace tableau;

• σ : γ̂(n)→ γ(n), for all n ∈ N , is a concretization trace morphism.

An abstract trace tableau is a trace tableau that carries for each node two
labels: a concrete and an abstract one. Concrete label γ(n) is obtained as a
result of a chain of applications of trace transformers on the path from some
root to node n. Abstract label γ̂(n), on the other hand, represents conditions,
sufficient to apply all trace transformers in the subtree which originates at node
n. According to the concretization morphism σ : γ̂(n) → γ(n), abstract labels
are always subtraces of concrete labels. Thus, by Proposition 4.23, the language
of the concrete label is contained in the language of the abstract label. Finally,
δ̂ : E → Π and µ̂ : pre

(
δ̂(n)

)
→ γ̂(n) represent labeling of edges with trace pro-

ductions, and of internal nodes with trace morphisms, respectively, relativized
to abstract node labels.

Definition 5.38 (Properties of abstract trace tableau). We call an ab-

stract trace tableau ∆ = 〈N,E, γ, δ, µ, , γ̂, δ̂, µ̂, σ〉 correct if Υ = 〈N,E, γ, δ, µ〉
is a correct trace unwinding, Γ̂ = 〈N,E, γ̂, δ̂, µ̂, 〉 is a correct looping trace
tableau, and for all n ∈ N we have γ(n) ⊆σ(n) γ̂(n). We call ∆ sound, when

both Υ and Γ̂ are sound. We call ∆ complete, when Γ̂ is complete.

Algorithm 5 extends Algorithm 4 with the tracking of abstract labels. For
that, we do two modifications to the previous algorithm.

First, given two nodes n and n′, the covering check in function TryCover is
done now not by checking the language inclusion L

(
γ(n)

)
⊆ L

(
γ(n′)

)
between

5.7. ABSTRACT TRACE TABLEAU 83

Algorithm 5: Exploration of Abstract Trace Tableau

Input : transition system S = 〈V, T,Θ〉, safety property ϕ
Output: property holds/counterexample
Data: abstract trace tableau ∆ = 〈N,E, γ, δ, µ, , γ̂, δ̂, µ̂, σ〉, comprising unwinding

Υ = 〈N,E, γ, δ, µ〉, and looping tableau Γ̂ = 〈N,E, γ̂, δ̂, µ̂, 〉,
queue Q ⊆ NL, trace transformer τ , trace morphism m

begin
set ∆←− InitialAbstractTableau(S, ϕ), Q←− N
while Q not empty do

select some n from Q
if Satisfiable

(
γ(n)

)
then return counterexample γ(n)

else 〈pre(τ),m〉 ←− TryCover(∆, n)
else

set 〈τ,m〉 ←− SafetyRefinement
(
γ(n)

)
Apply

(
Υ, τ,m, n

)
set Q←− Q ∪ { n′ | (n, n′) ∈ E } \ {n}
PropagateUp(Γ̂, pre(τ),m, n)

return property holds

Function InitialAbstractTableau(S, ϕ)

In : system S, property ϕ
Out: abstract trace tableau ∆ = 〈N,E, γ, δ, µ, , γ̂, δ̂, µ̂, σ〉
begin

set Υ←− InitialAbstraction(S, ϕ), all of { , δ̂, µ̂} ←− ∅
foreach n ∈ N do set σ(n)←− ∅, γ̂(n)←− empty trace

Function TryCover(∆, n)

In : abstract trace tableau ∆ = 〈N,E, γ, δ, µ, , γ̂, δ̂, µ̂, σ〉, node n
Out: 〈node n′, morphism m〉 / ⊥
begin

if exists n′ ∈ N , m : γ̂(n′)→ γ(n) s.t. γ(n) ⊆m γ̂(n′) is forgetful then
set γ̂(n)←− γ̂(n′), σ(n)←− m
put (n, n′) into
return 〈γ̂(n′),m〉

else return ⊥

Procedure PropagateUp(Γ̂, pre(τ),m, n)

In : looping tableau Γ̂ = 〈N,E, γ̂, δ̂, µ̂, 〉, premise pre(τ), morphism m, node n
begin

if @ m̂ = 〈m̂E , m̂C〉 : pre(τ)→ γ̂(n) such that m = σ ◦ m̂ then
foreach o ∈ γ(n) .

(
∃ o′ ∈ pre(τ) . o = ξ(o′)

)
∧
(
@ o′′ ∈ γ̂(n) . o = σ(o′′)

)
do

add o′ to γ̂(n), and (o′, o) to σ(n)

let m̂ = 〈m̂E , m̂C〉 : pre(τ)→ γ̂(n) such that m = σ ◦ m̂
if γ̂(n) 6⊆m̂ pre(τ) then

foreach e ∈ E
(
pre(τ)

)
.
(
λE(m̂E(e)) 6=⇒ λE(e)

)
do

set λE(m̂E(e))←−λE(m̂E(e))∧λE(e)
foreach c ∈ C

(
pre(τ)

)
.
(
λC(m̂C(c)) 6=⇒ λC(c)

)
do

set λC(m̂C(c))←−λC(m̂C(c))∧λC(c)

foreach (n′, n) ∈ do
if γ̂(n′) ⊆µ(n′) γ̂(n) not forgetful then

remove (n′, n) from
put n′ into Q

if ∃ parent n′ . (n′, n) ∈ E then

set 〈pre(τ)′,m′〉 ←− Pullback
(
δ
(
(n′, n)

)
,m

)
PropagateUp(Γ̂, pre(τ)′,m′, n′)

Figure 5.25: Exploration of abstract trace tableau

84 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

pre(τ)

γ(n)

γ̂(n)m
×××

σ(n)

γ̂(n)′

m̂ 6⊇

σ(n)′

γ̂(n)′′

m̂
⊇

σ(n)′

pre(τ)′′

γ(n′′)

pre(τ)′

γ(n′)

pre(τ)

γ(n)

. mm′m′′

δ
(
(n′, n)

)
δ
(
(n′′, n′)

)
Figure 5.26: Upward propagation of premises in trace tableau. Left : calculation
of abstract label γ̂(n) in procedure PropagateUp. Right : pullback construction,
propagation of premise pre(τ) to parent nodes

their concrete labels, but by checking the trace inclusion γ(n) ⊆m γ̂(n′) between
the concrete label of n and the abstract label of n′. If this check succeeds, then
the language inclusion holds as well. Additionally, we require the trace inclusion
to be forgetful, to guarantee that all loops in the tableau are sound.

Second, we track the premises of the applied proof steps in procedure
PropagateUp; this is explained graphically in Figure 5.26. Given as input the
premise pre(τ) of some trace transformer τ applied at node n, and the map-
ping m of the premise to the concrete label γ(n), the procedure adds missing
components to the abstract label γ̂(n). This is done in two stages. In the first
stage, the objects (events or links), which are present in pre(τ), but missing
in γ̂(n), are inserted into γ̂(n), producing such γ̂(n)′ that there is a mapping
m̂ : pre(τ)→ γ̂(n)′. In the second stage, the labels in γ̂(n)′ are adjusted in such
a way (giving the trace γ̂(n)′′) that γ(n) ⊆m̂ γ̂(n)′′ holds. Because the abstract
label γ̂(n) becomes more concrete, previous covering by that node may stop to
hold; they are checked and uncovered as needed. Finally, the premise is prop-
agated up in the tableau to a parent node n′, if present, by constructing the
premise pre(τ)′ and the mapping m′ : pre(τ)′ → γ(n′) as a pullback object and
arrow of two arrows m and δ

(
(n′, n)

)
, where the latter is a trace transformation

of γ(n′) into γ(n). Then PropagateUp is called recursively with this new premise
and mapping; the propagation process terminates either when the root node is
reached, or when the abstract label γ̂(n) already contains all objects used in the
premise, i.e. when the inclusion γ̂(n) ⊆ pre(τ) holds.

Theorem 5.39 (Soundness of abstract trace tableau exploration). Let a
transition system S and a safety property ϕ be given. If Algorithm 5 terminates
and returns property holds, and only sound trace transformers are applied in
SafetyRefinement, then all system computations of S satisfy ϕ.

Proof. The only way for Algorithm 5 to terminate with property holds is
when queue Q is empty. By construction, the final abstract looping trace tableau
Γ̂ = 〈N,E, γ̂, δ̂, µ̂, 〉 is correct, sound, and complete. Moreover, for all traces
F ∈ Abstract(S, ϕ), there is a node n ∈ N such that F = γ(n) ⊆ γ̂(n). Thus,
the looping trace tableau Γ̂ is a proof of correctness of S with respect to ϕ.

5.8. POLYNOMIAL VERIFICATION OF SEMAPHORE PROGRAMS 85

Syntax Semantics

acq li li = 0 ∧ l′i = 1 ∧
pc′ = pc + 1

rel li l′i = 0 ∧
pc′ = pc + 1

skip pc′ = pc + 1

goto j pc′ = j

s1

s2

s3

s4

s5

a1 : acq l1

a4 : acq l2

r4 : rel l2

r1 : rel l1
go

to
1

t1

t2

t3

t4

t5

a2 : acq l1

r2 : rel l1

a5 : acq l1

r5 : rel l1

go
to

4
go

to
1

u1

u2

u3

u4

u5

a3 : acq l1

r3 : rel l1

a6 : acq l3

r6 : rel l3

go
to

1

Figure 5.27: Class of multithreaded programs with binary semaphores.
Left: Syntax and semantics. Right: Example system consisting of 3 threads with
critical sections over 3 semaphore variables. Initial condition Θ ≡ (s′1 ∧ t′1 ∧u′1 ∧
l′1 =0 ∧ l′2 =0 ∧ l′3 =0), and error condition e ≡ (s2 ∧ t2)

5.8 Polynomial Verification of Semaphore Pro-
grams

We finish this chapter with a more elaborated example, which illustrates the
application of abstract trace tableau and Algorithm 5.

Example 5.40 (Binary semaphore programs). We consider the class of
multithreaded programs in the interleaved semantics, with critical sections pro-
tected by shared binary semaphores (or locks), which is described in [49]. A
program in this class consists of n threads, executing in the interleaved fashion,
and m shared boolean lock variables. Each thread contains some finite number
of critical sections, protected by the “acquire lck i” and “release lck i” state-
ments for one of the lock variables. Critical sections may be arbitrarily nested
or intersected, and a thread may have an arbitrary control structure via the
use of “goto” statements. The only restriction for a correct program is that
the control flow may enter one of the critical sections for the lck i variable only
via the “acquire lck i” statement, and may exit it either by jumping to another
critical section for the same lock variable, or by executing the “release lck i”
statement. The syntax and semantics of such programs are shown in the left
part of Figure 5.27; they can be used to analyze systems with built-in “test-
and-set” primitive. In the following we consider the example program depicted
on the right of Figure 5.27; we want to verify that threads 1 and 2 cannot be
simultaneously at their critical sections 2, protected by lock l1.

Standard model checking approaches require exponential, with respect to
the number of threads, time and space to prove safety of such programs. In
[49], Alexander Malkis developed a counterexample-guided refinement algo-
rithm based on cartesian abstraction with exception sets, which is capable to
solve in polynomial time the safety problem for the restricted class of programs
with locks. The restricted class allows only one lock variable, prohibits nest-
ing/intersection of critical sections, and disallows control flow transfers. The
following open problem was posed:

86 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

Open Problem ([49], p.65). Is the most general class of programs
with locks polynomially verifiable for a fixed number of locks?

Here we settle this question affirmatively; moreover, Algorithm 5 finds safety
proofs for the most general class of programs with locks using only polynomial
time and space with respect both to the number of threads and to the number
of locks.

Consider Figure 5.28: it depicts a part of the abstract trace tableau for the
example program from the right part of Figure 5.27. The concrete unwinding is
shown on the left, and the abstract tableau is shown on the right; all events are
in conflict, so we do not show conflict links. Let us first concentrate on the left
part. The trace of node 1 captures the error: after the initial state, the two first
threads are simultaneously in their critical sections. This trace is unsatisfiable,
and traces on nodes 2 and 3 extend it with two necessary events, which are
labeled with transitions a1 and a2, respectively.

The trace of node 3 is unsatisfiable because of the conditions that transition
a1 and a2 impose on the lock variable l1. The events with these transitions
are unordered, and an OrderSplit is performed. We consider only one possible
ordering, shown in node 4, the other one is analyzed analogously.

After choosing one particular ordering, the conflict between the post-
condition of a1 (l′1 = 1) and the post-condition of a2 (l1 = 0) is present for all
computations in the trace language. We apply the LastNecessaryEvent trans-
former, and instantiate the newly introduced event with all transitions which
could possibly set l1 to 0. There are four such transitions, namely r1, r2, r3, and
r5. Wwe show the traces for the first three in nodes 5, 6, and 7, respectively;
we omit the last one due to the lack of space.

Consider node 5: the link label between a1 and a2 requires that the first
thread stays at location s2, while transition r1, which is in the scope of the
edge, can be executed only at location s4: the node is closed as contradictory.
Node 6 contains as a subtrace the trace of node 1: indeed, due to the combination
of constraints of the link label between a1 and a2 and of event r2, the latter
is labeled with the predicate s2 ∧ t2. Thus, we can cover node 5 with node 1
in the abstract tableau; we will return to this later. Finally, in node 7 we have
the conflict between the initial condition Θ and the event labeled with r3: a
necessary transition a3 is needed in between, which is inserted in the trace of
node 8. From node 8 the analysis continues in a similar way.

Now, we turn our attention to the right part of Figure 5.28, depicting the ab-
stract trace tableau for the example. Remember, that the abstract trace tableau
represents for each node only those parts of its trace which are necessary to re-
produce the proof steps in the subtree below this node. The abstract node labels
are, therefore, much more concise than the concrete ones.

The abstract label of node 1 is the same as its concrete one; but already
from node 2 they start to differ. In particular, in the abstract label of node 2,
the full error condition reduces to only one conjunct, t2, because the other one
has already “fired”. In node 3 the error condition is further reduced to >, the
most abstract predicate, because all of its conjuncts have fulfilled their purpose,
and are not needed for further steps.

For the other nodes the abstract labels are in even larger contrast with the
concrete ones; here we highlight the most striking differences. Consider node 5:
the concrete label consists of 5 events with the full transition predicates; while

5.8. POLYNOMIAL VERIFICATION OF SEMAPHORE PROGRAMS 87

1: Θ e 1: Θ s2 ∧ t2

2: Θ a1 e
s2 ∧ s′2 2: Θ l1 =0 ∧ l′1 =1 t2

s2

3: Θ

a1

a2

e

s2 ∧ s′2

t2 ∧ t′2

3: Θ

l1 =0 ∧ l′1 =1

l1 =0 ∧ l′1 =1

>
s2

t2

4: Θ

a1

a2

e

s2 ∧ s′2

t2 ∧ t′2

4: Θ

l1 =0 ∧ l′1 =1

l1 =0

>
s2

5: Θ

a1

a2

r1 e

s2 ∧ s′2

t2 ∧ t′2

5:

>

s4 >

s2

6: Θ

a1

a2

r2 e

s2 ∧ s′2

t2 ∧ t′2

6: Θ s2 ∧ t2 >

7: Θ

a1

a2

r3 e

s2 ∧ s′2

t2 ∧ t′2

7:

Θ

l1 =0 ∧ l′1 =1

u2

s2

8: Θ

a1

a2

r3 e

a3

s2 ∧ s′2

t2 ∧ t′2u2 ∧ u′2

8: Θ

l1 =0 ∧ l′1 =1

l1 =0 ∧ l′1 =1

>
s2

u2

.

⊥
⊥

.

. . .
. . .

Figure 5.28: abstract trace tableau for the example of Figure 5.27.
Θ ≡ (s′1 ∧ t′1 ∧ u′1 ∧ l′1 =0 ∧ l′2 =0 ∧ l′3 =0), and e ≡ (s2 ∧ t2)

88 CHAPTER 5. CAUSALITY-BASED VERIFICATION: SAFETY

the abstract one consists only of 3 events, and concisely represents the reason
why the trace is contradictory. It is the case, because there are two events such
that the link between them is labeled with s2, and there is the third event in the
scope of the link, which is labeled with s4. Similarly for node 6: it’s abstract label
consists only of two events, which match exactly those in the trace of node 1; this
justifies the covering of node 6 with node 1. Finally, compare abstract labels of
nodes 3 and 8: despite the concrete labels are very different, the abstract ones
are almost the same, modulo one difference. These abstract labels represent
the core of the mutual exclusion proof: there are two concurrent events, each
entering and staying in their respective critical section, and these events bear
incompatible constraints on the lock variable, irrespective if their ordering.

It is easy to check, that the number of nodes in the tableau is proportional to
the cubic power of the number of critical sections, while the size of the concurrent
traces, labeling the vertices, is independent of the number of threads, critical
sections, and locks. The execution of our algorithm takes at most quadratic time
with respect to the number of nodes; thus, we have the following:

Theorem 5.41. Algorithm 5 proves the safety of the most general class of multi-
threaded programs with binary semaphors in deterministic polynomial time with
respect to the number of threads and locks.

Proof. For k critical sections, we have O(k2) top-level concurrent scenarios as
in Figure 5.28, where there are two two transitions from different threads trying
to get access to a critical section protected by the same lock variable. Analysis
of each of them introduces a subtree with O(k) branches. The length of each
branch is limited by a constant, independent of k, namely by the length of the
longest critical section; thus we have O(k3) nodes in the tableau. Application
of trace transformers takes time which is independent from k. Only the search
for coverings, in the worst case, can examine each existing node for a potential
covering of a new vertex, thus giving the worst-case running time of O(k6).

Chapter 6

Causality-based
Verification: Liveness

In this chapter we specialize causality-based verification to liveness properties;
see Section 2.2 for the problem statement and the discussion of the related
work. As we describe there, termination can be considered a canonical liveness
property. We defer the formal presentation of the causality-based approach for
liveness in favor of a small example, to illustrate on the intuitive level how the
approach works.

Consider the Producer-Consumer example presented in Figure 6.1, which is
a simplified model of the Map-Reduce architecture from distributed processing:
producers model the mapping step for separate data sources, consumers model
the reducing step for different types of input data. The natural requirement for
such an architecture is that the distributed processing terminates for any finite
amount of input data.

While very successful for sequential software, the CEGAR-based termination
provers Terminator [19] and T2 [10, 20], and, likewise, termination provers
based on classic techniques for term rewrite systems, such as AProVE [11, 31],
can handle no more than two threads of the Producer-Consumer benchmark. On
the contrary, the prototype implementation of the causality-based approach for
termination, the termination prover Arctor [43] (for Abstraction Refinement
of C oncurrent Temporal Orderings) scales to a large number of concurrent
threads: for the Producer-Consumer benchmark Arctor proves termination
for 100 threads in less than three minutes (the detailed experimental evaluation
is presented in Section 7).

The CEGAR-based termination provers Terminator and T2 build on the
Ramsey-based approach, which searches for a termination argument in the form
of a disjunction of wellfounded relations. If the transitive closure of the transition
relation is contained in the union of these relations, we call the disjunction a
transition invariant ; Ramsey’s theorem then implies that the transition relation
is wellfounded as well. The approach is attractive, because it is quite easy to find
individual relations: one can look at the available program statements and take
any decreasing transitions as hints for new relations. In the Producer-Consumer
example, the termination can be proved with the disjunction of the following

89

90 CHAPTER 6. CAUSALITY-BASED VERIFICATION: LIVENESS

Producer 1 Producer 2 Consumer 1 Consumer 2
while (p1>0) {
if(*) q1++;

else q2++;

p1--;

}

while (p2>0) {
if(*) q1++;

else q2++;

p2--;

}

while (true) {
await(q1>0);

skip; //step 1

skip; //step 2

q1--;

}

while (true) {
await(q2>0);

skip; //step 1

skip; //step 2

q2--;

}

1 2 3
a1 : p1 > 0

a2 : q′1 = q1 + 1

a3 : q′2 = q2 + 1

a4 : p′1 = p1 − 1

1 2 3 4
c1 : q1 > 0 c2 : true c3 : true

c4 : q′1 = q1 − 1

Figure 6.1: The Producer-Consumer benchmark, shown here for 2 producers and
2 consumers (Top: pseudocode; Bottom: control flow graphs with labeled tran-
sitions for Producer 1 and Consumer 1). The producer threads draw tasks from
individual pools and distribute them to nondeterministically chosen queues, each
served by a dedicated consumer thread; two steps are needed to process a task.
The integer variables p1 and p2 model the number of tasks left in the pools of
Producers 1 and 2, the integer variables q1 and q2 model the number of tasks
in the queues of Consumers 1 and 2.

relations1: p′1 < p1, p′2 < p2, q′1 < q1, and q′2 < q2. The bottleneck of this
approach is the containment check: with an increasing number of relations it
becomes very expensive to check the inclusion of the transitive closure of the
program transition relation in the transition invariant. Indeed, computation of
the transitive closure is at least as hard as the computation of the reachable
state space. As this part is already exponential for concurrent programs, it
comes without surprise that the Ramsey-based termination proving technique,
which uses reachability computation as a building block, also scales poorly with
the number of concurrent threads.

Similar to the Ramsey-based approach, causality-based termination analysis
works with multiple wellfounded relations that are individually quite simple
and therefore easy to discover. The key difference is that we avoid disjunctive
combinations, which would require us to analyze the transitive closure of the
transition relation, and instead combine the relations only either conjunctively or
based on a case-split analysis. Intuitively, our proof in the Producer-Consumer
example makes a case distinction based on which thread might run forever.
The case that Producer 1 runs forever is ruled out by the ranking function p1.
Analogously, Producer 2 cannot run forever because of the ranking function
p2. To rule out that one of the consumers, say Consumer 1, runs forever, we
introduce the ranking function q1, which allows an infinite execution of the while
loop in Consumer 1 only if the while loop of Producer 1 or the while loop of
Producer 2 also run forever, which we have already ruled out with the ranking
functions p1 and p2. We discuss this example in more detail in Section 6.4; the
informal reasoning should already make clear, however, that the case split has
significantly simplified the proof: not only is the termination argument for the

1This ranking is slightly idealized: we omit components needed to account for the progress
in the program counter, for example during the processing steps of the consumer threads.

6.1. INFINITE CONCURRENT TRACES 91

individual cases simpler than a direct argument for the full program, the cases
also support each other in the sense that the termination argument from one
case can be used to discharge the other cases.

For the case of safety properties, the proof tableau was constructed stepwise,
starting from the root nodes labeled with the set of finite concurrent traces
capturing all possible property violations. For liveness properties in general,
and for termination in particular, we construct a similar proof by contradiction
that is also guided by the search for an erroneous computation. The difference to
the safety case is that, instead of assuming the existence of a finite computation
that leads to an error configuration, we start by assuming the existence of an
infinite non-terminating computation, and then pursue the causal consequences
that follow from this assumption. In this way, we build a tableau of potentially
non-terminating traces. The discovery of a ranking function for the currently
considered trace may either close the branch, if the rank decreases along all
transitions, or result in one or more new traces, if the rank remains equal or
increases along some transitions: in this case, we conclude that the existence of
an execution for the current trace implies the existence of an execution for some
other trace, in which at least one of these transitions occurs infinitely often.

We start in Section 6.1 with the description of a generalization from finite
to infinite concurrent traces. In Section 6.2 we outline how infinite concurrent
traces can represent violations of typical liveness properties, while in Section 6.3
we describe causality-based proof rules, which are specific to infinite computa-
tions. We finish this chapter with Section 6.4, where we outline the slight mod-
ifications to the verification algorithms from the previous chapter, needed to
account for infinite computations, and provide a formal proof for the Producer-
Consumer example described above.

6.1 Infinite Concurrent Traces

In order to reason about infinite computations and liveness properties, we gen-
eralize finite concurrent traces to infinite ones. We describe only the generaliza-
tions necessary for extending the Algorithm 5 (abstract tableau exploration) to
the case of infinite computations.

Definition 6.1 (Infinite concurrent trace). An infinite concurrent trace is
a tuple I = 〈F, Fω〉, where:

• F = 〈E , C, , λE , λC〉 is a finite concurrent trace called the stem;

• Fω = 〈Eω, Cω, ω , λEω, λCω〉 is a finite concurrent trace called the cycle.

We denote the set of infinite concurrent traces by I. For a given infinite concur-
rent trace I = 〈F, Fω〉 ∈ I we denote its first component by stem(I) = F , and
its second component by cycle(I) = Fω.

An infinite concurrent trace defines the set of infinite computations in the
following way: the stem should occur once in the beginning of the computation,
while the cycle should occur infinitely often after the stem.

Definition 6.2 (Language of infinite concurrent trace). For a transition
system S = 〈V, T,Θ〉, the language of an infinite concurrent trace I = 〈F, Fω〉

92 CHAPTER 6. CAUSALITY-BASED VERIFICATION: LIVENESS

is defined as a set L(I) of system computations such that for each computation
π = s0, s1, s2, . . . ∈ L(I) there exists an infinite, strictly increasing sequence of
indices i1, i2, i3, . . . such that:

1. s0, s1, . . . si1 ∈ L(F);

2. for all k ≥ 1 it holds that sik , sik+1, . . . sik+1
∈ L(Fω).

From the above conditions we have that there exists an infinite sequence of
mappings σ0, σ1, . . ., called a run of I on π, where σ0 : E → {s0, s1, . . . si1}, and,
for all k ≥ 1, σk : Eω → {sik , sik+1, . . . sik+1

}.

Graphical Notation. The cycle part of the trace is depicted in round brack-
ets, superscripted with ω. The opening round bracket corresponds to the cycle
entry event e/ω, while the closing round bracket corresponds to the cycle exit
event e.ω. The stem part of a trace is depicted to the left of the opening bracket.

Inclusion of the infinitely repeating cycle part into concurrent traces makes
the decision problems much harder than for finite concurrent traces. In particu-
lar, the transitivity restriction cannot recover the decidability of the emptiness
checking, as the next theorem shows.

Theorem 6.3. The emptiness problem for transitive infinite concurrent traces
over any logic that includes atoms of the form x − y = c, for variables x, y
ranging over N, and constants c ∈ [0, 1], is undecidable.

Proof. We recycle here most of the proof of Theorem 4.19. The idea is that
the existence of a non-halting computation of a Minsky machine can be easily
represented by a simple infinite concurrent trace, where the cycle part offers the
choice between different machine instructions, and checks the halting condition.

Let S = 〈V, T,Θ〉 be the transition system as defined in the proof of The-
orem 4.19. We define the modified transition system S′ = 〈V ′, T ′,Θ′〉. The set
of variables is extended with variable done ranging over N: V ′ = V ∪ {done};
this variable tracks whether some instruction was executed within one cycle
iteration. The initial condition is: Θ′ = Θ ∧ (done = 0).

The transitions are T ′ = T ′init] {t′start}] T ′main] {tcheck}, where:

• T ′init = { ti ∧ pres({done}) | ti ∈ Tinit };

• t′start = tstart ∧ (done′ = 1);

• T ′main = { t′i ≡ ti ∧ (done = 0) ∧ (done′ = 1) | ti ∈ Tmain };

• tcheck = (halt = 0) ∧ (done = 1) ∧ (done′ = 0) ∧ pres(V \ {done}).

The infinite concurrent trace I = 〈F, Fω〉 encodes the existence of a non-
halting computation of the Minsky machine. The stem part requires that the
transitions from Tinit are executed in order one by one, followed by the execution
of t′start . Formally, F = 〈E , C, , λE , λC〉, where:

• E = {e/, e1, . . . , e|Tinit |, estart , e.};

• C = {(e/, e1), (e1, e2), . . . , (e|T ′init |, estart), (estart , e.)};

6.1. INFINITE CONCURRENT TRACES 93

• = {(e/, e1), (e1, e2), . . . , (e|T ′init |, estart), (estart , e.)};

• λE = {e/ → Θ′, estart → t′start , e. → >} ∪ { ei → tinit
i | tinit

i ∈ T ′init };

• λC = {(e/, e1)→ ⊥, . . . , (estart , e.)→ ⊥}.

Θ′ tinit
1

‖‖‖
tinit
2

‖‖‖
· · · tinit

|T ′init |
t′start

‖‖‖
>

‖‖‖

The cycle part requires that transition tcheck executes infinitely often, and
some transition from the T ′main executes between each execution of tcheck . For-
mally, the cycle part is Fω = 〈Eω, Cω, ω , λEω, λCω〉, where:

• Eω = {e/ω, e1ω, . . . , e|P |ω, e|P |+1ω = e.ω};

• Cω = {(e/ω, e1ω), (e1ω, e2ω), . . . , (e|P |ω, e.ω)};

• ω = { (e, e.ω) | e ∈ Eω \ {e.ω} };

• λEω = {e/ω → tcheck} ∪ { ei → pres(V) | i ∈ 1 . . . |P | } ∪ {e.ω → >};

• λCω = {(e/ω, e1ω)→ ⊥} ∪ { (eiω, ei+1ω)→ tmain
i | tmain

i ∈ T ′main }.

tcheck

e/ω
=

e1ω

‖‖‖
=

e2ωtmain
1

‖‖‖
=

e3ωtmain
2

‖‖‖
· · · >

e.ω ω

Due to the conditions on variable done, there is a strict alternation of tcheck

and the transitions from T ′main . Indeed, some transition from T ′main should be
executed in order to change the value of done from 0 to 1, and no more than
one transition from T ′main can be executed, because each transition has as a
precondition (done = 0). Because tcheck also checks the condition (halt = 0),
we have that the language of I is not empty if and only if the Minsky machine
does not halt.

As can be observed from the proof above, the infinite concurrent trace used
is syntactically very primitive: every link label is transitive, because there can
be at most one state change in its scope. Moreover, both the event and link
labels are over a very simple logic, and can be easily made purely conjunctive.
Therefore, there is no simple syntactic restriction that can recover decidability
as it was the case for finite concurrent traces. Because already emptiness is
undecidable, the complementation and language inclusion are undecidable as
well.

Fortunately, the last algorithm we outlined in the previous chapter, does not
depend on the precise language inclusion check. The underapproximating check
based on trace inclusion is sufficient. Here we lift the trace inclusion relation to
infinite concurrent traces.

Definition 6.4 (Trace inclusion for infinite traces). For two infinite con-
current traces I = 〈F, Fω〉 and I ′ = 〈F ′, F ′ω〉 we define the trace inclusion rela-
tion ⊆ as follows: I ′ ⊆ I iff there exists a pair of trace morphisms ν = 〈µ, µω〉,
called an infinite trace morphism, such that F ′ ⊆µ F and F ′ω ⊆µω

Fω. We write
I ′⊆ν I if trace inclusion holds for a particular infinite trace morphism ν.

94 CHAPTER 6. CAUSALITY-BASED VERIFICATION: LIVENESS

Proposition 6.5. Structural inclusion between infinite concurrent traces im-
plies also their language inclusion: if I ′ ⊆ I then L(I ′) ⊆ L(I).

Proof. Let I, I ′ – two infinite concurrent traces. Suppose that I ′ ⊆ν I for some
infinite trace morphism ν, and there is a computation s0, s1, s2, . . . ∈ L(I ′).
Then, by Definition 6.2 we have the sequence of indices i1, i2, i3, . . . such that
s0, s1, . . . si1 ∈ L(F ′) ⊆ L(F), and for all k ≥ 1 it holds that sik , sik+1, . . . sik+1

∈
L(F ′ω) ⊆ L(Fω). Therefore, we have that s0, s1, s2, . . . ∈ L(I) for the same
sequence of indices.

As we have established previously for the looping trace tableau (Section 5.6),
in order for the trace inclusion to be used in a sound way in a tableau proof,
the inclusion should be forgetful (Definition 5.35). We generalize this notion to
infinite concurrent traces.

Definition 6.6 (Forgetful trace inclusion for infinite traces). Let the
trace inclusion I ′ ⊆ν I hold for an infinite trace morphism ν = 〈µ, µω〉. We say
that it is forgetful if either F ′ ⊆µ F or F ′ω ⊆µω Fω is a forgetful trace inclusion
for finite traces.

Thus, a forgetful trace inclusion for infinite traces “forgets” some events
either in the stem or in the cycle part of an infinite trace.

6.2 Representation of Liveness Properties

Similar to the case of safety properties, we assume the existence of the function
Abstract that, given a transition system and a liveness property, described, e.g.,
in LTL, provides a set of infinite concurrent traces that encode all possible
system runs that violate the property.

Definition 6.7 (Abstract). For a transition system S = 〈V, T,Θ〉 and a live-
ness property ϕ, the function Abstract(S, ϕ) ∈ P(I) gives a set of infinite con-
current traces such that:

L(S) ∩ L(¬ϕ) =
⋃

I∈Abstract(S,ϕ)

L(I)

Below we describe the encoding of some typical cases of liveness LTL formu-
las; the example LTL formulas are taken from [52].

Unconditional Termination. For a program P that performs some compu-
tational task, we expect that it finally terminates and delivers the computation
result. The typical liveness property of termination can be expressed by the
temporal formula

after P .

All violations of such a property are encoded by the trace that represents an
arbitrary non-terminating computation:

>
ω

6.2. REPRESENTATION OF LIVENESS PROPERTIES 95

The above trace specifies that there should be some arbitrary, infinitely repeat-
ing transition in a non-terminating computation.

Conditional Termination. The above concurrent trace specifies that P does
not terminate irrespective of the initial state in which P has started its com-
putation. A refined concurrent trace encodes all non-terminating computations
that start from some initial system state:

Θ >
ω

Accessibility. Consider again the scheme in Figure 5.2, where two processes
P1 and P2 coordinate their access to critical sections C1 and C2. The natural
progress property of accessibility for that program specifies that

any process that wants to enter its critical section will eventually
succeed.

The accessibility property for process P1 may be expressed by the formula(
in T1 =⇒ in C1

)
.

The violations of the property are described by the concurrent trace

Θ in T1

> ω¬in C1

¬in C1

The trace represents all infinite system computations where process P1 was in
the trying section T1, but after that it was never admitted to the critical section
C1.

Eventual Boundedness. Let us reconsider the prime-printing program from
Section 5.2. A relevant liveness property states that

the sequence of printed numbers will eventually be bounded below
by any positive integer.

This property can be specified, using a rigid integer variable n, by the formula

¬[γ n].

It states that any integer can be printed only finitely many times. All violations
of such a property are represented by the trace

Θ [γ n]
ω

The above trace describes a computation, where there is an integer that is
printed infinitely often.

96 CHAPTER 6. CAUSALITY-BASED VERIFICATION: LIVENESS

Eventual Reliability. Let S implement a channel that is eventually reliable
(ER): if the sender keeps resubmitting the same message on α, then the ER
channel will eventually transmit the message on β:

ER channel
α β

This property of eventual reliability can be specified by the formula

[α m] =⇒ [β m].

It states that the message that is submitted infinitely many times is also trans-
mitted infintely many times. The violations of the property are described by the
concurrent trace

Θ
[α m] ω

¬[β m]

The trace specifies the infinite computations where some message is submitted
infinitely often, but is transmitted only finitely many times.

6.3 Liveness Trace Transformers

Here we describe the trace transformers that are specific to infinite concurrent
traces and the analysis of liveness properties.

Safety trace transformers are applicable to the stem of an infinite concurrent
trace without any modifications. There are also variants of these transformers
that are applicable to the cycle part of an infinite concurrent trace; we will
denote such transformers using superscript ω, as in OrderSplitω or EventSplitω.
We will not repeat the full description for such transformers, and refer the
reader to Section 5.3; the only change is that they are applied to the cycle part.
Nevertheless, the soundness of such transformers needs to be argued separately;
therefore we provide soundness proofs specific to infinite traces. Here we describe
also another category of trace transformers that are applicable only to infinite
concurrent traces.

As before, we introduce now some notation that will be used uniformly in
all the soundness proofs further down. For any trace transformer τ , let I =
〈F, Fω〉 be a concurrent trace such that I ⊆ν pre(τ) for a trace morphism ν.
Let π = s0, s1, s2, . . . ∈ L(I) be some system computation from the language
of I. Then there exists a run σ0, σ1, . . . of I on π, and an infinite sequence of
indices i1, i2, i3, . . . satisfying the conditions of definition 6.2. In each soundness
proof below we show that there exists a trace production τi ∈ τ , and an infinite
sequence of indices i′1, i

′
2, i
′
3, . . . such that such that s0, s1, s2, . . . ∈ L

(
τνi (I)

)
for

that sequence.

We start with the presentation of the liveness-specific trace transformers, and
then describe the specializations of the safety transformers for infinite concurrent
traces.

6.3. LIVENESS TRACE TRANSFORMERS 97

Invariance Split (Figure 6.2). The InvarianceSplit(ϕ) trace transformer
makes a case distinction about the program behavior at infinity: for a given
predicate ϕ either all events in the cycle part satisfy it, or a violating event
should happen infinitely often. We exploit the rule when we introduce new
events based on the ranking function: in that case the first branch is termi-
nating, and we may consider only the second one. But, in general, the rule is
useful without the a priori knowledge of a ranking function: it considers two
cases, where each one is easier to reason about individually. Formally we have
the following:

pre
(
InvarianceSplit(ϕ)

)
=
〈
F, 〈Eω, Cω, ω , λEω, λCω〉

〉
, where:

• Eω = {e/ω, e.ω};
• λEω = {e/ω → >, e.ω → >};
• Cω = ω = λCω = ∅.

post
(
InvarianceSplit(ϕ)

)
= {R1, R2}, where:

• R1 =
〈
F, 〈Eω, C′ω, ω , λEω, λ′Cω〉

〉
, where:

– C′ω = Cω ∪ {(e/ω, e.ω)};
– λ′Cω = λCω ∪ {(e/ω, e.ω)→ ϕ}.

• R2 =
〈
F, 〈E ′ω, Cω, ω , λ′Eω, λCω〉

〉
, where:

– E ′ω = Eω ∪ {a};
– λ′Eω = λEω ∪ {a→ ¬ϕ}.

a
ω

L

a b
ωϕ

R1

=⇒ ¬ϕ
a ω

R2

Figure 6.2: The InvarianceSplit trace transformer

Proposition 6.8. The InvarianceSplit trace transformer is sound.

Proof. Consider the infinite sequence of state pairs (si1 , si1+1), (si1+1, si1+2), . . .
Now, consider the subsequence (sj1 , sj1+1), (sj2 , sj2+1), . . ., where all state pairs
satisfy ¬ϕ. If this subsequence is infinite, then construct the infinite sequence
i′1, i
′
2, . . ., where, for each l, i′l is selected as the maximum ik ≤ jl. Then π ∈

L
(
R2

)
. If the subsequence is finite, then construct the sequence i′1, i

′
2, . . . as the

suffix of the sequence i1, i2, . . ., where i′1 is equal to the minimum ik such that
all state pairs (sj , sj+1), for j ≥ k, satisfy ϕ. Then π ∈ L

(
R1

)
.

The following lemma is applied in the combination with the InvarianceSplit
trace transformer.

Lemma 6.9. Assume that a set S is well-ordered by a relation �. If, for an
infinite sequence s1, s2, . . . of elements from S, for an infinite number of pairs
(si, si+1) it holds that si � si+1, then there exists an infinite number of pairs
(sj , sj+1) such that sj ≺ sj+1.

98 CHAPTER 6. CAUSALITY-BASED VERIFICATION: LIVENESS

Proof. By the contrary, suppose that there is only a finite number of pairs
(sj , sj+1) such that sj ≺ sj+1. Then there exists an index k, such that for all
i > k we have si � si+1 or si ≈ si+1. Thus, there exists an infinite number of
indices i1, i2, . . ., such that for all j we have sij � sij+1 . This is a contradiction
with the well-order of �.

Here is how this lemma is used together with the InvarianceSplit trace trans-
former. Suppose that a ranking relation ϕ was found for some cycle trace Fω.
This fact implies that Fω is terminating: a contradiction with the assumption
that it has an infinite run. Therefore, we can apply the InvarianceSplit(ϕ) trace
transformer, and discard the branch R1 as contradictory, i.e., avoid a case split
and transform Fω by introducing the event labeled with ¬ϕ.

The next two rules exploit the repetitive character of the cyclic part of an
infinite concurrent trace. They are defined for arbitrary and maximal finite
subtraces F and Fω: these subtraces comprise all events and links in the stem
and the cycle part of a trace.

Cycle To Stem (Figure 6.3). The CycleToStem trace transformer shifts a
copy of all events in the cycle part of a trace to its stem part.

pre
(
CycleToStem

)
=
〈
〈E , C, , λE , λC〉, 〈Eω, Cω, ω , λEω, λCω〉

〉
.

post
(
CycleToStem

)
=
〈
〈E ′, C′, ′ , λ′E , λ′C〉, 〈Eω, Cω, ω , λEω, λCω〉

〉
,

where:

• E ′ = E ∪ Eω;

• C′ = C ∪ { (e, e′) | e ∈ E , e′ ∈ Eω };

• ′ = ω ∪ { (e, e′) | e ∈ (E \ {e.}), e′ ∈ Eω };

• λ′E = λE ∪ λEω;

• λ′C = λC ∪ λCω.

F Fω

ω

L

F Fω Fω

ω

‖‖‖

R

=⇒

Figure 6.3: The CycleToStem trace transformer

Proposition 6.10. The CycleToStem trace transformer is sound.

Proof. We select the sequence of indicies i′1, i
′
2, . . . such that i′k = ik+1 for all

k ≥ 1. For this sequence of indicies we have π ∈ L
(
R
)
.

6.3. LIVENESS TRACE TRANSFORMERS 99

Cycle Unrolling (Figure 6.4). The CycleUnrolling trace transformer dupli-
cates the cyclic part of a concurrent trace.

pre
(
CycleToStem

)
=
〈
F, Fω = 〈Eω, Cω, ω , λEω, λCω〉

〉
.

Let 〈E ′ω, C′ω, ′ω , λ′Eω, λ′Cω〉 be the copy of all the elements of Fω.

Then post
(
CycleToStem

)
=
〈
F, 〈E ′′ω , C′′ω, ′′ω , λ′′Eω, λ′′Cω〉

〉
, where:

• E ′′ω = Eω ∪ E ′ω;

• C′′ω = Cω ∪ C′ω ∪ { (e, e′) | e ∈ Eω, e′ ∈ E ′ω };
• ′′ω = ω ∪ ′ω ′ ∪ { (e, e′) | e ∈ (Eω \ {e.ω}), e′ ∈ E ′ω };
• λ′′Eω = λEω ∪ λ′Eω;

• λ′′Cω = λCω ∪ λ′Cω.

F Fω

ω

L

F Fω Fω

ω

‖‖‖

R

=⇒

Figure 6.4: The CycleUnrolling trace transformer

Proposition 6.11. The CycleUnrolling trace transformer is sound.

Proof. We select the sequence of indicies i′1, i
′
2, . . . such that i′1 = i1 and i′k =

i2k−1, for all k ≥ 2. For this sequence of indicies we have π ∈ L
(
R
)
.

Often it is not possible to prove a liveness property without making any as-
sumptions on the behavior of the environment. For concurrent programs, when
the choice of the next transition to be executed is highly non-deterministic, these
assumptions constraint the scheduler and force it to execute some transitions if
they are enabled. These requirements are expressed formally by enriching a tran-
sition system S = 〈V, T,Θ〉 with two sets of just and compassionate transitions
J,C ⊆ T . Let En(t) denote the enabling condition for a transition t ∈ T .

The requirement of a weak fairness (or justice in the terminology of Manna
and Pnueli [52]) is that a just transition t ∈ J that is continuously enabled (i.e.,
En(t) holds continuously after some point), should be infinitely often taken. In
some cases justice is not enough to guarantee fairness; then the requirement
of a strong fairness (or compassion) is helpful: it states that a compassionate
transition t ∈ C that is infinitely often enabled (i.e., En(t) holds infinitely often),
should be infinitely often taken.

Causality-based verification offers two trace transformers that allow for a
direct account of weak and strong fairness in liveness proofs.

Weak Fairness (Figure 6.5). The WeakFairness(t) trace transformer allows
to introduce a just transition t in the cycle part of a trace in case it is continu-
ously enabled.

100 CHAPTER 6. CAUSALITY-BASED VERIFICATION: LIVENESS

a b
ωEn(t)

L

a b
ωEn(t)

t

R

=⇒

Figure 6.5: The WeakFairness trace transformer

En(t)
a ω

L

En(t)
a

t
ω

R

=⇒

Figure 6.6: The StrongFairness trace transformer

pre
(
WeakFairness(t)

)
=
〈
F, 〈Eω, Cω, ω , λEω, λCω〉

〉
, where:

• Eω = {e/ω, e.ω};
• λEω = {e/ω → >, e.ω → >};
• Cω = {(e/ω, e.ω)};
• λCω = {(e/ω, e.ω)→ En(t)}.
• ω = (e/ω, e.ω).

post
(
WeakFairness(t)

)
=
{〈
F, 〈E ′ω, Cω, ω , λ′Eω, λCω〉

〉}
, where:

• E ′ω = Eω ∪ {a};
• λ′Eω = λEω ∪ {a→ t}.

Strong Fairness (Figure 6.6). The StrongFairness(a, t) trace transformer al-
lows to introduce a compassionate transition t in the cycle part of a trace if it
is enabled infinitely often.

pre
(
StrongFairness(a, t)

)
=
〈
F, 〈Eω, Cω, ω , λEω, λCω〉

〉
, where:

• Eω = {a};
• λEω = {a→ En(t)};
• Cω = λCω = ω = ∅.

post
(
StrongFairness(a, t)

)
=
{〈
F, 〈E ′ω, Cω, ω , λ′Eω, λCω〉

〉}
, where:

• E ′ω = Eω ∪ {b};
• λ′Eω = λEω ∪ {b→ t}.

Proposition 6.12. The WeakFairness and StrongFairness trace transformers
are sound.

Proof. By a direct application of the definitions of weak and strong fairness.

We finish this section with the specializations of some safety rules to infinite
concurrent traces.

6.3. LIVENESS TRACE TRANSFORMERS 101

Necessary Cycle Event (Figure 6.7). The NecessaryCycleEvent(a, b, ϕ)
trace transformer employs the same reasoning as the NecessaryEvent , but inside
the cycle part of a concurrent trace. Suppose that we have two causally related
and events a and b in the cycle of a concurrent trace, and a state predicate
ϕ ∈ Φ(V), such that the label of a implies ¬ϕ, and the label of b implies ϕ′.
Given the repetitive character of the cycle, we have that a should follow b again,
but this is not possible due to the contradiction between their labelings. The
transformer introduces a new “bridging” event c after b and before next a. In a
formal setting we have:

pre
(
NecessaryCycleEvent(a, b, ϕ)

)
=

〈
F, 〈Eω, Cω, ω , λEω, λCω〉

〉
,

where:

• Eω = {a, b};
• Cω = {(a, b)};
• ω = ∅;
• λEω = {a→ ¬ϕ, b→ ϕ′};
• λCω = {(a, b)→ >}.

post
(
NecessaryCycleEvent(a, b, ϕ)

)
=
〈
F, 〈E ′ω, C′ω, ′ω , λ′Eω, λ′Cω〉

〉
,

where:

• E ′ω = Eω ∪ {c};
• C′ω = Cω ∪ {(b, c)};
• ′ω = ω ∪ {(b, c)};
• λ′Eω = λEω ∪ {c→ ϕ ∧ ¬ϕ′};
• λ′Cω = λCω ∪ {(b, c)→ >}.

¬ϕ
a

ϕ′
b ω

‖‖‖

L

¬ϕ
a

ϕ′
b

ϕ ∧ ¬ϕ′
c

‖‖‖

ω

R

=⇒

Figure 6.7: The NecessaryCycleEvent trace transformer

Proposition 6.13. The NecessaryCycleEvent trace transformer is sound.

Proof. For an arbitrary k ≥ 2, let σ(b) = sjb and σ(a) = sja , where ik−1 ≤
jb < ik and ik ≤ ja < ik+1; such ja, jb should exist. We have that the formula
ϕ(sjb+1) holds, and the formula ¬ϕ(sja) holds. For any jb < j < ja, suppose
that the formula ϕ(sj) holds, and consider two cases: either the formula ϕ(sj+1)
holds, or the formula ¬ϕ(sj+1) holds. Starting from j = jb+1, where the formula
ϕ(sj) holds, we will find such jx that the formula the formula ¬ϕ(sjx) holds.
Otherwise we would have that for all jb < j ≤ ja the formula ϕ(sj) holds – a
contradiction with the fact that ¬ϕ(sja) holds. We then select i′k to be equal
to jx + 1. As k was chosen arbitrarily, we obtain an infinite sequence of indices
i1, i
′
2, i
′
3, . . . for which π ∈ L

(
R
)
.

102 CHAPTER 6. CAUSALITY-BASED VERIFICATION: LIVENESS

Order Splitωωω (Figure 6.8). The OrderSplitω(a, b) trace transformer considers
alternative orderings of two events a and b in the cycle part of a trace.

a b
ω

L

a b
ω

R1

=⇒ a b
ω

R2

Figure 6.8: The OrderSplitω trace transformer

Proposition 6.14. The OrderSplitω trace transformer is sound.

Proof. For an arbitrary k ≥ 1, let σk(a) = sja and σk(b) = sjb , where ik ≤
ja, jb ≤ ik+1. Two cases are possible: either ja ≤ jb or ja > jb. Let the sequence
of indices k1

1, k
1
2, . . . be such where ik1l < ja ≤ jb ≤ ik1l +1 holds, and the sequence

of indices k2
1, k

2
2, . . . be such where ik2l ≤ jb < ja ≤ ik2l +1 holds. At least one of

these sequences should be infinite. W.l.o.g., let it be k1
1, k

1
2, . . . Then we select

i′l = ik1l , and have that π ∈ L
(
R1

)
.

Event Splitωωω (Figure 6.9). The EventSplitω(a, ϕ, ψ) trace transformer, given
some event a in the cycle part of a trace, labeled with a transition predicate
ψ, and another arbitrary transition predicate ϕ, considers two alternatives: a
satisfies either ϕ or ¬ϕ infinitely often.

ψ
a ω

L

ψ ∧ ϕ
a ω

R1

=⇒ ψ ∧ ¬ϕ
a ω

R2

Figure 6.9: The EventSplitω trace transformer

Proposition 6.15. The EventSplitω trace transformer is sound.

Proof. There should exist an infinite sequence of indices ik ≤ jk ≤ ik+1, for
k ≥ 1, such that σk(a) = sjk . Let j1

l and j2
l be two subsequences of jk where the

formulas ϕ(sjk , sjk+1
) and ¬ϕ(sjk , sjk+1

) hold. At least one of the subsequences
should be infinite. W.l.o.g., let it be subsequence j1

l . Then we construct the
sequence of indices i′1, i

′
2, . . ., where, for l ≥ 1, we select i′l as the maximum

index il ≤ j1
l . Then π ∈ L

(
R1

)
.

Instantiateωωω (Figure 6.10). Similarly to the case of finite traces, the
Instantiateω(a, ϕ, ψ) trace transformer, given some event a in the cycle part
of a trace, labeled with a transition predicate ϕ, instantiates it with all possi-
ble system transitions that satisfy ϕ. An additional predicate ψ can be used to
restrict the potentially large set of conclusions of this trace transformer. The

6.4. TABLEAU PROOFS OF LIVENESS PROPERTIES 103

underlying reasoning is, nevertheless, different to the finite-trace case: here we
argue that some of the system transitions satisfying ϕ ∧ ψ should happen in-
finitely often.

ϕ
a ω

L

ϕ ∧ ¬ψ
a ω

R0

=⇒ t1 ∧ ϕ ∧ ψ
a ω

R1

tk ∧ ϕ ∧ ψ
a ω

Rk

. . .

Figure 6.10: The Instantiateω trace transformer

Proposition 6.16. The Instantiateω trace transformer is sound.

Proof. Let {t1, . . . , tk} = {t ∈ T | sat(t∧ϕ∧ψ)}. Consider the infinite sequence
of state pairs (sjk , sjk+1) such that σk(a) = sjk ; we have that ϕ(sjk , sjk+1)
holds for all pairs from the sequence. For each pair exactly one of the following
should hold: either ¬ψ(sjk , sjk+1), or (ψ ∧ ti)(sjk , sjk+1), because π is a system
computation. Due to the infinite pigeonhole principle, one of the finite number of
alternatives should happen infinitely often. W.l.o.g., suppose that ¬ψ(sjl , sjl+1)
hold for an infinite sequence j1, j2, . . . Then we construct the sequence of indices
i′1, i
′
2, . . ., where, for l ≥ 1, we select i′l as the maximum index il ≤ jl. Then

π ∈ L
(
R0

)
.

6.4 Tableau Proofs of Liveness Properties

Using the liveness trace transformers described above, we can generalize the
notions of trace unwinding and different kinds of trace tableaux, which were
introduced in Chapter 5, to liveness properties. The only changes needed are the
replacement of finite concurrent traces with infinite ones (with the simultaneous
replacement of trace operations), as well as the application of liveness trace
transformers in the proofs. As these changes are straightforward, we do not
detail them here.

All soundness proofs also carry over to the case of unwinding and tableaux
for liveness properties. The only additional restriction is for the looping trace
tableau: applications of CycleToStem and CycleUnrolling trace transformers
should be disallowed to occur on the tableau causal loops, because they can
pump the stem and the cycle part of an infinite concurrent trace indefinitely
without restricting its language. If these trace transformers are not present
in a looping tableau, then the proof of Theorem 5.33 generalizes to infinite
traces. When a forgetful trace inclusion holds for the cycle part of the trace, this
implies that a causal loop involving it will pump the cycle part indefinitely, thus
contradicting the assumption of the cycle part repeating after a finite number
of computation steps.

Relative completeness of trace unwinding also generalizes to liveness prop-
erties: the theorem below highlights that the InvarianceSplit trace transformer
is the most important one between all liveness transformers.

104 CHAPTER 6. CAUSALITY-BASED VERIFICATION: LIVENESS

Theorem 6.17 (Relative completeness of trace unwinding for liveness
properties). If a transition system S satisfies a liveness property ϕ, then there
exists a sound and complete trace unwinding for S and ϕ.

Proof. Let, according to Definition 6.7, the set of violating computations be
represented by the set Abstract(S, ϕ), and assume that S satisfies ϕ; then all
traces in the set Abstract(S, ϕ) should be terminating. Construct the initial
unwinding, where nodes are labeled with these traces, and for each node consider
separately two cases:

Unconditional Termination: in that case the node trace terminates for any
initial configuration. Then there exists a (perfect) ranking function f from the
states of S into some well-ordered by � domain, such that for all system tran-
sitions t ∈ T we have that t(s, s′) =⇒ f(s) � f(s′). In step 1, we perform
the InvarianceSplit using f(s) � f(s′) as the transition predicate to split with.
The first branch is terminating, and is closed as contradictory. According to
Lemma 6.9, the second branch contains event a labeled with f(s) ≺ f(s′). So,
in step 2, we apply the EventSplit trace transformer as many times as there
are system transitions, and obtain a separate branch for each system transi-
tion. Because each transition actually decreases f , all the branches are closed
as contradictory.

Conditional Termination: in that case the node trace terminates from ini-
tial configurations, described by the Θ predicate, but may not terminate when
started from other configurations. Then there exists a (perfect) ranking func-
tion f from the states of S into some well-ordered by � domain, such that
for any reachable state s, and for all system transitions t ∈ T , we have that
t(s, s′) =⇒ f(s) � f(s′). Similar to [53], we use as given the assertion Acc that
characterizes the set of reachable (accessible) system states.

Now, we apply the same construction as for unconditional termination, with
the following changes. In step 1 we perform InvarianceSplit using the predicate(
f(s) � f(s′)

)
∧ Acc(s). As a result, event a of the second branch is labeled

with
(
f(s) ≺ f(s)

)
∨ ¬Acc(s) Using an additional application of EventSplit ,

we split the right branch into two, where events a1 and a2 are labeled with(
f(s) ≺ f(s′)

)
and ¬Acc(s), respectively. From the branch containing a1 we

proceed as in step 2 of the unconditional case. To the branch containing a2

we apply the CycleToStem trace transformer, and move event a2 to the stem
part of the trace. As no state satisfying ¬Acc(s) is reachable from the initial
configuration, this branch is closed as contradictory. Thus, all the branches are
closed as contradictory, and we obtain a sound and complete trace unwinding.

Algorithms for the trace unwinding and trace tableau exploration can be
adjusted appropriately. Here we outline the modifications to the last algorithm
of the previous chapter, Algorithm 5, which explores an abstract trace tableau;
see Algorithm 6. The modifications are as follows. If the covering attempt was
unsuccessful, we do the following sequence of checks:

1. We check whether the stem and the cycle, concatenated, form a valid
computation. If not, we apply the standard safety refinement procedure,
which was outlined in the preceding chapter.

6.4. TABLEAU PROOFS OF LIVENESS PROPERTIES 105

Algorithm 6: Exploration of Abstract Trace Tableau for Liveness

Input : transition system S = 〈V, T,Θ〉, liveness property ϕ
Output: property holds/possible counterexample
Data: abstract trace tableau ∆ = 〈N,E, γ, δ, µ, , γ̂, δ̂, µ̂, σ〉, comprising unwinding

Υ = 〈N,E, γ, δ, µ〉, and looping tableau Γ̂ = 〈N,E, γ̂, δ̂, µ̂, 〉,
queue Q ⊆ NL, trace transformer τ , trace morphism m, ranking relation ψ

begin
set ∆←− InitialAbstractTableau(S, ϕ), Q←− N
while Q not empty do

select some n from Q
if 〈pre(τ),m〉 ←− TryCover(∆, n) then goto next
else if ¬Satisfiable

(
stem

(
CycleToStem(γ(n))

))
then

set 〈τ,m〉 ←− SafetyRefinement
(
γ(n)

)
else if ¬Satisfiable

(
cycle

(
CycleUnrollingk(γ(n))

))
then

set 〈τ,m〉 ←− SafetyRefinementω
(
γ(n)

)
else if ψ ←− Terminating

(
γ(n)

)
then

set 〈τ,m〉 ←− Instantiateω(a,¬ψ,>) ◦ InvarianceSplit(ψ)

else
return possible counterexample γ(n)

Apply
(
Υ, τ,m, n

)
next: set Q←− Q ∪ { n′ | (n, n′) ∈ E } \ {n}

PropagateUp(Γ̂, pre(τ),m, n)

return property holds

Function Terminating(I)

In : infinite concurrent trace I = 〈F, Fω〉
Out: ranking relation ψ ∈ Φ(V ∪ V ′) / ⊥
begin

set ψs ←− SSA(F)
set ψc ←− SSA(Fω)
return rank(ψs, ψc)

Figure 6.11: Exploration of abstract trace tableau for liveness properties

2. We check whether the cycle part, repeated some finite number of times,
forms a satisfiable computation. if not, we apply the variants of the safety
trace transformers inside the cycle part.

3. If both of the previous checks give us valid computations, we check,
whether the cycle part is terminating, using some ranking function syn-
thesis procedure. If it is, which contradicts the assumption of the cycle
repeating infinitely often, we apply the InvarianceSplit trace transformer,
and instantiate the new event to all possible system transitions that violate
the ranking relation.

4. Finally, if none of the previous checks reveals any contradictions, we report
a possible counterexample.

Notice that due to the incompleteness of the ranking function synthesis, as
well as of the underapproximating check in step 2, we cannot be sure that the

106 CHAPTER 6. CAUSALITY-BASED VERIFICATION: LIVENESS

1 : (>)
ω

5 : (c1)
ω

6 : (c1 c2 c3 c4)
ω

Terminating : q1

7 :(
c1 c2 c3 c4

q′1 > q1
)
ω

8 :(
c1 c2 c3 c4

a2)
ω

9 :(
c1 c2 c3 c4

a1 a2 a4)
ω

2 : (a1)
ω

3 : (a1 a4)
ω

Terminating : p1

4 :(
a1 a4

p′1 > p1
)
ω

⊥

p1 p2

q1 q2

. . .

. . .

Instantiateω

NecessaryCycleEvent

InvarianceSplit

Instantiateω

NecessaryCycleEvent

Instantiateω

NecessaryCycleEvent

InvarianceSplit

Figure 6.12: Termination proof for the Producer-Consumer example of Fig-
ure 6.1. Bottom left : partially ordered ranking function discovered in the analysis

counterexample is not spurious. This incompleteness is in a strong contrast with
the safety case, where a satisfiable trace does represent a valid counterexample;
it reflects the undecidability of the termination problem.

We finish this chapter with the tableau-based termination proof for the
Producer-Consumer example of Figure 6.1; see Figure 6.12. Our analysis starts
with the assumption (by way of contradiction) that there exists some infinite
run. The assumption is expressed as the concurrent trace of node 1 in Fig-
ure 6.12: infinitely often some transition should occur. The transition is so far
unknown, and therefore characterized by the predicate >. Our argument pro-
ceeds by instantiating this unknown event with the transitions of the transition
system, resulting in one new trace per transition. The Instantiateω trace trans-
former represents a case distinction, and we will need to discharge all cases.

For example, transition a1 of Producer 1, gives us the trace of node 2. A
consequence of the decision that a1 occurs infinitely often is that a4 must also

6.4. TABLEAU PROOFS OF LIVENESS PROPERTIES 107

occur infinitely often: after the execution of a1, the program counter of producer
1 equals 2, and the precondition for the execution of a1 is that it is equal to
1. The only transition that can achieve that goal is a4 (here we oversimplify to
make the presentation clearer; in the algorithm we derive the necessity of event
a4 by the interpolation-based local safety analysis). The requirement that both
a1 and a4 occur infinitely often is expressed as the trace of node 3, obtained from
the trace of node 1 by the NecessaryCycleEvent trace transformer. The trace
of node 3 is terminating: p1 is decreased infinitely often and is bounded from
below; it is therefore a ranking function. The only remaining situation in which
an infinite run might exist is if some transition increases p1, i.e., that satisfies
the predicate p′1 > p1, is executed infinitely often. This situation is expressed
by the trace of node 4, obtained by the application of the InvarianceSplit trace
transformer. Since there is no transition in the program transition relation that
satisfies p′1 > p1, we arrive at a contradiction.

Let us explore another instantiation of the unknown event in the trace of
node 1, this time with transition c1 of Consumer 1: we obtain the trace of node 5.
Again, exploring causal consequences, local safety analysis gives us that events
c2, c3, and c4 should also occur infinitely often in the trace: we insert them, and
get the trace of node 6. Termination analysis for that trace gives us the ranking
function q1: it is bounded from below by event c1 and decreased by event c4.
Again, we conclude that the event increasing q1 should occur infinitely often,
and introduce it in the trace of node 7. Next, we try all possible instantiations of
the event characterized by the predicate (q′1 > q1): there are two transitions that
satisfy the predicate, namely a2 and b2. We explore the instantiation with a2

in the trace of node 8; for b2, the reasoning proceeds similarly. The local safety
analysis allows us to conclude that, besides a2, transitions a1 and a4 should
occur infinitely often (node 9). At this point, we realize that the trace of node
9 contains as a subgraph the trace of node 2, namely the transition a1. We can
conclude, without repeating the analysis done of nodes 2–4, that there is no
infinite run corresponding to the trace of node 9.

The other possible instantiations for the unknown event in the trace of node
1 are analyzed similarly. The resulting tableau for the case of two producers
and two consumers will have the shape shown in the bottom left part of Fig-
ure 6.12. It can be interpreted as a partially ordered ranking function: arrows
represent dependencies between individual components of a ranking function.
This particular ranking function shows that all threads satisfying the function
components p1 and p2 terminate unconditionally, while the threads that satisfy
the function components q1 and q2 terminate under the condition that both of
the previous components terminate. Notice also that the tableau is of quadratic
size with respect to the number of threads.

108 CHAPTER 6. CAUSALITY-BASED VERIFICATION: LIVENESS

Chapter 7

Experimental Evaluation

We have instantiated the framework of causality-based verification for the area
of termination analysis of concurrent programs. While termination analysis of
sequential programs is a mature discipline, termination analysis in a concurrent
setting is much more challenging, and before our work [44] there was no termi-
nation prover able to handle even a multi-threaded program consisting of only
two modestly complicated threads.

Our implementation is called Arctor [43] (for Abstraction Refinement of
Concurrent Temporal Orderings). The implementation is written in Haskell,
and can currently handle multi-threaded programs with arbitrary control flow,
finite data variables, and unbounded counters. We have evaluated Arctor on
a number of multi-threaded benchmarks, and compared it to the state-of-the-
art termination provers Terminator, T2 and AProVE. All experiments were
performed on an Intel Core i7 CPU running at 2.7 GHz. As Terminator and
T2 are available only as a 32-bit Windows executable with a memory limited to
2 GB, the same memory limit was used for the other tools. The benchmarks are
explained below, and are available for download from the tool homepage [43].

Simple Benchmarks. These benchmarks are quite simple multi-threaded
programs, intended to compare how well different techniques can handle concur-
rency. Typical thread here consists just of several instructions. Table 7.1 shows
the performance of the termination provers on the benchmarks, described below.

Chain. The Chain benchmark consists of a chain of n threads, where each
thread decreases its own counter xi, but the next thread in the chain can
counteract, and increase the counter of the previous thread. Only the last
thread in the chain terminates unconditionally.

Phase. The Phase benchmark is similar to the Chain benchmark, except that
now each thread can either increase or decrease its counter xi. Each such
phase change is, however, guarded by the next thread in the chain, which
limits the number of times the phase change can occur.

Producer-Consumer. The Producer-Consumer benchmark is a simplified
model of the Map-Reduce architecture from distributed processing: pro-
ducers model the mapping step for separate data sources, consumers model

109

110 CHAPTER 7. EXPERIMENTAL EVALUATION

Tool Terminator T2 AProVE Arctor
Benchmark / Threads Time Mem. Time Mem. Time Mem. Time Mem. Nodes

Chain 2 0.65 20 0.52 20 1.58 131 0.002 2.0 3
Chain 4 1.45 25 0.54 22 2.13 153 0.002 2.2 7
Chain 6 24.4 57 0.58 24 2.58 171 0.002 2.5 11
Chain 8 × MO 0.63 26 3.48 210 0.002 2.5 15
Chain 20 × MO 2.36 55 16.5 941 0.007 2.5 39
Chain 40 × MO 40.5 288 536 1237 0.023 2.8 79
Chain 60 × MO Z3-TO × × MO 0.063 3.0 119
Chain 80 × MO Z3-TO × × MO 0.145 3.3 159
Chain 100 × MO Z3-TO × × MO 0.320 3.9 199

Phase 1 × MO U(4.53) 48 1.60 132 0.002 2.4 2
Phase 2 × MO U(4.53) 48 2.16 144 0.002 2.4 11
Phase 3 × MO U(30.6) 301 3.83 199 0.002 2.5 20
Phase 4 × MO × MO 8.89 336 0.003 2.6 29
Phase 8 × MO × MO 47.0 1506 0.003 2.6 65
Phase 10 × MO × MO × MO 0.012 2.7 83
Phase 20 × MO × MO × MO 0.061 3.3 173
Phase 40 × MO × MO × MO 0.35 4.0 353
Phase 60 × MO × MO × MO 1.18 4.2 533
Phase 80 × MO × MO × MO 3.21 5.1 713
Phase 100 × MO × MO × MO 7.38 6.1 893

Producer 1 3.37 26 2.42 38 3.17 237 0.002 2.3 6
Producer 2 1397 1394 3.25 44 6.79 523 0.002 2.6 11
Producer 3 × MO U(29.2) 253 U(26.6) 1439 0.002 2.6 21
Producer 4 × MO U(36.6) 316 U(71.2) 1455 0.003 2.7 30
Producer 5 × MO U(30.7) 400 U(312) 1536 0.007 2.7 44
Producer 10 × MO Z3-TO × × MO 0.027 3.0 135
Producer 20 × MO Z3-TO × × MO 0.30 4.2 470
Producer 40 × MO Z3-TO × × MO 4.30 12.7 1740
Producer 60 × MO Z3-TO × × MO 20.8 35 3810
Producer 80 × MO Z3-TO × × MO 67.7 145 6680
Producer 100 × MO Z3-TO × × MO 172 231 10350

Semaphore 1 3.05 26 2.81 46 3.22 230 0.002 2.6 8
Semaphore 2 622 691 U(20.7) 219 U(6.52) 465 0.002 2.6 16
Semaphore 3 × MO U(15.8) 239 U(10.42) 1138 0.003 2.6 24
Semaphore 10 × MO U(83.5) 470 U(246) 1287 0.023 2.8 80
Semaphore 20 × MO × MO × MO 0.073 3.3 160
Semaphore 40 × MO × MO × MO 0.264 4.0 320
Semaphore 60 × MO × MO × MO 0.58 4.0 480
Semaphore 80 × MO × MO × MO 1.02 4.6 640
Semaphore 100 × MO × MO × MO 1.59 5.1 800

Table 7.1: Experimental evaluation for the set of simple multi-threaded bench-
marks. Execution time is measured in seconds, and memory in megabytes. MO
stands for memout; the time spent until memout was in all cases more than
1 hour. U indicates that the termination prover returned “unknown”; Z3-TO
indicates a timeout in the Z3 SMT solver.

111

the reducing step for different types of input data. The natural require-
ment for such an architecture is that the distributed processing terminates
for any finite amount of input data.

Semaphore. The Semaphore benchmark represents a model of a concurrent
system where access to a critical resource is guarded by semaphores. We
verify individual accessibility for a particular thread (i.e., the system with-
out the thread should terminate) under the assumption of a fair scheduler.
Since other tools do not support fairness, we have eliminated the fairness
assumption for all tools using the transformation from [59], which enriches
each wait statement with a decreasing and bounded counter.

In the Chain benchmark, the shape of the system allows for an easy construc-
tion of the lexicographic ranking function 〈xn, . . . , x2, x1〉; indeed T2, AProVE,
and Arctor find and validate this termination argument quickly for a large
number of threads. Terminator, on the other hand, needs exponential time.
The Phase benchmark is especially difficult for the CEGAR-based tools ex-
cept Arctor: Terminator and T2 cannot verify the system even for a single
thread. Terminator runs out of memory, while T2 cannot find a lexicographic
ranking function, as no such function exists. AProVE is able to verify the sys-
tem up to 8 threads, but appears to consume exponential time and memory. In
the Producer-Consumer and the Semaphore benchmarks, Arctor scales well,
while all other tools can handle at most two threads. In general, Arctor veri-
fies all benchmarks efficiently, requiring little time and memory to handle even
100 threads.

Models of Industrial Programs. These benchmarks represent abstractions
of real-life industrial multi-threaded programs. Typical thread here consists of
dozens of instructions. In our experiments we have found out that only Arc-
tor can handle these benchmarks. All other termination provers reached either
a memout, or an internal timeout, or returned ”termination unknown” already
for two threads. Therefore, in Table 7.2 we show the experimental results only
for Arctor, together with the detailed information about the benchmark pa-
rameters.

CUDA. The CUDA benchmark represents an abstraction of the parallel com-
putation of binomial option pricing model on NVidia GPUs [3].

Make. The Make benchmark models a parallel execution of the make program
(achieved by the make -j N command), doing a compilation of some pro-
gram. The model accounts for dependencies between targets and for the
workload restrictions.

Map-Reduce. The Map-Reduce benchmark is a model of Google’s implemen-
tation of the Map-Reduce framework for its App Engine distributed com-
putation platform [1].

Comparison of process parameters, such as the number of transitions and
instructions per thread, shows that Arctor is rather insensitive to them. On
the other hand, the behavior of Arctor on the last benchmark demonstrates its
current limitation: it does not handle very well processes with a high branching
degree, due to the resulting combinatorial explosion in the number of traces.

112 CHAPTER 7. EXPERIMENTAL EVALUATION

Benchmark / Threads Avg. trans. Avg. instr. Time Memory Nodes

CUDA 2 0.04 3.3 86
CUDA 3 0.09 3.7 129
CUDA 4 0.15 4.3 172
CUDA 5 0.24 4.5 215
CUDA 6 22 18 0.33 4.5 258
CUDA 7 0.45 4.6 301
CUDA 8 0.58 5.5 344
CUDA 9 0.72 5.5 387
CUDA 10 0.88 5.5 430

Make 2 0.04 3.6 126
Make 3 0.10 4.3 189
Make 4 0.17 4.5 252
Make 5 0.26 4.5 315
Make 6 30 54 0.36 4.5 378
Make 7 0.48 4.5 441
Make 8 0.62 4.6 504
Make 9 0.79 5.5 567
Make 10 0.97 5.5 630
Map-Reduce 2 0.42 4.5 238
Map-Reduce 3 2.50 4.5 393
Map-Reduce 4 8.22 5.5 547
Map-Reduce 5 31.3 6.5 767
Map-Reduce 6 10 13 78.7 6.5 986
Map-Reduce 7 219 7.3 1271
Map-Reduce 8 457 8.3 1555
Map-Reduce 9 1053 9.3 1905
Map-Reduce 10 1924 11.4 2254

Table 7.2: Experimental evaluation for the set of industrial multi-threaded
benchmarks. Execution time is measured in seconds, and memory in megabytes.
The second and the third columns represent the average number of transitions
and instructions per thread (one transition may comprise several instructions).

Chapter 8

Conclusion and Future
Work

In this thesis we have presented our solution to the verification problem for con-
current programs with infinite data. The solution we propose heavily rests on
the new concurrency model, called concurrent traces. For this model, we have
fully described its syntactic and language-based properties. We have also char-
acterized the complexity of such operations as emptiness checking and language
inclusion. We have identified two restrictions, namely transitivity and determin-
ism, which help to reduce the complexity to such complexity classes as NP or
GI, which are very well suitable for automation.

Building on concurrent traces as a foundation, we have developed proof sys-
tems for safety and liveness properties. We have demonstrated that for practi-
cally relevant classes of programs, such as multi-threaded programs with binary
semaphores, the constructed proofs are of polynomial size, and can be also
checked in polynomial time. The methods of the thesis have been implemented
in Arctor, the first scalable termination prover for concurrent programs, which
is able to handle programs with hundreds of non-trivial threads.

Though safety and liveness verification is very important, and, in principle
sufficient (because every temporal property can be represented as the intersec-
tion of a safety property and a liveness property), it is tempting to extend the
concurrent trace model and the proof system to full LTL properties. Here we
briefly outline how this extension could be done. First, concurrent traces need
to be extended to allow labeling of events with LTL formulas. A violation of a
temporal property ϕ could be then described by a concurrent trace where the
entry event is labeled with ¬ϕ. Second, specialized proof rules need to be devel-
oped, which would operate directly on the LTL formulas that label events. E.g.,
if an event in a trace is labeled with the formula ϕ, then the trace could be
transformed into another one, where a new event, labeled with ϕ, is introduced
after the considered event. The main complication here is that the new proof
rules need to account for induction, because the interaction of ϕ constraints
with ϕ and ϕ constraints is able to encode induction. Finally, the tableau
algorithm for liveness needs to be extended to an algorithm which operates on
LTL-labeled concurrent traces. We leave the development of these preliminary
ideas for future work.

113

114 CHAPTER 8. CONCLUSION AND FUTURE WORK

Causality-based verification can be extended with specialized proof rules
and/or algorithms, which would account for such aspects as counting and sym-
metry : this will be useful, for example, in the realm of distributed protocols
and parametrized systems. There is also a wide spectrum of application areas
for which causality-based verification could be specialized. We can imagine spe-
cialized proof rules for such primitives as message-passing, different forms of
synchronization, voting, etc.

Finally, we believe, the concurrent trace model can find a much wider area
of application than what is described in the thesis. For example, it could be
used to formalize and mechanically prove many of the hand-written proofs of
concurrent and distributed protocols. It could also be used as a specification
method, because it inherently allows to specify concurrent behaviors using a
graphical representation; this can be an advantage compared to such textual
specification languages as LTL or PSL. Alternatively, used as an output of a
verification tool, it can produce a much more understandable description of a
counterexample than a linear sequence of states, because it contains only the
necessary events, and highlights the relationships between them.

Bibliography

[1] AppEngine: Google’s implementation of the Map-Reduce frame-
work. http://docs.nvidia.com/cuda/samples/4_Finance/

binomialOptions/doc/binomialOptions.pdf. Accessed: 2016-03-21.

[2] International Satisfiability Modulo Theories Competition (SMT-COMP).
http://smtcomp.org.

[3] Parallel computation of binomial option pricing model on NVidia
GPUs. http://docs.nvidia.com/cuda/samples/4_Finance/

binomialOptions/doc/binomialOptions.pdf. Accessed: 2016-03-21.

[4] L. Babai. Graph isomorphism in quasipolynomial time. CoRR,
abs/1512.03547, 2015.

[5] T. Ball, V. Levin, and S. K. Rajamani. A decade of software model checking
with SLAM. Commun. ACM, 54(7):68–76, 2011.

[6] T. Ball, R. Majumdar, T. D. Millstein, and S. K. Rajamani. Automatic
predicate abstraction of C programs. In M. Burke and M. L. Soffa, edi-
tors, Proceedings of the 2001 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI), Snowbird, Utah, USA, June
20-22, 2001, pages 203–213. ACM, 2001.

[7] D. Beyer, T. A. Henzinger, R. Jhala, and R. Majumdar. The software
model checker blast. STTT, 9(5-6):505–525, 2007.

[8] N. Bjørner, A. Browne, M. Colón, B. Finkbeiner, Z. Manna, H. Sipma,
and T. E. Uribe. Verifying temporal properties of reactive systems: A step
tutorial. Formal Methods in System Design, 16(3):227–270, 2000.

[9] W. Brauer, W. Reisig, and G. Rozenberg, editors. Petri Nets: Central Mod-
els and Their Properties, Advances in Petri Nets 1986, Part II, Proceedings
of an Advanced Course, Bad Honnef, 8.-19. September 1986, volume 255
of Lecture Notes in Computer Science. Springer, 1987.

[10] M. Brockschmidt, B. Cook, and C. Fuhs. Better termination proving
through cooperation. In N. Sharygina and H. Veith, editors, CAV, vol-
ume 8044 of Lecture Notes in Computer Science, pages 413–429. Springer,
2013.

[11] M. Brockschmidt, F. Emmes, S. Falke, C. Fuhs, and J. Giesl. Alternating
runtime and size complexity analysis of integer programs. In E. Ábrahám

I

http://docs.nvidia.com/cuda/samples/4_Finance/binomialOptions/doc/binomialOptions.pdf
http://docs.nvidia.com/cuda/samples/4_Finance/binomialOptions/doc/binomialOptions.pdf
http://smtcomp.org
http://docs.nvidia.com/cuda/samples/4_Finance/binomialOptions/doc/binomialOptions.pdf
http://docs.nvidia.com/cuda/samples/4_Finance/binomialOptions/doc/binomialOptions.pdf

II BIBLIOGRAPHY

and K. Havelund, editors, Tools and Algorithms for the Construction and
Analysis of Systems - 20th International Conference, TACAS 2014, Held
as Part of the European Joint Conferences on Theory and Practice of Soft-
ware, ETAPS 2014, Grenoble, France, April 5-13, 2014. Proceedings, vol-
ume 8413 of Lecture Notes in Computer Science, pages 140–155. Springer,
2014.

[12] I. Brückner, K. Dräger, B. Finkbeiner, and H. Wehrheim. Slicing abstrac-
tions. In F. Arbab and M. Sirjani, editors, International Symposium on
Fundamentals of Software Engineering, International Symposium, FSEN
2007, Tehran, Iran, April 17-19, 2007, Proceedings, volume 4767 of Lecture
Notes in Computer Science, pages 17–32. Springer, 2007.

[13] J. R. Burch, E. M. Clarke, K. L. McMillan, D. L. Dill, and L. J. Hwang.
Symbolic model checking: 10ˆ20 states and beyond. In Proceedings of
the Fifth Annual Symposium on Logic in Computer Science (LICS ’90),
Philadelphia, Pennsylvania, USA, June 4-7, 1990, pages 428–439. IEEE
Computer Society, 1990.

[14] E. M. Clarke. The birth of model checking. In O. Grumberg and H. Veith,
editors, 25 Years of Model Checking - History, Achievements, Perspectives,
volume 5000 of Lecture Notes in Computer Science, pages 1–26. Springer,
2008.

[15] E. M. Clarke and E. A. Emerson. Design and synthesis of synchronization
skeletons using branching-time temporal logic. In D. Kozen, editor, Logics
of Programs, Workshop, Yorktown Heights, New York, May 1981, volume
131 of Lecture Notes in Computer Science, pages 52–71. Springer, 1981.

[16] E. M. Clarke, O. Grumberg, S. Jha, Y. Lu, and H. Veith. Counterexample-
guided abstraction refinement. In E. A. Emerson and A. P. Sistla, editors,
Computer Aided Verification, 12th International Conference, CAV 2000,
Chicago, IL, USA, July 15-19, 2000, Proceedings, volume 1855 of Lecture
Notes in Computer Science, pages 154–169. Springer, 2000.

[17] M. Colón and H. Sipma. Synthesis of linear ranking functions. In T. Mar-
garia and W. Yi, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 7th International Conference, TACAS 2001 Held as
Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2001 Genova, Italy, April 2-6, 2001, Proceedings, volume
2031 of Lecture Notes in Computer Science, pages 67–81. Springer, 2001.

[18] B. Cook, D. Kroening, P. Rümmer, and C. M. Wintersteiger. Ranking func-
tion synthesis for bit-vector relations. Formal Methods in System Design,
43(1):93–120, 2013.

[19] B. Cook, A. Podelski, and A. Rybalchenko. Termination proofs for systems
code. SIGPLAN Not., 41(6):415–426, June 2006.

[20] B. Cook, A. See, and F. Zuleger. Ramsey vs. lexicographic termination
proving. In N. Piterman and S. A. Smolka, editors, TACAS, volume 7795
of Lecture Notes in Computer Science, pages 47–61. Springer, 2013.

BIBLIOGRAPHY III

[21] A. Corradini, U. Montanari, F. Rossi, H. Ehrig, R. Heckel, and M. Löwe.
Algebraic approaches to graph transformation - part i: Basic concepts and
double pushout approach. In Rozenberg [68], pages 163–246.

[22] P. Cousot and R. Cousot. Abstract interpretation: A unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In R. M. Graham, M. A. Harrison, and R. Sethi, editors, Confer-
ence Record of the Fourth ACM Symposium on Principles of Programming
Languages, Los Angeles, California, USA, January 1977, pages 238–252.
ACM, 1977.

[23] P. Cousot and R. Cousot. Systematic design of program analysis frame-
works. In A. V. Aho, S. N. Zilles, and B. K. Rosen, editors, Conference
Record of the Sixth Annual ACM Symposium on Principles of Programming
Languages, San Antonio, Texas, USA, January 1979, pages 269–282. ACM
Press, 1979.

[24] S. Demri, F. Laroussinie, and P. Schnoebelen. A parametric analysis of
the state-explosion problem in model checking. J. Comput. Syst. Sci.,
72(4):547–575, 2006.

[25] K. Dräger, A. Kupriyanov, B. Finkbeiner, and H. Wehrheim. SLAB: A cer-
tifying model checker for infinite-state concurrent systems. In J. Esparza
and R. Majumdar, editors, Tools and Algorithms for the Construction and
Analysis of Systems, 16th International Conference, TACAS 2010, Held as
Part of the Joint European Conferences on Theory and Practice of Soft-
ware, ETAPS 2010, Paphos, Cyprus, March 20-28, 2010. Proceedings, vol-
ume 6015 of Lecture Notes in Computer Science, pages 271–274. Springer,
2010.

[26] H. Ehrig, R. Heckel, M. Korff, M. Löwe, L. Ribeiro, A. Wagner, and
A. Corradini. Algebraic approaches to graph transformation - part ii: Sin-
gle pushout approach and comparison with double pushout approach. In
Rozenberg [68], pages 247–312.

[27] E. A. Emerson and E. M. Clarke. Characterizing correctness properties of
parallel programs using fixpoints. In J. W. de Bakker and J. van Leeuwen,
editors, Automata, Languages and Programming, 7th Colloquium, Noord-
weijkerhout, The Netherland, July 14-18, 1980, Proceedings, volume 85 of
Lecture Notes in Computer Science, pages 169–181. Springer, 1980.

[28] J. Esparza and K. Heljanko. Unfoldings - A Partial-Order Approach to
Model Checking. Monographs in Theoretical Computer Science. An EATCS
Series. Springer, 2008.

[29] A. Farzan, Z. Kincaid, and A. Podelski. Inductive data flow graphs. In
R. Giacobazzi and R. Cousot, editors, The 40th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, POPL ’13,
Rome, Italy - January 23 - 25, 2013, pages 129–142. ACM, 2013.

[30] R. W. Floyd. Assigning meanings to programs. Proceedings of Symposium
on Applied Mathematics, 19:19–32, 1967.

IV BIBLIOGRAPHY

[31] J. Giesl, R. Thiemann, P. Schneider-Kamp, and S. Falke. Automated ter-
mination proofs with aprove. In V. van Oostrom, editor, RTA, volume 3091
of Lecture Notes in Computer Science, pages 210–220. Springer, 2004.

[32] P. Godefroid. Partial-Order Methods for the Verification of Concurrent
Systems: An Approach to the State-Explosion Problem. Springer-Verlag
New York, Inc., Secaucus, NJ, USA, 1996.

[33] S. Graf and H. Säıdi. Construction of abstract state graphs with PVS.
In O. Grumberg, editor, Computer Aided Verification, 9th International
Conference, CAV ’97, Haifa, Israel, June 22-25, 1997, Proceedings, volume
1254 of Lecture Notes in Computer Science, pages 72–83. Springer, 1997.

[34] M. Heizmann, J. Hoenicke, and A. Podelski. Refinement of trace abstrac-
tion. In J. Palsberg and Z. Su, editors, Static Analysis, 16th International
Symposium, SAS 2009, Los Angeles, CA, USA, August 9-11, 2009. Pro-
ceedings, volume 5673 of Lecture Notes in Computer Science, pages 69–85.
Springer, 2009.

[35] T. A. Henzinger, R. Jhala, R. Majumdar, and G. Sutre. Lazy abstraction.
In J. Launchbury and J. C. Mitchell, editors, Conference Record of POPL
2002: The 29th SIGPLAN-SIGACT Symposium on Principles of Program-
ming Languages, Portland, OR, USA, January 16-18, 2002, pages 58–70.
ACM, 2002.

[36] T. A. Henzinger, R. Majumdar, and J. Raskin. A classification of symbolic
transition systems. ACM Trans. Comput. Log., 6(1):1–32, 2005.

[37] C. A. R. Hoare. An axiomatic basis for computer programming. Commun.
ACM, 12(10):576–580, 1969.

[38] T. Hoare, B. Möller, G. Struth, and I. Wehrman. Concurrent kleene algebra
and its foundations. J. Log. Algebr. Program., 80(6):266–296, 2011.

[39] G. J. Holzmann. Pan: A protocol specification analyzer. 1981.

[40] G. J. Holzmann. The SPIN Model Checker - primer and reference manual.
Addison-Wesley, 2004.

[41] R. E. Johnson and F. B. Schneider. Symmetry and similarity in distributed
systems. In M. A. Malcolm and H. R. Strong, editors, Proceedings of the
Fourth Annual ACM Symposium on Principles of Distributed Computing,
Minaki, Ontario, Canada, August 5-7, 1985, pages 13–22. ACM, 1985.

[42] O. Kupferman and M. Y. Vardi. Model checking of safety properties. For-
mal Methods in System Design, 19(3):291–314, 2001.

[43] A. Kupriyanov. Implementation of the Arctor termination prover. http:

//www.react.uni-saarland.de/tools/arctor/.

[44] A. Kupriyanov and B. Finkbeiner. Causal termination of multi-threaded
programs. In A. Biere and R. Bloem, editors, Computer Aided Verification
- 26th International Conference, CAV 2014, Held as Part of the Vienna
Summer of Logic, VSL 2014, Vienna, Austria, July 18-22, 2014. Proceed-
ings, volume 8559 of Lecture Notes in Computer Science, pages 814–830.
Springer, 2014.

http://www.react.uni-saarland.de/tools/arctor/
http://www.react.uni-saarland.de/tools/arctor/

BIBLIOGRAPHY V

[45] L. Lamport. A new solution of dijkstra’s concurrent programming problem.
Commun. ACM, 17(8):453–455, 1974.

[46] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Trans. Software Eng., 3(2):125–143, 1977.

[47] L. Lamport. Proving the correctness of multiprocess programs. IEEE
Trans. Software Eng., 3(2):125–143, 1977.

[48] S. Lu, S. Park, E. Seo, and Y. Zhou. Learning from mistakes: a comprehen-
sive study on real world concurrency bug characteristics. In S. J. Eggers
and J. R. Larus, editors, Proceedings of the 13th International Conference
on Architectural Support for Programming Languages and Operating Sys-
tems, ASPLOS 2008, Seattle, WA, USA, March 1-5, 2008, pages 329–339.
ACM, 2008.

[49] A. Malkis. Cartesian Abstraction and Verification of Multithreaded Pro-
grams. PhD thesis, Albert-Ludwigs-Universität Freiburg im Breisgau, 2010.

[50] Z. Manna. Introduction to Mathematical Theory of Computation. McGraw-
Hill, Inc., New York, NY, USA, 1974.

[51] Z. Manna and A. Pnueli. Adequate proof principles for invariance and live-
ness properties of concurrent programs. Sci. Comput. Program., 4(3):257–
289, 1984.

[52] Z. Manna and A. Pnueli. The temporal logic of reactive and concurrent
systems - specification. Springer, 1992.

[53] Z. Manna and A. Pnueli. Temporal verification of reactive systems - safety.
Springer, 1995.

[54] A. W. Mazurkiewicz. Trace theory. In Brauer et al. [9], pages 279–324.

[55] K. L. McMillan. Symbolic model checking. Kluwer, 1993.

[56] K. L. McMillan. Lazy abstraction with interpolants. In T. Ball and R. B.
Jones, editors, Computer Aided Verification, 18th International Confer-
ence, CAV 2006, Seattle, WA, USA, August 17-20, 2006, Proceedings, vol-
ume 4144 of Lecture Notes in Computer Science, pages 123–136. Springer,
2006.

[57] A. Miné. Static analysis of run-time errors in embedded critical parallel C
programs. In G. Barthe, editor, Programming Languages and Systems - 20th
European Symposium on Programming, ESOP 2011, Held as Part of the
Joint European Conferences on Theory and Practice of Software, ETAPS
2011, Saarbrücken, Germany, March 26-April 3, 2011. Proceedings, volume
6602 of Lecture Notes in Computer Science, pages 398–418. Springer, 2011.

[58] M. L. Minsky. Recursive Unsolvability of Post’s Problem of “Tag” and
other Topics in Theory of Turing Machines. The Annals of Mathematics,
74(3):437–455, Nov. 1961.

VI BIBLIOGRAPHY

[59] E.-R. Olderog and K. R. Apt. Fairness in parallel programs: The trans-
formational approach. ACM Trans. Program. Lang. Syst., 10(3):420–455,
1988.

[60] S. S. Owicki and D. Gries. An axiomatic proof technique for parallel pro-
grams I. Acta Inf., 6:319–340, 1976.

[61] S. S. Owicki and D. Gries. Verifying properties of parallel programs: An
axiomatic approach. Commun. ACM, 19(5):279–285, 1976.

[62] S. S. Owicki and L. Lamport. Proving liveness properties of concurrent
programs. ACM Trans. Program. Lang. Syst., 4(3):455–495, 1982.

[63] D. A. Peled. All from one, one for all: on model checking using repre-
sentatives. In C. Courcoubetis, editor, Computer Aided Verification, 5th
International Conference, CAV ’93, Elounda, Greece, June 28 - July 1,
1993, Proceedings, volume 697 of Lecture Notes in Computer Science, pages
409–423. Springer, 1993.

[64] A. Pnueli. The temporal logic of programs. In 18th Annual Symposium
on Foundations of Computer Science, Providence, Rhode Island, USA, 31
October - 1 November 1977, pages 46–57. IEEE Computer Society, 1977.

[65] A. Podelski and A. Rybalchenko. A complete method for the synthesis of
linear ranking functions. In B. Steffen and G. Levi, editors, Verification,
Model Checking, and Abstract Interpretation, 5th International Conference,
VMCAI 2004, Venice, January 11-13, 2004, Proceedings, volume 2937 of
Lecture Notes in Computer Science, pages 239–251. Springer, 2004.

[66] A. Podelski and A. Rybalchenko. Transition invariants. In Proceedings of
the 19th Annual IEEE Symposium on Logic in Computer Science, pages
32–41, July 2004.

[67] A. Podelski and A. Rybalchenko. ARMC: the logical choice for software
model checking with abstraction refinement. In M. Hanus, editor, Practi-
cal Aspects of Declarative Languages, 9th International Symposium, PADL
2007, Nice, France, January 14-15, 2007., volume 4354 of Lecture Notes in
Computer Science, pages 245–259. Springer, 2007.

[68] G. Rozenberg, editor. Handbook of Graph Grammars and Computing by
Graph Transformations, Volume 1: Foundations. World Scientific, 1997.

[69] A. P. Sistla and E. M. Clarke. The complexity of propositional linear
temporal logics. J. ACM, 32(3):733–749, 1985.

[70] A. Turing. Checking a large routine. In M. Campbell-Kelly, editor, The
Early British Computer Conferences, pages 70–72. MIT Press, Cambridge,
MA, USA, 1989.

[71] C. Urban and A. Miné. Proving guarantee and recurrence temporal prop-
erties by abstract interpretation. In D. D’Souza, A. Lal, and K. G. Larsen,
editors, Verification, Model Checking, and Abstract Interpretation - 16th
International Conference, VMCAI 2015, Mumbai, India, January 12-14,
2015. Proceedings, volume 8931 of Lecture Notes in Computer Science,
pages 190–208. Springer, 2015.

BIBLIOGRAPHY VII

[72] A. Valmari. Stubborn sets for reduced state space generation. In G. Rozen-
berg, editor, Advances in Petri Nets 1990 [10th International Conference on
Applications and Theory of Petri Nets, Bonn, Germany, June 1989, Pro-
ceedings], volume 483 of Lecture Notes in Computer Science, pages 491–515.
Springer, 1989.

[73] G. Winskel. Event structures. In Brauer et al. [9], pages 325–392.

	Introduction
	The Verification Problem
	Safety
	Liveness
	Verification as Proof Search

	Preliminaries
	Assertion Language and SMT Solving
	Graphs and Graph Transformations
	Linear Temporal Logic
	Transition Systems
	Synchronized Transition Systems

	Concurrent Traces
	Syntax and Semantics
	Language Intersection, Union, Emptiness
	Complementation and Language Inclusion

	Causality-based Verification: Safety
	Proofs with Trace Transformers
	Representation of Safety Properties
	Safety Trace Transformers
	Trace Unwinding
	Trace Tableau
	Causal Loops and Looping Trace Tableau
	Abstract Trace Tableau
	Polynomial Verification of Semaphore Programs

	Causality-based Verification: Liveness
	Infinite Concurrent Traces
	Representation of Liveness Properties
	Liveness Trace Transformers
	Tableau Proofs of Liveness Properties

	Experimental Evaluation
	Conclusion and Future Work

