
Saarland University

Faculty of Natural Sciences and Technology I

Department of Computer Science

Graph-based methods for unsupervised

and semi-supervised data analysis

Syama Sundar Rangapuram

Dissertation

zur Erlangung des Grades
des Doktors der Naturwissenschaften (Dr. rer. nat.)
der Naturwissenschaftlich-Technischen Fakultäten
der Universität des Saarlandes

Saarbrücken, March 2016

Tag des Kolloquiums:
10.10.2016

Dekan:
Prof. Dr. Frank-Olaf Schreyer

Vorsitzender des Prüfungsausschusses:
Prof. Dr. Joachim Weickert
Universität des Saarlandes

1. Gutachter:
Prof. Dr. Matthias Hein
Universität des Saarlandes

2. Gutachter:
Prof. Dr. Le Thi Hoai An
Université de Lorraine

Akademischer Mitarbeiter:
Dr. Karteek Sreenivasaiah
Max-Planck-Institut für Informatik

Abstract

Clustering and community detection are two important problems in data analy-
sis with applications in various disciplines. Often in practice, there exists prior
knowledge that helps the process of data analysis. In this thesis we develop generic
graph-based methods for these data analysis problems both in unsupervised and
semi-supervised settings. The main advantage of our methods is that they provide
a common framework for integrating soft as well as hard prior knowledge. In the
latter case, ours is the first method to have provable guarantees on the satisfaction
of the given prior knowledge. The foundation of our methods is the exact continuous
relaxation result that we derive for a class of combinatorial optimization problems.
More specifically, we show that the (constrained) minimization of a ratio of set
functions can be equivalently rewritten as a continuous optimization problem. We
also present e�cient algorithms for solving the continuous relaxations. While the
global optimality is not guaranteed, in practice our methods consistently outper-
form the corresponding convex or spectral relaxations by a large margin. Moreover,
our method has an additional guarantee that the solution respects the prior knowl-
edge.

iii

iv

Zusammenfassung

Clustering und Community Detection sind zwei bedeutende Probleme in der Da-
tenanalyse, mit vielfältigen Anwendungen in unterschiedlichen Bereichen. In der
Praxis existiert häufig Vorwissen das in den Prozess der Datenanalyse einfließen
kann. In dieser Arbeit entwickeln wir generische Graph-basierte Methoden für
diese Problemstellungen der Datenanalyse, sowohl für den unüberwachten als auch
den teilüberwachten Fall. Der Hauptvorteil unserer Verfahren ist dass sie ein allge-
meines Framework zur Integration von weichen und harten Nebenbedingungen bere-
itstellen. In letzterem Fall ist unsere Methode die erste die beweisbare Garantien
zur Erfüllung des gegebenen Vorwissen liefern kann. Die Grundlage unserer Meth-
oden ist ein Resultat über exakte kontinuierliche Relaxierungen das wir für eine
Klasse von kombinatorischen Optimierungsproblemen herleiten. Konkret zeigen
wir dass die (beschränkte) Minimierung eines Bruches von Mengenfunktionen in
ein äquivalentes kontinuierliches Optimierungsproblem umgeformt werden kann.
Des Weiteren präsentieren wir e�ziente Algorithmen zur Lösung der kontinuier-
lichen Relaxierungen. Während die globale Optimalität nicht garantiert werden
kann, werden die entsprechenden konvexen oder spektralen Relaxierungen in der
Praxis mit einem deutlichen Vorsprung übertro↵en. Darüber hinaus hat unsere
Methode eine zusätzliche Garantie dass die berechnete Lösung das Vorwissen stets
berücksichtigt.

v

vi

Acknowledgments

First and foremost I would like to thank my advisor Matthias Hein for giving me
the opportunity to do my doctoral thesis with him. It has been a great learning
experience for me which I thoroughly enjoyed. I really appreciate the valuable
insights and time he has provided in all the projects. I am also thankful to him for
allowing me to attend summer school and conferences.

Next, I would like to thank Prof. Le Thi Hoai An for agreeing to review my
thesis. I also would like to thank International Max Planck Research School for
Computer Science for funding part of my Ph.D. work.

Special thanks to Thomas Bühler for being a wonderful o�cemate and co-author.
I thank him for all the valuable discussions we had and for being always available
for a quick help in professional as well as personal matters.

I thank Simon Setzer for the inspiring discussions we had during our collab-
oration and I especially appreciate his help in solving optimization problems. I
also thank Pramod Kaushik Mudrakarta for the pleasant time we had during our
collaboration.

I thank Martin Slawski for being an excellent colleague and Pratik Kumar
Jawanpuria for proofreading parts of my thesis. I also thank former and present
members of the Machine Learning group for a nice working atmosphere. Special
thanks go to Irmtraud Stein and Dagmar Glaser for their help in administrative
tasks.

I thank my friends Shiva Lingam, Sairam Gurajada, Srikanth Duddela, Satish
Pammi, Harish Bokkasam for the fun and support they provided. I also thank
Indian community in Saarbrücken for all the wonderful parties and the nice time
we had here.

Finally I would like to thank my family for always allowing me to pursue my
goals and my wife Meena for her understanding and constant support during the
work on this thesis.

vii

viii

Contents

1 Introduction 1
1.1 Graph-based setting . 1

1.1.1 Graph construction . 2
1.1.2 Clustering based on balanced cuts 3
1.1.3 Community detection based on densest subgraphs 4

1.2 Incorporating prior knowledge . 4
1.3 Overview of the thesis . 5

1.3.1 Contributions of the thesis 5

2 Background 7
2.1 Mathematical background . 7

2.1.1 Basics from analysis . 7
2.1.2 Set functions and Lovász extensions 9
2.1.3 Submodular set functions 10
2.1.4 Exact continuous relaxations 15
2.1.5 DC Programming . 16
2.1.6 Fractional programming . 19
2.1.7 Nonlinear eigenproblems and RatioDCA 20

2.2 Clustering methods . 21
2.2.1 k-means clustering . 22
2.2.2 Spectral clustering . 23
2.2.3 p-Spectral clustering . 25
2.2.4 1-Spectral clustering . 26
2.2.5 Relation between kernel k-means and normalized cut 27
2.2.6 Clustering based on non-negative matrix factorization 29

3 Two-class clustering with constraints 33
3.1 State-of-the-art . 34

3.1.1 Spectral learning . 35
3.1.2 Flexible constrained spectral clustering 35
3.1.3 Spectral clustering with linear constraints 36
3.1.4 Constrained clustering via spectral regularization 37

3.2 Formulation as constrained balanced cut problem 38
3.3 Direct integration of must-link constraints 40
3.4 Exact continuous relaxation of constrained balanced cut problem . . 42
3.5 Algorithm for constrained balanced cut problem 46

3.5.1 Solution via RatioDCA . 46
3.5.2 Quality guarantee for our method 47

ix

x CONTENTS

3.5.3 Smooth minimization of the inner problem 48
3.5.4 Preconditioning for the inner problem 56

3.6 Experiments . 59
3.6.1 Constrained clustering . 59
3.6.2 E↵ectiveness of preconditioning 64

3.7 Conclusions . 64

4 Multi-class clustering 67
4.1 State-of-the-art . 68
4.2 Continuous relaxation of the multi-class balanced cut 69

4.2.1 Why simplex constraints alone are not su�cient 72
4.3 Algorithm for the continuous relaxation 73

4.3.1 Smooth minimization of the inner problem 76
4.3.2 Choice of membership constraints I 81

4.4 Multi-class clustering with constraints 86
4.4.1 Formulation of constrained balanced k-cut problem 86
4.4.2 Continuous relaxation of constrained balanced k-cut problem 89
4.4.3 Algorithm for the continuous relaxation 90

4.5 Experiments . 96
4.5.1 Unconstrained clustering . 96
4.5.2 Constrained clustering . 101

4.6 Conclusions . 113

5 Community detection via densest subgraphs 115
5.1 Generalized densest subgraph problem 116

5.1.1 Relation to local clustering 117
5.2 An equivalent unconstrained formulation 117
5.3 Exact continuous relaxation . 120
5.4 Algorithm for the generalized densest subgraph problem 125

5.4.1 Solution via RatioDCA . 125
5.4.2 Quality guarantee for our method 126
5.4.3 Smooth minimization of the inner problem 127

5.5 LP relaxation of the generalized densest subgraph problem 131
5.6 Application: Team formation in social networks 134
5.7 Experiments . 135

5.7.1 Experimental Setup . 135
5.7.2 Quantitative Evaluation . 136
5.7.3 Qualitative Evaluation . 137

5.8 Conclusions . 139

6 Conclusions 141
6.1 Summary . 141
6.2 Future work . 142

Chapter 1

Introduction

Cluster analysis, an instance of unsupervised learning, is the problem of grouping a
given set of objects into clusters based on similarity (or dissimilarity). Here cluster
refers to a set of points that are more closely related to each other than the rest of
the points. Clustering has applications in a variety of disciplines including bioin-
formatics [106], computer vision [62] and consequently di↵erent clustering methods
have been developed over the years [83, 52, 108, 46, 34]. These clustering algorithms
di↵er by their choice of the objective that measures the quality of a clustering and
the similarity function. Most of the algorithms can directly work with the given
pairwise similarities thus avoiding the explicit feature representation of the data.
Some algorithms assume that the number of required clusters k is given as input
while others like hierarchical clustering outputs nested clusterings for all possible
values of k. In this thesis, we assume that the number of clusters k is fixed and is
provided as an input. Moreover, we assume that the clustering is a partitioning of
the given objects; i.e., each object is assigned to exactly to one cluster.

It has been shown that incorporating the available prior knowledge improves
the performance of clustering methods [116, 117]. The prior knowledge for clus-
tering varies from instance-level (e.g., must-link or cannot-link constraints) to the
group level (e.g., bound on the size of each cluster) [14]. Since acquiring constraint
information is relatively cheaper, constrained clustering has been an active area of
research [14].

Community detection is a related problem where the goal is to find a single well-
connected component in a given graph. The problem of finding dense regions in
graphs arises in several applications e.g., in bioinformatics [106, 111, 12, 60, 102] and
network analysis [72, 40, 47]. In real world applications one often needs to integrate
priors based on the size or the locality of the subset being extracted [102, 47].

We now describe in some detail the graph-based setting for unsupervised learn-
ing, in particular highlighting the options available in terms of graph construction
from the given pairwise similarities and the criteria used thereafter for the data
analysis.

1.1 Graph-based setting

Given a set of objects x1, . . . , xn along with pairwise similarities (xi, xj) � 0, 8i, j =
1, . . . , n, where  is symmetric, a natural way to represent the relationships (or the

1

2 CHAPTER 1. INTRODUCTION

global structure) in the data is via graphs. A graph G(V,E) is defined by a set
of vertices V = {1, . . . , n} and a set of edges E = {(i, j) : i, j 2 V } encoding the
pairwise relationship between the vertices. In this thesis we assume that all the
graphs are undirected; i.e., (i, j) 2 E =) (j, i) 2 E. From the given pairwise
similarities of objects, one can build a similarity graph by forming a vertex i for
each data point xi and connecting two vertices i and j by an edge (i, j) depending
on the similarity between xi and xj. Moreover the edges can be given weights wij

indicating the amount of similarity. For simplicity, we often use the terms objects
and vertices interchangeably.

1.1.1 Graph construction

A straightforward way to build a similarity graph is to connect each pair of vertices
i and j by an edge if (xi, xj) > 0. This leads, depending on the similarity ,
to a densely connected graph making it computationally expensive to work with.
Moreover, unless  models the local neighborhoods well, such a construction can
obscure the global structure inherent in the data. On the other hand, neighborhood
graphs, which are built using the local neighborhood information, are more likely
to uncover the overall structure in the data. Moreover, neighborhood graphs are
usually sparse. The most widely used neighborhood graphs are ✏-neighborhood
graphs and K-nearest neighbor graphs.

K-nearest neighbor graphs: Here a vertex i is connected to a vertex j if j is one
of the K-nearest neighbors of i, where the nearest neighbor is defined based on the
similarity . Note the adaptive nature of this procedure to the local neighborhood:
high similarity between xi and xj does not imply an edge (i, j) (e.g., xi belongs
to a high density region and has more similar objects in its neighborhood) and an
edge (i, j) does not necessarily mean xi and xj are highly similar (e.g., outliers,
even though highly dissimilar from the rest of the objects, are still connected to K
vertices). Thus, it makes sense here to assign weights to the edges according to the
similarity.

Note that the neighborhood relation defined above is not symmetric although
the original similarities are symmetric; a vertex j can be among the K nearest
neighbors of i while j may have K points closer (or more similar) to it than i.
Thus, this construction leads to a directed graph. In practice, one of the following
two approaches are followed to maintain the symmetric relation and thus making
the graph undirected. The first one, where the direction of the edges is ignored, cor-
responds to connecting two vertices if either one is among the K-nearest neighbors
of the other. Graph constructed in this way is known as symmetric KNN graph.
The secoondnd one imposes a stronger restriction and often leads to disconnected
graph; here two vertices are connected if each of them is among the K-nearest
neighbors of the other resulting in the so-called mutual KNN graph. Since outliers
are typically not among the K nearest neighbors of other vertices, they are likely
to be disconnected in a mutual KNN graph.

✏-neighborhood graphs: These graphs are typically constructed using pairwise
distances. All pairs of vertices whose distances are below a given threshold ✏ are

1.1. GRAPH-BASED SETTING 3

connected by an edge. Note that this construction leads to an undirected graph.
Both unweighted as well as weighted versions of ✏-neighborhood graphs are used
in machine learning. In the latter case, the weights are constructed from the pair-
wise similarities of the points, which are derived from the given pairwise distances.
We note here that ✏-neighborhood graphs can also be constructed from pairwise
similarities.

1.1.2 Clustering based on balanced cuts

Once the similarity graph is constructed, the clustering problem can be transformed
to a graph partitioning problem: divide the graph into k components such that the
total edge weight is large within each component and small across the components.
A natural way of partitioning the graph is by minimizing the cut, the total weight of
the edges that separate di↵erent components. However, since the cut value increases
with the number of edges, minimizing the cut often results in components containing
single vertices that are isolated from the rest of the graph. To avoid this unwanted
bias towards clusters of small size, di↵erent measures were proposed based on the
cut as well as on the “size” of clusters [52, 108]. A widely used “balanced” cut
criteria has the form

min
(C1,...,Ck)2Pk

k
X

l=1

cut(Cl, C l)

Ŝ(Cl)
(1.1)

where Pk is the set of all k-partitions of V , C = V \C, cut(C,C) =
P

i2C, j2C wij

and Ŝ(C) : 2V ! R+ is a balancing function. Two most popular criteria are ratio
cut where Ŝ(C) = |C|, the size of the component C and normalized cut where
Ŝ(C) = vol(C), the volume of the component C. The volume of C is defined as
sum of the degrees of the vertices in C, vol(C) =

P

i2C di, and di =
Pn

j=1 wij is
the degree of vertex i. Ratio cut is a good model if final clusters have to be of
the same size, e.g., applications in parallel computing [52]. Normalized cuts are
most popular in image processing and computer vision applications [108, 125, 86]
as they indirectly maximize the similarity of points within each cluster apart from
minimizing the similarity across the clusters. This can be seen by rewriting the
normalized cut as

k
X

l=1

cut(Cl, C l)

vol(Cl)
=

k
X

l=1

vol(Cl)� assoc(Cl)

vol(Cl)
= k �

k
X

l=1

assoc(Cl)

vol(Cl)
,

where assoc is the association of a set defined as assoc(C) =
P

i,j2C wij, which
measures the similarity with in the set C. Thus minimizing the normalized cut
across the clusters can be seen as maximizing the normalized association of each
cluster. Two variants that enforce balance more strongly are the so-called ratio
Cheeger cut and normalized Cheeger cut. The balancing functions in these cases
are given respectively by min{|C| ,

�

�C
�

�} and min{vol(C), vol(C)}.
It has been shown that the normalized cut and ratio cut problems are NP-hard

[108, 16] and consequently one has to use approximation or relaxation algorithms
in practice. Spectral clustering [108, 92, 115] is based on solving a continuous
relaxation of the ratio/normalized cut that leads to an eigenvalue problem, which

4 CHAPTER 1. INTRODUCTION

can be optimally solved. However, one has to rely on heuristic procedures to obtain
a clustering from the continuous solution of the spectral relaxation. Moreover, the
spectral relaxation is very loose [51] and often greedy approaches [31] outperform
spectral clustering. Furthermore, it is very hard to enforce any prior knowledge in
the spectral clustering framework. In this thesis, we develop methods for solving the
balanced cut problem (1.1) for a generic balancing function. Moreover, we show
how prior information can be e�ciently incorporated in clustering. In fact, our
constrained clustering method is the first to guarantee that the solution respects
the given prior knowledge in a hard-enforcement setting.

1.1.3 Community detection based on densest subgraphs

In the case of community detection, a natural graph-theoretic criteria is the density
of a subset, which is defined as the ratio of total edge weight and the “size” of
the subset. Then the community detection problem can be formulated as finding a
densest subgraph

max
C✓V

assoc(C)

|C| , (1.2)

where assoc(C) = vol(C)� cut(C, V \C), and cut, vol are the volume and cut func-
tions as defined previously. Although, the maximum densest subgraph problem
can be optimally solved in polynomial time [49], incorporating intuitive prior in-
formation such as restricting the size of the subset makes the problem NP-hard
[45, 4, 68]. It has been shown in [68] that for the densest subgraph problem with
a lower bound constraint, i.e., |C| � k, there exists a polynomial time algorithm
achieving an approximation guarantee of 2. For equality constraint, the best known
approximation algorithm has an approximation ratio of O(V �), for some � < 1

3
[45].

It is also shown that the densest subgraph problem with upper bound and equality
constraints are equally hard [68]. Up to our knowledge there is no method that can
handle both lower and upper bound constraints simultaneously which for example
arise in some applications [95]. In this thesis we develop a method for a very generic
version of the densest subgraph problem allowing any type of size constraints as well
as application specific priors.

1.2 Incorporating prior knowledge

An important form of prior information in clustering comes via must-link and
cannot-link constraints. A must-link constraint (p, q) indicates that the objects
p and q should be assigned to the same cluster, while a cannot-link constraint
(p, q) indicates that p and q should belong to di↵erent clusters. Depending on the
application, there are other kinds of supervision available. For example, in im-
age segmentation application, the supervision can be partial labeling of the pixels
(background or object of a particular type) [18]. In the one-class setting (i.e., dens-
est subgraph problem) a more relevant prior is a bound on the size of the cluster
[86, 85, 47].

Depending on the application one may have to provide a solution that satis-
fies all constraints (hard-enforcement) or allow for the noise or inconsistency in the

1.3. OVERVIEW OF THE THESIS 5

prior knowledge (soft-enforcement). In the case of labels in image segmentation or
size constraints in the case of densest subgraph problem, one can argue in favor
of satisfying all the constraints. In contrast, it is not clear if one should always
enforce pairwise constraints in clustering as they might be inconsistent in the worst
case, unlike label or size constraints. On the other hand preliminary work in con-
strained clustering shows that satisfying pairwise constraints actually improves the
performance [116, 117]. Moreover, there exist problem settings such as alternative
clustering [13] where it maybe necessary to satisfy the constraints in order to find
a clustering di↵erent from the given clustering. Thus, ideally one would prefer a
method that can handle both situations in a common framework and this is precisely
the approach we take in this thesis.

Fundamentally there are two di↵erent approaches in incorporating the con-
straints in clustering. One line of work attempts to directly modify [64] or learn
[119] the similarity metric between the objects using the given constraints and then
apply a standard (constrained or unconstrained) clustering method on the learned
metric. The other approach is to modify the clustering problem by explicitly en-
coding the prior information as side constraints [116, 121, 117]. In the latter case,
there are methods that encode priors as hard constraints [121] while others require
the solution to satisfy a certain amount of prior information [117]. In this thesis we
take the latter approach and address both soft and hard enforcement settings in a
single framework.

1.3 Overview of the thesis

In Chapter 2 we first present the necessary mathematical background and then
discuss the existing methods for clustering highlighting the connections between
di↵erent approaches. Chapter 3 presents our work in the area of constrained clus-
tering for the two-class setting. We address the multi-class setting in Chapter 4
where we present both unconstrained and constrained clustering methods for the
generic case (k > 2). We consider the one-class setting in Chapter 5 where we dis-
cuss our new method for solving a generic version of the densest subgraph problem.

1.3.1 Contributions of the thesis

Here is the summary of the contributions of the thesis.

1. Two-class setting: In Chapter 3, we derive a novel formulation for the con-
strained clustering problem in the two-class setting, that allows minimization
of a trade-o↵ between constraint violation and the clustering objective (bal-
anced cut in our case). Unlike the existing work, we show that the proposed
framework can handle both soft and hard constraints. We derive exact con-
tinuous relaxation result for the new formulation and show that the resulting
non-smooth problem can be e�ciently solved. We also present a new precon-
ditioning technique for a generic graph-based problem that is of independent
interest. In contrast to the existing work, our method finds a solution that is
guaranteed to satisfy all the constraints in the hard-enforcement setting.

6 CHAPTER 1. INTRODUCTION

2. Multi-class setting: In Chapter 4, we present a new cnvontinuous relaxation
to directly address the multi-class clustering. It turns out that enforcing the
partitioning constraint is extremely di�cult for the multi-class problem and
as a result many methods [34, 124, 123, 19] even fail to produce a k-way
clustering. In contrast, we develop a generic method that allows to minimize
any application specific balancing criteria apart from the standard balanced
cuts such as ratio and normalized cuts. Another contribution of this chap-
ter is a monotonic descent method for solving a very di�cult sum-of-ratios
minimization problem.

Although exact continuous relaxations similar to the two-class case could not
be obtained here, we show that our method makes the integration of hard-
prior information possible for the first time in the multi-class setting. Similarly
to the two-class case, we develop a constrained clustering method that can
guarantee a solution satisfying all the constraints (as long as any consistent
partition can be obtained e�ciently) while still allowing for soft enforcement
of noisy priors. Note that none of the existing methods in the multi-class
setting have such a guarantee even for simple label constraints nor do they
have any control on the number of constraints violated.

3. One-class setting: In Chapter 5, we consider a generic version of the dens-
est subgraph problem that models a variety of applications in bioinformatics
[106, 111, 12, 60, 102] and social network analysis [72, 47]. We show that
there exists an exact continuous relaxation for the generic version of the dens-
est subgraph problem considered and present an e�cient method for solving
the resulting continuous problem. As an application, we discuss the team
formation problem in the context of social networks. The main feature of our
method is the guarantee that our solution satisfies all the given constraints
which is a necessary condition for the team formation problem.

Chapter 2

Background

In the first part of this chapter we present the necessary mathematical background
required for understanding the material presented later in the thesis. In the second
part we describe various methods for clustering including graph-based approaches
and the recent developments based on non-negative matrix factorization.

2.1 Mathematical background

In this section we describe set functions and the so-called Lovász extensions which
play an important role in deriving the exact continuous relaxations of a class of com-
binatorial problems considered in this thesis. We present known exact continuous
relaxations and recent methods for solving them. As we will see later, these exact
continuous relaxations result in optimization problems where one needs to minimize
a ratio of a certain class of di↵erence of convex functions. So, we also discuss related
optimization methods from fractional programming as well as di↵erence of convex
programming. We begin with a review of basic concepts from analysis.

2.1.1 Basics from analysis

Convex functions play an important role in mathematical optimization especially
because of their property that every local minimum is a global minimum. Many
algorithms exist [17] for solving convex optimization problems where the goal is to
minimize a convex function over a convex set. Moreover, convex optimization is a
key ingredient in some of the methods designed for solving non-convex problems.
Here we first gather some basic definitions from convex analysis [98].

Definition 2.1 (Convex set) A set D ✓ Rn is a convex set if for all f, g 2 D
and ↵ 2 [0, 1], it holds that ↵f + (1� ↵)g 2 D.

Definition 2.2 (Convex function) A function R : D ! R is a convex function
if its domain D ✓ Rn is a convex set and for all f, g 2 D, and ↵ 2 [0, 1] it holds
that

R(↵f + (1� ↵)g)  ↵R(f) + (1� ↵)R(g).

Definition 2.3 (⇢-convexity) A function R : Rn ! R is called ⇢-convex for some
⇢ � 0 on a convex set D if for all f, g 2 D and all ↵ 2 [0, 1], it holds that

R(↵f + (1� ↵)g)  ↵R(f) + (1� ↵)R(g)� ⇢

2
↵(1� ↵) kf � gk22 .

7

8 CHAPTER 2. BACKGROUND

We denote the supremum of all ⇢ � 0 satisfying the above inequality by ⇢D(R). We
use the simplified notation ⇢(R) if D = Rn. R is said to be strongly convex on D
with parameter ⇢D(R) if ⇢D(R) > 0.

The continuous extensions of set functions that we later consider are in general
not di↵erentiable. We now define the subdi↵erential of a convex function which is
a generalization of the gradient to the non-di↵erentiable case.

Definition 2.4 (Subdi↵erential) Let R : Rn ! R be a convex function. The
subdi↵erential of R at a given point f 2 Rn is defined as

@R(f) = {r 2 Rn : R(g) � R(f) + hr, g � fi , 8g 2 Rn}.

An element r 2 @R(f) is called a subgradient of R at f .

Definition 2.5 (Normal cone) The normal cone of a non-empty convex set D ✓
Rn at a given point f 2 D is defined as

ND(f) = {r | hr, g � fi  0, 8g 2 D}.

Let D ✓ Rn be a non-empty convex set and ◆D denote the indicator function of D
defined as ◆D(f) = 0, if f 2 D, and 1 otherwise. It is easy to deduce from the
definition that the subdi↵erential of ◆D at f 2 D is given by ND(f).

Another class of functions considered in this thesis are positively p-homogeneous
functions which are defined as follows.

Definition 2.6 (p-homogeneity) A function R : Rn ! R is called positively p-
homogeneous if R(↵f) = ↵pR(f), 8↵ � 0.

The relation between convex p-homogeneous functions (p > 0) and their subdi↵er-
entials is given by the generalized Euler’s identity [122].

Lemma 2.1 Let R : Rn ! R be a continuous, convex and positively p-homogeneous
function. Then for each f 2 Rn, r 2 @R(f) and p > 0, it holds that hr, fi = pR(f).

We close this section by introducing the notion of subdi↵erential for non-smooth,
non-convex functions. Recall that Definition 2.4 is valid only for convex functions.
Clarke’s subdi↵erential or the generalized gradient is a further generalization of
subdi↵erentials to non-convex functions which are locally Lipschitz continuous [27].

Definition 2.7 (Lipschitz continuity) A function R : Rn ! R is L-Lipschitz
continuous if 9L > 0 such that for all f, g 2 Rn the following holds

kR(f)�R(g)k2  L kf � gk2 .

A function is called locally Lipschitz continuous if for every f 2 Rn there exists a
neighborhood U of f such that R restricted to U is Lipschitz continuous.

Definition 2.8 (Clarke’s directional derivative, Clarke’s subdi↵erential) Let
R : Rn ! R [{1} be a locally Lipschitz continuous function at f 2 Rn. The
Clarke’s directional derivative and the Clarke’s subdi↵erential [27] of R at f are
defined as

R"(f, v) = lim
g!f, t!0

sup
R(g + tv)�R(g)

t
,

@CR(f) = {⇠ 2 Rn | R"(f, v) � h⇠, vi , 8v 2 Rn}.

2.1. MATHEMATICAL BACKGROUND 9

If R is convex then the Clarke’s subdi↵erential is same as the subdi↵erential defined
above for a convex function. Moreover, the Clarke’s subdi↵erential reduces to the
usual gradient if R is di↵erentiable.

Recall that a critical point or stationary point of a di↵erentiable function is
any point in its domain where all the partial derivatives are zero. One can ex-
tends this notion for general non-smooth, non-convex functions using the Clarke’s
subdi↵erential [25].

Definition 2.9 (Critical point) A point f 2 Rn is called critical point of the
function R : Rn ! R if 0 2 @CR(f).

2.1.2 Set functions and Lovász extensions

Given an n-element ground set V = {1, . . . , n}, a set function R̂ : 2V ! R is a
function defined on the subsets of V . One can view the set functions as functions
on the vertices (or the extreme points) of the unit hypercube in Rn, since each subset
C ✓ V can be canonically identified with vertices of [0, 1]n. More precisely, any set
C ✓ V can be represented by an indicator vector 1C 2 {0, 1}n, whose ith entry is 1
if i 2 C and 0 otherwise. Lovász extension [82], which allows the extension of set
functions from {0, 1}n to the entire space Rn, plays a key role in deriving the exact
continuous relaxations of combinatorial optimization problems ([56, 22]).

Definition 2.10 (Lovász extension) Let R̂ be a set function with R̂(;) = 0.
Given f 2 Rn, let (j1, . . . , jn) be a permutation of V satisfying fj1  fj2  . . .  fjn.
Then the function R : Rn ! R defined in the following equivalent ways is called the
Lovász extension of R̂

R(f) =
n
X

i=1

fji

⇣

R̂ ({ji, . . . , jn})� R̂ ({ji+1, . . . , jn})
⌘

(2.1)

=
n�1
X

i=1

R̂({ji+1, . . . , jn})
�

fji+1 � fji
�

+ fj1R̂(V). (2.2)

First note that the set function and its Lovász extension agree on the vertices of
the hypercube, i.e., R̂(C) = R(1C), 8C ✓ V . Next, on the unit hypercube [0, 1]n,
one can interpret the Lovász extension as the linear interpolation of the values of
the set function at the vertices of n! simplices that make up the set [0, 1]n [10]. This
can be seen as follows. For an arbitrary permutation {j1, . . . , jn} of V , one can
deduce that the polytope {f 2 [0, 1]n, fj1  fj2  . . .  fjn} is a convex hull of the
n + 1 vertices 1;,1{j1}, . . . ,1{j1,...,jn} (and hence a simplex). In fact, any f in this
polytope can be written as the convex combination of these vertices

f =
n�1
X

i=1

(fji+1 � fji)1{ji+1,...jn} + fj11V + (1� fjn)1;.

Comparing this with the definition (2.2), one sees that the Lovász extension is in
fact a linear interpolation of the values of the set function at these vertices. Note
that there are n! possible orderings of V and hence any f in the hypercube belongs
to at least one of these simplices (exactly one simplex, if the elements of f are

10 CHAPTER 2. BACKGROUND

unique) and can be similarly written as a convex combination of corresponding
vertices.

There are several other equivalent definitions of the Lovász extension [10]. In
this thesis, we use the following definition expressed in terms of the sets obtained
by thresholding. We define the sets

C0 = V, Ci = {j 2 V |fj > fi}, i = 1, . . . , n. (2.3)

Note that these sets are not same as the sets used in the definitions of (2.1) and
(2.2) if the components of f are not unique. To make the notation simpler in the
following definition, we assume without loss of generality that components of f are
ordered in increasing order f1  f2  . . .  fn.

Definition 2.11 (Lovász extension) Let R̂ be a set function with R̂(;) = 0 and
the sets Ci be defined as in (2.3). Let f 2 RV be ordered in increasing order
f1  f2  . . .  fn. Then the Lovász extension R : Rn ! R of R̂ is defined as

R(f) =
n
X

i=1

fi
⇣

R̂(Ci�1)� R̂(Ci)
⌘

(2.4)

=
n�1
X

i=1

R̂(Ci) (fi+1 � fi) + f1R̂(V) (2.5)

It is easy to check that these definitions are equivalent to (2.1) and (2.2). Again,
on the unit hypercube [0, 1]n, one can interpret the Lovász extension (2.5) as the
linear interpolation of the values of the set function evaluated at the sets obtained
via thresholding of the continuous f (2.3). From computational perspective, an
important feature of the Lovász extension is that it can be evaluated e�ciently; one
needs to sort the given input f apart from evaluating the set function at the sets
Ci, i = 1, . . . , n.

Here we present some of the properties of the Lovász extension. All the results
presented here can be found in [10].

Proposition 2.1 Let R̂ be a set function with R̂(;) = 0 and R : Rn ! R be its
Lovász extension. Then the following hold:

• Let Ŝ be any set function with Ŝ(;) = 0 and its Lovász extension be S, then
the Lovász extension of R̂+ Ŝ is given by R+S. The Lovász extension of �R̂
for any � 2 R is given by �R.

• R is positively 1-homogeneous function.

• R(f + ↵1V) = R(f) + ↵R̂(V), for all f 2 Rn, ↵ 2 R,

2.1.3 Submodular set functions

An important class of set functions are the so-called submodular set functions,
which, to a certain extent, play a similar role in combinatorial optimization as that
of convex functions in continuous optimization [82]. Because of this, there has been
a growing interest in modeling problems in terms of submodular set functions in
machine learning and related areas [88, 71, 70, 80].

2.1. MATHEMATICAL BACKGROUND 11

Definition 2.12 (Submodular set function) A set function R̂ : 2V ! R is sub-
modular if and only if, for all subsets A,B ✓ V , it holds

R̂(A) + R̂(B) � R̂(A [B) + R̂(A \ B).

It is clear from the definition that submodular set functions are closed under
non-negative linear combinations. That is if R̂1, . . . , R̂k are submodular functions
then for any non-negative scalars ↵i 2 R+,

Pk
i=1 ↵iR̂i is submodular. We similarly

define a function R̂ supermodular if �R̂ is submodular. A function is called modular
if it is both submodular and supermodular. Modular functions play a similar role
in the set domain as that of linear functions in vector spaces.

We now state the result connecting submodularity and convexity [82].

Proposition 2.2 (Convexity and submodularity) A set function is submodu-
lar if and only if its Lovász extension is convex.

It turns out that every set function can be written as a di↵erence of submodular
set functions as shown in [56].

Proposition 2.3 Every set function bS with bS(;) = 0 can be written as bS = bS1� bS2,

where S1 and S2 are submodular and bS1(;) = bS2(;) = 0. The Lovász extension S
can be written as di↵erence of convex functions.

Let us derive the Lovász extensions of some submodular functions that we are
going to use in this thesis.

Lemma 2.2 (Constant functions I) Let P̂0 : 2V ! R be defined as

P̂0(C) :=

⇢

0 if C = ;,
a otherwise,

for some a 2 R. The Lovász extension of P̂0 is given by amaxi{fi} and P̂0 is
submodular.

Proof: Let f 2 Rn, where n = |V |, be ordered in increasing order f1  f2  . . . , fn.
Using the definition (2.4), the Lovász extension can be derived as

P0(f) =
n�1
X

i=1

fi(a� a) + fn(a� 0) = amax
i

{fi}.

The submodularity of P̂0 follows from the fact that maxi{fi} is convex [17] and by
Proposition 2.2. ⇤

Lemma 2.3 (Constant functions II) Let P̂0 : 2V ! R be defined as

P̂0(C) :=

⇢

0 if C = ; or C = V
a otherwise,

for some a 2 R. The Lovász extension of P̂0 is given by amaxi{fi} � amini{fi}
and P̂0 is submodular.

12 CHAPTER 2. BACKGROUND

Proof: Again let f 2 Rn, be ordered in increasing order f1  f2  . . . , fn. Using
the definition (2.4), the Lovász extension can be derived as

P0(f) = f1(0� a) +
n�1
X

i=2

fi(a� a) + fn(a� 0) = a(max
i

{fi}�min
i
{fi}).

The submodularity of P̂0 follows from the fact that maxi{fi} and �mini{fi} are
convex [17] and by Proposition 2.2. ⇤

Lemma 2.4 (Modular functions) Let R̂ : 2V ! R be defined as R̂(C) =
P

i2C di
for some fixed d 2 Rn. Then R̂ is modular and its Lovász extension is given by hd, fi.

Proof: Again let f 2 Rn, be ordered in increasing order f1  f2  . . . , fn. Using
the definition (2.4), the Lovász extension can be derived as

R(f) =
n
X

i=1

fi

0

@

X

j2Ci�1

dj �
X

j2Ci

dj

1

A =
n
X

i=1

difi.

Note that the Lovász extension of R̂ is a convex (in fact linear) function which
implies by Proposition 2.2 that R̂ is submodular. One can immediately check that
the Lovász extension of �R̂ is also convex which combined with the previous fact
implies that R̂ is modular. ⇤

Lemma 2.5 (Cut function) Let G(V,W) be a graph with symmetric weight ma-
trix W . The cut function defined as

cut(C,C) =
X

i2C, j2C
wij,

is submodular. Its Lovász extension is given by the total variation function TV(f) =
1
2

Pn
i,j=1 wij |fi � fj|.

Proof: We derive the Lovász extension of cut using the Definition 2.2. First note
that R̂(V) = cut(V, ;) = 0. Given f 2 RV , let (j1, . . . , jn) be a permutation of V
satisfying fj1  fj2  . . .  fjn . Then we have

R̂({ji+1, . . . , jn}) = cut({ji+1, . . . , jn}, {j1, . . . , ji}) =
n
X

l,m=1

wjljm�l�i+1�mi,

where �c = 1 if the condition c is true and zero otherwise. Plugging this into the
definition 2.2, we get

R(f) =
n�1
X

i=1

n
X

l,m=1

wjljm�l�i+1�mi(fji+1 � fji)

2.1. MATHEMATICAL BACKGROUND 13

By exchanging the sums we get

R(f) =
n
X

l,m=1

wjljm

n�1
X

i=1

�l�i+1�mi(fji+1 � fji) =
n
X

l,m=1

wjljm�l>m

l�1
X

i=m

(fji+1 � fji)

=
n
X

l,m=1

wjljm�l>m(fjl � fjm) =
1

2

n
X

l,m=1

wjljm |fjl � fjm | ,

where the last step follows from the symmetry of W . Since the last summation is
over all the possible indices, we can rewrite it as

1

2

n
X

i,j=1

wij |fi � fj| .

Since this is a convex function, by Proposition 2.2 the cut function is submodular.
⇤
The total variation TV(f) = 1

2

Pn
i,j=1 wij |fi � fj| is a widely used regularizer in

computer vision [101] as it prefers piecewise constant solutions. We now derive the
subdi↵erential of the total variation function which will be useful in later chapters.

Lemma 2.6 Let G(V,W) be a graph with symmetric weight matrix W . The subd-
i↵erential of the total variation function at a point f is given by

@(TV(f))r =
n

Pm
j=1wrjurj | urj = �ujr, urj 2 sign(fr � fj)

o

,

where

sign(x) :=

8

<

:

1, if x > 0
[�1, 1], if x = 0
�1 otherwise

Proof: The subdi↵erential of the function g(x, y) = |x� y| =
�

�

�

�

(�1 1)

✓

x
y

◆

�

�

�

�

is given by (see Theorem 23.9 in [98])

@g(x, y) =

✓

�1
1

◆

@(|x� y|) =
✓

�1
1

◆

sign(x� y).

Now for the total variation, we have

@TV(f) =
1

2

n
X

i,j=1

wij(ei � ej) sign(fi � fj),

where ei is the ith unit vector of the standard basis of Rn. Thus we have for
r = 1, . . . , n,

@ (TV(f))r =
1

2

n
X

j=1

wrj sign(fr � fj)�
1

2

n
X

i=1

wir sign(fi � fr)

=
1

2

n
X

j=1

wrj sign(fr � fj)�
1

2

n
X

j=1

wjr sign(fj � fr)

=
1

2

n
X

j=1

wrj (sign(fr � fj)� sign(fj � fr)) ,

14 CHAPTER 2. BACKGROUND

where the last equality follows because of the symmetry of W . Let vrj 2 sign(fr �
fj), r, j = 1, . . . , n. Note that vrj 6= �vjr if fr = fj. Let urj =

1
2
(vrj � vjr), r, j =

1, . . . , n. Then it holds that urj 2 sign(fr � fj) as well as urj = �ujr. Thus the
subdi↵erential can be written as

@ (TV(f))r =
n
X

j=1

wrjurj,

with urj = �ujr and urj 2 sign(fr � fj). ⇤

It may not be always possible to derive a closed-form expression for the Lovász
extension for a given submodular set function making it di�cult to compute the
subdi↵erential. We now present a result that shows how to compute an element
of the subdi↵erential of the Lovász extension using only the evaluations of the set
function.

Proposition 2.4 ([10]) Let R̂ be a submodular set function satisfying R̂(;) = 0
and R be its Lovász extension. Let B(R̂) be the base polyhedron associated with R̂
defined as

B(R̂) = {r 2 Rn, hr,1V i = R̂(V), 8A ✓ V, hr,1Ai  R̂(A)} (2.6)

Then we have

max
r2B(R̂)

hr, fi = R(f) (2.7)

and a maximizer is given by

r⇤ji(f) = R̂ ({ji, . . . , jn})� R̂ ({ji+1, . . . , jn}) , i = 1, . . . , n,

where (j1, . . . , jn) is a permutation of V satisfying fj1  fj2  . . .  fjn.

Now it is straightforward to determine an element of the subdi↵erential of a sub-
modular set function as shown in the following lemma.

Lemma 2.7 Let R̂ be a submodular set function satisfying R̂(;) = 0 and R be its
Lovász extension. Then an element r 2 @R(f) of the subdi↵erential of R at f is
given by

rji(f) = R̂ ({ji, . . . , jn})� R̂ ({ji+1, . . . , jn}) , i = 1, . . . , n,

where (j1, . . . , jn) is a permutation of V satisfying fj1  fj2  . . .  fjn.

Proof: For any given f , by Proposition 2.4, it follows that hr(f), fi = R(f), where
r(f) is as defined in the theorem statement. Thus, we have for any g 2 Rn

R(f) + hr(f), g � fi = hr(f), gi  max
r2B(R̂)

hr, gi = R(g),

where B(R̂) is the base polyhedron defined in (2.6). The inequality above follows
from the fact that r(f) 2 B(R̂) and the last equality follows from Proposition 2.4.
Thus we have for any g 2 Rn,

R(g) � R(f) + hr(f), g � fi .
Thus r(f) is and element of @R(f). ⇤

2.1. MATHEMATICAL BACKGROUND 15

2.1.4 Exact continuous relaxations

We now present the known exact continuous relaxation results for a class of combi-
natorial optimization problems. By exact continuous relaxation, we mean that the
minimum values of the combinatorial and the continuous problems are equal and
a minimizer of the combinatorial problem can be obtained from a minimizer of the
continuous problem (and vice-versa).

Theorem 2.1 [10] Let R̂ : 2V ! R be a submodular set function with R̂(;) = 0.
Then minimizing R̂ is equivalent to minimizing its Lovász extension R on [0, 1]n,
i.e.,

min
C✓V

R̂(C) = min
f2[0,1]n

R(f).

Moreover, the set of minimizers of R on [0, 1]n is the convex hull of minimizers of
R on {0, 1}n.

This result has been generalized recently in [56] which established exact continu-
ous relaxation results for combinatorial problems arising in graph-based clustering.
In the following, we call a set function symmetric if Ŝ(C) = Ŝ(C).

Theorem 2.2 [56] Let G(V,W) be a weighted undirected graph and Ŝ be a non-
negative symmetric set function with Ŝ(;) = 0, then

min
C✓V

cut(C,C)

Ŝ(C)
= min

f2Rn

TV(f)

S(f)
,

where TV and S are the Lovász extensions of the cut function and the balancing
function Ŝ respectively. Moreover, it holds for all f 2 Rn,

min
i=1,...,n�1

cut(Ci, Ci)

Ŝ(Ci)
 TV(f)

S(f)
,

where Ci are the sets as defined in (2.3). This implies that a minimizer C⇤ of the
combinatorial problem can be obtained by optimal thresholding of any minimizer f ⇤

of the continuous problem.

The result also holds if S is any positively 1-homogeneous even convex function
that extends a non-negative symmetric set function Ŝ(C) satisfying Ŝ(;) = 0. We
refer the reader to [56] for more details.

In our work [96], we have extended the exact relaxation result to the minimiza-
tion of balanced cut under constraints arising in the constrained clustering setting.
We will present this result as well as our constrained clustering method for the two-
class setting in Chapter 3. Later in a joint work [22], we have further derived exact
continuous relaxation result for the minimization of a general ratio of non-negative
set functions under arbitrary constraints. Based on this result, we developed a new
method for solving a generic version of the densest subgraph problem, which we
discuss in Chapter 5.

Before presenting a recent algorithm for solving the optimization problem ap-
pearing in the continuous relaxation, we briefly review related methods in DC (dif-
ference of convex) programming and fractional programming.

16 CHAPTER 2. BACKGROUND

2.1.5 DC Programming

A function R : Rn ! R is called a DC (di↵erence of convex) function if there exists
a pair of convex functions R1 and R2 such that

R(f) = R1(f)�R2(f), 8f 2 Rn.

The functions R1 and R2 are called DC components of R. A DC function has
infinitely many DC decompositions [35]. A large class of functions, for example,
every F 2 C2(Rn) can be written as a di↵erence of convex functions [58]. Di↵erence
of convex (DC) programming addresses the problem of minimizing a DC function.
A standard DC program is of the form (with the convention 1�1 = 1)

inf
f2Rn

R1(f)�R2(f), (2.8)

where R1 : Rn ! R [{+1} and R2 : Rn ! R [{+1} are lower semi-continuous
proper convex functions [37]. DC programs provide a greater flexibility in modeling
practical applications beyond convex programming. Several problems arising in
machine learning can be formulated as DC programs [8, 75].

Algorithms for DC programming (DCA, for short) based on duality were first
introduced in [38] and later extended by [35]. Originally DCA was developed by de-
riving a dual DC program associated with the (primal) problem (2.8) and designing
a scheme for approximately solving both primal and dual problems simultaneously
[35]. Algorithm 2.1 presents a simplified version of DCA [35] for solving the primal
problem (2.8). The main idea here is to replace in every iteration the second com-
ponent R2 of the objective by its a�ne minorization at the current iterate and solve
the resulting sequence of convex problems until convergence. Note that the a�ne
minorization of a convex function R2 at f t is given by R2(f t)+hrt2, f � f ti, where rt2
is an element of the subdi↵erential of R2 at f t. We now present some basic results
concerning the convergence of DCA to a critical point of R. We say that f 2 Rn

is a critical point of the DC function R = R1 � R2 if @R1(f) \ @R2(f) 6= ;, where
@ is the subdi↵erential of a convex function. Note that this is consistent with the
general notion of critical point given in Definition 2.9 for non-smooth, non-convex
functions.

Algorithm 2.1 DCA [35]: Minimization of a di↵erence of convex functions

1: Initialization: f 0 2 Rn

2: repeat
3: rt2 2 @R2(f t)
4: f t+1 = argmin

u2Rn
{R1(u)� hu, rt2i}

5: until f t+1 = f t

Theorem 2.3 [35] The sequence {f t} produced by DCA satisfies F (f t) � F (f t+1)
and the equality holds if and only if both f t and f t+1 are the critical points of
R1 � R2 and (⇢(R1) + ⇢(R2)) kf t+1 � f tk = 0. That is, if ⇢(R1) + ⇢(R2) > 0 and
F (f t) = F (f t+1), then f t+1 = f t. Moreover, if the optimal value of problem (2.8)
is finite and the sequences {f t} and {rt2} are bounded, then every limit point f ⇤ of
the sequence {f t} produced by DCA is a critical point of R1 �R2.

2.1. MATHEMATICAL BACKGROUND 17

We refer the reader to [35, 36, 73] for further results on duality as well as a discussion
on local and global optimality conditions for DC programming.

A more general constrained DC program [74, 37] is of the form

min
f2Rn

R1(f)�R2(f), (2.9)

subject to : S(f)  0,

f 2 D,

where S is a DC function and D ✓ Rn is a non-empty closed convex set. For
simplicity of the presentation, we restrict ourselves to only one DC constraint;
however, the ideas presented here can be extended to problems with multiple DC
constraints. Let S = S1 � S2 be a DC decomposition of S. Similar to the idea pre-
sented in DCA, one can replace the second component S2 of the constraint function
S by its a�ne minorization in every iteration and solve the resulting sequence of
constrained convex problems. This leads to inner approximation of the constraint
set and consequently, the solution of each of the convex problems is feasible for the
original problem (2.9). This way one generates a sequence of feasible points that
achieve monotonic descent in the objective of problem (2.9) until convergence. A
slightly di↵erent approach was developed in [74, 37] which is especially useful when
the a�ne minorization yields an infeasible subproblem. The main idea here is to
solve the following relaxed version of the subproblem in iteration t,

min
f2Rn, �2R

R1(f)�
⌦

rt2, f
↵

+ �t� (2.10)

subject to : S1(f)� S2(f
t)�

⌦

st2, f � f t
↵

 �, (2.11)

� � 0, (2.12)

f 2 D,

where rt2 2 @R2(f t), st2 2 @S2(f t) and �t > 0 is a penalty parameter for iteration
t. Note that the case � = 0 corresponds to the case where the constraint set is
approximated by convex inner approximation as described above. The complete
details are given in Algorithm 2.2. In Theorem 2.4, we present the convergence
result of Algorithm 2.2. We need the following definition for presenting this result.

Definition 2.13 (KKT point) Any f̄ 2 Rn that is feasible for the problem (2.9)
is a Karush-Kuhn-Tucker point for (2.9) if there exists non-negative scalar � such
that

0 2 @CR(f̄) + �@CS(f̄) +ND(f̄)

0 = �S(f̄),

where ND(f̄) is the normal cone of D at the point f̄ .

We say that (extended) Mangasarian-Fromovitz constraint qualification is satisfied
at a feasible point f̄ of problem (2.9) if there is a vector d 2 cone(D � {f̄}) such
that S"(f̄ , d) < 0, where cone(D) is the conic hull of the set D defined as

(

m
X

i=1

↵ifi | fi 2 D,↵i 2 R,↵i � 0, m = 1, 2, . . .

)

.

18 CHAPTER 2. BACKGROUND

Algorithm 2.2 Constrained DCA [74]: Minimization of constrained DC pro-
gram (2.9)

1: Initialization: f 0 2 D, �1, �2 > 0, initial penalty parameter �0 > 0
2: repeat
3: rt2 2 @R2(f t), st2 2 @S2(f t)
4: Let (f t+1, �t+1) be an optimal solution of problem (2.10) and (�t+1, µt+1) be

the associated Lagrange multipliers corresponding to the constraints (2.11)
and (2.12) respectively.

5: dt = min{kf t+1 � f tk�1 ,�t+1 + �1}
6:

�t+1 =

⇢

�t if �t � dt

�t + �2 otherwise

7: until f t+1 = f t and �t+1 = 0
8: Output: f t+1.

Theorem 2.4 [74] Suppose D 2 Rn is a nonempty closed convex set and the objec-
tive function R = R1�R2 and the constraint function S = S1�S2 are DC functions
on D such that the following assumptions are satisfied.

1. R and S are locally Lipschitz continuous functions at every point of D.

2. The extended Mangasarian-Fromovitz constraint qualification is satisfied at
any f 2 Rn satisfying S(f) � 0.

3. Either R1 or R2 is di↵erentiable on D, either S1 or S2 is di↵erentiable on D
and

⇢(R1) + ⇢(R2) + ⇢(S1) > 0.

Let {f t} be the sequence generated by Algorithm 2.2. Then Algorithm 2.2 either
stops after finitely many iterations at a KKT point of problem (2.9) or generates an
infinite sequence {f t} of iterates such that limt!1 kf t+1 � f tk = 0 and every limit
point of the sequence {f t} is a KKT point of problem (2.9).

We note here that an alternative approach for solving the constrained DC pro-
gram (2.9) is to enforce the DC constraint itself via a penalty term [74]. For example,
one can define the following penalty term directly for the DC constraint without
approximating it

P (f) = max{0, S(f)} = max{S1(f), S2(f)}� S2(f).

Thus, P is a DC function and one can use ideas similar to that of Algorithm 2.2 to
solve the following penalized version iteratively,

min
f2Rn

�

R1(f) + �t max{S1(f), S2(f)}
�

�
�

R2(f) + �tS2(f)
�

(2.13)

subject to : f 2 D. (2.14)

We refer the reader to [74, 37] for more details.

2.1. MATHEMATICAL BACKGROUND 19

2.1.6 Fractional programming

Fractional (i.e., ratio) programming is concerned with the minimization (or max-
imization) of a ratio of functions. Several real world problems such as resource
allocation (minimize cost over return), portfolio selection (maximize return on in-
vestment) can be formulated as fractional programming problems [103].

Consider the following fractional programming problem,

min
f2D

R(f)

S(f)
, (2.15)

where D ⇢ Rn is a compact and connected subset of Rn and R : Rn ! R, S : Rn !
R are continuous functions on D. Let us further assume that S(f) > 0, 8f 2 D.
Since R and S are continuous, D is compact and S(f) > 0, 8f 2 D, problem (2.15)
has a solution.

It is shown in [39]1 that the following parametric problem

min
f2D

R(f)� �⇤S(f), (2.16)

where �⇤ is the optimal value of problem (2.15), has the same minimizers as that of
(2.15). Moreover the optimal value of (2.16) is zero. This parametric subproblem,
assuming �⇤ is known, can be optimally solved if R is convex, S is concave and
�⇤ � 0. Since �⇤ is not known, one can instead use an upper bound �̄ � �⇤

obtained from any feasible f̄ 2 D and solve the problem,

min
f2D

R(f)� �̄S(f).

Since f̄ is feasible for this problem and �̄ = R(f̄)

S(f̄)
, the optimal value of this problem

is non-positive. If the optimal value is zero, then �̄ = �⇤. Otherwise, the optimal
solution leads to an improved upper bound. Sequentially solving the above problem
using improved upper bounds leads to the Dinkelbach’s method [39] (Algorithm 2.3)
for solving a ratio of non-negative convex and concave functions.2

The following convergence result holds for Algorithm 2.3.

Theorem 2.5 [39, 20] Let R and S be non-negative convex and concave functions
respectively. The sequence {f t} produced by the Dinkelbach’s method (Algorithm
2.3) satisfies F (f t) > F (f t+1) for all t � 0 or the sequence terminates. Moreover

the sequence {f t} satisfies limt!1
R(f t)
S(f t)

= �⇤, where �⇤ is the global minimum of

the problem (2.15).

1Originally, this result is shown for maximization problem; however as noted in [39], the state-
ment is still valid for minimization problem (2.15).

2Originally, [39] considered maximization of a ratio of concave and convex functions with the
assumption that max{R(f)|f 2 D} � 0. To maintain consistency with the following section,
we presented this idea for minimization problems where the objective is a ratio of convex and
concave functions and R is further assumed to be non-negative. The results presented in [39] can
be directly transferred to this case [20].

20 CHAPTER 2. BACKGROUND

Algorithm 2.3 Dinkelbach’s Method [39]: Minimization of a ratio of non-
negative convex and concave functions

1: Initialization: f 0 2 D, �0 = R(f0)
S(f0)

2: repeat
3: f t+1 = argmin

u2D
{R(u)� �tS(u)}

4: �t+1 = R(f t+1)
S(f t+1)

5: until R(f t+1)� �tS(f t+1) < ✏
6: Output: f t+1.

2.1.7 Nonlinear eigenproblems and RatioDCA

The exact continuous relaxation presented in Theorem 2.2 resulted in a continuous
optimization problem where one needs to minimize a non-negative ratio of Lovász
extensions. Note that the Lovász extensions of a general set function can be written
as positively 1-homogeneous, di↵erence of convex functions (by Propositions 2.1, 2.2
and 2.3). Now, we discuss recent advances in algorithms for solving such problems.

Let R1, R2, S1, S2 be convex, Lipschitz continuous, even and positively p- homo-
geneous (p � 1) functions and let R = R1 �R2, S = S1 � S2. Further assume that
R and S are non-negative and S(f) = 0 if and only if f = 0. By considering a
nonlinear ratio F (f) = R(f)

S(f)
, the authors of [55, 20] motivate the following nonlinear

eigenproblem,

0 2 @R1(f)� @R2(f)� � (@S1(f)� @S2(f)) , (2.17)

where @ denotes the subdi↵erential of a convex function and � = F (f). Any f
satisfying the above condition is referred to as a nonlinear eigenvector and � as
the corresponding nonlinear eigenvalue. Note that for any symmetric matrix A,
one recovers with R1(f) = hf, Afi, S1(f) = hf, fi and R2 = S2 = 0, the standard
eigenproblem,

Af � �f = 0.

The following result from [55] characterizes the relation between nonlinear eigen-
vectors and critical points of F .

Theorem 2.6 [55, 20] Suppose that the functions R = R1 � R2 and S = S1 � S2

satisfy the conditions stated above. Then a necessary condition for f ⇤ to be a critical
point of F is

0 2 @R1(f)� @R2(f)� � (@S1(f)� @S2(f)) ,

where �⇤ = F (f ⇤). If S is continuously di↵erentiable at f ⇤, then this condition is
also su�cient.

A nonlinear inverse power method is proposed in [55] for computing a nonlinear
eigenvector for the case where R2 = S2 = 0 and p � 1. A more general scheme
called RatioDCA was proposed in [56] to minimize a non-negative ratio of positively
1-homogeneous, di↵erence of convex functions

min
f2Rn

R1(f)�R2(f)

S1(f)� S2(f)
=: F (f). (2.18)

2.2. CLUSTERING METHODS 21

Algorithm 2.4 RatioDCA [56]: Minimization of F , a non-negative ratio of
positively one-homogeneous DC functions

1: Initialization: f 0 2 Rn, �0 = F (f 0)
2: repeat
3: f t+1 = argmin

u2Rn, kuk21

{R1(u)� hu, r2(f t)i +�t
�

S2(u)� hu, s1(f t)i
�

where r2(f t) 2 @R2(f t), s1(f t) 2 @S1(f t)
4: �t+1 = F (f t+1)

5: until
|�t+1��t|

�t < ✏
6: Output: eigenvalue �t+1 and eigenvector f t+1.

It is shown that RatioDCA (Algorithm 2.4) is a monotonic descent method and
converges to an eigenvector associated with the eigenproblem (2.17).

Proposition 2.5 [56] The sequence {f t} produced by RatioDCA satisfies F (f t) >
F (f t+1) for all t � 0 or the sequence terminates.

Theorem 2.7 [56] Each cluster point {f ⇤} of the sequence fk produced by Ra-

tioDCA is a nonlinear eigenvector with eigenvalue � = R(f⇤))
S(f⇤) 2 [0, F (f 0)] in the

sense that if fulfills

0 2 @R1(f
⇤)� @R2(f

⇤)� �⇤ (@S1(f
⇤)� @S2(f

⇤)) .

If S1 � S2 is continuously di↵erentiable at f ⇤, then F has a critical point at f ⇤.

Since R1, R2, S1 and S2 are positively 1-homogeneous functions, an equivalent
problem to (2.18) (with the convention 0

0
:= 1) is given by

min
f2Rn, kfk21

R1(f)�R2(f)

S1(f)� S2(f)
. (2.19)

Since the feasible set of this problem is compact, one can apply Dinkelbach’s idea
(see Section 2.1.6) and form the following parametric subproblem

min
u2Rn, kuk21

R1(u)�R2(u)� �t (S1(u)� S2(u)) . (2.20)

This is a DC programming problem. One can interpret each iteration of RatioDCA
as applying only one step of DCA (Algorithm 2.1) to this DC problem. We note
here that RatioDCA is not same as applying DCA to the Dinkelbach’s parametric
subproblem (2.20). This is because in the latter approach, �t is fixed until the
subproblem (2.20) is fully solved whereas in RatioDCA, �t is updated after each
step.

2.2 Clustering methods

In this section we review various state-of-the-art clustering techniques and highlight
the connections between di↵erent methods.

22 CHAPTER 2. BACKGROUND

2.2.1 k-means clustering

Let {x1, . . . , xn} be the given set of points where xi 2 Rn, i = 1, . . . , n. A possible
formulation for the k-way clustering of the given points is

min
(C1,...,Ck)2Pk

X

i,j2Cl

kxi � xjk2 ,

where Pk is the set of all k-partitions of {1, . . . , n} and k·k is the standard Euclidean
norm. The objective function here minimizes the within cluster dissimilarity. One
can show that this problem is equivalent to the standard k-means clustering problem
(see Theorem 8.18 of [107]) formulated as

min
(C1,...Ck)2Pk, µ1,...,µk2Rn

k
X

l=1

X

j2Cl

kxj � µlk2 . (2.21)

The following holds at an optimal solution (C1, µ1), . . . (Ck, µk) of this problem

µl =
1

|Cl|
X

i2Cl

xi, l = 1, . . . , k.

Thus, k-means clustering aims to find k prototypes µl, l = 1, . . . , k one for each
cluster and minimize the distance of points in a cluster to its prototype.

Lloyd’s algorithm

The k-means clustering problem has been shown to be NP-hard [2, 84] and hence
one has to rely on approximate or heuristic methods in practice. Lloyd’s algorithm
[81] is a very simple and e�cient method to solve the k-means problem locally
optimally. The idea of this algorithm is to alternate between finding the prototypes
by fixing the clusters and finding the clusters by fixing the prototypes until there is
no change in the value of the objective (2.21). If one fixes the clustering then one
can minimize the above objective over prototypes; in fact the solution is the means
of current clusters. Similarly, if one fixes the prototypes, then the minimization
over k-partitions simply results in assigning each point to its closest prototype.
Note that the Lloyd’s algorithm is a monotonic descent method for solving (2.21).

Drawbacks: A main drawback of the formulation of k-means clustering is that
the objective enforces spherical clusters thus limiting its usefulness. Moreover, the
Euclidean distance is not robust to outliers; other measures such as l1 norm can be
used leading to the so-called k-medians clustering.

Kernel k-means

A nonlinear generalization of the k-means problem is presented in [48] using sym-
metric positive definite kernels [105]. By choosing a symmetric positive-definite
kernel K : Rn ⇥ Rn ! R, one transfers the k-means problem from the Euclidean
space to the reproducing kernel Hilbert space H associated with the kernel K:

min
(C1,...Ck)2Pk, µ1,...,µk2H

k
X

l=1

X

j2Cl

k�(xj)� µlk2H ,

2.2. CLUSTERING METHODS 23

where � : Rn ! H, x 7! K(x, ·). For the positive definite kernel K, it holds that

K(x, y) = h�(x),�(y)iH .

Hence one can avoid the explicit feature representation in the kernel k-means ob-
jective by rewriting it in terms of inner products in H

k�(xj)� µlk2H = h�(xj),�(xj)iH +

*

1

|Cl|
X

i2Cl

�(xi),
1

|Cl|
X

i2Cl

�(xi)

+

H

� 2

*

�(xj),
1

|Cl|
X

i2Cl

�(xi)

+

H

= h�(xj),�(xj)iH +
1

|Cl|2
X

i,r2Cl

h�(xi),�(xr)iH � 2

|Cl|
X

i2Cl

h�(xi),�(xj)iH .

Note that even in Lloyd’s algorithm we never need to compute the prototypes (i.e.,
means) if we are interested only in obtaining the final clustering. We just need a
way to compute the distance of a point to every mean. The distance computation
to the mean can be done using only the kernel function as shown above.

2.2.2 Spectral clustering

One of the widely used criteria in graph-based clustering is the normalized cut.
Given a similarity graph G(V,W) where V = {1, . . . , n} is the vertex set and W is
the symmetric weight matrix, the normalized cut problem is formulated as

min
(C1,...,Ck)2Pk

k
X

l=1

cut(Cl, C l)

vol(Cl)
=: NCut(C1, . . . , Ck), (2.22)

where Pk is the set of all k-partitions of the vertex set V and vol(C) =
P

i2C di,
di is the degree of vertex i. Spectral clustering is based on solving the following
continuous relaxation of this NP-hard combinatorial optimization problem [115],

min
F2Rn⇥k

tr(F TLF) (2.23)

subject to :F TDF = I,

where tr denotes the trace of a matrix, L is the symmetric graph Laplacian matrix
defined as L = D �W , D is the diagonal matrix containing the degrees of vertices
on the diagonal and I is the identity matrix. Note that the rows of the optimization
variable F represent the vertices and the columns represent the clusters.

In fact the problems (2.22) and (2.23) are equivalent if F is restricted to have
the following form, for i = 1, . . . , n, j = 1, . . . , k,

Fij =

(

1p
vol(Cj)

, i 2 Cj

0 otherwise

where (C1, . . . , Ck) is a k-partition of the vertex set V . Here by equivalence, we
mean that the optimal values of both problems are equal and one can deduce an
optimal solution of one problem from an optimal solution of the other problem.

24 CHAPTER 2. BACKGROUND

Using the variable substitution F = D� 1
2G, we can rewrite the problem (2.23)

as

min
G2Rn⇥k

tr(GT L̄G)

subject to :GTG = I,

where L̄ is the normalized graph Laplacian defined as L̄ = D� 1
2LD� 1

2 . Since L̄ is
symmetric, the solution of this problem is given by the matrix G whose columns
are the eigenvectors of L̄ corresponding to the k smallest eigenvalues (see Theorem
1 of [44]). One obtains the solution of (2.23) from G as F = D� 1

2G.
When the number of clusters k = 2, then the spectral relaxation reduces to

min
f2Rn

hf, Lfi (2.24)

subject to : hf,Dfi = vol(V),

hDf,1ni = 0,

where 1n denote the vector of all ones. Similar to the general case, one can show
that if f has the following special form, then this relaxation is in fact equivalent to
the normalized cut problem (2.22),

fi =

8

<

:

q

vol(C)
vol(C)

, i 2 C

�
q

vol(C)

vol(C)
otherwise

(2.25)

where (C,C) is the 2-way partitioning of V and i = 1, . . . , n.
Again, we can rewrite the problem (2.24) in terms of the normalized graph

Laplacian L̄ as

min
g2Rn

⌦

g, L̄g
↵

subject to : hg, gi = vol(V),
D

g,D
1
21n

E

= 0.

Note that L̄ is symmetric and D
1
21n is the eigenvector of L̄ corresponding to the

smallest eigenvalue. Hence by Rayleigh-Ritz principle or Rayleigh theorem [59], the
solution of the above problem is given by the eigenvector of L̄ corresponding to the
second smallest eigenvalue.

Ratio cuts, where the balancing function is the size of clusters, Ŝ(C) = |C|, is
another widely used objective in graph-based clustering. The relaxation of the ratio
cut problem solved by spectral clustering is given by

min
F2Rn⇥k

tr(F TLF) (2.26)

subject to :F TF = I.

One can similarly show that this problem is equivalent to the ratio cut problem if
F is restricted to have a certain special form.

2.2. CLUSTERING METHODS 25

Rounding the continuous solution: Although the spectral relaxation (2.23)
can be optimally solved, it is not straightforward to obtain a clustering from the
optimal solution. In practice, the optimal solution F is used to construct a new
representation of the data, known as spectral embedding. One then applies k-means
in this new representation to get the clustering. Precisely, spectral embedding � :
V ! Rk is defined as i 7! �(i) = (Fi1, . . . Fik) and k-means is applied on the points
{�(i)}ni=1 in Rk. We note here that applying k-means on the spectral embedding
is only a heuristic without explicit connection to the normalized cut objective that
we are optimizing; however perturbation theory of eigenvalues and eigenvectors of
matrices, when applied to the graph Laplacian, provides some justification for such
a heuristic [115].

When k = 2, apart from applying k-means on the spectral embedding, several
heuristics have been proposed [53] such as optimal thresholding of the continuous
solution f , rounding the continuous solution f based on the sign or the median of
the components of f . One possible explanation for the rounding based on the sign
is the structure of f (2.25) that yields the equivalence between (2.22) and (2.24).
In optimal thresholding, one defines the following sets, for a given f 2 Rn,

C0 = V, Ci = {j 2 V |fj > fi}, i = 1, . . . , n.

and chooses the set having the smallest balanced cut

C⇤ = argmin
Ci, i=1,...,n�1

cut(Ci, Ci)

Ŝ(Ci)
.

Clearly, optimal thresholding yields better results (in terms of obtaining a better
normalized cut) than the other heuristics in the case of k = 2. Moreover, for ratio
and normalized Cheeger cuts, it is shown in [21] that the cut value h⇤

NCC obtained
by optimal thresholding of the second eigenvector has the approximation guarantee

hNCC  h⇤
NCC  2(hNCC)

1
2 ,

where hNCC is the optimal normalized Cheeger cut value.

2.2.3 p-Spectral clustering

Using the graph p-Laplacian [3], a nonlinear generalization of the standard graph
Laplacian, the so-called p-spectral clustering method was proposed in [21]. The
method is motivated by first showing, for a connected graph, that the second eigen-
vector of the normalized graph p-Laplacian, for 1 < p < 2, interpolates between a
relaxation of the 2-way normalized cut and Cheeger cut. Note that the standard
graph Laplacian introduced in the previous section corresponds to the case p = 2.
They further show that in the limit p ! 1, the cut obtained by thresholding the
second eigenvector of the normalized graph p-Laplacian converges to the optimal 2-
way normalized Cheeger cut. More precisely, if hNCC, h⇤

NCC denote respectively the
optimal normalized Cheeger cut value and the cut value obtained by thresholding
the second eigenvector of normalized graph p-Laplacian, then it holds for p > 1 [21]
that

hNCC  h⇤
NCC  p(hNCC)

1
p .

26 CHAPTER 2. BACKGROUND

Notice that the bounds on the cut h⇤
NCC obtained by thresholding the second eigen-

vector become tighter as p ! 1.
Given a graph G(V,W) with the degrees of the vertices given by d 2 Rn, the

problem of finding the second eigenvalue �(2)p of the normalized graph p-Laplacian
is formulated in [21] as

�(2)p = min
f2Rn

1
2

Pn
i,j=1 wij |fi � fj|p

minc2R
Pn

i=1 di |fi � c|p , (2.27)

from whose solution f ⇤ the second eigenvector is derived as v2p = f ⇤ � c⇤1, where
c⇤ = argmin

c2R

Pn
i=1 di |f ⇤

i � c|p. A method is proposed for solving (2.27) in [21];

however since the problem (2.27) is non-convex, it is not guaranteed to obtain the
global optimum. For two-class clustering, the clusters are obtained by thresholding
the solution v2p returned by their method. For multi-class clustering, they suggest
recursive two-way splitting until the desired number of clusters is obtained. We
note here that similar results for the ratio Cheeger cut were also established in [21]
using the unnormalized version of the graph p-Laplacian.

2.2.4 1-Spectral clustering

Inspired by the tighter relaxation result of p-spectral clustering, the authors of [112]
showed that there exists an exact continuous relaxation for the ratio Cheeger cut
problem,

hRCC = min
f2Rn

1
2

Pn
i,j=1 wij |fi � fj|

kf �median(f)k1
, (2.28)

where hRCC is the optimal ratio Cheeger cut value. It is further shown that there
exists a minimizer f ⇤ for the above problem taking only two distinct values in which
case obtaining a clustering is trivial. Moreover, for any minimizer f ⇤, there exists
a threshold � such that the following two-valued function is also a minimizer

f�(x) =

⇢

1 x > �
0 otherwise

A scheme based on Split Bregman method [50] is proposed in [112] for solving 2.28;
however, they could not prove any convergence guarantees for the method.

Later it is established in [55] that the problem of finding the optimal Cheeger
cut can be formulated as a nonlinear eigenproblem associated with the graph 1-
Laplacian and hence the name 1-spectral clustering; refer to (2.17) in Section 2.1.7
for the definition of nonlinear eigenproblem. They showed that, for a connected
graph, the optimal ratio Cheeger cut is in fact equal to the second eigenvalue of
the graph 1-Laplacian and the second eigenvector is equal to the indicator function
of the optimal partition. They also proposed a nonlinear inverse power method
that is guaranteed to converge to a nonlinear eigenvector. These results have been
generalized in [56] which shows that exact continuous relaxation exists for any
balanced cut problem whenever the balanced cut is expressed as a ratio of cut
and a balancing function; see Theorem 2.2 in Section 2.1.7. Moreover, a generic
algorithm for solving a ratio of non-negative 1-homogeneous DC functions has been

2.2. CLUSTERING METHODS 27

proposed in [56]; see the RatioDCA Algorithm in Section 2.1.7. Similar to p-spectral
clustering, one has to rely on the recursive two-way splitting procedure to obtain
multiple clusters. Thus, it is di�cult to incorporate prior information in 1-spectral
clustering whenever k > 2.

In Chapter 3, we extend the exact continuous relaxation result to balanced cut
problem subject to constraints arising in the constrained clustering setting. Then
in Chapter 4, we develop a direct method for multi-class clustering that allows easy
integration of prior information.

2.2.5 Relation between kernel k-means and normalized cut

The equivalence between weighted k-means and normalized cuts for positive semi-
definite weight matricesW is first pointed in [11]. The authors of [28, 30, 31] discuss
this relation for general weight matrices W . The weighted kernel k-means problem
is given by

min
(C1,...Ck)2Pk, µ1,...,µk2Rn

k
X

l=1

X

j2Cl

bj k�(xj)� µlk2 . (2.29)

where bj � 0, j = 1, . . . , n are the weights of the data points and � is a feature map
to the reproducing kernel Hilbert space induced by a symmetric positive definite
kernel K. Define the class proportions pl =

P

j2Cl
bj, l = 1, . . . , k and the (scaled)

cluster assignment matrix H 2 Rn⇥k for a k-partition (C1, . . . , Ck) as

Hil =

(

1p
pl

if i 2 Cl

0 otherwise
(2.30)

Further let the matrix B be the diagonal matrix containing the weights bi, i =
1, . . . , n on the diagonal. Then the weighted kernel k-means problem (2.29) is
equivalent to the following trace maximization problem

max
(C1,...,Ck)2Pk, F2Rn⇥k

tr(F TB
1
2KB

1
2F) (2.31)

subject to : F TF = I

F = B
1
2H

One can also rewrite the normalized cut problem (2.22) on a graph G(V,W) as
a trace maximization problem

max
F2Rn⇥k

tr(F TD� 1
2WD� 1

2F) (2.32)

subject to :F TF = I.

with an additional constraint that that F has the special form F = D
1
2H, where D

is the diagonal matrix containing the degrees of the vertices on the diagonal and H
is defined similar to (2.30) using D instead of B. By comparing (2.31) and (2.32)
one sees that for the choice B = D, the weighted kernel k-means problem (2.29)
and the normalized cut problem (2.22) are related via K = D�1WD�1. One can

28 CHAPTER 2. BACKGROUND

go from the kernel k-means problem to normalized cut using W = DKD and from
normalized cut to the kernel k-means using K = D�1WD�1. We note here that
the relation holds for any generic diagonal matrix D, for example, the ratio cut
problem, where D = I.

Note that in order for the equivalence to hold, the kernel matrix K obtained via
K = D�1WD�1 has to be positive semi-definite (as pointed in [11]), which does
not hold for a generic weight matrix W . It is shown in [31] that one can construct
a positive semi-definite kernel matrix K 0 from W via K 0 = �D�1+D�1WD�1 such
that the equivalence still holds; here � is large enough positive constant to ensure
K 0 is positive semi-definite. This way it is shown that any method (e.g., a variant
of the Lloyd’s algorithm) for solving the weighted kernel k-means problem can be
used in (approximately) minimizing the normalized cut on the weight matrix W by
choosing K = �D�1 +D�1WD�1 where D is the diagonal degree matrix and � is
a large positive constant.

One main drawback the authors of [31] highlight is that the addition of the
diagonal shift �D�1, although does not change the equivalence, has adverse e↵ect
on the Lloyd’s algorithm. This is because for large positive values of � the points
become closer to their current means and farther from the remaining ones and
consequently the Lloyd’s algorithm gets stuck early [29, 31].

Graclus

Using the relation between kernel k-means and normalized cut, [31] presented a
multi-level graph partitioning method similar to [66] for minimizing normalized cut.
The proposed method called as Graclus proceeds in three phases. In the first phase,
a sequence of coarser graphs Gi(Vi,Wi) of decreasing size (in terms of the number
of vertices) is generated by collapsing edges and merging vertices. This coarsening
phase stops when the size of the coarser graph is smaller than 5k vertices, where k
is the number of clusters. In the next phase, the initial k-clustering is obtained on
the coarsest graph using the region-growing method of [66]. Then in the last phase
known as the refinement phase, the partitioning from the coarser graph is iteratively
propagated to the finer graphs and refined. More specifically, partitioning on Gi is
used to construct an initial partition on Gi�1 and then the Lloyd’s algorithm is run
by choosing the kernel matrix that yields the equivalence between normalized cut
and kernel k-means. Since the Lloyd’s algorithm is a monotonic descent method,
the refinement phase is guaranteed to monotonically decrease the normalized cut.

Comments on the relation: We note here that the equivalence holds only for
a limited class of balanced cuts. Moreover, on the algorithmic front, there are
not many choices for solving the kernel k-means problem other than the Lloyd’s
algorithm which is shown [31] to have severe problems on the equivalent formu-
lation. On the other hand, the graph-based setting gives more modeling freedom
in terms of choosing application specific balancing function and recent advances in
continuous optimization provide better methods [55, 56] for solving the graph-based
formulations.

2.2. CLUSTERING METHODS 29

2.2.6 Clustering based on non-negative matrix factorization

Now we review clustering methods based on non-negative matrix factorization.
Non-negative matrix factorization (NMF for short) is proposed as an unsupervised
method for learning a parts-based representation of non-negative data [76, 77].
Given a non-negative data matrix X 2 Rd⇥n

+ , where each column Xi 2 Rd repre-
sents a data point, the NMF problem is to find two low-rank non-negative factors
U 2 Rd⇥k

+ and H 2 Rk⇥n
+ , where k < min{d, n}, that closely approximate X, i.e.,

X ⇡ UH. Here one can interpret the columns of U as providing a new basis for the
data points and the columns of H as giving the encodings (coe�cients) in the new
basis. Since each data point has to be expressed as an additive (H � 0) combination
of the non-negative basis U , one expects that U represents coherent parts of the
data, thus providing a parts-of-whole interpretation. If one chooses the Frobenius
norm as the measure of the quality of the approximation, then the non-negative
matrix factorization problem is given by

min
U2Rd⇥k

+ , H2Rk⇥n
+

kX � UHk2F . (2.33)

where k·kF denotes the Frobenius norm. Note that without the non-negativity
constraints the objective of the problem (2.33) can be globally minimized using
the well-known singular value decomposition [41]. It has been shown that the
non-negativity constraints make the problem (2.33) NP-hard [114] (more precisely,
when the rank of X is k). An alternative minimization method based on a novel
multiplicative update has been proposed in [78] for approximately solving the NMF
problem (2.33). It has been empirically shown that NMF approach is successful in
learning the parts-based representation; when applied to the data matrix containing
facial images as columns, the basis U recovered di↵erent parts of the face.

A series of NMF-based clustering methods have been proposed leveraging the
algorithmic ideas of [78]. In clustering one would like to represent each data point
using only one of the basis vectors (e.g., prototype of a cluster) unlike the NMF for-
mulation, where the data point is represented by a non-negative combination of the
basis vectors. Furthermore, for clustering one does not necessarily need the explicit
feature representation of the data points as required by NMF approach. Di↵er-
ent methods thus di↵er by the way they incorporate the clustering or partitioning
constraint and by the type of input matrix that is being factorized.

Orthogonal non-negative matrix factorization

An NMF-based formulation with orthogonal (more precisely, orthonormality) con-
straints has been proposed for clustering non-negative data X 2 Rd⇥n

+ in [34],

min
U2Rd⇥k

+ , H2Rn⇥k
+

�

�X � UHT
�

�

2

F
(2.34)

subject to : : HTH = Ik⇥k

Note that for notational convenience, we used the transpose for the second factor
in (2.34) in contrast to (2.33). It is shown [34] that the orthogonal-NMF problem

30 CHAPTER 2. BACKGROUND

(2.34) (ONMF for short) is in fact equivalent to the k-means clustering problem

min
(C1,...Ck)2Pk, µ1,...,µk2Rn

k
X

l=1

X

j2Cl

k�(xj)� µlk2 . (2.35)

where (C1, . . . , Ck) is a k-partition of the ground set V = {1, . . . , n} and µi 2
Rd, i = 1, . . . , k. One can verify that an optimal solution (U⇤, H⇤) of (2.34) and
an optimal partition (C⇤

1 , . . . , C
⇤
k) of (2.35) satisfy the following: the columns of H⇤

are the scaled indicator vectors of the components C⇤
1 , . . . , C

⇤
k and a column i of U⇤

is the scaled mean vector of the component to which the data point i belongs. An
alternative minimization method based on a multiplicative update adapted from
[78] has been suggested in [34] for solving (2.34). The main drawback of the pro-
posed method is that the final solution is not guaranteed to satisfy the orthogonal
constraint (see the discussion at the end of Section 7 of [34]). More importantly it is
not clear how well the method performs against the Lloyd’s algorithm which solves
the same k-means clustering problem. In their experiments, they always use the
solution obtained from the Lloyd’s algorithm as an initialization. More specifically,
they suggest starting their method always with H + 0.2 where H is derived from
the solution of the Lloyd’s algorithm. Finally, we note that in order to apply this
method one needs an explicit feature representation of the data.

Symmetric orthogonal non-negative matrix factorization

The need for explicit feature representation for solving the formulation (2.34) can be
eliminated by noting that an optimal solution (U⇤, H⇤) of (2.34) satisfy U⇤ = X⇤H⇤.
Thus (2.34) can be equivalently rewritten as [32]

max
H2Rn⇥k

+

tr(HTXTXH)

subject to :HTH = I.

This can again be transformed to the following non-negative matrix factorization
problem [32]

min
H2Rn⇥k

+

�

�XTX �HHT
�

�

2

F
(2.36)

subject to : HTH = I.

Thus the clustering problem is written as factorizing the similarity matrix XTX
into two factors H and HT . A generic 3-factor formulation was proposed in [32, 34]
to factorize a symmetric similarity matrix W 2 Rn⇥n

+ that is not necessarily positive
semi-definite unlike XTX,

min
H2Rn⇥k

+ , S2Rk⇥k
+

�

�W �HSHT
�

�

2

F
(2.37)

subject to : HTH = I.

A multiplicative update algorithm has been proposed in [34] for solving this formu-
lation. As mentioned previously, the method uses a perturbed solution of k-means
clustering as an initialization (i.e., H + 0.2) and its solution is not guaranteed to
satisfy the orthogonal constraint.

2.2. CLUSTERING METHODS 31

Non-negative matrix factorization for spectral clustering

The authors of [33] propose solving the spectral relaxation (2.23) with additional
non-negativity constraints on F

min
F2Rn⇥k

+

tr(F TLF) (2.38)

subject to :F TDF = I.

They further show that this problem can be rewritten as

max
F2Rn⇥k

+

tr(F TWF) (2.39)

subject to :F TDF = I,

where W is the weight matrix of the underlying K-NN graph. A multiplicative
algorithm is proposed in [33] for solving the above trace maximization problem by
adapting the NMF-algorithm of [78]. In this case also it is not shown that the
converged solution is guaranteed to satisfy the orthogonal constraint. Like earlier
NMF-based methods, [33] also suggest starting their method with H + 0.2 where
H is the indicator matrix of the partition found by the spectral clustering method.

Projective non-negative matrix factorization

The authors of [124] propose the so-called projective NMF formulation for factor-
izing a non-negative data matrix X 2 Rd⇥n

+

min
H2Rd⇥k

+

�

�X �HHTX
�

�

2

F
. (2.40)

If H satisfies the orthogonality constraint HTH = I, then the above problem corre-
sponds to finding a projection matrix P = HHT (hence the name projective NMF)
that closely approximates the data X, i.e., X ⇡ PX. The authors note that even
without the orthogonality constraint the solution of (2.40) found by their multi-
plicative update is approximately (but not exactly) orthogonal. We note here that
without the non-negativity constraints this formulation is equivalent to the well-
known principal component analysis [93, 63], if the data matrix X is centered (i.e.,
each row of X has mean zero).

For the clustering problem, one has to use X 2 Rn⇥d in the above formula-
tion (2.40) [124]. The multiplicative update proposed by [124] needs only pairwise
similarities for solving the clustering problem with this formulation. In their imple-
mentation they used the weight matrix of the K-NN graph as the similarity matrix.
Similar to [34, 33] they start their method from the perturbed (H + 0.2) solution
of k-means clustering.

Left-stochastic matrix factorization

Building on the idea of factorizing a non-negative symmetric similarity matrix (2.36)
[34], the following formulation is proposed in [9]

min
c2R

min
H2Rn⇥k

+

�

�cW �HHT
�

�

2

F
(2.41)

subject to : : H1k = 1n.

32 CHAPTER 2. BACKGROUND

where W is a similarity matrix. Apart from estimating the scaling factor c this
formulation requires the factor H to be a cluster probability matrix thus yielding a
connection to the soft version of k-means clustering [9]. Unlike the other NMF-based
approaches that rely on multiplicative updates, a geometric method is proposed in
[9] for solving (2.41). A clustering (partitioning) is obtained from the solution of
(2.41) by assigning ith data point to the jth cluster if Hij achieves the maximum
value in the ith row of H where the ties are broken arbitrarily.

Non-negative matrix factorization using graph random walk

In contrast to the above NMF-based methods that factorize the weight matrix W
of the K-NN graph G(V,W), authors of [123] propose replacing W by its smoothed
version A obtained via graph random walk resulting in the problem

min
H2Rn⇥k

+

�

�A�HHT
�

�

2

F
(2.42)

subject to : : HTH = I

where A is given by A = 1
c
(I � ↵D� 1

2WD� 1
2)�1, c is a normalizing factor, D is

the diagonal matrix containing the degrees of the vertices V and ↵ is a smoothness
parameter controlling the extent of the random walk.

Instead of directly solving the above problem (2.42), [123] suggest the following
regularized version

min
H2Rn⇥k

+

� tr(HTAH) + �
n
X

i=1

k
X

j=1

H2
ij

!2

(2.43)

subject to : : HTH = I,

where � is a parameter. Note that the first term is obtained by expanding the objec-
tive of (2.42) and the second term is introduced to reduce the diagonal magnitudes
in the approximating matrix (which correspond to self-similarities) and increase
the o↵-diagonal correlation. In their large scale experiments, the parameters ↵ of
the random walk and � of the regularization are set to the fixed values 0.8 and 1

2k

respectively without any justification. Similar to other NMF-based methods, they
derive a multiplicative update for the formulation (2.43), use the perturbed version
(i.e., H+0.2) of the spectral clustering solution as an initialization and do not have
any guarantees that the converged solution satisfies the orthogonal constraint.

Chapter 3

Two-class clustering with
constraints

In this chapter, we consider the constrained clustering problem for the two-class
setting; the multi-class setting is discussed in Chapter 4. We present a generaliza-
tion of the popular spectral clustering technique for integrating instance level prior
information such as pairwise constraints and label constraints. The main idea of our
approach is to derive a formulation that allows minimization of a trade-o↵ between
constraint violation and the clustering objective (balanced cuts in our case). Unlike
the prior work, we show that this formulation allows us to guarantee a solution that
satisfies all constraints in a hard-enforcement setting, while still able to handle noisy
or inconsistent constraints. We then show that our formulation, a combinatorial
optimization problem, can equivalently be rewritten as a continuous optimization
problem in the same spirit as in [56]. We then present an e�cient method based on
the recent algorithm RatioDCA [56] for solving the continuous problem. Despite
the additional complexity arising because of cannot-link constraints, we show that
our method for solving the subproblem of RatioDCA has the same time complex-
ity as that of the unconstrained problem. Another contribution of this chapter is
a preconditioning technique for solving the subproblem of RatioDCA. The work
presented in this chapter is published in [96].

All the constrained clustering methods can directly handle must-link and cannot-
link constraints. The label constraints can be transformed to pairwise constraints by
having a must-link between every pair of points with the same label and cannot-link
between every pair of points with di↵erent labels. Hence for simplicity we present
our method only for must-link and cannot-link constraints. However, note that the
label information is stronger than the pairwise constraints. There is more than one
way to assign labels to the given points while still satisfying the pairwise constraints
and thus pairwise constraints alone do not reveal the true label information.

In this chapter, we denote by G(V,W) the similarity graph constructed from
the given pairwise similarities where V = {1, . . . , n} is the n-element vertex set,
W 2 Rn⇥n

+ is the symmetric weight matrix. We assume in this chapter that G is
connected. We denote the entries ofW by wij, i, j = 1, . . . n. Let E = {(i, j) | wij >

0} be the set of edges of G and
�!
E = {(i, j) 2 E, i < j} denote the directed edges.

We assume that there are no self loops in G, i.e., (i, i) /2 E, 8i 2 V and hence

|E| = 2
�

�

�

�!
E
�

�

�

. We allow the vertices to have non-negative weights denoted by b 2 Rn
+.

33

34 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

We denote by 1n the n ⇥ 1 vector of all ones and by 1C the indicator vector on a
set C whose ith entry is 1 if i 2 C and 0 otherwise. We denote the complement of
a set C by C = V \C. The cut function is defined as cut(C,C) =

P

i2C, j2C wij.
The (generalized) volume of a set C ✓ V is defined as vol(C) =

P

i2C bi, which
specializes to cardinality if bi = 1, 8i 2 V and to the well-known volume function
used in normalized cut when bi = di, 8i 2 V , where di =

Pn
j=1 wij is the degree

of vertex i. Unlike the existing methods, which are designed using normalized cuts
exclusively, we develop our method based on a general balanced cut problem given
by

min
C✓V

cut(C,C)

Ŝ(C)
=: BCut(C,C)

where Ŝ(C) : 2V ! R+ is a non-negative balancing function satisfying Ŝ(;) =
Ŝ(V) = 0. We assume that the balancing function is defined in terms of the
generalized volume which in turn depends on the vertex weights b. For example, in
the case of ratio and normalized cut, Ŝ(C) = vol(C) vol(C), with bi = 1, 8i 2 V in
the case of ratio cut and bi = di, 8i 2 V in the case of normalized cut. Note that
for ratio and normalized cuts this definition di↵ers with the general definition of
the balanced cut (1.1) by a constant factor vol(V). We use the convention 0

0
= 1

so that the sets ;, V are never the solution of the balanced cut problem.
In the constrained clustering setting, we are additionally given pairwise must-

link constraints, M = {(p, q) : p 2 V, q 2 V } and cannot-link constraints, Q =
{(p, q) : p 2 V, q 2 V }. We also consider a slightly general setting where a degree-
of-belief is associated with each constraint. Let us define the constraint graphs
for must-link and cannot-link constraints. Let Gc(V,W c) denote the cannot-link
constraint graph with the weight matrix W c whose entries wc

ij 2 [0, 1], specify the
degree of belief for the constrained pair (i, j) 2 Q. We make W c symmetric by
setting wc

ji = wc
ij whenever (i, j) 2 Q. Similarly we define must-link constraint

graph Gm(V,Wm) with degrees of belief wm
ij for each (i, j) 2 M. We assume for

both the constraint graphs that the vertex weights are given by the degrees of
vertices. We explicitly mention the graph under consideration when specifying the
cut and the volume functions to avoid confusion; for example cutGc refers to the
cut on the graph Gc. When there is no mention of the graph, it is assumed that
the similarity graph G is being considered.

We first discuss the existing work for constrained clustering in Section 3.1. We
then give our formulation for the constrained clustering problem in Section 3.2.
Section 3.3 discusses an elegant way to directly integrate must-link constraints in
a hard-enforcement setting. We present our exact continuous relaxation result in
Section 3.4 and an e�cient method for solving it in Section 3.5. We also discuss
our preconditioning technique in Section 3.5. We finally present our experiments in
Section 3.6.

3.1 State-of-the-art

Here we present the state-of-the-art spectral methods in constrained clustering.

3.1. STATE-OF-THE-ART 35

3.1.1 Spectral learning

One of the first methods to incorporate pairwise constraints into spectral clustering
framework is spectral learning (SL, for short) [64], which proposes to impose the
pairwise constraints by directly modifying the similarities between the data points.
The must-link points p and q are made more similar than any other pair of points by
setting their similarity Wm

pq (and Wm
qp) to the maximum value and the cannot-link

points r and s are made more dissimilar by setting W c
rs = W c

sr = 0. They then
suggest running the usual spectral clustering algorithm on the modified weight
matrix. Note that there is no guarantee that the solution of this method satisfies
even a single constraint neither does it have a mechanism to control the trade-o↵
between constraint violation and the clustering objective.

3.1.2 Flexible constrained spectral clustering

Flexible constrained spectral clustering method (CSP, for short) [117] encodes the
pairwise supervision using the constraint matrix Q = Wm�W c, where Wm and W c

respectively describe the degrees-of-belief for must-link and cannot-link constraints.
Note that given a cluster indicator function f 2 {+1,�1}n, the quantity hf,Qfi
measures the amount of constraints satisfied. Thus, the method proposes to solve
the spectral relaxation with an additional constraint requiring a minimum amount
of constraint satisfaction,

hf,Qfi � ↵,

where ↵ is a user-defined parameter. The formulation proposed in [117] is given by

min
g2Rn

⌦

g, L̄g
↵

(3.1)

subject to : hg, gi = vol(V)
⌦

g, Q̄g
↵

� ↵

g 6= D
1
21n,

where L̄ is the normalized graph Laplacian, L̄ = D� 1
2LD� 1

2 , Q̄ is the normalized
constraint matrix Q̄ = D� 1

2 (Wm �W c)D� 1
2 and vol(V) is the sum of the degrees

of all vertices V . They compute the final clustering by rounding the solution f ⇤ =
D� 1

2 g⇤ based on the sign of its components. Note that, in contrast to the standard
spectral relaxation, they do not require g to be orthogonal to the trivial solution
D

1
21n. They simply require g to be di↵erent from it.
The above problem (3.1) is a non-convex problem; the authors of [117] propose

to solve this using the KKT optimality conditions for constrained optimization
problems [17]. They show that a set of candidates satisfying all the necessary KKT
conditions can be obtained by solving a generalized eigenvalue problem for all the
eigenvectors. Then the candidate with the smallest objective is an optimal solution;
they explicitly filter the trivial solution D

1
21n in this step.

Improving over spectral learning, this method seems to provide a control over the
constraint violation via the parameter ↵. However, it is not clear if this parameter
↵ allows one to derive the full spectrum of solutions, in particular the important
case of complete constraint satisfaction. It is not discussed in [117] if there exists a
value of ↵ for which all the constraints are satisfied. Although in the experiments

36 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

they suggest some value based on the the maximum and minimum eigenvalues of Q̄,
there is no proper justification for this choice. Moreover, another main drawback
of this method is its prohibitive computational complexity of O(n3) because of the
need to solve the full eigenvalue problem.

3.1.3 Spectral clustering with linear constraints

In image segmentation, there have been several e↵orts [125, 126, 42, 121] in in-
corporating prior information into the spectral clustering framework. The prior
information mostly consisted of pixel labels and grouping of pixels, which for ex-
ample can be encoded as must-links. They [125, 126, 42, 121] suggest to model this
prior information by a set of linear constraints and solve the constrained spectral
relaxation of the form

min
g2Rn

⌦

g, L̄g
↵

(3.2)

subject to : hg, gi = 1

Bg = c

where L̄ is the normalized graph Laplacian. Note that the usual orthogonality

constraint
D

g,D
1
21n

E

= 0, which avoids the trivial solution, is encoded in the

linear system Bg = c.
Must-link and cannot-link constraints are considered in this context by [42], who

propose to formulate these as the following linear constraints,

gp � gq = 0, 8(p, q) 2 M

gp + gq = 0, 8(p, q) 2 N .

Although must-links are correctly formulated, the encoding of cannot-links has
modeling drawbacks. First observe that any g that assigns zero to the points p
and q where (p, q) is a cannot-link constraint, is still feasible for the problem (3.2);
however any rounding of the solution of (3.2) cannot yield a clustering that satisfies
this cannot-link constraint. Moreover, it is unnecessary to require g to have the
same (absolute) value on the cannot-link vertices p and q; it should su�ce to restrict
them to have di↵erent signs. In fact from the derivation of spectral clustering (see
(2.25) from Chapter 2), one notices that requiring them to have the same value
with di↵erent signs corresponds to the case where both C and C have exactly the
same volume. Thus the above formulation of cannot-link constraints introduces
unnecessary bias, which is also confirmed in our experiments.

Unlike the methods presented previously, this is a hard-enforcement setting:
must-links are guaranteed to satisfy irrespective of the rounding procedure; if the
continuous solution does not assign zero to the vertices involved in cannot-link con-
straints, then cannot-links are guaranteed to be satisfied if the solution is rounded
based on the sign, which the authors of [42, 121] also recommend.

In our experiments, we use the e�cient projected power method proposed in
[121] for solving the above constrained spectral relaxation (3.2). They [121] refor-

3.1. STATE-OF-THE-ART 37

mulate the above problem as an equivalent constrained eigenvalue problem

max
g2Rn

⌦

g, (↵In⇥n � L̄)g
↵

subject to : kgk = 1,

Bg = c

where In⇥n is the n⇥ n identity matrix, ↵ is chosen large enough so that ↵In⇥n� L̄
is positive-semidefinite. One choice for ↵ is the maximum eigenvalue of L̄. A
modified power method that projects the iterates on to the hyperplane Bg = c in
each iteration, is proposed in [121] for solving this linearly constrained eigenvalue
problem. It is shown that the projected power method converges to the global
optimal solution of the constrained eigenvalue problem.

3.1.4 Constrained clustering via spectral regularization

Constrained clustering via spectral regularization (CCSR, for short) [79] attempts
to incorporate pairwise constraints directly into the multi-class setting. The main
idea of this method is to learn a new data representation, derived from a low-
dimensional spectral embedding, that is most consistent with the given pairwise
constraints. Let Fr = (v1, . . . , vr), Fr 2 Rn⇥r denote the spectral embedding, where
vi is the eigenvector of the normalized graph Laplacian L̄ corresponding to the ith

smallest eigenvalue. The authors of [79] propose to learn a new k-dimensional data
representation F = (f1, . . . , fk), F 2 Rn⇥k such that F = FrA, where A 2 Rr⇥k is
the coe�cient matrix to be learned. Ideally, one would like to have the new data
representation F to be the cluster assignment matrix, i.e., the columns of F are
indicator vectors of the k clusters. Consequently, if yi 2 Rk, 8i 2 V , denote the
rows of F , it should hold that hyp, yqi = 0, 8(p, q) 2 Q and hyp, yqi = 1, 8(p, q) 2 M.
Hence the following cost function is suggested for constrained clustering in [79]

n
X

i=1

(hyi, yii � 1)2 +
X

(p,q)2M
(hyp, yqi � 1)2 +

X

(p,q)2Q
(hyp, yqi � 0)2,

where the first term is introduced for the normalization purposes, the second and
third terms encode the must-link and cannot-link constraints respectively. In terms
of the coe�cient matrix A the formulation is given by

min
A2Rr⇥k

X

(i,j,tij2S)
(uT

i AA
Tuj � tij)

2,

where ui is the ith row of Fr, S = {i, j, tij} the set of pairwise constraints with tij = 1
for must-link pair (i, j) and tij = 0 for cannot-link pair (i, j). It is also assumed
that (i, i, 1) 2 S, 8i 2 V for the sake of normalizing the rows of F . Introducing
a new variable M 2 Rr⇥r, M = AAT , M < 0, the above problem is relaxed to a
semi-definite program which can be solved in O(r2), where r is the dimension of
the spectral embedding. They suggest using r = 15 in the experiments. Since in
practice M does not necessarily yield a cluster assignment matrix F , the authors
of [79] suggest applying k-means on the new data representation F = FrM

1
2 .

38 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

(a) (b)

Figure 3.1: (a) Must-link constraint graph where the must-links are denoted by
green edges; any partition with zero cut value satisfies all the constraints. (b)
cannot-link constraint graph where the cannot-links are by denoted by black edges;
any partition that cuts every edge satisfies all the constraints.

The main modeling drawback is that the cost function completely ignores the
orthogonality constraint required for the columns of F in order that F is a cluster
indicator matrix. Moreover, it is not clear how strongly the constraints are enforced;
in fact the method does not have any control on the amount of constraints violated
as revealed in our experiments. The influence of the dimension of the spectral
embedding r on the solution is also not studied and in practice it is not clear what
would be a good value for r.

3.2 Formulation as constrained balanced cut
problem

Unlike the other approaches that try to incorporate constraints into spectral cluster-
ing framework directly, our approach is derived from the first principles, in particular
from the balanced cut problem. The essential idea is to reformulate the constrained
clustering problem as a suitable constrained balanced cut problem. The first step is
to define appropriate set functions that capture the degree of constraint violation of
a partition (C,C). For must-link constraints, the amount of violation of a partition
(C,C) is given by the cut on the must-link constraint graph, while for cannot-links,
it is the opposite: total weight of the edges that are not cut by the partition (C,C)
on the cannot-link constraint graph (see Figure 3.1). Define M̂, Q̂ : 2V ! R+ as
follows.

M̂(C) := cutGm(C,C) (must-links)

Q̂(C) :=
1

2

�

assocGc(C) + assocGc(C)
�

(cannot-links)

=
1

2
volGc(V)� cutGc(C,C)

Let us introduce T̂ (C) : 2V ! R+ to capture the total amount of constraint

3.2. FORMULATION AS CONSTRAINED BALANCED CUT PROBLEM 39

violation,
T̂ (C) := M̂(C) + Q̂(C).

Note that T̂ is non-negative and is increasing with the amount of constraint viola-
tion. In fact each violated constraint increases T̂ by the corresponding degree-of-
belief. If a partition (C,C) satisfies all the constraints, then T̂ (C) = 0.

Definition 3.1 (Consistent partition) We define a partition (C,C) of V as
consistent if T̂ (C) = 0.

The two-class clustering problem can be formulated as the following constrained
balanced cut problem

min
C✓V

cut(C,C)

Ŝ(C)
(3.3)

subject to : T̂ (C) = 0.

In a hard-enforcement setting, we would like to guarantee that all the con-
straints are satisfied. On the other hand, if the constraints are unreliable and/or
inconsistent, we would prefer to optimize a trade-o↵ between the balanced cut and
the amount of constraint violation. Here, we show that there is a way to address
both settings in a common framework. For this, we first transform the constrained
problem (3.3) into an unconstrained one using a penalty parameter � 2 R+,

min
C✓V

cut(C,C) + �T̂ (C)

Ŝ(C)
. (3.4)

Since T̂ (C) � 0, 8C ✓ V , the constraint function T̂ is also valid as the penalty
function for the constraint T̂ (C) = 0. Moreover, since T̂ (C) = 0 for any consistent
partition (C,C), the problem (3.4) corresponds to a trade-o↵ between having small
balanced cut and satisfying all constraints. Among the partitions that have same
amount of constraint violation, problem (3.4) prefers those with higher Ŝ(C), thus
introducing bias towards more balanced partitions.

Before establishing the equivalence between problems (3.3) and (3.4) for a spe-
cific choice of �, let us characterize the relation between the parameter � and the
amount of constraint violation of the solution of (3.4). For this, define ✓ to be the
minimum value among all the degrees-of-belief

✓ = min

⇢

min
(p,q)2M

{wm
pq}, min

(p,q)2Q
{wc

pq}
�

. (3.5)

It is reasonable to assume that ✓ > 0, i.e., each constraint has a positive degree-of-
belief.

Lemma 3.1 Let (A0, A0) be a consistent partition (i.e., it satisfies all the con-

straints) and �0 = BCut(A0, A0). If � >
maxB✓V Ŝ(B)

(l+1)✓
�0, where ✓ is defined in

(3.5), then any minimizer (C⇤, C⇤) of the problem (3.4) violates no more than l
constraints.

40 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

Proof: First note that �0 is the objective value of the partition (A0, A0) for the
problem (3.4). Assume for the sake of contradiction that a minimizer (C⇤, C⇤) of
(3.4) violates at least l + 1 constraints. Then it holds that T̂ (C⇤) � (l + 1)✓, since
✓ is the minimum of all the degrees-of-belief. Let �⇤ denote the objective value of
(C⇤, C⇤) for the problem (3.4). Then we have for the given value of �,

�⇤ = BCut(C⇤, C⇤) + �
T̂ (C⇤)

Ŝ(C⇤)
� �(l + 1)✓

maxB✓V Ŝ(B)
> �0,

which is a contradiction since �⇤ is the optimal value and �0 is the objective value
of the partition (A0, A0). Hence any partition (C⇤, C⇤) which violates more than l
constraints cannot be a solution of problem (3.4). ⇤

As we will see in Section 3.3, it is easy to construct a consistent partition in
O(|V |+|Q|) time and thus the above choice of � in the above lemma is constructive.
Now the main result concerning the equivalence between the problems is immediate,
assuming the constraints are consistent.

Theorem 3.1 Let (A0, A0) be a consistent partition (i.e., it satisfies all the con-

straints) and �0 = BCut(A0, A0). If � >
maxB✓V Ŝ(B)

✓
�0, where ✓ is defined in (3.5),

it holds that

argmin
C✓V

T̂ (C)=0

cut(C,C)

Ŝ(C)
= argmin

C✓V

cut(C,C) + �T̂ (C)

Ŝ(C)

and the optimum values of both problems are equal.

Proof: By Lemma 3.1 with l = 0, any minimizer of the unconstrained problem
does not violate any constraint. Moreover T̂ (C) = 0 for any consistent partition
and hence the objective values of both problem are equal for consistent partitions.
Thus the equivalence holds. ⇤
Thus the constrained balanced cut problem (3.3) can be equivalently formulated as
the unconstrained problem (3.4) by choosing a suitable � which can be computed in
linear timeO(|V |+|Q|). Note that the above equivalence holds for any given positive
degrees-of-belief. Moreover, the minimum value of � needed for the equivalence and
hence for enforcing all the constraints decreases with increasing value of degree-of-
belief ✓. In practice, we recommend enforcing all the constraints this way only if
all the degree-of-belief are set to 1, i.e., ✓ = 1.

3.3 Direct integration of must-link constraints

In a hard-enforcement setting, we show that there exists an elegant way of integrat-
ing must-link constraints which works even in the multi-class setting (i.e., k > 2).
The idea is to merge each pair of must-link vertices into a single vertex and solve
a slightly modified unconstrained balanced cut problem on the reduced graph. We
show that a proper redefinition of vertex weights as well as the edge weights would
ensure that the unconstrained optimal cut on the reduced graph is equal to the

3.3. DIRECT INTEGRATION OF MUST-LINK CONSTRAINTS 41

constrained optimum on the original graph. Moreover, any optimal partition of the
original problem can be recovered from optimal solutions on the reduced graph.

Recall that Gm(V,Wm) is the must-link constraint graph. Let Gm have t con-
nected components and let A1, . . . , At be the vertices of these connected compo-
nents. By transitivity of must-link constraints all the vertices in a connected com-
ponent should belong to the same cluster. Thus the vertices Ai in each connected
component can be merged into a single vertex. The construction of a reduced
graph is given below for one connected component. One can iterate the following
procedure for each connected component.

Construction of the reduced graph:

1. introduce a new vertex ⌧i in place of a connected component containing the
vertices Ai: V 0 = {⌧i} [(V \Ai).

2. define the edges on the reduced graph as follows: for every r 2 V 0\{⌧i}, add
an edge between ⌧i and r with the weight

P

j2Ai
wjr. The edges for any other

vertices i 6= ⌧i, j 6= ⌧i is defined as w0
ij = wij.

3. define the weights for the new vertex set V 0 as follows: b0⌧i =
P

j2Ai
bj and for

all i 6= ⌧i, b0i = bi.

Note that this construction leads to a graph with vertex weights even if the orig-
inal graph did not have vertex weights. The following lemma shows that the above
construction preserves all balanced cuts which respect the must-link constraints.
We prove it for the case where we merge one connected component and the proof
can easily be extended to the general case.

Lemma 3.2 Let G0(V 0,W 0) be the reduced graph of G(V,W) obtained by merging
the vertices A using the above procedure. Moreover let b0 and b be the weights of the
vertices of G0 and G respectively. If a partition (C,C) of V does not separate the
vertices A (i.e., either A ✓ C or A ✓ C), then there exists a partition (C 0, C 0) of
V 0 with same the balanced cut value, BCutG(C,C) = BCutG0(C 0, C 0).

Proof: If (C,C) does not separate the vertices A, then we have either ⌧ 2 C
or ⌧ 2 C. Without loss of generality, assume that ⌧ 2 C. Consider the following
partition of V 0: C 0 = {⌧} [(C\A) and C 0 = C. We have preserved the cut in G0

because

cut(C 0
, C

0) =
X

i2C0, j2C0

w

0
ij =

X

i2C0\{⌧}, j2C0

w

0
ij +

X

j2C0

w

0
⌧j =

X

i2C\A, j2C
wij +

X

j2C

X

i2A
wij

= cut(C,C).

Similarly, the volumes are also preserved,

vol(C 0) =
X

i2C0

b

0
i = b

0
⌧ +

X

i2C0\{⌧}
=
X

j2A
bj +

X

i2C\A
bi =

X

i2C
bi = vol(C),

vol(C 0) =
X

i2C0

b

0
i =

X

i2C
bi = vol(C).

Thus we have BCutG(C,C) = BCutG0(C 0, C 0), since the balanced cut criterion is
based on the cut and the volumes of a partition. ⇤

42 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

All partitions of the reduced graph fulfill all must-link constraints and thus
any relaxation of the unconstrained balanced cut problem can now be used. In
particular, the spectral relaxation for the constrained clustering problem with only
must-link constraints can be formulated as

min
f2R|V 0|

hf, L0fi

subject to : hf,B0fi = vol(V 0)
⌦

f,B01|V 0|
↵

= 0

where L0 is the unnormalized graph Laplacian L0 = D0 �W 0, D0, B0 are the diag-
onal matrices containing respectively the degrees and vertex weights of G0 on the
diagonal. In this way we have recovered in an elegant manner the method of Yu
and Shi [126] which considers only must-link constraints and requires the solution of
expensive constrained eigenvalue problem to integrate them. Also our integration
of must-link constraints works on the graph level and thus can be used by any other
method, whereas their derivation is restricted to the normalized cut problem.

Detecting inconsistency

Note that must-link constraints are never inconsistent. However, cannot-link con-
straints either independently or in the presence of must-link constraints can be
inconsistent. One can check if the given cannot-ink constraints are inconsistent by
solving the two-coloring problem on the cannot-link constraint graph. It is easy to
verify that the constraints are consistent if and only if the corresponding constraint
graph can be colored with two colors. Moreover the two-coloring also yields a con-
sistent partition. In the presence of both must-link and cannot-link constraints, one
can first merge all the must-link constraints and transform the problem onto the
reduced similarity graph G0 and update the cannot-links accordingly. Since on the
reduced problem all the must-link constraints are already satisfied, one has only
the cannot-link constraints whose consistency can be checked by solving the two-
coloring problem. Since the two-coloring problem can be optimally solved in linear
time using breadth-first-search (see Theorem 2 in [87]), one can detect if the given
pairwise constraints are consistent and also find a consistent partition e�ciently in
the two-class setting.

3.4 Exact continuous relaxation of constrained
balanced cut problem

It has been shown in Theorem 3.1 that the constrained balanced cut problem (3.3)
is equivalent to the unconstrained problem

min
C✓V

cut(C,C) + �T̂ (C)

Ŝ(C)
=: F̂ (�)(C), (3.6)

for a suitable value of �, where

T̂ (C) = M̂(C) + Q̂(C) = cutGm(C,C) +
1

2
volGc(V)� cutGc(C,C). (3.7)

3.4. EXACT RELAXATION OF CONSTRAINED BALANCED CUT 43

Building on the result of [56] given in Theorem 2.2, we proved in [96] the exact
continuous relaxation result for the normalized cut problem with must-link and
cannot-link constraints. Later on in a joint work [22], we showed that exact contin-
uous relaxations exist for any constrained fractional set programs, i.e., optimization
of a ratio of non-negative set functions subject to constraints specified by any set
function. Here we show the general result for the minimization of ratio of non-
negative set functions from which the exact continuous relaxation of the constrained
balanced cut problem is then deduced.

Theorem 3.2 Let R̂, Ŝ : 2V ! R be any non-negative set functions and R, S :
Rn ! R be their Lovász extensions respectively. Further let R̂(;) = Ŝ(;) = R̂(V) =
Ŝ(V) = 0. Then it holds that

inf
C✓V

R̂(C)

Ŝ(C)
= inf

f2Rn

R(f)

S(f)
.

Moreover, it holds for all f 2 Rn,

min
i=1,...,n�1

R̂(Ci)

Ŝ(Ci)
 R(f)

S(f)
,

where the sets Ci are defined as

C0 = V, Ci = {j 2 V |fj > fi}, i = 1, . . . , n. (3.8)

That is a minimizer C⇤ of the ratio of set functions can be obtained by optimal
thresholding of any minimizer f ⇤ of the continuous problem.

Proof: Without loss of generality assume that components of f 2 Rn are ordered
in increasing order f1  . . . , fn. We have by the definition of the Lovász extension
(2.5),

R(f) =
n�1
X

i=1

R̂(Ci)(fi+1 � fi)

=
n�1
X

i=1

R̂(Ci)

Ŝ(Ci)
Ŝ(Ci)(fi+1 � fi)

� min
j=1,...,n�1

R̂(Cj)

Ŝ(Cj)

n�1
X

i=1

Ŝ(Ci)(fi+1 � fi)

!

= min
j=1,...,n�1

R̂(Cj)

Ŝ(Cj)
S(f),

where the inequality follows because of the non-negativity of Ŝ. Moreover, since Ŝ
is non-negative, it follows from the definition of the Lovász extension (2.5) and the
assumption Ŝ(V) = 0 that S(f) � 0, 8f 2 Rn. Thus dividing both sides by S(f),
we have for any f 2 Rn,

R(f)

S(f)
� min

j=1,...,n�1

R̂(Cj)

Ŝ(Cj)
.

This implies

min
f2Rn

R(f)

S(f)
� min

f2Rn
min

j=1,...,n�1

R̂(Cj)

Ŝ(Cj)
� min

C✓V

R̂(C)

Ŝ(C)
.

44 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

Here we used the convention 0
0
= 1 for the last inequality. On the other hand, the

continuous problem is a relaxation of the combinatorial problem because R̂(C) =
R(1C) and Ŝ(C) = S(1C), 8C ✓ V . Thus by the virtue of relaxation, we have

min
f2Rn

R(f)

S(f)
 min

C✓V

R̂(C)

Ŝ(C)
,

which establishes the result. ⇤
Now we discuss the exact relaxation of the problem (3.6). Because of the constant
1
2
volGc(V), the penalty term T̂ in the objective function of (3.6) does not vanish

on the empty set, a technical condition required in the definition of the Lovász
extension. Moreover the above theorem requires the set functions to vanish also on
the full set V ; this assumption is satisfied only by the cut function and the balancing
function Ŝ. Thus, in order to derive the exact continuous relaxation, we introduce
a new penalty function T̂0 : 2V ! R+ by replacing the constant term,

T̂0(C) := cutGm(C,C) +
1

2
volGc(V)P̂0(C)� cutGc(C,C), (3.9)

where

P̂0(C) :=

⇢

0 if C = ; or C = V,
1 otherwise

Both penalty functions T̂ and T̂0 agree everywhere except on the empty set and the
full set V . Since empty set and the full set are never optimal for (3.6), the following
problem is equivalent to (3.6)

min
C✓V

cut(C,C) + �T̂0(C)

Ŝ(C)
=: F̂ (�)

0 (C). (3.10)

Now we present the exact continuous relaxation result for this problem.

Theorem 3.3 Let G(V,W) be a weighted undirected graph and Ŝ be any non-
negative balancing function with Ŝ(;) = 0, Ŝ(V) = 0 and T̂0 be the penalty term
defined in (3.9) for the constraint graphs Gm, Gc. Then for any � � 0, it holds that

min
C✓V

cut(C,C) + �T̂0(C)

Ŝ(C)
= min

f2Rn

TVG(f) + �T0(f)

S(f)
,

where

TVG(f) =
1

2

n
X

i,j=1

wij |fi � fj| , (3.11)

T0(f) = TVGm(f)� TVGc(f) +
1

2
volGc(V)

⇣

max
i

{fi}�min
i
{fi}

⌘

, (3.12)

and S are the Lovász extensions of the cut function on the graph G, the penalty
function T̂0 and the balancing function Ŝ respectively. Moreover, it holds for all
f 2 Rn,

min
i=1,...,n�1

cut(Ci, Ci) + �T̂0(Ci)

Ŝ(Ci)
 TVG(f) + �T0(f)

S(f)
,

3.4. EXACT RELAXATION OF CONSTRAINED BALANCED CUT 45

where the sets Ci are defined as

C0 = V, Ci = {j 2 V |fj > fi}, i = 1, . . . , n. (3.13)

That is a minimizer C⇤ of the problem (3.10) can be obtained by optimal thresholding
of any minimizer f ⇤ of the continuous problem.

Proof: It is clear from Proposition 2.1, Lemma 2.4 and Lemma 2.5 that TVG(f)+
�T0(f) is the Lovász extension of the set function cut(C,C) + �T̂0(C). Thus the
result follows directly from Theorem 3.2. ⇤
Now, we state the main result: the problem of minimizing balanced cut under
must-link and cannot-link constraints is equivalent to minimizing the functional

TVG(f) + �T0(f)

S(f)
,

over real-valued f for a specific choice of �. The proof follows directly from Theorem
3.1 and Theorem 3.3.

Theorem 3.4 Let G(V,W) be a weighted undirected graph and Ŝ be any non-
negative balancing function with Ŝ(;) = 0, Ŝ(V) = 0 and T̂ be the penalty term
defined in (3.7) for the constraint graphs Gm, Gc. Further let (A0, A0) be a con-

sistent partition (i.e., T̂ (A0) = 0) and �0 = BCut(A0, A0). If � >
maxB✓V Ŝ(B)

✓
�0,

where ✓ is defined in (3.5), it holds that

min
C✓V, T̂ (C)=0

cut(C,C)

Ŝ(C)
= min

f2Rn

TVG(f) + �T0(f)

S(f)
,

where TVG(f), T0(f) (given in (3.11)) and S are the Lovász extension of the cut
function on the graph G, the penalty function T̂0 defined in (3.9) and the balanc-
ing function Ŝ respectively. Furthermore, an optimal partition of the constrained
problem can be obtained from a minimizer of the continuous problem.

Proof: From Theorem 3.1 we know that, for the chosen value of �, the constrained
problem is equivalent to

argmin
C✓V

cut(C,C) + �T̂ (C)

Ŝ(C)
.

Since the empty set and the full set V are not optimal, this problem is equivalent
to (3.10), which is in turn is equivalent, by Theorem 3.3, to the continuous prob-
lem in the statement. Moreover, as shown in Theorem 3.3, a minimizer C⇤ of this
problem (and consequently the constrained problem) can be obtained by optimal
thresholding of any minimizer of f ⇤ of the continuous problem. ⇤
A few comments on the implications of Theorem 3.4. First, it shows that the con-
strained balanced cut problem can be equivalently solved by solving the continuous
relaxation for the given value of �. The value of � depends on the balanced cut
value of a partition consistent with given constraints. Note that such a partition can
be obtained in polynomial time by solving a two-coloring problem on the constraint
graph as long as the constraints are consistent (see Section 3.3).

46 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

3.5 Algorithm for constrained balanced cut
problem

3.5.1 Solution via RatioDCA

In this section, we discuss the e�cient minimization of the exact continuous relax-
ation given by

min
f2Rn

TVG(f) + �T0(f)

S(f)
=: F (�)

0 (f),

where T0(f) = TVGm(f)� TVGc(f) + a (maxi{fi}�mini{fi}) with a 2 R defined
as a = 1

2
volGc(V) and S is Lovász extension of Ŝ. For the ease of exposition, we

assume in this section that S is convex i.e., the corresponding balancing function
Ŝ is submodular; this case includes all the widely used balancing function such as
ratio and normalized cut along with the corresponding Cheeger variants.

A general scheme called RatioDCA (see Section 2.1.7) was proposed in [56] to
minimize a non-negative ratio of 1-homogeneous, di↵erence of convex functions,

min
f2Rn

R1(f)�R2(f)

S1(f)� S2(f)

Since Ŝ is non-negative, by the definition of the Lovász extension, one sees that S
is also non-negative. The non-negativity of TV and T0 follow similarly. Moreover,
TV, S and T0 are 1-homogeneous functions and T0 is already expressed as a di↵er-
ence of convex function; note that amaxi{fi} and �amini{fi} are convex functions

for any non-negative real number a [17]. We see that F (�)
0 satisfies the assumptions

of RatioDCA. In particular, we have

R1(f) = TVG(f) + �TVGm(f) + a�
⇣

max
i

{fi}�min
i
{fi}

⌘

R2(f) = �TVGc(f), S1(f) = S(f), S2 ⌘ 0

and the algorithm specialized to our setting is given in Algorithm 3.1.

Algorithm 3.1 Minimization of the ratio F (�)
0 using RatioDCA

1: Initialization: f 0 2 Rn, �0 = F (�)
0 (f 0)

2: repeat

3: f t+1 = argmin
kfk21

1
2

Pn
i,j=1 w̄ij |fi � fj|+maxi{fi}�mini{fi}� hf, vti,

where vt = 1
a�

(� rt + �tst), with rt 2 @TVGc(f t), st 2 @S(f t).

4: �t+1 = F (�)
0 (f t+1)

5: until
|�t+1��t|

�t < ✏

6: Output: �t and f t

3.5. ALGORITHM FOR CONSTRAINED BALANCED CUT 47

In the algorithm the key part is solving the inner convex problem. In our case
it has the form (after rescaling the objective by the constant 1

a�
for a > 0, � > 0),

min
kfk21

1

2

n
X

i,j=1

w̄ij |fi � fj|+max
i

{fi}�min
i
{fi}�

⌦

f, vt
↵

,

where w̄ij = 1
a�

�

wij + �wm
ij

�

, vt = 1
a�

(� rt + �tst), with rt 2 @TVGc(f t), st 2
@S(f t) and �t = F (�)

0 (f t). An element of the subdi↵erential of the Lovász extension
of Ŝ at f t can be found as (see Lemma 2.7)

stji = Ŝ ({ji, . . . , jn})� Ŝ ({ji+1, . . . , jn}) , i = 1, . . . , n,

where (j1, . . . , jn) is a permutation of V satisfying f t
j1

 f t
j2

 . . .  f t
jn . The

subdi↵erential of the total variation function is given by (see Lemma 2.6)

@
�

TVGc(f t)
�

i
=
n

Pn
j=1w

c
ijuij | uij = �uji, uij 2 sign(f t

i � f t
j)
o

,

where sign(x) := +1, if x > 0; -1 if x < 0; [�1, 1], if x = 0. Note that implicitly we

minimize F̂ (�)
0 over non-constant functions. It is shown in [56], that the RatioDCA

algorithm converges to non-constant function if the initialization is non-constant,
R1 is invariant under addition of a constant and rt, st satisfy hrt,1i = hst,1i = 0.
This holds in our case since

0 = Ŝ(V) = S(1V) =
n
X

i=1

⇣

Ŝ ({ji, . . . , jn})� Ŝ ({ji+1, . . . , jn})
⌘

=
⌦

st,1
↵

.

Similarly one can show that hrt,1i = 0. Hence we can guarantee that our method
convergences to non-constant f .

It shown in [56] that one does not need to solve the inner problem to full accuracy
to guarantee monotonic descent. In fact, we can stop solving the inner problems
as soon as the objective value becomes negative and still maintain the monotonic
descent property. In our experiments we found that solving the inner problems
to low accuracy initially and then doing more iterations for the latter problems
typically gives better results.

3.5.2 Quality guarantee for our method

Although the problem of minimizing F (�)
0 is non-convex and hence global conver-

gence is not guaranteed, we have the following quality guarantee for our method.

Theorem 3.5 Let (C,C) be any partition of V other than the trivial partition
(;, V) and let �0 = BCut(C,C). Moreover Ŝ satisfy the conditions give in Theorem
3.4. If one uses 1C as the initialization, then our method either terminates in
one iteration or outputs a non-constant solution f̄ which yields a partition (A,A)
satisfying

F̂ (�)(A) < F̂ (�)(C).

Moreover, if (C,C) is consistent (i.e., T̂ (C) = 0) and � >
maxB✓V Ŝ(B)

✓
�0 then A is

also consistent and has a strictly smaller balanced cut BCut(A,A) < BCut(C,C).

48 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

Proof: First note that F (�)
0 and F̂ (�)

0 satisfy F (�)
0 (1C) = F̂ (�)

0 (C) for any C ✓ V .
Let f 0 = 1C be the initialization of the RatioDCA algorithm for some C 6= ;
and C 6= V . It has been shown that RatioDCA either stops in one iteration or
outputs a non-constant f̄ with a strictly smaller objective (see Proposition 2.5). In
our setting this means, if the algorithm does not terminate in one iteration, that
F (�)
0 (f̄) < F (�)

0 (f 0) = F̂ (�)
0 (C). As shown in theorem 3.3, optimal thresholding of f̄

results in a partition (A,A) satisfying F̂ (�)
0 (A)  F (�)

0 (f̄) and hence we have

F̂ (�)
0 (A) < F̂ (�)

0 (C).

Since C 6= ;, C 6= V and RatioDCA converges to non-constant f̄ (and hence A 6=
;, A 6= V), we have

F̂ (�)(A) = F̂ (�)
0 (A) < F̂ (�)

0 (C) = F̂ (�)(C).

If moreover C is consistent, we have, if not terminated in one iteration, F̂ (�)(A) <
F̂ (�)(C) = BCut(C,C). For the chosen value of �, using a similar argument as in
Lemma 3.1, one sees that for any inconsistent subset B, F̂ (�)(B) > BCut(C,C) and
hence A cannot be inconsistent. ⇤
In practice best results are obtained by minimizing F (�)

0 for a sequence {�p} of
increasing values �, starting with �0 = 0 (i.e., the unconstrained problem), instead
of directly using the value of � prescribed in Theorem 3.4. This way the optimization
problem for each of value � receives a good initialization, which is the solution
obtained for the previous value of �. This process is iterated until the solution
violates no more than the required number of constraints. In our experiments we
find the smallest � that results in a solution satisfying all the constraints. For this,
we use the strategy, �p+1 = 2�p with �0 = 0, and �1 = 0.1. Once we find �p that
results in a consistent solution we do a binary search on the interval [�p�1, �p] to
find the smallest � yielding a consistent solution.

Remark: Note that Theorem 3.2 and Theorem 3.4 are still valid if one introduces
the constraint f 2 [0, 1]n in the continuous relaxation. We have shown in [22] that
the inner problem in this case can be rewritten as a source-sink minimum cut
problem. Thus, solutions of all the inner problems are integral (i.e., in {0, 1}n).
However this blows up the choice for the subgradient of the balancing function S
which we need in every iteration of RatioDCA. Note that if f 2 {0, 1}n has r zero
components, then there r!(n�r)! permutations of indices that achieve the ascending
order of f and each such permutation yields one subgradient (see Lemma 2.7). On
the other hand, using the constraint kfk2  1, we found that the inner problems,
at least in the beginning, yield solutions that are not piecewise constant, limiting
the size of the subdi↵erential @S. In practice this resulted in better solutions.

3.5.3 Smooth minimization of the inner problem

Now, we discuss how to e�ciently solve the inner convex problem arising in Ra-
tioDCA algorithm. Recall that the inner problem is given by

min
kfk21

1

2

n
X

i,j=1

w̄ij |fi � fj|+max
i

{fi}�min
i
{fi}�

⌦

f, vt
↵

, (3.14)

3.5. ALGORITHM FOR CONSTRAINED BALANCED CUT 49

where w̄ij =
1
a

�

wij + �wm
ij

�

, vt = 1
a�

(� rt + �tst), with rt 2 @TVGc(f t), st 2 @S(f t)

and �t = F (�)
0 (f t). In the following, we will work on the graph Ḡ(V, W̄), where the

symmetric weight matrix W̄ is defined by w̄ij, i, j = 1, . . . , n. Note that the edge
set of Ḡ is given by E = {(i, j) | wij > 0} [{(i, j) | wm

ij > 0}.
The problem (3.14) is a non-smooth convex problem and the standard meth-

ods from non-smooth convex optimization provide poor convergence rate of O(1p
t
),

where t is the number of steps [90]. Here we show that the above problem can
be e�ciently minimized by a first-order optimization scheme achieving convergence
rate of O(1

t2
), which is optimal for smooth convex optimization problems. In con-

trast to the inner problem of unconstrained balanced cut (i.e., without must-link
and cannot-link constraints), our inner problem (3.14) has additional non-smooth
term, maxi{fi}�mini{fi}, arising because of cannot-link constraints. By e�ciently
handling this non-smooth term, we further show that the computational complexity
of our method is same as that of [56] solving the unconstrained problem. Moreover,
we present a preconditioning technique for this problem since the weights w̄ may
have large variance, which will adversely a↵ect the convergence of gradient-based
optimization methods. The proposed preconditioning technique also works for the
inner problem arising in the unconstrained balanced cut problem.

Let us first characterize the set Dn = {z 2 Rn : z = x� y, x, y 2 �n}, where �n

is the simplex defined as �n = {x 2 Rn,
Pn

i=1 xi = 1, x � 0, 8i}.

Lemma 3.3 Let Dn = {z 2 Rn : z = x � y, x, y 2 �n} and �̄n = {z 2 Rn :
hz,1ni = 0,

Pn
i=1 max{zi, 0}  1}. The sets D and �̄n are equal. Moreover given

any element z 2 �̄n, one can find x, y such that z = x� y and x, y 2 �n.

Proof: Dn ✓ �̄n: If z 2 Dn, then there exist x, y 2 �n such that z = x� y. Then
Pn

i=1 zi =
Pn

i=1(xi � yi) = 0. Now for the second condition, assume, for the sake
of contradiction, that

Pn
i=1 max{zi, 0} > 1. Then

1 <
X

i:xi>yi

(xi � yi) =
X

i:xi>yi

xi �
X

i:xi>yi

yi.

Since yi � 0, i = 1, . . . , n, it should hold that
P

i:xi>yi
xi > 1, which is a contradic-

tion because x 2 �n, thus showing z 2 �̄n.
�̄n ✓ Dn: Let z 2 �̄n and define x and y as

xi = max{zi, 0}+
1

n

1�
n
X

i=1

max{zi, 0}
!

yi = xi � zi.

Note that 8i = 1, . . . , n, xi � max{zi, 0} � 0 since
Pn

i=1 max{0, zi}  1 and

n
X

j=1

xj =
n
X

j=1

(max{0, zj}) + 1� 1

n

n
X

j=1

n
X

i=1

max{0, zi}
!

= 1,

thus x 2 �n. Finally, since xi � max{zi, 0} � zi, yi � 0, i = 1, . . . , n. Since
hz,1ni = 0 and hx,1ni = 1, it holds that hy,1ni = 1, thus showing y 2 �n. Thus
we have written z = x� y, for x 2 �n, y 2 �n, completing the proof. ⇤

50 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

The decomposition of z into x and y given in the above lemma may not be
unique. For example, let z = x � y and for a pair of indices r, s and for some
� > 0, if it holds that xr � �, yr � �, xs  1 � �, ys  1 � �, then there exists
another decomposition, z = x̄� ȳ, where x̄, ȳ are same as x, y except at r, s: x̄r =
xr � �, x̄s = xs + �, ȳr = yr � �, ȳs = ys + �. It is easy to see that both x̄, ȳ are on
the simplex �n.

We will now introduce a linear operator to rewrite the total variation term
similar to [56]. Let E ✓ V ⇥ V denote the set of edges of the graph Ḡ(V, W̄), i.e.,

E = {(i, j) | w̄ij > 0} and
�!
E = {(i, j) 2 E, i < j} denote the directed edges. Since

W̄ is symmetric, we will directly work with
�!
E instead of E thus reducing the space

complexity by a factor two. Let A : R
�!
E ! RV be a linear operator defined as

(A↵)i :=
X

j:(i,j)2�!E
w̄ij↵ij �

X

j:(j,i)2�!E
w̄ji↵ji, 8i 2 V. (3.15)

Lemma 3.4 The adjoint AT : RV ! RE of the linear operator A defined in (3.15)
is given by

(ATf)ij = w̄ij(fi � fj), 8(i, j) 2 �!
E (3.16)

and its norm is upper bounded by

r

2maxi
n

Pn
j=1 w̄

2
ij

o

.

Proof: From the definition (3.15) of operator A, we have for any f 2 RV and

↵ 2 R
�!
E ,

hf, A↵iRV =
n
X

i=1

fi

0

@

X

j:(i,j)2�!E
w̄ij↵ij �

X

j:(j,i)2�!E
w̄ji↵ji

1

A

=
X

(i,j)2�!E
w̄ij↵ijfi �

X

(j,i)2�!E
fiw̄ji↵ji

=
X

(i,j)2�!E
w̄ij↵ijfi �

X

(i,j)2�!E
fjw̄ij↵ij =

X

(i,j)2�!E
w̄ij↵ij(fi � fj)

Using the definition of the adjoint operator hf, A↵iRV =
⌦

ATf,↵
↵

R
�!
E , 8f 2 RV and

↵ 2 R
�!
E , we see that (ATf)ij = w̄ij(fi � fj), 8(i, j) 2 �!

E . Next, the norm of the

operator A can be derived as follows. For any given ↵ 2 R
�!
E , let ↵̂ 2 RE be defined

as follows.

↵̂ij =

⇢

↵ij i < j
�↵ji i > j

8(i, j) 2 E.

Since the graph G is assumed to have no self loops, we have by symmetry of W ,

(A↵)i =
X

j:(i,j)2�!E
w̄ij↵ij�

X

j:(j,i)2�!E
w̄ij↵ji =

X

(i,j)2E,
i<j

w̄ij↵ij�
X

(i,j)2E,
i>j

w̄ij↵ji =
X

j:(i,j)2E
w̄ij↵̂ij

3.5. ALGORITHM FOR CONSTRAINED BALANCED CUT 51

For any ↵ 2 R
�!
E , we have

kA↵k22 =
n
X

i=1

0

@

X

j:(i,j)2E
w̄ij↵̂ij

1

A

2


n
X

i=1

0

@

X

j:(i,j)2E
w̄2

ij

X

j:(i,j)2E
↵̂2
ij

1

A

 max
i

8

<

:

X

j:(i,j)2E
w̄2

ij

9

=

;

n
X

i=1

X

j:(i,j)2E
↵̂2
ij

where in the second step, we used the Cauchy-Schwarz inequality. By noting that

n
X

i=1

X

j:(i,j)2E
↵̂2
ij =

X

(i,j)2E,
i<j

↵̂2
ij +

X

(i,j)2E,
i>j

↵̂2
ij =

X

(i,j)2�!E
↵2
ij +

X

(j,i)2�!E
(�↵ji)

2 = 2 k↵k22 ,

we have

kA↵k22
k↵k22

 2max
i

8

<

:

X

j:(i,j)2E
w̄2

ij

9

=

;

Hence kAk22 = sup
↵2R�!

E

kA↵k22
k↵k22

 2maxi
n

P

j:(i,j)2E w̄2
ij

o

. ⇤

Lemma 3.5 Let Ḡ(V, W̄) be a given graph with symmetric weight matrix W̄ and
A be a linear operator defined as in (3.15). Then it holds that

TVḠ(f) = max
�1↵ij1, 8(i,j)2�!E

hf, A↵i

Proof: Let E be the set of edges of the graph Ḡ. Then we have

1

2

X

(i,j)2E
w̄ij |fi � fj| =

1

2

X

(i,j)2E
max

�1�ij1, 8(i,j)2E
w̄ij(fi � fj)�ij

=
1

2
max

�1�ij1, 8(i,j)2E

X

(i,j)2E
w̄ijfi�ij �

X

(j,i)2E
w̄jifi�ji,

= max
�1�ij1, 8(i,j)2E

X

(i,j)2E

1

2
w̄ijfi(�ij � �ji)

where the last step follows because of the symmetry of W̄ . Now we introduce new
variables ↵ij =

1
2
(�ij ��ji), 8(i, j) 2 E in the last optimization problem. Note that

there is a one-to-one correspondence between ↵ and � and hence there is no change
in the solution of the problem. Moreover, ↵ satisfy anti-symmetric constraint

↵ij = �↵ji, 8(i, j) 2 �!
E ,

52 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

where
�!
E = {(i, j) 2 E, i < j}. Hence we can further rewrite the last problem as

max
�1↵ij1, ↵ij=�↵ji,

8(i,j)2E

X

(i,j)2E
w̄ijfi↵ij = max

�1↵ij1,
↵ij=�↵ji, 8(i,j)2E

n
X

i=1

X

j: i<j,
(i,j)2E

w̄ijfi↵ij +
X

j: i>j,
(i,j)2E

w̄ijfi↵ij

(s)
= max

�1↵ij1,

(i,j)2�!E

n
X

i=1

X

j: i<j,
(i,j)2E

w̄ijfi↵ij �
X

j: i>j,
(j,i)2E

w̄jifi↵ji

= max
�1↵ij1, (i,j)2�!E

hf, A↵i

We have used the symmetry of W̄ as well as the anti-symmetric constraint ↵ij =

�↵ji, 8(i, j) 2 �!
E , in the step s above. ⇤

We now derive an equivalent formulation for the inner problem (3.14).

Proposition 3.1 Let E ✓ V ⇥ V denote the set of edges of the graph Ḡ(V, W̄),�!
E = {(i, j) 2 E, i < j} denote the directed edges. Let A : R

�!
E ! RV be the

linear operator defined as in (3.15). Moreover, let �̄n = {z 2 Rn : hz,1ni =
0,
Pn

i=1 max{zi, 0}  1}. The inner problem (3.14) is equivalent to

min
↵2R�!

E , k↵k11

1

2

�

�A↵� vt � P�̄n

�

A↵� vt
�

�

�

2

2
=: (↵), (3.17)

where P�̄n
(·) is the projection operator defined as

P�̄n
(·) = argmin

z2�̄n

1

2
kz � ·k2 .

The gradient of the objective function at ↵ is given by

r (↵) = AT
�

A↵� vt � P�̄n
(A↵� vt)

�

,

where the adjoint AT is given in Lemma 3.4. Moreover, the Lipschitz constant of
the gradient of is upper bounded by 2

�

�ATA
�

�  4 maxi
Pn

j=1 w̄
2
ij.

Proof: Note that maxi{fi} = maxx2�n hx, fi, where �n is the simplex defined as
�n = {x 2 Rn,

Pn
i=1 xi = 1, x � 0, 8i}. Thus the inner problem (3.14) can be

rewritten using Lemma 3.5 as

min
kfk21

max
{↵2R�!

E , k↵k11}
hf, A↵i+ max

x2�n

hf, xi+ max
y2�n

h�f, yi �
⌦

f, vt
↵

= min
kfk21

max
�

↵2R�!
E , k↵k11,
x,y2�n

⌦

f, A↵ + x� y � vt
↵

(s1)
= max
�

↵2R�!
E , k↵k11,
x,y2�n

min
kfk21

⌦

f, A↵ + x� y � vt
↵

(s2)
= max
�

↵2R�!
E , k↵k11,
x,y2�n

�
�

�A↵ + x� y � vt
�

�

2

3.5. ALGORITHM FOR CONSTRAINED BALANCED CUT 53

The step s1 follows from the standard min-max theorem (see Corollary 37.3.2 in
[98]) since x, y, ↵, and f lie in non-empty compact convex sets. In the step s2, we
used that the minimizer of the linear function over the Euclidean ball is given by

f ⇤ = � A↵ + x� y � vt

kA↵ + x� y � vtk2
,

if kA↵ + x� y � vtk2 6= 0; otherwise f ⇤ is an arbitrary element of the Euclidean
unit ball. Using Lemma 3.3 the preceding problem can be further rewritten as

min
�

↵2R�!
E , k↵k11,

x,y2�n, z=y�x

1

2

�

�A↵� vt � z
�

�

2

2
= min
�

↵2R�!
E , k↵k11,

z2�̄n

1

2

�

�A↵� vt � z
�

�

2

2
.

Noting that the minimization over z is a projection problem yields the problem
stated in the proposition. It is shown in [100] that the function 1

2
kx� PC(x)k2,

where PC(·) is the projection onto the convex set C, is di↵erentiable and its gradient
is given by x�PC(x). Thus is di↵erentiable and using the chain rule, its gradient
is then given by

r (↵) = AT
�

A↵� vt � P�̄n
(A↵� vt)

�

.

Finally, we derive the Lipschitz constant of the gradient as follows. For any ↵, � 2
R

�!
E , we have

kr (↵)�r (�)k =
�

�AT (A↵� A�) + AT
�

P�̄n
(A� � vt)� P�̄n

(A↵� vt)
�

�

�


�

�AT (A↵� A�)
�

�+
�

�AT
�

P�̄n
(A� � vt)� P�̄n

(A↵� vt)
�

�

�


�

�ATA
�

� k↵� �k+
�

�AT
�

�

�

�P�̄n
(A� � vt)� P�̄n

(A↵� vt)
�

�


�

�ATA
�

� k↵� �k+
�

�AT
�

� kA� � A↵k
 2

�

�ATA
�

� k↵� �k .
Here the first inequality follows because norm satisfies the triangle inequality, sec-
ond inequality follows from the definition of the norm, third inequality follows from
the non-expansiveness property of the projection operator [99] and the last inequal-
ity follows from the fact that kAk =

�

�AT
�

� =
p

kATAk. ⇤

We have derived an equivalent optimization problem where the objective func-
tion has Lipschitz continuous gradient and projection on to the constraint set

{↵ 2 R
�!
E , k↵k1  1} can be e�ciently computed. Hence we can use acceler-

ated projected gradient methods such as [15, 89, 91] for solving this problem and
achieve optimal rate of convergence. However, to evaluate the objective and com-
pute its gradient, we need to perform projection onto the set �̄n. Now, we show
that this projection can be computed in linear time O(n) and involves finding two
di↵erent projections onto the simplex �n and one projection onto the orthogonal
complement of the space spanned by the one vector 1n.

Proposition 3.2 Given a 2 Rn, an optimal solution (x⇤, y⇤) of the optimization
problem

argmin
x2�n, y2�n

1

2
kx� y � ak22 (3.18)

can be computed in O(n) time. In fact it holds that

54 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

• if hx⇤, y⇤i = 0, then

x⇤ = P�n(a) = argmin
x2�n

1

2
kx� ak22

y⇤ = P�n(�a) = argmin
y2�n

1

2
ky � (�a)k22

• if hx⇤, y⇤i > 0, then

8i = 1, . . . , n, x⇤
i = max{zi, 0}+

1

n

1�
n
X

i=1

max{zi, 0}
!

,

8i = 1, . . . , n, y⇤i = x⇤
i � zi, where z = a� 1

n
ha,1ni1n.

Proof: The Lagrangian of the constrained problem (3.18) is given by

L(x, y,�, �̄, µ, µ̄) =
1

2
kx� y � ak22�h�, xi�

⌦

�̄, y
↵

+µ(hx,1ni� 1)+ µ̄(hy,1ni� 1),

where �, �̄ 2 Rn and µ, µ̄ 2 R. Note that the problem satisfies the Slater’s condition.
Hence the necessary and su�cient KKT optimal conditions for a minimizer are given
by [17]

x� y � a� �+ µ1n = 0, (Stationarity)

�x+ y + a� �̄+ µ̄1n = 0, (Stationarity)

hx,1ni = 1, hy,1ni = 1, (Primal feasibility)

xi � 0, yi � 0, i = 1, . . . , n, (Primal feasibility)

�i � 0, �̄ � 0, i = 1, . . . , n, (Dual feasibility)

�ixi = 0, �̄iyi = 0, i = 1, . . . , n. (Complementary slackness)

We have from the stationarity conditions,

x� y = a+ �� µ1n, x� y = a� �̄+ µ̄1n.

This implies

�+ �̄ = (µ+ µ̄)1n. (3.19)

Let (x⇤, y⇤,�⇤, �̄⇤, µ⇤, µ̄⇤) be an optimal primal-dual pair satisfying the above
conditions. Then we distinguish two cases based on the value of hx⇤, y⇤i. Since
x⇤
i � 0, y⇤i � 0, 8i, hx⇤, y⇤i is either zero or strictly positive.
case (i): If hx⇤, y⇤i = 0, then x⇤

i y
⇤
i = 0, 8i, since x⇤

i � 0 and y⇤i � 0. Now we
claim that (x⇤,�⇤+y⇤, µ⇤) is an optimal primal-dual pair for the projection problem,

P�n(a) = argmin
x2�n

1

2
kx� ak22 .

3.5. ALGORITHM FOR CONSTRAINED BALANCED CUT 55

Let ⇠ be Lagrange multipliers for the non-negative constraints and ⌫ for the linear
constraint on x. The necessary and su�cient optimality conditions any primal-dual
pair (x, ⇠, ⌫) must satisfy are

x� a� ⇠ + ⌫1n = 0, (Stationarity)

hx,1ni = 1, xi � 0, i = 1, . . . , n, (Primal feasibility)

⇠i � 0, (Dual feasibility)

⇠ixi = 0, i = 1, . . . , n. (Complementary slackness)

Clearly, (x⇤,�⇤ + y⇤, µ⇤) satisfies these conditions since hx⇤, y⇤i = 0 and (x⇤, y⇤) is
optimal for the problem (3.18). Similarly, one can show that (y⇤, �̄⇤+x⇤, µ̄⇤) satisfy
the KKT optimality conditions for the problem of projecting �a onto the simplex.

Case (ii:) Let hx⇤, y⇤i > 0. Then there exists an index r such that x⇤
r > 0, y⇤r >

0 and complementary slackness conditions for problem (3.18) imply �⇤r = 0, �̄⇤r = 0.
Thus, we have from (3.19)

µ⇤ + µ̄⇤ = 0.

On the other hand for all i 6= r, we still have �⇤i + �̄⇤i = µ⇤ + µ̄⇤ = 0. Since
�⇤i � 0, �̄⇤i � 0, this can hold only if both are zero. Thus we have �⇤i = 0, �̄⇤i = 0, 8i.
This allows us to find the optimal µ⇤ from the primal feasibility condition:

1 = hx⇤,1ni = hy⇤,1ni+ ha,1i+ 0� µ⇤n.

This gives us

µ⇤ =
1

n
ha,1ni .

Having derived the optimal Lagrange multipliers, one obtains

x⇤ � y⇤ = a� 1

n
ha,1ni1n.

Let z = x⇤ � y⇤. Since x⇤ 2 �n, y⇤ 2 �n it must hold, by Lemma 3.3, that
Pn

i=1 max{0, zi}  1. Moreover, one can recover x⇤, y⇤ from z using Lemma 3.3.
Since projection onto the simplex �n can be done in linear time [69], the com-

putation of (x⇤, y⇤) in both cases takes linear time. Since the two cases are com-
plementary, one just needs to compute (x, y) using both ways and then choose the
one that has a smaller objective value and satisfies all the conditions (in particular
hx, y = 0i for case (i) and

Pn
i=1 max{0, xi � yi}  1 for case (ii)). ⇤

Using Lemma 3.3 we can restate the above result as follows.

Proposition 3.3 For any given a 2 Rn, the orthogonal projection z⇤ onto the set
�̄n = {z 2 Rn : hz,1ni = 0,

Pn
i=1 max{zi, 0}  1}

z⇤ = argmin
z2�̄n

kz � ak2

can be computed in O(n) time.

We again remark that the orthogonal projection z is unique; however the solution
to the problem (3.18) need not be unique; see the discussion following Lemma 3.3.

56 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

3.5.4 Preconditioning for the inner problem

The inner convex problem (3.14) has been rewritten as the following optimization
problem where the objective function as well as the constraint functions are smooth,

min
↵2R�!

E , k↵k11

1

2

�

�A↵� vt � P�̄n

�

A↵� vt
�

�

�

2

2
, (3.20)

where A is the linear operator defined in (3.15), �̄n = {z 2 Rn : hz,1ni =
0,
Pn

i=1 max{zi, 0}  1} and P�̄n
(·) is the orthogonal projection onto the convex

set �̄n.
If the weights w̄ij vary a lot, then the operator A introduces a non-uniform

scaling of the variables ↵, which adversely a↵ects gradient-based methods. Here we
propose a preconditioning technique that is based on transferring the problem to an
unweighted graph (i.e., edges with unit weights). Let Ḡ0(V, W̄0) be the unweighted
version of the graph Ḡ(V, W̄), i.e., (w̄0)ij = 1 if w̄ij > 0 and (w̄0)ij = 0 otherwise.

Note that the edge sets E = {(i, j) | w̄ij > 0} and
�!
E = {(i, j) 2 E, i < j} are

same for both G and G0. Let B : R
�!
E ! RV be a linear operator defined on the

graph Ḡ0(V, W̄0) as

(B�)i :=
X

j:(i,j)2�!E
�ij �

X

j:(j,i)2�!E
�ji, 8i 2 V. (3.21)

Lemma 3.6 The inner problem (3.20) is equivalent to

min
�2R�!

E ,

�w̄ij�ijw̄ij , 8(i,j)2�!E

1

2

�

�B� � vt � P�̄n

�

B� � vt
�

�

�

2

2
=: ̃(�), (3.22)

where B is the linear operator defined as in (3.21). The Lipschitz constant of
the gradient of ̃ is upper bounded by 2

�

�BTB
�

�  4 maxi{N (i)}, where N (i) =
|{(i, j) | (i, j) 2 E}| is the number of neighbors of vertex i in the graph Ḡ0.

Proof: We derive an equivalent formulation by rescaling the variables: �ij =

w̄ij↵ij, 8(i, j) 2
�!
E . Since the mapping between ↵ and � is one-to-one, the trans-

formation yields an equivalent problem (in the sense that minimizer of one problem
can be easily derived from minimizer of the other problem). With this mapping,
the constraints of the original problem (3.20) become �wij  �ij  wij. Moreover,

(A↵)i =
X

j:(i,j)2�!E
w̄ij↵ij �

X

j:(j,i)2�!E
w̄ij↵ji =

X

j:(i,j)2�!E
�ij �

X

j:(j,i)2�!E
�ji = (B�)i,

which shows the equivalence. The bound on the Lipschitz constant can be derived
in a similar fashion as in the proof of Proposition 3.1 and the last equality follows
from Lemma 3.4. ⇤
The main idea behind our preconditioning technique is to find a suitable change of
variables such that A↵ = B� where B eliminates the issue of non-uniform scaling
present in A. In our case, a simple change of variables solved the issue of non-
uniform edge weights by transferring the problem into an unweighted graph. Note

3.5. ALGORITHM FOR CONSTRAINED BALANCED CUT 57

that if the number of neighbors in the unweighted graph vary a lot then the operator
B would still the have the same issue. Ideally one would like to find variable substi-
tution A↵ = B� such that kBk is close to 1. If ATA is invertible then one can use
the variable substitution ↵ = (ATA)�

1
2� to achieve this. However computing the

inverse can be computationally prohibitive as in our case. Hence preconditioning
methods have to trade-o↵ between finding an ideal variable substitution and being
computationally feasible. In our experiments, where we used K-NN graphs, the
proposed preconditioning already improved the performance significantly. A pos-
sible future work would further explore the preconditioning techniques for graphs
where the number of neighbors vary a lot.

In our implementation, we use FISTA (Fast Iterative Shrinkage-Thresholding
Algorithm) [15] for solving the preconditioned inner problem (3.22). FISTA is
an accelerated first-order method for minimizing a sum of two continuous convex
functions F and G,

min
x2Rn

F (x) +G(x), (3.23)

where F is convex and continuously di↵erentiable with Lipschitz continuous gra-
dient with the constant L while G is (possibly non-smooth) convex function. The
main step of the algorithm, given below, requires the computation of the so-called
proximal map with respect to G

prox 1
LG(·) := argmin

y2Rn
G(y) +

L

2
ky � ·k22 .

Algorithm 3.2 Fast Iterative Shrinkage-Thresholding Algorithm (FISTA) [15]
1: Input: Lipschitz constant L of rF
2: Initialization: x0 2 Rn, x̄0 = x0, t1 = 1, p = 0.
3: repeat
4: xp+1 = prox 1

LG(x̄
p � 1

L
rF (x̄p))

5: tp+1 =
1+
p

1+4t2p
2

6: x̄p+1 = xp+1 + tp�1

tp+1
(xp+1 � xp)

7: p = p+ 1

8: until convergence

9: Output: �p

Comparing with the general model (3.23), we identify for our inner problem
(3.22)

F (·) = 1

2

�

�B ·�vt � P�̄n

�

B ·�vt
�

�

�

2

2
, G(·) = ◆B(·),

where B = {� 2 R
�!
E , �w̄ij  �ij  w̄ij, 8(i, j) 2 �!

E } and ◆B is the indicator
function defined as

◆B(�) =

(

0, � 2 B
1 otherwise

(3.24)

58 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

The gradient of F at � is BT (B� � vt � P�̄n
(B� � vt)), where the adjoint of B is

given by (see Lemma 3.4)
(BTf)ij = fi � fj.

The Lipschitz constant L of the gradient of F is given in Lemma 3.6. Thus the
proximal problem (Step 4 of Algorithm 3.2) one has to solve in our case is given by

�p+1 = argmin
�2R�!

E ,

�w̄ij�ijw̄ij , 8(i,j)2�!E

1

2
k� � cpk22

where cp = �̄p � 1
L
BT
�

B�̄p � vt � P�̄n

�

B�̄p � vt
��

. This problem can be solved in
closed-form for each variable independently

�p+1
ij = P[�wij ,wij](c

p
ij) = max{�w̄ij,min{wij, c

p
ij}}, 8(i, j) 2 �!

E ,

where P[�wij ,wij](·) denotes the projection onto the interval [�wij, wij]. The complete
details are given in Algorithm 3.3. The main computational time depends on step 4

Algorithm 3.3 Solution of the preconditioned inner problem (3.22) using FISTA

1: Input: Lipschitz constant L of r ̃
2: Initialization: �0 2 R

�!
E , �̄0 = �0, t1 = 1, p = 0.

3: repeat
4: cp = �̄p � 1

L
BT
�

B�̄p � vt � P�̄n

�

B�̄p � vt
��

5: �p+1
ij = max{�w̄ij,min{wij, c

p
ij}}, 8(i, j) 2 �!

E

6: tp+1 =
1+
p

1+4t2p
2

7: �̄p+1 = �p+1 + tp�1

tp+1
(�p+1 � �p)

8: p = p+ 1

9: until convergence

10: Output: �p

where in every iteration we need to project onto the set �̄n apart from applying two
linear operators B and BT . As we have shown in the Proposition 3.3, the projection

can be done in linear time O(|V |) while the operators B and BT take O(
�

�

�

�!
E
�

�

�

) time.

Thus each iteration takes linear time O(|V | +
�

�

�

�!
E
�

�

�

) and the number of iterations

required by FISTA for an ✏-optimal solution is O(1p
✏
), which is optimal for the class

of minimizing smooth convex functions. Practically, we can check convergence by
examining the gap between the objective values of the dual problem (3.17) and the
original primal problem (3.14). Note that the solution of (3.14) can be obtained
from the solution ↵⇤ of (3.17) as follows (see Proposition 3.1)

f ⇤ = � A↵⇤ � z⇤ � vt

kA↵⇤ � z⇤ � vtk2
, if

�

�A↵⇤ + z⇤ � vt
�

�

2
6= 0,

where z⇤ = P�̄n
(A↵⇤ � vt). If kA↵⇤ � z⇤ � vtk = 0, then any f satisfying kfk2  1

is a solution for (3.14). We note that one does not need to explicitly compute the

3.6. EXPERIMENTS 59

solution ↵⇤ from the optimal solution �⇤ of the preconditioned problem (3.22) since
f ⇤ can be directly computed as

f ⇤ = � B�⇤ � z⇤ � vt

kB�⇤ � z⇤ � vtk , if
�

�B�⇤ + z⇤ � vt
�

� 6= 0,

where z⇤ = P�̄n
(B�⇤ � vt) as it holds that (A↵)ij = (B�)ij, 8(i, j) 2 �!

E .

3.6 Experiments

3.6.1 Constrained clustering

We compare our method against the following four related constrained clustering ap-
proaches: spectral learning (SL) [64], flexible constrained spectral clustering (CSP)
[117], constrained clustering via spectral regularization (CCSR) [79] and spectral
clustering with linear constraints (SCLC) [121]. We refer the reader to Section 3.1
for more details of these methods. For CSP and CCSR we use the code provided
by the authors with default parameters. Since ours is a non-convex method, we run
our method, in parallel, from 9 di↵erent random initializations and the solution of
the standard spectral clustering. In order to compare against the existing work, in
our experiments we use normalized cut as the clustering objective:

NCut(C,C) =
cut(C,C)

vol(C)
+

cut(C,C)

vol(C)
=

cut(C,C)

vol(C) vol(C)
vol(V).

Since vol(V) is constant for a given graph, we solve the balanced cut problem with
Ŝ(C) = vol(C) vol(C) and rescale the obtained balanced cut value by vol(V).

Datasets: We evaluate our method on several UCI two-class classification datasets.
The summary of these datasets is given in Table 3.1. The data with missing values
are removed and redundant data points are removed from the spam dataset. We
build a symmetric K-NN similarity graph from the data X = (X1, . . . , Xn), Xi 2 Rd

as in [21],

wij = exp

�4 kxi � xjk22
min{�2

i , �
2
j}

!

,

where �i is the Euclidean distance of xi to its Kth-nearest neighbor. In all the
experiments we ue K = 10. In order to illustrate the e↵ects of highly unbalanced
problems, we create a two-class problem (digit 0 versus rest) from USPS dataset.

Constraint generation: The pairwise constraints are generated from the class
labels Y as follows. We first fix the number of pairwise constraints nC to be gener-
ated. Then we randomly sample nC pairs of points and for each pair, we introduce
either a cannot-link or a must-link constraint depending on the labels of the sam-
pled pair. We evaluate the methods for various values of nC . We maintain the
property that the constraint sets are nested; i.e., if S1 and S2 are the constraints
generated for a given dataset for two di↵erent values of nC , then S1 ⇢ S2 whenever
|S1| < |S2|. This is achieved by first sampling the maximum number of pairs for
each dataset and then drawing the required number of constraints from this pool.

60 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

Dataset Size Class proportions
Sonar 208 97:111
Breast Cancer 263 77:186
Heart 270 120:150
WDBC 569 212:357
Diabetis 768 268:500
Spam 4207 1676:2531
USPS (0 vs rest) 9298 1553:7745

Table 3.1: The UCI classification datasets used in the experiments.

Evaluation criteria: Our evaluation is based on the following three criteria:
clustering error, normalized cut and fraction of constraints violated. Since we are
using classification datasets, we evaluate the quality of clustering result based on
how well each cluster agrees with the known class structure. For this, we label
each cluster based on the ground-truth class labels of the points in the cluster; in
particular each cluster receives the majority class label of the points in that cluster.
Then the clustering error is computed as the error of this labeling. More precisely,
let (C,C) be the clustering result and Yi denote the true class label of the data point
i. Moreover let y01 and y02 be the dominant class labels in C and C respectively. Then
the error of (C,C) is computed as

error(C,C) =
1

n

0

@

X

i2C
�Yi 6=y01

+
X

i2C
�Yi 6=y02

1

A ,

where n is the total number of points and �c = 1, if the condition specified in c is
true and 0 otherwise.

The results, averaged over 10 trials are shown in Tables 3.2 and 3.3. The run-
times are shown in Table 3.4. In the plots our method is denoted as COSC and
we enforce all constraints. Since our formulation is a non-convex problem, we use
the best result (based on the achieved cut value) of 10 runs with 9 random ini-
tializations and one initialization based on the standard spectral clustering. The
first column of Tables 3.2 and 3.3 shows the clustering error versus the number of
pairwise constraints. In terms of clustering error, ours is the only method that con-
sistently outperforms every other method. As discussed in Section 3.1, the method
SCLC performs very poorly when the classes are highly unbalanced; see the results
for USPS. However unlike the rest of the competing methods, SCLC performance
is at least consistent across the datasets (except for the highly unbalanced USPS
dataset). The code available for the method CSP could not run on the USPS
dataset. Next in terms of normalized cut, reported on the second column of Tables
3.2 and 3.3, we see that our method produces always much better cuts than the ones
found by SCLC, which is the only other method that returned solutions satisfying
all the constraints. All other methods never satisfied all the given constraints; see
the third column of Tables 3.2 and 3.3 where we reported the fraction of violated
constraints for every method. One notices that SL and CCSR could not enforce
many of the given constraints and consequently their performance in terms of the
clustering error is very bad in four out of the seven datasets.

3.6. EXPERIMENTS 61

50 75 100 125 150 175 200 300 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

USPS (0 vs rest)

SCLC

CCSR

SL

COSC

50 75 100 125 150 175 200 300 400
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pairwise Constraints

N
o

rm
a

liz
e

d
 C

u
t

USPS (0 vs rest)

SCLC

CCSR

SL

COSC

50 75 100 125 150 175 200 300 400
0

0.1

0.2

0.3

0.4

0.5

Pairwise Constraints

F
ra

ct
io

n
 o

f
V

io
la

tio
n

s

USPS (0 vs rest)

SCLC

CCSR

SL

COSC

1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

Pairwise Constraints

C
lu

st
e

ri
n

g
 E

rr
o
r

Spam

SCLC
CCSR
CSP
SL
COSC

1500 2000 2500 3000 3500 4000 4500 5000
0

0.2

0.4

0.6

0.8

Pairwise Constraints

N
o

rm
a

liz
e

d
 C

u
t

Spam

SCLC
CCSR
CSP
SL
COSC

1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

0.5

Pairwise Constraints
F

ra
ct

io
n

 o
f

V
io

la
tio

n
s

Spam

SCLC

CCSR

CSP

SL

COSC

5 10 20 40 80 160 320
0

0.1

0.2

0.3

0.4

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Sonar

SCLC

CCSR

CSP

SL

COSC

5 10 20 40 80 160 320
0

0.1

0.2

0.3

0.4

Pairwise Constraints

N
o
rm

a
li
z
e
d
 C

u
t

Sonar

SCLC

CCSR

CSP

SL

COSC

5 10 20 40 80 160 320
0

0.1

0.2

0.3

0.4

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Sonar

SCLC

CCSR

CSP

SL

COSC

10 20 40 80 160 320 640 1280
0

0.1

0.2

0.3

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Diabetes

SCLC

CCSR

CSP

SL

COSC

10 20 40 80 160 320 640 1280
0

0.2

0.4

0.6

Pairwise Constraints

N
o

rm
a
li
z
e

d
 C

u
t

Diabetes

SCLC

CCSR

CSP

SL

COSC

10 20 40 80 160 320 640 1280
0

0.2

0.4

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Diabetes

SCLC

CCSR

CSP

SL

COSC

Table 3.2: Results for two-class constrained clustering: Left: clustering error
versus number of constraints, Middle: normalized cut versus number of constraints,
Right: fraction of violated constraints versus number of constraints.

62 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

5 10 20 40 80 160 320 640
0

0.1

0.2

0.3

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Breast Cancer

SCLC

CCSR

CSP

SL

COSC

5 10 20 40 80 160 320 640
0

0.2

0.4

0.6

0.8

1

Pairwise Constraints

N
o
rm

a
li
z
e
d
 C

u
t

Breast Cancer

SCLC

CCSR

CSP

SL

COSC

5 10 20 40 80 160 320 640
0

0.1

0.2

0.3

0.4

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Breast Cancer

SCLC

CCSR

CSP

SL

COSC

10 20 40 80 160 320
0

0.1

0.2

0.3

0.4

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Heart

SCLC

CCSR

CSP

SL

COSC

10 20 40 80 160 320
0

0.1

0.2

0.3

0.4

0.5

Pairwise Constraints

N
o
rm

a
li
z
e
d
 C

u
t

Heart

SCLC

CCSR

CSP

SL

COSC

10 20 40 80 160 320
0

0.1

0.2

0.3

0.4

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Heart

SCLC

CCSR

CSP

SL

COSC

5 10 20 40 80 160 320 640 1280
0

0.1

0.2

0.3

Pairwise Constraints

C
lu

st
e

ri
n

g
 E

rr
o

r

WDBC

SCLC

CCSR

CSP

SL

COSC

5 10 20 40 80 160 320 640 1280
0

0.05

0.1

0.15

0.2

0.25

Pairwise Constraints

N
o

rm
a

li
z
e

d
 C

u
t

WDBC

SCLC

CCSR

CSP

SL

COSC

5 10 20 40 80 160 320 640 1280
0

0.05

0.1

0.15

0.2

Pairwise Constraints

F
ra

c
ti
o

n
 o

f
V

io
la

ti
o

n
s

WDBC

SCLC

CCSR

CSP

SL

COSC

Table 3.3: Results for two-class constrained clustering: Left: clustering error
versus number of constraints, Middle: normalized cut versus number of constraints,
Right: fraction of violated constraints versus number of constraints.

3.6. EXPERIMENTS 63

50 75 100 125 150 175 200 300 400

10
0

10
1

10
2

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

USPS (0 vs rest)

SCLC

CCSR

SL

COSC

1500 2000 2500 3000 3500 4000 4500 5000
10

0

10
1

10
2

10
3

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

Spam

SCLC
CCSR
CSP
SL
COSC

5 10 20 40 80 160 320

10
−1

10
0

10
1

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

Sonar

SCLC

CCSR

CSP

SL

COSC

10 20 40 80 160 320 640 1280

10
−1

10
0

10
1

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

Diabetes

SCLC

CCSR

CSP

SL

COSC

5 10 20 40 80 160 320 640

10
−1

10
0

10
1

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

Breast Cancer

SCLC

CCSR

CSP

SL

COSC

10 20 40 80 160 320

10
−1

10
0

10
1

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

Heart

SCLC

CCSR

CSP

SL

COSC

5 10 20 40 80 160 320 640 1280

10
−1

10
0

10
1

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

WDBC

SCLC

CCSR

CSP

SL

COSC

Table 3.4: Results for two-class constrained clustering: Runtimes versus num-
ber of constraints.

64 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

10
0

10
1

10
2

10
3

10
4

10
5

10
−10

10
−8

10
−6

10
−4

10
−2

10
0

10
2

Iterations

D
u

a
lit

y
G

a
p

Preconditioned FISTA (31044, 27.0086)

Unconditioned FISTA (100000, 97.5537)

10
0

10
1

10
2

10
3

10
4

10
5

10
−8

10
−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

Iterations

D
u
a
lit

y
G

a
p

Preconditioned FISTA (7661, 4.6372)

Unconditioned FISTA (49787, 29.342)

Figure 3.2: Convergence of FISTA on unconditioned and preconditioned versions of
the inner problem. Duality gap is plotted against the number of iterations on log-
log scale. The legend box also shows the number of iterations and the time taken
until convergence (up to the accuracy 10�8) or the maximum number of iterations
(105) is reached.

3.6.2 E↵ectiveness of preconditioning

Here we evaluate the e↵ectiveness of our preconditioning technique presented in
Section 3.5.4. For this, we ran FISTA on unconditioned and preconditioned inner
problems (3.17) and (3.22) respectively. The Figure 3.2 shows the performance
of FISTA on two di↵erent problem instances. The first instance corresponds to
an inner problem on the USPS dataset for � = 0.2 whereas the second instance
corresponds to that of Spam for � = 10. The plots show the duality gap against the
number of iterations on log-log scale. Here the duality gap refers to the di↵erence
between the objective value of the primal problem (3.14) and the optimal value
returned by FISTA which solves the dual problems (3.17) and (3.22). We also show
in the plots the number of iterations and the total time taken by each method
until convergence or the maximum number of iterations (105) is reached. The first
plot shows that FISTA could not produce a solution with reasonable accuracy even
after 105 iterations for the unconditioned version. On the other hand, the same
algorithm when run on the preconditioned version converged in 31044 iterations
and produced a highly accurate solution with a duality gap of 10�8. Second plot
also shows that the preconditioned version produces a highly accurate solution with
in 7661 iterations while the unconditioned version took more than six times as many
iterations as that of the preconditioned version to get the same accuracy.

3.7 Conclusions

In this chapter we developed a common framework for incorporating soft and hard
prior constraints arising in constrained clustering for the two-class setting. The main
contribution is the derivation of exact continuous relaxation for the constrained
balanced cut problem. The exact continuous relaxation allowed us to show that our
method is guaranteed to find a solution satisfying all the constraints in the hard
enforcement setting unlike the prior work. Moreover we also presented an e�cient

3.7. CONCLUSIONS 65

method for solving the exact relaxation that has similar time complexity as that of
the unconstrained version [56].

-

66 CHAPTER 3. TWO-CLASS CLUSTERING WITH CONSTRAINTS

Chapter 4

Multi-class clustering

In this chapter we develop novel graph-based methods for unconstrained and con-
strained multi-class clustering problem. First we derive a novel continuous relax-
ation for a very generic multi-class balanced cut problem in Section 4.2. Our generic
framework allows to minimize new application specific balancing criteria apart from
the standard balance cut problems like ratio and normalized cut. Notice that in the
multi-class setting the main di�cultly arises from the k-way partitioning constraint
and consequently many methods fail to even guarantee that their solution has k
clusters. Unlike the existing work, our method is guaranteed to produce a k-way
partitioning. In Section 4.3, we present our new monotonic descent algorithm for
solving the resulting continuous relaxation which is a di�cult sum-of-ratios mini-
mization problem. Our thorough experiments against a wide variety of multi-class
clustering methods on di↵erent balancing functions show that our method is the
best solver for the balanced k-cut problem.

Our method provides a framework for incorporating prior knowledge in multi-
class clustering problem. Note that none of the existing methods is able to handle
even label constraints in the multi-class setting. In Section 4.4 we show how to
incorporate label, must-link and cannot link constraints in the multi-class setting.
Similar to two-class constrained clustering, we show that our method is able to
produce a solution that satisfies all the given constraints (as long as any consis-
tent partition can be found e�ciently) apart from handling noisy or inconsistent
constraints. Our monotonic descent algorithm developed for the relaxation of the
unconstrained problem can readily be used to solve the constrained clustering prob-
lem. A part of the work presented in this chapter is published in [97].

We now introduce the underlying k-way graph cut problem. Let G(V,W) be
the similarity graph constructed from the given pairwise similarities where V =
{1, . . . , n} is the n-element vertex set, W 2 Rn⇥n

+ is the symmetric weight matrix.
Here, we consider the following generalization of the balanced cut problem to k-class
setting

min
(C1,...,Ck)2Pk

k
X

i=1

cut(Ci, Ci)

Ŝ(Ci)
=: BCut(C1, . . . , Ck) (4.1)

where Pk is the set of all k-partitions, Ŝ : 2V ! R+ is a balancing function that tries
to enforce that all sets Ci are of the same “size”. Here we assume that Ŝ(;) = 0 and
for any C (V, C 6= ;, Ŝ(C) � m, for somem > 0. Several balancing functions have
been proposed in the literature depending on the application. Most notable among

67

68 CHAPTER 4. MULTI-CLASS CLUSTERING

them are the following submodular balancing functions; we mention in brackets the
name of the corresponding balanced graph cut criterion BCut(C1, . . . , Ck)

Ŝ(C) = |C|, (Ratio Cut), (4.2)

Ŝ(C) = min{|C|, |C|}, (Ratio Cheeger Cut),

Ŝ(C) = min{(k � 1)|C|, C}, (Asymmetric Ratio Cheeger Cut).

The well-studied Ratio Cut criteria [52, 115, 31] was proposed to produce clusters of
same size. This has been generalized in the multi-class setting to Asymmetric Ratio
Cheeger Cut [19] with the aim to bias the solution towards sets of size |V |

k
. Note that

Ŝ(C) attains its maximum at the sets of size |V |
k

which makes perfect sense if one
expects k clusters of roughly equal size. An intermediate version between the two
is the Ratio Cheeger Cut which has a symmetric balancing function and strongly
penalizes overly large clusters. We can also handle the corresponding weighted cases
e.g., Ŝ(C) = vol(C) =

P

i2C di, where di =
Pn

j=1 wij, leading to the Normalized cut
variants

Ŝ(C) = vol(C), (Normalized Cut),

Ŝ(C) = min{vol(C), vol(C)}, (Normalized Cheeger Cut),

Ŝ(C) = min{(k � 1) vol(C), vol(C)}, (Asymmetric Normalized Cheeger Cut).

4.1 State-of-the-art

Here we present the recent work [19] that attempted to directly solve the multi-class
clustering problem. We refer to Section 2.2 for a review of other clustering methods.
Recently the following Asymmetric Ratio Cheeger Cut problem for the multi-class
setting is introduced in [19]

min
(C1,...,Ck)2Pk

k
X

l=1

cut(Cl, C l)

min{(k � 1) |Cl| ,
�

�C l

�

�}
. (4.3)

Note that the balancing function min{(k�1) |Cl| ,
�

�C l

�

�} here is motivated as follows.
For the two-class problem, the Cheeger balancing function min{|C| ,

�

�C
�

�} encour-
ages the two components C and

�

�C
�

� to have equal size. Similarly, for the k-class
setting we expect each component Cl to have approximately the same size of 1

k
|V |.

One can check that the newly introduced asymmetric balancing function has the
maximum value for the sets of size 1

k
|V |.

The following continuous relaxation has been proposed for solving this problem
in [19]

min
F=(F1,...,Fk),

F2Rn⇥k
+

k
X

l=1

TV(Fl)

S(Fl)
(4.4)

subject to : F(i) 2 �k, i = 1, . . . , n, (simplex constraints)

where �k is the simplex defined as �k = {x 2 Rk | xi � 0,
Pk

i=1 xi = 1} and S(f) =
�

�f � quantk�1(f)
�

�

1,(k�1)
is the Lovasz extension of Ŝ(C) = min{(k � 1)|C|, C}.

4.2. CONTINUOUS RELAXATION OF THEMULTI-CLASS BALANCED CUT69

Here, quant⌧ (f) is the (j + 1)st largest value of f where j = b n
⌧+1

c and kfk1,⌧ is
defined as

kfk1,⌧ =
n
X

i=1

|fi|⌧ , where |t|⌧ =

⇢

t⌧ t � 0
�t t < 0

Note that this continuous formulation is a direct generalization of the exact relax-
ation proposed for the two-class problem [56]. We show in Section 4.2.1 that this
relaxation (4.4) has a serious flaw. In fact this relaxation is void in the sense that
it does not yield a clustering into k-components, where k � 2, for (i) any symmet-
ric balancing function on any graph, (ii) asymmetric balancing function when the
graph is disconnected or has a 2-way cut with very small value.

4.2 Continuous relaxation of the multi-class bal-
anced cut

In this section we present a continuous relaxation for the balanced k-cut problem
(4.1). We use the same idea as that of the two-class case [56, 22] where the ex-
act relaxation results are obtained by replacing the set functions with their Lovász
extensions. However, it turns out that a more di�cult issue in deriving a tighter
relaxation for the multi-cut problem is the choice of the constraints so that the con-
tinuous problem also yields a partition (together with a suitable rounding scheme).
We first discuss how to enforce the k-partition constraint in the continuous setting.
Let F 2 Rn⇥k and Fl 2 Rn, l = 1, . . . , k denote the l-th column of F and F(i) 2 Rk

the i-th row of F . Here the rows of F correspond to the vertices of the graph and
the j-th column of F corresponds to the set Cj of the k-partition. We employ the
following constraints to enforce the k-partition constraint on the vertex set V ,

F(i) 2 �k, i = 1, . . . , n, (simplex constraints)

max{F(i)} = 1, 8i 2 V, (membership constraints)

S(Fl) � m, l = 1, . . . , k, (size constraints)

where �k denotes the simplex �k = {x 2 Rk | xi � 0,
Pk

i=1 xi = 1}, S is the Lovász
extension of the balancing function Ŝ and m > 0 is the minimum value of Ŝ on
non-empty sets. Here we used the notation max{F(i)} to denote the maximum value
of the vector F(i) 2 Rk. The row-wise simplex and membership constraints enforce
that each vertex belongs to exactly one component. Note that these constraints
alone cannot still guarantee that F corresponds to a k-way partition since an entire
column of F can be zero. This is avoided by the column-wise size constraints that
enforce that each component has at least one vertex.

We propose the following continuous relaxation for the balanced k-cut problem
(4.1)

min
F=(F1,...,Fk),

F2Rn⇥k
+

k
X

l=1

TV(Fl)

S(Fl)
(4.5)

subject to : F(i) 2 �k, i = 1, . . . , n, (simplex constraints)

max{F(i)} = 1, 8i 2 I, (membership constraints)

S(Fl) � m, l = 1, . . . , k, (size constraints)

70 CHAPTER 4. MULTI-CLASS CLUSTERING

where S is the Lovasz extension of the set function Ŝ and m = minC(V, C 6=; Ŝ(C).
We have m = 1, for Ratio Cut and Ratio Cheeger Cut whereas m = k � 1 for
Asymmetric Ratio Cheeger Cut. Note that the function TV is the Lovasz extension
of the cut function. Here the index set I ✓ V controls the degree to which the
partition constraint is enforced. This set is chosen adaptively by our method during
the sequential minimization described in Section 4.3.

To obtain a clustering from a continuous solution F ⇤, we construct the sets by
assigning each vertex i to the column where the i-th row attains its maximum.
Formally,

Cl =

⇢

i 2 V | l = argmax
j=1,...,k

{Fij}
�

, l = 1, . . . , k, (Rounding) (4.6)

where ties are broken randomly. If there exists a row such that the rounding is not
unique, we say that the solution is weakly degenerated. If furthermore the resulting
set (C1, . . . , Ck) do not form a partition, that is one of the sets is empty, then we
say that the solution is strongly degenerated.

We now state our first result showing the relation between our relaxation and
the previous work of [56] for the special case k = 2. Indeed for symmetric balancing
function such as the Ratio Cheeger Cut, our continuous relaxation (4.5) is exact
even without membership and size constraints.

Theorem 4.1 Let Ŝ be a non-negative symmetric balancing function i.e., Ŝ(C) =
Ŝ(C), and denote by p⇤ the optimal value of the problem (4.5) without membership
and size constraints for k = 2. Then it holds

p⇤ = min
(C1,C2)2P2

2
X

l=1

cut(Cl, Cl)

Ŝ(Cl)
.

Furthermore there exists a solution F ⇤ of (4.5) such that F ⇤ = [1C⇤ ,1C⇤], where
(C⇤, C⇤) is the optimal balanced 2-cut partition.

Proof: Note that cut(C,C) and Ŝ (by assumption) are symmetric set functions.
Thus with C2 = C1,

cut(C1, C1)

Ŝ(C1)
+

cut(C2, C2)

Ŝ(C2)
= 2

cut(C1, C1)

Ŝ(C1)
.

Moreover, since TV(V) = Ŝ(V) = 0 by symmetry, it holds that TV(↵f + �1n) =
|↵| TV (f) and S(↵f + �1n) = |↵| S(f) (see Proposition 2.1). The simplex con-
straint implies that F2 = 1n � F1 and thus

TV(F2)

S(F2)
=

TV(1n � F1)

S(1n � F1)
=

TV(F1)

S(F1)
.

Thus we can write the problem (4.5) equivalently as

min
f2[0,1]V

2
TV(f)

S(f)
. (4.7)

4.2. CONTINUOUS RELAXATION OF THEMULTI-CLASS BALANCED CUT71

As for all A ✓ V , TV(1A) = cut(A,A) and S(1A) = Ŝ(A), we have

min
f2[0,1]V

TV(f)

S(f)
 min

C✓V

cut(C,C)

Ŝ(C)
.

However, it has been shown in [56] that minf2Rn
TV(f)
S(f)

= minC✓V
cut(C,C)

Ŝ(C)
and that

there exists a continuous solution such that f ⇤ = 1C⇤ , where C⇤ = argmin
C✓V

cut(C,C)

Ŝ(C)
.

Thus f ⇤ is a solution of (4.7) and consequently F ⇤ = [f ⇤,1n � f ⇤] = [1C⇤ ,1C⇤] is
optimal for (4.5). ⇤
Note that rounding trivially yields a solution in the setting of the previous theorem.

Our second result shows that indeed our proposed optimization problem (4.5)
is a relaxation of the balanced k-cut problem (4.1). Furthermore, the relaxation is
exact if I = V .

Proposition 4.1 The continuous problem (4.5) is a relaxation of the balanced k-
cut problem (4.1). The relaxation is exact, i.e., both problems are equivalent, if
I = V .

Proof: For any k-way partition (C1, . . . , Ck), we can construct F = (1C1 , . . . ,1Ck
).

It obviously satisfies the membership and size constraints and the simplex constraint
is satisfied as [iCi = V and Ci \ Cj = ; if i 6= j. Thus F is feasible for problem
(4.5) and has the same objective value because

TV(1C) = cut(C,C), S(1C) = Ŝ(C).

Thus problem (4.5) is a relaxation of (4.1).
If I = V , then the simplex together with the membership constraints imply

that each row F(i) contains exactly one non-zero element which equals 1, i.e., F 2
{0, 1}n⇥k. Define for l = 1, . . . , k, Cl = {i 2 V |Fil = 1} (i.e, Fl = 1Cl

), then it
holds [lCl = V and Cl \ Cj = ;, l 6= j. From the size constraints, we have for
l = 1, . . . , k, 0 < m  S(Fl) = S(1Cl

) = Ŝ(Cl). Thus Ŝ(Cl) > 0, l = 1, . . . , k,
which by assumption on Ŝ implies that each Cl is non-empty. Hence the only
feasible points allowed are indicators of k-way partitions and the equivalence of
(4.1) and (4.5) follows. ⇤
If I = V , it is immediate from the proof of Proposition 4.1 that the feasible set of
the problem (4.5) contains only the indicator matrices of k-partitions. On the other
hand, if I = ; (i.e., no membership constraints), and k > 2 it is not guaranteed
that rounding of the solution of the continuous problem yields a partition. Indeed,
for symmetric balancing functions one can, under these conditions, show that the
solution is always strongly degenerated and rounding does not yield a partition (see
Theorem 4.2 below). The idea behind our suggested relaxation is that minimizing
the total variation yields piecewise constant solutions, which is well-known in image
processing. In fact this follows from seeing the total variation as Lovasz extension
of the cut function. Thus if |I| is su�ciently large, the vertices where the values
are fixed to 0 or 1 propagate this to their neighboring vertices and consequently to
the whole graph. We discuss the choice of I in more detail in Section 4.3.

72 CHAPTER 4. MULTI-CLASS CLUSTERING

4.2.1 Why simplex constraints alone are not su�cient

We now show that for any symmetric balancing function in (4.1), the usage of sim-
plex constraints alone in the optimization problem (4.4) is not su�cient to guaran-
tee that the solution F ⇤ can be rounded to a partition. For asymmetric balancing
functions we can prove such a strong result only in the case where the graph is
disconnected. However, note that if the number of components of the graph is less
than the number of desired clusters k, the multi-cut problem is still non-trivial.
Even in the case of asymmetric balancing functions, we show that the continuous
relaxation (4.4), which uses only simplex constraints, would still fail if there exists
a 2-way cut with very small value.

Theorem 4.2 Let Ŝ(C) be any non-negative symmetric balancing function. Then
the continuous relaxation

min
F=(F1,...,Fk),

F2Rn⇥k
+

k
X

l=1

TV(Fl)

S(Fl)
(4.8)

subject to : F(i) 2 �k, i = 1, . . . , n, (simplex constraints)

of the balanced k-cut problem (4.1) is void in the sense that the optimal solution
F ⇤ of the continuous problem can be constructed from the optimal solution of the
2-cut problem and F ⇤ cannot be rounded to a k-way partition (see (4.6) for the
definition of rounding). If the graph is disconnected, then the same holds also for
any non-negative asymmetric balancing function.

Proof: First, we derive a lower bound on the optimal value of the continuous
relaxation (4.8). Then we construct a feasible point for (4.8) that achieves this
lower bound but cannot yield a k-partition thus finishing the proof.

Let (C⇤, C⇤) = argmin
C✓V

cut(C,C)

Ŝ(C)
be an optimal 2-way partition for the given graph.

Using the exact relaxation result for the balanced 2-cut problem [56], we have

min
F :F(i)2�k

i=1...,n

k
X

l=1

TV(Fl)

S(Fl)
�

k
X

l=1

min
f2Rn

TV(f)

S(f)
=

k
X

l=1

min
C✓V

cut(C,C)

Ŝ(C)
= k

cut(C⇤, C⇤)

Ŝ(C⇤)
.

Now define F1 = 1C⇤ and Fl = ↵l1C⇤ , l = 2, . . . , k such that
Pk

l=2 ↵l = 1,↵l > 0.
Clearly F = (F1, . . . , Fk) is feasible for the problem (4.8) and the corresponding
objective value is

TV(1C⇤)

S(1C⇤)
+

k
X

l=2

↵lTV(1C⇤)

↵lS(1C⇤)
=

k
X

l=1

cut(C⇤, C⇤)

Ŝ(C⇤)
,

where we used the (positive) 1-homogeneity of TV and S (Proposition 2.1) and the
symmetry of cut and Ŝ.

Thus the solution F constructed as above from the 2-cut problem is indeed
optimal for the continuous relaxation (4.8) (as it achieves the lower bound derived
above on the optimal value) and it is not possible to obtain a k-way partition from
this solution as there will be k�2 sets that are empty. Finally, the argument can be

4.3. ALGORITHM FOR THE CONTINUOUS RELAXATION 73

extended to asymmetric set functions if there exists a set C such that cut(C,C) = 0
as in this case it does not matter that Ŝ(C) 6= Ŝ(C) in order that the argument
holds. ⇤
The proof of Theorem 4.2 shows additionally that for any balancing function if the
graph is disconnected, the solution of the continuous relaxation (4.8) is always zero,
while clearly the solution of the balanced k-cut problem need not be zero. This
shows that the relaxation can be arbitrarily bad in this case. In fact the relaxation
for the asymmetric case can even fail if the graph is not disconnected but there
exists a cut of the graph which is very small as the following corollary indicates.

Corollary 4.1 Let Ŝ be an asymmetric balancing function and C⇤ = argmin
C✓V

cut(C,C)

Ŝ(C)

and suppose that �⇤ := (k�1) cut(C
⇤,C⇤)

Ŝ(C⇤)
+ cut(C⇤,C⇤)

Ŝ(C⇤)
< min(C1,...,Ck)2Pk

Pk
l=1

cut(Cl,Cl)

Ŝ(Cl)
.

Then there exists a feasible F with F1 = 1C⇤ and Fl = ↵l1C⇤ , l = 2, . . . , k such that
Pk

l=2 ↵l = 1,↵l > 0 for (4.8) which has the objective value of
Pk

i=1
TV(Fi)
S(Fi)

= �⇤ and
which cannot be rounded to a k-way partition.

Proof: Let F1 = 1C⇤ and Fl = ↵l1C⇤ , l = 2, . . . , k such that
Pk

l=2 ↵l = 1,↵l > 0.
Clearly F = (F1, . . . , Fk) is feasible for the problem (4.8) and the corresponding
objective value is

k
X

l=1

TV(Fl)

S(Fl)
=

TV(1C⇤)

S(1C⇤)
+

k
X

l=2

↵lTV(1C⇤)

↵lS(1C⇤)
=

cut(C⇤, C⇤)

Ŝ(C⇤)
+ (k � 1)

cut(C⇤, C⇤)

Ŝ(C⇤)
,

where we used the 1-homogeneity of TV and S (see Proposition 2.1) and the sym-
metry of cut. This F cannot be rounded to a k-way partition as there will be k� 2
sets that are empty. ⇤
Theorem 4.2 shows that the membership and size constraints which we have in-
troduced in our relaxation (4.5) are essential to obtain a partition for symmetric
balancing functions. For the asymmetric balancing function failure of the relaxation
(4.8) and thus also of the relaxation (4.4) of [19] is only guaranteed for disconnected
graphs. However, Corollary 4.1 indicates that degenerated solutions should also be
a problem when the graph is still connected but there exists a dominating cut.
We illustrate this with a toy example in Figure 4.1 where the algorithm of [19] for
solving (4.4) fails as it converges exactly to the solution predicted by Corollary 4.1
and thus only produces a 2-partition instead of the desired 3-partition. The algo-
rithm for our relaxation enforcing membership constraints (|I| = 3 in this example)
converges to a continuous solution which is in fact a partition matrix so that no
rounding is necessary.

4.3 Algorithm for the continuous relaxation

We now present an algorithm for solving the continuous relaxation (4.5). Unlike the
method proposed by [19] for solving (4.4), our algorithm has a monotonic descent
guarantee. The sequence {F t} produced by our method is feasible for the problem
(4.5) and the corresponding objective values are monotonically decreasing. In the
following, for ease of presentation, we assume that Ŝ is submodular. However, our

74 CHAPTER 4. MULTI-CLASS CLUSTERING

(a)

0 1 0 0 0 1 1 0 0

(b)

1 0 0 0 0 1

(c)

0 1 0 0 0 1 1 0 0

(d)

0 1 0 0 0 1 1 0 0

(e)
Figure 4.1: Toy example illustrating that the relaxation of [19] converges to a
degenerate solution when applied to a graph with dominating 2-cut. (a) 10NN-
graph generated from three Gaussians in 10 dimensions (b) continuous solution of
(4.4) from [19] for k = 3, (c) rounding of the continuous solution of [19] does not
yield a 3-partition (d) continuous solution found by our method together with the
vertices i 2 I (black) where the membership constraint is enforced. Our continuous
solution corresponds already to a partition. (e) clustering found by rounding of our
continuous solution (trivial as we have converged to a partition). In (b)-(e), we
color each data point i by treating F(i) 2 R3 as RGB triplet.

monotonic descent algorithm can easily be extended to handle any non-negative
balancing function.

The key insight in order to derive a monotonic descent method for solving the
sum-of-ratio minimization problem (4.5) is to eliminate the ratio by introducing a
new set of variables � = (�1, . . . , �k):

min
F=(F1,...,Fk),

F2Rn⇥k
+ , �2Rk

+

k
X

l=1

�l (4.9)

subject to : TV(Fl)  �lS(Fl), l = 1, . . . , k, (descent constraints)

F(i) 2 �k, i = 1, . . . , n, (simplex constraints)

max{F(i)} = 1, 8i 2 I, (membership constraints)

S(Fl) � m, l = 1, . . . , k. (size constraints)

Note that for an optimal solution (F ⇤, �⇤) of this problem it holds TV(F ⇤
l) =

�⇤
l S(F

⇤
l), l = 1, . . . , k (otherwise one can decrease �⇤

l and hence the objective)
and thus equivalence holds. This is still a non-convex problem as the descent,
membership and size constraints are non-convex. Our algorithm proceeds now
in a sequential manner. At each iterate we do a convex inner approximation of
the constraint set, that is the convex approximation is a subset of the non-convex
constraint set, based on the current iterate (F t, �t). Then we optimize the resulting
convex optimization problem and repeat the process. In this way we get a sequence
of feasible points for the original problem (4.5) for which we will prove monotonic
descent in the sum-of-ratios.

Convex approximation: As Ŝ is submodular, S is convex by Proposition 2.2.
Let (st1, . . . , s

t
k) 2 @S(F t) be an element of the sub-di↵erential of S at the cur-

rent iterate F t. We have by Lemma 2.7, (stl)ji = Ŝ(Cli�1) � Ŝ(Cli), where Cli =
{jli+1 , . . . , jln} and jli is the index of the ith smallest element of F t

l . Moreover, us-
ing the definition of subgradient, we have S(Fl) � S(F t

l) + hstl , Fl � F t
l i = hstl , Fli,

where the last equality follows from Lemma 2.1.

4.3. ALGORITHM FOR THE CONTINUOUS RELAXATION 75

Thus the inner approximation of size constraints is given by hstl , Fli � m, l =

1, . . . , k. For approximating the descent constraints, let �tl =
TV(F t

l)

S(F t
l)

and introduce

new variables �l = �l � �tl that capture the amount of change in each ratio. We
further decompose �l as �l = �+l � ��l , �

+
l � 0, ��l � 0. Let M = maxf2[0,1]n S(f) =

maxC✓V Ŝ(C), then for S(Fl) � m,

TV(Fl)� �lS(Fl)  TV(Fl)� �tl
⌦

stl , Fl

↵

� �+l S(Fl) + ��l S(Fl)

 TV(Fl)� �tl
⌦

stl , Fl

↵

� �+l m+ ��l M.

Finally, note that because of the simplex constraints, the membership constraints
can be rewritten as max{F(i)} � 1, i 2 I. The inner approximation is then given by
⌦

vti , F(i)

↵

� 1 where vti 2 Rk is any element of the subdi↵erential of max{F(i)} at F t
(i).

If ji = argmaxj{F t
ij} (ties are broken randomly), then a vector in Rk which takes a

value of 1 on the index ji and zero everywhere else is a subgradient. Thus the mem-
bership constraints can be relaxed as Fiji � 1. As Fij  1, i = 1, . . . , n, j = 1, . . . , k,
we get Fiji = 1. Note that because of the simplex constraints, argmaxj{F t0

ij} stays
same in successive iterations t0 > t once we enforce the constraints Fiji = 1, i 2 I.
Thus the convex approximation of the membership constraints fixes the assignment
of the i-th point to a cluster and thus can be interpreted as “label constraint”.
However, unlike the transductive setting, the labels for the vertices in I are auto-
matically chosen by our method. The actual choice of the set I will be discussed in
Section 4.3.2. We use the notation L = {(i, ji) | i 2 I} for the label set generated
from I (note that L is fixed once I is fixed).

Remark: Note that the approximation of membership constraints and size con-
straints is done using the ideas of DC programming ([35]; see Section 2.1.5). How-
ever, for descent constraints (which are not DC constraints in their current form)
we have used a di↵erent approximation using the bounds of the balancing function
S. A possible future work explores the ways of rewriting descent constraints as DC
constraints that are amenable to e�cient optimization.

Descent algorithm: Our descent algorithm for minimizing (4.9) solves at each
iteration t the following convex optimization problem

min
F2Rn⇥k

+ ,

�+2Rk
+, ��2Rk

+

k
X

l=1

�+l � ��l (4.10)

subject to : TV(Fl)  �tl
⌦

stl , Fl

↵

+ �+l m� ��l M, l = 1, . . . k, (descent con.)

F(i) 2 �k, i = 1, . . . , n, (simplex con.)

Fiji = 1, 8(i, ji) 2 L, (label con.)
⌦

stl , Fl

↵

� m, l = 1, . . . , k. (size con.)

As its solution F t+1 is feasible for (4.5) we update �t+1
l =

TV(F t+1
l)

S(F t+1
l)

and st+1
l 2

@S(F t+1
l), l = 1, . . . , k and repeat the process until the sequence terminates, that

is no further descent is possible or the relative descent in
Pk

l=1 �
t
l is smaller than a

predefined ✏. The following theorem shows the monotonic descent property of our
algorithm.

76 CHAPTER 4. MULTI-CLASS CLUSTERING

Theorem 4.3 The sequence {F t} produced by the above algorithm satisfies

k
X

l=1

TV(F t+1
l)

S(F t+1
l)

<
k
X

l=1

TV(F t
l)

S(F t
l)

for all t � 0 or the algorithm terminates.

Proof: Let (F t+1, �+, t+1, ��, t+1) be the optimal solution of the inner problem
(4.10). By the feasibility of (F t+1, �+, t+1, ��, t+1) and m  S(F t+1

l)  M ,

TV(F t+1
l)

S(F t+1
l)


�tl
⌦

stl , F
t+1
l

↵

+m�+, t+1
l �M��, t+1

l

S(F t+1
l)

 �tl +
m�+, t+1

l �M��, t+1
l

S(F t+1
l)

 �tl + �+, t+1
l � ��, t+1

l

Summing over all ratios, we have

k
X

l=1

TV(F t+1
l)

S(F t+1
l)


k
X

l=1

�tl +
k
X

l=1

�+, t+1
l � ��, t+1

l

Noting that �+l = ��l = 0, F = F t is feasible for (4.10), the optimal value
Pk

l=1 �
+, t+1
l � ��, t+1

l has to be either strictly negative in which case we have strict
descent

k
X

l=1

TV(F t+1
l)

S(F t+1
l)

<
k
X

l=1

�tl

or the previous iterate F t together with �+l = ��l = 0 is already optimal and hence
the algorithm terminates. ⇤
From the proof it is clear that one does not need to solve the inner problem to
full accuracy to guarantee monotonic descent. One needs to find only an iterate
with a negative objective value for the inner problem to maintain the monotonic
descent property. In our experiments we found that solving the inner problems
to low accuracy initially and then doing more iterations for the latter problems
typically gives better results.

4.3.1 Smooth minimization of the inner problem

The inner problem (4.10) is convex, but contains the non-smooth term TV in the
constraints. We eliminate the non-smoothness by introducing additional variables
and derive an equivalent linear programming (LP) formulation.

Lemma 4.1 Let E ✓ V ⇥ V be the set of edges of the graph G(V,W) and
�!
E =

{(i, j) 2 E, i < j} denote the directed edges. Further let w 2 R|
�!
E | be the edge

weights. Then the convex inner problem (4.10) is equivalent to the linear optimiza-

4.3. ALGORITHM FOR THE CONTINUOUS RELAXATION 77

tion problem

min
F2Rn⇥k

+ ,

↵2R|
�!
E |⇥k

+ ,

�+2Rk
+, ��2Rk

+

k
X

l=1

�+l � ��l (4.11)

subject to : hw,↵li  �tl
⌦

stl , Fl

↵

+ �+l m� ��l M, l = 1, . . . , k, (descent con.)

F(i) 2 �k, i = 1, . . . , n, (simplex con.)

Fiji = 1, 8(i, ji) 2 L, (label con.)
⌦

stl , F
t
l

↵

� m, l = 1, . . . , k, (size con.)

� (↵l)ij  Fil � Fjl  (↵l)ij, l = 1, . . . , k, 8(i, j) 2 �!
E .

Proof: We define new variables ↵l 2 R|
�!
E |, l = 1, . . . , k and introduce constraints

(↵l)ij = |(Fl)i � (Fl)j)|. This allows us to rewrite TV(Fl) as hw,↵li , l = 1, . . . , k.
These equality constraints can be replaced by the inequality constraints (↵l)ij �
|(Fl)i � (Fl)j)| without changing the optimality of the problem, because at any
optimal solution these constraints are active. This can be seen as follows. Let
(F,↵, �+, ��) be an optimal solution of the modified problem where we introduced
↵ and replaced equality constraints on ↵ by inequality constraints. Assume for
the sake of contradiction that there exists l 2 {1, . . . , k} and (r, s) 2 �!

E such
that (↵l)rs = |(Fl)r � (Fl)s| + ✏, for some ✏ > 0. Define (↵̂l)ij = (↵l)ij, 8(i, j) 2�!
E \{(r, s)}, (↵̂l)rs = (↵l)rs � ✏ and �̂�l = ��l + 1

M
✏wrs. Note that both (↵̂l)rs

and �̂�l are non-negative (since wrs is non-negative) and by definition (↵̂l)rs �
|(Fl)r � (Fl)s|. Moreover, we have

hw, ↵̂li = hw,↵li � ✏wrs  �tl
⌦

stl , Fl

↵

+ �+l m� ��l M � ✏wrs

 �tl
⌦

stl , Fl

↵

+ �+l m�M(��l +
1

M
✏wrs)

Thus (F, ↵̂, �+, �̂�) satisfies all the constraints of the modified problem and has a

smaller objective since wrs > 0, (r, s) 2 �!
E , which leads to the required contra-

diction. Finally, the inequality constraints on ↵ are rewritten using the fact that
|x|  y , �y  x  y, for y � 0. ⇤

Recently, first-order primal-dual hybrid gradient descent (PDHG for short) meth-
ods have been proposed [43, 24] to e�ciently solve a class of convex optimization
problems that can be rewritten as the following saddle-point problem

min
x2X

max
y2Y

hAx, yi+G(x)� �⇤(y), (4.12)

where X and Y are finite-dimensional vector spaces and A : X ! Y is a linear
operator and G and �⇤ are convex functions. Here �⇤ denotes the convex conjugate
of � defined as

�⇤(y) = sup
x2X

hx, yi � �(x).

78 CHAPTER 4. MULTI-CLASS CLUSTERING

The main step of PDHG given in Algorithm 4.1 requires the computation of so-
called proximal map defined as

prox⌧G(·) := argmin
x2X

G(x) +
1

2⌧
kx� ·k22 .

Algorithm 4.1 PDHG for solving the saddle-point problem (4.12)

1: Initialization: x(0) = x̄(0) = 0, y0 = 0, ✓ 2 [0, 1], �, ⌧ > 0 with �⌧ < 1/kAk22
2: repeat
3: xr+1 = prox⌧G(x

r � ⌧ATyr)
4: x̄r+1 = xr+1 + ✓(xr+1 � xr)
5: yr+1 = prox��⇤(yr + �Ax̄r+1)
6: until relative duality gap < ✏
7: Output: xr+1.

It has been shown that the PDHG algorithm achieves good performance in
solving large scale linear programming problems that appear in computer vision
applications [24, 94]. We now show how the linear programming problem

min
x�0

hc, xi

subject to : A1x  b1
A2x = b2

can be rewritten as a saddle-point problem so that PDHG can be applied.
By introducing the Lagrange multipliers y, the optimal value of the LP can be

written as
min
x�0

hc, xi+ max
y1�0, y2

hy1, A1x� b1i+ hy2, A2x� b2i

= min
x

max
y1, y2

hc, xi+ ◆x�0(x) + hy1, A1xi+ hy2, A2xi � hb1, y1i � hb2, y2i � ◆y1�0(y1),

where ◆·�0 is the indicator function that takes a value of 0 on the non-negative
orthant and 1 elsewhere.

Define b =

✓

b1
b2

◆

, A =

✓

A1

A2

◆

and y =

✓

y1
y2

◆

. Then the saddle point

problem corresponding to the LP is given by

min
x

max
y1, y2

hc, xi+ ◆x�0(x) + hy, Axi � hb, yi � ◆y1�0(y1).

Comparing this with the general form given in (4.12), we have

G(x) = hc, xi+ ◆x�0(x)

�⇤(y) = hb, yi+ ◆y1�0(y1)

The primal iterate can then be obtained as

xr+1 = prox⌧G(x
r � ⌧ATyr)

= argmin
x�0

hc, xi+ 1

2⌧

�

�x�
�

xr � ⌧ATyr
�

�

�

2

2

= argmin
x�0

1

2⌧

�

�x�
�

xr � ⌧(ATyr + c)
�

�

�

2

2

= max{0, xr � ⌧(ATyr + c)}.

4.3. ALGORITHM FOR THE CONTINUOUS RELAXATION 79

Similarly, the dual update can be derived as

yr+1 = prox��⇤(yr + �Ax̄r+1)

= argmin
y1�0, y2

hb, yi+ 1

2�

�

�y �
�

yr + �Ax̄r+1
�

�

�

2

2

where x̄r+1 = 2xr+1 � xr (with the choice ✓ = 1). We can minimize over y1 and y2
independently and obtain the iterates as

yr+1
1 = argmin

y1�0
hb1, y1i+

1

2�

�

�y1 �
�

yr1 + �A1x̄
r+1
�

�

�

2

2

= argmin
y1�0

1

2�

�

�y1 �
�

yr1 + �(A1x̄
r+1 � b1)

�

�

�

2

2

= max{0, yr1 + �(A1x̄
r+1 � b1)},

yr+1
2 = argmin

y2

hb2, y2i+
1

2�

�

�y2 �
�

yr2 + �A2x̄
r+1
�

�

�

2

2

= argmin
y2

1

2�

�

�y2 �
�

yr2 + �(A2x̄
r+1 � b2)

�

�

�

2

2

= yr2 + �(A2x̄
r+1 � b2).

Here the primal and dual step sizes ⌧ and � are chosen such that ⌧� kAk2 < 1,
where k.k denotes the operator norm.

It is observed often in practice that if the linear operator A has non-uniform
values, the convergence of PDHG significantly slows down [94]. Hence one needs
to apply preconditioning techniques similar to what we discussed in Section 3.5.4.
Note that unlike FISTA, here one needs preconditioners for both primal as well as
the dual iterates. That is one needs to address the issue of non-uniform scaling for
both A and AT . To understand the preconditioning, let us rewrite the primal and
dual iterates of the general PDHG algorithm as

xr+1 = argmin
x2X

hAx, yri+G(x) +
1

2⌧
kx� xrk22

yr+1 = argmin
y2Y

�
⌦

x̄r+1, ATy
↵

+ �⇤(y) +
1

2�
ky � yrk22

The following preconditioned iterates are proposed in [94] for the PDHG algorithm

xr+1 = argmin
x2X

hAx, yri+G(x) +
1

2
⌧�1 kx� xrk22

yr+1 = argmin
y2Y

�
⌦

x̄r+1, ATy
↵

+ �⇤(y) +
1

2
��1 ky � yrk22 .

Here ⌧ and � are diagonal preconditioning matrices whose diagonal elements are
given by

⌧j =
1

Pnr

i=1 |Aij|
, 8j 2 {1, . . . , nc}, �i =

1
Pnc

i=1 |Aij|
, 8i 2 {1, . . . , nr},

where nr, nc are the number of rows and the number of columns of the matrix
A. The idea behind these preconditioners is to compensate for the non-uniform

80 CHAPTER 4. MULTI-CLASS CLUSTERING

scaling of the primal variable x by A (resp. dual variable y by AT) by rescaling
the corresponding step sizes by the total magnitude of each column (resp. each
row) of A. We note here that this approach is slightly indirect to what we have
presented in Section 3.5.4 with the change of variable interpretation. However,
if one applies the above rescaling for changing the variable ↵ in problem (3.20)
discussed in Section 3.5.4, one arrives at updates that are similar to what we have
derived in [96] independently of the work of [94]. This can be seen by noting that
the corresponding rescaling in step size for ↵ij in problem (3.20) (with the linear
operator A defined in (3.15)) is given by

1

|wij|+ |�wij|
=

1

2wij

, 8(i, j) 2 �!
E

This corresponds to the variable substitution

↵ij =
1

2wij

�ij.

This is exactly same (up to factor 2) as the one we used in our preconditioning (see
Lemma 3.6).

For completeness, we now present the explicit form of the primal and dual
iterates of the preconditioned PDHG for the LP (4.11). Let ✓ 2 Rk, µ 2 Rn, ⇣ 2
R|L|, ⌫ 2 Rk, ⌘l 2 R|

�!
E |, ⇠l 2 R|

�!
E |, 8l 2 {1, . . . , k} be the Lagrange multipliers

corresponding to the descent, simplex, label, size and the two sets of additional
constraints (introduced to eliminate the non-smoothness) respectively. Let B :

R|
�!
E | ! R|V | be a linear mapping defined as (Bz)i =

P

j:(i,j)2�!E zij�zji and 1n 2 Rn

denote a vector of all ones. Then the primal iterates for the LP (4.11) are given by

F r+1
l = max

n

0, F r
l � ⌧F, l

⇣

(�✓rl �tl � ⌫rl)s
t
l + µr + Zr

l +B(⌘rl � ⇠rl)
⌘o

,

8l 2 {1, . . . , k},

↵r+1
l = max

n

0,↵r
l � ⌧↵, l

⇣

✓rlw � ⌘rl � ⇠rl

⌘o

, 8l 2 {1, . . . , k},

�+, r+1 = max
n

0, �+, r � ⌧�+
⇣

�m✓r + 1k

⌘o

,

��, r+1 = max
n

0, ��, r � ⌧��
⇣

M✓r � 1k

⌘o

,

where Zr
l 2 Rn, l = 1, . . . , k, are given by (Zr

l)i = ⇣ril, if (i, l) 2 L and 0 otherwise.
Here ⌧F, l, ⌧↵, l, ⌧�+ , ⌧�� are the diagonal preconditioning matrices whose diagonal
elements are given by

(⌧F, l)i =
1

(1 + �tl) |(stl)i|+ 2di + ⇢il + 1
, 8i 2 {1, . . . , n},

(⌧↵, l)ij =
1

wij + 2
, 8(i, j) 2 E,

(⌧�+)l =
1

m
, 8l 2 {1, . . . , k},

(⌧��)l =
1

M
, 8l 2 {1, . . . , k},

4.3. ALGORITHM FOR THE CONTINUOUS RELAXATION 81

where di is the number of vertices adjacent to the ith vertex and ⇢il = 1, if (i, l) 2 L
and 0 otherwise.

The dual iterates are given by

✓r+1
l = max

n

0, ✓rl + �✓, l

⇣

⌦

w, ↵̄r+1
l

↵

� �tl
⌦

stl , F̄
r+1
l

↵

�m�̄+, r+1
l +M �̄�, r+1

l

⌘o

,

l = 1, . . . , k,

µr+1 = µr + �µ

⇣

F̄ r+11k � 1n

⌘

,

⇣r+1
il = ⇣ril + �⇣

⇣

F̄ r+1
il � 1

⌘

, 8(i, l) 2 L,

⌫r+1
l = max

n

0, ⌫rl + �⌫, l

⇣

�
⌦

stl , F̄
r+1
l

↵

+m
⌘o

, 8l 2 {1, . . . , k},

⌘r+1
l = max

n

0, ⌘rl + �⌘, l

⇣

� ↵̄r+1
l + F̄ r+1

il � F̄ r+1
jl

⌘o

, 8l 2 {1, . . . , k},

⇠r+1
l = max

n

0, ⇠rl + �⇠, l

⇣

� ↵̄r+1
l � F̄ r+1

il + F̄ r+1
jl

⌘o

, 8l 2 {1, . . . , k},

where

�✓, l =
1

hw, 1i+ �tl
Pn

i=1 |(stl)i|+m+M
, �⇣ = 1, �⌫, l =

1
Pn

i=1 |(stl)i|
,

and �µ, �⌘,1, �⇠,l are the diagonal preconditioning matrices whose diagonal ele-
ments are given by

(�µ)i =
1

k
, 8i 2 {1, . . . , n}, (�⌘,l)ij = (�⇠,l)ij =

1

3
, 8(i, j) 2 E.

From the iterates, one sees that the computational cost per iteration is O(
�

�

�

�!
E
�

�

�

).

In our implementation, we further reformulated the LP (4.11) by directly integrating
the label constraints, thereby reducing the problem size and getting rid of the dual
variable ⇣.

4.3.2 Choice of membership constraints I

In the previous section we have presented an algorithm for solving the continuous
relaxation (4.9) for a given choice of membership constraints I. Here we discuss how
we choose this set I. Since the membership constraints are relaxed as labels in the
descent algorithm presented in the previous section, it is best to choose I from the
currently known best k-partition. Let (C1, . . . , Ck) be the current best k-partition
obtained by rounding the continuous solution F . For each l 2 {1, . . . , k} and i 2 Cl

we compute

bli =
cut
�

Cl\{i}, Cl [{i}
�

Ŝ(Cl\{i})
+ min

s 6=l

"

cut
�

Cs [{i}, Cs\{i}
�

Ŝ(Cs [{i})
+

X

j 6=l, j 6=s

cut(Cj, Cj)

Ŝ(Cj)

#

(4.13)

and define Ol = {(⇡1, . . . , ⇡|Cl|) | bl⇡1 � bl⇡2 � . . . � bl⇡|Cl|
}. The top-ranked vertices

in Ol correspond to the ones which lead to the largest minimal increase in BCut
when moved from Cl to another component and thus are most likely to belong to

82 CHAPTER 4. MULTI-CLASS CLUSTERING

their current component. So, whenever |I| < |V |, it is natural to fix the top-ranked
vertices for each component first. In this way, the membership constraints always
correspond to the vertices which lead to largest minimal increase in BCut when
moved to another component. In Figure 4.1 (d) one can observe that the points
where membership constraints are enforced lie close to the centers of the found
clusters.

The next question is the number of the membership constraints one needs to
enforce. If |I| is too small, then solving the continuous relaxation (4.9) may not
improve the balanced k-cut because, e..g, the solution of the problem (4.9) is weakly
or strongly degenerated. On the other hand if |I| is too large, the labels are fixed for
many vertices leading to a poor solution (in terms of the balanced k-cut). We follow
an iterative approach where we start with I = ; and increase its size whenever the
solution of the continuous relaxation (4.9) is strongly degenerated or does not yield
a k-partition with a strictly better balanced k-cut. We use the following strategy
to update the size of I: if the current I is empty, then we add one membership con-
straint per component; otherwise we double the number of membership constraints
per component. To make things simple, we add the same number of membership
constraints in every component. Thus, we stop the method if all vertices in the
smallest component of the currently known best k-partition were already included
in the set I.

The overall scheme for solving the balanced k-cut problem (4.1) is given in
Algorithm 4.2 while Algorithm 4.3 presents the descent method for solving the
continuous relaxation (4.9) in each iteration of Algorithm 4.2. Note that Algorithm
4.3 requires a feasible starting point in order to guarantee monotonic descent in
the objective of (4.9); hence we update F r so that it satisfies the new membership
constraints introduced in each iteration of Algorithm 4.2. We show in the following
that F r updated in this way still satisfies the size constraints. In general, one does
not need to solve (4.9) to full accuracy since the membership constraints are going
to change in the next iteration. In practice, best results are obtained by exiting
Algorithm 4.3 as soon as a better k-partition (Ct+1

1 , . . . , Ct+1
k) is found which yields a

di↵erent set of membership constraints from that of I. This makes sense because in
this way the membership constraints (and hence labels) are always derived from the
best k-partition found so far. In this case, since F t+1 yielded a better k-partition,
we keep the size of membership constraints fixed for the next iteration r + 1 in
Algorithm 4.2. We now show that the initialization received by Algorithm 4.3 is
always feasible for the continuous relaxation (4.9).

Lemma 4.2 The initialization received by Algorithm 4.3 in every iteration r of
Algorithm 4.2 is feasible for the continuous relaxation (4.9) with I = Ir.

Proof: If Ir = ;, then F r is either the initialization received by Algorithm 4.2 or
the solution of the continuous relaxation (4.9) from the previous iteration. In both
cases F r is feasible for the continuous relaxation (4.9) with I = ;. If Ir 6= ;, then
F r updated in line 7 of Algorithm 4.2 satisfies simplex constraints and membership
constraints. The descent constraints can always be satisfied by choosing su�ciently
large positive �l, l = 1, . . . , k. We now show that F r also satisfies size constraints.
For ease of notation, let f = F r

l for any l 2 {1, . . . , k}. Note that f 2 [0, 1]n and
mini{fi} = 0,maxi{fi} = 1 (since labels are enforced in every component). Hence,

4.3. ALGORITHM FOR THE CONTINUOUS RELAXATION 83

if f 2 {0, 1}n, then A = {i |fi = 1} is neither empty nor the full set V . In this case,
S(f) = Ŝ(A) � m = minC(V, C 6=; Ŝ(C). On the other hand, if f /2 {0, 1}n, then let
f be ordered in increasing order 0 = f1  f2 . . .  fn = 1. Further let u > 1 and
v < n denote the smallest and largest indices (after reordering) such that fu 2 (0, 1)
and fv 2 (0, 1). Using the definition of the Lovász extension (2.5), we have

S(f) = Ŝ(Cu�1)fu +
v�1
X

i=u

Ŝ(Ci)(fi+1 � fi) + Ŝ(Cv)(1� fv)

� mfu +m(fv � fu) +m(1� fv) = m,

where we used the fact that each of the thresholded sets Ci, i = u � 1, . . . , v is
neither empty nor the full set V and hence satisfies Ŝ(Ci) � m. ⇤

Algorithm 4.2 Minimization of the balanced k-cut problem (4.1)

1: Input: F 0 2 Rn⇥k
+ be such that F 01k = 1n, S(Fl) � m, l = 1 . . . , k and

rounding F 0 according to (4.6) yields a k-partition
2: Output: a k-partition (C1, . . . , Ck)

3: �0 =
Pk

l=1

TV(F 0
l)

S(F 0
l)

, I0 = ;, p = 0

4: �0 = BCut(C0
1 , . . . , C

0
k), where (C0

1 , . . . , C
0
k) be the partition obtained from F 0

via rounding (4.6)
5: repeat
6: if Ir 6= ; then
7: F r

ij = 0, 8i 2 Ir, 8j 2 {1, . . . , k}, F r
iji

= 1, 8i 2 Ir where ji is the
component index such that i 2 Cr

ji
.

8: �r =
Pk

l=1

TV(F r
l)

S(F r
l)

9: end if
10: Let (F r+1, (Cr+1

1 , . . . , Cr+1
k), degenerated) be the output obtained from Algo-

rithm 4.3 with initialization F r, (Cr
1 , . . . , C

r
k) and the membership constraints

Ir

11: �r+1 =
Pk

l=1

TV(F r+1
l)

S(F r+1
l)

, �r+1 = BCut(Cr+1
1 , . . . , Cr+1

k)

12: compute ordering Ol, 8l = 1, . . . , k for (Cr+1
1 , . . . , Cr+1

k) according to (4.13)
13: if degenerated then
14: pmax = minl{

�

�Cr+1
l

�

�}
15: if p = pmax then
16: break (labels of all vertices in a component were enforced)
17: else
18: p = max{min{pmax, 2p}, 1} (increase the number of membership con-

straints)
19: end if
20: end if
21: Ir+1 =

Sk
l=1 O

p
l , where Op

l denotes p top-ranked vertices in Ol

22: until �r+1 = �r+1 and �r+1 = �r

23: return ((Cr+1
1 , . . . , Cr+1

k), F r+1)

We have the following guarantee for the overall algorithm.

84 CHAPTER 4. MULTI-CLASS CLUSTERING

Algorithm 4.3 Minimization of the continuous relaxation (4.9)

1: Input: I, F 0 2 Rn⇥k
+ feasible for the problem (4.9) and a k-partition

(C0
1 , . . . , C

0
k)

2: Output: F which is feasible for the problem (4.9) and achieves monotonic
descent in the objective of (4.9), a k-partition (C1, . . . , Ck) and degenerated
flag

3: �0 = BCut(C0
1 , . . . , C

0
k), �

0
l =

TV(F 0
l)

S(F 0
l)

, l = 1, . . . , k, �0 =
Pk

l=1 �
0
l

4: s0l 2 @S(F 0
l), l = 1, . . . , k

5: L = (i, ji), 8i 2 I, where ji = argmaxj{F 0
ij} (L is fixed once I is fixed)

6: degenerated = false (this flag is used to indicate that the continuous solution
is either strongly degenerated or does not yield a k-partition with a better
balanced k-cut)

7: repeat
8: (F t+1, �+, t+1, ��, t+1) be the optimal solution of the inner problem (4.10)
9: �t+1 = BCut(Ct+1

1 , . . . , Ct+1
k), where (Ct+1

1 , . . . , Ct+1
k) is obtained from F t+1

via rounding (4.6)

10: �t+1
l =

TV(F t+1
l)

S(F t+1
l)

, l = 1, . . . , k, �t+1 =
Pk

l=1 �
t+1
l

11: st+1
l 2 @S(F t+1

l), l = 1, . . . , k
/* solution converged */

12: if �t+1 = �t then
13: return (F t, (Ct

1, . . . , C
t
k), degenerated)

14: end if
/* early stopping */

15: if �t+1 < �t and |I| > 0 then
16: compute ordering Ol, 8l = 1, . . . , k for (Ct+1

1 , . . . , Ct+1
k) according to (4.13)

17: p = |I|
k
, Î =

Sk
l=1 O

p
l , where Op

l denotes p top-ranked vertices in Ol

18: if Î 6= I then
19: return (F t+1, (Ct+1

1 , . . . , Ct+1
k), degenerated)

20: end if
21: end if
22: until �t+1 > �t or (Ct+1

1 , . . . , Ct+1
k) is not a k-partition

23: degenerated = true
/* We still return F t+1 in order to check the convergence of Algorithm 4.2 */

24: return (F t+1, (Ct
1, . . . , C

t
k), degenerated)

4.3. ALGORITHM FOR THE CONTINUOUS RELAXATION 85

Theorem 4.4 The sequence {(Cr
1 , . . . , C

r
k)} produced by Algorithm 4.2 satisfies

BCut(Cr+1
1 , . . . , Cr+1

k)  BCut(Cr
1 , . . . , C

r
k).

Moreover, Algorithm 4.2 terminates after a finite number of iterations with a k-
partition (Cr+1

1 , . . . , Cr+1
k) and at least one of the following conditions is satisfied at

the termination.

1. The number of membership constraints enforced is kminl{
�

�Cr+1
l

�

�}. Moreover
all vertices in the smallest component of the partition (Cr+1

1 , . . . , Cr+1
k) are

part of membership constraints.

2. Algorithm 4.3 is fully converged for I = Ir and BCut(Cr+1
1 , . . . , Cr+1

k) =
Pk

l=1

TV(F r+1
l)

S(F r+1
l)

.

Furthermore, let (C0
1 , . . . , C

0
k) be a k-partition and pmax = minl{|C0

l |}. If one uses
F = (1C0

1
, . . . ,1C0

k
) as an initialization and if the Algorithm 4.2 does not terminate

after solving dlog2(pmax)e +2 instances of the problem (4.10), then it produces a
k-partition (Cr+1

1 , . . . , Cr+1
k) satisfying

BCut(Cr+1
1 , . . . , Cr+1

k) < BCut(C0
1 , . . . , C

0
k).

Proof: The monotonicity of the balanced k-cut follows from the observation that
the partition (Cr+1

1 , . . . , Cr+1
k) is same as (Cr

1 , . . . , C
r
k) unless Algorithm 4.3 yields

a k-partition that achieves strictly smaller balanced k-cut. Note that in every it-
eration of Algorithm 4.2 either the balanced k-cut decreases or the size of the set
I increases. Since the number of possible cuts as well as the maximum size of I is
finite, Algorithm 4.2 terminates after a finite number of iterations. At the termi-
nation at least one of the following conditions holds: (i) p = pmax (line 16) or (ii)
�r+1 = �r+1 and �r+1 = �r. If the algorithm terminates because of case (i) then it
means that in the current iteration r, Algorithm 4.3 was run with p = minl{

�

�Cr+1
l

�

�}
membership constraints per component. These membership constraints Ir were de-
rived from the partition (Cr

1 , . . . , C
r
k). Note, however, that (Cr+1

1 , . . . , Cr+1
k) also

yields the same set of membership constraints as Ir; otherwise Algorithm 4.3 would
have exited with degenrated = false (line 19). Thus membership constraints were
enforced for all vertices in the smallest component of the partition (Cr+1

1 , . . . , Cr+1
k).

In case (ii), Algorithm 4.3 has been run to full convergence for I = Ir; otherwise
�r+1 6= �r. Moreover, the continuous objective �r+1 and the balanced k-cut �r+1

are equal in this case.
The final statement follows from the fact that the number of membership con-

straints is first increased by one and then doubled in every iteration until Algorithm
4.3 yields a partition with strictly smaller balanced cut or Ir contains all vertices
in the smallest component of the current best k-partition. Here, we will prove the
statement by contrapositive method. Assume that Algorithm 4.2 did not produce a
k-partition with strictly smaller balanced cut. This implies that Algorithm 4.3 al-
ways terminated after one iteration (solving exactly one instance of problem (4.10))
and returns the same partition as its initialization along with the degenerated flag
set to true. Thus, Cr

l = C0
l , r > 0, l = 1, . . . , k and consequently the value of pmax is

never changed. Moreover p is updated in every iteration r since degenerated flag is

86 CHAPTER 4. MULTI-CLASS CLUSTERING

true. Thus the number of iterations it takes for reaching the condition p = pmax is
1+1+dlog2(pmax)e. The first two iterations are for the cases p = 0, p = 1 and there
is an iteration for p = pmax as well. Hence Algorithm 4.2 should terminate after
dlog2(pmax)e +2 iterations if it did not improve the balanced k-cut, which proves
the contrapositive of the statement given in the theorem. ⇤

4.4 Multi-class clustering with constraints

In this section, we present our constrained clustering method for the multi-class
setting. Similar to the two-class case, we first formulate constrained balanced k-cut
problem encoding must-link and cannot-link constraints. We then derive an equiva-
lent unconstrained problem which minimizes a trade-o↵ between the balanced k-cut
and the constraint violation. We further show that there exists a penalty parameter
which guarantees the equivalence of the constrained balanced k-cut problem and its
penalized version. We then present a continuous relaxation of the constrained prob-
lem. If hard-enforcement is desired, it is straightforward to encode label constraints
in our continuous relaxation (4.5) presented in the previous section. Otherwise one
can derive must-link and cannot-link constraints from labels and enforce via our
soft-formulation.

4.4.1 Formulation of constrained balanced k-cut
problem

For completeness, we repeat here the material from the Section 3.2. Let M =
{(p, q) : p 2 V, q 2 V } be the given must-link constraints and Q = {(p, q) : p 2
V, q 2 V } be the cannot-link constraints. Let Gc(V,W c) denote the cannot-link
constraint graph with the weight matrix W c whose entries wc

ij 2 [0, 1], specify the
degree of belief for the constrained pair (i, j) 2 Q. We make W c symmetric by
setting wc

ji = wc
ij whenever (i, j) 2 Q. Similarly we define must-link constraint

graph Gm(V,Wm) with degrees of belief wm
ij for each (i, j) 2 M. We define ✓ to be

the minimum value among all the degrees-of-belief

✓ = min

⇢

min
(p,q)2M

{wm
pq}, min

(p,q)2Q
{wc

pq}
�

. (4.14)

It is reasonable to assume that ✓ > 0, i.e., each constraint has a positive degree-of-
belief. Let us introduce functions that capture the degree of constraint violation of
a given k-partition (C1, . . . , Ck). Similarly to the two-class setting, define M̂, Q̂ :
Pk ! R+ as

M̂(C1, . . . , Ck) :=
1

2

k
X

l=1

cutGm(Cl, Cl) (must-links)

Q̂(C1, . . . , Ck) :=
1

2

k
X

l=1

assocGc(Cl) (cannot-links)

=
1

2
volGc(V)� 1

2

k
X

l=1

cutGc(Cl, Cl)

4.4. MULTI-CLASS CLUSTERING WITH CONSTRAINTS 87

Let us introduce T̂ (C1, . . . , Ck) : Pk ! R+ to capture the total amount of
constraint violation of a partition (C1, . . . , Ck),

T̂ (C1, . . . , Ck) := M̂(C1, . . . , Ck) + Q̂(C1, . . . , Ck).

Note that similar to the two-class setting, T̂ is non-negative and each violated con-
straint increases T̂ by the corresponding degree-of-belief. If a k-partition (C1, . . . , Ck)
satisfies all the constraints, then T̂ (C1, . . . , Ck) = 0. We define a partition (C1, . . . , Ck)
as consistent if T̂ (C1, . . . , Ck) = 0.

The multi-class constrained clustering problem can then be formulated as the
following constrained balanced cut problem

min
(C1,...,Ck)2Pk

k
X

l=1

cut(Cl, Cl)

Ŝ(Cl)
(4.15)

subject to : T̂ (C1, . . . , Ck) = 0.

We show that there exists an equivalent unconstrained formulation given by

min
(C1,...,Ck)2Pk

k
X

l=1

cut(Cl, Cl)

Ŝ(Cl)
+ �T̂ (C1, . . . , Ck) (4.16)

for a specific choice of �. Before establishing the equivalence let us characterize
the relation between the parameter � and the amount of constraint violation of the
solution of (4.16).

Lemma 4.3 Let (C1, . . . , Ck) be a consistent partition (i.e., it satisfies all the con-
straints) and �0 = BCut(C1, . . . , Ck). If � > �0

(l+1)✓
, where ✓ is defined in (4.14),

then any minimizer (C⇤
1 , . . . , C

⇤
k) of the problem (4.16) violates no more than l con-

straints.

Proof: First note that �0 is the objective value of the partition (C1, . . . , Ck) for the
problem (4.16). Assume for the sake of contradiction that a minimizer (C⇤

1 , . . . , C
⇤
k)

of (4.16) violates at least l + 1 constraints. Then it holds that T̂ (C⇤
1 , . . . , C

⇤
k) �

(l + 1)✓, since ✓ is the minimum of all the degrees-of-belief. Let ⇤ denote the
objective value of (C⇤

1 , . . . , C
⇤
k) for the problem (4.16). Then we have for the given

value of �,

�⇤ = BCut(C⇤
1 , . . . , C

⇤
k) + �T̂ (C⇤

1 , . . . , C
⇤
k) � �(l + 1)✓ > �0,

which is a contradiction since ⇤ is the optimal value and �0 is the objective value
of the partition (C1, . . . , Ck). Hence any partition (C⇤

1 , . . . , C
⇤
k) which violates more

than l constraints cannot be a solution of problem (4.16). ⇤

Theorem 4.5 Let (C1, . . . , Ck) be a consistent partition (i.e., it satisfies all the
constraints) and �0 = BCut(C1, . . . , Ck). If � > �0

✓
, where ✓ is defined in (4.14),

then it holds that

argmin
(C1,...,Ck)2Pk

T̂ (C1,...,Ck)=0

k
X

l=1

cut(Cl, Cl)

Ŝ(Cl)
= argmin

(C1,...,Ck)2Pk

k
X

l=1

cut(Cl, Cl)

Ŝ(Cl)
+ �T̂ (C1, . . . , Ck)

and the optimum values of both problems are equal.

88 CHAPTER 4. MULTI-CLASS CLUSTERING

Proof: By Lemma 4.3 with l = 0, any minimizer of the unconstrained problem
does not violate any constraint. Moreover T̂ (C1, . . . , Ck) = 0 for any consistent
partition and hence the objective values of both problem are equal for consistent
partitions. Thus the equivalence holds. ⇤

The choice of � depends on the balanced cut value of a partition that satisfies
all the given constraints. In principle, any upper bound on the balanced cut value
of a consistent partition can be used to determine �.

Note that when k = 2, the multi-class formulation (4.16) specializes to a slightly
di↵erent form than the two-class formulation (3.4) presented in Chapter 3. In fact
the multi-class formulation is better because it does not introduce any bias towards
balanced partitions unlike the two-class formulation. However, as we see in the
experiments, the multi-class formulation is more di�cult to optimize. Hence, we
recommend using the two-class formulation when k = 2.

Unlike the two-class setting, the problem of determining whether the constraints
in the multi-class setting are consistent is NP-complete. Although the must-link
constraints can be eliminated by merging them and transferring the problem to
a reduced graph (see Section 3.3), finding a partition that is consistent with the
cannot-link constraints in the multi-class setting is NP-hard. This is because the
problem of finding whether the given cannot-link constraints are consistent can be
formulated as a graph k-coloring problem which is NP-complete [65].

In practice to find the optimal coloring, one uses a greedy algorithm [118] which
visits the vertices in the decreasing order of their degrees and assigns a color cor-
responding to the smallest integer that is not used by its neighbors. The greedy
algorithm may use more than k colors. So in general, it may not be possible to find
a consistent partition e�ciently. Here we specify the special cases where one can
use the greedy algorithm to find a partition satisfying the given set of constraints.

1. Constraints generated from labels: In this case enforcing all must-link re-
sults in a single k-clique from which it is straightforward to obtain a consistent
partition.

2. Sparse constraints: Any graph with a maximum degree of d can be colored
using d + 1 colors [118]. Thus, if the degree of any vertex in the unweighted
version of the cannot-link constraint graph Gc is smaller than k then one can
find a consistent partition. This happens for example if the constraints are
pairwise disjoint.

Since in practice the given pairwise constraints may not necessarily fall into
these categories, one needs a generic version of Theorem 4.5 providing a choice for
the parameter � when one cannot find a consistent partition. If one has access to
any partition violating p constraints, one can at best hope to find a partition from
the problem (4.16) that violates no more than p constraints in polynomial time.
The following theorem gives the value of � to be used to get such a guarantee.
Since in the following result we are interested in enforcing as many constraints as
possible we assume that the degrees-of-belief are all set to the maximum value, i.e.,
✓ = 1.

4.4. MULTI-CLASS CLUSTERING WITH CONSTRAINTS 89

Theorem 4.6 Let (C1, . . . , Ck) be a k-partition violating p constraints given in M
and Q where the degrees-of-belief for all constraints is 1 and � = BCut(C1, . . . , Ck).
If � > �

(l+1�p)
, where l � p, then any minimizer (C⇤

1 , . . . , C
⇤
k) of the problem (4.16)

violates no more than l constraints.

Proof: The given condition on � implies that

�(l + 1� p) > � =) �(l + 1) > �+ �p.

Since (C1, . . . , Ck) violates p constraints, we have T̂ (C1, . . . , Ck) = p (since the
degree-of-belief ✓ = 1). Hence � + �p is the objective value of the partition
(C1, . . . , Ck) for the problem (4.16). Assume for the sake of contradiction that
a minimizer (C⇤

1 , . . . , C
⇤
k) of (4.16) violates at least l+ 1 constraints. Then it holds

that T̂ (C⇤
1 , . . . , C

⇤
k) � (l+ 1). Let ⇤ denote the objective value of (C⇤

1 , . . . , C
⇤
k) for

the problem (4.16). Then we have for the given value of �,

 ⇤ = BCut(C⇤
1 , . . . , C

⇤
k) + �T̂ (C⇤

1 , . . . , C
⇤
k) � �(l + 1) > �+ �p,

which is a contradiction since ⇤ is the optimal value and � + �p is the objective
value of the partition (C1, . . . , Ck). Hence any partition (C⇤

1 , . . . , C
⇤
k) which violates

more than l constraints cannot be a solution of problem (4.16). ⇤
Note that Theorem 4.5 is a special case of Theorem 4.6 with l = p = 0. Unlike
Theorem 4.5, the latter result gives us a practical choice for � in situations where
we cannot obtain a consistent partition.

4.4.2 Continuous relaxation of constrained balanced k-cut
problem

In this section we discuss the continuous relaxation of the problem (4.16). In con-
trast to the unconstrained problem (4.1), we have an additional penalty term T̂ in
the objective of (4.16) given by

T̂ (C1, . . . , Ck) =
1

2

k
X

l=1

cutGm(Cl, Cl) +
1

2
volGc(V)� 1

2

k
X

l=1

cutGc(Cl, Cl). (4.17)

Since the second term is a constant we can eliminate it without changing the min-
imizers of the problem (4.16). Similar to the unconstrained case, we will replace
the remaining terms in the above sum which are set functions by their Lovász
extensions. This leads to the following continuous problem

min
F=(F1,...,Fk),

F2Rn⇥k
+

k
X

l=1

TV(Fl)

S(Fl)
+ �T (F) (4.18)

subject to : F(i) 2 �k, i = 1, . . . , n, (simplex constraints)

max{F(i)} = 1, 8i 2 I, (membership constraints)

S(Fl) � m, l = 1, . . . , k, (size constraints)

where S is the Lovász extension of the set function Ŝ and m = minC(V, C 6=; Ŝ(C)
and T (F) = 1

2

Pk
l=1 TVGm(Fl)� 1

2

Pk
l=1 TVGc(Fl).

90 CHAPTER 4. MULTI-CLASS CLUSTERING

Similarly to the unconstrained case, the following result shows that the problem
(4.18) is a relaxation of the combinatorial problem (4.16) and the relaxation is exact
if I = V .

Proposition 4.2 The continuous problem (4.18) is a relaxation of the combina-
torial optimization problem (4.16). If I = V , the relaxation is exact, i.e., both
problems are equivalent in the sense that there is one-to-one correspondence be-
tween the minimizers of these problems. Moreover, let (C1, . . . , Ck) be a partition
violating at most p constraints given in M and Q where the degrees-of-belief for
all constraints is 1 and � = BCut(C1, . . . , Ck). If � > �

(l+1�p)
and l � p, then the

partition constructed from any solution of the continuous relaxation (4.18) violates
at most l constraints.

Proof: Proof is similar to that of Proposition 4.1. The second part follows from
Theorem 4.6. ⇤
The following result shows that the constrained balanced cut problem (4.15) and
the above continuous relaxation are equivalent for a specific choice of �.

Theorem 4.7 Let G(V,W) be a weighted undirected graph and Ŝ be any non-
negative balancing function with Ŝ(;) = 0, Ŝ(C) > 0, 8C (V , C 6= ; and T̂
be the penalty function defined in (4.17) for the constraint graphs Gm and Gc.
Further let (C1, . . . , Ck) be a consistent partition (i.e., T̂ (C1, . . . , Ck) = 0) and
�0 = BCut(C1, . . . , Ck). If � > �0

✓
, where ✓ is defined in (4.14), and I = V then

the constrained balanced k-cut problem (4.15) and the continuous relaxation (4.18)
are equivalent in the sense that there is a one-to-one correspondence between the
minimizers of these problems.

Proof: Proof follows from Proposition 4.2 and Theorem 4.5. ⇤

4.4.3 Algorithm for the continuous relaxation

The monotonic descent algorithm developed in Section 4.3 can directly be used to
solve the continuous problem (4.18). Similar to the unconstrained case, we first
rewrite the continuous relaxation (4.18) as

min
F=(F1,...,Fk),

F2Rn⇥k
+ , �2Rk

+

k
X

l=1

�l + �T (F) (4.19)

subject to : TV(Fl)  �lS(Fl), l = 1, . . . , k, (descent constraints)

F(i) 2 �k, i = 1, . . . , n, (simplex constraints)

max{F(i)} = 1, 8i 2 I, (membership constraints)

S(Fl) � m, l = 1, . . . , k. (size constraints)

In contrast to the unconstrained case (4.9), the objective function in (4.19) is also
non-convex. In fact the objective function is already expressed as a di↵erence of
convex functions. Our descent algorithm is based on linearizing the concave part of

4.4. MULTI-CLASS CLUSTERING WITH CONSTRAINTS 91

the objective apart from approximating the constraint set by a convex set (similar
to (4.10)) and solving the resulting convex problem in each iteration t,

min
F2Rn⇥k

+ ,

�+2Rk
+, ��2Rk

+

k
X

l=1

�+l � ��l + �
1

2

k
X

l=1

TVGm(Fl)� �
1

2

k
X

l=1

⌦

rtl , Fl

↵

(4.20)

subject to : TV(Fl)  �tl
⌦

stl , Fl

↵

+ �+l m� ��l M, l = 1, . . . k,

F(i) 2 �k, i = 1, . . . , n,

Fiji = 1, 8(i, ji) 2 L,
⌦

stl , F
t
l

↵

� m, l = 1, . . . , k,

where rtl and stl are elements of subdi↵erentials of TVGc and S at F t
l respectively

and �tl =
TV(F t

l)

S(F t
l)

, l = 1, . . . , k. We repeat the process until the sequence terminates,

that is no further descent is possible. The following theorem shows the monotonic
descent property of this procedure.

Theorem 4.8 The sequence {F t} produced by the above algorithm satisfies

k
X

l=1

TV(F t+1
l)

S(F t+1
l)

+ �T (F t+1) <
k
X

l=1

TV(F t
l)

S(F t
l)

+ �T (F t)

for all t � 0 or the algorithm terminates.

Proof: Let (F t+1, �+, t+1, ��, t+1) be the optimal solution of the inner problem
(4.20). One can proceed similar to the proof of Theorem 4.3 to first show that

k
X

l=1

TV(F t+1
l)

S(F t+1
l)


k
X

l=1

�tl +
k
X

l=1

�+, t+1
l � ��, t+1

l . (4.21)

Since TV is a convex 1-homogeneous function and � � 0, we have by Lemma 2.1
and the definition of subgradient,

�� 1
2

k
X

l=1

TVGc(F t+1
l)  �� 1

2

k
X

l=1

⌦

rtl , F
t+1
l

↵

. (4.22)

Moreover, we have by Lemma 2.1

1

2

k
X

l=1

⌦

rtl , F
t
l

↵

=
1

2

k
X

l=1

TVGc(F t
l). (4.23)

Noting that �+l = ��l = 0, F = F t is feasible for (4.20), the optimal value has
to be either strictly smaller than

�
1

2

k
X

l=1

TVGm(F t
l)� �

1

2

k
X

l=1

⌦

rtl , F
t
l

↵

92 CHAPTER 4. MULTI-CLASS CLUSTERING

or the previous iterate F t together with �+l = ��l = 0 is already optimal and hence
the algorithm terminates. In the latter case there is nothing to prove. In the former
case, we have by (4.23)

�T (F t) = �
1

2

k
X

l=1

TVGm(F t
l)� �

1

2

k
X

l=1

⌦

rtl , F
t
l

↵

>
k
X

l=1

�+, t+1
l � ��, t+1

l + �
1

2

k
X

l=1

TVGm(F t+1
l)� �

1

2

k
X

l=1

⌦

rtl , F
t+1
l

↵

�
k
X

l=1

TV(F t+1
l)

S(F t+1
l)

�
k
X

l=1

�tl + �
1

2

k
X

l=1

TVGm(F t+1
l)� �

1

2

k
X

l=1

TVGc(F t+1
l),

where the last inequality follows from (4.21) and (4.22). Rearranging the terms
would then yield the desired result.

⇤
Similar to the inner problem presented in the previous section (see Lemma 4.1),
the above problem can be rewritten as a linear programming problem and can be
solved by PDHG.

The overall algorithmic scheme for solving the combinatorial problem (4.16) is
given in Algorithm 4.4. The method for solving the continuous relaxation (4.19)
in each iteration of Algorithm 4.4 is given in Algorithm 4.5. We follow the same
procedure as discussed in 4.3.2 for selecting the subset I of membership constraints
except that the ordering Ol is now computed based on the objective function of the
problem (4.16) instead of the balanced cut,

bli =
cut
�

Cl\{i}, Cl [{i}
�

Ŝ(Cl\{i})
+ �T̂0(Cl\{i}) (4.24)

+ min
s 6=l

"

cut
�

Cs [{i}, Cs\{i}
�

Ŝ(Cs [{i})
+ �T̂0(Cs [{i}) +

X

j 6=l, j 6=s

cut(Cj, Cj)

Ŝ(Cj)
+ �T̂0(Cj)

#

,

where (C1 . . . , Ck) is the current best partition T̂0 : 2V ! R is defined as

T̂0(C) :=
1

2
cutGm(C,C)� 1

2
cutGc(C,C). (4.25)

By the same reasoning given in Lemma 4.2, the initialization F r received by
Algorithm 4.5 in every iteration r of Algorithm 4.4 is feasible for the continuous
relaxation (4.19) with I = Ir. Similarly to Algorithm 4.2, Algorithm 4.4 termi-
nates after a finite number of iterations with a k-partition (Cr+1

1 , . . . , Cr+1
k) and at

least one of the following conditions is satisfied at the termination: (i) the num-
ber of membership constraints enforced is kminl{

�

�Cr+1
l

�

�} and all vertices in the
smallest component of the partition (Cr+1

1 , . . . , Cr+1
k) are part of membership con-

straints (ii) Algorithm 4.5 is fully converged for I = Ir and BCut(Cr+1
1 , . . . , Cr+1

k)+

�T̂ (Cr+1
1 , . . . , Cr+1

k) =
Pk

l=1

TV(F r+1
l)

S(F r+1
l)

+ �T (F r+1). We now present the additional

guarantee Algorithm 4.4 provides for the constrained balanced k-cut problem.

4.4. MULTI-CLASS CLUSTERING WITH CONSTRAINTS 93

Algorithm 4.4 Minimization of the constrained balanced k-cut problem
(4.16)

1: Input: � and F 0 2 Rn⇥k
+ be such that F 01k = 1n, S(Fl) � m, l = 1 . . . , k and

rounding F 0 according to (4.6) yields a k-partition
2: Output: a k-partition (C1, . . . , Ck)

3: �0 =
Pk

l=1

TV(F 0
l)

S(F 0
l)

+ �T (F 0), I0 = ;, p = 0

4: �0 = BCut(C0
1 , . . . , C

0
k) + �T̂ (C0

1 , . . . , C
0
k), where (C0

1 , . . . , C
0
k) be the partition

obtained from F 0 via rounding (4.6)
5: pmax = minl{|C0

l |}
6: repeat
7: if Ir 6= ; then
8: F r

ij = 0, 8i 2 Ir, 8j 2 {1, . . . , k}, F r
iji

= 1, 8i 2 Ir where ji is the
component index such that i 2 Cr

ji
.

9: �r =
Pk

l=1

TV(F r
l)

S(F r
l)

+ �T (F r)

10: end if
11: Let (F r+1, (Cr+1

1 , . . . , Cr+1
k), degenerated) be the output obtained from Algo-

rithm 4.5 with initialization F r, (Cr
1 , . . . , C

r
k) and the membership constraints

Ir

12: �r+1 =
Pk

l=1

TV(F r+1
l)

S(F r+1
l)

+ �T (F r+1), �r+1 = BCut(Cr+1
1 , . . . , Cr+1

k) +

�T̂ (Cr+1
1 , . . . , Cr+1

k)
13: compute ordering Ol, 8l = 1, . . . , k for (Cr+1

1 , . . . , Cr+1
k) according to (4.24)

14: if degenerated then
15: pmax = minl{

�

�Cr+1
l

�

�}
16: if p = pmax then
17: break (labels of all vertices in a component were enforced)
18: else
19: p = max{min{pmax, 2p}, 1} (increase the number of membership con-

straints)
20: end if
21: end if
22: Ir+1 =

Sk
l=1 O

p
l , where Op

l denotes p top-ranked vertices in Ol

23: until �r+1 = �r+1 and �r+1 = �r

24: return ((Cr+1
1 , . . . , Cr+1

k), F r+1)

94 CHAPTER 4. MULTI-CLASS CLUSTERING

Algorithm 4.5 Minimization of the continuous relaxation (4.19) of the
constrained balanced k-cut problem

1: Input: I, F 0 2 Rn⇥k
+ feasible for the problem (4.19), a k-partition (C0

1 , . . . , C
0
k)

and �
2: Output: F which is feasible for the problem (4.19) and achieves monotonic

descent in the objective of (4.19), a k-partition (C1, . . . , Ck) and degenerated
flag

3: �0 = BCut(C0
1 , . . . , C

0
k) + �T̂ (C0

1 , . . . , C
0
k), �

0
l =

TV(F 0
l)

S(F 0
l)

, l = 1, . . . , k, �0 =
Pk

l=1 �
0
l + �T (F 0)

4: s0l 2 @S(F 0
l), r0l 2 @TVGc(F 0), l = 1, . . . , k

5: L = (i, ji), 8i 2 I, where ji = argmaxj{F 0
ij} (L is fixed once I is fixed)

6: degenerated = false
7: repeat
8: (F t+1, �+, t+1, ��, t+1) be the optimal solution of the inner problem (4.20)
9: �t+1 = BCut(Ct+1

1 , . . . , Ct+1
k)+�T̂ (Ct+1

1 , . . . , Ct+1
k), where (Ct+1

1 , . . . , Ct+1
k) is

obtained from F t+1 via rounding (4.6)

10: �t+1
l =

TV(F t+1
l)

S(F t+1
l)

, l = 1, . . . , k, �t+1 =
Pk

l=1 �
t+1
l + �T (F t+1)

11: st+1
l 2 @S(F t+1

l), rt+1
l 2 @TVGc(F t+1), l = 1, . . . , k

/* solution converged */
12: if �t+1 = �t then
13: return (F t+1, (Ct+1

1 , . . . , Ct+1
k), degenerated)

14: end if
/* early stopping */

15: if �t+1 < �t and |I| > 0 then
16: compute ordering Ol, 8l = 1, . . . , k for (Ct+1

1 , . . . , Ct+1
k) according to (4.24)

17: p = |I|
k
, Î =

Sk
l=1 O

p
l , where Op

l denotes p top-ranked vertices in Ol

18: if Î 6= I then
19: return (F t+1, (Ct+1

1 , . . . , Ct+1
k), degenerated)

20: end if
21: end if
22: until �t+1 > �t or (Ct+1

1 , . . . , Ct+1
k) is not a k-partition

23: degenerated = true
/* We still return F t+1 in order to check the convergence in Algorithm 4.4 */

24: return (F t+1, (Ct
1, . . . , C

t
k), degenerated)

4.4. MULTI-CLASS CLUSTERING WITH CONSTRAINTS 95

Theorem 4.9 The sequence {(Cr
1 , . . . , C

r
k)} produced by Algorithm 4.4 satisfies

BCut(Cr+1
1 , . . . , Cr+1

k)+�T̂ (Cr+1
1 , . . . , Cr+1

k)  BCut(Cr
1 , . . . , C

r
k)+�T̂ (C

r
1 , . . . , C

r
k).

Let (C0
1 , . . . , C

0
k) be a k-partition violating v constraints specified in M and Q where

the degree-of-belief for all constraints is 1. Moreover, let pmax = minl{|C0
l |}. If one

uses F = (1C0
1
, . . . ,1C0

k
) as an initialization with � > BCut(C0

1 , . . . , C
0
k) and if

our algorithm does not terminate in dlog2(pmax)e +2 iterations, then it produces a
k-partition (Cr+1

1 , . . . , Cr+1
k) that satisfies at least one of the following conditions:

1. BCut(Cr+1
1 , . . . , Cr+1

k) < BCut(C0
1 , . . . , C

0
k) while violating at most v con-

straints.

2. (C1, . . . , Ck) violates at most v � 1 constraints.

Proof: The monotonicity of the objective of problem (4.16) follows from the obser-
vation that the partition (Cr+1

1 , . . . , Cr+1
k) is same as (Cr

1 , . . . , C
r
k) unless Algorithm

4.5 yields a k-partition that achieves strictly smaller objective of problem (4.16).
By similar reasoning given in the proof of Theorem 4.4, one can show that if Al-
gorithm 4.4 does not terminate in dlog2(pmax)e +2 iterations, then the partition
(Cr+1

1 , . . . , Cr+1
k) it found achieves strict descent in the objective of problem (4.16),

BCut(Cr+1
1 , . . . , Cr+1

k) + �v̂ < BCut(C0
1 , . . . , C

0
k) + �v, (4.26)

where v̂ is the number of constraints violated by (Cr+1
1 , . . . , Cr+1

k). It must hold
that v̂  v; otherwise the penalty term is at least �(v + 1) and

BCut(Cr+1
1 , . . . , Cr+1

k) + �v̂ � �(v + 1) > �v + BCut(C0
1 , . . . , C

0
k),

which is a contradiction since (4.26) holds. Thus we have v̂  v. We have two
possibilities: (i) v̂ = v in which case (4.26) implies that BCut(Cr+1

1 , . . . , Cr+1
k) <

BCut(C0
1 , . . . , C

0
k); (ii) v̂ < v in which case our solution satisfies at least one more

constraint than the initialization; moreover a strict descent in the balanced cut is
also possible in this case. ⇤
A special case of the above result corresponds to the choice p = 0. If any con-
sistent partition is used as an initialization, then our algorithm, if not terminated
in dlog2(Imax)e +2 iterations, is guaranteed to produce a consistent partition with
strictly smaller balanced cut.

In practice, similarly to the two-class case, we solve the continuous relaxation
(4.18) for a sequence of � starting with �0 = 0. We use the same strategy as
described in Section 3.5.2 for updating � except that here we use an upper bound on
� to terminate if we are unable to find a consistent partition. This upper bound can
easily be derived as follows. If one uses any � > max(C1,...,Ck)2Pk

BCut(C1, . . . , Ck),
then it is clear that such a � is also larger than the balanced cut value of a consistent
partition (if one exists) and there is no need to further increase � as it already yields
equivalence (provided constraints are consistent). Thus we use a value larger than
max(C1,...,Ck)2Pk

BCut(C1, . . . , Ck) as an upper bound on �. For normalized cut (as
well as for its Cheeger variants) one possible upper bound is k, since each ratio
cut(Cl,Cl)

Ŝ(Cl)
 1, l = 1, . . . , k. Note that if our algorithm does not return a consistent

solution for this value of � then it does not mean that the constraints are inconsistent
because our algorithm could not have converged to the global optimum.

96 CHAPTER 4. MULTI-CLASS CLUSTERING

4.5 Experiments

4.5.1 Unconstrained clustering

We evaluate our method against a diverse selection of state-of-the-art clustering
methods like spectral clustering (Spec) [115], 1-Spectral clustering (1Spec) which
computes the k-clustering using recursive bi-partitioning where each two-class prob-
lem is solved via the exact continuous relaxation given in [56], Graclus1 [31], NMF-
based approaches like PNMF [124], NSC [33], ONMF [34], LSD [9], NMFR [123]
and MTV [19] which optimizes (4.4). The details of these methods are given in
Section 2.2.6. We used the publicly available code [123, 19] with default settings.
We run our method using 5 random initializations, 7 initializations based on the
spectral clustering solution similar to [19]. These multiple runs for our method are
performed in parallel in all the experiments.

Datasets:

Iris Wine Vertebral Ecoli 4Moons WebKb4

n 150 178 310 336 4000 4196
k 3 3 3 6 4 4

OptDigits USPS PenDigits 20News MNIST

n 5620 9298 10992 19928 70000
k 10 10 10 20 10

In addition to the datasets provided in [19], we also selected a variety of datasets
from the UCI repository. For all the datasets not in [19], symmetric K-NN graphs

are built with Gaussian weights wij = exp
⇣

� skxi�xjk22
min{�2

i ,�
2
j }

⌘

, where �i is the Euclidean

distance of xi to its Kth-nearest neighbor. We chose the parameters s and K in
a method independent way by testing for each dataset several graphs using all the
methods over di↵erent choices of s 2 {0.1, 1, 4} andK 2 {3, 5, 7, 10, 15, 20, 40, 60, 80,
100}. The best choice in terms of the clustering error across all the methods and
datasets, is s = 1, k = 15. Since we are using classification datasets, we evaluate the
quality of clustering result based on how well each cluster agrees with the known
class structure. More precisely, let (C1, . . . , Ck) be the clustering result and Yi de-
note the true class label of the data point i. Moreover, let y0l denote the dominant
class label in Cl, l = 1, . . . , k. Then the error of the k-partition (C1, . . . , Ck) is
computed as

error(C1, . . . , Ck) =
1

n

k
X

l=1

X

i2Cl

�Yi 6=y0l
, (4.27)

where n is the total number of points and �c = 1, if c is true and 0 otherwise.

1Since [31], a multi-level algorithm directly minimizing Rcut/Ncut, is shown to be superior to METIS [66], we
do not compare with [66].

4.5. EXPERIMENTS 97

Quantitative results: In our first experiment we evaluate our method in terms of
solving the balanced k-cut problem for various balancing functions, data sets and
graph parameters. In practice, we found that ratio/normalized cut typically re-
quire more number of membership constraints than the corresponding (symmetric)
Cheeger versions and consequently result in sub-optimal solutions. This di↵erence is
due to the fact that balancing functions of ratio/normalized cut are modular (which
prefer the full set V as solution for each ratio when there is no partition constraint)
while the Cheeger versions have submodular balancing functions (where the full set
V is heavily penalized). Note that ratio and normalized cuts and their Cheeger
versions are equal whenever each component of a k-partition satisfies |Cl|  |V |

2

respectively vol(Cl)  vol(V)
2

, l = 1, . . . , k. Since this is a reasonable assumption in
the multi-class setting (i.e., no cluster is larger than half the “size” of the dataset),
we used Cheeger balancing functions for solving ratio and normalized cuts too.
However we report the actual ratio/normalized cut values of the solutions found
using Cheeger balancing functions.

Table 4.1 reports the fraction of times a method achieves the best as well as
strictly best balanced k-cut over all constructed graphs and datasets (in total 30
graphs per dataset). For reference, we also report in italic the obtained cuts for other
clustering methods although they do not directly minimize this criterion; methods
that directly optimize the criterion are shown in normal font. Our algorithm can
handle all balancing functions and significantly outperforms all other methods across
all criteria. For ratio and normalized cut cases we achieve better results than
[115, 56, 31] which directly optimize this criterion. This shows that the greedy
recursive bi-partitioning a↵ects badly the performance of [56], which, otherwise, was
shown to obtain the best cuts on several benchmark datasets [109]. This further
shows the need for methods that directly minimize the multi-cut. It is striking that
the competing method of [19], which directly minimizes the asymmetric ratio cut,
is beaten significantly by Graclus as well as our method. As this clear trend is less
visible in the qualitative experiments, we suspect that extreme graph parameters
lead to fast convergence to a degenerate solution.

Qualitative results: We evaluate all methods on the graphs built with the pa-
rameters K = 15, s = 1 for all datasets. In Table 4.2, we report the clustering
errors, the balanced k-cuts as well as the runtimes (in seconds) of all methods. As
the main goal is to compare to MTV we choose their balancing function (RCC-
asym). Our method always achieved the best cuts across all datasets; for 7 out of
the 11 datasets our method achieved strictly best cuts2. Although, MTV directly
optimizes the asymmetric ratio Cheeger cut, it achieved best cut value only for
two datasets. For WebKb4 and 20News, its cut values are worse than the cuts
found by the standard spectral clustering. For 20News dataset, its cut value is 1.6
times higher than the cut value found by our method where as for WebKb4, its
cut value is approximately 1.5 times higher than ours. It is interesting to note that
1Spec achieved the best cut value for three datasets in spite of not minimizing the
asymmetric ratio Cheeger cut directly. Although Graclus is very fast, its cut val-
ues for some of the datasets (20News, WebKb4) are much worse. The NMF-based

2We remark that the cuts shown here are rounded to two decimal points; the reported values
for MTV and our method for 4Moons dataset look same but the actual values are di↵erent.

98 CHAPTER 4. MULTI-CLASS CLUSTERING

Ours MTV 1Spec Spec Graclus PNMF NSC ONMF LSD NMFR

RCC-asym
Best (%) 80.54 25.50 23.49 7.38 38.26 2.01 5.37 2.01 4.03 1.34

S. Best (%) 44.97 10.74 1.34 0.00 4.70 0.00 0.00 0.00 0.00 0.00

RCC-sym
Best (%) 94.63 8.72 19.46 6.71 37.58 0.67 4.03 0.00 0.67 0.67

S. Best (%) 61.74 0.00 0.67 0.00 4.70 0.00 0.00 0.00 0.00 0.00

NCC-asym
Best (%) 93.29 13.42 20.13 10.07 38.26 0.67 5.37 2.01 4.70 2.01

S. Best (%) 56.38 2.01 0.00 0.00 2.01 0.00 0.00 0.67 0.00 1.34

NCC-sym
Best (%) 98.66 10.07 20.81 9.40 40.27 1.34 4.03 0.67 3.36 1.34

S. Best (%) 59.06 0.00 0.00 0.00 1.34 0.00 0.00 0.00 0.00 0.00

Rcut
Best (%) 85.91 7.38 20.13 10.07 32.89 0.67 4.03 0.00 1.34 1.34

S. Best (%) 58.39 0.00 2.68 2.01 8.72 0.00 0.00 0.00 0.00 0.67

Ncut
Best (%) 95.97 10.07 20.13 9.40 37.58 1.34 4.70 0.67 3.36 0.67

S. Best (%) 61.07 0.00 0.00 0.00 4.03 0.00 0.00 0.00 0.00 0.00

Table 4.1: Quantitative results: Fraction of times a method achieves the best and
strictly best cut value on the K-NN graphs used in selecting the graph parameters.
Only our method can optimize all the six balanced cut criteria shown here. Results
for methods that do not directly optimize the cut criteria are shown in Italic.

approaches did not obtain the best cut value for any of the datasets. The method
NMFR failed to return a clustering result for MNIST dataset.

For 4 out of the 11 datasets, the best cut also corresponds to the best clustering
performance. In case of Vertebral, 20News, and WebKb4 the best cuts actually
result in high errors. However, we see in our next experiments that integrating
ground-truth label information or pairwise constraints helps in these cases to im-
prove the clustering performance significantly.

Transductive Setting: In the next experiment, we evaluate our method against
MTV in a transductive setting. As in [19], we randomly sample either one label or
a fixed percentage of labels per class from the ground truth. For our method, we
used 6 out of the 12 initializations for first computing the unconstrained solution;
then we started our transductive method from the unconstrained solution as well as
the remaining 6 initializations. We report in Table 4.3 clustering errors, cuts (RCC-
asym) as well as the runtimes for both methods for di↵erent choices of labels. Again
our method achieved the best cut value in 41 out of the 44 problem instances. In
29 out of those 41 cases, the best cut also corresponds to the smallest clustering
error. MTV achieved best cuts in only 6 out of the 44 instances. Note that in some
cases MTV seems to fail completely (Iris and 4Moons for one label per class case).

Overall, the performance in terms of clustering error generally improved with
increased label information. For some datasets these improvements are significantly
high. For example, for 20News our method reduced the error by more than half with
10% label information; also for Vertebral and WebKb4 the improvements achieved
by our method are high.

4.5. EXPERIMENTS 99

Ir
is

W
in
e

V
er
te
b
ra
l

E
co

li
4
M
o
o
n
s

W
eb

K
b
4

O
p
tD

ig
it
s

U
S
P
S

P
en

D
ig
it
s

2
0
N
ew

s
M
N
IS
T

1
S
p
ec

E
rr
(%

)
2
3
.3
3

3
7
.6
4

5
0
.0
0

1
9
.3
5

3
6
.3
3

6
0
.4
6

1
1
.3
0

2
0
.0
9

1
7
.5
9

8
4
.2
1

1
1
.8
2

B
C
u
t

1
.4
9
5

6
.4
1
7

1
.8
9
0

2
.5
5
0

0
.6
3
4

1
.0
5
6

0
.3
8
6

0
.8
2
2

0
.0
8
1

0
.9
6
6

0
.4
7
1

T
im

e(
s)

7
1
0

1
4

2
6

2
7
7

2
4
2

1
0
5
6

1
5
8
8

2
1
9
7

6
2
2
0

1
3
0
6
8

S
p
ec

E
rr
(%

)
2
2
.0
0

2
0
.2
2

4
8
.7
1

1
4
.8
8

3
1
.4
5

6
0
.2
7

7
.8
1

2
1
.0
6

1
1
.2
7

7
9
.1
7

2
2
.6
7

B
C
u
t

1
.7
8
3

5
.8
2
0

1
.9
5
0

2
.7
5
9

0
.9
1
7

1
.4
6
7

0
.4
4
2

0
.8
7
2
3

0
.1
4
1

1
.1
8
7

0
.7
0
2

T
im

e(
s)

0
.0
4

0
.0
4
6

0
.0
6
2

0
.0
9
9

0
.6
8
4

1
.4
2
1

1
.1
3
7

2
.3
7

2
.9
4
1

2
1
.8
6
4

3
5
.5
4
7

P
N
M
F

E
rr
(%

)
2
2
.6
7

2
7
.5
3

5
0
.0
0

1
6
.3
7

3
5
.2
3

6
0
.9
4

1
0
.3
7

2
4
.0
7

1
7
.9
3

6
6
.0
0

1
2
.8
0

B
C
u
t

1
.5
0
8

4
.9
1
6

2
.2
5
0

2
.6
5
2

0
.7
3
7

3
.5
2
0

0
.5
4
8

1
.1
8
0

0
.4
1
5

2
.9
2
4

0
.9
3
4

T
im

e(
s)

1
1

1
2

1
0

2
0

1
3
7

1
3
3

4
0
5

9
8
1

1
1
3
6

N
S
C

E
rr
(%

)
2
3
.3
3

1
7
.9
8

5
0
.0
0

1
4
.8
8

3
2
.0
5

5
9
.4
9

8
.2
4

2
0
.5
3

1
9
.8
1

7
8
.8
6

2
1
.2
7

B
C
u
t

1
.5
1
8

5
.1
4
0

2
.0
4
6

2
.7
5
4

0
.9
3
3

3
.5
6
6

0
.4
8
2

0
.8
5
0

0
.1
0
1

2
.2
3
3

0
.6
8
8

T
im

e(
s)

4
4

5
1
4

2
1

6
2

3
8
4

5
3
4

4
8
4

1
7
2
2

3
4
3
3

O
N
M
F

E
rr
(%

)
2
3
.3
3

2
8
.0
9

5
0
.6
5

1
6
.0
7

3
5
.3
5

6
0
.9
4

1
0
.3
7

2
4
.1
4

2
2
.8
2

6
9
.0
2

2
7
.2
7

B
C
u
t

1
.5
1
8

4
.8
8
1

2
.3
7
1

2
.6
3
3

0
.7
2
5

3
.6
2
1

0
.5
4
8

1
.1
8
3

0
.5
4
8

3
.0
5
8

1
.5
7
5

T
im

e(
s)

1
1

2
3

1
0

1
0

4
6

1
2
0

1
1
5

7
6
4

1
4
0
1

L
S
D

E
rr
(%

)
2
3
.3
3

1
7
.9
8

3
9
.0
3

1
8
.4
5

3
5
.6
8

4
7
.9
3

8
.4
2

2
2
.6
8

1
3
.9
0

6
7
.8
1

2
4
.4
9

B
C
u
t

1
.5
1
8

5
.3
9
9

2
.5
5
7

2
.5
2
3

0
.7
8
2

2
.0
8
2

0
.4
8
3

0
.9
1
8

0
.1
8
8

2
.0
5
6

0
.9
5
9

T
im

e(
s)

7
6

1
1

2
7

3
2
8

2
6
7

1
6
1
8

1
0
3
1

5
1
3

6
9
7

3
5
6
4

N
M
F
R

E
rr
(%

)
2
2
.0
0

1
1
.2
4

3
8
.0
6

2
2
.9
2

3
6
.3
3

4
0
.7
3

2
.0
8

2
2
.1
7

1
3
.1
3

3
9
.9
7

fa
il

B
C
u
t

1
.6
2
7

4
.3
1
8

2
.7
1
3

2
.5
5
6

0
.8
4
0

1
.4
6
7

0
.3
6
9

0
.9
9
2

0
.2
4
0

1
.2
4
1

-
T
im

e(
s)

2
2

8
7

8
5
8
9

9
5
1
4

2
0
6
8
1

9
4
6
1

7
2
8
4

1
9
9
9
1

-

G
ra
cl
u
s

E
rr
(%

)
2
2
.6
7

1
8
.5
4

3
4
.5
2

2
2
.0
2

7
.7
2

4
8
.4
0

4
.1
1

1
5
.1
3

2
0
.5
5

7
2
.1
8

3
.7
7

B
C
u
t

1
.5
0
8

5
.5
5
6

2
.4
3
3

2
.5
0
0

0
.7
7
4

2
.3
4
6

0
.3
7
4

0
.9
4
0

0
.1
9
3

3
.2
9
1

0
.4
5
8

T
im

e(
s)

0
.0
1
9

0
.0
2

0
.0
2
2

0
.0
2
2

0
.1
2
6

0
.0
9

0
.1
0
4

0
.1
6
2

0
.1
3
4

0
.2
6
5

1
.1
2
3

M
T
V

E
rr
(%

)
2
3
.3
3

8
.4
3

4
9
.6
8

1
6
.3
7

0
.4
5

3
9
.9
7

1
.6
7

1
9
.7
5

1
0
.9
3

6
0
.6
9

2
.4
3

B
C
u
t

1
.5
3
4

4
.2
9
3

1
.8
9
0

2
.4
1
4

0
.5
8
9

1
.5
8
1

0
.3
5
0

0
.8
1
5

0
.0
9
2

1
.4
3
1

0
.4
4
0

T
im

e(
s)

2
8

3
2
1

5
1

6
8

3
7

2
2
7

1
0
7
0

5
8
4

4
1
5
8

6
8
4
6

O
u
rs

E
rr
(%

)
2
3
.3
3

7
.8
7

5
0
.0
0

1
4
.5
8

0
.4
7

6
0
.4
6

1
.7
1

1
2
.1
5

1
9
.9
5

7
9
.6
4

2
.3
5

B
C
u
t

1
.4
9
5

4
.1
6
6

1
.8
9
0

2
.3
7
3

0
.5
8
9

1
.0
5
6

0
.3
5
0

0
.7
7
9

0
.0
7
9

0
.8
9
4

0
.4
3
9

T
im

e(
s)

5
1
1

8
2
4

3
7
4

4
9
5

3
8
5
5

2
4
4
6

6
1
1
7

1
4
6
2
1

4
5
8
9
5

T
ab

le
4.
2:

C
lu
st
er
in
g
er
ro
rs
,
b
al
an

ce
d
cu
ts

(R
C
C
-a
sy
m
)
as

w
el
l
as

th
e
ru
nt
im

es
(s
ec
on

d
s)

of
d
i↵
er
en
t
m
et
h
od

s
ev
al
u
at
ed

on
th
e
K
-N

N
gr
ap

h
s
b
u
il
t
u
si
n
g
th
e
p
ar
am

et
er

va
lu
es

s
=

1,
K

=
15
.
T
h
e
b
es
t
re
su
lt
s
ar
e
sh
ow

n
in

th
e
b
o
ld

fa
ce

.

100 CHAPTER 4. MULTI-CLASS CLUSTERING

L
a
b
el
s

Ir
is

W
in
e

V
er
te
b
ra
l

E
co

li
4
M
o
o
n
s

W
eb

K
b
4

O
p
tD

ig
it
s

U
S
P
S

P
en

D
ig
it
s
2
0
n
ew

s
M
N
IS
T

1

M
T
V

E
rr
(%

)
3
0
.0
0

1
4
.6
1

4
4
.9
0

1
5
.1
8

1
9
.4
9

4
6
.3
8

1
.7
0

6
.8
8

1
2
.5
7

5
0
.2
1

2
.4
5

B
C
u
t

3
.4
0
8

4
.4
3
2

2
.2
5
6

2
.4
2
0

0
.6
5
8

1
.5
2
7

0
.3
5
0

0
.7
9
7

0
.1
0
7

1
.2
5
8

0
.4
3
9

T
im

e(
s)

7
1

2
1
0

1
8

1
8

7
8

3
0
4

2
8
2

1
3
8
5

2
4
2
0

O
u
rs

E
rr
(%

)
2
2
.6
0

7
.0
2

4
8
.6
8

1
4
.7
3

7
.6
2

4
5
.6
9

1
.7
0

1
2
.6
0

1
2
.1
2

5
5
.5
0

2
.3
7

B
C
u
t

1
.5
5
8

4
.2
0
2

2
.2
3
4

2
.4
0
4

0
.5
9
9

1
.4
6
0

0
.3
5
0

0
.7
8
6

0
.1
0
0

1
.1
4
6

0
.4
3
9

T
im

e(
s)

2
4

4
0

5
3

1
4
4

1
9
3
8

2
4
1
1

7
3
2
1

1
5
3
6
0

2
1
0
2
9

7
4
7
5
1

1
4
0
0
7
4

1
%

M
T
V

E
rr
(%

)
3
0
.2
7

1
0
.6
2

4
2
.2
3

1
5
.4
8

0
.4
5

4
4
.6
5

1
.6
9

5
.3
4

8
.3
3

3
9
.5
9

2
.3
3

B
C
u
t

3
.3
8
1

4
.4
2
0

2
.2
9
1

2
.4
4
0

0
.5
9
0

1
.5
6
6

0
.3
5
2

0
.7
8
8

0
.1
2
2

1
.1
9
9

0
.4
4
3

T
im

e(
s)

7
1

3
8

2
1

1
9

6
1

2
5
1

1
9
1

1
4
6
6

1
5
4
9

O
u
rs

E
rr
(%

)
2
2
.6
0

7
.2
5

4
6
.6
1

1
4
.7
3

0
.4
5

4
3
.1
1

1
.6
9

5
.4
2

1
0
.1
3

3
7
.4
4

2
.3
2

B
C
u
t

1
.5
5
8

4
.1
8
5

2
.2
5
3

2
.4
0
7

0
.5
9
0

1
.4
9
0

0
.3
5
2

0
.7
8
8

0
.1
1
9

1
.1
4
5

0
.4
4
2

T
im

e(
s)

2
5

4
3

5
2

1
3
9

1
8
7
0

1
9
4
9

7
8
9
5

1
5
9
4
0

2
2
6
1
9

6
7
6
0
6

1
3
0
3
2
1

5
%

M
T
V

E
rr
(%

)
2
0
.6
7

8
.6
5

3
8
.0
6

1
4
.6
1

0
.4
3

4
1
.5
9

1
.6
0

4
.8
8

2
.3
2

3
2
.3
8

2
.1
6

B
C
u
t

1
.6
9
2

4
.2
8
3

2
.6
9
1

2
.4
8
6

0
.5
9
0

1
.7
7
8

0
.3
6
2

0
.8
0
5

0
.1
7
5

1
.2
7
1

0
.4
5
4

T
im

e(
s)

1
1

1
6

1
2

1
4

4
3

2
2
2

1
2
0

8
9
0

1
1
3
6

O
u
rs

E
rr
(%

)
2
0
.6
0

7
.3
0

3
7
.2
9

1
4
.3
5

0
.4
3

4
0
.7
4

1
.6
0

4
.9
4

2
.7
2

3
0
.7
6

2
.1
4

B
C
u
t

1
.6
9
4

4
.1
9
9

2
.7
0
7

2
.4
8
3

0
.5
9
0

1
.6
8
1

0
.3
6
2

0
.8
0
4

0
.1
7
4

1
.2
2
4

0
.4
5
4

T
im

e(
s)

1
9

3
9

5
7

1
3
0

8
8
8

1
5
9
3

1
2
5
6
4

1
4
1
3
2

1
3
5
1
1

6
1
7
5
1

1
3
7
9
0
5

1
0
%

M
T
V

E
rr
(%

)
1
9
.3
3

8
.2
0

3
6
.3
2

1
4
.0
5

0
.4
1

3
9
.9
9

1
.4
8

4
.3
8

1
.5
9

2
7
.5
6

1
.9
6

B
C
u
t

1
.8
5
6

4
.3
0
8

3
.1
5
6

2
.6
9
5

0
.5
9
2

2
.0
3
6

0
.3
7
1

0
.8
2
6

0
.1
9
0

1
.3
6
0

0
.4
6
6

T
im

e(
s)

1
1

1
7

1
0

1
1

3
2

2
0
3

1
0
0

7
9
2

8
9
9

O
u
rs

E
rr
(%

)
1
9
.5
3

6
.6
9

3
4
.8
7

1
3
.6
9

0
.4
1

3
7
.2
4

1
.4
9

4
.4
0

1
.5
9

2
6
.7
7

1
.9
4

B
C
u
t

1
.8
5
6

4
.2
1
4

3
.1
5
4

2
.6
5
1

0
.5
9
2

1
.9
3
5

0
.3
7
1

0
.8
2
6

0
.1
9
0

1
.3
2
3

0
.4
6
6

T
im

e(
s)

1
9

3
6

5
7

9
8

6
8
4

1
4
6
7

1
3
8
5
0

1
5
0
8
7

1
2
5
3
0

4
9
5
8
9

1
1
5
8
5
7

T
ab

le
4.
3:

T
ra
n
sd
u
ct
iv
e
se
tt
in
g:

C
lu
st
er
in
g
er
ro
rs
,
b
al
an

ce
d
cu
ts

(R
C
C
-a
sy
m
)
as

w
el
l
as

th
e
ru
nt
im

es
(s
ec
on

d
s)

of
M
T
V

an
d

ou
r
m
et
h
od

.
T
h
e
L
ab

el
s
co
lu
m
n
sh
ow

s
th
e
nu

m
b
er

of
la
b
el
s
av
ai
la
b
le

p
er

cl
as
s.

T
h
e
b
es
t
re
su
lt
s
ar
e
sh
ow

n
in

th
e
b
o
ld

fa
ce

.

4.5. EXPERIMENTS 101

4.5.2 Constrained clustering

Here we evaluate our constrained clustering method against the following approaches
designed for the multi-class setting: spectral learning (SL) [64], constrained clus-
tering via spectral regularization (CCSR) [79] (see Section 3.1 for details of these
methods). For reference, we also report the results of our two-class constrained clus-
tering method (COSC) presented in Chapter 3. We use recursive bi-partitioning to
compute k-clustering from COSC. Note that unlike must-link constraints which can
be directly integrated even in the multi-class setting (see Section 3.3), cannot-link
constraints pose di�culty for the recursive bi-partitioning procedure. The main
issue here that it is not clear which cannot-link constraints should be considered for
the two-way split in each step.

To address this issue for COSC, we use the soft-version of our formulation (see
Lemma 3.1), which allows us to find a solution with at most l violations. We derive
this number l for each two-way split assuming the following simple uniform model
of the data and constraints. We assume that all classes have equal size and there is
an equal number of cannot link constraints between all pairs of classes; i.e., if there
are N cannot-link constraints and k classes then on average every pair of classes
has N

k(k�1)/2
constraints. Under this assumption, among all the possible two-way

splits of the given graph, the one that separates a single class from the rest will
violate the maximum number of cannot-link constraints. The expected value of the
maximum number of violations for the first two-way split is (k�1)(k�2)/2

k(k�1)/2
N . One can

similarly estimate the maximum number of violation for all the successive two-way
splits. For each successive split after the first bi-partitioning, N is known (it is the
number of cannot-link constraints present on the subgraph being split), while k can
again be derived (assuming the uniform model) as k

n
ñ where ñ is the size of the

subgraph being split.

Constraint generation: We use the same procedure described in Chapter 3 to
generate pairwise constraints from the class labels Y . We first fix the number of
pairwise constraints nC and then randomly sample nC pairs. For each pair, we
introduce either a cannot-link or a must-link constraint based on the true labels of
the sampled pair. We evaluate the methods for various values of nC . Similar to the
two-class constrained clustering case, we maintain the property that the constraint
sets are nested; i.e., if S1 and S2 are the constraints generated for a given dataset
for two di↵erent values of nC , then S1 ⇢ S2 whenever |S1| < |S2|.

In order to compare against the existing work, in our experiments we use nor-
malized cut as the clustering objective:

NCut(C1, . . . , Ck) =
k
X

l=1

cut(Cl, Cl)

vol(Cl)
.

Starting with � = 0, we ran our method for a sequence of increasing values of �
until all constraints are satisfied or � reached an upper bound (see the discussion
at the end of Section 4.4.3). Similar to the unconstrained case, we used 5 random
initializations and 7 initializations based on the spectral clustering solution for the
case � = 0. For the subsequent iterations of �, we used the results obtained from
the previous value of � as initializations.

102 CHAPTER 4. MULTI-CLASS CLUSTERING

Our evaluation is based on the following three criteria: clustering error (see
(4.27)), normalized cut and fraction of constraints violated. The results averaged
over 10 trials are shown in Tables 4.4 and 4.5. The runtimes for these experiments
are given in Table 4.7. We first note that our method returned solutions satisfying
all the given constraints for all datasets except for Vertebral and WebKb4, where
the fraction of constraints violated is close to zero as well; see the third column
of Tables 4.4 and 4.5. Note that we have not used any initializations based on a
consistent partition for our method. In spite of that our method is able to produce
consistent solutions most of the time. The fraction of constraints violated by the
solutions of other methods is high for most of the datasets. In particular both SL
and CCSR failed to find a consistent solution in all cases whereas COSC succeeded
a few times.

Our method produced much better cuts than CCSR in many cases although
our method solves a constrained problem and yielded results satisfying almost all
constraints. The cuts found by CCSR are much worse than those found by other
methods for the last five datasets. So, we provide additional plots in Table 4.6
highlighting the di↵erences among the cut values found by SL, COSC and our
method for these datasets. Note that for OptDigits and MNIST datasets, our
method is able to find solutions satisfying all constraints and yet achieve much better
cut values than the other methods. For OptDigits, COSC yielded much higher cuts
and hence not included in the additional plot. Our method failed considerably
for the USPS and PenDigits datasets. Since the constraint sets are nested, the
optimal normalized cut values are monotonically increasing with the number of
constraints. However, for USPS and PenDigits, our method achieved much higher
cuts for the intermediate cases (800, 1600, 3200) than the cut obtained for the last
case (6400). Our optimization algorithm seems to have stuck at suboptimal solution
while enforcing the cannot-link constraints for the intermediate cases; recall that
must-link constraints are directly integrated as explained in Section 3.3. However
for the last case (6400), the presence of more must-link constraints might have
eliminated such suboptimal solutions and hence our method achieved better cut.
One needs more number of initializations to improve the cuts for the intermediate
cases.

In terms of clustering error, shown on the first column of Tables 4.4 and 4.5, our
method consistently outperforms the other methods. Only for the USPS dataset,
the recursive bi-partitioning variant of our two-class constrained clustering method
(COSC) performed much better than all the methods (in terms of clustering error)
including our direct multi-class method. For other datasets the recursive procedure
failed considerably; see results for OptDigits and WebKb4. Note that similar to
the transductive case, incorporating prior knowledge improves the clustering per-
formance. These improvements are significant for several datasets; see the results
for Iris, WebKb4, 20News datasets. We note here that the clustering errors reported
here are not directly comparable with those given in the transductive experiments
because we use di↵erent balanced cut criteria in these experiments.

In our next experiment, we evaluate the clustering performance when the pair-
wise constraints are generated from the class labels of a given set of points. Recall
that in the previous case, we first sampled a given number of pairs and then de-
cided the constraint type based on the class labels of the pairs. In contrast, here
we first sample a fixed number of points and then deduce all possible pairwise con-

4.5. EXPERIMENTS 103

5 10 20 40 80 160 320
0

0.1

0.2

0.3

0.4

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Iris

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320

0.3

0.4

0.5

0.6

0.7

Pairwise Constraints

N
o

rm
a

li
z
e

d
 C

u
t

Iris

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320
0

0.05

0.1

0.15

Pairwise Constraints

F
ra

c
ti
o

n
 o

f
V

io
la

ti
o
n

s

Iris

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320
0

0.1

0.2

0.3

0.4

0.5

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Wine

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320

0.8

0.9

1

1.1

1.2

1.3

Pairwise Constraints

N
o
rm

a
li
z
e
d
 C

u
t

Wine

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320
0

0.05

0.1

0.15

0.2

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Wine

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640
0

0.1

0.2

0.3

0.4

0.5

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Vertebral

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640

0.2

0.4

0.6

0.8

1

1.2

Pairwise Constraints

N
o
rm

a
li
z
e
d
 C

u
t

Vertebral

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640
0

0.1

0.2

0.3

0.4

0.5

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Vertebral

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640
0

0.1

0.2

0.3

0.4

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Ecoli

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640

1

1.5

2

Pairwise Constraints

N
o
rm

a
li
z
e
d
 C

u
t

Ecoli

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640
0

0.05

0.1

0.15

0.2

0.25

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Ecoli

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640
0

0.2

0.4

0.6

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

4 Moons

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640

0.1

0.2

0.3

0.4

0.5

0.6

Pairwise Constraints

N
o
rm

a
li
z
e
d
 C

u
t

4 Moons

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640
0

0.1

0.2

0.3

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

4 Moons

SL

CCSR

COSC

Ours

50 100 200 400 800 1600 3200 6400
0

0.2

0.4

0.6

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

WebKb4

SL

CCSR

COSC

Ours

50 100 200 400 800 1600 3200 6400

0.5

1

1.5

2

2.5

Pairwise Constraints

N
o
rm

a
li
z
e
d
 C

u
t

WebKb4

SL

CCSR

COSC

Ours

50 100 200 400 800 1600 3200 6400
0

0.2

0.4

0.6

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

WebKb4

SL

CCSR

COSC

Ours

Table 4.4: Results for multi-class constrained clustering: Left: clustering error
versus number of constraints, Middle: normalized cut versus number of constraints,
Right: fraction of violated constraints versus number of constraints.

104 CHAPTER 4. MULTI-CLASS CLUSTERING

5 10 20 40 80 160 320 640
0

0.2

0.4

0.6

0.8

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

OptDigits

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640

2

4

6

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

OptDigits

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640
0

0.1

0.2

0.3

0.4

0.5

Pairwise Constraints

F
ra

ct
io

n
 o

f
V

io
la

tio
n
s

OptDigits

SL

CCSR

COSC

Ours

50 100 200 400 800 1600 3200 6400
0

0.2

0.4

0.6

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

USPS

SL

CCSR

COSC

Ours

50 100 200 400 800 1600 3200 6400

2

4

6

Pairwise Constraints

N
o

rm
a

li
z
e

d
 C

u
t

USPS

SL

CCSR

COSC

Ours

50 100 200 400 800 1600 3200 6400
0

0.05

0.1

0.15

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

USPS

SL

CCSR

COSC

Ours

50 100 200 400 800 1600 3200 6400
0

0.1

0.2

0.3

0.4

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

PenDigits

SL

CCSR

COSC

Ours

50 100 200 400 800 1600 3200 6400

0.5

1

1.5

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

PenDigits

SL

CCSR

COSC

Ours

50 100 200 400 800 1600 3200 6400
0

0.05

0.1

0.15

Pairwise Constraints

F
ra

ct
io

n
 o

f
V

io
la

tio
n
s

PenDigits

SL

CCSR

COSC

Ours

500 1000 2000 4000 8000 1600032000
0

0.2

0.4

0.6

0.8

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

20 News

SL

CCSR

COSC

Ours

500 1000 2000 4000 8000 1600032000

5

10

15

Pairwise Constraints

N
o
rm

a
li
z
e
d
 C

u
t

20 News

SL

CCSR

COSC

Ours

500 1000 2000 4000 8000 1600032000
0

0.1

0.2

0.3

0.4

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

20 News

SL

CCSR

COSC

Ours

10 20 40 80 160
0

0.2

0.4

0.6

0.8

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

MNIST

SL

CCSR

COSC

Ours

10 20 40 80 160

2

4

6

Pairwise Constraints

N
o
rm

a
li
z
e
d
 C

u
t

MNIST

SL

CCSR

COSC

Ours

10 20 40 80 160
0

0.1

0.2

0.3

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

MNIST

SL

CCSR

COSC

Ours

Table 4.5: Results for multi-class constrained clustering: Left: clustering error
versus number of constraints, Middle: normalized cut versus number of constraints,
Right: fraction of violated constraints versus number of constraints.

4.5. EXPERIMENTS 105

5 10 20 40 80 160 320 640

0.2

0.22

0.24

0.26

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

OptDigits

SL

Ours

50 100 200 400 800 1600 3200 6400
0.6

0.7

0.8

0.9

1

1.1

Pairwise Constraints

N
o
rm

a
li
z
e
d
 C

u
t

USPS

SL

COSC

Ours

50 100 200 400 800 1600 3200 6400

0.2

0.4

0.6

0.8

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

PenDigits

SL

COSC

Ours

500 1000 2000 4000 8000 1600032000

2

4

6

Pairwise Constraints

N
o
rm

a
li
z
e
d
 C

u
t

20 News

SL

COSC

Ours

10 20 40 80 160

0.3

0.4

0.5

0.6

Pairwise Constraints

N
o
rm

a
li
z
e
d
 C

u
t

MNIST

SL

COSC

Ours

Table 4.6: Results for multi-class constrained clustering: Additional plots
highlighting the di↵erences among the normalized cut values found by SL, COSC
and our method.

straints from the class labels of the sampled points. Note that one can generate
�

p
2

�

constraints from p labeled points. Note that the former way of sampling re-
sults in constraints that span more number of points whereas in the latter case the
constraint information is concentrated on a few points.

In order to compare the clustering performance to the previous case, the number
of sampled points are chosen in such a way that the total number of pairwise
constraints generated from them are similar to the number of constraints used in
the previous experiment. The results for this experiment are shown in Tables 4.8,
4.9 and 4.11. For reference, we also report the results obtained by our transductive
method which is given the same label information that was used in generating the
pairwise constraints. First notice that the performance of all methods is similar
to that of the previous experiment. The cut values obtained by our constrained
clustering method are closer to those obtained from the transductive method. For
clarity, we provide an additional plots in Table 4.10 highlighting the di↵erences
among the cut values found by SL, COSC and our method for the last five datasets.
The clustering error typically reduces with the increased number of constraints as
in the previous case. However, for many datasets, the amount of reduction in error
is much smaller than that obtained in the previous case although both experiments
use similar number of pairwise constraints. This suggests that in practice it is
beneficial to obtain pairwise constraint information from several di↵erent points
than deriving all possible constraints from a small number of points.

Special case k = 2: In our final experiment we evaluate our multi-class formula-
tion for constrained clustering for the special case k = 2 against the one proposed
in Chapter 3. We ran our method on the same datasets and constraints used in
Chapter 3. The results are reported in Tables 4.12, 4.13 and 4.14. Our two-class
formulation (COSC) performs better than our multi-class formulation across the
three di↵erent evaluation criteria. Although the multi-class formulation was able

106 CHAPTER 4. MULTI-CLASS CLUSTERING

5 10 20 40 80 160 320

10
1

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

Iris

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320

10
1

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

Wine

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640

10
1

10
2

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

Vertebral

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640

10
1

10
2

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

Ecoli

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640

10
2

10
3

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

4 Moons

SL

CCSR

COSC

Ours

50 100 200 400 800 1600 3200 6400

10
2

10
3

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

WebKb4

SL

CCSR

COSC

Ours

5 10 20 40 80 160 320 640

10
2

10
3

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

OptDigits

SL

CCSR

COSC

Ours

50 100 200 400 800 1600 3200 6400

10
2

10
3

10
4

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

USPS

SL

CCSR

COSC

Ours

50 100 200 400 800 1600 3200 6400

10
2

10
3

10
4

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

PenDigits

SL

CCSR

COSC

Ours

500 1000 2000 4000 8000 16000 32000
10

2

10
3

10
4

10
5

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

20 News

SL

CCSR

COSC

Ours

10 20 40 80 160

10
3

10
4

10
5

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

MNIST

SL

CCSR

COSC

Ours

Table 4.7: Results for multi-class constrained clustering: Runtimes versus
number of constraints.

4.5. EXPERIMENTS 107

6 10 21 45 91 171 325
0

0.1

0.2

0.3

0.4

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Iris

SL

CCSR

COSC

Ours

Ours (Trans.)

6 10 21 45 91 171 325

0.3

0.4

0.5

0.6

0.7

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

Iris

SL

CCSR

COSC

Ours

Ours (Trans.)

6 10 21 45 91 171 325
0

0.1

0.2

0.3

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Iris

SL

CCSR

COSC

Ours

6 10 21 45 91 171 325
0

0.1

0.2

0.3

0.4

0.5

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Wine

SL

CCSR

COSC

Ours

Ours (Trans.)

6 10 21 45 91 171 325

0.8

0.9

1

1.1

1.2

1.3

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

Wine

SL

CCSR

COSC

Ours

Ours (Trans.)

6 10 21 45 91 171 325
0

0.05

0.1

0.15

0.2

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Wine

SL

CCSR

COSC

Ours

6 10 21 45 91 171 325 666
0

0.1

0.2

0.3

0.4

0.5

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Vertebral

SL

CCSR

COSC

Ours

Ours (Trans.)

6 10 21 45 91 171 325 666

0.2

0.4

0.6

0.8

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

Vertebral

SL

CCSR

COSC

Ours

Ours (Trans.)

6 10 21 45 91 171 325 666
0

0.1

0.2

0.3

0.4

0.5

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Vertebral

SL

CCSR

COSC

Ours

6 10 21 45 91 171 325 666
0

0.1

0.2

0.3

0.4

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Ecoli

SL

CCSR

COSC

Ours

Ours (Trans.)

6 10 21 45 91 171 325 666

1

1.5

2

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

Ecoli

SL

CCSR

COSC

Ours

Ours (Trans.)

6 10 21 45 91 171 325 666
0

0.05

0.1

0.15

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Ecoli

SL

CCSR

COSC

Ours

6 10 21 45 91 171 325 666
0

0.2

0.4

0.6

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

4 Moons

SL

CCSR

COSC

Ours

Ours (Trans.)

6 10 21 45 91 171 325 666

0.1

0.2

0.3

0.4

0.5

0.6

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

4 Moons

SL

CCSR

COSC

Ours

Ours (Trans.)

6 10 21 45 91 171 325 666
0

0.1

0.2

0.3

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

4 Moons

SL

CCSR

COSC

Ours

55 105 210 406 820 1653 3240 6441
0

0.2

0.4

0.6

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

WebKb4

SL

CCSR

COSC

Ours

Ours (Trans.)

55 105 210 406 820 1653 3240 6441

0.5

1

1.5

2

2.5

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

WebKb4

SL

CCSR

COSC

Ours

Ours (Trans.)

55 105 210 406 820 1653 3240 6441
0

0.2

0.4

0.6

0.8

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

WebKb4

SL

CCSR

COSC

Ours

Table 4.8: Results for multi-class constrained clustering where pairwise con-
straints are generated from a transductive setting. Left: clustering error versus
number of constraints, Middle: normalized cut versus number of constraints, Right:
fraction of violated constraints versus number of constraints.

108 CHAPTER 4. MULTI-CLASS CLUSTERING

6 10 21 45 91 171 325 666
0

0.2

0.4

0.6

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

OptDigits

SL

CCSR

COSC

Ours

Ours (Trans.)

6 10 21 45 91 171 325 666

1

2

3

4

5

6

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

OptDigits

SL

CCSR

COSC

Ours

Ours (Trans.)

6 10 21 45 91 171 325 666
0

0.1

0.2

0.3

0.4

Pairwise Constraints

F
ra

ct
io

n
 o

f
V

io
la

tio
n
s

OptDigits

SL

CCSR

COSC

Ours

55 105 210 406 820 1653 3240 6441
0

0.2

0.4

0.6

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

USPS

SL

CCSR

COSC

Ours

Ours (Trans.)

55 105 210 406 820 1653 3240 6441

1

2

3

4

5

6

Pairwise Constraints

N
o

rm
a

liz
e

d
 C

u
t

USPS

SL

CCSR

COSC

Ours

Ours (Trans.)

55 105 210 406 820 1653 3240 6441
0

0.05

0.1

0.15

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

USPS

SL

CCSR

COSC

Ours

55 105 210 406 820 1653 3240 6441
0

0.1

0.2

0.3

0.4

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

PenDigits

SL

CCSR

COSC

Ours

Ours (Trans.)

55 105 210 406 820 1653 3240 6441

0.2

0.4

0.6

0.8

1

1.2

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

PenDigits

SL

CCSR

COSC

Ours

Ours (Trans.)

55 105 210 406 820 1653 3240 6441
0

0.05

0.1

0.15

0.2

0.25

Pairwise Constraints

F
ra

ct
io

n
 o

f
V

io
la

tio
n
s

PenDigits

SL

CCSR

COSC

Ours

528 1035 2016 4005 8001 1611032131
0

0.2

0.4

0.6

0.8

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

20 News

SL

CCSR

COSC

Ours

Ours (Trans.)

528 1035 2016 4005 8001 1611032131

2

4

6

8

10

12

14

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

20 News

SL

CCSR

COSC

Ours

Ours (Trans.)

528 1035 2016 4005 8001 1611032131
0

0.2

0.4

0.6

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

20 News

SL

CCSR

COSC

Ours

10 21 45 91 171
0

0.2

0.4

0.6

0.8

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

MNIST

SL

CCSR

COSC

Ours

Ours (Trans.)

10 21 45 91 171

2

4

6

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

MNIST

SL

CCSR

COSC

Ours

Ours (Trans.)

10 21 45 91 171
0

0.05

0.1

0.15

0.2

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

MNIST

SL

CCSR

COSC

Ours

Table 4.9: Results for multi-class constrained clustering where pairwise con-
straints are generated from a transductive setting. Left: clustering error versus
number of constraints, Middle: normalized cut versus number of constraints, Right:
fraction of violated constraints versus number of constraints.

4.5. EXPERIMENTS 109

6 10 21 45 91 171 325 666
0.18

0.2

0.22

0.24

0.26

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

OptDigits

SL

Ours

Ours (Trans.)

55 105 210 406 820 1653 3240 6441

0.6

0.65

0.7

0.75

0.8

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

USPS

SL

COSC

Ours

Ours (Trans.)

55 105 210 406 820 16533240 6441
0.04

0.06

0.08

0.1

0.12

0.14

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

PenDigits

SL

COSC

Ours

Ours (Trans.)

528 1035 2016 4005 8001 1611032131

1

1.5

2

2.5

3

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

20 News

SL

COSC

Ours

Ours (Trans.)

10 21 45 91 171

0.25

0.3

0.35

0.4

0.45

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

MNIST

SL

COSC

Ours

Ours (Trans.)

Table 4.10: Results for multi-class constrained clustering where pairwise con-
straints are generated from a transductive setting. Additional plots highlighting the
di↵erences among the normalized cut values found by SL, COSC and our method.

to obtain cuts closer to those obtained by COSC in some of the datasets (e.g.,
Breast Cancer, WDBC and Heart), it fails considerably in case of USPS and Spam
datasets. Moreover, unlike COSC, the multi-class formulation sometimes failed to
satisfy the given constraints. Although the multi-class formulation is better com-
pared to COSC (in the sense that it does not introduce any bias), its optimization
turns out to be much more di�cult than minimizing the ratio formulation of COSC.
It well-known in operations research community that minimization of sum-of-ratios
is a much harder problem than the optimization of a single ratio [104]. Hence we
recommend using COSC for constrained clustering when k = 2.

Scaling our method to large datasets: Our multi-class formulation, although
achieves the best performance, is computationally expensive. A possible future
direction would explore applying the multi-level strategy used in Graclus. In par-
ticular, one generates a sequence of coarser graphs from the given graph respecting
the cannot-link constraints and applies our method first on the coarsest graph. Since
the coarsest graph is typically small, one can quickly compute a good solution from
our method possibly starting from more initializations. Then the resulting solution
is used as an initialization for refining the partition on the finer graph. Since our
methods (both unconstrained as well as constrained versions) satisfy monotonic
descent property one can monotonically improve the solution obtained from the
coarsest graph. Since we use only one initialization for the subsequent iterations
on the finer graphs we expect the resulting method to scale well to large datasets.
Moreover, unlike Graclus, the resulting method would still enjoy the guarantees
shown here such as satisfaction of constraints.

110 CHAPTER 4. MULTI-CLASS CLUSTERING

6 10 21 45 91 171 325

10
0

10
1

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

Iris

SL

CCSR

COSC

Ours

6 10 21 45 91 171 325

10
0

10
1

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

Wine

SL

CCSR

COSC

Ours

6 10 21 45 91 171 325 666

10
0

10
1

10
2

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

Vertebral

SL

CCSR

COSC

Ours

6 10 21 45 91 171 325 666

10
0

10
1

10
2

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

Ecoli

SL

CCSR

COSC

Ours

6 10 21 45 91 171 325 666
10

1

10
2

10
3

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

4 Moons

SL

CCSR

COSC

Ours

55 105 210 406 820 1653 3240 6441

10
1

10
2

10
3

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

WebKb4

SL

CCSR

COSC

Ours

6 10 21 45 91 171 325 666

10
2

10
3

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

OptDigits

SL

CCSR

COSC

Ours

55 105 210 406 820 1653 3240 6441

10
2

10
3

10
4

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

USPS

SL

CCSR

COSC

Ours

55 105 210 406 820 1653 3240 6441

10
2

10
3

10
4

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

PenDigits

SL

CCSR

COSC

Ours

528 1035 2016 4005 8001 16110 32131

10
2

10
3

10
4

10
5

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

20 News

SL

CCSR

COSC

Ours

10 21 45 91 171

10
3

10
4

10
5

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

MNIST

SL

CCSR

COSC

Ours

Table 4.11: Results for multi-class constrained clustering where pairwise con-
straints are generated from a transductive setting: Runtimes versus number of
constraints.

4.5. EXPERIMENTS 111

50 75 100 125 150 175 200 300 400
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

USPS (0 vs rest)

Multi_class

COSC

50 75 100 125 150 175 200 300 400
0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

USPS (0 vs rest)

Multi_class

COSC

50 75 100 125 150 175 200 300 400
0

0.2

0.4

0.6

0.8

1
x 10

−12

Pairwise Constraints

F
ra

ct
io

n
 o

f
V

io
la

tio
n

s

USPS (0 vs rest)

Multi_class

COSC

1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

Pairwise Constraints

C
lu

st
e

ri
n
g

 E
rr

o
r

Spam

Multi_class

COSC

1500 2000 2500 3000 3500 4000 4500 5000
0

0.1

0.2

0.3

0.4

Pairwise Constraints

N
o

rm
a
liz

e
d
 C

u
t

Spam

Multi_class

COSC

1500 2000 2500 3000 3500 4000 4500 5000
0

0.01

0.02

0.03

Pairwise Constraints

F
ra

ct
io

n
 o

f
V

io
la

tio
n
s

Spam

Multi_class

COSC

5 10 20 40 80 160 320
0

0.1

0.2

0.3

0.4

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Sonar

Multi_class

COSC

5 10 20 40 80 160 320
0

0.1

0.2

0.3

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

Sonar

Multi_class

COSC

5 10 20 40 80 160 320
0

0.5

1

1.5

2

2.5

x 10
−3

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Sonar

Multi_class

COSC

10 20 40 80 160 320 640 1280
0

0.1

0.2

0.3

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Diabetes

Multi_class

COSC

10 20 40 80 160 320 640 1280
0

0.2

0.4

0.6

Pairwise Constraints

N
o

rm
a

liz
e

d
 C

u
t

Diabetes

Multi_class

COSC

10 20 40 80 160 320 640 1280
0

0.005

0.01

0.015

0.02

0.025

Pairwise Constraints

F
ra

c
ti
o

n
 o

f
V

io
la

ti
o

n
s

Diabetes

Multi_class

COSC

5 10 20 40 80 160 320 640
0

0.1

0.2

0.3

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Breast Cancer

Multi_class

COSC

5 10 20 40 80 160 320 640
0

0.2

0.4

0.6

0.8

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

Breast Cancer

Multi_class

COSC

5 10 20 40 80 160 320 640
0

0.005

0.01

0.015

0.02

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Breast Cancer

Multi_class

COSC

Table 4.12: Multi-class formulation versus COSC for k = 2: Left: clustering error
versus number of constraints, Middle: normalized cut versus number of constraints,
Right: fraction of violated constraints versus number of constraints.

112 CHAPTER 4. MULTI-CLASS CLUSTERING

10 20 40 80 160 320
0

0.05

0.1

0.15

0.2

0.25

Pairwise Constraints

C
lu

st
e
ri
n
g
 E

rr
o
r

Heart

Multi_class

COSC

10 20 40 80 160 320
0

0.1

0.2

0.3

0.4

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

Heart

Multi_class

COSC

10 20 40 80 160 320
0

1

2

3

x 10
−3

Pairwise Constraints

F
ra

c
ti
o
n
 o

f
V

io
la

ti
o
n
s

Heart

Multi_class

COSC

5 10 20 40 80 160 320 640 1280
0

0.05

0.1

0.15

0.2

Pairwise Constraints

C
lu

st
e

ri
n
g

 E
rr

o
r

WDBC

Multi_class

COSC

5 10 20 40 80 160 320 640 1280
0

0.05

0.1

0.15

Pairwise Constraints

N
o
rm

a
liz

e
d
 C

u
t

WDBC

Multi_class

COSC

5 10 20 40 80 160 320 640 1280
0

1

2

3

x 10
−4

Pairwise Constraints

F
ra

c
ti
o

n
 o

f
V

io
la

ti
o

n
s

WDBC

Multi_class

COSC

Table 4.13: Multi-class formulation versus COSC for k = 2: Left: clustering error
versus number of constraints, Middle: normalized cut versus number of constraints,
Right: fraction of violated constraints versus number of constraints.

50 75 100 125 150 175 200 300 400

10
2

10
3

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

USPS (0 vs rest)

Multi_class

COSC

1500 2000 2500 3000 3500 4000 4500 5000

10
1

10
2

10
3

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

Spam

Multi_class

COSC

5 10 20 40 80 160 320

10
0

10
1

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

Sonar

Multi_class

COSC

10 20 40 80 160 320 640 1280

10
0

10
2

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

Diabetes

Multi_class

COSC

5 10 20 40 80 160 320 640

10
0

10
1

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

Breast Cancer

Multi_class

COSC

10 20 40 80 160 320

10
0

10
1

Pairwise Constraints

R
u
n
 T

im
e
 (

se
c.

)

Heart

Multi_class

COSC

5 10 20 40 80 160 320 640 1280

10
0

10
1

10
2

Pairwise Constraints

R
u

n
 T

im
e

 (
se

c.
)

WDBC

Multi_class

COSC

Table 4.14: Multi-class formulation versus COSC for k = 2: Runtimes versus
number of constraints.

4.6. CONCLUSIONS 113

4.6 Conclusions

In this chapter, we presented a generic method for directly minimizing the balanced
k-cut problem based on a new continuous relaxation. Apart from ratio/normalized
cut, our method can also handle new application-specific balancing functions. We
also developed constrained clustering method for the multi-class setting that guar-
antees satisfaction of constraints under a mild assumption that any consistent parti-
tion can be found e�ciently. Finally, the monotonic descent algorithm proposed for
the di�cult sum-of-ratios problem is another key contribution that is of independent
interest.

114 CHAPTER 4. MULTI-CLASS CLUSTERING

Chapter 5

Community detection via densest
subgraphs

In this chapter we consider the one-class problem where the goal is to extract a a
densely connected subset in a given graph. The problem of finding dense regions
in graphs arises in several applications e.g., in bioinformatics [106, 111, 12, 60, 102]
and network analysis [72, 40, 47]. In bioinformatics, one can model the problem
of identifying protein families or molecular complexes as the problem of finding
densely connected components in a protein-protein interaction network [12]. More
generally, community detection, an important tool in understanding the structure
of complex networks, can be modeled as the problem of finding dense regions in a
graph.

A natural graph-theoretic measure for well-connectedness is density defined as
the ratio of the total weight of the edges in the subgraph induced by the given
subset and the size of the subset. This criteria leads to an important and well-
studied graph-theoretic problem known as densest subgraph problem which can be
solved in polynomial time [49]. Often in applications one may have to enforce size
restrictions since the densest subset found maybe too small or too large. It has been
shown that introducing prior restriction on the size of the subset makes the problem
NP-hard [45, 4, 68]. Other possible forms of prior in this setting are based on the
locality of the subset being extracted [102]: (i) finding a subset around a given
source or seed set (ii) enforcing locality based on an independent source beyond the
input graph; e.g., requiring every pair of vertices in the extracted subset to be with
in a given distance where the distance function can be defined using an entirely
di↵erent network.

Here we consider a generic version of the densest subgraph problem to allow
for more modeling freedom. Similarly to the two-class clustering problem, we first
derive an exact continuous relaxation for the generalized densest subgraph problem
proposed. Then we present an e�cient method for solving the resulting continuous
relaxation. The main feature of our method is the guarantee that the obtained
solution satisfies all the given constraints. We also discuss an application problem
arising in social network analysis. The work presented in this chapter is published
in [95].

Let us introduce the notation before formally defining the generalized densest
subgraph problem. Let G(V,W) be an undirected graph where V = {1, . . . , n} is
the n-element vertex set, W 2 Rn⇥n

+ is the symmetric weight matrix. We denote

115

116 CHAPTER 5. COMMUNITY DETECTION VIA DENSEST SUBGRAPHS

the entries of W by wij, i, j = 1, . . . n. We allow the vertices to have non-negative
weights denoted by b 2 Rn

+. We denote by 1n the n⇥1 vector of all ones and by 1C

the indicator vector on a set C whose ith entry is 1 if i 2 C and 0 otherwise. Given
g 2 Rn

++, the (generalized) volume of a set C ✓ V is defined as volg(C) =
P

i2C gi,
which specializes to cardinality if gi = 1, 8i 2 V and to the well-known volume
function used in normalized cut when gi = di, 8i 2 V , where di =

Pn
j=1 wij is the

degree of vertex i.
The (generalized) density of a subset C ✓ V is defined as

density(C) :=
assoc(C)

volg(C)
=

P

i,j2C wij
P

i2C gi
(5.1)

We recover the classical definition of density via gi = 1, 8i 2 V . We use the
relation, assoc(C) = vold(C)� cut(C, V \C), where di is the degree of vertex i and
cut(A,B) :=

P

i2A,j2B wij.

5.1 Generalized densest subgraph problem

We consider the following generic version of the densest subgraph problem

max
C✓V

assoc(C)

volg(C)
(5.2)

subject to : : U ✓ C

j  volMj(C)  ◆j, 8j 2 {1, . . . , p}
dist(u, v)  d0, 8u, v 2 C.

Here U is the seed set and Mj 2 Rn
+, j = 1, . . . , p denote vertex weights which allow

us to model the “size” constraint in di↵erent ways. Note that our model allows
all forms of size constraints: lower bound, upper bound and equality constraints.
The distance constraint is modeled via a general non-negative, symmetric distance
function dist; here dist need not satisfy the triangle inequality. Here j, ◆j, j =
1, . . . , p and d0 are problem-specific constants. Since U is required to be part of
the solution, we can assume that dist(u, v)  d0, 8u, v 2 U , otherwise the above
problem is infeasible. The distance constraint also implies that any u 2 V for
which dist(u, s) > d0, for some s 2 U , cannot be a part of the solution. Thus, we
again assume without loss of generality that there is no such u 2 V ; otherwise such
vertices can be eliminated without changing the solution of problem (5.2).

The classical densest subgraph problem studied in the literature, a special case
of this problem, is given by

max
C✓V

assoc(C)

volg(C)
, (5.3)

where gi = 1, 8i 2 V . This problem can be optimally solved in polynomial time [49].
The densest-k-subgraph problem, which requires the solution to contain exactly
k vertices is shown to be an NP-hard problem [45]. In our generalized setting,
this problem corresponds to the special case (with distance constraint removed):
U = ;, p = 1,M1 = 1n and 1 = ◆1 = k. This problem has been shown not

5.2. AN EQUIVALENT UNCONSTRAINED FORMULATION 117

to admit a polynomial time approximation scheme [67]. This means that there is
no polynomial time algorithm that gives a solution within a factor of 1 � ✏ of the
optimal solution for arbitrary small constant ✏ > 0. The best known approximation
algorithm has an approximation ratio of O(V �), for some � < 1

3
[45].

Recently, it has been shown that the densest subgraph problem with an upper
bound on the size, i.e., |C|  k, is as hard as the densest-k-subgraph problem
[68]. However, it is also shown in [68] that the densest subgraph problem with a
lower bound constraint, i.e., |C| � k, is still NP-hard but has a 2-approximation
algorithm. Both these problems are special cases of the model considered in (5.2).

5.1.1 Relation to local clustering

Local clustering is a related area where one is interested in finding a cluster around
a given seed set. Here we briefly mention the relationship between the generalized
densest subgraph problem (5.2) and formulations considered in local clustering.
Given a graph G(V,W) and a seed set U , the goal in local clustering is to exact a
subset around U minimizing the balanced cut

min
C✓V

cut(C,C)

Ŝ(C)
(5.4)

subject to : U ✓ C

vol(C)  k,

where Ŝ is a balancing function and C = V \C. This problem has attracted a lot
of interest [110, 6, 5, 26, 7, 86, 54, 85]. Typical choices for Ŝ considered in the
literature are vol(C) vol(C) and min{vol(C), vol(C)} leading to local normalized
cut and local normalized Cheeger cut respectively.

We note that for the choice, Ŝ(C) = min{vol(C), vol(C)} and k  1
2
vol(V), the

local clustering problem reduces to an instance of the generalized densest subgraph
problem (5.2). To see this, note that when k  1

2
vol(V), the balancing function

can be rewritten as vol(C). Using the relation

cut(C,C) = vol(C)� assoc(C),

one rewrites the objective of (5.4) as

1� assoc(C)

vol(C)
,

which leads to an instance of the generalized densest subgraph problem (5.2). More-
over, the method developed for solving (5.2) in this chapter can easily be modified
to solve the generic version of the local clustering problem (5.4). For details we
refer the reader to our joint work [22].

5.2 An equivalent unconstrained formulation

We first show that the seed constraint can be e�ciently handled by directly inte-
grating it into the objective. For this, note that any subset C ✓ V that contains

118 CHAPTER 5. COMMUNITY DETECTION VIA DENSEST SUBGRAPHS

U can be written as C = A [U , for some A ✓ V 0 where V 0 = V \U . Thus, we can
reformulate the problem (5.2) directly on the subgraph G0(V 0,W 0) where the ele-
ments of W 0 are given by w0

ij = wij, i, j 2 V 0. We introduce the notation m = |V 0|,
and we assume without loss of generality that the first m entries of V are the ones in
V 0. Moreover we explicitly mention the graph while specifying the functions cutG0

and assocG0 if there is any ambiguity; when there is no mention of the graph, it is
assumed that the original graph G is being considered.

Lemma 5.1 Let �⇤ be the optimal value of the generalized densest subgraph problem
(5.2) and let G0(V 0,W 0) be the subgraph induced by the vertex set V 0 = V \U where
U is the seed set. Then it holds that

�⇤ = max
A✓V 0

vold(A)� cutG0(A, V 0\A) + assoc(U) + voldU (A)

volg(A) + volg(U)
=: Ĝ(A) (5.5)

subject to : kj  volMj(A)  lj, 8j 2 {1, . . . , p}
dist(u, v)  d0, 8u, v 2 A,

dist(u, v)  d0, 8u, v 2 U

dist(u, v)  d0, 8u 2 U, 8v 2 A

where dUi =
P

j2U wij, 8i 2 V 0 and kj = j � volMj(U), lj = ◆j � volMj(U), j =
1, . . . , p. Moreover, A⇤ is an optimal solution of (5.5) if and only if C⇤ = A⇤ [U
is an optimal solution of the problem (5.2).

Proof: For any C ✓ V containing the seed set U , using the relation C = A [U ,
for some A ✓ V 0, we have

assoc(C) = assoc(A) + assoc(U) + 2 cut(A,U), (5.6)

= vold(A)� cutG(A, V \A) + assoc(U) + 2 cutG(A,U)

= vold(A)� cutG(A, V
0\A) + assoc(U) + cutG(A,U)

volg(C) = volg(A) + volg(U)

Also note that cutG(A, V 0\A) = cutG0(A, V 0\A) for any A ✓ V 0. Moreover, we can
write cutG(A,U) = voldU (A), where dUi =

P

j2U wij denotes the degree of vertex i
in V 0, restricted to the subset U in the original graph G.

Since the vertices U are already included in the solution, we update the bounds
on the skill as kj = j � volMj(U), lj = ◆j � volMj(U), j = 1, . . . , p. The distance
constraint is similarly updated. ⇤
In the following we rewrite the maximization problem (5.5) as an equivalent mini-
mization problem. So we define the penalty functions in such a way that they take
a value of zero on feasible sets and strictly positive values on infeasible sets. As dis-
cussed in Section 5.1, given the set U , one can assume without loss of generality that
the constraints dist(u, v)  d0, 8u, v 2 U and dist(u, v)  d0, 8u 2 U, 8v 2 A ✓ V 0

are always satisfied. Thus we drop these constraints from our presentation below.
Let T̂ (1), T̂ (2) : 2V

0 ! R+ denote the penalty functions for upper and lower bound

5.2. AN EQUIVALENT UNCONSTRAINED FORMULATION 119

constraints respectively. We define them as

T̂ (1)(A) :=
p
X

j=1

max{0, volMj(A)� lj}

=
p
X

j=1

volMj(A)�min{lj, volMj(A)} (upper bound constraints) (5.7)

T̂ (2)(A) :=
p
X

j=1

max{0, kj � volMj(A)}

=
p
X

j=1

kj �min{kj, volMj(A)} (lower bound constraints) (5.8)

Note that the penalty function for upper bound constraints takes a value of zero
whenever A satisfies all the constraints and for every constraint violated the penalty
increases by the corresponding violation volMj(A) � lj. Similarly for lower bound
constraints, the penalty increases by kj � volMj(A) if A violates the constraint
volMj(A) � kj.

We define the penalty function for the distance constraint as

T̂ (3)(A) :=
X

u,v2A
max{0, dist(u, v)� d0},

so that for every pair of vertices in A that violate the constraint, a penalty of
dist(u, v) � d0 is added. Note that we can rewrite this penalty function as the
association of the set A on the graph H(V 0, D) where Duv = max{0, dist(u, v) �
d0}, 8(u, v) 2 V 0 ⇥ V 0. That is

T̂ (3)(A) = assocH(A) = vold̄(A)� cutH(A, V
0\A) (distance constraint), (5.9)

where d̄ is the degree of the vertices of the graph H defined as d̄u =
P

v2V 0 Duv.

Let us introduce T̂ : 2V
0 ! R+ to capture the total amount of constraint violation,

T̂ (A) := T̂ (1)(A) + T̂ (2)(A) + T̂ (3)(A). (5.10)

Note that the penalty function T̂ is zero only when A satisfies all the constraints;
otherwise it is strictly positive and is proportional to the amount of violation. We
define ✓ to be the minimum value of the penalty function on infeasible sets

✓ = min
T̂ (A)>0

T̂ (A). (5.11)

In general, depending on the constraints, obtaining ✓ can be hard. However, our
method does not compute it explicitly as we solve a sequence of unconstrained
problems for increasing values of penalty parameter.

Now we show that there exists an unconstrained problem equivalent to the
constrained optimization problem (5.5).

Theorem 5.1 Let A0 ✓ V 0 be any subset satisfying the constraints of problem (5.5)
such that Ĝ(A0) > 0, where Ĝ(A0) is the objective value of problem (5.5) at A0. If

120 CHAPTER 5. COMMUNITY DETECTION VIA DENSEST SUBGRAPHS

� > vold(V)

✓Ĝ(A0)
, where ✓ is the minimum value of infeasibility defined in (5.11), then

the generalized densest subgraph problem (5.5) is equivalent to the unconstrained
problem

min
A✓V 0

volg(A) + volg(U) + �T̂ (A)

vold(A)� cutG0(A, V 0\A) + assoc(U) + voldU (A)
=: F̂ (�)(A) (5.12)

in the sense that there is a one-to-one correspondence between optimal solutions of
problems (5.5) and (5.12). Moreover if �⇤ is the optimal value of problem (5.5) then
�⇤ = 1/minA✓V 0 F̂ (�)(A).

Proof: First note that maximizing Ĝ over the given feasible set is same as mini-
mizing 1

Ĝ
over the same feasible set. For any feasible set A ✓ V 0 of problem (5.5),

the objective value of (5.12) is equal to F�(A) =
1

Ĝ(A)
, since the penalty term T̂ (A)

is zero. Thus if we show that any set A ✓ V 0 that does not satisfy all the constraints
of problem (5.2) cannot be a solution of problem (5.12) then the equivalence follows.
Suppose, for the sake of contradiction, that a minimizer A⇤ of (5.12) is infeasible
for problem (5.5). Let F̂ (�) denote the objective function of the problem (5.12) and
Ŝ denote the denominator of F̂ (�). Since gi > 0, 8i, we have for the given value of
�,

F̂ (�)(A⇤) � �T̂ (A⇤)

maxA✓V 0 Ŝ(A)
� �✓

vold(V)
>

1

Ĝ(A0)
= F̂ (�)(A0)

which is a contradiction because A⇤ is optimal for the problem (5.12). ⇤
The following result connecting the generalized densest subgraph problem on the
given graph G and an unconstrained ratio problem on the graph G0 is immediate
from Lemma 5.1 and Theorem 5.1

Theorem 5.2 Let G(V,W) be the given graph and let G0(V 0,W 0) be the subgraph
induced by the vertex set V 0 = V \U where U is the seed set. Let A0 ✓ V be any
subset satisfying the constraints of the generalized densest subgraph problem (5.2)
such that density(A0) > 0. Moreover let �⇤ be the optimal value of the problem

(5.2). If � > vold(V)
✓density(A0)

where ✓ is the minimum value of infeasibility defined in

(5.11) of any set A ✓ V 0, then

�⇤ =
1

minA✓V 0 F̂ (�)(A)
.

Moreover, A⇤ is an optimal solution of (5.12) if and only if C⇤ = A⇤ [U is an
optimal solution of the problem (5.2).

5.3 Exact continuous relaxation of the
generalized densest subgraph problem

In Theorem 3.2 we have derived exact relaxation result for the minimization of ratio
of set functions where the set functions vanish on the empty set as well as on the
full set V . In order to derive exact continuous relaxation of (5.12), we generalize
this result to set functions not vanishing on the full set V .

5.3. EXACT CONTINUOUS RELAXATION 121

Theorem 5.3 Let R̂, Ŝ : 2V ! R be any non-negative set functions and R, S :
Rn ! R be their Lovász extensions respectively, where n = |V |. Further let R̂(;) =
Ŝ(;) = 0. Then it holds that

inf
C✓V

R̂(C)

Ŝ(C)
= inf

f2Rn
+

R(f)

S(f)
.

Moreover, it holds for all f 2 Rn
+,

min
i=0,...,n�1

R̂(Ci)

Ŝ(Ci)
 R(f)

S(f)
,

where the sets Ci are defined as

C0 = V, Ci = {j 2 V |fj > fi}, i = 1, . . . , n. (5.13)

That is a minimizer C⇤ of the ratio of set functions can be obtained by optimal
thresholding of any minimizer f ⇤ of the continuous problem.

Proof: The proof is similar to that of Theorem 3.2 except that the terms involving
R̂(V) and Ŝ(V) do not vanish here. Without loss of generality, we assume that
components of f 2 Rn

+ are ordered in increasing order f1  . . . , fn. We have
from the definition of the Lovász extension (2.5)

R(f) =
n�1
X

i=1

R̂(Ci)(fi+1 � fi) + f1R̂(V)

=
n�1
X

i=1

R̂(Ci)

Ŝ(Ci)
Ŝ(Ci)(fi+1 � fi) + f1

R̂(V)

Ŝ(V)
Ŝ(V)

� min
j=0,...,n�1

R̂(Cj)

Ŝ(Cj)

n�1
X

i=1

Ŝ(Ci)(fi+1 � fi) + f1Ŝ(V)

!

= min
j=0,...,n�1

R̂(Cj)

Ŝ(Cj)
S(f).

Note that the inequality follows because of the non-negativity of f as well as Ŝ.
Since Ŝ is non-negative, it follows from the definition of the Lovász extension (2.5)
that S(f) � 0, 8f 2 Rn

+. Thus dividing both sides by S(f), we have for any f 2 Rn
+,

R(f)

S(f)
� min

j=0,...,n�1

R̂(Cj)

Ŝ(Cj)
.

This implies

min
f2Rn

+

R(f)

S(f)
� min

f2Rn
+

min
j=0,...,n�1

R̂(Cj)

Ŝ(Cj)
� min

C✓V

R̂(C)

Ŝ(C)
.

Here we used the convention 0
0
= 1 for the last inequality. On the other hand, the

continuous problem is a relaxation of the combinatorial problem because R̂(C) =
R(1C) and Ŝ(C) = S(1C), 8C ✓ V . Thus by the virtue of relaxation, we have

min
f2Rn

+

R(f)

S(f)
 min

C✓V

R̂(C)

Ŝ(C)
,

122 CHAPTER 5. COMMUNITY DETECTION VIA DENSEST SUBGRAPHS

which establishes the result. ⇤
Now we discuss the exact continuous relaxation result for the combinatorial op-
timization problem (5.12). First note that because of the constants terms, the
objective function of the problem (5.12) does not vanish on the empty set, a tech-
nical condition required in the definition of the Lovász extension. Thus, in oder
to derive the exact continuous relaxation, we replace every constant term c in the
objective by the set function cP̂0(A), where P̂0 : 2V ! R+ is defined as

P̂0(A) :=

⇢

0 if A = ;,
1 otherwise

Since the penalty function T̂ (2) contains the constant term
Pp

j=1 kj, let us define a

new penalty function T̂ (2)
0 in its place as

T̂ (2)
0 (A) :=

p
X

j=1

kjP̂0(A)�
p
X

j=1

min{kj, volMj(A)}.

Note that T̂ (2) and T̂ (2)
0 agree everywhere except on the empty set. We also define

a new penalty function capturing the total amount of constraint violation by any
non-empty set as

T̂0(A) := T̂ (1)(A) + T̂ (2)
0 (A) + T̂ (3)(A),

which again agrees with T̂ on any non-empty set. Similarly, by replacing the con-
stant terms, we change the objective function of problem (5.12) as

F̂ (�)
0 (A) :=

volg(A) + volg(U)P̂0(A) + �T̂0(A)

vold(A)� cutG0(A, V 0\A) + assoc(U)P̂0(A) + voldU (A)
.

In the following we derive the exact relaxation result for the problem

min
A✓V 0

F̂ (�)
0 (A). (5.14)

The relation between the unconstrained problem (5.12) derived in the previous
section and the modified problem (5.14) is given in the following lemma.

Lemma 5.2 The problems (5.12) and (5.14) are related as

min
A✓V 0

F̂ (�)(A) = min

⇢

F̂ (�)(;), min
A✓V 0

F̂ (�)
0 (A)

�

.

Moreover, if F̂ (�)(;) < minA✓V 0 F̂ (�)
0 (A), then the empty set is a solution of the

problem (5.12); otherwise optimal solutions of the problems (5.12) and (5.14) are
same.

Proof: Note that the objective values of problems (5.12) and (5.14) agree every-

where except on the empty set. If F̂ (�)(;) < minA✓V 0 F̂ (�)
0 (A), then the empty set

is a minimizer of the problem (5.12) since F̂ (�)
0 (;) = 0

0
:= 1. Otherwise there is a

non-empty set A that minimizes both (5.12) and (5.14). ⇤

Thus it is su�cient to derive a method for solving the problem (5.14). We need
the following result to present the exact continuous relaxation of the problem (5.14).

5.3. EXACT CONTINUOUS RELAXATION 123

Lemma 5.3 Let Q̂(l,h) : 2V
0 ! R be defined as Q̂(l,h)(A) = min{l, volh(A)} for any

l 2 R, h 2 Rm
+ . The function Q̂(l,h) is submodular. Moreover, an element of the

subdi↵erential of the Lovász extension of Q̂(l,h) is given by

�

q(l,h)(f)
�

ji
=

8

<

:

0 volh(Ai) > l
l � volh(Ai) volh(Ai�1) � l, volh(Ai)  l
hji volh(Ai�1) < l

, (5.15)

where ji denotes the index of the ith smallest component of f and the sets Ai, i =
0, 1, . . . ,m are defined as

A0 = V 0, Ai = {ji+1, ji+2, . . . , jm}, i = 1, . . . ,m. (5.16)

Proof: It has been shown in Lemma 2.4 that volh(A) is a submodular function.
It is easy to derive from the definition of submodularity that pointwise minimum
of a constant and an increasing submodular function is again submodular. Thus
the function Q̂(l,h) is submodular and its Lovász extension is convex by Proposition

2.2. By Lemma 2.7, an element of the subdi↵erential of the Lovász extension of Q̂
is given by

qji = Q̂ ({ji, . . . , jm})� Q̂ ({ji+1, . . . , jm}) , i = 1, . . . ,m,

where (j1, . . . , jm) is a permutation of V 0 satisfying fj1  fj2  . . .  fjm . The fact
that the function volh(Ai) is monotonically decreasing in i (since h 2 Rm

+) simplifies
the expression for q(l,h). ⇤

Theorem 5.4 The combinatorial optimization problem (5.14) is equivalent to the
continuous problem

min
f2Rm

+

R1(f)�R2(f)

S1(f)� S2(f)
=: F (�)

0 (f), (5.17)

for any � � 0, where

R1(f) =
⌦

f, �d̄+ (⇢)mi=1

↵

+ �max
i

{fi}, ⇢ = g + �
p
X

j=1

Mj, � = volg(U) + �
p
X

j=1

kj,

R2(f) = �
p
X

j=1

⌦

f, q(lj ,Mj)(f)
↵

+ �
p
X

j=1

⌦

f, q(kj ,Mj)(f)
↵

+ �
1

2

X

i,j2V 0

Dij |fi � fj| ,

S1(f) =
⌦

f, (di)
m
i=1 + (dUi)

m
i=1

↵

+ assoc(U)max
i

{fi}

S2(f) =
1

2

X

i,j2V 0

w0
ij |fi � fj| ,

and q(l,h) is defined in (5.15). The functions R1, R2, S1 and S2 are convex, positively
1-homogeneous and R1 �R2, S1 � S2 are non-negative on the positive orthant Rm

+ .
Moreover, it holds for any f 2 Rm

+ ,

min
i=0,...m�1

F̂ (�)
0 (Ai)  F (�)

0 (f),

124 CHAPTER 5. COMMUNITY DETECTION VIA DENSEST SUBGRAPHS

where the set Ai are defined as

A0 = V 0, Ai = {j 2 V 0|fj > fi}, i = 1, . . . ,m. (5.18)

That is a minimizer A⇤ of the combinatorial optimization problem (5.14) can be
obtained by optimal thresholding of any minimizer f ⇤ of the continuous problem
(5.17).

Proof: The essential idea is to replace the set functions in the objective of (5.14)
by their Lovász extensions and invoke Theorem 5.3. Let R̂ denote the numerator
of the ratio F̂ (�)

0 ,

R̂(A) = volg(A) + volg(U)P̂0(A) + �T̂0(A).

We decompose R̂ as the di↵erence R̂1 � R̂2, where

R̂1(A) = volg(A) + volg(U)P̂0(A) + �
p
X

j=1

volMj(A) + �
p
X

j=1

kjP̂0(A) + � vold̄(A),

R̂2(A) = �
p
X

j=1

min{lj, volMj}+ �
p
X

j=1

min{kj, volMj}+ �cutH(A, V
0\A).

Note that both R̂1 and R̂2 are submodular because of the non-negativity of �, kj, j =
1, . . . , p and volg(U). Their Lovász extensions are positively 1-homogeneous convex
functions and are given by the functions R1 and R2 respectively (by Lemmas 2.4,
2.5 and 5.3). Moreover, by Proposition 2.1, R1 �R2 is the Lovász extension of the
non-negative set function R̂ and it follows from the definition (2.5) that it is also
non-negative on the positive orthant.

Similarly denote by Ŝ the denominator of F̂ (�)
0 and decompose it as the di↵erence

Ŝ(A) = Ŝ1(A)� Ŝ2(A), where

Ŝ1(A) = vold(A) + assoc(U)P̂0(A) + voldU (A)

Ŝ2(A) = cutG0(A, V 0\A).

Again one sees that S1 and S2 are submodular and their Lovász extensions are given
by S1 and S2 respectively. Moreover since Ŝ is non-negative, its Lovász extension
S1 � S2 is also non-negative on the positive orthant.

Thus we replaced all the set functions by their Lovász extensions in F (�)
0 . The

result now follows from Theorem 5.3. ⇤
Now we state the main result connecting the generalized densest subgraph problem
(5.2) and the continuous relaxation (5.17).

Theorem 5.5 Let G(V,W) be the given graph and let G0(V 0,W 0) be the subgraph
induced by the vertex set V 0 = V \U where U is the seed set. Let A0 ✓ V be any
subset satisfying the constraints of the generalized densest subgraph problem (5.2)
such that density(A0) > 0. Moreover let �⇤ be the optimal value of the problem

(5.2). If � > vold(V)
✓density(A0)

where ✓ is the minimum value of infeasibility defined in

(5.11) of any set A ✓ V 0, then

�⇤ = max

(

1

F̂ (�)(;)
,
1

�̄⇤

)

, (5.19)

5.4. ALGORITHM 125

where

�̄⇤ = min
f2Rm

+

F (�)
0 (f). (5.20)

Moreover if F̂ (�)(;) < �̄⇤ then U is an optimal solution of the problem (5.2); other-
wise an optimal solution C⇤ of the problem (5.2) can be obtained from a minimizer
of the problem (5.20).

Proof: For the given value of �, it follows from Theorem 5.2 and Lemma 5.2 that

�⇤ =
1

min
n

F̂ (�)(;),minA✓V 0 F̂ (�)
0 (A)

o = max

(

1

F̂ (�)(;)
,

1

minA✓V 0 F̂ (�)
0 (A)

)

.

Theorem 5.4 then yields the result stated in (5.19). It is clear that if F̂ (�)(;) < �̄⇤,
then the empty set is an optimal solution for (5.12) and consequently U is optimal
for (5.2). Otherwise by Theorem 5.4 one can obtain an optimal solution C⇤ of (5.2)
from optimal thresholding of any minimizer of F (�)

0 . ⇤

5.4 Algorithm for the generalized densest
subgraph problem

5.4.1 Solution via RatioDCA

Recall that RatioDCA described in Section 2.1.7 minimizes a non-negative ratio of
positively 1-homogeneous, di↵erence of convex functions on Rn. Since the contin-
uous relaxation (5.17) requires minimization over the positive orthant Rm

+ , we use
a slight variant of RatioDCA algorithm. More specifically, we add the positive or-
thant constraint to the inner problem solved in RatioDCA. The resulting algorithm
specialized to the problem (5.17) is given in Algorithm 5.1. The key part in the

Algorithm 5.1 Minimization of the ratio F (�)
0 over Rm

+ using RatioDCA

1: Initialization: f 0 2 Rm
+ , �

0 = F (�)
0 (f 0)

2: repeat

3: f t+1 = argmin
f2Rm

+ , kfk21

�t

2

Pm
i,j=1 w

0
ij |fi � fj|+ �maxi{fi}+ hf, cti},

where ct = �d̄+ (⇢)mi=1 � r2 � �ts1, r2 2 @R2(f t) and s1 2 @S1(f t).

4: �t+1 = F (�)
0 (f t+1)

5: until
|�t+1��t|

�t < ✏

6: Output: �t and f t

algorithm is solving the inner convex problem, which in our case has the form

min
f2Rm

+ , kfk1

�t

2

m
X

i,j=1

w0
ij |fi � fj|+ �max

i
{fi}+

⌦

f, ct
↵

, (5.21)

126 CHAPTER 5. COMMUNITY DETECTION VIA DENSEST SUBGRAPHS

where ct = �d̄ + (⇢)mi=1 � r2 � �ts1, ⇢ = g + �
Pp

j=1 Mj, � = volg(U) + �
Pp

j=1 kj.
Moreover, r2(f t), s1(f t) are respectively the elements of the subdi↵erentials of R2

and S1 at f t. By Lemma 5.3, r2(f t) is given by

r2 = �
Pp

j=1q(lj ,Mj)(f) + �
Pp

j=1q(kj ,Mj)(f) + �@TVH(f t),

with @ (TVH(f t))i =
n

Pm
j=1Dijuij | uij = �uji, uij 2 sign(f t

i�f t
j)
o

, where sign(x) :=

+1, if x > 0; -1 if x < 0; [�1, 1], if x = 0 (see Lemma 2.6). It is easy check that

s1 = (di)
m
i=1 + (dUi)

m
i=1 + assoc(U)

1

|Cf t |1Ct
f
,

where Cf t is the set of indices where f t has the maximum value.
Note that after solving the continuous relaxation (5.17) (and hence its combi-

natorial counter part (5.14)) one has to derive the solution for the original problem
(5.12) using Lemma 5.2 where we check if the empty set is in fact the solution of
(5.12). In the following we assume that this step is included as a part of our overall
method.

5.4.2 Quality guarantee for our method

Although the problem of minimizing F (�)
0 is non-convex and hence global conver-

gence is not guaranteed, we have the following quality guarantee for our overall
method.

Theorem 5.6 Let G(V,W) be the given graph and let G0(V 0,W 0) be the subgraph
induced by the vertex set V 0 = V \U where U is the seed set. Let C0 ✓ V be any
subset containing the seed set U such that C0\U 6= ; and one uses 1C0\U as an
initialization, then our overall method either terminates in one iteration or outputs
f̄ which yields a subset A ✓ V 0 satisfying

F̂ (�)(A) < F̂ (�)(C0\U),

for any � � 0. Moreover assume that C0 ✓ V is any subset that satisfies all the
constraints of the generalized densest subgraph problem (5.2) such that C0\U 6= ;
and density(C0) > 0. If one uses 1C0\U as initialization and � > vold(V)

✓density(C0)
where ✓

is the minimum value of infeasibility defined in (5.11) of any set A ✓ V 0, then the
output of our overall method C ✓ V satisfies all the constraints of (5.2) and has a
strictly larger density,

density(C) > density(C0)

Proof: First note that F (�)
0 and F̂ (�)

0 satisfy F (�)
0 (1A) = F̂ (�)

0 (A) for any A ✓ V 0.
Let f 0 = 1C0\U be the initialization of the RatioDCA algorithm for some subset
C0\U 6= ;. It has been shown that RatioDCA either stops in one iteration or
outputs a non-constant f̄ with a strictly smaller objective (see Proposition 2.5). In
our setting this means, if the algorithm does not terminate in one iteration, that
F (�)
0 (f̄) < F (�)

0 (f 0) = F̂ (�)
0 (C0\U). As shown in theorem 5.4, optimal thresholding

of f̄ results in a subset Af̄ satisfying F̂ (�)
0 (Af̄)  F (�)

0 (f̄) and hence we have

F̂ (�)
0 (Af̄) < F̂ (�)

0 (C0\U).

5.4. ALGORITHM 127

Since we choose either the empty set or Af̄ depending on whichever has a smaller
objective, it holds that our overall method returns A where

F̂ (�)(A)  min{F̂ (�)(;), F̂ (�)
0 (Af̄)}  F̂ (�)

0 (Af̄) < F̂ (�)
0 (C0\U) = F̂ (�)(C0\U),

(5.22)

where the last equality follows because F̂ (�)
0 and F̂ (�) agree on non-empty subsets.

For the chosen value of �, using a similar argument as in Theorem 5.1, one sees that
for any subset B ✓ V 0 that violates at least one constraint of (5.5), it holds that
F̂ (�)(B) > F̂ (�)(C0\U). Since our method, if not terminated in one iteration, always
returns a subset A that has a strictly smaller objective value than F̂ (�)(C0\U), A
has to be feasible. For any feasible A, it holds that

F̂ (�)(A) =
1

Ĝ(A)
=

1

density(A [U)
.

Moreover since C0 is feasible for (5.2), C0\U is feasible (5.5) and hence

F̂ (�)(C0\U) =
1

Ĝ(C0\U)
=

1

density(C0)
.

This together with (5.22), shows that the density of C = A [U is strictly larger
than that of C0. ⇤
Directly solving the non-convex problem (5.17) for the value of � given in Theorem
5.1 often yields poor results. Hence in our implementation we adopt the following
strategy. We first solve the unconstrained version of problem (5.17) (i.e., � = 0)
and then iteratively solve (5.17) for increasing values of � until all constraints are
satisfied. In each iteration, we increase � only for those constraints which were
infeasible in the previous iteration; in this way, each penalty term is regulated by
di↵erent value of �. Moreover, the solution obtained in the previous iteration of �
is used as the starting point for the current iteration.

5.4.3 Smooth minimization of the inner problem

We first show that the solution of the inner problem (5.21) can be obtained by solv-
ing the following slightly related problem where the norm constraint is eliminated,

min
f2Rm

+

1

2
kfk22 +

�l

2

m
X

i,j=1

w0
ij |fi � fj|+ � max

i
{fi}+

⌦

f, ct
↵

. (5.23)

The following result is shown in [22, 20].

Lemma 5.4 ([20]) Let �(f) = �l

2

Pm
i,j=1 w

0
ij |fi � fj|+ hf, ci+ � maxi{fi} and

f ⇤ 2 argmin
f2Rm

+

�(f) +
1

2
kfk22 .

Then it holds that
f 0 2 argmin

f2Rm
+ , kfk21

�(f)

where

f 0 =
⇢ f⇤

kf⇤k f ⇤ 6= 0,

0 otherwise

128 CHAPTER 5. COMMUNITY DETECTION VIA DENSEST SUBGRAPHS

Proof: First assume that f ⇤ 6= 0. Then we have

�

✓

f ⇤

kf ⇤k2

◆

=
1

kf ⇤k2

✓

�(f ⇤) +
1

2
kf ⇤k22

◆

� 1

2
kf ⇤k2

=
1

kf ⇤k2

✓

min
f2Rm

+

�(f) +
1

2
kfk22

◆

� 1

2
kf ⇤k2

=
1

kf ⇤k2

✓

min
f2Rm

+ , kfk2=kf⇤k2
�(f) +

1

2
kfk22

◆

� 1

2
kf ⇤k2

= min
f2Rm

+ , kfk2=kf⇤k2
�

✓

f

kf ⇤k2

◆

+
1

2
kf ⇤k2 �

1

2
kf ⇤k2

= min
g2Rm

+ , kgk2=1
�(g),

where in the last step we used the variable substitution g = f
kf⇤k . Thus

f ⇤

kf ⇤k2
2 argmin

g2Rm
+ , kgk2=1

�(g). (5.24)

Since � is a positively 1-homogeneous function, i.e., �(↵f) = ↵�(f) for any ↵ � 0,
we have �(0) = 0. Thus, we have minf2Rm

+
�(f) + 1

2
kfk22  0. Moreover, since f ⇤

is a minimizer of the problem minf2Rm
+
�(f) + 1

2
kfk22 and f ⇤ 6= 0, we have

�(f ⇤) +
1

2
kf ⇤k22  0. =) �

✓

f ⇤

kf ⇤k2

◆

 �1

2
kf ⇤k2 < 0.

Thus, ming2Rm
+ , kgk21�(g) is negative since

f⇤

kf⇤k2 is feasible for this problem. Then,

by 1-homogeneity of �, any minimizer g of the problem ming2Rm
+ , kgk21�(g) satisfies

kgk = 1. Thus, under the assumption f ⇤ 6= 0, we have using (5.24)

argmin
g2Rm

+ , kgk21

�(g) = argmin
g2Rm

+ , kgk2=1

�(g) 3 f ⇤

kf ⇤k2
.

On the other hand, if f ⇤ = 0, we claim that minf2Rm
+ , kfk21�(f) = 0. For the

sake of contradiction, assume that �(f 0) < 0 where f 0 2 argminf2Rm
+ , kfk21�(f).

By 1-homogeneity of � this implies that kf 0k2 = 1. Now define g = ↵f 0 for some
↵ 2 (0,�2�(f 0)). Since ↵ > 0, we have g 2 Rm

+ and

�(g) +
1

2
kgk22 = ↵�(f 0) +

1

2
↵2 kf 0k22 = ↵

✓

�(f 0) +
1

2
↵

◆

< 0,

which is contradiction to the fact that f ⇤ = 0 is an optimal solution of the problem
argminf2Rm

+
�(f) + 1

2
kfk22. Hence minf2Rm

+ , kfk21�(f) = 0 and f 0 = 0 is a mini-
mizer of this problem. ⇤

We will now rewrite the non-smooth convex problem (5.23) as an equivalent
problem where the objective function has Lipschitz continuous gradient. In the
following we use the linear operator introduced in Section 3.5.3.

5.4. ALGORITHM 129

Proposition 5.1 Let E 0 ✓ V 0⇥V 0 denote the set of edges of the graph G0(V 0,W 0),�!
E 0 = {(i, j) 2 E 0, i < j} denote the directed edges. Let A : R

�!
E0 ! RV 0

be a linear
operator defined as in (3.15). Moreover, let �m = {x 2 Rm : xi � 0,

Pm
i=1 xi = 1}.

The inner problem (5.23) is equivalent to

min
↵2R

�!
E0

, k↵k11

min
x2�m

1

2

�

�

�

PRm
+

�

��tA↵� �x� ct
�

�

�

�

2

2
=: (↵, x), (5.25)

where PRm
+
(·) denotes the projection on to the positive orthant Rm

+ . The gradient of
the objective function at ↵ is given by

r (↵, x) =
✓

��tATPRm
+
(��tA↵� �x� ct)

��PRm
+
(��tA↵� �x� ct)

◆

where the adjoint AT is given in (3.16). Moreover, the Lipschitz constant of the

gradient of is upper bounded by
p
2max {�t kAk2 , �}

q

(�t)2 kAk22 + �2.

Proof: Note that maxi{fi} = maxx2�n hx, fi, where �m is the simplex defined
as �n = {x 2 Rm, x � 0,

Pm
i=1 xi = 1}. Using Lemma 3.5 we rewrite the inner

problem (5.23) as

min
f2Rm

+

1

2
kfk22 + max

{↵2R
�!
E0

, k↵k11}
�t hf, A↵i+ �max

x2�n

hf, xi+
⌦

f, ct
↵

= max
{↵2R

�!
E0

, k↵k11}
max
x2�n

min
f2Rm

+

1

2
kfk22 +

⌦

f,�tA↵ + �x+ ct
↵

,

The optimization over f has the closed-form solution given by

f ⇤ = PRm
+

�

��tA↵� �x� ct
�

.

Plugging f ⇤ into the objective and using that
D

PRm
+
(v), v

E

=
�

�

�

PRm
+
(v)
�

�

�

2

2
yields the

problem (5.25).
It is easy to check that the function 1

2
max{0, y}2, y 2 R is di↵erentiable and the

first derivative is given by max{0, y}. Thus the partial derivatives of the function
h(v) := 1

2
kPRm+(v)k22 , v 2 Rm are given by max{0, vk}, k = 1, . . . ,m. Since

the partial derivatives are also continuous, the function h is di↵erentiable at any
v 2 Rm (see Theorem 17.3.8 in [113]). Moreover the function ��l

2
A↵ � �x � ct is

also di↵erentiable with respect to ↵ and x. Thus the objective function (↵, x) of
(5.25) is di↵erentiable (see Theorem 17.4.1 in [113]) and one obtains its gradient
from the chain rule as

r (↵, x) =
✓

��tATPRm
+
(��tA↵� �x� ct)

��PRm
+
(��tA↵� �x� ct)

◆

Finally, we derive the Lipschitz constant of the gradient as follows. For any ↵, � 2
R

�!
E0

and x, y 2 Rm, we have

kr (↵, x)�r (�, y)k22 = (�t)2
�

�

�

AT
⇣

PRm
+
(z)� PRm

+
(z0)
⌘

�

�

�

2

2

+ �2
�

�

�

PRm
+
(z)� PRm

+
(z0)
�

�

�

2

2
,

130 CHAPTER 5. COMMUNITY DETECTION VIA DENSEST SUBGRAPHS

where we used the notation z = ��tA↵� �x� ct and z0 = ��tA� � �y� ct. Since
�

�

�

PRm
+
(z)� PRm

+
(z0)
�

�

�

2
 k(z � z0)k2 (because of the non-expansiveness property of

the projection operator [99]), we have

kr (↵, x)�r (�, y)k22  (�t)2
�

�AT
�

�

2

2
k(z � z0)k22 + �2 kz � z0k22


⇣

(�t)2
�

�AT
�

�

2

2
+ �2

⌘

kz � z0k22 , (5.26)

where the first inequality follows from the definition of the norm. We simplify the
final term as

kz � z0k22 =
�

���tA↵� �x+ �tA� + �y
�

�

2

2
=
�

��tA(↵� �) + �(x� y)
�

�

2

2

 2
�

��tA(↵� �)
�

�

2

2
+ 2 k�(x� y)k22  2(�t)2 kAk22 k↵� �k22 + 2�2 kx� yk22

 2max
�

(�t)2 kAk22 , �2
 �

k↵� �k22 + kx� yk22
�

.

Combining this with (5.26) and using kAk =
�

�AT
�

�, we have

kr (↵, x)�r (�, y)k22 
�

(�t)2 kAk22 + �2
�

2max
�

(�t)2 kAk22 , �2

�

k↵� �k22 + kx� yk22
�

.

Thus the Lipschitz constant is given by
p
2max {�t kAk2 , �}

q

(�t)2 kAk22 + �2. ⇤

The dual problem (5.25) can now be solved very e�ciently using recent first
order methods like FISTA [15] (see Section 3.5.4). Comparing with the general
model (3.23) solved by FISTA, we identify for our problem (5.25)

F (↵, x) =
1

2

�

�

�

PRm
+

�

��tA↵� �x� ct
�

�

�

�

2

2
, G(↵, x) = ◆B(↵) + ◆�m(x),

where B = {↵ 2 R
�!
E0
, �1  ↵ij  1, 8(i, j) 2

�!
E 0} and ◆D for a convex set D is the

indicator function defined as

◆D(�) =

(

0, � 2 D
1 otherwise

(5.27)

Thus the proximal problem one has to solve in our setting is given by (see Step 4
of Algorithm 3.2)

↵p+1 = argmin
↵2R

�!
E0

, k↵k11

1

2
k↵� cpk22

xp+1 = argmin
x2�m

1

2
kx� apk22

where cp = ↵̄p + 1
L
�tAT zp and ap = x̄p + 1

L
�zp and zp = PRm

+
(��tA↵p � �xp � ct).

The first problem on ↵ can be solved in closed-form for each variable independently

↵p+1
ij = P[�1,1](c

p
ij) = max{�1,min{1, cpij}}, 8(i, j) 2

�!
E 0,

5.5. LP RELAXATION 131

Algorithm 5.2 Solution of the inner problem (5.25) using FISTA
1: Input: Lipschitz constant L of r
2: Initialization: ↵0 2 R

�!
E0
, ↵̄0 = ↵0, x0 2 Rm, x̄0 = x0, t1 = 1, p = 0.

3: repeat
4: zp = PRm

+
(��tA↵p � �xp � ct)

5: cp = ↵̄p + 1
L
�tAT zp

6: ap = x̄p + 1
L
�zp

7: ↵p+1
ij = max{�1,min{1, cpij}}, 8(i, j) 2

�!
E 0

8: xp+1 = P�m(a
p)

9: tp+1 =
1+
p

1+4t2p
2

10: ↵̄p+1 = ↵p+1 + tp�1

tp+1
(↵p+1 � ↵p)

11: x̄p+1 = xp+1 + tp�1

tp+1
(xp+1 � xp)

12: p = p+ 1

13: until convergence

14: Output: ↵p, xp

where P[�1,1](·) denotes the projection onto the interval [�1, 1]. Note that the
update of x is given by the projection on to the simplex. The complete details are
given in Algorithm 5.2.

One can verify that each iteration takes linear time O(|V 0| +
�

�

�

�!
E 0
�

�

�

) because the

linear operators A and AT take O(
�!
E 0) time and the projection on to the simplex

(step 8) O(V 0) time [69]. We can check convergence by examining the gap between
the objective values of the dual problem (5.25) and the primal problem (5.23). The
solution of (5.23) can be obtained from the solution ↵⇤ and x⇤ of (5.25) as (see
Proposition 5.1)

f ⇤ = PRm
+

�

��tA↵⇤ � �x⇤ � ct
�

.

Finally the solution of (5.21) can be obtained as (from Lemma 5.4)

f ⇤ =
PRm

+
(��tA↵⇤ � �x⇤ � ct)

�

�

�

PRm
+
(��tA↵⇤ � �x⇤ � ct)

�

�

�

2

, if
�

�

�

PRm
+

�

��tA↵⇤ � �x⇤ � ct
�

�

�

�

2
6= 0,

otherwise f ⇤ = 0.

5.5 LP relaxation of the generalized densest
subgraph problem

In this section we show that there exists a linear programming (LP) relaxation for
the generalized densest subgraph problem. Here, we directly consider the version

132 CHAPTER 5. COMMUNITY DETECTION VIA DENSEST SUBGRAPHS

where the seed constraint has been integrated:

max
A✓V 0

vold(A)� cutG0(A, V 0\A) + assoc(U) + voldU (A)

volg(A) + volg(U)
(5.28)

subject to : : kj  volMj(A)  lj, 8j 2 {1, . . . , p}
dist(u, v)  d0, 8u, v 2 A

The LP relaxation, derived in the following, can be solved optimally in polynomial
time and provides an upper bound on the optimum value of the problem (5.28). In
practice such an upper bound is useful in obtaining bounds on the quality of the
solutions found by approximation algorithms. This is because the global optimum
value is guaranteed to lie in the interval given by the objective value of the solution
found by the approximation algorithm and the upper bound given by the relaxation.

Theorem 5.7 Let G(V,W) be the given graph and U be the seed set. The following
LP is a relaxation of the generalized densest subgraph problem (5.28).

max
t2R, f2RV 0 , ↵2RE0

X

(i,j)2E0

w0
ij↵ij + 2

⌦

dU , f
↵

+ t assoc(U) (5.29)

subject to : : tkj  hMj, fi  tlj, 8j 2 {1, . . . , p}
fu + fv  t, 8u, v : dist(u, v) > d0
t � 0, ↵ij  fi, ↵ij  fj, 8(i, j) 2 E 0

0  fi  t, 8i 2 V 0, ↵ij � 0, 8(i, j) 2 E 0

hg, fi+ t volg(U) = 1.

where V 0 = V \U , E 0 is the set of edges induced by V 0 and w0
ij = wij, i, j 2 V 0.

Proof: First note that from Equation (5.6) shown in Lemma 5.1, the numerator
of (5.28) can be rewritten as

assocG0(A) + assocG(U) + 2 cutG(A,U),

since cutG(A, V 0\A) = cutG0(A, V 0\A) and assocG0(A) = assocG(A) for any A ✓ V 0.
The following problem is equivalent to (5.28), because (i) for every feasible set A of
(5.28), there exist corresponding feasible y, X given by y = 1A, Xij = min{yi, yj},
with the same objective value and (ii) an optimal solution of the following problem
always satisfies X⇤

ij = min{y⇤i , y⇤j}:

max
y2{0, 1}V 0 , X2{0, 1}E0

2
P

i<j w
0
ijXij + 2

⌦

dU , y
↵

+ assoc(U)

hg, yi+ volg(U)

subject to : : kj  hMj, yi  lj, 8j 2 {1, . . . , p}
yu + yv  1, 8u, v : dist(u, v) > d0
Xij  yi, Xij  yj, 8(i, j) 2 E 0

Relaxing the integrality constraints y 2 {0, 1}V 0
, X 2 {0, 1}E0

to interval constraints
y 2 [0, 1]V

0
, X 2 [0, 1]E

0
and using the variable substitution Xij =

↵ij

t
and yi =

fi
t
,

5.5. LP RELAXATION 133

for t > 0, we obtain the relaxation:

max
t2R, f2RV 0 , ↵2RE0

2
P

i<j w
0
ij↵ij + 2

⌦

dU , f
↵

+ t assoc(U)

hg, fi+ t volg(U)

subject to : : tkj  hMj, fi  tlj, 8j 2 {1, . . . , p}
fu + fv  t, 8u, v : dist(u, v) > d0
t � 0, ↵ij  fi, ↵ij  fj, 8(i, j) 2 E 0

0  fi  t, 8i 2 V 0, ↵ij � 0, 8(i, j) 2 E 0

Since this problem is invariant under scaling, we can fix the scale by setting the
denominator to 1, which yields the equivalent LP stated in the theorem. ⇤

Note that the solution f ⇤ of the LP (5.29) is, in general, not integral, i.e.,
f ⇤ /2 {0, 1}V 0

. One can use standard techniques of randomized rounding or optimal
thresholding to derive an integral solution from f ⇤. However, the resulting integral
solution may not necessarily give a subset that satisfies the constraints of (5.28).
In the special case when there are only lower bound constraints, one can obtain a
feasible set A by thresholding f ⇤ (see (5.18)) according to the objective of (5.28).
This is possible in this special case because there is always a threshold f ⇤

i which
yields a non-empty subset Ai (in the worst case the full set V 0) satisfying all the
lower bound constraints. In our experiments for this special case, we derived a
feasible set from the solution of LP in this fashion by choosing the threshold that
yields a subset that satisfies the constraints and has the highest objective value.

The LP relaxation (5.29), in the absence of seed and lower bound constraints,
is vacuous in the sense that solution of the unconstrained problem (5.3) is still
feasible for the LP. To see this, note that when there are no seed and lower bound
constraints, the LP relaxation has the form,

max
t2R, f2RV 0 , ↵2RE0

X

(i,j)2E0

w0
ij↵ij

subject to : : hMj, fi  tlj, 8j 2 {1, . . . , p}
fu + fv  t, 8u, v : dist(u, v) > d0
t � 0, ↵ij  fi, ↵ij  fj, 8(i, j) 2 E 0

0  fi  t, 8i 2 V 0, ↵ij � 0, 8(i, j) 2 E 0

hg, fi = 1.

Since the variable t does not appear in the objective, one can set it to arbitrary
large positive value in order to make the solution f ⇤ of the unconstrained problem
(5.3) feasible for this problem. However, in the presence of seed or lower bound
constraints, t is not a free variable anymore and cannot be increased arbitrarily.
Hence the LP relaxation is useful on the instances of (5.28) with at least one lower
bound or a seed constraint (i.e., volg(U) > 0).

134 CHAPTER 5. COMMUNITY DETECTION VIA DENSEST SUBGRAPHS

5.6 Application: Team formation in social
networks

In this section, we discuss team formation problem in social networks as an applica-
tion of our model (5.2). Given a task, team formation is the problem of identifying
a team of skilled experts based on the social network G(V,W) reflecting their pre-
vious collaboration. Here V represents the set of n experts and W 2 Rn⇥n

+ provides
the compatibility between every pair of experts based on their previous collabora-
tion. Each expert is assumed to possess one or more skills from a given skill set
A = {a1, . . . , ap}. The task T is typically defined in terms of the type and the
amount of skills required. The authors of [47] consider a variant of team formation
problem where the task T is given by the set of pairs {(aj,j)}pj=1, where aj 2 A,
specifying that at least j of skill aj is required to finish the given task. They
propose the following model based on the densest subgraph problem for building a
team

max
C✓V

assoc(C)

volg(C)
(5.30)

subject to : : volMj(C) � j, 8j 2 {1, . . . , p}

where g = 1n and M 2 {0, 1}n⇥p is the binary skill matrix with the entries Mij in-
dicating whether the expert i possesses the skill j or not. Here we used the notation
Mj to denote the jth column of the skill matrix M . The density based objective
possesses useful properties like strict monotonicity and robustness unlike diameter
based measures used in the literature. In case of the density based objective, if
an edge gets added (because of a new collaboration) or deleted (because of newly
found incompatibility) the density of the subgraphs involving this edge necessarily
increases respectively decreases, which is not true for the diameter based objec-
tive. In contrast to density based objective, the impact of small changes in graph
structure is more severe in the case of diameter objective [47].

By extending the greedy method of [68], it is shown in [47] that there exists a
3-approximation algorithm for some special cases of the problem (5.30). The time
complexity of this greedy algorithm is O(kn3), where n is the number of experts
and k :=

Pm
j=1 j is the minimum number of experts required. We note here that

this approximation guarantee has been improved to a factor of two in [23] for the
problem (5.30).

The main drawback of the above model (5.30) is that it does not allow encoding
more natural requirements such an upper bound on the team size or the cost of the
team. Note that adding upper bound constraints to the densest subgraph problem
makes the problem much harder. We consider the team formation problem in a
more realistic setting and allow formulation of the following natural requirements.

• Inclusion of a specified group: We allow a group of experts U ✓ V
around whom the team has to be formed, i.e., U ✓ C. This constraint is
useful because the team leader is usually fixed before forming the team.

• Skill requirement: We redefine the task T as the set of triples {(aj,j, ◆j)}pj=1,
where aj 2 A, specifying that at least j and at most ◆j of skill aj is required

5.7. EXPERIMENTS 135

to finish the given task. This way we allow an upper bound lj on each skill
aj.

• Bound on the team size: We allow an upper bound on the size of the team,
i.e., |C|  k for a given value of k.

• Budget constraint: We associate a cost ci, 8i 2 V to each expert and allow
a budget constraint, i.e.,

P

i2C ci  b for a given value of b.

• Locality of the team: Another important generalization of our formulation
is the inclusion of distance constraints for any general distance function1. Let
dist be any distance function between two experts measured according to some
non-negative, symmetric function. One can specify in our formulation that
the distance between any pair of experts in C should not be larger than a
given value d0, i.e., dist(u, v)  d0, 8u, v 2 C. Such a constraint can be used
to enforce locality of the team e.g. in a geographical sense (the distance could
be travel time) or social sense (distance in the network). Another potential
application is the modeling of mutual incompatibilities of team members e.g.,
on a personal level, which can be addressed by assigning a high distance to
experts who are mutually incompatible and thus should not be put together
in the same team.

Note that the upper bound constraints on the team size and the budget can
be rewritten as skill constraints and can be incorporated into the skill matrix M
accordingly. Thus the team formation problem can be modeled as a generalized
densest subgraph problem (5.2). Moreover, the generalized density that we use in
the objective of (5.2) leads to further modeling freedom as it enables us to give
weights g to the experts according to their expertise. By giving smaller weight to
those with high expertise, one can obtain solutions that not only satisfy the given
skill requirements but also give preference to the more competent team members
(i.e. the ones having smaller weights). Furthermore we allow the skill matrix to
have any positive value.

5.7 Experiments

We now empirically show that our method (called here as FORTE) consistently
produces high quality compact teams. We also show that the quality guarantee
given by Theorem 5.6 is useful in practice as our method often improves a given
sub-optimal solution.

5.7.1 Experimental Setup

Since we are not aware of any publicly available real world datasets for the team
formation problem, we use, as in [47], a scientific collaboration network extracted
from the DBLP database. Similar to [47], we restrict ourselves to four fields of
computer science: Databases (DB), Theory (T), Data Mining (DM), Artificial In-
telligence (AI). Conferences that we consider for each field are given as follows:

1The distance function need not satisfy the triangle inequality.

136 CHAPTER 5. COMMUNITY DETECTION VIA DENSEST SUBGRAPHS

Figure 5.1: Densities and team sizes of mdAlk, our method (FORTE), a feasible
point constructed from the LP (LPfeas), and FORTE initialized with LPfeas
and mdAlk, averaged over 10 trials. All versions of (FORTE) significantly out-
perform mdAlk, and LPfeas both in terms of densities and sizes of the teams
found. The densities of FORTE are close to the upper bound on the optimum of
the generalized densest subgraph problem (GDSP, for short) given by the LP.

DB = {SIGMOD, VLDB, ICDE, ICDT, PODS}, T = {SODA, FOCS, STOC, STACS,
ICALP, ESA}, DM = {WWW, KDD, SDM, PKDD, ICDM, WSDM}, AI = {IJCAI,
NIPS, ICML, COLT, UAI, CVPR}.

For our team formation problem, the skill set is given by A ={DB, T, DM, AI}.
Any author who has at least three publications in any of the above 23 conferences is
considered to be an expert. In our DBLP co-author graph, a vertex corresponds to
an expert and an edge between two experts indicates prior collaboration between
them. The weight of the edge is the number of shared publications. Since the
resulting co-author graph is disconnected, we take its largest connected component
(of size 9264) for our experiments.

5.7.2 Quantitative Evaluation

In this section we perform a quantitative evaluation of our method in the special
case of the team formation problem with lower bound constraints and gi = 1 8i
(problem (5.30)). We evaluate the performance of our method against the greedy
method proposed in [47], refered to as mdAlk. Similar to the experiments of [47],
an expert is defined to have a skill level of 1 in skill j, if he/she has a publication
in any of the conferences corresponding to the skill j. As done in [47], we create
random tasks for di↵erent values of skill size, k = {3, 8, 13, 18, 23, 28}. For each
value of k we sample k skills with replacement from the skill set A = {DB, T, DM,
AI}. For example if k = 3, a sample might contain {DB, DB, T}, which means that
the random task requires at least two experts from the skill DB and one expert from
the skill T.

In Figure 1, we show for each method densities and sizes of the solutions found
for di↵erent skill sizes k, averaged over 10 random runs. In the first plot, we also
show the optimal values of the LP relaxation in (5.29). Note that this provides an
upper bound on the optimal value of (5.2). We can obtain feasible solutions from
the LP relaxation of (5.2) via thresholding (see Section 5.5), which are shown in
the plot as LPfeas. Furthermore, the plots contain the results obtained when the
solutions of LPfeas and mdAlk are used as the initializations for FORTE.

The plots show that FORTE always produces teams of higher densities and
smaller sizes compared to mdAlk and LPfeas. Furthermore, LPfeas produces

5.7. EXPERIMENTS 137

better results than the greedy method in several cases in terms of densities and sizes
of the obtained teams. The results of mdAlk+FORTE and LPfeas+FORTE
further show that our method is able improve the sub-optimal solutions of mdAlk
and LPfeas significantly and achieves almost similar results as that of FORTE
which was started with the unconstrained solution of (5.17). Under the worst-case
assumption that the upper bound on the problem (5.2) (abbreviated as GDSP in
the plot) computed using the LP is the optimal value, the solution of FORTE is
94%� 99% optimal (depending on k).

5.7.3 Qualitative Evaluation

In this experiment, we assess the quality of the teams obtained for several tasks with
di↵erent skill requirements. Here we consider the team formation problem (5.2) in
its more general setting. We use the generalized density objective of (5.1) where
each vertex is given a rank ri, which we define based on the number of publications
of the corresponding expert. For each skill, we rank the experts according to the
number of his/her publications in the conferences corresponding to the skill. In this
way each expert gets four di↵erent rankings; the total rank of an expert is then the
minimum of these four ranks. The main advantage of such a ranking is that the
experts that have higher skill are given preference, thus producing more competent
teams. Note that we choose a relative measure like rank as the vertex weights
instead of an absolute quantity like number of publications, since the distribution
of the number of publications varies between di↵erent fields. In practice such a
ranking is always available and hence, in our opinion, should be incorporated.

Furthermore, in order to identify the main area of expertise of each expert, we
consider his/her relative number of publications. Each expert is defined to have
a skill level of 1 in skill j if he has more than 25% of his/her publications in the
conferences corresponding to skill j. As a distance function between authors, we use
the shortest path on the unweighted version of the DBLP graph, i.e. two experts
are at a distance of two, if the shortest path between the corresponding vertices in
the unweighted DBLP graph contains two edges. Note that in general the distance
function can come from other general sources beyond the input graph, but here we
had to rely on the graph distance because of lack of other information.

In order to assess the competence of the found teams, we use the list of the 10000
most cited authors of Citeseer [1]. Note that in contrast to the skill-based ranking
discussed above, this list is only used in the evaluation and not in the construction of
the graph. We compute the average inverse rank as in [47] as AIR := 1000·

Pk
i=1

1
Ri
,

where k is the size of the team and Ri is the rank of expert i on the Citeseer list of
10000 most cited authors. For authors not contained on the list we set Ri = 10001.
We also report the densities of the teams found in order to assess their compatibility.

We create several tasks with various constraints and compare the teams pro-
duced by FORTE, mdAlk and LPfeas (feasible solution derived from the LP
relaxation). Note that in our implementation we extended the mdAlk algorithm
of [47] to incorporate general vertex weights, using Dinkelbach’s method from frac-
tional programming [39]. The results for these tasks are shown in Table 1. We
report the upper bound given by the LP relaxation, density value, AIR as well as
number and sizes of the connected components. Furthermore, we give the names
and the Citeseer ranks of the team members who have rank at most 1000. Note

138 CHAPTER 5. COMMUNITY DETECTION VIA DENSEST SUBGRAPHS

that mdAlk could only be applied to some of the tasks and it was not possible to
find a feasible team in several cases from the LP relaxation.

As a first task we show the unconstrained solution where we maximize density
without any constraints. Note that this problem is optimally solvable in polynomial
time and all methods find the optimal solution. The second task asks for at least
three experts with the skill DB. Here again all methods return the same team, which
is indeed optimal since the LP bound agrees with the density of the obtained team.

Next we illustrate the usefulness of the additional modeling freedom of our
formulation by giving an example task where obtaining meaningful, connected teams
is not possible with the lower bound constraints alone. Consider a task where we
need at least four experts having the skill AI (Task 3). For this, all methods return
the same disconnected team of size seven where only four members have the skill AI.
The other three experts possess skills DB and DM and are densely connected among
themselves. One can see from the LP bound that this team is again optimal. This
example illustrates the major drawback of the density based objective which while
preferring higher density subgraphs compromises on the connectivity of the solution.
Our further experiments revealed that the subgraph corresponding to the skill AI is
less densely connected (relative to the other skills) and forming coherent teams in
this case is di�cult without specifying additional requirements. With the help of
subset and distance based constraints supported by FORTE, we can now impose
the team requirements more precisely and obtain meaningful teams. In Task 4, we
require that Andrew Y. Ng is the team leader and that all experts of the team should
be within a distance of two from each other in terms of the underlying co-author
graph. The result of our method is a densely connected and highly ranked team of
size four with a density of 3.89. Note that this is very close to the LP bound of 3.91.
The feasible solution obtained by LPfeas is worse than our result both in terms
of density and AIR. The greedy method mdAlk cannot be applied to this task
because of the distance constraint. In Task 5 we choose Bernhard Schoelkopf as the
team leader while keeping the constraints from the previous task. Out of the three
methods, only FORTE can solve this problem. It produces a large disconnected
team, many members of which are highly skilled experts from the skill DM and have
strong connections among themselves. To filter these densely connected members
of high expertise, we introduce a budget constraint in Task 6, where we define the
cost of the team as the total number of publications of its members. Again this task
can be solved only by FORTE which produces a compact team of four well-known
AI experts. A slightly better solution is obtained when FORTE is initialized with
the infeasible solution of the LP relaxation as shown (only in this task). This is
an indication that on more di�cult instances of (5.2), it pays o↵ to run FORTE
with more than one starting point to get the best results. The solution of the LP,
possibly infeasible, is a good starting point apart from the unconstrained solution
of (5.17).

Tasks 7, 8 and 9 provide some additional teams found by FORTE for other
tasks involving upper and lower bound constraints on di↵erent skills. As noted in
Section 5.5 the LP bound is loose in the presence of upper bound constraints and
this is also the reason why it was not possible to derive a feasible solution from the
LP relaxation in these cases. In fact the LP bounds for these tasks remain the same
even if the upper bound constraints are dropped from these tasks.

5.8. CONCLUSIONS 139

5.8 Conclusions

In this chapter we developed a novel method for a generic version of densest sub-
graph problem based on exact continuous relaxation. We showed how our model
based on densest subgraphs allows realistic formulation of the team formation prob-
lem in social networks. The main feature of our method is the practical guarantee
that our solution always satisfies the given constraints. Furthermore, we derived
a linear programming relaxation that allows us to check the quality of solutions
found and also provides a good starting point for our non-convex method. Finally
we showed in the experiments that our method found qualitatively better teams
that are more compact and have higher densities than those found by the greedy
method [47].

140 CHAPTER 5. COMMUNITY DETECTION VIA DENSEST SUBGRAPHS

Task FORTE mdAlk LPfeas
Task 1: Uncon-
strained
(LP bound:
32.7)

#Comps: 1 (2) Density: 32.7
AIR: 11.1
Jiawei Han (54), Philip S. Yu
(279)

#Comps: 1 (2) Density: 32.7
AIR: 11.1
Jiawei Han (54), Philip S. Yu
(279)

#Comps: 1 (2) Density: 32.7
AIR: 11.1
Jiawei Han (54), Philip S. Yu
(279)

Task 2: DB�3
(LP bound:
29.8)

#Comps: 1 (3) Density: 29.8
AIR: 7.56
Jiawei Han (54), Philip S. Yu
(279) (+1)

#Comps: 1 (3) Density: 29.8
AIR: 7.56
Jiawei Han (54), Philip S. Yu
(279) (+1)

#Comps: 1 (3) Density: 29.8
AIR: 7.56
Jiawei Han (54), Philip S. Yu
(279) (+1)

Task 3: AI�4
(LP bound:
16.6)

#Comps: 3 (1,3,3) Density:
16.6 AIR: 10.3
Michael I. Jordan (28), Jiawei
Han (54), Daphne Koller
(127), Philip S. Yu (279), An-
drew Y. Ng (345), Bernhard
Schoelkopf (364) (+1)

#Comps: 3 (1,3,3) Density:
16.6 AIR: 10.3
Michael I. Jordan (28), Jiawei
Han (54), Daphne Koller
(127), Philip S. Yu (279), An-
drew Y. Ng (345), Bernhard
Schoelkopf (364) (+1)

#Comps: 3 (1,3,3) Density:
16.6 AIR: 10.3
Michael I. Jordan (28), Jiawei
Han (54), Daphne Koller
(127), Philip S. Yu (279), An-
drew Y. Ng (345), Bernhard
Schoelkopf (364) (+1)

Task 4: AI�4,
distG(u, v) 2,
S={Andrew Ng}
(LP bound:
3.91)

#Comps: 1 (4) Density: 3.89 AIR: 14.2
Michael I. Jordan (28), Sebastian Thrun (97), Daphne
Koller (127), Andrew Y. Ng (345)

#Comps: 1 (6) Density: 3.5
AIR: 12.5
Michael I. Jordan (28), Geof-
frey E. Hinton (61), Sebastian
Thrun (97), Daphne Koller
(127), Andrew Y. Ng (345),
Zoubin Ghahramani (577)

Task 5: AI�4,
distG(u, v) 2,
S={B.Schölkopf}
(LP bound:
6.11)

#Comps: 2 (11,1) Density: 3.54 AIR: 3.94
Jiawei Han (54), Christos Faloutsos (140), Thomas S. Huang (146), Philip S. Yu (279),
Zheng Chen (308), Bernhard Schoelkopf (364), Wei-Ying Ma (523), Ke Wang (580)
(+4)

Task 6: AI�4,
distG(u, v) 2,
S={B.Schölkopf},
P

i ci 255
(LP bound:
2.06)

#Comps: 1 (4) Density: 1.24 AIR: 1.82
Alex J. Smola (335), Bernhard Schoelkopf (364) (+2)

LP+FORTE: #Comps: 2 (2,2) Density: 1.77 AIR: 2.73
Robert E. Schapire (293), Alex J. Smola (335), Bernhard Schoelkopf (364), Yoram Singer
(568)

Task 7:
3DB6,
DM�10,
(LP bound:
11.3)

#Comps: 1 (10) Density: 9.52 AIR: 4.96
Haixun Wang (50), Jiawei Han (54), Philip S. Yu (279), Zheng Chen (308), Ke Wang
(580) (+5)

Task 8:
2DB5,
10DM15,
5AI10
(LP bound:
10.7)

#Comps: 3 (1,12,3) Density: 7.4 AIR: 5.06
Michael I. Jordan (28), Jiawei Han (54), Daphne Koller (127), Philip S. Yu (279), Zheng
Chen (308), Andrew Y. Ng (345), Bernhard Schoelkopf (364), Wei-Ying Ma (523), Di-
vyakant Agrawal (591) (+7)

Task 9: AI2,
T�2, C6
(LP bound: 19)

#Comps: 3 (2,2,2) Density: 6.17 AIR: 1.53
Didier Dubois (426), Micha Sharir (447), Divyakant Agrawal (591), Henri Prade (713),
Pankaj K. Agarwal (770) (+1)

Table 5.1: Teams formed by FORTE, mdAlk and LPfeas for various tasks. We
list the number and sizes of the found components, the (generalized) maximum
density as well as the average inverse rank (AIR) based on the Citeseer list. Finally,
we give name and rank of each team member with rank at most 1000. Experts who
do not have the skill required by the task but are still included in the team are
shown in italic font.

Chapter 6

Conclusions

6.1 Summary

In this thesis we presented novel graph-based methods for several problems arising
in unsupervised and semi-supervised data analysis. The main contribution of the
thesis is the derivation of exact continuous relaxation results for the constrained
clustering problem in two-class setting (Chapter 3) and a generic version of the
densest subgraph problem (Chapter 5) which has applications in bioinformatics
[102] and social network analysis [47]. We showed that the solutions obtained
from the exact relaxations are far better than those of the existing methods [64,
79, 121, 117, 47]. Moreover, the exact continuous relaxations allowed us to find a
solution that provably satisfies the given prior information, a requirement in some
applications [47, 95]. We also showed how to handle soft and hard enforcement
settings in a single framework.

We also derived novel methods for unconstrained and constrained clustering
problems in the multi-class setting (Chapter 4). The multi-class clustering prob-
lem is much more di�cult than its two-class counterpart mainly because of the
partitioning constraint. In contrast to the existing methods which often fail to
produce k-way clustering, our method solves a more generic balanced cut problem
and always yields k clusters. We have empirically shown that our method performs
better than a wide variety of clustering methods [34, 115, 31, 33, 124, 9, 56, 123, 19].
More importantly, our method, allows easy integration of priors in the multi-class
setting unlike the existing work, which fails to incorporate even the simple label
constraints. We further showed that our method produces a solution satisfying all
the given constraints under the condition that a consistent partition can be found
e�ciently. This includes special cases such as constraints arising from labels or
constraints that are mutually exclusive.

On the algorithmic front, we presented e�cient methods for solving the contin-
uous relaxations. All our algorithms have monotonic descent guarantee; i.e., the
objective values of the iterates produced by our method are monotonically decreas-
ing. Because of this property, our method often improves the solution found by
other methods. Moreover, given an initialization consistent with the constraints,
our method often produces a solution with strictly better objective while still being
consistent. Moreover, we also developed a preconditioning method in Chapter 3 for
a generic graph-based convex problem and showed that it drastically improves the

141

142 CHAPTER 6. CONCLUSIONS

performance of the first-order method FISTA [15].

6.2 Future work

The ideas developed in this thesis can be used to solve related problems such as
hypergraph clustering. Hypergraphs are a flexible modeling tool as they encode
higher order relationships. In a joint work [57] we already developed a method for
hypergraph clustering for the two-class setting based on exact continuous relax-
ation. Now, one can use the techniques presented in this thesis to incorporate prior
knowledge in hypergraph clustering. Moreover, one can similarly develop a direct
multi-class method for hypergraph clustering.

In some application problems, e.g., semantic segmentation from image tags [120],
the prior information can be formulated as higher order constraints. Thus a poten-
tial future direction is designing constrained clustering methods for incorporating
higher order constraints.

Alternative clustering [13, 61] is another related problem where one is interested
to find a clustering di↵erent from the given clustering. One can model the require-
ment of alternative clustering using must-link and cannot-link constraints [61]. One
can now use our constrained clustering methods to solve the alternative clustering
problem more e↵ectively since the priors here are hard constraints.

Finally, we would like to point to some open issues. Our algorithms for con-
tinuous relaxations although possess monotonic descent guarantees and yield much
better results than the convex or spectral relaxations, it is not clear how far they
are from the global optimum. Since these problems are NP-hard, it may not be
possible to guarantee global optimality in general. However, it maybe possible to
show global optimality or bound the gap between the optimum and the objective
value of our solution in restricted settings. We have already shown in Chapter 5
that for the generalized densest subgraph problem there exists a linear program-
ming relaxation whose solution provides upper bound on the optimum value (for the
maximization problem). This is useful in checking the quality of the solution found
by our method. One possible future direction would be deriving such continuous
relaxations yielding non-trivial bounds for other problems as well.

There are several future directions possible for the multi-class clustering. Our
method developed in Chapter 4 is based on solving a linear programming (LP)
problem in each iteration. Although one need not solve it to global optimality, a
faster method for solving the LP would speed up the overall algorithm. It would be
worthwhile to derive better preconditioning methods, similarly to those developed
in Chapter 3, for the special form of LP problems considered here.

As shown in Chapter 3, preconditioning heavily influences the convergence of the
first-order optimization method FISTA [15]. One promising direction is generalizing
the preconditioning technique developed in Chapter 3 to other first order methods
such as PDHG [24, 94].

Bibliography

[1] Citeseer statistics – Most cited authors in computer science. http: //

citeseerx. ist. psu. edu/ stats/ authors? all= true .

[2] D. Aloise, A. Deshpande, P. Hansen, and P. Popat. NP-hardness of Euclidean
sum-of-squares clustering. Mach. Lear., 75(2):245–248, 2009.

[3] S. Amghibech. Eigenvalues of the discrete p-laplacian for graphs. Ars Com-
bin., 67:283–302, 2003.

[4] R. Andersen. Finding large and small dense subgraphs. CoRR,
abs/cs/0702032, 2007.

[5] R. Andersen, F. Chung, and K. Lang. Local graph partitioning using pagerank
vectors. In Ann. IEEE Symp. Found. Comp. Sci. (FOCS), pages 475–486,
2006.

[6] R. Andersen and K. Lang. Communities from seed sets. In Proc. Int. Conf.
on World Wide Web (WWW), pages 223–232, 2006.

[7] R. Andersen and Y. Peres. Finding sparse cuts locally using evolving sets. In
Proc. Ann. ACM Symp. Theor. Comput. (STOC), pages 235–244, 2009.

[8] A. Argyriou, R. Hauser, C. A. Micchelli, and M. Pontil. A DC-programming
algorithm for kernel selection. In Proc. Int. Conf. Mach. Learn. (ICML),
pages 41–48, 2006.

[9] R. Arora, M. R. Gupta, A. Kapila, and M. Fazel. Clustering by left-stochastic
matrix factorization. In Proc. Int. Conf. Mach. Learn. (ICML), pages 761–
768, 2011.

[10] F. Bach. Learning with submodular functions: A convex optimization per-
spective. Found. Trends Mach. Learn., 6(2-3):145–373, 2013.

[11] F. R. Bach and M. I. Jordan. Learning spectral clustering. In Adv. in Neur.
Inf. Proc. Syst. (NIPS), pages 305–312, 2003.

[12] G. D. Bader and C. W. V. Hogue. An automated method for finding molecular
complexes in large protein interaction networks. BMC Bioinform., 4, 2003.

[13] E. Bae and J. Bailey. COALA: A novel approach for the extraction of an
alternate clustering of high quality and high dissimilarity. In Proc. IEEE Int.
Conf. Data Mining (ICDM), pages 53–62, 2006.

143

http://citeseerx.ist.psu.edu/stats/authors?all=true
http://citeseerx.ist.psu.edu/stats/authors?all=true

144 BIBLIOGRAPHY

[14] S. Basu, I. Davidson, and K. Wagsta↵. Constrained Clustering: Advances in
Algorithms, Theory, and Applications. Chapman & Hall, 2008.

[15] A. Beck and M. Teboulle. A fast iterative shrinkage-thresholding algorithm
for linear inverse problems. SIAM J. Img. Sci., 2(1):183–202, 2009.

[16] C.E Bichot and P. Siarry. Graph Partitioning. ISTE-Wiley, 2011.

[17] S. Boyd and L. Vandenberghe. Convex Optimization. Cambridge University
Press, 2004.

[18] Y. Boykov and M.P. Jolly. Interactive graph cuts for optimal boundary and
region segmentation of objects in N-D images. In IEEE Int. Conf. on Comp.
Vis. (ICCV), 2001.

[19] X. Bresson, T. Laurent, D. Uminsky, and J. H. von Brecht. Multiclass total
variation clustering. In Adv. in Neur. Inf. Proc. Syst. (NIPS), pages 1421–
1429, 2013.

[20] T. Bühler. A flexible framework for solving constrained ratio problems in
machine learning. PhD thesis, Saarland University, 2015.

[21] T. Bühler and M. Hein. Spectral clustering based on the graph p-Laplacian.
In Proc. Int. Conf. Mach. Learn. (ICML), pages 81–88, 2009.

[22] T. Bühler, S. S. Rangapuram, S. Setzer, and M. Hein. Constrained frac-
tional set programs and their application in local clustering and community
detection. In Proc. Int. Conf. Mach. Learn. (ICML), pages 624–632, 2013.

[23] V. T. Chakaravarthy, N. Modani, S. R. Natarajan, S. Roy, and Y. Sabharwal.
Density functions subject to a co-matroid constraint. In IARCS Ann. Conf.
on Found. of Soft. Tech. and Theor. Comp. Sci. (FSTTCS), pages 236–248,
2012.

[24] A. Chambolle and T. Pock. A first-order primal-dual algorithm for convex
problems with applications to imaging. J. of Math. Imaging and Vision,
40:120–145, 2011.

[25] K.-C Chang. Variational methods for non-di↵erentiable functionals and their
applications to partial di↵erential equations. J. Math. Anal. Appl., 80:102–
129, 1981.

[26] F. Chung. A local graph partitioning algorithm using heat kernel pagerank.
In Proc. Int. Work. Alg. Models Web Graph (WAW), pages 62–75, 2009.

[27] F.H. Clarke. Optimization and Nonsmooth Analysis. Wiley New York, 1983.

[28] I. Dhillon, Y. Guan, and B. Kulis. Kernel k-means: Spectral clustering and
normalized cuts. In Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining (KDD), pages 551–556, 2004.

BIBLIOGRAPHY 145

[29] I. Dhillon, Y. Guan, and B. Kulis. A unified view of kernel k-means, spectral
clustering and graph cuts. Technical Report TR-04-25, University of Texas
at Austin, 2004.

[30] I. Dhillon, Y. Guan, and B. Kulis. A fast kernel-based multilevel algorithm
for graph clustering. In Proc. ACM SIGKDD Int. Conf. Knowl. Discov. Data
Mining (KDD), pages 629–634, 2005.

[31] I. Dhillon, Y. Guan, and B. Kulis. Weighted graph cuts without eigenvectors:
A multilevel approach. IEEE Trans. on Patt. Anal. and Mach. Intell., pages
1944–1957, 2007.

[32] C. Ding, X. He, and H. D. Simon. On the equivalence of nonnegative matrix
factorization and spectral clustering. In SIAM Int. Conf. Data Mining (SDM),
pages 606–610, 2005.

[33] C. Ding, T. Li, and M. I. Jordan. Nonnegative matrix factorization for combi-
natorial optimization: Spectral clustering, graph matching, and clique finding.
In Proc. IEEE Int. Conf. Data Mining (ICDM), pages 183–192, 2008.

[34] C. Ding, T. Li, W. Peng, and H. Park. Orthogonal nonnegative matrix tri-
factorizations for clustering. In Proc. ACM SIGKDD Int. Conf. Knowl. Dis-
cov. Data Mining (KDD), pages 126–135, 2006.

[35] T. Pham Dinh and H. A. Le Thi. Convex analysis approach to DC program-
ming: Theory, algorithm and applications. Acta Mathematica Vietnamica,
22(1):289–355, 1997.

[36] T. Pham Dinh and H. A. Le Thi. A DC optimization algorithm for solving
the trust region subproblem. SIAM J. Optim., 8(2):476–505, 1998.

[37] T. Pham Dinh and H. A. Le Thi. Recent advances in DC programming and
DCA. Trans. Comput. Intell. XIII, 8342:1–37, 2014.

[38] T. Pham Dinh and E. B. Souad. Duality in DC. (di↵erence of convex func-
tions) optimization. Subgradient methods. Trends Math. Opt., 84(1):277–293,
1988.

[39] W. Dinkelbach. On nonlinear fractional programming. Manag. Sci.,
13(7):492–498, 1967.

[40] Y. Dourisboure, F. Geraci, and M. Pellegrini. Extraction and classification
of dense communities in the web. In Proc. Int. Conf. on World Wide Web
(WWW), pages 461–470, 2007.

[41] C. Eckart and G. Young. The approximation of one matrix by another of
lower rank. Psychometrika, 1(3):211–218, 1936.

[42] A.P. Eriksson, C. Olsson, and F. Kahl. Normalized cuts revisited: A reformu-
lation for segmentation with linear grouping constraints. In IEEE Int. Conf.
on Comp. Vis. (ICCV), pages 1–8, 2007.

146 BIBLIOGRAPHY

[43] E. Esser, X. Zhang, and T. F. Chan. A general framework for a class of
first order primal-dual algorithms for convex optimization in imaging science.
SIAM J. on Imaging Sciences, 3(4):1015–1046, 2010.

[44] K. Fan. On a theorem of Weyl concerning eigenvalues of linear transforma-
tions, I. In Proc. Nation. Acad. of Sci., pages 652–655, 1949.

[45] U. Feige, G. Kortsarz, and D. Peleg. The dense k-subgraph problem. Algo-
rithmica, 29(3):410–421, 2001.

[46] P. F. Felzenszwalb and D. P. Huttenlocher. E�cient graph-based image seg-
mentation. Int. J. of Comp. Vis., 59:167–181, 2004.

[47] A. Gajewar and A. D. Sarma. Multi-skill collaborative teams based on densest
subgraphs. In SIAM Int. Conf. Data Mining (SDM), pages 165–176, 2012.

[48] M. Girolami. Mercer kernel-based clustering in feature space. IEEE Trans.
on Neural. Netw., 13(3):780–784, 2002.

[49] A. V. Goldberg. Finding a maximum density subgraph. Technical Report
UCB/CSD-84-171, EECS Department, University of California, Berkeley,
1984.

[50] T. Goldstein and S. Osher. The split Bregman method for L1-regularized
problems. SIAM J. on Imag. Sci., 2(2):323–343, 2009.

[51] S. Guattery and G. Miller. On the quality of spectral separators. SIAM J.
Matrix Anal. Appl., 19:701–719, 1998.

[52] L. Hagen and A. B. Kahng. Fast spectral methods for ratio cut partitioning
and clustering. In Int. Conf. Comput. Aided Design (ICCAD), pages 10–13,
1991.

[53] L. Hagen and A. B. Kahng. New spectral methods for ratio cut partition and
clustering. IEEE Trans. Comput. Aided Des., 9(11):1074–1085, 1992.

[54] T. Hansen and M. Mahoney. Semi-supervised eigenvectors for locally-biased
learning. In Adv. in Neur. Inf. Proc. Syst. (NIPS), pages 2537–2545, 2012.

[55] M. Hein and T. Bühler. An inverse power method for nonlinear eigenproblems
with applications in 1-spectral clustering and sparse PCA. In Adv. in Neur.
Inf. Proc. Syst. (NIPS), pages 847–855, 2010.

[56] M. Hein and S. Setzer. Beyond spectral clustering - tight relaxations of bal-
anced graph cuts. In Adv. in Neur. Inf. Proc. Syst. (NIPS), pages 2366–2374,
2011.

[57] M. Hein, S. Setzer, L. Jost, and S. S. Rangapuram. The total variation on
hypergraphs - learning on hypergraphs revisited. In Adv. in Neur. Inf. Proc.
Syst. (NIPS), pages 2427–2435, 2013.

BIBLIOGRAPHY 147

[58] J.-B. Hiriart-Urruty. Generalized di↵erentiability, duality and optimization
for problems dealing with di↵erences of convex functions. In Convexity and
duality in optimization, pages 37–70, 1985.

[59] R. A. Horn and C. R. Johnson. Matrix Analysis. Cambridge University Press,
2012.

[60] H. Hu, X. Yan, Y. Huang, J. Han, and X. J. Zhou. Mining coherent dense
subgraphs across massive biological networks for functional discovery. Bioin-
formatics, 21(1):213–221, 2005.

[61] D. Ian and Q. Zijie. Finding alternative clusterings using constraints. In Proc.
IEEE Int. Conf. Data Mining (ICDM), pages 773–778, 2008.

[62] A. K. Jain and R. C. Dubes. Algorithms for Clustering Data. Prentice-Hall,
Inc., Upper Saddle River, NJ, USA, 1988.

[63] I.T. Jolli↵e. Principal Component Analysis. Springer Verlag, 2nd edition,
2002.

[64] S.D. Kamvar, D. Klein, and C.D. Manning. Spectral learning. In Int. Joint.
Conf. on Arti. Intell., pages 561–566, 2003.

[65] R. M. Karp. Reducibility among combinatorial problems. In Complexity of
Computer Computations, pages 85–103, 1972.

[66] G. Karypis and V. Kumar. A fast and high quality multilevel scheme for
partitioning irregular graphs. SIAM J. on Sci. Comput., 20(1):359–392, 1998.

[67] S. Khot. Ruling out PTAS for graph min-bisection, dense k-subgraph, and
bipartite clique. SIAM J. Comput., 36(4), 2006.

[68] S. Khuller and B. Saha. On finding dense subgraphs. In Int. Colloq. Autom.,
Lang. and Programm. (ICALP), pages 597–608, 2009.

[69] K. Kiwiel. On linear-time algorithms for the continuous quadratic knapsack
problem. J. Opt. Theor. Appl., 134(3):549–554, 2007.

[70] A. Krause and V. Cevher. Submodular dictionary selection for sparse repre-
sentation. In Proc. Int. Conf. Mach. Learn. (ICML), pages 567–574, 2010.

[71] A. Krause, B. McMahan, C. Guestrin, and A. Gupta. Robust submodular
observation selection. J. of Mach. Lear. Res. (JMLR), 9:2761–2801, 2008.

[72] R. Kumar, P. Raghavan, S. Rajagopalan, and A. Tomkins. Trawling the web
for emerging cyber-communities. In Proc. of the Int. Conf. on World Wide
Web (WWW), pages 1481–1493, 1999.

[73] H. A. Le Thi and T. Pham Dinh. The DC (di↵erence of convex function)
programming and DCA revisited with DC models of real-world nonconvex
optimization problems. Ann. Oper. Res., 133(1):23–46, 2005.

148 BIBLIOGRAPHY

[74] H. A. Le Thi, V. N. Huynh, and T. Pham Dinh. DC programming and DCA
for general DC programs. Adv. Comput. Meth. for Knowl. Eng., 282:15–35,
2014.

[75] H. A. Le Thi, H.M. Le, V.V. Nguyen, and T. Pham Dinh. A DC programming
approach for feature selection in support vector machines learning. Adv. Data
Anal. Classif., 2(3):259–278, 2008.

[76] D. D. Lee and H. S. Seung. Unsupervised learning by convex and conic coding.
In Adv. in Neur. Inf. Proc. Syst. (NIPS), pages 515–521, 1996.

[77] D. D. Lee and H. S. Seung. Learning the parts of objects by non-negative
matrix factorization. Nature, 401(6755):788–791, 1999.

[78] D. D. Lee and H. S. Seung. Algorithms for non-negative matrix factorization.
In Adv. in Neur. Inf. Proc. Syst. (NIPS), pages 556–562, 2000.

[79] Z. Li, J. Liu, and X. Tang. Constrained clustering via spectral regularization.
In IEEE Conf. Comput. Vis. Patt. Recogn. (CVPR), pages 421–428, 2009.

[80] H. Lin and J. Bilmes. A class of submodular functions for document summa-
rization. In Proc. of the Assoc. Comput. Ling., pages 510–520, 2011.

[81] S. Lloyd. Least squares quantization in PCM. IEEE Trans. on Info. Theory,
28(2):129–137, 1982.

[82] L. Lovász. Submodular functions and convexity. Math. Program.: The State
of the Art, pages 235–257, 1983.

[83] J. Macqueen. Some methods for classification and analysis of multivariate
observations. In 5th Berkeley Symp. on Math. Stat. and Prob., pages 281–
297, 1967.

[84] M. Mahajan, P. Nimbhorkar, and K. Varadarajan. The planar k-means prob-
lem is NP-hard. In Proc. of the Int. Work. on Algo. and Comput., pages
274–285, 2009.

[85] M. W. Mahoney, L. Orecchia, and N. K. Vishnoi. A local spectral method for
graphs: With applications to improving graph partitions and exploring data
graphs locally. J. of Mach. Lear. Res., 13(1):2339–2365, 2012.

[86] S. Maji, N. Vishnoi, and J. Malik. Biased normalized cuts. In IEEE Conf.
Comput. Vis. Patt. Recogn. (CVPR), pages 2057–2064, 2011.

[87] S. B. Maurer and A. Ralston. Discrete Algorithmic Mathematics. CRC Press,
3rd edition, 2005.

[88] M. Narasimhan and J. Bilmes. PAC-learning bounded tree-width graphical
models. In Proc. Conf. Uncert. Art. Intell. (UAI), pages 410–417, 2004.

[89] Y. Nesterov. A method of solving a convex programming problem with con-
vergence rate o (1/k2). Soviet Mathematics Doklady, 27(2):372–376, 1983.

BIBLIOGRAPHY 149

[90] Y. Nesterov. Introductory lectures on convex optimization : a basic course.
Kluwer Academic Publishers, 2004.

[91] Y. Nesterov. Gradient methods for minimizing composite objective function.
CORE discussion paper, Universit catholique de Louvain, Center for Opera-
tions Research and Econometrics (CORE), 2007.

[92] A. Ng, M. Jordan, and Y. Weiss. On spectral clustering: Analysis and an
algorithm. In Adv. in Neur. Inf. Proc. Syst. (NIPS), pages 849–856, 2001.

[93] K. Pearson. On lines and planes of closest fit to systems of points in space.
Phil. Mag., 2(11):559–572, 1901.

[94] T. Pock and A. Chambolle. Diagonal preconditioning for first order primal-
dual algorithms in convex optimization. In IEEE Int. Conf. on Comp. Vis.
(ICCV), pages 1762–1769, 2011.

[95] S. S. Rangapuram, T. Bühler, and M. Hein. Towards realistic team formation
in social networks based on densest subgraphs. In Proc. Int. Conf. on World
Wide Web (WWW), pages 1077–1088, 2013.

[96] S. S. Rangapuram and M. Hein. Constrained 1-spectral clustering. In Proc.
Int. Conf. Art. Intell. Stat. (AISTATS), pages 1143–1151, 2012.

[97] S. S. Rangapuram, P. K. Mudrakarta, and M. Hein. Tight continuous relax-
ation of the balanced k-cut problem. In Adv. in Neur. Inf. Proc. Syst. (NIPS),
pages 3131–3139, 2014.

[98] R. T. Rockafellar. Convex analysis. Princeton University Press, 1970.

[99] R. T. Rockafellar. Monotone operators and the proximal point algorithm.
SIAM J. on Control and Opt., 14(5):877–898, 1976.

[100] R. T. Rockafellar, R. J.-B Wets, and M. Wets. Variational analysis. Springer,
1998.

[101] L. I. Rudin, S. Osher, and E. Fatemi. Nonlinear total variation based noise
removal algorithms. Physica D, 60(1-4):259–268, 1992.

[102] B. Saha, A. Hoch, S. Khuller, L. Raschid, and X.-N. Zhang. Dense subgraphs
with restrictions and applications to gene annotation graphs. In Int. Conf.
on Res. in Comp. Mol. Bio., pages 456–472, 2010.

[103] S. Schaible and J. Shi. Fractional programming: Applications and algorithms.
Europ. J. Operat. Res., 7(2):111–120, 1981.

[104] S. Schaible and J. Shi. Fractional programming: the sum-of-ratios case. Op-
timization Methods and Software, 18:219–229, 2003.

[105] B. Schölkopf and A. J. Smola. Learning with Kernels: Support Vector Ma-
chines, Regularization, Optimization, and Beyond. MIT Press, 2001.

150 BIBLIOGRAPHY

[106] R. Sharan and R. Shamir. Click: A clustering algorithm with applications to
gene expression analysis. In Proc. of the AAAI Conf. on Art. Intell., pages
307–316, 2000.

[107] J. Shawe-Taylor and N. Cristianini. Kernel Methods for Pattern Analysis.
Cambridge University Press, 2004.

[108] J. Shi and J. Malik. Normalized cuts and image segmentation. IEEE Trans.
Pattern Anal. Mach. Intell., 22:888–905, 2000.

[109] A. J. Soper, C. Walshaw, and M. Cross. A combined evolutionary search
and multilevel optimisation approach to graph-partitioning. J. of Glob. Opt.,
29(2):225–241, 2004.

[110] D. A. Spielman and S.-H. Teng. Nearly-linear time algorithms for graph
partitioning, graph sparsification, and solving linear systems. In Proc. Ann.
ACM Symp. Theor. Comput. (STOC), pages 81–90, 2004.

[111] V. Spirin and LA. Mirny. Protein complexes and functional modules in molec-
ular networks. Proc. of the Nation. Acad. of Sci. USA, 100:12123–12128, 2003.

[112] A. Szlam and X. Bresson. Total variation and Cheeger cuts. In Proc. Int.
Conf. Mach. Learn. (ICML), pages 1039–1046, 2010.

[113] T. Tao. Analysis II. Hindustan Book Agency, 2006.

[114] S. A. Vavasis. On the complexity of nonnegative matrix factorization. SIAM
J. on Opt., 20(3):1364–1377, 2009.

[115] U. von Luxburg. A tutorial on spectral clustering. Stat. and Comput., 17:395–
416, 2007.

[116] K. Wagsta↵, C. Cardie, S. Rogers, and S. Schrödl. Constrained k-means
clustering with background knowledge. In Proc. Int. Conf. Mach. Learn.
(ICML), pages 577–584, 2001.

[117] X. Wang and I. Davidson. Flexible Constrained Spectral Clustering. In Proc.
ACM SIGKDD Int. Conf. Knowl. Discov. Data Mining (KDD), pages 563–
572, 2010.

[118] D. J. A. Welsh and M. B. Powell. An upper bound for the chromatic number
of a graph and its application to timetabling problems. The Comput. J.,
10(1):85–86, 1967.

[119] E. P. Xing, M. I. Jordan, S. J. Russell, and A. Y. Ng. Distance metric learning
with application to clustering with side-information. In Adv. in Neur. Inf.
Proc. Syst. (NIPS), pages 521–528, 2003.

[120] J. Xu, A. G. Schwing, and R. Urtasun. Tell me what you see and I will show
you where it is. In IEEE Conf. Comput. Vis. Patt. Recogn. (CVPR), 2014.

[121] L. Xu, W. Li, and D. Schuurmans. Fast normalized cut with linear constraints.
In IEEE Conf. Comput. Vis. Patt. Recogn. (CVPR), pages 421–428, 2009.

BIBLIOGRAPHY 151

[122] F. Yang and Z. Wei. Generalized Euler identity for subdi↵erentials of ho-
mogeneous functions and applications. J. Math. Anal. Appl., 337:516–523,
2008.

[123] Z. Yang, T. Hao, O. Dikmen, X. Chen, and E. Oja. Clustering by nonnegative
matrix factorization using graph random walk. In Adv. in Neur. Inf. Proc.
Syst. (NIPS), pages 1088–1096, 2012.

[124] Z. Yang and E. Oja. Linear and nonlinear projective nonnegative matrix
factorization. IEEE Tran. on Neural. Netw., 21(5):734–749, 2010.

[125] S. X. Yu and J. Shi. Grouping with bias. In Adv. in Neur. Inf. Proc. Syst.
(NIPS), pages 1327–1334, 2001.

[126] S. X. Yu and J. Shi. Segmentation given partial grouping constraints. IEEE
Trans. on Patt. Anal. and Mach. Intell., 26(2):173–183, 2004.

	Introduction
	Graph-based setting
	Graph construction
	Clustering based on balanced cuts
	Community detection based on densest subgraphs

	Incorporating prior knowledge
	Overview of the thesis
	Contributions of the thesis

	Background
	Mathematical background
	Basics from analysis
	Set functions and Lovász extensions
	Submodular set functions
	Exact continuous relaxations
	DC Programming
	Fractional programming
	Nonlinear eigenproblems and RatioDCA

	Clustering methods
	k-means clustering
	Spectral clustering
	p-Spectral clustering
	1-Spectral clustering
	Relation between kernel k-means and normalized cut
	Clustering based on non-negative matrix factorization

	Two-class clustering with constraints
	State-of-the-art
	Spectral learning
	Flexible constrained spectral clustering
	Spectral clustering with linear constraints
	Constrained clustering via spectral regularization

	Formulation as constrained balanced cut problem
	Direct integration of must-link constraints
	Exact continuous relaxation of constrained balanced cut problem
	Algorithm for constrained balanced cut problem
	Solution via RatioDCA
	Quality guarantee for our method
	Smooth minimization of the inner problem
	Preconditioning for the inner problem

	Experiments
	Constrained clustering
	Effectiveness of preconditioning

	Conclusions

	Multi-class clustering
	State-of-the-art
	Continuous relaxation of the multi-class balanced cut
	Why simplex constraints alone are not sufficient

	Algorithm for the continuous relaxation
	Smooth minimization of the inner problem
	Choice of membership constraints I

	Multi-class clustering with constraints
	Formulation of constrained balanced k-cut problem
	Continuous relaxation of constrained balanced k-cut problem
	Algorithm for the continuous relaxation

	Experiments
	Unconstrained clustering
	Constrained clustering

	Conclusions

	Community detection via densest subgraphs
	Generalized densest subgraph problem
	Relation to local clustering

	An equivalent unconstrained formulation
	Exact continuous relaxation
	Algorithm for the generalized densest subgraph problem
	Solution via RatioDCA
	Quality guarantee for our method
	Smooth minimization of the inner problem

	LP relaxation of the generalized densest subgraph problem
	Application: Team formation in social networks
	Experiments
	Experimental Setup
	Quantitative Evaluation
	Qualitative Evaluation

	Conclusions

	Conclusions
	Summary
	Future work

